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Antônio Augusto Rodrigues de Camargo and Mauri Aparecido de Oliveira

Analysis of the Application of Different Forecasting Methods for Time Series in the Context of
the Aeronautical Industry
Reprinted from: Eng. Proc. 2023, 39, 74, doi:10.3390/engproc2023039074 . . . . . . . . . . . . . . 199

John Anderson Torres Mosquera, Carlos Julio Vidal Holguı́n, Alexander Kressner and Edwin

Loaiza Acuña

Forecasting System for Inbound Logistics Material Flows at an International Automotive
Company
Reprinted from: Eng. Proc. 2023, 39, 75, doi:10.3390/engproc2023039075 . . . . . . . . . . . . . . 215

Cinzia Graziani, Annalisa Lucarelli, Maurizio Lucarelli, Emilia Matera and Andrea

Spizzichino

Integrating Seasonal Adjustment Approaches of Official Surveys on Labor Supply and Demand
Reprinted from: Eng. Proc. 2023, 39, 76, doi:10.3390/engproc2023039076 . . . . . . . . . . . . . . 229

vi



Diana Manjarrés, Erik Maqueda and Itziar Landa-Torres

Online Pentane Concentration Prediction System Based on Machine Learning Techniques
Reprinted from: Eng. Proc. 2023, 39, 77, doi:10.3390/engproc2023039077 . . . . . . . . . . . . . . 239

Federico Delrio, Vincenzo Randazzo, Giansalvo Cirrincione and Eros Pasero

Non-Invasive Arterial Blood Pressure Estimation from Electrocardiogram and
Photoplethysmography Signals Using a Conv1D-BiLSTM Neural Network
Reprinted from: Eng. Proc. 2023, 39, 78, doi:10.3390/engproc2023039078 . . . . . . . . . . . . . . 247
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Abstract: In this paper, we propose a method for combining forecasts generated by different models
based on long short-term memory (LSTM) ensemble learning. While typical approaches for combining
forecasts involve simple averaging or linear combinations of individual forecasts, machine learning
techniques enable more sophisticated methods of combining forecasts through meta-learning, leading
to improved forecasting accuracy. LSTM’s recurrent architecture and internal states offer enhanced
possibilities for combining forecasts by incorporating additional information from the recent past. We
define various meta-learning variants for seasonal time series and evaluate the LSTM meta-learner
on multiple forecasting problems, demonstrating its superior performance compared to simple
averaging and linear regression.

Keywords: ensemble forecasting; LSTM; machine learning; multiple seasonal patterns; short-term
load forecasting

1. Introduction

Real-world time series can exhibit various complex properties such as time-varying
trends, multiple seasonal patterns, random fluctuations, and structural breaks. Given this
complexity, it can be challenging to identify a single best model to accurately approximate
the underlying data-generating process [1]. To address this issue, a common approach is to
combine multiple forecasting models to capture the multiple drivers of the data-generating
process and mitigate uncertainties regarding model form and parameter specification [2].
This approach, known as ensemble forecasting or combining forecasts, has been shown to
be effective in improving the accuracy and reliability of time series forecasts. By combining
forecasts, the aim is to take advantage of the strengths of multiple models and reduce the
impact of their individual weaknesses.

There are several potential explanations for the strong performance of forecast combi-
nations. Firstly, by combining forecasts, the resulting ensemble can capture a broader range
of information and better handle the forecasting problem complexity. It can leverage the
strengths of individual models, as each model may capture different aspects of the under-
lying data-generating process. Therefore, the resulting ensemble can incorporate partial
and incompletely overlapping information, leading to improved accuracy and robustness.
Secondly, in the presence of structural breaks and other instabilities, combining forecasts
from models with different degrees of misspecification and adaptability can mitigate the
problem. This is because individual models may perform well under certain conditions but
poorly under others, and by combining them, the ensemble can better handle a range of
potential scenarios [3]. Finally, forecast combinations can improve stability compared to
using a single model, as the ensemble is less sensitive to the idiosyncrasies of individual
models. This means that the resulting forecasts are less likely to be influenced by outliers
or errors in individual models, leading to more reliable predictions.

Eng. Proc. 2023, 39, 53. https://doi.org/10.3390/engproc2023039053 https://www.mdpi.com/journal/engproc1
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In a classical way, by combining the predictions from multiple models, the resulting
ensemble prediction can be thought of as an average of the individual predictions. The vari-
ance of the average of multiple independent random variables is typically lower than the
variance of a single random variable, assuming that the individual predictions are diverse.
Therefore, a key issue in ensemble learning is ensuring diversity among the individual
models being combined. If the models are too similar, the ensemble may not be able to
capture the full range of possible outcomes and may not improve predictive performance.
In this work, we ensure high diversity among models by using non-interfering models
with different operating principles and architectures, including statistical, machine learning
(ML), and hybrid models (see Section 3.2).

A simple arithmetic average of forecasts based on equal weights is a popular and
surprisingly robust combination rule, outperforming more complicated weighting schemes
in many cases [4,5]. Other strategies, such as using the median, mode, trimmed means,
and winsorized means, are also applied [6]. To differentiate weights assigned to individual
models, linear regression can be used, where the vector of past observations is the response
variable and the matrix of past individual forecasts is the predictor variable. Combination
weights can be estimated using ordinary least squares. The weights can reflect individual
models’ performance on historical data [7]. Time-varying weights can be used to improve
forecasting ability in the presence of instabilities, and principal components regression can
be used as a solution for multicollinearity [8]. Weights can also be derived from information
criteria such as AIC [9].

Linear combination approaches assume a linear dependence between constituent
forecasts and the variable of interest, and may not result in the best forecast, especially if
the individual forecasts come from nonlinear models or if the true relationship between
base forecasts and the target has a nonlinear form [10]. In contrast, ML models can combine
the base forecasts nonlinearly using a stacking procedure.

Stacking is an ensemble ML algorithm that learns how to best combine predictions
from multiple models, using the concept of meta-learning to boost forecasting accuracy
beyond that achieved by the individual models. Neural networks (NNs) are often used
in stacking to estimate the nonlinear mapping between the target value and its forecasts
produced by multiple models [11]. The power of ensemble learning for forecasting was
demonstrated in [12], where several meta-learning approaches were evaluated on a large
and diverse set of time series data. Ensemble methods were found to provide a benefit
in overall forecasting accuracy, with simple ensemble methods leading to good results on
average. However, there was no single meta-learning method that was suitable for all
time series.

The main contributions of this study can be summarized in the following three aspects:

1. A meta-learning approach based on LSTM is proposed for combining forecasts. This
approach incorporates past information accumulated in the internal states, improving
accuracy, especially in cases where there is a temporal relationship between base
forecasts for successive time points.

2. Various meta-learning variants for time series with multiple seasonal patterns are
proposed, such as the use of the full training set, including base forecasts for successive
time points, and the use of selected training points that reflect the seasonal structure
of the data.

3. Extensive experiments are conducted on 35 time series with triple seasonality us-
ing 16 base models to validate the efficacy of the proposed approach. The exper-
imental results demonstrate the high performance of the LSTM meta-learner and
its potential to combine forecasts more accurately than simple averaging and linear
regression methods.

The remainder of this work is structured as follows. Section 2 presents the pro-
posed LSTM meta-model and introduces both the global and local meta-learning variants.
Section 3 provides application examples for time series with complex seasonality and
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discusses the results obtained from the conducted experiments. Finally, in Section 4, we
conclude our work by summarizing the key findings and contributions.

2. LSTM for Combining Forecasts

The problem of forecast combinations refers to the task of finding regression function f
that aggregates the forecasts for time t produced by n forecasting models. The function can
use all the available information up to time t − h, where h is a forecast horizon, but in this
study, we limit this information to the base forecasts expressed by vector ŷt = [ŷ1,t, ..., ŷn,t].
The combined forecast is ỹt = f (ŷt; θt), where θt is a vector of meta-model parameters.

The model learns using training set Φ = {ŷτ , yτ}τ∈Ξ, where yτ is a target value and
Ξ is a set of selected time indexes from interval T = 1, ..., t − h (selection of this set is
considered in Section 2.2).

The class of regression functions f encompasses both linear and nonlinear mappings,
as well as series-specific and cross-learning mappings. In the latter approach, the parame-
ters of the function are selected through a learning process over multiple time series, which
enhances the generalization capability of the model. Furthermore, the parameters can either
be static or time-varying throughout the forecasting horizon. To maximize the performance
of the ensemble, we adopt an approach where we learn the meta-model parameters for each
forecasting task individually, using a specific training set for each task (see Section 2.2).

2.1. LSTM Model

LSTM is a modern recurrent NN that incorporates gating mechanisms [13]. This NN
architecture was specifically designed to handle sequential data and is capable of learning
short and long-term relationships in time series [14]. LSTM is composed of recurrent cells
that can maintain their internal states over time, i.e., cell state c and hidden state h. These
cells are regulated by nonlinear gating mechanisms that control the flow of information
within the cell, allowing it to adapt to the dynamics of the current process.

In our implementation, the LSTM network consists of two layers: the LSTM layer and
the linear layer, see Figure 1. The LSTM layer is responsible for approximating temporal
nonlinear dependencies in sequential data and generating state vectors. On the other hand,
the linear layer converts hidden state vector h into the output value. The aggregation
function implemented in the LSTM network can be written as:

f (ŷt) = vTht(ŷt) + v0 (1)

ht(ŷt) = LSTM(ŷt, ct−1, ht−1; w) ∈ R
m (2)

where w and v are the weights of the LSTM and linear layers, respectively.

Linear layer

Figure 1. LSTM model.
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The number of nodes in each gate, m, is the most critical hyperparameter. It determines
the amount of information stored in the states. For more intricate temporal relationships, a
higher number of nodes is necessary.

In contrast to non-recurrent ML models such as feed-forward NNs, tree-based models,
and support vector regression, to calculate output ỹt, LSTM uses not only the information
included in the base forecasts for time t, ŷt, but also in the base forecasts for previous time
steps, t − 1, t − 2, . . .. This is achieved through states ct−1 and ht−1, which accumulate
information from the past steps.

2.2. Meta-Learning Variants

The forecasting models generate forecasts for the successive time points T = 1, . . . , t − h.
To obtain an ensemble forecast for time t, we can train the meta-model using all available
data from the historical period, i.e., Ξ = T, which is referred to as the global approach.
Using this method, the model can utilize all available information to generate a forecast for
the current time point.

In local learning, we restrict the training sequence to the last k points, i.e.,
Ξ = t − h − k, . . . , t − h, allowing the LSTM to model the relationship for the query pattern
ŷt based on the most recent sequence of length k. We refer to this approach as v1.

When ensembling seasonal time series, training the LSTM model on points from the
same phase of the cycle as the forecasted point can improve forecast accuracy. In this
approach, the training set consists of points Ξ = {t − ks1, t − (k − 1)s1, . . . , t − s1}, where
s1 denotes the period of the seasonal cycle and k is a predefined size of the training set. It is
worth noting that this training set retains the time structure of the data, but simplifies it
by only including points that are in the same phase of the seasonal cycle as the forecasted
point. We refer to this approach as v2.

In the case of double seasonality with periods s1 and s2 (assuming that s2 is a multiple
of s1), we can create the training set by selecting points from the same phase of both
seasonal patterns as the forecasted point. Specifically, the training set is composed of points
Ξ = {t − ks2, t − (k − 1)s2, . . . , t − s2}. We refer to this approach as v3. Figure 2 visualizes
the training target points for each variant of LSTM learning.

Real v1 v2 v3 Forecasted point

s
1

s
2

Figure 2. Selection of training points for LSTM.

Note that approaches v2 and v3 remove the training points that are not in the same
phase as the forecasted point. This simplifies the relationship between the new training
points and the forecasted point, making it easier to model. However, this simplification
comes at the cost of potentially losing some of the information related to the seasonal
patterns that occur outside of the selected phase. Therefore, it is important to carefully
consider which approach to use depending on the specific characteristics of the data.

3. Experimental Study

We evaluate the performance of our proposed approach, combining forecasts gen-
erated by 16 forecasting models described in Section 3.2. The forecasting problem is
short-term load forecasting for 35 European countries.
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3.1. Data, Forecasting Problem and Research Design

We use the real-world data collected from the ENTSO-E repository (www.entsoe.eu/
data/power-stats accessed on 6 April 2016). The dataset includes hourly electricity loads
spanning from 2006 to 2018, representing 35 European countries. It offers a diverse set of
time series, each exhibiting unique properties such as distinct levels and trends, variance
stability over time, intensity and regularity of seasonal fluctuations spanning different
periods (annual, weekly, and daily), and varying degrees of random fluctuations.

The forecasting models were optimized using data from 2006 to 2017 and applied to
generate hourly forecasts for the year 2018, day by day. To evaluate the performance of the
combining model, 100 hours for each country were chosen from the second half of 2018
(evenly spaced across the period) and the forecasts for each of these hours were combined
using LSTM. The LSTM model was trained separately for each selected hour, with preceding
data spanning from 1 January 2018 up to the hour preceding the forecasted hour (h = 1)
used for optimization and training across three variants (v1, v2, and v3). This resulted in a
total of 10,500 training sessions (35 · 100 · 3). In variant v2, we assumed daily seasonality
period s1 = 24 h, while in variant v3 we assumed weekly period s2 = 7 · 24 = 168 h.

This study utilized Matlab implementation of the LSTM model. Some LSTM hyperpa-
rameters were set to default values, while others were determined through experimentation.
The latter include the number of nodes m = 128, and the number of epochs—200.

As performance metrics, the following measures were used: MAPE—mean absolute
percentage error, MdAPE—median of absolute percentage error, MSE—mean square error,
MPE—mean absolute percentage error, and StdPE—standard deviation of percentage error.

3.2. Forecasting Models

As the base forecasting models, we use a set of statistical models and classical ML
models, as well as recurrent, deep, and hybrid NN architectures from [15]:

• ARIMA—auto-regressive integrated moving average model,
• ETS—exponential smoothing model,
• Prophet—modular additive regression model with nonlinear trend and seasonal

components,
• N-WE—Nadaraya–Watson estimator,
• GRNN—general regression NN,
• MLP—perceptron with a single hidden layer and sigmoid nonlinearities,
• SVM—linear epsilon insensitive support vector machine (ε-SVM),
• LSTM—long short-term memory,
• ANFIS—adaptive neuro-fuzzy inference system,
• MTGNN—graph NN for multivariate time series forecasting,
• DeepAR—autoregressive recurrent NN model for probabilistic forecasting,
• WaveNet—autoregressive deep NN model combining causal filters with dilated

convolutions,
• N-BEATS—deep NN with hierarchical doubly residual topology,
• LGBM—Light Gradient-Boosting Machine,
• XGB—eXtreme Gradient-Boosting algorithm,
• cES-adRNN—contextually enhanced hybrid and hierarchical model combining ETS

and dilated RNN with attention mechanism.

3.3. Results and Discussion

Table 1 shows the forecasting quality metrics for the base forecasting models. Note the
significant difference in results between the various models, with MAPE ranging from 1.70
for cES-adRNN to 3.83 for Prophet. The overall mean MAPE across all models was 2.53.

Table 2 shows forecasting quality metrics for different ensemble approaches. Mean
and Median are just the mean and median of 16 forecasts produced by the base models.
LinReg is a linear combination of these forecasts with weights estimated on the training
samples Ξ = T. As can be seen from Table 2, the most accurate approach is variant v1
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of LSTM for k = 168. This variant, which involves meta-learning on the full sequence
restricted to the last 168 points, provided the most accurate results as measured by MAPE,
MdAPE, and MSE errors. Note the significant difference in errors between this variant and
the second most accurate ensembling method, LinReg, which achieved about 5% in MAPE
and 35% in MSE.

Table 1. Forecasting quality metrics for the base models.

MAPE MdAPE MSE MPE StdPE

ARIMA 2.86 1.82 777,012 0.0556 4.60
ETS 2.83 1.79 710,773 0.1639 4.64
Prophet 3.83 2.53 1,641,288 −0.5195 6.24
N-WE 2.12 1.34 357,253 0.0048 3.47
GRNN 2.10 1.36 372,446 0.0098 3.42
MLP 2.55 1.66 488,826 0.2390 3.93
SVM 2.16 1.33 356,393 0.0293 3.55
LSTM 2.37 1.54 477,008 0.0385 3.68
ANFIS 3.08 1.65 801,710 −0.0575 5.59
MTGNN 2.54 1.71 434,405 0.0952 3.87
DeepAR 2.93 2.00 891,663 −0.3321 4.62
WaveNet 2.47 1.69 523,273 −0.8804 3.77
N-BEATS 2.14 1.34 430,732 −0.0060 3.57
LGBM 2.43 1.70 409,062 0.0528 3.55
XGB 2.32 1.61 376,376 0.0529 3.37
cES-adRNN 1.70 1.10 224,265 −0.1860 2.57

Note that using the simplest method of combining forecasts, Mean or Median, resulted
in significantly larger errors compared to LSTM v1. Unfortunately, variants v2 and v3,
which excluded seasonality from the training sequence, were found to be inaccurate and
did not perform well. This suggests that excluding seasonality from the training sequence
could lead to the loss of important information related to the seasonal patterns in the data,
resulting in deteriorated forecasting performance.

Figure 3 displays the MAPE boxplots for LSTM in three variants with varying lengths
of the training sequence k. Additionally, the boxplots for the baseline methods, namely
Mean, Median, and LinReg, are shown for comparison. As shown in the figure, LSTM in
variants v2 and v3 are highly sensitive to the length of the training sequence. It achieved
the lowest errors when trained on all available data points. Extending the training sequence
may potentially further reduce errors. In contrast, for LSTM v1, the training sequences of
length 168 hours (one week) provided the lowest errors.

MPE in Table 2 provides information about the forecast bias, which is the lowest
for LinReg, but LSTM v1, with MPE = 0.0247, is in second place. It is worth noting
that Mean and Median produce more biased forecasts. The lowest value of StdPE for
LSTM v1 indicates the least dispersed predictions compared to other approaches for
combining forecasts.

Table 2. Forecasting quality metrics for different ensemble approaches (best results in bold).

Variant MAPE MdAPE MSE MPE StdPE

Mean - 1.91 1.23 316,943 −0.0775 3.11
Median - 1.82 1.13 287,284 −0.0682 3.05
LinReg - 1.63 1.11 213,428 0.0131 2.38
LSTM v1, k = 168 1.55 1.09 139,667 0.0247 2.26
LSTM v2, global 1.95 1.34 270,266 −0.1046 2.89
LSTM v3, global 2.97 1.84 726,108 −0.3628 4.84
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Figure 3. MAPE boxplots for the various ensemble variants.

Figure 4 depicts examples of forecasts for selected countries and test points. It is worth
noting that LSTM v1 was able to achieve forecasts close to the target values, which were
outside the interval of the base models’ forecasts (let us denote this interval for the i-th
test point by Zi) and despite the fact that no base model even came close to these targets
(see test point no. 94 for FR and 99 for GB in Figure 4). One possible explanation for this
ability of LSTM is the incorporation of additional information from the immediate past
through internal states c and h (see (2)). LinReg, having no internal states, cannot use such
information. Mean and Median approaches cannot even go beyond the interval Zi.

To test the ability of LSTM v1 and LinReg to produce forecasts outside the interval Zi,
we counted the number of such cases out of the 3500 forecasts produced by each model.
The results are shown in column N1 of Table 3. Column N2 counts how many of these N1
cases concern the situation where the target value also lay outside the Z-interval, on the
same side as the meta-model forecast. Column N3 counts the number of cases out of N1 for
which the meta-model produces more accurate predictions than the Median approach. It is
evident from Table 3 that LSTM generates many more forecasts outside of Zi than LinReg.
This may indicate better extrapolation properties of LSTM, but on the other hand, it may
also suggest an increased susceptibility to overfitting.

Table 3. Extrapolation properties of LSTM v1 and LinReg.

N1 N2 N3

LinReg 48 13 27
LSTM v1 447 192 244

In summary, our research findings suggest that LSTM, as a meta-learner, exhibits
sensitivity to the length of the training sequence and achieves optimal performance when
trained in global mode. However, it is important to note that the overall performance
also depends on the accuracy and correlation of the base forecasts. In this study, we did
not delve into the analysis of interdependence between the base forecasts or select the
optimal set of base models. These aspects present opportunities for further optimization
and improvement in future research.

LSTM poses greater challenges compared to classical ML methods such as MLP or
random forests. It involves a larger number of hyperparameters and parameters that need
to be tuned, making the optimization and training process more complex. Additionally,
LSTM typically requires a larger amount of data to achieve optimal performance due to
its ability to capture intricate temporal dependencies. In local versions of training, where
shorter training sequences are used, accurate predictions with LSTM can be challenging
to obtain. This highlights the importance of having sufficient training data to effectively
capture the underlying patterns and dynamics of the sequential data.
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Figure 4. Base and ensemble forecasts.

4. Conclusions

This study proposes a meta-learning approach for combining forecasts based on LSTM,
which has the potential to improve accuracy, particularly in cases where there is a temporal
relationship between base forecasts. The study also proposes different variants of the
approach for time series with multiple seasonal patterns.

The experimental results clearly demonstrate that the LSTM meta-learner outperforms
simple averaging, median, and linear regression methods in terms of forecasting accuracy.
In addition, LSTM has distinct advantages over non-recurrent ML models as it is capable of
leveraging its internal states to model dependencies between base forecasts for consecutive
time points and capture patterns in the sequential data.

Further studies could compare LSTM with other meta-learning approaches, such
as feed-forward and randomized NNs, random forests, and boosted trees to determine
which approach is best suited for a given forecasting problem. Moreover, selecting a
pool of base models and controlling their diversity is an interesting topic that requires
further investigation.
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Abbreviations

The following abbreviations are used in this manuscript:

ANFIS Adaptive Neuro-Fuzzy Inference System
ARIMA Auto-Regressive Integrated Moving Average
cES-adRNN contextually enhanced hybrid and hierarchical model combining ETS and dilated

RNN with attention mechanism
DE Germany
DeepAR Auto-Regressive Deep recurrent NN model for probabilistic forecasting
ES Spain
ETS Exponential Smoothing
FR France
GB Great Britain
GRNN General Regression Neural Network
LinReg Linear Regression
LGBM Light Gradient-Boosting Machine
LSTM Long Short-Term Memory Neural Network
MAPE Mean Absolute Percentage Error
MdAPE Median of Absolute Percentage Error
ML Machine Learning
MLP Multilayer Perceptron
MPE Mean Percentage Error
MSE Mean Square Error
MTGNN Graph Neural Network for Multivariate Time series forecasting
N-BEATS deep NN with hierarchical doubly residual topology
N-WE Nadaraya—Watson Estimator
NN Neural Network
PE Percentage Error
PL Poland
RNN Recurrent Neural Network
StdPE Standard Deviation of Percentage Error
SVM Support Vector Machine
STLF Short-Term Load Forecasting
WaveNet Auto-Regressive deep NN model combining causal filters with dilated convolutions
XGB eXtreme Gradient Boosting
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12. Gastinger, J.; Nicolas, S.; Stepić, D.; Schmidt, M.; Schülke, A. A study on ensemble learning for time series forecasting and the

need for meta-learning. In Proceedings of the 2021 International Joint Conference on Neural Networks (IJCNN), Shenzhen, China,
18–22 July 2021; pp. 1–8.

13. Hochreiter S.; Schmidhuber J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]

9



Eng. Proc. 2023, 39, 53

14. Hewamalage H.; Bergmeir C.; Bandara K. Recurrent neural networks for time series forecasting: Current status and future
directions. Int. J. Forecast. 2021, 37, 388–427. [CrossRef]

15. Smyl, S.; Dudek, G.; Pełka, P. Contextually enhanced ES-dRNN with dynamic attention for short-term load forecasting. arXiv
2022, arXiv:2212.09030.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

10



Citation: Fernandez, J.B.; Little, S.;

O’Connor, N.E. Moving Object Path

Prediction in Traffic Scenes Using

Contextual Information. Eng. Proc.

2023, 39, 54. https://doi.org/

10.3390/engproc2023039054

Academic Editors: Ignacio Rojas,

Hector Pomares, Luis Javier Herrera,

Fernando Rojas and Olga

Valenzuela

Published: 5 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Proceeding Paper

Moving Object Path Prediction in Traffic Scenes Using
Contextual Information †

Jaime B. Fernandez *, Suzanne Little and Noel E. O’Connor

Insight SFI Research Centre for Data Analytics, Dublin City University, Glasnevin, Dublin 9, Ireland;
suzanne.little@dcu.ie (S.L.); noel.oconnor@dcu.ie (N.E.O.)
* Correspondence: jaimeboanerjes.fernandezroblero@dcu.ie
† Presented at the 9th International Conference on Time Series and Forecasting, Gran Canaria, Spain,

12–14 July 2023.

Abstract: Moving object path prediction in traffic scenes from the perspective of a moving vehicle
can improve safety on the road, which is the aim of Advanced Driver Assistance Systems (ADAS).
However, this task still remains a challenge. Work has been carried out on the use of x, y positional
information of the moving objects only. However, besides positional information there is more
information that surrounds a vehicle that can be leveraged in the prediction along with the x, y
features. This is known as contextual information. In this work, a deep exploration of these features
is carried out by evaluating different types of data, using different fusion strategies. The core
architectures of this model are CNN and LSTM architectures. It is concluded that in the prediction
task, not only are the features important, but the way they are fused in the developed architecture is
also of importance.

Keywords: time series; path prediction; traffic scenes; LSTMs

1. Introduction

In previous work [1,2], only the past positions of the observed object in a scene have
been used to predict its future path. However, in traffic scenarios there is a rich set of
additional information available about the environment of the ego vehicle and each object in
the scene. For example, this information could be an image of a moving object, the velocity
of the ego vehicle, the position of other objects or an image of the scene itself. Nowadays,
instrumented vehicles are capable of sensing and providing this information that could be
leveraged in the path prediction task. This contextual information is used along with the
tr(x, y) positional information of the object whose future path is to be predicted.

However, using contextual information still poses a challenge. The information comes
in different types of data, e.g., numerical, images. Data also derive from different sources.
As a result, the following problems have to be faced: synchronization and availability of
data, feature extraction, multimodal data management, and data fusion strategies. This
work presents an approach developed to use this contextual information in the path
prediction task.

In the remainder of this work, Section 2 presents the related works in path prediction.
Section 3 presents our approach. Section 4 describes the experimental setup. In Section 5,
a deeper exploration of multimodal features is detailed. Finally, in Section 6, conclusions
are provided.

2. Related Works

A variety of techniques for path prediction have been developed, from the well known
Kalman Filter (KF) [3], some probabilistic approaches [4], approaches based on prototype
trajectories [5] to Recurrent Neural Networks (RNNs) and its variants that have shown
good performance on sequential or time series data [6].
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LSTMs have been used as well. LSTMs are capable of obtaining information from se-
quences and then performing prediction using that previous information. The use of LSTMs
in different ways has been explored, from stacked LSTMs [7] to encoder–decoders [8]. One
interesting work is presented in [7], where they use LSTMs to predict the trajectory of
vehicles in highways from a fixed top-view. In [9], multiple cameras were used to predict
the trajectory of people in crowded scenes and [10] predicts the trajectory of vehicles in an
occupancy grid from the point of view of an ego vehicle. A more closely related work to this
paper is presented in [11], where they predict the future path of pedestrians using RNNs as
encoder–decoders and also include the prediction of the odometry of the ego-vehicle.

Nowadays, due to the availability of more data, approaches using contextual informa-
tion have also been explored. Ref. [12] predicts the trajectory of a cyclist based on the image
of the cyclist, the distance of the cyclist to the vehicle and information about the scene. They
refer to this information as the object, dynamic and static context, respectively. Ref. [13]
predicts the trajectory of pedestrians using the observed trajectory, an occupancy map and
visual information of a scene which they call the person, social and scene scale, respectively.
Ref. [14] also makes use of visual information from a map along with information from the
objects such as velocity, acceleration, and heading change rate as inputs. A complete work
is shown in [15], where an end-to-end architecture is used to process different contextual
features such as the dynamics of the agents, scene context and interaction between agents.
An extended survey is presented in [16], with traditional and deeplearning approaches
used in the path prediction task. Something interesting about [12–15] is that CNNs along
with LSTMs are used to extract features from images, which is required when multi-modal
features are processed. The mentioned works present different architectures using different
features. Looking at them, it can be seen that there are three important tasks that need
to be faced. (1) Multimodal data, (2) feature extraction, and (3) fusion strategies. In this
work, different to the ones presented in this section, we aim to explore and evidence the
importance of those three processes that should be taken into account when predicting the
future path of objects in traffic scenes. For this, we carried out some further research on
CNNs and fusion Strategies.

One of the limitations when dealing with a sequence of images is that the CNN model
can be highly resource consuming, particularly with large images. Therefore, in this work,
we focus on working with subsampled images of sizes such as 40 × 40, 64 × 64 and
124 × 37 pixels to accommodate for the original image size. For that reason, some research
was performed on tiny images classification. An interesting work is detailed in [17], where
they present a 4Block-4CNN model that performs well on tiny images of 32 × 32 pixels
from the CINIC-10 dataset. Another related work is provided in [18], where they used the
Tiny ImageNet dataset with images of 64 × 64. In this work, they conclude that the use of
deep models (8CNNs) leads to better performance. Similar conclusions were made in [19].
In these works, the use of several layers of CNNs in the models is common. Since here the
task is different to classification, another point to consider is the use of a Global Average
Pooling Layer (GAP) that allows the model to generate more generic features and also helps
to expose the regions in which the CNNs are focused [20]. This is a desirable characteristic
since we are not aiming to classify an image but to predict the future path of objects based
on them. Finally, because of the work in [21,22], we decided to use batch normalization.

Finally, knowing how the available features from different sources will be combined
is another challenge that is still open to further investigation. Fusion strategies define the
way that different streams of features will be joined in the model architecture. Three main
fusion strategies are described in [23,24]. Early fusion, mid-level fusion and late fusion.
In this work, we also explored some of these fusion strategies.

3. Approach

A path, P, is a set of tracks, tr, that contains information such as tr(x, y) spatial coordi-
nates of an object traveling in a given space or scene, P = {trt1, trt2, . . . , trtlength}. However,
besides the spatial location of the object, there are other features that can be extracted from
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the object itself, the ego vehicle, the other objects and the scene. This information can also
be extracted sequentially so a track can be represented as a set of features such as tr(x, y,
rgbobject, otherobjects, egovehicle, scene, time). Each track feature is a measure given for a
sensor in intervals of time and in an ordered manner. This means that a path is a sequence of
measurements of the same variables collected over time, where the order matters, resulting
in a time series. Due to this fact, a path can be seen as a multivariate time series that has
several time-dependent variables. Each variable depends on its past values and this depen-
dency is used for forecasting future values. So the task of path prediction can be seen as
multivariate multi-step time series forecasting. LSTMs have shown good performance when
dealing when time series; thus, in this approach LSTMs are used for path prediction. We
used the sliding window approach to create observed tracklets: trO = [trO

t1, trO
t2, . . . , trO

tobs]

and its respective ground truth tracklet: trG = [trG
t1, trG

t2, . . . , trG
tpred]. The predicted vector of

each trO is called trP = [trP
t1, trP

t2, . . . , trP
tpred]. The aim of this work is to predict a trP based

on the observed tracks trO.

3.1. Multimodal Data

The information we are processing derives from different sources and is of different
types, as shown in Figure 1. We want to build an end-to-end model capable of processing all
this information. To achieve this requirement, we are using the Keras functional API (https:
//keras.io/guides/functional_api/ (accessed on 20 January 2023)). The functional API can
handle models with non-linear topology, shared layers, and multiple inputs or outputs.

Figure 1. Contextual information.

For traffic scenes, and specifically from cameras mounted on a moving vehicle, the fol-
lowing features were used: object, ego-vehicle telemetery data, scene, and interaction-aware
or social context features (other objects), as visualised in Figure 1. These four types of
features were selected since they cover most of the information that can be obtained from
the perspective of an ego vehicle.

Object. Besides the x, y position of the object, regions of the objects from the RGB
images are used. These cropped images can potentially provide a better understanding of
the object, such as the pose or orientation that can be leveraged as additional features.

Ego Vehicle. The following features were selected because they are more related to the
movement of the vehicle on the ground. Yaw: heading (rad), VF: forward velocity, VL: left-
ward velocity, VU: upward velocity, AF: forward acceleration, AL: leftward acceleration,
AU: upward acceleration.
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Scene. Including information about the scene can potentially help to understand the
type of traffic scene where the prediction is happening. In this work, RGB images are used.

Interaction Aware. Taking into account the position of other objects is an important
feature for path prediction that is called interaction awareness. In this work, three rep-
resentations of the position of the objects in a scene are used—a grid map, a polar map,
and a local BEV map of objects. The grid and the polar map are implemented as in [13]. A
Local Bird’s-Eye View Map represents in pixels the position of the objects in the real world.
The map encodes the type of each object in a specific color; red for pedestrian, green for
vehicles, and blue for cyclists. Here, we used a scale of 1 px:0.3 m because it helps to better
separate objects that are too close to one another. However, the BEV contains all the objects
in a scene, but for predicting the path of an object, nearby objects are the most influential.
Therefore, a local BEV is extracted from the global BEV, as in Figure 2.

Figure 2. Local BEV for object ID 126.

3.2. Feature Extraction

Taking into account the related works, three CNN models were created to process
each type of image in this work. Figure 3 details the model used to process the object
image. The architecture is the same for the other type of images—the only difference is
the shape, since the sizes of the other types of images are different. For comparison, based
on information in [20]—“The responses from the higher-level layers of CNN (e.g., fc6, fc7
from AlexNet) have been shown to be very effective generic features with state-of-the-art
performance on a variety of image datasets” (p. 5)—and for its use in [13], we decided to
use AlexNet to compare performance with our proposed CNN models. Figure 4 presents
the AlexNet architecture for the object image. The architecture is the same for the other type
of images, the difference is the stride in the conv1 and maxPool1 layers which is as follows:
the interaction-aware image strides for conv1 and maxPool1 are 4 and 1, respectively.
For the scene image, the strides for conv1 and maxPool1 are 3 and 2, respectively.
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Figure 3. 4block3convGAP.

Figure 4. AlexNet.

3.3. Fusion Strategies

The following three fusion strategies are evaluated: (1) early fusion of raw features
(RF), (2) early fusion of latent space (LS) features, (3) middle fusion of latent space (LS)
features. The architecture for each type of fusion is presented in the experiments.

3.4. Evaluation Metrics

As in [25,26], the Average Displacement Error (ADE) and Final Displacement Error
(FDE) are used:

ADE =
∑n

i=1 ∑
tpred
t=1

2
√

(x̂t
i−xt

i )
2+(ŷt

i−yt
i )

2

n(tpred) (1)

FDE =
∑n

i=1
2
√
(x̂tpred

i −xtpred
i )2+(ŷtpred

i −ytpred
i )2

n (2)

where (x̂t
i , ŷt

i) are the predicted positions of the tracklet i at time t, (xt
i , yt

i) are the actual
position (ground truth) of the tracklet i at time t, tpred is the last prediction step, and n is
the number of tracklets in the testing set. We used the weighted sum of ADE (WSADE)
and weighted sum of FDE (WSFDE) as metrics, as shown in (http://apolloscape.auto/
trajectory.html (accessed on 10 February 2023)).

3.5. Model Architecture

The focus of this research is to demonstrate the improvement of the path prediction
task when using more features, which is why two foundational architectures were used.
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Each LSTM has 128 units using the default Keras’ configuration. The Adam optimizer
was also used with the default values. For regression loss, the Mean Squared Error (MSE)
was used. All experiments were run for 1000 epochs, except for those where an initial
evaluation of CNN models was performed (300 epochs). The batch size used was 32 due to
hardware limitations and because using a small batch size leads to a better trained model.
The architecture of the models changes according to the features and are illustrated in their
respective sections below:

• Vanilla LSTM:an LSTM using the default Keras’ configuration.
• Encoder–Decoder: the encoder comprises a vanilla LSTM for numerical data and

a CNN+LSTM for image data. The decoder is a vanilla LSTM that is fed with the
features or concatenation of features from the encoder.

4. Experimental Setup

The dataset used to evaluate the models was KITTI due to its realistic scenes, such as
highways, inner cities, vehicles standing/moving, and its different objects. All this informa-
tion is obtained from cameras mounted on a vehicle, which is the main focus of this research
work. There are other datasets, however, that do not provide RGB images of the scenarios
and ego vehicle features as KITTI does. KITTI provides information from different type of
sensors that can be fused and used together. The size of the dataset is 20,141 samples with a
class distribution of cyclists (802), pedestrians (6312) and vehicles (13,027). The evaluation
was carried out using three objects—pedestrian, vehicles, and cyclists—for a prediction
horizon (P.H.) of ±20 steps. The available dataset is not large and no standard test/train
split is available. For this reason, 5-fold cross validation was carried out and the mean
results are reported.

4.1. Data Pre-Processing

KITTI provides the data in different files; to use these features together, all the infor-
mation was synchronized, with the time stamp/ID reference taken as the frame number of
each measurement. Each type of data was processed as follows:

• Object: (x, y, z) position in metres were extracted. RGB features: patches of the objects
were extracted and resized to 64 × 64 pixels.

• Ego vehicle: orientation, velocity in [x, y, z], acceleration in [x, y, z] features were
extracted from the oxt files which are the dynamics of the ego vehicle.

• Scene: RGB images from the scenes were resized to 124 × 37 pixels.
• Interaction aware: grid and polar map were flattened first to feed an LSTM. The local

image BEV map was resized to 40 × 40 pixels.

4.2. Training and Prediction

During training, cross validation with K = 5 was carried out and for each fold a
training and test split was performed with 70% of the data used for training and the rest
for testing. Additionally, to feed the model correctly, the following steps were performed:

1. Select the features to use: object image, ego-vehicle information, scene image and
interaction-aware information can be used.

2. Scale data: tracklets were scaled to [0, 1]. Images were divided by 255 before being
fed to the CNN models.

3. Split data into observed tracklet, trO, and ground truth tracklet (path to be pre-
dicted), trG. trO is shaped as [Nsamples, tobs, f eatures-in-trO] and trG as [Nsamples,
OutputLength]. OutputLength is the size of the output of the model. In this case,
OutputLength = tpred ∗ f eatures-in-trG. Here, tpred represents the steps to predict in
the future and f eatures-in-trG is the number of features to predict in each step.

In [2], it was shown that LSTMs can be extended to predict multiple paths by com-
bining them with Mixture Density Models (MDMs) as a final layer. However, in this
work, a single path was predicted to better analyse the impact of the contextual features.
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The model outputs a single array, trP, per trO of size OutputLength. trP is re-shaped to
[tpred, f eatures-in-trG].

5. Exploration of Multimodal Features

Several combinations of pairs of features were tested; then, those features that led to
better performance were selected to create a combination of three features. Due to hardware
limitations and the lack of improvement when fusing three type of features, no further
combinations were tested.

The results are visualised using a colour scaling in a range of white to red. A white
background means that the model achieved the best performance and a red background
means that model showed the worst performance. A reddish shade means the model’s
performance is between the best and the worst. The second column shows WSADE,
followed by the individual ADE for each type of object. The fifth column presents WSFDE,
followed by the individual FDE for each type of object.

Experiments and Results

X, Y Features. This experiment consists of feeding an LSTM with raw features versus
first encoding the raw features in a latent space with an LSTM (the encoder) and then
feeding this into another LSTM (the decoder). The results depicted in Figure 5 demonstrate
that encoding the raw features in latent space improves performance over using the raw
features to feed the Vanilla LSTM.

Figure 5. Raw features vs. latent space features: x, y features.

X, Y, Ego-vehicle Features. Three combinations of ego vehicle information were
evaluated—1. [x,y,VF,VL], 2. [x,y,VF,VL,AF,AL] and 3. [x,y, HEADING, VF,VL,AF,AL].
To explore these features further, three fusion strategies were tested. From the results
shown in Figure 6, two observations can be drawn: (1) the combination of features: the
results indicate that using x, y and VF, VL, AF and AL reduces the error in the prediction.
(2) Fusion strategy: in most of the cases, using the middle fusion of features’ latent space
improves performance. On the contrary, using the raw features directly to feed the LSTM
leads to a greater error.

Figure 6. Early fusion raw features, early fusion latent space, middle fusion latent space: x, y,
ego-vehicle features.

The models used to fuse the information in this experiment in three different
strategies—early fusion no latent space, early fusion latent space and, middle fusion
latent space—are presented in Figures 7–9, respectively. The figures show the fusion
of four features—VF, VL, AF, AL of the ego vehicle—the fusion with the other two
combinations—VF, VL and Heading, VF, VL, AF, AL—follow the same architecture.
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Figure 7. Early fusion no latent space: x, y and vf, vl, af, al features.

Figure 8. Early fusion latent space: x, y and vf, vl, af, al features.

Figure 9. Middle fusion latent space: x, y and vf, vl, af, al features.

X, Y, Object Image. The initial approach to include deep features was to use the
model from SSLSTM [13], where the code (https://github.com/xuehaouwa/SS-LSTM
(accessed on 15 February 2023)) is provided. They use AlexNet without the two layers of
Conv2D (384), which creates a shallow and narrow CNN model (AlexNet light). The results
of this evaluation show no improvement in comparison to the baseline (using only x, y
features). The next step was to find out if using a different CNN would improve the
performance; therefore, based on the available literature [13,17], we selected two CNNs.
(1) 4block3convGAP for object image and (2) AlexNetGAP for object image. Due to the
computational requirements, to initially test the performance of the models they were run
for 300 epochs, using the k-fold numbers 1, 3 and 5. The results shown in Figure 10 indicate
that using the CNN model 4block3convGAP leads to better performance.
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Figure 10. 4block3convGAP vs. AlexNetGAP for object image.

For the second stage of this experiment, the model 4block3convGAP was selected to
be run for 1000 epochs and for all the k-folds. The results are shown in Figure 11. It can
be observed that the 4block3convGAP CNN significantly improves the performance of
the model compared to using the CNN from SSLSTM. Additionally, the 4block3convGAP
CNN also improves the performance against the baseline model (using only x, y). The im-
provement is mostly seen for FDE, which leads to an error reduction in the prediction of
the final position of an object. The improvement reached by using the 4block3convGAP in
contrast to the model from SSLSTM provides evidence that refining the CNN model used
leads to an improvement in the prediction. The encoder–decoder model used to fuse x, y
positional information and the object image is presented in Figure 12.

Figure 11. x, y only vs. AlexNet light vs. 4block3convGAP for object image.

Figure 12. Fusion model for x, y and object image.

X, Y, Interaction-aware Map. Three types of maps were explored to include other
objects’ positional information, a grid map, a polar map, and one local BEV. The results are
presented in Figure 13. The following observations can be made: (1) Grid Map vs. Polar
Map: using a grid map shows better performance. (2) Fusion strategy: there is a significant
error reduction when using middle fusion of features in the latent space. Early fusion,
however, leads to a higher error. This is observed for both the grid and polar map.
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Figure 13. Early fusion raw features, Early fusion latent space, Middle fusion latent space: x, y, int-
aware features.

For the third map BEV, as in X, Y, Object Image, two CNN models were selected—
4block3convGAP and AlexNetGAP—for the BEV image. The two CNNs were run for
300 epochs using the k-folds numbers 1, 3 and 5 and the mean are reported in Figure 14. It
can be seen that AlexNetGAP is slightly better than 4block3convGAP.

Figure 14. 4block3convGAP vs. AlexNetGAP for interaction-aware local BEV map.

The next step was to train the AlexNetGAP for 1000 epochs on the 5 folds. The results
are depicted in Figure 15. It can be observed that using the local BEV with AlexNetGap
improves the performance slightly over the use of a grid with middle fusion on latent space.
However, the use of local BEV with AlexNetGap does not lead to error reduction over the
base line model (using only x, y features). The reason could be because the KITTI dataset
does not have many crowded scenes where the objects interact with each other.

Figure 15. x, y only vs. polar vs. grid vs. local BEV map.

Three different models were used to fuse positional information and the created
handcrafted maps—early fusion with no latent space, early fusion with latent space and
middle fusion with latent space. These three models are similar to those used in X, Y,
ego-vehicle features (Figures 7–9, respectively.) The only difference is that in this case the
features used are from the created handcrafted maps (grid or polar map). The encoder–
decoder model used to fuse positional information and the local BEV map image is similar
to the one presented in Figure 12. The only difference is the CNN model, which in this case
is used for the interaction-aware image.

X, Y, Scene Image. This experiment combines RGB images of the scenes with the
x, y features of the objects. Again, in this set of experiments, we first tested two CNN
models (4block3convGAP and AlexNetGAP) for 300 epochs on the k-fold numbers 1, 3 and
5. The mean results are presented in Figure 16. Since AlexNetGAP demonstrated better
performance, it was trained for 1000 epochs on the 5 folds. The results are depicted in
Figure 17. It can be observed that the use of AlexNetGAP to extract features from scene
images leads to a slight error reduction in comparison to the baseline model. The improve-
ment is observed for FDE and mostly for the object cyclist. The encoder–decoder model
used to fuse x, y positional information and the scene image is similar to the one presented
in Figure 12. The only difference is the CNN model, which in this case is the one used for
the scene image.
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Figure 16. 4block3convGAP vs. AlexNetGAP for scene image.

Figure 17. x, y and scene image: x, y only vs. AlexNetGap for scene image.

Combinations of Features that Lead to a Better Performance. The Figure 18 shows the
performance of the baseline model in the first row compared to the two best combinations
of features. It can be seen that combining the x, y features with the ego vehicle information
(VF, VL, AF, AL) (second row) leads to better performance. The combination of x, y features
with the object image also improves the performance against the baseline.

Figure 18. Combinations of features that lead to a better performance.

X, Y, Object Image, Ego-vehicle Features. Previous experiments shown that ego
vehicle information and visual information of the object lead to an error reduction. In this
experiment, those two features are combined with the x, y positional information. The
results are presented in Figure 19, it can be seen that no improvement was reached when
combining these three features. The model architecture is similar to the one shown in
Figure 12 but in this case we added another branch of information coming from the ego-
vehicle feature, as in Figure 9.

Figure 19. Combination of three features: x, y , object image, and ego-vehicle.

Ensembles. Three ensembles were built using the models that showed improvement
in performance compared to our baseline methodology. Ensemble 1: [Enc-Dec: X, Y],
[Enc-Dec: X, Y, VF, VL, AF, AL]. Ensemble 2: [Enc-Dec: X, Y], [Enc-Dec: X, Y, Object image
(4block3convGAP)]. Ensemble 3: [Enc-Dec: X, Y], [Enc-Dec: X, Y, VF, VL, AF, AL], [Enc-Dec:
X, Y, Object image (4block3convGAP)]. In each ensemble, the output of each model is
combined by averaging in the final output layer. The results are presented in Figure 20.
The three ensembles achieve better performance than the baseline model (row 1) and the
two individual combinations of features (rows 2 and 3).
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Figure 20. Results of ensembles.

6. Discussion and Conclusions

The following observations can be noted from exploring multimodal features on the
path prediction task:

Best Combination of Features. Combining x, y with the ego-vehicle features leads
to a better performance mostly for ADE. The combination of x, y with Object image also
improves the performance against the baseline model for both ADE and FDE.

Latent Space Representation and Fusion Strategies. It can be noted that the way in
which the features are fused in the model architecture has a significant impact on the
prediction. The initial evidence was presented in X, Y features in Figure 5; the results show
that representing the features in a latent space improves the performance compared to
using the features directly to the LSTM. Then, evidence was presented in X, Y, Ego-vehicle
features; the results in Figure 6 indicate that the middle fusion of features represented in
latent space had better performance. On the contrary, early fusion led to a higher error. Next,
evidence was presented in X, Y, interaction-aware map; the results exhibited in Figure 13
revealed that there is an error reduction when using middle fusion in the latent space.
Again, early fusion led to a higher error. Looking at the impact of the fusion strategies, it
would be interesting to explore more in this area, since not only are the features important,
but the way these features are fused in a model architecture is also of importance.

CNN Models. From the three experiments in which deep features were used, some-
thing important to point out is the impact that a CNN model has in the overall path
prediction task. When dealing with images, an evaluation of different CNNs is desirable.
It would be interesting to evaluate more CNNs and to see if some of them with common
characteristics such as the number of CNN layers, filter size, or specific type of layers (GAP,
Attention, etc.) can improve the performance.

Ensembles. It is known that ensembles improve the performance of individual classi-
fiers or methods; in this work, there is evidenced in the context of path prediction in traffic
scenes. The three ensembles improved the performance of the baseline methodology and
the two other best individual models.
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Abstract: Climate parameter projections obtained by global and regional models (GCM and RCM,
respectively) offer a challenge to many researchers in terms of controlling the quality of the outcome
data using several scales. In the literature, the proposed models, namely statistical downscaled and
regression-based models, are mostly used to adjust the RCM data series. Contrariwise, in practice,
these conceptual models perform poorly in certain cases and at certain scales. In this regard, a new
downscaling model is proposed herein for annual rainfall projection, based on fusion models, namely
polynomial regression (Poly_R), classification and regression tree (CRT), and principal component
regression (PCR). The proposed model downscales the rainfall data projected by the coupled model
intercomparison phase five (CMIP5) under different representative concentration pathway (RCP)
scenarios (2.6, 4.5, 6.0, and 8.5) using overlapping data between the observation and the CMIP5
historical data. This process aims to define the framework for how to use the output equations and
algorithm to correct data forecasting by RCM. Generally, the model can be summarized into three
levels of analysis, starting with an iterative downscaling using a trendline model that is obtained
by Poly_R fitting. Then, the CRT is used to classify and predict the data in subsets. Finally, multiple
regression is given by a PCR model using principal components and standardized variables. The
final model is also used to downscale the predicted data obtained by both previous models. The
results provide the best performance of the fusion model in all RCP cases, compared to the delta
change correction and linear scale models. This performance is proved by R2 scores which range
between 0.87 and 0.95.

Keywords: CMIP5 rainfall projection; RCP scenario; downscaling fusion model

1. Introduction

Evaluating hydroclimatic indices under future climate change conditions is crucial
for informing decision-makers about future water availability. This information must also
be considered in future plans for civil construction and development [1,2]. Future studies
on rainfall variability often use data from global climate models (GCMs), which explore
the causes of climate change and the relationship between natural climate variability
and human activities. GCMs are widely used in climate research to study global and
regional climate patterns, assess the potential impacts of climate change, and evaluate
the effectiveness of different mitigation and adaptation strategies. Unfortunately, GCMs
have a very low spatial resolution, which can lead to limitations in accurately representing
local climate characteristics [3]. In order to address these limitations, researchers often use
certain techniques such as downscaling, which involves refining the GCM outputs to a
finer scale to better represent local conditions.

Downscaling can be performed using statistical methods or by using regional climate
models (RCM) that possess a higher spatial resolution. Generally, the RCM model uses
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incorporating topography, land–sea contrast, surface heterogeneities, and certain informa-
tion about physical processes using a spatial resolution from 20 to 50 km [4]. The statistical
downscaling (SD) method is based on historical observed data to create an empirical rela-
tionship between the GCM and observed data [5,6]. The most commonly used SD methods
are regression-based [7–9] and correction-based equations [10].

Artificial neural networks (ANNs) offer another regression-based method, which is
able to capture non-linear relationships, and these networks tend to perform better than
the multiple linear regression method in certain cases [11]. ANNs also yield physically
interpretable linkages to surface climate. However, ANN models require large time series
data and are incapable of predicting values outside of the historical dataset [4].

This work aims to propose a new model to downscale the annual rainfall data pro-
jected by the coupled model intercomparison phase five (CMIP5) using representative
concentration pathway (RCP) scenarios, such as RCP 2.6, RCP 4.5, RCP 6.0, and RCP
8.0 [12]. The idea is to fuse two different results obtained by polynomial and tree-regression
(Poly_R and CRT, respectively) methods using principal components regression (PCR). In
general, the new model follows three steps of processing using overlapping data series
of observed and simulated historical data. The Trentino-Alto Adige region (in northern
Italy) has been selected in our study due to the significant temporal variability of annual
rainfall observed there during the 17 years under study, as well as for the high diversity of
elevation which characterizes this region.

In the experimental part, the new method shows in detail its efficiency in correcting
the large errors between CMIP5 and real data, followed by a comparative study to explain
its performance compared to other models mostly used in the state of art. This technique
provides an improvement when applying consecutive processing on a downscaled output
using different classifications by CRT and PCR models.

2. Related Work

In the literature, several statistical methods are based on regression techniques using
linear and machine-learning models to correct future RCM multiscale data. Generally, these
models use historical observed and RCM data to define a new factor or equation for climate
downscaling in each specific region. Examples of these methods are those implemented
by the soil and water assessment tool (SWAT) [13], which are the linear scaling (LS) model
and delta change correction (DCC) model.

2.1. Linear Scaling Model

The LS model is one of the statistical methods applied to downscale the rainfall
and temperature projection data obtained by RCM, based on the change factors α and
β, respectively [14]. Both factors are obtained by dividing the overlapping data of real
observation on the data projection, as is shown by Equations (1) and (2), respectively. Using
these factors allows to correct the future RCM rainfall and temperature data.

PD,F = α × PRCM,F, where α =
PObs,Hist

PRCM,Hist
(1)

TD,F = β × TRCM,F, where β =
TObs,Hist

TRCM,Hist
(2)

where PD,F and TD,F are the future rainfall and temperature downscaled data, respec-
tively; PRCM,F and TRCM,F are the future rainfall and temperature data projection by RCM,
respectively; PObs,Hist and TObs,Hist are the historical rainfall and temperature real data,
respectively; and PRCM,Hist and TRCM,Hist are the historical rainfall and temperature data
projection, respectively.
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2.2. Delta Change Correction Model

This method uses the extreme rainfall or temperature values (PE or TE, respectively)
obtained during T years by the generalized extreme value distribution model (GEV). The
extreme values are used to determine the correction factor to downscale RCM future data
using the following functions [15]:

PD,F = γ × PRCM,F, where γ =
PE

Obs,Hist

PE
RCM,Hist

, PE = GEV (PHist) (3)

TD,F = δ × TRCM,F, where δ =
TE

Obs,Hist

TE
RCM,Hist

, TE = GEV (THist) (4)

where PD,F and TD,F are the future rainfall and temperature downscaled data, respec-
tively; PRCM,F and TRCM,F are the future rainfall and temperature data projection by RCM,
respectively; PE

Obs,Hist and TE
Obs,Hist are the extreme rainfall and temperature real data,

respectively; and PE
RCM,Hist and TE

RCM,Hist are the extreme rainfall and temperature data
projection, respectively.

3. Material and Methods

In this part, the used methods, the study area, and the newly proposed data-driven
downscaling model are detailed. This is used to adjust the CMIP5 annual rainfall projections
given by RCM, under different scenarios, as detailed in the following sub-sections.

3.1. Used Method
3.1.1. Polynomial regression

Polynomial regression (Ploy_R) is a case of a multiple non-linear regression model
with only one independent variable (X). In this function, we regress the variable X on
powers (i) [16], as follows:

Y = β0 + ∑n
i=1 βi × Xi, where i = 1, 2 . . . , n (5)

3.1.2. Classification Regression Tree

The tree-driven regression algorithm is one of the family of machine-learning models.
In this regard, four models were developed using the tree technique, including a classifica-
tion and regression tree (CRT), random forest (RF), gradient-boosting decision tree (GBDT),
and extreme gradient boosting (XGB) [17]. CRT and RF belong to supervised learning. In
time series analysis, both models provide a stable performance for data downscaling under
different scales [18].

3.1.3. Principal Component Regression

Generally, this model performs better than a simple regression. It is based on data
classification and regression of each subset using principal components (Yi). This method
regresses the independent variable (Xi) using a standardized variable (X

′
i ) and principal

component (Ci) [19], as follows:

X
′
i =

(
Xi − Xi

)
Si

(6)

Ci = ∑p
i=1 αij × X

′
j, where j = 1, 2, . . . , P (7)

Yi = ∑p
j=1 β j × Cj where j = 1, 2, . . . , P (8)
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3.2. Metrics of Performance

A set of statistical parameters has been applied in the experimental part of this paper
to control the quality of performance provided by each sub-model used in this proposal.
These metrics are the coefficient of determination (R2), adjusted coefficient of determination
(R2

Adj), root mean square error (RMSE), and residual analysis [20–22]. These were applied
to compare the predicted values with the observed values.

4. Study Area and Data

Trentino-Alto Adige is located in the northern part of Italy. It has an approximate total
surface area of 13,612 km2 and a demography of 523,000 people. Alto Adige is located
between a latitude of 45.67◦ N and 47.10◦ N, and a longitude of 10.37◦ E and 12.48◦ E. The
region is well known for its diverse geography, which includes the towering Dolomite
Mountains and rolling hills dotted with vineyards and apple orchards. The climate in
Alto Adige is continental, with warm summers and cold winters. The average maximum
temperature in the summer months, especially during July and August, is around 25 ◦C,
while the average minimum temperature in the winter months is around −5 ◦C. The
region experiences an average amount of annual rainfall of around 895 mm. This region is
characterized by diverse elevations ranging from 200 m to 4565 m, which are distributed
relatively from the central to the northern part of the region, between an urban and a
mountainous area, respectively [23]. The maximum altitude in the Trentino-Alto Adige
region is more observed in the western part between 2295 m and 4565 m (Figure 1). In
this work, the annual rainfall historical data of the Trentino-Alto Adige region observed
by the monitoring station between 2005 and 2022 are presented as the response variable
for the proposed model. On the other side, the CMIP5 data projection for the same
region is obtained by the RCM according to a multi-model ensemble under different RCPs
scenarios, which are 2.6, 4.5, 6.0, and 8.5. The CMIP5 data are supported by the IPCC’s
fifth assessment report, which is available on the climate knowledge portal website of the
World Bank Group: https://climateknowledgeportal.worldbank.org/country/italy/cmip5
(accessed on 20 January 2023).

Figure 2 shows quantitative and qualitative statistical tools to describe the data vari-
ability and distribution of each dataset used in the experimental part of this paper. This
part gives information about a comparative analysis between the CMIP5 data series under
each scenario and the observed data, using the histogram of density, the curve of the
values compared to the mean, and the quantile values (first quantile, median, and third
quantile). According to real observations that were obtained by the Trentino-Alto Adige
meteorological station, the region underwent a humid period between 2005 and 2015,
where the annual rainfall exceeded an average of 958.20 mm. In 2009 and 2010, the rainfall
accumulation reached the maximum value during this period. However, between 2016 and
2022, a drought phase was observed in the region, while the minimum extreme value is
920 mm. This was observed during 2019 and 2022 (Figure 2(B1)). Generally, the rainfall
pattern in the Trentino-Alto Adige region is non-stationary, demonstrated in Figure 2(C1)
by a median value above the average with a variability equal to 0.031. All cases where
rainfall data were projected by the RCM under RCP scenarios exhibit a high diversity
in rainfall variability and distribution (Table S1). According to Scenario 2.6, the rainfall
data follow the Weibull distribution during the whole period (Figure 2(B2)), followed by a
periodic variability between wet and dry; during the periods of 2005–2008 and 2013–2019,
the region exhibited two phases of humidity, demonstrated by a maximum rainfall value
equal to 970 mm which was observed in 2016.
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Figure 1. Map of the Trentino-Alto Adige region showing the spatial elevations and its regional
location in Italy.

In addition, during the time range of 2009–2012 and 2020–2022, a drought was observed
in this region (Figure 2(B2)), which reached a minimum value of 920 mm (Figure 2(C2)). The
data projected by the RCP 2.6 scenario provide a large gap when compared with the actual
observation. Contrariwise, the RCP 4.5 rainfall data have a symmetric variability compared
to the real observation, in which the series started with a dryness phase between 2005 and
2017. Then, a period of humidity was observed between 2018 and 2022, in which the rainfall
showed a maximum value of 980 mm in 2021. During this period, the projected data follow
a GEV distribution (Figure 2(C1)). Moreover, the data obtained under RCP 6.0 have the
same distribution as the previous projection. The average value of this series is close to
the mean actual data. Generally, this series is the best which provides a near variability to
actual data (Table S1). The only difference is the temporal data distribution where the data
have a symmetric distribution compared to actual observation (Figure 2(B1–B5)). The data
obtained by the RCP 8.5 scenario also exhibit similarity with downscaled data under the
4.5 scenario, where the variability of both series is very close, demonstrated by a CV equal
to 0.16 and 0.15, respectively.
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Figure 2. Statistical description of observed and projected annual rainfall data in the Trentino-Alto
Adige region using RCP scenarios, given by density curve (A), histograms of values from the mean
(B), and boxplots (C). CV: coefficient of variation.
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5. Experimental Part

In this section, the model proposed to downscale CMIP5 rainfall data projection,
obtained under different RCP scenarios, is represented in Figure 3. A flowchart summarizes
in detail the three fundamental analyses step by step. The model process is a form of
framework used to increase the quality of the input data. The observed data histories
measured by the meteorological station are used firstly as the response variable of the
downscaling model and secondly to control the performance of the outcome, while the
overlapping data simulated by the RCM are selected in the first and second steps as the
independent variable (Xi) of each sub-model.

Figure 3. Flowchart summarizes the fusion model steps proposed for CMIP5 annual rainfall down-
scaling. R2: coefficient of determination; j: number of iterations. PD1, PD2, and PF are the downscaled
data by each sub-model. Poly_R: polynomial regression; PCA: principal component analysis; PCR:
principal component regression; CRT: classification and regression tree.
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The proposed model starts the procedure of data correction by using a non-linear
adjustment between the real and simulated data for each RCP scenario to define the trend
equation that will be applied for CMIP5 data downscaling (Table S2). The polynomial
method produces a good response to rainfall data distribution. However, the model
parameters vary from one scenario to another. For this reason, we have defined an iterative
process by this method using the second degree of power. In the first iteration, the sub-
model uses the projection data of each scenario as univariate. Then, a validation test
will be applied to the predicted data using the R2 to verify how the data fit with the real
observation. The procedure iteratively uses the outcome results as input for the next step
(Table S2). The downscale analysis stops when the R2 of iteration (j) shows a value lower
than the one obtained in iteration (j-1).

According to Figure 4, the application of the second degree of the polynomial model
in two iterations gives a good fit, provided by an R2 ranging between 0.52 and 0.61. On the
other side, during the first iteration of applying Poly_R, the results show a good fit of 0.69
(Figure 4(A3)).

According to the graphs shown in Figure 4(B1–B4), a significant improvement is
observed by the predicted data when compared with the CMIP5 data projected by the four
scenarios. In the second step, the proposed model uses a multivariate classification via the
application of CRT to the data predicted by the Poly_R model and projected by the RCP
scenario as an independent variable of the CRT model. This classification helps to provide
satisfactory results of data downscaling compared to the previous model. According to
Figure 5(A1–A4), a good fit is observed between the actual data and the predicted series by
the CRT model, which is demonstrated by an R2 equal between 0.6194 and 0.8019.

In all scenarios, an improvement of the downscaled model was observed when com-
paring results to the first step of data correction. The application of the RCP model to
downscale CMIP5 data by using the results obtained by both correction models (Poly_R
and CRT) shows very good results. The PCR classifies the outcome data obtained by the
previous models into clusters to estimate the standardized variable. This step helps to
provide a very good estimation, which is proved by an R2 ranging between 0.894 and
0.9466. The regression plots and the residual analysis show that the PCR model exhibits the
best performance and provides a good response in all RCP scenarios, where the adjustment
values fall within the confidence interval better than the CRT outcome. As a result, the
fusion model produces a set of equations that will be used to downscale the CMIP5 rainfall
data forecasting in the application phase.
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Figure 4. Non-linear regression scutter graphs (A,B) followed by residual histograms (C) to compare
actual and RCP rainfall downscaling obtained by the Poly_R function. R2: coefficient of determination;
RMSE: root mean square error.
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Figure 5. Regression scutter graph (A,B) and histogram of the residuals (C) between the actual and
downscaled rainfall obtained by the CRT and PCR models. R2: coefficient of determination.
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6. Validation and Performance

The performance and the validity of the proposed model are provided in this section
by comparing the outcome results for each RCP scenario with predicted data obtained by
LS and DCC downscaling models. Both models were applied using the SWAT software.

We used statistics metrics including R2, R2
Adj, and RMSE to control the performance

and the error tendency given by each model. A graphical representation for the whole
predicted rainfall series is also given to monitor and compare in detail the downscaled
values with the real one during the time period. In this part, the performance analysis
applied to the CMIP5 data assessment under all RCP scenarios (2.6, 4.5, 6.0, and 8.5) is well
explained in Figure 6.

The results show a very good performance of the proposed model with all projected
rainfall data series, given by an R2

Adj between 0.87 and 0.94. The model provides very low
errors of RMSE, which vary between 5 mm to 10 mm. On the other hand, the LS model
performs better than the DCC model when using data series obtained under the RCP 2.6
and 8.5 scenarios. However, with the data provided by the RCP 4.5 and 6.0 scenarios, the
LS model produces fewer errors than the DCC downscaling model in each case of data
processing. The histogram of the downscaled rainfall projection versus actual observation
shows that the new model provides the best estimation between 2005 and 2022. When
using rainfall data simulated under the 2.6 and 4.5 scenarios, the models gave only one
underestimated value each which were observed in 2016 and 2014, respectively. On the
other hand, the proposed model showed 2/14 underestimations of data when processing
the data series obtained under the RCP 6.0 and RCP 8.5 scenarios. This bias estimation was
observed in 2005 and 2018, respectively.

Figure 6. Cont.
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Figure 6. Histograms of actual and downscaled annual rainfall data obtained by the proposed down-
scaling fusion model (DFM) compared with LS and DCC downscaled models of SWAT, followed by
statistical performance. R2: coefficient of determination; R2Adj: adjusted coefficient of determination;
RMSE: root mean square error.

7. Conclusions and Summary

Climate change significantly impacts future biodiversity and the ecosystem. Good
knowledge of several natural phenomena is based mainly on the good quality of the climate
data projected by GCM and RCM. This work aims to propose a new method to downscale
the CMIP5 rainfall data, under different RCP scenarios.

The new proposition is a fusion of three sub-models of the machine-learning family,
which were applied to annual rainfall data observed in the Trentino-Alto Adige region
between 2005 and 2022.

The first step was to iteratively apply a Poly_R model of a second-degree power on
the rainfall simulated data by each scenario. A performance of 0.69 was observed after the
first iteration of adjusting projected data by the Poly_R model. Then, improvements of
RCP 2.6, 4.5, and 8.5 data downscaling by the Poly_R model were remarked in the second
iteration, where the R2 equaled between 0.52 and 0.62. The CRT model which was applied
to the outcome data obtained by the previous model showed a good adjustment between
0.60 and 0.80. This performance was more noticeable when using rainfall data under RCP
4.5 and 8.5. Moreover, the application of the PCR model to downscaling data provided by
both previous sub-models gave the best performance, which was proven by an R2 between
0.86 and 0.94. The quality of the performance was also approved and compared against the
LS and DCC models, where the proposed model proved the most efficient assessment in all
RCP scenarios.

The good performance of this method using different scenarios shows its capacity for
multiscale application. The method does not depend on the region of study because no
physical parameters were used as input variables. This technique can also be employed to
correct the estimation biases of several models in the hydro climatological field.

36



Eng. Proc. 2023, 39, 55

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/engproc2023039055/s1, Table S1: Statistic of observed and CMIP5
projected rainfall data in Trentino-Alto Adige under different RCP scenarios; Table S2: Performance
analysis of polynomial regression model to downscale CMIP5 annual rainfall data projection using
different iterations, followed by model’s equation.
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Abstract: Systems of difference equations frequently present dynamically unstable solutions in
the long term, which could imply the appearance of complications in the application of vector
autoregressive (VAR) models in the Johansen sense, regardless of the precision required. In this work
the necessary conditions are presented to guarantee the dynamical convergence of the solutions from
the approach of the systems in discrete time series with the stochastic processes. The main aim is to
show the importance of dynamic stability in structural-type models with respect to estimator bias.

Keywords: VAR model; systems of differential equations; cointegration in the long run

1. Introduction

In order to analyze the structure and/or forecast realizations of a stochastic process, or
an observation within the time series, the models currently developed by econometricians
have a certain degree of complexity. Thus, econometric estimation and the analysis of
stochastic processes to explain economic phenomena through models are increasingly
relevant, mainly in the context of time series, taking into consideration that various pro-
cesses focus on understanding the dynamic structure of the series and on the possibility of
forecasting its dynamic pattern of temporal behavior or the extrapolation of a stochastic
process [1–4] where the lags of the variables involved play a key role in terms of the autore-
gressive models, as is the case in the estimation of autoregressive vector models (VARs),
the central theme in this work.

These models are expressed through differential equations, since each variable is
explained by the lags of both itself and the remaining variables.

It should be noted that each of the variables involved must meet the assumption of sta-
tionarity as a particular state of statistical equilibrium, where their probability distributions
remain stable over time [5,6]. This implies that once the system is interrupted by some type
of shocks, it will adjust back to equilibrium [7] or the shocks gradually disappear.

In estimating these models, it is accepted and often required that, if the estimators
meet the tests, then they are the best linearly unbiased estimators (BLUEs). But what
happens if the tests applied to the model are not fulfilled? Are the estimators not valid for
the analysis? Does the model have to be scrapped?

2. Empirical Obtaining of Estimators in a VAR Model

It is important to point out that when there are large samples, the assumptions of
normality, homoscedasticity, and the absence of autocorrelation in the errors are hardly
fulfilled. This occurs regularly when using short duration data, for example monthly,
quarterly, as well as long periods in the analysis. This could mean a limitation of the
model that leads to strong criticism in this regard; however, as Wooldridge mentioned
in his modern approach, given the law of large numbers, an asymptotic normality is
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assumed, due to the size of the sample and in terms of the homoscedasticity and absence of
autocorrelation in the errors, the results obtained allow themselves to be the best linearly
unbiased estimators, pointed out by Guarati and Porter [8].

In this regard, it has agreed in common that for the forecasting purposes, the VAR
models are required to fulfill the assumptions of the estimation: normality, homoscedasticity,
and the absence of autocorrelation in the errors. However, if the estimated model is used
only to analyze the structural changes of the economic variables, the requirement could be
relaxed to the stability of the solutions; that is, the convergence in terms of the dynamic
analysis, which can be determined by estimating the inverse roots of the characteristic
polynomial of the autoregressive vector.

It should be noted that, since these are unrestricted models, the main advantage is
that there will be no specification errors in the empirical estimation, in addition to the fact
that the long-term cointegration solution is exempt from the problem of spuriousness or
meaningless regressions, as it is defined by Granger and Newbold [9], with the initial idea
owed to Yule [10].

Therefore, the VAR models not only provide a better estimate of forecasts compared
to static ones, but also could be analyzed in a dynamic and structural manner where the
importance of a shock of one variable on the others is revealed, with the relaxation of the
related assumptions.

To apply the structural analysis of systems of simultaneous differential equations
derived from the VAR approach, the series corresponding to Mexican exports to the US
market and imports of Chinese origin are used with an annual periodicity from 2001 to
2020 (Figure 1).

 

Figure 1. Mexican exports to the United States and Chinese imports to Mexico in millions of dollars.

It should be noted that the study Mexican trade with its two most important trading
partners during the last 20 years is of great importance given the two facts. Firstly, China’s
entry into the World Trade Organization, an unprecedented event that contributed to the
expansion of the Chinese products around the world markets, and eventually has become
the second largest trading partner for Mexico since 2003. Secondly, at the beginning of 2020
COVID-19 pandemic has generated an important structural change in the trading among
the three countries.

It is evident that both series are non-stationary since they have a trend. In order to
estimate a VAR model, it is necessary for the series to be integrated in the same order to
be transformed into stationariy; in this particular case, they are I(1). Figure 2 shows the
stationarity of the two series after the respective first difference, which was confirmed by
augmented Dickey–Fuller [11] and Phillips–Perron [12] tests.
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Figure 2. Mexican exports to the United States and Chinese imports to Mexico by first differences.

Subsequently, the VAR models were estimated with one and two lags respectively,
estimations that accredited the stability tests within the unit circle and the residuals model’s
presented normality, homoscedasticity and an absence of autocorrelation.

2.1. Solution of the VAR System of Equations with One Lag

The equation derived from the normalized equation estimated in the Eviews 12 Student
Version Lite of S&P Global, New York, NY, USA with a model that shows stability within
the unit circle (inverse roots of the autoregressive characteristic polynomial) is as follows:

XEUt = 0.0613XEUt−1 + 1.142MCHt−1 + 98, 954, 092.05 (1)

MCHt = −0.1816XEUt−1 + 1.1944MCHt−1 + 23, 399, 484.6987 (2)

XEUt = 1.76 MCHt (3)

To simplify the notation, suppose that XEUt = At and MCHt = Bt, so that

At = 0.0613At−1 + 1.142Bt−1 + 98, 954, 092.05 (4)

Bt = −0.1816At−1 + 1.1944Bt−1 + 23, 399, 484.6987 (5)

This implies that.

At − 0.0613At−1 − 1.142Bt−1 = 98, 954, 092.05 (6)

Bt + 0.1816At−1 − 1.1944Bt−1 = 23, 399, 484.7 (7)

Particular solutions that can be supposed for the two variables are At = k1 and Bt = k2,
which implies that At−1 = k1 and Bt−1 = k2; then,

k1 − 0.0613k1 − 1.142k2 = 98, 954, 092.05 (8)

k2 + 0.1816k1 − 1.1944k2 = 23, 399, 484.7 (9)

Reducing yields are the following:

0.9387k1 − 1.142k2 = 98, 954, 092.05 (10)

0.1816k1 − 0.1944k2 = 23, 399, 484.7 (11)
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Solving the system yields k1 = 300, 576, 585.66 and k2 = 160, 417, 818.7, while normal-
izing yields the following:

k1

k2
=

300, 576, 585.66
160, 417, 818.7

= 1.8 ≈ 1.76

Note that 1.8 is very close to the solution provided by the software (1.76).

To obtain the complementary solutions, the following can been carried out:
We assume that At = γβt and Bt = δβt where γ and δ are constants; therefore,

At−1 = γβt−1 and Bt−1 = δβt−1.
Substituting into the difference equations that are now homogeneous,

γβt − 0.0613γβt−1 − 1.142δβt−1 = 0 (12)

δβt + 0.1816γβt−1 − 1.1944δβt−1 = 0 (13)

Multiply everything by β1−t, arriving at the following:

γβ − 0.0613γ − 1.142δ = 0 (14)

δβ + 0.1816γ − 1.1944δ = 0 (15)

Grouping then yields

(β − 0.0613)γ − 1.142δ = 0

0.1816γ + (β − 1.1944)δ = 0

Obtaining the following:

(β − 0.0613)(β − 1.1944)− (0.1816)(−1.1944) = 0 (16)

β2 − 1.2557β + 0.2805 = 0 (17)

Solving the equation, the values of β are β1 = 0.965 and β2 = 0.2907.
The complementary solutions are as follows:

At = γ1(0.965)t + γ2(0.2907)t (18)

Bt = δ1(0.965)t + δ2(0.2907)t (19)

Consequently, the general solutions are as follows:

At = γ1(0.965)t + γ2(0.2907)t + 300, 576, 585.66 (20)

Bt = δ1(0.965)t + δ2(0.2907)t + 160, 417, 818.7 (21)

2.2. Solution of the VAR System of Equations with Two Lags

Regrouping yields the following:

At = 0.176At−1 − 0.45 1At−2 + 1.48Bt−1 + 0.064Bt−2 + 131, 598, 419.78 (22)

Bt = −0.1626At−1 − 0.0724At−2 + 1.236Bt−1 + 0.023Bt−2 + 28, 642, 607.5672 (23)

1.27k1 − 1.544k2 = 131, 598, 419.78 (24)

0.235k1 − 0.259k2 = 28, 642, 607.5672 (25)
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Solving the system results in k1 = 308, 456, 389.5 and k2 = 169, 284, 339.7.
Normalizing then results in the following:

k1

k2
=

308, 456, 389.5
169, 284, 339.7

= 1.8

In this case, the solution given by the software is 1.67; therefore, it is consistent.

Following this reasoning, we could generalize as follows:
Let be a VAR model of j variables with i lags:

X1 t = α1 1 X1 t−1 + α1 2 X1 t−2 + · · ·+ α1iX1t−i+

α2 1X2 t−1 + α2 2 X2 t−2 + · · ·+ α2 i X2 t−i + · · ·+
αj 1Xj t−1 + αj 2 Xj t−2 + · · ·+ αj i Xj t−i + C1

X2 t = β1 1 X1 t−1 + β1 2 X1 t−2 + · · ·+ β1iX1t−i+

β2 1X2 t−1 + β2 2 X2 t−2 + · · ·+ β2 i X2 t−i + · · ·+
β j 1Xj t−1 + β j 2 Xj t−2 + · · ·+ β j i Xj t−i + C2

...

Xj t = γ1 1 X1 t−1 + γ1 2 X1 t−2 + · · ·+ γ1iX1t−i+

γ2 1X2 t−1 + γ2 2 X2 t−2 + · · ·+ γ2 i X2 t−i + · · ·+
γj 1Xj t−1 + γj 2 Xj t−2 + · · ·+ γj i Xj t−i + Cj

We express the VAR model in difference equations:

X1 t − α1 1 X1 t−1 − α1 2 X1 t−2 − · · · − α1iX1t−i−
α2 1X2 t−1 − α2 2 X2 t−2 − · · ·+ α2 i X2 t−i − · · · −

αj 1Xj t−1 − αj 2 Xj t−2 − · · · − αj i Xj t−i = C1

X2 t − β1 1 X1 t−1 − β1 2 X1 t−2 − · · · − β1iX1t−i−
β2 1X2 t−1 − β2 2 X2 t−2 − · · · − β2 i X2 t−i − · · · −

β j 1Xj t−1 − β j 2 Xj t−2 − · · · − β j i Xj t−i = C2

...

Xj t − γ1 1 X1 t−1 − γ1 2 X1 t−2 − · · · − γ1iX1t−i−
γ2 1X2 t−1 − γ2 2 X2 t−2 − · · · − γ2 i X2 t−i − · · · −

γj 1Xj t−1 − γj 2 Xj t−2 − · · · − γj i Xj t−i = Cj

Supposing that X1 t = k1, X2 t = k2 and Xj t = kj, then X1 t−1 = k1, X2 t−1 = k2, and
Xj t−1 = kj.

Analogously, if X1 t−i = k1, X2 t−2 = k2 and Xj t−1 = kj then,

k1 − α1 1 k1 − α1 2 k1 − · · · − α1ik1−
α2 1k2 − α2 2k2 − · · ·+ α2 i k2 − · · · −

αj 1kj − αj 2kj − · · · − αj i kj = C1
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k1 − β1 1 k1 − β1 2k1 − · · · − β1ik1−
β2 1k2 − β2 2k2 − · · · − β2 i k2 − · · · −

β j 1kj − β j 2kj − · · · − β j i kj = C2

...

k1 − γ1 1 k1 − γ1 2k1 − · · · − γ1ik1−
γ2 1k2 − γ2 2k2 − · · · − γ2 i k2 − · · · −

γj 1kj − γj 2kj − · · · − γj i kj = Cj

Factoring the constants yields the following:(
1 − ∑i α1i

)
k1 −

(
∑i α2 i

)
k2 − · · · −

(
∑i αj i

)
kj = C1

−
(
∑i β1i

)
k1 +

(
1 − ∑i β2 i

)
k2 − · · · −

(
∑i β j i

)
kj = C2

...

−
(
∑i γ1i

)
k1 −

(
∑i γ2 i

)
k2 − · · · +

(
1 − ∑i γj i

)
kj = Cj

In matrix form, this is represented as⎡⎢⎢⎢⎣
(1 − ∑i α1i) −∑i α2 i − · · · − −∑i αj i
−∑i β1i (1 − ∑i β2 i ) − · · · − −∑i β j i

...
−∑i γ1i

...
−∑i γ2 i

. . .
− · · ·+

...(
1 − ∑i γj i

)
⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

k1
k2
...

kj

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
C1
C2
...

Cj

⎤⎥⎥⎥⎦
where Ak = c, k = A−1c.

This results in a system of simultaneous linear equations with the number of variables
equal to the number of equations, i.e., it will always be a square matrix.

The solution of the system constitutes the vector k of the long-term cointegration
equation.

To achieve the above, that is, the general solutions converging to their particular
solutions, the complementary solutions would have to be dynamically stable, or they
would converge to nullity.

Xi t = Aiibi
t, i = 1, 2, . . . n represent the number of variables.

Since all the solutions of the characteristic equation are real numbers, bj ∈ R.
To fulfill the above, it is required that |b i|< 1 , and the particular solutions will be

as follows:
lim
t→∞

Xi t = lim
t→∞

Aii bi
t = 0 (26)

On the other hand, to achieve |b i|< 1 , no doubt the necessary and sufficient condition
is that the series involved in the system of difference equations has to be stationary, which
is consistent with a single time series.

3. Concluding Remarks

Finally, it is possible to observe the way in which the solution of the VAR cointegration
models was generalized for i variables and j lags where the estimators obtained are very
useful in observing the structural components of the phenomenon to be analyzed, so
that the idea of obtaining BLUEs is not a necessary condition. Even so, in the case of
heterodasticity and autocorrelation in the errors, it is accepted that the estimator loses
efficiency; that is, it is a good estimator, although it is not the best.
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Abstract: The accurate prediction of road user behaviour is of paramount importance for the design
and implementation of effective trajectory prediction systems. Advances in this domain have recently
been centred on incorporating the social interactions between agents in a scene through the use of
RNNs. Transformers have become a very useful alternative to solve this problem by making use
of positional information in a straightforward fashion. The proposed model leverages positional
information together with underlying information of the scenario through goals in the digital map,
in addition to the velocity and heading of the agent, to predict vehicle trajectories in a prediction
horizon of up to 5 s. This approach allows the model to generate multimodal trajectories, considering
different possible actions for each agent, being tested on a variety of urban scenarios, including
intersections, and roundabouts, achieving state-of-the-art performance in terms of generalization
capability, providing an alternative to more complex models.

Keywords: trajectory prediction; urban scenarios; transformer; intelligent transportation systems

1. Introduction

Motion forecasting is a vital component in the pipeline of an autonomous vehicle. It
involves predicting the future motion of other vehicles, pedestrians, bicycles, and other
objects in the environment in which the autonomous vehicle is operating. This information
is crucial for the vehicle to make safe and efficient decisions, such as determining when to
change lanes, slow down, or stop. Without accurate motion forecasting, the autonomous
vehicle may make unsafe decisions or fail to respond in a timely manner to the actions of
other road users. Moreover, forecasting is necessary and currently used for the creation of
realistic simulations to test and validate the performance of autonomous vehicles before
hitting the road, as well as essential for the development of cooperative systems, where
multiple agents, both autonomous and human-driven, share the road. It allows the au-
tonomous vehicle to anticipate the actions of other road users and plan its own motion
accordingly, ensuring safe and efficient interactions.

In autonomous driving, it is essential to understand each driving situation in order
to anticipate the trajectories of other agents. In each driving scenario, agents will react
differently depending on traffic conditions and road structure. By knowing the behaviour
of an agent a certain number of seconds in advance, it is possible to anticipate decisions,
increasing safety and comfort for subsequent manoeuvrers. Usually, agents will tend to
take trajectories that are ideal for their goal, avoiding collisions and being socially accepted,
i.e., following traffic rules and interacting with other agents on the road.

The problem of pedestrian trajectory prediction has been broadly explored by the
community in the past years, being generally classified into two categories according to
the type of analysis: pedestrians in crowded areas, where there may be erratic movements
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due to low speed and avoidance of potential collisions, and environments shared with
vehicles and other agents, where the traffic density is reduced but inter-class interaction is
incorporated. This work, summarized as shown in Figure 1, continues the evolution of the
previous one [1], essentially inspired by the initial research developed on pedestrians [2].
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Figure 1. System overview.

2. Related Work

In the early stages of trajectory prediction, classical approaches relied essentially on
linear regression, Bayesian filtering or Markov decision process. These methods performed
properly, but since they are based on physical variables, their scaling and generalization are
quite limited. After the arrival of deep learning, and specifically RNNs and LSTMs, it was
found that they could successfully model the relationships between agents, exploiting their
time dependency to predict future vehicle manoeuvrers [3,4] and trajectories [5]. In this
context of social approaches, S-LSTM [6] was proposed, connecting neighbouring LSTMs
using a social pooling layer, predicting trajectories for multiple pedestrians. A similar
approach was presented in [7] for vehicles. This was refined by SR-LSTM, making use
of a message passing framework to enhance social nature [8]. Some models also propose
an occupancy grid to define the interaction between agents [9,10]. Other authors have
followed the line of generating a set of acceptable trajectories using architectures such
as GAN [11,12] and CVAE [13]. In GAN, the generator and discriminator are used in a
complementary way to improve the generation and detection of valid trajectories, while
CVAE is used to encode in a latent space and generate multi-path trajectories based on the
observed paths.

Using the Vanilla-TF as a model, the context-augmented Transformer network [14]
uses interaction and semantic information as the input to provide robust prediction on
datasets with strong pedestrian–vehicle interactions, similar to the inD dataset.

In parallel to these deep learning-based approaches, OSP [15] proposes a traditional
probabilistic approach, developing a pedestrian–vehicle interaction model that outperforms
models such as S-GAN and MATF with real-time execution speed that is really convenient.

Although LSTMs seem to be a good model for learning trajectory sequences, they are
inefficient at modelling data in long temporal sequences, and thus suffer more from the
lack of input data in observations, a very common issue in real systems involving physical
sensors. In this way, Transformer models [16] have been successfully adapted to predict
pedestrian trajectories in crowded spaces [2], achieving state-of-the-art results in TrajNet
benchmark [17], by relying only on self positional information (i.e., without adding any
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social or interactive data). Moving beyond pedestrians, this paper will focus on vehicle
trajectories, whose interaction is rather intense in the environments analysed (intersections
and roundabouts).

Recent work has explored including the road graph, history and interaction between
agents using more sophisticated models and a bespoke architecture for each type of in-
put [18]. Whereas, others have employed images and detections of mixed traffic environ-
ments to provide an explainable nature to their model, developing an important analysis
concerning this issue [19].

In this work, a Transformer model is used in its simplest form, exploiting its nature
to adapt the inputs and improve the results without major changes in the architecture
that could lead to greater complexity in its training and use, exploring its capabilities
with augmented input data such as velocity and orientation, analysing its performance
on vehicles in various datasets, and performing cross tests to assess its generalization
capability.

3. Methodology

This section addresses the methodology used to deploy the model, starting with the
selection of the input and output data, the preprocessing and analysis of the input data
for the BEV datasets used in the study, and the creation of the enhanced model, analysing
the different transformations made to adopt the new information. In addition, the use of
context information through data provided by the digital maps present in each scenario will
be covered, using the lanelet2 library to compute positions with respect to lanes, off-road
zones and routes to goals, among others. The approach of the “post hoc” multimodality
paradigm using the potential goals for each agent in the scenario is fully discussed at the
end of this section.

3.1. Introducing the Problem

Let Xt = {xt, vt, at} be the state of the vehicle at time t, where xt is the position, vt is
the velocity, and at is the acceleration. Let Yt be the set of environmental conditions at time t.
The goal of trajectory prediction is to estimate the future trajectory Tt = {Tt1, Tt2, . . . , TtN}
given the observations Ot = {Xt, Yt} up to time t and a prediction horizon N.

3.2. Inputs and Outputs

In our work, these inputs are the velocity (position increments) and the heading
increment of the agent under study itself, in combination with the same information with
respect to the possible goal it may have in the testing scenario. Thus, Xt = {Δxe, Δye, Δhe},
and Yt = {Δxg, Δyg, Δhg}. Currently, there are several benchmarks that consider different
time horizons, both for visualization and prediction. TrajNet was followed in the previous
work: a benchmark in which datasets are measured at 2.5 Hz, observing 8 frames (3.2 s)
and predicting 12 frames (4.8).

It is important to highlight the importance of working with increments of positions
and headings, rather than directly with the absolute data. Previous tests showed that the
model failed to learn with this approach, yielding a sub-par performance on the datasets
under analysis. This can show the nature of the data being used, allowing minor variations
in velocity that make it easier to predict a more constant output, aside from data filtering
with Kalman-derived filters, which will tend to follow the preceding frame velocity. Thus,
comparatively, we have also considered the input of the heading increment in degrees in
absolute form, without any previous adaptation that could pre-normalize it, since it will
be performed in the training and testing process. We think that this pre-normalization
developed in 2021 could have affected and worsened the results, as explored in the ongoing
experiments. The complete model overview is depicted in Figure 2.
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Figure 2. Architectural overview: the addition of new inputs.

3.3. Exploring Context Information

After studying the scenarios’ topology for each dataset, and the available data, we
considered the option of incorporating contextual data, taking into consideration that the
datasets used have digital maps within the lanelet2 library framework, allowing access
to context information for each lanelet, such as the distance to the centre of the lane,
distance to the nearest curbs, no-go zones for driving in the case of vehicle agents, etc.
However, powerful information included in these maps concerns the routing graph, such
that knowing the position of an agent permits delimiting the possible routes it can follow
in the scenario, according to the traffic rules. The exact knowledge of the map and traffic
rules also allows to extend to the social factor, where metrics such as IDM (car-following
model [20]) or RSS [21] can be computed to analyse possible dangerous situations involving
near agents.

3.4. The Architecture
3.4.1. Data Preprocessing

For the datasets used it was necessary to carry out a prior stage of data analysis and
extraction in order to properly format them for model input and planned experiments.
During this stage, the parked vehicles present in some recordings were removed, and the
frame rate was taken into account to adapt it to the desired frame rate for the study, with
sequences at 2.5 Hz. Thus, the initial input consists of the location, f rame, track, x, y, heading
structure, to then go through the feature addition module, where the corresponding incre-
ments are calculated and the goal information is introduced based on the map. After this
process, the input to the model includes Δx, Δy, Δh, Δxg, Δyg and Δhg. The heading data
are introduced in absolute values between 0 and 360◦, adapting the entries of each dataset
appropriately, whereas the distance to the centre of the lane in the corresponding tests are
entered in modulus and SI units.

3.4.2. Details

The architecture from [1] was maintained, with the addition of an L2 loss that includes
position increments for improved independence of each position, as well as normalized
heading. The dmodel was set to 512, with 6 layers and 8 attention heads. A warm-up period
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of 10 epochs was implemented, employing a decaying learning rate in the subsequent
epochs.

3.5. Post Hoc Multimodality

To assess the model’s ability to know the intrinsic structure of the scenario without
receiving explicit information about it, a “post hoc multimodality” approach was adopted.
This consisted of generating five trajectories for each of the goals existing in the test scenario.
This was calculated through the routes present in the route graph for each scenario of the
inD and rounD datasets. Table 1 shows the number of routes and goals present in each
scenario.

Table 1. Number of routes and global goals per scenario and dataset.

Dataset Scenario # of Routes # of Goals

inD: 1 13 4

inD: 2 12 4

inD: 3 6 3

inD: 4 12 3

rounD: 0 36 4

rounD: 1 17 4

rounD: 2 17 4

4. Experiments and Results

4.1. Datasets

In addition to pedestrian-centric approaches, the NGSIM datasets [22,23] were pio-
neers in covering highway areas, with information obtained from cameras mounted on
a skyscraper. Several multi-agent datasets have been developed over the past few years,
with a focus on highway scenarios, such as the highD dataset [24] for highway vehicle
trajectory prediction. This dataset provides aerial images obtained using a drone located
over various locations of the German autobahn, with vehicle labelling ensuring an error
below 10 cm. The dataset provides a total of 147 h of drive time on over 100,000 vehicles.
The authors of this dataset went further and expanded the concept to urban scenarios, with
the inD [25] and rounD [26] datasets recording different intersections and roundabouts,
respectively, as well as the novel exiD [27], that covers some stretches at mergings. The
Interaction dataset [28] combines all these scenarios, including ramp merging, signalized
intersections, and roundabouts. This dataset also provides a diverse range of driving
behaviours, including critical manoeuvrers, and even accidents. These situations add value
to a trajectory prediction solution and should be evaluated in a qualitative manner. Table 2
overviews the datasets used to develop the experiments.

Finally, while 2D datasets taken from drones or fixed locations from a bird’s eye view
are relatively easy to create and label, the ultimate goal is to train models that can be ported
to vehicles equipped with onboard sensors and tested in datasets such as NuScenes [29],
Argoverse [30] or Prevention [3].

4.2. Goal Analysis

Goal evaluation for each dataset was carried out automatically on the routes contained
in the digital map graphs for each scenario. The training was carried out with the real target,
and then tests were performed for each of the scenario targets, generating five trajectories
for each one and choosing the ones with the lowest error. This approach brings variability
to the results and a “post hoc multimodality” method similar to that conducted in other
published research, differing in that in this case we are sampling directly in the tests with
the possible targets present in each map rather than using a distribution for each mode.
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Table 2. Datasets used in this work.

Dataset inD rounD Interaction

Country Germany Germany
USA

Germany
China

Locations urban intersections (4)
(sub-)urban

roundabouts (3)

roundabout (5),
intersection (4),

highway (2)

# of Tracks 11,500 13,746 40,054

Road User Types
pedestrian, bicycle,

car, truck, bus

pedestrian, bicycle,
motorcycle, car,

van, truck,
bus, trailer

pedestrian/bicycle,
car, truck

Data Frequency 25 Hz 25 Hz 10 Hz

Maps yes yes yes

4.3. Evaluation Metrics

The metrics employed are the state-of-the-art standards for the datasets consid-
ered here, average displacement error (ADE) and final displacement error (FDE). The
ADE/MAD calculates the difference in the L2 norm between the 12 points of the pre-
dicted trajectory and compares them with the respective ground truth in metres, while the
FDE/FAD only accounts for the last observation of this prediction. Thus, the ADE indi-
cates a general fit of the predicted and actual trajectories. This can be questionable, as the
predicted trajectories cannot deviate too far from the actual trajectory but enter prohibited
zones for the corresponding agent, leading to situations where the predictions for vehicles
end up entering pedestrian pavements. Due to this, other metrics are considered in this
work, such as the off-road rate or miss-rate, that will be explored in future tests with the
datasets that embody them. The experiments performed in this case (i.e., for quantitative
analysis) have been deployed with the real goal corresponding to each agent, while the
complete analysis of the “post hoc multimodality” is reserved for the qualitative analysis.
Implementing typical metrics, such as min-ADE, are more commonly used in other datasets
than the ones involved in our work.

4.4. inD: Comparative Results

Using the same data split used by the authors of the DCENet to make an objective
comparison, we obtained comparative analysis results for the inD dataset, as shown in
the Table 3. These results include all agent types, not just vehicles, meaning the goal
approach is less effective than splits that include vehicles only, as discussed later. This
dataset includes parts of the test scenarios in the training split, so the model is already
familiar regarding the trajectories that agents can perform, which, when combined with
the fact that pedestrians are also being evaluated, reduces global errors. The Goal-TF
model still outperforms the “typical” architectures, S-LSTM and S-GAN, and improves
the results of their homonymous TFs which include less information; however, the model
still underperforms against AMENet and DCENet. However, we can appreciate that the
inclusion of the target has been positive, reducing the FAD by more than 20 cm with respect
to the Oriented-TF. In the following experiments the set of tested agents will be reduced to
vehicles (cars, trucks, vans, trails, buses, etc.).
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Table 3. General performance.

InD Average (MAD/FAD)

S-LSTM 1.88/4.47

S-GAN 2.38/4.66

AMENet 0.73/1.59

DCENET 0.69/1.52

Vanilla-TF 1.07/2.65

Oriented-TF 1.02/2.57

Goal-TF 0.94/2.34

4.5. Testing in Different Datasets
4.5.1. Single Dataset Tests

This section reports the results of the leave-one-out (LOO) technique for the inD, rounD
and Interaction datasets for their intersection and roundabout variants, compared with the
Vanilla and Oriented models, where the heading is introduced as additional information.
As shown in Table 4, the Goal-TF model is better in all cases than the other models, except
in the Interaction-GL scenario, where the Oriented model stands out. The improvements
are substantial, with a difference greater than 4 m in the FDE in some experiments. The
inclusion of the target is considered beneficial in terms of the additional information that
the network is able to learn and understand for trajectory prediction.

Table 4. Single dataset tests.

Training // Test
Vanilla-TF
ADE / FDE

Oriented-TF
ADE / FDE

Goal-TF
ADE / FDE

inD: 123 // 4 7.67/17.22 7.71/16.83 6.61/13.90

inD: 134 // 2 2.80/7.46 3.47/9.02 2.62/6.43

inD: 234 // 1 1.91/5.18 1.89/5.14 1.61/3.97

rounD: 01 // 2 6.59/16.87 6.62/17.09 5.26/11.81

rounD: 02 // 1 6.64/17.04 6.88/17.53 5.05/11.76

rounD: 12 // 0 6.68/16.71 7.98/19.82 7.50/15.06

INT-intersection:
EP0-EP1-MA // GL

2.54/6.95 2.10/5.66 2.36/6.18

INT-roundabout:
SR-FR-EP-OF // LN

4.46/11.65 3.81/9.51 2.56/6.27

INT-intersection:
MA-GL-EP0 // EP1

3.27/8.17 2.80/7.16 1.96/4.94

INT-roundabout:
LN-SR-FT-EP // OF

4.27/11.63 3.68/10.11 2.75/6.66

4.5.2. Mixing Datasets: Similar Scenarios of Different Datasets

In the case of cross-dataset generalization, it seems that the choice of method when
introducing additional information may penalize the Goal model, with the Vanilla model
remaining the best option if transfer learning between datasets becomes the preferred
method, as shown in the Table 5.
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Table 5. Equivalent scenario tests (training on an entire dataset).

Training // Test
Vanilla-TF
ADE/FDE

Oriented-TF
ADE/FDE

Goal-TF
ADE/FDE

inD // INT-int 3.12/8.10 4.89/10.87 3.57/8.58

INT-int // inD 4.04/10.10 4.24/10.32 3.09/7.52

rounD // INT-round 3.19/8.34 5.18/11.72 5.69/12.59

INT-round // rounD 5.30/14.13 6.99/16.54 3.48/8.58

4.6. Qualitative Results

Apart from the quantitative results measured by the corresponding metrics, it is
necessary to assess thoroughly how an agent actually behaves in practice when a specific
situation occurs in a particular scenario; for example, at an intersection with different
exits. Figure 3 shows an instance prior to a turn where the vehicle has slowed down when
approaching the intersection. Thus, it can be seen how the prediction can yield various
results depending on the target in question. In one case, the vehicle will continue straight
ahead, while in another the prediction outputs the vehicle turning in one way or the other.
However, at other times the model will also be completely wrong, leading to completely
erroneous predictions, such as when the vehicle is meant to continue straight ahead and the
prediction is a turning prediction, or vice versa. Figure 4 briefly shows multiple trajectories
generated at the approach of a roundabout according to the selected goal, including the
option of a complete turn to change direction.

(a) Coincident trajectory. (b) Bad decision in prediction.

Figure 3. Cont.
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(c) Trajectories predicted when selecting another goal.

Figure 3. Sample outputs for leave-one-out experiments using the inD dataset | location 3. Observed
trajectory is depicted in blue, ground truth in green and predicted trajectory in orange (view legend).

Figure 4. Instances before entering a roundabout depending on the goal in the rounD dataset.

5. Conclusions and Future Work

The experiments performed showed that the inclusion of context variables relative
to the goal obtained from the digital map routes linked to each scenario improved the
results compared to models that did not use them. This allowed for multimodal trajectory
generation, an important point that should be developed in future work. The generalization
of this model was also discussed, with tests on different datasets highlighting its high
versatility. In future, the challenge to integrate social information needs to be addressed,
exploring a way to introduce simultaneous data from several agents to allow for the
generation of socially aware trajectories. Furthermore, tasks such as the extension of
multimodality tests to all datasets, providing specific metrics, or extending the datasets to
other existing datasets in the field, such as NuScenes or Argoverse, is still pending. Finally,
a viability study would be beneficial for the implementation of such a system for real-time
inference using real-time information collected by an vehicle to demonstrate whether these
models are ready to be deployed in the real world.
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Abstract: Transfer learning has not been widely explored with time series. However, it could boost
the application and performance of deep learning models for predicting macroeconomic time series
with few observations, like monthly variables. In this study, we propose to generate a forecast of five
macroeconomic variables using deep learning and transfer learning. The models were evaluated
with cross-validation on a rolling basis and the metric MAPE. According to the results, deep learning
models with transfer learning tend to perform better than deep learning models without transfer
learning and other machine learning models. The difference between statistical models and transfer
learning models tends to be small. Although, in some series, the statistical models had a slight
advantage in terms of the performance metric, the results are promising for the application of transfer
learning to macroeconomic time series.

Keywords: macroeconomic forecast; deep learning; transfer learning; benchmark

1. Introduction

It is necessary to generate forecasts of macroeconomic variables for national economic
policy and financial decision-making [1,2]. For this reason, Centrals Banks, international
institutions, and economic research bodies allocate time and resources to generate accurate
forecasts [3,4]. The prediction of macroeconomic and financial variables is regarded as one
of the most challenging applications of modern time series forecasting [5].

In recent years, deep learning models have gained relevance in the time series field
because they have shown high prediction capacity in several tasks, like the forecasting
of electricity consumption [6], weather conditions [7] and other tasks. Nevertheless, its
implementation in macroeconomic forecasts has been scarce [8–11]. A possible reason is
that deep learning performs better with large datasets and some macroeconomic variables
have a low number of observations [4], especially monthly or quarterly time series. For
example, 30 years of observations would only amount to 360 observations for a monthly
time series. This issue is still more relevant in some emerging countries where it is difficult
to find a long history of information [11].

An alternative to building deep learning models with short time series is to train a
model using a handful of diverse time series. Then, the pre-trained model can be used for
transfer learning with the target time series. Transfer learning has not been widely explored
with time series; however, there is evidence of good results [12–14].

In this study, we applied transfer learning with monthly macroeconomic variables
to analyze the performance of deep learning models for forecasting macroeconomic time
series. Our main contributions are the following:

� As far as we know, this is the first study that explores and proposes the generation of
pre-trained models that can be used with transfer learning to make predictions in any
country using monthly macroeconomic variables.
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� Some studies compare the performance of several models with macroeconomic vari-
ables; however, as far as we know, this is the first that makes a benchmark between
deep learning, statistical, and machine learning models.

� This study compares the application of deep learning models without transfer learning,
as economic researchers tend to do, and the application of deep learning models with
transfer learning.

Our results suggest that the latter procedure is the better practice. Therefore, the study
provides findings that can be relevant to economic and financial forecast research.

2. Deep Learning Applied to Macroeconomic Variables Forecast

Some studies have used deep learning to generate forecast models for macroeconomic
variables such as exchange rate [5], inflation [2], unemployment rate [15], GDP [16], interest
rate [17], and exports [11]. The periodicity of the time series used is diverse, and ranges
from daily to annual. When the periodicity is less frequent, such as monthly and quar-
terly, the time series are short; however, deep learning models without transfer learning
have shown good results e.g., [4,5]. For this reason, we also used deep learning without
transfer learning.

The deep learning architectures for macroeconomic predictions tend to be based
on Long Short-Term Memory, which is expected, because, unlike other networks, the
LSTM takes into account the sequential pattern of the time series. Some researchers
have used simple LSTM [18] or LSTM encoder–decoder [9], and others have created
their own architectures. For example, in [19] they created a model named DC-LSTM,
which is based on a first layer using two LSTM models to learn the features. In the
second layer, a coupled LSTM is built on the features learned from the first layer. Then,
the learned features are fed into a fully connected layer to make the forecast. For their
part, in [20] they generated an ensemble of LSTM using bagging to predict the daily
exchange rate. For the prediction, they computed the median value of the k replicas.
Besides LSTM, other recurrent neuronal networks have been used as a gated recurrent
unit [15]. Some researchers have used non-recurrent networks such as Fully Connected
Architecture, Convolutional Neuronal Networks with residual connections [21], Neural
Network Autoregression (NNAR) models [10], multilayer perceptron (MLP) [15], and
stacked autoencoders [8].

The models are trained using different inputs. Some models only use the lagged
values of the time series as an input to the neural network e.g., [10,18], while others also
use the lagged values of other time series e.g., [2,4]. A particular case is the model of [17],
who incorporated Twitter sentiment related to multiple events happening around the globe
into interest rate prediction.

Concerning macroeconomic prediction performance, deep learning has shown good
results. For example, [5] found that LSTM outperformed VAR and SVM for predicting the
monthly USD–INR foreign exchange rate. In [8] they concluded that stacked autoencoders
achieve more accurate results than support vector machines for predicting the 0 daily
EUR–USD exchange rate. In [2] they found that LSTM had the best performance for the
inflation prediction of more than one month compared to random forests, extreme gradient
boosting, and k-nearest neighbors. According to [11], the deep learning approach showed
better prediction powers than conventional econometric approaches such as VECM.

3. Method

3.1. Macroeconomic Time Series

Five economic time series variables from five countries were chosen for the analysis.
The variables were: Consumer Price Index (CPI), Industrial Production Index (IPI), Value
of Exports in US Dollars (TVE), Average Monthly Exchange Rates of domestic Currency per
US Dollar (ER), and Producer Price Index (PPI). The countries analyzed were Costa Rica
(CR), the United States (UE), the United Kingdom (UK), South Korea (SR), and Bulgaria
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(BU). In the case of the United States, we did not analyze domestic currency. Thus, 24 time
series were used.

3.2. Datasets

Three datasets were built and used: (a) Dataset with the 24 target time series that
were taken from the International Monetary Fund in May 2022; (b) Dataset with the eco-
nomic variables mentioned before, from the countries shown by the FMI web page in
May 2022 (https://data.imf.org/?sk=388DFA60-1D26-4ADE-B505-A05A558D9A42&sId=
1479329132316, accessed on 22 May 2022), except for the countries used as the target. We
deleted time series that did not show variability or had missing values. This dataset had
515-time series, and was named the macroeconomic dataset; (c) Dataset with 1000 time se-
ries taken randomly from the M4 competition [22]. This was named the M4 subsample. The
last two datasets were built to generate the pre-trained models used for transfer learning.

3.3. Models

We analyzed five types of models:

� Three statistical models (St): Auto Arima (arima), ETS (ets), and Theta (theta);
� Machine learning models (Ml): Support vector regression (svr), random forest (rf) and

XGBoost (xgb);
� Deep learning models without transfer learning (Dl/wh): Long short-term memory

(lstm), temporal convolutional network (tcn), convolutional neuronal network (cnn);
� First proposal of deep learning with transfer Learning (Dl/t_M4). We applied the

same deep learning models mentioned previously, but in this case, the models were
trained with the 1000 time series concatenated from the M4 subsample dataset. The
concatenation was in the input and output. For example, for the prediction of the
next three months based on the previous twelve months, the all-time series was
transformed into a matrix of k rows and fifteen columns; then, the matrices were con-
catenated to obtain the final dataset. Finally, when the models were trained, we used
them to apply transfer learning for each of the target time series (the 24 time series)

� The second proposal of deep learning with transfer learning (Dl/t). The method-
ology was like that of the previous models, but the models were trained using the
macroeconomic dataset.

We generated models to predict three periods and twelve periods ahead. Two types of
input sizes were proved in models B, C, D, and E. For the forecast horizon of three periods,
we used the previous three periods and the previous twelve periods as input, and for the
forecast horizon of twelve periods, we used the previous twelve periods and the previous
fifteen periods. Finally, we only kept the model with the input size that achieved the best
performance. The deep learning models were trained using the Adam optimizer and a
stop criterion which consisted of stopping after two epochs without improvement in the
validation sample’s loss function, which was the mean squared error. The hyperparameters
of models B, C, D, and E and the architectures of the neuronal networks were defined
in the training phase through Bayesian optimization. The search grid for the Bayesian
optimization is in Table 1.

The transfer learning for models D and E was realized in the last two layers of the
model. The weights were updated using the target time series and a learning rate of
0.000005, which is less than that used in the training phase. A maximum of 75 epochs were
set; however, the model could stop earlier if, after two epochs, there were no improvements
in the mean square error of the validation sample.
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Table 1. Search grid for the Bayesian optimization of Machine Learning Models.

XGBoost:

� Max depth between 2 and 12
� Learning rate between 0.01 and 1
� Estimators between 10 and 150

Support Vector Machines:

� C between 0.01 and 10
� Gamma between 0.001 and 0.33

Random Forest:

� Estimators between 10 and 250
� Max_features between 1 and 15
� Min sample leaf between 2 and 8
� Max samples between 0.70 and 0.99

CNN:

� Number of convolutional layers
between 1 and 2 (Batch normalization is
applied after the first layer)

� Filters between 12 and 132 with a
step of 24

� Kernel size between 2 and 12 with a
step of 2

� Max pooling with a size of 2 or without
max pooling

� Activation function among linear, relu,
and tanh

� Learning rate among 0.001,
0.0001, 0.00001

TCN:

� Filters between 12 and 132 with a step of 24
� Kernel size between 2 and 12 with a step of 2
� Activation function among linear, relu,

and tanh
� Return sequences True or False
� Learning rate among 0.001, 0.0001, 0.00001
� Learning rate among 0.001, 0.0001, 0.00001
� Dilations between [1,2,4,8] or [1,2,4,8,16]

LSTM:

� Recurrent units between 12 and 132
with a step of 24

� Activation function among linear,
relu, and tanh

� Return sequences True or False
� Learning rate among 0.001,

0.0001, 0.00001

3.4. Experimental Procedure

We used cross-validation on a rolling basis [23], also known as prequential or back
testing, to evaluate the models’ performance and make comparisons between them. Figure 1
shows the general process. In the case of the machine learning and deep learning models,
we split the training part into train and validation for the tuning. The performance metric
MAPE was computed from the test sample in each of the ten replicas and then averaged to
make the comparisons between models. In every replica, the test sample was the same as
the model forecast horizon, either 3 or 12.

Figure 1. Cross-validation on a rolling basis for the model’s evaluation.

4. Results

Tables 2 and 3 show the average MAPE according to the model type for a horizon
output of 3 and 12, respectively. The last two columns of each table present the best metric
average of the transfer learning models and the best metric average for the rest of the
models. The sky-blue color indicates which model has the lowest average metric, and the
gray color indicates that there is no statistical difference between the type of models that
the cells represent and the best model, using the Wilcoxon Sign Test with a p-value of 0.05.
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Table 2. Average MAPE for each kind of model when output horizon = 3.

Time Serie
Type of Model

Best Dl Best Rest
St Ml Dl/wh Dl/t Dl/t_M4

BU_CPI 0.009 0.026 0.04 0.026 0.026 lstm_M4 = 0.01 arima = 0.007
BU_ER 0.02 0.018 0.042 0.021 0.022 lstm = 0.017 arima = 0.017
BU_IPI 0.052 0.062 0.067 0.074 0.079 tcn = 0.069 ets = 0.05
BU_PPI 0.022 0.066 0.052 0.028 0.029 lstm_M4 = 0.025 ets = 0.02
BU_TVE 0.074 0.149 0.104 0.077 0.076 tcn_M4 = 0.075 ets = 0.069
CR_CPI 0.004 0.01 0.049 0.023 0.023 lstm_M4 = 0.004 ets = 0.004
CR_ER 0.009 0.068 0.039 0.027 0.027 lstm_M4 = 0.011 theta = 0.008
CR_PPI 0.008 0.011 0.028 0.015 0.015 tcn = 0.011 ets = 0.007
CR_IPI 0.031 0.043 0.059 0.044 0.044 tcn_M4 = 0.041 ets = 0.029

CR_TVE 0.073 0.163 0.129 0.078 0.078 tcn_M4 = 0.075 arima = 0.071
KR_CPI 0.004 0.01 0.023 0.017 0.017 lstm_M4 = 0.005 theta = 0.003
KR_ER 0.02 0.023 0.035 0.02 0.02 tcn = 0.019 arima = 0.017
KR_PPI 0.007 0.013 0.023 0.011 0.011 lstm_M4 = 0.008 arima = 0.007
KR_IPI 0.036 0.051 0.063 0.045 0.049 lstm = 0.041 arima = 0.036

KR_TVE 0.055 0.083 0.089 0.066 0.066 tcn_M4 = 0.063 arima = 0.053
US_CPI 0.006 0.018 0.028 0.015 0.015 lstm_M4 = 0.007 ets = 0.006
UK_CPI 0.004 0.013 0.023 0.014 0.015 lstm = 0.004 ets = 0.003
UK_ER 0.024 0.022 0.032 0.02 0.02 cnn = 0.019 XGB = 0.018
UK_PPI 0.007 0.01 0.025 0.013 0.012 tcn = 0.007 arima = 0.007
UK_IPI 0.015 0.019 0.028 0.024 0.027 tcn = 0.018 arima = 0.013
UE_PPI 0.007 0.019 0.031 0.014 0.015 lstm_M4 = 0.009 ets = 0.006
UE_IPI 0.039 0.036 0.041 0.038 0.038 cnn = 0.036 lstm_wot = 0.033

UK_TVE 0.104 0.112 0.113 0.1 0.102 tcn = 0.097 RF = 0.099
UE_TVE 0.078 0.104 0.104 0.092 0.092 tcn = 0.09 theta = 0.076

Note: The name of the time series in the first column is composed of two parts separated by an underscore. The
first part is the country’s name, and the second is the macroeconomic variable’s name. The acronyms meaning are
in the macroeconomic time series. The blue color means that it is the best metric value, and the gray color appears
when there is no statistically significant difference with the best metric, according to the Wilcoxon test with
p-values of 0.05. Best Dl is the best deep learning–transfer learning model, and Best Rest = Best of the rest models.

We compare the deep learning models created from the M4 subsample dataset with
the models created from the macroeconomic dataset to determine if the usage of a dataset
more oriented to the domain of the target time series generates the best results. However,
the performance metrics between both types of models were similar. Tables 2 and 3 show
that the MAPE was almost identical for most times series. Therefore, the M4 time series
can be as valuable as the macroeconomic time series in generating pre-trained models for
the variables analyzed in this study.

The results show that the deep learning models with transfer learning tended to
perform better than deep learning models without transfer learning and other machine
learning models for an output of 3 or 12. Recent studies have trained deep learning models
directly on the economic monthly target time series e.g., [1,10,15]; however, our results
suggest that there is a possibility that transfer learning could give the best performance.

The statistical models performed better in most time series than deep learning models
with transfer learning, although the difference is not statistically significant for many time
series. The differences between statistical and transfer learning models were smaller when
the output was 12. For example, in 11 time series, there was a significant difference in the
metric MAPE when the output was 3 (Table 2), and there was a significant difference in
only four time series (Table 3) when the output was 12. Statistical models were not the best
is all time series; there were time series for which the transfer learning models obtained the
best results.
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On the other hand, the results of the best specific models indicate that the best transfer
learning model is mainly based on lstm for an output horizon of 3 and tcn for an output
horizon of 12. The best of the other models was usually a statistical model for an output
of 3 and 12. Although, in most time series, the statistical model had a slightly better
value in terms of performance metric, the deep learning model has the advantage that it is
simpler to make forecasts because only one model is required to predict the five variables
in any country.

Table 3. Average MAPE for each kind of model when output horizon = 12.

Time Serie
Type of Model

Best Dl Best Rest
St Ml Dl/wh Dl/t Dl/t_M4

BU_CPI 0.019 0.043 0.064 0.017 0.019 tcn = 0.013 ets = 0.012
BU_ER 0.047 0.052 0.087 0.045 0.046 cnn = 0.04 arima = 0.041
BU_IPI 0.036 0.053 0.063 0.042 0.042 cnn_M4 = 0.037 arima = 0.035
BU_PPI 0.033 0.073 0.089 0.032 0.033 lstm = 0.031 ets = 0.026
BU_TVE 0.09 0.166 0.164 0.09 0.091 cnn = 0.089 theta = 0.08
CR_CPI 0.01 0.059 0.06 0.016 0.015 tcn_M4 = 0.01 arima = 0.009
CR_ER 0.025 0.12 0.059 0.027 0.027 tcn_M4 = 0.024 theta = 0.023
CR_PPI 0.019 0.047 0.06 0.022 0.02 tcn_M4 = 0.016 theta = 0.017
CR_IPI 0.027 0.116 0.064 0.033 0.034 cnn_M4 = 0.033 ets = 0.025

CR_TVE 0.074 0.118 0.131 0.065 0.066 lstm = 0.061 arima = 0.068
KR_CPI 0.007 0.039 0.039 0.009 0.008 lstm_M4 = 0.005 theta = 0.004
KR_ER 0.04 0.041 0.052 0.035 0.038 tcn = 0.031 arima = 0.033
KR_PPI 0.016 0.032 0.043 0.016 0.016 lstm_M4 = 0.015 ets = 0.013
KR_IPI 0.03 0.127 0.07 0.033 0.033 cnn = 0.032 theta = 0.025

KR_TVE 0.091 0.1 0.116 0.082 0.082 tcn = 0.079 RF = 0.079
US_CPI 0.008 0.055 0.032 0.01 0.011 tcn_M4 = 0.009 arima = 0.008
UK_CPI 0.006 0.044 0.034 0.009 0.009 tcn_M4 = 0.007 theta = 0.006
UK_ER 0.037 0.056 0.064 0.037 0.037 cnn = 0.035 arima = 0.035
UK_PPI 0.027 0.058 0.065 0.028 0.027 lstm_M4 = 0.025 ets = 0.026
UK_IPI 0.022 0.024 0.036 0.027 0.028 lstm = 0.024 XGB = 0.02
UE_PPI 0.012 0.065 0.038 0.014 0.014 lstm_M4 = 0.011 theta = 0.01
UE_IPI 0.023 0.031 0.036 0.026 0.025 tcn_M4 = 0.022 ets = 0.021

UK_TVE 0.101 0.116 0.122 0.087 0.092 tcn = 0.073 lstm_wot = 0.094
UE_TVE 0.057 0.102 0.109 0.063 0.062 cnn_M4 = 0.061 theta = 0.049

5. Conclusions

To our knowledge, this is the first study that analyses the application of transfer learn-
ing to macroeconomic monthly time series. Our conclusion is that transfer learning tends
to perform better than the application of deep learning models without transfer learning
and other machine learning models. The statistical models still provide better results in
most cases, although their performance is mainly similar to that of transfer learning, and
even in some series, the transfer learning showed better metrics values at a descriptive
level. These findings are promising for applying transfer learning to macroeconomic time
series which would simplify the generation of forecasts since, with a single pre-trained
model, several economic variables can be predicted for different countries.

Additionally, there are different options to explore the generation of a model that
improves the predictions of the statistical models. Future studies should apply transfer
learning to other kinds of networks that have provided very positive results in natural
language processing, such as transforms and seq2seq models. We only used the lags
of the time series as input; however, it is relevant to analyze the performance of deep
learning models when the lags of the own series and the information of external variables
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are received as input, which can be used for the prediction of specific macroeconomic
variables. It could improve the performance of deep learning models that have shown the
capacity to extract patterns from wide input arrays. Additionally, it is possible to explore
the creation of a model trained with different datasets or create ensembles from different
pre-trained models.
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Abstract: This paper introduces a software component created in Visual Basic for Applications (VBA)
that can be applied for creating an optimal portfolio using two different methods. The first method is
the seminal approach of Markowitz and is based on finding budget shares via the minimization of
the variance of the underlying portfolio. The second method, developed by Hatemi-J and El-Khatib,
combines risk and return directly in the optimization problem and yields budget shares that lead to
maximizing the risk-adjusted return of the portfolio. This approach is consistent with the expectation
of rational investors since these investors consider both risk and return as the fundamental basis
for the selection of the investment assets. Our package offers another advantage that is usually
neglected in the literature, which is the number of assets that should be included in the portfolio. The
common practice is to assume that the number of assets is given exogenously when the portfolio is
constructed. However, the current software component constructs all possible combinations and thus
the investor can figure out empirically which portfolio is the best one among all portfolios considered.
The software is consumer-friendly via a graphical user interface. An application is also provided to
demonstrate how the software can be used using real-time series data for several assets.

Keywords: VBA; time series data; portfolio diversification; optimization; risk and return

1. Introduction

Knowledge delivery as a method of continuing humanity’s mind to the next generation
has employed forms of tacit, explicit, and implicit knowledge [1,2]. One major method that
these deliveries are shown through is the teaching and training environment. However,
to ensure the delivery of knowledge, the learned materials must be assessed. Continuous
investigations by researchers are taking place to seek different methods of compatibility
regarding teaching materials being in line with the learner’s learning style. Research has
indicated that, by personalizing teaching materials to suit the specific needs of a learner,
the learning performance shows improvement [3,4]. Furthermore, the practice on learned
materials emphasizes that deep learning and its effect can stay with the learner for a longer
time depending on the sessions of practice.

It is widely agreed that not all theories can be directly put into practice, such as
aviation (new trainee pilots require many hours of flights before being called a pilot),
medicine (medical students require long hours of practice in surgery before being allowed
to perform independent surgery), mathematics (mathematicians and economists require
an environment where they can apply theoretical concepts in practice before they become
reality), and manufacturing (which requires a tremendous amount of resources through
the planning, designing, and implementation of technologies before a tangible product
gets produced), and many more industries can be testimony to the value of simulation-
based learning with regard to saving resources and money. In addition, detailed instruction
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on the process of solving a problem, including giving immediate feedback, can enhance
learning [5–8].

Hence, in this paper, simulation software that shows how a decision can be improved
before an actual event, such as a decision on portfolio diversification, was developed.
The following sections describe the logic behind portfolio diversification, mathematical
derivation and the rationale behind each method, and a chosen group of algorithms for
the decision maker unit (DMU) in both simulation software, and, at the end, we discuss
our findings and conclude our work. The software verbiage is available from the authors
upon request.

The rest of the paper is as follows. Section 2 describes the two alternative methods that
can be used for constructing a portfolio. This section also illustrates how the dimension of
a portfolio can be determined endogenously. Section 3 presents our software component
and describes how it can be used. Section 4 presents the finding of an empirical application.
The last section provides conclusions. In Appendix A, a schematic representation of both
modules that are created in this paper is provided (Figures A1 and A2).

2. Methodology

In this section, we describe the alternative approaches for constructing financial
portfolios. Another issue that is usually neglected in the literature is the dimension of the
portfolio. It is a common practice in literature to assume that the number of assets included
in the portfolio is given a priori. However, this does not need to be the case in real markets.
For many investors, the selection of assets is also an endogenous question. Our software
takes this issue into account by constructing all possible combinations and providing the
portfolio that is optimal even with regard to the number of assets also. This approach is
described in the section’s sub-section.

2.1. Portfolio Construction

The seminal method for portfolio diversification was established by Markowitz [9],
and leads to obtaining budget shares via minimizing the variance of the selected portfolio
with regard to the budget restriction. Let us assume that ri represents the rate of return
for asset i, which has a normal as ri ∼ Φ

(
ri, σ2

i
)
. The variance and covariance matrix for

the assets included in the portfolio (denoted by n) is expressed as Ω =
(
σi,j
)

1≤i,j≤n; here,
σij is the covariance measure between the returns of the two assets i and j. Let us also
define wi as the weight for asset i. Therefore, the average return of the portfolio is defined
as F(w) = ∑n

i=1 riwi and its variance as a measure of risk is V(w) = w′Ωw. Hence, the
optimization objective of Markowitz [9] is the following minimization problem:

Minimize V(w) = w′Ωw (1)

Bounded by the budget limitation expressed in Equation (2):

D(w) =
n

∑
i=1

wi = 1 (2)

The solution for each wi of this optimization problem is obtained as the following,
assuming that there are four assets in the portfolio (i.e., n = 4):

w1 =

−

∣∣∣∣∣∣
B1,2 B1,3 B1,4
B2,2 B2,3 B2,4
B3,2 B3,3 B3,4

∣∣∣∣∣∣
|E| (3)

w2 =

∣∣∣∣∣∣
B1,1 B1,3 B1,4
B2,1 B2,3 B2,4
B3,1 B3,3 B3,4

∣∣∣∣∣∣
|E| (4)
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w3 =

−

∣∣∣∣∣∣
B1,1 B1,2 B1,4
B2,1 B2,2 B2,4
B3,1 B3,2 B3,4

∣∣∣∣∣∣
|E| (5)

w4 =

∣∣∣∣∣∣
B1,1 B1,2 B1,3
B2,1 B2,2 B2,3
B3,1 B3,2 B3,3

∣∣∣∣∣∣
|E| (6)

where

E =

⎛⎜⎜⎝
B1,1 B1,2 B1,3 B1,4
B2,1 B2,2 B2,3 B2,4

B3,1
1

B3,2
1

B3,3
1

B3,4
1

⎞⎟⎟⎠
Observe that |Y| signifies the determinant of the matrix Y. In addition, notice that B is

an n × n matrix that has the following attributes:

Bi,j =
(
σi+1,j + σj,i+1

)
−
(
σi,j + σj,i

)
, ∀ 1 ≤ i ≤ n − 1 and ∀ 1 ≤ j ≤ n.

The Markowitz approach, which is commonly utilized by investors, constructs a port-
folio that has the smallest possible risk. Nonetheless, it is broadly agreed that rational
investors pay attention to both risk and return when investment decisions are made. Con-
sequently, Hatemi-J and El-Khatib [10] proposed optimizing the portfolio diversification
problem, which combines risk and return directly when the portfolio is created. Specifically,
the objective function in the optimization problem is the following as per the authors:

Maximize
F(w)√

V(w)
=

F(w)√
w′Ωw

(7)

subject to
D(w) =

n

∑
i=1

wi = 1 (8)

Via the application of Theorem 1 in the study by Hatemi-J, Hajji, and El-Khatib [11],
the solutions for the optimal budget shares within this setting are provided in the following
equations, when n = 4:

w1 =

−

∣∣∣∣∣∣
G1,2 G1,3 G1,4
G2,2 G2,3 G2,4
G3,2 G3,3 G3,4

∣∣∣∣∣∣
|K| (9)

w2 =

∣∣∣∣∣∣
G1,1 G1,3 G1,4
G2,1 G2,3 G2,4
G3,1 G3,3 G3,4

∣∣∣∣∣∣
|K| (10)

w3 =

−

∣∣∣∣∣∣
G1,1 G1,2 G1,4
G2,1 G2,2 G2,4
G3,1 G3,2 G3,4

∣∣∣∣∣∣
|K| (11)

w4 =

∣∣∣∣∣∣
G1,1 G1,2 G1,3
G2,1 G2,2 G2,3
G3,1 G3,2 G3,3

∣∣∣∣∣∣
|K| (12)
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where

K =

⎛⎜⎜⎝
G1,1 G1,2 G1,3 G1,4
G2,1 G2,2 G2,3 G2,4

G3,1
1

G3,2
1

G3,3
1

G3,4
1

⎞⎟⎟⎠
Observe that G is an n × n matrix that has the following definition:

Gi,j = ri
(
σi+1,j + σj,i+1

)
− ri+1

(
σi,j + σj,i

)
, ∀ 1 ≤ i ≤ n − 1 and ∀ 1 ≤ j ≤ n.

Accordingly, this new method merges risk and return in the optimization problem,
which accords well with reality. This is the case because rational investors consider both
risk and return when they make any investment decision.

2.2. The Dimension of a Portfolio

Prior to finding the budget shares, the investor must choose the assets to include in
the portfolio. This is a crucial matter. The way that the literature deals with this issue is
to assume that the number of assets included in the portfolio is provided exogenously.
Nevertheless, this is not the way that the investors approach this issue in real markets.
The selection of assets for inclusion in the portfolio is better dealt with as an endogenous
question according to Hatemi-J and Hajji [12]. The authors suggested a solution that is
based on selecting the maximum number of assets that the investor might be interested
in based on his/her subjective preferences. Subsequently, a series of portfolios containing
different permutations of these assets can be created. Suppose that n is the maximum
number of assets considered by the investor for potential inclusion in the portfolio. Thus,
the number of combinations (denoted by P) needed to be built is the following according to
Hatemi-J and Hajji [12]:

P =
n−2

∑
l=0

C(n, n − l) =
n−2

∑
l=0

n!
(n − l)! × l!

(13)

Therefore, P is the total number of permutations that are accessible to the investor
as portfolios for a given n set of underlying assets. By creating all these P portfolios,
the investor should calculate the risk-adjusted return for each portfolio in this set. For
instance, when n is 4, P is equal to 11 portfolios based on Equation (13) as is the case in our
application. Via the risk-adjusted returns for these P portfolios, the investor can retrieve
the best portfolio, the second-best, the third-best, etc. This approach makes it operational
to obtain the portfolio amongst these 11 portfolios that produces the highest magnitude
of return for each unit of risk; that is, the best portfolio (BP) among the P combinations is
acquired as

BP = Max[RARk, · · · , RARP ] (14)

where

RARk =
E
[

Rpk(w)
]

√
V
[

Rpk(w)
] (15)

The denotation E
[

Rpk(w)
]

represents the expected return of portfolio k (for k = 1, . . . , P)

for the given vector for optimal budget shares (i.e., w). V
[

Rpk(w)
]

represents the variance
of the same portfolio and RARk denotes the risk-adjusted return of portfolio k. The needed
optimal budget shares for each portfolio might be acquired via minimizing the variance
of the portfolio as established by Markowitz [9]. Nonetheless, it is also feasible to find
the optimal budget shares via the method introduced by Hatemi-J and El-Khatib [10]
and generalized by Hatemi-J, Hajji, and El-Khatib [11]. These methods are described by
Equations (1)–(12) above.
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3. Experimental Design (Designing a New Tool)

In this section, the design of a new tool to present the process of simplifying and solving
a complicated process that usually takes a long time using either pen and paper, calculators,
or a simple spreadsheet for manually performing the calculations, is recommended. The
authors used the power of Microsoft Visual Basic for Applications (VBA) in Microsoft Excel
to create this module to automate lengthy processes of creating multiple portfolios and
their comparison to select the best possible choice of portfolio from a list of diversified
portfolios, where the efficiency of the work is, of course, incomparable, since the use
of VBA as a tool to automate complex calculations in the industry has become the norm.
Kalwar et. al. [13] gave a comprehensive list of VBA applications in the industry that clearly
backs this statement. Blayney et al. [14] also presented the capabilities and use of VBA in
conjunction with MS Excel to conduct preliminary analysis in big data research.

As an example, one of the commonly used methods in finance is portfolio diversi-
fication. A personal investor or financial organization’s task is to carry out investment
on a series of instruments. These assets can be chosen from any of commodities, indices,
forex, metal, energy, and stocks, to name a few. The issue here is determining what the best
combination of those assets for the investment would be based on their historical market
price and by minimizing the risk involved in trading those markets.

Markowitz [9], in his paper, recommended a solution for finding the optimal selec-
tion of the best combination of assets for investment. The approach was mainly based
on the weights as budget shares that minimized the variance of the underlying portfo-
lio. In this approach, however, the risk on the amount of return was not considered.
Hatemi-J and El-Khatib [10] devised a new method based on the effects of valuing risks on
the selection of assets so as to maximize the return. The method is named ‘maximizing
the risk-adjusted return of the portfolio’. It combines risk and returns when the optimal
budget shares are searched for. Hence, two applications are presented in this section. The
basis of the design for the first application is a set of a predetermined list of assets (denoted
by PD-RAR, which stands for ‘portfolio diversification with risk-adjusted return’), and
the second one presents a comparison between portfolios based on a different number
of assets (denoted PD-RAR-Comb). This last design is aimed at helping the investor to
endogenize the number of assets in the portfolio by considering all possible combinations.
Equations (1)–(14) are used for this purpose.

4. Development of the Tool

Since there are complex calculations involved in calculating portfolios with the best
performance in both methods of Markowitz [9] and Hatemi-J and El-Khatib [10], there is the
need to develop a module that performs all the required calculations efficiently via graphical
user interfaces (GUIs). The aim of this research is to fill this gap in the existing literature.
Schematics of these two designs as presented in the previous section are given in Appendix A.

The portfolio diversification with risk-adjusted return (PD-RAR) creates a portfolio
for a set of data inputs via its dashboard panel (Figure 1). There are two methods available
for entering data: (i) either through copy and paste functions to paste the set of data on the
sheet named “Data”, or (ii) the option named “Data as Parameters”. The use of the first
option is straightforward, and the application is ready to process data. The second option
provides an extra option for entering the input data in the form of the available number of
assets, calculated expected values, and covariance of the set of data, which could all have
come from another application software (Figure 2).
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Figure 1. The main dashboard panel.

Figure 2. By following the option of “Data as Parameters”, two dialog boxes are presented; (a) entering
number of assets, (b) a dialog box ready to enter values for average returns, and the variance-covariance.

After processing data based on Equations (1)–(12), the number of portfolios is given
(Figure 3). This is followed by creating two types of output: (i) detailed calculations of
applied algorithms (Figure 4), and (ii) the “Estimated Results” (Tables 1 and 2).

Figure 3. The notification dialog box shows the possible number of portfolios created.
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Figure 4. Sample of detailed calculations based on Equations (1)–(12).

Table 1. Summary of estimation results table for portfolio number 10 with best value based on
minimum variance approach (MV), which includes two assets.

Assets Average Return (r̄.) SD (σ) Risk Adjusted Return w for MV w for MRAR

Brent Oil 0.00364822 0.01435503 0.25414215 0.17252711 0.4888804

Dow Jones 0.0017301 0.00862258 0.20064716 0.82747289 0.5111196

Portfolio-Minimum Variance (MV) 0.00206103 0.00826817 0.24927208

Portfolio-Maximum Risk Adjusted
Return (MRAR) 0.00266783 0.00940691 0.28360313

Table 2. Summary of estimation results table for portfolio number 1 with the best value based on
maximum risk-adjusted return (MRAR), which includes all assets.

Assets Average Return (r̄.) SD (σ) Risk Adjusted Return w for MV w for MRAR

USD-JPY 0.00029673 0.00349409 0.0849228 1.09569014 0.11642855

Brent Oil 0.00364822 0.01435503 0.25414215 0.08033079 0.46561635

DAX 0.00142506 0.00937355 0.15203045 −0.07538021 −0.11039877

Dow Jones 0.0017301 0.00862258 0.20064716 −0.10064071 0.52835387

Portfolio-Minimum Variance (MV) 0.00033665 0.00321823 0.10460585

Portfolio-Maximum Risk
Adjusted Return (MRAR)

0.00249 0.00875246 0.284491

The calculation results are provided in Table 3 for the best portfolio that is created
based on the maximum risk-adjusted return.

Table 3. List of portfolios with the minimum variance (MV) and maximum risk-adjusted return
(MRAR) with the highest selection.

Portfolio MV MRAR Portfolio with the Highest RAR 1

Portfolio-1 0.10460585 0.284491 MV MRAR

Portfolio-2 0.12222364 0.26876603 0.24927208 0.284491

Portfolio-3 0.10252419 0.28364519 Portfolio 10 Portfolio 1

Portfolio-4 0.0426772 0.20488306

Portfolio-5 0.23869796 0.28430838

Portfolio-6 0.13814161 0.26645813
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Table 3. Cont.

Portfolio MV MRAR Portfolio with the Highest RAR 1

Portfolio-7 0.0582005 0.15205724

Portfolio-8 0.04421402 0.20429712

Portfolio-9 0.21516302 0.26479205

Portfolio-10 0.24927208 0.28360313

Portfolio-11 0.19537426 0.20076821
1 Portfolio construction methods: MV = minimum variance approach; MRAR = maximum risk-adjusted
return approach.

PD-RAR-Comb

In this sub-section, the results for all eleven combinations are briefly presented in
Table 3. These results are obtained by using the PD-RAR-Comb module. This module
provides a list of all possible combinations of portfolios to be created for all assets with
the addition of presenting a comparison between both algorithms used in creating those
portfolios [9,10] [Appendix A part A.2]. The first phase of this process is to create a list of
possible combinations of assets, and then to create a portfolio for each combination and list
them in a sheet arranged in descending order from the maximum number of assets to the
minimum number of assets in combination. The next step is to find the maximum value
for both used algorithms of minimum variance (MV) and maximum risk-adjusted return
(MRAR). The outcome of this process is shown in Table 3.

5. Findings

In this section, the findings for executing both modules are discussed. The performance
of calculations mainly depends on the type of data processing (i.e., the option of “with or
without detailed presentation of step-by-step calculations”) and on the size of the dataset
(i.e., the number of assets and recorded closing prices for each asset). For example, by
running a set of 10 assets with 65 records (which results in 1013 different portfolios), it
takes around 100 s to process the data using the option “without details”. Comparatively, it
takes more than 15 min to implement the same calculations with the option “with details”.
The reason for this is due to the interaction with an individual worksheet (i.e., reading and
writing data from and into a worksheet). It should be mentioned that the main purpose of
using the module with detailed steps is for educational purposes, which gives the outcome
of step-by-step calculations in the process of creating portfolios.

Note that portfolio construction based on the method by Hatemi-J and El-Khatib [4]
clearly shows a better outcome if the goal is finding a portfolio that provides the highest pos-
sible return per unit of risk. However, the portfolio that is constructed by Markowitz’s [9]
method results in the lowest possible risk. By using this module, it is also possible to directly
enter the parameters that are necessary inputs for portfolio diversification (such as the
average returns and the variance–covariance values) instead of importing the time-series
data of the prices (see Figure 2).

6. Conclusions

Constructing an optimal portfolio is an important issue for investors and financial
institutions. There are several methods available in the literature for this purpose. The
seminal approach provided by Markowitz [9] yields an optimal portfolio that results in the
minimum possible risk. This approach is widely applied by practitioners. An alternative
approach that was developed by Hatemi-J and El-Khatib [10] produces a conditional
optimal portfolio that gives the maximum return per unit of risk. The aim of this work was
to provide a VBA module that can construct portfolios using both methods.

A pertinent issue within this context that is usually neglected in the literature is the
dimension of the portfolio; that is, the number of assets included in the portfolio is assumed
to be exogenous. However, it is rational to deal with this issue endogenously. The approach
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that was suggested by Hatemi-J and Hajji [12] for this purpose is to estimate all possible
combinations of portfolios and estimate the risk-adjusted return for each. The portfolio
that gives the highest risk-adjusted return among all possible ones is the one that should
be selected. Our module also provides this possibility. It constructs all possible portfolios
that the investor might be interested in and indicates the optimal one using both portfolio
diversification methods. An example of four assets was provided to demonstrate how
the module operates. However, the results can be generalized in future applications. The
module is very consumer-friendly. The software verbiage of the module is accessible from
the authors upon demand.

Author Contributions: Conceptualization, A.H.-J.; methodology, A.H.-J.; software, A.M. and A.H.-J.;
validation, A.H.-J. and A.M.; formal analysis, A.M.; investigation, A.H.-J. and A.M.; writing—review and
editing, A.H.-J. and A.M.; All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Dataflow and schematics for system design of both recommended modules of PD-RAR
and PR-RAR-Comb

A.1: Figure A1 presents a data processing mechanism for calculating the PD-RAR.
Detailed mathematical algorithm for this process is given in Equations (1)–(12) in Section 2.1,
and a screenshot of its output is given in Tables 1 and 2.

Figure A1. Schematic diagram of portfolio diversification for PD-RAR model.

A.2: Figure A2 gives a list of combinations of portfolios developed based on (i) maxi-
mum values of minimum variance (MV) and (ii) maximum risk-adjusted return approaches
(MRAR). The process uses the same mechanism of calculating portfolios with the addition
of looping through portfolios. The outcome is given in Table 3.

The calculations are based on Equations (1)–(15) of Sections 2.1 and 2.2 for the implan-
tation of the module.
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Figure A2. Schematic diagram of portfolio diversification for PD-RAR-comb model.
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Abstract: In this work a novel application for multivariable forecasting is presented, applied to
hydrological variables and based on a multivariable NARX model. The proposed approach is
designed for two hydrological stations located at the Atrato River in Colombia where the variables of
water level, water flow and water precipitation are correlated by using the NARX model based on a
neural network structure. The structure of the NARX-based neural network is designed in order to
consider the complex dynamics of hydrological variables and their corresponding cross-correlations.
A short-term water level forecasting is designed based on the NARX model, to be used as an early
warning flood system. The validation of the proposed approach is performed by comparing the
estimation error with an ARX dynamic model. As a result, it is shown that a NARX model structure
is more suitable for water level forecasting than simplified structures.

Keywords: forecast; water level; neural network

1. Introduction

The accurate modeling of hydrological variables is crucial for effective flood forecasting
and the design and operation of water resource systems, as stated in the reference [1]. To
achieve this, two types of techniques are commonly used: white-box algorithms, which rely
on mathematical modeling, and black-box algorithms, which employ non-linear neural
network techniques based on artificial intelligence. In the context of early warning systems,
the latter technique has been used to great effect, as highlighted in [2], which discussed the
use of artificial neural networks (ANNs) for prediction and forecasting. Furthermore, the
combination of ANNs with the Soil and Water Assessment Tool (SWAT) has been applied
for runoff prediction and water management resources, as described in [3].

Hydrological models have been developed to support flood early warning systems
through the use of estimation and prediction algorithms. In [4], the authors focused on
developing a flood forecasting system (FFS) capable of providing early warning to UDS
managers of potential flooding, using a nonlinear autoregressive neural network with
exogenous inputs (NARX) to predict the impact of a storm. Meanwhile, in [5], a neural
network short-term memory model (LSTM) was proposed for flood forecasting, using
daily flow and rainfall as input data, and analyzing features that may affect the model’s
performance. In [6], the authors presented flood early warning systems that used machine
learning (ML) techniques, comparing the performance of five ML classification techniques
for short-duration flood forecasting. Lastly, Bande and Shete [7] described an IoT-based
flood monitoring and flood prediction system based on artificial neural networks (ANN),
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which aimed to monitor humidity, temperature, pressure, rainfall, and water level of rivers
and analyze their temporal correlation for flood prediction. The system was designed to
improve the scalability and reliability of the flood management system.

Several studies related to flood forecasting and monitoring using various ANN tech-
niques have also been developed. For example, in [8], the authors evaluated the bias
correction of real-time precipitation data and the improvement of hydrological models
using the ANN bias correction method for real-time flood forecasting. In [9], the authors
focused on developing five different ANN models for flood forecasting and compared their
performance. In [10], the authors use a multilayer perceptron to design a flood prediction
model with flow as input-output variables, and the proposed model’s effectiveness was
demonstrated through intensive experiments. In [11], the authors designed a flood mon-
itoring system that integrated flow and water level sensors and used a two-class neural
network to predict flood status from data stored in the database. Finally, in [12], the authors
employed a convolutional neural network (CNN) to predict time series variables such as
water level in a flood model, despite CNNs typically being used for two-dimensional image
classification with transfer learning.

In addition, in [13], a flood forecasting model that predicted future flood occurrence
was designed and evaluated by constructing a hybrid deep learning algorithm called
ConvLSTM, which integrated the predictive merits of CNN and a long-term memory
network (LSTM). In [14], a fuzzy neural network that used fuzzy numbers to account for
uncertainty in the results and model parameters was proposed to predict the peak flow
in an urban river. In [15], the potential of the AI computational paradigm for modeling
streamflow was explored by developing nine different flood prediction models using all
available training algorithms of ANN, fuzzy logic, and adaptive neuro-fuzzy inference
systems (ANFIS) algorithms. Lastly, in [16], a deep neural network was used to predict
floods as a function of temperature and rainfall intensity, and its accuracy and error were
compared with other machine learning models, such as the support vector machine (SVM),
K-nearest neighbor (KNN), and Naïve Bayes.

The use of real-time methods based on ANN was also proposed based on neural
networks. For example, in [17], a system for predicting flood levels was developed based
on real-time sensor data. The system used a multi-layer artificial neural network model
created with MATLAB to predict flood levels in advance using data collected from sensors
in a real-time monitoring system. In [18], a hybrid river flood forecasting model was
presented using time series analysis and artificial neural networks to explain and forecast
daily water discharge of the Mohawk River in New York. Multiple linear regression (MLR)
models and an ANN model were used to describe each component for predicting the water
discharge time series. In [19], five alternative machine learning techniques were used to
improve the hydrological model, including linear regression, neural network regression,
Bayesian linear regression, and reinforced decision tree regression, with the MIKE-11
hydrologic forecasting model used as a test system. In [20], a machine learning method was
presented that uses historical typhoon paths to predict flood hydrographs of a Taiwanese
watershed. Finally, in [21], a general framework for probabilistic flood forecasting was
introduced, which uses an unaccented Kalman filter (UKF) postprocessing technique to
model point forecasts made with a recurrent neural network and their corresponding
observations. The methodology was tested using a 6 h long-term time series of the Three
Gorges reservoir in China.

In this work, the application of a multivariable NARX model based on neural network
for short-term water level forecasting along the Atrato river in Colombia is presented and
evaluated. To this end, the present work uses data from two hydrological stations located
in the Atrato river, which are monitored by the Institute of Hydrology, Meteorology and
Environmental Studies (IDEAM). The data includes measurements of flow, precipitation,
and water levels sampled every 12 h over a period of 789 days. The multivariable NARX
model is trained to predict the water levels of each station based on the inputs of water level,
water flow and water precipitation by considering the inherent dynamic and correlation of
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the process. The performance of the models is evaluated based on the mean square error
of the estimated outputs compared to the actual data. The performance of the proposed
approach is compared to a multivariable ARX system. The main contribution of this paper
is a general design of a multivariable NARX model structure based on neural networks
for short-term water level forecasting. This work is organized as follows; in Section 2 the
theoretical framework where the hydrological variables and the NARX model for their
corresponding dynamic approximation is proposed. In Section 3 the experimental setup
and the estimation results are shown, and finally in Section 4 the conclusions and final
remarks are presented.

2. Theoretical Framework

2.1. Hydrological Variables

In order to perform water level forecasting based on the dynamic of a river, two
hydrological stations are located on a river in two different positions. In order to consider
the correlation among all the variables of the system and their corresponding nonlinearities,
a nonlinear dynamical model is proposed. In (1) the inputs and outputs of the proposed
model are shown.

y[k] =
[

yL1 [k]
yL2 [k]

]
, u[k] =

⎡⎢⎢⎣
uF1 [k]

uPT1 [k]
uF2 [k]

uPT2 [k]

⎤⎥⎥⎦ (1)

where yL1 [k], yL2 [k] correspond to the two outputs of the level variable of the two stations,
uF1 [k], uF2 [k], uPT1 [k], uPT2 [k] are the four inputs of the neural network system correspond-
ing to the two stations of the multivariable system, i.e., the uFj [k] represents the j-th two
inputs of the flow variable of the two stations and uPTj [k] represents j-th; two more inputs of
the rainfall variable of the two stations already mentioned, thus obtaining a multivariable
system with four inputs and two outputs.

The dynamic of the hydrological variables is defined by considering a Nonlinear
function with an Auto-Regressive and exogenous inputs (NARX) as follows:

y[k] = f (y[k − 1], . . . , y[k − n], u[k − 1], . . . , u[k − n]) + η[k] (2)

being n the order of the NARX model and f (.) the nonlinear function, and η[k] the additive
noise at time instant k.

2.2. Narx Based Neural Network Structure

In order to consider the NARX model of (2), the inputs are selected as u[k − j] and
y[k − j], with j = 1, . . . , n, which correspond to a n-th order model In this work a 4-th order
model (n = 4) is considered according to [22] where an analysis of the order selection is
performed and the lowest estimations error is obtained for the 3-rd order model or higher.
Therefore, by considering the variables described in (1), the proposed NARX model consists
of 24 inputs and 2 outputs.

In order to approximate the nonlinear function of (2), the nonlinear function f (.) is
approximated by using a neural network structure f ∗(.), as depicted in Figure 1.
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Figure 1. NARX based Neural Networks Structure.

where the NARX model can be defined as follows:

y[k] = f ∗(y[k − 1], . . . , y[k − n], u[k − 1], . . . , u[k − n]) + η[k] (3)

To this end, 24 input activation functions with one hidden layer and 2 outputs are
considered. A feed-forward network is selected as a candidate for the NARX model in
order to speed-up the training process. The training of the NARX model is performed
offline by considering the data sample.

A linear ARX structure can be obtained by neglecting the hidden layer as depicted in
Figure 2.

Figure 2. ARX Structure.

where the ARX model can be defined as follows:

y[k] = −
4

∑
j=1

ajy[k − j] +
4

∑
j=1

bju[k − j] (4)

where Aj ∈ Rm×m and Bj ∈ Rm×m are the parameters of the model matrix, where y are the
outputs and u are the inputs; with j = 1, being p the order of the system, e[k] the noise with
m, the number of outputs and inputs of the system, y[k] ∈ Rm×1 and u[k] ∈ Rm×1.

3. Results

3.1. Experimental Setup

In order to validate the proposed approach, real measurements from two hydrological
stations located at the Atrato river are considered. The measured variables are: water
level, water flow, and water precipitation. The Atrato river is located in Colombia (South
America) and has a total length of 750 km with a variable width in a range of 150 m to
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500 m. In addition, the depth of the river has a variability in the range of 31m to 38 m. A
total amount of 789 days of data with a sample time of 12 h is considered, with initial date
1 January 2021.

In Table 1 the geographical positions of the hydrological stations are shown.

Table 1. Location of the hydrological stations.

Station 1 (E1) Station 2 (E2)

Longitude 76°40′10.75′′ W 76°39′44.13′′ W

Latitude 5°45′53.38′′ N 5°41′52.77′′ N

Altitude 20.579 MASL 20.83 MASL

City Belén de Bajirá Quibdó

In addition, it is worth noting that the distance in kilometers between the two stations
E1 and E2 is 447.1 km.

In order to validate the proposed approach, a comparison analysis of the proposed
NARX approach based on neural networks (3) is performed with a multivariable ARX
model (4). A visual comparison of the real and estimated signals is presented for the
ARX and NARX methods and also a quantitative evaluation based on the mean squared
error is performed. Both systems (ARX and NARX) are trained offline by considering the
measurement data. An evaluation in terms of the training error is also presented. The
feed-forward network structure for the NARX approach considers one hidden layer with
256 units. The Rectified Linear Unit (ReLU) Activation Function is selected for the proposed
approach, where the ReLU is a piecewise linear function that will output the input directly
if it is positive, or zero otherwise.

The implementation of the proposed NARX model based on neural networks and
also the ARX model is performed in Python by using Tensorflow, which is an open-source
machine learning library developed by Google.

3.2. Estimation Results

In this subsection the forecasting results for the two considered methods are presented:
The proposed multivariable NARX approach, and the multivariable ARX.

In Figure 3 the estimation results for the ARX method for each of the two water
level outputs are presented. In Figure 3a the short-term estimation of the first water level
output and also the real measurements are shown. In Figure 3b the short-term water
level forecasting of the second output as well as the real corresponding measurements are
depicted.

(a) (b)
Figure 3. Multivariable ARX short-term forecasting results for two water level outputs. (a) First
water level output and short-term estimation based on a multivariable ARX model. (b) Second water
level output and short-term estimation based on a multivariable ARX model.
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In Figure 3a,b shows that the real measurements are adequately estimated by using
the multivariable ARX model.

In Table 2 an analysis for the nonlinear neural network NARX in terms of the number of
nodes in the hidden layer and their corresponding mean squared estimation error is shown.

From Table 2 it can be seen that the total estimation error is reduced by increasing the
number of nodes in the hidden layer. It is noticeable that there is no significant reduction in
the total estimation error between 256 and 512 nodes. Therefore, in this work, 256 nodes in
the hidden layer are used for evaluation of the NARX models.

In Figure 4 the estimation results for the proposed multivariable NARX method for
each of the two water level outputs are presented, by using 256 nodes at the hidden layer
according to the results presented in Table 2. In Figure 4a the short-term estimation of the
first water level output and also the real measurements are presented. In Figure 4b the
short-term water level forecasting of the second output as well as the real corresponding
measurements are presented.

Table 2. Mean squared Estimation error for several nodes configurations.

NARX Hidden Layer Nodes Level 1 Level 2 Total

2 1.6867 1.6859 3.3726

4 0.0266 0.0275 0.0541

8 0.0254 0.0272 0.0526

16 0.0227 0.0257 0.0484

32 0.0232 0.0201 0.0433

64 0.0235 0.0180 0.0415

128 0.0176 0.0133 0.0309

256 0.0085 0.0108 0.0193

512 0.0078 0.0101 0.0179

(a) (b)
Figure 4. Multivariable NARX short-term forecasting results for two water level outputs. (a) First
water level output and short-term estimation based on a multivariable NARX model. (b) Second
water level output and short-term estimation based on a multivariable NARX model.

It is worth noting that in Figure 4a,b it is shown that also for the multivariable NARX
model, the real measurements are adequately estimated.

By considering the forecasting results presented in Figures 3 and 4, the proposed mul-
tivariable NARX and ARX approaches show an adequate performance by visual inspection.
In order to determine which approach tracks the dynamics of the hydrology variables more
adequately, a quantitative evaluation is performed. To this end, the mean squared error is
computed in order to compare the real measurements and their corresponding forecasting
for each of the considered methods. As a result, in Table 3 the mean squared error for
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the proposed multivariable NARX approach and also the multivariable ARX method are
presented. It can be seen that the estimation error for the proposed NARX model is lower
than the ARX model. It is worth noting that the reduction of estimation error for the NARX
approach in comparison to the ARX approach is over the 50% for all variables.

In Figure 5 the estimation errors during training for each of the considered methods
are shown. It can be seen that the multivariable ARX approach converge faster than the
proposed multivariable NARX approach. However, the training error was lower for the
NARX approach in comparison to the ARX approach. This behaviour validated the fact
that there are nonlinear dynamics inherent to the measured hydrological variables and
therefore the proposed NARX model forecast the data behaviour more adequately.

Table 3. Mean squared Estimation error.

Neural Network Model Level 1 Level 2 Total

ARX 0.0280 0.0263 0.0543

NARX 0.0085 0.0108 0.0193

(a) (b)
Figure 5. Training error. (a) Training error with the ARX multivariable model. (b) Training error with
the NARX model.

4. Discussions and Conclusions

In this work a novel application for multivariable forecasting method for hydrological
variables based on multivariable NARX model is presented. To this end, the nonlinear
function of the NARX model has been approximated by using neural networks. The
proposed multivariable NARX approach is compared to a multivariable ARX approach,
where the proposed NARX approach shows a lower estimation error (a reduction over a
50% error as shown in Table 3). By considering the training errors, it can be seen that the
training error is lower for the NARX approach in comparison to the ARX approach due
to the nonlinear dynamics inherent to the measured hydrological variables. In summary,
the proposed multivariable NARX model based on neural networks is an effective tool
for water level forecasting by considering the correlation among several hydrological
variables and several stations. It is worth noting that the main contribution of the proposed
approach is the design of a general structure for modeling that can be extended to several
hydrological systems with more stations and variables. In future work, online training,
white-box or more complex nonlinear structures can be used to describe the nonlinear
behavior of the system.
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Abstract: The easiest approach to customer activity forecasting involves using the whole available
and applicable population of customers that a certain data set contains. The drawback of this simple
technique is twofold: the set could be too big, and it could contain customers of very different
peculiarities, which means that customers whose previous behavior is helpful for the forecast and
whose one is not are mixed, and while the first performs a good-quality prediction, the second
spoils it by adding noise. Hence, if we could choose the customers with good predictability and
put aside the others “as a shepherd divideth his sheep from the goats” (Matthew 25:32), we would solve
both problems: less data volume and less noise; the principle is like ancient “divide et impera”. In
our research, we developed the method of customers separation by predictability and its dynamics
with the help of LSTM models. Our research shows that (1) customer separation helps to improve
the forecasting quality of the whole population due to the decomposition of all clients’ time series,
and (2) environmental instability such as pandemics or military action can be leveled out with
incremental models.

Keywords: predictability; consumer behavior; incremental learning

1. Introduction

The finance sector has long adopted machine learning techniques in their client
behavior analysis (Source code can be found in ref. [1]) to evaluate credit scoring [2],
predict customer churn [3], detect fraudulent transactions [4], recommend personalized
entities [5], and predict next purchases or trips abroad [6]. Apart from making predic-
tions based on customer behavior, it is wise to detect clients who would be more likely
to make such predictions come true, in other words, agents with high predictability. This
wisdom is explained by fewer risks when trying out new features and better feedback after
targeted recommendations.

Additionally, it may be useful to discard clients with low predictability from available
population in quest of higher prediction accuracy. Following the assumption that unpre-
dictable agents add nothing except noise, making predictions for all clients and considering
only the ones with high predictability may result in more accurate forecasts. Taking into
account that well predicted agents may as well be the first to react to changes and/or have
fewer fluctuations in their time series, there is useful information to be extracted from
their behavior.

Once highly predictable, an actor may lose this status if their transactional behav-
ior changes due to military-political events, pandemic-related restrictions, or even less
influential circumstances. To overcome this, clients’ predictability should be evaluated
incrementally for shift detection over time.
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The primary objective of this paper is to improve forecast quality through financial
actor segmentation. In our research, we attempted to do so by extending to the whole
population the forecast made for a subset of customers with predictable behavior. Moreover,
our incremental learning approach helps to reduce forecast errors caused by environment
instability such as pandemics or military action. Source code can be found in ref. [1].

2. Related Works

2.1. Predictability Dynamics

The first mention of dividing financial clients by their predictability can be found
in ref. [6], where the authors describe the method of binary client classification based
on the predictability of a certain event; clients were divided based on a dataset’s median
quality metric. The main idea of the method is to perform client segmentation without
using a prediction model beforehand. However, a client’s predictability is bound to change,
which was taken into account in ref. [7]. Not only did the authors use incremental learning
techniques for dynamic classification, but they also described the procedure for classifying
actors into 32 classes according to the predictability of five chosen transactions. The
predictability dynamic can be seen as a transition among classes over time.

Another view on the dynamics of predictability was described in ref. [8], where the
dynamic is shown from a predictability quality and model sensitivity perspective. As
opposed to previously mentioned works, classification of entities was conducted according
to earlier chosen quality metric thresholds, which resulted in five groups.

In this paper, we use the same general idea as in refs. [6,7], including the application
of an LSTM model (a recurrent neural network with long short-term memory [9]), but
with several alterations: actors are classified based on a forecast quality threshold (similar
to [8]) of all transactions; predictions are calculated on all levels, not just the micro- one; the
classes of actors are utilized to lower the forecast uncertainty of all clients.

2.2. Incremental Learning

As stated in ref. [10], incremental learning is a learning system that can continuously
learn new knowledge and maintain most of the previously learned ones. The main scenarios
of incremental learning and its problems can be found in refs. [10,11]. We would do the
most basic scenario, also described as fine-tuning to showcase that even simple models can
improve upon non-incremental ones when the goal is to overcome a concept drift [12] once
critical events occur; the concept drift in our research may appear in a binary classification
task on the micro-level when a client stops making transactions for a long time or suddenly
starts making them.

According to the first classification of incremental learning scenarios [13], our scenario
is domain-incremental learning, according to the second one [14]—“new instances” sce-
nario, because binary classes on the micro-level stay the same, only new samples arrive.
The authors in ref. [15] have the same domain scenario but for human state monitoring;
they showed that recently developed incremental models have trouble accumulating new
knowledge, as opposed to simple models, mainly the ones with replay and cumulative
strategies. The authors of another work with the same scenario [16] describe new models’
inability to prevent catastrophic forgetting; they perform worse than a replay model. As
a result, our most simple model should be able to overcome the concept drift as well as
accumulate new information, which is the goal because the model has to adapt and show
good forecast quality even after critical events.

3. Materials and Methods

3.1. Dataset Description and Preprocessing

The dataset contains transactional data from our industrial partner: 19,262,668 trans-
actions from 10,000 clients from 1 January 2018 to 15 August 2022. Each transaction is
described by a client id, their debit card id, date of a transaction, spent amount, and
merchant category code (MCC).
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As issues of customers’ behavior are of concern in our research, we aggregate payments
distributed by MCC to the most obvious groups of consumption interest, which are ‘food’,
‘outfit’, ‘dwelling’, ‘health’, ‘beauty’, ‘travel’, ‘kids’, ‘nonfood’, ‘telecom’, ‘fun’, and ‘money’.
The last group is the amount of cash received from ATMs. Moreover, we gather all groups
except the one named ‘money’ into three basic values called ‘survival’, ‘socialisation’ and
‘self-realisation’. The intuition behind not considering group ‘money’ is explained by the
unpredictable nature of clients’ intents once they decide to withdraw money.

The time series for total spending on each of the values is presented in Figure 1. The
series were smoothed by a moving average with a 7-day window.

Figure 1. Time series for total expenses for all customers by basic values.

Additionally, to lower the computational cost of the experiment, 3000 of the most
active clients were chosen from the available 10,000, where “most active” means the ones
with the highest number of transactions through the whole time period.

3.2. Measurement Model for Micro-Level

Before a thorough description, it is worth noting that the idea of predicting the trans-
actional behavior of just one client is usually discarded on the basis of a nearly random
series of actions. Consequently, the goal of micro-level forecasting in this research is not
going to be the highest possible prediction accuracy. However, the model can find, utilize,
and measure recurring patterns in a client behavior sequence, if there are any, which is
good enough for the objective of the paper.

The model on the micro-level is used for one client and one transaction group at a time
to predict whether any transactions were made in the following days using retrospective
transactional data. We consider transactions on a certain day to have occurred if the spent
amount is equal to or greater than 10 money units; otherwise, this is a day without any
activity. The model calculates predictions for 7 days at once, so it was decided to use the
week-based pattern while preparing input data as well, which resulted in 28 days being
chosen as input, each with 5 features: whether there were transactions for a given basic
value, the sine and cosine of a day of the week number as Equation (1) shows, and the sine
and cosine of a month number in a year (2).

f1 = sin
2πD

7
; f2 = cos

2πD
7

; (1)

where f1 and f2 are the day of week features and D is the number of the day in a week (0
being Monday and so on).

f3 = sin
2πM

12
; f4 = cos

2πM
12

; (2)

where f3 and f4 are the month features and M is the number of the month in a year (0 being
January).
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The model graph can be seen in Figure 2, where LSTM is constructed of two layers
with dropout of 20% in between, dropout between dense layers is 10%, and the activation
function is leaky rectified linear unit (Leaky ReLU). The graph was drawn by hand to be
similar to Keras ‘plot_model’ function’s output because the model was created in PyTorch.

Figure 2. Architecture of the predictability measuring neural network.

The loss function is binary cross entropy, optimizer— Adam with a learning rate
5 × 10−4 . Training was conducted with a batch size of 128 for 1000 epochs with early
stopping: if a test error is not improving after 10 epochs, the learning rate is lowered by
20%; no improvement after 100 epochs—stop training. Almost every client has a class
imbalance: a number of days with completed transactions and days without any. To deal
with this problem, the loss function was constructed with a weight parameter, calculated as
a ratio of negative instances to positive ones.

3.3. Model for Time Series Forecasting on Meso- and Macro-Level

The model on the meso- and macro-level is used to predict the amount of spent money
for a certain class of clients for the next day; therefore, the final layer consists of just one
neuron. The model graph can be seen in Figure 3, where LSTM is stateful and is constructed
of one layer, dropout between layers is 10%, the activation function is rectified linear unit
(ReLU). The graph was created with the use of Keras ‘plot_model’ function.

Figure 3. Architecture of neural network model for time series forecasting.

Due to the use of stateful LSTM, the batch sizes for training and validation have
to match; therefore, its size was decided to be 1. The loss function is mean squared
error (MSE), optimizer—Adam with a learning rate 5 × 10−5. The model was trained for
10 epochs.

These parameters were chosen as optimal after a series of tests. The same was achieved
with the measuring neural network on the micro-level.

4. Experiments

4.1. Micro-Level Predictability Measuring

As stated earlier, the objective of the measurement model on the micro-level is to
predict whether any transactions will be completed on the following days or not. After
encoding time features with sine/cosine transformation, each day is described by 7 features:
whether there were transactions in the self-realization group, in the socialization group,
in the survival group, sine of a day of the week, corresponding cosine, sine of a month,
corresponding cosine.

Available data has critical time periods that should be left out of a training step, which
is why the training set consists of a year’s worth of days from 1 January 2018 to 31 December
2018, whereas the validation set has days from 1 January 2019 to 15 July 2019.

For further adaptation to client behavior, the model with incremental learning was
trained on top of the base one: given 28 days, the model predicts the next seven and then
trains on this very data with a higher learning rate (10−3) and without class imbalance
techniques to adapt to changes faster.
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After training the base model and the incremental one for one basic value group for
one client (6 models total for each client), predictions for their transactional behavior are
made from 1 January 2019 to 8 August 2022. These forecasts consist of 1 value per day;
therefore, the days were merged into weeks with further averaging of the results. The
chosen quality metric is the F1-score (harmonic average of precision and recall); three values
for each basic value group were used to calculate a euclidean norm of the three-component
vector divided by a square root of three to keep the values in the [0, 1] range.

The forecast quality for an incremental model is used to segment actors into two
classes of predictability: clients with a high predictability (F1-score higher than 0.7) and
those with a low one.

4.2. Meso- and Macro-Level Forecasting

As mentioned above, the model at these levels is going to predict the amount of spent
money, not just whether there were any transactions on a given day, which is why it is
necessary to prepare the data once again: for each class of clients, their sum of spent money
per day over the whole time period is smoothed with a moving median with a 21-day
window. Only transactions in a group of basic values called “survival” are considered
during training and prediction.

The experiment was divided into four parts with two differences: a base model or
an incremental one; finding class clients every week; or choosing class clients once. To
provide more details regarding the second difference: the first idea consists of choosing
corresponding client classes every week, whereas the second one is for working with client
classes identified once for the 52nd week because it is one of the last weeks in the relatively
calm year 2019. The course of action with the first idea is as follows: find clients in the
given class for the current week, predict the spent amount for the following week 1 day at
a time, and repeat for each of the available weeks. The plan for the second one differs just
in the first step: certain class clients should not be found every week as they are already
known and will not change.

All the following experiments were conducted with the same model architecture and
hyperparameters to check the hypothesis that it is easier to work with highly predictable
clients because they have less noise and fewer unpredictable patterns. Each model was
trained in series from the beginning of 2018 until the end of 2019.

Following the objective of the paper, which was to lower the forecast error by client
segmentation, the original time series of all actors were compared with the predicted
amounts for actors inside a certain class. Taking into account the difference in the number
of clients within these classes, the resulting series of forecasts is multiplied by the ratio of
median to median, where the first median describes spent money for all clients and the
second one for clients in a given class. The chosen quality metric for all forecasts on these
levels is mean absolute percentage error (MAPE).

5. Results and Discussion

5.1. Client Segmentation and Incremental Learning on Micro-Level

The quality of predictions given by the base and incremental models on the micro-level
can be seen in Figure 4; these are the average results for all clients and all 3 groups of basic
values. The first dotted line depicts the week when COVID-19 lockdown was imposed
(31 March–4 April 2020), and the second one shows the week when Russia invaded Ukraine
(22 February–28 February 2022). It is clear that the incremental model consistently shows
higher forecast quality and even has an upward trend in F1-score.
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Figure 4. Incremental and base models forecast quality.

Several weeks before the lockdown began, the predictability plummeted, which can
be explained by haphazard client behavior in response to the first news regarding deaths
from COVID-19 in Russia: some may have begun stocking up on provisions, travelling,
and visiting places of interest while it was still possible. The forecast quality for the week of
31 March is the highest, and it is important to remember that the incremental model has
high forecast quality when the current week does not differ significantly from previous ones
because it adapts to changes and learns from previous instances. The majority of people
have been staying at home for several weeks already, so there were few if any transactions
made; the incremental model has no problem following such a pattern. The base model
does not have methods to adapt to changes, but perhaps some actors returned to their
usual behavior seen in the training set after all unusual preparations were completed.

The week when the war began is depicted with decreased forecast quality because the
news was less expected than the lockdown imposition, so there was no time to prepare;
client behavior became unusual only at the start of the critical period. The given graph
also shows reoccurring drops in prediction quality every New Year (1 January), which are
explained by expected stress and behavior change due to big holidays.

5.2. Forecast Errors for the Same Class on Meso- and Macro-Level

The first experiment on the meso- and macro-level consisted of measuring forecast
quality for the same predictability class in four variations: the trained model was used to
predict spent amounts for a given class of clients, which were recalculated each week; the
previous model was incrementally trained further; the trained model was used for a given
class of clients found on week 52; the previous model was incrementally trained further.
The results can be seen in Table 1, where the forecast quality was measured with the help
of MAPE and hit probability, which were proposed in ref. [17] and measure the fraction of
values in a given range. For easier interpretation, the forecasting error distribution for all
experiments is presented in Figure 5.

Figure 5. Forecast quality for the same class, where ’High’ and ’Low’ correspond to clients with high
or low predictability.
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Table 1. Forecast quality measured for the same class.

Chosen Client Class Median MAPE HP: MAPE ≤ 5%

Clients in the class were chosen every week

Clients with high predictability 5.74% 0.422
All clients 8.97% 0.222
Clients with low predictability 13.32% 0.178

With incremental learning; classes every week

Clients with high predictability 5.18% 0.481
All clients 5.38% 0.444
Clients with low predictability 5.62% 0.437

Clients in the class were chosen once on week 52

Clients with high predictability 5.53% 0.393
All clients 8.97% 0.222
Clients with low predictability 6.17% 0.333

With incremental learning; classes on week 52

Clients with high predictability 4.71% 0.548
All clients 5.38% 0.444
Clients with low predictability 4.82% 0.518

As the results show, clients with high predictability have both the smallest MAPE
and the highest hit probability for all cases, which suggests that the model has an easy
time training on time series belonging to well predicted agents. The first two cases, where
given class clients were found every week, support the hypothesis that clients with low
predictability add noise, which results in unpredictable clients having the worst results in
these cases. Experiment cases where the class clients were chosen once have a different
picture, which can be explained by the following suggestion: the forecast was evaluated
across the test period from 1 January 2020 until 15 August 2022; therefore, the clients who
were deemed unpredictable on week 52 (from the year 2019) can have predictable patterns
in the following years. This assumption supports our idea to use incremental models for
classifying clients based on predictability because client’s predictability is not constant.

5.3. All Clients Forecast Enhancement on Meso- and Macro-Level

The second experiment’s aim was to figure out which class of clients, if any, makes
forecasting all clients’ time series more accurate. The predictions for given class clients are
multiplied by a ratio described in Section 4.2 and compared with the real-time series of all
clients with the help of MAPE and hit probability. The predictions are depicted in Figure 6.
For easier interpretation, the boxplots for all cases are presented in Figure 7, whereas the
numerical results are shown in Table 2.

Figure 6. Predictions for all clients.
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Figure 7. Forecast quality for all clients, where “Based on high” means based on clients with high
predictability.

Table 2. Forecast quality measured for all clients.

Chosen Client Class Median MAPE HP: MAPE ≤ 5%

Clients in the class were chosen every week

Based on clients with high predictability 8.34% 0.304
Based on all clients 8.97% 0.222
Based on clients with low predictability 12.39% 0.148

With incremental learning; classes every week

Based on clients with high predictability 6.21% 0.370
Based on all clients 5.38% 0.444
Based on clients with low predictability 5.67% 0.459

Clients in the class were chosen once on week 52

Based on clients with high predictability 6.65% 0.385
Based on all clients 8.97% 0.222
Based on clients with low predictability 6.35% 0.370

With incremental learning; classes on week 52

Based on clients with high predictability 4.95% 0.508
Based on all clients 5.38% 0.444
Based on clients with low predictability 4.44% 0.548

The first experiment case shows the perfect picture: predictions based on well-
predicted clients are the most accurate, with predictions based on all clients in second
place. The surprises arise when either incremental learning is used or clients in classes are
chosen once.

The addition of incremental learning in the second experiment case results in a seem-
ingly strange order, where clients with low predictability deliver better values than predic-
tions based on well predicted clients. We suppose that because unpredictable clients’ series
have more noise, their time series are more similar to the ones of all clients. In addition,
once the incremental model trains on examples of well predicted clients on week n, well
predicted clients on week n + 1 may be different, and their time series may be different
as well, which makes their scaled predictions look less smooth; unpredictable clients, on
the other hand, have a higher chance to have a bigger overlap between subsequent weeks
because the number of unpredictable clients on any week is always greater.

Another point to consider is that the client segmentation on the micro-level was
completed based on binary forecast quality: whether there were any transactions in a
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given day. The model on the meso- and macro-levels predicts the amount of spent money;
therefore, even though the client is considered highly predictable on the micro-level (their
sequence is full of True), they might have spent 100 money units on one day and 100,000
on the other, which makes the client a lot less predictable on other levels.

The last two cases show that predictions based on all clients perform poorly in com-
parison to predictions based on certain client classes on week 52. These outputs may be due
to the decomposition of all clients’ time series based on client predictability; forecasting
distinct components is easier than the original series. Another interesting outcome is that
the number of predictable clients on week 52 is 796 people out of 3000, so on the third
experiment, 26.6% of the population can give more accurate predictions than when all
clients are considered.

The difference between MAPE values for customers with high and low predictability
for the first experiment case can be seen in Figure 8. Once the red dotted line goes under
0% MAPE, the predictions based on unpredictable clients perform better than the ones
based on predictable clients. It can be observed that this happens during critical times: the
lockdown announcement, the start of the war, and the time around New Year. The clients
with high predictability show better results in quieter periods.

Figure 8. Difference between forecast quality based on clients with high and low predictability, where
the pale blue line in the background depicts spent amount for all clients.

6. Conclusions

In our research, we developed the method for financial actors separation by pre-
dictability with the help of incremental learning on the micro-level, demonstrated its
benefits and drawbacks for all clients forecasting on the macro-level, and showed how
different predictability classes influence the model’s forecast quality on the meso-level.

Our experiments show that the model with incremental learning was able to perform
better on both the micro-levels in terms of F1-score and meso- and macro-levels in terms of
MAPE and hit probability, which supports our idea that incremental learning is useful for
financial clients’ behavior analysis considering the fact that clients predictability changes
due to a lot of factors and events. Our research also shows that customer separation by
predictability of their consumption behavior helps to improve the forecasting quality of the
whole population’s consumption due to the decomposition of all clients’ time series, even
though the best results are delivered by using the class of clients with low predictability.
Further experiments with the same forecast objective for all levels are to be held in the
future to ensure the same predictability class across levels.

The results are of practical value to companies operating in the finance sector that need
to analyze their customers’ behavior. Our research suggests that environmental instability
such as pandemics or military action can be leveled out with incremental models, whereas
the problem of huge data volumes and noise can be solved by client segmentation.
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Abstract: Empirical findings based on a bivariate logistic regression model with two SME categories
(successful and failed) indicate that by adding non-financial indicators to the model based on financial
variables, the accuracy of forecasting increases significantly. Namely, the total classification error
decreases by an average of 26.99%, while the AUROC value increases by an average of 7.33%. In the
additional model, with three firm categories (successful, sensitive, and failed), the findings reveal
that one financial variable (self-financing) and three non-financial variables (orderly settlement of
obligations, export, and age) significantly explain the occurrence of the early stage of SME failure.

Keywords: SME; firm failure; non-financial variables

1. Introduction

Firm failure modeling has been an important research topic for many years, for both
academia and practitioners in banks, investment funds, and other institutions. Firm failure
often has a wide range of negative effects on numerous subjects, especially for employees,
investors, creditors, and suppliers. Every new economic crisis, such as Global Financial
Crisis (2007–2008), Great Recession (2008–2012), or the recent COVID-19-caused economic
crisis (2020), brings this issue into the spotlight again.

The problem of firm failure has been an intriguing issue in Croatia for many years,
primarily due to the large number of insolvent companies. According to official statistical
data (www.dzs.hr), there were 137,664 companies in Croatia at the end of 2022, while
current data (February 2023) from the state agency FINAs database (www.infobiz.hr,
accessed on 5 February 2023.) reveal that 13,901 companies were insolvent because of
blocked accounts (EUR 406.58 million). In other words, the Croatian business environment
is quite risky since 10.5% of companies have problems meeting their due liabilities. The
riskiness of doing business in Croatia was confirmed by the World Bank’s Doing Business
data in 2020 (https://www.worldbank.org/en/home, accessed on 14 January 2023.), as
only 35.2% of receivables were collected in insolvency proceedings. For comparison, the
percentage of receivables collection in insolvency proceedings is 90% in Slovenia, 67.5% in
the Czech Republic, and 79.8% in Germany, while the average in OECD countries is 70.2%.
The reason for a low percentage of claims collection in Croatian insolvency proceedings
is the late opening of proceedings and the fact that many companies enter bankruptcy
procedures with negative equity. In such a business environment, predicting legal failure,
i.e., bankruptcy, is not very useful, but it is much more useful to create a model for
predicting firm insolvency and the early stages of firm failure [1]. This research emphasizes
the modeling of firm failure in the SME segment due to the large number of such companies
in Croatia and their relative importance in the national economy. According to the 2021
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aggregated data retrieved from the FINAs database (www.infobiz.hr), the SME sector in
Croatia comprises 55.4% of total assets and generates 58.3% of revenue.

Our study adds to the existing literature in several ways. Firstly, we developed a
unique set of non-financial variables to explore how much these variables can improve
firm failure forecasting. Secondly, we developed a model for the prediction of the early
stage of the firm failure process, which enables timely decision making to avoid credit
losses. The estimated multinomial logistic regression model indicates that one financial
variable (self-financing) and three non-financial variables (settlement of obligations, export,
and firm age) significantly contribute to explaining the early stage of SME failure. Finally,
we conducted research for the sample of Croatian SMEs for which this kind of modeling
is almost nonexistent. In addition to confirming the theoretical assumptions about the
usefulness of non-financial variables, the designed model also has the possibility of practical
use, especially in commercial banks.

2. Literature Review

There is a large body of literature dealing with firm failure from different perspectives;
however, the main goal of almost all papers is to design a prediction model with the
lowest possible forecasting error. Early studies [2–5] put focus on the use of financial
indicators in the prediction of firm failure. Given that financial indicators are based on
financial statements, such studies explore the usefulness of accounting information in
the context of crediting decisions and firm failure modeling. As a general conclusion of
the mentioned early studies, as well as many recent studies [6–9], one can point out the
finding that financial indicators are useful in predicting business failure. However, studies
that analyzed the predictive power of financial indicators over time showed that as the
accounting data age (t−2, t−3 . . . ), the predictive power of financial indicators declines
sharply. The accuracy of forecasting over a long period directly depends on the stationarity
of the data, which implies a stable correlation between the variables in the forecast period.
Empirical research has shown that this is difficult to achieve, which is emphasized by Du
Jardin and Severin [10], who analyzed 34 studies and determined that the accuracy of the
model decreases by 15% in 3 years before the bankruptcy. Pervan et al. [1] report similar
findings in a more recent study.

Over the years, one direction of firm failure research focuses on SMEs. Namely, the
modeling of firm failure for large listed companies is not identical to modeling for SME
failure. The first such study was published in the US by Edminister [11], followed by
numerous recent studies for SME samples. Edminister designed the model with seven
financial ratios (different from Altman’s Z score ratios) with a classification accuracy of
93%. Altman and Sabato [12] developed the SME failure model and compared it with
Altman’s Z” (model for unlisted firms). A comparison of the SME failure prediction model
and the Z” model indicated that the SME model outperformed Altman’s Z” model by 30%.
Similar research focused on SMEs can be found for SMEs from Portugal [13], Russia [14],
Belgium [15], Estonia [16], etc.

To improve the predictive power of forecasting models, authors such as Gudmund-
son [17], Grunert et al. [18], Altman et al. [19], Pervan and Kuvek [20], Laitinen [21], Habachi
and Benbachir [22], and Altman et al. [23] use non-financial variables. The general finding
from most of the mentioned studies is that the inclusion of non-financial indicators in
addition to financial indicators improves the accuracy of predicting firm failure. This can
be explained by the characteristics of qualitative variables that do not change over time
(or only partially change) and achieve more stable correlations as compared to financial
variables. Previous papers often use firm age, firm size, industry, and region as a set of
non-financial variables since these data are publicly available.

3. Research Design

The research sample included 4639 SME clients of a commercial bank, while the
dataset incorporated data from the period 2011–2015. An important element in firm
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failure modeling is the definition of the dependent variable, i.e., the firm failure variable. In
countries such as Croatia, where bankruptcies are opened at the very late stage of the failure
process and where the percentage of receivables collection in bankruptcy is quite low, it is
much more useful to predict the early stage of firm failure than legal failure—bankruptcy.
Therefore, the total sample of SMEs was divided into three categories (successful, sensitive,
and failed) depending on the bank’s internal credit rating and regularity in the settlement of
due obligations (Table 1). The group of successful firms includes only those firms that have
an intact high credit rating and that have not had any delays in settling their obligations. A
firm entered the sensitive category (early stage of firm failure) if it had a reduced credit
rating and a delay in meeting obligations for a duration between 30 and 90 days. Finally, the
firm was classified as failed if it had the lowest credit rating with delays in the settlement
of obligations longer than 90 days, accompanied by a recorded amount of loss for the bank.

Table 1. Sample structure.

SME Category Number of Observations

Successful 3046
Sensitive 779

Failed 814
Total 4639

Following the example of similar studies, this research also uses accounting infor-
mation and financial ratios as influential variables for predicting SME failure. Modern
accounting frameworks (IFRS, FASB, etc.) point out that accounting information should
be useful for investing and crediting decisions. Previous studies generally confirmed that
accounting information and resulting financial ratios are useful as independent variables
for firm failure modeling. However, some papers such as [1,3,10] point out that older
accounting information results in lower prediction accuracy. In the segment of financial
variables, 14 financial ratios were used, which were calculated as shown in Table 2:

Table 2. Financial variables.

Financial Variable Acronym Description

Return on equity ROE Net earnings/Equity
Return on assets ROA Net earnings/Assets

Operating margin OM Operating earnings/Sales
EBITDA to assets EBITDAA EBITDA/Assets

Sales to equity SE Sales/Equity
Operating cash flow to assets OCFA Net operating cash flow/Assets

Working capital WC Working capital/Assets
Current ratio CR Current assets/Current liabilities
Quick ratio QR Current assets-Stock/Current liabilities

Debt to assets DA Total debt/Assets
Self-financing SF Equity/Assets

Short-term debt
to assets STDA Short-term debt/Assets

Debt to EBITDA DEBITDA Total debt/EBITDA
Operating cash flow to debt OCFD Net operating cash flow/ Total debt

To improve forecasting accuracy, further modeling of SME failure includes non-
financial variables. The starting assumption is that non-financial variables (due to their
characteristics) only partially change over time, which enables them to be more stable
failure predictors in comparison with financial variables. A unique dataset obtained from a
Croatian commercial bank enabled the development of a complex prediction model, which
combines financial and non-financial variables. Therefore, this research is one of the few
whose modeling includes a battery of non-financial variables, as described in Table 3.
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Table 3. Non-financial variables.

Non-Financial Variable Acronym Description

Managerial
experience ME Three groups (<5 years, 5–10 years, >10 years)

Business
diversification BD

Three groups (one business, two or more
businesses within one industry, businesses in

different industries

Settlement of
obligations SO

Four groups (late payment up to 30 days, late
payment from 30 to 60 days, late payment from

60 to 90 days, late payment for more than
90 days)

Size S Ln of assets
County C One of 21 counties in Croatia

Export EX
Four groups (export sales 0%, up to 30% export

sales, export sales from 30% to 60%, export
sales more than 60%)

Age A Three groups (<5 years, 5–10 years, >10 years)

Regarding the use of statistical methods, a review of previous studies indicates that
many papers often followed Altman [3] and used multiple discriminant analysis (MDA).
Here, it is important to point out that MDA has very strict requirements (normality of
explanatory factors, equal variance–covariance matrices, prior groups’ probabilities) which
often are not met by data. After Ohlson’s [24] seminal study, the majority of later studies
started to use logit/probit/logistic regression since this method is much more robust. There-
fore, for this study, we employed binary logit regression and multinomial logit regression.

4. Research Results

The first logit model (Table 4) includes only financial variables, and given a large
number of financial variables, it was important to control for the potential problem of
multicollinearity. Due to the high correlation (r > 0.8) with other variables, two variables
(STDA and DA) were omitted from further analysis. In this model, the dependent variable,
SME failure, can take only one of two values (failed—1; successful—0). The application of
the Prabhakaran algorithm [25] in the R application resulted in the following final model
with financial variables.

Table 4. Bivariate logit model with only financial variables (FVs).

Variable Estimate St. Error Z Value

Const. 0.2150 0.2289 0.939
WC −2.0607 **** 0.5271 −3.909
SF −5.4357 **** 0.7314 −7.431

OM −2.8503 *** 0.8898 −3.203
ROE −0.3980 0.2327 −1.710

Significances: ***** p ≈ 0; *** p < 0.001.

Three statistically significant financial variables (WC, SF, and OM) had a negative sign,
which, under theoretical expectations, indicates that greater liquidity, self-financing, and
profitability reduce the probability of failure. However, a model based only on financial
variables shows the instability of predictions because model error increased over time (from
7.91% in 2015 to 13.27% in 2011). The same conclusion can be drawn for the AUROC value,
which decreased over time (from 89.34% in 2015 to 86.36% in 2011).

To improve prediction accuracy and reduce the model instability, in the next step,
we added non-financial variables from Table 3. Non-financial variables (except for the
size variable) were first transformed into multi-level factor variables [26] with the initial
category dropped from the regression (base category). The Prabhakaran algorithm and
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R application estimated model were used with financial and non-financial variables, as
presented in Table 5.

Table 5. Bivariate logit model with financial and non-financial variables (F&NFV).

Variable Estimate St. Error Z Value

Const. 2.1976 1.8158 1.210
WC −1.8168 ** 0.8411 −2.160
SF −4.0941 **** 0.9895 −4.138

OM −3.8662 *** 1.4867 −2.600
S −0.3061 0.2678 −1.143

A 5−10 y −2.0328 **** 0.6100 −3.333
A > 10 y 0.3079 0.8719 0.353

ME 5−10 y −1.5885 ** 0.7128 −2.228
ME > 10 y −1.8246 ** 0.8042 −2.269

SO 30−60 d −0.0903 1.0309 −0.088
SO 60−90 d 0.9045 0.9897 0.917
SO > 90 d 3.7638 **** 0.6429 5.854

Significances: **** p ≈ 0; *** p < 0.001; ** p < 0.01.

Of seven non-financial variables included in the modeling, three were found to be sta-
tistically significant (age, management experience, and obligation settlement). As expected,
the aging of SMEs (5–10 years) and longer management experience (>5 years) reduce the
probability of SME failure. In addition, late obligation payments for more than 90 days
significantly explain SME failure. Empirical findings based on a bivariate logit model
(successful and failed firms) indicate that by adding non-financial indicators into the model
based on financial variables, the accuracy of forecasting increases significantly (Table 6).
In particular, the total classification error decreases by an average of 26.99%, while the
AUROC value increases by an average of 7.33%.

Table 6. Comparison of model error and AUROC.

Year
Model Error (%) AUROC (%)

FV F&NFV FV F&NFV

2011 7.91 5.04 89.34 97.20
2012 7.00 4.74 90.99 96.65
2013 9.27 6.36 89.20 96.61
2014 11.21 7.65 86.87 95.04
2015 13.27 12.84 86.36 89.73

In the additional model, the dependent variable, SME failure, was grouped into three
categories: successful (0Y), sensitive (1Y), and failed firms (2Y). The test for combining
dependent categories [27] starts from the null hypothesis H0, which asserts that no inde-
pendent variable significantly predicts the m category of the dependent variable in relation
to the n category of the dependent variable, and that categories m and n cannot be distin-
guished from each other in relation to the variables in the model. All combinations of the
categories of the dependent variable (Table 7) in the estimation sample have statistically
significant Chi2 (p < 0.05) values, which indicates that the categories of the dependent
variable cannot be combined, as they are mutually independent, and according to the
test of combining dependent variables, the conditions are met for the application of the
multinomial approach.
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Table 7. Test for combining dependent categories.

Chi2 df p > Chi2

Successful and sensitive 2113.08 10 0.0001
Successful and failed firms 3720.04 10 0.0001
Sensitive and failed firms 837.44 10 0.0001

Particular interest was in the sensitive firms’ category (1Y) because it is interesting to
investigate whether entering the early stage of firm failure prediction can be forecasted with
the proposed set of financial and non-financial variables. The estimated multinomial logit
regression model (Table 8) indicates that one financial variable (self-financing) and three
non-financial variables (orderly payment of obligations, export, and age of the company)
significantly explain the occurrence of the early stage of firm failure. The direction of the
influence of quantitative and qualitative variables on the probability of the occurrence of the
early stage of failure (1Y) concerning the successful category (0Y) is in line with theoretical
expectations. The regression coefficients of self-financing (SF) and the qualitative variables’
regularity of settlement of obligations (SO) and export (EX) have a negative sign, which
indicates that the probability of the early stage failure is higher in SMEs that have a smaller
share of self-financing, which are not exporters and which are late in settling their due
obligations. The positive sign with the qualitative variable age (A) suggests that SMEs that
have been present on the market for more than 5 years are less likely to enter the early stage
of failure.

Table 8. Multinomial panel with financial and non-financial variables.

Coefficient St. Error Z Value p

0Y Base Outcome
1Y

SF −0.6096 0.2238 −2.72 0.006
OCFD −0.0469 0.0412 −1.14 0.254

BD-MBI −0.7155 0.2413 −0.30 0.767
BD-MBMI −0.5302 0.3135 −1.69 0.091

SO 30−60 d 4.4176 0.2054 21.51 0.000
SO 60−90 d 4.8246 0.2226 21.67 0.000
SO > 90 d 6.5753 0.5190 12.67 0.000
EX < 30% −0.7165 0.2003 −3.58 0.000

EX 30−60% −0.8018 0.3646 −2.20 0.028
EX > 60% −0.3717 0.3107 −1.20 0.232
A 5−10 y −0.6534 0.2221 −2.94 0.003
A > 10 y −0.9005 0.3541 −2.54 0.011

Const −1.9046 0.1574 −12.10 0.000
2Y

SF −0.6185 0.2228 −2.71 0.007
OCFD −0.2855 0.0907 −3.15 0.002

BD-MBI −0.8810 0.2807 −3.14 0.002
BD-MBMI −1.6507 0.4590 −3.60 0.000

SO 30−60 d 3.6686 0.5651 6.49 0.000
SO 60−90 d 6.0407 0.3984 15.16 0.000
SO > 90 d 10.3727 0.5884 17.63 0.000
EX < 30% −1.1166 0.3018 −3.70 0.000

EX 30−60% −1.0661 0.5791 −1.84 0.066
EX > 60% −0.4927 0.5031 −0.98 0.327
A 5−10 y −1.0914 0.2620 −4.17 0.000
A > 10 y −0.5193 0.4147 −1.25 0.210

Const −3.7462 0.3066 −12.22 0.000
Log likelihood = −1591.53; N = 4639.

The highest classification power, exp (b), in predicting the sensitive SME (1Y) category
has the variable regularity of settlement of obligations (SO), while the exp (b) values of

102



Eng. Proc. 2023, 39, 62

the other variables are much smaller (age, export, and self-financing). For example, the
probability of the sensitive SME status (1Y) compared to the successful SME status (0Y) is
717.1 times higher if the delay in the settlement of obligations increases from “SO < 30 d”
(base category) to “SO > 90 d”.

5. Conclusions

The results of this research confirm that the inclusion of non-financial variables in
addition to financial variables into SME failure modeling improves prediction accuracy.
By adding non-financial variables, total classification error decreases by an average of
26.99%, while the AUROC value increases by an average of 7.33%. The evaluated model
revealed that the most important financial variables are working capital, self-financing,
and operating margin. The signs for all three financial variables were negative, which, in
accordance with theoretical expectations, indicates that greater liquidity, self-financing,
and profitability reduce the probability of SME failure. Of all the non-financial variables
tested, only age, management experience, and obligation settlement were found to be
statistically significant. The aging of SMEs (5–10 years) and longer management experience
(>5 years) reduce the probability of firm failure. According to theoretical expectations, a
lower degree of regularity in settling obligations, i.e., late obligation payment for more
than 90 days, significantly contributes to SME failure. Additional modeling, based on
a multinomial logit model and three SME categories (successful, sensitive, and failed),
revealed that the self-financing variable and three non-financial variables (settlement of
obligations, export, and age of the company) significantly explain the occurrence of the
early stage of firm failure. The findings of this research confirm the theoretical viewpoints
on the usefulness of non-financial indicators in predicting SME failure and can serve as
guidelines for commercial banks when developing models for assessing the credit risk of
SME clients.
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Abstract: The purpose of this research was to determine how we can optimize both customer
and seller experiences in a super shop using hyperautomation technology. Here, a smart bot was
employed to speed up responses of simple consumer queries by utilizing natural language processing
in real time. We also used machine learning frameworks, such as XGBoost, linear regression, random
forest, and hybrid models together, to predict future product demand. In addition, data mining
methods, such as the Apriori algorithm, FP growth algorithm, and GSP algorithm, were used to find
out which algorithm can be used to determine the right way to place a product to increase the super
shop sale.

Keywords: hyperautomation; data mining; machine learning; NLP; voice bot; time-series analysis;
hybrid model

1. Introduction

Hyperautomation is a business-driven automation process that combines artificial
intelligence, machine learning, and robotic process automation, which can solve repetitive
task patterns efficiently. In this research, we used this technology to improve a super shop
in terms of service to the customers and for the internal improvement of customer-to-seller
communications. Mainly three methodologies were used. For RPA, a voice bot was used,
and for AI and ML data mining algorithms, prediction and forecasting were used.

The key contributions of this research are:

(1) The voice bot and the product placement will help the customer to find their desired
product very easily in an efficient way;

(2) Product sales forecasting will help the super shop to maintain proper stock levels of
products under high demand according to the market need.

2. Related Works

2.1. Chatbot and Voice Recognition Systems

The chatbot, Doly, uses NLP to converse with users and its accuracy increases with user
inputs [1]. Chatbots can handle any format and generally provide accurate responses [2].
Python is needed to create BLTK tools, and adapters can employ techniques such as the
dynamic programming method’s edit distance and naive Bayes classifier. Chatbots can
reduce effort and response times, but they are sometimes not well known and can be
erroneous, causing communication gaps and cost difficulties. Chatbot performance can be
improved with conversation success measures.
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2.2. Product Placement

Store managers usually put the most profitable goods on the top. Chen, M. found the
contrary [3], i.e., customer attention is focused laterally and vertically in stores. According
to Y. Ito and S. Kato [4], recognizing product connection in order picking can improve the
shopping timing, and the order picking travel time is very high if the products are not
placed wisely. Xiang used GSP to predict enterprise dynamic costs. In a changing market,
it is crucial to know how to informatize to meet consumers’ brand preferences [5].

2.3. Product Sales Forecasting

Linear regression, a basic yet famous forecasting technique, was used to forecast the
sales of a big superstore with an accuracy rate of 84% [6]. According to Ramachandra [7],
when the dataset was balanced and using random forest regressor, it let them anticipate
nonlinear trends and estimate black Friday sales with an 83.6% accuracy. XGBoost, another
nonlinear algorithm, forecasts the short-term power load in [8]. To do so, a combination of
K-means clustering, CART, and XGBoost with temperature and date factors were used.

3. Methodology

The use case diagram as shown in Figure 1 is our overall system.

Figure 1. Super shop management system diagram.

3.1. Data Description

The real-world data source was from the Pran group “Daily shopping megastore”. It
contains information from the shop’s sales from January 2022 through to December 2022
and contains 158,293 rows and 10 columns in total.

3.2. Data Preprocessing
3.2.1. Product Placement

In the dataset, we did not come across any null values. Later on, we simplified the
presentation of our complete dataset by converting the data from the column that we were
using into a list and applied one hot encoding to it.
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3.2.2. Product Sales Forecasting (Daily)

To create a time-series data frame, we performed null checking and removed the
irrelevant column. Then, we transformed the date column to a date time datatype with a
day as the period. Next, we summed up the daily total quantity sold with regard to the
date column and transformed the resultant column into integer type. The Dickey–Fuller
test revealed data stationarity with a p-value of less than 0.05. A time plot supports the
claim in Figure 2.

Figure 2. Product sales time plotting.

Time steps and delays are important features of time-series forecasting. We created a
supervised dataset using the shift function to retrieve daily sales delayed numbers.

3.2.3. Hybrid Preprocessing

Figure 3 below is a moving average graph, which we used to try to figure out the
dataset’s overall trend.

Figure 3. Moving average graph of the entire dataset.

A linear trend, which is steady because data are stationary, is analogous to the current
trend. As a result, we implemented a deterministic process of order = 1. Since the trend
formed below is now analogous to the one generated above, we can deduce that a linear
trend might be an asset to the hybridization method. We utilized training data from
the previous (301 − 90) = 211 days and test data from the previous 90 days in both the
standalone and hybrid implementations. The generated trend is shown in Figure 4.

Figure 4. Linear trend generation.

3.3. Model Specification

Since the voice chatbot is a well-known AI-based software used by many successful
software companies, we decided to include it in this hyperautomation project, where it
largely worked based on two essential concepts: to participate in conversation with our
customers and to answer their questions. Voice bots follow spoken commands. The voice
bot technology recognizes and transcribes the input voice. The voice bot then responds to
requests by text and converts them to voice. In The Figure 5, concepts of a voice bot has
been explained in workflow. of voice chat bot.
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Figure 5. The concepts of a voice bot.

Workflow: PyAudio, SpeechRecognition, and pandas must be installed to create
an ideal voice chatbot. Spacy beats NLTK was used for word tokenization and POS
tagging. POS tagging extracts relevant text and stores it in variables. NLTK’s ‘bleu’ function
compares extracted data to dictionary data. The voice bot responds with the closest
comparison. Lastly, the pyttsx3 library speaks the responded text.

3.3.1. Product Placement

Market basket analysis, a data mining method, is used in retail to identify purchase
trends. We used the Apriori algorithm, FP growth algorithm, and GSP algorithm.

Implementation: We used all our three algorithms in our dataset, which contains
the daily sales information of a super shop. By going through the data of first 10 months
of sales, we tried to establish the relations between different products and product cate-
gories. Several metrics, including support, confidence, and lift, are utilized by data mining
algorithms to extract these rules.

Support refers to the frequency of an item set in the transaction dataset.

Support o f (A → B) =
(A ∪ B)

n
(1)

Confidence indicates how often a rule appears to be true.

Con f idence(A → B) =
Support(A ∪ B)

Support(A)
(2)

Lift is a measure that tells us the probability of consequent increases or decreases given
the purchase of the antecedent.

Li f t o f (A → B) =
Support(A ∪ B)

Support(A)× Support(B)
(3)

We accepted rules that meet these measures’ minimal thresholds. We tested which
method found all the rules faster using different minimum support and minimum confi-
dence levels.

3.3.2. Product Sales Forecasting

In this research, three algorithms were chosen to perform forecasting: linear regression,
random forest, and XGBoost.

Implementation: After importing the libraries and preprocessing, we implemented
linear regression. As mentioned before, simple linear regression is

y = (weights ∗ f eatures) + bias (4)

The algorithm learns the weight of each feature and picks the weight and bias depend-
ing on the best fit goal during training. After training, we fitted and predicted the model to
obtain an approximation forecast to test using the test dataset. Next, we used the decision
tree-based random forest. This renowned classification model worked effectively with our
dataset to average the tree output. This training used bagging. This minimized overfitting.

108



Eng. Proc. 2023, 39, 63

The Gini index determined this algorithm’s root node. This showed dataset impurity. The
formula for this is

1 −
n

∑
i=1

(Pi)2 (5)

Then, we calculated the weighted Gini index, which is the total Gini index of a partic-
ular branch. The feature with lowest Gini index is chosen as the root node. Entropy can
be used to calculate impurity. After setting up n estimators and the max depth parameter,
which are the number of decision trees and their depth, we applied the model. Trees pro-
duced better quality but took longer. The gradient-boosted decision tree method XGBoost
followed. Decision trees were used to determine this. Unlike random forest, XGBoost may
change a leaf node into an if condition if it helps the model, as judged by the loss function.
After the max depth, this method prunes backward. The loss function is as follows:

n

∑
i=1

l(yi + ŷi f t(xi)) + Ω( f t) (6)

As a result, this improved the efficiency on the whole. Next, we attempted to see
whether we could improve the performance by combining linear-random forest and linear-
XGBoost in a hybrid model. In summary, linear regression was used initially for both
training and prediction. We then used linear regression to make forecasts about the X
train-1. Then, we used the residual series to fit a second model, which was the following:
train the model of target series—the predicted series from the first model. Then, we used
this information to forecast using the second model that we fitted with the additional
feature values (X Train-2). At this point, we combined the two forecasts to form a unified
one. Here, as said above, we obtained a linear trend; thus, we trained it using linear
regression, and the overall trend for the out-of-bounds sample is shown in Figure 6.

Figure 6. Linear trend forecast.

Therefore, we extrapolated the trend and then removed it by transforming y and
applying the next model on the error series.

4. Results

4.1. Voice Chat Bot

Text-to-voice was performed with pyttsx3. GTTS, IBM Watson Text to Speech, and
Amazon Polly are online libraries that convert text to voice. With a local speech engine,
pyttsx3 can work offline. Hence, our voice chatbot can speak without the internet. The
Spacy library was used for part-of-speech tagging because it tokenizes words quickly and
accurately. Nltk’s bleu function is more accurate than Spacy’s similarity function since it
compares the voice input text to the dataset’s reference data.

4.2. Product Placement

The FP growth algorithm outperformed Apriori and GSP. In Tables 1 and 2, it is
clear that, while verifying with different minimum support values, the Apriori and FP
growth algorithms took almost the same amount of time. However, FP growth produced
more rules. The Apriori algorithm runtime rose exponentially with transactions. The FP
growth algorithm’s runtime exponentially grew with transactions. The FP growth method
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generated rules faster than the GSP and Apriori algorithms since it only iterates the dataset
twice, while the other two algorithms iterate the dataset multiple times to generate rules.

Table 1. Product category.

Algorithm Minimum Support Time

Apriori 0.03 1.126 s

0.05 0.413 s

FP growth 0.03 0.473 s

0.02 0.493 s

GSP 0.03 26.418 s

0.02 86.762 s

Table 2. Product name.

Algorithm Minimum Support Time

Apriori 0.002 3.493 s

0.005 0.428 s

FP growth 0.002 2.316 s

0.005 1.927 s

GSP 0.002 10,530.413 s

0.005 4255.696 s

As the FP growth algorithm in Figures 7 and 8 performed better in comparison to the
other two, we suggest using this algorithm for finding product placement rules.

Figure 7. Product category performance.

Figure 8. Product name performance.

4.3. Product Sales Forecasting

We evaluated the algorithms using mean absolute error, root mean squared error, and
mean absolute percentage error. All three individual algorithms exhibited bad performance.
Hybridization improved both models to a 90% accuracy. This is because linear regression
assists XGBoost and random forest in learning how to extrapolate trends beyond the train-
ing data. Mean absolute error measures the forecast-to-actual difference, but unfavorable
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outcomes are possible. Mean squared error may be used to calculate distance, although
the unit is squared. Root mean squared error removes this. Finally, we calculated the total
error using the mean absolute percentage error to interpret the forecast.

MAPE = 1 ÷ n(Σn
t=1|(At − Ft)÷ At|) (7)

where At is the actual value, Ft is the forecasted value, and n is the number of summation
iterations.

MAE = (Σn
i=1|yi − xi|)÷ n (8)

RMSE =
√

Σn
i=1(xi − xi)2 ÷ n (9)

where xi is observations from the time series, xi bar is the estimated time series, and n is
the number of nonmissing data points.

In the following, we verify the performance of the models using these metrics.
In Table 3, the first three rows show the results of algorithms individually, and the

last two show the hybrid models. Hybrid linear regression–XGBoost performed better as
shown in Figure 9, while the hybridization of linear–random forest regression produced
a slightly lower accuracy, as shown in Figure 10. However, as seen in Figures 11–13, the
individual models performed very poorly. Thus, hybrid linear regression–XGBoost was
selected as the basis for our model and the current predictions.

Table 3. Performance of different machine learning models.

Algorithm MAE RMSE MAPE

Linear Regression 343.52 427.80 0.33

Random Forest 363.71 513.90 0.34

XGBoost 346.66 498.37 0.32

Linear
Regression-Random

Forest
82.71 93.58 0.077

Linear
Regression-XGBoost 68.94 77.48 0.09

For a further comparison with R-Squared metrics, which is a statistical fit metric that
quantifies the proportion of a dependent variable’s variance that can be accounted for by
the independent variable(s) in a regression, the linear regression-XGBoost result was 0.963
and linear regression-random forest was 0.943.

R2 = 1 − RSS ÷ TSS (10)

where RSS is the sum of the square of the residuals and TSS is the total sum of the squares.

Figure 9. Forecasting using linear regression–XGBoost.
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Figure 10. Forecasting using linear regression–random forest.

Figure 11. Forecasting using linear regression.

Figure 12. Forecasting using random forest.

Figure 13. Forecasting using XGBoost.

5. Conclusions

In the modern technological era, hyperautomation is having a revolutionary impact
in the relevant fields. In our research, we show its positive impact in the supermarket
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using several methods, as discussed above. First of all, the system features a sophisti-
cated AI-powered voice chatbot that effectively comprehends customer inquiries through
advanced speech recognition and natural language processing (NLP) techniques. This
was designed to provide accurate responses to customer queries using machine learning
(ML), and it operates seamlessly even without an internet connection. In addition, the FP
growth algorithm performed best among all the algorithms used in the product placement
methodology. Using this algorithm, shopkeepers will be able to place products according
to the customer’s choice and it will help them to grow their business. Moreover, they will
not have to worry about how to place their products. Lastly, the hybrid linear regression–
XGBoost outperformed every single algorithm in product sales forecasting. Thus, it was
chosen to be the basis for our custom model. This ensures business owners can obtain a
complete picture of future product sales. In the future, our research will focus on working
on hyperautomation features more.
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Abstract: The propensity of data to cluster at extreme values is important for risk assessment. For
example, heavy rain over time leads to catastrophic floods. The extremal index is a measure of
Extreme Values Theory that allows measurement of the degree of high-value clustering in a time
series. Inference about the extremal index requires a prior choice of values for tuning parameters,
which impacts the efficiency of existing estimators. In this work, we propose an algorithm that avoids
these constraints. Performance is evaluated based on simulations. We also illustrate with real data.

Keywords: extreme values theory; stationary sequences; extremal index

1. Introduction

The occurrence of extreme values can lead to risky situations. Climate change, the
global economic and financial crisis resulting from the COVID-19 pandemic situation, and
the war in Ukraine have contributed to continuously growing attention from analysts,
namely, to the risk of extreme phenomena. The duration of extreme values in time means
the generation of clusters, the extension of which can aggravate the phenomenon. Extreme
Values Theory (EVT) presents a set of adequate tools in this context. The extremal index is a
measure of serial dependence assessing the propensity of data for the occurrence of clusters
of extreme values. Figure 1 shows the maximum of sea-surge heights, where clusters of
high values are visible.
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Figure 1. Maximum hourly sea-surgeheights (over contiguous 15-h time periods) in years 1971–1976
at the Newlyn Coast, Cornwall, UK.

More precisely, considering X = {Xn}n≥1 as a stationary sequence of random vari-
ables (r.v.) with a common marginal distribution function (d.f.) F and denoting Mn =
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max(X1, ..., Xn), then X has extremal index θ ∈ (0, 1] if for each real τ > 0 there exists a
sequence of normalized levels un, i.e., satisfying n(1 − F(un)) → τ, as n → ∞, such that
P(Mn ≤ un) → exp(−θτ). In the independent and identically distributed (i.i.d.) case,
we have P(Mn ≤ un) → exp(−τ) and thus θ = 1. On the other hand, if θ = 1, then the
tail behavior of X resembles an i.i.d. sequence. Clustering of extreme values takes place
whenever θ < 1, and the smaller the θ is, the larger is the propensity for clusters to appear.
Under some dependence conditions, θ is stated as the arithmetic inverse of the mean cluster
size (Hsing et al. [1] 1988).

Assuming F is continuous, we have Ui = F(Xi), i = 1, ..., n standard uniform r.v. and
P(−n log(F(Mn)) ≥ τ) ≈ P(n(1 − F(Mn)) ≥ τ) = P(Mn ≤ un) → exp(−θτ), with
F(Mn) = max(U1, ..., Un). Thus, Yn = −n log(F(Mn)) and Zn = n(1 − F(Mn)) follow
asymptotically an exponential distribution with parameter θ. The maximum likelihood
estimator was considered by Northrop ([2] 2015) based on Yn. More precisely, dividing
the time series X1, ..., Xn into kn blocks of length bn, with n = bnkn, and considering
Mni = M((i−1)bn+1):(ibn) = max(X(i−1)bn+1, ..., Xibn), i = 1, ..., kn, the maximum of the i-th
block in the disjoint blocks case, and Mni = M((i−1)):(i+bn−1) = max(Xi−1, ..., Xi+bn−1),
i = 1, ..., n − bn + 1, the maximum of the i-th block in the sliding blocks case, the Northrop
estimator is given by

θ̃N =

(
1
tn

tn

∑
i=1

Ŷni

)−1

, (1)

where Ŷni = −bn log(F̂(Mni)) and F̂ denotes the empirical d.f. estimating the usually
unknown F, with tn = kn or tn = n − bn + 1 depending on whether we are using disjoint
or sliding blocks, respectively. Berghaus and Bücher ([3] 2018) considered

θ̃B =

(
1
tn

tn

∑
i=1

Ẑni

)−1

, (2)

with Zni = bn(1 − F̂(Mni)), a more amenable formulation to derive the asymptotic proper-
ties. Here, we consider the Berghaus and Bücher estimator with bias adjustment given by

θ̂ = θ̃B − 1/bn. (3)

We also consider the sliding blocks version since it usually performs better (Northrop [2]
2015, Berghaus and Bücher [3] 2018).

Observe that the estimators above only depend on a tuning parameter: the block
length b ≡ bn. This is an advantage of these methods since most estimators of θ pre-
sented in the literature have two sources of uncertainty and thus two parameters to be
defined in advance: the clustering generation of high values and the choice of a high
threshold above which the clusters occur. To mention the best known ones, there are the
Nandagopalan ([4] 1990), Runs and Blocks (Weissman and Novak, [5] 1998 and references
there in), K-gaps (Süveges and Davison, [6] 2010), censored/truncated (Holěsovský and
Fusek, [7,8] 2020/22), and cycles estimator (Ferreira and Ferreira, [9] 2018). We also refer
to other estimators that require a single tuning parameter, such as the intervals estimator,
which needs to fix a high threshold (Ferro and Segers, [10] 2003), and, similar to the Northop
estimator above, where we only choose the block length for maxima, we cite Gomes ([11]
1993), Ancona-Navarrete and Tawn ([12] 2000), and Ferreira and Ferreira ([13] 2022).

As already highlighted in the literature, there is no simple optimal methodology for
the best choice of block length and a single estimate for θ. In EVT, we have a typical bias–
variance trade-off observed in sample path estimates of rare event parameters. For block
estimators, the bias decreases with b while the variance increases. A recurrent method
is to plot the estimates obtained for successive block size values and visually identify
case-by-case plateau zones of these estimates. The stability around a value is an indicator
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of a reasonable estimate, and this stability region, in general, should have neither too small
nor too large a value of b due to the trade-off between bias and variance already mentioned.
Figure 2 is a plot of the trajectory of estimates (full line) along with 95% confidence intervals
(CI) (dashed line) obtained for each block length b from 1 to 100 in a random sample of
dimension 1000 generated from a moving maximum model with standard Fréchet margins.
We can see a plateau region in the estimates around the true value (horizontal line) θ = 0.5
for the block sizes between 25 and 45. Observe the large variability occurring for large
values of b and the higher bias for small values of b.
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Figure 2. Estimates of θ̂ given in (3) for successive values of block size b = 1, . . . , 100 (full line)
obtained for a sample simulated from a moving maxima Fréchet model with θ = 0.5 (horizontal line).
The dashed lines correspond to 95% CI.

Some methods have been proposed in the literature to help in the choice of tun-
ing parameters based on the stability regions of the estimates graph: see, e.g., Frahm
et al. ([14] 2005), Gomes and Neves ([15] 2020), and their references. In particular, the
algorithm proposed in Frahm et al. ([14] 2005) was implemented in the context of estimat-
ing the bivariate tail dependence, and in Ferreira ([16] 2018), it was applied to extremal
index estimators requiring the choice of a high threshold. In this work, our objective is
to propose an adaptation of the algorithm developed in Frahm et al. ([14] 2005) applied
to estimator (3) in order to find a suitable plateau of estimates taking into account the
bias–variance trade-off. As a byproduct, this will allow us to circumvent the unique tuning
parameter selection corresponding to the block size of where the sequence of maximums
will be extracted, as described above. The method will be detailed in Section 2 and analyzed
through simulation in Section 3. We end with an application to real data.

2. Estimation Method

Our proposed estimation of θ is based on the bias-corrected estimator θ̂ in (3) by consid-
ering sliding blocks and on the heuristic plateau-finding algorithm of Frahm et al. ([14] 2005).

The algorithm is described in the following steps:

Step 1. Calculate estimates θ̂b from estimator (3) for 1 ≤ b ≤ t < n;
Step 2. Smooth the results of the previous step by taking means of 2w + 1 successive

estimates; we consider bandwidth w = �0.02t�;

Step 3. Define plateaus of length m = �
√

t − 2w�, i.e., pj =
(

θ̂ j, ..., θ̂ j+m−1

)
, j = 1, ..., t −

2w − m + 1;
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Step 4. Compute the standard deviation s of θ̂1, ..., θ̂t−2w and choose the first plateau pj

satisfying ∑
j+m−1
i=j+1

∣∣∣θ̂i − θ̂ j

∣∣∣ ≤ 2s;

Step 5. The extremal index is estimated through 1
m ∑m

i=1 θ̂ j+i−1, i.e., taking the average of
the estimates that constitute the plateau chosen in the previous step. This is denoted
the plateau estimator.

The estimators (1), (2), and (3) are already implemented in package exdex of software
R (Northrop and Christodoulides [17] 2019) with the respective CIs. We use package exdex
to compute estimator (3) under sliding blocks and the respective upper and lower 95% CI
bounds. We also apply Steps 1, 2, and 3 to the lower and upper bounds of the CIs. Once
the plateau of theta estimates is chosen in Step 4, we pick the corresponding plateau in the
CI limits, and in Step 5, we apply the average of the plateau values of the lower limit of the
CI as well as the average of the plateau values of the upper limit of the CI.

We are going to analyze the estimation method described above through simulation.
The models that will be used are the following:

• First-order auto-regressive model with Cauchy standard marginals (ARC), Xi =
ρXi−1 + εi, {εi} i.i.d. having Cauchy d.f. with mean 0 and scale 1 − |ρ| and θ = 1 − ρ
if ρ > 0 (Chernick et al. [18], 1991); we consider ρ = 0.9 and θ = 0.1;

• An m-dependent model (MMU), Xi = max(Ui, Ui+1, ..., Ui+m−1), i ≥ 1, where {Ui}
is an i.i.d. sequence of r.v. (Newell [19] 1964) with θ = 1/m; we consider Ui, i ≥ 1,
standard uniform r.v., and m = 3, and thus, θ = 1/3;

• Moving maxima Fréchet model (MMF), Xi = maxj=0,...,d ajZi−j with aj ≥ 0, ∑d
j=0 aj =

1 and {Zi} i.i.d. standard Fréchet where θ = maxj=0,...,d aj (Weissman and Cohen [20]
1995); we consider d = 2 and parameters a0 = 1/3, a1 = 1/6, and a2 = 1/2, and thus,
θ = 1/2;

• ARCH(1) process, Xi = (β + αX2
i−1)

1/2εi, with i.i.d. Gaussian innovations {εi}, α =

0.7, and β = 2 · 10−5, where θ = 0.721 (Cai, [21] 2019);
• First-order max auto-regressive (MAR), Xi = max(φXi−1, εi), i ≥ 1, X0 = ε1/(1 − φ),

{εi} i.i.d. with standard Fréchet marginals and θ = 1 − φ (Davis and Resnick [22]
1989); we consider φ = 0.1 a nd θ = 0.9;

• An i.i.d. sequence (Ind) of Fréchet r.v. where θ = 1.

3. Simulation Study and Application

The simulation study is based on random generation of samples with size 1000 repli-
cated 1000 times within each of the models described above. We consider different models
with different values of θ. We apply the estimation plateau method of Section 2 both
to estimate θ and the respective 95% CI lower and upper bounds. Table 1 contains the
estimation global results of the plateau method. See also the simulation results of θ̂ given
in (3) for each block size b in Figure 3 as well as the results of the plateau method. We
can observe in each model that the plateau estimate (thicker gray horizontal full line) is
located in a plateau zone of the sample path of estimates plotted as a function of block
size b (full black line), as expected. We can also see that the plateau estimate is close to the
true value (blue horizontal full line). In all cases, it is verified that the limits of the 95% CIs
estimated by the plateau method (thicker gray horizontal dotted–dashed lines) include the
true value of θ. In the ARCH case, the estimates closest to the true value of θ occur for large
values of b where the variability is very high, which makes it difficult to apply the plateau
methodology. Even so, the root mean squared error (rmse) of 0.1126 is not very expressive.
The independent model (Ind) has θ = 1 and, therefore, constitutes a frontier value of the
parameter support, which typically leads to difficulties in statistical estimation. Still, the
plateau method shows relatively low bias and rmse. Observe also that in the MAR model,
we have θ = 0.9, which is quite near to the boundary value of 1, and the plateau method
does a very good job.
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Figure 3. Simulation results: average of estimates of θ for each block size b = 2, . . . , 200 using θ̂ in (3)
(full black line) and average of respective 95% CI upper and lower bounds (dotted lines); plateau
estimation of θ (thicker gray horizontal full line) and respective plateau estimates of 95% CI upper
and lower bounds (thicker gray horizontal dotted–dashed lines). The true value of θ corresponds to
the blue horizontal full line.
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Table 1. Simulation results of plateau method: average of θ estimates (mean), average of lower and
upper 95% CI bound estimates, bias, root mean squared error (rmse), and standard deviation of θ

estimates (sd).

mean lower upper bias rmse sd

ARC (θ = 0.1) 0.1106 0.0841 0.1372 0.0106 0.0218 0.0190

MMU (θ = 1/3) 0.3587 0.3042 0.4139 0.0254 0.0494 0.0424

MMF (θ = 0.5) 0.5160 0.4379 0.5940 0.0160 0.0636 0.0616

ARCH (θ = 0.721) 0.7634 0.6267 0.8920 0.0424 0.1126 0.1044

MAR (θ = 0.9) 0.9017 0.7779 0.9763 0.0017 0.0827 0.0827

Ind (θ = 1) 0.9709 0.8756 0.9969 −0.0291 0.0643 0.0573

Application to Real Data

We illustrate the method with the real data newlyn available in the R package exdex
consisting of 2894 sea-surge heights measured at the coast of Newlyn, Cornwall, UK, over
years 1971–1976. The observations correspond to the maximum hourly surge heights
during periods of 15 h. See the left plot in Figure 4. Previous analysis of this data can be
seen in Northrop ([2] 2015) and references therein. The sample path of estimates from (3)
as a function of block size b and respective 95% confidence limits are plotted on the right
graph of Figure 4. The horizontal full line corresponds to the plateau estimate of θ given by
0.2577, and the horizontal dotted–dashed lines correspond to the plateau 95% CI estimate
(0.2206, 0.2948).
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Figure 4. (Left) Maximum hourly (within successive 15-hour periods) surge height time series at
Newlyn Coast, Cornwall, UK, in years 1971–1976; (Right) Sample path estimates obtained from
estimator in (3) (full line) and respective 95% CI limits (dotted lines) for successive values of block size
b, plateau estimate of θ (horizontal full line), and respective 95% CI plateau estimate limits (horizontal
dotted–dashed lines).

4. Conclusions

This work addresses the estimation of the extremal index θ. This is an important
measure in time series, namely in assessing risky phenomena, as it measures the propensity
for the occurrence of clusters of extreme values. The estimation of θ requires a prior
setting of tuning parameter values that impacts the precision of estimates. In this work, we
presented an algorithm that allows estimation of θ free of tuning parameters. We applied
this methodology to diverse models, and the results are encouraging in several cases. In
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the future, it is intended to continue the study of this methodology and develop it in order
to improve its applicability to different types of models.
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Abstract: We describe an optimal linear time complexity method for extracting patterns from sliding
windows of multivariate time series that depends only on the length of the time series. The method
is implemented as an open-source Java library and is used to detect anomalies in multivariate
time series.

Keywords: multivariate time series; transducers; sliding windows; anomaly detection

1. Introduction

Multivariate time series [1,2] are sequences or streams of more than one time-dependent
variable corresponding to the simultaneous evolution of several variables over time.
They can be observed in many areas and can thus be used to describe the evolution
of key indicators.

Context. The analysis of time series makes it possible to extract certain behaviours
that can be described by patterns [3]. These patterns inform us about the evolution of
variables and provide trends observed in the time series. Patterns describing abnormal
situations can be captured by regular expressions. The analysis of the time series consists of
first identifying pattern occurrences in the time series, then associating a numerical value
with each occurrence through the computation of a feature value. Anomaly detection then
performs according to the following steps:

• Symbolically describe abnormal behaviours through patterns;
• Find the occurrences of these patterns in the time series;
• Identify the occurrences of those patterns whose numerical characteristics are deviant.

To identify these patterns, Beldiceanu et al. [3,4] used transducers, i.e., finite-state
automata producing an output, which made it possible to efficiently identify pattern occur-
rences and calculate the corresponding feature value. This work and that of Arafailova [5]
laid the necessary foundations for the development of our tool for detecting anomalies in
time series.

Question addressed by this paper. The challenge is to design an efficient algorithm
capable of identifying a succession of pattern occurrences denoting anomalies within
the sliding time windows of a multivariate time series, where the patterns are described
generically.

Our contribution. Given a multivariate time series with measurements over n in-
stants and all sliding time windows over m consecutive instants, we describe an optimal
time complexity algorithm in Θ(n) to identify all time windows containing occurrences
of patterns corresponding to anomalies. A parameterised version [6] of this algorithm
handling a variety of patterns was implemented as a Java library.

Eng. Proc. 2023, 39, 65. https://doi.org/10.3390/engproc2023039065 https://www.mdpi.com/journal/engproc123
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Paper organisation. In Section 2, we present the required background, such as pat-
terns, features, and transducers. Then, in Section 3, we define the extraction of patterns
occurrences on sliding windows; we present how patterns are evaluated both qualitatively
and quantitatively using regular expressions and features. In Section 4, we present our
anomaly detection tool and illustrate its use in Section 4.2 on environmental sensor data [7].

2. Background on Multivariate Time Series

A multivariate time series is obtained by observing the evolution of d measures over
regular periods [8]. It is denoted as a n-dimensional array X = ⟨X1, X2, . . . , Xn⟩, where n
is the length of the time series, d is the number of measures, Xi ∈ Rd is the i-th vector of
measures, and Xj

i is the j-th component of vector Xi. As a stream is unbounded, searching
anomalies on a full stream does not make sense as data is generated continuously and sent
in multiple data records; we rather want to identify anomalies on sliding windows of the
stream [9]. Each window is a subsequence denoted by Xi,j (with i < j) whose measures
are defined from instant i to instant j. The next section shows how to describe conditions
between two consecutive measures of a multivariate time series.

2.1. Alphabet as a Mean to Describe Conditions between Adjacent Measures

To specify patterns on a multivariate time series, the first step is to describe the basic
elements of a pattern, namely a finite set of conditions between p consecutive measures
of the time series. Each condition is interpreted as the letter of the alphabet Σ that we
now introduce.

Definition 1 (alphabet). Given p consecutive measures Xi, Xi+1, . . . , Xi+p−1, an alphabet Σ is
defined as a set of mutually exclusive conditions {C1, C2, . . . , Ck} such that C1 ∨C2 ∨ ⋅ ⋅ ⋅ ∨Ck is
true, where each condition C� (with � ∈ [1, k]) compares the components of Xi, Xi+1, . . . , Xi+p−1

using the operators <, =, or >. Each condition C� of Σ must have its mirror condition Cmir
� in Σ,

where Cmir
� is obtained by flipping the comparison operators < and > in C�. Each of the conditions

C1, C2, . . . , Ck will be called a symbolic letter [10].

2.2. Signature of the Multivariate Time Series

The first step to analyse a multivariate time series X is to generate the sequence S of
symbolic letters Si (with i ∈ [1, n− p+ 1]) associated with p consecutive measures of X . This
leads to the notion of signature S .

Definition 2 (Signature, arity). Consider a sequence of n measures X and a function F ∶ Rp → Σ,
where Σ is a finite set denoting an alphabet. Then, the signature of X is a sequence of symbolic
letters S = ⟨S1, S2, . . . , Sn−p+1⟩ where each Si equals F(Xi, . . . , Xi+p−1).

The alphabet Σ is used to define regular expressions to symbolically characterise the
occurrences of anomalies in S . For this, we use patterns and features.

2.3. Pattern and Feature as Qualitative and Quantitative Aspects of Anomalies

The qualitative aspect of anomalies is described as the words of the language Lσ

associated with the regular expression σ defined over the alphabet Σ [11].

Definition 3 (Patterns [3]). A pattern σ over the alphabet Σ is a triple ⟨reg, b, a⟩, where reg
is a regular expression over Σ that is only matched by non-empty words, while b and a are two
non-negative integers, whose role is to delete parts of the pattern that are used to detect the start and
end of a pattern.

Definition 4 (Pattern reverse [4]). Two patterns σ = ⟨reg, b, a⟩ and σr = ⟨regr, br, ar⟩ are the
reverse of each other if w1w2 . . . wk ∈Lσ ⇔ wmir

k wmir
k−1 . . . wmir

1 ∈Lσr , a = br, b = ar.
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A list of 22 patterns can be found in [4,12].
Features. After identifying a pattern occurrence in a time series, it is possible to

characterise it with a numerical value. For this, we use features, which are functions
allowing us to compute certain characteristics of a pattern occurrence, such as the min/max
value. In [4], Beldiceanu et al. used five features for the quantitative evaluation of patterns
in the context of sliding windows: ONE, WIDTH, SURFACE, MIN, and MAX.

Aggregators. Sometimes, several occurrences of a pattern are identified in a sliding
window. To obtain a unique result for the whole window, we use aggregators, which are
functions that aggregate the features values on the different occurrences of the pattern.
In [3,4], three aggregation functions are proposed: MIN, MAX, and SUM. In this paper,
we only use the SUMaggregator. To identify patterns occurrences in a time series, we use
transducers.

2.4. Seed Transducers

Identifying pattern occurrences is achieved by using seed transducers [3]. We use
deterministic finite transducers [13,14], which are automataM that generate an output
sequence over the alphabet Σ

′

from an input sequence over the alphabet Σ. To identify
the occurrences of a pattern σ, our transducer reads one by one the symbolic letters
Si in Σ and triggers a transition from state qi−1 to qi to produce a semantic letter τi in
Σ
′

associated with Si. Each semantic letter designates a phase in the recognition of an
occurrence of the pattern, e.g., when an occurrence of σ is found, the semantic letter FOUND

is generated. The semantic letter MAYBEb means that the transducer has found the first
letters of a potential occurrence of σ but needs to read more letters to confirm it. The
output alphabet Σ

′ = {OUT, MAYBEb, OUTr, FOUND, FOUNDe, IN, MAYBEa, OUTa} of a seed
transducer is called the semantic alphabet. More details about their meaning can be found
in [3].

Example 1. Let us consider a temperature and humidity measuring device that allows one measure-
ment every hour. Our multivariate time series X is given in Table 1. Assume we want to identify
the situation where, for two consecutive measures, i.e., p = 2, both the temperature and the humidity
increase. For this purpose, we define the alphabet Σ = {<,≤,=,≥,>,≷} as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

< ∶ if X1
i < X1

i+1 ∧X2
i < X2

i+1≤ ∶ if (X1
i < X1

i+1 ∧X2
i = X2

i+1) ∨ (X1
i = X1

i+1 ∧X2
i < X2

i+1)= ∶ if X1
i = X1

i+1 ∧X2
i = X2

i+1≥ ∶ if (X1
i > X1

i+1 ∧X2
i = X2

i+1) ∨ (X1
i = X1

i+1 ∧X2
i > X2

i+1)> ∶ if X1
i > X1

i+1 ∧X2
i > X2

i+1≷ ∶ if (X1
i > X1

i+1 ∧X2
i < X2

i+1) ∨ (X1
i < X1

i+1 ∧X2
i > X2

i+1)
We then define two patterns using the following observation. Normally, when the temperature

increases, the humidity decreases and vice versa. Thus, when both metrics change in the same way
(increasing or decreasing), it may be a sign of an anomaly. These problematic changes are captured
by the patterns σ� and σ�, respectively, corresponding to > ∣ >(> ∣= ∣≥)∗> and < ∣ <(< ∣= ∣≤)∗<,
where σ� describes a simultaneous decrease in both temperature and humidity, and σ� an increase.
Figure 1A shows two maximal occurrences of σ� in the multivariate time series X . Using the
WIDTH feature, we obtain f1 = 2 and f2 = 4 as the lengths of the two occurrences. Using the
SUMaggregator, we obtain a total length g = 6. These values are computed using the transducer
given in Figure 1B, which describes the transitions from the initial state s.

Table 1. Multivariate time series X : temperature and humidity level evolution over 17 h.

Time 1 am 2 am 3 am 4 am 5 am 6 am 7 am 8 am 9 am 10 am 11 am 12 pm 1 pm 2 pm 3 pm 4 pm 5 pm

Temp. (C) 19.3 21.5 19.2 21.4 23.6 22.8 22.8 20.1 20.9 21.5 22.7 23.6 23.6 19.2 21.5 21.5 21.5
Hum. (%) 74.9 52.2 74.8 52.1 73.2 72.3 65.7 55.9 52.1 64.5 64.5 72.7 62.4 59.8 52.1 55.2 55.2
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Figure 1. (A) Occurrences of pattern σ� in a multivariate time series, (B) Transducer of pattern σ�,
(C) Accumulators updates.

3. Optimal Patterns Extraction from Sliding Windows

As explained in Section 2, the analysis of time series makes it possible to characterise
them qualitatively with patterns, and quantitatively with features. The sum of the feature
values of all pattern occurrences in a time series is called its contribution. We describe an
optimal time-complexity algorithm for computing such contribution. This algorithm is
used both when a multivariate time series corresponds to a single finite sequence of timed
data, or when we have a data stream consisting of successive subsequences of timed data.
Without lost of generality, we focus on a single finite sequence and show how to generalise
it to a stream at the end of this section.

3.1. Register-Based Features Evaluation on a Time Series

Consider a multivariate time series X = ⟨X1, X2, . . . , Xn⟩, a pattern σ and a feature
f . To obtain the contribution of σ on X we associate three accumulators R, C and D to
the transducerM of σ. We obtain a register automaton [3] in which each accumulator is
updated as X is read:

• R gradually records the sum of the feature values of f on each completely terminated
found occurrence of σ (i.e., τi ∈ {OUTa, FOUNDe});

• C stores the feature value of the current occurrence for which we did not yet reach the
end (i.e., τi ∈ {FOUND, IN});

• D contains the feature value of the current potential part of an occurrence
(τi ∈{MAYBEb, MAYBEa}).
Accumulators R, C, and D are updated according to the semantic letter τi returned byM. Details of this evaluation can be found in [3,12].

Example 2 (Continuation of Example 1). Reading S9= ‘<’ leads to τ9 = FOUND. As shown in
Table C of Figure 1, we then compute C← D+ 1 (i.e., C ← 1), meaning that the length of the current
occurrence of σ� is 1. Similarly, τ10 = ma means that we obtain a potential extra part of the already
found occurrence of σ�. We then compute its length with D← D+ 1. τ11 = in means that we are
still inside an occurrence of σ�. It then confirms the membership of the encountered extra parts.
Thus, we compute C← C+D+ 1. Finally, τ12 = oa means that we are no longer in an occurrence of
σ�. We then compute R← R+C to integrate C in R.

3.2. Register-Based Features Evaluation on Sliding Windows

The contribution of a pattern on a sliding window Xi,j = Xi, Xi+1, . . . , Xj [15,16] is
computed using Equation (1).

fσ(Xi,j) = { 0 if there is no occurrence of σ
fσ(X1,j) + fσr(Xn,i) − fσ(X1,n) otherwise. (1)
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Computing fσ(Xi,j) involves different steps. The first step consists of checking the
presence of an occurrence of σ in Xi,j, and the second step computes fσ(X1,j), fσr(Xn,i), and
fσ(X1,n). In this section, we first show how to compute the contribution of σ on X1,j, then
describe our method of identifying occurrences of σ on sliding windows.

Computing the Contribution of σ on a Sliding Window

In Equation (1), fσ(X1,n) corresponds to the final value of R after reading X and
fσ(X1,j) to its value after reading the subsequence X1,j. Similarly, fσr(Xn,i) corresponds
to the value of R after reading the reverse sequence Xr

n,i using the transducer of σr. To
compute fσ(Xi,j), we first have to know the values of R, C, and D associated with each
semantic letter returned. A first step is, therefore, performed to acquire the needed values
exploited to optimally compute fσ(Xi,j).
Pattern Occurrences Checker in Slidings Windows

To obtain an optimal time complexity algorithm, we also need to check whether each
sliding window contains at least one pattern occurrence, i.e., see the first case of Equation (1).
A naïve approach would be to check whether there is an occurrence of σ in each window
independently. Thus, considering a window size of m, the occurrence check of σ on all
sliding windows would lead to a time complexity of O(m ⋅ n) [4].

To obtain an optimal time complexity of Θ(n), we create a new array, denoted as E,
which provides for each position in the time series, the end of the next occurrence of pattern
in X . Indeed, if there is an occurrence of σ in Xi,j, then this occurrence will be defined
between positions u and v, with i ≤ u ≤ v ≤ j. The accumulator E will indicate that an
occurrence of σ ends at v. Similarly, given that σr and X r are, respectively, the reverse
of σ and X , then the end of an occurrence of σr in X r matches the start of an occurrence
of σ in X [4]. This makes it possible to say that an occurrence of σ begins at u. The new
accumulator E records at position k the end of the next occurrence of σ from Xk. Table C
of Figure 1 gives the values of E indicating the end of the next occurrences of σ� in the
multivariate time series X of Example 1.

Computing the End of the Next Pattern Occurrence from the Pattern Transducer

Depending on the presence of FOUND or FOUNDe in the transducerM, two cases must
be distinguished:

- When FOUNDe ∈ M, E is updated according to lines 3–9 of Algorithm 1;
- When FOUND ∈ M, E is updated according to lines 10–20 of Algorithm 1.

In Algorithm 1, we use two types of assignments: value assignment, denoted ‘←’, and
variable linkage, denoted ‘=’. For the first one, a value is directly assigned to a variable. For
the second one, two variables are made equal using a linked list; when one of these variables
is assigned, this assignment is automatically propagated to all the linked variables.

Linking two consecutive subsequences of a data stream. To find a pattern occurrence
located across consecutive subsequences of a data stream, we use a buffer that records the
last m − 1 measures. Each new received sequence ⟨X1, X2, . . . , Xk⟩ then integrates these past
measurements as follows: X = ⟨X−m+1, X−m+2, . . . X0, X1, X2, . . . , Xk⟩.
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Algorithm 1: Computing the end of the next occurrence of pattern for each
position.

1 Input S[1..n− 1]: time series signature; σ: pattern;M: transducer of σ; Output E[0..n]: next pattern occurrence
end;

2 begin
3 If FOUNDe ∈M then
4 state← init_state; E[0] ← 0;
5 For each k ∈ 1, . . . , n− 1 do
6 τ ←M(σ, state,S[k]);
7 If τ ∈ {OUT, OUTr , MAYBEb} then E[k] = E[k+ 1];
8 else if τ = FOUNDe then E[k] ← k+ 1;

9 E[n] ← n+ 1; return E;

10 else
11 I[0..n] ∶ accumulator array; MA[0..n] ∶ accumulator array;
12 state← init_state; I[0] ← 0; I[n] ← 0; MA[0] ← 0; MA[n] ← n + 1; MA[n− 1] = E[n− 1];
13 For each k ∈ 1, . . . , n− 1 do
14 τ ←M(σ, state,S[k]);
15 If τ ∈ {OUT, OUTr , MAYBEb} then I[k] ← 0; MA[k] ← 0; E[k− 1] = E[k];
16 else if τ = FOUND then E[k− 1] = E[k]; E[k] =MA[k]; I[k] ← 1;
17 else if τ = IN then E[k− 1] = E[k]; E[k] =MA[k]; MA[k− 1] =MA[k]; I[k] ← 1;
18 else if τ = MAYBEa then E[k] = E[k+ 1]; MA[k− 1] =MA[k]; I[k] ← I[k− 1] + 1;
19 else if τ = OUTa then MA[k− 1] ← k+ 1− I[k− 1]; MA[k] ← 0; I[k] ← 0;

20 E[n] ← n+ 1; E[n− 1] ← n+ 1− I[n− 1]; return E;

4. Anomaly Detection Tool

In this section, we describe an anomaly detection tool that exploits the efficient evalua-
tion of patterns contributions on sliding windows. First, we give the key parameters of the
tool. Then we present some experiments carried out.

4.1. Parameters

Anomaly detection is used to identify suspicious behaviour as data evolve. We use
three parameters, namely: (i) the pattern σ we are looking for, (ii) the feature f we consider,
and (iii) the window size m. Anomalies occur when there are unusual values and when the
sum of them exceeds a given threshold. We add two parameters to adjust the sensitivity
of our tool to small variations in consecutive measures, and to multiple occurrences of
unusual values:

• The minimum difference threshold δX is used to determine the minimum variation for
two consecutive measures to be considered as different.

• The occupation percentage threshold ε is the minimum percentage of the window occu-
pation by the pattern wrt its contribution within the window. Thus, an anomaly is
detected when the occupation percentage exceeds ε.

4.2. Experiments

We have implemented our anomaly detection tools using Java 17. For the experiments,
we analysed data from an environmental sensor [7]. These data show the evolution of
temperature and humidity measurements over time, as shown in Figure 2. A visual analysis
of Figure 2A highlights the existence of strong variations in the dataset with temperature
or humidity, often dropping sharply to 0. A similar phenomenon can be observed with
temperature increases of more than three degrees. Figure 2B gives a zoom-in and more
detailed view of these variations. Each of these variations are potential anomalies that the
tool identifies.

For our analysis, we used combinations of values of the previous parameters of
Figure 2C. For all the combinations of values, we followed the following protocol: first,
we identify problematic windows; second, we colour them in red and plot them; then we
analyse the effects of each parameter variations. For space reasons, we will only show the
results of two combinations of parameters, one for each of pattern σ� and σ� . The analysis
of the results shown in Figure 3 then allows us to conclude that our tool allows one to
efficiently identify anomalies occurrences in windows. The addition of parameters δX and
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ε, and the possibility of choosing the pattern to identify makes it possible to characterise
the anomalies and to adjust their detection in a better way.

(A) SENSOR DATA

(B) Values from X255700 to X255750

Parameters Values

m 10, 20, 30, 40, 50, 60, 75, 100
δX 0.25, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 5.0
ε 0.25, 0.3, 0.4, 0.5, 0.6, 0.75

(C) Experiment parameter values

Figure 2. Evolution of the values of the analysed dataset and summary of the values of the parameters
used in our experiments.

(A) σ�, m = 20, δX = 4.0 ∶ ε = 0.4 vs. ε = 0.6

(B) σ�, m = 60, ε = 0.6 ∶ δX = 1.5 vs. δX = 3.0

Figure 3. Problematic windows identified when using patterns σ� and σ�, and varying the values
of δX and ε. These problematic windows are plotted in red, the non-problematic windows remain in
blue.

Effects of δX Variation

When analysing the effect of δX on the results, we notice that, as expected, small values
of δX lead to the detection of more problematic windows. Indeed, large values of δX make
it possible to ignore the small variations in the values of Xk ∈ X to consider only the large
variations. Therefore, many, probably non-problematic occurrences of patterns are ignored.
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Conversely, with small values of δX , these occurrences will be considered problematic and
lead to more anomalies being detected. This behaviour is maintained whatever the pattern,
the dataset or the values of m and ε.

Effects of m and ε Variation

The analysis of the effects of m and ε shows that the bigger m is, the smaller must ε be
(and vice versa), if we want to catch a maximum number of problematic windows. Indeed,
a large window size m may make it unlikely to find a high number of occurrences of σ.
Therefore, the values of these two parameters should be adjusted inversely. This behaviour
is maintained whatever the pattern, the dataset, or the values of δX .

5. Conclusions

In this paper, we have proposed an efficient method for multivariate time series
analysis. This transducer-based approach makes it possible to extract occurrences of
patterns on sliding windows and to characterise them quantitatively with an optimal time
complexity. We used the method for detecting anomalies and obtained a parameterised
detection tool. The experiments we conducted show the ability of our approach to efficiently
identify inconsistencies in data. In the future, we may consider other uses such as the
automatic annotation of multivariate time series or the generation of time series.
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Abstract: In this article, we compare two ways of modelling measures of fetal growth. The goal is to
impute the missing information for certain ultrasound measurements that are observed at different
times and with different numbers of observations. To analyze the effect that other variables have,
such as environmental exposure to certain substances or diet, on fetal growth based on these data, we
need to handle the information measured at the same instant of time for all the individuals under
study, preferably in three time windows of pregnancy (first trimester, week 12; second trimester, week
20; third trimester, week 34). For this, data at these chosen times, in case they are not available, must
be imputed from the available information using an appropriate statistical model. One option is to
use a linear model, specifically a generalized least squares model that is fitted to the features shown
in the data. The other option is to use diffusion processes, estimating their parameters based on the
available information. In both options, missing data can be estimated with the unconditional fitted
model, conditional on the previous available measurement, or conditional to the closest measurement.

Keywords: growth curves; diffusion processes; linear models

Growth Curves Modelling and Its Application

The aim of this work is to compare different methods for statistical modelling growth
curves. We compare two different methodologies in the study of a dataset from the
GENEIDA (Genetics, Early life environmental Exposures and Infant Development in
Andalusia) https://www.easp.es/web/geneida/ (accessed on 27 June 2023) project. This
project details a cohort born in 2014, made up of 800 mother–chid pairs. They are followed
up during pregnancy, birth and childhood. One of the objectives of the project is to
understand how diet and exposure to environmental substances of the pregnant mothers
affect fetal growth. To this end, we have some ultrasound measurements performed during
pregnancy, which are as follows:

• Biparietal diameter (BPD): distance in millimetres between both parietal bones of the
baby’s head.

• Abdominal circumference (AC): distance in millimetres around the abdomen.
• Head circumference (HC): distance in millimetres around the head measured above

the eyebrows and ears.
• Femur length (FL): length in millimetres of baby’s femur.
• Estimated fetal weight (EFW): we estimate the fetal weight using Hadlock’s formula

(Hadlock et al. [1]).
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The data obtained in this study have the following characteristics: the echographic
information is measured at different instants of time and the number of ultrasounds is
different for each mother. We can see these two characteristics in Figure 1, since the three
individuals represented have seven, four and five ultrasound measurements, respectively,
at different gestational ages.

Figure 1. Biparietal diameter of three individuals at different gestational ages.

However, in order to analyze the effect of certain variables on fetal growth based on
these data, we need them to be measured at the same instant of time for all individuals. To
do this, these data must be imputed based on the available information, preferably using
an appropriate statistical model. There are different methodologies to find such a model
that fits a set of observations of a quantitative variable that evolves, presenting a growth
throughout the time. The curves that model this type of data are called growth curves and
their use homogenizes the information from the ultrasound measurements.

In this work, we propose a comparison of two different methodologies in growth
modelling to impute the ultrasound measurements at the desired instant of time: linear
models and diffusion processes.

Firstly, we approach the problem using linear models. This consists of considering
that the observations are a function of a variable, time, and there is a linear relationship
that relates them. Following Iñiguez et al. [2], we created models to predict the five fetal
measurements at 12, 20 and 34 weeks of gestation. Initially, we tried to use the generalized
linear model, but some of the hypotheses failed. In particular, these two factors stood out:
heteroskedasticity of the residuals and autocorrelation. Therefore, the generalized least
squares model has been used to obtain the predictions, since this model is less restrictive in
terms of assumptions (Kariya and Kurata [3]).

Secondly we solve the problem through diffusion processes. In this case, the ob-
served variable X(t) evolves over time t and at each instant there is a probability distri-
bution for X(t) that depends both on time and on the values observed at previous times
X(0), X(1), . . . , X(t − 1). Diffusion processes are useful for modelling time-dependent
variables that increase, usually with an exponential or sigmoidal trend (Baudoin [4]). We
choose the type of process based on the characteristics of the observed sample paths. In
this case, as the data have a sigmoidal or exponential trend, as we can see in Figure 2, we
set the mixed Gompertz–lognormal process. In particular cases, it includes the lognormal
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process, associated with an exponential curve, and the Gompertz-type process, related to a
sigmoidal curve (Romero et al. [5]).

(a) Biparietal diameter. (b) Abdominal circumference.

(c) Head circumference. (d) Femur lenght.

(e) Estimated fetal weight.

Figure 2. Observed sample paths.

Before fitting the growth curves, we carried out an exhaustive clean up of the data
by studying the outliers and eliminating defective data. In the case of linear models,
we fit a model for each measure with their respective confounders to later review the
influential data and recalculate the model. In the case of diffusion processes, we performed
a weighted cluster analysis to group the data depending on the result of the analysis and
we fit a process for each cluster in each measurement. Finally, we obtained the data of the
measurement in the desired gestational age using an unconditional model, one conditioned
to the previous data and another conditioned to the closest available data.
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After making the adjustments using linear models and diffusion processes, we com-
pared the results of the two methodologies to find out which best imputes the data. To
do this, we used different measures to study the error made in the data imputations
(Shcherbakov et al. [6]).
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Abstract: Slope Entropy (SlpEn) is a recently proposed time series entropy estimation method for
classification. This method has yielded better results than other similar methods in all the published
studies so far. It is based on a signal-gradient thresholding scheme using two parameters, δ and γ,
in addition to the usual embedded dimension parameter m. In this work, we investigated the
possibility of adding one thresholding parameter more, termed θ, and we compared the original
method to the new one. The experiment results showed a small improvement using the new method
in terms of classification accuracy. However, the temporal cost increased significantly and therefore
we concluded it is not worth the extra effort unless maximum accuracy is of utmost importance.

Keywords: slope entropy; time series classification; parameter optimisation

1. Introduction

Entropy estimation methods are very popular among scientists for extracting part
of the possible hidden information present in a time series. These methods calculate the
relative frequency of a set of numerical or symbolic subsequences. Many scientific fields
have benefited from the high segmentation power of these methods. For example, they
have been widely used in biomedicine to classify electroencephalograms, time series of
electrocardiogram-RR, body temperature, and actigraph records, among many others. Each
of the current entropy calculation methods has its strengths and weaknesses.

In this work, we investigated the effect of adding more gradient quantisation in-
tervals to the recently proposed Slope Entropy (SlpEn) method on signal classification
accuracy [1,2]. This method is based on assigning symbols to intervals of slopes between
consecutive samples of time series [2].

In the general method, the δ and γ thresholds are responsible for labelling a slope
(difference between two time series consecutive samples) as low, high, or flat (tie). If it is
below δ, it is classified as tie. If it is between δ and γ, the slope is considered low. Otherwise,
it is high.

The analysis was carried out as a comparative study. Many datasets with different
signal types were employed to understand the impact of using a new additional gradi-
ent parameter in SlpEn. A grid search assessed the behaviour of all the datasets with
different values of the input parameters to optimise them, see δ < γ and γ < θ in the new
SlpEn variation.

The results obtained confirmed that adding a new parameter resulted in a small im-
provement in the classification accuracy. Specifically, the highest increment achieved using
the new variation was 3% higher, at most. However, the execution time was a lot longer
than for the original SlpEn method due to the nested resulting additional combinations of
δ, γ, and θ values in the grid search.
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The structure of the paper is as follows. In Section 2, we present the datasets used in
the experiments, a review of SlpEn, the proposed variation method, and the classification
process. In Section 3, we report all the results. In Section 4, we provide an interpretation
and analysis of all the results. Finally, we summarise our conclusions in the last section.

2. Methods

2.1. Datasets

The experimental dataset comprises several types of time series with different charac-
teristics in terms of bandwidth, length, and regularity. All of them are publicly available,
and many of the databases from which they have been extracted have already been used in
similar works, serving as a reference for result comparison. The datasets are (two classes
are used from each one):

– The Bern–Barcelona database [3]: A set of electroencephalographic records.
– The Fantasia database [4]: A set of electrocardiographic records of R-R intervals.
– The Ford A dataset [5]: A set of records obtained from industrial processes.
– The House Twenty dataset [6]: A set of records obtained from the electricity consump-

tion of 20 households in the UK.
– The PAF prediction dataset [7]: A set of electrocardiographic records of R-R intervals.
– The Worms two class dataset [8,9]: A set of records obtained from the movement of

genetically modified worms.
– The Bonn EEG dataset [10] : A set of electroencephalographic records.

2.2. SlpEn

SlpEn applies the general expression of Shannon entropy to the estimated probabilities
of a set of symbols. These symbols are assigned based on a range of differences between con-
secutive samples of subsequences extracted from a time series, X = {x0, x1, x2, . . . , xN−1}.
These symbols are generically obtained from xi − xi−1, with the thresholds defined by the
two parameters mentioned above: δ and γ [2]. Typically, δ is assigned a value of 0.001.

In the standard method, symbols +2, +1, 0, −1, and −2 are assigned according to
the range in which the differences are located. This process is graphically represented in
Figure 1.

Figure 1. Graphical representation of the calculation of symbols used in SlpEn based on the thresholds
γ and δ.

For each subsequence of length m, the corresponding symbol string is generated, and a
histogram is constructed with the number of occurrences of each pattern. Finally, Shannon
entropy is calculated on this histogram, as previously discussed.
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2.3. Modified SlpEn Using an Additional Gradient Interval

In the original method, symbols are assigned based on the difference between two
consecutive values. If the value xi − xi−1 < δ, the symbol 0 is assigned and the slope
is considered a tie. If the value xi − xi−1 > δ and xi − xi−1 > −γ or xi − xi−1 < −δ
and xi − xi−1 < γ, the symbol 1 or −1 is assigned, and the slope is considered low.
The last symbols assigned are 2 and −2, respectively, when the values xi − xi−1 > γ or
xi − xi−1 < −γ, indicating that the slope is high.

The proposed modified SlpEn splits the symbols into three levels instead, including
ties. Therefore, the assignment of symbols is now as follows.

– If xi > xi−1 + θ (maximum difference with respect to the parameter θ), the symbol
assigned is +3, indicating a large positive slope.

– If xi > xi−1 + γ and xi ≤ xi−1 + θ indicating a medium positive slope, the symbol
assigned is +2.

– If xi > xi−1 + δ and xi ≤ xi−1 + γ (below γ), an area that can be considered low from
the point of view of positive slopes, the symbol assigned is +1.

– In the region close to a gradient or slope of 0, when |xi − xi−1| ≤ γ, the symbol
assigned is 0. This area represents ties or equal values, which can create ambiguities
in other metrics.

– If xi < xi−1 − δ and xi ≥ xi−1 − γ (above the −45◦ angle when γ = 1 and below the
0 slope zone), the resulting symbol is −1. SlpEn uses a symmetric quantization, but
an asymmetric one could be used in future studies.

– If xi < xi−1 − γ and xi ≤ xi−1+ ≥is assigned as symbol −2, representing the average
negative value.

– Finally, if xi < xi−1 − θ (maximum negative difference with respect to the parameter θ),
the symbol assigned is −3, indicating a large negative slope.

So, instead of having −2, −1, 0, 1, and 2, we now have −3, −2, −1, 0, 1, 2, and 3, as
shown in Figure 2.

Figure 2. Graphical representation of the calculation of symbols used in SlpEn based on the thresholds
γ, δ, and θ.

2.4. Classification Scheme

Using the experimental datasets described earlier, the optimal value of SlpEn that
maximised the accuracy of classifying records was calculated using the symmetric strategy
represented in Figures 1 and 2. Classification accuracy was defined as the percentage
or ratio of time series correctly classified with respect to the total number of series in an
experimental dataset.
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This process was repeated using a three-parameter distribution of regions as in Figure 2.
Now, in addition to having a specific value of γ, a higher value of θ was required. On the
negative slopes region, θ is lower than γ, following the relationship γ < θ and −γ > −θ.

A time series classification analysis was carried out, comparing accuracy between the
original SlpEn and the new proposed SlpEn variation. A grid search was conducted using
the described databases in Section 2.1 to find the optimal input parameter combination that
yielded maximum accuracy in each case.

For the baseline SlopEn method, we varied the parameter m within the range 3 to 9,
the δ parameter from 0 to δ, and γ from δ to 1.5. When using the additional parameter,
θ varied from γ to 1.5. The threshold used for classification was obtained from the ROC
curve of the process [11]. Specifically, the point on the curve closest to (1, 0) was used.

3. Experiments and Results

The experiments results showed a small improvement using the newly proposed
method. Specifically, the proposed SlpEn variation exhibited small improvements of
around 3% in classification accuracy after using a grid search. Table 1 presents a report of
the highest values of accuracy obtained with both SlpEn methods. However, the modified
SlpEn is far more time consuming than the original SlpEn.

Table 1. A comparative study between original SlpEn and modified SlpEn.

Classification Accuracy

Datasets Original SlpEn Modified SlpEn

The Bern–Barcelona 79% 81%
The Fantasia 86% 89%
The Ford A 94% 94%

The House Twenty 97% 97%
The PAF prediction 81% 83%

The Worms two class 72% 72%
The Bonn EEG dataset 95% 95%

4. Discussion

The highest reported accuracy was for Fantasia, which improved by 3% from 86% to
89%. PAF prediction and Bern–Barcelona both increased by 2%, from 79% to 81% and from
81% to 83%, respectively. Ford A, House Twenty, Worms two class, and Bonn EEG datasets
maintained the same accuracy, at 94%, 97%, 72%, and 95%, respectively.

Dividing the gradient into three or five levels does not seem to have a clear impact on
classification performance. Therefore, adding more parameters to SlpEn is not advisable
considering the amount of time consumed to achieve the small accuracy gains.

5. Conclusions

In this work, we presented a comparative study using different time series datasets to
understand the impact of adding a new thresholding parameter to SlpEn. We introduced the
parameter θ, and added it to δ and γ, expanding the symbolic intervals from −2, − 1, 0, 1,
and 2 to −3, − 2, − 1, 0, 1, 2, and 3. The results confirmed that the new method
achieved a minor improvement of 3%, but at the expense of a significant processing time
increase. Therefore, we do not recommend adding a new thresholding parameter due to
the diminishing return achievable, unless a minor classification improvement is critical (for
instance, in medical diagnosis applications).
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Abstract: In this paper, the Recurrent Singular Spectrum Decomposition (R-SSD) algorithm is pro-
posed as an improvement over the Recurrent Singular Spectrum Analysis (R-SSA) algorithm for
forecasting non-linear and non-stationary narrowband time series. R-SSD modifies the embedding
step of the basic SSA method to reduce energy residuals. This paper conducts simulations and
real-case studies to investigate the properties of the R-SSD method and compare its performance with
R-SSA. The results show that R-SSD yields more accurate forecasts in terms of ratio root mean squared
errors (RRMSEs) and ratio mean absolute errors (RMAEs) criteria. Additionally, the Kolmogorov–
Smirnov Predictive Accuracy (KSPA) test indicates significant accuracy gains with R-SSD over R-SSA,
as it measures the maximum distance between the empirical cumulative distribution functions of
recurrent prediction errors and determines whether a lower error leads to stochastically less error.
Finally, the non-parametric Wilcoxon test confirms that R-SSD outperforms R-SSA in filtering and
forecasting new data points.

Keywords: Singular Spectrum Analysis; signal extraction; recurrent forecasting; Kolmogorov–Smirnov

1. Introduction

Singular Spectrum Analysis (SSA) is a widely used tool for time series analysis and sig-
nal processing, first introduced by Broomhead and King [1] in 1986. Over the years, several
studies, including [2–9], have attempted to improve the decomposition, reconstruction, and
forecasting capabilities of SSA in various fields. The method breaks down a time series into
a few principal components that are used to reconstruct the original series, making it an
efficient analysis tool that focuses on the most relevant features of the data. Moreover, SSA
does not rely on statistical assumptions such as linearity or stationarity, which are often
unrealistic in real-world scenarios. Both univariate and multivariate time series data can be
analyzed using SSA, with the former examining a single time series variable and the latter
studying multiple time series variables simultaneously, for more details see [9–17]. Singular
Spectrum Analysis (SSA) can be utilized for forecasting future trends. The first step in ap-
plying SSA to forecasting is to decompose the time series into its trend, seasonal, and noise
components. Once these components have been identified, they can be extrapolated into the
future using various methods, such as Vector SSA (V-SSA) and Recurrent SSA (R-SSA) [17];
while V-SSA has proven effective in many instances, there is still room for improvement in
the R-SSA forecasting approach. This paper proposes an innovative recurrent forecasting
algorithm called R-SSD, which is expected to generate more accurate results. The R-SSD
method generates its coefficients from a modified trajectory matrix based on the new Sin-
gular Spectrum Decomposition (SSD) method over time-frequency datasets, see [18]. SSD
is an iterative approach that is based on the SSA decomposition method and chooses the
embedding dimension and principal components for the reconstruction and forecasting of a

Eng. Proc. 2023, 39, 68. https://doi.org/10.3390/engproc2023039068 https://www.mdpi.com/journal/engproc143



Eng. Proc. 2023, 39, 68

specific component series in a fully data-driven manner. In the Singular Spectrum Analysis
(SSA) method, the number of observations needed to construct the trajectory matrix is
not fixed and can vary. On the other hand, the Singular Spectrum Decomposition (SSD)
method requires a fixed number of repetitions of observations to construct the trajectory
matrix. The window length, denoted as L, determines the number of rows in the trajectory
matrix in both methods. A larger window length is preferred if the goal is to retain more
information, while a smaller window length is better for achieving statistical confidence,
for more details see [19,20]. When addressing time series that exhibit different frequency
domains, such as those with harmonic patterns where, for example, the first half of the
signal has low-frequency and the second half has high-frequency oscillations, extracting
the oscillatory components using the SSA method can be challenging as it requires setting
an appropriate window length at each step. However, the SSD method overcomes this
limitation by setting the embedding dimension or window length (L ≤ N/2) as a linear
function of the inverse of the dominant frequency of the data, denoted as 1/ fmax. This
adaptive approach ensures that SSD is a flexible decomposition method that can increase
its ability to capture oscillatory components while reducing residual energy, as detailed in
Appendix A.1 of [21]. As a result, it can be expected that SSD, being an improved version of
SSA, can provide more accurate predictions for new data points in time series with different
frequency domains.

The structure of this paper is as follows. In Section 2, we provide an introduction
to the methodology of the basic SSA method and the recurrent forecasting algorithm. In
Section 3, we present the methodology of the novel R-SSD forecasting approach. The results
of a simulation study, evaluating the properties and performance of the proposed R-SSD
method and comparing it to the established R-SSA approach, as well as the analysis of
real data, are reported in Section 4. All calculations were performed using R software,
specifically the Rssa package. Finally, in Section 5, we provide concluding remarks and
highlight the key findings of our study.

2. Singular Spectrum Analysis (SSA)

Singular Spectrum Analysis (SSA) is an effective nonparametric technique for analyz-
ing data. It can decompose a series into multiple components and make predictions based
on them. The method comprises two distinct stages: decomposition and reconstruction,
each of which involves two separate steps. To perform the SSA method, Algorithm 1
outlines the general process, and we primarily rely on the guidelines presented in [22,23].

Algorithm 1: Singular Spectrum Analysis (SSA).

Input: Time series Y = (y1, . . . , yN), N > 2, embedding window length L, and
number of eigentriples r

Output: Underlying components of the time series
1. Embedding: Construct the trajectory matrix X by taking time-lagged vectors

of length L from the time series.
2. Singular value decomposition (SVD): Compute the SVD of the trajectory matrix

X to obtain the singular vectors and singular values.
3. Grouping: Select the first r eigentriples based on the characteristics of the

singular values.
4. Reconstruction: Reconstruct the underlying components of the time series

by multiplying the retained eigentriples with the appropriate columns of the
trajectory matrix, and summing across these products.

R-SSA Forecasting Algorithm

Forecasting with SSA is applicable to time series that approximately satisfy a linear
recurrent relation (LRR). The general process for forecasting using the SSA method is
outlined by Algorithm 2, also described by Golyandina et al. [24].
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Algorithm 2: Recurrent Forecasting in Singular Spectrum Analysis (SSA).

Input: Time series Y = (y1, . . . , yN), N > 2, Window Length L, 1 < L < N, Linear
space Lr ⊂ RL of dimension r < L. {It is assumed that eL �∈ LR where
eL = (0, 0, . . . , 0, 1)T ∈ RL, in other terms, Lr is not a ‘vertical’ space.}

Output: Forecasts for the next h time steps
1. Construct the trajectory matrix X = [X1, . . . , XK] of the time series

Y = (y1, . . . , yN).
2. Compute the singular value decomposition (SVD) of X to obtain the orthonor-

mal basis vectors Ui (i = 1, . . . , r) for the subspace Lr.
3. Perform the orthogonal projection step by computing the matrix

X̂ =
[

X̂1, . . . , X̂K

]
= ∑r

i=1 UiUT
i X. The vector X̂i is the orthogonal projection

of Xi onto the subspace Lr.
4. Construct the matrix X̃ = HX̂ =

[
X̃1 : · · · : X̃K

]
, which is referred to as the

Hankelization step.
5. Set ν2 = π2

1 + · · · + π2
r , where πi is the last component of the vector Ui

(i = 1, . . . , r). Moreover, assume that eL �∈ Lr. This implies that Lr is not a
vertical space. Therefore, ν2 < 1.

6. Determine the vector R = (αL−1, . . . , α1)
T : R = 1(1 − ν2)∑r

i=1 πiU∗
i , where

U∗ ∈ RL−1 is the vector consisting of the first L − 1 components of the vector
U. Note that this does not depend on the choice of a basis U1, . . . , Ur in the
linear space Lr.

7. Define the time series YN+h = (y1, . . . , yN+h) using the following formula:

yi =

⎧⎪⎪⎨⎪⎪⎩
ỹi for i = 1, . . . , N
L−1

∑
j=1

αjyi−j for i = N + 1, . . . , N + h,
(1)

where ỹi(i = 1, . . . , N) are the reconstructed series. The values yN+1, . . . , yN+h
are the h step-ahead recurrent forecasts.

3. Singular Spectrum Decomposition (SSD)

In this section, we will introduce the Singular Spectrum Decomposition (SSD) method
and the related recurrent forecasting technique. The SSD method consists of a two-stage
approach with two steps in each stage as follows:

Stage 1. Decomposition (Modified Embedding and SVD)

The proposed approach enhances the basic SSA method by using a modified trajectory
matrix for a given time series Y = (y1, . . . , yN). The trajectory matrix is of size (L × N),
where L is the embedding dimension, and is denoted as XSSD. It can be expressed as

XSSD =

⎛⎜⎜⎜⎝
y1 y2 · · · yK yK+1 · · · yN
y2 y3 · · · yK+1 yK+2 · · · y1
...

...
. . .

...
...

. . .
...

yL yL+1 · · · yN y1 · · · yL−1

⎞⎟⎟⎟⎠ =
[

X A
]
. (2)

Compared to the basic SSA method, the trajectory matrix in the SSD method includes
an additional block A, which leads to the incorporation of different permutations of the
total time series vector in each row of the modified trajectory matrix denoted as XSSD.
Further details can be found in references [18,21].
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Stage 2. Reconstruction (Grouping and Diagonal Averaging)

Similar to the grouping step in basic SSA (Section 2), a group of l eigentriples is
selected in the SSD method. In the diagonal averaging step, a matrix denoted as X̃SSD
is computed as an approximation of XSSD. This is achieved by computing the sum of l
matrices, each obtained by taking the outer product of the corresponding eigenvectors.
Mathematically, X̃SSD = ∑l

k=1 Ũik ŨT
ik

XSSD, where Ũis are the corresponding eigenvectors.
The transition to a one-dimensional time series can be achieved as follows:

i + j =

{
k + 1 and k + 1 + N when i + j < N

k + 1 when i + j ≥ N.
(3)

3.1. Choice of the Embedding Dimension

The choice of the embedding dimension in Singular Spectrum Analysis (SSA) is
crucial for accurately capturing the underlying structure of a time series. The embedding
dimension determines the number of time-lagged vectors used to construct the trajectory
matrix, affecting the amount of information retained in the decomposition. The embedding
dimension should be chosen large enough to capture all relevant information, but not
too large so as to include noise or irrelevant information, which can lead to an inaccurate
decomposition and overfitting. A common rule of thumb for choosing the embedding
dimension L in SSA is L ≤ N/2, see [25]. Furthermore, Vautard [26] proposed a criterion
for determining the appropriate window length in Singular Spectrum Analysis (SSA) when
analyzing time series with intermittent oscillations. According to this criterion, SSA can
isolate intermittent oscillations correctly if the inverse of the maximum spectral density of
the time series, denoted as fmax, is less than or equal to the window length L. In other words,
L should be chosen such that 1/ fmax ≤ L. However, for time series with varying frequency
domains, extracting oscillatory components using the SSA method can be challenging due
to the need to set an appropriate window length at each step, while in the SSD method, the
window length L is selected as a linear function of 1/ fmax and should be less than N/2,
where N is the length of the time series. This approach captures local structures in the time
series while minimizing noise inclusion.

3.2. R-SSD Forecasting Algorithm

Let λ̃1, . . . , λ̃L be the eigenvalues of XSSDXT
SSD, and Ũ1, . . . , ŨL be the corresponding

eigenvectors for the trajectory matrix XSSD. Then, the new R-SSD coefficients can be
computed as R̃ = (α̃L−1, . . . , α̃1) = 1/(1 − ν̃2)∑r

i=1 π̃iŨ
′
i , where Ũ

′
i is the vector consisting

of the first L − 1 components of the vector Ũi, π̃i is the last component of the vector Ũi
and ν̃2 = ∑r

i=1 π̃2
i . Finally, to obtain the forecasting algorithm of R-SSD, we replace the αj

values in Equation (1) with α̃j values, where ỹis (i = 1, . . . , N) are the reconstructed series
obtained using the SSD method.

4. Empirical Results

We assess the performance of the R-SSA and R-SSD forecasting methods on real and
simulated time series in this section. A portion of the data is used for training, while the
remaining data are reserved for testing. We evaluate the accuracy of forecasting using the
root mean squared error (RMSE) and mean absolute error (MAE) criteria and compare the
results using the ratios defined in Equations (4) and (5).

RRMSEh =

√
∑m+n−h

t=m (yt+h − ŷt+h|t)2√
∑m+n−h

t=m (yt+h − ˆ̂yt+h|t)2
, (4)

RMAEh =
∑m+n−h

t=m |yt+h − ŷt+h|t|
∑m+n−h

t=m |yt+h − ˆ̂yt+h|t|
, (5)
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where the lengths of the training sample, test sample, and forecast horizon are denoted by
m, n and h, respectively. On the other hand, ŷt+h|t denote the h-step ahead forecast obtained
via the new R-SSD forecasting method and ˆ̂yt+h|t denote the h-step ahead forecast obtained
via the R-SSA forecasting method. If the ratio of the average RMSE values obtained by
R-SSD and R-SSA, denoted as RRMSE, is less than 1 at a given forecasting horizon h,
denoted as RRMSEh < 1, then the R-SSD procedure is more accurate than R-SSA at
horizon h. Alternatively, when RRMSEh > 1, it can be inferred that the accuracy of the
R-SSD procedure is less than R-SSA. The same inference can be made using the ratio of
the average MAE values obtained by R-SSD and R-SSA, denoted as RMAE. Additionally,
to compare the accuracy of two sets of forecasts, the Kolmogorov–Smirnov Predictive
Accuracy (KSPA) test is considered, as proposed in [27]. The KSPA test has two objectives:
firstly, to determine if there is a significant statistical difference between the distribution of
predictive errors by testing if the empirical cumulative distribution functions FSSD and FSSA
for the forecast errors of the two methods are significantly different. The two-sided KSPA
test evaluates this difference with H0 : FSSD(z) = FSSA(z) and H1 : FSSD(z) �= FSSA(z).
The second objective of the KSPA test is to determine if the method with the lowest error
based on a given loss function also exhibits a statistically significantly smaller error than the
corresponding method. The one-sided KSPA test is formulated as H0 : FSSD(z) ≤ FSSA(z)
and H1 : FSSD(z) > FSSA(z). Rejecting the null hypothesis indicates that the cumulative
distribution function (c.d.f.) of forecast errors obtained from the SSD model is shifted
toward the left and above the c.d.f. of forecast errors obtained from the SSA model,
suggesting that the SSD method has a smaller stochastic error compared to the SSA method,
for more details see [27].

In the following, two simulated time series with a length of 200 are generated, with the
first 140 observations being designated as the training sample (m = 140) and the remaining
data as the test sample (n = 60). The number of leading eigenvalues (r) for reconstructing
and forecasting the time series is selected based on the rank of the corresponding trajectory
matrix. This simulation is repeated 1000 times, and the mean of RRMSEs and RMAEs
are calculated.

4.1. Simulated Examples

Example 1. In the first example, we examine a sine series that encompasses two distinct frequencies,
as illustrated below:

yt =

{
sin(2πt) + εt, 1 ≤ t ≤ 100
sin(5πt) + εt, 101 ≤ t ≤ 200

where the noise term εt is generated from a normal distribution at varying levels of signal-to-noise
ratio (SNR). In this example, both basic SSA and SSD methods are compared using a rank value of
r = 5 for forecasting horizons of h = 1, 3, 6, 12, and 24 steps ahead. The R-SSD method outperforms
the basic R-SSA method in terms of forecasting accuracy across all window lengths (L) and SNR
levels tested, as shown in Figures 1 and 2. For nearly all forecast horizons h, the values of RRMSE
and RMAE are less than 1, indicating that the R-SSD method provides more accurate predictions
than the R-SSA method. The accuracy is consistent across different metrics, with the lowest RRMSE
and RMAE values occurring at the lowest window length level (L = 6) for all SNR levels when
h = 12 and 24. Overall, the results suggest that the R-SSD method is superior to the R-SSA method
in providing accurate predictions.
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Figure 1. The RRMSE results for different forecast horizons (h = 1, 3, 6, 12, and 24) in Example 1.

Figure 2. The RMAE results for different forecast horizons (h = 1, 3, 6, 12, and 24) in Example 1.

Example 2. Example 2 involves an exponential series with two different frequencies as follows:

yt =

{
exp(α0 + α1t) + cos(2πt/6) + εt, 1 ≤ t ≤ 100
exp(α0 + α1t) + cos(5πt/6) + εt, 101 ≤ t ≤ 200

where the term εt represents the noise generated from a normal distribution at various levels of
signal-to-noise ratio (SNR). In this study, both basic SSA and SSD methods use a rank of 25 for the
trajectory matrix of the time series, with α0 = 0 and α1 = 0.01. RRMSE and RMAE are computed
for various forecast horizons (h = 1, 3, 6, 12, and 24) and SNR levels. As shown in Figures 3 and 4,
RRMSE and RMAE increase as the forecast horizon decreases, but decrease significantly when
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h = 24. The results indicate that the R-SSD method performs better as the value of L decreases.
However, for higher SNR levels, the R-SSA method outperforms the R-SSD method for larger values
of L. The lowest RRMSE and RMAE values are achieved when the window length and SNR are at
their lowest values.

Figure 3. The RRMSE results for different forecast horizons (h = 1, 3, 6, 12, and 24) in Example 2.

Figure 4. The RMAE results for different forecast horizons (h = 1, 3, 6, 12, and 24) in Example 2.

4.2. Real Data Analysis

In this section, we compare the forecasting performance of the proposed R-SSD method
with the basic R-SSA method using real data from fruit fly (Drosophila melanogaster)
embryos. The caudal protein in fruit fly embryos plays a crucial role in tail formation,
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acting as a transcription factor that regulates the expression of other genes by binding to
specific DNA sequences. The caudal protein is expressed in the cells of the “tail bud”,
which gives rise to the tail, and its activation triggers a gene expression cascade that
controls cell division, differentiation, and migration, ultimately leading to tail formation.
Mutations in the caudal gene can result in a loss of function of the protein, leading to
defects in tail formation such as a short or absent tail, as well as other developmental
defects related to segmentation. However, it is important to note that causality detection
techniques, as demonstrated by previous studies, can be sensitive to noise [23,28–30]. Here,
we analyze four gene expression profiles with varying lengths and dominant frequencies to
demonstrate the importance of utilizing an accurate noise filtering method, such as SSD, for
conducting reliable causality studies. To compare the forecasting performance of the R-SSA
and R-SSD approaches, we provide Tables 1–4 to summarize the obtained results for four
different time classes: ab2, ab18, be11, ad14. These tables display the respective forecasting
metrics, including RRMSE and RMAE, for each time class, enabling a comprehensive
comparison between the two methods. For each dataset, we considered the first 80% of
observations as the training sample and the remaining 20% as the test sample. The number
of leading eigenvalues (r) for reconstructing and forecasting the time series was selected
based on the rank of the corresponding trajectory matrix. Additionally, the dominant
frequency of the data (1/ fmax) was calculated for each dataset, and the window length
was chosen as a multiple of 1/ fmax and less than N/2. After selecting the appropriate L
and r, we utilized the observations from the training set to forecast the test sample data
and calculate the RRMSE and RMAE criteria for different h step-ahead recurrent forecasts,
using Equations (4) and (5).

Table 1. RRMSE and RMAE analysis of Cad Profile ab2, 1/ fmax = 2 with r = 16.

Horizon
L = 20 L = 30 L = 50

RRMSE RMAE RRMSE RMAE RRMSE RMAE

1 0.96 0.96 1.02 1.02 1.12 1.12
3 0.86 0.91 1.03 1.05 1.13 1.16
6 0.78 0.80 0.96 1.02 1.09 1.19
12 0.59 0.62 0.86 0.92 1.11 1.22
24 0.17 0.21 0.59 0.67 1.00 1.09

Based on the results presented in Table 1, it is evident that there is a discernible
difference in the RRMSE and RMAE values obtained using the R-SSA and R-SSD meth-
ods for L = 20, 30, and 50. The performance metrics show contrasting outcomes for
these window lengths, indicating that the choice of method can significantly impact the
forecasting accuracy.

Table 2. RRMSE and RMAE analysis for Cad profile ab18, 1/ fmax = 2, with r = 14.

Horizon
L = 20 L = 50 L = 80

RRMSE RMAE RRMSE RMAE RRMSE RMAE

1 0.82 0.82 1.27 1.27 1.14 1.14
3 0.88 0.86 1.15 1.21 1.01 1.07
6 0.91 0.92 1.17 1.26 1.03 1.10
12 0.90 0.91 1.23 1.31 1.08 1.17
24 0.84 0.86 1.25 1.36 1.16 1.31

Table 2 shows the RRMSE and RMAE values obtained by each model for the cad
profile ab18. As indicated in the table, the R-SSD method achieves a significant reduction in
both RRMSE and RMAE values for L = 20, which suggests that it generally provides better
signal extraction and forecast results compared to the R-SSA model for this window length.
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Additionally, for L = 50 and 80, the accuracy of the two methods is similar, indicating that
the R-SSD method can be preferable for smaller window lengths.

Table 3. RRMSE and RMAE analysis of Cad Profile be11, 1/ fmax = 3 with 3.

Horizon
L = 6 L = 18 L = 30

RRMSE RMAE RRMSE RMAE RRMSE RMAE

1 1.16 1.16 1.21 1.21 1.15 1.15
3 1.16 1.17 1.07 1.11 1.13 1.17
6 1.22 1.20 1.05 1.09 1.11 1.16
12 1.35 1.38 0.80 0.85 0.95 0.98
24 1.89 2.03 0.21 0.25 0.43 0.44

Table 3 summarizes the results of RRMSE and RMAE for the cad profile be11. The
findings indicate that the R-SSD method outperforms the R-SSA method, particularly for
L = 18 and 30 and horizons h = 12 and 24. Furthermore, a closer examination of the table
reveals that the highest accuracy is obtained when L = 18 and h = 24, as evidenced by the
greatest reduction in both RRMSE and RMAE values.

Table 4. RRMSE and RMAE analysis of Cad Profile ad14, 1/ fmax = 11 with 5.

Horizon
L = 11 L = 88 L = 110

RRMSE RMAE RRMSE RMAE RRMSE RMAE

1 1.26 1.26 1.28 1.28 1.15 1.15
3 1.22 1.30 1.23 1.30 1.17 1.17
6 1.12 1.25 1.27 1.33 1.16 1.20
12 0.96 1.03 1.37 1.43 1.31 1.32
24 0.73 0.78 1.50 1.59 1.47 1.53

Additionally, the forecasting methods R-SSD and R-SSA were evaluated for statistical
significance using the non-parametric two-sample Wilcoxon test and the Kolmogorov–
Smirnov Predictive Accuracy (KSPA) test. The results show a statistically significant
difference between the two methods, with R-SSD forecasts having smaller errors than
R-SSA forecasts with 95% confidence based on the one-sided KSPA test. The two-sided
KSPA test further supports the significant differences between the two methods with
95% confidence, and these findings are consistent across different embryos and L values,
especially for h = 24. These results demonstrate the superior accuracy of the R-SSD method
and highlight the importance of utilizing an accurate noise filtering method such as SSD
for precise causality studies. The Wilcoxon test also confirms the significant differences
between the two methods for all tested embryos and L values, with p-values less than 0.05.

5. Discussion

In this paper, we introduced a new forecasting method called Recurrent Singular
Spectrum Decomposition (R-SSD), which improves upon the standard R-SSA method by
enhancing the identification of fluctuation content and enabling a fully data-driven selection
of window length and principal components for reconstructing component series based on
dominant frequency periods. The results were evaluated using the non-parametric two-
sample Wilcoxon test and RRMSE/RMAE criteria, which demonstrated the superiority of
R-SSD over basic R-SSA in the majority of cases for various window lengths and forecasting
horizons. KSPA tests confirmed the ability of R-SSD to obtain significant components for
accurate forecasting of new data points. In summary, the proposed R-SSD method with its
improved trajectory matrix definition and window length selection shows promising results
in time series forecasting. Overall, the R-SSD method offers a viable alternative to the
standard R-SSA method and could lead to improved forecasting accuracy in a wide range
of applications. Further research and investigation into the R-SSD method’s performance
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under different scenarios and datasets may be valuable for its continued development and
potential adoption in practical settings.

Author Contributions: All authors contributed equally to the manuscript. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are available, upon
request.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Broomhead, D.S.; King, G. Extracting qualitative dynamics from experimental data. Phys. D Nonlinear Phenom. 1989, 20, 217–236.
[CrossRef]

2. Hassani, H.; Ghodsi, Z.; Silva, E.; Heravi, S. From nature to maths: Improving forecasting performance in subspace-based
methods using genetics Colonial Theory. Digit. Signal Process. 2016, 51, 101–109. [CrossRef]

3. Gong, Y.; Song, Z.; He, M.; Gong, W.; Ren, F. Precursory waves and eigenfrequencies identified from acoustic emission data based
on Singular Spectrum Analysis and laboratory rock-burst experiments. Int. J. Rock Mech. Min. Sci. 2017, 91, 155–169. [CrossRef]

4. Yu, C.; Li, Y.; Zhang, M. An improved Wavelet Transform using Singular Spectrum Analysis for wind speed forecasting based on
Elman Neural Network. Energy Convers. Manag. 2017, 148, 895–904. [CrossRef]

5. Rahman Khan, M.R.; Poskitt, D.S. Forecasting stochastic processes using singular spectrum analysis: Aspects of the theory and
application. Int. J. Forecast. 2017, 33, 199–213. [CrossRef]

6. Heravi, S.; Osborn, D.R.; Birchenhall, C.R. Linear versus neural network forecasts for European industrial production series. Int.
J. Forecast. 2004, 20, 435–446. [CrossRef]

7. Lai, L.; Guo, K. The performance of one belt and one road exchange rate: Based on improved singular spectrum analysis. Phys. A
Stat. Mech. Its Appl. 2017, 483, 299–308. [CrossRef]

8. Hassani, H.; Yeganegi, M.; Khan, A.; Silva, E. The Effect of Data Transformation on Singular Spectrum Analysis for Forecasting.
Signals 2020, 1, 4–25. [CrossRef]

9. Hassani, H.; Silva, E.S.; Antonakakis, N.; Filis, G.; Gupta, R. Forecasting accuracy evaluation of tourist arrivals. Ann. Tour. Res.
2017, 63, 112–127. [CrossRef]

10. Movahedifar, M.; Hassani, H.; Yarmohammadi, M.; Kalantari, M.; Gupta, R. A robust approach for outlier imputation: Singular
spectrum decomposition. Commun. Stat. Case Stud. Data Anal. Appl. 2021, 8, 234–250. [CrossRef]

11. Chao, S.; Loh, C. Application of singular spectrum analysis to structural monitoring and damage diagnosis of bridges. Struct.
Infrastruct. Eng. 2014, 10, 708–727. [CrossRef]

12. Chen, Q.; van Dam, T.; Sneeuw, N.; Collilieux, X.; Weigelt, M.; Rebischung, P. Singular spectrum analysis for modeling seasonal
signals from GPS time series. J. Geodyn. 2013, 72, 25–35. [CrossRef]

13. Hassani, H.; Webster, A.; Silva, E.; Heravi, S. Forecasting U.S. Tourist arrivals using optimal Singular Spectrum Analysis. Tour.
Manag. 2015, 46, 322–335. [CrossRef]

14. Hutny, A.; Warzecha, M.; Derda, W.; Wieczorek, P. Segregation of Elements in Continuous Cast Carbon Steel Billets Designated
for Long Products. Arch. Metall. Mater. 2016, 61, 2037–2042. [CrossRef]

15. Liu, K.; Law, S.; Xia, Y.; Zhu, X.Q. Singular spectrum analysis for enhancing the sensitivity in structural damage detection. J.
Sound Vib. 2014, 333, 392–417. [CrossRef]

16. Muruganatham, B.; Sanjith, M.A.; Kumar, B.; Murty, S.A.V.; Swaminathan, P. Roller element bearing fault diagnosis using singular
spectrum analysis. Mech. Syst. Signal Process. 2013, 35, 150–166. [CrossRef]

17. Sanei, S.; Hassani, H. Singular Spectrum Analysis of Biomedical Signals; CRC Press: Boca Raton, FL, USA, 2015.
18. Movahedifar, M.; Yarmohammadi, M.; Hassani, H. Bicoid signal extraction: Another powerful approach. Math. Biosci. 2018, 303,

52–61. [CrossRef]
19. Hiemstra, C.; Jones, J.D. Testing for Linear and Nonlinear Granger Causality in the Stock Price- Volume Relation. J. Financ. 1994,

49, 1639–1664.
20. Ancona, N.; Marinazzo, D.; Stramaglia, S. Radial basis function approach to nonlinear Granger causality of time series. Phys. Rev.

E Stat. Nonlinear Soft Matter Phys. 2004, 70, 056221. [CrossRef]
21. Bonizzi, P.; Karel, J.; Meste, O.; Peeters, R. Singular Spectrum Decomposition: A new method for time series decomposition. Adv.

Adapt. Data Anal. 2014, 6, 1450011. [CrossRef]
22. Hassani, H. Singular Spectrum Analysis: Methodology and Comparison. J. Data Sci. 2007, 5, 239–257. [CrossRef] [PubMed]

152



Eng. Proc. 2023, 39, 68

23. Golyandina, N.; Korobeynikov, A.; Zhigljavsky, A. Singular Spectrum Analysis with R; Springer: Berlin/Heidelberg, Germany,
2018. [CrossRef]

24. Golyandina, N.; Nekrutkin, V.; Zhigljavsky, A.A. Analysis of Time Series Structure: SSA and Related Techniques, 1st ed.; Chapman
and Hall/CRC: Boca Raton, FL, USA, 2001. [CrossRef]

25. Golyandina, N.; Zhigljavsky, A. Singular Spectrum Analysis for Time Series; Springer: Berlin/Heidelberg, Germany, 2013.
26. Vautard, R.; Yiou, P.; Ghil, M. Singular-spectrum analysis: A toolkit for short, noisy chaotic signals. Phys. D Nonlinear Phenom.

1992, 58, 95–126. [CrossRef]
27. Hassani, H.; Silva, E. A Kolmogorov–Smirnov Based Test for Comparing the Predictive Accuracy of Two Sets of Forecasts.

Econometrics 2015, 3, 590–609. [CrossRef]
28. Vautard, R.; Ghil, M. Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series. Phys. D

Nonlinear Phenom. 1989, 35, 395–424. [CrossRef]
29. Zou, C.; Feng, J. Granger causality vs. dynamic Bayesian network inference: A comparative study. BMC Bioinform. 2009, 10, 122.
30. Golyandina, N.E.; Holloway, D.M.; Lopes, F.J.; Spirov, A.V.; Spirova, E.N.; Usevich, K.D. Measuring gene expression noise in early

Drosophila embryos: Nucleus-to-nucleus variability. Procedia Comput. Sci. 2012, 9, 373–382. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

153





Citation: Heller, A.; Glösekötter, P.;

Buntkiel, L.; Reinecke, S.; Annas, S.

Sim-to-Real Transfer in Deep

Learning for Agitation Evaluation of

Biogas Power Plants. Eng. Proc. 2023,

39, 69. https://doi.org/10.3390/

engproc2023039069

Academic Editors: Ignacio Rojas,

Hector Pomares, Luis Javier Herrera,

Fernando Rojas and Olga

Valenzuela

Published: 10 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Proceeding Paper

Sim-to-Real Transfer in Deep Learning for Agitation Evaluation
of Biogas Power Plants †

Andreas Heller 1,*, Peter Glösekötter 1, Lukas Buntkiel 2, Sebastian Reinecke 2 and Sven Annas 1

1 Fachhochschule Münster, Stegerwaldstr. 39, 48565 Steinfurt, Germany;
peter.gloesekoetter@fh-muenster.de (P.G.); s.annas@fh-muenster.de (S.A.)

2 Helmholtzinstitut Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany;
l.buntkiel@hzdr.de (L.B.); s.reinecke@hzdr.de (S.R.)

* Correspondence: andreas.heller@fh-muenster.de
† Presented at the 9th International Conference on Time Series and Forecasting, Gran Canaria, Spain,

12–14 July 2023.

Abstract: Biogas is an important driver in carbon-neutral energy sources. Many biogas digester
setups, however, are not well optimized and waste energy or fail to maximize their gas output
potential. To optimize these systems, a framework was developed to measure and predict digester
systems’ efficiencies by closely monitoring fluid movements. This framework includes a numerical
calculation of fluid behavior (Computational Fluid Dynamics (CFD)), and Deep Learning to estimate
the fluid shear-rates introduced by the agitator’s action. Additionally, a novel measurement system is
presented that can measure the same metrics, as simulated, in real-world environments. Lastly, an
outlook is given that presents the options and extensions of the presented setup to reduce prediction
error, minimize measuring efforts further, and recommend optimization approaches to the operator.

Keywords: ANN; artificial neural networks; CNN; convolutional neural networks; deep learning;
CFD; computational fluid dynamics; agitation performance prediction; shear-rate

1. Introduction

Carbon-neutral energy sources play a crucial role in mitigating climate change. Statis-
tics show that the energy generated from biomass in Germany has been continuously rising
since 1991 [1]. These systems, however, are often built up and operated without an exact
setup or analysis of the maximum efficiency. Thus, these system often do not reach their full
potential [2]. To produce energy, these systems agitate a fluid that consists of animal waste,
energy crops, organic waste, and other materials, in varying amounts [3]. The agitation
action keeps the fluid fermenting, thus producing a valuable biogas that consists mainly
of methane (CH4) and carbon dioxide (CO2), and small amounts of other gases. Biogas is
used in many different applications, such as heating or locomotion [4]. Effective agitation
is essential during the fermentation process [5]. On the one hand, over-agitation wastes
energy; on the other hand, under-agitation risks the formation of solid or foamy swimming
layers that can result in the fermentation process stopping completely. In addition to the
high variance in biogas fluid characteristics, these systems are set up with many varying
factors, such as the type of rotor used, the size of the rotor, the height and diameter of the
agitation vessel, and if the vessel is equipped with features to aid agitation by increasing
turbulence. Having one setup for every biogas digester is impossible, individual analyses
will probably increase the efficiency of these systems. This work approaches the optimiza-
tion of process by deploying deep learning. The amount of data required to properly train
a neural network far outscales what is collectible in a reasonable timeline. For this, many
different systems will have to be located and measured for extended periods. This problem
can be overcome by computationally generating the required data. Computational Fluid
Dynamics is a common practice to understand the flow of fluids in any configuration. This
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approach can be used to generate knowledge about the flow behavior in biogas power
plants. A sim-to-real transfer is achieved by tweaking the pre-trained Artificial Neural
Network (ANN) with real-world measurements.

This work presents the methodology used to design, simulate, measure, and predict
agitation efficiencies using deep learning. First, the methodology of this approach is
presented. The Computer-Aided Design and Computational Fluid Dynamics setup are
outlined to simulate systems and generate data for the deep learning phase. Next, post-
processing steps are implemented to convert simulation results to data that can also be
obtained with a real-world measuring system. Then, the Neural Network Architecture
is presented, where three commonly used approaches are implemented and compared.
The Section 2 is concluded with a detailed look at the three Neural Network Architectures
and their performances in the presented problem. After the Section 2, a Wireless Sensor
Network (WSN) to measure real-world systems is outlined. Its purpose is to measure real-
world systems, and to refine the neural network predictions. In the outlook, future work
is described that will further improve the presented system by minimizing measurement
effort and helping the operator to create an optimal agitation setup.

2. Methodology

In this section, the methodology used to set up simulation environments, numerical
simulation, post-processing, the Neural Network Architectures, and deep learning is
explained. The first part outlines the development of the 3D models that are to be used in the
numerical analysis. Next, the numerical analysis in OpenFOAM is explained, including the
setup of fluid properties, mesh-movements, mesh-boundary conditions, and information
about the overall analysis process. The subsequent section outlines further processing of
the results of numerical analysis using ParaView. These operations are crucial to align the
data formats of real-world measurements and simulation. After the CFD post-processing,
three artificial-neural-network architectures are outlined. Lastly, the performance of these
networks on training and test data is presented.

2.1. CAD

This section outlines the Computer-Aided Design (CAD) of the biogas plant models
used for this work. Two different models were implemented, from which three different
simulation cases were derived.

Figure 1 shows the different models and their stirrer setups. A 3D model of the Landia-
POP-I Slurry Mixer was implemented in a top model. The same mixer model was modified
to allow for more degrees of freedom in regard to the rotors’ position. For this, the body of
the rotor was removed and all open faces were patched. This resulted in an abstract floating
stirrer that can be placed anywhere in the vessel, without a disruption of the flow caused
by the mixers body. Surrounding the stirrer are the vessel walls, and top and bottom lids.
Depending on the type of biogas plant, these can be rounded (Figure 1 top) or fitted with
plates (Figure 1 bottom). Not shown in the figure above are the top lid, which acts as the
vessel walls, and the bottom lid, which keeps fluid from spilling out.
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Figure 1. Renders of two different plant model setups. The top lids were removed for this visualiza-
tion. (Top) shows a standard fermenter with a 28 m vessel diameter and filling height of 7 m (left)
and a Landia POP inclined blade stirrer [6] that launches the fluid perpendicular from the vessel wall
(right). (Bottom) shows an agitation setup that is based on a real-world system where fluid-tracking
measurements were taken in the past [7]. The vessel diameter is 11 m, vessel fill height is 2 m (left),
and a reduced Landia POP inclined blade stirrer is used to launch the fluid in a parallel motion to the
vessel walls.

2.2. Computational Fluid Dynamics

For this work, three simulation cases were developed, where one is based on a pre-
viously measured system [7]. One challenge when simulating biogas plants is the non-
Newtonian fluid’s behavior. The shear-thinning fluid decreases its viscosity when a force is
applied to it, varying its behavior in comparison to most fluids, like water. Additionally,
these fluids exact properties that vary from their compositions and other variables, e.g.,
animal feed. To approximate the fluid’s shear-thinning viscosity behavior, the approach of
Fosca Conti et al. [8] was followed. Thus, for this simulation, the power-law model for the
viscosity of Oswald–deWaele was chosen [9].

ν = kγ̇n−1, νmin ≤ ν ≤ νmax (1)

with the kinematic viscosity ν and a consistency factor K = 16.8Pasm, which equals a
kinematic consistency factor. (The kinematic consistency factor k is the quotient of the
consistency factor K and the fluid’s density ρ; k = K

ρ ). of k = 15.4 · 10−3 m2s−1, a power-law
index of m = 0.35, where m < 1, describes the fluid as shear-thinning. The fluid’s kinematic
viscosity limits are set to νmin = 10−6 m2s−1 and νmax = 10−3 m2s−1.

This simulation aims to compute field velocities v, and, with a custom post-processing-
module, field shear-rates γ̇. After the definition of fluid behaviors, the CAD models of all
parts involved in fluid movements are implemented in a simulation case.

Figure 2 shows a CFD setup used for one of three case setups that have been created
for this work. Additionally, the meshing of all the parts’ features is highlighted.

For two cases, the Landia POP-I Slurry Mixer [6] was designed as per manufacturer’s
specifications, to describe rotating speeds of 150, and 300 RPM, depending on the chosen
gearing. In a third case, a faulty agitator setup is implemented. Here, the rotor spins
in the wrong direction with a very low rotating speed of 75 RPM. For all three cases,
Arbitrary Mesh Interfaces (AMI) were implemented to cause rotor blades to spin and inflict
movement on the fluid. Other case properties include:

• Turbulence model: Only the overall resulting fluid flow is of interest. The turbulence
behavior is set to laminar.
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• Transient/steady state: The start-up behavior of the system is of interest; a transient
solver has been chosen.

• Fluid compressibility: With the overall slow fluid velocities, we can safely assume an
incompressible fluid.

With the presented case characteristics, OpenFOAM’s pimpleFoam-solver was cho-
sen [10]. The CFD Simulation was carried on a Workstation PC, equipped with an Intel
Core i5-8600k hexa-core processor [11]. Each case took five days of continuous computation
to complete 100 s of simulation time. Data points of were captured in at least one-second
time intervals.

Figure 2. ParaView capture of a simulation case. Left shows a case setup of a previously simulated
agitation system. The displayed vessel’s radius is 14.25 m and its height is 7.8 m. right side shows
a magnification view of the setup’s agitator, with a 1.35 m rotor radius and rated rotational speed
configured to 150 RPM.

2.3. CFD Post-Processing

After computing the required metrics, namely velocity v and shear rate γ̇, virtual mass-
and volume-less nodes are generated within the fluid using ParaView’s Particle Tracer filter.
These nodes follow the local velocity fields of the fluid and closely replicate the behavior of
a real-world flow follower. The real-world measurement technique is outlined in Section 3.

Figure 3 shows the startup of an agitation system and the effects on the mass-less
particles (blue nodes) floating in the fluid (hidden). The presented setup was developed in
ParaView v5.10 [12], utilizing the engine’s Python scripting interface. Numerous equidis-
tant lines are created inside the vessel, which are used as seed sources for the particle
tracer. Nodes created like this can then be used for further processing in Deep-Learning
Applications.

Figure 3. ParaView setup for CFD post-processing with particle tracer nodes at simulation 1.5 s after
system start-up. Left shows a top-down view of an agitation setup, with 5.5 m vessel radius and 2 m
height. The fluid is hidden. Mass-less are shown in blue. Right figure shows a magnified view of the
rotor (0.5 m radius, 150 RPM), which is pointed north in this case. These figures show the system in
startup, where particles around the rotor have already been affected by its agitation motion.

Figure 4 shows two perspectives of a trajectory plot with 100 random particles. Since
all lines in this figure span the same time interval, longer lines denote particles with a
greater average velocity. With this information, the rotor’s location can be gauged. To
decouple absolute node positions and related velocities, as seen in Figure 4, incremental
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position information is derived from absolute positions. This step effectively transforms
the position data into local particle velocities u.

u =
Δpx,y,z

Δt
(2)

where Δpx,y,z represents the particles position in a three-dimensional space, and Δt is
the time interval between two position measurements. For this work, Δt = 1 s.

Figure 4. 3D Plot of 100 randomly chosen particle trajectories from the system seen in Figure 3. The
cylinder approximates vessel walls and the colored lines denote the particles trajectory over the
whole 100 s simulation time. Right shows the same 3D plot viewed from a top-down angle.

2.4. Neural Network Architecture

In this work, widely used regression network architectures are compared to estimate
fluid shear-rates γ̇. Fully Connected Neural Networks (FCNN) are simple setups, where
the raw input (described in previous Section 2.3) is flattened and fed into the first dense
layer of the FCNN. Subsequently, three hidden layers follow, with thirty-two, sixteen, and
five neurons, before the network terminates with a single neuron that reflects its prediction
of the mean trajectory shear-rate γ̇.

The Fully Connected Neural Network architecture is shown in Figure 5.
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Figure 5. Fully Connected Neural Network (FCNN) architecture, with three densely connected
hidden layers of thirty-two, sixteen, and five neurons. The activation function of the hidden layers is
the Rectified Linear Unit (ReLU). The output layer consists of one single neuron with linear activation.

Another widely used network architecture is the Convolutional Neural Network
(CNN), which adds various convolution- and max-pooling layers, preceding densely
connected layers, to enhance features. Two different architectures for this type of network
were developed.

The first CNN will be referred to as 1D-CNN, because, like the FCNN, it starts with a
flattening layer, resulting in Rank-1 tensor operations. Next, two 1D convolution layers,
with kernel sizes of ten and seven, follow. After convolution, global max-pooling is applied,
after which the network proceeds with the same three dense layers as presented for the
FCNN (32, 16, 5, and 1 neurons).

Figure 6 shows the architecture of the 1D Convolutional Neural Network.
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Figure 6. Convolutional Neural Network (CNN) with flattening operation in the first layer, referred
to as 1D-CNN in this work. The flattening follows the Rank-1 Tensor operations convolution with
a size of 10 kernels, convolution with a size of 7 kernels, global max-pooling and the same densely
connected layers as described in Figure 5. All hidden layers are configured with Rectified Linear Unit
(ReLU) activation; the single neuron output layer has linear activation.

In contrast, a Rank-2 Tensor based CNN was implemented. This architecture follows
the same outline as 1D-CNN, using 3 × 3 convolution kernels. The main difference is that
flattening is applied right before the first dense layer.

The 2D-CNN architecture is shown in Figure 7.
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Figure 7. Convolutional Neural Network (CNN) with flattening operation in the last layer before
the dense layers, referred to as 2D-CNN in this work. Input data are fed into two Rank-2 Tensor
convolution layers with 3 × 3 kernels, followed by a global max-pooling layer, before feeding these
into the same densely connected layers as described in Figure 5. All hidden layers are configured with
Rectified Linear Unit (ReLU) activation; the single neuron output layer undergoes linear activation.

2.5. Deep Learning

All networks outlined in the last section (Section 2.4) were trained over 150 epochs.
The Mean-Squared Error (MSE) loss function was chosen for these regression architectures.
With the framework explained in Sections 2.1–2.3, 25, 977 datasets of complete length (100 s
simulated time span, and 1 Hz update rate) were generated. Datasets were split into 80%
training data, and 20% test data, which are only used for validation tests.

Figure 8 show all three network performances throughout the 150 epochs of training.
The FCNN shows no meaningful improvements after around 20 training epochs, where
the loss stays around 0.4 MSE. Additionally, the FCNN shows signs of overtraining after
around 60 training epochs: the loss in the validation set increased, where as the loss in the
training set continued to decrease. The 1D-CNN performed very similarly to the FCNN,
although it needs around 40 training epochs to achieve the same performance of around
0.4 MSE. After around 100 training epochs, this network shows sings of overtraining,
with the MSE not deviating much from the FCNN’s. The FCNN and the 1D-CNN never
reached validation losses close to the ones reached on the training-sets; the difference in
the validation set is always bigger than 0.3 MSE. Lastly, the 2D-CNN performs the best
for the presented problem. After around 50 training epochs, the network reaches its best
performance with the validation loss function decreasing to around 0.1 MSE, where the
loss functions on the training and validation sets align. Like the other two, this network
starts showing sings of overtraining after around 70 training epochs. All three networks,
especially the 2D-CNN, show very high variability in their losses throughout the training.
This could originate from a lack of training data.

Since the single difference between the 1D- and 2D-CNN is the position of the flattening
layers, this compirison shows how valuable the convolution and pooling operations on the
3D space data in the presented problem are.
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Figure 8. Mean-Squared-Error losses of the presented deep learning architectures. Solid lines denote
the losses on the training set of the network, whereas the dashed lines denote the losses on a test
set. Red lines show losses of the FCNN; green lines refer to the 1D-CNN; lastly, blue lines show the
losses of the 2D-CNN.

3. Real-World Measurements

After focusing on the computational methods for data collection, this chapter focuses
on real-world measurements and post-processing to refine the same deep-learning models
as explained in Section 2.4.

3.1. Real-World Measuring Setup

Figure 9 left shows a system evaluation made in the past [7]. This system was able to
follow the behavior of the fluid on its surface, although it offered no insight into sub-surface
flow characteristics. To achieve this, the measurement system was extended in the NeoBio
research project [13]. This updated node is shown in Figure 9 right. It introduces important
features to extend the existing functionality. This version can vary its volume to mass
proportions by moving a flexible membrane, enabling it to sink, come up to the fluid surface,
and, in a neutral setting, follow the surrounding fluid’s motion. Additionally, the fluid’s
conductivity is measured, which may provide further insights into fluid compositions and
help specify fluid properties for computational analysis and simulation.

For the complete measuring setup, the node seen in Figure 9 right, is accompanied by
anchor nodes mounted on the vessel side walls and a central data collection system, called
backbone. The anchor nodes are shown in Figure 9 left.
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Figure 9. Left shows an overlay of a past measurement with a revision 1 of the measurement system
on a top-down photo of the measurement in progress. Anchor nodes are shown on the vessel’s west-,
north- and east-facing rims. Right shows an updated version of the sensor particle that can measure
fluid behavior below the fluid’s surface.

Figure 10 outlines the real-world data collection methodology.The sensor follows the
fluid movements by setting the sensors’ buoyancy to neutral, so it follows the surrounding
fluid’s flow. While the sensor is submerged, the movement is tracked using an inertial
measurement unit (IMU) that integrates accelerations into an absolute trajectory [14]. Since
this method of movement tracking is only accurate for a short time, the sensor node
will frequently increase its buoyancy, letting itself rise to the substrate surface. From
there, the WSN locates its absolute position in the fermenter using ultra-wideband (UWB)
localization [15]. Next, all gathered data from previous dive are sent to the backbone, again
using the UWB interface. After all data are off-loaded to the backbone, the sensor node will
return to measuring mode, restarting the cycle.

Figure 10. Shear-rate measurement concept utilizing the sensors’ inertial measurement unit and
gyroscope, and the same shear-rate effect on biogas substrate flakes, which are forced to break up
into colloids [13].

3.2. Real-World Measurement Post-Processing

To use gathered datasets for deep-learning (see Section 2.4), they have to be converted
into the same format, as explained in Section 2.2. Most importantly, this includes calculating
shear-rates along the sensor’s trajectory. In Section 2.2, the simulated measuring nodes
were defined with no volume and mass, and thus did not have inertia. Since this cannot be
achieved in the real world, it has to be taken into account.

Figure 11 top outlines the effect of fluid shear-rates on a real-world sensor flowing
with a liquid stream. Arrows on the left denote liquid flow velocities, which are increasing
from bottom to top. The difference in the fluid speeds on the sensor’s surface will cause it
to spin. This spin can be detected by the sensor’s IMU, and gyroscope. Figure 10 bottom
shows the effect of the same change in fluid velocities on flakes that is found in a biogas
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substrate. These flakes are not rigid, like the sensor, and thus are elongated by the different
forces applied to it until one flake breaks up into smaller colloids.

Set buoyancy to
neutral

IMU / Gyroscope: 
Trajector Mesurement

Conductivity
Measurement

No

Yes

Time limit
reached?

Increase buoyancy to
emerge

UWB: 
Get Abs. Pos.

UWB: 
Send Telemetry

Figure 11. Real-World Measurement methodology to track fluid movement and substrate conductivity.

4. Conclusions and Outlook

This work presented a framework for setting up, extracting and pre-processing data
from simulated as well as real-world biogas plants. In addition, three deep-learning
models were presented that, based on the generated data, predict a biogas plant’s agitation
efficiency via its shear-rate. The presented 2D-CNN is capable of predicting shear rates with
a Mean-Squared Error (MSE) of less than 0.1 MSE, although all three models show signs
of overtraining after 80 epochs. To gauge the accuracy of these systems in the real world,
a framework for measuring these metrics in real-world environments was developed,
although this could not be tested due to semiconductor shortages and the COVID-19
pandemic. Since the full range of biogas characteristics heavily depend on numerous
factors, it is hard to specify these in a mathematical model for a Computational Fluid
Dynamics (CFD) simulation. More research and a standardized model for a wide range of
biogas plant setups will help to achieve results that can mimic real-world systems more
closely.

Physics-Informed Neural Networks (PINNs) are a novel type of Deep-Learning setup
that is specifically designed to predict physics problems and may increase the performance
of the models presented here. In addition to PINNs, other features will be implemented
using other deep-learning techniques. To further reduce the number of measurements
required for each system, and increase the energy-efficiency of the real-world measuring
system, Time Series Forecasting will be utilized to predict node trajectories.

Another problem to solve is the actual optimization of a real-world setup. Since the
framework presented here only shows how well a system is performing, the optimization
process is left to the user. A Recommender System will be implemented to solve this problem.
This system will provide approaches to optimize agitation by, for example, suggesting
optimal agitator settings or positions.
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Abstract: To better assess the financial contagion through the VaR, several recent studies used
copula models. In the same context, this paper addresses the inefficiency of the classical approach
such as a normal distribution in modeling the tail risk, by using the conditional Extreme Value
Theory (GARCH-EVT), in order to assess extreme risks with contagion effect. The GARCH-EVT
approach is a two-stage hybrid method that combines a Generalized Autoregressive Conditional
Heteroskedasticity (GARCH) filter with the Extreme Value Theory (EVT). To implement our approach,
we use macroeconomic time series from Morocco, Spain, France, and the USA.

Keywords: contagion effects; extreme value theory; GARCH-EVT; optimal tail selection; value at risk

1. Introduction

Financial resilience in banking is considered a key pillar when discussing the strength
of the international financial system and the world economy as a whole. Indeed, financial
resilience becomes more puzzling and worrying in the context of increasingly frequent,
significant, and complex events. These extreme events include the stock market crash of
1929, the stock market crash of 1987, the sudden devaluation of the Mexican peso against
the U.S. dollar in December 1994, the 1997 Asian financial crisis, and the global financial
crisis between mid-2007 and early 2009. All these crashes are characterized by a subsequent
rapid spread, significant severe losses incurred by financial institutions, spillovers, and
high contagion risks. These events revealed substantial weaknesses in the banking system
and the prudential framework and thus, motivated many of the managers and researchers,
to recover existing tools and to implement new management strategies that offer significant
improvement, by taking into consideration the increased severity, the high frequency of
extreme events and spillover effects.

One important suggestion is to reconsider the Value-at-Risk (VaR); the widely used
risk management tool, in the context of extreme events and contagion effects, which are
nonlinear, time-varying, and dependent in nature.

The VaR can be defined as the maximum potential change in the value of a portfolio
of financial instruments with a given probability over a certain horizon. There are several
approaches for the estimation of VaR, such as historical simulation, variance-covariance,
and the Monte Carlo approaches. In addition, contagion can be empirically identified
through the propagation of extreme negative returns, the increase in interdependence
compared to normal times, and the distinction from common shocks [1]. The literature
contains various definitions of financial contagion [2]. However, financial contagion is
present if a statistically significant increase is observed in cross-market correlation after the
occurrence of extreme shocks [3].
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To better assess the financial contagion through the VaR, several recent studies used
copula models to describe the multivariate dependence structure between financial markets,
estimate the return period, and assess the corresponding losses. In the same context, this
paper addresses the inefficiency of the classical approach such as a normal distribution in
modeling the tail risk, by using the conditional Extreme Value Theory (GARCH-EVT), in or-
der to assess extreme risks with contagion effect. The GARCH-EVT approach is a two-stage
hybrid method that combines a Generalized Autoregressive Conditional Heteroskedasticity
(GARCH) filter with the Extreme Value Theory (EVT). The Peaks-Over-Threshold approach
will be used for the pre-specification of the threshold that separates distribution tails from
its middle part.

To implement our approach, we use time series retrieved by assessing the open-source
records available on an international website. All statistical analyses were performed using
R packages and our results provide important insights on risk management.

The remaining parts of the study are laid out as follows: Section 2 covers the research
methodology and design, and results and findings are delineated in Section 3. Section 4
concludes the paper.

2. Materials and Methods

Our methodology is based on four main stages (Figure 1):

Figure 1. Proposed methodology flowchart.

Stage 1: Modeling time series with ARMA models. We first check whether the used
times series are stationary or not, using visualization or analytical approach such as the
Augmented Dickey-Fuller test (ADF). When the stationarity is not accepted, transformation
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is needed and thus, an ARMA model is identified [4]. A mixed autoregressive moving aver-
age process of order (p, q) process is a stationary process {Yt} which satisfies the relation:

rt = μ + ∑p
j=1 φjrt−j + ∑q

i=1 θiεt−i + εt, (1)

where φj, j = 1, 2, . . . , p,θi, i = 1, 2, . . . , q are parameters of the ARMA model to be estimated.
Stage 2: Innovations extraction and Gaussian white noise assumption checking.

Innovations εt are extracted from the ARMA model and the Ljung and Box portmanteau
test is used to examine if εt can be considered Gaussian White Noise.

Stage 3: Use of GARCH and identification of marginal distributions. If the assump-
tion of the Gaussian White Noise is not validated, a standard sGARCH model or other
GARCH varieties, such as GJR-GARCH [5], are identified, and then, zt are extracted. The
dynamics of the conditional volatility of the GARCH(p,q) model are given by:⎧⎪⎪⎨⎪⎪⎩

rt =
√

htzt

ht = ω0 +

q

∑
i=1

αiε
2
t−i +

p

∑
j=1

β jht
(2)

The GJR-GARCH is given by⎧⎪⎪⎨⎪⎪⎩
rt =

√
htzt

ht = ω0 +

q

∑
i=1

(α i+χi I(εt−i < 0))ε2
t−i +

p

∑
j=1

β jht−j
(3)

where zt is normalized white noise and ht is the conditional variance of the innovation εt,
ω is the intercept, and the parameters αi, χi and β j are the autoregressive coefficients of the
variance. Marginal distribution is identified for εt and zt.

Stage 4: Copulas fitting based on C-Vine and D-vine approach. The main idea
of vine copulas is the modeling of copulas in high dimensions, based on a structure of
interconnected trees of bivariate copula. This construction approach makes it possible to
model complex dependencies in high dimensions by bivariate copulas [6].

The main issue in the field of financial contagion is to analyze the underlying process
and to emphasize the main variables that could indicate a financial crisis in a country. This
has led researchers to broaden the scope of the investigation and thus, several categories
such as common shocks, trade spillovers, and financial linkages are identified. In this
context, the empirical studies suggested by Račickas and Vasiliauskaitė [7] present a number
of determinants of a financial crisis. It is worth noting that some explanatory variables are
exclusive for currency crises, banking crises, or debt crises; others are informative for more
than one type of crisis.

To implement our approach, we identify four time-series associated with financial con-
tagion from the World Development Indicators (WDI) website. More details are provided
in the following table (Table 1).

Table 1. Used data.

Variables Unit Countries Covered Period

V1 GDP per capita growth Annual % France
Morocco

Spain
US

1970–2021
V2 Trade % of GDP
V3 Inflation, consumer prices Annual %
V4 Exports as a capacity to import Constant LCU

3. Results and Discussions

A descriptive analysis shows that there is a strong interconnection between Morocco
and Spain. These two neighboring partners are linked by more than 16 billion euros of
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trade and; Morocco is the third economic partner of Spain outside the EU. In addition,
Spanish exports to Morocco have increased by 29% in 2020/2021, 17,000 Spanish companies
have trade relations with Morocco and 700 are established in the neighboring country. It is
also worth noting the increase in the range of Moroccan exports to Spain in recent years,
reflecting the modernization of the national productive fabric.

France remains one of Morocco’s leading economic partners, despite growing com-
petition in the areas of trade and investment. The relationship between the two countries
makes France the first partner of Morocco on the level of commercial exchange, tourist
arrivals, and direct investments.

A detailed analysis, from Figure 2, shows a simultaneous trend in terms of inflation,
exports, trade, and inflation in Morocco, France, Spain, and the US. In addition, the trade
and the exports time series exhibit an upward trend, while the GDP time series are more or
less stable, with the exception of Morocco for which more fluctuations are noted.

The analysis of inflation leads to discerning two distinguishable periods. The first one,
before 1985, was characterized by high levels of inflation (% annual) with a maximum of
17.6%, 13.6%, 13.5%, and 24.5% for Morocco, France, the US, and Spain, respectively. The
second period is characterized by controlled inflation.

Figure 2. Trends comparison in terms of inflation, exports, trade, and GDP.

The analysis of the inflation leads to discerning two distinguishable periods. The first
one, before 1985, was characterized by high levels of inflation (% annual) with a maximum
of 17.6%, 13.6%, 13.5%, and 24.5% for Morocco, France, the US, and Spain, respectively. The
second period is characterized by controlled inflation.

It is worth noting that all computations are performed using R software. To implement
our methodology, we transform the raw data to have stationary time series. Results show
also that most fitted models are ARMA(1,1) which is characterized by autocorrelation
functions that decline dramatically and ARMA(1,0) which predicts the present value of a
time series, using the immediately prior value in time.

Results (Table 2) indicate that most of the analyzed time-series in this study have a
non-homogenous variance, so there is a GARCH effect. Except for the US time series, the
assumption of Gaussian white noise is not satisfied, thus SGARCH or GJR-GARCH are
estimated for those time-series.
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Table 2. ARMA and GARCH modeling.

Indicators
Time
Series

Model

V1

France
Raw ARMA (1,1) μ = 0; ϕ = −0.03; θ = −0.99

Residuals GJR-GARCH(1,1):α0 = 0.31; α = 0.43; β = 0.94; γ = 0.76

Morocco
Raw ARMA (1,0) μ = 0; ϕ = −0.72

Residuals BB Gaussian

Spain Raw ARMA (1,1) μ = 0; ϕ = 0.45; θ = −1
Residuals sGARCH(1,1):α0 = 0; α = 0.31; β = 0.68

US
Raw ARMA (1,1) μ = −0.01; ϕ = 0.11; θ = −0.99

Residuals BB Gaussian

V2

France
Raw ARMA (1,1) μ = 4.53; ϕ = −0.17; θ = −0.99

Residuals GJR-
GARCH(1,1):α0 = 1.67; α = 0.017; β = 0.99; γ = 0.18

Morocco
Raw ARMA (1,1) μ = 1.19; ϕ = 0.74; θ = −0.99

Residuals BB Gaussian

Spain Raw
√

htzt : μ = 0; ϕ = 0; θ = 0
Residuals sGARCH(1,1):α0 = 0; α = 0; β = 0.888

US
Raw ARMA (1,0) μ = 1.69; ϕ = 0.05

Residuals BB Gaussian

V3

France
Raw ARMA (1,0) μ = −41.13; ϕ = −0.22

Residuals GJR-GARCH(1,1):α0 = 932.71; α = 0.98; β = 0; γ = 0.04

Morocco
Raw ARMA (1,0) μ = −1.14; ϕ = −0.56

Residuals BB Gaussian

Spain Raw ARMA (1,1) μ = −2.77; ϕ = −0.90; θ = 1
Residuals sGARCH(1,1):α0 = 0; α = 0; β = 0.83

US
Raw ARMA (1,1) μ = −0.01; ϕ = −0.44; θ = 0.76

Residuals BB Gaussian

V4

France
Raw ARMA (1,1) μ = 11.73; ϕ = 0.99; θ = −0.94

Residuals GJR-GARCH(1,1):α0 = 2.93; α = 0; β = 0.99; γ = 0.26

Morocco
Raw ARMA (1,1) μ = 5.22; ϕ = 0.56; θ = −0.99

Residuals BB Gaussian

Spain Raw μ +
√

htzt : μ = 13.78; ϕ = 0; θ = 0
Residuals GJR-GARCH(1,1):α0 = 3.54; α = 0.21; β = 0.62; γ = 0.32

US
Raw ARMA (1,1) μ = 10.57; ϕ = −0.79; θ = 1

Residuals GJR-GARCH(1,1):α0 = 2.66; α = 0; β = 1; γ = 0.26

Once the innovations are extracted, marginal distributions are identified and copulas
are fitted. It is worth noting that Copulas are fitted with two marginal; the Normal and the
Generalized Pareto distribution (GPD) and by using C-Vines and D-vines approaches.

Tables 3 and 4 present the multivariate dependencies between the different retained in-
dicators (Trade, GDP, Inflation, and Export) among countries (Morocco, Spain, France, and
the US), using D-Vines and C-Vines copulas. From these results, we can have a clear idea
about the different structures of the dependencies, and thus contagion mechanisms, such as
the dependence between exportation in Morocco and exportation in the US given informa-
tion on exportations in Spain and France (Copula (UExport Morocco; UExport US/UExport France;
UExport Spain). For this example, the identified Copula is the survival of Clayton Copula.
The structure of dependence between the exportations in France and the exportations
in Morocco, given the information on the exportations in Spain (Copula (UExport France;
UExport Morocco/UExport Spain) is as Gumbel Copulas. Both Gumbel and Survival Clayton are
considered as extreme value Copulas. The consequence of these findings is that the impact

169



Eng. Proc. 2023, 39, 70

of the contagion is remarkable at the extremes, characterized by subsequent rapid spread,
significant severe losses, spillovers, and high contagion risks.

Table 3. Copulas fitting (marginals are considered Normal distributions).

Copulas
Designation

(D-Vines)
Copulas
Family

Designation
(D-Vines)

Copulas
Family

c32 UExport spain; UExport Morocco t UGDP Spain; UGDP Morocco t
c13 UExport France; UExport spain t UGDP France; UGDP Spain t
c41 UExport US; UExport France Normal UGDP US; UGDP France Survival Gumbel

c12,3
UExport France; UExport Morocco

/UExport spain
Gumbel UGDP France;

UGDP Morocco/UGDP Spain

Rotated Gumbel
90 degrees

c43,1
UExport US;

UExport Spain/UExport France

Rotated Clayton
270 degrees

UGDP US; UGDP Spain/
UGDP France

Joe

c24,13

UExport Morocco;
UExport US/UExport France;

UExport Spain

Survival
Clayton

UGDP Morocco; UGDP US
/UGDP France; UGDP Spain

Rotated Clayton
270 degree

Copulas
Designation

(D-vines)
Copulas
Family

Designation
(C-vines)

Copulas
Family

c32 UInflation spain; UInflation Morocco Normal c12: Utrade France; Utrade Morocco Normal

c13 UInflation France; UInflation spain Frank c13 : Utrade France; Utrade spain
Survival
Gumbel

c41 UInflation US; UInflation France Guassian c14 : Utrade France; Utrade US Survival BB7

c12,3
UInflation France;

UInflation Morocco/UInflation spain
Frank c24;1 : Utrade Morocco;

Utrade US/Utrade France
Survival Clayton

c43,1
UInflation US;

UInflation Spain/UInflation France
t c34;1 : Utrade spain;

Utrade US/Utrade France
Survival Clayton

c24,13
UInflation Morocco; UInflation US/
UInflation France; UInflation Spain

Frank c23,14 : Utrade Morocco;
Utrade Spain/Utrade France; Utrade US

Rotated Joe
90 degree

Table 4. Copulas fitting (marginals are considered GPD).

Copulas
Designation

(C-Vines)
Copulas
Family

Designation
(C-Vines)

Copulas
Family

c31 UExport Morocco; UExport France t c21: UInflation Spain; UInflation France Joe
c32 UExport Morocco; UExport Spain t c32 : UInflation US; UInflation spain Joe

c21;3
UExport Spain;

UExport France/UExport Morocco
Survival Joe c31;2 : UInflation US;

UInflation France/UInflation Spain
Survival Gumbel

c2,1 UGDP Spain; UGDP France Survival BB7 c1;2 : UTrade France; UTrade Spain Joe
c3,2 UGDP US; UGDP Spain Joe c3;1 : Utrade US; Utrade France Survival BB7

c31,2 UGDP US; UGDP France/UGDP Spain Joe c32,1 : Utrade US;
UtradeSpain/UtradeFrance

Joe

For Inflation, it is worth noting that most fitted Copulas are Gaussian Copulas, which
means that the structure of the dependence is not strong at the extremes such as different
crises. This is because the inflation is controlled by central banks that have different visions
and implement different adequate policies to maintain the inflation controlled.

4. Conclusions

The dependence on financial markets during a period of extreme fluctuations has
received considerable attention within the literature. In the same context, the main con-
tribution of this work is to understand the structure of dependence between different
pertinent variables that can be used, to explain the contagion of financial Markets. Financial
contagion can be defined as the spread of an economic crisis from one market or region to
another so, events in one market can affect other markets.

In this study, the used methodology is based on the GARCH-EVT Copula approach.
Copula modeling is a popular tool for analyzing the dependencies between variables.
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It allows the investigation of tail dependencies and the specification of models for the
marginal distributions separately from the dependence structure and more specifically,
the Copula co-movements capture how shocks in a particular market may transcend to
other currency markets. These implications are of particular interest in risk, survival
applications, and prediction of financial contagion. More recently, there are different
empirical applications of Copula-based methods in economics, due to the flexibility of
the approach and the gain in terms of the computational complexity of estimation. Our
findings starkly highlight the adequacy of two copulas. The first one; the Normal Copula,
is appropriate for the inflation while the second is suitable for trade, exportations, and
the GDP. It is worth noting that the normal copula provides a general linear form of the
dependence and captures a general form of the dependence, while the survival Clayton
Copula characterizes the dependence in the extremes.
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Abstract: This study compares three methods for optimizing the hyper-parameters m (embedding
dimension) and τ (time delay) from Taken’s Theorem for time-series forecasting to train a Support
Vector Regression system (SVR). Firstly, we use a method which utilizes Mutual Information for
optimizing τ and a technique referred to as “Dimension Congruence” to optimize m. Secondly, we
employ a grid search and random search, combined with a cross-validation scheme, to optimize
m and τ hyper-parameters. Lastly, various real-world time series are used to analyze the three
proposed strategies.

Keywords: Taken’s Theorem; time-series; SVR forecasting; mutual information; dimension
congruence; random search; grid search

1. Introduction

Several complex phenomena are often modeled as a sequence of states. This sequence
is known as the phase space. A time series is a finite sequence of states in a dynami-
cal system measured directly or indirectly. A relevant approach to perform time series
analysis is Taken’s embedding theorem [1], which states that, from a sequence of states
S = {yt1 , yt2 , . . . , ytn} (i.e., time series) in a dynamical system, it is possible to generate all
the system’s phase space U. More specifically, for a sequence of observations x of dimension
m (embedding dimension) and a constant τ (time delay), there exists a function f such as:

y(t) = f (x) = f [y(t − τ), y(t − 2τ), . . . , y(t − (m − 1)τ)] (1)

From Equation (1) it can be inferred that, given a time series S, it is possible to predict
the state at time t (hereafter, yt) by using m previous observations sampled at frequency
τ. The two problems, and their solutions, are the following: (1) the function f is often
too complex to be found analytically, which is when machine learning algorithms comes
into play with the objective of using a supervised learning algorithm to learn f ; (2) it
is necessary to find the correct modeling for the time series, i.e., the optimal values for
m and τ, for which Random search, Grid search, and Mutual information + Dimension
Congruence can be used.

2. Theoretical Background

Given Equation (1), the first task is to find the optimal value for the time delay τ and
embedding dimension m.

Eng. Proc. 2023, 39, 71. https://doi.org/10.3390/engproc2023039071 https://www.mdpi.com/journal/engproc173



Eng. Proc. 2023, 39, 71

2.1. Mutual Information

Regarding the τ, in [2] Cao, L. proposes using mutual information. The process relies
on making y(t) and y(t − τ) as independent as possible to maximize the information
obtained from each variable in the reconstruction of the phase space. To achieve this, the
mutual information function (2) can be applied:

Iτ = ∑
Ω

P(Ni+τ |Ni) ln
(

P(Ni+τ |Ni)

P(Ni+τ)P(Ni)

)
(2)

Note the similarity of this with entropy, i.e., this function measures how surprising it
is that Ni+τ results, given that Ni resulted, i.e., when Ni+τ and Ni are very independent,
then Iτ ≈ 0. To find the τ it is, therefore, enough to minimize the function (2).

Once the τ is fixed, it is necessary to find the embedding dimension m. The latter is
achieved by using the false neighbors [2] to determine the dimension congruence.

2.2. Dimension Congruence

The aim of this procedure is for the distances between neighbors (data close to each
another) on dimension m of Equation (1) to be constant. To this end, firstly, the distance
E(i, j, m) between y(t) and y(t′) in the dimension m is defined as the maximum between
the differences of their components, as in Equation (3):

E(t, t′, m) = max
(k,l)∈[0,m−1]

|y(t − kτ)− y(t′ − lτ)| (3)

Now, we can say that the nearest neighbor of y(t) is y(t′) if t′ is satisfied such that:

E(t, t′, m) = min
t′′∈[0,n−mτ],t′′ �=t

E(t, t′′, m) (4)

where n is the sample size, it is worth mentioning that t′ depends on t so we call it t′(t) and
then we define the “nearest neighbor” congruence of y(t) in m as:

F(t, m) =
E(t, t′(t), m)

E(t, t′(t), m + 1)
(5)

Note that in F(t, m) ≈ 1 if y(t′(t)) is sufficiently congruent being the nearest neighbor
of y(t) in m, there is the possibility to define the “dimension congruence” of m as follows:

G(m) =
1

n − mτ ∑
t∈[0,n−mτ]

F(t, m) (6)

In summary, the dimension congruence measures how true it is that the nearest
neighbors continue to be nearest neighbors as the dimension increases, which is useful,
given the assumption that there is an attractor in the system under study [2].

In this work, m was selected as lower m satisfying G(m) > 0.95. As alternative
strategies to find m and τ, Evolutionary computation algorithms, Random Search(RS) and
Grid Search (GS) can be used. In this paper we focus on comparing Mutual Information
+ Dimension Congruence with RS and GS, given [3], which states that random search is
good enough for parameter optimization.

2.3. Random Search

Let f be a model that depends on a parameter λ. The random search method [3]
involves defining a range (a0, a1) for λ, a probability distribution g : (0, 1) −→ (a0, a1), and
the number of values to be tested. Then, n parameters λ1, λ2, λ3, . . . , λn are drawn from the
distribution g, and the behavior of each of the corresponding models fλ1 , fλ2 , fλ3 , . . . , fλn
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is evaluated by computing a fitness function. The best-performing model, fλi , is selected
based on the fitness value.

2.4. Grid Search

In contrast with random search, the grid search method [4] involves sampling λ
values equally spaced in the range (a0, a1), specifically, λ1 = a0 +

1
n , λ2 = a0 +

2
n , λ3 =

a0 +
3
n , . . . , λn = a0 +

n
n = a1.

From Figure 1 we can appreciate the differences between random search and grid search.

Figure 1. Differences between Random Search and Grid Search.

Having described the procedures for finding m and τ, it is time to describe the fitness
measures used.

2.5. Fitness Function

The Mean Absolute Percentage Error (MAPE) is the fitness function determining the
optimal value for parameters m and τ. Additionally, the Mean Squared Error (MSE) and the
Coefficient of Determination (R2) were used to compare the three optimization procedures
with MAPE. For completeness, a brief description of each one is provided.

2.5.1. MAPE

MAPE [5] is a widely used measure in time series forecasting and seems to yield good
results. Note that in Equation (7) MAPE takes the average of the absolute value of the
errors expressed as a percentage of the actual value, and if it approaches 0 the better the fit,
while if it approaches ∞ the worse the fit.

MAPE =
1

n − e

n

∑
i=e+1

∣∣∣∣Ni − N̂i
Ni

∣∣∣∣ (7)

2.5.2. MSE

Ref. [6] is the average of the squared errors. If the model fits perfectly then MSE = 0.
The closer it is to ∞ the worse it is. It is computed by using Equation (8):

MSE =
1

n − e

n

∑
i=e+1

(
Ni − N̂i

)2 (8)
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2.5.3. R2

Ref. [7] calculates the ratio between the model’s variance and the actual data’s variance.
In other words, it ascertains how similar the predicted and actual data variances are. If they
are equal, R2 is equal to 1, which means the model fits perfectly. The worse value for R2 is
−∞. To find R2 Equation (9) is used:

R2 = 1 − ∑n
i=e+1

(
Ni − N̂i

)2

∑n
i=e+1(Ni − N̄)

2 , N̄ =
1

n − e

n

∑
i=e+1

Ni (9)

Finally, in the next section we describe the models we used for the experiments.

2.6. Support Vector Regression Algorithm (SVR)

The SVR algorithm is based on Support Vector Machine (SVM) Algorithm [8]. SVM is
an algorithm for separating samples depending on the class they belong to. The algorithm
works by increasing the size of the sample space via a kernel, and in that larger size, three
parallel hyperplanes are constructed, separated by an ε distance each. The main idea is to
optimize the kernel and the hyperplanes so that only a small number of samples, controlled
by the parameter ξ, are outside the region to which they belong, i.e., the samples of one
class belong to one side of the hypertube and those of the other class belong to the other
side of the hypertube.

On the other hand, SVR aims for all the samples to be inside the hypertube and only a
small amount of samples to be outside the hypertube, controlled by the parameter ξ, and,
thus, uses the image of the central hyperplane projected in the original space to predict
future values of the time series.

• S, Hε and Hε are the parallel hyperplanes.
• Hε is located at a distance ε above S.
• H−ε is located at a distance ε below S.
• Then Hε and H−ε form the hypertube
• The quantity 1

2‖�w‖2 + C ∑n
i=1‖�ξi‖ is the minimum possible, subject to |N′

i − �w · �xi| <
‖�ε‖+ ‖�ξi‖
Where �w is the SVR kernel weight and �ξi is the distance that the i-th data moves away

from the hypertube, while C is a regularization parameter.
Note how the larger c is, the less freedom the data have to move out of the hypertube.

The idea is to find a hypertube that approximates the data.

3. Experiments and Results

The study focused on six real-world time series, each representing a measurement
of a real-world phenomenon. The aim was to examine more complex time series than
artificially generated ones. The selected time series displayed a wide range of characteris-
tics, including exponential and moderate growth patterns, general trends, and horizontal
patterns. The goal was to evaluate the generalization ability of the proposed methodologies
by considering time series with diverse characteristics. Below is a brief description of each
of the time series used.

3.1. SARS-CoV-2 in Mexico (COV)

The time series data for this study was obtained from the General Direction of Epi-
demiology (https://www.gob.mx/salud/documentos/datos-abiertos-152127 (accessed on
19 December 2022)). It consists of the confirmed and suspected COVID-19 cases in Mexico.
The data spans 1025 days, and the number of confirmed cases per laboratory ranges from 0
to 9800. The data were normalized such that the number of cases fell from 0 to 1. For the
purposes of this study, this time series is referred to as COV. Figure 2a depicts the evolution
of the COV time series.
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(a) Evolution of SARS-CoV-2 in Mexico (b) Evolution of the Bitcoin Price

Figure 2. Covid and Bitcoin.

3.1.1. Bitcoin Price on Bitfinex (BIT)

This time series comprises daily variations in the price of Bitcoin in dollars, recorded
on the Bitfinex platform between February 2012 and January 2023 (The data is available
at https://www.investing.com/crypto/bitcoin/btc-usd-historical-data (accessed on 10
February 2023)). The dataset includes the daily high and low prices. The average price
is computed as (minimumPrice + maximumPrice)/2. The time series were normalized
between 0 and 1 for consistent analysis with the other time series used in this study.
Figure 2b displays the evolution of the BIT time series.

3.1.2. Air Temperature in Acuitzio del Canje (TEM)

This time series consists of temperature data recorded by the MXN00016001 weather
station located in Acuitzio del Canje between 2004 and 2007 (The data was obtained from
https://www.ncei.noaa.gov/ (accessed on 15 January 2023)). The dataset comprises 1401
data points of daily minimum and maximum temperatures. The average temperature
is calculated as (Tmax + Tmin)/2. The data is recorded in degrees Fahrenheit and was
subsequently normalized between 0 and 1 for comparison with other time series in this
study. The evolution of the TEM time series is depicted in Figure 3a.

(a) Evolution of Air Temperature (b) S&P 500 Index

Figure 3. Temperature and S&P.

3.1.3. S&P500 Index

The S&P500 index series (Data was sourced from: https://datahub.io/core/s-and-p-
500 (accessed on 11 February 2023)) is a monthly measurement of the value of the S&P500
stock index, which represents the 500 most valuable companies in the United States. It
consists of 1768 monthly value data points calculated from 1871 to 2018. The data was
normalized for analysis between the range of (0, 1). Figure 3b shows the evolution of the
S&P500 index graphically.
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3.1.4. Seismic Activity in Michoacán

This series comprises seismic activity recorded by the National Seismological System in
Michoacán (The time series is available at the following URL: http://www2.ssn.unam.mx:
8080/catalogo/ (accessed on 22 January 2023)). The values cover the period from 1988 to
2023. This time series was of interest as the data was not evenly spaced. One possibility
was to summarize the data to create an indicator to identify “how active each month was”.
However, for our study, the original sampling frequency was maintained. Each event
is a numerical value representing its magnitude in Richter scale degrees and consists of
17,500 data points, which were normalized between (0, 1). Figure 4a graphically depicts
these data.

(a) Seismic Activity in Michoacán (b) Carbon Dioxide Concentration.

Figure 4. Seismicity and CO2.

3.1.5. Atmospheric Carbon Dioxide Concentration

This is a series of daily atmospheric carbon dioxide (CO2) concentration measurements
taken at the Barrow Atmospheric Baseline Observatory (Data obtained from https://
www.co2.earth/daily-co2 (accessed on 9 February 2023)) in the United States. The CO2
concentrations are reported in parts per million (ppm) and cover the period from 1973 to
2021. To facilitate the analysis and interpretation of the data, all the values were normalized
to the range of (0, 1).

Figure 4b shows this time series.

3.2. Experimental Setup

For each of the analyzed time series, the parameters m,τ, and the parameters C and ε
for the SVR were optimized. Three strategies were used: mutual information + congruence,
grid search, and random search. The flow diagram in Figure 5 summarizes the process.

Figure 5. Flow diagram of each procedure applied to each time series.
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The diagram in Figure 5 illustrates the general overview of the three procedures
applied to each time series. It is noteworthy that the final outcome for each time series were
nine goodness of fit measures. These measures were then used to compare the procedures.
Before diving into the specifics of each process, it is essential to consider a few key points.

The data were divided into three sets:

• Set A1 contained the last 5% of the data to be used for testing and calculating the
model’s fitness.

• Set A2 contained the last 5% of the data once set A1 had been removed, to be used for
hyper-parameter tuning.

• Set A3 consisted of the remaining data to be used for training the parameters.

All of the models used were Support Vector Regression (SVR), and for the SVR C and
ε hyper-parameters, the following applied:

• Grid search was used to find the C and ε for all SVR models.
• The grid for C values was in C = [0.1, 1, 10, 100].
• The grid for ε values was E = [0.001, 0.01, 0.1, 1].

For RS and GS of τ and m, the following conditions were met:

• The sets Ti, Mi contained all possible values of τ and m for each time series, and
each procedure (Random Search and Grid Search) had 20 elements (for computational
capacity reasons).

• The infimum of these sets was always 2.
• The supremum was always int(

√
|Ω| − 10) (so that m ∗ τ < |Ω|).

• The distribution used for the random search was always uniform.

With this in mind, the procedures used to search m (dimension of the reconstructed
phase space) and τ (delay) were:

• Mutual information + dimension congruence:

1. Find τ using the mutual information function from Equation (2) on A2 ∪A3, and
take the minimum.

2. Find the embedding dimension by selecting the first m that satisfies G(m) > 0.95
in Equation (6) with the obtained τ on A2 ∪A3.

3. Train all possible SVRs determined by the elements of C×E on A3.
4. Select the model having MAPE on A2 which is the minimum.
5. Measure the goodness of the selected model using MAPE on A1.

• Random search and grid search:

1. Use each element of C×E×Ti ×Mi to train |C||E||Ti||Mi| = 4 ∗ 4 ∗ 20 ∗ 20 =
6400 models on A3.

2. Select the model having MAPE on A2 which is the minimum.
3. Measure the goodness of the selected model using MAPE on A1.

It is worth mentioning that the parameter space in both the grid search and the random
search was not very large due to the lack of hardware. It is to be expected that enlarging
the size of these spaces would improve the results.

Upon completion of the procedures, a comparison was made by evaluating the distri-
butions generated by each of the fitness measures obtained by each proposed method.

3.3. Results

Table 1 shows the results for the three metrics. The MAPE, R2 evaluation, and MSE,
best results are boldfaced. For instance, in the series “BIT” GS was the best procedure with
respect to MAPE, but also with respect to R2 and with respect to MSE. As you can see,
there was no procedure that was always better than another. There were some series where
RS and IC were better than RS. However, it is essential to clarify that even though GS had
better results, it is a brute force algorithm, in that, although it has better optimizations, the
computational cost is too high (RS and GS take in the order of hours, while IC takes in
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the order of minutes, on a i9 7th generation). From the results, it is recommended to work
with IC to optimize the τ and m parameters, and, for the regression system parameters,
to use RS. It is relevant to point out that IC is the fastest, while it provides a competitive
prediction performance.

Table 1. Quality measurements for each time series made with each one of the proposed optimization
strategies.

Series MAPE-RS MAPE-GS MAPE-IC R2-RS R2-GS R2-IC MSE-RS MSE-GS MSE-IC

COV 3.6714 8.9901 5.6877 −3.4295 −41.4618 −11.4179 0.0005 0.00511 0.0014
BIT 0.228 0.1566 0.2656 −3.016 −1.026 −4.383 0.0046 0.0023 0.0061

TEM 0.265 0.1973 0.02007 −2.537 −0.3787 −0.4936 0.0283 0.011 0.0119
S&P 0.525 0.508 0.5368 −5.642 −5.336 −5.851 0.162 0.152 0.165
TEL 0.1447 0.1395 0.14087 −0.1595 −0.1061 −0.1011 0.001895 0.001808 0.001800
CO2 0.0526 0.0491 0.0619 0.2866 0.3706 −0.0578 0.0027 0.0024 0.004

Figure 6a–c suggests that GS had better results, both in its mean and dispersion.
However, if we look only at IC and RS we observe that when one of the two had a better
mean, it would also have worse dispersion, which indicates that some series work very
well with IC and others with RS, but, in general, it is a good idea to try both methods.

(a) Comparing with R2. (b) Comparing with MSE. (c) Comparing with MAPE.

Figure 6. Boxplots comparing each procedure with different goodness-of-fit measures.

3.4. Future Work

It remains for future work to evaluate the procedures with additional quality measure-
ments. Selecting the model with Mean Squared Logarithmic Error (MSLE) could improve
the predictions. Including the regression system in the optimization could improve the pre-
diction performance, by, for instance, using Naïve Bayes and K-Nearest Neighbor systems.
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Abstract: At the starting point of this case study, a garrison hospital performed an assessment of
the need for treatment when the number of conscripts queuing at reception is at its highest level.
The research aims to find out the reasons for conscripts’ perceived long waiting times, which causes
absence from the conscripts’ training. According to the predictions made by the queuing simulation,
the hospital’s staff are able to receive patients arriving at reception in the morning without the queue
time causing undue harm to training. However, during large congestion peaks, the waiting times
may become unreasonable, which would require an increase in human resources. Peaks of congestion
usually occur at the beginning of the week, as well as on days with heavy military training.

Keywords: hospital; conscript; queue; simulation

1. Introduction

The modelling of health care resources is especially important after a time of crisis,
which is the case for example after a pandemic. Indeed, COVID-19 has had a significant
impact on health care in Finland. According to the Finnish Institute for Health and Welfare
(THL), the number of hospital visits due to COVID-19 increased a lot between March and
April 2020 [1]. In addition, there was an increase in waiting times for specialized health
care ([2], Figure 7). The pandemic also put a strain on personnel resources within the health
care system, with many of the staff reallocated from other departments or working long
hours to cope with demand.

In the defense forces, the general service regulations (YLPALVO) define the following
for those performing health care services: “The defense forces are responsible for organizing
the health care of conscripts in service, women performing voluntary military service and
students being trained for military service, as well as those participating in voluntary
exercises and supervised shootings of the defense forces and training ordered from the
National Defense Training Association. The health care of the Defense Forces is open health
care by nature. Nurse and doctor appointments are arranged according to local special
conditions, needs, and resources. The goal is to use health care methods to secure the
service safety of the persons under the care of the Defense Forces. A conscript in service
has the right to medical examination by a healthcare professional without unnecessary
delay. Dental care is organized in accordance with local needs and conditions, either as the
Defense Forces’ own activity or as a purchased service.” ([3], pp. 42–43).

Here, we use a simulation to show the effects of alternating queuing conditions for
health center operational status. In order to establish our simulation model, we used
queueing theory, which is the mathematical study of queues [4]. This study is also part
of operations research since we use the simulation results to make decisions about the
resources needed to provide a service.
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Queueing theory is important because it helps to identify and analyze the queues that
form in many different systems. It provides insights into how to manage queues, as well as
how to allocate resources so that serving customers is effective with minimal waiting times.
Queueing theory has applications in many areas such as healthcare, telecommunications
networks, airport check-in, computer processing, traffic control systems, manufacturing
processes, etc. If one understands the principles of queueing theory, one can make better
decisions when it comes to resource allocation and customer service management. Earlier,
we used queueing theory in the Finnish Defence Forces (FDF), for example, in the modelling
of custom inspections in [5] and in the tactical warfare simulator SANDIS, which uses
Markov chains [6].

The main factors of queueing theory are [7]:

1. Arrival rate—the rate at which customers or jobs enter the system.
2. Number of service channels—the number of servers or machines available to process

requests from customers in the queue.
3. Queue discipline—the serving order of customers, such as first come, first served

(FIFO) or last in, first out (LIFO).
4. Service rate—the service rate of customers or jobs.
5. Queue length—the number of customers waiting in line to be served by the service facility.
6. Utilization—a measure of how busy a resource is, typically expressed as a percentage

of its capacity (e.g., 80% utilization).
7. Waiting time—the amount of time that elapses between when a customer arrives and

when he/she is served by the service facility.
8. Throughput—the average number of customers or jobs processed per unit of time

(e.g., per hour).

In medical services, we use queue theory to help optimize the efficiency of patient
care. To achieve this, we manage waiting times, prioritize patients based on their need for
treatment, and analyze how changes in staffing or scheduling affect the overall efficiency
of a facility [8]. Queue theory helps healthcare providers balance demand with resources
by helping them understand how many beds they need, when they should schedule staff
shifts, and where they should allocate additional resources. Queue theory can also forecast
future patient loads so that facilities can plan accordingly.

This work deals with the use of the health care services of a garrison health center by
those performing their military service from the point of view of the time spent waiting in
line. We investigate the capacity of the health center and the effect of “peak congestion” on
service times. We find out what would be the optimal number of reception points, without
the need for resources changing significantly. The aim is to model the current situation
as accurately as possible, from the perspective of how long a conscript waits for access to
receive treatment in normal situations and during peak traffic.

2. Problem Description

We investigated the ability of the Finnish garrison hospital of the Kainuu brigade to
perform an assessment of the need for medical treatment when the number of conscripts
(max. 600) queuing at reception is at its highest level and the ratio of patients to nurses
is at its maximum level. The aim of the study is to illustrate with which nurse capacity
the duration of treatment queues could be at such a level that all conscripts queuing at
reception in the morning would be able to return to their basic unit service during the
morning. The starting point of the review is how to serve conscripts registered for the
morning health check-up within the 120-min time window. The purpose of the work is
to investigate the capacity of the health center’s queuing services and the effect of “traffic
peaks” on service times. We are looking for an answer to the question of what the optimal
number of reception points would be without the need for resources changing significantly.
We model how long a conscript waits for access to the evaluation of the need for treatment
in normal situations and during peak traffic.
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Here, we studied patients from the moment they sign up for the morning reception.
The observed queue begins to form from the moment when the conscript reports their need
for treatment and reaches the nurse’s preliminary check-up and the doctor’s check-up if it is
necessary. The reviewed queue ends when a medical professional has assessed the person’s
state of health. The research aims to find ways to reduce the time spent in the queue. The
morning reception starts at 07:00. In terms of the smooth running of conscript training,
persons capable of service must return to service within two hours. We are investigating
whether it is possible to serve all conscripts within 120 min: how many conscripts can we
examine and what number of nursing staff does this require?

3. Model and Results

The queuing mechanics of the garrison hospital can be thought of as a single queue
with several servants and stages. The behavior of the queue can be described using certain
expectation values. The parameters needed for the calculation are the number of customers
joining the queue per time unit and the average number of customers served per time unit.
The subject under review is the Kainuu brigade and the healthcare services provided by its
health center. The service regulations of the Kainuu brigade dictate the following when
registering for the morning reception of basic units:

• To register for the morning reception, the conscript reports to the unit’s duty officer
after waking up.

• The health center calls through the units and collects the preliminary strengths of those
who come to the reception by unit.

• Conscripts registered for the morning reception do not take part in the day’s service
and wait in their rooms until the unit’s personnel are ordered to the health center for
their turn.

• Those who have signed up for the reception of the first three basic units of the breakfast
shift of the Kainuu brigade will go directly from breakfast to the reception.

• Other units are called to the reception systematically, and the health center schedules
their arrival.

The queue model is defined here by the following five rules:

A: How to join the queue? Since all conscripts aiming for the morning reception start
queuing when they report to the duty officer of their unit immediately after being
woken up, in queue modeling, everyone starts queuing at the same moment. The
method of joining the queue does not involve a statistical distribution and therefore
does not affect the modeling values. In the modeling, it has been assumed that the
customers are in a queue together and they are served at the next free service point in
order of arrival. There is therefore no queue for each service point.

B: How to exit the queue? You leave the queue after the treatment time is over. In the
modeling of the queue, the treatment duration is normally distributed so that the
average is 2.0 min and the standard deviation is 0.5 min.

C: Number of service channels. This study examines the garrison hospital’s ability to
process patients in a given time, where the analysis involves changing the number of
service places to achieve the most optimal outcome.

D: Maximum queue length. The maximum length of the queue has been defined as 600
people because according to experts, this is the longest queue formed at the KAIPR
garrison hospital.

E: Queuing principle. The queue at the garrison hospital works with the first in, first
out (FIFO) method, i.e., the first customer in the queue is also the first to leave the
service point. The model does not take into account the fact that the customer could
leave the queue in the middle of queuing, as this is practically not possible for on-duty
personnel. It is also not possible to skip the queue, and acute cases do not even enter
this queue.
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Here, it is not meaningful to calculate the load factor of the queue because every
customer starts queuing at the same time. After the customer joins the queue, they are
taken care of anyway. The purpose of the modeling is to find out by what means the total
duration of the queue can be made as short as possible.

In the simulation model in Figure 1, the “waiting time” column shows when the
conscript can get to reception. The model takes into account the fact that the first conscripts
get to the nurse immediately, without queuing. Half a minute has been added to the
waiting time after each person on duty so that the nurse has time to invite a new patient in
before the start of the treatment period. In addition, the breaks taken by the nurses have
been taken into account by adding 15 min at 60, 120, and 180 min for each service point. At
present, a maximum of 15 nurses can be provided to the health center, and in the worst
case, all 500 conscripts would feel sick.

 
Figure 1. An Illustration of the simulation model of the garrison hospital.

4. Results

Table 1 reflects the current efficiency and personnel situation of the garrison hospital.
The research wanted to examine the actual maximum strengths, so field nurses have also
been included in the nurse strength from the enhanced strength onwards.

Table 1. The largest possible number of patients with the current nursing staff.

Normal Strength
(3–5 Nurses)

Enhanced
Strength

(10 Nurses)

Maximum
Strength

(15 Nurses)

Max patients (2 h) 70–115 230 350
Max patients (4 h) 130–220 430 645

Table 2 shows the number of nurses needed at different times. If the need for treatment
is assessed in two hours, the conscript still has time to participate in afternoon training. If
the assessment takes more than four hours, the conscript does not have time to participate
in training for the whole day.
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Table 2. The required number of nurses in different situations.

Minimum
Patients

(10)

Normal
Patients (50)

Large Patients
(200)

Maximum
Patients

(550)

Required nurses (2 h) 1 3 9 24
Required nurses (4 h) 1 2 5 13

5. Discussion and Future

Most of the garrisons in Finland, like the Kajaani brigade considered here, are large
entities comprising several basic units centrally served by the garrison health station. Thus,
we can conclude that the modeling carried out here gives a sufficiently accurate overview
for identifying problem points. According to the results of the research, the hospital’s
staff are able to receive patients arriving for the morning reception without the waiting
time causing undue harm to training. This means an absence of less than two hours from
training due to queuing. This is realized when the total number of arriving patients is a
maximum of approximately 250 patients. At peaks of congestion, where the number of
patients can rise to more than 500 patients, the capacity of the garrison health center is not
sufficient to keep the waiting times reasonable. This would require an increase in human
resources. Congestion peaks occur especially after returning from holidays and on days
with heavy outdoor training. The research aimed to observe the reasons for conscripts’
perceived long waiting times, which partly cause unnecessary absences from training.
Based on the research, it is possible to examine the current system and evaluate its ability
to cope with the number of customers. However, the research does not provide practical
answers as to how to correct the observed problems. This is because health care is very
carefully regulated both by law and by the Defence Forces’ own regulations. Consequently,
the effects of all changes must be evaluated from the perspective of the patient’s legal
protection, for example. This modeling clearly supports the existence of the problem.
Solutions to the problem should be explored with further research. This new research
should focus on how congestion peaks in particular could be smoothed out by referring
non-urgent patients to other days based on advance reservations.
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Abstract: The forecast of the generation of electrical energy from the solar resource is associated
with its uncertainty due to the meteorological variations that it presents. Solar power generation
forecasts are important for the efficient operation of solar plants. This article shows a methodology
entailing a multilayer neural network with backpropagation and input data from a model with
time lag coordinates for a horizon of 24 h and beyond. The neural network model was compared
with statistical and prediction models numerical time, resulting in a MAPE of 0.57% and a MAE of
69.29 W.

Keywords: forecasting; power energy; neural network

1. Introduction

Currently, economic development has increased disproportionately, causing greater
energy demand throughout the world, putting the supply and demand of it at risk. To
satisfy the need for energy, sources of conventional origin have been exploited; however,
these compromise the health of living beings and the environment, which is why the use of
sources of renewable origin with a low carbon ratio has been proposed [1].

Photovoltaics is an affordable, free, and easily accessible energy type that has proven to be
a clean renewable source and is found in abundance almost everywhere in the world. Its use
has increased in recent years, being incorporated into the energy repertoire in different parts
of the world [2]. In 2021, fifty countries generated a tenth of their electricity from renewable
sources, with photovoltaic energy standing out. In 2020 there were only 43 countries and
in 2019 there were 36 [3], which indicates that more and more countries are betting on
the development of research in the use of photovoltaic energy; however, this brings with
it particular challenges posed by the intermittent origin of such renewable energies, such
intermittency depending on their availability and variability [4].

The use of photovoltaic energy has been one of the topics of interest as a research
objective in recent years. This is due to the growth of the clean energy industry and
the commitments obtained at the United Nations Conference on Climate Change, the
latter seeking the use of energy with a low carbon ratio [5], in addition to the increasing
meteorological events that have directly affected the generation of electric power [6].

Large-scale photovoltaic power plants present difficulties in the management of the
solar resource due to their intermittency, affecting the system of connection to the network,
storage, and distribution; it is, therefore, necessary to protect the system from such adversi-
ties, which is why the search for more accurate and precise forecasts of photovoltaic energy
is the development area of this work [7].
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There are different methods to develop the prediction of electrical energy from re-
newables, such as: statistical models, Numerical Weather Prediction (NWP), Artificial
Intelligence (AI), and hybrid models [8–10]. Each of the previous models has their best use
and their respective areas for improvement.

Statistical models are based on the history of the data, that is, from past observations
characteristics are obtained that help predict future data through the minimization of
errors [11,12]. This approach depends on the quality of the data and their pre-processing;
among the most used are: Autoregressive Models (AR), exponential smoothing model,
Autoregressive Models and Moving Averages (ARMA), Autoregressive Models Integrated
with Moving Averages (ARIMA), Autoregressive Models Integrated with Moving Averages
with Seasonality (SARIMA) [13–15]. The models based on NWP are based on the physical-
mathematical phenomena of meteorological and geological origin through atmospheric
parameters, with their use enabling understanding of the current state of the atmosphere.
The data are extracted through satellite stations and soil measurement devices, with the
measurement instruments requiring constant monitoring and calibration [16,17]. On the
other hand, models based on Artificial Intelligence have been widely used in recent years,
since they allow the prediction of stochastic data so that photovoltaic and wind energy
present such behavior in their observations [18], thus becoming a method that allows its
development and improves its performance. In the case of hybrid methods, they are used
to obtain the best qualities of each of the previously described methods and improve their
performance [19,20].

Photovoltaic (PV) power forecasting is characterized by two types of models according
to the time scale: ultrashort for data from seconds to hours and short term for next day
observations [21]. The first model is used in real time, while the second is for planning
the next day. Currently there are investigations that have been developed with the aim
of providing a good prediction of photovoltaic energy, models have been proposed based
on statistical methodologies, such as the case of models that use a SARIMA technique
to generate information from their data. Past observations are later incorporated into a
multilayer neural network with a backward propagation algorithm, where the selection
of the parameters will achieve a prediction to an ultra-short horizon. Neural networks
with short-term memory are a widely used technique due to their performance capacity;
however, this type of network is improved with the contribution of other techniques.
This is the case of models that use a convolutional neural network as a base [22], which
is a type of classifying network. On the other hand, within the prediction models of
photovoltaic energy, artificial intelligence techniques are used, as is the case of supervised
learning machines that pre-treat their input elements and incorporate a linear regression
for the correlation of their data [23]. There is a classification according to the efficiency of
photovoltaic energy prediction models in which, according to the mean absolute percentage
error, it establishes that the models that present a value less than 10% are accurate and
reliable, a value between 10–20% indicates a good prediction, 20–50% means a reasonable
prediction, and more than 50% indicates an inaccurate model [24].

The prediction models of photovoltaic energy are important and fundamental to avoid
possible penalties to the operators of the photovoltaic power generation plants, reduce the
risks of their connection to the electrical grid, and specify the use of energies with a low
carbon ratio [25]. Its study is necessary for the development and fulfillment of the goals
established to reduce climate change, as there are still areas of opportunity that must be
explored to improve the performance of forecast models. Hybrid models have been shown
to be capable of improving PV power prediction performance; however, they are not yet
fully explored for development in research. Given the technological advances that have
been developed in recent decades, this paper shows a methodology of a hybrid method
that establishes:
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• A technique that combines PV power prediction methods for a short-term scale for
large amounts of data.

• The development of a model for the prediction of photovoltaic energy through neural
networks that will have as input information the data of an embedding model with
delay coordinates and will be compared with a clear sky model and a SARIMA.

• Finally, the proposed model will be validated with real data from a photovoltaic plant.

2. Materials and Methods

2.1. Data Acquisition

The acquisition of the database was obtained through the Solar Radiation Monitoring
Laboratory of the University of Oregon, a free source that allows visualization of experi-
mental data from its research projects. Figure 1 shows a satellite image of the photovoltaic
array installation used as the objective of this investigation, which corresponds to daily
observations of a system [26].

    
(a) (b) 

Figure 1. Area of the study experiment. (a) The red line shows the array of a photovoltaic system in
Ashland; (b)the red circle show the location of the photovoltaic array has a latitude of 42.19 and a
longitude of 122.70 at an altitude of 595 m.

The database has 315,648 observations with a horizon resolution of every five minutes,
the information period of the observations is from 1 January 2018 00:00 to 30 November
2021 23:55. Table 1 presents six variables of the photovoltaic array that were used to carry
out the present experiments.

Table 1. Variables extracted by Solar Radiation Monitoring Laboratory of the University of Oregon.

Variables Units

Global radiation Wh/m2

Direct radiation Wh/m2

Diffuse radiation Wh/m2

Power W
Wind speed m/s
Temperature ◦C

Figure 2 shows the time series of the first 2000 observation of the power variable. The
behavior of the series is cyclical.
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Figure 2. Time series of the power a photovoltaic system.

The time series has a total of 1283 missing data, which corresponds to less than 10%
of the total data, so a data imputation was applied by taking the last observation into
consideration for the periods of missing hours. Table 2 shows the percentage of missing
data according to the database variables.

Table 2. Missing time series data.

Global Radiation Power Wind Speed Temperature

0.28% 0.39% 0.23% 0.13%

Once the time series was completed, the following experiments were carried out in a
sequential form:

Clear Sky Model
SARIMA Model
Lag Coordinate Embedding Model
Multilayer neural networks

2.2. Clear Sky Model

A clear sky model is based on the calculation of solar radiation transfer through
algorithms designed for the simulation of the wavelength in the physical interactions
between solar radiation and atmospheric particles. Equation (1) shows the calculation of
global solar radiation:

G = GCS × τc (1)

where G is the global solar irradiance ( W
m2 ), GCS is the global irradiance of the clear sky ( W

m2 ),
and τC is the transmissivity of the clouds that model the system. To carry out the clear sky
model, the apparent instantaneous movement of the sun was calculated using the equation
of Cooper: the angle of inclination δ establishes the amount of solar radiation that reaches
the earth, which is inversely proportional to the square of the distance from the sun [26].
Equation (2) shows the magnitudes to be considered in the angle of inclination according
to the Cooper equation.

δ = 23. 45 sin
[

360
365

(dn + 284)
]

(2)

where dn is an arbitrary day of the year. To calculate the apparent movement of the sun,
the latitude of Ashland was incorporated as reference data, which resulted in the global
irradiance; later, based on the information from the photovoltaic array, an adjustment was
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made to the IV curve of the solar panel according to the characteristics of the manufacturer,
in such a way that the output power of the system was calculated according to each observa-
tion. The clear sky model does not consider specific characteristics of the system or sudden
changes of physical origin, such as: system damage, system maintenance, or a physical
phenomenon with little anticipation, among others, so one of its main disadvantages is its
characterization of ideal conditions of the environment and the system.

2.3. Autoregressive Model of Order Moving Averages with Seasonality (P, D, Q)s

The Integrated Autoregressive Model of Moving Averages of Order with Seasonality
(P, D, Q)s is a combination of the autoregressive models AR (p) and moving averages MA
(q), with seasonality of order p, d, q, with the particularity of including a restoration process
called differences. In addition, it incorporates seasonality as a component for the forecast
calculation of a variable, leaving the following order (P, D, Q)s. It is a model that works
with past observations and has the ability to identify seasonal behavior in a time series.
Equation (3) shows the variables considered for calculating the model:

Yt = ϕ1Yt−1 + · · ·+ ϕp Yt−p + εt − θqεt−1 − · · · θqεt−q (3)

where Yt is the instantaneous moment of the forecast, ϕ is the autoregressive coefficient
together with Yt−p, i.e., the normalized record of the time series to be modeled, θ is
the moving average coefficient with its respective error term of each record, i.e., εt−q.
Calculation of the model commences with the selection of 80% of its observations as
training and the other remaining for testing, followed by a Dickey-Fuller test to identify if
the time series is stationary; if it is not, the differences are calculated for its transformation.

The model obtained an array (4, 0, 3) (0, 1, 0) (288) which indicates that it considers four
autoregressive values and three moving averages of past observations with no difference
in a one-day seasonality, corresponding to 288 observations every five minutes.

2.4. Time Delay Coordinate Embedding Model

A Time Delay Coordinate Embedding model (TDC) consists of mapping the obser-
vations in different phases of space. The TDC model is useful for discovering effective
coordinate systems to represent the dynamics of physical systems. Recently, models iden-
tified by dynamic mode decomposition into time lag coordinates have been shown to
provide linear representations of strongly nonlinear systems. The use of significant models
of complex non-linear systems from measurement data aims to potentiate and improve the
characterization, prediction, and control of observations.

Takens and Sauer [27] established that if the sequence really consists of scalar mea-
surements of the state of a dynamical system, then, under certain assumptions, the time
delay embedding provides a one-to-one picture of the original ensemble, described by the
following equation:

sn−h = f (x)− (m − 1)τ, sn − (m − 2)τ, . . . , sn (4)

where (sn−h) is the time series observed at regular intervals, f (x) is the length of the
time series, (τ) is the time lag, (m) is the number of dimensions in which to embed (τ)sn,
meaning that the time lag of the time series is large enough to provide information for the
next instant in time. Figure 3 shows the structure of the TDC model. The column headers
locate the dimensions of the experiments in the time series dynamically as X_t2 , X_t1 , X_t0 ;
the observation in the current time written as X_t0 and two previous ones, for the forecast
of the following observation, are based on these three observations resulting in h1, yielding
the observation X4; once the predicted value is established, the following observations are
embedded successively within the same matrix.
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Figure 3. The Time Delay Coordinate model (past observations forecasting) Neural Networks.

Figure 4 also shows that, as the displacement of the dimensions given by is advanced,
i.e., X_t2 , X_t1 , X_t0 , the moment will come when there will be no observations that can
continue to return results for the last forecasted observations and will be marked as NA
(absence of data).

Figure 4. Comparison of the time series of the models.

2.5. Artificial Neural Networks

Artificial Neural Networks (ANN) are mathematical models that try to reproduce
the functioning of the nervous system, made up of a set of units called neurons. The
functioning of a neural network depends on the structure selected for its performance. In
the development of the neural network model, it was decided to use a multilayer-type
network, and the information resulting from the TDC model was used as input data in
order to provide more information to the network for its training. In the structure of the
network, different parameters were tested in order to obtain an accurate forecast. The
multilayer neural network had 80% of the training information and the rest was used for
validation. Table 3 shows the structures that had a positive degree of forecast accuracy.

Table 3. Multilayer network structure.

Structure ANN Parameters

Network 1.
Hidden layers (6, 123, 10)
Activation function Hyperbolic tangent
Error threshold 0.01
Algorithm Back propagation
Epoch 100
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Table 3. Cont.

Structure ANN Parameters

Network 2.
Hidden layers (3, 143, 7)
Activation function Sigmoid
Error threshold 0.01
Algorithm Back propagation
Epoch 100

Network 3.
Hidden layers (7, 128, 12)
Activation function Hyperbolic tangent
Error threshold 0.01
Algorithm Back propagation
Epoch 100

3. Results and Discussion

Figure 4 shows a comparison of the models of neural networks with different archi-
tectures in their configuration, SARIMA, and clear sky index with respect to the actual
observations of the photovoltaic array. The observations estimated with each model were
obtained as a product time series with the same cyclical pattern that corresponds to the
generation of electrical energy from the solar resource. The time of the clear sky index
model is the one with the greatest variation compared to the actual observations. Figure 4
shows that the network 1, which has a network architecture and configuration, presents a
fluctuation closer to reality.

The models with different error metrics were evaluated to determine their reliability,
including mean absolute percentage error, mean absolute error (MAE), and coefficient of
determination (R2). Table 4 shows that in the calculation of the MAPE, the model that had
the lowest degree of error was network 1, giving a value of 0.57% compared to the clear
sky index model that had an error of 38.6%, the latter due to the model assuming that,
at all times, the meteorological conditions are stable and there are no technical failures
of the photovoltaic system. In the case of the values obtained for network 2 and 3, there
were variations that depend on the architecture of the grid from the hidden layers and the
activation function. The largest value of the MAE was obtained by the clear sky index with
1096.34 W of deviation compared to the research models; the value of the lowest deviation
was obtained by network 1 with 69.29 W. In the case of the coefficient of determination, the
model that had the best approximation of the estimate with respect to the real value was
network 1 with a value of 0.97, while other models presented greater variation.

Table 4. Forecast error metrics.

Models MAPE MAE MSE R2

SARIMA 9.06% 302.91 313,756.96 0.87
Network 1 0.57% 69.29 82,826.71 0.97
Network 2 1.57% 335.17 1,089,554.92 0.93
Network 3 4.05% 521.73 4,505,871.20 0.91
Sky Index 38.6% 1096.34 28,563,065.34 0.51

The neural network model 1 presented a MAPE value of 0.57%, which indicates
that the performance of the model has a good reliability since it belongs to the range of
0–10%. [24].

4. Conclusions

This paper proposes supplying input data to a back-propagated multilayer neural
network from output data of a time delay coordinate embedding model and comparing
the results with statistical and numerical weather prediction models, as well as different

195



Eng. Proc. 2023, 39, 73

architectures of the neural network. The model of network 1 obtained a MAPE of 0.57%
and an R2 of 0.97, indicating that the model based on multilayer neural networks presents
a good performance in the forecast of solar power.
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Abstract: The aeronautical sector is a vital part of the Brazilian industrial landscape, contributing
to the development of new technologies and production techniques with potential applications in
other industries. However, due to its restricted nature, there are limited studies on implementing
improvements in its systems, highlighting the need for attention in specific subareas of companies in
this sector. One such area is the production planning department, especially the forecasting techniques
applied in the supply chain, which play a crucial role in the operations of any company and are a
determining factor in decision making. The objective of this research is to compare the effectiveness of
various time-series forecasting methods, including classical statistical methods and neural networks.
The study employs a real-time series that depicts the consumption of a specific material extensively
used in the production line of a major Brazilian aircraft manufacturer. The proposed forecasting
methods are applied, and the results are compared using three different evaluation metrics. The
objective is to emphasize the significance of optimizing strategic planning within the industry and
the potential savings that can be achieved by selecting the best forecast. In conclusion, the findings of
this study can be used to enhance the efficiency of the supply chain and operations of companies in
the aeronautical sector.

Keywords: forecasting; time series; aeronautical industry; supply chain; statistical methods

1. Introduction

The constant evolution of human needs has always necessitated new technologies
and improved processes to meet the growing demand. Throughout history, industries
have undergone significant transformations as new mechanisms were developed. Today,
we are witnessing the emergence of Industry 4.0, a new revolution that is transforming
manufacturing into a more connected and automated environment. This technological
era emphasizes the integration of systems, both vertically and horizontally, to facilitate
decision making within the production chain [1].

Enterprise Resource Planning (ERP) systems facilitate integration and enable compa-
nies to manage all aspects of planning and raw material procurement. However, in practice,
various planning techniques are utilized based on the physical, chemical, or commercial
characteristics of the materials. For example, in the aeronautical industry, the average
monthly consumption method is commonly used for materials with a low unit cost and
high turnover rate in the production line. This technique involves configuring a periodic
numeric parameter within the ERP system to predict the monthly demand for a product
over a set number of months; then, purchase orders are generated based on this forecast.
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The average monthly consumption technique is often controlled and implemented in
the production line using the Kanban system. As described by Slack et al. [2], the Kanban
system is a method of operationalizing pull planning and control, where the customer stage
signals its supplier stage to provide the necessary supply. The system aims to efficiently
control the production stages and simplify administrative mechanisms, allowing users to
liquidate a larger amount of stock in the system at once instead of piece by piece [3].

The most common family of inputs for the type of planning discussed previously is
known as hardware, which refers to the physical equipment made of metal, such as screws,
nuts, rivets, rods, collars, and so on. In the aeronautical industry, the term ’hardware’ is
further categorized, and this study focuses on the analysis of a specific category known as
fasteners, which are devices used to assemble various structures. Based on the complex
nature of the manufacturing process in this sector, planning and purchasing for these
materials are often performed individually, using nonstandard means, such as historical
consumption averages or future demands based on product structure, which can be highly
inaccurate due to the possibility of using optional and alternative materials that are not
linked to the bill of materials. However, such arrangements are highly susceptible to errors
that can cause both excessive purchases, leading to storage overload and raw material
obsolescence, as well as material shortages in stock, potentially resulting in production line
stoppages. As a result, inventory planning and management must be carefully managed to
ensure the smooth operation of the production line.

Given the large number of parts and components in an aircraft, it can be challenging
to manage all sectors and necessary inputs accurately. This can result in the procurement of
raw materials in erroneous quantities, which can directly affect specific stages of production.
Therefore, there is a need for forecasting techniques that provide more accurate projections
of the real demand within the supply chain.

2. Case Study and Data

The main objective of this article is to compare different time-series forecasting meth-
ods applied to a real database. The database consists of 42 monthly consumption values for
a specific category of raw material utilized in aircraft construction by a prominent Brazilian
aeronautical manufacturer. The material under study is a flat steel washer used in various
types of aircraft within the company for assembling internal structural parts in a variety of
areas such as panels, supports, windows, seats, air conditioning and refrigeration systems,
landing gear, cabling, electrical systems, doors, equipment, tubes, and more. To ensure
business confidentiality, it will be referred to as “Material 1” rather than by its real market
identification (part number).

In this way, the proposal is to compare the efficiency of these methods by presenting
some error metrics. The following nine methods are discussed in this work:

1. Simple Exponential Smoothing;
2. Holt;
3. Holt–Winters Additive;
4. Holt–Winters Multiplicative;
5. ETS (M,N,A);
6. Naïve;
7. ARMA (2,1);
8. AR (2);
9. Neural Network.

3. Materials and Methods

The first stage of the process involved obtaining the database by extracting it from
the company’s Enterprise Resource Planning (ERP) system. The original database is a
Microsoft Excel spreadsheet, where each row represents a different material, and each
column represents different months/years of consumption in the production line, along
with other information that is irrelevant for this study.
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The next step of the methodology involved the selection of the specific material to
be studied. In order to ensure the feasibility and accuracy of the results, it is preferable
to choose a material that does not exhibit extreme variations or a large number of null
values, as these can make it difficult to execute the proposed forecasting methods effectively.
Once a suitable material was identified, it was important to carefully clean and preprocess
the data in preparation for the subsequent analysis. This typically involves removing
other materials not chosen and removing columns that contain information not useful
for this study, for example, the location of the manufacturing plant, the specific company
code/identification, lead time, transport time, and other irrelevant details. Finally, to
facilitate reading, the columns were inverted by the lines of this worksheet, so that the
identification of the material was represented by the column, and the values of the monthly
consumption were represented by the lines, remaining vertical.

Thus, the treated database was imported into the integrated development environment
(IDE) RStudio (2022.07.1 version), where through R language the time-series forecasting
methods were applied. After the import, the first step in analyzing the time series was
to examine the behavior of the data and assess whether they exhibited seasonality and
stationarity. This involved generating a line chart of the complete series, calculating the
descriptive statistics, creating a histogram, a box plot, and decomposing the data. In order
to develop a forecast model, a training dataset was created using 36 of the 42 months of
consumption data, covering the period from March 2019 to February 2022 (approximately
85.7% of the original dataset). The remaining six months of data were used for final analysis
and comparisons with the results of the forecast models.

The final stage of the study involved applying all the proposed forecasting methods
and measuring their respective metrics: the Symmetric Mean Absolute Percentage Error
(sMAPE), Theil’s U Index of Inequality, and the Root Mean Square Error (RMSE). This
allowed for an evaluation of which models were the best fit for the analyzed data. It is
important to note that the efficiency of the methods was evaluated by determining the ac-
curacy of each procedure, resulting in a comprehensive and effective comparative analysis.

4. Results

To begin with, it is important to observe the complete time series for the studied
material in this work. Figure 1 shows the line chart for all the consumption data (from
March 2019 to August 2022), which indicated a significant reduction in consumption
towards the end of 2019, followed by a gradual increase from the beginning of 2022. While
there could be several hypotheses to explain this phenomenon, such as a change in the
product structure via a study of the company’s engineering, this study only focuses on the
mathematical analysis and does not delve into any managerial aspects.

To understand the behavior of the series, we analyzed some of the data obtained
from descriptive statistics. As shown in the previous Figure, the series did not display any
apparent seasonality. Table 1 presents the descriptive statistics for this series.

Upon analyzing Table 1, it becomes apparent that Material 1 had a slightly positive
skewness, indicating that the right tail of the distribution was slightly longer than the left
tail. This was further confirmed by the histogram shown in Figure 2, although it was not
easily noticeable by visual inspection. However, the kurtosis value was positive, indicating
that the distribution had heavier tails than a normal distribution, which characterizes the
flattening or lengthening of the curve. Additionally, Figure 2 highlights that there was a
significant concentration of consumption values in the range of 20,000 to 30,000 units.

Figure 3 displays a boxplot that can help identify any outliers in the data, which are
observations that deviate significantly from the rest of the time series values. It is evident
from the plot that the series did not contain any outliers.
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Figure 1. Material 1 time series.

Table 1. Descriptive statistics for Material 1.

Statistics Value

Minimum 3108
First Quartile 19,261

Median 26,367
Mean 30,507

Third Quartile 49,003
Maximum 63,268
Variance 342,361,647

Standard Deviation 18,503.02
Skewness 0.2
Kurtosis 1.84

Figure 2. Material 1 histogram.

202



Eng. Proc. 2023, 39, 74

Figure 3. Material 1 boxplot.

The time series decomposition shown in Figure 4 provides valuable insights into the
behavior of the data, where it revealed the absence of seasonality in the series. Furthermore,
regarding the trend, as mentioned before, there was a considerable reduction from 2019
onwards, which remained practically stable and only showed an upward trend again from
the beginning of 2022, forming an approximate drawing of a negative parabola.

Figure 4. Decomposition of Material 1.

4.1. Forecasting Methods
4.1.1. Simple Exponential Smoothing

The simple exponential smoothing model is a widely used method in demand fore-
casting and can be used when the sample size is small. The technique is built through a
weighted average of past and present values, where exponential weighting assigns greater
weights to more recent data and smaller weights to more distant observations [4].

The result of this technique are always constant; in other words, all the forecasts
assume the same value, equal to the last level component. This implies that it is appropriate
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only when the time series does not have a trend or seasonal component [5]. The results of
applying this method to the database can be observed in Figure 5.

Figure 5. Graph with forecast confidence intervals for Material 1 using Simple Exponential Smoothing.

According to Figure 5, a significant disparity was observed between the actual values
of the material 1 time series and the forecasted values for the same period. Hence, the
consistent outcomes of the technique were inadequate for the data of this study, as it failed
to predict the consumption peak that commenced in March 2022.

4.1.2. Holt

The Holt method, proposed by Holt [6], extends simple exponential smoothing to
enable the forecasting of data with a trend. As a result, the forecast values generated by
this method are not constant but exhibit a consistent trend (either increasing or decreasing)
that extends indefinitely into the future.

The results of applying this method can be observed in Figure 6 below.

Figure 6. Graph with forecast confidence intervals for Material 1 using Holt’s method.
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According to Figure 6, there was a significant disparity between the predicted data and
the actual consumption values for Material 1. The expected trend should be upward, but
the forecast depicted a distinct downward trend. Consequently, this error was substantial
enough to conclude that this method was not suitable for this type of time series.

4.1.3. Holt–Winters

The Holt–Winters method is a refined extension of the exponential smoothing ap-
proach, where the smoothing procedure provides an overall impression. This method also
allows for studying future trends by generating medium and long-term forecasts.

Holt [6] and Winters [7] extended the Holt method to capture the seasonality of a series
by proposing two variations that differ in the nature of the seasonal component: additive
and multiplicative. Hyndman and Athanasopoulos [5] demonstrated that the additive
method is suitable when seasonal variations are relatively constant throughout the series.
In this case, the seasonal component is expressed in absolute terms on the scale of the
observed series, and in the level equation, the series is seasonally adjusted by subtracting
the seasonal component, resulting in an approximately zero sum within each year. On
the other hand, the multiplicative method is advised when seasonal variations change
proportionally with the level of the series. In this case, the seasonal component is expressed
in relative terms (percentages), and the series is seasonally adjusted by dividing it by this
seasonal component.

Therefore, beginning with the additive method, the outcomes of applying the Holt–Winters
to the Material 1 series are illustrated in Figure 7 below:

Figure 7. Graph with forecast confidence intervals for Material 1 using the Additive Holt–Winters.

By examining the preceding figure, it becomes evident that the method predicted three
negative values for the months of March, April, and June 2022. However, such negative
values were not feasible in this application. This study employed a real-time series that
represented the consumption of a raw material in a production line, and given this context,
consumption below zero was not possible. Therefore, it can be concluded that the method
was not suitable for the Material 1 series.

Regarding the multiplicative method, while there were no negative values in the
forecast for this six-month period, the forecasted trend ended up showing a negative tilt,
which contradicted the actual data that exhibited consumption peaks starting from March
2022. This discrepancy in the value relationship can be observed in Figure 8, where due
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to the multiplication equation employed by the method, the confidence intervals were
significantly larger, resulting in a noticeable change in the scale of the line graph.

Figure 8. Graph with forecast confidence intervals for Material 1 using the Multiplicative Holt–Winters.

4.1.4. ETS

Considering the variations in the combinations of trend and seasonality components
in the previously mentioned exponential smoothing method, it is possible to use ten new
techniques. Each one is labeled by a pair of letters (T and S) that define the type of trend (T)
and seasonality (S) components. This classification was first proposed by Pegels [8], who
also included a method with a multiplicative trend. It was later extended by Gardner [9] to
include methods with an additive damped trend and by Taylor [10] to include methods
with a multiplicative damped trend.

The point forecasts generated by the models are identical when the same smooth-
ing parameter values are used. However, they produce different prediction intervals.
Additionally, for each method, there can be two models: one with additive errors and
another with multiplicative errors. According to Hyndman and Athanasopoulos [5], to
differentiate between these two models, a third letter is introduced, denoting the error term.
Consequently, each state space model is labeled as ETS (*,*,*) representing (error, trend,
seasonality), and this labeling convention can also be interpreted as exponential smoothing.
Each combination of components has its own set of equations, and the possibilities for each
component are as follows: Error = A, M; Trend = N, A, Ad; and Seasonality = N, A, M. In
this context, A represents additive, M represents multiplicative, N represents none, and Ad
represents additive damped.

In this study, all the possible label combinations were tested, and the root mean square
error (RMSE) was measured for each combination by comparing the predicted data with
the actual data. The model with the lowest RMSE was selected, which happened to be the
ETS (M,N,A): multiplicative error, no trend, and additive seasonality. The computed results
of this method can be observed in Figure 9.

Upon comparing the predicted data generated by the ETS (M,N,A) method with the
actual consumption values for the corresponding period, it is apparent that the technique
accurately forecasted a positive trend, distinguishing itself from certain previous methods.
Nevertheless, there remained a notable disparity in the magnitude of the peaks.
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Figure 9. Graph with forecast confidence intervals for Material 1 using the ETS (M,N,A).

4.1.5. Naïve

The Naïve model is one of the simplest methods for time series forecasting and works
well for many economic sectors and financial time series. The Naïve Simple technique
involves using the exact value of the last observation in the time series as the forecast, but
some variations take into consideration the seasonality and are referred to as Seasonal
Naïve. In this case, the forecast is based on the same observed value from a previous point
in the same season, such as the value from the same month but in the previous year [5].

The model used in this work is the Seasonal Naïve method, considering the forecast
value of the same month from the previous year in the time series. Figure 10 depicts the
graph of the results obtained by applying this model.

Figure 10. Graph with forecast confidence intervals for Material 1 using Naïve.

Upon examining the forecast graph generated by the Naïve method and comparing it
with the actual data, several noteworthy observations come to light. While this method
demonstrated limitations in accurately predicting the extreme peaks observed in four

207



Eng. Proc. 2023, 39, 74

particular months, it showcased exceptional accuracy during the months of June and July,
closely aligning with the actual data and capturing the upward trend exhibited by the data.
These findings suggest that the Naïve method exhibits potential for capturing seasonality
in specific months, albeit with limitations in predicting extreme fluctuations.

4.1.6. ARIMA

The designation of the ARIMA model stands for Autoregressive Integrated Moving
Average and refers to a type of self-regressive model that allows for predicting the values
of a variable based on its previous values without the need for other auxiliary information
or related variables [11]. The generic name ARIMA for these models refers to their three
main components: Autoregressive (AR), Integrated (I), and Moving Average (MA). In these
models, the aim is to describe autocorrelations in the data, where each observation of a
variable at a given time is modeled based on previous values over time for the same variable.

In this approach, the modeling process involves deriving an ARIMA model that fits
the given dataset, which requires analyzing the essential characteristics of the time series,
such as trend, seasonality, cyclical variations, autocorrelation functions, and residuals [5].
Another point is that for the application of the model, the time series must necessarily be
stationary, meaning that their statistical properties remain constant over time. If they are
not stationary, it will be necessary to differentiate the data until they become stationary.

The initial step of the ARIMA model involved applying a logarithmic transformation
to the data and subsequently differencing them to achieve stationarity. In the case of the
time series of Material 1, it was only necessary to difference it once to achieve stationarity.
To confirm this, the Dickey–Fuller unit root test was used.

Consequently, to proceed with the application of the method, it was necessary to
identify the model using the autocorrelation function (ACF) for the “MA” term and the
partial autocorrelation function (PACF) for the “AR” term. Both were applied to the
differenced time series and can be analyzed in Figure 11.

Figure 11. Graph of the cumulative sum of the autocorrelation function (ACF) and partial autocorre-
lation function (PACF) for the differenced time series of Material 1.

Based on these analyses, several combinations for the method can be considered.
The chosen models were the ARMA(p = 2, d = 0, q = 1) and the AR(p = 2, d = 0, q = 0).
Subsequently, the forecasts generated by both the ARMA(2,1) and AR(2) models for the
Material 1 time series did not capture a significant peak in March 2022, in contrast to the
actual value of the series, which was considerably higher. However, the confidence intervals
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were able to approximate the substantial increase in values from that period onwards, which
some of the previously mentioned methods failed to capture. A visual comparison between
the actual data and the generated forecasts can be observed in Figures 12 and 13.

Figure 12. Graph with forecast confidence intervals for Material 1 using ARMA(2,1).

Figure 13. Graph with forecast confidence intervals for Material 1 using AR(2).

4.1.7. Neural Network

The final technique applied in this study was the neural network, based on the
autoregression with neural networks (AR-NN) approach that combines autoregression
(AR) and neural networks (NN) techniques to model time series. The results obtained with
this technique are presented in Figure 14.
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Figure 14. Graph with forecast confidence intervals for Material 1 using the Neural Network.

The analysis of the forecast graph generated by the neural network reveals several
noteworthy observations. Firstly, the method successfully captured and predicted a positive
trend that aligned reasonably well with the actual data. However, it showed limitations in
accurately predicting the highest peaks of the data, which suggests potential challenges in
capturing extreme fluctuations. Despite this, it is important to highlight the remarkable
performance of the forecast during the months of June and July, where during these months,
the predicted data closely aligned with the actual data, indicating a high level of accuracy
and precision during that specific period. These findings demonstrate the model’s ability
to capture and replicate patterns effectively, particularly during months characterized by
more stable and predictable trends.

4.2. Evaluation Metrics

To determine the best-performing forecasting method among those presented, it was
necessary to measure the errors by comparing the actual data with the predicted data.
Therefore, this study employed three different metrics to analyze the effectiveness of the
techniques: the Symmetric Mean Absolute Percentage Error (sMAPE), Theil’s U Index of
Inequality, and the Root Mean Square Error (RMSE).

The Symmetric Mean Absolute Percentage Error (sMAPE) was proposed by Makri-
dakis [12] in order to correct some disadvantages; that is, a modified Mean Absolute
Percentage Error (MAPE) has a heavier penalty for forecasts that exceed the actual than
those that are less than the actual. So, this metric is a modified MAPE, in which the divisor
is half of the sum of the actual and forecast values.

The Theil’s U Index of Inequality is an accuracy measure often cited in the literature,
and according to Bliemel [13], there is confusion about this index, which may result from
the fact that Theil [14] proposed two distinct formulas, but with the same name. The first
proposal is bounded between 0 and 1, and this metric is used in this study. In the second
proposal, the upper limit is infinite. This metric analyzes the quality of forecasts, and the
closer it is to zero, the lower the prediction error generated by a specific model. In other
words, it indicates that a forecast is better than the trivial forecast [15].

The Root Mean Square Error (RMSE) is calculated as the square root of the mean
of the square of all of the error. It is widely used and considered an excellent general-
purpose error metric for numerical predictions. The RMSE provides a reliable measure
of accuracy, particularly when comparing forecasting errors among different models or
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model configurations for a specific variable. However, it should be noted that the RMSE is
scale-dependent and cannot be directly compared between variables [16].

In Table 2, it is possible to observe the three mentioned metrics for each of the nine
forecasting methods.

Table 2. Evaluation metrics for Material 1.

Forecasting Method sMAPE Theil’s U Index of Inequality RMSE

Simple Exponential Smoothing 1.094186 0.7519919 34,314.91

Holt 1.500099 0.8816619 40,232.01

Holt–Winters Additive 1.623714 0.9098164 41,516.76

Holt–Winters Multiplicative 1.559045 0.8978318 40,969.88

ETS(M,N,A) 0.8413673 0.6653724 30,362.28

Naïve 0.6081907 0.5440008 24,823.86

ARMA(2,1) 1.230298 0.7892819 36,016.53

AR(2) 1.203849 0.7858103 35,858.11

Neural Network 0.5643272 0.5319228 24,272.71

After examining the table above, it becomes evident that the Holt–Winters methods,
both additive and multiplicative, yielded the highest error measurements. This indicates
that these particular methods were less effective in accurately forecasting the given time
series. Similarly, Holt’s method and the combinations of the ARIMA, such as the ARMA(2,1)
and AR(2), exhibited high error metrics, further suggesting their inefficiency in this context.
Surprisingly, the simple exponential smoothing method, despite its simplicity and constant
forecasting values, outperformed more complex approaches such as the ARIMA models.
The top three performing methods, ranked in order, were the Neural Network, Naïve,
and ETS (M,N,A). These findings highlight the importance of selecting the appropriate
forecasting techniques tailored to the characteristics of the specific time series at hand. In
the following section, conclusions are drawn based on these results and potential avenues
for future research are discussed.

5. Discussion

The obtained results provide valuable insights into the performance of different
forecasting methods in the context of the analyzed time series. The observed high error
measurements for the Holt–Winters methods, both additive and multiplicative, suggest
that these approaches may not be well-suited for capturing the underlying patterns and
dynamics of the given time series. Similarly, the relatively high error metrics observed for
Holt’s method, ARMA(2,1), and AR(2) indicate their suboptimal performance in capturing
the complexities of the analyzed time series. These methods, although widely used, rely on
assumptions that might not hold true for every type of time series. Consequently, alternative
approaches should be considered for improved forecasting accuracy in similar contexts.

Remarkably, the simple exponential smoothing method exhibited better performance
compared to the more complex models. Despite its straightforward nature and constant
forecasting values, it demonstrated competitive accuracy in predicting the examined time
series. This finding aligns with Makridakis et al.’s [17] study that emphasized the effec-
tiveness of simple methods, which often produced more accurate forecasts compared to
complex approaches like ARIMA models.

The top three performing methods, namely the Neural Network, Naïve, and ETS
(M,N,A), merit further attention. The ETS ((M,N,A), based on exponential smoothing, incor-
porates multiple components such as error, trend, and seasonality, and has been successfully
applied to various time series forecasting problems. Naïve forecasting, although simplistic
in its approach, often serves as a benchmark against which more sophisticated methods are
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evaluated. Its competitive performance in this study suggests that even basic forecasting
strategies can yield accurate results under certain conditions. Finally, the Neural Network
approach, known for its ability to capture nonlinear relationships and complex patterns,
displayed promising results, indicating its potential for accurate time series forecasting.

From a broader perspective, these findings underscore the significance of compre-
hending the characteristics and dynamics of the specific time series when choosing an
appropriate forecasting method. In the context of this study, the time series exhibited
high volatility, posing challenges for accurate forecasting. Consequently, no single method
emerged as universally superior in all scenarios, highlighting the imperative nature of
meticulous evaluation and comparison of diverse techniques.

Future research directions in time series forecasting may include investigating the
effectiveness methods that combine the strengths of multiple forecasting techniques, ex-
ploring hybrid approaches that integrate machine learning and statistical modeling, and
considering also the impact of external factors on the forecasting accuracy.

In conclusion, this study offers valuable insights into the performance of various
forecasting methods, with implications for practitioners and researchers in the field of
time series analysis, particularly in the context of the aeronautical industry, where raw
materials play a vital role. The findings highlight the significance of selecting the most
suitable method, as even a slight difference in forecasting error can lead to substantial
cost savings when planning and procuring essential inputs. By leveraging these findings
and considering the suggested future research directions, it becomes feasible to enhance
forecasting capabilities and make significant contributions to the advancement of the field
of time series forecasting.
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Abstract: This paper analyzes how a robust and dynamic forecasting system was designed and
implemented to predict material volumes for the inbound logistics network of an international
automotive company. The system aims to reduce transportation logistics costs and improve demand
capacity planning for freight forwarders. The forecasting horizon is set for 4 months and 12 months
ahead in the future. To solve this problem, a time series modeling approach was carried out by using
different time series forecasting methods like ARIMA, Neural Networks, Exponential Smoothing,
Prophet, Automated Simple Moving Average, Multivariate Time Series, and Ensemble Forecast.
Additionally, important data preprocessing methods and a robust model selection framework were
used to train the models and select the best-performing one. This is known as Forward Chaining
Nested Cross Validation with origin recalibration. The system performance was assessed using the
Symmetric Mean Absolute Error (SMAPE). The final version of the forecasting system can deliver
4-month-ahead forecasts with a SMAPE lower than 10% for 86% of all material flow connections. The
system’s forecast output is updated on a monthly basis and was integrated into the inbound logistics
network system of the company.

Keywords: forecasting system; time series; automated model selection; inbound transportation
logistics

1. Introduction

There are many business factors influencing a company’s performance. Among these,
accurate forecasts have the greatest impact on an organization’s ability to satisfy customers
and manage resources cost-effectively [1]. A forecast is not simply a projection of future
business; it is a request for products and resources that ultimately impacts almost every
business decision the company makes across sales, finance, production, management,
logistics, and marketing [2]. An improvement in forecast accuracy, even just one percent,
can have a ripple effect across the business, including reducing inventory buffers, obsolete
products, expedited shipments, distribution center space, and non-value-added work [2].

Forecasting multiple time series can be challenging since every individual time series
can display different properties. Some data might be trended, others might show seasonality.
In other cases, data might just have random variations with underlying patterns which
are hard to predict. Since there are different models whose properties better match up
to particular time series characteristics [2–4], a common approach is to select the most
effective and flexible models, blend their best features, and shift between them as needed
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to optimize forecast accuracy. Hence, enabling a forecasting system to automatically choose
the best forecasting method over time is the best approach [2].

The current research considers an International Automotive Company that produces
vehicles in more than 20 assembly plants around the world. The company currently
has more than 1000 suppliers worldwide and more than 30 freight forwarders, which
deliver different vehicle parts, components, and finished goods to their corresponding
consolidation centers in the forwarding areas. To be precise, the company has an Area
Forwarding-Based Inbound Logistics Network [5].

The increasing complexity in the Inbound Logistics Network, with regards to the
production capacities from suppliers, the transportation availability from freight forwarders,
and the changing materials demand from the assembly plants, have increased the need
for reliable mid- and long-term capacity planning, especially for the freight forwarders.
These are normally the actors in the logistics network with the lowest capacity and the less
flexibility to abrupt planning changes. Therefore, a forecasting system focused on freight
forwarders’ needs was set into place to predict inbound material transportation volumes
from suppliers to plants.

Before the implementation of the forecasting system, there was a lack of synchro-
nization between suppliers and freight forwarders, causing over- or under-capacity plan-
ning whenever a plant’s material demands change abruptly, leading to higher logistics
transportation costs. Consequently, forecasting planning values delivered neither in the
granularity nor in the frequency the freight forwarders expected.

The forecasting system has evolved since its creation in 2016. There have been three
main Versions. Version 1.0 in 2016 which implemented five forecasting methods. Version
2.0 in 2018 implemented two additional forecasting methods, namely [6] and Multivariate
Timeseries [7], as well as an automated outlier detection process [8] and a linear interpola-
tion methodology [9]. Finally, Version 3.0 after the Coronavirus pandemic implemented
further features related to improving production planning accuracy.

The system performance was assessed using the Symmetric Mean Absolute Error
(SMAPE). Comparing the first and third versions, the system improved from 4-month-
ahead to month-ahead forecasts with a SMAPE lower than 10% for 18% of all material flow
connections, to a SMAPE lower than 10% for 86% of all material flow connections.

This paper is structured as follows: Section 2 points out the forecasting problem
and explains the different strategies used in order to develop the forecasting system.
Section 3 explains the forecasting system performance along the three versions. Limitations
and further development are addressed in Section 4, and, finally, the conclusions are
summarized in Section 5.

2. Materials and Methods

2.1. Business Problem Description

The realization of the forecasting system started with building an appropriate problem
understanding together with the subject matter experts. Therefore, meetings with them
were held in order to learn the most relevant characteristics of the logistic network, the
data quality and availability, as well as the specific expectation of a forecasting system
designed for the freight forwarders. From a methodological point of view, a time series
approach was the most suitable tool since the problem comprises multiple hundreds of
monthly time-related data. The system was developed using the programming language R.

The problem concerns the supply chain of an international automotive company with
an Area Forwarding Inbound Logistics Network. This network consists of three major
participants, (1) the assembly plant which has to be supplied with goods; (2) the suppliers
which produce the material required by the plants. The suppliers are classified into groups,
most likely regarding their geographical location. Such a group is called area forwarding.
(3) Furthermore, the freight forwarder organizes the transportation of materials between
the suppliers and the plants. In different areas, different freight forwarders can be hired
by the same supplier. The freight forwarder operates a consolidation center within the
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area, collects goods from the suppliers, and gathers them in their consolidation center. This
action is limited to cross-docking, i.e., there is no warehousing in the consolidation center.
The pre-leg or first leg is the transportation step from the supplier to the consolidation
center. At this point on, the goods from different suppliers in the area forwarding can be
consolidated together. The transportation from the consolidation center to the assembly
plants is called main leg transport. If the load in the pre-leg exceeds the volume of one
vehicle, the materials are transported directly to the plants. This transportation type is
called full truckload [5]. This network structure can be seen in Figure 1.

Syntetos’ Supply Chain Structure Framework is well known in the literature to help
outline the components of a Logistics Supply Chain when it comes to forecasting [10].
Based on this framework, the company’s Inbound Logistics Network can be described as
follows [1], (1) at the product dimension level the forecast regards all material components
aggregated as tons; (2) at the location dimension it concerns all main leg material flows from
the inbound material forwarding areas to the assembly plants; (3) at the time dimension
forecasts are generated on a monthly basis for the next following 4 months and 12 months;
and finally (4) at the echelon dimension the supply chain level corresponds to the material
flows connections among the consolidation centers and the assembly plants.

Figure 1. Area Forwarding-based Inbound Logistics Network.

2.2. Time Series Analysis

The project consisted of generating an adaptive and automated forecasting system for
more than 400 main-leg material flows. Data were available on a monthly basis since 2014.
The material flows display almost all possible demand patterns, i.e., positive and negative
trends, seasonality, and irregular demand except for intermittent demand. Additionally,
most of the time series contain outliers or missing values.

It is important to point out that a high correlation between the monthly production
planning units and the monthly delivered material to the plants can be observed in the data.
Another noticeable fact is that the monthly production planning forecasts are available up
to 24 months into the future for every plant, giving an idea about how many vehicles are
expected to be produced and how much material is expected to be delivered. Therefore,
in order to make use of these data, rather than forecasting the monthly material volumes
directly, a forecast of the ratio of material volume, and the production units (tons/vehicle
units) is carried out:

α =
material (tons)

production (vehicle units)
(1)

This new time series is then referred to as α time series (1). This is a smoother time
series that is able to correct for outliers or extreme events in the material volumes. Finally,
the business forecast in material tons is then given by the vehicle’s production forecast
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multiplied by the α̂ time series forecast. It is important to consider that since the vehicle’s
production forecast is itself uncertain, its error is further propagated through the material
volume forecast. This issue is addressed in version 3.0 of the forecasting system [11].

Regarding the error measures, the Mean Squared Error (MSE) was used to choose the
best forecasting method in the model selection framework for a given material flow time
series [4]. On the other hand, the Symmetric Mean Absolute Percentage Error (SMAPE)
was used to evaluate the forecasts from the business perspective. Additionally, the SMAPE
is a better estimator of the error than the MAPE when the true value of the forecast is close
or equals zero since those tend to generate extremely large errors or infinite values [12].
Time series, with zero transported material volume, are common in this logistics network,
and during the coronavirus crisis, it was even more likely to appear. When evaluating
forecast accuracy, it is better to have different forecast error measures which can be then
compared [4,13]. Therefore, the MSE was used to select the best-performing model; how-
ever, the interpretation from the business perspective and, therefore, the impact of the
models will be analyzed using the SMAPE.

2.3. Model Selection Framework

According to the Logility Consulting Group [2], for many supply chain scenarios, it
is best to employ a variety of methods to achieve optimal forecasts. Ideally, supply chain
planners should take advantage of different methods and build them into the foundation of
the forecast. The best practice is to use automated methods which switch to accommodate
the selection and deployment of the most appropriate forecast method for optimal results.
Henceforth, due to the nature of the problem, multiple models are evaluated and then
the best-performing model on each material flow connection is selected to generate the
monthly forecasts. To be precise, the Forward Chaining Nested Cross Validation with
origin recalibration [4,14–17] method was implemented to carry out the model training and
testing so that the best model can be chosen to generate the monthly forecasts. This method,
explained in Figure 2, is able to replicate the data generation process so that the forecasting
system learns in every iteration to select the best-performing forecasting algorithm; in
consequence, it can dynamically adapt to short-term changes.

A Nested Cross Validation approach provides an almost unbiased estimate of the true
error of a model [17]. This refers to having two for loops in the train–test process; the inner
for loop finds the best parameters estimates in the training set, then the outer for loop
validates the true accuracy of the model using a rolling test window. Specifically, every
time series, of n values, is split up into two sections, the training set and test set. Then,
every model is fit using the training set and the best parameters are selected (inner for
loop), then the model uses the best parameters to generate a forecast for the test window,
and the MSE is calculated. Afterward, the training dataset increases by 1 value, and the test
window is also moved 1 position into the future and the process is carried out repeatedly
until no more test windows can be generated; this is called the literature forecast origin
recalibration [16].

Due to the time dependency between the out-of-sample error measures of the cross-
validation tests, a simple average of the resulting errors generates a biased indicator for
choosing the best-performing model. Therefore, an exponential weighting approach can
be applied to circumvent this problem [14]. The Exponentially Weighted Moving Average
(EWMA) is a weighted average of all current and previous forecast errors, whose weights
decrease geometrically with the “age” of the forecast error [4]. Therefore, the lowest
resulting EWMA MSE is then used to select the best-performing model.

The resulting performance metrics are then stored in a database so that every month
only the newest performance metrics for every material flow time series are added. This
method enables the reduction in computing time and the forecast output for all the time
series can be calculated in less than 30 min using a computer with 32 GB RAM and an Intel
Core i7 Processor.
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Figure 2. Diagram of the Forward Chaining Nested Cross Validation with rolling origin recalibration
described in [4,14–17].

2.4. Forecasting System Version 1.0: First System Implementation

To create a forecasting system for monthly inbound material flows, first of all, meetings
with the subject matter experts were held. From which the most relevant results were (1) the
definition of the target variable, the monthly freight volume in tons; (2) the scope of the
inbound logistics network, main legs; and (3) the forecast horizons, 4 months for mid-term
and 12 months for long-term scenarios.

The subject matter experts pointed out the importance of including the production
volume forecast as a feature in the forecasting process. For this, the α time series transfor-
mation was implemented (see Equation (1)). This accounts for modeling the relationship
between the monthly material flows in tons and the vehicles produced by each assembly
plant and also the adjustment of extreme values in the times series. This is important since
when outliers and missing values are incorrectly handled, they can certainly reduce the
forecast accuracy [8,18].

Version 1.0 of the forecasting system was developed using the programming language
R. The system focused on forecasting more than 400 main leg material flows within Europe.
Furthermore, the model selection framework explained in Section 2 was also set up. This
initial framework included the forecasting methods of Naive, ARIMA, Neural Network,
Exponential Smoothing, and Ensemble Forecast. The last one refers to the average of the
forecasts delivered by the other methods [19].

2.5. Forecasting System Version 2.0: New Forecasting Methods

Version 2.0 of the forecasting system implemented three additional forecasting meth-
ods to improve the forecast accuracy, namely Prophet Algorithm, Automated Simple
Moving Average, and Multivariate Timeseries Method: Vector Autoregression.

The Prophet Algorithm from Facebook displays two main features, (1) parameters can
easily accommodate seasonality with multiple periods and let the analyst make different
assumptions about trends, (2) as opposed to ARIMA models, the measurements do not
need to be regularly spaced, and missing values do not need to be interpolated, e.g., from
removing outliers [6].

On the other hand, there are also important features that are left out when only
using univariate methods. For this, Multivariate Methods are able to consider lag–cross
correlations among different time series [7]. This cross-correlation feature, along with the
historical data, considers the influence of past values of a time series A on the future value
of a time series B and vice versa. Since there are multiple suppliers delivering to the same
plants, the material quantity delivered from one supplier is highly correlated with the
material delivered by other suppliers. This means a relevant cross-correlation between
these material flows connections exist and can be exploited by this method.

Furthermore, a simple but useful method still not considered is the Simple Moving
Average. The Simple Moving Average is the best model for products whose demand
histories have random variations, including no seasonality or trend, or fairly flat demand [2].
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However, finding the optimal parameters can be time-consuming. Therefore, using the R
package smooth can help automate this process.

Additionally, the Ensemble Forecast method, which considers the simple linear combi-
nation (simple average) of the forecast values from the other methods, can be also extended,
i.e., the Prophet Algorithm, Simple Moving Average, and Multivariate Time Series can also
be included in the linear combination so that the likelihood of better forecasts accuracy
increases [20].

One additional issue was the elimination of some past values due to a database update
to the main Enterprise Resource System (ERP) Database. This leads to incomplete time
series. Enabling a linear interpolation algorithm to find the missing values instead of using
the mean of the observations can also improve forecasting accuracy. Linear interpolation is
easy to implement [18], this enables us to find missing values for the time series in short
computing run time. This method is efficient and most of the time is better than non-linear
interpolations for predicting missing values [9].

Furthermore, an automated outlier detection and cleaning method was added. A
common approach to deal with outliers in a time series is to identify the locations and the
types of outliers and then use intervention models [21]. There are some main important
issues caused by outliers, i.e., (a) the presence of outliers might result in an inappropriate
model, (b) even if the model is appropriately specified, outliers in a time series might still
produce bias in parameter estimates and, therefore, might affect the efficiency of outlier
detection. A typical problem found in this approach is that both the types and locations
of outliers may change at different iterations of model estimation, and (c) some outliers
may not be identified due to a masking effect. For problems (b) and (c), Chen and Liu [8]
designed a procedure that is less prone to the spurious and masking effects during outlier
detection and is able to jointly estimate the model parameters and outlier effects. The
approach is to classify an outlier impact into four types, an innovational outlier (IO), an
additive outlier (AO), a level shift (LS), and a temporary change (TC). This method can be
easily implemented using the R package tsoutliers. The process starts with setting SARIMA
models to the time series, then the automated outlier detection method is applied to these
ARIMA models, which delivers the outliers and their corresponding adjusted value. These
adjusted values are then used instead of the outliers and a newly adjusted time series is
generated, which can be later used for model training.

2.6. Forecasting System Version 3.0: Production Accuracy Improvement

Version 3.0 of the forecasting system focused on reducing the impact of the coronavirus
crisis and the chip crisis by means of handling the increased volatility of both the material
flows and the production planning so that reliable forecast values can still be delivered.

According to (Gultekin et. al, 2022), one of the most important freight forwarders’
risk areas, caused by the COVID-19 pandemic, was demand fluctuation. The pandemic
increased the volatility in supply chain demand planning, making it even harder to generate
accurate forecasts [22]. In total, 68% of the respondents on a 1000-company survey made
by Capgemini 2020 stated that they experienced difficulties in demand planning due to a
lack of data on fluctuating demand [23]. Furthermore, the current chip crisis is also one of
the most relevant disruptive factors in the automotive supply chain. Opposed to forecasts,
vehicle sales quickly rebounded within just a few months after the pandemic. Henceforth,
imperfect inventory planning caused chip shortages and unprecedented halted production
cycles [24].

Due to the heavy increase in the demand planning variability [23] post-COVID-19
outbreak, the production forecast has become less reliable. As explained in Section 2,
when calculating the material volume forecast, the approach is to multiply the production
demand planning by the α time-series forecast. This leads, however, to error propagation
since the production demand planning is itself a forecast. Therefore, in order to reduce
this effect in the monthly material forecasting system, an additional data preprocessing
approach was implemented.
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This approach is called Production Planning Error Deviation Adjustment and helps to
reduce the error propagation [11,25,26]. Since the production planning forecast is updated
on a monthly basis, a database of monthly historical production plans was created. In other
words, not only the actual number of vehicles to be produced are available but also the
planning values in the previous months. The database consists of the monthly production
plans since February 2019.

The approach is quite straightforward. The idea is to track the deviation of an actual
production quantity from the forecast values in the past. For example, a plant produced
1000 in December 2020. If the planning value for this particular month is traced back to
the previous months, then in some months the planning value would be over 1000 and in
others under 1000, due to the variability in demand planning, as well as other internal and
external factors. In consequence, using historical data, the relative error deviation to the
actual produced cars can be calculated. The month distance from the production planning
month to the actual production month will be called lag or planning horizon. Henceforth,
let the Relative Planning Error Deviation for a lag l be

RPEl =
v̂l
v

(2)

where RPEl = Relative Planning Error for lag l, v̂ corresponds to the planning vehicles for
lag l, and vs. to the actual produced vehicles.

This metric can be interpreted as follows. A value greater than 1 indicates that
the planning demand was higher than the actual demand, therefore it was a planning
overestimation. The opposite is a lower planning value than the actual demand, which is
considered a planning underestimation.

Thence, to track the most recent changes in production planning the RPE is calculated
for every actual month available for the planning horizons 1 to 12 for every plant. To that
end, the mean RPE for lag l for every plant can be computed as

RPEl =
1
nl

n

∑
l=1

v̂l
v

(3)

where nl is the number of RPE values which could be calculated for the lag l with the
available planning data. If the RPEl for a given plant for lag = 1 is 1.09, it means that
historically the production planning overestimates on average about 9% the number of
vehicles to be produced. Henceforth, the planning value can be adjusted by this amount.

Using the properties of the expected value of RPEl , assuming that the realizations of
these errors are independent and identically distributed, an adjusted value of the vehicle’s
demand planning v̂ can be computed. Since the actual number of produced vehicles in
a month v is a constant and the expected value of v̂ is estimated with the most recent
planning value, then the actual number of produced vehicles can be estimated as:

E[RPEl ] = E[v̂l ]E
[

1
v

]
(4)

v ∼= E[v̂l ]

E[RPEl ]
(5)

This formula enables us to estimate the true value of v, which the resulting demand
planning values are now used to calculate the future monthly volume forecasts.

Figure 3 shows the Relative Mean Error Deviation (Production Forecast/Production
Actual) for 4 plants. As expected, the further the forecasting horizon, the lower the quality of
the forecasting values. Therefore, using the proposed method helps adjust the production
planning data quality, and the forecast error propagation in the forecasting system is
reduced therewith.

This was added as a data preprocessing step in the Forecasting System, enabling the
future production demand planning values to be adjusted up to 12 months in the future.
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Figure 3. Historical mean production planning deviation.

3. Results

As pointed out in Section 2, the MSE was used to select the best-performing model.
To analyze the business impact of the models, we used the SMAPE to compare model
performance and improvement, since this enables a more straightforward interpretation
of the error deviation. This section analyzes the performance of the forecasting system
versions using the historically exponentially weighted moving average (EWMA) of the
rolling 4-month-ahead out-of-sample SMAPEs. When comparing version A vs. version
B, both systems’ versions were used to generate the forecasts for multiple months in the
past using the same amount of data, then the EWMA is then calculated. With this, the
EWMA-SMAPE Category distribution on the Material flow connections and the Cumulative
EWMA-SMAPE Distribution is generated, as explained in the following sections.

3.1. Comparison Performance Version 1.0 vs. 2.0

The performance of the Forecast System Version 1.0 vs. Version 2.0 can be seen in
Table 1.

Table 1. EWMA-SMAPE Category Distribution on Material Flow Connections for Version 1.0 and 2.0.

EWMA-SMAPE Category Version 1.0 Version 2.0

lower than 10% 18.0% 43.6%
between 10% and 20% 48.7% 36.5%
between 20% and 30% 20.2% 11.5%
between 30% and 40% 7.6% 3.9%

higher than 40% 5.6% 4.5%

To be precise, Table 1 shows the distribution of the EWMA SMAPE in groups. It
is worth noting that the number of material flow connections with an EWMA SMAPE
of less than 10% increased from 18.0% to 43.6%, i.e., about 25.6 pp (percentage points).
Moreover, the number of material flow connections with an EWMA SMAPE higher than
40% decreased from 5.6% to 4.5%. Quantitatively, 80.1% of all material flows had an EWMA
SMAPE of less than or equal to 20%, in comparison with the 66.7% of all material flows
which had the same behavior when using version 1.0 of the forecasting system.

Regarding the different improvement steps carried out in version 2.0, Table 2 summa-
rizes the results. The first column "Algorithms" presents the approaches used, whether it
was a single forecasting method, a combination of multiple methods, or the implementation
of data pre-processing steps. All tests were elaborated with the most recent data avail-
able at that moment. Furthermore, the column "Averaged EWMA SMAPE Improvement"
shows the average percentage change for the EWMA SMAPE in the corresponding material
flow connections selecting the new approach, which is found in the column "Material
Flow Timeseries".
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Table 2. Improvement Results Forecasting System Versions 2.0 vs. 1.0.

Algorithms
Average EWMA-SMAPE

Improvement
Material Flow Timeseries

Prophet Algorithm 8.3% 9.0%

Automated Simple Moving
Average 3.8% 17.4%

Multivariate Time Series 23.8% 6.8%

Prophet + SMA + MVTS 7.8% 42.8%

P + SMA + MVTS + Outliers
detection 22.3% 66.4%

P + SMA + MVTS + Outliers
detection + Interpolation 24.8% 67.6%

First, the prophet algorithm was implemented; using the R package prophet [6]. This
forecasting method showed an improvement of 9% in the material flows for monthly fore-
casts, with an average EWMA SMAPE improvement of 8.31%. Later, the algorithm Simple
Moving Average (SMA) was introduced into the system. The function SMA from the R-
Package smooth applies the Simple Moving Average method on a time series vector [27,28].
The SMA order was set to be chosen automatically by the function, which chooses the
optimal one. In total, 24% of the material flows chose the SMA instead of the old methods.
The average EWMA-SMAPE improvement was 3.78%.

For the implementation of the Multivariate Time Series, a vector autoregressive method
was used. There are a couple of things which must be considered in advance. First, The
Ljung-Box test is used to test the lag–cross correlation along n time series. The time series are
divided into groups that are more likely to have the highest lag–cross correlation coefficient,
namely, all the material flows coming to a single plant. Secondly, the automated vector
autoregressive method might break down if too many time series with too few values are
calculated. Explicitly, the algorithm takes up a large amount of memory and long runtime to
calculate all the parameters involved in the matrices. Moreover, the number of lags consider
to fit the model also affects the algorithm performance, which is why a 1-lagged automated
vector autoregressive model was implemented in this case. Therefore, another routine was
implemented to eliminate the parameters with a significance level lower than 5%. This
step improved the model accuracy, as well as the final forecast errors. For this approach,
6.8% of the material flows realized a lower EWMA MSE cross-validation accuracy rather
than using the old methods, that is an averaged EWMA SMAPE improvement of 23.78%.

Henceforth, the three new forecasting methods were tested together for all the material
flow connections, for which, 42.8% of the connections displayed higher performance when
choosing the new methods. This performance was translated into a 23.78% averaged
EWMA SMAPE improvement in all four-step-ahead out-of-sample tests for data available.

Afterward, the data preprocessing methods were introduced. First, the automated out-
lier detection method together with the new forecasting algorithms was tested. These steps
provided an improvement of 66.4% of the material flows with an average improvement for
the EWMA SMAPE of 22.25%.

Later, the interpolation method for missing values was included delivering that
67.6% of the material flows chose the three new forecasting methods with an average
improvement of 24.84% on the EWMA SMAPE. This can be seen in Figure 4. When plotting
the cumulative EWMA SMAPE for all the material flow connections, the new forecasting
system’s version shows a curve laying higher and more to the left of the graphic than
version 1.0. This can be interpreted as more material flow connection forecasts displaying
lower forecast errors.

Finally, from the company’s point of view, the SMAPE improvement has a greater
impact on cost and demand capacity planning reduction when this is lower for material
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flow connections which transport on average more than 1000 tons monthly. Therefore, the
logistics planners can better assess the forecasting system performance using a plot that
shows the relationship between SMAPE performance and monthly average transported
volume for every material flow connection. Figure 5 plots the average monthly material
volume in tons and the EWMA SMAPE; every dot represents a material flow connection.
From this plot, it can be implied that version 2.0 of the forecasting system delivered better
results than version 1.0, in which almost all blue dots realized a lower four-month-ahead
out-of-sample EWMA SMAPE than the red dots.

Figure 4. Phase 1: EWMA MAPE comparison original forecasting system vs. improvements—Stand 2018.

Figure 5. Plot for Average monthly volume vs. EWMA SMAPE for Version 1.0 and 2.0.

3.2. Comparison Performance Version 2.0 and 3.0

The comparison of the Version 2.0 and Version 3.0 was carried out after the coronavirus
crisis, at this time the structure of the inbound logistics network changed substantially,
which is why the number of total material flows changed. The two versions of the system
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were assessed using new data, which is why the performance of Version 2.0 differs from
that in the previous section.

The production accuracy improvement approach helped further improve the forecast-
ing system. Considering that this approach traces the planning relative error deviation,
future planning values are better estimated; thus, the monthly forecasts are more accurate.
Table 3 summarizes the results after applying this methodology. When comparing the
out-of-sample EWMA SMAPE values the new adjustment shows an improvement of 25.4%
for material flow connections with an SMAPE lower than 10%. Furthermore, the number of
material flow connections with a SMAPE greater than 40% was reduced from 2.7% to 0.2%.
The major reason behind these improvements is due to two main factors, (1) the data input
to the models uses the α time series, which considers the historical production volume as
an influencing factor; and (2) the final forecast is given by the production planning forecast
times the α time series forecast; the error propagation caused by the production planning is
then highly reduced when applying the production accuracy improvement approach.

Finally, Figure 6 shows the performance of the forecasting system before and after
applying this new approach, regarding the average monthly material volume and the
SMAPE. It can be stated that the red dots representing the new forecasting system Version
3.0 realized a lower EWMA SMAPE over most material flow connections. Furthermore,
material flow connections with more than 1000 tons on average also reached better perfor-
mance, which can be directly translated into better performance planning in the inbound
logistic network reducing logistic costs and capacity planning efforts.

Table 3. EWMA-SMAPE Category Distribution on Material Flow Connections for Version 2.0 and 3.0.

EWMA-SMAPE Category Version 2.0 Version 3.0

lower than 10% 60.3% 85.7%
between 10% and 20% 29.8% 11.7%
between 20% and 30% 5.8% 1.8%
between 30% and 40% 1.4% 0.6%

higher than 40% 2.7% 0.2%

Figure 6. Plot for Average monthly volume vs. EWMA SMAPE for Version 2.0 and 3.0.

4. Discussion

It was observed that after COVID-19, the prophet algorithm was the less recommended
algorithm by the forecasting system; even in some months no material flow time series
was predicted by it; i.e., the prophet algorithm was not capable of automatically adapting
to the abrupt changes in the time series. This can be due to the decomposable time series
model [6] in which the Facebook prophet is based, which resembles more than a mere curve
fitting that does not take into account the conditional dependency of past realizations [29].
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Further development of the forecasting system can be achieved by exploding the
graph dependency structure of the data. Since capacity and production restrictions affect
all plants, that means that future production capacity reductions in one plant can affect the
production planning in another one. The use of most modern algorithms can help improve
the forecasting accuracy and flexibility of the whole system. One proposed architecture is
the use of Graph Neural Networks, which has been proven to successfully model graph-
structured data [30].

5. Conclusions

The current research developed, designed, and implemented a monthly material flows
forecasting system for the inbound logistics network of an international automotive com-
pany using multiple forecasting algorithms and robust data preprocessing routines. The
system was also improved along with the changes in the market and adjusted to the com-
pany’s needs and challenges to deliver the highest forecasting accuracy, which was assessed
using the Symmetric Mean Absolute Error (SMAPE). The output of the forecasting system
was integrated into the inbound logistics system of the company delivering newly forecast
values for the freight carriers on a monthly basis. This enabled the freight forwarders to
better plan their capacities in the mid- and long-term (4-month-ahead and 12-month-ahead
forecasts are delivered on a monthly basis) scenarios. Furthermore, the system supports
the company by reducing logistics transportation costs and improving demand capacity
planning since the material planning volume better meets the freight forwarder’s capacity.

Regarding the performance of the Forecasting System in the different versions; for
4-month-ahead forecast values, it can be seen that the number of material flows with an
average EWMA-SMAPE of less than 10% increased through the different versions. From
Version 1.0 to Version 2.0 the number of material flows with this performance increased
from 18% to 43.6% (25.6 pp), whereas from Version 2.0 to Version 3.0 it increased from 60.3%
to 85.7% (25.4 pp). This impact can be assessed using the Dupont Equation, which states
that a 10% increase in forecasting accuracy can be translated into a return of shareholder
value between 39% and 47% [2].

Furthermore, in the forecasting system’s versions 2.0 and 3.0, the methods having the
highest impact on forecasting performance are those related to improving the data quality,
i.e., the automated outlier detection procedure and the data interpolation method, which
helped increase the impact of the three new algorithms from an average EWMA-SMAPE
improvement of 7.8% of all material flow connections to 22.3%. In addition, the approach
regarding production accuracy improvement helped increase the number of materials
flows with an EWMA SMAPE of less than 10%. This result proves that when it comes to
forecasting even the simplest method can deliver high performance if the quality of the
input data is high enough.

The former assertion implies that the success of the forecasting system was not focused
on the forecasting methods themselves but rather on the problem understanding, the data
modeling, and the data preprocessing steps. Among these, we can highlight the use of
the α time series, the automatic outlier detection methods, and the error propagation
correction for the production volume planning data. Enabling the system to robustly
model the problem and adapt flexibly to upcoming supply chain disruption, not only
from a mathematical but also from a business perspective, is the key to creating a highly
performing forecasting system.
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Abstract: This paper illustrates the application of the indirect seasonal adjustment approach to the
index series of hours worked per capita from the Istat VELA survey, which is currently seasonally
adjusted using the direct approach instead. The experience already gained during the Istat LFS
allowed us to test the reliability of the indirect approach on the VELA series. In this case, the use
of the indirect approach was twofold: firstly, the seasonally adjusted index series was obtained by
seasonally adjusting the series of hours and the series of the employed separately and then relating
them. Secondly, for the numerator, as well as for the denominator, the different series disaggregated
by the variables of interest were seasonally adjusted separately.

Keywords: seasonal adjustment; direct approach; indirect approach; per capita hours worked indicator

1. Introduction

The quarterly Istat official survey on job vacancies and hours worked (VELA) collects
information on hours worked and Short-Time Working Allowance (Cig in Italian). Two
main indices on labor input can be derived from this survey: the number of hours worked
and hours worked per capita. These indices are on a fixed basis and can be obtained for
each economic activity sector as a ratio between the value of the indicator in the reference
quarter and the average value of the base year (currently 2015). The number of hours
worked is the sum of the hours worked by employees (ordinary and extraordinary). The
hours worked per capita are obtained by dividing the total hours worked with the average
number of employee positions occupied in the quarter.

Following the Eurostat guidelines, the direct approach is advisable when the com-
ponent series have similar characteristics (Eurostat, 2015). Conversely, in cases where
the series characteristics are very different, it is preferable to use an indirect approach,
recommended when the seasonally adjusted aggregate also contains component series that
show a weak seasonality that is difficult to identify.

The use of one approach or the other when the series are similar leads to results with
negligible discrepancies. Otherwise, when series differ, the discrepancies reflected in the
seasonally adjusted aggregate series may be significant: it is often the case that a relevant
number of inconsistencies (also known as out-of-range data) are observed between the
quarter-on-quarter changes in the aggregated activity sectors and those in each of their
component sections.

The impact of the COVID emergency, which affected the economic activity section
in various significant ways, revealed some of the limits of the direct approach. For the
number of hours worked, switching from the direct to the indirect approach is relatively
simple, while the implementation of the indirect approach for per capita hours worked is
more complex and is the object of this work.

The experience gained from the seasonal adjustment of a per capita variable in the
ISTAT Labor Force Survey (LFS) has been very useful. In particular, the indirect seasonal
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adjustment method adopted is based on the seasonal adjustment of each single series
separately (for the numerator as well as for the denominator), and the series can then be
re-aggregated according to the area of interest. For example, the seasonally adjusted (SA)
number of hours worked per capita can be obtained as the ratio of the SA hours worked to
the SA number of employed persons.

This paper describes the integration experience—and the resulting synergies—of
the seasonal adjustment method between two official surveys on labor supply (LFS) and
demand (VELA).

In particular, the next section deals with a comparison of when the application of the
direct and indirect seasonal adjustment approaches are most recommended.

Section 3 describes in detail the indirect method, adopted by the LFS, for seasonally
adjusting the hours worked per capita series and its application to the VELA ones.

In the Section 4, the main revision measures are considered in order to assess the
impact of the transition to the indirect seasonal approach on the VELA series.

Section 5 shows the main results so far. Conclusion are drawn in Section 6.

2. Seasonal Adjustment Approaches: Direct Versus Indirect

Official economic indicators are represented within a system characterized by elemen-
tary series (or components), the aggregation of which results in sub-total or total (marginal)
series. For example, economic series are disaggregated according to the NACE Rev.2 clas-
sification of economic activities by the specific sector of economic activity (the economic
activity sections) and their aggregations by macro sector.

Aggregated, or marginal, time series can be treated for seasonal effects using two main
approaches, with different properties and results [1,2] (Eurostat 2015, Metodi e Norme,
Oros 2019):

- The direct approach consists of individually seasonally adjusting all series, both ele-
mentary and aggregates. A possible indicator would first be calculated by aggregating
the raw data of its component series and then the data would be seasonally adjusted.

- The indirect approach involves combining two or more seasonally adjusted series.
The indicator in this case would be calculated by combining the component series
after they have been seasonally adjusted separately.

In practice, it is also possible to use a combination of the two approaches: for example,
when the quality of seasonal adjustment cannot be guaranteed at the lowest level of detail,
one can consider using a direct approach up to a certain level and an indirect approach for
higher levels of aggregation.

These two methods do not lead to the same results and are not equivalent. With the
direct approach, which is easier to implement, seasonal adjustment is applied directly to the
series of interest. If, for example, the raw series are not additive, the direct method is simpler
and more transparent. If the raw series are additive, the indirect approach guarantees by
construction that the sum of the seasonally adjusted components is equal to the seasonally
adjusted aggregate, since the aggregate is obtained by summing the components. Moreover,
seasonal adjustment with the direct approach can lead to inconsistency problems between
aggregate and disaggregated data, generating inconsistencies (also known as out-of-range
data), although these can be overcome by applying appropriate reconciliation techniques.
On the contrary, as mentioned above, with the indirect approach, the internal consistency
between aggregate and component series is always respected by construction.

The decision to apply one approach or the other must be made while taking into
account the characteristics of the raw series and the consistency between aggregates at
different levels. The choice of one approach or the other is an open question: there is
no theoretical or empirical evidence in favor of one or the other. For each case, different
assessments have to be made according to statistical and other considerations, empirical
rules and criteria, and certain properties to be obtained a priori. According to Eurostat,
if the seasonally adjusted component series have similar trends, the direct approach is
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preferred; if, on the other hand, they have very different characteristics and vary in weight
over time, the indirect approach is preferred.

3. Integration of the Indirect Approach on Hours Worked: The Labor Force Survey
Experience Applied to the Vacancies and Hours Worked One

With a view to the integration and harmonization of the methodologies applied to
different surveys in Istat, it was possible to share with the quarterly survey on vacancies
and hours worked (VELA) the experience gained within the framework of the Labor Force
Survey (LFS) on the seasonal adjustment of the variable hours worked.

The Labor Force Survey makes available comparable time series of data from 2004
onwards, both monthly and quarterly, for the main aggregates associated with the labor
market. In addition, the number of hours usually worked and the number of hours actually
worked by the employed, detailed with respect to their main characteristics, are collected.

3.1. The Indirect Approach in the Seasonal Adjustment of Hours Worked per Capita in the LFS

During the period of the COVID pandemic, it was realized that information on employ-
ment trends alone was not exhaustive for analyzing the labor market and that the analysis
of hours worked could be useful. In fact, along with employed persons, those affected
by lay-offs (in Cig) and those who had stopped working, either partially or completely,
were counted. On the other hand, the availability of the series on actual hours worked,
in particular by referring to the hours per capita, provided a timely, dynamic, and easily
interpretable reading of the labor input.

Therefore, in order to assess the impact on the productivity of the employed, the
monthly information on the number of employed people was supplemented by information
on the number of hours actually worked.

However, in order to properly analyze the trend, it was necessary to adjust the series
of hours worked to account for seasonal effects. The production of monthly, seasonally
adjusted data on hours worked was made possible by the use of internationally established
seasonal adjustment techniques.

For the seasonal adjustment of the indicator on hours per capita, the indirect approach
was used. The decision to use the indirect method arose from the strong difference between
the seasonality that characterizes the series of the total hours in the numerator and that of
the employed in the denominator. In these cases, international best practices on seasonal
adjustment recommend that, instead of proceeding directly on the aggregate series, we
proceed separately on the components and then aggregate them to obtain the aggregate
seasonally adjusted series. In the case of hours per capita, the use of the indirect approach
was twofold: firstly, the seasonally adjusted index series was not obtained by seasonally
adjusting the raw index series (i.e., the series of ratios between the raw series of hours at the
numerator, and the raw series of employed persons at the denominator—direct method).
It was obtained instead by seasonally adjusting the series of hours and the series of the
employed separately and then relating them. Secondly, for the numerator, as well as for the
denominator, the different series disaggregated by the variables of interest were seasonally
adjusted separately.

The formulae below summarize the two different approaches. Let X denote the series
of total hours and Y that of the employed, disaggregated according to one or more variables
of interest. Let M then be a mode of a variable of interest, expressible as the sum of n
subcategories {M1, . . . , Mi, . . . , Mn}, for which:

XM =
n

∑
i=1

xMi and YM =
n

∑
i=1

yMi

If by SA(I) we denote the seasonally adjusted I index of hours per capita, the direct
approach can be written as:

SA(IM) = SA
(

XM
YM

)
, (1)
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while the indirect approach can be expressed as:

SA(IM) =
∑n

i=1 SA
(
xMi

)
∑n

i=1 SA
(
yMi

) (2)

The breakdown variables chosen are those most associated with the indicator of inter-
est; in particular, for the employed and hours worked, the use of a logistic model identified
the variables relating to gender, professional position (employee or self-employed), and
type of working time (part-time and full-time) as most explanatory.

By way of example, Figure 1 shows the difference in the seasonal patterns of the hours
worked by male and female part-time employees (a vs. b) and of the number of part-time
employees who were male and female (c vs. d). At the same time, it is possible to highlight
the different seasonal patterns between the number of hours worked and the number of
part-time employees who were male (a vs. c) and female (b vs. d).

(a) (b)

(c) (d)

Figure 1. Seasonal pattern of part-time employees: hours worked by males (a) and females (b);
number of part time employees who were male (c) and female (d). Monthly series, Jan 2004–Dec 2020
(in thousands).

3.2. The Indirect Approach in VELA

Different seasonal patterns are observed also in VELA data series (Figure 2); in par-
ticular, the seasonality of the number of hours (a and b) and employees (c and d) in the
economic activity sectors H (a and c) and I (b and d) are shown here. Sector H (transport
and storage) and sector I (accommodation and food service activities) are two of the main
sectors contributing to the market services aggregate (sectors G to N), with a weight of
between 10 and 15%. The difference in seasonality emerges both in the hours worked in
the two sectors (a vs. b), with sector H (a) having almost no seasonality, and in the number
of employees employed in them (c vs. d). The comparison of hours worked and employees
employed within the same sector (a vs. c for sector H and b vs. d for sector I) also reveals
strong seasonal differences that justify the application of the indirect approach.

232



Eng. Proc. 2023, 39, 76

(a) (b)

(c) (d)

Figure 2. Seasonal patterns in sector H and I: hours worked (a,b); number of employees (c,d).
Quarterly series, 2015Q1–2022Q2.

The use of the indirect method also makes it possible to re-aggregate the number of
seasonally adjusted hours and number of employees according to the detail of interest, and
to obtain, through a ratio of these figures, the number of hours actually worked per capita,
adjusted for seasonal effects.

The quality of this methodology was assessed using all of the indicators defined in the
literature. In particular, in the seasonal adjustment phase of the single series, the guidelines
established by Eurostat [1] for model definition, outlier detection, the use of calendar effects
where present, etc. were respected, while in the evaluation phase of the results, checks on
residual seasonality were carried out, as well as a revision analysis.

For the seasonal adjustment of each series, the TRAMO/SEATS algorithm [3] imple-
mented in JDemetra+ was used.

This algorithm, adopted by leading European statistical agencies and central banks,
allows each series to be decomposed into its stochastic, not directly observable components:
the trend cycle, the seasonality, and the erratic component. The decomposition of the
series is achieved via a parametric ARIMA model-based procedure. The first stage of the
method (TRAMO) allows for the pre-treatment of the series: calendar-related systematic
components and possible outliers are identified. It also performs the automatic selection
of the ARIMA model and estimation of its parameters, as well as regression coefficients
related to outliers and calendar-related systematic effects. In the second step (SEATS), the
linearized series obtained from the pre-treatment is then decomposed into its cyclo-trend,
seasonal, and irregular components.

In the case of the Labor Force Survey, and for the following application to the VELA
series, the presence of calendar effects was checked only for the series relating to hours
actually worked, for which it is plausible that the presence of holidays results in fewer
hours worked. In contrast, for the denominator series relating to the employed, the absence
of calendar effects was imposed because, by definition, an individual’s employment status
is not affected by the number of working days but depends on having worked at least one
hour in the reference week.

TRAMO’s automatic identification procedure was relied upon to identify outliers,
subject to ex-post evaluation of their significance and eligibility.

As mentioned above, once the seasonally adjusted series have been obtained, the
application of the indirect method allows for the aggregation of the series of total hours
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with that of employment according to the detail of interest and the construction of the index
of hours actually worked per capita. Then, the series obtained indirectly by aggregation or
by ratios are again processed in TRAMO/SEATS to check the absence of residual seasonality.
The possible presence of residual seasonality would require a new seasonal adjustment of
the series in search of the optimal decomposition, with negative seasonality tests at the
aggregation stage.

All of the above regarding the methodology adopted in the Labor Force Survey for the
production of the hours actually worked per capita was applied to the VELA survey series.

The quarterly Istat official survey on job vacancies and hours worked (VELA) collects
information on hours worked and Cig hours. Two indices regarding labor input are derived
from this survey: the number of hours worked and hours worked per capita. The indices
are on a fixed basis and are obtained for each economic activity section as a ratio of the
value of the indicator in the reference quarter to the average value of the base year (2015).
The number of hours worked is the sum of the hours worked by employees (ordinary
and extraordinary). The hours worked per capita are obtained by dividing the total hours
worked by the average number of employee positions occupied in the quarter.

A direct approach is currently used in the VELA Survey to produce a seasonally
adjusted index of hours worked per capita.

The exercise on VELA involved adopting the indirect approach but using disaggre-
gated numerator and denominator series for the economic activity sector only. Specifically,
17 numerator and denominator series corresponding to 17 macro-sectors of economic
activity identified according to the NACE Rev.2 classification were seasonally adjusted.

In this case, at the aggregation stage, the absence of residual seasonality was checked
both in the aggregate series at the sector level, separately for total hours and number of
employees, and in the index series given by the ratio of total hours actually worked to the
number of employees. The aggregation covers, in detail, macro-sectors B to E; B to F; B to
N; B to S, G, H, and I; G to N; G to S; M and N, L, M, and N; and P to S.

Once the indicator series had been obtained via the indirect method, an initial valida-
tion was carried out by comparing them with the same ones produced by the direct method
and then also with those derived from other closely related surveys, in order to assess
their consistency (for more details, see Section 5). The comparison was carried out on the
series of cyclical changes by using indicators usually applied in the revisions analysis that
allowed us to assess the magnitude and significance of the occurred differences between
different releases of the same series.

In the following sections (see Section 5), the indicators resulting from the comparisons
will be detailed. Through an analysis of them, it will be possible to give an assessment of
the eligibility of the indirect method in the seasonal adjustment of hours actually worked
per capita derived from the VELA survey.

4. Revision Measures Applied

The quality of the new VELA seasonally adjusted series has been assessed by means
of the main revision standard measures [4,5].

In particular, to assess the average magnitude of revision, the following were consid-
ered: the mean absolute revision (MAR), which provides a measure of the revision adjusted
for the offsetting effect due to opposite revisions, expressed by Formula (3) as

MAR =
1
n

n

∑
t=1

|Lt − Pt| (3)

where Lt represents the value of the cyclical change at time t relative to the series calculated
by the indirect method and Pt that of the series obtained by the precedent method; and the
relative mean absolute revision (RMAR), or RMA normalization, illustrated by Formula (4):

RMAR =
∑n

t=1|Lt − Pt|
∑n

t=1|Pt |
(4)
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This was to take into account the fact that, in periods characterized by very large
fluctuations, revisions may be larger and to compare series for different economic sectors
or time periods with each other.

For an assessment of the direction of the revisions (underestimation/overestimation),
the mean revision (MR), of which only the sign and not the numerical value was considered
(Formula (5)), was considered, accompanied by the corresponding test on the hypotheses
that it is or is not significantly different from zero:

MR =
1
n

n

∑
t=1

(Lt − Pt) (5)

Therefore, a positive (negative) mean revision with significant test denotes a systematic
underestimation (overestimation) by the source series (P) compared with the L series
defined by the indirect method.

5. Main Results

A comparison has been made between the use of the indirect and direct approach when
applied to the seasonally adjusted VELA worked hours per capita indices. In particular,
Figures 3–5 show the hours worked per capita and their quarterly-on-quarterly changes in
the two seasonal adjustment approaches, for the total economy (economic activity sections
from B to S of the classification NACE Rev. 2), industry (sections from B to F), and services
(G–S), separately.

Figure 3. VELA worked hours per capita indices, indirect vs. direct approach. Total economy
(B–S)—I quarter 2015–II quarter 2022. Level (left scale) and quarter-on-quarter changes (right scale).
Seasonally adjusted indices.
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Figure 4. VELA worked hours per capita indices, indirect vs. direct approach. Industry (B–F)—I
quarter 2015–II quarter 2022. Level (left scale) and quarter-on-quarter changes (right scale). Seasonally
adjusted indices.

Figure 5. VELA worked hours per capita indices, indirect vs. direct approach. Services (G–S)—I quar-
ter 2015–II quarter 2022. Level (left scale) and quarter-on-quarter changes (right scale). Seasonally
adjusted indices.

As the figures show, the series seasonally adjusted by the indirect method show cyclical
changes that are slightly larger—mainly in the aggregated industry sector—than those
obtained by the direct method, and of the same sign in most quarters (around 80%). This
was somewhat expected as the indirect method allows the seasonally adjusted aggregate
series to better represent the different characteristics and behavior of each component series
than the direct approach.
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Moreover, the MAR and RMAR revision measures were calculated based on the
quarter-on-quarter changes and taking into account all the economic activity sections
(Table 1).

Table 1. MAR and RMAR revision measures by NACE Rev. 2 economic activity section—average
values, I quarter 2015–II quarter 2022.

Economic Activity Section MAR RMAR

Mining and Quarrying—B 1.2 0.8
Manufacturing—C 1.2 0.5

Electricity, gas, steam, and air conditioning supply—D 1.0 0.8
Water supply: sewerage, waste management, and remediation activities—E 0.8 0.6

Construction—F 0.5 0.2
Wholesale and retail trade; repairs—G 1.1 0.4

Transportation and storage—H 0.3 0.1
Accommodation and food service activities—I 3.2 0.3

Information and communication—J 1.1 0.6
Financial and insurance activities—K 1.6 1.4

Real estate activities—L 0.8 0.2
Professional, scientific, and technical activities—M 0.8 0.3
Administrative and support service activities—N 1.1 0.5

Education—P 1.8 0.3
Human health and social work Activities—Q 0.2 0.1

Arts, entertainment, and recreation—R 6.3 0.5
Other service activities—S 1.1 0.3

Industry B–F 0.9 0.4
Services G–S 0.8 0.3

Total Economy B–S 0.8 0.4

The absolute differences account for less than two percentage points, with the ex-
ception of sectors I (Accommodation and food services) and R (Arts, entertainment, and
recreation). These two sectors were the most affected by the COVID emergency in the pe-
riod between Q3 2020 and Q3 2021. Therefore, they were characterized by higher quarterly
changes during this period. In this case, the RMAR measure is a more reliable revision
measure for understanding the actual impact of the new seasonal adjustment method. For
these two sections, the RMAR measure shows no significant differences compared to the
other sections.

In addition to this, the signs of quarter-on-quarter changes in the new VELA series
were compared with those of other Istat macroeconomic indicators, related to hours worked:
namely, the total employee jobs from the OROS (employment, wages and salaries, and
social charges) survey, the Industrial Production Index, the Construction Production Index,
and the Turnover in Services Index. The signs are concordant between 60% and 90% of
the total quarters, depending on the economic activity section. Moreover, the average
difference between quarter-on-quarter changes in the new VELA series and those of the
above-mentioned indicators does not exceed 3%, on the total quarters considered, varying
according to the economic activity section.

After these preliminary analyses of the performance of the new VELA series compared
to those currently in use, the impact of the new method on reducing the number of outliers
and the size of the residual outlier was evaluated. No out-of-range data were observed
with the new method, whereas the current procedure based on the direct method produced
around 20 out-of-range data points in the period under observation, mainly concentrated
in the industry sector. As mentioned above, in this sector, the new indirect approach seems
to have modified the original series more than in the service sector.

6. Conclusions

The application of the indirect approach to the seasonal adjustment to the VELA hours
worked per capita series, as produced by the LFS, has led to important results both in terms
of quality and as an example of the synergies developed by integrating the methodologies
followed by different surveys.

The impact of the COVID emergency, which affected the economic activity sectors
in various significant ways, highlighted the presence of a non-negligible number of in-
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consistencies (also called out-of-range data) between the quarter-on-quarter changes of
aggregated activity sectors and those of each component section.

Using the method adopted by the LFS, the number of out-of-range data points was
greatly reduced, with the advantage that the VELA series did not demonstrate significant
revisions when switching from the direct to the indirect method.

This work represents a positive example of the replication of methodologies among
surveys with different characteristics. The use of a common methodology is also an
important step in the direction of greater comparability between data from different sources.

The encouraging results shown so far by the application of the LFS seasonally adjusted
method to the VELA indicator on hours worked per capita encourage us to continue in
this direction.
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Abstract: Industry 4.0 has emerged together with relevant technological tools that have enabled the
rise of this new industrial paradigm. One of the main employed tools is Machine Learning techniques,
which allow us to extract knowledge from raw data and, therefore, devise intelligent strategies or
systems to improve actual industrial processes. In this regard, this paper focuses on the development
of a prediction system based on Random Forest (RF) to estimate Pentane concentration in advance.
The proposed system is validated offline with more than a year of data and is also tested online in an
Energy plant of the Basque Country. Validation results show acceptable outcomes for supporting
the operator’s decision-making with a tool that infers Pentane concentration in Butane 400 min in
advance and, therefore, the quality of the obtained product.

Keywords: random forest; pentane concentration prediction; refineries; machine learning; artificial
intelligence

1. Introduction

The fourth industrial revolution, coined as Industry 4.0, is characterized by the integra-
tion of advanced digital technologies such as Internet of Things (IoT), Artificial Intelligence
(AI), Robotics, Cloud Computing, Big Data and Cybersecurity into the industrial process.
These technologies enable factories and supply chains to become more efficient, productive
and adaptable to changing market demands. In this context, many industries have mon-
itored their processes and units with the aim of optimizing their operational conditions
and, thus, improving the quality of the final products [1,2]. Regarding the Energy Industry,
in [3], a method for estimation the oxygen content in a coke furnace is presented. Similarly,
in [4], a soft-sensor for the prediction of MAE and SWA acid gases is shown.

A common and relevant fact that encompasses these kind of problems is the need to
build intelligent strategies that extract valuable insights from the available data. In this
context, Feature Selection (FS) and Feature Weighting (FW) techniques along with Machine
Learning (ML) models that enable the construction of automated decision support systems
based on data are a hot research topic nowadays. In this sense, several works apply FS
and FW strategies to problems related to the Energy sector, such as [5,6]. In [6], a Butane
concentration estimator at the bottom of the debutanizer column with an FW strategy is
presented. Similarly, authors in [5] propose an autoML approach that considers feature
preprocessing and selects the best algorithm configuration for developing a soft-sensor for
Pentane concentration prediction at the end of a debutanizer column.

This paper focuses on this last open challenge, i.e., to predict approximately 400 min
in advance the percentage of Pentane concentration in Butane at the end of a debutanizer
column. In contrast to [5], a regression model based on a Random Forest (RF) technique
is proposed. Thus, it is possible to assess the trend of Pentane concentration prediction
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through this implementation. Furthermore, online results obtained by applying this pro-
posal in an Energy plant are presented.

The remainder of the paper is structured as follows: Section 2 depicts the real industrial
use case. Section 3 presents the Random Forest technique and the offline and online
validation results. Finally, Section 4 shows the conclusions of the work.

2. Industrial Use Case Description

The Industrial use case focuses on a specific line for the production of Butane—this
being a product of great added value. In order to be marketed, it must meet a series of
requirements and specifications. One of them is the proportion of Pentanes in the Butane
itself, where the maximum admissible threshold is 1.5%.

Figure 1 shows the Butane production scheme.

Figure 1. Schema of the industrial use case.

In Figure 1, the main line for the blending of Butanes can be observed. It consists
of the head of the naphtha stabilizers (C1, C2), the Merox unit (M1) and ends in the first
Butanes unit (B1). The data collected come from columns C1 and C2 wherein information
about flow, temperature and pressure is gathered. The aim is to predict the percentage of
Pentanes in Butane that will be at the end of the debutanizer column but approximately
400 min in advance. The process variables information are obtained every 10 min from
October 2017 to February 2019.

3. Percentage of Pentanes in Butane Prediction System

Firstly, a feature importance analysis of the process variables is conducted and the most
relevant in terms of Pentane production are selected as input to the prediction system. The
feature importance methods used to perform the study are Pearson correlation, Random
Forest, ANOVA and Mutual Information. For each of these methods, the 30 most influential
variables are selected and those that appear as relevant in three of the four methods with a
correlation >0.9 between them are finally chosen.

After this first analysis, a Random Forest regressor model [7] is implemented with all
the available variables and with the most relevant ones. Two different methods for training
the model are tested: (1) to train and validate the model using the cumulative learning
method and (2) using the sliding window method. By means of employing the cumulative
learning method, the model is trained with the first 14 months and tested with the last three
months. The absolute mean error obtained is 0.58(%). Moreover, it is observed that the
prediction error increases as the test data move away in time from the training data—that is,
for the first hours of the test, the error is low, but as the hours pass the error increases. On
the other hand, the model is trained using the sliding window method with a window of
one month, i.e., training with the data of one month and testing with the next value, and so
on, sliding the window until all the months of the sample are covered. In this way, a mean
absolute error in the prediction of 0.21(%) is obtained, which is significantly lower than that
obtained by the cumulative training method. In addition, it is observed that the importance
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of the variables also varies over time. As a conclusion, the model with a sliding window
of one month is chosen for the construction of the final prediction system. The fact of
obtaining a lower error through the sliding window suggests that there is seasonality—that
is, the relationship between the process variables and the Pentane concentration varies
over time.

As commented in the previous sections, the main objective is to develop a model that
predicts in advance a peak in the Pentane concentration—that is, when it exceeds the 1.5%
threshold. Therefore, the developed RF regressor model is used as a core part solution to
develop a decision support system that generates an alarm when the prediction exceeds
the 1.5% threshold.

In Figure 2, an interval of the real signal in green associated with the proportion of
Pentanes in the production of Butane is presented. The red vertical line indicates the first
point where the proportion has exceeded the limit set at 1.5% (black horizontal line). Finally,
the cyan line corresponds to all points where the real signal exceeds said limit.

Figure 2. Real signal associated with the proportion of Pentanes in the production of Butane. Black
horizontal line indicates the 1.5% limit. Cyan line: points that exceed the limit. Red line: first point
that exceeds the limit per section.

In order to evaluate the results provided by the percentage of Pentanes in Butane
prediction system, a set of well-known metrics, slightly modified for the problem at hand,
are used: True Positives (TP), False Positives (FP) and False Negatives (FN). For the entire
period studied (October 2017–February 2019), a total of 185 points were identified that
exceeded the limit of 1.5%. It should be noticed that the real process has an average offset
of around 400 min, which, as contrasted with the domain experts, may vary over time. This
fact is considered for calculating the evaluation metrics, named True Positives and False
Positives, as follows:

• True positives (TP) and timeTP1: Analyzing the real signal, when it exceeds the limit of
1.5%, the time that the prediction takes to exceed that value is calculated (timeTP1time).
If after 400 min the prediction does not exceed it, it means that the rise in Pentanes has
not been detected sufficiently in advance and it is counted as FN.

• True positives (TP), timeTP2 and timeFP: Analyzing the real signal, when it exceeds
the limit of 1.5%, the time that the prediction is ahead in predicting the rise in Pentanes
(timeTP2) is calculated. If it exceeds the maximum margin, it is computed as FP and
timeFP is calculated, and if it is not exceeded, it is computed as TP and timeTP2 is
allocated. When establishing this maximum time margin for timeTP2, it was agreed
with the domain experts to consider 460 min (400 + 60).
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Table 1 shows the results obtained by the application of the RF algorithm and the RF
followed by a Savitzky–Golay filter [8] for smoothing the prediction outcome and, thus,
reducing the FPs. Note that by increasing the window size, the FPs are reduced at the cost
of also reducing the TPs.

Table 1. Obtained results by employing RF and RF plus Savitzky–Golay filter (SG) with windows
sizes w ={3, 7, 21}.

TPs FPs FP/TP
timeTP1 (min) timeTP2 (min)

min/mean/max—std min/mean/max—std

RF 93 145 1.55 20/274/390—99 400/445/450—12

RF + SG w = 3 83 96 1.15 20/275/380—93 400/444/450—13

RF + SG w = 7 70 68 0.97 20/253/370—94 380/425/430—10

RF + SG w = 21 53 44 0.83 20/183/280—75 310/354/360—14

With the aim of investigating new alternatives that could improve the RF prediction
system, a detailed analysis of the data and results was performed and the following
conclusions were obtained: On the one hand, the limitation of imposing a constant offset
of 400 min for all variables is too strict. As verified during the validation, there is an
average offset of 400 min. Although for most of the peaks the offset is between 350 to
450 min, it is not always 400 min. On the other hand, during the analysis, it is observed
that the concentration of Pentane at 400 min seems to be influenced by the previous values
of Pentane concentration. Therefore, it seems reasonable that if the value of Pentane
concentration at the instant of the prediction is incorporated, the results could be improved.
As a result of these conclusions, the following two new implementations are tested in order
to see if they improve the results of FP/TP ratio:

• RF model implementation 1: introducing the previous values of Pentane concentration.
• RF model implementation 2: introducing different offsets in the process variables (offsets

from −450 to −350 min) together with the previous values of Pentane concentration.

These two RF model implementations are validated for the month of January 2020. In
order to compare the results with the previous ones, the FP/TP ratio is used.

Tables 2 and 3 present the results obtained by RF model implementations 1 and 2.

Table 2. Obtained results by employing RF model implementation 1 and RF model implementation 1
followed by a Savitzky–Golay filter (SG) with windows sizes w ={3, 5, 7, 9, 11, 21}.

TPs FPs FP/TP
timeTP1 (min) timeTP2 (min)

min/mean/max—std min/mean/max—std

RF 7 12 1.71 250/318/380—43 450/450/450—0
RF + SG w = 3 7 10 1.42 140/293/370—73 440/440/440—0
RF + SG w = 5 7 9 1.28 110/280/360—80 430/430/430—0
RF + SG w = 7 7 7 1 100/270/350—80 410/410/410—0
RF + SG w = 9 6 4 0.66 80/244/310—83 400/400/400—0

RF + SG w = 11 5 3 0.6 70/230/290—80 -
RF + SG w = 21 1 2 2 230/230/230—0 -
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Table 3. Obtained results by employing RF model implementation 2 and RF model implementation 2
followed by a Savitzky–Golay filter (SG) with windows sizes [3, 5, 7, 9, 11, 21].

TPs FPs FP/TP
timeTP1 (min) timeTP2 (min)

min/mean/max—std min/mean/max—std

RF 7 8 1.14 190/270/330—51 360/380/400—20
RF + SG w = 3 6 5 0.83 240/285/320—35 360/380/400—20
RF + SG w = 5 6 4 0.66 230/265/310—30 340/365/390—25
RF + SG w = 7 6 4 0.66 210/255/300—36 330/355/380—25
RF + SG w = 9 6 4 0.66 190/237/280—35 320/354/370—25

RF + SG w = 11 4 3 0.75 210/240/270—30 310/330/350—20
RF + SG w = 21 3 2 0.66 180/180/180—0 280/290/300—10

After analyzing the results for both RF model implementations, the following conclu-
sions are obtained:

• RF model implementation 1 reduces the number of FPs up to window 11.
• RF model implementation 2 reduces the number of FPs up to window 9.
• The best approximation is that of RF model implementation 2 with SG of window 5 as

it provides the best FP/TP ratio and timeTP.
• The best solutions for both approaches allow capturing 5-6 TPs out of a total of 8,

generating 3-4 FPs.
• The FP/TP ratio is still quite high, around 0.66. That is to say, for approximately every

3 TPs we capture, 2 FPs are generated.

Finally, RF model implementation 2 is set online with SG of window 5 from 1 December
2020 to 26 January 2021. Figure 3 and Table 4 depict the obtained results.

Figure 3. Online validation from 1 December 2020 to 26 January 2021. The real Pentane concentration
signal is in green color and the predicted one in blue color.

Table 4. Obtained online validation results by employing RF model implementation 2 and RF model
implementation 2 plus Savitzky–Golay filter (SG) with window size w = 5.

TPs FPs FP/TP
timeTP1 (min)

min/mean/max—std

RF model implementation 2 online 7 4 0.57 220/335/390—57

Figure 4 shows four examples of detection of the peak of Pentane concentration. As
observed, the peak is detected in advance; so, the operators can take proper actions to
minimize the consequences of that Pentane concentration peak.
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Figure 4. Examples of Pentane concentration peak detection. Green signal is the real one and blue
signal is the predicted one.

4. Conclusions

This paper proposes a Pentane concentration prediction system based on ML tech-
niques capable of detecting the quality of the Butane at the end of the debutanizer column
400 min in advance. Specifically, a Random Forest (RF) regressor followed by a Savitzky–
Golay filter is proposed. The prediction system is validated offline with data from October
2017 to February 2019 employing a sliding window training strategy; it has also been tested
online, providing acceptable results. Obtained results show that the proposed system is
able to predict Pentane concentration peaks that occur in recent similar behaviors. However,
when new behaviors suddenly appear, the system is not able to learn those behaviors fast
enough and predict the peaks in advance.

In order to face this situation, future steps will be devoted to collaborating with the
process operators and analyzing the possibility of eliminating some false positives with
some extra process information, such as the crude composition.
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Abstract: This paper presents a neural network model to estimate arterial blood pressure (ABP)
waveforms using electrocardiogram (ECG) and photoplethysmography (PPG) signals and its first
two order mathematical derivatives (PPG′, PPG′′). In order to achieve this objective, a lightweight
and optimized neural network architecture has been proposed, made of Conv1D and BiLSTM layers.
To train the network, the UCI Database “Cuff-Less Blood Pressure Estimation Data Set” has been
used, which contains ECG and PPG signals together with the corresponding ABP waveform data;
then the first two PPG derivatives have been computed. Four different configurations and parameter
sets have been tested to choose the best structure and set of parameters. Additionally, various batch
sizes, numbers of BiLSTM layers, and the presence of a maximum pooling layer have been tested.
The best performing model achieves a mean absolute error of around 2.97, which is comparable
to the state-of-the-art methods. Results prove deep learning techniques can be effectively used for
non-invasive cuffless arterial blood pressure estimation. The lightweight and optimized model
can be effectively used for continuous monitoring of blood pressure, which has significant clinical
implications. Further research can focus on integrating the proposed model with wearable devices
for real-time blood pressure monitoring in daily life.

Keywords: neural networks; arterial blood pressure; ECG; PPG

1. Introduction

Arterial blood pressure (ABP) is a crucial indicator of an individual’s health. It measures
the amount of pressure that blood exerts against the walls of arteries during circulation.
Accurate measurement of ABP is crucial in diagnosing and timely managing cardiovascular
diseases, such as hypertension [1]. However, conventional methods for measuring ABP
are either invasive, requiring the insertion of a catheter into an artery, or need a cuff to be
inflated around the arm, which can lead to patient discomfort [2]. Consequently, cuffless
non-invasive methods based on ABP estimation from electrocardiogram (ECG) and/or pho-
toplethysmogram (PPG) signals have gained popularity due to their ease of use and safety.

Recent studies indicate that deep learning techniques can accurately predict arterial
blood pressure from ECG and PPG signals [3–5]. However, these methods tend to be
computationally intensive and time-consuming due to their complexity and requirement
of large datasets. The proposed model employs a simpler architecture that combines a
Conv1D neural network and a bidirectional long short-term memory (BiLSTM) network
to capture the temporal and spectral features of the ECG and PPG signals. Additionally,
the first two derivatives of PPG are incorporated to capture the dynamic changes in ABP
over time.
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The proposed approach achieved promising results in predicting arterial blood pres-
sure from ECG and PPG signals, with an overall mean absolute error (MAE) of only
2.97 mmHg on the test set. It is computationally efficient and requires less memory than
state-of-the-art methods, making it a practical and effective solution for non-invasive
arterial blood pressure regression and in principle could be more easy-to-transfer on wear-
able/portable devices, such as [6].

1.1. Related Work and Previous Studies

There are two main routes to take to predict blood pressure using artificial neural
networks [7]: regression problem, which aims to predict the entire ABP signal waveform;
and the direct systolic blood pressure (SBP), diastolic blood pressure (DBP) prediction as
the maximum and minimum of ABP signals.

In [3], several deep learning techniques are compared to infer ABP, starting from
photoplethysmogram and electrocardiogram signals. The ABP is first predicted using
only PPG and, then, by using both PPG and ECG. Both convolutional neural networks
(ResNet and WaveNet) and recurrent neural networks (LSTM) are compared and analyzed
for the regression task. The results show that the use of the ECG have resulted in improved
performance for every proposed configuration.

In [8], a U-net deep learning architecture that uses fingertip PPG signal as input to
estimate ABP waveform non-invasively is proposed. From this waveform, they have also
measured SBP, DBP, and the mean arterial pressure.

In [9], a deep learning model is presented, named ABP-Net, to transform photoplethys-
mogram signals into ABP waveforms that contain vital physiological information related
to cardiovascular systems.

In [5], the applicability of autoencoders in predicting BP from PPG and ECG signals
was explored.

These works demonstrate the potential of deep learning techniques in predicting blood
pressure using non-invasive signals. They also highlight the importance of using ECG
signals in combination with PPG ones to improve prediction performance. However, further
research is needed to establish the accuracy and generalization capability of these models in
predicting blood pressure in different populations and settings. Furthermore, many studies
rely on massive neural networks, some with as many as 60 million parameters, like [5].

1.2. State of the art limitations

While the studies on non-invasive estimation of arterial blood pressure using ECG
and PPG signals have shown promising results, there are some limitations to consider.

Firstly, the studies typically evaluate the performance of the proposed methods on
small- to medium-sized datasets, which may not be representative of the wider population.
Therefore, further validation on larger datasets is required to assess the generalizability of
these methods.

Secondly, the studies often focus on predicting the systolic and diastolic blood pressure
values separately, rather than predicting the full arterial blood pressure waveform. This
limits the ability to capture the complex variations in blood pressure over time.

Thirdly, some studies may not consider the influence of various factors such as age,
gender, and underlying medical conditions that may affect blood pressure, which can
impact the accuracy of the predictions.

Finally, the use of non-invasive methods to estimate blood pressure may not be
suitable for all individuals, such as those with certain medical conditions or those who
are critically ill. In these cases, invasive methods may still be necessary to obtain accurate
blood pressure measurements.

1.3. Potential Advantages of Proposed Model

The architecture presented in this paper, which is the logical continuation of the work
by Paviglianiti [3,10] and Mahmud [5], aims to be as compact as possible without sacrificing
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accuracy. Also, it provides better predictions as a result of the addition of the two PPG deriva-
tives. Since the model is lightweight when compared to many others, it can be embedded
into wearable or portable devices, or, more generally it can be applied to edge computing.

2. Dataset and Methods

The pulsatile nature of the cardiac output results in the pulse pressure waveform.
The interaction of the heart’s stroke volume, the arterial system’s compliance (ability to
expand), which is primarily due to the aorta and large elastic arteries, and the arterial tree’s
resistance to flow determines the magnitude of the pulse pressure. Systolic blood pressure
(SBP) is defined as the peak of the ABP pulsewave in an ABP signal, see orange stars in
Figure 1a. The minimum of ABP pulses is known as the diastolic blood pressure (DBP), as
shown in Figure 1a, green stars. In our case, we have an entire waveform lasting 8 s rather
than just a single pulse. Since the waveform is varying in time and peaks and minimums
are not constant, for each sample, the mean of all the peaks and minimums was used to
calculate the SBP and DBP, respectively (see Figure 1b).

(a) (b)

Figure 1. Fraction of ABP signal (y-axis) over time (x-axis) with: (a) highlighted peaks (SBP, orange stars)
and minimum points (DBP, green stars); (b) extracted SBP (mean of peaks) and DBP (mean of minimums).

Using Python’s ready-to-use function “scipy.signal.find_peaks”, peak detection was
carried out. In order for the peaks to be detected, it is necessary to define a “prominence”
(a sort of threshold for the height of the peaks). Prominence must be assessed on a case-by-
case basis because the ABP range is flexible. This parameter was empirically chosen to be
the difference between each ABP signal median and minimum value.

2.1. Database

The UCI dataset, also known as the Cuff-Less Blood Pressure Estimation Dataset, was
used in this study due to its simplicity and readiness [11,12]. It was sourced from the
MIMIC-II Waveform database, which tracks physiological measurements such as ABP and
PPG [13]. The UCI dataset consists of 12,000 instances of simultaneous PPG, ABP, and
ECG data from 942 patients, and was pre-processed by Kachuee et al. to smooth signals,
eliminate unacceptable values, and autocorrelate PPG signals [11]. Pre-processing of the
entire dataset was necessary before model training.

2.2. Preprocessing

Inspired by [3], the PPG recordings were filtered using a band-pass 4th order But-
terworth filter with a bandwidth of 0.5 Hz to 8 Hz to exclude frequencies responsible
for baseline wandering and high frequency noise. Moreover, in order to prevent motion
artifacts and powerline artifacts, the ECG signal was filtered with an 8th order passband
Chebyshev type 1 filter with a cut-off frequency of 2 Hz and 59 Hz. Then, the inputs were
standardized instance-wise using a min-max normalization between 0 and 1.

It is crucial to emphasize that ABP was not altered in any manner in order to preserve
pressure information. The SBP, DBP pressure readings and forecasts would have been
inaccurate and information would have been lost if filters or pre-processing were applied.

2.3. Data Selection and Training Set Creation

Data are sampled at 125 Hz. Since the maximum duration of an instance is 10 min,
each instance of ECG, PPG and ABP will have at most 75,000 data points. To have adequate
information to forecast the overall trend and the impact of the ECG and PPG on ABP, all
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the instances were divided in segments of length of 8 s (1000 points), comparable to [5]
(1024 points).

The signal segments extracted from the UCI dataset contain many highly distorted
signals that prevented the deep learning model from properly mapping input signals
to the corresponding ABP waveform and, thus, hinder correct SBP and DBP estimation.
Experimentally, it was found that highly distorted signals typically lie on one of the
following categories: SBP below 80 mmHg or over 190 mmHg; DBP below 50 mmHg
and above 120 mmHg; blood pressure ranges (|SBP − DBP|) below 20 mmHg or above
120 mmHg. As a result, these ABP samples, together with their corresponding ECG and
PPG signals, were removed from the dataset.

Afterwards, since the peaks of ECG, PPG, and ABP signals are frequently non-uniform,
e.g., due to patient movements during acquisition, an additional data selection step has
been performed, based on the standard deviation of peak heights and peak distances within
each extracted signal. Here, some maximum values have been fixed to filter out noisy
signals; Table 1 summarizes these thresholds for PPG, ECG, and ABP, respectively.

Table 1. Pruning thresholds for the standard deviation σ of PPG, ECG, and ABP.

PPG ECG ABP

σ of peak distances >6 >6 >6
σ of peak heights >0.1 >0.1 >6

2.4. Input and Output of the Network

The PPG, ECG, VPPG = d(PPG)
dt , and APPG = d(VPPG)

dt , each with a length of 1000 (8 s)
time instants, has been fed, in this order, to a different network channel to make the input
tensor with shape (1000, 4). On the other side, an ABP waveform lasting 8 s will be the
network target, which the model must forecast. Figure 2 shows an example of input tensor
(Figure 2a–d) and the relative ABP output to be predicted (Figure 2e).

(a) PPG( )

(b) ECG( )

(c) VPPG( )

(d) APPG( )

(e) ABP

Figure 2. Example of input vector over time (x-axis) composed, from top to bottom (y-axis), by: PPG,
ECG, VPPG, APPG; and then the relative ABP to be predicted.
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2.5. Extracted Signals Analysis

After the previously described preprocessing, thresholding and cleaning phases,
192,661 input tensors (each of 8 s) were obtained, for a total of 428.13 h of training data in
total. It can be helpful to examine the SBP and DBP distribution of the extracted examples
shown in Figure 3. Due to the thresholds defined during the extraction and selection of
signal steps, it follows that the distributions are truncated where the upper and lower
boundaries have been set. It can also be observed DBP is generally less dispersed than SBP
(see Figure 3 right).

Figure 3. Distribution of: SBP and DBP extracted values (left); σ of extracted values of SBP, DBP (right).

3. Network Architecture

Inspired by the great results of [3] and [5] our first idea was to use a “mixture” of
the two models. However, since the architecture of [5] was huge (about 120 million of
parameters), it is evident that this approach could not be the optimal one for the ABP
prediction, especially looking at the network of [3] (just around 2 million parameters).
Therefore, it was opted to use a series of Conv1D (with 128 filters and kernel size equal to
3), and BiLSTM layers.

Conv1D [14,15] are commonly used in time-series analysis because they can effectively
extract temporal features from the data. This is particularly useful when dealing with noisy
or variable data, where traditional statistical methods may not be effective.

Bidirectional Long Short-Term Memory (BiLSTM) [3] networks are also commonly
used in time-series analysis because they can effectively capture both past and future
information in the time-series.

The idea behind the model is to use a sort of “encoder–decoder” structure, based
on the Conv1D layers, with the BiLSTM as a backbone, instead of a simple Multi Layer
Perceptron as [5]. Also, a skip connection between and after the backbone to prevent the
vanishing gradient was used. The resulting structure can be seen in detail in Figure 4.

Figure 4. Structure of the first network.
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4. Experiments and Results

All of the examples were randomly shuffled before the network training began (using
the same seed for each experiment, for sake of comparability), and the training set was made
up of 80% of the data, while validation and testing subsets received 10% each, respectively.

All the experiments were performed using Adam optimizer Keras default configu-
ration [16,17] and 30 epochs. Due to the presence of the MaxPool layer, the stride of the
Conv1DTranspose layer must be set to 2 to match the input/output dimensions, and keep
the same number of parameters in the network.

To stick with the state of the art, two metrics—Mean Absolute Error (MAE) as the
observed metric and Mean Square Error (MSE) as the loss function for the model—were
used in all the experiments. Overall, while other loss functions may be used for time-series
regression, MSE is an effective choice due to its simplicity, interpretability, and effectiveness
in capturing the error between predicted and actual values over time.

The first experiment was made using the architecture of Figure 4, which employed
64 input batches, a Max Pool layer, and 3 BiLSTM layers. Results in terms of MAE and
MSE, for both training and validation, are shown in Figure 5.

(a) MSE (b) MAE

Figure 5. Error (y-axis) over epochs (x-axis) for the first experiment (batch size = 64, 3 BiLSTM and
MaxPool layer): (a) MSE on training (blue line) and validation (red line) sets; (b) MAE on training (blue
line) and validation (red line) sets.

The second experiment aimed to comprehend the importance of removing the Max-
Pool layer. Here, 3 BiLSTM and 64 input batches were still used. The time for the computa-
tion increased from 2.5 h to 4 h. The outcomes are displayed in Figure 6.

Figure 7 shows a comparison among these two network configurations with regard
to the MAE metric. It can be seen that removing the layer has almost no impact on the
regression performance. With a slightly more pronounced difference at early epochs, the
two configurations appear to converge in the same way at the latest epochs. Since removing
the MaxPool layer does not seem to bring any noticeable improvements, in all future
experiments this layer will be used due to its much faster network training time.

(a) MSE (b) MAE

Figure 6. Error (y-axis) over epochs (x-axis) for the second experiment (batch size = 64, 3 BiLSTM and
no MaxPool layer): (a) MSE on training (blue line) and validation (red line) sets; (b) MAE on training
(blue line) and validation (red line) sets.
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Figure 7. Comparison of MAE (y-axis) over epochs (x-axis) between Figures 5b and 6b experiments.

In the third experiment, just two BiLSTM were implemented to assess the impact
of different number of BiLSTM layers; the rest remains as per the first experiment (i.e.,
64 input batches and Max Pool layer). Figure 8 displays the outcome in comparison to
the other two experiments for the two metrics. It is evident that using only two BiLSTM
reduces performance across the board. The validation MAE never achieves the outcomes
of the first two experiments.

(a) MSE (b) MAE

Figure 8. Error (y-axis) over epochs (x-axis) for the third experiment (batch size = 64, 2 BiLSTM and
MaxPool layer) compared to the previous two networks: (a) MSE on training and validation sets;
(b) MAE on training and validation sets.

The last experiment aimed to highlight the effects of increasing the batch size to 256
with MaxPool and 3 BiLSTM layers. Figure 9 yields the results. Even though the network is
still learning, it does not appear to converge as quickly as it did in the previous experiments,
as it is evident just by looking at Figure 9a. However, at higher epochs, the MAE training
trend appears to converge to similar values. The validation MAE, however, never falls
below the other model with a 64 batch size, as can be seen by looking at Figure 9b.

(a) (b)

Figure 9. Comparison of MAE (y-axis) over epochs (x-axis): (a) All networks, only training; (b) first
and last network configurations, training and validation.

In conclusion, the ablation study that performed pruning on some parts of the initial
network proved that the architecture shown in Figure 4 is the best performing one. Indeed,
it reaches lower MAE values than the third and fourth configurations and requires a
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quite shorter training time than the second network, as previously stated. For sake of
completeness, after choosing the ideal structure and parameters, it is possible to see some
examples of the model predictions using random inputs from the test set, in Figure 10.

Figure 10. Examples of predicted ABP (y-axis) over time (x-axis) from the first network configuration
(64 batch size, MaxPool and 3 BiLSTM layers). The predictions are relative to random inputs from the
test set, to show the network capability of reproducing different kind of waveform.

5. Conclusions

This paper aimed to build a lightweight neural network model to predict 8 s of ABP
signal, using the “Cuff-Less Blood Pressure Estimation Dataset”. At this purpose, a novel
network, based on Conv1D as encoder/decoder block and BiLSTM as backbone, was
proposed. The initial architecture was designed using 64 input batch size, MaxPool and
3 BiLSTM layer. Then, three additional network configurations were presented by means
of an ablation strategy, and their performances were compared in terms of MAE and MSE
metrics. The best performing model was the initial one, which achieved, on test data, a
MAE of around 2.97 mmHg.

The main contribution of this paper is to have given a simple way of predicting ABP
and lay the foundations for a transfer of research results on possible portable/wearable
medical devices. One of the next steps will be to apply this method to real-world scenarios,
where data are often more irregular and noisy. Furthermore, it may be interesting to use this
method to derive SBP and DBP directly without predicting the entire ABP waveform. Also,
the use of a larger database, such as the new MIMIC IV, could also improve performance
and generalization.
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Abstract: There have been numerous advances in financial time series forecasting in recent years.
Most of them use deep learning techniques. We identified 15 outstanding papers that have been pub-
lished in the last seven years and have tried to prove the superiority of their approach to forecasting
one-dimensional financial time series using deep learning techniques. In order to objectively compare
these approaches, we analysed the proposed statistical models and then reviewed and reproduced
them. The models were trained to predict, one day in advance, the value of 29 indices and the stock
and commodity prices over five different time periods (from 2007 to 2022), with 4 in-sample years and
1 out-of-sample year. Our findings indicated that, first of all, most of these approaches do not beat
the naive approach, and only some barely beat it. Most of the researchers did not provide enough
data necessary to fully replicate the approach, not to mention the codes. We provide a set of practical
recommendations of when to use which models based on the data sample that we provide.

Keywords: financial forecast; deep learning; reproducibility; forecast comparison

1. Introduction

Many researchers have been struggling for decades to understand how the markets
behave [1–3]. Some argue that the markets are unpredictable due to the Efficient Market
Hypothesis (EMH), stating that, in the short term, financial time series follow a random
walk. In contrast, there is a large number of behavioural economists that do not agree
with such a statement, believing that investors do not always behave rationally [4,5]. They
suggest that the market “can be beaten”, because cognitive biases, such as overconfidence
and herd behaviour or risk aversion, exist. One is certain and empirically confirmed:
investors are winning on the market—mostly because they are ahead of their “brothers
in arms”.

Generally, there are two main approaches that are used to predict the financial markets:
technical and fundamental analysis. Technical analysis approaches focus widely on build-
ing the predictions based on the past movements or changes of the stock market [6,7]. On
the other hand, fundamental analysis considers the information about the economic status
of the company underlying the asset, news, social media, financial reports, etc. Lately, the
most emphasis is put on employing machine or deep learning methods to combine these
tasks, due to their ability to find and quantify nonlinear correlations very easily [8–12], but
researchers are still struggling to provide an objective way to compare the results. There has
been a massive progress in artificial intelligence approaches implemented in the financial
area, mainly portfolio optimisation, time series prediction, agent-based modelling, etc.
A large number of scientists also agree that the origin of successful prediction lies not only
in the data related to the predicted object, but also in finding additional data sources [13–15].
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Systematic reviews [16,17] show that there have been more than 125 new approaches to
time series prediction in the past few years. Many researchers claim to provide better and
better-performing models; however, no consensus exists on the best approach yet. The
availability of numerous model options in the market without a clear indication of their
costs can result in a dilemma known as “choice overload” [18]. This can lead to a situation
where one may end up making no choice at all.

When it comes to financial time series, there are also many different areas that can
be covered by deep learning. We can see different feature sets being used in the model,
either univariate modelling or enriching the data with additional supporting data sources.
There is also emerging work using text mining, sentiment analysis, or social media analysis
in feature sets. The target variable can also change: it can predict stock prices, indices,
commodities, or cryptocurrencies. Some researchers are also looking at volatility and trend
forecasting. As far as models are concerned, the horizon is even broader: from simple
neural networks, to long-term memory (LSTM) architectures, to sophisticated state-of-the-
art approaches such as graph networks or generative adversarial networks. Finally, the
prediction horizon is also a point of contention: Are predictions longer than one time step
forward of good quality, and what should it be—a regression task or a classification task?

This abundance of different possibilities and options generates a large grid of ap-
proaches that cannot be compared with each other solely on the basis of the article pro-
vided. There are three main problems when it comes to comparing approaches to predicting
financial time series in a deep learning setting:

• Different data, timespans, and metrics used in every experiment;
• Lack of publicly available codes supporting the experiment’s execution;
• Lack of a detailed architecture and hyperparameters that are necessary for the experi-

ment’s reproduction.

The first problem stems from the lack of a single stock framework, indexes, or any
other data samples to objectively test the effectiveness of the models. The usual duo is the
S&P 500 and the SSE Composite, according to [17], accounting for 80% of the papers they
reviewed. However, a large subset of researchers use single stock quotes or commodity
prices. When models are supplemented with additional data, e.g., enriched with text-
mining techniques, such datasets are not publicly available (only 10% of the reviewed
papers in [17]). In time series problems, it is not only about the data, but also about the time
sample to be used: different results will be obtained for models trained in 2019 and 2020, or
a different training sample or lookback time horizon: different results will be obtained for
models trained in 1 year and 5 years. In terms of metrics, there is some minor consensus
there: for regression, the common metric is the mean absolute error; for classification, it is
the accuracy. However, this consensus does not mean that every researcher provides a grid
of “must have” metrics, but rather selects a few of the most-common ones.

The second problem stems from the reluctance of researchers to publish the code they
used to train the models. Only three of the papers reviewed in this thesis were taken from
publicly available sources such as GitHub. The lack of code reduces the usefulness of
the work, as the cost of selection is increased by the time it takes to implement. Another
disadvantage is the discrepancy between the implemented solution and the one presented
in the original work (e.g., different versions of the base packages).

A final problem is the poor description of the approach along with the hyperparame-
ters that are used to train the model. Typically, in time series deep learning, we can expect
the following hyperparameters (depending on the approach implemented): number of
training epochs, learning rate, optimiser type, batch size, and number of backward steps
(number of time series lags). However, in the works mentioned by [16,17], there are huge
gaps in the description of the training approach. Most of the approaches lack a concrete
specification of the architecture used (number of neurons, number of layers, activation
functions, etc.) or lack parameters. Researchers usually stop at explaining that the architec-
ture used is LSTM or NN. Additionally, only one paper mentions the random seed value,
which is also necessary to fully reproduce the model weights.
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To overcome these problems, we decided to carry out an extensive practical repro-
duction of fifteen papers that are listed in [16,17]. We rebuilt each approach that was
reported in a duplicate article, taking into account the hyperparameters that were reported.
Where important parameters were missing (such as the number of neurons, the optimiser,
the learning rate, or the number of training epochs), we supplemented with the average
of the remaining, non-missing articles. We compared these models with simple statisti-
cal approaches—naive forecasting, ARIMA, and exponential smoothing. The result was
18 forecasts over five different time periods, resulting in 90 forecasts, run for 29 different
types of financial data, including indices, equities, and commodities. We compared mod-
els using the mean absolute percentage error (MAPE), mean-squared error (MSE), mean
absolute error (MAE), and mean absolute error compared in the first time step only. We
propose a data, time, and model framework to run when performing time series problems
with deep learning.

2. Methods

We reviewed 15 different deep learning models that have been mentioned in recent
literature reviews on financial time series prediction. We focused on selecting the broadest
possible sample of different deep learning models. In this section, we describe them briefly.
To limit the size of the article, we refer the reader to the original papers for more details on
the individual models:

1. A hybrid attention-based EMD-LSTM model [19]:
The paper proposes a two-stage model for time series prediction, combining em-
pirical mode decomposition (EMD) and attention-based long short-term memory
(LSTM-ATTE). EMD was used to decompose the time series into a few inherent mode
functions (IMFs), which were then taken as the input to LSTM-ATTE for prediction.
They used the SSE Composite index to run the predictions. The attention mechanism
was used to extract the input features of the IMF and improve the accuracy of the
prediction. Researchers have evaluated the model’s predictive quality using linear re-
gression analysis of the stock market index and compared it to other models, showing
better prediction accuracy.

2. Empirical. mode decomposition factorisation neural network (EMD2FNN) model [20]:
A simpler approach proposed by [20], includes feeding the IMFs of some time series
into a factorisation neural network, concatenating all the IMFs into a single vector.
The data used for the experiment were: the SSE Composite, NASDAQ, and S&P
500. The authors performed a thorough comparison between the proposed method
and other neural network models, comparing the mean absolute error (MAE) and
root-mean-squared error (RMSE).

3. Neural network ensemble [21]:
The paper describes a deep neural network ensemble that aims to predict the SSE
Composite and SZSE (Shenzhen) Component. The model consists of a set of neural
networks that were trained using open, high, low, close (OHLC) data. Every neural
network takes the last few days of such data, flattened to a vector form. Later, bagging
is used to combine these networks and reduce the generalisation error.

4. Wavelet denoising long short-term memory model [22]:
The proposed model in this paper is a combination of real-time wavelet denoising
and the LSTM neural network. The wavelet denoising was used to separate signals
from noise in the stock data and was then taken as the input to the LSTM model. The
authors conducted an experiment on several indexes, including the SSE, SZSE, and
NIKKEI, using the mean absolute percentage error (MAPE) as a metric.

5. Dual-stage attention-based recurrent neural network [23]:
This paper proposes a two-stage attention-based recurrent neural network (DA-RNN)
model for time series prediction. The DA-RNN model uses an input attention mecha-
nism in the first stage to extract the relevant driving series at each time step based on
the previous hidden state of the encoder. In the second stage, the temporal attention
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mechanism is used to select the relevant hidden encoder states at all time steps. The
experiment was conducted on the SML 2010 and NASDAQ datasets and showed that
the model outperformed state-of-the-art time series prediction methods. The metrics
used were the MAE, MAPE, and RMSE.

6. Bidirectional LSTM [24]:
This paper compared the performance of the bidirectional LSTM (BiLSTM) and unidi-
rectional LSTM models. BiLSTM is able to traverse the input data twice (left to right
and right to left) and, thus, has additional training capabilities. The study showed that
BiLSTM-based modelling offers better predictions than regular LSTM-based models
and outperformed the ARIMA and LSTM models. However, BiLSTM models reach
equilibrium much slower than LSTM-based models. The experiment was carried out
on several indices and stocks, including the Nikkei and NASDAQ, as well as the daily
IBM share price and compared using RMSE.

7. Multi-scale. recurrent convolutional neural network [25]:
The proposed method is a multi-scale temporal dependent recurrent convolutional
neural network (MSTD-RCNN). The method utilises convolutional units to extract
features on different time scales (daily, weekly, monthly) and a recurrent neural
network (RNN) to capture the temporal dependency (TD) and complementarity
across different scales of financial time series. The proposed method was evaluated
on three financial time series datasets from the Chinese stock market and achieved
state-of-the-art performance in trend classification and simulated trading compared
to other baseline models.

8. Time-weighted. LSTM [26]:
This paper proposes a novel approach to predicting stock market trends by adding
a time attribute to stock market data to improve prediction accuracy. The approach
involves assigning weights to the data according to their temporal proximity and
using formal stock market trend definitions. The approach also uses a custom long
short-term memory (LSTM) network to discover temporal relationships in the data.
The results showed that the proposed approach outperformed other models and can
be generalised to other stock indices, achieving 83.91% accuracy in a test with the CSI
300 index.

9. ModAugNet [27]:
The paper proposes a data augmentation approach for stock market index forecasting
through the ModAugNet framework, which consists of a fitting-prevention LSTM
module and a prediction LSTM module. The prediction module is a simple LSTM
network that is fit based only on the historical data on the index realised prices. The
prevention module builds on that by adding a set of regressors that are other indexes,
highly correlated with the predicted one. Using the MSE, MAE, and MAPE on the
S&P500 and KOSPI200, the authors proved the validity of their solution.

10. State frequency memory (SFM) [28]:
The state frequency memory (SFM) model is the twin of the LSTM model. The SFM
model was inspired by the discrete Fourier transform (DFT) and was designed to
capture multi-frequency trading patterns from past market data to make long- and
short-term predictions over time. The model decomposes the latent states of memory
cells into multiple frequency components, where each component models a specific
frequency of the latent trading pattern underlying stock price fluctuations. The model
then predicts future share prices by combining these frequency components. The
authors tested their solution of 50 different stocks in 10 industries using the MSE.

11. Convolutional neural-network-enhanced support vector machine [29]:
The proposed model in this text is a convolutional neural network (CNN), which is
supposed to discover features in the data, which are later passed into the support
vector machine (SVM) model. The text then discusses the influence of the model
parameters on the prediction results. The model was evaluated empirically on the
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Hong Kong Hang Seng Index using the RMSE, and the results showed that both
models are feasible and effective.

12. Generative adversarial network [30]:
The generative adversarial network (GAN) in this paper consists of two main com-
ponents: a discriminator and a generator. The discriminator was designed using a
simple feed-forward neural network and is responsible for distinguishing real stock
market data from generated data. The generator, on the other hand, was built using an
LSTM and is responsible for generating data with the same distribution as the actual
stock market data. The model was trained on daily data from the S&P500 index and
several other stocks for a wide range of trading days. The LSTM generator learns the
distribution of the stock data and generates new data, which are then fed to the MLP
discriminator. The discriminator learns to distinguish between the actual stock data
and the data generated by the generator. The authors tested their model on several
time series, including the S&P 500 and stocks such as IBM or MSFT.

13. Long short-term memory and gated recurrent unit models [31]:
The paper proposes a hybrid model that combines the long short-term memory
(LSTM) and gated recurrent unit (GRU) networks. The authors used the S&P 500
historical time series data and evaluated the model using metrics such as the MSE
and MAPE on the S&P500.

14. CNN and bi-directional LSTM model [32]:
The paper proposes a model combining multiple pipelines of convolutional neural
network (CNN) and bidirectional long short-term memory (LSTM) units. The model
improved the prediction performance by 9% compared to a single pipelined deep
learning model and by more than six-times compared to a support vector machine
regressor model on the S&P 500. The paper also illustrates the improvement in the
prediction accuracy while minimising overfitting by presenting several variants of
multi- and single-pipelined deep learning models based on different CNN kernel
sizes and number of bidirectional LSTM units.

15. Tim convolution (TC) LSTM model [33]:
The authors of this paper propose time convolution long short-term memory (TC-
LSTM), employing convolutional neural networks (CNNs) to capture long-term fluc-
tuation features in the stock prices and combining this with LSTM. This combination
allows the model to capture both the long-term dependencies of stock prices, as
well as the overall change pattern. The authors compared the performance of their
TC-LSTM model to three baseline models on 50 stocks from the SSE 50, as well as the
index itself. They showed that their model outperformed the others in terms of the
mean-squared error.

The proposed architectures were build from scratch in pytorch [34], based on the
explanation provided in the article itself. In addition to these models, to provide a more
thorough comparison, we also utilised the ARIMA model (tuned, best parameters on the
training sample), the naive approach (prediction as: Yt = Yt−1), and exponential smoothing.

The hyperparameters derived based on the text or the publicly available codes are
presented in Table A1. All missing parameters were filled in with either the mean of other
parameters or the mode.

3. Data and Methodology

We provide a more comprehensive background of the developed models we propose
to broaden the range of the time series on which the model is tested. The data used in
this study were taken from the following financial types: indexes, currency pairs, stocks,
cryptocurrencies, and commodities. The purpose of including a comprehensive range of
financial types was to provide a comprehensive comparison of the models’ performance.

The following time series were included in this study for analysis:
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• Indexes: WIG20 (PL), S&P 500 (US), NASDAQ (US), Dow Jones Industrial (US), FTSE
250 (UK), Nikkei 225 (JP), DJI (USA), KOSPI 50 (KR), SSE Composite (CN), DAX 40
(DE), CAC40 (FR);

• Currency pairs: EURPLN, PLNGBP, USDPLN, EURUSD, EURGBP, USDGBP, CHFGBP,
CHFUSD, EURCHF, PLNCHF;

• Stocks: AAPL, META, AMZN, TSLA, GOOG, NFLX;
• Cryptocurrencies: BTCUSD;
• Commodities: XAUUSD.

For each of these time series, we identified five periods in which we made predictions:

• 2016–2020;
• 2013–2017;
• 2007–2011;
• 2009–2013;
• 2018–2022.

Each period consisted of 4 years of training and 1 year of day-ahead predictions
(ca. 250 testing time steps) without re-training the model. The periods differed significantly
between each other due to the different levels of variability between the training and
test trials.

The data were preprocessed by performing normalisation on the input features using
the MinMaxScaler function from the Scikit-learn library [35]. The normalised data were
then split into training and test sets with a ratio of 4 years:1 year, respectively. The model
was then trained using only the training sample, and predictions were made for every time
step in the testing sample.

The evaluation metrics were used to compare the performance of each model across
the different financial types and time series. The best-performing model was selected based
on the lowest values of:

• MSE = 1
n ∑n

t=1(Yt − Ŷt)2;

• RMSE =
√

1
n ∑n

t=1(Yt − Ŷt)2;

• MAPE = 1
n ∑n

t=1

∣∣∣Yt−Ŷt
Yt

∣∣∣× 100%.

Yt is the actual value at time t; Ŷt is the predicted value at time t; n is the total number
of time periods.

Finally, the results were analysed to identify patterns and insights that could help
improve the accuracy of predictions in future studies. We also provide the MAPEs at the
first time step of testing (i.e., calculated for t = 1) to provide a quality metric for the trained
model with the full set of information, i.e., to provide a metric that would allow the quality
of the model to be calculated in the short term.

4. Results

The results are presented in Table 1. To be concise, we only report the MAPE in this
paper (for the MAE, MSE, or detailed predictions, please contact the authors directly). In
bold, we can notice the best (lowest) MAPE for every financial time series.

We can see that the best model was the naive approach. This was mainly due to the
fact that the quality of models tends to deteriorate if they are not retrained after a certain
period of time; however, we wanted to keep the reproduction of the models as close to the
original as possible. Furthermore, the researchers in their original work also did not retrain
the model in the test sample (or mention doing so in any other way), nor did they compare
to statistical approaches.

When we leave out the statistical approaches, we can see a few approaches that
stand out (5, 6, 7, 9, 12, and 13). These models generally have MAPEs lower than five
percent. What these models have in common is either simple LSTM/RNN architectures
or sophisticated CNN operations, which increase the range of features. The best model
that achieved an average MAPE of 1.79% was the multi-scale recurrent convolutional
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neural network (Model 7). We believe that the surplus in prediction quality came from
the additional operations performed on the data (multi-scale CNN), which improved
the information processing. The second-best model was ModAugNet (Model 9), which
achieved a MAPE of 2.07%. This model relies heavily on the additional data sources that
are provided in training for a given time series. On the other hand, the worst model was
Model 11 using SVM after preprocessing the data from the SVM—52.24% MAPE.

From another perspective, the worst-performing financial time series was BTCUSD,
followed by TSLA, AAPL, and NFLX. These all achieved high returns over the time periods
studied, so what we believe is the reason for the deterioration was the inability of all models
to correctly identify and predict rapid price increases. We also observed that indices have
a roughly similar MAPE (5–6%), as do currency pairs (1–2%). Stocks, on the other hand,
have the highest MAPE of all financial time series (>10%).

Since we can clearly see that the models performed worse due to the lack of hy-
pertuning, we propose to run this procedure for each model training. However, such
an experiment will be computationally exhaustive (this experiment already consisted of
2610 model trainings), so some restrictions should be introduced. Furthermore, the testing
procedure was detached from how these models are used in reality. Time series models
should be trained daily to provide the best-possible fit based on the set of information
available at the time of prediction. In this case, the information set becomes smaller and
smaller with each prediction.

As a proof of this statement, we provide in Table 2 the MAPE results calculated for
the first testing time step. This metric allowed us to confirm that, in the short term, these
models are correct and better than the naive approach for each stock. Only for five series
was the statistical approach (exponential smoothing) better. Model 7 was still the best in
7 of the remaining 24 cases. Several other models came in first (Model 1 and Model 13)
proving that the performance of the models deteriorates over time.
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5. Conclusions

The experiment presented in this paper aimed to compare the predictive performance
of various deep learning models on different financial time series. The experiment was
conducted using the data of daily prices for 29 financial time series, including stocks,
indexes, and currency pairs, over a period of 15 years (2007–2022).

The models used in the experiment included classical statistical approaches such as
exponential smoothing and ARIMA, as well as deep learning models such as NN, LSTM,
CNN, or GAN. The models were trained using a sliding window approach and evaluated
using the mean absolute percentage error, mean squared error, and mean absolute error, as
well as the mean absolute percentage error at the first time step.

The results of the experiment showed that the best model was the naive approach,
but when disregarding the statistical approaches, several deep learning models showed
promising results. In particular, the multi-scale recurrent convolutional neural network
(Model 7) achieved the best MAPE of 1.79% on average, while ModAugNet (Model 9)
achieved a MAPE of 2.07%. The worst-performing model was Model 11, which utilised
SVM after data preprocessing with the CNN.

Based on the results presented in this study, it can be concluded that simple time
series models, even naive approach, can perform relatively well against more-complex
deep learning models in forecasting financial time series, notably in the long run. However,
deep learning models, in particular those using LSTM/RNN architectures or complex CNN
functions, have the potential to outperform statistical models in the short term, provided
they are regularly retrained and properly tuned.

It has also been observed that the quality of models tends to deteriorate if they are not
retrained after a certain period of time. This highlights the importance of regular retraining
of time series models to ensure the best-possible fit based on all the information available
at the time of forecasting. In addition, it was noted that stocks tend to have a higher MAPE
than indices or currency pairs, which may be due to their higher volatility and the need for
more sophisticated modelling techniques.
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The following abbreviations are used in this manuscript:

ARIMA Autoregressive integrated moving average
BiLSTM Bidirectional LSTM
CNN Convolutional neural network
DFT Discrete Fourier transform
EMD Empirical mode decomposition
EMH Efficient market hypothesis
GAN Generative adversarial network
GRU Gated recurrent unit
IMF Inherent mode function
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LSTM Long short-term memory
MAE Mean absolute error
MAPE Mean absolute percentage error
MSE Mean-squared error
NN Neural network
OHLC Open, high, low, close
RNN Recurrent neural network
SFM State frequency memory

Appendix A. Hyperparameters Used for Training

Table A1. List of hyperparameters used for training.

Model
No.

NN
Architecture Epochs

Learning
Rate

Optimiser Batch
Size

Steps
Back Data Sample

Performance
Metrics

1 - - - Adam - 20 3407 (Jan
2004–Jan 2018)

MAE, RMSE,
MAPE, R2

2 - - - SGD - 3,4,5
Jan 2012–Dec

2016/Jan
2007–Dec2011

RMSE, MAE,
MAPE

3

randomly
selected

number of
layers (1–6)

ensembled 10
times

200,000 0.0001 Adam - 20 - relative error

4

2 layer LSTM,
with 1/2 and

1/3 input
neurons

- - - -
2, 4, 8, 16,

32, 64,
128, 256,

512

Jan 2010–Dec
2016 (testing

last year)
MAPE

5

grid search
over layer

sizes (16, 32,
64, 128, 256)

- 0.001 (de-
creasing) Adam 128 3, 5, 10,

15, 25

Jul 2016 - Dec
2016 minutely

data

RMSE, MAE,
MAPE

6 one layer, 4
neurons 1 or 2 - Adam - - Jan 1985-Aug

2018 RMSE

7

differently (3)
scaled time

series -> CNN
(16 filters)->

GRU (16 × 3)

100 0.0005 Adam 32 30 Jan 2016–Dec
2016 accuracy

8 320 neurons
LSTM x3 4500 0.0024 - - 20 Jan 2002–Dec

2017 accuracy

9

1 LSTM 2
layers 5 and 3

neurons,
2LSTM: 4 and

2

200 0.00005 Adam 32 20 Jan 2000–July
2017

MSE MAE
MAPE

10 - 4000 0.01 RMSProp - 3, 5, 10,
15, 20 2007–2014 MSE MAE

MAPE

11

G: LSTM -> 7
neuron FC D:
FC NN with 3
layers (72, 100,

10 neurons)

- - - - 5 last 20 years MAE MSE
MAPE

12 2–4 CNN
layers - - - - 30, 40, 50,

60 1990–2014 MSE

13 - 20 0.001 Adam - - 1950-2016 MAE MSE
MAPE

14
CNN ->

MaxPooling ->
LSTM ->

Dense
- - AdaDelta - 50 2008–2018 MSE

15 - - - - - 100 2008–2017 MSE

267



Eng. Proc. 2023, 39, 79

References

1. Ang, A.; Bekaert, G. Stock Return Predictability: Is It There? Rev. Financ. Stud. 2007, 20, 651–707. [CrossRef]
2. Campbell, J.Y.; Hamao, Y. Predictable Stock Returns in the United States and Japan: A Study of Long-Term Capital Market

Integration. J. Financ. 1992, 47, 43–69. [CrossRef]
3. Granger, C.W.J.; Morgenstern, O. Predictability of Stock Market Prices, 1st ed.; Heath Lexington Books: Lexington, MA, USA, 1970.
4. Bollerslev, T.; Marrone, J.; Xu, L.; Zhou, H. Stock Return Predictability and Variance Risk Premia: Statistical Inference and

International Evidence. J. Financ. Quant. Anal. 2014, 49, 633–661. [CrossRef]
5. Phan, D.H.B.; Sharma, S.S.; Narayan, P.K. Stock Return Forecasting: Some New Evidence. Int. Rev. Financ. Anal. 2015, 40, 38–51.

[CrossRef]
6. Campbell, J.Y.; Thompson, S.B. Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average? Rev.

Financ. Stud. 2008, 21, 1509–1531. [CrossRef]
7. Agrawal, J.; Chourasia, V.; Mittra, A. State-of-the-Art in Stock Prediction Techniques. Int. J. Adv. Res. Electr. Electron. Instrum.

Energy 2013, 2, 1360–1366.
8. Yim, J. A Comparison of Neural Networks with Time Series Models for Forecasting Returns on a Stock Market Index. In Develop-

ments in Applied Artificial Intelligence; Lecture Notes in Computer Science; Hendtlass, T., Ali, M., Eds.; Springer: Berlin/Heidelberg,
Germany, 2002; pp. 25–35. [CrossRef]

9. Bao, W.; Yue, J.; Rao, Y. A Deep Learning Framework for Financial Time Series Using Stacked Autoencoders and Long-Short
Term Memory. PLoS ONE 2017, 12, e0180944. [CrossRef]

10. Lahmiri, S.; Bekiros, S. Cryptocurrency Forecasting with Deep Learning Chaotic Neural Networks. Chaos Solitons Fractals
2019, 118, 35–40. [CrossRef]

11. Long, W.; Lu, Z.; Cui, L. Deep Learning-Based Feature Engineering for Stock Price Movement Prediction. Knowl.-Based Syst.
2018, 164, 163–173. [CrossRef]

12. Chong, E.; Han, C.; Park, F.C. Deep Learning Networks for Stock Market Analysis and Prediction: Methodology, Data
Representations, and Case Studies. Expert Syst. Appl. 2017, 83, 187–205. [CrossRef]

13. Salinas, D.; Flunkert, V.; Gasthaus, J.; Januschowski, T. DeepAR: Probabilistic Forecasting with Autoregressive Recurrent
Networks. Int. J. Forecast. 2020, 36, 1181–1191. [CrossRef]

14. Oreshkin, B.; Carpo, D.; Chapados, N.; Bengio, Y. N-BEATS: Neural Basis Expansion Analysis for Interpretable Time Series
Forecasting. arXiv 2019, arXiv:1905.10437.

15. Makridakis, S.; Spiliotis, E.; Assimakopoulos, V. The M4 Competition: 100,000 Time Series and 61 Forecasting Methods. Int. J.
Forecast. 2020, 36, 54–74. [CrossRef]

16. Sezer, O.; Gudelek, U.; Ozbayoglu, M. Financial Time Series Forecasting with Deep Learning: A Systematic Literature Review:
2005–2019. Appl. Soft Comput. 2020, 90, 106181. [CrossRef]

17. Jiang, W. Applications of Deep Learning in Stock Market Prediction: Recent Progress. Expert Syst. Appl. 2021, 184, 115537.
[CrossRef]

18. Reutskaja, E.; Lindner, A.; Nagel, R.; Andersen, R.A.; Camerer, C.F. Choice Overload Reduces Neural Signatures of Choice Set
Value in Dorsal Striatum and Anterior Cingulate Cortex. Nat. Hum. Behav. 2018, 2, 925–935. [CrossRef]

19. Chen, L.; Chi, Y.; Guan, Y.; Fan, J. A Hybrid Attention-Based EMD-LSTM Model for Financial Time Series Prediction.
In Proceedings of the 2019 2nd International Conference on Artificial Intelligence and Big Data (ICAIBD), Chengdu, China, 25–28
May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 113–118. [CrossRef]

20. Zhou, F.; Zhou, H.; Yang, Z.; Yang, L. EMD2FNN: A Strategy Combining Empirical Mode Decomposition and Factorization
Machine Based Neural Network for Stock Market Trend Prediction. Expert Syst. Appl. 2018, 115, 136–151. [CrossRef]

21. Yang, B.; Gong, Z.J.; Yang, W. Stock Market Index Prediction Using Deep Neural Network Ensemble. In Proceedings of the 2017
36th Chinese Control Conference (CCC), Dalian, China, 11 September 2017; pp. 3882–3887. [CrossRef]

22. Li, Z.; Tam, V. Combining the Real-Time Wavelet Denoising and Long-Short-Term-Memory Neural Network for Predicting
Stock Indexes. In Proceedings of the 2017 IEEE Symposium Series on Computational Intelligence (SSCI), Honolulu, HI, USA,
27 November–1 December 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–8. [CrossRef]

23. Qin, Y.; Song, D.; Chen, H.; Cheng, W.; Jiang, G.; Cottrell, G. A Dual-Stage Attention-Based Recurrent Neural Network for Time
Series Prediction. arXiv 2017, arXiv:1704.02971.

24. Siami-Namini, S.; Tavakoli, N.; Namin, A.S. A Comparative Analysis of Forecasting Financial Time Series Using ARIMA, LSTM,
and BiLSTM. arXiv 2019, arXiv:1911.09512.

25. Guang, L.; Xiaojie, W.; Ruifan, L. Multi-Scale RCNN Model for Financial Time-series Classification. arXiv 2019, arXiv:1911.09359.
26. Zhao, Z.; Rao, R.; Tu, S.; Shi, J. Time-Weighted LSTM Model with Redefined Labeling for Stock Trend Prediction. In Proceedings

of the 2017 IEEE 29th International Conference on Tools with Artificial Intelligence (ICTAI), Boston, MA, USA, 6–8 November
2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1210–1217. [CrossRef]

27. Baek, Y.; Kim, H.Y. ModAugNet: A New Forecasting Framework for Stock Market Index Value with an Overfitting Prevention
LSTM Module and a Prediction LSTM Module. Expert Syst. Appl. 2018, 113, 457–480. [CrossRef]

28. Zhang, L.; Aggarwal, C.; Qi, G.J. Stock Price Prediction via Discovering Multi-Frequency Trading Patterns. In Proceedings of the
23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada, 13–17 August
2017; ACM: New York, NY, USA, 2017; pp. 2141–2149. [CrossRef]

268



Eng. Proc. 2023, 39, 79

29. Cao, J.; Wang, J. Stock Price Forecasting Model Based on Modified Convolution Neural Network and Financial Time Series
Analysis. Int. J. Commun. Syst. 2019, 32, e3987. [CrossRef]

30. Zhang, K.; Zhong, G.; Dong, J.; Wang, S.; Wang, Y. Stock Market Prediction Based on Generative Adversarial Network. Procedia
Comput. Sci. 2019, 147, 400–406. [CrossRef]

31. Hossain, M.A.; Karim, R.; Thulasiram, R.; Bruce, N.D.B.; Wang, Y. Hybrid Deep Learning Model for Stock Price Prediction. In
Proceedings of the 2018 IEEE Symposium Series on Computational Intelligence (SSCI), Bangalore, India, 18–21 November 2018;
IEEE: Piscataway, NJ, USA, 2018; pp. 1837–1844. [CrossRef]

32. Eapen, J.; Bein, D.; Verma, A. Novel Deep Learning Model with CNN and Bi-Directional LSTM for Improved Stock Market Index
Prediction. In Proceedings of the 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC),
Las Vegas, NV, USA, 7–9 January 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 264–270. [CrossRef]

33. Zhan, X.; Li, Y.; Li, R.; Gu, X.; Habimana, O.; Wang, H. Stock Price Prediction Using Time Convolution Long Short-Term Memory
Network. In Knowledge Science, Engineering and Management; Lecture Notes in Computer Science; Liu, W., Giunchiglia, F., Yang, B.,
Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 461–468. [CrossRef]

34. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch:
An Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems 32; Curran
Associates, Inc.: Red Hook, NY, USA, 2019; pp. 8024–8035.

35. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al.
Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

269





Citation: Martinez-Soto, A.; Fürle, J.;

Zipf, A. Urban Heat Island Intensity

Prediction in the Context of Heat

Waves: An Evaluation of Model

Performance. Eng. Proc. 2023, 39, 80.

https://doi.org/10.3390/

engproc2023039080

Academic Editors: Ignacio Rojas,

Hector Pomares, Luis Javier Herrera,

Fernando Rojas and Olga Valenzuela

Published: 12 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Proceeding Paper

Urban Heat Island Intensity Prediction in the Context of Heat
Waves: An Evaluation of Model Performance †

Aner Martinez-Soto 1,2,*, Johannes Fürle 2* and Alexander Zipf 2,3*

1 Department of Civil Engineering, Faculty of Engineering and Science, Universidad de La Frontera,
Temuco 4780000, Chile

2 GIScience, Institute of Geography, University of Heidelberg, 69120 Heidelberg, Germany;
johannes.fuerle@uni-heidelberg.de (J.F.); zipf@uni-heidelberg.de (A.Z.)

3 Heidelberg Institute for Geoinformation Technology gGmbH, 69118 Heidelberg, Germany
* Correspondence: aner.martinez@ufrontera.cl; Tel.: +56-45-2596816
† Presented at the 9th International Conference on Time Series and Forecasting, Gran Canaria, Spain,

12–14 July 2023.

Abstract: Urban heat islands, characterized by higher temperatures in cities compared to surrounding
areas, have been studied using various techniques. However, during heat waves, existing models
often underestimate the intensity of these heat islands compared to empirical measurements. To
address this, an hourly time-series-based model for predicting heat island intensity during heat
wave conditions is proposed. The model was developed and validated using empirical data from
the National Monitoring Network in Temuco, Chile. Results indicate a strong correlation (r > 0.98)
between the model’s predictions and actual monitoring data. Additionally, the study emphasizes
the importance of considering the unique microclimatic characteristics and built environment of
each city when modelling urban heat islands. Factors such as urban morphology, land cover, and
anthropogenic heat emissions interact in complex ways, necessitating tailored modelling approaches
for the accurate representation of heat island phenomena.

Keywords: urban heat islands; heat waves; prediction model

1. Introduction

An urban heat island (UHI) is defined as the temperature difference observed between
urban areas and the surrounding rural regions [1]. UHIs can occur in any season of the
year and any time of day [2]. However, their effects are more noticeable during periods
of temperature increase (e.g., heatwaves in summer). The increase in global temperatures
due to global warming intensifies the effect of urban heat islands [3]. As the ambient
temperature rises, urban areas experience even higher temperatures [4].

High temperatures in heat islands lead to the need for air conditioning and cooling
in buildings, which increases energy consumption and results in higher greenhouse gas
emissions, further contributing to global warming [5,6]. Furthermore, high temperatures
can have adverse health effects on individuals, such as heat strokes, dehydration, and
respiratory problems. For example, during the summer of 2003 in Europe, more than 70,000
additional deaths were attributed to heat waves [7]. Elderly individuals and households
without access to air conditioning systems are identified as the first at-risk group. However,
this risk level increases in urban heat islands, making the identification of these areas crucial
for the development of mitigation measures (e.g., incorporating green spaces or planning
open spaces that promote air circulation and shade), as well as for the protection of people.

Various techniques are employed to map urban heat islands in cities [8–10]. These
include satellite remote sensing for large-scale temperature assessment, ground-based
sensors and weather stations for real-time and precise data collection, aerial thermography
using infrared cameras mounted on aircraft or drones to obtain detailed thermal images,
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on-site temperature measurements using portable thermometers or thermographic devices,
and simulation models that incorporate urban geometry, land use, vegetation, and solar
radiation to predict and map heat islands [11–19]. A combination of these techniques and
data sources is crucial to gain a comprehensive understanding of heat islands, enabling
informed decision-making in urban planning, mitigation strategies, and the informed
safeguarding of residents’ health [13,20].

This study presents a combined technique for locating heat islands in the city of
Temuco, Chile, as a case study. Using data from 23 monitoring stations and utilizing
QGIS, areas with higher temperatures were mapped. Subsequently, a methodology for
predicting heat islands was proposed for days when the external temperature exceeded
30 degrees Celsius for 3 consecutive days (heatwaves). The results are validated by com-
paring modeled values for specific heat island sectors in the city with actual measurements
taken during heatwave days in the summer of 2019. Due to the accuracy of the results
(r > 0.98), it is concluded that it is possible to predict the location of heat islands during
heatwave events using the proposed methodology.

2. Methods

2.1. Case Study

Temuco is located in a valley surrounded by hills and mountains. The city sits at
an altitude of approximately 350 m above sea level and is crossed by the Cautín River.
The predominant vegetation in the area is the temperate rainforest, characteristic of the
southern zone of Chile. Temuco is a relatively large city with a population of around
300,000 inhabitants. It is an urban center that is constantly growing and developing. The
city is an important commercial, educational, and cultural hub in the region, offering a
wide range of services and activities.

2.2. Measurement of the Temperature and Mapping of the Heat Island

To measure the temperature in different sectors of the city, monitoring stations be-
longing to the National Monitoring Network (ReNaM) of Chile were used. The network
in Temuco consists of 23 weather stations (from Netatmo) represented by black dots in
Figure 1, which are installed in private properties across various zones in Temuco.

 
  Z1 

 
  Z2 

Z3 
 Z4 

Figure 1. Mapping of the UHI phenomenon in Temuco using fixed station methodology (left) and
IDW interpolation in QGIS. Temperatures from 4 December 2019, at 2 pm, are taken into account.
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The Netatmo weather stations comprise two devices (indoor and outdoor) made of UV-
resistant aluminum, capable of measuring temperatures ranging from −40 ◦C to 65 ◦C with
an accuracy of ±0.3 ◦C. The outdoor sensors are shielded from rain and direct sunlight to
prevent deterioration and to ensure better data accuracy. Data are captured at thirty-minute
intervals, following a fixed schedule to maintain consistency (e.g., 8:00–8:30–9:00, etc.).
The sensors underwent calibration and validation by the Ministry of Housing and Urban
Development (MINVU) in collaboration with the Chile Foundation.

For the geolocation of heat islands, individual values from each station were used at
the same hour (e.g., 2 pm). Subsequently, the temperature values along with the station
coordinates were inputted into the QGIS software. The IDW interpolation technique was
employed in QGIS to map the heat islands into a continuous space within the city (Figure 1).
In Figure 1, the spatial distribution of temperatures measured in the city on 4 December
2019, at 2 pm, is shown. Here, there are four zones in the city (Z1–Z4) where the temperature
is higher than the measurement taken in the outer part of the city (Maquehue Airport). In
Z1 and Z2 the central part of the city (characterized by higher building density and low
vegetation), it is observed that the temperature (31 ◦C) is 7 ◦C higher than at the Maquehue
Airport station (24 ◦C).

2.3. Prediction of Heat Islands during Heatwaves

To predict the intensity of heat islands in the city of Temuco, temperature differences
were observed/analyzed between the weather station at Maquehue Airport and the stations
situated in the four zones within the city that recorded the highest temperatures. The
study specifically focused on visualizing the characteristics of heat islands during two
heatwave episodes (referred to as HW1 and HW2) that occurred during the summer of
2020. By recording the temperature differences, Equation (1) has been formulated to
describe the temperature in the 4 zones in the city (with the highest temperatures Z1–Z4)
as a function of the temperature at Maquehue (TR = reference temperature ) for each hour.
Subsequently, these equations have been used to generate a general 24 h model that predicts
the temperature in the four sectors of the city based on the temperature recorded at the
Maquehue Airport station.

Ti,z(TRi) = ai,zTRi + bi,z (1)

where:

T = temperature;
TR = reference temperature (measured at the Maquehue airport);
i = time of a day in hours (1, 2 . . . 24);
z = zone in Temuco where heat islands are identified (1, 2, 3, 4).

3. Results

3.1. Measurement and Recording of Temperatures during Heatwave Conditions

In Figure 2, a temperature comparison appears for two heat wave episodes (HW1 and
HW2) that occurred in February 2020 between the Maquehue station (blue and red line
respectively) and the zones with the highest temperature in Temuco (Z-1 to Z-4 in Figure 1).
Here, it is observed first that the maximum temperature in Temuco occurs between 3 pm
and 5 pm, which represents a behavior that does not follow the common pattern of the UHI
phenomenon. The maximum temperature peak in most of the cases studied was reached
between 7 pm and 8 pm. However, in the case of Temuco at that time, the temperature in
the city dropped, whereas outside the city (reference temperature in Maquehue airport) the
temperature reached its daily maximum.
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Figure 2. Comparison of temperature for two heat wave episodes between Maquehue station ((blue
and red line respectively)) and the zones with the highest temperature in Temuco (Z1, Z2, Z3, Z4).
Date for heat wave 1 (HW1): 8–10 February 2020. Date for heat wave 2 (HW2): 20–22 February 2020.

Additionally, the maximum temperatures recorded in the city had an average increase
of 26 ◦C in a short period of time (between 10 am and 3 pm). The same speed of temperature
change appeared from 4 pm where it reached on average 5.3 ◦C per hour. This is higher
than the maximum acceptable temperature change rate (3 ◦C/h), which is set to prevent
the human body from suddenly feeling hot or cold. This suggests the need to conduct
more detailed studies on the behavior of the phenomenon in Temuco. Analyzing from the
materiality of constructions, green areas, etc., several factors may explain more precisely
the behavior of the UHI phenomenon in Temuco.

3.2. Prediction of Temperatures during Heatwave Conditions

Using Equation (1), the temperature profiles of the zones with the highest temperatures
in the city (Z1, Z2, Z3, and Z4) have been predicted based on the temperature recorded at
Maquehue (HW3) during a new heatwave that occurred on March 2020. The predicted
temperatures were compared with the actually recorded temperatures during the third
heatwave that took place between March 1st and March 3rd in order to validate the model
and verify the accuracy of the results (Figure 3). Figure 3 shows a comparison between the
temperature modeling for Zone 1 using temperatures from the reference station and the
actual measured temperatures.

Figure 3. Comparison of real and modeled temperature profiles for zone 1 in Temuco based on the
temperatures of the Maquehue station (HW3) located outside the city. Date: 1–3 March 2020.
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Figure 3 shows that the values obtained from the modeling are very close to the
real temperature profiles that occurred during that same heat wave event. Here, it was
determined that the average real and modeled temperature differences in the 72-h period
reached 1 ◦C and the correlation coefficient was 0.98. This strong correlation suggests it is
possible to determine the temperature in the different zones of the city from the temperature
of the weather station located outside the city (Maquehue). This would also imply that it is
possible to know the past profiles and make a prediction for future heat wave events based
on climate change scenarios. Nevertheless, additional studies are needed to verify these
hypotheses and, in that sense, they represent a continuation of the work presented here.

In this study, different equations were developed to predict temperatures in each zone
of the city and for each hour. Since each equation is specific to its respective zone and
cannot be transferred to other zones, it follows that the modeling of heat islands cannot
be generalized into a single predictive model for heat islands. Instead, each zone must be
studied within its unique microclimate.

The study strongly emphasizes the critical importance of considering the distinct
microclimatic characteristics and built environment of individual cities when modeling
urban heat islands. The complex interplay among various factors, such as urban morphol-
ogy, land cover properties, and anthropogenic heat emissions, requires the adoption of
customized modeling approaches to accurately represent the phenomenon of heat islands.

By acknowledging these factors and employing tailored modeling techniques, a more
precise representation of heat island phenomena can be achieved. This highlights the need
for site-specific analyses and modeling in order to understand and mitigate the impact of
heat islands in urban environments.

4. Conclusions

The results of this study demonstrate the close alignment between the modeled and
actual temperature profiles during the heatwave event, highlighting their significance in
predicting heat islands. Notably, the average temperature differences between the real and
modeled data over the 72 h period were only 1 ◦C, with a high correlation coefficient of 0.98.
This strong correlation suggests the feasibility of estimating temperatures in various city
zones based on measurements from the weather station located outside the city (Maquehue).
The implications of accurate heat island predictions are substantial, as they directly impact
public health and energy consumption. Furthermore, these findings open the possibility of
retrospectively analyzing past temperature profiles and forecasting future heatwave events
under different climate change scenarios. However, further studies are required to validate
these hypotheses, representing a natural continuation of the research presented here.
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Abstract: The prediction of currency prices is important for investors with foreign currency assets,
both for speculation and for hedging the exchange rate risk. Classical time series models such as
ARIMA models were relevant until the advent of neural networks. In particular, recurrent neural
networks such as long short-term memory (LSTM) are show to be a good alternative model for the
prediction of short-term stock prices. In this paper, we present a comparison between the ARIMA
model and LSTM neural network. A hybrid model that combines the two models is also presented.
In addition, the effectiveness of this model on Bitcoin’s future contract is analysed.

Keywords: ARIMA; LSTM; foreign exchange prediction

1. Introduction

The foreign exchange market moves, on average, more than USD 6 million per day.
It is a fundamental market for international transactions of services and goods. Hence, it
is important to be able to have efficient models for predicting currency prices, as well as
being able to determine their evolution. With this information, different economic agents
and companies can establish their foreign currency risk levels and hedging strategies. On
the other hand, it is also important for investors and speculators to know and understand
the evolution of prices, and it is therefore necessary to improve predictions by reducing
prediction errors as much as possible. There is a large number of currencies whose price is
traded against the US dollar (USD). Those that are the most traded are considered majors.
Others are considered exotic, as they are traded to a lesser extent, even though they are
priced against the USD.

Since currencies can be considered time series, it is possible to apply different time
series forecasting models such as the classical ARIMA model. There is a lot of applied
literature on forecasting using these models for different currency pairs. For example, the
author of [1] proposes a model for the prediction of the USD/EUR exchange rate taking
into account the purchasing power parity theory. This theory is fundamentally based on the
non-existence of arbitrage prices. It takes into account the price level differential between
two countries. This model has also been applied to exotic currencies. For example, the
author of [2] uses the Box–Jenkins methodology to apply an AR(1) model to predict the
NGN to USD exchange rate for the period 1982–2011. On the other hand, ARIMA models
are static once estimated [3]. It is necessary to create a dynamic model for long-term as
well as short-term price forecasting. The main conclusion derived from this study is that
the ARIMA model for short-term forecasting is more effective than for it is for long-term
forecasting. Another example of exotic currency forecasting can be found in [4]. In this
case, ARIMA is applied to the USD and PR currency pair with daily prices between April
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2014 and May 2019. It highlights the importance of the stationarity of the series by taking
first differences. The results obtained indicate a robust model with a difference between
estimated prices and actual values of less than 1%. However, some authors have not found
significant advantages of using the ARIMA model for the prediction of splits. For example,
ref. [5] estimate a USD/EUR model for volatility prediction and not for price prediction.
This may lead us to think that the ARIMA model may offer interesting results for the
prediction of prices and their evolution, but not for determining their volatilities.

Other studies apply different neural networks for price prediction. For example, the
authors of [6] compare the ARIMA model to a Backpropagation neural network for the daily
prediction of the NGN/CNY and NGN/USD currency pairs. In this work, it is concluded
that the neural network improves the results with a lower prediction error. Other authors
incorporate additional variables in the neural network. For example, the authors of [7] add
different moving averages as inputs to the network for currency prediction. As a result, the
neural network performs better for three different error measures. There is no consensus on
the amount and type of inputs to incorporate in different neural networks. This leads to a
diversity of results when comparing these models with those of other prediction models [8].

However, recurrent neural networks of the LSTM type generally perform well, even
with a single price lag as input. For example, the authors of [9] compare this network with
others such as Elman’s, concluding on the superiority of LSTM for short-term predictions.
It even improves against other econometric models such as the VaR model or support
vector machine, as described in [10], where they predict the USD/INR currency exchange
with 97.83% accuracy.

In [11], a review of the literature on foreign exchange modelling and forecasting is
carried out, in which it is concluded that LSTM networks are one of the best solutions
for short-term forecasting. However, there is the possibility of building hybrid models in
which the combination of two or more methodologies is intended to improve the results
over those of the best single model. Thus, hybrid models allow us to increase the accuracy
of predictions by reducing the risk of the inadequate use of a single model [12]. The results
obtained by combining a model with at least one neural network are promising [13].

Some authors have carried out important reviews of hybrid models. A growing
interest in this type of model has been detected, highlighting the hybridisation with neural
networks and ARIMA models. These hybrid models can be combined at the same time or
sequentially, and may have benefits in terms of predictive power [14]. For example, the
authors of [15] analyse the USD/ALL exchange rate with monthly data from 2000 to 2015.
They compared an ARIMA model to a a hybrid ARIMA–ANN model sequentially. To carry
this out, they initially estimated the ARIMA model using the residuals as inputs for the
neural network. They used different performance indicators such as RMSE, MAE, and
MAPE. In all of them, the improvement in the prediction of the hybrid model was evident.
Therefore, the combination of linear and non-linear models is effective. Based on the same
idea, the authors of [16] propose a hybrid multiplicative model for price forecasting in
which the prediction of the non-linear components of the data series (obtained through
the neural network) are multiplied by the predictions of the linear components obtained
through the ARIMA model. This multiplicative model seems to work well except for some
short-term forecasts.

This paper compares the ARIMA model with the LSTM recurrent neural network,
as well as a hybrid ARIMA-LSTM model. For this purpose, these models are applied
to the daily closing price prediction of the currencies AUD/USD, GBP/USD, JPY/USD,
NZD/USD, and EUR/USD as well as the cryptocurrency Bitcoin (BTC/USD).

The following section sets out the methodology of the different models applied for
the prediction of the selected currencies. Next, the main comparative results between the
different models are presented. Finally, the main conclusions and limitations of this work
are presented.
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2. Methods

This section summarises the two main models used in forecasting the closing prices
of the selected currencies. First, the classical ARIMA model, widely used in time series
forecasting, is presented. Secondly, the long short-term memory (LSTM) neural network is
described, which is a type of recurrent neural network that is very efficient in short-term
forecasting. Finally, a hybrid model, ARIMA-LSTM, is established, in which the predictions
obtained using the ARIMA model are added as inputs to the network.

2.1. ARIMA Model

The general autoregressive integrated moving average (ARIMA) model introduced
by the authors of [17] includes auto-regressive as well as moving average parameters and
explicitly includes differencing in the formulation of the model. Specifically, the three types
of parameters in the model are the autoregressive parameter (p), the number of differencing
passes (d), and moving average parameters (q). In the notation introduced by Box and
Jenkins, the models are summarised as ARIMA (p,d,q).

With the ARIMA model, although a non-stationary process exhibiting homogeneity
with respect to the class of series can occur in many ways, they could have a non-constant
mean at time-varying second moments such as that of constant variance, or have both of
these properties.

Models useful for representing such behaviours can be obtained by supposing a
suitable difference in the process in order for the series to be stationary.

Having a time series, Xt, where t represents the time index, the ARMA(p,q) model is
expressed as follows:

Xt = α1Xt−1 + α2Xt−2 + · · ·+ αpXt−p − θ1εt−1 − θ2εt−2 − · · · − θqεt−q + εt (1)

where α and θ are estimated coefficients and ε is the residual of forecasts. As can be seen in
Equation (1), this model is constructed as a combination of the autoregressive process (AR)
with past values of the variable and the moving average (MA) process with past predictions
errors. On the other hand, the parameters p and q represent the number of lags selected,
while the parameter d indicates the number of integrations (usually differencing or the
application of logarithms) on the variable to make the series stationary.

2.2. LSTM Model

The LSTM model is a kind of recurrent neural network, that can capture the nonlinear
and complex relationships between variables. This network was proposed by the authors
of [18] and has been found to be effective at capturing long-term dependencies in sequential
data and time series data.

Deep learning-based models, such as LSTM, have shown promising results in time
series forecasting. This network can propagate activations to process different sequences
including long distance dependencies [19]. To solve the vanishing problem, the recurrent
unit is grouped into blocks with cells and three gates. These gates control the flow of
information [20]. The LSTM architecture consists of a memory cell and the three gates
(Figure 1). Each cell presents a different state (mt) as information flows through each neuron.
The different gates are activated depending on the previous state of the cell (mt), the output
from the previous neuron (ht−1) and the new information input (xt). Thus, the forget gate is
activated to decide, on basis of the inputs, which part of the information to forget from the
internal state of the cell. This gate is therefore used to remove or not remove a neuron. On
the other hand, the input gate or relevant gate determines how much information from the
past is incorporated into the neuron, i.e., how much information is memorised. Finally, the
output gate calculates the output information of the cell taking into account the previous
state of the cell and the new information.
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Figure 1. Internal cell structure of an LSTM. Source: “Creative Commons” by Eddie Antonio Santos
licensed under BY CC-SA 4.0.

2.3. ARIMA-LSTM Model

As already indicated in the introduction, hybrid models generally show better pre-
dictions than models considered individually do. In this case, a two-stage hybrid ARIMA-
LSTM model is considered. In the first stage, the ARIMA model is estimated using the
Box–Jenkins methodology [17], taking into account the necessary transformations to obtain
stationary series. Some authors use the residuals of the estimated model as the only input
to the LSTM neural network in order to predict the non-linear patterns of the series. In this
way, to obtain the final prediction, they use an additive or multiplicative model, combining
in each case the prediction obtained via the ARIMA model (linear) with the non-linear
patterns estimated using the LSTM network [21].

In this case, the use of the LSTM neural network as the prediction model is recom-
mended. The first stage is identical to the process described above. That is, the ARIMA
model is estimated. Then, in stage 2, two kinds of inputs are incorporated into the neu-
ral network. On the one hand, we add the lag closing prices of the time series. On the
other hand, we add not the residuals, but the prediction of the prices achieved using the
ARIMA model.

3. Results

This section compares forecasts for different currencies using ARIMA, LSTM and
ARIMA-LSTM models. To make this comparison, different measures of prediction error
are analysed, such as mean absolute error (MAE), mean absolute percentage error (MAPE)
and root mean square error (RMSE).

3.1. Database

The following day closing prices have been selected for both majors and exotic cur-
rencies: EUR/USD, GBP/USD, JPY/USD, AUD/USD, and NZD/USD. The daily closing
price of the Bitcoin cryptocurrency futures contract has also been selected to determine the
behaviour of the models in this kind of asset. The database runs from 18 December 2017 to
27 January 2023.

3.2. Data Analysis and Processing

Currencies are time series with a regular presence of kurtosis and skewness. Table 1
shows the main descriptive statistics for EUR/USD as an example.

280



Eng. Proc. 2023, 39, 81

Table 1. Descriptive statistics for EUR/USD.

Mean Median Sd Max Min Skew. Kurt.

EUR/USD 1.14 1.13 0.06 1.25 1.25 −0.54 0.02

On the other hand, for the use of ARIMA models, it is required that the series are
stationary. The augmented Dickey–Fuller (ADF) test was used to calculate each currencies.
An example of the ADF test on EUR/USD is shown in Table 2. As one can see, the p-value
is greater than 0.05. Therefore, the null hypothesis of the stationarity of the series was
rejected. In all cases, the stationarity hypothesis was rejected.

Table 2. Augmented Dickey–Fuller test for EUR/USD.

Dickey–Fuller p-Value

EUR/USD (original series) −1.5054 0.07877
EUR/USD (log-diff series) −11.83 0.01

These results imply the need for a transformation of the original series to make them
stationary. For this purpose, the logarithm over a difference has been applied, obtaining
stationary series (Table 2).

3.3. Model Estimation and Results

Once the stationary series were obtained, the different models described in Section 2
were estimated. The daily estimation and forecasting process for each currency was carried
out by starting from the initial observations of the indicated database and adding each day
after the forecast to estimate the new model. Different measures were used to compare the
prediction error of the three models. Table 3 shows the main results.

Table 3. Measures of model prediction error.

Model BTC AUD/USD GBP/USD JPY/USD NZD/USD EUR/USD

ARIMA

MAE 665.52 0.00616 0.00295 0.50610 0.00642 0.00394
MAPE 0.03212 0.00387 0.00337 0.00390 0.00377 0.00350
RMSE 1160.09 0.00831 0.00402 0.71309 0.00840 0.00513

LSTM

MAE 28.81 0.00073 0.00010 0.18372 0.00059 0.00148
MAPE 0.00100 0.00047 0.00011 0.00136 0.00035 0.00137
RMSE 28.87 0.00075 0.00010 0.18429 0.00076 0.00148

ARIMA-LSTM

MAE 23.57 0.00049 0.00018 0.17750 0.00078 0.00144
MAPE 0.00082 0.00032 0.00022 0.00131 0.00047 0.00133
RMSE 23.57 0.00049 0.00018 0.17750 0.00078 0.00144

Firstly, the advantage of the use of neural networks over the econometric ARIMA
model is evident. In all the cases analysed, the LSTM neural network improves the predic-
tion errors, reducing them by high percentages. For example, for EUR/USD, the percentage
reduction in the error measures (MAE, MAPE, and RMSE) were, respectively, 62.4%, 60.9%
and 71.2%. Similar results were obtained for other “Majors” currencies such as JPY/USD
with percentages of 63.7%, 65.1% and 74.2%. However, these percentage reductions in the
different measures of the prediction error increased for the “exotic” currencies analysed,
including the BTC/USD cryptocurrencies. These percentage reductions reached levels
around 90–91% for NZD/USD and between 95–97.5% for BTC/USD. This result may be
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related to the higher volatility in these exotic currencies and cryptocurrencies versus that of
“Majors” currencies. For example, the volatility of EUR/USD is 0.0051 while for NZD/USD
it increases to 0.0085.

On the other hand, the hybrid ARIMA-LSTM model seems to have improved the
results obtained using the univariate LSTM model, although these improvements were
relatively small. However, this model fails for the GBP/USD and NZD/USD currencies.
The reason for the model’s failure is unclear since while the GBP/USD currency is con-
sidered to be in the “Majors” category, the NZD/USD currency belongs to the “exotics”
category. While GBP/USD has a volatility, measured by the deviation, of 0.004, NZD/USD
has a higher volatility of 0.008. However, EUR/USD has a deviation of 0.0051 between the
other two currencies. Therefore, it is also not a justification for the failure of the hybrid
model. Further analysis in other time periods and an extension to other currencies would
be desirable to determine the percentage of currencies where the hybrid ARIMA-LSTM
model, as described in this paper, outperforms the univariate LSTM model.

4. Conclusions

In this paper, we have compared between the classical time series model (ARIMA)
and the recurrent neural network LSTM. For this purpose, we have modelled and predicted
the daily closing prices of different currencies, some of them considered majors and others
exotic, as well as the cryptocurrency Bitcoin. The neural network was initially applied as
a univariate model in which the input corresponded to a single lag of the closing price.
The results suggest that this neural network is very efficient for short-term predictions,
i.e., in this case, for the next period. Next, a hybrid ARIMA-LSTM model built in two
phases was proposed. The first required the corresponding forecasts to be made using
the ARIIMA model. In the second phase, these forecasts served as inputs to the network
together with a price lag. This approach differs from that of other authors who propose that
the input of the neural network should only be the residuals of the ARIMA model, given
that these include the non-linear patterns. Finally, either additively or multiplicatively, the
non-linear prediction of the network was combined with the linear prediction of the ARIMA
model price. The results obtained with the hybrid model suggest a slight improvement
with respect to the univariate LSTM neural network and, of course, with respect to the
ARIMA model.

One of the limitations of this work was the lack of determination of whether or not
this hybrid model also improves the prediction results when the sample data are not daily
as in this case, i.e., when there are data with different timeframes (5 min, 15 min, etc.). On
the other hand, the hybrid model proposed was not compared with other hybrid models in
which the input is the residuals of the ARIMA model prediction, so the advantage of this
one over the others is unknown. These analyses and comparisons are left for future work.
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Abstract: The problem of anomaly detection in time series has recently received much attention, but
in most practical applications, labels for normal and anomalous data are not available. Furthermore,
reasons for anomalous results must often be determined. In this paper, we propose a new anomaly
detection method based on the expectation–maximization algorithm, which learns the probabilistic
behavior of local patterns inherent in time series in an unsupervised manner. The proposed method
is simple yet enables anomaly detection with accuracy comparable with that of the conventional
method. In addition, the representation of local patterns based on probabilistic models provides new
insight that can be used to determine reasons for anomaly detection decisions.

Keywords: time series; anomaly detection; subsequence; visualization

1. Introduction

Time series data, including sensor data in factories, are continuously collected in a
variety of areas. One of the important applications for analyzing such data is anomaly
detection. However, there are two major challenges in the actual implementation of
automatic time series anomaly detection systems. First, it is often difficult to obtain labeled
data for anomalies, so the data must be treated as unsupervised data, assuming that
the majority of the data are normal. The other challenge is that the maintainability and
reliability of anomaly detection systems often require a transparent anomaly detection
model and interpretability of the output. These requirements make it necessary to use
simple models, but this gives rise to a trade-off between model simplicity and anomaly
detection performance. Therefore, a new anomaly detection method is needed that is
interpretable without compromising anomaly detection performance.

One of the promising methods for solving these problems is OCLTS (One Class Time
Seires Shapelets) [1]. OCLTS applies important subsequences in time series data, called
shapelets, to enable unsupervised anomaly detection and to provide the specific parts
of the time series that are the reason for the anomaly detection. However, OCLTS has
several difficulties. First, the anomaly score is based on complex correlations between local
patterns, so there is no direct correspondence between the anomaly score and the location
in the time series that is the reason for the anomaly. In addition, the shapelets learned
by OCLTS tend to take the average shape of similar time series. For example, consider
the pattern shown in Figure 1a,b, in which a single concave point appears in a rightward
sloping waveform. The position of the concavity is different in Figure 1a,b, but when such
a pattern is the learning target, shapelets tends to have an average waveform, as shown in
Figure 1c, and the concavity feature becomes unclear. In this case, it is difficult to identify
the basis of the anomaly from the anomalous waveform with no concavity.

In this paper, we propose a method for time series representation learning and anomaly
detection based on a novel learning procedure inspired by the subsequence-based feature
transformation used in OCLTS. In the proposed method, there is one-to-one correspondence
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between the anomaly score and the local pattern representation, and the location of the
time series for the cause of the anomaly becomes clearer. By stochastically modeling the
subsequences, the proposed method provides another insight into the difference between
anomalous and normal patterns, which is different from traditional shapelets-based meth-
ods. Despite the simplicity of the proposed method, experiments using public datasets
show that it can detect anomalies with accuracy comparable to that of OCLTS.

(a) (b) (c)
Figure 1. Examples of similar subsequences (a,b) and the average subsequence of these subse-
quences (c).

2. Related Work

One of the most successful data mining methods for time series data analysis in recent
years is a method based on representations of subsequences called shapelets, which classify
time series data according to differences in subsequences rather than the entire time series.
The original method [2] searched for the most different subsequences among classes and
performed classification based on decision trees, but in [3,4], classification performance
was greatly improved by combining advanced machine learning models with feature
transformations that treat shapelets as feature transformation parameters. Shapelets can be
applied not only to time series classification problems, but also to time series clustering [5,6]
and approximation of DTW (Dynamic Time Warping) [7]. OCLTS [1], the method most
closely related to this paper, extends shapelets to the anomaly detection problem. In that
method, multiple shapelets are used for approximation over the entire time series, and the
time series is converted to a vector. A one-class SVM [8] model is defined with transformed
vectors as input, and the shapelet shape and one-class SVM model parameters are learned
simultaneously using the gradient method. The feature transformation of time series data
using shapelets proposed in OCLTS is very promising because of its extensibility in various
ways in time series data analysis based on subsequences. In this paper, we propose a
simpler algorithm for learning local patterns based on this feature transformation.

A time series data classification method called LOGIC [9] has been studied for the
probabilistic representation of local patterns in time series. In LOGIC, local patterns based
on multiple subsequences inherent in a set of time series are modeled by Gaussian process
regression and mapped to a feature space of dimension equal to the number of models
by using the likelihood of each model. By using the mapped features as input data for
various machine learning classifiers, such as random forests, time series classification can
be performed with accuracy comparable to that of state-of-the-art time series classification
methods. This method showed promising results for modeling the probabilistic behavior
of local patterns and for potentially representing times series based on the likelihood of
features. However, LOGIC targets time series classification, which is a different problem
from the one addressed in this paper. In addition, this method learns and evaluates
subsequences obtained by fixing the position of time series segmentation, and does not
take into account the case where the position of subsequence patterns shifts. In this paper,
when learning or evaluating a subsequence, the starting position of the subsequence is
searched for according to the input time series data.
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3. Preliminaries

3.1. Notation
3.1.1. Time Series Data

Let T ∈ RN×Q denote a set of N normal time series data of length Q. Let
Tn = [tn,1, . . . , tn,q] for the nth time series data.

3.1.2. Time Series Subsequence

Let τn,j = [tn,j, . . . , tn,j+L−1] of a time series Tn denote the subsequence of length L
starting at position j, where 1 ≤ j ≤ J, J = Q − L + 1.

3.2. LOPAS Transform

In this section, we describe a method for transforming time series data into feature
vectors using local patterns. This was proposed in OCLTS as a feature transform using
shapelets. Here we describe a generalized version of the transformation using any local
patterns, including shapelets. Because it was not named in [1], we call it LOPAS (Local
Patterns-based Similarity) transform.

Let M be a model for which the similarity to subsequences can be defined. For a set
M containing K models M, denote the kth model by Mk. In [1], the model corresponds to a
shapelet, and in our proposed method, described in Section 4, the model corresponds to a
multivariate Gaussian distribution. The similarity between a model M and a subsequence
τ is denoted by Ψ(M, τ). In [1], the distance between the shapelet and the subsequence
is defined as the dissimilarity; in our proposed method, the log-likelihood is defined as
the similarity.

In the LOPAS transform, the K models M and the nth time series Tn are taken as
input. A subsequence τn,j on Tn corresponds to any of M for k = 1, 2, · · · , K, based on the
similarity Ψ(M, τ). A K-dimensional vector is output as the feature.

The intuitive explanation is that each model in M is assumed to represent a sub-
sequence, and the whole time series Tn is approximated by the subsequences. In the
approximation, while allowing for overlap, the positions on Tn are slid so that there are no
gaps, and the model Mk and its position jω(1 ≤ ω ≤ Ωn) are searched for the position that
best approximates the subsequences on Tn. Here, Ωn is the number of slides on Tn, in other
words, the number of models used to approximate Tn. The model number that maximizes
the similarity for the ωth slide and its position (kω, jω) are given as follows:

(kω, jω) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

argmax
1≤k≤K,j=1

Ψ(Mk, τn,1) (ω = 1)

argmax
1≤k≤K,jω−1<j≤jω−1+L

Ψ(Mk, τn,j) (1 < ω < Ωn)

argmax
1≤k≤K,j=J

Ψ(Mk, τn,J) (ω = Ωn)

(1)

The set of (kω, jω) in Equation (1) is denoted by

Pn = {(kω, jω)}Ωn
ω=1 (2)

Because models are slid with no gaps, jω increases between [1, L] as ω increases by 1
for (kω, jω) ∈ Pn. Note that jω never exceeds J. The number of slides Ωn depends on the
set of models M and the time series Tn.

Once Pn is determined, a K-dimensional feature vector Zn is calculated based on the
following equation.

Zn,k =

⎧⎪⎨⎪⎩
min
j∈Pn,k

Ψ(Mk, τn,j) i f k ∈ {kω}Ωn
ω=1

max
1≤j≤J

Ψ(Mk, τn,j) i f k /∈ {kω}Ωn
ω=1

(3)
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where Pn,k is the set of jω in Pn satisfying kω = k. That is,

Pn,k = {jω |kω = k, 1 ≤ ω ≤ Ωn} (4)

The LOPAS transform is the above procedure for transforming time series data Tn to
features Zn.

3.3. Assignment Factor

Another way to look at the LOPAS transformation is to consider that the subsequence
τn,j used in the transformation to the features Zn,k is assigned to the model Mk. Other
subsequences are considered not to be assigned to any model. Here, we introduce an
assignment factor r and define rk,n,j = 1 if a subsequence τn,j is assigned to the kth model
Mk and rk,n,j = 0 otherwise. This is expressed mathematically as follows.

rk,n,j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 i f j = argmin

j∗∈Pn,k

Ψ(Mk, τn,j∗), k ∈ {kω}Ωn
ω=1

1 i f j = argmax
1≤j∗≤J

Ψ(Mk, τn,j∗), k /∈ {kω}Ωn
ω=1

0 otherwise

(5)

4. Proposed Method

In this section, we describe time series local patterns for anomaly detection and
propose a learning method for them. We named these patterns LOPAD (Local Patterns for
Anomaly Detection). We describe the basic idea of local patterns in Section 4.1 and explain
how they are learned in Section 4.2. In Section 4.3, we describe how to evaluate anomaly
scores of time series data using LOPAD.

4.1. Basic Concept

The proposed method learns a set of multivariate Gaussian distributions that represent
a sufficient variety of local patterns in the context of the LOPAS transformation inherent in a
set T of normal time series. For diagnostics, the LOPAS transformation is applied to the time
series data to be diagnosed using the set of models. The time series data are considered
anomalous if any of the subsequences deviates significantly from the normal pattern,
and the anomaly is detected by calculating the anomaly score based on the similarity at
that time. The anomalous subsequence is output as the reason for the anomaly detection.
Furthermore, because the model uses a multivariate Gaussian distribution to model the
pattern of subsequences, it can provide the probabilistic pattern with a confidence interval.

Specifically, instead of the shapelets used in OCLTS for the LOPAS transformation, K
multivariate Gaussian distributions of dimension L are retained. The mean and covariance
matrix parameters of the kth Gaussian distribution Mk are denoted by Mk = N (μk, Σk),
where μk, Σk are the parameters of the kth Gaussian distribution. The parameters of Mk are
estimated from the set of similar subsequences, and Mk is considered to have a distribution
of waveforms with similar patterns. The set of similar subsequences is the set of all local
patterns in the normal time series dataset T that satisfy the assignment factor rk = 1 as
described in Definition 4. In other words, the set of local patterns defined as

Tk = {τn,j|1 ≤ n ≤ N, 1 ≤ j ≤ J, rk,n,j = 1} (6)

contains the samples for estimating the parameters of the model Mk. Put another way,
the local patterns assignment procedure in the LOPAS transformation yields K clusters of
patterns. The model Mk represents the probability distribution of the clusters.

Furthermore, the similarity between Mk and the subsequence τn,j is defined as the
log-likelihood

Ψ(Mk, τn,j) = ln p(τn,j|μk, Σk) (7)
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where

p(τ|μ, Σ) ∼ N (μ, Σ) (8)

However, for optimal assignment, an appropriate M must be obtained but this requires
that appropriate clusters be obtained. In the next section, we describe the objective function
and the learning method for optimizing these parameters.

4.2. Learning Method

The proposed method aims to obtain multiple multivariate Gaussian models that
represent all local patterns inherent in normal time series data. Specifically, the models are
obtained by the following two procedures:

• Assign subsequence to clusters by LOPAS transformation.
• Obtain a Gaussian model for each cluster.

These can be formulated as follows:

argmax
r,μ,Σ

N

∑
n=1

J

∑
j=1

K

∑
k=1

rn,j,k lnN (τn,j|μk, Σk) (9)

This objective function can be optimized by using the expectation–maximization
algorithm, which has long been used in K-means clustering and other methods. First, each
parameter in the models M μk, Σk(k = 1, . . . , K) is fixed and the assignment factor r is
obtained. Second, the parameters of the multivariate Gaussian model corresponding to
each cluster are updated by fixing r. By repeating these two procedures until the objective
function converges, we obtain a set of multivariate Gaussian models that represent the
various subsequence patterns inherent in a set of normal time series data.

Specifically, a model set M consisting of K Gaussian distributions initialized with
appropriate parameters is prepared. Using the procedure in Equation (4), we calculate
the assignment factor r for each K and obtain the set of assigned subsequences Tk. Next,
using Tk as input, we estimate the mean parameter μk and the covariance matrix parameter
Σk of the model Mk for each k. To estimate the mean parameter and covariance matrix
parameter of the Gaussian distribution, any method can be used, such as maximum
likelihood estimation.

The parameters are updated using the obtained μk and Σk. As described above,
M representing various subsequence patterns is obtained by repeating the two steps of
(1) subsequence assignment and (2) parameter updating until the termination condition
is satisfied.

The above algorithm is summarized in Algorithm 1.

Algorithm 1 Algorithm of the proposed method

Require: Time series dataset T ∈ RN×Q, number of models K, subsequence length param-
eter L

Ensure: M = {N (μk, Σk)}K
k=1

1: Initialize {N (μk, Σk)}K
k=1

2: repeat
3: for n = 1, . . . , N do
4: LOPAS transform on Tn using M to obtain the assignment factor rn.
5: end for
6: for k = 1, . . . , K do
7: Update μk, Σk using a set of subsequences Tk.
8: end for
9: until Stationarity.
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4.3. Evaluation Method

Each model in M obtained by training represents subsequence patterns inherent in
normal data. Therefore, when the LOPAS transformation is applied to time series data,
the likelihood of each model should be large for normal time series data. Conversely,
anomalous data will result in a small likelihood for one or more of the models. Therefore,
the smallest of the K-dimensional feature vectors obtained by the LOPAS transformation is
adopted as the degree of normality of the time series data. In other words, if Znew represents
the K-dimensional features obtained by the LOPAS transformation for time series data Tnew,
the anomaly score a(Tnew) is given by the following formula.

a(Tnew) = −min
k

Znew,k (10)

The subsequence with the maximum anomaly can be regarded as the local pattern
that most greatly differs from the normal pattern in the time series data. Let Mk∗ denote the
model that has the maximum anomaly score and τ∗ denote the corresponding subsequence.
Let τ∗

i be the ith value of τ∗. The possible values of τ∗
i are considered to follow a Gaussian

distribution N (μi|{1,...,L}\i, σ2
i|{1,...,L}\i), conditioned by the points [τ∗

1 , . . . , τ∗
L ] \ τ∗

i other
than τ∗

i in τ∗ in Mk∗ . Therefore, by obtaining the conditional distribution at all points of i
and visualizing the range of

μi|{1,...,L}\i ± Cσi|{1,...,L} (11)

for each point, we can analyze the difference between the normal subsequence pattern and
the anomalous waveform (where C is an arbitrary constant).

5. Experiment and Evaluation

5.1. Accuracy in the UCR Dataset

We evaluate the proposed method on some data from the UCR dataset [10]. For the
experiment, the class with the largest number of data, defined originally as “Train” in the
dataset, was assumed as the normal class and was used as training data. The data for the
other classes were used as validation data. In the data defined originally as “Test”, data
with the same class as the training data were taken as the normal class, and data with other
classes were taken as the anomalous class. The training data were used for training, and the
anomaly score was calculated for each of the normal and anomalous data in the test data,
and the area under the curve (AUC) was calculated for evaluation.

The initial parameters of M were set by estimating the Gaussian mixture model with
K mixed models for all subsequences of length L in the time series dataset T, and the
parameters of each model were used as initial parameters. Other hyperparameters were set
using validation data from among the number of models K = {10, 30, 50} and subsequence
length L = {0.1, 0.2, 0.3} × Q.

The experimental results are shown in Table 1. The proposed method detected anoma-
lies with the same accuracy as OCLTS. Note, however, that OCLTS uses a highly non-linear
transformation based on a kernel method to calculate the anomaly, whereas the proposed
method uses a simple method to calculate the anomaly.

5.2. Visualization Evaluation Using Current Data

In this experiment, we used a dataset of solenoid current measurements called NASA
Shuttle Valve Data [11]. As a preprocessing step, data were sampled every 100 points from
the original time series of length 20,000 to make a time series of length 200. The time series
is scaled so that the minimum and maximum values are [0, 1]. In the dataset, the seven
time series shown in Figure 2 are taken as normal data, and the models are trained with
the proposed method and OCLTS, respectively. After a certain period of time with noisy
steady current in the first half of the time series, the data enters a phase in which the current
rises. During the rise phase, the current temporarily drops during the rise, but soon rises
and enters the steady current phase, where the current remains high. The current then
enters a descending phase, rising temporarily during the descending phase, but eventually
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decreasing to near the initial current value. Normal data tend to differ in the timing and
magnitude of the temporary drops or rises during the rise and fall phases. For the anomaly
data, the time series data shown in Figure 3 are used. These data do not show a temporary
drop in the current value during the rise phase. The proposed method and OCLTS were
applied to these data to diagnose and visualize the anomaly.

Table 1. Comparison of AUC in UCR time series data.

LOPAD (Proposed) OCLTS

Plane 1.000 1.000
Trace 0.985 1.000

SonyAIBORobotSurface1 0.992 0.950
SonyAIBORobotSurface2 0.948 0.914

ECGFivedays 1.000 0.980
ECG200 0.801 0.834

ECG5000 0.932 0.984
MiddlePhalanxTW 0.994 0.991

ProximalPhalanxOutlineAgeGroup 0.899 0.883

Figure 2. Seven time series of current measurements in NASA Shuttle Valve Data used as train-
ing data.

Figure 3. Anomaly data in NASA Shuttle Valve Data. The current rise phase is highlighted, which is
different from the pattern of normal data.
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First, the results of the OCLTS visualization are shown in Figure 4. The black line is
the original time series, and the upward phase showing the anomaly pattern is enlarged.
The red line shows the shapelet obtained by training in OCLTS. The learned shapelet
appears to be the average pattern of the training data. In the training data, the position of
the temporary dip in the ascending phase varies, and as a result of learning the average
pattern, the temporary dip disappears in the learned pattern. The visualization results of
the proposed method are shown in Figure 5, where the normal pattern region is obtained
as C = 2 in Formula (11). The normal pattern region obtained using the proposed method
shows a distorted region with repeated unevenness, and the original time series (black
line) is found to be out of the normal region. This implies that the proposed method’s
normal pattern contains some kind of uneven waveform in the ascending phase. Thus,
the proposed method provides insight into the behavior of patterns based on subsequences,
which is difficult to achieve with conventional shapelets.

Figure 4. Results of visualization analysis using OCLTS. The black line represents the time series data
and the red line represents the shapelet obtained by training.

Figure 5. Results of visualization analysis using LOPAD (proposed). The black line is the time series
data, and the pink area indicates the normal pattern.
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5.3. Limitations of Our Method

The above results demonstrate that our proposed method is effective in anomaly
detection in various domains of data. However, we should mention that there may be
situations where our proposed method fails. First, our proposed method is designed to
identify anomalies primarily based on the most irregular subsequence and is unable to
consider correlations between subsequences. In such cases, it is necessary to employ OCLTS,
which can capture complex correlations between subsequences that cannot be resolved
due to its kernel method. Furthermore, both the proposed method and OCLTS generate
features from time series data using the LOPAS transform, they cannot model in which the
training data do not have roughly similar shapes.

6. Conclusions

In this paper, we proposed a representation learning method based on the probabilistic
behavior of subsequences for anomaly detection in time series. Experiments confirmed
that the proposed method has anomaly detection performance comparable to that of the
conventional method OCLTS, but with a more transparent anomaly calculation procedure.
Furthermore, the probabilistic modeling of subsequence patterns provides insight into the
reason why anomaly detection differs from OCLTS.
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Abstract: Water resource forecasting plays a crucial role in managing hydrological reservoirs, sup-
porting operational decisions ranging from the economy to energy. In recent years, machine learning-
based models, including sequential models such as Long Short-Term Memory (LSTM) networks, have
been widely employed to address this task. Despite the significant interest in forecasting hydrological
series, weather’s nonlinear and stochastic nature hampers the development of accurate prediction
models. This work proposes a Variational Gaussian Process-based forecasting methodology for
multiple outputs, termed MOVGP, that provides a probabilistic framework to capture the predic-
tion uncertainty. The case study focuses on the Useful Volume and the Streamflow Contributions
from 23 reservoirs in Colombia. The results demonstrate that MOVGP models outperform classical
LSTM and linear models in predicting several horizons, with the added advantage of offering a
predictive distribution.

Keywords: streamflow contributions; predictive distribution; forecasting; Gaussian process;
useful volume

1. Introduction

Hydrological forecasting plays a crucial role in planning and operation activities.
On a short-term scale, it allows for management of water systems and resources, includ-
ing irrigation, flood control, and hydropower generation. In the energy sector, hydro-
logical forecasting supports the optimal scheduling of hydroelectric power generation.
Accurately predicting hydroelectric plants’ water release and reservoir volume enables
scheduling optimal thermal plant generation while minimizing fuel costs and improving
the energy sector’s sustainability [1,2]. For example, Brazil’s National Electrical System
Operator provides streamflow time series of hydropower plants that supports forecasting
research [3]. In Colombia, hydropower plants contribute 97.37% of the renewable energy,
including 87.54% from reservoirs [4]. Therefore, there is a great interest in developing accu-
rate hydrological forecasting models to manage and exploit water resources sustainably
and effectively.

Forecasting models can be short-, mid-, or long-term, where the former enable dispatch
and optimization for power systems. Long-term forecasting supports reliability planning
through system expansions and weather analysis at a large scale [5,6]. Hence, the design
of forecasting models depends on the prediction horizon, with two primary approaches:
physically-driven concept rules and data-driven models which learn from time-series
samples. Models in the first category have demonstrated their capability to predict various
flooding scenarios. However, physical modeling often requires extensive knowledge
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and expertise in hydrological parameters and various datasets, demanding intensive
computation which results in unsuitability for short-term prediction [7]. Since data-driven
models can learn complex behavior from the data, streamflow forecasting traditionally
relies on this second approach. The most extensively used data-driven forecasting model is
the Linear AutoRegression (LAR), due to its simplicity and interoperability [8]. However,
LAR fails to adequately represent streamflow series because of the complex water resource
patterns, such as varying time dependencies, randomness, and nonlinearity [3,6,9].

The most prominent models for dealing with nonlinear trends are neural networks
(NNs), known for their flexibility and outperformance of other nonlinear models [10]. For
instance, a hybrid model coupling extreme gradient boosting to NNs predicted monthly
streamflow at Cuntan and Hankou stations on the Yangtze River, outperforming baseline
support vector machines [11]. Additionally, recurrent architectures, such as Long Short-
Time Memory (LSTM), have proven to improve the scores of classical NNs in daily stream-
flow forecasting, given their ability to capture seasonality and stochasticity [5,8]. However,
the numerous neural network architectures available make researchers question which one
will best fit a given problem, as no single model is universally applicable [7]. Further, the
inherent noise present in hydrological time series influences forecasting accuracy [3,10].

Some operational tasks demand uncertainty quantification for the prediction due to
the inherent noise. Gaussian Processes (GP) satisfy such a requirement by approximating a
predictive distribution. GP-based forecasting has proven remarkable results in streamflow
forecasting up to one day and month ahead [12,13]. In addition, a kernel function, com-
bining squared exponential, periodic, and rational quadratic terms, allowed GP models
to fit streamflow time series for the Jinsha River [9]. In another approach, a probabilis-
tic LSTM coupled with a heteroscedastic GP produced prediction intervals without any
post-processing to manage the daily streamflow time series uncertainty [14]. However,
GP-based approaches pose two research gaps [15]. Firstly, the probabilistic couple approach
still complicates the model calibration. Secondly, natural probabilistic modes such as GP
have only been used to study scalar value signals.

This work develops a forecasting methodology using a GP-based probabilistic ap-
proach applied to hydrological resources, supporting multiple output predictions and
reducing the model training complexity. The methodology, termed MOVGP, combines
the advantages of Multi-Output and Variational GPs for taking advantage of relationships
among time series, adapting the individual variability to handle large amounts of samples.
The research compares the performance of the MOVGP against an LSTM neural network
and a Linear AutoRegression (LAR) model in forecasting two multi-output hydrological
time series, namely, Useful Volume and Streamflow Contributions of 23 reservoirs. It is
worth noting that the considered time series correspond to actual reservoir data taken
into account for hydropower generation in Colombia. Attained results prove the abil-
ity of MOVGP to be adapted to varying prediction horizons, generally outperforming
contrasted models.

The paper agenda is as follows: Section 2 covers methodologies and theoretical bases
used for developing and training Multi-Output Variational GP models; Section 3 validates
the MOVGP training and tests the three models in terms of the Mean Square Error (MSE);
Final remarks and future work conclude the work in Section 4.

2. Mathematical Framework

2.1. Gaussian Process Modeling Framework

A Gaussian Process (GP) is a collection of random variables related to the infinite-
dimensional setting of a joint Gaussian distribution. Consider the dataset of N samples
D = {X, Y}, where X ∈ RL×N is the design matrix, with columns of vector inputs x ∈ RL

of L features, and Y ∈ RD×N is the target matrix, with columns of vector outputs y ∈ RD

of D outputs for all N cases. GP framework conditions a subset of observations to create a
map that models the relationship between X to Y.
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Then, the Single-Output GP (SOGP) attempts to represent a scalar-valued function
f : RL → R, i.e., where D = 1 with GP framework. This model is completely specified by a
mean function m : RL → R and covariance (kernel) function k : RL ×RL → R, with vector
parameters θm and θk notated, respectively, as follows:

f (x) ∼ GP(m(x | θm), k(x, x′ | θk)) (1)

In more realistic scenarios, single-output observation y presents Gaussian noise
ε ∼ N (0, σ2

N) models as a noise-added version of the function f , such as y(x) = f (x) + ε.
Let X∗ ∈ RL×N′

be a test matrix with N′ test vector inputs x∗ ∈ RL, f∗ ∈ RN′
, in which

m = [m(xi | θm)] ∈ RN denotes mean train vector, m∗ = [m(x∗i | θm)] ∈ RN′
denotes mean

test vector, K = [k(xi, xj | θk)] ∈ RN×N denotes covariance train matrix, K∗ = [k(xi, x∗j |
θk)] ∈ RN×N′

denotes covariance train–test matrix, and K∗∗ = [k(x∗i, x∗j | θk)] ∈ RN′×N′

denotes covariance test matrix. The joint Gaussian distribution of the observations vector y

and test outputs vector f∗, named previously, are specified as shown:[
y

f∗

]
∼ N

([
m

m∗

]
,
[

K + σ2
NIN K∗

K�
∗ K∗∗

])
(2)

where IN is the identity matrix of size N derived in the conditional distribution, calculated
as follows:

f∗|X∗, X, y ∼ N (f̄∗, cov(f∗)) (3)

with the following definitions:

f̄∗ = m∗ + K�
∗ [K + σ2

NIN ]
−1(y − m) (4)

cov(f∗) = K∗∗ − K�
∗ [K + σ2

NIN ]
−1K∗ (5)

Notice, from Equations (4) and (5), that mapping construction is analytic and, there-
fore, does not employ an optimization process. Nevertheless, selection of parameters
at θm and θk and observation noise variance σN can be estimated using marginal like-
lihood from Equation (2), p(y | X) = N (m, K + σ2

NIN), and minimizing negative log
marginal likelihood:

min
θm ,θk ,σN

− ln(p(y | X)) =
1
2
(y − m)�K−1

y (y − m) +
1
2

ln(| Ky |) + N
2

ln(2π) (6)

where Ky = K + σ2
NIN is the covariance matrix for the noisy observations. Thus, the opti-

mization problem in Equation (6) can be efficiently solved via a gradient-based optimizer [16].

2.2. Multi-Output Gaussian Process (MOGP)

MOGP generalizes SOGP mapping for D ≥ 1 outputs as f D : RL → RD with GP
framework, where f D is a vector-valued function. The MOGP model, similar to the SOGP
model, is entirely defined by its mean vector function mD : RL → RD and covariance matrix
function kD : RL × RL → RD×D, each with vector parameters θm and θk, respectively,
expressed as follows:

f D(x) ∼ GP(mD(x | θm), kD(x, x′ | θk)) (7)

Let ΣN ∈ RD×D be a diagonal matrix such that ΣN = diag{σ2
Nd}D

d=1, with σN,d being
the dth output observation noise variance and yD ∈ RND being a ravel version vector of
target matrix Y. Following the procedure established in Equation (3), deriving the MOGP
posterior distribution takes place as follows:

f∗|X∗, X, Y ∼ N (f̄∗, cov(f∗)) (8)
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with the following definitions:

f̄∗
D
= mD

∗ + KD�
∗ [KD

y ]
−1(yD − mD) (9)

cov(f∗) = KD
∗∗ − KD�

∗ [KD
y ]

−1KD
∗ (10)

where KD
y = KD + ΣN ⊗ IN , ⊗ represents the Kronecker product between matrices and

upper index D denotes D − dimension version of SOGP quantities.
To deal with developing an admissible correlation between outputs, the Linear Model

of Coregionalization takes place, expressing each output of MOGP as a linear combination
of Q (known as latent dimension) independent SOGP as follows:

f D(x) =
Q

∑
q=1

aqgq(x) (11)

where aq ∈ RD is the vector coefficients, with values ad
q associated with contributions of

the q-th independent SOGP gq(x) at the dth output with kernel function kq. In this way, the
covariance matrix of the MOGP model is given by the following [17,18]:

kD(x, x′) =
Q

∑
q=1

Bqkq(x, x′) (12)

where Bq ∈ RD×D = aqa�q is a semi-definite positive matrix known as the coregionaliza-
tion matrix.

2.3. Variational Gaussian Process (VGP)

The main challenge in implementing MOGP models lies in their complexity O(D3N3)
and storage demand O(D2N2) becoming intractable for a dataset of a few thousand sam-
ples [19], because the need to invert the matrix KD

y in Equations (9) and (10) is usually
performed by Cholesky decomposition. To overcome the problem of computational com-
plexity, a new set of M � N trainable inducing points Z ∈ RL×M and inducing variables
u = f D(Z) ∈ RDM augment the output variables fD = f D(X) ∈ RDN . The marginal
distribution for the output variables is expressed as p(fD | X) =

∫
p(fD | X, u)p(u)du. The

Variational Gaussian Process (VGP) allows approximating p(fD | X) with q(fD | X) by
marginalizing out the set of inducing points [20]:

q(fD | X) :=
∫

p(fD | X, u)q(u)du (13)

Since the output distribution comes from a MOGP, q(u) is assumed as Gaussian
N (u | mz, S), with mean mz ∈ RDM and covariance S ∈ RDM×DM, so that the approxi-
mating distribution also becomes Gaussian:

q(fD | X) = N
(

fD | Amz, KD + A(S − KM,M)A�
)

(14)

with A = KMK−1
M,M, KM ∈ RDN×DM as the kernel function in Equation (12) evaluated at all

pairs of inducing–training points and KM,M ∈ RDM×DM the kernel function values between
pairs of inducing points. Since optimizing the parameters of q(u) yields a stochastic
framework, the cost function in Equation (6) turns into a tractable marginal likelihood
bound for the multi-output case:

log p(yD | X) ≥
N

∑
n=1

Eq( f D
n |xn)

[log p(yD
n | f D(xn))]− KL[q(u) ‖ p(u)] (15)
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in which KL[q(u) ‖ p(u)] is the Kullback–Leibler (KL) divergence between q(u) and p(u).
This approach offers a notable benefit by diminishing the complexity of the MOGP to
O(DND2M2) due to the inversion of the matrix KM,M, which is smaller than KD

y . As a
result, the model can efficiently handle an increased number of samples N, providing an
opportunity to gather more information from the dataset at a reduced cost.

3. Results and Discussions

The current section aims to thoroughly communicate the implications of the forecasting
results on hydric time series using MOVGP. Firstly, we offer a detailed description of the
considered dataset, including information on its sources, characteristics, and preprocessing
steps. Further, the manuscript details the hyperparameter tuning experiments and describes
the validation strategy. Finally, we examine the forecasting performance and highlight
notable trends and observations.

3.1. Dataset Collection

We validate the MOVGP regressor on a hydrological time series forecasting task of
the Useful Volume and Contributions from 23 Colombian reservoirs, daily recorded daily
from 1 January 2010, to 28 February 2022, yielding 4442 daily measurements. Despite the
volumetric nature of the raw data, the hydroelectric power plants report Useful Volumes
and Streamflow Contributions as their equivalent in kilowatt-hour (kWh) units, since such
a representation is more practical for daily operations. Figure 1 visually describes the
statistics for each reservoir. Note that amplitudes vary from millions to billions of kWh
among reservoirs, due to each generating at a different capacity. In the case of Useful
Volumes, one finds some highly averaging time series with a few variations (see reservoirs
A and L), but also cases of low means with a significant variation (as the reservoir B). Notice
from Streamflow Contributions that the reservoir K boxplot does not appear, due to zero
values reported for all time series. Some reservoirs also present outlier volume reductions
(black crosses), contrasting with the outlier increments in streamflow. Two main factors
produce the above nonstationary and non-Gaussian behavior: the Colombian weather
conditions produce unusual rainy days and long dry seasons, and the operation decisions
can impose water saving or generation at total capacity each day.
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(b) Streamflow Contributions

Figure 1. Time series distributions of Useful Volume and Streamflow Contribution for each reservoir
on the dataset. Amplitude axis is presented in logarithmic mode due to large scale variations.
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3.2. MOVGP Setup and Hyperparameter Tuning

Firstly, we define the validation task as predicting the H-th day in the future using
the current hydrological measurement in all the reservoirs, yielding L = 23 inputs. Predic-
tion horizon H ranges from one to twenty-five days, exploring short- and medium-term
hydrological forecasting performance. For proper validation, MOVGP and contrasting
approaches were trained on the first 10 years and validated on the data from 28 February
2021 to 28 February 2022, corresponding to 365 testing samples. Figure 2 presents the
testing time series for the Useful Volume of three reservoirs. Noting the varying scales that
lead to potential bias during the training stage, a preprocessing step normalizes the dataset
by centering the time series from each reservoir on zero and scaling it to unit standard
deviation. Normalizing means and standard deviations result from the training subset
statistics avoids test biasing.

Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb

105

106

107

k
W

h

Reservoir A Reservoir B Reservoir C

Figure 2. Testing data for Streamflow Contributions of three reservoirs from March 2021 to February
2022, evidencing the within and between time series variability.

Each type of time series, Useful Volume and Streamflow Contribution, considers an
individual forecasting model. Hence, the experimental framework trains two independent
MOVGPs with D = 23 outputs. The proposed methodology considers a constant for
the MOVGP mean function, mD(x | θm) = θm, with θm ∈ RD as the single trainable
vector parameter. The proposed methodology builds the MOVGP covariance function
in Equation (12) from the widely used squared exponential, in Equation (16), allowing a
smooth data mapping:

kq(x, x′ | θq) = exp
(
−1

2
(x − x′)�Θ−2

q (x − x′)
)

(16)

where the diagonal matrix Θq = diag{Δql}L
l=1 ∈ RL×L gathers the length scale factors

Δql ∈ R+ from each input dimension. The trainable covariance parameters become σN,d
and Δlq from the Q independent SOGP within the MOVGP framework. Then, a 10-fold
time series split model selection determines the optimal hyperparameter setting for the
forecasting models by searching within the following grid: number of inducing variables
M ∈ {4, 8, 16, 32, 64, 128} and latent space dimension Q ∈ {2, 4, 8, 16, 23, 46, 69, 92, 115}.

Figure 3 presents the 10-fold-averaged cross-validation mean squared error (MSE)
along the grid search while fixing the model horizon to H = 1 for both the Useful Volume
and Streamflow Contributions. Hyperparameter tuning exhibits that, the larger the Q and
M, the smaller the MOVGP error and the slower the improvement. Therefore, the forecast
task on a very short horizon yields complex models that hardly overfit. However, the
latent dimension influences the performance significantly more than the induced variables,
agreeing with the model development: the latent dimension controls the embedding quality,
while the induced variables reduce the computational burden without compromising
the performance.
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Figure 3. MOVGP hyperparameter tuning for horizon H = 1 using a grid search on the latent
space dimension L and the number of induced variables M. Testing MSE is computed on a 10-fold
cross-validation.

For each considered horizon H ∈ {1, 2, 3, 5, 7, 9, 10, 15, 20, 25}, Figure 4 illustrates the
hyperparameters which reach the best testing MSE. For the Useful Volume time series,
shown in Figure 4a, the number of latent variables Q increases while the number of inducing
points M decreases. A Pearson correlation coefficient of −0.82 between the optimal Q and
M indicates that the model trades off its complexity between hyperparameters: increasing
Q allows a more flexible model, whereas increasing M produces MOVGP models that
retain more information about the time series. In turn, the optimal Q for the Streamflow
Contribution remains at the highest evaluated value while M decreases for the last horizons
(Figure 4b). Such a fact suggests that the latent space is large enough to decode the
relationship between past Streamflow Contributions and the farthest horizon. Thus, a
flexible model evades a large explicit memory to seize the relevant dynamics, and vice versa.
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Figure 4. Optimal MOVGP hyperparameters, according to the testing MSE along the prediction
horizon H for Useful Volume and Streamflow Contributions.

3.3. Performance Analysis

The performance analysis compares MOVGP against two widely considered hydro-
logical forecasting models: a straightforward Linear AutoRegression (LAR) model as a
baseline and a Long Short-Term Memory (LSTM) network with the hidden space dimension
and the number of recurrent layers as hyperparameters. Specifically for the LSTM, the
same model selection strategy—10-fold time series split—tunes the hyperparameters using
the training subset. Figure 5 illustrates the MSE for the 10-fold cross-validation attained by
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the three contrasted models along the explored horizons for both time series. In general,
error increases with the prediction horizon, due to the forecasting task becoming more
complex for far away days. Nonetheless, the autoregressive model outperforms LSTM,
closely followed by MOVGP, up to a 15-day horizon, suggesting linearly-captured time
dependencies in the short term. In contrast, MOVGP reaches the lowest error for the longest
horizons, followed by LSTM, evidencing nonlinear time relationships at medium-term
which are profited by more elaborate models. The above results indicate that MOVGP was
the most flexible model on average, exploiting the time-varying interactions, competing at
short-term, and outperforming at medium-term horizons.
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Figure 5. Cross-validation MSE at a 10-fold time series split for Linear AutoRegressive, LSTM, and
MOVGP models along the prediction horizon.

At the testing stage, trained LAR, LSTM, and MOVGP models forecast the last 365 days
on the dataset for both time series at each horizon considered. Figure 6 depicts reservoir-
wise testing MSE boxplots computed over the 10 prediction horizons for the Streamflow
Contributions. Note that reservoir T makes the models perform the worst, whereas reservoir
D becomes the least challenging. Moreover, the widespread error at reservoir L contrasts
with the small dispersion at reservoir D. Therefore, varying boxplots advise the changing
forecasting complexity over the horizons and reservoirs despite corresponding to the
same hydrological time series. According to the grand averages in dashed lines, the
MOVGP model obtains the best average performance, followed by the LAR. Thus, for the
Contributions time series, MOGP offers a better explanation for nonlinearities in the data
than LSTM.
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Figure 6. Distribution for the testing MSE of contrasted approaches at each reservoir for the Stream-
flow Contributions. Statistics are computed over the 10 prediction horizons. The dashed line averages
the reservoir-wise MSE.

Figure 7 offers time series plots for Useful Volume and Contributions with their
respective one-day horizon predictions from the forecast models for three reservoirs of
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interest. Notice, in Figure 7a, that the MOVGP and Linear models reach a well-fit prediction
and learn the smoothness of the reservoir data, but the MOVGP model presents the
advantage of yielding a predictive distribution and, therefore, a confidence interval. In
addition, the LSTM model shows abrupt changes that deviate from the actual behavior of
the curve, producing a higher error. For Figure 7c, a narrow confidence interval describes
the time series noise. Observe the presence of a peak at day 65 that is out of the confidence
interval, possibly an outlier classified as an anomaly by predictive distribution offered by
the MOVGP model.

Figure 7. Useful volume (left) and contributions (right) forecasted by the contrasting approaches on
one-year test data at reservoirs A, K, and T (top to bottom) and one-day prediction horizon H = 1.

In the case of the Streamflow Contributions, the three models closely follow the abrupt
curve trend and lie within the confidence intervals for reservoir A in Figure 7b. Lastly,
Figure 7d displays peaks in the Streamflow Contributions of reservoir T. Although no model
catches the peak’s tendency, MOVGP explains them as outliers because of the predictive
distribution. In this way, the MOVGP model is less influenced by anomalies, producing
better generalization and, thus, outperforming the other models.

4. Concluding Remarks

This work proposed a forecasting methodology for multiple output prediction of
Useful Volume and Streamflow Contributions of Colombian reservoirs using Variational
Gaussian Processes. Since the coregionalization of MOVGPs imposes a unique latent
process, generating multiple outputs, we devoted a single model for each hydrological
variable to minimize overgeneralization issues. The proposed MOVGP was compared
against LSTM-based and Linear AutoRegressive models using actual time series. The
hyperparameter tuning stage proved that MOVGP suitably adapted to time complexity
by optimizing the number of latent variables and inducing points to control model flex-
ibility. The comparison in testing data, shown in Figure 5, revealed that the MOVGP
outperformed the others in predicting long-term horizons, particularly when the linear
model missed relationships between inputs and outputs. Therefore, MOVGP outperforms
hydrological forecasting, providing prediction reliability and outlier detection through the
predictive distribution.
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For future work, we devise the following research directions. First, we will extend the
methodology to support energy-related time series such as daily thermoelectric schedules.
Secondly, we will develop deep learning models to learn complex patterns in hydrological
time series.

Finally, to overcome the overgeneralization and linear coregionalization restriction
issues, we will work on time-variant convolutional kernel integration.

Author Contributions: Conceptualization, J.D.P.-C.; Data Extraction, A.A.O.-G. and M.H.-L.; Valida-
tion, D.A.C.-P. and G.C.-D.; Original Draft Preparation, J.D.P.-C., A.A.O.-G. and D.A.C.-P.; Review
and Editing, J.D.P.-C. and D.A.C.-P. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the Minciencias project: “Desarrollo de una herramienta para la
planeación a largo plazo de la operación del sistema de transporte de gas natural de Colombia”—código de
registro 69982—CONVOCATORIA DE PROYECTOS CONECTANDO CONOCIMIENTO 2019 852-2019.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: Thanks to the Maestría en Ingeniería Eléctrica, graduate program of the Univer-
sidad Tecnológica de Pereira.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Basu, M. Improved differential evolution for short-term hydrothermal scheduling. Int. J. Electr. Power Energy Syst. 2014,
58, 91–100. [CrossRef]

2. Nazari-Heris, M.; Mohammadi-Ivatloo, B.; Gharehpetian, G.B. Short-term scheduling of hydro-based power plants considering
application of heuristic algorithms: A comprehensive review. Renew. Sustain. Energy Rev. 2017, 74, 116–129. [CrossRef]

3. Freire, P.K.D.M.M.; Santos, C.A.G.; Silva, G.B.L.D. Analysis of the use of discrete wavelet transforms coupled with ANN for
short-term streamflow forecasting. Appl. Soft Comput. J. 2019, 80, 494–505. [CrossRef]

4. XM. La Generación de Energía en enero fue de 6276.74 gwh. 2022. Available online: https://www.xm.com.co/noticias/4630-la-
generacion-de-energia-en-enero-fue-de-627674-gwh (accessed on 7 November 2022).

5. Cheng, M.; Fang, F.; Kinouchi, T.; Navon, I.; Pain, C. Long lead-time daily and monthly streamflow forecasting using machine
learning methods. J. Hydrol. 2020, 590, 125376. [CrossRef]

6. Yaseen, Z.M.; Allawi, M.F.; Yousif, A.A.; Jaafar, O.; Hamzah, F.M.; El-Shafie, A. Non-tuned machine learning approach for
hydrological time series forecasting. Neural Comput. Appl. 2018, 30, 1479–1491. [CrossRef]

7. Mosavi, A.; Ozturk, P.; Chau, K.W. Flood prediction using machine learning models: Literature review. Water 2018, 10, 1536.
[CrossRef]

8. Apaydin, H.; Feizi, H.; Sattari, M.T.; Colak, M.S.; Shamshirband, S.; Chau, K. Comparative analysis of recurrent neural network
architectures for reservoir inflow forecasting. Water 2020, 12, 1500. [CrossRef]

9. Zhu, S.; Luo, X.; Xu, Z.; Ye, L. Seasonal streamflow forecasts using mixture-kernel GPR and advanced methods of input variable
selection. Hydrol. Res. 2019, 50, 200–214. [CrossRef]

10. Saraiva, S.V.; de Oliveira Carvalho, F.; Santos, C.A.G.; Barreto, L.C.; de Macedo Machado Freire, P.K. Daily streamflow forecasting
in Sobradinho Reservoir using machine learning models coupled with wavelet transform and bootstrapping. Appl. Soft Comput.
2021, 102, 107081. [CrossRef]

11. Ni, L.; Wang, D.; Wu, J.; Wang, Y.; Tao, Y.; Zhang, J.; Liu, J. Streamflow forecasting using extreme gradient boosting model
coupled with Gaussian mixture model. J. Hydrol. 2020, 586, 124901. [CrossRef]

12. Sun, A.Y.; Wang, D.; Xu, X. Monthly streamflow forecasting using Gaussian process regression. J. Hydrol. 2014, 511, 72–81. [CrossRef]
13. Niu, W.; Feng, Z. Evaluating the performances of several artificial intelligence methods in forecasting daily streamflow time

series for sustainable water resources management. Sustain. Cities Soc. 2021, 64, 102562. [CrossRef]
14. Zhu, S.; Luo, X.; Yuan, X.; Xu, Z. An improved long short-term memory network for streamflow forecasting in the upper Yangtze

River. Stoch. Environ. Res. Risk Assess. 2020, 34, 1313–1329. [CrossRef]
15. Moreno-Muñoz, P.; Artés, A.; Álvarez, M. Heterogeneous Multi-output Gaussian Process Prediction. In Proceedings of the Advances

in Neural Information Processing Systems; Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R., Eds.;
Curran Associates, Inc.: New York, NY, USA, 2018; Volume 31.

16. Rasmussen, C.E.; Williams, C.K.I. Gaussian Processes for Machine Learning; Adaptive Computation and Machine Learning; MIT
Press: Cambridge, MA, USA, 2006; pp. 1–248.

304



Eng. Proc. 2023, 39, 83

17. Liu, H.; Cai, J.; Ong, Y.S. Remarks on multi-output Gaussian process regression. Knowl.-Based Syst. 2018, 144, 102–121. [CrossRef]
18. Álvarez, M.A.; Rosasco, L.; Lawrence, N.D. Kernels for Vector-Valued Functions: A Review. Found. Trends® Mach. Learn. 2012,

4, 195–266. [CrossRef]
19. Hensman, J.; Fusi, N.; Lawrence, N.D. Gaussian Processes for Big Data. arXiv 2013, arXiv:1309.6835. [CrossRef]
20. Hensman, J.; Matthews, A.; Ghahramani, Z. Scalable Variational Gaussian Process Classification. arXiv 2014, arXiv:1411.2005.

[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

305





Citation: Barba, P.; Pérez-Méndez, N.;

Ramírez-Zelaya, J.; Rosado, B.;

Jiménez, V.; Berrocoso, M.

Geodynamic Modeling in Central

America Based on GNSS Time Series

Analysis—Special Case: The Nicoya

Earthquake (Costa Rica, 2012). Eng.

Proc. 2023, 39, 84. https://doi.org/

10.3390/engproc2023039084

Academic Editors: Ignacio Rojas,

Hector Pomares, Luis Javier Herrera,

Fernando Rojas and Olga Valenzuela

Published: 12 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Proceeding Paper

Geodynamic Modeling in Central America Based on GNSS
Time Series Analysis—Special Case: The Nicoya Earthquake
(Costa Rica, 2012) †

Paola Barba 1,*, Nely Pérez-Méndez 1, Javier Ramírez-Zelaya 1, Belén Rosado 1, Vanessa Jiménez 2

and Manuel Berrocoso 1

1 Laboratorio de Astronomía, Geodesia y Cartografía, Departamento de Matemáticas, Facultad de Ciencias,
Campus de Puerto Real, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain;
nelyperez1510@gmail.com (N.P.-M.); javierantonio.ramirez@uca.es (J.R.-Z.); belen.rosado@uca.es (B.R.);
manuel.berrocoso@uca.es (M.B.)

2 Departamento de Física Teórica y del Cosmos, Facultad de Ciencias (Edificio Mecenas),
Campus de Fuentenueva, Universidad de Granada, 18010 Granada, Spain;
vanessa.jimenezmorales@hotmail.com

* Correspondence: paola.barba@uca.es
† Presented at the 9th International Conference on Time Series and Forecasting, Gran Canaria, Spain,

12–14 July 2023.

Abstract: GNSS systems allow precise resolution of the geodetic positioning problem through
advanced techniques of GNSS observation processing (PPP or relative positioning). Current instru-
mentation and communications capabilities allow obtaining geocentric and topocentric geodetic high
frequency time series, whose analysis provides knowledge of the tectonic or volcanic geodynamic ac-
tivity of a region. In this work, a GNSS time series study is carried out through the use and adaptation
of R packets to determine their behavior, obtaining displacement velocities, noise levels, precursors
in the time series, anomalous episodes and their temporal forecast. Statistical and analytical methods
are studied; for example, ARMA, ARIMA models, least-squares methods, wavelet functions, Kalman
techniques and CATS analysis. To obtain a geodynamic model of the Central American region, the
horizontal and vertical velocities obtained by applying the above methods are taken, choosing the
velocity with the least margin of error. Significant GNSS time series are obtained in geodynamically
active regions (tectonic and/or volcanic).

Keywords: GNSS time series; geodynamic model; Nicoya earthquake

1. Introduction

In the area of Central America, one of the most interesting geodynamic zones in the
world is observed, with the convergence of five tectonic plates: the South American, North
American, Nazca, Cocos, and Caribbean plates. The evolution of these plates is well known,
except for the origin of the Caribbean plate, which is still the subject of debate [1–3].

There are two main models for the origin of the Caribbean plate. The first is one
that contemplates the origin of the plate “in situ” between the North and South American
plates [2]. The second and most commonly accepted model is that the Caribbean plate
originated in the Pacific Ocean during the Late Cretaceous, composed primarily of a large
igneous province due to hot spot magmatism and normal-thickness oceanic crust that
migrated eastward to its present position between the American plates [1,4,5].

The Caribbean plate is an enclosed oceanic basin composed primarily of the Caribbean
Greater Igneous Province and large areas of ocean crust of normal thickness within the
Venezuelan and Colombian basins [4]. It is bounded to the north and south by two
continental plates, the North and South American plates, which are characterized by large
strike-slip fault systems, although convergence also occurs on a smaller scale [6]. It is
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bounded to the east and west by two main subduction zones, the Lesser Antilles and
Central America, respectively, where the oceanic lithosphere of the Atlantic Ocean to the
east and the Pacific Ocean to the west subducts beneath the Caribbean plate [7]. In addition,
this plate subducts under northwestern South America, reaching a depth of 600 km [4].

At the western edge of the Caribbean plate lies the Nicoya Peninsula, where the Cocos
Plate subducts northeastward beneath the Caribbean Plate along the Middle America
Trench at about 8 cm/yr, with a range of obliquity of 10° counterclockwise from the normal
direction of the trench [8,9]. The movement of the plates along the Middle American
Trench is partitioned. In the normal direction of the trench, the subduction velocity is
74–84 mm/yr [10], while in the forward arc the movement is 8–14 mm/yr [8,11,12]. The
subducting Cocos plate forms on both the rapidly extending East Pacific Ridge (EPR),
with relatively uniform seafloor topography, and the slowly extending Cocos-Nazca Ridge
(CNR), with a relatively rugged seabed [13,14].

The Nicoya Peninsula is elongated in a northwest–southeast direction and extends
within 60 km of the Trench [15], and is located over the shallow portion of the subduction
interface that generates earthquakes, called megathrust [16]. There are only a few sub-
duction zones in the world where there is land access of as close as 50–60 km to a deep
trench [17] and where the megathrust seismogenic zone is covered by land rather than
ocean [16].

In this area, large megathrust earthquakes with magnitudes greater than 7 have
historically occurred with a well-defined seismic cycle of about 50 years, 1853, 1900 and
1950 (Mw = 7.7), 2012 (Mw = 7.6) [14,16,18], in addition to the record of other smaller
nearby events of magnitude (Mw = 7) in 1978 and 1990 [14]. Slow slip events (SSEs) are
common below the Nicoya Peninsula [10,19]. These events are basically largely aseismic
slip that occurs at the plate boundary for weeks to months [20,21] releasing a fraction of the
accumulated stress aseismically or weakly seismically, often accompanied by low-frequency
earthquakes and non-volcanic seismic tremors [22].

On 5 September 2012, in the North Pacific region of the Nicoya peninsula, a Mw = 7.6
earthquake was recorded SW of Sámara, which had a large number of aftershocks in the
following months (42 in September to the SSW of the peninsula from Nicoya; 24 in October
to the WSW of the Nicoya Peninsula; 10 in November on the coast of the Nicoya Peninsula).
Most of these earthquakes have their hypocenters at depths between 15 and 20 km. This
earthquake on 5 September and its aftershocks were caused by the subduction process
of the Cocos plate under the Caribbean plate, a process that has generated other historic
earthquakes in Guanacaste such as the 1950 Nicoya earthquake (Ms = 7.7). There was
damage to homes and buildings. The solution of the focal mechanism carried out by the
USGS for the Samara earthquake shows a pure inverse type mechanism that confirms its
relationship with the subduction process of the Cocos plate [23].

Ref. [17] relocated the earthquake of 5 September 2012 using data from the local
seismic network. He located the hypocenter at 9.76° N, 85.56° W at 10 km offshore, 13 km
deep at megathrust, with seismic moment being 3.5 × 1020 Nm, giving Mw = 7.6. The
joint finite fault inversion of GPS data, seismometers, accelerometers, teleseismic P-waves,
and GPS static offsets revealed that the coseismic rupture propagated downward from the
hypocenter with a rupture velocity of 3.0 km/s and a total source duration of 21 s.

2. Data Collection

GNSS technologies and permanent station networks have created a very relevant
terrestrial reference framework and tool for the study of deformations of the Earth’s
crust due to tectonic forces. These technologies are of great interest for geodynamics
and deformation studies. Although strain is a more objective indicator than displacement
because no frame of reference is required [24], GNSS techniques make it possible to quantify
with guarantee the displacements of the stations that occur during earthquakes and relate
them to other unaffected areas; as a consequence, the horizontal and vertical movements
can be measured in faults and tectonically active regions. The GPS system has proven
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to be a very effective tool to carry out deformation studies due to its high precision and
accuracy [25].

Nevada Geodetic Laboratory, (http://geodesy.unr.edu/, accessed on 2 March 2023)
provides all available raw GPS geodetic data from over 17,000 stations around the world;
these stations form the MAGNET network. Managing this large amount of data has
led to the development of new processing strategies, automated systems, algorithms
and robust estimation techniques. From these data, time series of Cartesian coordinates
(every 24 h), topocentric coordinates (every 24 h and every 5 min), tropospheric delay and
predictions are available. The NGL laboratory provides a multitude of graphs and their
corresponding displacement velocities, and indicates with dashed lines the instant of time
of the earthquakes that have occurred and the equipment change events near the station.

Plots of the unfiltered and filtered data, the results of fixing the series against an
African plate, are provided. The NGL Lab also provides detrending series plots and
predictions, filtered against the African and Eurasian Plate [26]. Every week the daily
position coordinates of about 10,000 stations are updated. Every day, position coordinates
are updated every 5 min for more than 5000 stations. Every hour, we update the 5-min
position coordinates for about 2000 stations.

The NGL laboratory routinely updates station velocities, which can be used to im-
age deformation rates of the Earth’s surface for a variety of interdisciplinary applications.
These velocities are robustly estimated using the asymmetry-adjusted mean interannual
difference (MIDAS software), a median-based GPS station velocity estimator that is insensi-
tive to outliers, seasonality, step functions (abrupt changes) arising from earthquakes or
equipment changes, and variability of statistical data [27]. Still, at NGL, for cases where
an earthquake of magnitude greater than 6.9 has occurred, close enough to the station, we
solve an exponential function defined by A(1 − exp(−(t − t0)/τ))H(t − t0) where t0 is the
earthquake time, τ is the relaxation time, A is the decay amplitude and H is the Heaviside
step function. In these cases, we retrend after removing the exponential terms to obtain a
self-consistent model for the time series.

Figure 1 shows the vector model developed from the velocities extracted from NGL,
where the arrows mark the magnitude and direction in which each permanent GNSS station
is moving per year.

Figure 1. Vector model from the velocities extracted from the NGL laboratory.

3. Methodology

In this paper, the behavior of the time series of the stations near the earthquake that
occurred in Nicoya on 5 September 2012 of magnitude 7.6 will be analyzed (see Figure 2).

The topocentric time series provided by the NGL laboratory was extracted. In this
work, time series will be distinguished into three phases: preseismic, coseismic and post-
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seismic. The preseismic phase is formed by the data prior to the moment of the earthquake;
the coseismic phase comprises the data from the occurrence of the earthquake until the
earth’s crust recovers; and the postseismic phase is characterized by being the data that
goes from when the trend becomes linear again (recovers its preseismic behavior) until the
end of the available data. Various analytical and statistical techniques have been applied to
these data [28]. To obtain the velocities corresponding to the preseismic and postseismic
phases, the CATS adjustment will be applied, which provides a model formed by the sine
and cosine functions that adapt to the values of the time series; through the given model
the displacement velocities are obtained from the series. The linear fit will be used to obtain
the velocities of the coseismic series.

Figure 2. GNSS-GPS stations belonging to the MAGNET network. The coordinates of the earthquake
are marked in red.

4. Analysis of the Series Affected by the Earthquake

The series affected by earthquakes have a common behavior between them (see
Figure 3):

Figure 3. Time series of the GRZA station for the east component, (1) preseismic phase, (2) coseismic
phase, (3) postseismic phase.

Following the methodology, the displacement speeds of each of the defined phases
are obtained, thus giving three vector models of horizontal displacement. In this way it
will be possible to see the magnitude and direction of the displacement of the GNSS-GPS
permanent stations during the different phases. In addition, the stress–strain models will be
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obtained, thus seeing the zones of maximum geodesic deformation for each of the phases.
For this, the “Q-Str2-Models” plugins available in QGIS will be implemented [29].

5. Conclusions

All the time series close to the Nicoya earthquake on 5 September 2012 present a
behavior similar to that shown in Figure 3, in which three phases are distinguished: pre-
seismic, coseismic and postseismic. The travel speeds were calculated for each station
shown in Figure 2, in each of the phases. In this way, the graphs of Figures 4–6 are obtained.
In Figure 4a, the vector displacement model can be seen in the preseismic phase, seeing
that the stations near the coast present a similar behavior. Figure 4b shows the maximum
geodesic deformation that occurred in the preseismic phase, observing a greater defor-
mation in the area where the SAJU, PNE2 and GRZA stations are located. In Figure 5a
we have the vector model for the case of the coseismic phase; it can be seen how the
direction and magnitude of the horizontal displacement changes. Figure 5b shows how the
geodesic deformation increased compared to the values obtained in Figure 4b. However,
said deformation is caused in the same zone by also adding the zones of the HATI, IND1,
QSEC and BON2 stations. In Figure 6a you can see the moment in which the Earth’s crust
again has a linear trend; even so, it does not present a behavior as homogeneous as that
visible in Figure 4a. Figure 6b shows the maximum geodesic deformation of the region; it
can be seen how the PNE2, SAJU, GRZA, IND1 and QSEC stations continue to form part
of the areas with the greatest deformation; in addition, this deformation can be seen in a
downtown station such as CDM1.

(a) (b)

Figure 4. Preseismic phase. (a) vector displacement model in the preseismic phase. (b) representation
of the maximum geodetic deformation in the preseismic phase.

(a) (b)

Figure 5. Coseismic phase. (a) vector displacement model in the coseismic phase. (b) representation
of the maximum geodetic deformation in the coseismic phase.
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(a) (b)

Figure 6. Postseismic phase. (a) vector displacement model in the postseismic phase. (b) representa-
tion of the maximum geodetic deformation in the coseismic phase.
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Abstract: The purpose of this study is the quantitative investigation of the basketball tournament
of the FIBA World Cup 2019. Firstly, it identified the performance of a team by using Principal
Components Analysis (PCA). Then, the contributions of shooting, rebounding, turnover, and free-
throw factors are identified and compared with Offense vs. Defense in terms of their contribution
to the team’s performance. Moreover, other factors are identified that affected the performance, the
teams which performed better than expected are detected, and finally, machine learning models
which enhance the ‘Power Rankings’ for the prediction of the final position of the teams in the
tournament are suggested.

Keywords: basketball analytics; team performance; multiple regression; k-means clustering; machine
learning models

1. Introduction

It is widely known and accepted that traditional statistics cannot accurately describe
some aspects of basketball, and for this reason, an advanced statistics revolution has taken
place in research on basketball in order to produce statistics that are more meaningful and
useful for the analysis of the game. The advanced statistics for basketball can be found in the
works [1,2]. However, these analyses are valid only in a league format, where all teams play
with all other teams, and seasons last for a long time. When the situation is a tournament
which is a fast-track competition where teams do not face all other teams, these statistics
could be misleading. Moreover, the view of this work is “macroscopic”, i.e., the aim is to
specify factors that can lead to overall (performance-based) success in the tournament and
not to winning in a single game. The aim of this paper is to offer a quantitative method of
answering questions in a tournament situation, such as the FIBA World Cup, and to be a
starting point for analyzing tournaments in other sports. The focus of most previous papers
regarding research on basketball has mostly been on league situations and comparisons or
factors of discrimination between winning and losing teams. The focus here is on overall
tournament performance and not only on single-game winning factors.

Some previously published related works include the work [3] that explored the factors
that influenced the performance of the Chinese team in the 15th Men’s World Basketball
Championship; they found that the team’s ability was imbalanced, that a flexible attack
strategy was needed in order to increase attacking ability, and that players’ metal regulation
needed improving greatly. Furthermore, in work [4], the authors for the matches of the
Chinese basketball team in the 14th Men’s World Basketball Championship analyzed all
kinds of causes of the losses and gains in the match and indicated that speediness, agility,
precision, and antagonism are the everlasting trends in the world basketball, while in
work [5], the authors used regression analysis to examine the influence of certain basketball
elements (FIBA standard indicators of performance) on the final result of a basketball game
(they considered games from the 13th, 14th, and 15th Men’s World Basketball Champi-
onships). Additionally, in the paper [6], the authors compared the Chinese team with the
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six other top teams of the 2006 Men’s World Basketball Championship in terms of statistics.
They analyzed the gaps and detected the weaknesses of the Chinese team. In work [7], the
author determined which basketball performance indicators can discriminate winners from
losers using a dataset of 76 matches from the world championships in Spain in 2014, of
which the official statistical parameters were downloaded from FIBA. Finally, in work [8],
they compared and analyzed differences between the technical styles of the Chinese and
American men’s basketball teams in the 15th FIBA World Cup.

The explanation of the aims of this paper follows. A crucial term is team performance.
The consideration of only the final ranking of the team in the tournament is obviously
misleading. Maybe a team is playing very well in all games but has a blackout in a knock-
out match, and then the rating is unfair for this team. On the other hand, if performance is
the extent of victory, then a strong team might be lucky in the draw of the groups and easily
win against their first opponents but, when facing another strong team, not be able to cope
with the situation. The previous examples have led to the consideration of performance as
a multivariate measure, with the target being to extract a single value for the performance
of each team. To achieve this, we used principal component analysis (PCA). The next goal
of this work was to determine which factors contributed to the performance of a team. The
basis for this analysis is the concept of the four factors of Dean Oliver as a standard for
determining the winner of a game. Another big debate is whether offense or defense is
more important for success in such tournaments. Both questions are answered with the
use of multivariate regression. Additionally, we studied the effects of other factors, such
as (i) the height of the team, (ii) the age of the team, (iii) the coach’s experience with the
team, (iv) the players’ percentage (pcg.) usage of the ball (or from the first five players), (v)
the distance shooting in a team, (vi) the balance in team scoring, and (vii) the efficiency of
small players. Multiple regression and the correlation of variables with team performance
were the tools for measuring these effects. Another very popular debate is whether a
team performed as well as expected in the tournament. In this manuscript, we make
an attempt to determine whether team performance is compatible with pre-tournament
expectations, which are specified with the help of hierarchical k-means clustering based on
variables that were found to affect the performance of teams. Groups of teams were formed
according to their pre-tournament characteristics, and post-tournament actual performance
was compared with the expected performance of the teams. A final question that was
studied is whether we can have better pre-tournament predictions than power rankings.
We employed machine learning models (Random Forests and neural networks) for the
prediction of the final positions (based on performance) of the teams in the tournament.
Power rankings incorporate information and knowledge from experts that should not be
wasted, and this is the reason why they were considered among the inputs in our models.
Moreover, they were the benchmark for our models, i.e., we were interested in whether
a model could enhance power rankings, and if so, then the model was considered useful.
The models were compared in terms of correlation (through the pseudo-R-square measure)
with performance-based final positions.

A brief overview of the problems that are studied in this work is the following: the
measurement of the performance of a team in a tournament, the detection of which factors
played an important role in the performance of a team, whether a team fulfilled expectations
in the tournament, and, finally, the suggestion of an improvement in ‘Power Rankings’.

The rest of the paper is as follows: Section 2 presents the definitions and meanings of
the statistical measures and the statistical methods that were used to tackle the problems
in this work. Section 3 is an overview of the questions and problems we considered
for the tournament and a detailed description of the procedures we used to deal with
them. Section 4 presents the data analysis, and Section 5 contains the summary and the
conclusions of the paper.
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2. Statistical Definitions, Measures, and Tools

In this section are briefly presented the elements which are used throughout this
work. The Principal Component Analysis (PCA) method is a statistical method that was
introduced by Pearson and later independently developed and named by Hoteling, and
the aim is to express multivariate data with fewer dimensions. A detailed analysis of this
method can be found in the book [9].

The correlation of 2 variables can be measured using a coefficient that quantifies this
correlation (the value of the coefficient is between −1 and 1, the magnitude displays the
strength of the correlation while the sign displays the direction of the correlation). In
this work, we use two such coefficients for completeness: Pearson correlation (r) (details
about this method can be found in [10]) and the Spearman rank correlation coefficient (rho)
(details about this method can be found in [11]).

In statistics, linear regression is a linear approach of the form y = Xb + ε, which is used
to model the relationship between a (dependent) variable and one or more explanatory
(independent) variables. Details about linear regression can be found in many statistics
books, such as [12]. It is known that factors that affect the outcome of a game are the
shooting factor, turnover factor, rebounding factor, and free throw factor, and they are intro-
duced and described in the works [1,2]. Their formulas are mentioned briefly: The shooting
factor (Sh.F.) formula for both offense and defense is (FG + 0.5 × 3P)/FGA. The turnover
factor (To.F.) formula for both offense and defense is TOV/(FGA + 0.44 × FTA + TOV). The
rebounding factor (Reb.F.) formula for offense is ORB/(ORB + Opp DRB), while the formula
for defense is DRB/(Opp ORB + DRB). The free throw factor (FT.F.) formula for both offense
and defense is FT/FGA. Possessions of a team are computed through the formula: FGA + 0.475
× FTA − ORB + TO. The possessions are calculated for both the offensive and defensive
teams, and the average is considered to decide a game’s overall possessions.

Random Forests (are described in [13], were introduced in [14], and each node is split
using the best split among a subset of predictors randomly chosen at that node. The output is
the mean of all trees for regression. This strategy performs very well against other classifiers
and is robust against overfitting. Neural networks are computing systems that are inspired by
biological neural networks that constitute animal brains. An overview of neural networks can
be found in reference [15]. K-means clustering ([16]) is a popular method for cluster analysis in
data mining. In this work, we use the method of Hierarchical k-means clustering ([17]), and the
method is implemented in the R package ‘factoextra’ ([18]).

3. FIBA World Cup 2019: Problems and Procedures to Solve Them

To be decided the success of a team in tournament competition, they are used some
metrics. Because the most important definition is the performance of a team, the Winning
percentage is naturally the first used metric. However, in the case of a tournament is not
a suitable metric because teams do not face all other teams (only a subset of them after a
draw). Another measure of the performance of a team is the point difference (PD) between
the team and its opponents (this metric displays the dominance of the team). Another
metric of success of a team could be the final ranking of the team in the tournament. This
metric is also inappropriate. In order to achieve a complete metric of the success of a
team, we consider all the above metrics, and we derive an overall metric of success (team
score) with the use of the concept of Principal Component Analysis (which explains a large
portion of variance).

Furthermore, in this work, it is specified whether the four factors (Sh.F., TO.F., Reb.F.,
and FT.F) affect the overall performance of the team. To achieve this, we use a multiple
regression model (Model 1) with these factors as independent variables and performance
as dependent variable. The factors for each team are calculated based on team statistics
per game (were extracted from the site of basketball reference—https://www.basketball-
reference.com/international/fiba-world-cup/2019.html accessed on 1 March 2023).

Additionally, this work replies to another very interesting question, which is whether
offence or defense played the most important role in the performance of a team in the
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tournament. To answer this question, are formulated, applied, and compared two multiple
regression models (Models 2 and 3).

Y = a + b1(Sh.Fo f f ence) + b2(Sh.Fde f ense) + b3(To.F.o f f ense) + b4(To.F.de f ense) + b5(Reb.F.o f f ense)
+b6(Reb.Fde f ense) + b7(FT.F.o f f ense) + b8(FT.F.de f ense) + ε

(Model 1)

Y = a + b1(Sh.Fo f f ence) + b2(To.Fo f f ense) + b3(Reb.F.o f f ense) + b4(FT.F.o f f ense) + ε (Model 2)

Y = a + b1(Sh.Fde f ence) + b2(To.Fde f ense) + b3(Reb.F.de f ense) + b4(FT.F.de f ense) + ε (Model 3)

Furthermore, many effects are tested for their effect on the performance of a team
in the tournament. Firstly, are tested the effects which are related to player usage per-
centage (usg%). The formula of the concept of usage percentage (usg%) is the following:
usg%= 100 × ((FGA + 0.44 × FTA + TOV) × (Tm MP/5))/(MP × (Tm FGA + 0.44 × Tm FTA
+ Tm TOV)). The usage percentage (usg%) is an estimate of the percentage (pcg.) of the
team’s offensive attempts (plays), which are used by a player while he is on the floor.

Except for the usg%, we consider the position of the player with the greatest usg%
in the team (or the avg. position of the five players with the greatest usg%), the played
minutes of the player with the greatest usg% in the team (or the avg. played minutes of
the five players with the greatest usg%) and the percentage of plays of the player with
the greatest usg% in the team (or the avg. percentage of plays of the five players with the
greatest usg%). The effect of the player with the greatest usg% (or of five players with the
greatest usg%) is tested with multiple regression models (Models 4 and 5, respectively).

Y = a + b1( usg% o f f irst Player) + b2(Position o f f irst Player)
+b3(Minutes o f f irstPlayer) + b4(% o f Plays o f f irst Player) + ε

(Model 4)

Y = a + b1(Avg. usg% o f f irst 5 Players) + b2(Avg Position o f f irst 5 Players)
+b3(Avg. Minutes o f f irst 5 Players) + b4(% o f Plays o f f irst 5 players)

(Model 5)

Next, there is tested if the players who are competing in a specific league (League
Effect) can affect the performance of a team in the competition. The most important leagues
(and their weights for building an overall League Effect score) is an ad-hoc decision. There
are considered players who play in the NBA, the Euroleague, the Eurocup, the Basketball
Champions League (BCL), and the NCAA. In this work, the scores for the leagues are
respectively 1, 1, 0.5, 0.5 and 0.5. Other effects which are tested include whether they affect
the performance of a team, the heights of players of the team (this is measured by the
average height of the players of the team and by the number of players in a team with a
height over 200 cm.), the ages of the players of the team (this effect is measured by the
average age of the players of the team and by the number of players in the team with
age over 30 years old), the coach experience to the bench of the team (in Years), and the
importance of shooting (this is measured by the percentage of 3 point attempts over the
overall attempts and by the points scored from players who plays in the positions 1, 2, and
3 (small players) versus the points scored from players who plays in the positions 4 and 5
(high players)). These effects are tested with regression models (Models 6–10).

Y = a + b1(League E f f ects + ε) (Model 6)

Y = a + b1(Avg. Heigth) + b2(number o f players with height over 200 cm) + ε (Model 7)

Y = a + b1(Avg. Age) + b2(Number o f players with age over 30 yearsold) + ε (Model 8)
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Y = a + b1(Coach experience in the team (in Years)) + ε (Model 9)

Y = a+ b1(% o f 3pt Attempts)+ b2(Pts o f small.vs. Pts o f high players)+ ε (Model 10)

Moreover, two formulas are defined:

(i) E f f iciency o f Small Players = Pts f rom Small Players (PG,SG,SF)
Pts f rom Tall Players (PF,C) − %usg. f rom Small Players

%usg. f rom Tall Players .

(ii) Balance = Pts f rom Small Players (PG,SG,SF)
Pts f rom Tall Players (PF,C) + %usg. f rom Small Players

%usg. f rom Tall Players − 2.

Additionally, the intention is to check whether the team pace (tempo) affects the
performance, i.e., faster or slower teams found to perform well (this is measured by the
number of possessions of a team per game of the competition). These additional effects are
tested with regression models (Models 11–13) and with Spearman and Pearson correlations.

Y = a + b1(E f f iciency o f Small Players) + ε (Model 11)

Y = a + b1(Balance) + ε (Model 12)

Y = a + b1(Possesions per Game) + ε (Model 13)

4. Data Analysis

This section contains the data analysis of the tournament and the conclusions from
this analysis. The fundamental concept here is the calculation of the total score for each
team which represents its performance. The tables with the data are in the link https://docs.
google.com/document/d/1QMERMfeckZNy9LZT1BCHdbl7UK6tctNc/edit?usp=share_
link&ouid=118393132040933122489&rtpof=true&sd=true, (accessed on 14 July 2023). The
conclusions from the analyses which were implemented are presented here. All methods in
Sections 4.1–4.3 were implemented in the statistical software R (Version 3.6.0).

4.1. Calculation of Team Performance and Descriptive Analysis

At first, we calculate the team scores using PCA. Table S1 displays both the score of
each team and the ranking of the team according to this score. We consider the success
of each team, the percentage of wins in its games, the point difference on average in its
games, and the final position of the team in the ranking of the FIBA World Cup 2019 (we
consider the value 4/Final Position). The goal is to achieve an overall score for each team.
This score reflects the overall performance and takes into account all three aforementioned
dimensions of the performance. The first component, after the application of the PCA
method, explains almost 80% of the variance of the three initial variables, so we consider it
as a measure of performance. The variables were rescaled before the analysis in order to
have unit variance.

4.2. Analysis of the Four Factors in the Performance of a Team

In this subsection, at first, we calculate the offensive and the defensive factors, and then
we run a multiple regression with these factors as independent variables and Team Score
as the dependent variable. The regression shows that these factors explain approximately
80% of team performance (R2 values). The signs of the factors are expected for all factors.
According to the p-value, we found the following: the shooting factor (offensive and
defensive) affected the score of each team, the free-throw factor (in defense) and the
turnover factor (in defense) were found to affect the score of each team at the 5% level. The
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other factors were found to be statistically insignificant. Moreover, we attempt to compare
offense and defense. The procedure is following:

• Offense vs. Defense: We consider only the offensive factors and their contribution to the
team’s success, then only the defensive factors and their contribution to the team’s suc-
cess, and then we compare the contribution of the factors to the explanation of success
through multiple regression models. From the above models, we conclude that the
defensive functioning was found to be more influential than the offensive functioning
according to R2 values (while both were found to be statistically significant).

4.3. Exploration of Effects

In this subsection, many effects were tested through regression analysis and correlation
measurement using the team performance (team score) as the dependent variable.

4.3.1. Effect of the Player (of Five Players) with the Greatest Usage

There are considered the five players (who play more than 10 min.) with the greatest
usage in the game. They are taken into account and tested the next variables for these
players: the average usage, the average position (i.e., PG = 1, SG = 2, SF = 3, PF = 4,
C = 5), the average minutes, and the percentage of plays. There are considered the five
players (who play more than 10 min.) with the greatest usage in the game. They are
taken into account and tested the next variables for these players: the average usage, the
average position (i.e., PG = 1, SG = 2, SF = 3, PF = 4, C = 5), the average minutes, and
the percentage of plays. Table S7 displays the correlation results, and Table S8 displays
the results of the regression of each factor with team performance (team score). There
is no significant correlation between any of the factors with team performance, and the
regression is not significant, so there is no significant effect of the usage, position, or minutes
on the team score. The same applies to the effect of the leader on the team’s performance.
Tables S9 and S10 display the results.

4.3.2. League Effects

The goal of this subsection is to study the effect of the players who compete in more
competitive leagues on the performance of the team in the tournament. We consider the
number of players who compete in the NBA, the Euroleague, the Eurocup, and on BCL,
and the NCAA. Table S11 displays the correlation, and Table S12 the regression of these
factors with the team score. There was found to be a significant correlation between team
performance and the number of NBA players and between team performance and the
number of Euroleague players in a team. The regression was found to be significant,
too (F-value). Specifically, the number of NBA players and the number of Euroleague
players affect the performance significantly, while the number of Eurocup players, the
number of BCL players, and the number of NCAA players do not seem to affect the team’s
performance. Furthermore, we derive a value for each team using the following formula:
Top-League Effect = No. of NBA players + No. of Euroleague players + 0.5 × No. Eurocup players
+ 0.5 × No. of BCL players + 0.5 × No. of NCAA players. The Regression is significant, and
this effect explains over 45% of team performance (Table S13).

4.3.3. Height Impact, Age Impact, and Coach Experience in the Team

The first goal of this subsection is the study of the effect of the height of available
players of a team. A common question is if increased height leads to increased chances
of winning. We consider as variables: (i) the average (avg.) height of players and (ii) the
number (no.) of players with height over 200 cm. Table S14 displays the correlation between
the variables, and Tables S15 and S16 display the results of the regression of each factor
with team performance (team score). It was found significant correlation and regression
between average height of the team and team performance.

Furthermore, it studied the effect of the age of available players of a team. Another
common belief is that increased age leads to decreased performance. This is maybe rational
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for leagues, but is this true for a tournament? We consider (i) the average (avg.) age of
the players of the team and (ii) the number (no.) of the players of the team with ages over
30 years old. There were not found significant correlations and regressions between the
considered variables and the performance of the team (see Tables S17–S19).

Finally, it studied the effect of coach experience on the performance of a team. A
common belief is that the long-term incorporation of a coach into a team leads to increased
chemistry, thus, performance. We consider, as a variable, the years (yrs.) of the coach in the
team. There is a significant correlation and regression between “Coach experience” and
“team performance” (see Tables S20 and S21).

4.3.4. Existence of Shooters and Other Effects

In this subsection, the first goal is to study the effect of the existence of shooters
inside the roster of a team on its performance. A common belief is that the existence of
many shooters inside the roster of a team leads to an increased offensive threat, thus to
an improved performance of the team. In order to test this fact, we consider as variables:
(i) the percentage (%) of 3 pt attempts and (ii) the points scored from the players who play
in the positions of PG, SG, and SF (‘small’ players) divided with the points scored from the
players who play in the positions of PF and C (‘high’ players).

Furthermore, for the effects of (i) the team balance, (ii) the efficiency of small players’
and (iii) the pace of the team in its performance, it was found that there were no significant
correlations and regressions.

4.4. Detect Surprises and Upsets—Clustering (with Hierarchical k-Means)

The goal of this subsection is to suggest a procedure to detect the positive and negative
surprises of the tournament. At the core of this procedure is the generation of clusters
of teams. From the previous analysis (in Section 4.3) there are considering the variables
which were found to significantly affect the performance of a team (these are the Coach’s
Experience in the team, the Average Height of the team, and the number of players who
compete within Top Leagues) and the Power-Rankings before the tournament. Figure S3
presents the elbow method (a graph of the total within the sum of squares (WSS) which
is explained by the increase of clusters). The decision about the number of clusters is a
number for which the addition of an additional cluster is not improving much the total WSS,
which is explained. In the case of the FIBA World Cup 2019 tournament, the generation
of 3 clusters of teams is the decision. The first cluster represents the strongest teams (S),
the second cluster represents the 2nd tier teams (M), and the third cluster represents the
weakest teams (W) of the tournament. From Table S28 and Figure S4, are observed some
notable facts: (i) stronger teams display higher offensive and defensive efficiencies, and
(ii) we observe that Higher Pace is not a characteristic of stronger teams necessarily and
rather displays the style of play of each team (see Figure S2). However, the weakest teams
play, on average, on a lower tempo. Finally, we consider ranking according to clustering as
expected from the team characteristics beforehand; this ranking is compared with the actual
ranking of the tournament, and the procedure for the detection of surprises is implemented
(see Table S29 for surprise detection).

4.5. Improve Power Rankings—Predict Team Position

The goal of this subsection is the improvement of the virtual ranking of the teams
before the tournament. The accuracy of such ranking is very important for betting reasons
and for coaches and fans who can adjust their expectations about the performance of the
team they support. The main tool for such a ranking is the so-called ‘Power Rankings’,
which are released before the tournament and take into account all the relevent information.
The improvement of ‘Power Rankings’ is the aim of this subsection. The main idea is the
use of ‘Power Rankings’ as input to other models. To achieve such an improvement, we
use the machine learning methods of Random Forests and Feed-Forward Neural Networks
(ANN). The analysis is performed with the use of the package Rattle [19] of the R statistical
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software. The parameters of the models are for Random Forests 500 trees and two variables
and for ANN 1 hidden layer with 10 nodes. Input variables are: (i) the ‘Power Rankings’
(which are released officially by FIBA) and (ii) the significant variables from Section 4.3
(the Coach Experience in the Team, the Average Height of the team, and the number of
players of the team who compete in Top-Leagues), whilst the output of the models is
the team ranking. The crucial part is the evaluation of the models. At first, we build
the models, i.e., we consider the entire dataset in order to train the models, and the
training performance of them is measured using as metric the pseudo-R-square. Secondly
is evaluated the predictive accuracy of the models with the following procedure: there are
considered 10 teams randomly, and then their ranking is predicted based on the model.
The experiment is repeated 10,000 times. The evaluation is performed using the metric
of pseudo-R-square (the mean, the standard deviation and a 90% confidence interval are
calculated). We observe that the training accuracy of the models is greater than that of
Power Rankings, and Random Forest is the preferred approach (see Table S31).

5. Summary and Conclusions

In this work was made a quantitative analysis of the FIBA World Cup 2019. Firstly, it
was determined as a metric of the performance of a team in a tournament. Furthermore,
was studied the importance of the four factors in the performance of the team and was
answered the question of offense vs. defense. Moreover, the coach’s experience in the
team, the average height of the team, and the number of players who compete in top
leagues are found to affect the performance of a team. Next, a procedure was presented,
which was based on clustering in order to detect ‘surprises’ in the tournament. Finally, a
procedure with the aim of improving Power Rankings through machine learning methods
was suggested. This work can serve as a source of thought for tournament analysis in
basketball and other sports.

The Data Analysis of this paper can be found in the following link: https://docs.
google.com/document/d/1QMERMfeckZNy9LZT1BCHdbl7UK6tctNc/edit?usp=share_
link&ouid=118393132040933122489&rtpof=true&sd=true, (accessed on 14 July 2023).

Supplementary Materials: The data used for this paper and all the relevant analysis (tables and
figures) are provided with the paper in a link as supplementary material of the paper (https://docs.
google.com/document/d/1QMERMfeckZNy9LZT1BCHdbl7UK6tctNc/edit?usp=share_link&ouid=
118393132040933122489&rtpof=true&sd=true).
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Abstract: The globalization process and the war in Ukraine show us that migration is one of the
strongest global trends in the modern economy. For this paper, we determined three types of
migration, depending on the intention of the people involved, these being labor, educational, and
refugee migration. Each type has a different influence on the macroeconomic process. However,
in this paper, we investigate the influence of general migration on GDP. We analyze five factors
that have major influences on GDP, namely, migration (I), interest rate (IR), active population (AP),
export (E), and the consumer price index (CPI). For the purposes of this paper, vector autoregressive
models (VAR models) were chosen to perform the analysis. We used the Granger causality test to
investigate the lag structure and identified the exogenous variables in the VAR model, such as GDP,
migration, and the active population. We investigated the cross-influence between these factors and
found that migration has a negative effect on the active population and a positive effect on GDP,
while GDP growth leads to a decrease in migration. The Akaike and Schwartz criteria showed the
high quality of the VAR models. The impulse analysis of shock influences identifies the structure
of the reaction seen in GDP and migration, depending on their shock factors. Using decomposition
analysis, we found that migration and GDP influence each other by 10–14%, which can improve the
forecasting of these factors and the study of structural migration by the use of these three types.

Keywords: migration; GDP; VAR-model; impact

1. Introduction to the Migration Process

1.1. Analysis of References to the Current Migration Processes in Europe and the Impact of
Migration on GDP

The end of the 20th and the beginning of the 21st century are characterized by the
significant transformation of the international market space, which can be recognized by
its effects of globalization and integration. The world market has a key influence on the
processes that take place in national markets. It defines the competitive space factors
within which national enterprises operate. The openness of national markets, in turn,
significantly changes the quality of migration processes. Under these open conditions,
workers looking for better employment conditions outside national enterprises can move
with few or no problems, in search of better countries in which to work. The quality of
educational migration also changes significantly when students endeavor to find the best
combination of cost and standard of education for their needs. These processes were quite
transparent in the European countries, where the creation of the European Union resulted
in new conditions for the various types of migration, in order to benefit both the population
and the EU member states. However, the military conflict between Russia and Ukraine in
2022 brought a new round of forced migration to pass, which has made its own adjustments
to all types of migration.
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Millions of Ukrainians, mostly women, were forced to leave their country and migrate
to EU countries with their families, bringing with them children who study not only
in primary and elementary schools but also in universities. This assumes an a priori
increase in labor migration by the educated population and educational migration. In
addition, according to the estimates made by the Ptoukha Institute for Demography and
Social Studies of the National Academy of Sciences of Ukraine [1], from the two largest
educational centers of Ukraine alone, Kyiv and Kharkiv, 70% of women with higher
education qualifications left Ukraine for the European Union.

According to Josep Borrell, the High Representative of the European Union for Foreign
Affairs and Security Policy, and Vice-President of the European Commission, migration is
currently being discussed in Europe, primarily as a challenge. At the end of 2022, according
to Frontex, the number of migrants arriving in Europe via the Central Mediterranean or
Western Balkan routes had increased again in 2022 by 51% and 136%, respectively [2].

In particular, Russia’s war against Ukraine, which began in February 2022, triggered
the largest displacement of people seen in Europe since World War II, while only 4 million
Ukrainians received temporary protection [3]. According to the Frontex-European Border
and Coast Guard Agency, in 2022, about 15 million Ukrainians came to Europe, of whom
4 million Ukrainians received temporary protection and approximately 3 million wished
to remain in the European Union [3]. That is, one-fifth of the people who have completed
higher education, as well as those receiving higher education in the future, will contribute
to an increase in the GDP of the host country. In this regard, the task of determining the
impact on the GDP of individual factors, including the migration component, is of interest.

This research is aimed at developing tools for assessing and modeling the impact of
socioeconomic factors on the country’s GDP.

A study assessing and identifying the impact made on the volume of GDP by various
socio-economic factors showed that modern authors distinguish the following as the
dominant factors [4–9]: migration (I), interest rate (IR), active population (AP), export (E),
and the consumer price index (CPI). Based on the hypothesis that these factors have
both a direct and a lag effect on the volume of GDP, this paper proposes to use vector
autoregressive models to assess the various impacts.

1.2. Literature Review

Gross domestic product (GDP) is one of the determinants of a country’s economic
growth. This is why the task of studying the factors that have a diverse influence on its
change is always relevant. The need for constant study of such factors is also explained by
the fact that this task is permanent. This means that any change of situation in both the
world and the national markets, which are associated with the evolution of the development
of the economy and society, changes the degree of influence of these socioeconomic factors
on the country’s GDP.

One of the factors that is gaining more and more influence on each country’s GDP is
migration. The impact of the migration process on a country’s GDP has long been the focus
of international research. Thus, a report by the United Nations Development Program
(UNDP), published on 21 October 2020 and named “Refugees and Migrants”, analyzed the
main trends in the field of migration [10]. The UNDP chief, Achim Steiner, emphasized
the fact that migrants play an important role in economic recovery, especially after a crisis:
although constituting only 3.5 percent of the world’s population, according to data from
2015, migrants produce 9 percent of global GDP. According to studies by the International
Monetary Fund and the World Bank, an increase of 3 percent of immigrants in developed
countries would increase their global GDP by USD 356 billion by 2025.

The influence of migration on the main macroeconomic indicators of the develop-
ment of countries has been studied by many authors. For example, Heinisch, K., and
Wohlrabe, K., (2016) emphasize the power of migration’s impact on macroeconomic in-
dicators, showing that it is necessary to analyze the structure of the economically active
population in terms of particular refugees with different levels of education [11].
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Kudaeva, M., and Redozubov, I. (2021) prove that there is a strong relationship between
GDP and migration. Thus, based on an analysis of the impulse responses of the SVAR
model, it was determined that a 1% shock to the migration process increases the real GDP
by 0.1% [12].

The works of many authors are devoted to the analysis and assessment of the influence
of various socio-economic factors on changes in GDP.

For example, Zhuravskaya, K.G. (2016) analyzes the impact of the M2 monetary
aggregate, international reserves, consumer price inflation, domestic lending to the private
sector by banks, the general tax rate, the discount rate, the population, the dollar exchange
rate in the national currency, and the market capitalization of companies where their shares
are listed on the stock exchange on the GDP of countries with varying levels of economic
development [13]. On the basis of the author’s studies, the factors and the strength of their
influence on the level of GDP were analyzed, and cross-country differences in the process
of GDP formation were identified.

Alex Reuben Kira (2013), working against the background of a study of the dynamics of
change in Tanzania’s GDP and by using a Keynesian model, shows a significant impact on
this macroeconomic indicator of consumption, namely, the government’s final expenditure
and household final expenditure, along with exports [14].

Hongbo Guo and Zewei Zhang (2022) identify the main factors influencing GDP,
comprising: gross saving; the consumer price index; unemployment; population and the
real interest rate [15]. Based on the results of their regression analysis, the authors prove the
existence of a significant influence of exogenous factors on GDP and emphasize the need to
develop an appropriate state policy that will maintain the stability of the development of
these factors.

Artur Ribaj and Fitim Mexhuani (2021) also prove the existence of a strong corre-
lation between GDP and the gross saving factor. Based on augmented Dickey–Fuller
tests, Johansen cointegration tests, and the Granger causality test, the authors determined
that saving stimulates investment, production, and employment, which leads to overall
economic growth [16].

Based on a study of a period of economic liberalization in Ghana, Emmanuel Nketiah,
Xiang Cai, Mavis Adjei, and Bekoe Bernard Boamah (2020) proved the existence of a close
relationship between foreign direct investment, trade openness, and GDP [17].

1.3. Three Types of Migration

Analysis of the migration process and of the literary sources [18–20] can help us to
identify three types of migration, depending on their impact on the national economy:

(i) Labor migration;
(ii) Educational migration;
(iii) Refugee migration.

Each type of migration has its own impact on GDP. The first type receives GDP in
the machine-building branches of the economy, while the second type affects scientific
and technological areas of the economy; the third type results in pressure on the economy
regarding social support for refugees.

2. Mathematical Tools for Studying the Impact of Migration on GDP

2.1. Methodological Aspects of Model-Building

For this paper, we studied the process of the impact of migration on GDP from the
point of view of system analysis. In this regard, we propose the following algorithm for
studying the impact of the migration process on GDP (see Figure 1).
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Figure 1. Algorithm for studying the impact of migration on GDP.

2.2. Mathematical Models of Migration’s Influence on GDP

Migration has a lag influence on numerous economic processes that is based on the
nature of migration. In this case, we used vector auto-regression models (VAR models) to
perform the analysis, as follows:

(i) General VAR model and determination of the migration impact lag structure.

The general VAR (p) model, with n variables, is represented by:

X1,t = a10 + a11X1,t−1 + ... + a1pX1,t−p + ... + b1pXn,t−p

X2,t = a20 + a21X1,t−1 + ... + a2pX1,t−p + ... + b2pXn,t−p

. . .

Xn,t = an0 + an1X1,t−1 + ... + anpX1,t−p + ... + bnpXn,t−p

where n is the number of variables; p is the optimal lag of the VAR model.

(ii) Estimation of the lag’s influence in the VAR model. Generally, two main criteria
exist for the determination of the lag’s influence; these are the Akaike criteria and
the Schwarz criteria. We also used a Granger causality test for determining the lag
structure.

(iii) Impact impulse analysis. We used momentum analysis to determine the percentage
impact of each factor on GDP. Decomposition analysis will help us to determine the
part of the variance that depends on the changing pattern of the exogenous factors.
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3. Model Design and Impact

3.1. Estimation of the Model’s Parameters

The model was calculated on data from the Polish economy. This choice is due to the
fact that Poland is considered the most attractive country for relocation in the European
Union by Ukrainian migrants, which finding is based on a retrospective analysis of the
data for 1990–2021 [21–24]. In addition, during the recent period of Russian aggression in
Ukraine, Poland received about 6 million Ukrainian refugees. In our study, we assessed the
following factors:

GDP per capita (current rate in USD) is the gross domestic product, divided by the
midyear population—variable “GDP”;

Exports as the capacity to import (constant LCU) equals the current price value of the
export of goods and services deflated by the import price index – variable “E”;

Net migration (quantity of persons) represents the net total of migrants during a
particular period, calculated as the number of immigrants minus the number of emigrants,
including both citizens and noncitizens—variable “I”;

Interest rate (%)—variable “IR”;
Population aged 15–64 (total)—variable “AP”;
Consumer price index (%)—variable “CPI”.
To conduct the analysis, we first investigated the stationary value of the time series

using the ADF test. The results are shown in Table 1.

Table 1. ADF test of the time series.

Series t-Stat Prob.

DLOG_AP −9.5662 0.0000
DLOG_CPI −9.1768 0.0000

DLOG_E −6.1593 0.0000
DLOG_GDP −4.9360 0.0004

DLOG_I −6.8486 0.0000
DLOG_IR −3.6155 0.0532
LOG_AP −1.9639 0.3001
LOG_CPI −2.2329 0.1995

LOG_E −1.0199 0.7307
LOG_GDP −2.1610 0.2237

LOG_I −1.7057 0.4186
LOG_IR 0.7998 0.9920

We used the first differences to calculate the ADF test. The test showed us that the
first time series differences are stationary; thus, we could use this characteristic in the
construction of the VAR models.

In our study, we adopted the hypothesis that five factors influence GDP. To explore
this hypothesis regarding exogenous and endogenous factors, the Granger causality test is
used in the model. The results are presented in Table 2.

Table 2. Exogenous and endogenous factors in the model.

DLOG_AP-Chi-sq 24.274920 0.0009
DLOG_CPI-Chi-sq 11.16410 0.3449

DLOG_E-Chi-sq 14.51292 0.1509
DLOG_GDP-Chi-sq 24.51292 0.0015

DLOG_I-Chi-sq 26.725775 0.0007
DLOG_IR-Chi-sq 5.386847 0.8639

The data in Table 2 show that three variables are likely to be exogenous in the model.
These are GDP, migration, and the active population. Hence, we recalculated the VAR
models. The resulting parameters of the VAR model are presented in Table 3.
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Table 3. The parameters of the VAR model.

DLOG_AP DLOG_GDP DLOG_I

DLOG_AP(−1) 0.454114 3.512704 −8.771671
DLOG_AP(−2) 0.537753 6.638702 27.09934

DLOG_GDP(−1) 0.008067 0.290427 −3.008223
DLOG_GDP(−2) −0.004253 −0.233841 0.799000

DLOG_I(−1) −0.000387 0.012125 −0.301089
DLOG_I(−2) −0.000335 0.001815 −0.497146

C −0.000643 −0.022083 −0.689128
DLOG_CPI 0.004353 −0.209005 1.500807

DLOG_E −0.011102 1.080142 −4.583303
DLOG_IR −0.000654 −0.018509 0.271095

R-squared 0.891028 0.737911 0.891095
AkaikeAIC −8.616383 −7.571587 8.443811
SchwarzSC −8.132499 −7.087704 8.927694

Akaike information criterion −7.859639
Schwarz criterion −6.407989

The model’s parameters were calculated using the Eviews program.
Measuring the quality of the model shows us that the VAR(2) model is of high quality.

These models show the cross-influences between GDP, migration, and the active population.
The influence graph is shown in Figure 2.

Figure 2. Cross-influences between GDP, migration, and the active population.

Figure 2 demonstrates that migration negatively affects the active population and
positively affects GDP, while GDP growth leads to a decrease in migration.

3.2. Impact of the Models

For our analysis of the impact of the models, we used impulse and decomposition
analysis techniques. The impulse response function is an important tool for conducting
sensitivity analysis of the VAR indicators model regarding the action of external shocks.
Figure 3 shows an impulse analysis of the model indicators on GDP and migration.

 
(a) GDP (b) Migration 

Figure 3. Impulse analysis of GDP and migration.

Figure 3 shows that after four years, migration shocks will trigger a change in GDP
to the same extent as GDP shocks. Conversely, a GDP shock has a direct impact on the
migration process. That is, if daily life in a particular country worsens, then migration
will increase.
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The second analysis tool used in this paper is decomposition analysis, as presented in
Table 4.

Table 4. Variance decomposition of migration and GDP.

Variance decomposition of Migration
Period S.E. DLOG_AP DLOG_GDP DLOG_I

1 0.002826 6.569453 0.0000046 93.43054
2 0.003244 6.558724 12.37724 81.06403
3 0.003836 7.065201 11.46494 81.46986
4 0.004250 6.569463 14.29596 79.13457
5 0.004671 6.393239 14.94129 78.66547

Variance decomposition of GDP
Period S.E. DLOG_AP DLOG_GDP DLOG_I

1 0.095695 4.641632 85.35837 10.00000
2 0.099833 4.294604 85.00568 10.69971
3 0.102142 4.686875 84.60249 10.71063
4 0.102684 4.739765 84.15611 11.10412
5 0.103043 5.094311 83.78465 11.12104

An analysis of the results that were obtained allows us to conclude that migration has
a 10% impact on GDP. Thus, migration has a very significant impact. During all economic
periods, this impact is stable. However, GDP only begins to influence migration in the
second year, which indicates that the population does not immediately respond to the
deterioration of the economy in a particular country. This finding is associated with the
process of adaptation by the population in the economic space of Poland and covers all the
above types of migration. In general, the impact of GDP on migration is about 11–14%.

It should also be added that since the influence of migration and GDP are of almost
equal degree to each other, an interesting chain reaction will be observed. Migration into
the country leads to an increase in GDP, while an increase in GDP leads to a decrease in
migration out of the country.

4. Conclusions and Future Prospects

The following results were obtained in the current work:

(i) The migration process is a complex scenario consisting of three components (labor
migration, educational migration, and refugee migration) that have a cumulative
impact on GDP and can change the structure of the country’s economically active
population.

(ii) We have built VAR models that characterize the impact of the following indicators
on GDP: migration (I), interest rate (IR), active population (AP), exports (E), and the
consumer price index (CPI). The Granger causality test made it possible to find such
exogenous factors as GDP, migration, and the active population. This test also shows
us that migration negatively affects the active population and positively affects GDP,
while GDP growth leads to a decrease in migration.

(iii) Impulse and decomposition analyses show that migration and GDP have cross-
influences of about 10% and 14%. Migration has the most significant and stable
impact on GDP. In addition, the population does not immediately respond to the
deterioration of the economy in the country, and migration begins to increase with a
decrease in GDP in the second year. Based on the above decomposition analysis, it is
clear that migration into the country leads to an increase in GDP, and an increase in
GDP leads to a decrease in migration out of the country.

Further research will be related to the allocation of the influence of these three compo-
nents on the country’s GDP, to improve the efficiency of migration process management in
Europe and Ukraine.
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Abstract: We wanted to determine whether we could use an automated machine learning system
called Azure for the selection process and placement of conscript training in such a way that AI can
make decisions for the right conscript training program individually. To test this, we had four separate
datasets and access to the Microsoft Azure automated machine learning environment. According to
the test sets we performed, we see that, by using an automated machine learning environment, it was
possible to reach the precision level of the decisions we wanted. The main obstacle was not the used
automated machine learning environment itself, but the quality of the data used for learning. We also
made improvement suggestions regarding how data could be collected and what kind of data we
should measure to make predictive data analysis better and be more usable in the future.

Keywords: health; forecasting; automated; data-analysis

1. Introduction

There are many possible applications of artificial intelligence (AI) that can be used
by educational, research and military institutions: (1) Making it possible to easily and at
least partially automatically collect data like advertising tools do in many social media
applications; (2) Analyzing data with the help of artificial intelligence applications, neural
networks and learning algorithms. (3) Genuinely and measurably benefiting from the
information obtained, which has an impact on the development of the implementation
of systems.

In the following, we can also see risks/challenges in terms of utilizing artificial in-
telligence: (1) Not enough data are obtained or these do not actually support profiling;
(2) The data are in non-usable format; (3) The total costs of the system do not match the
achievable benefits; (4) Legal or information security-related obstacles are insurmountable;
(5) The absence of a terminal device supports the collection of necessary data, such as a
smart watch or other devices that track exercise.

The beneficiaries are:

1. The individual in question, so that they can monitor their development towards the
target level. The system proposes a customized study path for the development of
those skills, knowledge or physical characteristics that have the greatest risk of falling
off the target path. From the point of view of learning analytics, the learner is one
of the four areas of the cycle and the other three areas are the data, analysis, and
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action [1]. If only reports are generated from the learning data, on the basis of which
no action is taken, the activity is omitted and the closed cycle of learning is not formed.

2. The trainer can monitor the development of the mass-produced group as a whole and
as individuals. See where there are the most learning difficulties and, on this basis,
make development ideas to make education more effective and/or to encourage and
support individuals.

3. The head of the unit can monitor the development of the group’s overall performance
and find opportunities for creating priorities in terms of the training content.

4. The manager sees the mass-produced group and individuals and their suitability for
the tasks in hand. If the suitability does not meet the demands, the system suggests
the most suitable second option, or the manager can return to the root cause of why
the suitability does not meet the demands.

5. The training branch can examine the implementation of training at the troop division,
defense branch, and general staff level. It is essential to get grounds for changing
existing operational models and training practices, if the change is beneficial from the
perspective of adjusting performance, economy, or time. We can utilize the results of
the analysis in the use of different target groups, and these results must be relevant
for each target group and produce new value. The end users of the target group must
be taken into account when designing the views.

6. The competence centers monitor the best results and practices in their own industry.
Then, these analyze background variables and share the best practices for everyone
to use.

Can we use AI for the selection process and placement of conscript training in such a
way that AI can make decisions for the right conscript training program individually? In
addition to this, the goal is to monitor and support conscripts education throughout their
military service. In this article, we analyze the data collected from different sources with
the help of artificial intelligence and compare the results to the physical requirements of
different tasks.

2. AZURE, Automated Machine Learning and Voting Ensemble

Microsoft Azure offers data analysis services as part of the Azure Machine Learning
service package [2]. The service package includes data analysis capabilities, the training
and production of machine learning models, as well as version control and monitoring. The
service package includes the Automated Machine Learning solution for producing models.

Ensemble Method

Azure uses ensemble methods to combine multiple machine learning algorithms
together in order to create a more accurate and reliable prediction [3]. This is performed
by running multiple models against the same dataset and then combining the results of
each model into a single, more accurate result. Ensemble methods are used in Azure for
tasks such as object detection, image classification, natural language processing (NLP),
recommendation systems, anomaly detection, and time series forecasting. As an example,
the Azure Ensemble includes the following models: 1. random forests; 2. gradient-boosted
decision trees (GBDTs); 3. logistic regression; 4. support vector machines (SVMs); and
5. neural networks (NNs).

3. Problem and Data Description

In 2020, the Finnish Defense Forces introduced target levels for the physical perfor-
mance of professional soldiers, which consist of endurance and muscle condition. The
corresponding target levels for conscripts have been drawn up as part of the development
of the selection process for approximately 400 positions. The purpose of this study was to
utilize the durability classifications of the target levels, which are presented as the five result
limits of the Cooper test. In the starting situation, there were five separate datasets that
were not even related to the official task-specific aptitude test of conscripts at the user level
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(user_id), and for this reason, making predictions from the aptitude test would have been
impossible from the outset. For this reason, no task-specific comparison was made, but the
focus was on determining the predictability of the Cooper variable based on the given data.
We were given four separate datasets, which were gathered from 6000 volunteers, from
these 3282 used wearable devices. The datasets were as follows:

File “exercise-data.csv” contains users’ exercise data on a weekly basis, e.g., the user’s
total amount of exercise in minutes during the week. Number of rows: 283,537; and number
of unique users: 6000.

File “survey-data.csv” contains information from the survey filled in by users, e.g., the
result of the Cooper test. All questions are multiple-choice questions, e.g., the Cooper result
is only available in categories such as “2071–2900 m” or “over 3100 m”. Number of lines:
4356; and number of unique users: 3236. Note that there could be more than one row in the
data from the same user.

File “weight-data.csv” contains users’ weight data at the timestamp level. Number of
rows: 109,521; and number of unique users: 2476.

File “steps-sleep-data.csv” contains users’ sleep and step counts compiled on a weekly
basis, e.g., the user’s average amount of sleep during the week. Number of rows: 624,000;
and number of unique users: 6000. Lots of values are missing from the columns.

The following exercise behavior variables were formed from the dataset:

• Total duration = total duration of training in minutes;
• Total count = number of training times;
• Total distance = total distance in kilometers;
• Total steps = total number of steps;
• Endurance duration = duration of endurance training;
• Endurance count = number of endurance training sessions;
• Strength duration = duration of strength training;
• Strength count = number of strength training sessions;
• Endurance target met = fulfillment of the endurance exercise recommendation (2.5 h/week)

(yes/no);
• Strength target met = meeting the strength training recommendation (2 times/week)

(yes/no);
• Steps avg = weekly average of daily steps;
• Steps min = the smallest number of steps per day of the week;
• Steps max = maximum number of steps per day of the week;
• Sleep avg = average amount of sleep during the week;
• Sleep min = the lowest daily amount of sleep per week;
• Sleep max = maximum daily amount of sleep per week;
• Weight = body weight (kg).

The main problem was the quality of the data, missing data points, and the absence of
a target variable corresponding to the actual question. For example, the measured Cooper’s
test results and the results of the muscle fitness tests were missing. From Cooper’s test,
only the user’s own categorical assessment of their result was available with an accuracy of
a few hundred meters. In addition, the Cooper test questionnaire was made even a couple
of years earlier than the actual use of the fitness application started in 2020. Naturally, a
person could have a completely wrong idea of their own Cooper condition. Partly for these
reasons, but especially because the Cooper test result is given as a categorical variable, the
regression model made from the data was not able to predict the assessment given by the
user in the survey very well, with the explanation rates remaining poor. In order to reach
higher degrees of explanation with the directly given data, it should have contained the
exact measured values of the test results to be explained. In addition, it would be good to
have all the measured data in the same file in csv format. For their part, these would have
improved and facilitated the data analysis. The data should also have clear and objectively
measurable values that aim to improve and from which it would be reasonable to make
predictions, e.g., Cooper, muscle fitness tests, muscle–fat ratio, BMI, etc.
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4. Results

In the classification of the target endurance_target_met in the exercise dataset, the
accuracy was 100%, as can be seen in Figure 1. We converted all the values in the numbers
and aggregated with the arithmetic mean in the regression.

Figure 1. Confusion matrix of the classification exercise data with the target endurance_target_met.

There are 624,001 rows in the steps–sleep data. There are a lot of missing data in
the columns, that is why the explanation rate r2 with the regression target sleep_avd is
only 0.024%. When all measurements containing missing data are removed from the data,
92,006 measurements remain. When this is regressed, the explanation rate r2 is 92.2%.
When these values were aggregated with the arithmetic mean, the explanation rate r2 is
97.9%. From Figure 2, it can be seen that the minimum and maximum sleep were the main
features estimating the average amount of sleep during the week.

Figure 2. Feature importance of the regressing steps–sleep data with the target sleep_avd.

In the survey data, when classifying the object Cooper, the accuracy is only 26.3%.
When the query intervals of the Cooper result are replaced by numbers 1–7, the accuracy
decreases to 22.2%. When all survey data values are replaced with numerical equivalents,
the accuracy was 25.5%. When the survey dataset is combined with the exercise dataset
using the INNER JOIN operation with respect to users (user_id), at the same time, the
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values of the survey data are converted into numbers, the classification result increases
to 95.8%. If we include the weight dataset to this using the INNER JOIN operation, the
classification result again increases to 98.2%, as can be seen in Figures 3 and 4.

Figure 3. Confusion matrix of the classification combined datasets with the target cooper.

Figure 4. Feature importance of the classification combined datasets with the target cooper.

With the given data, we reach more than 90% accuracy with all tested measurements.
However, in all other cases, except for exercise data, this required the deletion of the missing
data or the merging of data. Combining the weight data with other data partly improved
the obtained results.

5. Discussion and Future

In this study, it was found that, using directly provided data, it was reasonably difficult
to reach the 90% target value given in the forecasts. In previous surveys, it has been possible
to predict endurance fitness with typically 50–60% accuracy. For example, Matsuo et al. [4]
reported that, in the adult population, age, sex, body mass index and level of physical
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activity explained 59% of the variation in the measured maximal oxygen uptake capacity.
In a recent research publication by Santtila et al. [5] on Finnish conscripts, the result of
the 12 min running test was able to be predicted based on the self-reported amount of
activity and sitting, the assessment of readiness to perform conscript service, educational
background, smoking, and body composition with a 52% explanation rate (mean error
8.8%/207 m). These accuracy values are not sufficient in terms of their usability to make
predictions from conscript training choices.

By modifying the given data by combining and manipulating it, we reached the target
value, i.e., more than 90% predictability, at least in the prediction of the tested variables
(Cooper, endurance goal and average amount of sleep). In the analyses of this report, the
explanation rates reached a maximum of 100%. Endurance condition could not be predicted
in the end, because the source material did not contain enough results of a condition test
newly developed for the application. As a final result, it was found that, by developing the
data to be used by adding data points, it is possible to become closer to the set goals, and in
order to reach these, the necessary measures were already taken in part, even without this
investigation, to obtain the missing data points.

Based on the results, it can be concluded that machine learning methods can be used
to determine good enough predictions about conscripts conditions. In the future, exercise
behavior data must only be objectively collected by measuring using wearable/portable
devices or under controlled test conditions. Muscle and endurance test results can be used
to predict the conscript’s fitness class, as long as the measured results exist in one file. On a
more general level, it can be stated that by utilizing existing datasets, knowledge-based
management can also be developed in the education industry. Various datasets must be
tested with courage, so that their capabilities in managing information can be recognized.
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Abstract: The use of AI and digitalization in many areas of everyday life holds great potential but
also introduces significant societal transitions. This paper takes a closer look at three exemplary areas
of central social and psychological relevance that might serve as a basis for forecasting transitions
in the digital society: (1) social norms in the context of digital systems; (2) surveillance and social
scoring; and (3) artificial intelligence as a decision-making aid or decision-making authority. For each
of these areas, we highlight current trends and developments and then present future scenarios that
illustrate possible societal transitions, related questions to be answered, and how such predictions
might inform responsible technology design.

Keywords: digital society; social norms; social scoring; artificial intelligence (AI); future scenarios

1. Introduction

“I am sorry, but I have to inform you that we cannot undertake the surgery.” The news
was upsetting for Anna, as surgery was the only option to stop the potentially fatal
disease. Sure, surgery was risky, too. But without surgery, there was no hope left other
than that the disease would cure itself. Anna had only recently been diagnosed with the
rare disease, and the outcome was difficult to predict. The decision of treatment, however,
was not only that of her doctor. In fact, her doctor based all his decisions on “Health
Guardian”, an artificial intelligence (AI) system generating treatment recommendations
based on incredible amounts of data. In Anna’s case, Health Guardian recommended not
to do surgery. Anna’s mother, who joined the consultation, desperately asked whether
there could be a mistake and whether the doctor was of the same opinion. The doctor
was in a dilemma: Personally, he was not necessarily against surgery. He would even
have argued in favor of surgery, had Health Guardian voiced any uncertainty. But he
knew that compared to his own, naturally limited, perspective, the AI could factor in
far more data. And that was what it came down to. Although the AI results were called
“recommendations”, they were actually decisions. As the responsible doctor, he would
have to present extremely good reasons to oppose the AI—but no such reasons were
apparent in the current case. So the doctor had no choice but to console Anna and her
family. At least there was still a sliver of hope for a natural recovery.

In recent years, artificial intelligence (AI) has achieved impressive successes in various
domains such as visual perception [1], pattern recognition [2], expert and decision-making
systems, games such as Chess and Go [3,4], or computer strategy games [5]. At the same
time, critics still question whether these performances represent “real intelligence” [6,7].

In fact, the formation of “intelligence” in such systems is hardly comprehensible to
us and exceeds the horizon of human understanding [8]. This is compounded by the
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fact that such systems can hardly be repaired. While a human may understand the basic
mechanisms, the specific design becomes so complex that it is no longer possible for a
human to discern how to fix bad parts of the system without damaging other parts. Often,
the only solution is a completely new start, namely the training of a new system with
modified start parameters that hopefully will not end up with the same errors.

The general lack of transparency in AI technologies [9] is one of the factors in the
doctor’s dilemma in the above-mentioned example of AI in the operating room: AI deci-
sions are hardly traceable by nature. AI systems refer to patterns detected in the example
material (from the past) and then try to make predictions for the future and come up with
new examples. However, which exact variables are considered, how these are weighted,
and which correlations between these variables do exist remain hidden from the user (and
mostly also from the programmer) [10]. Hence, re-turning to the case of the decision for or
against surgery, the deciding factors for the Health Guardian’s decision remain obscured.
Was it only about the predicted effectiveness and risk of the intervention? How were other
variables taken into account, such as the cost-to-benefit ratio, budget of the healthcare
system, and bed occupancy rate of hospitals? What about other waiting patients who
needed surgery more urgently? It does not appear unlikely that artificial intelligence will
consider the constraints of relevant stakeholders, especially in societies where resources in
the healthcare system are more limited than in others.

2. Overview and Method

The AI case is exemplary for the current challenges and questions around digital
transitions that our society is faced with: What does it mean if current technological trends
and developments continue? What are the psychological effects and consequences of social
interaction? Which moral considerations play a role, and which decisions have to be made?
This paper takes a closer look at three exemplary areas of central social and psychological
relevance that might serve as a basis for forecasting transitions in the digital society:
(1) social norms in the context of digital systems; (2) surveillance and social scoring; and
(3) artificial intelligence as a decision-making aid or decision-making authority.

For each of these areas, we highlight current trends and developments and use the
method of future scenarios to illustrate possible societal transitions and related questions to
be answered. Thereby, we aim to contribute to several fields of research. First, the examples
and implications discussed here may inspire future research and design in the fields of
human–computer interaction (HCI) and AI. Moreover, regarding forecasting and future
studies in general, this article may illustrate how qualitative analyses and future-related
reflections on current technological and societal trends may complement more quantitative
and statistical methods.

Of course, the here-applied method of future scenarios comes with particular limi-
tations related to some fundamental problems with predictions. Typically, when trying
to forecast the future, current developments are analyzed, and one then tries to project
them into the future and anticipate their interactions with other developments. However,
numerous examples demonstrate how difficult this is, even for experts.

In the 1950s, when people were asked how they imagined the year 2000, they assumed
that people would travel in flying cars powered by miniaturized nuclear engines, as also
depicted in an artwork by Frank Rudolph Paul, an illustrator of science fiction magazines
in that time [11]. Two currently successful existing technologies, the car and nuclear power,
were taken as a basis and projected into the future. However, the dangers and technical
limits of nuclear power could not be anticipated. Could the people of the past have made a
better prediction if they had studied nuclear power more intensively? Possibly. But even if
one misjudgment is taken into account and corrected, there are still many others.

In the second half of the last century, researchers at the Massachusetts Institute of
Technology (MIT) published a study on the future of the world economy [12]. The key
question was to predict the (assumed) necessary collapse of the current economic system
based on exponential growth. Numerous parameters, such as population growth and den-
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sity, aging of society, movement of goods, government budget, and debt, were considered
in the prediction model. According to the model calculations, the time of collapse would be
within the next 100 years, i.e., around the year 2070. However, many parameters and events
that turned out to be relevant later on were naturally not considered, e.g., the disintegration
of the Soviet Union, the rapid rise of China as a world power, and the significance of climate
change for the planet. The significance of these developments was not foreseeable when
the calculations were made and thus was not adequately taken into account in the forecast
model. In the meantime, the forecast model was updated with new parameters [13]—we
will see whether the predictions hold true this time.

A basic problem here is that so-called disruptive events, findings, or technologies are
not taken into account. Disruptive technologies are technical innovations that replace or
displace established products or services and interrupt the success of previously prevailing
approaches [14]. One example would be the Internet, which has opened up many new areas
of business, but at the same time brought about the collapse of many previously successful
business models. A few years earlier, no one would have predicted the disruptive character
of the Internet, and in turn, many predictions that disregarded the influence of the Internet
were faulty.

In the end, we must remind ourselves that predictions are still a kind of thought
experiment and do not allow for perfect knowledge of what will actually happen. However,
this should not diminish the importance of such thought experiments. Even non-perfect
thought experiments are still better than not thinking at all. Such thought experiments
reveal what could happen and indicate possible alternative courses of action. Thought
experiments emphasize that we are not mere passengers being overrun by the future but
can actively help to shape it.

3. Social Norms

Social norms are the unwritten rules of beliefs, attitudes, and behaviors that are
considered acceptable in a particular social group or culture [15]. Social norms represent
shared beliefs regarding appropriate ways to feel, think, and behave [16]. In this way, social
norms provide order and predictability in society [15]. For example, in German culture,
if we make an appointment, we expect the other person to arrive on time. In contrast
to legal norms (e.g., laws), social norms occur spontaneously rather than being planned
deliberately and are enforced informally [17]. Typically, social norms only become evident
when conflict arises, i.e., if someone’s behavior contradicts our informal understanding of
what is appropriate, such as cutting in line, entering an office without knocking, or starting
to eat before everyone is seated at the table [18]. The same seems to apply to the digital
space. Many conflicts in the context of social media and digital communication can be
interpreted as social norm conflicts [19].

Regarding the forecast of societal transitions in the digital age, the differences or
transfer of norms between the digital and non-digital spaces is an interesting aspect. In
order to understand and possibly foresee such transitions, we will first take a look at some
particular possibilities and characteristics of the digital space, which in turn affect the
formation, change, and enforcement of certain social norms.

• Distance between interaction partners: In many channels of digital communication,
interaction consists only of writing and reading text. Social cues we adhere to in face-
to-face conversation (human characteristics such as appearance, voice, and physical
presence) are missing. Therefore, it is terribly easy to forget that one is not interacting
with texts but with humans, who have their own motives, their own value system,
feelings, and emotions, and who can be hurt or offended by one’s own actions. In
consequence, one might not even notice having hurt the counterpart on the other end
of the digital channel, and empathic mechanisms that could show the consequences of
one’s own actions are not activated [20];

• Avatar and control, instead of authenticity: On many social media platforms, users are
represented through an avatar, which can easily be exchanged if this seems convenient.
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A re-creation of another account is quickly carried out, allowing one to restart with
a clean slate (assuming interactions in anonymous or pseudonymous space). Such a
new start and identity change are very difficult in the non-digital space. And even
on platforms where the avatar/identity cannot be easily changed, the user has much
greater control over what information is revealed about him or her. In particular,
involuntary aspects of communication (facial expressions, affective reactions, and
voice color) are greatly reduced in digital space [21];

• Felt anonymity: The fact that other interaction partners often appear as avatars and the
fact that you yourself do not know who the other person is exactly create an illusion
of complete anonymity. Even though, technically speaking, users can actually be
identified and are only anonymous to each other, this feeling of anonymity still has
psychological consequences. This pseudo-anonymity can be sufficient to make people
feel “safe” and disregard regular social norms. Like hooded demonstrators, seemingly
anonymous users may no longer feel obliged to follow social rules [21,22]. Not all
users make use of this “freedom,” but a significant portion do;

• Digital-exclusive mechanisms: The digital space provides various interaction mechan-
ics that are unknown or even impossible in the non-digital space. One example is ghost
banning. Ghost banning is a technique that is typically used against so-called trolls
(i.e., internet forum troublemakers who derive satisfaction from provoking other users
with polarizing statements). If a troll was just simply banned (deleted), this would not
solve the problem for a long time since the user could easily create a new account and
start again. Ghost banning, however, is a process through which a user is invisibly
banned from a social network, website, or online community. The user retains the
ability to browse through and use the available features without knowing that his or
her actions are invisible to other users. This, in turn, prevents the user from interfering
with other users [23]. Colloquially speaking, when an admin ghost bans a troll, this
puts the troll in an invisible cage where they are unaware that other users cannot see
their posts [24]. Initially, the ghost-banned troll has no way to determine his invisibility
to others and can at best wonder about the lack of reactions to his provocations. Only
if the troll would log in with another user’s account and obtain their perspective on
the online world could he or she find out what is going on. Transferring the technique
of ghost-banning to the non-digital space, one could imagine an invisibility cloak you
can put on troublemakers without the person noticing. What is pure fiction in the
real world is everyday life in the digital realm: every user receives his or her own
individual view of the (digital) world, and the differences are seldom communicated.

Already nowadays, due to the ubiquitous use of digital interaction channels, corre-
sponding digital norms are gaining more and more weight, which are in turn influenced by
the peculiarities of the digital space.

A Possible Future Scenario

Social norms are implicitly learned and adhered to, and norms from the non-digital
space influence those from the digital space, and vice versa [19]. We can conclude that
as digitally mediated social interaction becomes more and more pervasive in everyday
life, we are exposed to norms from the digital space to a greater extent. This, in turn,
increases the relative influence of these norms. Ultimately, this could lead to a situation
where norms from the digital space dominate over traditional norms that originated in the
non-digital world.

Taking into account the characteristics of the digital space mentioned above, this could
result in a greater level of rudeness and less consideration of the other’s emotional world. A
side effect could also be the development of avoidance strategies against direct, non-digital
interaction. In particular, people might stick to non-synchronous digital channels, such as
text messaging, as a protective shield to insulate themselves from the possibly distressing
interaction of the interaction partner [25], the so-called buffer effect [26]. In fact, there is
already a perceptible trend among younger people to avoid direct synchronous interaction,
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such as face-to-face conversations or telephone calls (e.g., [27]). Instead, they are turning
to more distant, mediated communication wherever possible. Instead of dealing with
one’s own empathic reactions, non-digital contact is more and more evasive. As a result,
empathic skills are used and trained less frequently, which, again, increases the preference
for digital channels—a self-reinforcing dynamic.

Along with these predictions, we must also consider that, of course, the repertoire
of traditional norms acquired over centuries in the non-digital world still continues to
shape our behavior. In other words, the current observable state is still skewed in favor of
conservative norms, and the future influence of norms from the digital world will become
even stronger. A fictitious society starting from “zero” would presumably be even more
strongly influenced by norms from the digital world. Following these thoughts, every
existing society will be influenced increasingly by digital norms over time—if solely for the
reason that older people, who tend to be representatives of conservative norms, die and are
replaced by those who come after them and who are more strongly influenced by norms
from the digital world.

4. Surveillance and Social Scoring

When the Internet emerged, the first goal was to create a failsafe communication
infrastructure that would continue to function even if parts of it broke down [28]. Only
later did additional (primarily economic-driven) goals emerge, such as creating specific
social networks, tracking users’ paths, and presenting targeted advertising. Thus, the early
days of the Internet were characterized primarily by freedom: Freedom in users’ actions
and freedom from control. This period is also referred to as the golden age of the Internet
or the Wild West period without rules [29].

However, as the popularity of the Internet increased, the economic potential of big
data and large user groups became more and more recognized. First and foremost, this was
the display of advertisements and the creation of numerous digital trading places [30]. In
addition, the dissemination of news and information also played an increasingly important
role. With more and more people obtaining their information from the Internet, the senders
of information gained a steadily growing reach [31]. A natural follow-up question was
how to maximize influence on users and how to establish information sovereignty: who
determines which of two contradictory pieces of information is “correct”?

Accordingly, it did not take long for various stakeholders to discover the worldwide
web and its users for their interests, and they began to extend their influence: Politicians,
news portals, the advertising industry, providers of consumer products, activists, and
individual opinion leaders as well as “influencers” [32]. As such, the Internet can be seen
as the antithesis of the classic democratic society, in which information sovereignty is con-
centrated in the hands of the state or a small group of people. On the Internet, on the other
hand, everyone is a sender and a receiver; everyone can potentially participate in opinion
formation [33,34] and is, thus, a potential competitor to the major established media—a
state of affairs that (traditional) media and politics losing control do not necessarily find
desirable. This is accompanied by attempts at surveillance and information control, such
as upload filters or sabotage of encryption technologies. Typically, these are justified with
popular goals such as criminal prosecution, referring to relatively small groups of offenders
(e.g., child pornography, illegal black markets). However, the negative effects and potential
misuse of surveillance technologies affect all users equally.

A Possible Future Scenario

With the increasing digitalization of everyday life, the potential for surveillance in-
creases as well. With every online action, users leave their digital footprints, becoming
more and more transparent citizens. On the users’ side, the awareness of monitoring
leads to adapted behavior, and even the mere awareness of potentially being monitored
creates distress—a symptom also known as the “chilling effect” [35]. Of course, this chilling
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effect can be deliberately utilized to steer user behavior in the desired direction. Since not
everyone needs to be monitored, this method is also cost-effective.

At the same time, alternative ways of surveillance, such as AI-based algorithms, will
become more popular. Where once actual humans had to detect offenses in the social media
world, algorithms can slip into the monitoring role. For example, such algorithms can
automatically detect copyright infringements, (child) pornography, or certain keywords
that are taboo on the platforms. However, the effect of such interventions has so far been
negligible, since even being banned from a platform does not generally represent a serious
consequence for these users.

With the introduction of social scoring, this has fundamentally changed. Social scoring
takes the monitoring aspect to a new level and turns implicit, casual influence into an
explicit, targeted one: with the use of social scoring—citizens receive points for desired
behaviors and deductions for undesired behaviors—desirable behavior is explicitly pre-
scribed (e.g., [36,37]). When such social scores affect real-life chances (e.g., when looking
for a job or when searching for an apartment), violations against desired behaviors have
specific and tangible consequences for users. Naturally, any criticism of this system will be
classified as an undesirable action as well. Withdrawal from such a system will become
almost impossible as soon as critical functionalities (freedom to travel, payment functions,
prioritization in the search for housing, jobs, hiring criteria analogous to a police clearance
certificate) are linked to the social score. In the end, the self-reinforcing spiral of social
scoring systems may result in more and more extreme and comprehensive rules until all
areas of human behavior are covered.

As these considerations reveal, the basic idea of social scoring already contains much
negative potential. Therefore, no matter what disruptive event of the future might stop it
or not, it seems important to consider now whether we want to prevent the establishment
of such a concept through our actions today.

5. AI as Decision-Making Aid or Decision-Making Authority

Artificial intelligence is already being used to support complex decisions, for example
in the fields of insurance [38,39], medicine (for example, diagnostics and pattern recog-
nition in image processing mentioned by Kermany et al. [40], Esteva et al. [41]), and HR,
where artificial intelligence can help identify the most suitable candidate for an advertised
position [42,43]. Across all these applications, the possibilities of artificial intelligence (in
particular, machine learning) are limited by three main factors:

• The specification of the method, algorithm, or network topology;
• The computing power for training the AI;
• The number of available data sets matching possible input data and output data (for

example, a large collection of different animal images, each with an indication of which
animal is depicted).

In many application domains, the current technical possibilities regarding all three
factors are sufficient to create AIs that deliver results that are equal to or superior to those
of humans. Especially for the last factor, i.e., the data sets that link input patterns with
correct results, progress results as a kind of by-product of the activities of current users
(e.g., of social media platforms). Every new set of stored user data generates new training
data. Hence, the situation is becoming better every day—at least for those who can store
and utilize the data.

A Possible Future Scenario

As soon as AI methods are able to replace human labor or skills of equal quality, there
is no question of whether these methods will be applied. Not using such methods would
result in a significant competitive disadvantage, maybe even being put out of the market.
As methods and data collections continue to evolve, AI will find its way into more and
more fields as a decision support tool, such as jurisdiction [44,45], partner choice [46,47],
and many more.
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With the invasion of AI into ever new domains, many questions arise, beginning with
the most fundamental one: Should AI be allowed to enter all domains of human society or
are there any barriers?

Moreover, what if AI delivers recommendations that are politically incorrect and
therefore undesirable? How can it be ensured that the training data is “neutral” so that no
bias is transferred to the trained AI?

Moreover, who is responsible for the indirect consequences of AI recommendations,
and what kind of events can be traced back to an algorithm?

For example, in a recent case before the US Supreme Court, a mother whose daughter
died along with 130 other people in connection with the ISIS terrorist attack in November
2015 in Paris alleged that Google’s YouTube algorithms effectively amplified Islamic State-
produced materials in support of the extremists that killed her daughter [48]. As with
many online media platforms, YouTube’s recommendation algorithm basically aims to
suggest relevant items to users by directing them to videos that are similar to those they
have previously selected and watched. YouTube’s recommendations thus mirror the
user’s apparent interest. However, the family of the terror victim argues that YouTube’s
recommendations expose people to (ever more) hateful content, radicalize viewers, and
ultimately encourage them to make terrorist attacks of their own [49]. To date (as of
February 2023), the case is still under trial. With ever more complex AI systems and
algorithms in the future, such legal and moral questions will probably become more
complex as well.

In connection to this, another block of questions refers to the transparency of AI: Is
there a right to understand on what basis an AI makes concrete recommendations—and
how could such a right ever be realized if, by nature, AI decisions remain a black box to
some extent?

With the current state of technology, it is certain that AI can neither offer error-free
decision-making nor transparent reasons for its decisions. At the same time, these shortcom-
ings do not mean that AI will not be applied, especially when considering the advantages
on the other side.

What will be essential, then, is how people feel about AI and its role in important
decisions in society. Would it be desirable, for example, if an AI that has access to your data
and will regard your interests would decide about the future and regulations in a country
instead of human politicians?

When asked that question, a survey found overall high ratings in favor of AI: In the
European region, the approval rate is 51% on average, with particularly strong support
for AI in Spain (66%), Italy (59%), and Estonia (56%). In China, 75% are in favor of AI as a
political decision-maker, whereas in the USA, only 40% want to delegate political decisions
to AI [50].

Independent from the application domain, it seems likely that the use of AI will
become more mainstream and that technological progress will more or less override the
discussion about which applications are desirable or ethical.

6. Outlook

The use of AI and digitalization in many areas of work and private life will continue to
increase in the future and hold great potential overall. Unpleasant tasks can be delegated to
technology; AI can take over tasks that overwhelm or bore humans (and possibly vice versa).
However, what we need to keep in focus are the major societal changes that might come
with the use of AI. A system based on supply and demand for (human) work performance
can hardly be maintained in its current form if artificial agents are competing with humans.
New ideas for living and working together are needed. While there is probably still some
time left before the big breakthrough of artificial agents, no one knows exactly how much
time. When that day comes, there needs to be an action plan defining the space we want to
grant AI in society. Otherwise, we will only be able to react to a factual reality instead of
designing a desirable future.
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Altogether, these considerations show that the innocent golden age of AI and digitiza-
tion is over. Simply accepting their effects and side effects on our society is not acceptable.
Conscious technology design requires us to predict how technology will continue to de-
velop, what effects we can expect on our society, and how we can counter these influences
with foresight. As in the physical world, our behavior in the digital space is influenced by
design decisions [19]. In order to promote desired, prosocial behavior and reduce antisocial
behavior, it needs a deliberate consideration of how certain features of technology affect
social dynamics and the world we live in. Not everything that is technically feasible is
morally acceptable. There is no such thing as neutral design.

Even with conscious design decisions, developing solutions that actually work flaw-
lessly continues to be a challenge. For example, the approaches chosen to promote prosocial
behavior can again have undesirable side effects. Trying to prevent antisocial behavior by
making users completely transparent means trading one problem for another. The same
applies to surveillance and social scoring. The negative effects of social scores must be
researched in advance so as not to create a factual situation from which it will be nearly
impossible to escape later on.

In sum, the development of good solutions that are morally and socially acceptable is
one of the current core tasks in the context of digitalization.
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Abstract: In order to achieve a more efficient allocation of healthcare resources in the near future, it
is crucial to understand the patterns and causes of excess mortality and hospitalizations. Neonatal
mortality still poses a significant challenge, particularly in developed nations where the mortality
rates are already low and healthcare resources are generally available to most of the population.
Furthermore, the low mortality rates mean that the data available for modeling are often very limited,
restricting the modeling methods that can be used. It is also important that the chosen methods
allow for explainable, non-black-box models that can be interpreted by healthcare professionals.
Considering these challenges, the work hereby presented thoroughly analyzed the time series of
the neonatal mortality rates in Portugal between 2014 and 2019 in terms of trend and seasonal
patterns. The applicability and performance of different data-based methods were also analyzed.
Furthermore, the mortality rates were studied in terms of their relation to environmental variables,
such as temperature and air pollution indicators, with the goal of establishing causal relations
between such variables and excess mortality. The preliminary results show that ARMA, neural and
fuzzzy models are able to forecast the studied mortality rates with good performance. In particular,
neural models have the best predictive performance, while fuzzy models are well suited to obtain
interpretable models with acceptable performance.

Keywords: neonatal mortality; time series forecasting; ARMA; neural models; fuzzy models

1. Introduction

The survival and prosperity of children are at the heart of any thriving society. This is
especially true for developed countries, where advances in medical technology and better
living standards have led to a longer life expectancy, altering the population distribution
among different age groups.

Children are the future labor force, responsible for keeping the economy moving and
caring for the older generation while preparing the next generation for the challenges ahead.
Regardless of a country’s location or socioeconomic status, children are the foundation of
any nation’s success, and their welfare is vital to ensuring a prosperous future.

One of the most significant achievements in global health is the decline in child
mortality rates [1]. The number of deaths in children under the age of five has fallen
drastically from 19.6 million in 1950 to 9.6 million in 2000 and 5.0 million in 2019 [2],
indicating a worldwide decrease of 74.5% over the last 70 years.

However, there is still much work to be done. The United Nations’ Sustainable
Development Goals aim to end preventable deaths of newborns and children under the
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age of five by 2030 [3], with a target of reducing neonatal mortality to no more than 12 per
1000 live births and under-five mortality to no more than 25 per 1000 live births.

Child mortality rates are influenced by a variety of factors, which vary greatly across
different regions of the world. Developing countries face significant challenges such as
malnutrition, lack of access to clean water and inadequate healthcare and public safety
infrastructure [4]. Addressing these issues is crucial to reducing child mortality rates.
In contrast, European nations have some of the lowest child mortality rates globally [5],
reflecting their strong commitment to children’s health and well-being. Ultimately, a
country’s geographic location, socioeconomic status and cultural profile have a significant
impact on child mortality rates and the factors that determine them.

Neonatal mortality refers to the death of infants within the first 28 days of life [6]. It is
still one of the most significant challenges facing the global health community, particularly
in low- and middle-income countries, and a critical indicator of a country’s health status,
healthcare system and socioeconomic development. According to the World Health Orga-
nization (WHO), an estimated 2.4 million neonatal deaths occurred globally in 2019, less
than half of the 5.0 million that occurred in 1990 [7].

Neonatal mortality is preventable, and several interventions can help to reduce it.
These include improving access to quality healthcare services, particularly during preg-
nancy, childbirth and the postnatal period [8]. Ensuring adequate nutrition for pregnant
women and infants is also crucial [9], as well as promoting healthy behaviors such as
breastfeeding and providing essential newborn care. Reducing neonatal mortality has
far-reaching benefits beyond saving lives. It can lead to a healthier population, increased
economic productivity [10] and improved social outcomes. Addressing the underlying
socioeconomic determinants of neonatal mortality may also play a critical role.

Examining neonatal mortality data in a country such as Portugal, where rates are
already extremely low, is still crucial for several reasons. First, even in countries with
low neonatal mortality rates, there can be regional or socioeconomic disparities that need
to be addressed. By analyzing the data, policymakers can identify areas where there
may be higher rates of neonatal mortality and develop targeted interventions to address
these disparities.

Secondly, analyzing neonatal mortality data can help to identify trends and patterns
over time. Even if the overall rates are low, there may be changes in specific causes of
neonatal mortality or demographic groups that require attention. For example, there may
be an increase in the number of premature births, which would require additional resources
and interventions to address.

Thirdly, neonatal mortality studies can help to evaluate the effectiveness of interven-
tions and policies aimed at reducing neonatal mortality. Even in countries with low rates,
there may still be room for improvement, and analyzing the data can help to identify areas
where additional efforts are needed.

While countries such as Portugal may have made significant progress in reducing
neonatal mortality, there is still a long way to go to achieve the Sustainable Development
Goals. Therefore, it is critical to raise awareness and advocate for continued efforts to reduce
neonatal mortality globally. By highlighting the importance of this issue and sharing best
practices, policymakers and public health officials can continue to work towards improving
the health outcomes of mothers and newborns worldwide.

The aim of this study is to forecast and explain neonatal mortality in Portugal using
machine learning techniques. We analyzed a range of mortality and environmental vari-
ables to identify the most significant predictors of neonatal mortality. Furthermore, we
developed three predictive models that can forecast neonatal mortality rates in Portugal
over the next couple of years. The results of this study will provide valuable insights
into the determinants of neonatal mortality in Portugal and may have implications for the
design of public health interventions to reduce neonatal mortality rates in the country.

The remainder of this paper is structured as follows. Section 2 shows the data used
in this study, as well as how the data was prepared. In Section 3, a forecast of neonatal
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mortality is presented based on the past values of the time series using ARMA models.
In Sections 4 and 5, models using the past values of the time series as well as exogenous
values are presented, namely neural and Takagi–Sugeno fuzzy models. Finally, in Section 6,
an overview of the conclusions drawn from this study is presented.

2. Data Preparation

For this study, we had access to data regarding all neonatal deaths provided by
Directorate-General for Health, “Direção Geral de Saúde” (DGS), from January 2014
to December 2019. Furthermore, we used exogenous data to develop the models in
Sections 4 and 5, such as temperature and various pollution indicators.

Regarding the neonatal mortality data, firstly, the data were aggregated by month
of death as we had the exact date. Then, data were divided into a trend and deviation
from such trend, as in [11]. Firstly, we computed the moving average by considering the
current month and the 11 that preceded it, which aided in smoothing out data fluctuations
and improving the representation of the underlying trend, as in [12]. In order words, the
average calculated for December 2014 uses data from January 2014 to December 2014. Note
that this is the first sample that was actually used, because samples from previous months
would require data from 2013.

Next, we calculated the deviation from the moving average to each real value, which
highlighted unusual patterns in the data. For this, data were divided into training and test
sets. It was established that data from December 2014 to December 2017 is used as training
data, and those from January 2018 to December 2019 are the test data.

Regarding exogenous variables, such data were provided for each municipality indi-
vidually, similar to [13] but at a larger scale. However, this study focuses on forecasting
mortality in the country, so national values would be preferable. To obtain a national value
for each exogenous variable for each month, the average weighted by the population was
calculated, in the following way:

X(t) = ∑N
i=1 xi(t)pi(t)

∑N
i=1 pi(t)

(1)

where t represents time; i a municipality; xi a raw (by municipality) exogenous variable,
such as temperature; X the respective transformed (nationwide) variable; and pi the
population of a municipality. By calculating the weighted sum in this way instead of a
simple average, we guarantee that the values of the more heavily populated areas have
more impact on the final value since more people are exposed to those conditions. Table 1
presents the exogenous variables used for the modeling procedure.

Table 1. Exogenous variables.

Variable Unit

Mean Temperature ºC

NO2 Concentration μg/m3

PM10 Concentration μg/m3

PM2.5 Concentration μg/m3

3. ARMA Modeling

As an initial approach, an AutoRegressive Moving Average (ARMA) model was
utilized to predict neonatal mortality in 2018 and 2019 due to its widespread usage and
established effectiveness in modeling time series data, see [14–16]. ARMA models have
proven to be particularly useful in scenarios where a clear dependence exists between the
current value of the time series and its past values.
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We employed an ARMA model to predict the moving average segment of the time
series. Subsequently, we created another ARMA model to predict the deviation segment
of the time series. For both ARMA models, data regarding the last 12 months were
utilized. Eventually, summing up the two predictions derived the ultimate prediction
value, accounting for both the trend and variations in the data, which enhanced the
prediction performance.

Overall, the procedure facilitated the accurate analysis of the neonatal mortality time
series and generated precise predictions for future values. Incorporating the moving aver-
age and deviations from it, along with utilizing ARMA models for prediction, allowed the
trend and variations in the data to be accounted for, resulting in more accurate predictions.

Although there are differences between the predicted and actual values, this can be
attributed to noise and variability in the data, as well as the assumptions and limitations of
the ARMA models utilized. The obtained results (Figure 1) indicated that ARMA models
are effective in capturing the underlying patterns and dependencies in the data, with an
RMSE of 3.042 and a VAF of 0.36 indicating an average difference of 3 units from the actual
values, which is reasonable given the time series data’s range of values. However, it is
crucial to note that the RMSE is just one measure of prediction accuracy, and there may be
other metrics or measures that can provide different insights [17].

Figure 1. Neonatal deaths forecast using yearly and monthly ARMA model.

4. Neural Network Modeling

ARMA models used only the previous values of the time series to predict its future
values. Considering such results, the next step is to use also exogenous variables with the
goal of achieving better predictive performance. Exogenous variables are variables that are
measured alongside the forecast time series and can help determine its future values. In
the context of the work hereby presented, the exogenous variables are the environmental
variables presented in Table 1.

In this section, we propose to use an artificial neural network (NN) model, as in [18,19],
to incorporate the exogenous variables into the modeling process. The proposed NN model
takes as inputs the exogenous variables, as well as the previous values of the time series.
Following the procedure for the ARMA model, the 12 previous values of the 4 exogenous
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variables as well as the 12 previous values of the time series moving average and deviations
are given as input to the NN model, which then forecasts the mortality for the next
time period. Therefore, the proposed network has a total of 72 inputs and one output.
Considering such characteristics, the proposed NN is a shallow network with 73 neurons
in the hidden layer. Table 2 shows the other relevant properties of the NN model.

Table 2. Neural nework model parameters.

Parameter Value

Structure 1 layer, 73 neurons
Activation Relu

Solver lbfgs
Max. Iterations 500

The results (Figure 2) show that the NN model achieved better predictions than the
ARMA models with an RMSE of 2.394 and a VAF of 0.61. The improvement in RMSE may
be attributed to the inclusion of exogenous variables or to the non-linear nature of the NN.
These results suggest that incorporating external factors and utilizing non-linear models
can enhance the accuracy and predictive power of time series models.

Figure 2. Neonatal deaths forecast using the NN model.

5. Fuzzy Modeling

NN models are known as black-box models [20], meaning that, while their predictive
performance may be outstanding, they are also very hard to interpret, and the reasoning
between the inputs and the output is often not clear. This problem, known as interpretability,
is one of the most important yet still open problems in the field of machine learning [21,22].

While much research has been carried out in the recent years on this topic, the chosen
approach in the work hereby presented is the use of fuzzy logic to model the forecasting
problem. Fuzzy inference systems are a class of data-based learning algorithms that are
particularly well suited for modeling problems where interpretability is a priority [23–25].
Furthermore, Takagi–Sugeno fuzzy systems are universal learners [26], meaning that,
similarly to NN models, they are able to approximate any function provided that sufficient
degrees of freedom are given to the model.
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The modeling approach for the fuzzy models is exactly the same as the one described
for the NN in Section 4, with the same inputs and output. The parameters of the obtained
fuzzy model are as shown in Table 3.

Table 3. TSK model parameters.

Parameter Value

Clustering Method Fuzzy C-means
Cluster Validation Silhouette Coefficient
Number of Rules 31
Consequent Type Affine

Regarding the predictive performance of the obtained model, Figure 3 shows the
forecasting results which correspond to an RMSE of 3.569 and VAF of 0.15, meaning that
the model is not so good as the prvious models. However, it is important to mention that
the main advantage of fuzzy models is not necessarily their predictive performance, but
their interpretability. So, the predictive performance is still acceptable and comparable to
the other models. Still, regarding the topic of interpretability, the obtained fuzzy model
has a large number of fuzzy rules that makes its interpretability hard without a further
refinement of its rules by merging the fuzzy sets. However, the fuzzy model is still by far
the most interpretable model obtained in this work.

Figure 3. Neonatal deaths forecast using TSK fuzzy system.

6. Discussion and Conclusions

In this study, three different methodologies to forecasting mortality were utilized.
The first one was a junction of two ARMA models, one to predict the trend and another
one to predict the deviation from the trend. The results obtained show that the majority
of the variations that can be observed in the time series can be predicted by just looking
at the mortality rates of the last 12 months. With the aim of improving the prediction
made by the ARMA models, an NN model was utilized due to its nonlinear nature and
its capability to include exogenous variables to make predictions. The results improved
substantially as expected. Finally, aTakagi–Sugeno fuzzy model was utilized to create
IF–THEN rules to predict mortality, as these are more interpretable to a human. This model
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achieved reasonable predictions when paired with a high number of rules, which hurts the
interpretability of the task at hand.

Overall, according to the metrics (RMSE and VAF), the NN model is clearly the best
performer. However, upon comparing Figures 1 and 3, it is observable that the reason why
ARMA models perform so well is that they always make more conservative predictions.
In other words, the model underestimates periods of higher mortality and overestimates
periods of lower mortality, always keeping its prediction close to the average value of the
time series. On the other hand, the fuzzy model more effectively captures the magnitude of
the highs and the lows of the time series. The model only performs poorly on both metrics
because sometimes the prediction of peaks of mortality is offset by a month, dooming the
score on both metrics.

When the prediction is offset from the real curve, it can be observed that prediction
comes before the actual peak. These might be useful in certain scenarios because if a peak
does not occur in the predicted month, it will most likely occur in the following month.
In future work, other interpretable modeling techniques should be used to try to identify
which variables and in what instances are critical to predicting neonatal mortality.
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Abstract: In time series analyses, the auto-regressive (AR) modelling of zero mean data is widely
used for system identification, signal decorrelation, detection of outliers and forecasting. An AR
process of order p is uniquely defined by p coefficients and the variance in the noise. The roots of
the characteristic polynomial can be used as an alternative parametrization of the coefficients, which
can be used to construct a continuous covariance function of the AR process or to verify that the AR
process is stationary. In a previous study, we introduced an AR process of time variable coefficients
(TVAR process) in which the movement of the roots was specified as a polynomial of order one.
Until now, this method was analytically derived only for TVAR processes of orders one and two.
Thus, higher-level processes had to be assembled by the successive estimation of these process orders.
In this contribution, the analytical solution for a TVAR(3) process is derived and compared to the
successive estimation using a TVAR(1) and TVAR(2) process. We will apply the proposed approach
to a GNSS time series and compare the best-fit TVAR(3) process with the best-fit composition of
TVAR(2) and TVAR(1) process.

Keywords: AR process of order 3; non-stationarity; time-varying AR coefficients; time-variable roots
from polynomials

1. Introduction

The auto-regressive process is a means in time series analysis and, among other things,
this method is used to estimate discrete covariance functions (see [1] [p. 32, eq. (182)]) or
to decorrelate observations by filtering [2–4]. Under the assumption of a non-stationary
process, there are two possible states: first, that the roots of the characteristic polynomial
are no longer in the unit circle, and therefore no covariances can be calculated, and secondly,
the case we are looking at here, where the root changes over time, but always stays in
the unit circle. This case has often appeared in the literature, but the TVAR coefficients,
when used, were given a form of motion like polynomial motions (see [5,6]), trigonometric
function [7], modified Legendre polynomials [8] and spherical sequences [9]. What all these
methods often overlook is the resulting movement of the roots, as can be seen, for example,
in [10]. In [11], it was derived how a TVAR process has to be calculated successively
from TVAR(1) and TVAR(2) process estimates for a linear root movement. This method
is now to be extended so that it can be applied directly to the TVAR(3) process without
testing different series of TVAR(1) and TVAR(2) processes. Divided into five chapters, this
extension is presented here. In Section 2, the necessary condition for the linear roots of a
TVAR process of arbitrary order is derived again. In Section 3, additional restrictions are
derived as sufficient conditions. In Section 4, the theory is tested on a GNSS time series and
contrasted with successive estimations. The discussion of the results, as well as an overlook
of further research directions, can be found in Section 5.
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2. Successive Estimation Using TVAR(1) and TVAR(2) Processes

Ref. [10] defines the time variable auto-regressive process of the order p (TVAR (p)
process) using the recursion formula

St = α1(t)St−1 + α2(t)St−2 + ... + αp(t)St−p + Et. (1)

Here α1(t), α2(t), ..., αp(t) are the time-varying coefficients of the TVAR(p) process,
and Et is an i.i.d. sequence with variance σ2

E . As long as a single time t = τ is considered
separately, the representation in (1) corresponds to a time-stable AR process of order p
(TSAR(p) process):

St = α1(τ)St−1 + α2(τ)St−2 + ... + αp(τ)St−p + Et.

According to [12] [p. 167], the TSAR Process is stationary if the roots (P1, P2, ..., Pp) of
the characteristic polynomial

χ(x) = xp − α1(τ)xp−1 − α2(τ)xp−2 − ... − αp(τ)

= (x − P1(τ))(x − P2(τ))...(x − Pp(τ))

are in the unit circle (‖Pk(τ)‖ < 1 ∀ k = 1, 2, .., p). Ref. [11] has shown how TVAR
processes with linear root movements are successively estimated using TVAR(1) and
TVAR(2) processes, and the advantages of this method compared to the estimation of
time constant AR processes. The general TVAR estimate consists of two steps: First, the
coefficients of the TVAR process are replaced by polynomials, where the order of the
polynomial is equal to the order of the coefficient

αk(t) =
k

∑
j=0

β
(k)
j tj. (2)

The general solution of β
(k)
j can be calculated by a least squares adjustment using the

system of equations ⎡⎢⎢⎢⎢⎣
Sp
Sp+1
Sp+2

...
Sp+n

⎤⎥⎥⎥⎥⎦ = T Mβ, for n ≥ p2 + 3p
2

, with

T =

⎡⎢⎢⎣
Sp−1 Sp−2 Sp−3 ... S0
Sp Sp−1 Sp−2 ... S1
...

Sn−1 Sn−2 Sn−3 ... Sn−p

⎤⎥⎥⎦,

M =

⎡⎢⎢⎢⎢⎢⎣
1 0 0 ... 0
0 1 0 ... 0
0 0 1 ... 0

. . .
0 0 0 ... 1

∣∣∣∣∣∣∣∣∣∣∣

t 0 0 ... 0
0 t 0 ... 0
0 0 t ... 0

. . .
0 0 0 ... t

∣∣∣∣∣∣∣∣∣∣∣

0 0 ... 0
t2 0 ... 0
0 t2 ... 0

. . .
0 0 ... t2

∣∣∣∣∣∣∣∣∣∣∣

0 ... 0
0 ... 0
t3 ... 0

. . .
0 ... t3

∣∣∣∣∣∣∣∣∣∣
· · ·

∣∣∣∣∣∣∣∣∣∣

0
0
0
...

tp

⎤⎥⎥⎥⎥⎥⎦and

β =
[

β
(1)
0 β

(2)
0 ... β

(p)
0 β

(1)
1 β

(2)
1 ... β

(p)
1 β

(2)
2 ... β

(p)
2 ... β

(p−1)
p−1 β

(p)
p−1β

(p)
p

]T
.

The order of the TVAR process is irrelevant for this calculation. Second, additional
restrictions are put in place to ensure linear root movements. For orders 1 and 2, these
restrictions were set out in the paper [11]. Now, this procedure is to be extended to the
TVAR(3) process.
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3. Restrictions of TVAR(3) Process with Linear Root Motion

The condition for the linear root movement arises from the transformation from the
parameters αk(t) (β(k)

j ) to the roots Pk(t), respectively. Therefore, the representation of the
roots from the coefficients for the time-constant case is considered first.

3.1. Calculation of the Roots from the Time-Stable Coefficients

The roots of a third-order polynomial

b(x) = x3 − α1(τ)x2 − α2(τ)x − α3(τ) (3)

can be calculated after [13] [p. 22f] in a two-step procedure. The first step eliminates the
monomial x2 in (3) by substituting x with y = x − α1(τ)

3 . For the resulting polynomial
over y

b(y) = y3 +

[
−α2

1(τ)

3
− α2(τ)

]
︸ ︷︷ ︸

c1(τ)

y−2
α3

1(τ)

27
− α1(τ)α2(τ)

3
− α3(τ)︸ ︷︷ ︸

c2(τ)

, (4)

the first roots P̄1(τ) of the Equation (4) can be determined using the Cardano solution:

P̄1(τ) = S1 + S2,

where

S1 =
3

√√√√− c2(τ)

2
+

√(
c2(τ)

2

)2

+

(
c1(τ)

3

)3

and S2 =
3

√√√√− c2(τ)

2
−
√(

c2(τ)

2

)2

+

(
c1(τ)

3

)3

.

This root is back-substituted to find the roots of the characteristic polynomial of the
third order in (3):

P1(τ) = P̄1(τ) +
α1(τ)

3
= S1 + S2 +

α1(τ)

3
.

The other two roots then result from

P2(τ) = −S1 + S2

2
+

α1(τ)

3
+ i

√
3

S1 − S2

2

and P3(τ) = −S1 − S2

2
+

α1(τ)

3
− i

√
3

S1 − S2

2
.
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3.2. Restrictions for Linear Root Motion

These findings for a discrete point in time can be transferred to functions over time to
derive the restrictions for linear root movements. However, this chapter does not derive
the general condition for linear root motion; instead, the three sumands of P1(t)

S1(t) =
3

√√√√− c2(t)
2

+

√(
c2(t)

2

)2

+

(
c1(t)

3

)3
!
= f1 + g1t, (5)

S2(t) =
3

√√√√− c2(t)
2

−
√(

c2(t)
2

)2

+

(
c1(t)

3

)3
!
= f2 + g2t (6)

and − α1(t)
3

!
= f3 + g3t (7)

are individually converted into linear functions by restrictions. Because of the three
conditions, all linear combinations of these functions (S1, S2 and α1) are automatically
linear. This particularly applies to P1(t), P2(t) and P3(t).

The conditions in (5), (6) and (7) have to be rewritten according to the conditions at
the parameters β

(k)
j . After the derivation of the coefficients in (2), α1(t) = β

(1)
0 + β

(1)
1 t is

already a polynomial of first degree and the condition (7) is always met. To simplify the
conditions in (5) and (6), both conditions are potentiated by 3 and then linked to each other
via addition or multiplication:

( f1 + g1t)3 + ( f2 + g2t)3 !
= −c2(t) and (8)

( f1 + g1t)( f2 + g2t) !
= − c1(t)

3
. (9)

This creates two new conditions: the first contains a third-order polynomial and the
second a second-order polynomial, for which the equations are exactly satisfied if both
sides have the same polynomial coefficients. Thus, the polynomial of order 3 in (8) includes
four restrictions

f 3
1 + f 3

2 = 2

(
β
(1)
0
3

)3

+
β
(1)
0 β

(2)
0

3
+ β

(3)
0 (10)

3( f 2
1 g1 + f 2

2 g2) = 2

(
β
(1)
0
3

)2

β
(1)
1 +

β
(1)
0 β

(2)
1 + β

(1)
1 β

(2)
0

3
+ β

(3)
1 (11)

3( f1g2
1 + f2g2

2) = 2β
(1)
0

(
β
(1)
1
3

)2

+
β
(1)
0 β

(2)
2 + β

(1)
1 β

(2)
1

3
+ β

(3)
2 (12)

g3
1 + g3

2 = 2

(
β
(1)
1
3

)3

+
β
(1)
1 β

(2)
2

3
+ β

(3)
3 , (13)

and the polynomial of order 2 in (9) adds three further restrictions

f1 f2 =

(
β
(1)
0
3

)2

+
β
(2)
0
3

(14)

3( f1g2 + f2g1) = 2
β
(1)
0 β

(1)
1

3
+ β

(2)
1 (15)

g1g2 =

(
β
(1)
1
3

)2

+
β
(2)
2
3

. (16)
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With the help of the formulas (10), (13), (14) and (16), the variables

( f1,2)
3 =

(
β
(1)
0
3

)3

+
β
(1)
0 β

(2)
0

6
+

β
(3)
0
3

± w1

(g1,2)
3 =

(
β
(1)
1
3

)3

+
β
(1)
1 β

(2)
2

6
+

β
(3)
3
3

± w2

where

w1 =

√√√√( β
(3)
0
2

)2

−
(

β
(2)
0
3

)3

− (β
(1)
0 β

(2)
0 )2

108
+

(β
(1)
0 )3β

(3)
0

9
+

β
(1)
0 β

(2)
0 β

(3)
0

6

and w2 =

√√√√( β
(3)
3
2

)2

−
(

β
(2)
2
3

)3

− (β
(1)
1 β

(2)
2 )2

108
+

(β
(1)
1 )3β

(3)
3

9
+

β
(1)
1 β

(2)
2 β

(3)
3

6
,

can be determined. These results are used in the remaining restrictions (11), (12), and (15).

4. Application: Two GNSS Time Series

To test the theory, the time series of an altitude component of a GNSS station (shown
in Figure 1) is used. The data were provided by the Federal Institute of Hydrology (BFG),
which operates a GNSS monitoring network for georeferencing and monitoring selected
measuring stations.

Figure 1. A GNSS time series St at the GNSS station in Pogum, Germany (TGPO) from end of 2009 to
the begin of 2019.

Before the TVAR estimation can be performed, data jumps, data holes and trend must
be removed from the observations. To eliminate the jump in the time series, all observations
on the left side of the data jump are reduced by their mean value and the same is carried
out for the right-side observations. The data gaps are interpolated by third-order splines.
In order to establish the stationarity of the time series, each observation is reduced by
its predecessor:

Ŝt = St − St−1.

The offset of the resulting time series is eliminated by subtracting with the median of
the time series. The result is shown in Figure 2.
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Figure 2. Reduced time series Ŝt. This is created from the time series St by removing the data jump,
extrapolating the data gaps and eliminating the trend.

In order to validate and compare the TVAR estimates later, we estimate time-stable
AR(3) processes for a sliding window with the width of 100 observations. The roots of the
AR(3) processes are shown in Figure 3. The time course goes from dark blue to light red,
thus illustrating the temporal variability of the roots.

Figure 3. The roots of stationary AR(3) processes from each 100 consecutive observations. Here, the
same-colored points correspond to the evaluation of a window, and the color gradient represents the
temporal assignment.

Now, the TVAR(3) process is estimated: On the one hand, this can be established via
the direct method presented here for order 3 processes. The result is shown in Figure 4.
Here, the linear movement of the roots is shown in the same color gradient as in Figure 3;
the progress of the window had been displayed. For comparison, the roots from Figure 3
are shown as grey sequence in Figures 4 and 5.

On the other hand, the successive estimation method from [11] was used to describe
this time series. There are three ways to appreciate the TVAR(3) process:

1. Via three TVAR(1) processes.
2. Via a TVAR(1) process followed by a TVAR(2) process.
3. Via a TVAR(2) process followed by a TVAR(1) estimate.
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All three possibilities were realized and evaluated using the sum of squared residuals:

SSR =
eTe
n

.

Here, et = Ŝt − α1(t)Ŝt−1 − α2(t)Ŝt−2 − α3(t)Ŝt−3 is the error that occurs in the
TVAR(3) estimation, and n is the number of errors per estimate. Method 3 had the smallest
SSR, and was therefore used for the comparison. The resulting root movement is again
contrasted with the result from the windowing and is shown in Figure 5.

Figure 4. Time course of the roots according to the direct TVAR(3) estimate.

Figure 5. Time course of the roots according to the best-fitted successive TVAR(3) estimate.

In Figure 4, it can immediately be noted that the root motion of the direct calculation
moves longitudinally through the roots of the windowing, while the roots of the successive
estimation in Figure 5 show little movement and do not lie in the middle of the roots of the
windowed version. Over time, the beginning and end points of the successive estimation
are quite accurate in the first and last window, but the course of time is almost completely
overlooked. The time course of the direct estimation has been approximated well by its
counterpart.

5. Conclusions and Outlook

In this elaboration, a method has been developed which allows for TVAR(3) processes
with linear root movements to be turned into estimates without sequential procedures.
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For this purpose, the TVAR(3) estimation was extended by three nonlinear conditions to
obtain linear root motions. In an application, it was shown that the solution obtained by
the direct estimation of a TVAR(3) process with linear root movements better fits the data
than the successive estimation of TVAR(1) and TVAR(2) processes. Therefore, the method
set out here shows a useful extension of the TVAR process estimation with linear root
motions. In further studies, the conditions for the TVAR(4) process can be determined to
expand the evaluation possibilities. Polynomial degrees higher than 4 are not possible.
This follows from the realization that there is no way to analytically determine the roots for
these polynomials (see [14]).
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Abstract: Environmental demands around the world have led to an increasing interest in natural gas
due to its advantages over other hydrocarbons used in power generation, which has led to the search
for the best way to solve the transportation problem associated with this resource. In this paper, we
propose a methodology that allows us to address the non-convexity related to the Weymouth equation
that makes the optimization problem so difficult. The mentioned equation, in charge of relating the
flows through the pipelines and the pressures at the nodes, is characterized by having a discontinuity
in the form of a sign function. The proposal of this work is based on the use of Mathematical Programs
with Complementarity Constraints (MPCC) to achieve a good approximation since it allows make
certain continuous variables to behave as discrete variables in such a way that it is possible to avoid
having to pose a mixed integer programming problem and this one. This approach showed a smaller
approximation error (or at least equal) with other approximations used in the state of the art when
tested in three different networks: one of 8 nodes, one of 48 nodes tested in other related works, and
one of 63 nodes representing the Colombian natural gas transportation system.

Keywords: natural gas; Weymouth equation; discontinuous functions; MPCC

1. Introduction

Natural gas, as an energy source, has achieved great relevance worldwide in recent
years due to two fundamental causes: Firstly, it allows reliable supply and continuous
development supporting economic growth, which is highly related to energy consump-
tion [1]. Secondly, the low greenhouse gas emission of natural gas makes it attractive for
environmental care and sustainable development.

According to a study from 2020, the global demand for natural gas was 1788 billion
cubic meters (bcm) in the same year, and the 2040 projection reached 2142 bcm, despite the
new regulations for consumption decrease in Europe and the Middle East [2]. Particularly
for Latin American countries, constituting the largest consumers of domestic natural gas,
the statistics rise from 96 bcm in 2020 to 148 bcm in 2040. For most above countries, natural
gas must also counteract the reduction of hydroelectric generation during dry seasons
while supplying residential, commercial, and industrial demands [3]. Hence, there is a
need for natural gas systems that fully supply all kinds of demand at a minimal fuel.

In general, natural gas systems are composed of four fundamental elements: injection
fields (or re-gasification plants), providing the fuel at regulated pressure; gas pipelines,
transporting the gas from sender to receiver nodes; compressors, raising the input-to-output
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pressure; and end users, establishing the fuel demand. Several authors have proposed
different ways to model the above elements and their interconnections, thus supplying the
demand through optimization techniques [4]. Though the extensive work on each element,
the gas pipelines remain a rather complex modeling problem since the physical relationship
between the pressures at its ends and the flow through it, known as the Weymouth equation,
holds a sign function determining the flow direction. As a nonconvex and discontinuous
equality constraint, such a function poses a strong challenge in optimization [5].

The challenge imposed by the Weymouth equation promoted the development of opti-
mization approaches with mathematical complexities without compromising the computa-
tional cost [6]. The first family of approaches turned the signum function into a linear com-
bination with binary auxiliary variables yielding a mixed integer optimization problem [7].
Despite integrating discontinuities, mixed integer optimization problems present a signifi-
cant source of nonconvexities reducing the probability of reaching a global optimum [8].
Further, the computational complexity of mixed integer programming is considerably
larger than other optimization approaches [9]. As another solution, optimization through
heuristic algorithms straightforwardly deals with nonlinear constraints [10]. However,
their high sensitivity to initial conditions leads to suboptimal solutions [9]. Linearization
and convexification strategies relax the Weymouth constraint reducing the computational
complexity [11]. For instance, the binary auxiliary variables weigh piecewise linear func-
tions that approximate the nonlinearities [12]. Another linear approximation relies on the
Taylor series to replace nonlinear equations with a series of linear inequalities [13]. As an
example of relaxation through convexification, the Second-order cone (SOC) programming
introduces continuous and binary auxiliary variables and guarantees a global optimum on
the approximation [14]. More recently, a polynomial regression holding odd coefficients
approximates the Weymouth equation, its first and second derivative at the ends of a
predefined operating interval [15]. Despite the reduced complexity and compatibility with
conventional solvers, previous strategies result in Weymouth approximations that infringe
on physical pipeline behavior, some of them to a great extent.

For reducing approximation errors, this work formulates the Weymouth equation in
terms of mathematical programming with complementarity constraints (MPCC) that, in-
stead of imposing an equality constraint, solves an optimization problem. MPCC expresses
the signum function as an optimization problem with linearly constrained continuous
variables behaving as binary, with two advantages: Firstly, the gas transport optimization
avoids solving a complex mixed integer problem [16]. Secondly, MPCC not only constrains
the original problem, but also minimizes the Weymouth approximation error.

The paper agenda is as follows: Section 2 describes both the objective function and
constraints in the optimization problem. Section 3 proposes the problem solution using
MPCC for modeling the Weymouth equation. Section 4 compares proposed MPCC against
three Weymouth approximation approaches for 8-node, 48-node, and 63-node networks,
the latter a case study of the Colombian gas transportation system. Finally, Section 5
concludes with the main findings and proposes future work.

2. Problem Formulation for Natural Gas Transport

The natural gas transmission network can be represented as a directed graph G = (N ,E),
where the set of vertices N corresponds to the system nodes. The nodes with gas injection are
known as wells, denoted by W ⊂ N , with an associated gas flow f w

I . The nodes demanding
gas are known as users, U ⊂ N , holding an individual cost for diversified loads. Due
to the operational rationing scenarios, this study considers a virtual flow f u

R at each user
accounting for the unsupplied gas demand. For simplicity, nodes cannot be wells and users
simultaneously, i.e., W ∩U = ∅. The set of directed edges E = {(n, m) | n, m ∈ N} connect
node pairs through two kinds of transmission elements, pipelines T ⊂ E , and compressing
stations C ⊂ E . Note that edges must necessarily correspond to either a pipeline or a
compressor, that is, T ∪ C = E ,T ∩ C = ∅. Since gas pipelines admit bidirectional flow
f t
T : ∀t ∈ T , the edge direction is arbitrarily chosen, being f t

T positive when flowing in the
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chosen direction and negative otherwise. For gas flow through compressors f c
T : ∀c ∈ C, the

values must always be positive, as bi-directional stations are not considered.
Since the objective of natural gas transport is supplying the user’s demand at the

lowest cost, the optimization problem in Equation (1) takes place by including the following
operation costs: Cw

I for injecting gas into the system by production wells, Ct
T for pipeline

transportation, Cc
T for pressure boosting by compressing stations, and Cu

R for unsupplied
demand penalties. The set F = { f w

I , f t
T , f c

T , f ni
R } gathers all flows as decision variables for

the optimization problem. Hence, each term in the summation becomes a function of the
number of natural gas units used in its respective element.

min
F ∑

w∈W
Cw

I f w
I + ∑

t∈T
Ct

T f t
T + ∑

c∈C
Cc

T f c
T + ∑

u∈U
Cu

R f u
R (1)

To mathematically model the technical limits and the physical behavior, the optimiza-
tion problem objective function considers the following constraints: Equation (2) limits
the flow injected by the production wells to its technical maximum/minimum injection
capacity Fw

I /Fw
I . Equation (3) truncates the pipeline capacity at the structural maximum

Ft
T and allows bidirectional flows. Equation (4) considers the maximum compression

through the output-to-input pressure ratio βc, resulting in a linear inequality constraint.
Pn and Pn technically bound node pressures pn in Equation (5). Regarding the rationing,
Equation (6) limits the unsupplied demand between the desired zero and the respective
user demand Fu

D. Finally, two equalities guarantee the physical behavior of the gas in the
system. Equation (7), termed nodal gas balance, linearly matches each node’s injected with
ejected gas. The Weymouth equality in Equation (8) ties the pressure at two nodes with the
flow through the pipeline connecting them using a structural constant Kij. Particularly, the
Weymouth constraint is nonlinear, nonconvex, and disjunctive due to the sign function.

Fw
I ≤ f w

I ≤ Fw
I , ∀ w ∈ W , (2)

−Ft
T ≤ f t

T ≤ Ft
T , ∀ t ∈ T , (3)

pm ≤ βc pn, ∀c = (n, m) ∈ C, (4)

Pn ≤ pn ≤ Pn, ∀ n ∈ N , (5)

0 ≤ f u
R ≤ Fu

D, ∀ u ∈ U , (6)

∑
m:(m,n)∈E

f m = ∑
m′ :(n,m′)∈E

f m′
, ∀ n, m, m′ ∈ N , (7)

sgn( f t
T)( f t

T)
2 = Kij(p2

i − p2
j ), ∀t = (n, m) ∈ T (8)

3. Problem Solution Using Complementarity Constraints for Nonconvex Functions

The sign function in Section 2 poses a challenge for conventional optimization ap-
proaches due to its non-derivability, non-linearity, and nonconvexity. This work proposes to
deal with such a challenge using the mathematical technique of Mathematical Programs with
Complementarity Constraints (MPCC). Complementarity refers to a relationship between
variables where one or both must be at their bound, modeling mutually exclusive situations
without the need for binary variables. Here, MPCC turns the discontinuous sign function
into bounded continuous variables resulting from the optimization problem with the com-
plementarity constraints in Equations (9) to (14). The Equations (9) to (14) indicate that when
f t
T is positive, f+ will be positive and equal in magnitude to f t

T , while f− would necessarily
be zero. Otherwise, when f t

T is negative, it will be f− that takes the value in magnitude
of the transport flow of interest and f+ that adjusts its value to zero. The Equation (14), in
either of the two cases above, guarantees that the variable y takes the value of 1 if the sign

373



Eng. Proc. 2023, 39, 91

of f t
T is positive or −1 if the sign of f t

T is negative. Note that the proposed solution avoids
the formulation of conventional mixed integer optimization approaches [17].

min
y

− y f t
T (9)

s.t. f t
T = f+ − f− (10)

f+ ≥ 0 (11)

f− ≥ 0 (12)

f+ f− = 0 (13)

f+(1 − y) + f−(1 + y) = 0 (14)

To solve the resulting optimization problem, we resorted to the IPOPT solver, which
is characterized by its use of a Primal-Dual Barrier Approach. This method works by
converting the model into an unconstrained optimization problem, using a barrier function
to penalize solutions that do not satisfy the constraints of the original problem. This
algorithm allows convergence starting from poor initial points and incorporates a line-
search filter, an important feature that helps to ensure progress towards a solution at each
step by using the Armijo condition as a criterion. This condition requires that the objective
function decreases by a sufficient amount relative to the step length. If the step is not
sufficiently successful, the line-search filter reduces the step length and the algorithm
takes a smaller step [18]. The main feature of this algorithm is that it finds the solution
to the problem by moving through the feasible solution region using a central path [19].
Additionaly this solver incorporates a variation of the original algorithm that solves both
the primal and dual problems, which has shown superior performance compared to the
standard version of the algorithm in practice [20].

4. Case Study

This work tests the efficiency of the proposed approach in three cases: A small sys-
tem with one closed trajectory, a 48-node system with several closed trajectories, and a
63-node system representing the Colombian natural gas system. All cases were tested in
Google Colab notebooks using the Gekko optimization tool [21] to implement the internal
complementarity constraints for the sign function.

To validate the performance of the solution obtained by the proposed approach, it was
compared with three approaches used in the state of the art to solve this same problem:
replacing the equality constraint with a series of linear inequalities using the Taylor Series
method [13], convexifying the problem using second-order cone programming (SOC) [14]
and approximating the equation in a defined interval using a polynomial of degree five
with odd coefficients only [15].

To compare the proposal presented in this study with other approximations, it was
decided to take the solution obtained with each solver and evaluate it in the Weymouth
equation equated to zero, so quantifying the approximation error.

4.1. 8-Node Natural Gas System

In the first instance, an 8-node database (Figure 1) was used for the study for two
main reasons. The first is that being a small network, it presented an additional facility
when corroborating the results. Despite the above, this network had a closed trajectory, an
additional difficulty since it required the use of bidirectional pipelines, making it a very
good starting point for the different approaches used.
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Figure 1. 8-node natural gas system.

The optimization problem was solved using each of the four approaches. None of
the results obtained had to reach the point of rationing the hydrocarbon and, as shown
in the Table 1, in three of them the result of the objective function was the same. Apart
from the value of the objective function, which represents the operating cost of the system,
in this study, it is of interest to know how good the solutions achieved with each of the
approaches are. To understand it better, it can be seen that each of the pipelines has an
associated equation of form Equation (8), so if the respective pressures and flows of these
elements obtained when the problem was solved are taken, each Weymouth equation can
be evaluated in order to quantify the amount of error in the approximation.

Table 1. Value of the objective function using each approach in each system.

System Taylor SOC Polynomial MPCC

8-node 194,133 194,133 229,169 194,168

48-node 11,095,000 11,095,000 11,099,349 13,121,240

63-node 4,517,783 4,517,783 - 4,704,223

The boxplots in Figure 2 contain the resulting values when the solution obtained
by each of the respective approximations was evaluated in the equation equal to zero,
i.e., the value to which it should ideally tend. Here a paired test yielded that the MPCC
approximation gave the smallest error.
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Figure 2. Absolute approximation error in Weymouth equation for the 8 nodes network. The boxplots
illustrate the error dispersion for each considered approach. The whiskers bound the error first and
third quartiles, and the circles denote outlying approximation errors.
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4.2. 48-Node Natural Gas System

The second tested case is the 48-node database used by [22], among other authors in
state of the art. This network, which can be seen in Figure 3, is composed of 9 injection
fields, 8 compressor stations, and 22 gas demand nodes. This system was selected since its
structure has several loops, which represent an additional difficulty in the solution of the
problem and therefore it is a good way to test the robustness of the tested models.

Figure 3. 48-node natural gas system [23].

Unlike the previous system, in this case, all approaches performed quite similarly in
terms of the value of the objective function. Table 1 shows how the difference between
approaches was practically negligible. Despite the above, this behavior was not maintained
in the results obtained when the errors of the approaches were compared. As seen in
Figure 4, the approximation using the Taylor series presented the highest error, followed
by the polynomial approximation. In this case, the error presented by the Taylor series
and MPCC was quite similar, being a statistical test the one that determined that the latter
approach had a significantly lower error.

In this case, it is necessary to highlight the increase in error values with respect to
those obtained in the 8-node network due to the difference between the systems. The
fact of not only having many more elements but also connecting them in more complex
configurations is a sample of how the difficulty of this type of optimization problem has
quite a high scalability, forcing it to have sufficiently robust models for its solution.

4.3. 63-Node Natural Gas System

The third network corresponds to the Colombian natural gas injection and trans-
portation system illustrated in Figure 5. This system is composed of 13 injection fields,
14 compressor stations, and 26 consumer nodes. Despite being radial, this system considers
gas pipelines with bidirectional flows since the change of gas demanded throughout the
year is related to the country’s meteorology. For this case, the system introduced in [15] was
updated in the Atlantic coast region by grouping elements and fixing the new operational
constraints. These changes resulted in a new system with a total of 63 nodes.

Figure 6 presents the absolute errors in approximating the Weymouth equation for the
63-node system. The first observation from the results is that the polynomial approach fails
to converge, probably because the optimal flows and pressures fall outside the Weymouth
approximation interval. Secondly, the errors for this system are lower than those for the
previous one, mainly due to lacking closed trajectories that alleviate the complexity. In
terms of performance, despite reaching a cost function value about 4% more expensive,
the proposed MPCC-based solution significantly decreases the error on the Weymouth
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approximation compared to Taylor and SOC. Lastly, it is worth noting that MPCC yields two
outlier errors, almost five orders larger than the average. After a manual exploration, we
found the same outlying errors in Taylor and SOC at two pipelines between compressors.
We hypothesize that the pressures at the ends and the flow through the pipe are over-
constrained, so the solvers only accomplish the linear relationships of compressing ratios
and gas balance instead of the complex Weymouth equation. Therefore, the MPCC-based
solution provides more realistic gas transportation solutions due to a systematical reduction
of Weymouth approximation errors.
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Figure 4. Absolute approximation error in Weymouth equation for the 48 nodes network. The
boxplots illustrate the error dispersion for each considered approach. The whiskers bound the error
first and third quartiles, and the circles denote outlying approximation errors.

Figure 5. 63-node natural gas system (Colombian system).
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Figure 6. Absolute approximation error in Weymouth equation for the Colombian network. The
boxplots illustrate the error dispersion for each considered approach. The whiskers bound the error
first and third quartiles, and the circles denote outlying approximation errors.

5. Concluding Remarks and Future Work

This work proposed a solution for dealing with the Weymouth equation within the
framework of natural gas transportation through complementarity constraints. MPCC
formulated the nonconvex signum function in the Weymouth equation in terms of continu-
ous bounded variables instead of binary ones, avoiding mixed integer programming. The
proposed solution was contrasted against Taylor series, SOC, and polynomial approaches
regarding the absolute approximation error at three study cases: An 8-node network with
one closed trajectory, a 48-node network with multiple closed trajectories, and a 63-node
radial network representing the Colombian gas transportation system. For experimental
integrity, the IPOPT library solved all programming problems for all contrasted approaches.
Experimental results evidenced that the proposed MPCC solution attained an approxima-
tion error smaller than contrasted approaches. Therefore, approximating the Weymouth
equation using MPCC yielded pressures and flows satisfying the technical limits and
physical behavior demanded by natural gas transportation problems.

For future work, we devise the following research directions. Firstly, the problem
formulation will be extended to stochastic programming for natural gas transportation sce-
narios without a deterministic demand. Such scenarios are common for power generation
that relies heavily on hydroelectric inputs and thermal power plants to fulfill the remaining
demand. Secondly, a study of potential expansion plans must be conducted by evaluating
various investment options in a robust and reliable solution for gas optimization problems.
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Abstract: This study suggests using wearable activity trackers to identify mobility patterns in chronic
complex patients (CCPs) and investigate their relation with the Barthel index (BI) to assess functional
decline. CCPs are individuals who suffer from multiple, chronic health conditions that often lead
to a progressive decline in their functional capacity. As a result, CCPs frequently require the use of
healthcare and social resources, placing a significant burden on the healthcare system. Evaluating
mobility patterns is critical for determining a CCP’s functional capacity and prognosis. To monitor
the overall activity levels of CCPs, wearable activity trackers have been proposed. Utilizing the data
gathered by the wearables, time series clustering with dynamic time warping (DTW) is employed to
generate synchronized mobility patterns of the mean activity and coefficient of variation profiles. The
research has revealed distinct patterns in individuals’ walking habits, including the time of day they
walk, whether they walk continuously or intermittently, and their relation to BI. These findings could
significantly enhance CCPs’ quality of care by providing a valuable tool for personalizing treatment
and care plans.

Keywords: Barthel index; chronic complex patients; dynamic time warping; functional decline;
mobility patterns; time series clustering

1. Introduction

Chronic complex patients (CCPs) are characterized by a set of comorbidities that often
lead to progressive functional decline, as well as increased use of healthcare and social
resources. In addition, CCPs tend to be older adults with a high degree of polypharmacy,
which can exacerbate underlying health conditions. The assessment of functional decline
in CCPs can be an important tool for healthcare professionals to tailor treatment and care
for these patients.

The mobility patterns observed in CCPs are linked to their functional capacity, de-
termined by the Barthel index (BI) and, consequently, to their prognosis [1,2]. Given that
modifications in CCPs’ mobility patterns can indicate changes in their functional status,
they can serve as valuable prognostic factors. Therefore, the BI has been identified as a
reliable measure of CCPs’ functional capacity and prognosis, highlighting the crucial role
of mobility patterns in assessing and predicting CCPs’ clinical outcomes.
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Taking this into account, the aim of this study is to examine the relationship between
declining mobility and alterations in a patient’s clinical status. Given the importance of
measuring activity levels, wearable activity trackers are proposed to assess the mobility of
CCPs. In particular, the research sought to evaluate the various mobility patterns, derived
from the data gathered, of CCPs and their connection to the BI. To accomplish this goal,
the study was designed as a descriptive study. Ethical approval was obtained from the
regional health organization before the study began.

The combination of synchronized mobility patterns with the BI is a unique and original
approach that allows healthcare professionals to identify temporal variations in patient
movement and underlying factors affecting patient mobility.

The study presented in this paper is part of the chronic-IoT project, which is a coordi-
nated effort funded by the Ministry of Science, Innovation and Universities, through the
2019 Research Challenges call of the State Research Agency (ref. PID2019-110747RB-C21).
With a duration of 36 months, from June 2020 to the end of May 2023, the work conducted in
chronic-IoT is based on the development and validation of behavioral models, based on ma-
chine learning (ML) and the IoT environment, to predict changes in the functional capacity
of CCPs through the analysis of mobility patterns measured by activity wristband devices.

This collaborative project involved the participation of two institutions in Spain: the
Virgen del Rocío University Hospital (HUVR) in Seville and the Institute for Research in
Technology (IIT) at ICAI School of Engineering (ICAI) of Universidad Pontificia Comillas
in Madrid. As a coordinator, HUVR played a crucial role in the project, leveraging its
expertise in healthcare to contribute to the research objectives. Meanwhile, IIT at ICAI
brought its technological knowledge and research capabilities to the table, complementing
HUVR’s strengths.

The present paper is organized as follows: Section 2 provides a literature review
of prior research studies that investigated the utilization of wearable activity trackers
and DTW time series clustering in medical contexts. Section 3 outlines the methodology
employed in the research concerning data collection, data pre-processing and time series
clustering. Section 4 presents the findings of the research, which are then followed by the
conclusions in Section 5.

2. Literature Review

Over the years, the use of wearable activity trackers has garnered significant attention
in the healthcare industry, particularly in the assessment of the physical conditions of pa-
tients. There have been many approaches to try to relate physical condition and wearables.
Specially, as mentioned in [3], patient monitoring and behavioral changes are two main
topics regarding the use of wearables in medical research. Wearables have the potential to
provide continuous, objective, and non-invasive monitoring of a patient’s physiological
parameters. Moreover, the validity of the measures taken by the wearables have been
studied regarding steps taken [4], heart rate [5] or sleep quality [6]. Combined, this type of
technology can aid in the early detection and management of chronic diseases, improving
the overall health outcomes of patients.

As previously noted, two of the most extensively studied areas are patient monitoring
and behavioral changes. Numerous studies have investigated the utility of wearable activity
trackers as a tool for monitoring patient information. Within this domain, some studies have
examined the feasibility of using wearables to monitor patients during rehabilitation [7,8].
Additionally, other studies have explored how data collected by wearable activity trackers
can be leveraged to provide feedback that facilitates faster planning and intervention [9].

In the context of research on behavioral changes in relation to wearable technology,
the most commonly explored approach involves investigating whether wearable activity
trackers have a positive effect on physical activity [10]. However, there are relatively few
articles that focus on the relationship between the data collected from wearables and the
deterioration of patient health [11].
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Regarding the wearable device used in this study, a commercially available device was
utilized instead of a medical one. Similarly, ref. [12] examined the acceptance and usage
of commercially available wearable activity trackers among adults over 50 with chronic
illnesses. The study found that while participants generally perceived the devices as easy
to use, they identified challenges in maintaining sustained use.

On the other hand, ML is considered one of the most prominent fields in light of the
development of data-driven solutions aimed at gaining a better understanding of a variety
of problems. In recent years, the utilization of ML has experienced exponential growth
across diverse domains, including healthcare [13], finance [14], and marketing [15]. Among
the different ML techniques available, time series analysis is the most relevant area for this
paper’s objective, characterizing time variable mobility patterns. DTW is a widely adopted
metric for measuring the distance between time series data, even if there are differences
in length or phase. Originally introduced in the field of data mining [16], DTW has found
numerous applications in various domains, including speech recognition and medicine.

In the field of biomedical signal processing, it has been used to analyze electrocar-
diograms (ECGs) to classify ECG frames [17,18]. In addition, DTW has been employed
to cluster EEG waveforms, and has been demonstrated to be effective in discriminating
between waves with minor disparities in frequency, amplitude, peak location, or initial
phase [19]. In comparison to other methods that rely on waveform features or peak-aligned
difference computation, DTW resulted in more homogeneous clusters, as demonstrated in
experimental studies involving stimulated and actual EEG data.

DTW has also shown promise in applications related to human movement analysis,
such as gait analysis. For example, ref. [20] used DTW to compare the gait patterns of
patients with Parkinson’s disease and healthy controls, identifying significant differences
between the two groups.

In addition, to the best of our knowledge, the methodology that integrates pattern
mobilities with the BI represents a distinctive and original approach. Furthermore, a novel
methodology based on cross-correlation is proposed for the synchronization of DTW mo-
bility patterns, which are treated as circular data. This method allows for the identification
of temporal variations in the movement of patients and enables the creation of a synchro-
nized representation of these patterns, providing insights into the underlying factors that
contribute to patient mobility. By utilizing this approach, healthcare professionals can
better understand the progression of patient mobility and develop effective interventions
to enhance patient outcomes.

3. Methodology

This section describes the methodology used to obtain the study results. It covers data
collection and data pre-processing including aggregating and smoothing to generate the
mean and coefficient of variation (CV) mobility profiles. These profiles are clustered using
a K-means clustering algorithm based on DTW distances and a decision tree analysis is
used to understand obtained patterns.

3.1. Data Collection

During the first phase of the study, patients were recruited based on their BI scores,
measuring a patient’s ability to perform daily activities whereby higher scores indicate
greater independence.The patients were divided into three groups based on their BI scores:
those with total dependence (A) (BI ≤ 20), severe dependence (B) (BI in (20,60]), and
moderate/mild dependence or independence (C) (BI > 60). The study included a total of 36
patients from the Internal Medicine Department of the Virgen del Rocio University Hospital
of Seville, all of whom met the criteria of chronic patients with complex health needs defined
according to the Integrated Patient Care Process of the Andalusian Ministry of Health.
Patients in a situation of agony, those with limited vital prognosis, and psychiatric or
neurodegenerative diseases were excluded from the study. Moreover, some patients were
excluded from the analysis due to a lack of data.
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Out of the considered participants, 64% were male and 36% were female. It was found
that 16/36 (≈44%) of the patients had BI of type B, while the other 20/36 (≈56%) had an BI
of type C. No patients of index A were considered due to the limited range of movement.
The mean age of male participants was 75.78 years (SD = 7.15), while the mean age of
female participants was 74.69 years (SD = 9.82).

The second phase of the study involved the implementation of an Internet of Things
(IoT) infrastructure to collect patient mobility measures. After careful consideration, the
most appropriate technology for their needs was selected. The IoT-based infrastructure
consisted of wearables to measure the mobility activities of patients, with a focus on
minimizing disruption to their daily routines. Wearables allowed the researchers to measure
physical activity through the number of steps taken, cardiac activity and the sleep time of
the 36 patients in the study.

3.2. Data Pre-Processing

As previously indicated, the wearable activity tracker is capable of collecting infor-
mation on a patient’s number of steps taken, heart rate, and sleep duration. The device
automatically captures the number of steps and heart rate at irregular intervals, which are
subsequently aggregated into fixed intervals to maintain consistent data granularity.

3.2.1. Activity Profiles Based on the Mean

To generate the mean activity profiles, the number of steps taken are added in one-hour
intervals, and the median heart rate is computed for the same interval. Additionally, in an
attempt to ensure data quality, in cases where the median heart rate is missing, the number
of steps is also marked as empty. This procedure is implemented because a null heart rate
value might indicate that the wearable device is not properly positioned, thereby possibly
resulting in inaccurate measurements. In terms of sleep data, the activity tracker provides
daily information on the total duration and quality of sleep, which is further categorized
into multiple variables.

Based on data collected every hour over multiple days per each patient, the mean
step profile is constructed. The mean steps profiles are generated after smoothing the time
series. In order to smooth the time series, a centered rolling window with a size of three
is computed. After this, data is grouped by the hour such that each patient has a mean
representation of their activity throughout a 24 h period. The resulting data allows us to
gain insights into a CCP’s physical activity levels and obtain a more accurate picture of
their daily activity patterns as shown in Figure 1.

Figure 1. Generation of the 24 h mean profiles for CIOTC5.

Furthermore, it is worth noting that, given that the objective of the study is to under-
stand mobility patterns and not just the raw number of steps, it is necessary to normalize
the mean step count curves in order to compare them across the patients. This difference
is even more noticeable between patients with a BI of type B and type C, as the latter
group tends to have a much higher mean step count volume (Figure 2). To address this, a
normalization process was performed by subtracting the minimum value and dividing by
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the range (max–min). This transformation ensures that all values fall between 0 and 1 for
each patient.

Figure 2. The distribution of steps per day and CIOT after the application of a moving average.

Given that sleep data are only available on a daily basis, the median values were
computed for each patient to obtain a general representation of their sleep patterns and
quality. Among all the available sleep-related data, the focus was on the median amount of
sleep, which was further divided into deep sleep, shallow sleep, REM and wake time, as
well as the median bedtime and wake-up time. These variables provide insight into the
overall sleep patterns of the patients, including the duration and quality of their sleep, as
well as their sleep–wake cycle.

3.2.2. Activity Profiles Based on the Coefficient of Variation

In addition to the 24 h mean profiles presented earlier, the CV profiles were also
incorporated. Specifically, for each day in the dataset from 00:00 to 23:59, the CV was
calculated for each day and hour-based on the aggregated 5 min data, and then the median
was computed for all hours for a given patient.

To obtain smoother profiles, a centered moving average with a window size of three
was applied to the 24 h CV profiles. As a result, each curve represents the smoothed median
CV for each hour and patient. Missing values are assigned for cases where there is no
movement during a specific hour or when the mean is zero.

3.3. Time Series Clustering Using DTW

Time series clustering is a powerful analytical technique used to identify patterns and
relationships among time series data. By grouping similar time series together, this method
can help extract meaningful insights and reveal underlying patterns that may not be visible
when examining individual series in isolation.

In this case, since the goal is to generate mobility patterns based on the normalized
average hourly profiles for each patient, a temporal clustering algorithm was used to
identify existing mobility patterns. For this study, the time series K-means algorithm from
the tslearn library was applied, as it is widely regarded as a standard in the literature [21,22].
However, it is important to note that other methods could have been considered as well.

It is essential to highlight that time-shifts are insignificant within a certain range of
maximum hours, as the goal is to create mobility patterns independent of the specific
hour and primarily based on shape. Therefore, DTW is the preferred distance function to
measure the similarity between time series.

DTW evaluates the similarity between two time series by finding the best alignment
between them, which involves time-axis stretching or compressing. This method is well-
suited for the current study, as a group of patients may demonstrate similar mobility
patterns with only slight variations in time. Given this scenario, a Sakoe–Chiba [23] radius
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of 3 h was considered as mobility patterns may be slightly out-of-sync by a few hours, yet
still exhibit significant differences between the morning and afternoon.

To synchronize time series data following the creation of clusters, cross-correlation
was employed to determine the optimal time lags for comparing both series. The objective
was to move the mobility patterns through the time-axis in order to find the best alignment
in terms of correlation. Cross-correlation is a mathematical function that measures the
similarity between two signals as a function of the time lag applied to one of them [24].
Once the optimal time lag has been determined, the time series can be synchronized by
shifting one of the series by the optimal time lag.

When examining the mobility patterns of individuals, it is useful to consider the
average mobility patterns over a 24 h cycle. However, due to differences in individual sleep
and work schedules, these patterns may not necessarily align perfectly with each other.
This can result in a phase shift, where the 24 h cycle of one individual is shifted forward or
backward relative to another individual.

To account for these phase shifts, it is useful to treat the 24 h cycle as circular data.
In circular data, the end of the cycle precedes the beginning, forming a continuous circle
rather than a linear sequence. This allows for the accurate representation of phase shifts
and the analysis of cyclic patterns as observed in Figure 3.

Figure 3. Cross-correlation synchronization of DTW clustering.

4. Results

This section presents the mean mobility patterns resulting from the application of
DTW time series K-means. Additionally, the clusters derived from the CV profiles are
presented. Finally, a comparison of cluster members is made to better understand the
relationship between the distribution of steps and walking behavior.

4.1. Clustering Mean Activity Profiles

After running the time series K-means algorithm considering the DTW clustering
distance and a Sakoe–Chiba radius of three, six clusters were selected using the elbow
methodology. The mobility patterns acquired are shown in Figure 4. According to Table 1,
cluster 3, which represents patients with a more stable daily mobility pattern, appears to be
associated with a BI of type C.
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Table 1. Distribution of sample percentages across Barthel types within each of the most populated
clusters.

Cluster Nº Samples CIOTB CIOTC

Cluster 0 4 50% 50%

Cluster 1 8 50% 50%

Cluster 2 13 46% 54%

Cluster 3 7 14% 86%

Figure 4. Comparison of the clusters of mean and coefficient of variation (CV) activity profiles.
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To investigate this relationship further, a decision tree was trained to predict the cluster
to which a given patient belongs based on their sleep and mobility patterns (see Figure 5).
By examining the splits made by the decision tree, it is possible to gain an insight into the
different mobility patterns present in the dataset. To optimize the hyperparameters of the
decision tree, a stratified K-fold approach was used with k = 5, accounting for both the
criterion (gini or entropy) and the minimum impurity decrease. Our analysis revealed that
the optimal hyperparameters for the decision tree were gini as the criterion and a minimum
impurity decrease of 0.06.

Figure 5. Decision tree for patient classification into the four main clusters.

The features considered in the tree were the median sleep time, (divided into deep
sleep, shallow sleep, REM, and wake time), the median hour of sleeping, the median hour
of waking up, and the mean normalized steps divided into four sections: Dawn [0, 6],
Morning [7, 13], Afternoon [14, 19], and Night [20, 24]. Note that normalized steps were
used here; therefore, how much each patient was walking during the afternoon relative to
their overall walking patterns was evaluated.

It was discovered that the primary disparity between the clusters was the average
normalized steps taken during the afternoon. When fewer steps were taken during the
afternoon, the patient was categorized into cluster 1. Following this division, patients were
classified based on the number of steps taken during the afternoon. If the normalized steps
taken during the afternoon exceeded 0.5, indicating considerable movement during that
time, patients were classified into either cluster 3 or 0, depending on their activity levels
during the morning. Conversely, patients who were not as active during the afternoon
were classified as cluster 2.

4.2. Clustering Coefficient of Variation Activity Profiles

The objective of the clustering analysis performed above was to characterize the
distinct patterns of mobility in terms of the average amount of walking by each patient
during each hour. However, these clusters lack information on the variability of mobility
within each patient. It is important to recognize that patients do not all walk in the same
way, and thus it is necessary to consider both the mean and variance for each hour. This
approach allows for discrimination not only by the amount of movement within each
hour but also by the type of movement performed, such as whether it is continuous
or interrupted. In cases where movement is interrupted during a one-hour span, the
standard deviation within the data collected every 5 min will be higher than in cases where
movement is constant, resulting in a standard deviation closer to zero.

To address these differences, a DTW time series K-means clustering was performed
based on the hourly median of the CV for every day. The analysis in Figure 4 and Table 2
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indicates the presence of two predominant patterns of physical activity with respect to the
CV. The primary distinguishing feature between cluster 0, predominantly composed of
patients with a BI of type B, and cluster 1, with patients having a BI of type C, is the reduced
variability in the duration of morning and afternoon walks. This finding suggests that
patients in these clusters may exhibit more consistent patterns of locomotion, as opposed
to a start–stop movement pattern.

Table 2. Distribution of sample percentages across Barthel types within each of the most populated
clusters.

Cluster Nº Samples CIOTB CIOTC

Cluster 0 17 59% 41%

Cluster 1 18 24% 76%

4.3. Relation between Mean and CV Profiles

To gain a better understanding of the correlation between clusters based on the CV and
24 h mobility patterns, reference can be made to the Sankey diagram presented in Figure 6.
It is noteworthy that patients in cluster 3 of the mean profiles appear to correspond to those
in cluster 1 of the CV profiles. Upon analyzing the decision tree depicted in Figure 5 and
the clusters shown in Figure 4, it becomes evident that patients with more stable movement
patterns, without significant differences between morning and afternoon, tend to walk in
a more continuous manner. Furthermore, there appears to be a relationship between the
BI and CV cluster. In an attempt to establish this relationship statistically, a two-sample
z-test for proportions was performed with a 90% confidence interval, resulting in statistical
significance [25].

Figure 6. Correlation between clusters predominantly populated by 24 h mobility patterns and the
cluster generated regarding the CV.

5. Conclusions

In this study, we analyzed the different patterns of mobility and their relationship
with the patient’s clinical status. Specifically, we intended to build a better understanding
of how CCPs move through the day and how it can be related to their BI.

To do so, a time series clustering algorithm was used using 24 h mean and CV profile
data using DTW as the similarity measure. It was found that there are four main patterns
of mobility, considering the mean profiles, depending on their levels of movement during
the morning and afternoon. Moreover, those clusters can be related to those obtained
using the CV patterns and it was concluded that patients with greater mobility during the
afternoon seem to have a more continuous way of walking rather than a start–stop pattern.
Specifically, those who tend to walk in a more continuous way were mostly related to a BI
of type C.

Overall, this study highlights the potential for using wearables to gather data on
patient mobility and clinical condition, which could be used to improve the care provided
to chronic patients with complex health needs. The study’s findings could contribute to the
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growing body of research on how technology can be used to monitor and improve patient
health outcomes.

Lastly, future research may further analyze the relationship between the information
provided by the activity tracker and the detection of patient degradation based on the
mobility patterns described in this study.
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Abstract: We present a sparsity-promoting RBF algorithm for time-series prediction. We use a time-
delayed embedding framework and model the function from the embedding space to predict the next
point in the time series. We explore the standard benchmark data set generated by the Mackey–Glass
chaotic dynamical system. We also consider a model of temperature telemetry associated with the
mouse model immune response to infection. We see that significantly reduced models can be obtained
by solving the penalized RBF fitting problem.

Keywords: skew-radial basis functions; reduced order models; sparse optimization; time-series
prediction

1. Introduction

Radial basis functions (RBFs) provide an attractive option for the fitting of data in
high-dimensional domains. They are appealing for their simplicity and compact nature
while enjoying universal approximation theorems suggesting, in principle, that they are
potentially as powerful as other methodologies. Traditional RBF expansions are of the form

f (x) = ∑
i

wiφ(‖x − ci‖) (1)

where f : R → R, and the function φ(·) is selected from a variety of options including func-
tions such as {r, r3, r2 ln r, exp(−r), exp(−r2), . . .} and placed at points {ci}. Unlike the
fully nonlinear optimization problems encountered with multilayer perceptrons, recurrent
neural networks, and deep convolutional networks, the weights in RBF expansions can be
determined by solving aleast-squares problem. The RBF centers {ci} can be found using a
variety of approaches including random selection, clustering, or nonlinear optimization.
The added property of skewness, introduced in [1], makes an RBF-based approach more
powerful at fitting asymmetric features in the data.

Skew-radial basis functions (sRBF) introduce the symmetry-breaking function si :
R → R for each center, i.e.,

f (x) = ∑
i

wisi(x; Di)φ(‖x − ci‖Wi ) (2)

The matrix Di consists of the skew shape parameters, and Wi is a diagonal weighting for
the Euclidean inner product.

Radial basis functions were introduced as an alternative to artificial neural networks
for function approximation based on the flexibility of the optimization problem [2]. They
have proven particularly useful for both reduced-order and adaptive, or online modeling
of data-streams. Given that the contribution of each individual basis function to the
complexity of the model is easily interpreted, they may be sequentially placed where
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they are most needed until the data are fitted [3]. Alternatively, one can employ linear
programming to adapt a model as changes are detected in the distributions of the data [4].
A comprehensive review of the RBF literature may be found in [5].

2. Sparse Skew RBFs

Building off of traditional RBF (1) and skew RBF formulation (2), we introduce sparsity
via L1 penalization for the number of centers via the solution of the optimization problem

min
{wi ,Wi ,Di ,ci}

∥∥∥∥∥y −
nc

∑
i=1

wisi(x; Di)φ(di(x, ci; Wi))

∥∥∥∥∥+ α
nc

∑
i=1

|wi| (3)

We follow the choices in [1] (Section 4.3) for choice of si and φ. The per-center inner product
and induced norm for a single center ci with u, v ∈ Rn are

〈u, v〉Wi = uTWiv ; ||u||Wi =
√
〈u, u〉Wi (4)

with a symmetric positive definite Wi. The metric is di(x, ci; Wi) = ‖x − ci‖Wi , and choice
of base RBF φ(r) = exp(−r2) unless stated otherwise. The skew functions si have shape
parameters that are optimized for each basis function. We specialize to skew matrices
which are diagonal; Di = diag(λi), λi ∈ Rn; so

si(x; λi) =
1
π

arctan(λT
i (x − ci)) +

1
2

(5)

so si : Rn → (0, 1). Using diagonal Di parameter matrix produces a skew which is
interpreted as having a direction and magnitude of effect; see Figure 1 for an illustration of
this idea with a single sRBF in R2.

Figure 1. Visualization of level sets a single skew RBF as in Equation (2) in R2 using W = I and
diagonal D = diag(� cos(θ), � sin(θ)). Setting � = 0 (D = 0) restores symmetry. Various θ and �

(vectors shown in panels) directly correspond to a direction and magnitude of asymmetry in the RBF.
Further shape control comes with choice of Euclidean W-norm (not shown).

We have solved the optimization problem in Equation (3) to compute a parsimonious
expansion given by Equation (2). For scalar time series, this is performed using a time-delay
embedding of the series {x1, x2, x3, . . . }, where the fitting problem becomes a map from an
l-dimensional embedding space to the next time-point of interest, e.g.,

xn+1 = f (xn, xn−T , xn−2T) (6)

where typically we choose l = 3, and T is a delay time for sampling the time series at
uncorrelated points. In this approach we are solving this optimization problem in batch
mode, i.e., we assume that the complete data set is available for training. This is in contrast
to [6], where RBFs are sequentially placed based on a statistical test, or in [4], where the
RBFs are placed incrementally for streaming data. Note that [4] also employs the one-norm
in the optimization problem, but it is solved using the dual simplex algorithm rather
than gradient-based methods we use here. The optimization problem in Equation (3)
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is readily solved in Python, via PyTorch, which provides automatic differentiation and
optimization tools.

3. Numerical Results

3.1. Details of Implementation

Each scalar time series is mean-centered using values from the training data prior to
time-delay embedding.

We use PyTorch as a framework to implement the mixed-objective loss (3). PyTorch
provides a large collection of tools for a user to define arbitrary loss functions and opti-
mization techniques. We subclassed torch.nn.Module, allowing us to pass a collection
of parameters and save the history during the learning phase. Updates were found us-
ing torch.optim.SGD with learning rate 0.1 and sometimes enabling Nesterov momen-
tum, though we expect the details of these choices have no noticeable impact on our
downstream conclusions.

The entirety of input/output training data (X, y) with X ∈ Rn×N , y ∈ RN (N samples)
are given to the module in the training phase (in contrast to online learning). For larger time
series, we trained using simple uniform random batches of 5% of the training data on each
iteration. Unless stated otherwise, the objective is the one-step prediction for yn := xn+1
based on input Xn := (xn, xn−T , xn−2T).

3.2. Mackey–Glass Revisited

We begin our exploration of the sparse skew RBFs by solving the optimization problem
given by Equation (3) for various parameter configurations. For this first numerical exper-
iment, we use the Mackey–Glass chaotic time series, a standard for benchmarking RBF
algorithms [3]. We employ 1197 points time-delayed and embedded into three dimensions
to predict the next point. We used 800 points for training, 200 points for validation, and
reserved an additional 195 for testing. In all our experiments, the prediction accuracies on
training, validation, and test data were very similar, indicating no overfitting was taking
place. Note that our current goal is to explore the behavior of the proposed algorithm for
different parameters, rather than perform a head-to-head comparison with other algorithms.
This frees us to select the modeling set-up from scratch and not be bound to choices made
in other papers. Here we take T = 1.

It is useful to explore the sparsity behavior of the model as a function of the parameter
α; we select the values shown in Table 1. All the results in this paper used 50,000 epochs
for training. In Table 1, we see that, as expected, the number of skew RBFs with weight
|Wi| > 1e−3 decreases with increasing α. Interestingly, for α = 0.002, we see a sharp drop
in the absolute value of the weights. The resulting model requires only two RBFs and has
relatively low error. Note that we also saw similar behavior with model size nc = 20,100.

Table 1. This table shows the variability of the model order (number of numerically nonzero sRBF
weights) as a function of the sparsity parameter α.

Number of Centers = 50

Sparsity α ‖w‖1 Train Acc Val Acc RBFs

0 26.84 0.0013 0.0012 50
0.0001 19.47 0.0009 0.0007 50
0.002 2.14 0.0024 0.0021 2
0.01 1.66 0.0036 0.0033 1
0.1 1.28 0.0177 0.0169 1

In Figure 2, we plot the absolute values of the skew RBF expansion weights wi sorted
in decreasing order. We see how the distribution of weights is impacted by the sparsity
parameter with α = 0.002 versus α = 0. Here, with the sparsity parameter α = 0.002, the
model selects two optimal RBFs that produce an error of 0.0021 versus the 50 skew RBF
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model (with α = 0) that results in an error of 0.0012. Interestingly, the 1-norm penalized
model with α = 0.0001 still uses 50 skew RBFs but has the smallest error of all the models.
In Figure 3 (top), we plot the model prediction that uses 50 RBFs and α = 0. In contrast, in
Figure 3 (bottom) we see the results of an RBF with two basis functions approximating the
Mackey–Glass time series. The smaller model fails to capture the positive extreme values,
but only 2 skew RBFs are used in contrast to 50 skew RBFs.

Figure 2. The parameter α can be seen here to promote sparsity. On the left, α = 0.002 and the number
of required skew RBFs is 2. On the right, we take α = 0 and there is no sparsity and 50 skew RBFs are
used in the model. See Figure 3 for the corresponding predictions.

Figure 3. The one-step prediction (blue) of the Mackey–Glass time series (red). The first 800 points
are training data. For both simulations we take nc = 50. Top: as expected, with α = 0, the solution
of the optimization problem requires 50 skew basis functions. Bottom: with α = 0.002 the sparse
solution only uses 2 skew RBFs.

We remark that this approach differs from the benchmarking in [6], where noise was
added to the data and the mapping used a four-dimensional domain. The approach used
in [6] requires the presence of noise since the approach employs a noise test on the residuals.
Here we are using an optimization that uses all the available data. This is in contrast to
methods that build the model in a streaming fashion, i.e., online, adding one point at a time
as they become available [4,6].
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3.3. Mouse Telemetry Data

The collection of data here are the result of experiments on laboratory mice conducted
by the Andrews-Polymenis and Threadgill labs [7–9]. The broad question is to identify
mechanisms of tolerance and understand the variety of immune response to a few specific
diseases in mice. The time series are the result of surgically embedding a device which
tracks internal body temperature (degrees Celsius) and activity (physical movements)
sampled at 1/60 Hz (once per minute). Mice are left alone for approximately 7 days, then
infected, and then further observed for an additional 7–14 days before being euthanized.
We focus on the temperature time series here.

The process of numerically finding a zero-autocorrelation time to find a delay for
TDE leads us to a delay T = 4 ∼ 6 h. Alternatively, a theoretical argument for studying
autocorrelation of the monochromatic signal sin(2πt/τ) leads to guidance of choosing
T = τ/4, i.e., one-fourth of the period. Assuming mice exhibit circadian behavior (a period
of 24 h), this agrees with numerical studies and so we use T = 24/4 = 6 h. The training
process and results of this process are visualized in Figure 4.

Figure 4. (Left): Decay of loss during training and diagram of associated time series. The mean-
square error quickly saturates while one-norm of weight vector w slowly decays. Only a handful
of non-zero model centers ||w||0 persist past the first 1000 iterations. (Right): Approximate mean-
normalization is applied, followed by a delay (blue region) for TDE. The model is trained on three
days of data (green region). The original time series (red, dashed) and model prediction of the learned
model (solid purple) are shown. Pointwise prediction error of x(t) is shown beneath. Parameters:
α = 0.01, nc = 21, T = 360, l = 3.

3.4. Other Applications
3.4.1. Iterated Prediction

We study how our sRBF implementation can be directly interpreted and how it can be
applied to anomaly detection. One method of evaluating the success of the trained model
is to study iterated prediction rather than repeated one-step prediction. Given an initial
training set, the task is to repeatedly feed the output of the model as new input; e.g.,

f (xt, xt−T , xt−2T) → x̂t+1 (7)

⇒ f (x̂t+1, xt−T+1, xt−2T+1) → x̂t+2 (8)

⇒ . . . (9)

The broad question is to ask, “Did the model in fact learn the shape of my data?” The
answer may be yes quantitatively if the time series continues to have small prediction error
without further training or online learning applied. More holistically, we are interested in
whether the time series learns a (quasi)periodic shape by approaching a limit cycle. Figure 5
illustrates this idea with a noiseless sine wave. One-step prediction (red) is successful;
iterated prediction (purple) receives no further ground-truth, with some evidence towards
the existence of a limit cycle. Similar application with a mouse time series in Figure 5
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(bottom) succeeds in one-step prediction, but the iterated prediction exhibits behavior akin
to an exponential decay to a fixed point.

Figure 5. Results illustrating how a trained sRBF model learns geometric structure. (Top): With
sin(t), a learned model leads to a limit cycle. (Bottom): Similar approach with noisy mouse data fails.
Parameters α = 0.01, nc = 21, l = 3. After training, both models decrease to 3 active centers.

3.4.2. Visualization of Trained sRBF Models

When the embedding dimension of a scalar time series is l = 2, we can reason about
and explain the model with the full set of learned parameters in Equation (2). Figure 6
illustrates this idea with one such mouse time-series model. Following the expectation
for L1 penalization in the training objective, we consider weights |wi| < 1e − 2 to be
numerically zero and then build the full function f : R2 → R in analogy to the single sRBF
illustrations in Figure 1. We emphasize careful interpretation with this figure. Red crosses
represent locations of sRBF centers, which may not directly align with local extrema due to
the asymmetry. Next, contour colors represents the value associated with the the prediction
for xt+1, which cannot be directly visualized in the plane here. Ideally, we would like to
understand how the learned model positions centers and shapes parameters to match the
embedded time series in R2 but requires subsequent visualization of time-series values. We
leave this for future work.
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Figure 6. Visualization of sRBF model trained with mouse time series embedded in dimension l = 2.
Red crosses mark sRBF centers, which may not be located with local maxima due to asymmetry.
Parameters: α = 0.01, nc = 21, l = 2.

3.4.3. Anomaly Detection

An important application area for time series modeling, especially with health data
such as these, is anomaly detection. An anomaly can signal need for treatment, adjustment,
intervention, etc. Additionally, it is important to carefully consider how to train such
a model and how to evaluate success (or failure) depending on the specific application.
Figure 7 illustrates these ideas with one such temperature time series. Here, the shaded
green region marks training data, which is assumed “nominal” or “healthy” data (and
in general requires knowledge of the application area). Square marks in darker shades
of green on the time series denote detected anomalies. The definition of an anomaly can
depend on the specific modeling approach; but often involves producing a scoring system
(some function which maps input data to [0, ∞) or [0, 1]) which can be thresholded to
produce a binary decision of “nominal” or “anomaly”. Ultimately, the threshold is a free
parameter, and one mediates between false positives and negatives based on the choice.
This figure illustrates two automated methods for choosing a threshold based on quantiles.
The more sensitive of the two shown is a decision based on a new pointwise prediction
error |x̂t+1 − xt+1| being greater than 99% of such errors in the training data. Increasing
this threshold reduces sensitivity but hopefully also reduces false positives (the meaning
of which is also dependent on the application). Anomaly detection remains challenging
without applying a full time-series analysis pipeline which denoises or directly models
noise, and we leave a more thorough investigation of the application of skew RBFs to this
task to future work.

Figure 7. Anomaly detection based on thresholding error in one-step prediction |ŷ − xt+1| exceeding
a threshold of error built from training data.
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4. Conclusions

In summary, we have proposed an approach for computing reduced order skew RBF
approximations. This approach is complementary to others in the literature that seek to
construct a parsimonious fit with RBFs. This batch method approach is appealing for
its algorithmic simplicity. The fact that the number of required RBFs can be determined
by the steep drop in expansion weights makes it appealing for automatic model order
determination. In the future, it would be interesting to explore the annealing of the sparsity
coefficient during training.

We note that there has been a renewed interest in RBFs in view of the observation
that kernel methods, under certain circumstances, can be viewed as equivalent to deep
neural networks [10]. The use of a weighted Euclidean inner product may be viewed as a
featurization of the data, while the kernel expansion completes the data fitting. Thus, this
renewed attention to the optimization problems associated with radial basis functions may
be of broad interest.
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Abstract: Flood modelling is essential for addressing a range of scientific and engineering challenges.
In recent years, the high computational demands of solving shallow water equations numerically
have led researchers to explore machine-learning-based emulators for predicting floods and flood
risk. Specifically, the proliferation of convolutional neural networks in solving different scientific
problems has encouraged researchers to investigate their applicability in flood modelling. Most of
these studies, however, have focused on specific locations or hydrological conditions, meaning that
their findings may not be directly applicable to other situations without additional data and further
training. We present here a U-Net model, a popular deep learning algorithm, which has the capacity
to approximate maximum flood depths across multiple return periods while maintaining catchment
generalizability. The model was trained using the outputs from a 2D hydraulic model (JFlow) to
predict maximum water depths for a set of rainfall return periods (20, 100 and 1000 years). The
pre-trained model was then applied to estimate depths in three unseen catchment areas. Our results
demonstrate that U-Net can be used to approximate water depths in previously unseen catchments
with significantly less computational time compared to the 2D model.

Keywords: rapid flood modelling; machine learning; deep learning; catchment generalization;
flood inundation

1. Introduction

The shallow water equations, derived from the Navier–Stokes equations, are com-
monly used to model hydrological processes and flood dynamics. Numerically solving
these governing equations offers a reliable method for describing the physical process
of water flow. However, applying such methods in large-scale applications can prove
challenging and time-consuming [1–3]. This often leads to a conflict between the necessity
for precise results and the practical feasibility of obtaining them [4]. The issue becomes
particularly important for larger domains with high spatial resolutions (i.e., small raster
grid sizes) [2].

Considerable research effort has been dedicated to enhancing the performance of
conventional numerical models. Strategies include simplifying the equations by disre-
garding the inertial and advection terms of the momentum equation [5], leveraging high-
performance computing facilities [6], and utilizing graphics processing units (GPUs) [7,8].
Alternatively, non-physically based models, such as the transition rules of the cellular
automata method [9], have been used to predict water depths over large areas. While
this non-physically based approach accelerates the hydrological calculations, its primary
drawback lies in its sensitivity to time steps and spatial resolutions [2], and an increase in
spatial resolution can potentially result in a tenfold increase in simulation time [9].

There is a need for innovative modelling approaches that can address the technical
challenges of generating actionable information while alleviating the computational load.
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One promising solution is to use machine learning (ML) models that can emulate the
outputs of the computationally expensive 2D hydrodynamic models. While ML techniques
for rainfall–runoff forecasting have been in use for a few decades, studies applying ML to
flood inundation modelling are more limited [3].

Recently, deep learning (DL), and more specifically convolutional neural networks
(CNNs), have been increasingly applied in data-driven flood modelling [3]. However, most
research has focused on creating models for specific drainage systems, which restricts the
applicability of such modelling approaches. For example, Kabir et al. [3] developed a CNN-
based fluvial flood inundation model tested in the downstream of the Eden catchment
(UK). Similarly, a Gaussian process-based neural network model was tested in the same
catchment area [10]. Guo et al. [1] applied an autoencoder-type model (a type of DL method
often used for image reconstruction/image-to-image translation) to predict the maximum
flood depths of an urban catchment.

In [11], do Lago et al. constructed a conditional generative adversarial network
(cGAN) and used both topographical features and rainfall data for flood predictions in an
urban catchment. They trained the cGAN model using data from multiple sub-catchments
and tested it on sub-catchments outside the training areas. The U-Net, a neural network
architecture widely used for image segmentation, has also been developed for predicting
maximum flood depths [12]. Recently, Guo et al. [2] used the U-Net model to estimate
flood depths for a 100-year storm event. In this study, the authors considered catchment
generalizability, meaning the model was tested in areas beyond the training datasets with
different boundary conditions. In [2], the authors demonstrated that only topographical
features can be used to predict maximum water depths. These studies indicate the potential
for further research in utilizing data-driven models that can be generalized to different
topographical inputs.

In this study, we describe the development of a new U-Net model that emphasizes
both spatial and temporal generalizability. In other words, our model can predict maximum
flood depths for design storms (synthetic storm events created based on historic data) of
multiple return periods while maintaining spatial transportability.

2. Method and Materials

2.1. Problem Statement

DL-based flood models need a substantial volume of flood data and high-quality
terrain features for training, as well as substantial efforts to create inputs of uniform
dimensionality, necessitating a systematic representation of river catchments of varying
sizes [2]. Yet it is often the case that there is insufficient historical flood data on a national
scale and high-resolution digital elevation models (DEMs) are not universally available, all
likely contributing to the paucity of DL studies in this area.

This study aims to address these challenges by developing a new DL-based model
capable of streamlining the prediction process at the catchment scale. We make use of
high-resolution DEM data to extract terrain features and introduce a systematic data
discretization method designed to accommodate drainage systems of varying sizes, thereby
effectively training the model to predict maximum flood depths for 3 design storms (i.e., 20-,
100- and 1000-year return periods). As this is a supervised learning task, the model is
trained using input–output instances where the inputs consist of various terrain features
and the outputs are the maximum depths estimated from simulations using a detailed 2D
hydraulic model [13].

2.2. Study Area and Data

For this study, we collected terrain data—the primary inputs to the DL model—
corresponding to 28 catchments from across England, UK. These selected catchments
cover most of the country (Figure 1), and these datasets exhibit an overlap at the bound-
aries with adjacent catchments. Of the 28 catchments, 25 serve as the training and validation
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sets, and the remaining 3 are for testing. These 3 test catchments are located in 3 different
regions (south, north and centre) of the country.

The target data for the DL model are maximum surface water flood maps generated
by a 2D hydraulic model in response to 3 different design storms. We use the proprietary
hydraulic model JFlow, developed by JBA Consulting, which solves the 2D shallow water
equations and leverages graphics processing units to facilitate large-scale simulations
in a swift and efficient manner. A model description and example applications appear
elsewhere in the literature [13].

The UK surface water flood map utilizes precipitation depth at a 5 km grid resolution,
using the rainfall intensity duration frequency (IDF) model described by [14], (often referred
to as the FEH13 model). These IDF curves are translated into event hyetographs for each
5 m × 5 m DEM grid cell used by JFlow using the ReFH2 method that produces a storm
profile augmented by losses due to soil storage and urban/rural land classification. The
method is described in [15,16].

 
Figure 1. All training (includes validation catchments) and 3 test catchments.

2.3. U-Net

The U-Net architecture, proposed by Ronneberger and colleagues in 2015 [17], is an
autoencoder-like structure equipped with skip connections and is predominantly utilized
in image segmentation tasks. The U-Net consists of a contracting pathway designed to
encapsulate the context, and a symmetrically expanding pathway that facilitates accurate
localization. Skip connections, bridging the contracting and expanding pathways, permit
the model to utilize low-level features for high-precision segmentation. U-Net has attained
significant popularity within the realm of medical imaging, where it has demonstrated
unparalleled performance across a spectrum of segmentation tasks.

2.4. Error Statistics

To assess the performance of the proposed U-Net model in emulating the results of
JFlow, the model predictions in terms of maximum water depths are directly compared
with the outputs from the hydraulic model. The root-mean-square error (RMSE) [18]
and the modified index of agreement (D1) [19] are used to evaluate the overall model
performance in capturing the maximum flood depths. In addition, the critical success index
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(CSI), as used by [11], was used to assess the spatial performance of the predicted maps.
The expressions of these indices are described in Table 1.

Table 1. Evaluation metrics used in this study.

Indicator Formula 1 Range and Optimal Score

RMSE
√

∑N
i (Oi−Pi)

2

N
[(0, ∞), 0]

D1 1 − ∑N
i |Oi−Pi|

∑N
i (|Oi−O| + |Pi−O|)

[(0, 1), 1]

CSI Hits
Hits + False pos. + Misses [(0, 100), 100%]

1 N is the sample size; Oi, Pi and O are the ‘observed’, ‘predicted’ and ‘observed mean’ values. Hits are the flooded
cells in both U-Net and JFlow, false positives are the flooded cells predicted by only the U-Net model and misses
refer to the cells only predicted by the JFlow model.

3. Experimental Details

This section provides the key details related to the data pre-processing, the U-Net
construction and the model training procedure.

3.1. Data Pre-Processing

In the domain of data-driven modelling, the efficacy of a model is significantly influ-
enced by the quality and relevance of the input data. For flood depth modelling specifically,
Löwe et al. [12] identified 11 potential terrain datasets, each encapsulating a wide range of
topographical features. However, we could not repeat this given the substantial compu-
tational resources and more extensive network architecture that using 11 datasets would
necessitate. Our primary focus was on exploring the feasibility of constructing a transfer-
able data-driven model capable of estimating maximum flood depths across various return
periods. As such, identifying the optimal set of model inputs was beyond the scope of this
investigation and, consequently, we acknowledged that the terrain features used in our
model have not been optimized.

The data pre-processing consisted of a four-step process. For the first step, terrain
features such as surface elevation, flow accumulation and slope were computed from the
DEM. In addition, a drainage mask (binary raster where cells within channels were encoded
as ones and the remaining cells were zeros) was used as the fourth input. The resolution of
the input data was downgraded from 5 m to 10 m to expedite training times.

The second step involved dividing terrain features by their respective maximum
values to rescale the input datasets within a range of 0–1. Additionally, invalid cells were
replaced with zero and the target datasets were filtered by assigning a value of zero to
depths less than 0.1 m.

For the third step, a systematic patch generation method was used to develop training
data patches. This process involved padding the zeros along the catchment boundaries
to equalize their sizes, followed by selecting a patch size of 1024 × 1024 using a moving
window technique. During this phase, data augmentation techniques, such as vertical and
horizontal flipping, were used to increase the size of the training data samples.

For the fourth and final step, the patches from step 3 were stacked to form raster
maps composed of multiple image channels. The dimensions of an input patch were set
to 2 × 1024 × 1024 × 4, where 2 refers to the batch size (comprising the actual patch and
an augmented patch, either vertically or horizontally), 1024 refers to the size of the patch
and 4 refers to the number of channels. The dimensions of an output patch were set to
2 × 1024 × 1024 × 3, where the 3 refers to the flood depths corresponding to the 3 design
storms (with return periods of 20, 100 and 1000 years).

3.2. U-Net Architecture and Training

We used a U-Net with the aim of maintaining detailed spatial patterns in the outputs
while also ensuring a large ‘receptive field’, which refers to the ‘visible pixels’ of the input
layer for each output pixel [20]. From a hydrological perspective, a larger receptive field
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facilitates the capture of water flow from upstream to downstream, which results in water
pooling in smaller regions, as the model can learn from global terrain information as
opposed to merely local terrain patterns [21]. Consequently, the model’s latent layer (the
last layer of the encoder section) possesses a receptive field larger than the input size.
We selected an input size of 1024 × 1024 for the U-Net model to retain local and global
information, while also ensuring the model’s size was compatible with the computing
device and did not exceed memory capacity.

Figure 2 shows the architecture of our U-Net model. Overall, the model comprises four
layers, with each layer consisting of two convolutional layers followed by a ‘maxpooling’
layer. We use the ‘Leaky Relu’ activation function in all layers other than the output layer,
which uses the ‘rectified linear unit (Relu)’ activation function. The ‘Leaky Relu’ activation
function offers two advantages: it circumvents the vanishing gradient problem [22] and
mitigates the ‘dead neuron’ issue associated with the ‘Relu’ activation function [23]. The
‘Relu’ function was used in the output layer to ensure that predicted values are always
above zero. The ‘kernel size’ of the encoder section was set to 5 × 5, the upsampling
(decoder) was 3 × 3 and the ‘maxpooling’ size was 2 × 2.

 

Figure 2. The U-Net model architecture. Systematically generated patches from the terrain features
are stacked as image channels and fed as model inputs; water depths corresponding to 3 return
periods are the network outputs. For clarity, not all network layers are shown.

Our U-Net model was constructed using the ‘Keras’ application programming inter-
face (API) in conjunction with Tensorflow 2.5.0. The model’s training was facilitated by the
Adam Optimizer [24], which operated with a learning rate of. Due to memory constraints
associated with the available graphics card (Nvidia Quadro RTX 5000), a batch size of
two was implemented. The model was trained over a span of 2000 epochs, with the mean
square error (MSE) serving as the loss function.

Finally, the training process was repeated 3 times using the same network architecture
for 3 different training and validation datasets (each time, 20 different catchments were
used for training and 5 for validation from a set of 25 catchments). This was done to
observe any significant differences in the predicted flood maps when different training and
validation data were used. Training the U-Net three times means that we have three models
with three different model parameters (weights and biases). These three models can be
used independently to predict maximum water depths or can be treated as a three-member
ensemble model.
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4. Results and Discussion

4.1. Training and Validation Loss

The associated training and validation loss for 2000 epochs is shown in Figure 3.
The models continue to exhibit convergence tendencies beyond the 2000 epoch mark,
but we ceased training at this point to prevent model overfitting, thereby maintaining
their generalizability and performance on unseen data. An additional consideration was
the substantial computational time required for the training of a single model (~20 days
on average).

Figure 3. Training and validation losses for all three U-Net models.

4.2. Assessing the Outputs—Larger Depth for a Larger Event

After the model training, we evaluated the depths corresponding to various return
periods. The models need to avoid producing counterintuitive outcomes, such as predicting
elevated water levels for storms of lower return periods compared to those with higher
return periods. As previously noted, the catchments exhibit overlapping boundaries. Con-
sequently, a comparison of results would not be accurate if a portion of the test catchments
were employed for training purposes. To address this issue, we chose three subdomains
from each of the catchments for the purpose of comparing depth maps. This approach
ensures that the comparisons were based on distinct geographic areas, eliminating the
potential bias that could result from overlapping catchment boundaries in the training and
test datasets.

Aside from a few minimal discrepancies, we found that the models were indeed
capable of predicting increased depths for higher return periods. For instance, following
the aggregation process, where maximum depths from all three models were combined
into one maximum depth map, one centrally situated test catchment (Area 5404) had a
single pixel where the depth associated with a return period of 100 exceeded that of a return
period of 1000. Overall, such inconsistencies were noted in 17 pixels spread across the 3 test
catchments. Comparatively, the total count of pixels in the case of JFlow maps amounted to
13,790. These observations indicate that the U-Net model’s learning was guided more by
global terrain features than local ones, demonstrating its capability for generalization.

4.3. Comparison of U-Net and JFlow Map Outputs

To compare the flood maps, we converted the predicted and the reference (JFlow
outputs) water depths into categorical maps. Depth values less than 0.1 m were set to 0 (dry)
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and otherwise to 1 (wet). The CSI, a commonly used metric for categorical forecasting, was
utilized to ascertain the model’s ability to accurately discern wet and dry cells. The CSI
encompasses both false alarms and misses, thereby providing a more balanced assessment
of actual model performance. The CSI scores indicate that the U-Net model was less
accurate than JFlow in detecting wet cells (Table 2). However, a closer look at the flood
maps revealed that the U-Net model accurately detected wet cells in regions characterized
by channels, tributaries, valleys and sinks, but less accurately in urban environments.
This can be attributed to the distinct terrain characteristics of urban areas and the bias
in our training data, which predominantly represent rural or semi-urban areas. We also
found that the model struggled to accurately simulate flooding along transport lines (roads,
railways) and impervious urban areas. At the same time, a clear success was that the
model did not predict the presence of water in areas where that would be implausible.
Moreover, the model was successful in identifying hotspots, which are areas where water
predominantly accumulates.

Table 2. Error statistics for the test catchments.

Storm Area CSI (%) RMSE (m) D1

20-year 20 0.04 0.69
100-year Area 7400 (North) 28 0.05 0.64

1000-year 40 0.09 0.60

20-year 31 0.04 0.74
100-year Area 5404 (Centre) 37 0.05 0.76

1000-year 46 0.07 0.78

20-year 37 0.03 0.72
100-year Area 4600 (South) 43 0.04 0.74

1000-year 45 0.07 0.74

4.4. Comparison of U-Net Model and JFlow Depth Outputs

As with the map outputs, we conducted a comparative analysis of the U-Net model’s
predicted depths against those from JFlow. For the purposes of comparison of depth, all
cells with a water depth less than 0.1 m were assigned a value of 0. This adjustment was
implemented consistently across both models. The discrepancies in water depth predictions
were systematically quantified using RMSE and D1. The RMSE metric assigns relatively
high weights to large errors and was particularly useful when such errors are deemed
undesirable. The modified index of agreement, represented by D1, has the advantage of
appropriately weighting errors and differences, without inflation due to squared values.

Our analysis revealed a stronger concurrence in the depth maps, though the model
consistently underestimated the depths by a smaller margin. Higher D1 values indicate that
the U-Net model demonstrates good performance in estimating water depths. However, a
worse performance was found for ‘Area 7400’ compared to the other two areas (Table 2).
This can be attributed to the unique nature of the terrain in that catchment, where the
surface elevation was higher compared to those in the training data.

Figure 4 compares a U-Net-model-predicted flood against an equivalent JFlow-simulated
map, also showing the difference between the two. The comparison is consistent with the
quantitative error measurements in Table 2, and it is evident that the U-Net model consis-
tently underestimates both the extent and depths of flooding across the test catchments.
However, despite the overall discrepancies in the predicted depths, most of the errors tend
to cluster within the lowest error band (Figure 4C). While there are instances of large errors,
these errors do not occur in areas that should remain void of water accumulation.
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Figure 4. A visual comparison of water depths between JFlow and U-Net for a 1000-year return
period storm event. (A) JFlow-simulated flood map; (B) U-Net-predicted flood map; (C) error map;
and (D) map location.

5. Conclusions

We have presented a generalised data-driven model for predicting maximum flood
water depths, which demonstrates that advanced DL algorithms can detect flood zones
efficiently using terrain attributes.

A key objective of formulating a data-driven model was the rapid production of flood
maps. The three U-Net models trained within the scope of this study demonstrate this
potential. In this study, we formulated and evaluated three U-Net models for swift flood
prediction utilizing topographical features (we aggregated outputs from these models
to produce a single flood map for each return period). The findings suggest that the
models have the potential to predict flood depths in uncharted catchments across multiple
return periods. Nevertheless, the models also frequently underestimate both the depth
and extent of water. This underscores the need for further refinement of the model to
enhance its accuracy while maintaining its speed, highlighting an avenue for future research
and development.

Temporally speaking, each model was capable of estimating depths for three return
periods across a domain of approximately 1248 square kilometres within an impressive
timeframe of roughly 13 s. Such efficiency may prove valuable in rapid response and
planning scenarios, despite the trade-offs inherent in the data-driven approach.

However, our objective was not exclusively to construct a model for either fully urban
or rural areas, but rather a hybrid model that encompasses both. The performance of the
model could potentially be enhanced through the optimization of network architecture,
fine-tuning of hyperparameters and a systematic search for suitable input data. In [12],
the authors proposed a forward selection methodology that could potentially be utilized
to identify the most suitable set of inputs. Furthermore, it is essential to recognize that
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strategic selection of terrain features can significantly streamline the process of exploratory
data analysis, substantially reducing the time invested in this phase.

Additionally, our observation of significant variability in the water depths predicted
by the three models underscores the necessity for a comprehensive assessment of uncer-
tainty. These strategies could collectively contribute to a more robust and accurate model,
reinforcing its predictive capacity while also providing a more nuanced understanding of
the inherent uncertainty in such predictions.

A trade-off exists between the water depth estimations produced by a hydraulic model
and those derived from a data-driven model. Hydraulic models, underpinned by physical
laws and centuries’ worth of scientific theory and formulae, are generally deemed more
reliable. Conversely, data-driven models do not inherently account for physical constraints,
such as mass balance. Given this, one good scenario would be to have a data-driven model
capable of generating flood maps expeditiously while maintaining an acceptable margin
of error.
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Abstract: Macroeconomic adverse selection is computed as a time series of forecast residuals via the
vintage origination model for an industry dataset of auto loans. The adverse selection time series are
computed separately as model residuals using logistic regression, neural networks, and stochastic
gradient boosted trees to predict defaults in the first 24 months of a loan. Panel data versions of
these models with lifecycle and environment inputs from a segmented Age-Period-Cohort analysis
were also estimated. The estimates show that panel data methods make better use of available data
to provide faster estimates of adverse selection risk in recent vintages and incorporate defaults at
any age of the loan. The nonlinear modeling advantages of neural networks and stochastic gradient
boosted trees did not significantly alter the estimates of adverse selection. Overall, all methods
confirmed that macroeconomic adverse selection was dramatically higher in 2021 and 2022 for US
auto loan originations.

Keywords: adverse selection; credit scoring; survival models; neural networks; stochastic gradient
boosted trees

1. Introduction

The COVID-19 pandemic brought rapid, dramatic swings in economic conditions
and consumer behavior. Monitoring of credit quality has shown deterioration in many
loan categories. In auto lending, credit quality deterioration appears to have begun in the
second quarter of 2021 and extended at least through the end of 2022. When normalized
for changes in the credit quality of borrowers using logistic regression models, the residual
credit risk appears to correlate to the rapid rise in new and used car prices and the rise in
auto loan interest rates. This suggests a period of macroeconomic adverse selection similar
to what was observed between 2006 and 2009.

Since the 2009 mortgage crisis, the lending industry has widely adopted new methods
from machine learning and artificial intelligence in lending. Adoption for credit risk as-
sessment and underwriting has been slower than other industries because of regulatory
demands, but research and experimentation are extensive [1] and deployment will continue
to grow. Given that machine learning has greater flexibility for finding nonlinear patterns,
some proponents have suggested that such methods may be able to incorporate the struc-
ture that is showing up as macroeconomic adverse selection in regression-based models.

The current research analyzes auto loan data for originations from 2002 through
2022. Origination scores predicting the likelihood of being 60+ days past due (DPD) are
estimated using logistic regression, discrete time survival models, stochastic gradient
boosted trees (SGBT), SGBT with Age-Period-Cohort (APC) inputs, neural networks, and
neural networks with APC inputs. For each model, time series of the residual errors are
estimated by origination (vintage) month and compared across models. This research is the
first to compare the estimation of adverse selection time series by vintage across regression
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and machine learning methods. Although some lenders quantify adverse selection across
product types on internal data, our study is the first to publish a history of macroeconomic
adverse selection for auto loans on a broad industry dataset.

This study finds clear advantages to panel data methods with APC inputs over tra-
ditional scoring methods for rapidly estimating adverse selection within a portfolio. This
advantage is both in better use of the available data and having a stronger baseline versus
age of the loan and calendar date against which to compare.

Section 2 provides an overview of the literature. Section 3.1 describes the available
data. Section 3.2 provides brief descriptions of the modeling techniques used. Section 4
provides the results.

2. Literature Review

Adverse selection broadly means that the credit quality of borrowers is not what was
expected when the loans were written according to the loan-origination model employed.
The earliest work on adverse selection [2] described how this can happen when lenders
compete on loan pricing and terms. Given a choice, borrowers will apply for the loan with
better terms first. The borrowers rejected by the bank with better pricing then apply to the
lender with less attractive pricing. The bank with higher pricing may have expected higher
yields, but by attracting only the riskier borrowers, the losses could be higher and yields
actually fall.

Adverse selection through competitive pressure can be described as microeconomic
adverse selection. Sometimes trends of adverse selection are apparent across the industry.
Dubbed macroeconomic adverse selection [3], this has been found to correlate to changes
in the cost of the goods being purchased and changes in the cost of borrowing [4]. The
theory is that depending upon macroeconomic conditions, the pool of borrowers may shift
in ways not observable from the data typically available on the borrowers.

The work by Breeden in 2011 [3] observed this through three credit cycles between
1990 and 2006 for mortgages. Breeden and Canals-Cerda in 2016 [4] performed a detailed
analysis of credit quality before and through the 2009 mortgage crisis to adjust for all
loan-application information and found that half of the credit quality deterioration could
not be explained by poor underwriting. Instead, it appeared to correlate to the cost of
homes and mortgage interest rates. This effect can be observed in all product categories.
Calem, Canon, and Nakamura (2011) [5] related adverse selection in home equity lines of
credit to county-level unemployment and consumer confidence.

3. Materials and Methods

3.1. Data

Auto loan performance data from 26 lenders was modeled in order to assess adverse
selection trends. This dataset included 1,244,651 loans originated between January 2005
and December 2022. Typical origination variables were used, including Bureau Score, Loan-
To-Value (LTV) ratio, Debt-To-Income (DTI) ratio, channel (direct or indirect), collateral
type (new or used), term, state, and anonymized lender ID.

Behavioral variables such as delinquency that are included in a typical behavior score
are a post-origination attempt to adapt to the difference between origination expectation and
post-origination reality. For that reason, including delinquency in our models would dilute
the measure of adverse selection. However, some information is available immediately
after the loans are originated that would not be included in a traditional origination score.
Primary among these are the offered interest rate on the loan (APR), and the balance of the
loan. The annual percentage rate (APR) offered by the lender may incorporate information
not made available for creation of the origination scores, such as adjustments for specific
dealers, form of employment, broader relationship with the lender, etc. Therefore, we
created a measure ΔAPR(i, v, L) that computed the difference between the APR on a
specific loan within a specific vintage APR(i, v, L) and the average APR for that vintage by

412



Eng. Proc. 2023, 39, 95

lender APR(v, L) where v is the vintage and L is the lender in order to incorporate some of
this missing knowledge.

ΔAPR(i, v, L) = APR(i, v, L)− APR(v, L) (1)

To make measures of adverse selection useful to portfolio managers, the estimation
needs to occur as early as possible in the life of a vintage. Therefore, default D has been
defined as the date on which an account first becomes ≥ 60 days past due (DPD). When
logistic regression (LR), neural networks (NN), or stochastic gradient boosted trees (SGBT)
were used to create a traditional origination credit score, the outcome period for default
was the first 24 months of the life of the loan. A total of 2428 such defaults exist within the
dataset, a 24-month default rate of 0.2%.

When using models that are normalized to a lifecycle or hazard function, defaults
at any loan age are relevant. The total number of defaults through the entire life of the
loans was 55,435, a 4.45% lifetime default rate. The panel data approach thus incorporates
defaults from vintages that have not yet reached 24 months old and considers additional
defaults later in the lifetime of the loans, which will be important to interpreting the results
obtained later.

3.2. Algorithms

Several modeling techniques were compared in order to determine the robustness of
estimations of macroeconomic adverse selection as driven by external forces rather than
simply estimation noise.

3.2.1. Logistic Regression

Logistic regression is the traditional method for creating origination scores. For a thor-
ough introduction to credit scoring, see Thomas, Crook, and Edelman [6] or Anderson [7].
The cumulative probability of default for the first 24 months of the loan is predicted as

logit(Di) ∼
n

∑
j=1

cjsij + c0 (2)

where the cj are the n estimated coefficients for the scoring factors sij for account i. The set
of scoring factors s are chosen to optimize the Akaike Information Criterion (AIC). Some of
the variables are binned to capture nonlinearities.

After the model has been created, the residual error by vintage is estimated by creating
a second regression with the original model M(c, si) as a fixed input.

logit(Di) ∼ M(c, si) + ∑
v

gvδv (3)

where δv is a delta function for vintage date v and gv is the corresponding coefficient. Fixed
effects by vintage (dummy variables) could have been included in the original regression,
Equation (2). In some situations, this can shift some of the explanatory power of the scoring
factors to the vintage fixed effect. Since the goal here is to obtain maximum explanatory
power from the scoring factors and use the vintage effects only to measure the residuals, a
two-step process was employed.

3.2.2. Age-Period-Cohort Models

Age-Period-Cohort (APC) models [8–10] for vintage analysis explain the risk of default
at each observation period as a combination of functions of the age a of the loan, the
calendar date t, and the vintage date v. These functions can be spline approximations,
non-parametric, or other forms, but are generally not tied to specific scoring factors.
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Because a = t − v, a model-specification error exists if no constraints are imposed. In
applications to credit risk analysis, the following representation is common.

D ∼ b0 + b1a + F′(a) + b2v + G′(v) + H′(t) (4)

where b0 is the intercept, b1 and b2 are the linear coefficients for a and v, and F′(a), G′(v),
and H′(t) are the nonlinear functions that have zero mean and no linear component. For
explanation, these are usually combined as F(a) = b0 + b1a + F′(a), G(v) = b2v + G′(v),
H(t) = H′(t) where F(a) is called the lifecycle measuring the timing of losses through the
life of the loan, G(v) is the vintage function measuring credit risk by vintage, and H(t)
is the environment function measuring the net impact from the environment (primarily
economic conditions). The primary advantage of APC models is the ability to separate these
effects, so the credit risk function captures the full amount of credit quality variation, but
cleaned of impacts from the macroeconomic environment and normalized for differences
in the age of the loans. The credit risk function does not adjust for loan-level changes in
underwriting, so it is not a perfect measure of adverse selection. However, if the analysis
is segmented by key measures such as bureau score and term, a net residual credit risk
function can be extracted that can serve as an adverse selection measure.

3.2.3. Discrete Time Survival Models

Discrete time survival models [11,12] are a form of panel regression where each account
is observed each month to predict default/no default. The regression equation can include
nonparametric lifecycle and environment functions as in APC models and scoring factors
as in logistic regression. Cox proportional hazards [13] models are the original continuous
time formulation of this, where the APC-style lifecycle is a discrete time version of the Cox
PH hazard function.

Previous work has shown that survival models that are estimated via a partial likeli-
hood estimation as with Cox PH or a logistic regression estimation of the full panel model
have instabilities in the context of credit risk modeling [14]. The instability occurs, in part,
because the model-specification error of the APC model appears as colinearity between the
scoring factors, lifecycle, and environmental factors of the survival model.

Breeden [15] proposed a solution to this where an initial APC decomposition is per-
formed as described above and the lifecycle and environment functions are taken as fixed
inputs to a second panel logistic regression estimation.

D ∼ F(a) + H(t) +
n

∑
j=1

cjsij + c0 (5)

This two-step process resolves any colinearities between scoring factors, lifecycle,
and environment while retaining maximum explanatory power for the scoring factors.
In practice, this has proven to create scores that are more stable through changes in the
environment while retaining account-level predictive accuracy.

Adverse selection is measured in a final step as described in Equation (3) except as a
panel logistic regression.

3.2.4. Artificial Neural Network

Using artificial neural networks (NN) for credit risk forecasting has been the subject
of numerous publications [16–18]. The problem design is similar to creating a logistic
regression credit score, but with the network allowing for nonlinearity and interaction
effects that would need to be discovered manually and encoded into the inputs of a
regression model.

The available training data for auto loan defaults is not particularly complex compared
to many applications of neural networks, and thus is not a showcase for the nonlinear
wonders of machine learning. However, it is sufficient to address the question of whether
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adverse selection is a model-specific error or due to a hidden variable that is not discover-
able by any algorithm using only traditional data.

The neural network architecture was correspondingly simple. The network had an
input layer, five fully connected layers with softplus activation functions, and a sigmoid
output node. Softplus is less efficient and some argue less interpretable than ReLu activation
functions, but it had better convergence performance in this context. The target was the
same binary indicator of default within 24 months as used in the logistic regression model
with a binary cross-entropy loss function.

Neural networks such as this do not function well when defaults comprise only 0.2%
of the training data. Previous research has shown that at least a 4:1 or 3:1 ratio is needed
for proper network estimation [19,20]. In this case, all default accounts were included
and four times as many non-default accounts were randomly sampled from the dataset.
The resulting network predictions need to be balanced back in order to match the overall
default probability of the original training dataset.

3.2.5. NN + APC

Within the domain of credit risk modeling, having data from 2005 through 2022 is
considered a significant amount of history. Compared to economic cycles, it is not. One
problem with neural networks or any scoring technique with a wide (24 month) outcome
period is that fragments of an economic cycle get confused with scoring attributes. The
primary theoretical advantage of discrete time survival models over logistic regression
is creating a distinction between environmental trends and credit risk trends that are
explainable from scoring factors.

Analogous to the discrete time survival models, the lifecycle and environment from
the APC models can be provided as inputs to the neural network with the data arranged as
a panel of repeated observations for the accounts until default or payoff [21]. The network
architecture is arranged such that the APC inputs O(a, t) = F(a) + H(t) in units of log-
odds of default are passed to the final node as an offset without modification. The neural
network is used only as a replacement for the credit risk component, effectively modeling
the account-level residuals around the long-term trends of lifecycle and environment.

For proper estimation, the dataset still requires balancing. The input offset needs
to be adjusted with an additive constant for any change in default probabilities due to
rebalancing. The revised offset, O′, is

O′ = O(a, t) +
(

log
(

p̄
1 − p̄

)
− Ō

)
(6)

When the network produces forecasts, the original offset O(a, t) is used without the
rebalancing adjustment factor. As with the plain NN, the final dataset for model estimation
under-sampled the loans that never default in order to achieve a 4:1 ratio with loans that
eventually will default. Model training was performed on 80% of this balanced dataset and
cross-validation on 20% to determine the stopping point.

The part of the network dedicated to processing the origination factors can have the
same architecture as that used without the APC inputs. However, providing APC inputs
often allows for a simpler network architecture. The target variable for the network was
default that occurs at any point in the life of the loan, as done in the DTSM, allowing the
larger panel dataset to be modeled.

3.2.6. Stochastic Gradient Boosted Trees

Decision trees are as old as credit risk modeling [22,23]. The multidimensional space
described by the scoring attributes is split with hyperplanes to separate good from bad
accounts. A slightly more sophisticated version fits a regression model within each terminal
node of the tree, as in CART [24]. Stochastic gradient boosted trees [25,26] are essentially
an ensemble modeling approach where each new regression tree is weighted to explain the
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data points that were less explainable by the preceding set of regression trees. Trees are
added until no significant improvement is obtained on a test set.

Tree-based methods do not suffer from multicolinearity problems as regression does,
so additional inputs can be provided without destabilizing the model. Therefore, the SGB
Tree was provided with all of the inputs given to the logistic regression and neural network
models as well as factor variables for state and lender. These additional inputs might allow
the algorithm to better handle outliers. The target variable is again whether an account
defaults within the first 24 months, as used in the logistic regression and neural network
origination scoring models. Unlike the neural network approach, no balancing of default
and non-default data is required for model convergence.

In most credit scoring competitions, SGBT has been a winning approach. Recent
research by Grinsztajn, Oyallon, and Varoquaux [27] suggests that tree-based models will
perform better than neural networks for tabular data structures where neighboring input
factors may have no ordering or continuity. Neural networks have been found to excel in
sound and image processing applications where the inputs are neighboring pixels in an
image or sequential points in the time sampling.

For the current work, the goal is not to declare a winner, but rather simply to compare
the residuals of these methods versus vintage origination date. For consistency of compari-
son, vintage date is again excluded from the inputs and adverse selection is quantified via a
final logistic regression as in Equation (3) where M(si) is the full ensemble of trees applied
to forecasting account i and held as a fixed input when measuring the vintage residuals.

3.2.7. SGBT + APC

Some implementations of stochastic gradient boosted trees allow for the same kind
of fixed inputs as logistic regression and the NN+APC algorithm above. Again using
O(a, t) = F(a) + H(t) as a fixed input allows us to create an SGBT credit risk panel model
that is centered around the long-term trends of lifecycle and environment. As observed with
NN+APC, the resulting hybrid model can be both simpler and more robust out-of-sample
as compared to the stand-alone SGBT model.

The inputs to the credit scoring SGBT model were the same as for the DTSM using
the full panel dataset, where defaults occurring at any age are included. This is the same
dataset used for NN+APC models. Because of the volume of data, the model was estimated
on a 5% random sample of loans, including the full history for each loan. During training,
80% of the 5% sample was used for training and 20% for cross-validation to determine the
stopping point. Model residuals by vintage were estimated by applying the models to the
full dataset.

4. Results

Nine separate models were estimated using seven different techniques, including
the APC decomposition. For regression models, measures of LTV and term were binned
to allow for nonlinearities in their relationship to default. collateral type and channel
categorical variables are measured relative to their reference levels, which are indicated
with a 0 estimate. Not all lenders reported DTI, so a separate flag for DTI missing was
included and DTI missing was interacted with DTI to capture the correlation to default.

All of these independent variables are available at loan origination, which is the
traditional design of an origination score. For purposes of measuring adverse selection,
we are concerned with the loans that are actually booked. Therefore, we can additionally
incorporate information available just after origination. We call this a “post-origination
score”. The most useful factor was found to be ΔAPR(i, v) as defined in Equation (1).
Adding ΔAPR(i, v) to the model improved the in-sample fit, lowering AIC from 23,800 to
23,314, and actually improved the significance of the channel and collateral type coefficients.
The rest of the models were estimated post-origination so that the adverse selection measure
removes as much structure as possible from the independent variables.
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To confirm that the models were estimated properly, receiver operating characteristic
(ROC) curves were estimated for each model. Because of the different datasets for the
models with 24-month outcome periods and models with APC inputs using panel data, the
Gini coefficients are unlikely to be directly comparable. Further, the NN and SGBT models
were estimated on samples and applied to the full dataset, so most of those test results are
out-of-sample. Regardless of the many test differences, the results in Table 1 show that
all models are working as expected. Logistic regression performs normally given that it
uses only the first 24 months of performance data and therefore is missing a majority of the
defaults that occur later. APC has the lowest Gini coefficient of the panel methods, because
it has no loan-level information and makes no attempt to be a scoring model. The DTSM,
NN, and APC models all perform comparably given the uncertainty in estimating the test
statistics and different handling of the data. For example, SGBT + APC Post-Orig Score has
the most sampling disadvantages of the models, yet performed comparably.

Table 1. Gini coefficients for the models tested.

Method Traditional + APC

LR/DTSM Orig 0.664 0.853
LR/DTSM Post-Orig 0.703 0.853
NN 0.839 0.822
SGBT 0.868 0.836
APC 0.773

With confirmation that the models are performing properly, the following analysis
compares the model residuals by vintage. Figure 1 computes the change in adverse selection
by vintage comparing origination to post-origination logistic regression scores. The figure
shows that including APR information in the score does refine our understanding of
adverse selection in 2016–2017, where the origination score residuals are overestimated and
2018–2019 where the origination score residuals were underestimated. The scale of ±0.1 in
units of change in log-odds is roughly equivalent to a ±10% change in credit risk. This is
not large compared to the underlying measures of adverse selection shown in subsequent
graphs, but not immaterial. In general, we conclude that post-origination models provide
some advantage when measuring adverse selection as a way to incorporate underwriting
policy changes that might not otherwise be captured in the models.

Figure 1. The difference between macroeconomic adverse selection measures for a logistic regression
score using information available at origination versus that which is available post-origination but
excluding behavioral data.

The next step was to compare adverse selection as measured for logistic regression,
neural networks, and stochastic gradient boosted trees, Figure 2. These models are post-
origination credit scores using default in the first 24 months as the target variable. Tests
were run using other outcome periods, but they were less effective. Extending the outcome
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period to 36 months captures significantly more loan defaults, but it delays the measurement
of adverse selection by that same three years. In order to have business value, the waiting
time for estimating adverse selection must be as short as possible. At the other extreme, we
could have looked at the first 12 months in the life of a loan to assess residual credit risk.
Some lenders even focus on first payment default as an early warning indicator. Although
potentially useful, we would run out of data with which to construct models. The trade-offs
are challenging.

Figure 2. A comparison of macroeconomic adverse selection measures from logistic regression, neural
networks, and stochastic gradient boosted trees using defaults within the first 24 months of a loan as
the target variable.

Most notable when comparing these measures of adverse selection is the overall
similarity. This suggests that adverse selection is more of an attribute of the loans than of
the models. Although the NN and SGBT models can capture much more nonlinearity and
interaction between variables, the modeling technique does not fully explain the structure
within the data. The model residuals (adverse selection) for NN and SGBT are closer to the
through-the-cycle average during 2020, 2014, and 2007, but they are not flattened entirely.
Notably, the periods of high risk from 2008 through 2009 are still present and are consistent
with prior mortgage studies of heightened adverse selection during that period. Better
loan quality from 2011 through 2014 is also consistent with the prior mortgage results,
so although the estimates are volatile by monthly vintage, they are broadly consistent
with expectations.

One solution to the trade-off between quicker response and more defaults is the use
of a survival modeling approach where defaults at any age are compared to a baseline
expectation from a hazard function or lifecycle. This kind of analysis could be implemented
in many ways. Beginning with an Age-Period-Cohort decomposition provides a complete
measure of credit risk by vintage but without explanation, Figure 3. That APC decompo-
sition uses lifecycles segmented by bureau score and term, so it is adjusted for dominant
scoring factors, but not LTV, DTI, channel, or collateral type.

Taking lifecycle and environment as fixed inputs to a panel logistic regression (DTSM)
allows us to further adjust for lender shifts in origination volume by LTV, DTI, channel, or
collateral type. The adverse selection measured for the DTSM is overlaid in Figure 3. The
comparison of APC vintage function to DTSM adverse selection shows that they are very
similar. A small divergence occurs between 2012 and 2016, but recent measures are very
well aligned. This suggests that the segmented APC analysis is a quick, computationally
efficient way to capture most of the adverse selection problem, although there can be
situations where an account-level score brings further refinement. Those advantages might
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be more acute when measured for a single lender where the volume by loan attributes can
swing more rapidly.

Figure 3. A comparison of the credit risk estimate by vintage from an Age-Period-Cohort analysis
and the residuals by vintage from a discrete time survival model with the same APC lifecycles and
environment as fixed inputs.

Figure 4 compares the three methods of panel estimation with APC inputs. From a
data perspective, the comparison is still not fair. Even though large servers were used for
the analysis, the full panel dataset (performance data for every month of every loan) is
32,028,587 rows of data. That far exceeds what could be processed using standard libraries
for stochastic gradient boosting (gbm) and neural networks (keras) in R in reasonable
time. Therefore, the NN and SGBT models downsampled the non-default loans so that
the model training sets were only 342,895 rows of observations. Conversely, the APC
vintage decomposition uses all of the data in vintage aggregate form and the DTSM used
all observations within the panel data. Regardless of sampling and algorithm used, the
vintage-aggregate residuals for each model are remarkably similar.

Figure 4. A comparison of the macroeconomic adverse selection estimates from the best DTSM, NN,
and SGBT models.

The biggest difference in estimating adverse selection by vintage is seen to be the
difference between traditional scoring data and panel data. Comparing Figure 2 to Figure 4
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makes clear that scoring methods are significantly more volatile in their adverse selection
estimates, simply due to the smaller number of defaults available for modeling, only 4.4%
of the total number of lifetime defaults observed. Moreover, because of the 24-month lag in
estimation, the scoring approach provides no indication of recent trends.

The recent trends in adverse selection are quite important. All of the panel approaches
with APC inputs show that adverse selection has been dramatically higher since February
2021. Within the auto lending industry, this is assumed to be caused by the jump first in
the cost of new and used vehicles and later by the increase in the cost of borrowing. Those
pressures are hypothesized to have pushed the “value shoppers” out of the market, leaving
the less flexible or financially savvy buyers. This is the same dynamic observed leading up
to the 2009 recession.

In the second half of 2022, those selection pressures began to ease with the cost of
vehicles coming down and auto loan APRs decreasing by the end of the year. The dramatic
drops seen at the end of these trends for the most recent months are based upon only a few
months of observations and have correspondingly large uncertainties.

These results provide compelling evidence that a panel approach with APC inputs is
superior to measuring adverse selection from a traditional scoring approach, but it leaves
open which modeling technique is best.

5. Conclusions

The concept of macroeconomic adverse selection became clear during the period 2006
through 2009 when poor quality loans were originated beyond what lenders could expect
from their usual scoring inputs. The conditions of rapidly rising home prices and rising
interest rates appear to have created an unappealing environment for financially cautious
borrowers. The macroeconomic conditions in 2021–2022 resemble this prior period, but
with even more extreme rates of change. This led us to suspect that adverse selection would
again occur.

This study was undertaken in part to confirm this intuition about the presence of
macroeconomic adverse selection in recent auto originations, which was shown here. In
addition, the analysis demonstrated that models which create scores estimated relative to
lifecycle and environment measures from APC or survival analysis can more rapidly and
accurately identify emerging periods of adverse selection. This is valuable from a business
perspective so that measuring adverse selection becomes actionable intelligence rather than
a retrospective curiosity.

Contrary to some suggestions, machine learning models cannot explain adverse
selection as missing nonlinear structure. Rather, the adverse selection measured from
neural network and stochastic gradient boosted tree models, even with APC inputs, had
residual credit risk by vintage that was statistically unchanged relative to discrete time
survival models. This confirms that residual credit risk by vintage should not be viewed
as model error but rather as a real indicator of macroeconomic adverse selection. Ideally,
sociodemographic data not currently available for model development might quantify
the presence or absence of value shoppers, but they would have to be data that are not
restricted due to discrimination risks or privacy concerns.
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Abstract: We apply a Granger causality and auto-correlation analysis to train a recurrent neural
network (RNN) that acts as a virtual sensor model. These models can be used to check the status
of several hundreds of sensors during turbo-machinery units’ operation. Checking the health of
each sensor is a time-consuming activity. Training a supervised algorithm is not feasible because
we do not know all the failure modes that the sensors can undergo. We use a semi-supervised
approach and train an RNN (LSTM) on non-anomalous data to build a virtual sensor using other
sensors as regressors. We use the Granger causality test to identify the set of input sensors for a
given target sensor. Moreover, we look at the auto-correlation function (ACF) to understand the
temporal dependency in data. We then compare the predicted signal vs. the real one to raise (in case)
an anomaly in real time. Results report 96% precision and 100% recall.

Keywords: virtual sensor; anomaly detection; time series multi-regression; Granger causality;
turbo-machinery

1. Introduction

Turbo-machinery units are equipped with hundreds of sensors to monitor their health
during functioning [1,2]. Some of these sensors measure primary physical quantities,
which can affect the overall health of the machine. Thus, detecting the improper behavior
of sensors or mechanical equipment is a critical task in energy [3,4] and the mechanical
industry or, generally speaking, in every IOT-related industry [5]. Detecting unexpected
behavior is also a challenging task [2,6]; indeed, in many real-world problems, samples from
the unexpected classes are of insufficient sizes to be effectively modeled using supervised
algorithms [7]. Anomaly detection identifies novelty cases by training only on samples
considered normal and then identifying the unusual cases [8–10].

1.1. Problem Statement

In this domain, monitoring some sensors is important because they can trigger alerts; in
that case, a machine shutdown and manual inspections are required, with an associated cost.
Sometimes the triggers are false since they are caused by a sensor failure, not by a machine
issue. Hence, early detection is required to avoid undesired shutdowns. Indeed, if a sensor
is about to break, service operations can exclude this sensor from the control strategy.

We want to detect possible faults (anomalies) in the sensors installed on our turbo ma-
chines (Figure 1) to prevent unnecessary inspection/shutdown efforts by site engineering
while making sure that correct triggers, instead, are not ignored.
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Figure 1. Turbine: a turbo machine is a system that transfers energy between a rotor and a fluid,
including both turbines and compressors. While a turbine transfers energy from a fluid to a rotor, a
compressor transfers energy from a rotor to a fluid.

The challenge consists in dealing with these aspects:

• Early detection is required: only a prompt action allows to avoid the high potential
costs of unnecessary shutdowns.

• Up to few thousand sensors need to be checked daily.
• Recall is key: anomalies detected by the tool will be checked by operators and vice

versa, where if no alert is given, the anomaly may remain undetected.
• Precision should be kept under control: too many false positives would increase the

set of signals to be checked and may invalidate the benefits.

1.2. Related Works

Many other authors have tried to solve similar problems with different techniques:
Malhotra et al. [11] apply recurrent neural networks (RNNs) for anomaly detection on
aircraft. Park et al. [12] and Pereira [13] uses variational recurrent autoencoder and clus-
tering to detect anomalous time series in healthcare. Geiger et al. [14] applies generative
adversarial networks (GANs) and LSTM to identify the temporal correlations of time-series
distributions (see also [15,16]). Zheng et al. [17] apply long short-term memory for residual
useful life estimation. In a similar research, Strazzera et al. [1] confirm that LSTM outper-
forms the not recurrent neural network also in the domain adaptation. Zhang et al. [18]
extend reinforcement learning (RL) and the Markov decision process [19] to build a general
framework for fault prediction and residual useful life estimation. Several other authors
(Yang [20], Pawełczyk and Sepe [21]) use machine-learning-based prediction models for
gas turbine operating parameters estimation (see also [22] for a small review). They find
that machine learning techniques are applicable to any of the gas turbine parameters when
reference physics-based models and large sensor measurements datasets are available
to validate the accuracy of the data-driven algorithms developed. Escobedo [23] uses
the Bayesian technique and feature extraction to scale up to a broad large mechanical
equipment fleet.

2. The Dataset

Our data are output from all sensors installed on a turbo machine [1,2] and are acquired
at a frequency of one sample per second. Different kinds of sensors like temperature,
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pressure, speed sensors have been acquired and comprise our database. Among these
sensors, the ones which are critical for machine control are considered “output sensors” in
our work. In fact, those are the sensors whose health needs to be monitored to be sure that
an eventual alarm triggered by them is actually due to a machine failure, not to a probe
failure. The remaining sensors can be used as input features for building virtual sensor
models (digital twins) of the first set of sensors. In this work, we focus on one target sensor
only to explain the process more easily.

The dataset was collected during 14 months of machine operation (1 s sampling
interval). It was split into training (10 months data), validation (1 month data) and test
(3 months data) sets. The training data have no reported anomaly, while the validation and
test sets have some anomalies reported.

3. The Model

3.1. Selection of Input Sensors

There are more than 200 sensors that can be used to build a virtual sensor for each
output sensor. We used the Granger Causality [24,25] test to determine the subset of
input sensors that have a causal effect on the target. For the target sensor shown here, we
identified around 15 input sensors to be used to reconstruct the same.

3.2. Selection of Lookback Window

We used the auto-correlation to find the temporal relations in both input sensors and
target sensor to obtain the best “window size” to train the LSTM model.

Figure 2a shows the auto-correlation function (ACF) graph for one of the sensors:
we can see high correlation values among all the lags, which represent the presence of
strong trend (non-stationary series). Hence, we need to make this series stationary by
differentiating to view if there is any seasonality present in the data.

Figure 2b shows the auto-correlation function (ACF) graph after second-order differ-
entiation: there is no significant seasonality and a small degree of trend. Thus, we can
conclude the absence of seasonality but the presence of strong trend (strong correlation
among first few lag values). Moreover, we know from subject matter experts that in turbo-
machinery applications the thermocouple thermal inertia is less than 5 s [26]. Hence, we
chose a sliding window of five samples for this temperature-measuring sensor selected as
output. Indeed, after five samples, ACF shows highly sparse values.

(a)
Figure 2. Cont.
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(b)
Figure 2. (a) Auto-correlation function plot for one of target sensor. (b) Auto-correlation function
plot after second-order derivative to make series stationary.

3.3. Model Training

We used a deep learning model with two long short-term memory (LSTM) layers of
32 nodes each, with tanh activation, followed by four fully connected layers with ReLU
activation. We used Adam optimizer to train the model and a callback on the validation
set to stop the training. We used a semi-supervised [2] approach and trained the model on
non-anomalous data only to build a virtual sensor acting like a digital twin of the sensor
itself [11,27]. In Figure 3, we can see that the model is able to correctly reproduce the
actual signal.

Figure 3. The picture shows the good fitting between the virtual sensor (dark green) and the actual
sensor (light green) for the training set. Values were arbitrarily scaled to maintain data confidentiality.
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3.4. Inference Logic

Once the model has been trained, we use it to reconstruct the signal in a time region
when sensor anomalies may have occurred. To distinguish between anomalous and non-
anomalous samples, we identified a criterion based on the level of agreement of the actual
sensor with respect to the virtual one.

Given the actual signal yi, with i = 0, . . . , T, where T is the signal length, and the
related virtual signal ŷi, with i = 0, . . . , T, the discrepancy Δyi = abs(ŷi − yi), i = 0, . . . , T
can be calculated. We declare yi to be anomalous if its related Δyi is higher than expected.
This expected value was derived by looking at the values of Δyi of non-anomalous samples
in the validation set. Furthermore, given that the validation set contains both anomalous
and non-anomalous samples, we leveraged the different Δyi distribution between non-
anomalous and anomalous samples to determine the threshold value. Figure 4 shows the
distribution of the discrepancy Δyi, i = 0, . . . , Tv, where Tv is the validation set length in
the case of anomalous (orange) and non-anomalous (blue) points.

Figure 4. Deviation between the actual and the reconstructed signal in the validation set for anoma-
lous (orange) and non-anomalous (blue) samples.

In this example, we can see two non-overlapping distributions: here, we decided to
use a threshold of 9 to best discriminate between anomalous and non-anomalous samples.

Another possibility is to leverage the ROC curve to identify the optimal value for the
threshold that optimally balances the true positive and false positive rate.

Figure 5 shows the model performance at test time. We can see a good agreement
between the actual and the virtual signal in the region where no sensor anomalies occurred
(rightmost part of the plot) and, instead, a discrepancy between them in a region where
sensor anomalies are present (leftmost part of the plot).
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Figure 5. The picture shows the superposition of the actual signal (light green) and the reconstructed
one (dark green). The region ranging from mid November to early December shows a discrepancy
between the two: here, a sensor anomaly is highlighted by the model and confirmed by subject matter
experts (SMEs). The remaining part of the test set shown here has no anomalies highlighted by the
model nor by SMEs. Values were arbitrarily scaled to maintain data confidentiality.

4. Results

Table 1 shows the reconstruction performance of the model on training, validation and
test sets. For validation and test sets, the metrics are evaluated only using subsets where no
anomalies occurred. Please note that the error Δ is defined here as the deviation between
the actual signal y and the reconstructed signal ŷ: Δ = y − ŷ, then ME is the mean error,
MAPE is the mean absolute percentage error, and P90 is the 90th percentile of the absolute
value of the error Δ.

Table 1. Model performance on training, validation and test sets.

ME MAPE P90

Training set 0.12 0.61 5.06
Validation set (non-anomalous samples only) 1.45 1.61 5.97
Test set (non-anomalous samples only) 1.89 0.65 6.52

For what concerns the anomaly detection performance, when applying the model to
the test set, we are able to detect anomalous signals with 96% precision and 100% recall as
summarized in Table 2.

Table 2. Anomaly detection performance on the test set.

Precision Recall

Full test set 96% 100%

5. Conclusions

In this work, we presented a real industrial application of sensor anomaly detection in
the domain of energy and turbomachinery. We applied a semi-supervised deep learning
technique, which can be used to perform anomaly detection in an industrial context. In
particular, we applied anomaly detection to turbo-machinery units by training a virtual
sensor model for a given sensor. We first selected input features through Granger causality
and leveraged auto-correlation and subject matter expertise to identify the best window
size for the recurrent neural network chosen (LSTM).
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This method can be scaled and extended to almost all the sensors installed on the unit,
for a complete sensor anomaly detection system.

Furthermore, once the model has been trained for a single sensor, we can later retrain
the model using data collected over time, with a continual learning approach [28] so that
the algorithm is able to also take into account data-shift phenomena.

Our next plans focus on the deployment of the inference algorithm on edge devices,
i.e., on the MarkVIe system. For this purpose, some model distillation may be required
(for a review, see [29]). In particular, we need to detect potential sensor faults as early as
possible so that we can exclude the sensor from the control system, thus avoiding undesired
shutdowns.
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Abstract: As a small and open economy, Uruguay is highly exposed to international and regional
shocks that affect domestic uncertainty. To account for this uncertainty, we construct two geometric
uncertainty indices (based on the survey of industrial expectations about the economy and the
export market) and explore their association with the Uruguayan GDP cycle between 1998 and 2022.
Based on the estimated linear ARDL models that showed negative but weak relationships between
the uncertainty indices and the GDP cycle, we test for the existence of structural breaks in these
relationships. Although we find a significant break in 2003 for both indices and another in 2019 for
one of them, Wald tests performed on the non-linear models only confirm the structural break in the
early 2000s in the model with the index based on export market expectations. In this non-linear model,
we find that the negative influence of uncertainty fades after 2003. The evidence of a differential
influence before and after this date remains, even when controlling for the variability in non-tradable
domestic prices. Two implications arise from these results. First, the evidence of relevant changes
that made the Uruguayan economy less vulnerable from 2003 onward. Second, the importance of the
expectation about the future of the export market in the macroeconomic cycle of a small and open
economy like Uruguay.

Keywords: uncertainty; macroeconomic cycle; expectations; Uruguay; structural breaks; ARDL
models; non-linear models

JEL Classification: C53; E32; E37; E71

1. Introduction

A recent and growing trend in the literature that seeks to understand the fundamentals
that explain the movements of macroeconomic variables has focused on uncertainty as
a relevant factor. Intuitively, economic agents making decisions may not have complete
information or the capacity to correctly process the information they possess. This can
lead to decisions being made under uncertainty. Moreover, the 2008 global financial crisis
made the importance of quantifying uncertainty and having indicators that measure its
impact in real-time to detect early signs of the economic situation and contribute to timely
decision-making even more evident [1].

However, uncertainty is not a directly measurable phenomenon. Therefore, the eco-
nomic literature has developed different strategies to capture agents’ uncertainty. Many
of the strategies are based on the assumption that prediction errors increase when the
uncertainty rises, stock markets become more volatile and the expectations of different
economic agents are significantly divergent. Several studies measure uncertainty through
the magnitude of forecast errors or by developing dispersion-based indicators of expecta-
tions [2–5]. More recent techniques, based on machine learning, developed new indicators
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constructed through text analysis ([6–8]; among others), including some indicators based
on news through processes that could involve some subjectivity [2].

A recent branch of the empirical literature considers survey-based measures of un-
certainty. This approach relies on the fact that, in periods of higher uncertainty, there are
more discrepancies between the forecasts experts or managers [9–11]. This underpins the
construction of uncertainty indicators that exploit the dispersion or divergence between
agents’ expectations or forecasts. The underlying hypothesis is that lack of predictability
and large divergence between forecasters and managers are signs of increased economic
uncertainty, and this type of measure captures the uncertainty of decision-makers, who play
an important role in investment and innovation decisions. Some empirical applications of
this kind of uncertainty indices for macroeconomic forecast are, among others [12,13].

Empirical research on this topic refers mostly to developed economies. However,
previous studies, such as [14], found substantial heterogeneity in reactions to uncertainty
shocks across countries using an open-economy VAR approach. Compared to developed
countries, emerging economies took a longer time to recover, and they relate this effect to
the depth of financial markets. Evidence from emerging economies is still scarce (see [15]).

With the aim of contributing to the empirical literature on developing economies,
we computed a survey-based uncertainty index for Uruguay following the methodology
proposed by [2]. The authors, noting that most survey-based uncertainty indicators do
not take into account the responses of agents who do not expect changes in the future [16],
propose a time-varying disagreement metric that incorporates information from the three
categories of responses. Thus, they construct a positional indicator of disagreement that can
be interpreted as the percentage of disagreement between responses. A recent application
of this index [17] examines the uncertainty impact on unemployment in European countries
one year after the emergence of COVID-19, using two indicators that exploit the European
Commission’s survey of business expectations.

The Uruguayan economy has certain characteristics. First, it is a small and open econ-
omy located in South America between two large, highly volatile economies, Argentina
and Brazil, with which it forms Mercosur. For this economy, the dynamic and influence of
uncertainty on the economy are studied in [18,19], using different methods and measures.
Ref. [18] proposed a composite index measure of macroeconomic uncertainty that, follow-
ing the methodology of [20], combines external uncertainty captured by Brazil’s Economic
Political Uncertainty (EPU) index (Fundação Getúlio Vargas) and the Global index (Baker,
Bloom, and Davis), with domestic uncertainty measured as the standard deviation of
12-month exchange rate forecasts collected by the Central Bank of Uruguay (BCU). On
the other hand, Ref. [19] analyze the dynamics of manufacturing firms’ expectations from
a network approach, finding that higher uncertainty affects the coordination of groups
of firms.

In contrast to the previous studies, this paper considers an alternative uncertainty
index for Uruguay, based on economic trend surveys. Following the proposal of [2], we
use the industrial monthly survey since 1998, obtained by the Uruguayan Chamber of
Industry. We focus on agents’ expectations about the country’s situation in relation to the
economy as a whole, both at present and at the end of the next six months. This survey
covers 170 companies and asks about expectations for the next 6 months in relation to sales
in the domestic market, sales in the foreign market (if applicable), and their expectations
for the sector, the company, and the economy. The answer options are: worse, same, better,
and don’t know. We explore the relationship between the Uruguayan GDP cycle and
uncertainty indices by applying linear and nonlinear models and structural breaks tests.
This empirical strategy is in line with that proposed by recent research analyzing how
economic uncertainty affects the economy in the short run ([13,21,22], among others).

The rest of the paper is organized as follows. Section 2 presents the data and method-
ology for the empirical analysis, introducing the uncertainty index for Uruguay based on
this methodology. Section 3 presents the empirical results, and the final section, the main
conclusions, and policy implications.
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2. Data and Methodology

2.1. Data

For the proposed analysis, this article relies mainly on three different sources of
information. First, the data used to construct uncertainty indices come from a monthly
survey conducted by the CIU. This survey was created in 1997 and one of its objectives
is to monitor firms in the manufacturing industry regarding the evolution of different
variables. The potential responses were “better, worse, the same (or doesn’t know)”.
These responses are later recorded as 1, −1, and 0, respectively. The questions refer to
industrialists’ perceptions of the following: (1) The evolution of the national economy in
the next six months; (2) If the respondent firm exports, it is asked whether the physical
units exported will increase, decrease, or remain the same. Companies are also asked about
(3) the evolution of their own sector and (4) the evolution of the company’s domestic sales.

The sample used in this survey contained approximately 200 firms and was first
constructed using as a benchmark a different sample designed by the INE. The sample
is dynamic [23] in the sense that firms may enter or leave for different reasons, such as
the closure of a firm or the entry into the market of a new relevant firm. By means of an
analysis carried out by CIU, it is possible to state that the sample is representative of the
manufacturing industry. This database contains monthly observations from October 1998
to August 2022, totaling 287 observations.

The change in the percentage of responses to the question regarding the evolution of
the economy (question 1) and the evolution of the volume exported in the next six months
(question 2) can be seen in Figures A1 and A2, respectively, in the Appendix A.

It can be seen that, for both questions, most companies tend to answer “the same” and
that the “worse” answers are, on average, higher than the “better” answers, revealing a
certain lack of optimism among companies. There is also a similar evolution of the different
response options between the two questions, although differences in level are evident.

Second, the cycle of the Uruguayan economy is extracted from GDP data from
Uruguayan Central Bank (BCU). To obtain the cycle, we used the Structural Time Series
Analyser, Modeller and Predictor (STAMP) econometric software [24], based on quarterly
data from the second quarter of 1980 to the third quarter of 2022. The estimation was
performed using the logarithm of the Uruguayan GDP with the following selected options
in STAMP: level selected as fixed, the slope as stochastic, the seasonal as stochastic, and
an irregular component. The estimated cycle is a short cycle; an intervention analysis
was introduced and the estimation method used was maximum likelihood via the BFGS
numerical score algorithm.

The estimation for the cycle and the other unobserved components can be seen in
Figure A3. The resulting reduction in variance in both the seasonal and the cycle compo-
nents towards the observations of the latter is noteworthy. Further statistics and results
from this estimation can be seen in Table A1.

Finally, in order to consider a factor linked to the domestic market, we also used the
year-on-year rate of non-tradable price index (NTP), constructed updating the methodology
proposed by [25]. The evolution of the non-tradable inflation can be seen in Figure A4.

2.2. Methodology

This subsection presents the methodology used to compute the uncertainty indexes,
based on the aforementioned industrial survey, and to test the existence of a relationship
between the economic cycle and the uncertainty index.

2.2.1. Uncertainty Indexes

To construct our geometric uncertainty index we follow [2]. This index is based on the
discrepancy of responses to surveys where the answers are (or can be coded as) qualitative.
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The index also includes respondents that think the variables will remain stable or will not
change. The indicator is calculated as follows:

uncertaintyk
t = 1 −

√
(Rt − 1

3 )
2 + (Ct − 1

3 )
2 + (Ft − 1

3 )
2√

2
3

(1)

where Rt denotes the share of respondents that answer that the variable will rise in the
next period, while Ct is the share that answer will remain constant, Ft the share that
considers that will fall and k refers to questions 1 and 2 (the Index constructed with
question 1 will now be referred to as Economic Uncertainty, while the one constructed with
question 2 will be referred to as Export Uncertainty), which were used to construct the
geometric discrepancy index. (an analysis was also conducted for questions 3 and 4, but
no significant results were found.) The highest level achievable of uncertainty is reached
when the share of responses is equal, i.e., when one-third of the respondents think the
variable will rise, one-third think it will remain constant and the last third think it will fall.
The evolution of both uncertainty indexes is shown in Figure 1, annotated with the main
international and national events in the period.

In the case of economic uncertainty, the mean of the index for the entire period is 0.45,
showing two major spikes in 2008 and 2020, which are likely to be related to the financial
crisis in 2008 and the appearance of the COVID-19 pandemic. The index related to export
uncertainty shows a mean of 0.58, indicating higher levels of expectations misalignment
on average, in comparison with the economic uncertainty index. Furthermore, the export
uncertainty index does not peak in 2008 and 2020, but rather in 2002, from when a drop
in misalignment is evidenced. On the one hand, it is interesting that the indexes present
different evolutions because this can have a direct impact on how they relate to the GDP
cycle. On the other hand, changes in their own evolution during the period may also
suggest that the association with the economic cycle is not constant.

Both of the indexes are I(0), and details of the test [26,27] can be seen in Table A2 in
the Appendix A.

Figure 1. Geometric Uncertainty Indexes (own calculations based con CIU data). Note: Export
Uncertainty Index in blue line, the Economic Uncertainty Index in dotted line.
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2.2.2. Modeling the Link between the Macroeconomic Cycle and Uncertainty

Our first strategy is to estimate an autoregressive distributed lag (ARDL) model, where
the economic cycle enters as the dependent variable and the uncertainty index is used as a
regressor. This model can be represented as:

yk
t =

p

∑
i=1

γiyt−i +
r

∑
j=0

β jxt−j + εt (2)

where yt is the value of the economic cycle at time t, k refers to the Index 1 or 2, xt is the
uncertainty index at time t and εt is supposed to be white noise.

No constant was introduced as the mean of the economic cycle is null by definition.
The amount of lags introduced in the model was selected using the Akaike information
criterion (AIC). The coefficient covariance matrix used was HAC with the Bartlett Kernel
and Newey–West Fixed Bandwith methods.

Then, we tested the existence of structural breaks using the methodology proposed
by [28]. Basically, the method consists of considering all the possible partitions given
m pre-established breaks and h minimum observations per sub-sample. Then, the sum
squared of residuals (SSR) is computed for each partition, looking for the partition where
it is minimized. In this article, we first employed a contrast to test the hypothesis of the
non-existence of breaks versus the existence of a fixed number of breaks. Secondly, we
performed and presented the test of l breaks versus l + 1 breaks to test whether the breaks
are significantly different from each other. It is worth noting that, as the model utilized
in Equation (2) is multivariate, the tests described previously admit structural breaks at
all parameters.

Finally, if we find significant breaks in the relationship between uncertainty and the
GDP cycle, we will proceed to estimate a new specification that takes this into account.
Specifically, the objective is to evidence the existence of possible changes in the dynamics
of the association between both series.

3. Results

This section presents the results obtained from the different estimations that were
performed. The section is divided into three parts: (i) linear bivariate estimation and break
search; (ii) bivariate estimation with breaks; and (iii) estimation incorporating the price
index of non-tradable goods and services as a control.

3.1. Linear Bivariate Association

Tables 1 and 2 present the results of the ARDL estimation of the relationship between
the GDP cycle and the economic and export uncertainty indices, respectively. As can be
seen, the estimation reveals a relationship with an autoregressive component; at the same
time, the contemporaneous coefficient and the first lag of the uncertainty index are also
significant. However, the coefficients themselves, beyond the best modeling found, are only
significant in the case of economic uncertainty. In fact, a negative relationship is found, i.e.,
higher levels of misalignment between economic expectations are associated with lower
levels in the GDP cycle. Although not statistically significant, this association was also
found in the model with foreign market expectations.

However, Uruguay, during the period of analysis, experienced important economic
events (crisis in 2002, institutional and government changes, and price shocks, among
others); therefore, it may make sense that the association between the series in question
has not remained constant. In fact, if we look at the mean and standard deviation in the
correlation between the series partitioning the sample in five-year periods, an indication of
this may be evident (Table A3).
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Table 1. ARDL model with Index 1 (own estimations).

Variable Coefficient t-Statistic Prob

Economic Cycle (−1) 1.297712 13.59380 0.0000 ***
Economic Cycle (−2) −0.450312 −5.399764 0.0000 ***
Uncertainty Eco −0.025935 −2.247897 0.0270 **
Uncertainty Eco (−1) 0.024972 2.168351 0.0327 **

Adjusted R-squared: 0.862085
Durbin-Watson Stat: 1.871796
Jarque Bera Prob for residuals: 0.634181

Note: Significance levels: 1% *** 5% **.

Table 2. ARDL model with Index 2 (own estimations).

Variable Coefficient t-Statistic Prob

Economic Cycle (−1) 1.302897 14.21119 0.0000 ***
Economic Cycle (−2) −0.452242 −5.067577 0.0000 ***
Uncertainty Expo −0.015864 −1.074760 0.2853
Uncertainty Expo (−1) 0.014817 1.008693 0.3158

Adjusted R-squared: 0.859729
Durbin-Watson Stat 1.876346
Jarque Bera Prob for residuals 0.552310

Note: Significance levels: 1% ***.

As mentioned, given the possibility that the association is not constant, we tested for
the possible existence of breaks. The results for the Bai and Perron sequential L vs. L+1 test
about the presence of significantly different structural breaks in our models are presented
in Table 3.

Table 3. Bai and Perron sequential tests for the existence of structural breaks (own estimations).

Model Trim Max Breaks Break Dates

ARDL 1 0.15 5 2003Q2, 2019Q2
0.10 5 2003Q2, 2019Q2

ARDL 2 0.15 5 2003Q1
0.10 5 2003Q1

Note: Break dates significant at 5%.

Indeed, structural breaks are found in the relationship between the variables. Table 3
shows that for the first model, there are two breaks—in 2003Q2 and 2019Q2—while in the
second there is only one break, in 2003Q1. The first break is directly linked to the economic
crisis experienced by the country during 2002–2003. In the case of 2019, the break may
be linked to a slowdown in the GDP growth rate, accompanied by the subsequent fall
caused by the COVID pandemic. The next subsection presents the estimation of the model,
incorporating the nonlinearity given by the breaks that were found.

3.2. Non-Linear Bivariate Association

Given the presence of significative break dates and using the ARDL models estimated
previously, we incorporate the resulting partitions as interactions. Then, a new specification
for the economic uncertainty index can be written as:

y1
i = (1 − �eco1 − �eco2) ∗ γ1yt−1 + (1 − �eco1 − �eco2) ∗ γ2yt−2 + (1 − �eco1 − �eco2) ∗ β1xt+

(1 − �eco1 − �eco2) ∗ β2xt−1 + �eco1 ∗ γ1yt−1 + �eco1 ∗ γ2yt−2 + �eco1 ∗ β1xt+

�eco1 ∗ β2xt−1 + �eco2 ∗ γ1yt−1 + �eco2 ∗ γ2yt−2 + �eco2 ∗ β1xt + �eco2 ∗ β2xt−1 + εt (3)
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where y and xt are the same variables as in Equation (2), �eco1 is a dummy variable equal
to 1 when the date is between [2003Q3, 2019Q2] and �eco2 is another dummy equal to 1
when the observation is in [2019Q3, 2022Q3]. Similarly, the specification for the export
uncertainty index can be written as:

y2
i = (1 − �exp) ∗ γ1yt−1 + (1 − �exp) ∗ γ2yt−2 + (1 − �exp) ∗ β1xt + (1 − �exp) ∗ β2xt−1+

�exp ∗ γ1yt−1 + �exp ∗ γ2yt−2 + �exp ∗ β1xt + �exp ∗ β2xt−1 + εt (4)

where �exp is a dummy variable equal to 1 when the dates are between [2003Q2,2022Q3].
In both new specifications it is interesting to see if, in addition to finding a significant

relationship, the association between uncertainty and the GDP cycle is significantly different
between the periods established by the breaks.

Table 4 shows the results of the model estimation (3). In this model, unlike what was
found in the ARDL estimation, only the autoregressive component is significant. The GDP
cycle presents a strong inertial factor in its dynamics. Uncertainty regarding the future
state of the economy does not seem to be related to the economic cycle, as the coefficients
are not significant. Although they are significant in the second period, the Wald test of the
joint significance of the coefficients does not allow for us to reject the hypothesis that the
sum is 0. The results of this Wald tests can be seen in Table 5.

Table 4. Results for model with economic uncertainty incorporating structural breaks.

Variable Coefficient Std. Error t-Statistic Prob.

Economic Cycle (−1) * (1−�eco1-�eco2) 1.304264 0.273616 4.766768 0.0000 ***
Economic Cycle (−2) * (1−�eco1-�eco2) −0.407803 0.308015 −1.323972 0.1891
Uncertainty Eco * (1−�eco1-�eco2) −0.035868 0.028754 −1.247423 0.2158
Uncertainty Eco (−1) * (1−�eco1-�eco2) 0.030622 0.029146 1.050632 0.2965

Economic Cycle (−1) * �eco1 1.012357 0.106402 9.514434 0.0000 ***
Economic Cycle (−2) * �eco1 −0.349082 0.103437 −3.374817 0.0011 ***
Uncertainty Eco * �eco1 −0.027985 0.014033 −1.994257 0.0494 **
Uncertainty Eco (−1) * �eco1 0.029711 0.013889 2.139243 0.0354 **

Economic Cycle (−1) * �eco2 1.623731 0.097551 16.64488 0.0000 ***
Economic Cycle (−2) * �eco2 −0.901717 0.167721 −5.376283 0.0000 ***
Uncertainty Eco * �eco2 −0.024665 0.020418 −1.207973 0.2305
Uncertainty Eco (−1) * �eco2 0.017909 0.016007 1.118846 0.2664

Adjusted R-squared 0.868747 Durbin–Watson Stat 2.002169
Jarque Bera Prob for residuals 0.856963

Note: Significance levels: 1% *** 5% **. Own estimations.

Table 5. Wald test coefficient restrictions for model with economic uncertainty.

Null Hypothesis t-Statistic Probability

Uncertainty Eco (1) = 0 −0.840298 0.4032
Uncertainty Eco (1) = 0 0.912886 0.3639
Uncertainty Eco (2) = 0 −1.199455 0.2338

In turn, Table 6, which shows the results regarding uncertainty in international trade,
shows interesting results. There is a negative and significant association between this
uncertainty index and the GDP cycle; this is only found for the first period. This seems to
evidence a possible reduction in the negative effect of uncoordinated expectations on the
business cycle. After the economic crisis of 2002–2003, uncertainty regarding international
trade does not seem to be significantly associated with the GDP cycle. As in the previous
model, the Wald Tests of joint significance are presented in Table 7.

If we look at the Figures 1 and A3, corresponding to the uncertainty index and the GDP
cycle, it is possible to observe two marked trends after the fall: (i) an important reduction
in the level of uncertainty, shown by an increase in the share of firms that respond that the
expectation regarding exports is that it will remain “the same”; and (ii) a reduction in the
variability of the economic cycle.
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Table 6. Results for model with Index 2 incorporating structural breaks (own estimations).

Variable Coefficient Std. Error t-Statistic Prob.

Economic Cycle (−1) * (1−�exp) 1.119265 0.142532 7.852730 0.0000 ***
Economic Cycle (−2) * (1−�exp) −0.143645 0.122415 −1.173425 0.2438
Uncertainty Expo * (1−�exp) 0.046752 0.025535 1.830874 0.0705 *
Uncertainty Expo (−1) * (1−�exp) −0.054458 0.024681 −2.206475 0.0300 **

Economic Cycle (−1) * �exp 1.192547 0.109440 10.89678 0.0000 ***
Economic Cycle (−2) * �exp −0.450539 0.087777 −5.132737 0.0000 ***
Uncertainty Expo * �exp −0.024633 0.015735 −1.565455 0.1211
Uncertainty Expo (−1) * �exp 0.024789 0.015084 1.643424 0.1039

Adjusted R-squared 0.881744 Durbin–Watson Stat 1.877005
Jarque Bera Prob for residuals 0.516868

Note: Significance levels: 1% *** 5% ** 10% *. Own estimations.

Table 7. Wald test coefficient restrictions for model with export uncertainty.

Null Hypothesis t-Statistic Probability

Uncertainty Expo (1) = 0 −3.468117 0.0008 ***
Uncertainty Expo (2) = 0 0.108110 0.9142
Uncertainty Expo (1) = Uncertainty Expo (2) −2.980876 0.0037 ***
Significance levels: 1% ***.

Among the factors that may be behind these results, it is possible to consider that
in a small and open country like Uruguay, the short-term dynamics of GDP (which is
what we are observing more clearly when using the cycle) are more relevant to foreign
market conditions than to the domestic economy itself. This is mainly because uncertainty
regarding possible changes in international markets can be transferred more quickly to GDP.

This significant relationship is relevant for understanding how uncoordinated expecta-
tions (in this case, from the industrial sector) affect GDP dynamics. However, it is possible
that other factors are also relevant both to the dynamics of the economy and as a channel
through which uncertainty is transferred to GDP.

Therefore, in the next section, we re-analyze the relationship between the series,
incorporating a non-tradable price index in the estimations. By including this series in the
analysis, we seek to control for a possible price effect of goods and services not associated
with the foreign market.

3.3. Controlling for Variability in Domestic Prices

Following the steps of the previous subsections, first, an ARDL model is estimated to
establish the relevant components in the linear relationship (the non-tradable price index
was included in its seasonal difference, i.e., the year-on-year rate of non-tradable inflation).

As can be seen in Tables 8 and 9 the relevance of the autoregressive component is
again evident; all three lags are significant for both models. Uncertainty maintains its
significance, even with the inclusion of the non-tradable price index. Moreover, unlike the
bivariate ARDL of the first subsection, the export uncertainty index now has a negative
and significant association at 10%. Although, in both cases, the relationship between
expectations misalignment and the business cycle seems to be negative, the difference
found between the models is that, in the case of the economic uncertainty index, the first
lag in the variable also appears to be relevant (something not found for the other model).
In contrast, the NTP index seems to be positively associated with the cycle.
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Table 8. ARDL model with economic uncertainty and non-tradable price index as regressors (own
estimations).

Variable Coefficient t-Statistic Prob

Economic Cycle (−1) 1.328141 14.11823 0.0000 ***
Economic Cycle (−2) −0.625139 −5.160872 0.0000 ***
Economic Cycle (−3) 0.164179 1.745806 0.0843 *
Uncertainty Eco −0.030652 −2.528639 0.0132 **
Uncertainty Eco (−1) 0.022047 1.778425 0.0788 *
NTP Index −0.072540 −1.129097 0.2619
NTP Index (−1) 0.116385 1.785335 0.0777 *

Adjusted R-squared: 0.865329
Durbin–Watson Stat: 2.023571
Jarque Bera Prob for residuals: 0.499441

Note: Significance levels: 1% *** 5% ** 10% *.

Table 9. ARDL model with export uncertainty and non-tradable price index as regressors (own
estimations).

Variable Coefficient t-Statistic Prob

Economic Cycle (−1) 1.318875 16.29477 0.0000 ***
Economic Cycle (−2) −0.628313 −5.455212 0.0000 ***
Economic Cycle (−3) 0.205955 2.028425 0.0455 **
Uncertainty Expo −0.012640 −1.723270 0.0883 *
NTP Index −0.024012 −0.351361 0.7261
NTP Index (−1) 0.109869 1.955052 0.0537 *

Adjusted R-squared: 0.877273
Durbin–Watson Stat 2.032154
Jarque Bera Prob for residuals: 0.535540

Note: Significance levels: 1% *** 5% ** 10% *.

Subsequently, we analyzed the possible existence of structural breaks. Given the
number of observations available (also reduced by the inclusion of the seasonal difference
of the NTP Index), we established in the break tests that only a maximum of two breaks
can be found. If this restriction is not established, a third structural break is found in
2012Q3, and in 2007Q2 for the economic uncertainty model and export uncertainty model,
respectively. As can be seen in Table 10, the breaks that were found are extremely similar to
those found in Section 3.1: one linked to the crisis and the other prior to the pandemic, which
was also linked to a period of slowdown in the Uruguayan economy. The main difference
is that, for the new model specification with export uncertainty, a second structural break is
found at 2019Q2.

Table 10. Bai and Perron sequential tests for the existence of structural breaks (own estimations).

Model Trim Max Breaks Break Dates

ARDL 1 0.15 2 2003Q2, 2018Q2
ARDL 2 0.15 2 2003Q2, 2019Q2
Note: break dates significant at 5%.

Finally, both models are estimated considering the breaks found. First, several points
emerge from the specification with the economic uncertainty index. For simplicity, only
the uncertainty results are shown. The extended estimations of the models can be found in
the Appendix (Tables A4 and A5). As Table 11 shows, uncertainty is negatively associated
with the GDP cycle in the first period, a result that was not found in the estimation of the
previous subsection. On the other hand, the relationship is not significant for the second
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period and is positive and significant at 10% for the third period. Wald test for significant
differences between the periods results in the rejection of the hypothesis that there are no
different effects. In other words, the nonlinearity of the association is confirmed.

With respect to the positive effect found in the third period, some considerations may
be made. By constructing the indicator where uncertainty refers to the uncoordinated
expectations of the firms, it is possible to increase uncertainty by improving expectations.
As an example, if we start from a scenario where the responses are distributed as follows:
70% “the same”, 20% “worse” and 10% “better”, and we move to a new scenario where
50% “the same”, 20% “worse” and 30% “better”, the expectations improve while the
misalignment among firms increases.

Second, in line with the bivariate model, the specification with the export uncertainty
index shows a negative and significant association in the first period, which dissipates in
the following periods (Table 12).

In summary, the effects of both models are consistent with the idea that the Uruguayan
economy managed to reduce the effects of uncertainty after the economic crisis of 2002–2003.
As mentioned, this is directly related to the combination of two marked trends, an im-
provement in the coordination of firms’ expectations and a reduction in the volatility of the
cycle.

Table 11. Results for model with economic uncertainty.

Coefficient Std. Error t-Statistic Prob.

First period (1999Q1-2003Q2)

Uncertainty Eco −0.078016 0.027857 −2.800543 0.0065 ***
Uncertainty Eco (−1) 0.020252 0.032630 0.620650 0.5367

Wald test: Uncertainty Eco (1) = 0 −0.057764 0.011436 −5.051039 0.0000 ***

Second period (2003Q3-2018Q2)

Uncertainty Eco −0.031572 0.014348 −2.200449 0.0309 **
Uncertainty Eco (−1) 0.027546 0.021599 1.275347 0.2062

Wald test: Uncertainty Eco (2) = 0 −0.004026 0.014667 −0.274513 0.7845

Third period (2018Q3-2022Q3)

Uncertainty Eco 0.037021 0.027618 1.340480 0.1842
Uncertainty Eco (−1) 0.062965 0.035732 1.762144 0.0822 *

Wald test: Uncertainty Eco (3) = 0 0.099986 0.058531 1.708271 0.0918 *

Wald tests

Null Hypothesis t-Statistic Prob.

Uncertainty Eco (1) = Uncertainty Eco (2) −2.859274 0.0055 ***
Uncertainty Eco (1) = Uncertainty Eco (3) −2.645159 0.0100 ***
Uncertainty Eco (2) = Uncertainty Eco (3) −1.729928 0.0878 *

Note: Significance levels: 1% *** 5% ** 10% *. Own estimations.
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Table 12. Results for Model with Export Uncertainty.

Coefficient Std. Error t-Statistic Prob.

First period (1999Q1-2003Q2)

Uncertainty Expo −0.029535 0.009953 −2.967433 0.0040 ***

Second period (2003Q3-2019Q2)

Uncertainty Expo −0.008266 0.011044 −0.748455 0.4564

Third period (2019Q3-2022Q3)

Uncertainty Expo 0.088481 0.063845 1.385867 0.1697

Wald tests

Null Hypothesis t-Statistic Prob.

Uncertainty Expo (1) = Uncertainty Expo (2) −1.397758 0.1661
Uncertainty Expo (1) = Uncertainty Expo (3) −1.826405 0.0716 *
Uncertainty Expo (2) = Uncertainty Expo (3) −1.492682 0.1396

Note: Significance levels: 1% *** 10% *. Own estimations.

4. Main Remarks

The relationship between uncertainty and business cycles has been extensively studied
in the economic literature. The main idea is that, during periods of high uncertainty,
businesses and consumers become more cautious in their spending, which can lead to a
decrease in economic activity and a recession. On the other hand, periods of low uncertainty
can lead to increased spending and economic growth.

Overall, the literature suggests that the impact of uncertainty on business cycles can
vary across economies and may depend on factors such as the level of financial development
and the structure of the economy. However, there is a general consensus that higher
uncertainty can lead to a decrease in economic activity and lower productivity.

This paper considers an uncertainty index for Uruguay (a small South American country
that is highly exposed to international and regional shocks), based on economic trend surveys.
We follow the proposal of [2], using the industrial monthly survey that has been led since 1998 by
the Uruguayan Chamber of Industry. Similar to recent research that analyzed the way economic
uncertainty affects the economy in the short term ([13,21,22], among others), we explore the
relationship between the Uruguayan GDP cycle and uncertainty indices by applying linear and
nonlinear models.

The estimated ARDL linear models showed negative but weak relationships between
the uncertainty indices and the GDP cycle. The tests for the existence of structural breaks
in these relationships show a significant break in the year 2003 for both indices, and
another in 2019 for one of them. The Wald tests performed on the nonlinear models only
confirm the structural break in the early 2000s in the model with the index based on export
market expectations. Before 2003, the effect of uncertainty over the Uruguayan economy is
significant and negative, as [15] found for the Brazilian economy. After 2003, this negative
effect decreases. This result holds even when controlling for the variability of non-tradable
domestic prices. This result is probably associated with the improvement in institutional
factors and in the soundness of the Uruguayan financial system. The authors of [14] pointed
out that the greatest effect of uncertainty in emerging economies compared to developed
economies is the depth of financial markets in the latter.

Two implications can be derived from these results. First, there is evidence of rele-
vant changes that made the Uruguayan economy less vulnerable as of 2003. Second, the
monitoring of the evolution of agents’ expectations about the future of the export market
over the macroeconomic cycle is important in a small and open economy such as the
Uruguayan economy.
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Appendix A

Figure A1. Change in share of responses to the question: What are your firm expectations about the
evolution of the country’s economy in the next 6 months? (Own construction based on CIU data).
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Figure A2. Change in share of responses to the question: If your firm exports, what are your
expectations about your external sales in units in the next 6 months compared to last year? (Own
construction based con CIU data).

Figure A3. Estimation of unobserved components of the Uruguayan GDP (Own construction).
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Table A1. Results of unobserved components’ estimation.

Model Estimated
Y = Level + Seasonal + Irregular + Cycle + Interventions

Standard deviations of component residuals

Level 0
Seasonal 0.00191589665
Irregular 0.00539346827

Cycle 0.01207414593

Model Diagnostic Statistics

Normality (Bowman − Shenton) 2.0214
T 170

Rs2 0.72238

Cycle other parameters

Standard Deviation 0.0331662479
Period in Years 7.13498

Damping Factor 0.93116
Frequency 0.22015

Figure A4. Year-on-year rate of non-tradable price index (NTP).

Table A2. Augmented Dickey–Fuller test for Index 1 and 2. MacKinnon one-sided p-values.

Null Hypothesis Included in Test Equation T-Statistic Prob

Index 1 has a unit root (0) Constant −3.382373 0.0140 **
Index 2 has a unit root (0) Constant −3.745660 0.0048 ***
Significance levels: 1% *** 5% **. Lag length selected automatically based con SIC criterion, number of lags
between brackets.

Table A3. Evolution of mean and S.D. for the economic cycle and uncertainty indexes (own construction).

Five-Year Period
Mean

Cycle Index 1 Index 2

[1998Q4-2003Q3] −0.007172 0.498835 0.711100
[2003Q4-2008Q3] 0.005583 0.387073 0.527276
[2008Q4-2013Q3] −0.000898 0.407762 0.559700
[2013Q4-2018Q3] 0.005037 0.459868 0.550142
[2018Q4-2022Q3] −0.008590 0.525412 0.597186
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Table A3. Cont.

Five-Year Period
Standard Deviation

Cycle Index 1 Index 2

[1998Q4-2003Q3] 0.038733 0.032445 0.063504
[2003Q4-2008Q3] 0.011634 0.056597 0.032582
[2008Q4-2013Q3] 0.009007 0.079864 0.057885
[2013Q4-2018Q3] 0.008959 0.047416 0.058000
[2018Q4-2022Q3] 0.020782 0.078845 0.050813

Table A4. Results for model with economic uncertainty (extended).

Variable Coefficient Std. Error t-Statistic Prob.

Economic Cycle (−1) * (1−�eco1-�eco2) 0.971293 0.143547 6.766363 0.0000
Economic Cycle (−2) * (1−�eco1-�eco2) −0.460914 0.227425 −2.026664 0.0463
Economic Cycle (−3) * (1−�eco1-�eco2) 0.556891 0.166095 3.352847 0.0013
Uncertainty Eco * (1−�eco1-�eco2) −0.078016 0.027857 −2.800543 0.0065
Uncertainty Eco (−1) * (1−�eco1-�eco2) 0.020252 0.032630 0.620650 0.5367
NTP Index * (1−�eco1-�eco2) 0.015281 0.110945 0.137738 0.8908
NTP Index (−1) * (1−�eco1-�eco2) 0.260635 0.116805 2.231379 0.0287
Economic Cycle (−1) * �eco1 1.086471 0.131641 8.253275 0.0000
Economic Cycle (−2) * �eco1 −0.558807 0.183351 −3.047751 0.0032
Economic Cycle (−3) * �eco1 0.177890 0.125142 1.421504 0.1594
Uncertainty Eco * �eco1 −0.031572 0.014348 −2.200449 0.0309
Uncertainty Eco (−1) * �eco1 0.027546 0.021599 1.275347 0.2062
NTP Index * �eco1 0.023900 0.102736 0.232640 0.8167
NTP Index (−1) * �eco1 0.006676 0.082092 0.081323 0.9354
Economic Cycle (−1) * �eco2 1.238076 0.260182 4.758494 0.0000
Economic Cycle (−2) * �eco2 −0.554057 0.257644 −2.150478 0.0348
Economic Cycle (−3) * �eco2 0.402342 0.265752 1.513978 0.1343
Uncertainty Eco * �eco2 0.037021 0.027618 1.340480 0.1842
Uncertainty Eco (−1) * �eco2 0.062965 0.035732 1.762144 0.0822
NTP Index * �eco2 −0.150417 0.331084 −0.454317 0.6509
NTP Index (−1) * �eco2 −0.517170 0.174352 −2.966238 0.0041

Table A5. Results for model with export uncertainty (extended).

Variable Coefficient Std. Error t-Statistic Prob.

Economic Cycle (−1) * (1−�exp1-�exp2) 1.132934 0.113630 9.970396 0.0000
Economic Cycle (−2) * (1−�exp1-�exp2) −0.564487 0.200161 −2.820169 0.0061
Economic Cycle (−3) * (1−�exp1-�exp2) 0.460023 0.176247 2.610102 0.0108
Uncertainty Expo * (1−�exp1-�exp2) −0.029535 0.009953 −2.967433 0.0040
NTP Index * (1−�exp1-�exp2) 0.056315 0.101043 0.557341 0.5789
NTP Index (−1) * (1−�exp1-�exp2) 0.137541 0.115078 1.195204 0.2356

Economic Cycle (−1) * �exp1 1.083669 0.119190 9.091904 0.0000
Economic Cycle (−2) * �exp1 −0.554825 0.158812 −3.493603 0.0008
Economic Cycle (−3) * �exp1 0.181646 0.118082 1.538306 0.1280
Uncertainty Expo * �exp1 −0.008266 0.011044 −0.748455 0.4564
NTP Index * �exp1 0.064436 0.093712 0.687595 0.4937
NTP Index (−1) * �exp1 9.79 × 10−5 0.079311 0.001234 0.9990

Economic Cycle (−1) * �exp2 1.212852 0.316458 3.832585 0.0003
Economic Cycle (−2) * �exp2 −0.084595 0.552603 −0.153085 0.8787
Economic Cycle (−3) * �exp2 −0.302975 0.207107 −1.462895 0.1475
Uncertainty Expo * �exp2 0.088481 0.063845 1.385867 0.1697
NTP Index * �exp2 0.018109 0.258704 0.069998 0.9444
NTP Index (−1) * �exp2 −0.759109 0.302274 −2.511328 0.0141
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Abstract: A computationally efficient predictive digital twin (DT) of a small-scale greenhouse needs
an accurate and faster modelling of key variables such as the temperature field and flow field
within the greenhouse. This involves : (a) optimally placing sensors in the experimental set-up and
(b) developing fast predictive models. In this work, for a greenhouse set-up, the former requirement
fulfilled first by identifying the optimal sensor locations for temperature measurements using the QR
column pivoting on a tailored basis. Here, the tailored basis is the low-dimensional representation
of hi-fidelity computational fluid dynamics (CFD) flow data, and these tailored basis are obtained
using proper orthogonal decomposition (POD). To validate the method, the full temperature field
inside the greenhouse is then reconstructed for an unseen parameter (inflow condition) using the
temperature values from a few synthetic sensor locations in the CFD model. To reconstruct the
flow-fields using a faster predictive model than the hi-fidelity CFD model, a long-short term memory
(LSTM) method based on a reduced-order model (ROM) is used. The LSTM learns the temporal
dynamics of coefficients associated with the POD-generated velocity basis modes. The LSTM-POD
ROM model is used to predict the temporal evolution of velocity fields for our DT case, and the
predictions are qualitatively similar to those obtained from hi-fidelity numerical models. Thus,
the two data-driven tools have shown potential in enabling the forecasting and monitoring of key
variables in a digital twin of a greenhouse. In future work, there is scope for improvements in the
reconstruction accuracy by involving deep-learning-based corrective source term approaches.

Keywords: dimensionality reduction; forecasting; LSTM; POD; QR pivoting; digital twin

1. Introduction

A digital twin (DT) [1] is defined as a virtual representation of a physical asset en-
abled through data and simulators for real-time predictions, optimization, monitoring,
controlling, and improved decision-making. For efficient real-time predictive digital twins,
the use of computationally intensive hi-fidelity numerical solvers and a large number of
sensors (for control) needs to be avoided, as well as time-series prediction techniques and
sparse sensor placement locations. In this work, an experimental greenhouse set-up is
constructed (as seen in Figure 1) as the physical asset of DT. The physical asset (Figure 2)
has sensors to measure the varying internal conditions (temperature, flow rate, humidity)
inside a fully controllable environment, but requires optimal sensor placements to enable
the reconstruction of a full field using only the measured sensor values.

Determining sensor placements for large data-sets involves methods such as a com-
pressed sensing algorithm [2], which assumes that the original signal is sparse on a universal
basis. It then uses the L1-norm-based optimization approach to find the sparsest solution.
Once the sparse signal is recovered using compressed sensing (CS), the sensor locations can
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be identified by examining the non-zero entries in the solution vector. This method does
not require training data to find the basis functions as it uses a universal basis. However,
this approach is not suitable for high-dimensional physical systems with a known structure,
and for such systems, a method based on the data-driven QR pivoting of tailored basis [3]
is more suitable. This data-driven approach uses training data to find the basis specific
to the known system and this results in a lower number of optimum sensor placements
for a high-dimensional system than that obtained using the CS-based method. Hence,
the QR-pivoting-based sensor placement method is demonstrated to have applications
in a greenhouse digital twin. For DT, there is also a need to develop faster data-driven
reduced-order models [4–6]) for predicting the temporal flow state of the physical asset.
In this work, we employ data-driven techniques involving long-short term memory, proper
orthogonal-decomposition-based decomposition and QR-pivoting to enable modelling
of the temporal dynamics of key variables for a digital twin of a small-scale greenhouse.
The methodology and results are discussed in the next sections, followed by the conclusion.

(a) Wall with intake fan (b) Wall with outtake fan
Figure 1. Schematic showing the layout of the greenhouse side walls with dimensions in millimeters.

Figure 2. Bidirectionally coupled DT and Asset.
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2. Methodology

The greenhouse set-up (physical set-up) and its hi-fidelity computational fluid dynam-
ics (CFD) set-up are constructed first (Figures 1 and 2) . The training data-set of temperature
and velocity fields obtained from CFD simulations of the greenhouse set-up (as described
in Section 2.1) are then subjected to proper orthogonal decomposition (POD). The POD
decomposes the data into the dominant basis functions (which serve as a low-dimensional
representation) and accompanying time-dependent coefficients (as discussed in Section 2.2).
These dominant basis modes are then used to obtain optimal sparse locations for tempera-
ture measurements and to develop a reduced-order model for the flow field. The details of
the data-set and methodology are provided below.

2.1. Training Data-Set and Greenhouse CFD Simulations

The training data (i.e., the full temperature field and velocity field across the green-
house) needed by the data-driven techniques are generated using a hi-fidelity compu-
tational fluid dynamics (CFD) simulation of the greenhouse set-up. Figure 2 shows the
experimental set-up and CFD simulation of the greenhouse to enable a digital twin (DT). In
this work, a hi-fidelity OpenFOAM CFD solver is used for the simulation, and this solves
the Navier stokes equation (i.e., the continuity and momentum conservation equations)
along with the thermal equation, while the turbulence is modelled using an RANS k-epsilon
model. The greenhouse has a fan to control inlet airflow speed, and a heater on the top
of roof for temperature control. These are considered boundary conditions for the CFD
solver. For CFD simulations, the parameters that are changed are: (a) Inlet air flow speed
due to the fan operation in the greenhouse . For each simulation case, this is varied as
follows: 0 m/s (i.e., no in-flow and the natural convective flow occurs due tothe heat flux
from the heater at the top), 1 m/s, 2 m/s and 3 m/s; (b) The heat flux at the top is varied
to match the expected heater output from the top. The generated simulation data-set is
divided into training and validation data-sets to develop and test the data-driven tech-
niques, while the training data-set comprises simulation cases with 0 m/s, 1 m/s and 3 m/s
inlet flow conditions. The simulation case of 2 m/s is used to validate/test data-driven
reconstructions. The fan speed and heat flux are varied in the real-experimental set-up
to enable an optimal temperature for plant growth in the greenhouse. The grid size used
for numerical CFD simulation was selected after a proper grid-independence test and the
total number of grids was n = nxnynz = 14,165. The discretization schemes employed
are as follows: linearUpwind for convection term and implicit second-order backward
scheme for temporal discretization. The time-step for simulation is selected to ensure
the courant number is less than 1 and total time of simulations in each simulation could
develop the flow. The snapshots of temperature and velocity from each of the simula-
tion cases are saved at a time-step of about 0.5 s. These snapshots are then subjected to
proper orthogonal decomposition (POD) to obtain the dominant basis functions (which
serve as a low-dimensional representation) and accompanying time-dependent coefficients
(as discussed in Section 2.2). The dominant basis functions are then used to obtain opti-
mal sparse locations for temperature measurements and develop a reduced-order model.
The methodology of the LSTM-POD reduced-order model is covered briefly in Section 3.2,
and in more detail in [6]. The next section describes the POD methodology and sensor
placement methodology.

2.2. Proper Orthogonal Decomposition

The chosen snapshots of the temperature simulations from the training database (i.e.,
simulations with an inflow of 0 m/s, 1 m/s and 3 m/s, respectively) were flattened in their
spacial dimensions to form a matrix T ∈ Rn×m, where n = nxnynz. The matrix was then
shifted by the mean of its columns (μT ) and scaled by the standard deviation of its columns
(σT ) to obtain matrix X.

X =
1

σT
(T − μT) (1)
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The matrix X ∈ Rn×m was decomposed as shown in Equation (2) by using singular
value decomposition to obtain the dominant basis functions (i.e the POD modes),

X = ΨΣVT (2)

where Ψ ∈ Rn×n and V ∈ Rm×m are orthonormal matrices, while ΣRn×m is only non-
zero on its diagonal. The values in the diagonal of Σ are called the singular values of X

and are ordered in descending order. The columns of Ψ are called the POD modes of X.
By truncating the matrices Ψ, Σ and V to only use the first r singular values, it can be
used for dimensionality reductions. The truncated POD modes serves as low-dimensional
representation of hi-dimensional data. The columns of Ψ and singular values are ordered
by how important they are for the reconstruction of X. The truncated singular value
decomposition is shown in Equation (3). Ψr ∈ Rn×r and Vr ∈ Rm×r are the first r columns
of Ψ and V, respectively, and Σr ∈ Rr×r is a diagonal matrix with the first r singular values
on the diagonal. Using the first r POD-modes will lead to some error, represented by the
matrix Er. For many matrices consisting of structured data, the error will be small for a
relatively limited choice of r if the first r modes captures most of the variance in the data.

X = ΨrΣrVT
r + Er ≈ ΨrAr + Er ≈ ΨrAr (3)

Similarly, any column vector of X, or any vector similar enough to the columns of X,
can be approximated as in Equation (4). The vector a can be seen as a low-dimensional
representation of x.

x = Ψra + e ≈ Ψra (4)

In this study, the number of POD modes and sparse sensors were both chosen to
be p = r = 10. The choice of number of POD modes, r, and the number of sensors, p,
is important to the performance of the method. Too small an r or p will lead to a poor
performance, while too large an r or p will result in a too large model that might be slow or
infeasible to use in practice. A too large p will also defeat the purpose of the method using
sparse measurements. More details on the choice of p = r = 10 are given in Section 2.4.

2.3. Reconstruction from Sparse Measurement

This section explains how to estimate full-field (x) from a sparse measurement (y)
given a tailored basis Ψr and the sensor locations in C.

Here, y is a sparse measurement of x and is calculated as in Equation (5) where
C ∈ Rp×n is the measurement matrix and v is measurement noise. The measurement y
is sparse in the sense that it only contains information about relatively few entries in x.
The number of elements in y is denoted as p and is the number of measurements taken of x.

y = Cx + v (5)

y = C(Ψra + e) + v ≈ CΨra (6)

The matrix C represents the part of x that is measured in y. It can be structured in
different ways. One way is for each row of C to consist of a single 1, with all other entries
being 0. Then, each element in y will be a direct measurement of a single element in x. This
case is called sparse sensor placement.

The relationship between y and a in Equations (6) is found by combining (5) and
(4). Furthermore, a and x can be approximated from y, as shown in Equation (7). These
approximations are good as long as e and v are sufficiently small.

a ≈ (CΨr)
†y ≈ Θ†y (7)

x ≈ Ψra ≈ Ψr(CΨr)
†y ≈ ΨrΘ†y (8)

Thus, to reconstruct full-field x, the condition number of Θ (the row-selected basis matrix—a
product of the measurement and basis matrices) should be small so that the input errors

450



Eng. Proc. 2023, 39, 98

are not amplified during the inversion in Equation (8). The condition number of Θ can be
controlled by the choice of measurement matrix C. A suitable sensor placement algorithm
is the one that helps to find rows of Ψr corresponding to the point sensor location in state
space that provides the optimal conditions for the inversion of matrix Θ = CΨr. This is
obtained by QR pivoting (the chosen sensor location method), as detailed in Section 2.4.

2.4. QR Pivoting for Sparse Sensor Placement

The choice of sensor locations in C is important to enable optimal conditioning and
inversion operation in Equation (8). The QR-decomposition with column pivoting is
proposed as a computationally efficient alternative to finding optimal sensor locations [3].
This is carried out using the first p choices of column pivots when calculating the QR
decomposition of ΨrΨT

r in the algorithm as the p sensor locations. Using p = r, one can
calculate the QR decomposition of ΨT

r instead. Each row of C is a row of zeros besides a
single element that is set to 1. The resulting p sensor locations (selected pivots) are then
used to find the elements in C that should be set to 1. The value i-th chosen pivot is the
index of the the element on the i-th row of C that is set to 1. The first pivot location is chosen
by finding the row of the matrix (ΨΨT

r or Ψ) with the largest �2-norm. The index of this row
is the first chosen sensor location. The matrix (ΨΨT

r or Ψ) is then modified before the next
iteration. Each row is subtracted by the projection of the row on the row corresponding to
the chosen sensor location. This is repeated until the desired number of sensor locations
is chosen. In this form, the algorithm can easily be modified to include constraints on
the possible choices of sensor placement. This can be very useful; for example, if some
sensor locations are not practical to use. Another case when this is useful is if one wants a
maximum or minimum number of sensors inside an area.

Regarding the choice of number of modes r and number of sensors p in this work,
explained variance is often used to chose the number of POD modes. This can be a useful
tool to find a lower bound for good choices of number of modes r. Here, first two modes
captures most of the variance in both the temperature and velocity fields. However, it is
wiser to use a larger r because some time steps might not be modeled well by the POD-
modes even tough the explained variance is high. This can happen if many time steps are
similar and a few time steps are different from the others. The explained variance might be
high because the POD modes model the time steps that are similar to each other. The few
time steps that are modeled poorly will not necessarily effect the explained variance. This
could be the case in this application, where the time steps toward the end of the simulation
are very similar because the system moves toward a steady state. However, the early time
steps are very different from the steady state and could therefore be modeled poorly, even
though the explained variance is high. Therefore, it is wiser to use a higher r.

However, there are some restrictions to the choice of r and number of sensors p: (a) The
first restriction on the choice of r and p comes from the number of elements in the POD-
modes. If p > r, the matrix ΨrΨT

r ∈ Rn×n is constructed in the sensor placement algorithm.
However, if n is large enough, then constructing and using this matrix is infeasible. In this
application, n = nxnynz = 141,659, which makes it infeasible to choose p > r. Instead, if
p = r, then the matrix Ψr ∈ Rn×r is used instead, which makes it much easier to work
withfor a small choice of r. (b) Another constraint is that one actually has to be able to
measure at the chosen sensor locations when the method is used in practice. Therefore,
one can not choose a p that is larger than the number of sensors one can access. In this
application, a maximum of 10 temperature sensors can be used to estimate temperature
from sparse measurements. Since r = p, the maximum constraint for r is also 10. We
ended up using all 10 available physical sensors because the use of more sensors should
not hurt the performance, as 10 is still a relatively small number compared to n. If using
more sensors than necessary, one could use a subset of these sensors in future to estimate
the temperature field and use the remaining sensors to validate how good the resulting
estimate is. Therefore, p = r = 10 was chosen.
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3. Results and Discussion

3.1. Flow Reconstruction from Sensor Placement for Test Data

The POD modes of the temperature data from training set were used as the tailored
basis. The first two of those dominant temperature POD modes are shown in Figure 3.
The POD modes (ψ) are then used to find good sensor locations (pivots in C) in the
temperature grid, as shown in Figure 4.

Figure 3. Mode 1 and Mode 2 from POD decomposition.

Figure 4. The chosen sensor locations.

These are the physical locations that should be measured for the reconstruction. Thus,
one can estimate the whole temperature grid from a given sparse temperature measurement
y. The temperatures measured in y correspond to the location in the measurement matrix
C. The sparse sensor locations and basis functions obtained using the training data-set are
then used to reconstruct the full temperature field for the unseen test case with an inflow of
2 m/s, and this involves using sparse measurements at test case (2 m/s case) at specified
locations for the full temperature field reconstruction. The reconstructed flow field is then
compared with the full CFD temperature field for the test case. Figure 5 shows examples of
temperature estimations obtained from sparse measurements.

452



Eng. Proc. 2023, 39, 98

(a) Middle x slice

(b) Middle y slice
Figure 5. Comparing simulation data and their estimates from sparse measurements. This is for the
time step with the largest MAE. Everything is measured in Kelvin.

Since the data are distributed in a 3D space, it is hard to show the entire estimate;
these figures show the x and y slices in the middle of the 3D space. Figure 5a shows an
example of one of the worst estimates with errors up to 4 Kelvin in the bottom right corner
in Figure 5a. For a time-step with an error close to the average error (figure not shown),
there are no errors above 1 K.

As seen in Figure 6 the error is largest in the first time steps of the time series estimated
from sparse measurements. In the beginning of the simulation, the temperature is harder
to model than the more homogeneous temperature that dominates the later time steps.
The sparse measurements are used to find the linear combination of the POD modes that
best fits the current state. If the current temperature field does not fit well with the POD
modes, the estimate of the sparse measurement will not provide a result that is close to the
ground truth. This is independent of the number of sensor locations that are used, as long
as the number of POD modes does not increase.

A histogram of all the absolute errors at every spatial location and time step is shown
in Figure 7. In this histogram, the vast majority of the errors in temperature estimation are
below 0.5 Kelvin. Therefore, there seems to be only a few time steps and spatial positions
with large errors, which provide the large errors shown in Figures 5 and 6. The errors
are low in the rest of the region. Thus, the flow reconstruction from the sensor can be
considered good, with scope for improvements in the future. In next section, we will see
results for the reconstruction of a flow field using a data-driven reduced-order model for
efficient predictions in a DT set-up.
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Figure 6. Maximum and average absolute error for each time step.

Figure 7. Histogram of the absolute error for each pixel for each time step.

3.2. Flow Reconstruction of Velocity Using LSTM-POD ROM

The training data-set for LSTM comprises an input 3D matrix containing the POD-
evaluated time-coefficients and has dimensions of N × σ × R, corresponding to the number
of samples (N), the look-back time steps (σ = 3 for this work) and the number of features (R).
The R number of features correspond to the temporal coefficient values associated with
R spatial basis function (modes). If needed, the flow-rate can be added as an additional
feature (parameter). For LSTM output (target), a database of a 2D array of the temporal
coefficients for time t is provided with dimensions N × R to train the LSTM. The LSTM is
trained to map the inputs (σ previous time-steps of time coefficients) to time-coefficient
values at time t for all R modes. Here, the LSTM parameters are found using the hyper-
parameter optimization software optuna. The LSTM uses two layers with 30 units (neurons)
and tanh activation function. The details of the ROM methodology involving LSTM can
be found at [6]. Figure 8 shows the temporal dynamics of coefficients, as predicted by the
trained LSTM model on test data. The trained LSTM model could qualitatively predict the
temporal coefficient evolution trend when compared to the actual true coefficient. There is
scope for improvements in its accuracy when using a larger training database to provide
a result that is qualitatively similar to the true coefficient. These temporal coefficients are
now used, along with the velocity basis functions (obtained from POD), to reconstruct the
full velocity field for the unseen test case (as seen in Figure 9).

454



Eng. Proc. 2023, 39, 98

Figure 8. Temporal dynamics of coefficients captured by LSTM.

Figure 9 shows the reconstruction of velocity field at time t before the flow is fully
developed using the (a) LSTM-POD methodology compared to that obtained by (b) high-
fidelity CFD data.

(a) Reconstruction (b) True velocity (c) Error
Figure 9. Comparison of prediction of velocity field between LSTM-POD reconstruction and hi-
fidelity CFD.

Figure 9 shows that the LSTM-POD methodology can predict qualitatively similar
results (flow field) as actual CFD data in an online set-up using only a few minutes of
computational time, as compared to the few hours of computational time needed by the
hi-fidelity CFD with minimal errors. Thus, the methodologies developed to date have
potential for use in a synthetic CFD data-set. The flow reconstruction from sensors needs to
be further tested on actual sensor measurements in the experimental set-up, and there is
scope for corrections to the reconstruction errors using techniques such as hybrid analytics
and modelling.

4. Conclusions

The application of data-driven optimal temperature sensor placements and reduced-
order models enabled us to reconstruct and predict the full-scale temperature and flow
field for a synthetic dataset for a greenhouse digital twin set-up. The methodology shows
promise in monitoring the spatio-temporal dynamics of key variables for a digital twin
greenhouse setup. Future work involves increasing further the accuracy using an HAM-
corrective source term approach to correct the reconstruction error while using sparse
sensors and reduced-order models, and testing these with actual measurements from the
experimental set-up.
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Abstract: In this article, we introduce an AI-enhanced study planning solution named Careerbot,
which is a service designed to help students with their “forecasted self”. We define a new term
“forecasted self” to mean a future-oriented digital twin, where a student can explore several future
selves equipped with new, acquired skills for projected future jobs. The future jobs domain here
includes knowledge-work related jobs related to digitalization, emerging technologies, and Industry
4.0/Society 5.0.

Keywords: artificial intelligence; big data; career coaching; data visualization; forecasted self;
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1. Introduction

In this article, we introduce an AI-enhanced study planning solution named Careerbot,
which is a service designed to help students with their “forecasted self”. We define a new
term “forecasted self” to mean a future-oriented digital twin, where a student can explore
several future selves equipped with new, acquired skills for projected future jobs. We
believe the use of this new term and approach will provide the benefits of understanding
the following: (1) the essence of future orientation; (2) a holistic approach of soft skills and
hard skills that are appreciated by employers; (3) the skill gap between current skills and
the direction on which to focus skill acquisition, and (4) the ability to verbalize one’s skills
and competences in the concrete language used in job ads by employers (in contrast to
academic jargon, for example). We also use the term skills data as the unifying factor among
different actors and operations: “skills data describes people’s skills, the competence needs
of organisations, and the competence offerings of educational institutions. In practice, skills
data can be found, for example, on employees’ CVs, companies’ job adverts, and course
guides” [1].

We examine the adoption of artificial intelligence (AI) in three applied universities
(3AMK) in Finland. More specifically, we analyse and discuss experiences regarding the
educational AI-solution that assists higher education students by providing course sugges-
tions, thesis topic trends, and job market data for their career and study planning. 3AMK
is a strategic alliance among the three largest universities of applied sciences in Finland:
Haaga-Helia, Laurea, and Metropolia (3amk.fi). 3AMK has approximately 34,000 students,
2000 staff, and 15 campuses in Helsinki, the capital region. In this paper, we conceptu-
alize “forecasted self” based on the analysed experiences in designing and adopting the
Careerbot AI-enhanced study planning service.

The adoption of AI is rapidly growing as a means to enhance students’ personal
or collaborative learning and study planning in higher education. The adoption of AI
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provides new opportunities to develop study planning where AI can model and suggest
competence profiles, needs, and requirements from real-time job market data. The prior
literature on AI-enhanced learning and teaching shows that AI can create value for students
and teachers, e.g., [2–4]. AI enables personalization, e.g., [5,6] which is an important
requirement in improving and customizing learning for the special needs of each student.
AI is also widely adopted for students’ performance assessment, competence profiling and
assessment, finding learning gaps, and predicting students’ progress in the courses [7–9].

2. Background of Careerbot-Service of 3AMK in Finland

3AMK developed Careerbot-service to help their students to pursue their dream
careers with the help of AI. The Careerbot-service can help 3AMK students to do the
following:

(1) Verbalize their skills with the help of AI (skills profile; current or “forecasted self” in
the future);

(2) Find jobs with their skills profiles (job market intelligence);
(3) Find courses for skill development (upskilling, re-skilling);
(4) Find theses/research topics, trends, and content (research intelligence).

Careerbot-service uses a language model based on AI, which has been trained with
millions of news articles and with ESCO classification, for example. ESCO is the multilin-
gual classification of European Skills, Competences, and Occupations. ESCO is part of the
Europe 2020 strategy.

The data sources for Careerbot-service currently include the following:

(a) Job market data in Finland (Työmarkkinatori, MOL, and Duunitori/employment
services) with more than 400,000 job ads on a yearly basis, since January 2018;

(b) 3AMK course data for all 15,000 courses;
(c) Theseus—A thesis database with more than 120,000 theses available from Finland,

since 2010;
(d) Global article database, a directory of open access journals, DOAJ, with more than

8.6 million articles.

The language model, foresight data products (curriculum data, labor market data,
investment data, and research papers), and the AI behind the service, Graphmind, are
powered by the Finnish tech company HeadAI Ltd, from Pori, Finland. Graphmind is a
graph machine-learning-based semantic computing framework accessible via REST-API.
The usage of API allows Careerbot-service the flexibility to use any AI model to expand its
functionality.

The basic operations behind the framework are the following:

(i) Building a digital twin (personal, curriculum, and scenarios);
(ii) Comparing two digital twins against each other to show similarities and gaps;
(iii) Recommending interventions from the third digital twin to bridge the gap.

In addition to the 3AMK students, the 3AMK staff have access to service. Lecturers
and content creators can ensure their content is up to date. RDI staff can search for research
ideas or prior research articles for supporting the new externally funded RDI projects. In
addition, career coaching can use Careerbot-service in their career counseling for students,
backing up visual CVs with data and vocabulary known in the work sector.

Figure 1 below demonstrates one example map, a zoomable snapshot of the most
important hard and soft skills in ICT in the Helsinki region, with data from the previous
cut-off date. The clusters below in the bubble chart (a) represent the same data in the
top lists that are shown in (b), namely the 15 largest hits in order of relevance. There are
currently 19 ready-made example maps in Finnish and English: 13 job market maps and
6 curriculum maps. The maps are updated every 1–2 months, which seems to be frequent
enough to see the current changes. The same functionality can visualize the students’
skills profile data, so they can attach the image to their CVs, for example. These maps
leverage the semantic language model and its graphical representation of terms. This graph
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is visualized using a multi-body particle simulation model to represent the graph as a
collection of 2D non-overlapping disks. The algorithm pushes the most connected terms
towards the center, while the less connected terms stay near the boundary. The clustering
is computed using a weighted community detection algorithm [10].

 
(a) 

Figure 1. Cont.
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(b) 

Figure 1. Zoomable example map in Careerbot-service: (a) represented as clusters and (b) same data
in top 15 lists, with color-coded clusters.

Figure 2a depicts trends from the global DOAJ article database (doaj.org), with the
search words artificial intelligence, machine learning, and big data. The data are updated
currently until December 2021, so the year 2023 is denoted as zero. From the graph, we can
conclude that of the search results, “machine learning” had been trending clearly above
“artificial intelligence” and “big data” in 2021. The prediction tab is used for testing; it
calculates the following years based on the historical data and fits a B-spline approximation
for the data [11]. Figure 2b lists the search results page below the graph (Figure 2a), where
the individual papers can be opened with a mouse click.
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(a) 

 
(b) 

Figure 2. (a) Searching global DOAJ article database, with trends shown. (b) Searching global DOAJ
article database, search results page. Source: Careerbot-Service.
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3. Conclusions

We contribute to the discussion of AI-enhanced learning and teaching by conceptu-
alizing “forecasted self”, a novel concept for the digital twin approach in the context of
education.

“Forecasted self” is defined as a future-oriented digital twin, which allows students to
explore several future selves equipped with new, acquired skills for projected future jobs of
Society 5.0.

We also use the term skills data as the unifying factor among different actors and
operations. The idea is to combine all the relevant distributed data sources, including
internal data, mydata, and public/open data. This approach supports the EU skills data
space initiative by mapping, matching, and forecasting skill-based data.

3AMK developed and adopted an AI-enhanced study planning service named Career-
bot for helping higher education students with their “forecasted self”. Via API, the service
can leverage any AI model running on the server or in the cloud.

The adoption of AI is rapidly growing in higher education and provides new oppor-
tunities to develop study planning, learning and teaching, including personalization and
customizing learning for the individual needs of each student. Students need to be able to
create their own digital competence profile (digital twin), for example, with the help of a
Careerbot AI solution that simulates the competence requirements of the up-to-date and
current job market data.
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Abstract: This research examines how much forecasting accuracy can be achieved by modelling
the relationships between listed real estate and macroeconomic time series variables using the logit
regression model. The example data for this analysis included 10-year (2008–2018) transactions. The
Statistical Package for Social Sciences (SPSS, version 25) and Microsoft Excel 2016 were used for
descriptive and inferential analysis. The data collected on the listed real estate transactions for South
Africa and Nigeria represent the largest listed real estate markets in the continent. The study found
that 22.2% variance in the Nigerian real estate market was explained by the lending rate, treasure
bill rate, and Consumer Price Index, while 9.4% variance in the South African real estate market was
explained by changes in the exchange rate and coincident indicators. The strength and similarity of
the model capacity in both countries showed that each market signal has a predictive accuracy of
75% (Nigeria) and 80% (South Africa).

Keywords: economic leading indicators; real estate; forecasting; investment; market modelling

1. Introduction

The ability to predict and model market trends is an important part of the invest-
ment decision-making process for local and foreign real estate investors, especially where
quantitative data are scarce. Investors view real estate as an asset class competing against
other investment opportunities in stocks and shares. For this reason, understanding real
estate behaviour and the future trajectory of emerging markets provides a strong basis
for investment.

Real estate is one of the sectors that contribute to gross domestic products (GDP) of
countries worldwide. Hongkong and Shanghai Banking Corporation [1] reported that real
estate assets were valued at USD 228 trillion in 2016 alone, while Gordon [2] noted that
global real estate accounted for 60% of mainstream global assets and about three times the
size of global GDP in 2015. These figures show that real estate attracts a lot of investment
and has even more potential to grow.

In Figure 1, the number of listed Real Estate Investment Trusts (REITs) demonstrate
growing interest in emerging African markets which must be supported by improved
accuracy in forecasting and reporting to stimulate investments. As mentioned by Bello and
Yacim [3], comparable data as the bedrock of most rental value assessments are sparsely
available in most emerging markets [3]. This makes it difficult, if not impossible, to rely
on historical data for rent forecasts. Boshoff [4] and Keng [5] suggest that listed data and
economic time series are useful for evaluating the future trajectory of real estate markets,
which could help investors make better capital divestment decisions. This informs the
choice of two locations in sub-Saharan Africa for better decision marking. Additionally, the
sizes of the two markets play a key role in the choice. Nigeria is Africa’s most populated
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country, while the population of South Africa has been estimated at approximately one-
third of Nigeria’s population. In recent years, Nigeria and South Africa have both been
rated as Africa’s largest economies [6,7].

Figure 1. Growing REITS across sub-Saharan Africa.

The two economies have experienced similar enough growth patterns to compare
their performance [6]. The two economies have experienced major shocks and economic
prospects and are still fraught with uncertainties. Investors are likely to perceive these top
economies in a similar light despite their population differences. This paper argues that
confidence in the real estate sector in sub-Saharan Africa can be improved when valuable
insight is achieved using leading economic indicators [8] to forecast turning points in real
estate markets. This paper investigates how much forecasting accuracy can be achieved
by modelling the relationships between listed real estate and macroeconomic time series
using the logit regression model.

2. Literature Review

The fact that real estate is viewed as an asset class like stocks and equities informs the
use of historical data and analysis for macroeconomic and financial investment analysis.
Tonelli and Cowley [9] showed that an understanding of the past behaviour of the rent
component was valuable for evaluating future behaviour [10,11]. However, as noted by
Aron and Muellbauer [12], there is a need for caution in using merely market comparison
and imputed rents. Olanrele et al. [13], in a study of the Nigerian market, focused on
evaluating the causal relationship between N-REITs’ dividend yield and five Money Market
Indicators (MMI). They concluded that there was indeed a relationship between REIT
returns and the MMI variables both in the short run (through Trace) and long run (using
Max-Eigen values). Their study limited its research to data from a single REIT, the Skye
REIT, and as such could not provide much insight into the future trajectory of the underlying
real estate market.

Similarly, Boshoff [4] investigated listed real estate assets in South Africa and brought
together two different asset classes, the stocks and bond market and the real estate market,
as similar entities. The study asserted that price detection occurred in the listed real estate
market, which could also be a signal of market movement in the direct real estate market.
A lot of research has been carried out to promote macroeconomic modelling as a means
of improving forecasting accuracy. Some popular works in these subject areas include
studies such as those of Munusamy, Muthuveerappan and Baba [14]; Jadevicius, Sloan and
Brown [15]; Tsolacos [16]; Jadevicius, Sloan and Brown [17]; and Boshoff [4]. Buehler and
Almeida [18] discussed the investment market in the United States relative to predicting
commercial market bubbles as a part of decision making for global investors. They posited
that in creating predictive models, identifying the “right” set of variables that combined to
trigger changes in the market was a first step in predictive modelling.

Munusamy, Muthuveerappan and Baba [14] considered a variety of literature regard-
ing modelling types, accuracy and adoption of statistical modelling techniques. They
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reported that Multiple Regression Analysis (MRA) and Artificial Neural Networks (ANNs)
were most widely used. They concluded that ANNs showed an average error rate between
5 to 10% inaccuracy, while multiple regression analysis showed a higher average, which
was 10 to 15%. Chrostek and Kopczewska [19] and other similar studies [20] compared the
quality of prediction for several models: a classical linear model estimated with ordinary
least squares (OLS), a linear OLS model including geographical coordinates, a spatial
expansion model, spatial lag and spatial error models as well as geographically weighted
regression. They concluded that models comprising the spatial components rendered better
estimates than a-spatial models. They posit that there is evidence of the capacity of complex
models such as these to predict rent behaviour.

However, other researchers like Moolman and Jordaan [21]; Tsolacos and Brooks [22];
Boshoff [4]; and Udoekanem, Ighalo and Sanusi [23] have preferred simpler models such
as simple regression, vector auto regression and binomial logit regression. These studies
point to the use of logit regression as a form of directional forecast, but while this method
has not been tested on African data, this study uses unexplored time series data to test
the predictive modelling approach. Considering the various positions on appropriate
modelling techniques, binary logistic regression proves to be popular and devoid of com-
plex parameters. This makes it desirable for further testing with African data sources. In
the next section, this study’s methods and results are discussed. The performance of the
outcome model determines the extent to which macroeconomic data can serve to improve
the accuracy of predictive rent models [8,24].

3. Methodology

South African economic data were collected from the Iress expert and Statistics South
Africa (Stat SA) database. The FTSE/JSE SA Listed Property (J253) consists of the twenty
largest liquid companies by market capitalisation in the Real Estate Investment and Services
Sector and Real Estate Investment Trust Sector with a primary listing on the JSE. Nigerian
listed real estate data were collected from the Central Bank of Nigeria, Sky Shelter REIT
(SKY REIT) and the UACN property development company data. All monthly data
were converted into quarterly data prior to analyses to ensure data uniformity with the
exogenous data. The available data for the Nigerian listed real estate market were collected
for the period 2008 Q1 to 2018 Q4. The South African macroeconomic data series were
collected between the first quarter of 2003 and the fourth quarter of 2018.

To handle seasonality in the time series data, the Nigerian REIT and JSE time series
data were used to create dummy binary outcomes for the purpose of logistic regression.
The time series data difference of Yt–Yt−1 was classified based on a rise or fall. Growth
in the time series represented a 0, while a fall represented a 1. This provided the data for
the binary variable in both data sets. The South African dummy variable is denoted as
South Africa Listed Real Estate (SALRE), while the Nigerian dummy variable is denoted as
Nigeria Listed Real Estate (NLRE).

A turning point analysis was performed by using a regression probability model that
outputs a dichotomous binary result that can be either 1 or 0. The threshold for turning
point detection is typically set at 50% or 0.5 thresholds.

4. Results and Discussion

For SALRE indicators, the Hosmer and Lemeshow test shows a high value of 0.757 in
Table 1, which proves the goodness of fit of the model. For the NLRE model, the Hosmer
and Lemeshow test shows a value of 0.825, which proves the goodness of fit of the model.

Table 1. Hosmer and Lemeshow goodness-of-fit test of Logit Regression Model (r ≤ 0.05.).

Chi-Square Df Sig.

South Africa (SALRE) 5.010 8 0.757

Nigeria (NLRE) 3.599 7 0.825
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In Table 2, the SALRE model, the Cox and Snell and Nagelkerke R-squared were
0.256 and 0.364, respectively, which implies that the model explains about 25.6% or 36.4%
variation in the dependent variables. The Cox and Snell and Nagelkerke R-Square values
in the NLRE model were 0.440 and 0.587, respectively. This translates to 44% and 58.7%
estimates of how much of the variation in listed real estate is explained by the model. The
Cox and Snell and Nagelkerke R-squared were 0.440 and 0.587, respectively, which implies
that the model explains about 44.0% or 58.7% variation in the dependent variables.

Table 2. Pseudo-R values of logit regression model (r ≤ 0.05).

−2 Log Likelihood Cox and Snell R Square Nagelkerke R Square

South Africa (SALRE) 58.920 a 0.256 0.364

Nigeria (NLRE) 28.920 0.440 0.587
a denotes that the South Africa model tested for goodness of fit excludes variables with a high correlation.

T, being the state of the independent variable, is estimated to be 1 or 0, based on the
logit regression rule:

T = 1 for the period that capital values decline;
T = 0 otherwise.
Therefore, the objective of using a logit approach is to estimate a response probability:

Pr (T = 1|x) = Pr (T = 1|x1, x2, . . ., xk) (1)

Pr (T = 1|x) = log(p/1 − p) = β0 + β1×1 + . . . + βk × k (2)

Table 3 value are included in Equation (1), the coincident indicator β = 0.479 and
the exchange rate β = 0.083. The constant or intercept value was −74.738. This model is
expressed thus:

Y = log(p/1 − p) = β0 + β1CI + β2ER (3)

Y = Pr (T = 1|x) = log(p/1 − p) or ln (ODDS) = +0.479 (CI) + 0.083 (ER) (4)

where:

Table 3. Indicators included in the accepted model for South Africa.

B S.E. Wald df Sig.

GDP at market prices (R million) 0.000 0.000 0.215 1 0.643

Coincident indicator (2015 = 100) 0.479 0.156 9.467 1 0.002

M0 0.000 0.000 1.509 1 0.219

M1A 0.000 0.000 0.403 1 0.526

M1 0.000 0.000 1.135 1 0.287

M2 0.000 0.000 0.523 1 0.469

Total monetary (M3) deposits 0.000 0.000 0.169 1 0.681

Price of gold per ounce (Rand) 0.000 0.000 3.409 1 0.065

Exchange rates 0.083 0.032 6.598 1 0.010

Constant −74.738 28.311 6.969 1 0.008

Y = SALRE
Pr = Probability
T = The indicator of a fall of capital values
p = Probability of a decline in capital values
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β0 = Model intercept
βx= Regression coefficient
CI = Coincident indicator
ER = Exchange rate
For the Nigerian data sets in Table 4, the β (beta coefficient) values showed the lending

rate, treasury bill rate and Consumer Price Index/inflation, with a significance score on
0.01 level.

log(p/1 − p) or ln (ODDS) = −21.938 + 0.143(IR) − 0.037 (TBR) − 0.034 (CPI) (5)

where:

Table 4. Indicators included in the accepted model for Nigeria.

B S.E. Wald Df Sig.

Total GDP 0.000 0.000 4.419 1 0.036

Composite Consumer Price Index (%) −0.034 0.086 0.153 1 0.695

Prime lending/interest rate (%) 0.143 0.331 0.187 1 0.666

T-bill % −0.037 0.064 0.339 1 0.560

Total money asset 0.000 0.000 4.087 1 0.043

Money supply (M1) 0.000 0.000 0.198 1 0.656

Currency in circulation 0.000 0.000 2.307 1 0.129

Money supply (M2) 0.000 0.000 6.249 1 0.012

Constant −21.938 21.429 1.048 1 0.306

Y = NLRE
Pr = Probability
T = The indicator of a fall of capital values
p = Probability of a decline in capital values
IR = Lending/interest rate
TBR = Treasury bill rate
CPI = Consumer Price Index

Comparison of MODEL Performance in Identifying Leading Economic Indicators in Nigeria and
South Africa

In Table 5, the Nigerian logit model outperforms the South African logit model by a
22.2% improvement on the null model as against the 9.4% improvement observed in the
South African model. However, the misclassification rate for the Nigerian logistic model is
5% higher.

Table 5. The model misclassification rate.

Country Classification Accuracy (%) Improvement on Null Model (%) Misclassification Rate

South Africa 79.7 9.4% 20%

Nigeria 75.0 22.2% 25%

In Figure 2, the area under the curve for Nigeria is 0.837, with a 95% confidence
interval (0.714, 0.959). The area under the curve is also significantly different from 0.5 since
the p-value is 0.000. Similarly, for South Africa, the area under the curve is 0.815, with a 95%
confidence interval (0.704, 0.927). The classification similarities between the two models
from South African and Nigerian data are visualised in Figures 3 and 4.
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Figure 2. ROC curve for Nigerian predicted probabilities.

Figure 3. ROC curve for South African predicted probabilities.

Figure 4. Time series of the J253 binary growth variable and predicted logit probabilities.

In Figures 4 and 5, the time series of the dependent variable is plotted against the
probabilities predicted by the logit model in each model. This forecasting visualisation
reports the in-sample forecasting results. The predicted probabilities for the South African
model, as seen in Figure 4, reach a peak, while frequently coinciding with the J253 growth.
The declines in the data coincide only twice in Q4 of 2003 and 2008, however. The South
African model may predict growth probabilities more accurately than it predicts falls.
Conversely, the probabilities of the Nigerian model coincide almost as accurately in the
declines as they do in the peaks. This can be seen in Figure 5. The Nigerian market
demonstrates a more responsive listed real estate market to economic indicators.
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Figure 5. Time series of the NSE binary growth variable and predicted logit probabilities.

5. Conclusions

This study explored the existing literature on the selection and sources of leading
indicator data for predicting the movement or changes in South African and Nigerian listed
real estate. The paper investigates how much forecasting accuracy can be achieved by
modelling the relationships between listed real estate and macroeconomic time series using
the logit regression model. Data from South Africa and Nigeria were input into the logit
regression model to evaluate how much predictive power the model has.

For predictive rent modelling to perform adequately, the use of simple probabilistic
models proved valuable aligning with the approach by previous authors [24] in addressing
countries and central bank policy changes relative to changes in macroeconomic indicators.
The logistic regression model evaluated the performance of the best fitting model to classify
the state of a dummy variable T = 0 or 1, representing growth or decline in the listed
real estate indicators. The test for predictive accuracy showed that 22.2% variance in
the Nigerian real estate market was explained by the logit regression model, while 9.4%
variance in the South African real estate was explained by changes in the exchange rate
and coincident indicators. These findings agree with the results by Olanrele et al. [13] and
Boshoff [4]. The strength and similarity of the model capacity in both countries showed
that each market signal correctly predicts turning points in the economy for as much as 75%
(Nigeria) and 80% (South Africa) of the time. The misclassification rate for the Nigerian
logistic model is, however, 5% higher which is similar to the average model error margins
observed by Munusamy, Muthuveerappan and Baba [14]. Meanwhile, the classification
accuracy of the South African logit model is higher than that of the Nigerian logit model.
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Abstract: Unexpected responses in dynamic systems can lead to catastrophic failures. Without full
knowledge of the system, it is impossible to know whether all of the dynamics have been captured
or considered. Furthermore, a large number of Monte Carlo simulations may be time-prohibitive
when looking at extreme behavior. In this paper, the Matched Upcrossing Equivalent Linear System
(MUELS) linearization method is applied to a series of Duffing oscillators of varying stationarities,
characterized by brief excursions into domains of much larger oscillation, to test the non-linear limits
of the MUELS method and the ability of the MUELS method to uncover rare dynamics. The MUELS
method is a linearization scheme that searches for linear systems that have the same zero-upcrossing
rate as the non-linear system of interest. These systems are then input into the Design Loads Generator
(DLG) to produce an ensemble of input time series that lead to extreme linear realizations, which are
then used as input into the non-linear system of interest. The MUELS method results were compared
to Monte Carlo simulations in various ways including probability density functions, time series,
and computational expense. It was found that the MUELS method recovers extreme behavior with
relative success, seeing more accurate results for more stationary systems. The current work suggests
that improvements to return period estimation and equivalent linear system parameter fidelity could
produce even more accurate results.

Keywords: extreme events; non-stationary; stochastic processes; Duffing oscillator

1. Introduction

Often times in an ocean environment, the extreme responses of ships and other struc-
tures can be different than expected. Running simulations and tests does not always reveal
the behavior that appears in these scenarios. Engineers designing systems that contain
unknown dynamical properties, such as a domain of attraction, orders of magnitude larger
than the ordinary motion would benefit from a method that could identify the presence
of these very dynamics. Specifically, this paper will focus on predicting rare behavior of
stochastically forced non-stationary systems containing multiple attractors.

The current landscape of extreme value prediction techniques is vast but not particu-
larly suited to this problem. Generally, extreme value theory [1] is a solid foundation to
start rare event analysis. Strictly speaking, the extreme characteristics of ocean processes
cannot be viewed as time series using extreme value theory due to dependence between
peaks. As such, [2] discusses extreme value theory as related to stochastic processes tak-
ing into account dependence between peaks and changes in parameters over time. The
aforementioned paper focuses mainly on stationary processes, so while it provides a good
starting point, the derivations made and theories stated are not directly applicable to
non-stationary processes.
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Extreme value theory is applied to both Gaussian and non-Gaussian dynamic systems
in [3] to calculate reliability. Both generalized Pareto via peaks-over-threshold and general-
ized extreme value distributions were fit to small sets of data to estimate the probability of
failure. In general, the two distribution types seemed to extrapolate Monte Carlo results
with some levels of pre-processing involved within reason. That being said, the method
relies heavily on the samples used and could break down if there are unknown dynamics or
the process tends to non-stationarity. The shortcomings of the generalized Pareto via peaks-
over-threshold are discussed in more detail in [4] using a marine dynamics viewpoint.

A further investigation of rare events of non-linear systems was performed in [5]. The
extreme characteristics of a piecewise linear oscillator was studied by investigating the
tail of the response under various circumstances. The behavior of the tail was found to be
dependent on various factors but was more or less defined under the set of circumstances
examined in this paper. While [5] provides an excellent derivation and study, it is limited in
that the solution is specific to the model and the results are not necessarily usable outside
of a piecewise linear oscillator.

Another direction that can be taken is through linearization. The basic idea of lin-
earization is to find a linear surrogate for a non-linear process, generally with the same root
mean square, so that linear analysis can be used. In [6], multiple non-linear systems were
linearized using a novel approach involving harmonic averaging and statistical lineariza-
tion for a system that is both deterministically and stochastically forced. The authors were
able to recover the magnitude of the response spectra and the average mean square value
quite well. However, insights into the transfer function phase relationships and time series
comparisons would be helpful for any extreme value analysis. This paper provides a solid
resource for linearization, but it would be of academic and design interest to compare time
series of the responses as well as extreme characteristics.

Another well-used method for non-linear extreme characteristic study is the First
Order Reliability Method (FORM). The basic idea of FORM is to find the most probable
realization of an input that results in the response level of interest. In [7], FORM was used
to predict statistical features of parametric roll (parametric roll is a phenomenon that occurs
when a ship is (generally) perpendicular to a wave train and the relationship between
wavelength and the length of a vessel reaches a certain point, resulting in extremely large
rolling motions). FORM was able to capture the rarity levels of extreme roll motions as
compared to Monte Carlo simulations rather well, especially when taking into account the
multiple sets of most probable input realizations that lead to the response level of interest
and after implementing different optimization algorithms. With FORM and in [7], the
response level needs to be indicated. In situations where the response levels are unknown,
FORM would not be able to efficiently flesh out the dynamics of the system.

One of the major building blocks for the method that will be used in this paper is the
Design Loads Generator (DLG). The DLG is a tool that provides extreme realizations of
linear systems using modified phase distribution and the asymptotic nature of extreme
value theory [8]. To produce these extreme realizations, an input spectrum, transfer function,
and return period of interest are input into the DLG. The DLG uses a metric for the return
period called the Target Extreme Value (TEV) [9], which can be described by Equation (1).

TEV =
√

2 ln(n) G
=

x̂
σ

(1)

where n is the number of cycles in the return period, x̂ is the most probable maximum
response for the return period, and σ is the standard deviation of the response. Note that
the equivalence between the two terms only applies if the process is Gaussian. While the
DLG is generally applied to cases of Gaussian forcing and responses, it can also be used to
produce realizations of extrema in a surrogate process. Not only does the DLG provide
extreme realizations of the surrogate process but also the input that leads to those extremes.
These inputs are valid realizations of the input spectrum and can be used to evaluate the
response of a non-linear system that is related to the surrogate process used. As such,
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the inputs can also be run through other degrees of freedom or responses to investigate
the behavior of a system as a whole while a single degree of freedom is experiencing an
extreme. The surrogate process strategy with the DLG was used in [10] to investigate the
probability of failure for a stiffened ship panel under both slamming pressures and bending
stresses. Using different panel configurations, the estimation of the probability of failure
using the DLG compared to Monte Carlo simulations was in the same order of magnitude
for each panel while taking less than 0.4% of the time. While this implementation of the
DLG has been shown to produce encouraging results, it still requires knowledge of the
physics behind a system. Systems with unknown dynamics, like some non-stationary
systems, could not be investigated with this method as presented without knowledge of a
surrogate that could represent the system of interest.

Investigating non-stationary extremes is very important to ensure the safety and proper
design of any structure. That being said, without the knowledge that the system can exhibit
this type of behavior due to limited data or modeling simplifications, the design problem
becomes immensely difficult. Furthermore, any time series analysis regarding the response
of interest or other degrees of freedom during an extreme event remains a challenge for
most of the methods mentioned above. In this paper, the Matched Upcrossing Equivalent
Linear System (MUELS) [11] method was used to identify rare, unknown behaviors of
non-stationary systems and to produce an ensemble of extreme realizations. The MUELS
method was further developed and tested in this paper by comparing extreme probability
density functions and time domain results with Monte Carlo simulations. An experiment
gauging the applicability of the TEV was also performed to improve the accuracy of the
MUELS method results.

2. Methodology

In this section, the problem is set up and the Duffing oscillator is described. Then, a
relative stationarity test is defined for the sake of comparison between each of the three
systems used in this paper. An overview of the MUELS method follows along with the
Monte Carlo simulation setup.

2.1. Problem Statement

To demonstrate the capability of the MUELS method to identify extreme characteristics
in non-stationary systems, Duffing oscillators with fixed system parameters excited by
a sea spectrum and variable forcing factor were used. The Duffing oscillator can be
representative of the roll motion in ships due to the cubic stiffness term representing the
non-linear restoring force. Identifying extreme characteristics of roll motions is of utmost
importance due to potential capsize or damage to crew, machinery, and cargo. The equation
of motion for the Duffing oscillator is as follows:

ẍ + dẋ + ax + βx3 = Fsη(t) (2)

where x is displacement, ẋ is the velocity, ẍ is the acceleration, d is the linear damping, a is
the linear stiffness, β is the cubic stiffness, Fs is the forcing factor, and η(t) is a stochastic
time series drawn from an ocean-wave spectrum. For a given system, the forcing factor
is the primary driver in setting the level of stationarity. In this paper, a Bretschneider
spectrum [12] was used with a significant wave height of 3.0 and a modal period of 2.1 s.

Thus, the Duffing oscillator is a practical and relevant model to investigate stochastic
bifurcations [13]. These bifurcations generate statistics that change with time, resulting
in non-stationary processes. In this paper, these bifurcations are used as a measure of
stationarity and a characteristic that may or may not be known about the system.

2.2. Stationarity Tests

In this application, the weak-sense definition of stationarity is the primary focus. A
weak-sense stationary process essentially has a mean that is constant in time, i.e., no trends,
and a variance that does not change with time. The non-stationary systems investigated
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in this paper bifurcated into two distinct domains of attraction with differing root mean
square (RMS) values. As such, the stationarity tests were performed by calculating a
moving RMS of each time series. By calculating the moving RMS, any excursions into the
other domain of attraction were detected by counting the number of threshold upcrossings
of the moving RMS. The moving RMS is a system function in MATLAB that calculates the
RMS of overlapping, variable-length windows centered around a given point. Since all of
the processes in this paper are zero-mean, the RMS is a measure of the moving standard
deviation and, therefore, variance. The key parameter in the moving RMS metric is the
window size, or the number of points that are included in each calculation of the RMS. For
this paper, a window size of 10,000 points was selected such that extremes from a given
basin did not influence the moving RMS enough to provide any misidentified excursions
into the large attractor while ensuring that individual excursions could be separated from
each other. Of course, there are uncertainties or expected fluctuations with estimating the
moving mean and variance. To account for these uncertainties, probability distributions of
the moving RMS were estimated using a Kernel Density Estimator (KDE) and the x-value
at the largest magnitude peak of said distribution was considered a principal value. Using
the x-value of the largest magnitude peak as the principal value is essentially taking the
most probable RMS of the most represented attractor as the basis for potential stationarity.
Given the fact that the moving RMS is essentially a filter and it “smooths” out excursions
with window size selection, the rarity of threshold exceedances is increased even more.
Therefore, a measure of Gaussian rareness was applied to set the threshold and account
for any natural variations. The rareness of an event in a Gaussian process is typically
normalized by the standard deviation of the process, as is mentioned in Section 1. In this
paper, the threshold was set at 10 standard deviations of the moving RMS above the mean
RMS for the entire time series. The moving RMS pdfs were not necessarily Gaussian, but,
by using a larger number of standard deviations, the probability of non-exceedance does
increase and is sufficient for this application. To determine the standard deviation of the
moving RMS, the variance of a truncated pdf of the moving RMS was calculated. The
truncation point of the moving RMS pdf was determined by cutting the pdf off at a point
that the principal attractor was no longer represented. An example pdf of the moving RMS
along with the truncation point is shown in Figure 1.
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Figure 1. An example pdf showing where the truncation point was placed for estimated statistics for
the dominant attractor.

It can be said with reasonable confidence that excursions above this threshold are
likely the result of the RMS, and, therefore, the variance, changing with time rather than
statistical uncertainty. Excursions are defined in this paper to be the amount of upcrossings
of the moving RMS above the threshold. An example graph of one of these tests can be
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seen in Figure 2 where a moving RMS window of 10,000 points was used and there were
four excursions above the threshold.
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Figure 2. The moving RMS of an example Duffing oscillator compared with the threshold and the
average RMS of the dominant attractor.

2.3. System Parameters

System parameter selection was performed such that there were interesting dynamics,
defined here as transitions between domains of attraction, and three systems of varying
non-stationarity. Table 1 lists the fixed system parameters, including the modal period, Tm,
and the significant wave height, Hs, of the ITTC spectrum.

Table 1. Values for the system parameters.

Parameter Value

d 0.02
a 1.00
β 0.04

Tm 2.10
Hs 3.00

The forcing factors were selected such that there was a system that was stationary, i.e.,
zero excursions in the stationarity test, a system with some non-stationarity, i.e., one or two
excursions per time series, and a system with major non-stationarity, i.e., several excursions
per time series. It follows that the systems with the non-stationarity feature “jump” to a
larger domain of attraction. These dynamics are a result of the system parameter selection,
namely, Fs and Tm. The tests discussed in Section 2.2 were used to modulate the degrees
of non-stationarity. Each test was run for 10 time series of 222 time steps and a time step
of 0.05 s, and the number of excursions for each time series and the forcing factor were
recorded and averaged. The forcing factors, threshold information, and average number
of excursions are shown in Table 2. Note that fewer excursions indicate more stationary
processes. Stationary processes have a very high probability of having zero excursions.

Table 2. Forcing factors selected for analysis, the standard deviation of the dominant attractor, σDA,
the threshold for counting excursions, and the number of threshold exceedances.

Fs σDA Threshold Nexc

10.0 0.85 1.06 0.0
14.7 1.36 2.58 0.8
17.0 1.78 6.41 18.2
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Figures 3–5 show characteristic graphs of the stationarity tests.
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Figure 3. An example stationarity test for Fs = 10.0. Note that there are no excursions in this example.
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Figure 4. An example stationarity test for Fs = 14.7. Note that there is a single excursion in this example.
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Figure 5. An example stationarity test for Fs = 17.0. Note that are 19 discrete excursions in this example.

In Figures 3–5, the excursions above the given threshold increase as the forcing factor
increases. The number of excursions for the Fs = 14.7 case ranged from zero to two
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excursions in a given time series. In the Fs = 14.7 and Fs = 17.0 cases, it is clear that the
variance changes with time and the processes are not stationary.

To provide a more intuitive measure of the non-stationarity, magnification curves for
each system are shown in Figures 6–8 and extreme pdfs for 58-h exposure periods are in
Figure 9.
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Figure 6. Magnification curve for Fs = 10.0 along with the peak forcing frequency. Note that the
dotted line is an unstable branch.
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Figure 7. Magnification curve for Fs = 14.7 along with the peak forcing frequency. Note that the
dotted line is an unstable branch.

The peak forcing frequency of 3.0 rad/s corresponds to the modal period of 2.1 s,
where there are two stable responses for each forcing factor. These stable responses act
as domains of attraction for the oscillator. The magnitude of the larger stable response
decreases with an increasing forcing factor, which explains the increase in the frequency
of excursions into the larger domain. The upper branch is generally not sustained for
extended periods of time, but larger forcing factors can result in a longer duration of upper
branch oscillations. Simply put, weak sense stationarity dictates that both the mean and
variance remain constant in time. While the mean of each time series remains constant, it is
clear that the variance would change due to the excursions into the larger domain.
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Figure 8. Magnification curve for Fs = 17.0 along with the peak forcing frequency. Note that the
dotted line is an unstable branch.
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Figure 9. Kernel density estimated probability density functions for the largest value in a 58-h long
time series for each forcing factor.

The three extreme PDFs for the different forcing factors give an idea of how often
excursions occur. Note that these are drawn from the maximum value in each of 4000 Monte
Carlo simulations of length N = 222 points. In the Fs = 10.0 case, the extreme PDF is almost
entirely limited to the lower domain of attraction, while the Fs = 14.7 case is split between
the two domains of attraction. The Fs = 10.0 case had five total excursions in the entire set
of 4000 Monte Carlo simulations of length N = 222. Each time series in the Fs = 17.0 case
had at least one excursion, and the extreme PDF reflects that.

2.4. Matched Upcrossing Equivalent Linear System (MUELS) Method

To generate extreme realizations of a non-linear system such as the Duffing oscillator,
the MUELS method, developed in [11], was used. In [11], the authors used the MUELS
method to estimate extreme characteristics for a set of stationary Duffing oscillators. The
MUELS method uses linear systems with the same upcrossing frequency of the non-linear
system of interest as surrogate processes to be input into the Design Loads Generator (DLG).
A linearization scheme typically matches variance or RMS between the non-linear system
of interest and the linearized system, as in [6]. Here, the goal is to find a linear system
with, on average, the same number of peaks (note that a peak here implies a maximum
between zero-upcrossings) as the non-linear system of interest. The linear systems used in

480



Eng. Proc. 2023, 39, 102

this paper consist of two parameters: the damping ratio, ζ, and linear natural frequency,
ωn, and are set up as in Equation (3).

ẍ(t) + 2ωnζ ẋ(t) + ω2
nx(t) = F(t) (3)

where x(t) represents the response, ẋ(t) is the velocity, ẍ(t) is the acceleration, and F(t)
is the forcing. A contour of constant zero-upcrossing period (for a given input spectrum)
can be generated over a field of damping ratios and linear natural frequencies from which
candidate linear systems can be drawn and input as transfer functions into the DLG. The
DLG provides realizations of extreme linear responses for the return period of interest and
the input that led to those extreme realizations. Those input time series are a valid input
into the Duffing oscillator and result in conditional extremes for the system of interest. The
idea driving the MUELS method is that, for each non-linear system, there likely exists at
least one linear system that shares extreme characteristics with it, namely, an input that
leads to extremes. The MUELS method scans equivalent linear systems with the same
average upcrossing frequency and, therefore, the same number of upcrossings in a return
period in an attempt to find a linear system that can be used as a surrogate for the non-linear
system of interest. The current method for selecting the surrogate is to choose the set of
inputs that lead to the largest most probable maximum response in the non-linear system
of interest.

The MUELS method uses the Target Extreme Value (TEV), as discussed in Section 1,
as a metric for the return period. The TEV measures the rareness of Gaussian processes
and does not necessary share a correlation with the rareness of non-Gaussian processes. A
flowchart detailing the MUELS method is shown in Figure 10.

In this paper, the DLG was set up to produce 1000 realizations of 100 s for each
MUELS run. Furthermore, 2048 frequency components were used to ensure fine enough
discretization for the various linear natural frequencies and resulting transfer functions.
The current method to select parameters was to choose the set that results in the extreme
PDF whose peak has the largest x-value. This method was used due to the lower bound
property inherent to the DLG [8].

2.5. Monte Carlo Simulations

To evaluate the MUELS method, Monte Carlo simulations (MCS) were also performed.
For each system, 4000 runs of 222 points with a time step of 0.05 s, or 58.3 h, were generated.
The time frame of 58.3 h corresponds to a TEV of about 4.80 in each forcing factor case,
with slight variations following the change in upcrossing period. The MUELS method was
trained with time series of length 218, or 3.6 h, and the DLG return period was selected to
match the length of the Monte Carlo simulations. For the Fs = 14.7 case, the excursion into
the more extreme domain, around 14,000 s in Figure 4, does not always appear in the 58 h
time series. In fact, in the 4000 simulations, an excursion into the larger domain occurred in
57% of the simulations. This irregularity was intentional to be representative of systems for
which there is a limited amount of data and that may have unknown dynamics.

The comparison of the MCS and the MUELS method was performed using a practical
approach. The computational expense for the MCS and MUELS method was compared.
The desired exposure period of 58.3 h plays a role in the computational expense and the
comparison would differ with a different exposure period. The extreme PDF of a non-
linear process for a given exposure is useful in design but is not always easy to generate.
Therefore, the extreme PDFs generated from the MCS results were compared to extreme
PDFs generated from the MUELS method results using selected characteristics. While the
actual magnitude of the extreme values is useful to have, the time series are also vital so
that the response of other degrees of freedom during an extreme event can be observed. As
such, the time series structure of the MCS and MUELS method results near extremes was
also compared.
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Figure 10. The Matched Upcrossing Equivalent Linear System (MUELS) method flowchart.

3. Results and Discussion

In this section, the results of the different studies are presented and discussed.

3.1. MUELS Method Performance at a Fixed TEV

For each forcing factor value, around 20 sets of parameters were input as equivalent
linear systems into the DLG. While the return period for each forcing factor was the same,
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the zero-upcrossing period, and therefore the TEV, changed. Figures 11–13 show the
contours for each forcing factor.
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Figure 11. The equivalent linear system contour for Fs = 10.0 along with the zero-upcrossing
frequency of 2.8458 rad/s. Note that ωo is the peak frequency of the input spectrum and ωn is the
linear natural frequency.
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Figure 12. The equivalent linear system contour for Fs = 14.7 along with the zero-upcrossing
frequency of 2.6984 rad/s. Note that ωo is the peak frequency of the input spectrum and ωn is the
linear natural frequency.

As seen in Figures 11–13, increasing the forcing factor shifts the contour to the left. As
the Duffing oscillators become more and more non-linear and non-stationary due to the
increased forcing factor, there are fewer equivalent linear systems available to represent
the Duffing oscillators. As such, the probability that there exists a linear system that
shares inputs that lead to extremes with the non-linear system of interest decreases. The
parameters from these contours are sampled such that about 20 sets of parameters were
selected for input into the DLG for the purpose of simplicity and speed. Furthermore, the
bulk of these sets of parameters fall near the bend in the contours, at frequency ratio values
above 1.0. The majority of resulting natural frequencies fall below 1.0 rad/s, which may
have an effect on the performance of the MUELS method due to the distance between the
ELS natural frequencies and the peak forcing frequency. While it is possible that increasing
this discretization, i.e., using more parameter sets from around the contour, would increase
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accuracy and performance, only around 20 parameter sets from each contour were used for
this paper.
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Figure 13. The equivalent linear system contour for Fs = 17.0 along with the zero-upcrossing
frequency of 2.5850 rad/s. Note that ωo is the peak frequency of the input spectrum and ωn is the
linear natural frequency.

Table 3 outlines the TEV and selected parameters for each forcing factor. The parameter
selection process is detailed in Section 2.4.

Table 3. The TEV for the given return period and the selected linear natural frequencies, ωn, and
damping ratios, ζ, for each forcing factor.

Fs TEV ωn,sel ζsel

10.0 4.793 0.059 0.006
14.7 4.774 0.196 0.009
17.0 4.761 0.148 0.006

The linear natural frequencies and resulting transfer functions selected have little over-
lap with the energy from the input spectrum. Further investigations into the importance of
prioritizing systems whose transfer functions overlap more with the input spectrum will
be considered in future work.

One of the major benefits of the MUELS method is the increase in computational effi-
ciency compared to Monte Carlo simulations. In this application, a single MUELS running
for each forcing factor, including gathering training data and producing 1000 realizations,
took 14,705 s on a quad-core processor. To produce 4000 Monte Carlo simulations for the
same return period of 58 h took 144,840 s on eight cores. While there were more MCS
produced, generating an equivalent number of MUELS realizations would add around
900 s per parameter set, or about 18,000 s for an entire MUELS run.

The current configuration of MUELS, which takes about 10–15% of the time of Monte
Carlo simulations, allows for some increase in fidelity at the cost of computational effort.
One area that could improve the accuracy of the MUELS method would be, as mentioned
earlier, a finer discretization of the contour to examine more parameter sets.

Figures 14–16 show the selected MUELS extreme PDF and the extreme Monte Carlo PDF
for each forcing factor. Note that each PDF was generated using a kernel density estimator.
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Figure 14. The extreme value PDF for the Monte Carlo simulations and the selected extreme value
distribution for the MUELS method for Fs = 10.0.
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Figure 15. The extreme value PDF for the Monte Carlo simulations and the selected extreme value
distribution for the MUELS method for Fs = 14.7.
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Figure 16. The extreme value PDF for the Monte Carlo simulations and the selected extreme value
distribution for the MUELS method for Fs = 17.0.
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In the Fs = 10.0 case in Figure 14, the MUELS method extreme PDF predicted the
most probable maximum of the Monte Carlo simulations well. The MUELS method PDF
has a larger standard deviation than the MCS PDF but has a large amount of overlap and,
therefore, valid extreme realizations.

The MUELS method was able to recover the two attractors in the Fs = 14.7 case
successfully. The under-prediction here could be the result of the TEV, given the levels of
non-linearity that were introduced or since there are now essentially two return periods
to examine: that of the small attractor and that of the large attractor. While the MUELS
method does under-predict the MCS in the most probable maxima of both attractors, there
is still a good amount of overlap that can provide valid extreme realizations.

In the Fs = 17.0 case, the MUELS method retained some realizations that did not
contain excursions. Furthermore, the amount of overlap between the MUELS method PDF
and the Monte Carlo PDF is reduced even more.

The immediately evident and important characteristic of the Fs = 14.7 PDF is the
bi-modality, while the Fs = 10.0 and Fs = 17.0 cases exhibit uni-modality in the smaller
domain of attraction and larger domain of attraction, respectively. The most obvious
comparison we can make between the MCS and MUELS method is the x-value location
of the peaks and the area of each of the peaks. It should be reiterated that each peak is
representative of a different domain of attraction, as indicated in Section 2.2. As such, the
area and the x-value of the maximum of each peak were used to compare the MUELS
method with the Monte Carlo simulations. Table 4 shows the specified characteristics of the
extreme MCS and MUELS PDFs and the mean absolute percentage error between the two.

Table 4. Comparison of pertinent PDF characteristics between the MUELS method and Monte Carlo
simulations. The mean absolute percentage error (MAPE) between the MUELS method and MCS is
also shown. Note that, for Fs = 10.0 and Fs = 17.0, there was only one attractor in the Monte Carlo
simulations and, therefore, only one peak to compare.

Fs = 10.0 Fs = 14.7 Fs = 17.0

Characteristic MUELS MCS MAPE MUELS MCS MAPE MUELS MCS MAPE

Peak 1 X-Value 4.55 4.44 0.03 7.62 8.64 0.12 8.71 N/A N/A
Attractor 1 Area 1.00 1.00 0.00 0.66 0.57 0.16 0.16 N/A N/A
Peak 2 X-Value N/A N/A N/A 25.02 28.19 0.11 25.52 31.29 0.18

Attractor 2 Area N/A N/A N/A 0.34 0.43 0.21 0.84 1.00 0.16

There were a limited number of excursions in the Fs = 10.0 Monte Carlo simulations,
which is not reflected in the significant figures shown. That being said, the performance
of the MUELS method for Fs = 10.0 produced results nearly identical to MCS. This was
expected, as the Fs = 10.0 case is nearly linear, which resulted in a closer match between
the ELS and the actual oscillator. While the MUELS PDF had more variance, as seen
in Figure 14, this provides a solid foundation to produce an infinite number of extreme
realizations at any return period of interest.

For Fs = 14.7, the MUELS method under-predicts the MCS in both peak x-value and
number of simulations with excursions. The under-prediction could be due to the MUELS
method reaching the non-linearity limits or it could be due to the TEV selection. For this
section, the TEV was determined simply by using the return period of 58.3 h and the zero-
upcrossing period for each forcing factor. It is important to reiterate that the TEV becomes
less meaningful as more non-linearity is introduced. The TEV is still a good starting point
but cannot be expected to produce accurate results without any changes made to account
for non-linearity.

For Fs = 17.0, the MUELS method under-predicted the MCS again. In fact, there were
a number of DLG inputs that did not result in an excursion in the 100-second realization.
The under-prediction here is most likely the result of both TEV selection and reaching
the non-linear limits of the MUELS method. Despite this, the large attractor x-value of
the peak fell within 20% of the MCS most probable maximum and there are a number of
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realizations that overlap with the Monte Carlo extreme PDF. In practice, the amount of
overlap would not be known, but schemes are being developed to form an acceptance–
rejection method based on extreme value theory and knowledge of the system, which will
enable one to estimate the amount of overlap between the true extreme value distribution
and the extreme PDF from the MUELS method.

3.2. Time Series Comparison

One of the major benefits of the MUELS method is the ability to produce any number
of time series realizations that lead to an extreme response. It should be reiterated that
the difference between just running Monte Carlo simulations and the MUELS method is
that the MUELS method uses the DLG to produce multiple sets of input realizations from
different equivalent linear systems of relatively short length. After the equivalent linear
system parameters are selected, the DLG is capable of producing many realizations for
that set of linear parameters that potentially lead to extremes in the non-linear system of
interest. That being said, it is important to compare the MUELS method time series with
Monte Carlo simulations to ensure that the time series have the similar characteristics near
extremes. The phase sampling procedure in the DLG results in input time series that lead
to linear extremes at t = 0. Using the time series as input into the non-linear system will
not necessarily result in an extreme or potential extreme at t = 0 and that is reflected in
the ensemble average time series. The lag is more noticeable when compared to the Monte
Carlo simulation ensemble average near extremes, which was set to have the extreme at
t = 0, so the magnitudes were scaled and normalized to match the relationship between
the peak value of the largest attractor for the Monte Carlo simulations and the MUELS
method. Figures 17–19 show these normalized ensemble averages near extremes for the
Monte Carlo simulations and the MUELS method for each forcing factor.
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Figure 17. Ensemble average of the time series near extremes for Monte Carlo simulations and the
MUELS method for Fs = 10.0. Note that the MUELS method results are not centered.

In the Fs = 10.0 case, the MUELS method and Monte Carlo simulations have very
similar mean frequencies near t = 0 and the magnitudes of the peaks leading up to the
extreme value. Since the Fs = 10.0 case is the most linear and, therefore, more immediately
compatible with the DLG, it follows that it would produce time series that are closer to
Monte Carlo simulations. It also seems to capture the dynamics shown in the Monte Carlo
simulations further away from the extreme.

In the Fs = 14.7 case, the MUELS method ensemble average seems to have a lower
characteristic frequency than the Monte Carlo simulations. This may be a result of the lag
mentioned earlier as the zero-upcrossing period should remain constant due to the fact
that the input time series are valid realizations of the input spectrum. It is also interesting
to note that the minimum value of the MUELS method after the positive peak follows the
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behavior of the Monte Carlo simulations while having a larger magnitude than the positive
maximum of the MUELS method.
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Figure 18. Ensemble average of the time series near extremes for Monte Carlo simulations and the
MUELS method for Fs = 14.7. Note that the MUELS method results are not centered.
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Figure 19. Ensemble average of the time series near extremes for Monte Carlo simulations and the
MUELS method for Fs = 17.0. Note that the MUELS method results are not centered.

In the Fs = 17.0 case, the MUELS method again has a lower characteristic frequency
than the MUELS method. The buildup to the maximum is not as gradual or symmetric, as
shown in the Monte Carlo ensemble average, but again re-centering the MUELS time series
would reduce some of these deviations.

A future comparison between the MUELS method and Monte Carlo simulations would
center the MUELS ensemble average to have a clearer comparison between the magnitudes
of the ensemble average between the MCS and MUELS method. While the re-centering
would improve the MUELS method performance relative to the Monte Carlo simulations,
there may be another point of improvement in the TEV selection.

4. Conclusions

In this paper, the abilities and the limits of the MUELS method were tested. Three
systems of varying non-linearity and non-stationarity were used to compare the MUELS
method with the conventional method of Monte Carlo simulations. The key characteristic
in each of the systems was the number of excursions into a domain of attraction with
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peak magnitudes two to three times larger than the base domain of attraction’s peaks. In
general, the MUELS method under-predicted extreme characteristics found using Monte
Carlo simulations but remained within about 20%. That being said, the computational
expense of the MUELS method was only 10–15% of the Monte Carlo simulations on a less
computationally powerful setup. The reduced load could allow for a larger number of
potential surrogate linear systems for the MUELS method to test.

One of the major benefits of the MUELS method is the ability to produce time series
realizations of conditional extremes. In comparing the ensemble average of the MUELS
method and Monte Carlo simulations near extremes, it was found that there was a degra-
dation in accuracy as non-linearity increased. One main cause of this is likely the fact that,
while the DLG produces extreme linear time series with a maximum at t = 0, there is
no basis for those inputs to provide a non-linear realization with a maximum at exactly
t = 0. Additionally, a centering of the maximum values before taking the ensemble average
would certainly improve both the ensemble average magnitude and average period when
compared to Monte Carlo simulations.

Future studies into using alternative TEVs to minimize the distance between the
MUELS method extreme PDF, the Monte Carlo simulations, and finer discretized parameter
contours could potentially improve the MUELS method performance.
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Abstract: The tectonic activity produced by the interaction between the Eurasian and African plates
continually generates high seismic activity and the possibility of tsunamis occurring in the Gulf of
Cadiz, Spain. The occurrence of these phenomena and the associated threat implies the need to
implement a seismogeodesic system made up of a GNSS receiver, a seismograph–accelerograph,
and an inclinometer that allows for us to study the behavior of tectonic activity in the Gulf and
adjacent areas. This system is installed in the Doñana biological station, Huelva, Spain, and sends
continuous records to the control center located in the University of Cadiz, generating GNSS, seismic,
accelerometric, and inclinometric time series, which, together with the implementation of geodetic
and geophysical techniques, is capable of providing information on tectonic activity immediately. In
this manuscript, the time series generated by the system have been analyzed, in addition to a specific
seismic event that occurred in the study area.

Keywords: Tectonic Monitoring; seismogeodetic systems; GNSS-GPS time series analysis; seismic
hazard; geodynamic monitoring; tectonic surveillance

1. Introduction

The south of the Iberian Peninsula and North Africa region is conditioned to the
great Eurasian and African plates; this region corresponds to the transition between the
oceanic edge and the continental edge where the Iberian Peninsula and Africa meet in the
direction of Tunisia. It includes the Betic mountain ranges, the Gulf of Cadiz, the Alboran
Sea, and the northern part of Morocco, characterized by a large complex of faults giving
rise to a complex tectonic evolution and moderate seismic activity as a consequence of
the convergence process between the Eurasian and African plates. Additionally, opposing
movements are produced due to the difference in oceanic opening velocities in the Atlantic
and the structural complexity of the Alboran domain.

In the Gulf of Cadiz, seismic activity is distributed in the east–west direction along
a 100 km wide band located north of the Gulf; this tectonic activity (according to the
magnitude, intensity, location, depth and other characteristics of the event) leads to the
possibility of tsunami occurrence in the area. The tsunami that produced the greatest
natural catastrophe in Spain was recorded on 1 November 1755, as a result of an earthquake
of magnitude 8.5 Mw, located about 200 km from the cape of San Vicente in the S–W
direction [1,2], (Figure 1).

The consequent dangerousness of a high-magnitude earthquake and the possible
associated tsunami in the Gulf of Cadiz implies the need and motivation to develop and
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implement a seismogeodetic system that allows for the monitoring and surveillance of the
tectonic activity in the area. This system comprises geodetic and geophysical techniques
capable of providing immediate information on tectonic activity to understand, assess and
minimize potential associated hazards.

The Seismogeodetic System is composed of a seismograph combined with a MEMS
type-three-component (E, N, Z) accelerometer, a low-cost Tilt Data Logger, and a multi-
frequency GNSS-GPS receiver (DONA). It is located in the Doñana Biological Station (EBD),
in the Doñana National Park, Huelva, Spain. The main objective is to obtain a set of
multiparametric time series (geodetic, seismic, acelerographic, and inclinometry) in real-
time and/or deferred that, together with geodetic and geophysical techniques, can generate
immediate information to monitor the tectonic activity of the Gulf of Cadiz and adjacent
areas to minimize the possible associated risks. Other objectives will be the correlation
between the different disciplines, time series, and results, in addition to their integration
capacity in a regional EWS.

Figure 1. Map showing the geodynamic context, seismic activity (2015–2022) and main faults of the
southern region of the Iberian Peninsula and North Africa. The most important faults are: Gorringe
Bank Region, Gulf of Cadiz, Azores–Gibraltar Fault, Saint Vincent Cape, Alboran Sea, Betic Mountain
Ranges, Eastern Betic Shear Zone (EBSZ), and Trans–Alboran Shear Zone (TASZ).

This system is complemented by a network of cGNSS stations (AYAM (“Ayamonte“
Town Hall) VEJE (Public Library of “Vejer de la Frontera”), VALV (Valverde del Camino Town
Hall), PGUZ (Town Hall of “Puebla de Guzmán”) and UCA1 (University of Cadiz) distributed
homogeneously along the first coastline of the Gulf of Cadiz and which, like the seis-
mogeodetic system, transmits records in real-time to the control center located in the
LAGC–UCA.

This manuscript presents a description of the seismogeodesic system installed in
“EBD”, the techniques used for the treatment and processing of the records, as well as an
analysis of the time series generated by the system, emphasizing the GNSS-GPS records,
to learn the tectonic behavior of the study area. In addition, to illustrate the scope of the
system, we show the results obtained from the 4.4 Mw earthquake that occurred on 1
January 2022 in the Gulf of Cadiz.
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2. Methodology

Seismogeodetic System Description (Hardware, Software and Processing Techniques)

The Seismogeodetic System is made up of the instruments: A Leica “GR30” GNSS
Receiver [3], a Biaxial Digital Tilt Logger “DTL202B” [4], a Raspberry Shake “RS4D”
Seismometer–acelerometer [5], a Vaisala Weather Transmitter “WXT520” [6], electrical
supply equipment, and two devices (router and switch) for data transmission. The sensors
“DTL202B” and “RS4D” are installed in a concrete chamber at 1 m depth, and the sensors
“GR30” and “WXT520” were installed in a metal structure or tripod near the concrete cham-
ber. The control center located in the LAGC–UCA is made up of three servers: a server for
the virtual infrastructure “Citrix”, a main storage “NAS”, and a mirror data backup.

For the transmission and reception of the data produced by the system, a commu-
nication network was established using the following protocols: VPN, which establishes
an encrypted connection over the Internet from a primary host to a destination host, and
provides connection security and remote control [7]. SFTP also runs on “SSH” service and
offers reliable and secure data transfer [8]. RSync service is used for automatic data storage,
synchronization, and replication, and runs recursively and incrementally between two
hosts [9].

For the time synchronization of the inclinometer (DTL202B) we used the “NTP” service,
which is designed to synchronize the clocks of devices over a network connected to a time
server, on a common “UTC” time base [10]. For the time synchronization of the seismic
records (seismometer “RS4D”), we used the USB GNSS receiver “UBX-M8030” [11], which
connects to different satellites to learn their position and navigation time. The data are sent
from the Doñana Biological Station to the control center via the “CSIC” VPN connection,
which offers greater security regarding the transmission, reception, and availability of the
data. The records produced by the prototype are automatically stored on a main NAS
server [12], and then distributed to the data processing, and filtering modules (these modules
are part of the virtual infrastructure of the control center), (Figure 2).

The software used in the development and implementation of the prototype is divided
into three modules (acquisition, processing, and filtering modules). The acquisition module
manages, stores, and visualizes the data produced from the different sensors of the pro-
totype. Seismic data generated by the “RS4D” seismograph are managed and visualized
using the SWARM application [13], an open-source Java application created to visualize
and analyze seismic waveforms in real-time; this can connect to different sources of static
data, dynamic data, and common waveforms server: Earthworm, Winston, SeisComp, and
SeedLink. GNSS observations are managed through a local data repository that facilitates
data management, sharing, and data searching.

The processing module is dedicated to the treatment, quality control, and processing
of the multiparametric data produced by the prototype. The software used for the seismic
records is “SEISAN”: a free, multiplatform software, useful for processing the waveforms
generated by the earthquakes that occurred in the Gulf of Cadiz and recorded by seismo-
graph “RS4D” [14]. The data generated by the “DTL202B” inclinometer are processed with
the proprietary “DT Logger Host” software, which also allows us to visualize the results
simply and quickly.

For GNSS data processing, we use the scientific software “BERNESE”, developed by
“AIUB” [15,16], and “GIPSY”, developed by “JPL” [17], both of which require a license for
use and are under permanent development. The GNSS processing techniques that were
used are: PPP, Relative, and Kinematic.

In the filtering module, different mathematical and statistical techniques are applied
for signal processing, the correction of abnormal values, and reductions in the noise level
of the time series. For this purpose, data analysis and filtering techniques are used, which
are methodologically grouped into initial filters (1–σ, 2–σ, and outliers), analytical filters
(Kalman & Wavelets) and statistical filters (ARMA & ARIMA). This filtering software was
developed using multiplatform and free-to-use statistical language “R” [18].
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Figure 2. Figure showing the network diagram and hardware components of the prototype seis-
mogeodetic system (communications, sensors, servers, virtual machines, NAS, mirror backup, etc.). It
is divided into three parts: Prototype Seismogeodetic (Doñana Station), UCA–HUB, and Control
Center (LAGC). Initially, the prototype, and the UCA–HUB are interconnected by the VPN service
provided by the “CSIC”, facilitating data transmission over the Internet to the management and
control center, which has a “Citrix XenServer” [19] virtual infrastructure with virtual machines that
have services and applications dedicated to the automatic acquisition, processing, visualization, and
filtering of data.

3. Results

Case Study: 4.4 Mw Earthquake that Occurred on 1 January 2022, in the Gulf of Cadiz

In the last two years, several earthquakes have been recorded in the Gulf of Cadiz;
however, they have not been of high magnitude nor have they occurred very close to
the seismogeodetic system installed in the EBD. However, a case study was included to
illustrate the purpose and scope of the prototype. The earthquake analyzed in this work
occurred at 21:03:49 (UTC) on 1 January 2022, of magnitude 4.4 Mw, whose epicenter was
located about 130 km southwest of Doñana, Huelva, Spain (Figure 3).
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Figure 3. Map showing the location of the 4.4 Mw earthquake that occurred on 1 January 2022 in
the Gulf of Cadiz (LAT = 36.3276; LON = 7.6271; Depth 6 Km) recorded by the prototype, the seismic
events greater than 3.5 Mw occurred in the Gulf of Cadiz and surroundings between 2015 and 2022
(events taken from the public seismic catalog of IGN, Spain), and the generated focal mechanism (A).

Regarding the kinematic GNSS processing, we observe that the 3D evolution of the
GNSS receiver antenna position occurred 45s after the seismic event; there is also a small
but significant displacement in the “N” and “U” components. However, the component
“E” shows a smaller displacement than the previous ones (Figure 4). This earthquake lacks
features that allow for the production of highly significant GNSS kinematic records to be
correlated with seismic, accelerometric, or inclinometry records.

Figure 4. East, North, Up components of the GNSS time series (1Hz sample rate) for the position
of the “GR30” receiver seconds after the magnitude 4.4 Mw earthquake of 1 January 2022, with
epicenter about 130 km southwest of Doñana, Huelva, Spain. A small change in the trend is shown
45s (approximately) after the event occurred; this corresponds to the arrival of the seismic wave.
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In the seismic signal of this earthquake, a low signal-to-noise ratio was found at certain
periods of time, which allowed for the use of a first filter of 0.5 to 10 Hz and a later one of
2 to 8 Hz, (Figure 5 ). The study of the focal mechanism shows the following parameters:
“Double pair, plane A”; average azimuth of 112◦, average dip of 89◦, and a slip angle of
156◦; “Double pair, plane B”; average azimuth of 203◦, average dip of 86◦, and slip angle of
1◦. This solution presents a strike-slip faulting with NW–SE trending “P” axis, according
to the NW–SE to WNW–ESE direction of Eurasian plate convergence. This mechanism is
similar to previous moment tensor solutions in the Gulf of Cadiz, [20–22], (Figure 5A). In
this case study, we also included the inclinometry records at the time of the seismic event
on 1 January 2022 (Figure 6).

Figure 5. Figure showing the seismogram (A) and spectrogram (B) of the earthquake that occurred
on 1 January 2022 at 22:03:49 (local time), using the free softwares SEISAN and SWARM, registered
by the RS4D seismometer integrated in the prototype.

Figure 6. Figure showing the inclinometry records (30s sample rate) where the displacement produced
in both sensors (Tilt 1, Tilt2) is observed, corresponding to the arrival of the seismic wave of the
4.4 Mw earthquake that occurred on January 1, 2022 in the gulf of Cadiz.
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4. Conclusions

This seismogeodetic system generates multiparameter time series (seismic, accelero-
graphic, geodetic and inclinometry) in real and deferred time, which allows for us to learn
the evolution of tectonic activity in the Gulf of Cadiz and adjacent areas, as well as possible
associated tsunamis. A priority of the system is the ability to provide immediate infor-
mation on the tectonic activity of the Gulf of Cadiz, based on the deformation parameter
and its variability (velocity and acceleration), in order to minimize possible risks. Another
objective of the implementation of this system is the correlation of the different time series
produced and their results, in addition to its integration capacity in a regional EWS.

The high-frequency GPS observations show that system GNSS is an excellent tool
for measuring large displacements in areas near earthquakes, where the seismographs
due to the limits in their dynamic range are saturated, impeding the correct calculation
of location and magnitude, when in fact, this information is basic for the detection and
rapid evaluation of the seismic event. Therefore, the seismogeodetic systems based on the
integration of GNSS–GPS receptors and accelerometers complement seismic networks in
moderate-magnitude earthquakes, but will be essential to the occurrence of high-magnitude
earthquakes [23–25].

We analyzed the time series of the cGNSS station DONA (Figure 7), which is a fun-
damental part of the described seismogeodetic system. The relative processing technique
was used with the cGNSS reference stations VILL and YEBE, located in the province of
Madrid, Spain. Both stations belong to the international network IGS. GNSS processing
was performed with the BERNESE scientific software, using the ITRF14 reference frame.
The years analyzed were from 2016 to 2022; the results show the following deformation
values per component (E, N, U):

East = 22.8 mm/y, North = 15 mm/y, Up = −9.1 mm/yy y p y

Figure 7. Figure showing the results (E, N, U) of the time series of the cGNSS station “DONA”, the
GNSS processing was performed with the BERNESE scientific software using ITRF14 reference frame.
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Abstract: The signal coming from the artificial satellites of the GNSS system suffers various effects
that considerably decrease the precision in solving the positioning problem. To mathematically model
these effects, the atmosphere is divided into two main parts, the troposphere and the ionosphere.
The troposphere can only be modelled, while the ionospheric effect can be modeled or eliminated
depending on the geodetic sophistication of the receivers used. In this way, information is obtained
about both layers of the atmosphere. For tropospheric modeling, the parameters of total zenithal
delay (ZTD) or precipitable water vapor (PVW) will be taken, and for the ionosphere the total electron
content (TEC) will be taken. In this work, statistical and analytical techniques will be applied with the
R software; for example, ARMA, ARIMA models, least squares methods, wavelet functions, Kalman
techniques, and CATS analysis. With this, the anomalies that occurred in the values of the ZTD and
TEC in the case of the 2021 eruption of the Cumbre Vieja volcano on the island of La Palma.

Keywords: troposphere; ionosphere; ZTD; TEC; GNSS system; volcanic eruption; La Palma Island

1. Introduction

The GNSS systems composed by GPS (USA), Glonass (Russia), Galileo (European
Union), and Beidou (China), in addition to solving the problem of precise positioning,
provide information on the delay in the propagation of the signal as it passes through the
troposphere and the ionosphere.

Most meteorological events occur in the troposphere, so the variability of the tro-
pospheric delay depends directly on the meteorological conditions at the time of study,
considering the temperature, humidity and atmospheric pressure, the PWV (Precipitable
Water Vapor) value is obtained from the ZTD value. This dependence between the two
parameters means that the study of tropospheric delay is related to the calculation of
precipitable water vapor.

The ionosphere is characterized by its total electron content (TEC), which will affect the
propagation of the GNSS-GPS signal. Ionization is caused, mainly, by ultraviolet radiation
from the Sun; and with this there are maximum values of TEC during the day and minimum
values at night. Solar activity is characterized through the number of sunspots produced
by the Sun, solar cycles have been detected every 11 years and supercycles between 80 and
100 years; however, some works relate ionospheric disturbances with seismic and volcanic
phenomena [1].
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Tropospheric delay can be modeled using different tropospheric models. For the study
of the ionospheric delay, the combination of the frequencies L1 and L2 has been used. Thus,
obtaining the frequency L4 and, by its definition, the value of the TEC. In this work, the
data modeling has been carried out using the Bernese 5.2 software [2].

This work will focus on the study of the ZTD and TEC values in the island of La Palma
and surroundings during the pre-eruption, eruption, and post-eruption of Cumbre Vieja
volcano using different statistical and analytical techniques, such as ARMA, ARIMA, and
Kalman, and STL decomposition using R 4.1.2 software.

2. Experimental Background

2.1. Geodynamic Background

La Palma is part of the volcanic archipelago of the Canary Islands that is one of the
southern archipelagos of the African Atlantic border, together with Madeira, the Savage
Islands, and Cape Verde [3].

The Canary Islands archipelago is located in the interior of the African Plate, presenting
volcanic and tectonic activity. All these islands have been formed from volcanic eruptions;
it could be said that it is a volcanically active area.

The following table shows the latest eruptions in the Canary archipelago [4]:

Year Island Denomination

1712 La Palma Eruption of El Charco (Montaña Lajiones)

1730–1736 Lanzarote Eruption of Timanfaya

1798 Tenerife Volcano Pico Viejo (Narices del Teide)

1824 Lanzarote Volcano de Tao, Volcano Nuevo del Fuego y Volcano nuevo

1909 Tenerife Volcano Chinyero

1949 La Palma Volcano Hoyo Negro, Durazanero, Llano del Banco

1971 La Palma Volcano Teneguía

2011–2012 El Hierro Volcano del mar de las Calmas

2021 La Palma Volcano Cumbre Vieja

Before the eruption of the Cumbre Vieja volcano, the island of La Palma was considered
an area with low seismicity; however, in 2017, seismic swarms of low intensity and at great
depth began to occur. It was not until June 2021 when more and more seismic events began
to be experienced on the island of La Palma, but a week before the eruption is when there
were a large number of seismic swarms whose depth was decreasing, this being a powerful
indication of the imminent eruption (See Figure 1).

2.2. Description of Selected Series

To carry out the study on how the eruption of the La Palma volcano has been influ-
enced, the time series provided by the Bernese Software 5.2, corresponding to the values of
ZTD and TEC, will be taken, which refer to the delay produced in the propagation of the
signal from satellites to permanent GNSS stations as it passes through the atmosphere. In
addition, the data will be expanded, in the case of ZTD values, making use of the GNSS
stations provided by the Nevada Geodetic Laboratory (NGL).
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Figure 1. Earthquakes from 1 September 2021 to 1 June 2022. Image extracted from IGN.

For this purpose, GPS stations located on the different islands that make up the Canary
archipelago and that belong to the MAGNET network provided by NGL will be taken [5]
(See Figure 2):

• La Palma: Garafia (LPAL), Villa de Mazo (MAZO).
• La Gomera: San Sebastián de La Gomera (GOME, GOM1), Alarejó (ALAJ).
• El Hierro: La Restinga (LRES), Frontera (FRON), Valverde (EH01).
• Tenerife: Güímar (IZAN), Santiago del Teide (STEI), San Miguel de Abona (SNMG),

Santa Cruz de Tenerife (GRAF), La Laguna (LLAG), Santa cruz de Tenerife (TN01),
Puerto de la Cruz (TN02).

• Gran Canarias: La Aldea de San Nicolás (ALDE), Teror (TERR), Agüimes (AGUI),
Aguineguín (ARGU), Tafira Baja (ULP2), Maspalomas (MAS1).

• Lanzarote: Haría (HRIA), Yaiza (YAIZ), Tías (TIAS), Órzola (LZ01), Arrecife (LZ02).
• Fuerteventura: Morro Jable (MORJ), Tarajalejo (TARA), Antigua (ANTI), La Oliva

(OLIV), Puerto del Rosario (FUER), La Lajita (LAL1).

Figure 2. Permanent GPS stations of the MAGNET network.

3. Analytical and Statistical Techniques

GPS satellites have been used in this work. The GPS time series formed by the data
from the ZTD and TEC values are a priori corrected when processing the data sent by
the satellites to the GPS permanent stations. These values provide information on the
atmospheric delay produced in the path of the GPS signal traveling from the satellites to a
given GPS station.
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These data usually contain outliers, so initial filtering must be used on the series
obtained to eliminate them. Once the filtered series is obtained, analytical and statistical
techniques can be applied to proceed to a descriptive analysis of the series.

For this study, ZTD and TEC values obtained through the Bernese 5.2 software will be
taken. In addition, the number of permanent GNSS-GPS stations from which ZTD values
are obtained will be increased, using the data provided by the NGL laboratory [6].

3.1. Initial Filters of the Series

The objective of any initial filtering that is applied to the GPS series consists of the
elimination of data with very different values, outliers, from the rest of the series. In the
case of non-linear series, this process is carried out by linear sections within the series. On
the other hand, R contains a package, forecast, to filter time series data, that is based on the
Box–Cox transform [7,8] and is completed by the tsoutliers() function. It is used to achieve
greater linearity, homoscedasticity and a tendency towards a normal distribution of the
values of the series.

3.2. Kalman

For this filtering, it is necessary to know what the dynamic linear models are like;
assuming they are known, we proceed to define the Kalman filtering [9]. The Kalman filter
is of a predictive–corrective type, as the parameter θt that determines the state of the model
at time t is calculated, the estimation of the observations of the series is calculated [10].
Assuming θ0 ∼ N(m0, C0):

θt = Gtθt−1 + ci + RiWt

Furthermore, to calculate the estimate of the data of the series we will use:

yt = Ftθt + dt + vt

3.3. ARIMA Model

ARIMA models (integrated moving average autoregressive) are given by ARIMA(p, d, q),
deal with stationary time series and are made up of three models, the autoregressive (AR),
the integrated (I), and the mean mobile (MA), which are defined, respectively, by p, d, and
q; uniting these three models we have the ARIMA model, which is given by

φp(B)(1 − B)dYt = φ0 + θq(B)et

where et represents the errors produced at time t and Yt the data of the series. What is more

φp(B) = 1 − φ1B − φ2B2 − . . . − φpBp

θq(B) = 1 − θ1B − θ2B2 − . . . − θqBq

where B is the delay operator.

3.4. ARMA Model

ARMA models, defined by ARMA(p, q), deal with non-stationary series and are given
by the union of autoregressive models (AR) and moving average models (MA). Therefore,
joining the expressions of both models we obtain the expression of the ARMA model

φp(B)Yt = φ0 + θq(B)et

where φp(B) and θq(B) are defined in the same way as in the ARIMA model.

3.5. STL Decomposition

STL decomposition (Seasonal and Trend decomposition procedure based on LOESS)
additively decomposes a time series into its three components, trend, seasonality, and
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irregularities [11]. The time series can contain gaps due to various factors. These do not
have a negative influence on the decomposition of the time series. Local regression (LOESS)
is used to estimate the three components of the series because the STL decomposition
fills in the gaps in its three components. STL decomposition consists of two processes,
internal and external. In the internal process, in each position the values of the trend and
seasonality components are estimated and updated with the LOESS regression. In the
external process, the irregularities component of the series is obtained. The trend and
seasonality components are smoothed [11].

4. Zenital Total Delay and Precipitable Water Vapor Parameters

Tropospheric refraction is the delay in the signal path caused by the neutral part of the
atmosphere. An electromagnetic wave always propagates in a vacuum at the speed of light,
but in this case the presence of the atmosphere affects the transmission causing the waves
travel slower than they would do in a vacuum. This effect, and the fact that the curvature
of the trajectory should be rectilinear, are the main causes of the tropospheric delay.

The total zenith delay (ZTD) is an estimate of the delay if the signal passes through
the atmosphere in the zenith direction. Multiplying this value by the appropriate mapping
function provides the tropospheric delay.

For radio waves, the tropospheric delay does not depend on frequency, so its effect
cannot be completely eliminated and can only be modeled. One method to model the
phenomenon is based on decomposing the (ZTD) into two factors.

A first factor would be the dry component of the atmosphere (ZHD) which is responsi-
ble for 90% of the signal delay and its value is very stable. The small variations that occur
are proportional to pressure changes, which makes it possible to estimate ZHD values with
high accuracy.

The second factor is the wet component of the atmosphere (ZWD). Although this
factor contributes less than 10% to the signal delay, the variability and instability of the
atmospheric water vapor distribution is mainly responsible for the variations of the (ZTD)

Thus,

ZTD = ZHD + ZWD. (1)

This factor must be calculated for each measurement due to its great variability
depending on the altitude, pressure and meteorological situation of the place. Following
the Saastamoinen model, the ZHD value can be calculated as follows [12,13]

ZHD = 0.002277 · P
1 − 0.0026 · cos(2φ)− 0.00028 · h0

, (2)

where P is the station’s atmospheric pressure (hPa), φ denotes the station’s latitude and h0
its respective altitude.

Using (1) the (PWV) values are calculated. Finally, the relation between the wet
component of the atmosphere (ZWD) and the precipitable water vapor (PWV) is given by
the following formula

PWV = Π · ZWD, (3)

Π =
106

ρw · R
mw

·
[

k3
Tm

+ k2 − mw
md

· k1

] , (4)

where Π is the conversion factors between the ZWD and PWV; Tm represents the aver-
age temperature in degrees Kelvin, ρm is the density of the liquid water, R is the uni-
versal gas constant (R = 8314 Pa · m3 · K−1 · kmol−1), mw represents the molar mass
of water vapor (mw = 18.02 kg · kmol−1), md represents the molar mass of the dry at-
mosphere (md = 18.96 kg cot kmol−1), y k1, k2 y k3 are the following constants, k1 =
77.604 ± 0.014 K/hPa, k2 = 70.4 K/hPa y k3 = 3.776 ± 0.014)× 105 K2/hPa [14].
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5. Total Electron Content

The state of the ionosphere can be described by the electron density, ne, which is in
units of electrons per cubic meter. The impact of the ionosphere on the propagation of the
signals is given by the TEC, which is called E:

E =
∫ k

i
ne(s)ds

E defines the signal (s) path emitted by the satellite (i) to the receiver (k). To estimate
the values of the TEC, three types of mathematical models will be defined, which are [2]:

1. Station-Specific TEC models.
2. Global TEC model.
3. Local TEC model.

In this work, the TEC values obtained from the station-specific TEC models have been
used.

5.1. Station-Specific TEC Models

Station-specific TEC models are treated in exactly the same way as global models. A
complete one is carried out with the set of parameters necessary to estimate the ionospheric
values with respect to each station involved.

5.2. Global TEC Model

The global model for the estimation of the TEC values can also be used for regions, it
is defined by

E(β, s) =
n=0

∑
nmax

m=0

∑
n

P̃nm(senβ)(anmcos(ms) + bnmsen(ms)),

where:

• nmax is the maximum degree of the spherical harmonic expansion.
• P̃nm are the normalized associated Legendre functions of degree n and order m.
• anm, bnm are the (unknown) TEC coefficients of the spherical harmonics, i.e., the global

ionosphere model parameters to be estimated.
• β is the geographic latitude of the intersection point of the line receiver–satellite with

the ionospheric layer.
• s is the sun–fixed longitude of the ionospheric pierce point. s is related to the local

solar time (LT) according to

s = LT − π ≈ UT + λ − π,

where UT is universal time and λ is the geographic longitude of the intersection point.

6. Application of Methodology Developed and/or Adapted R

Application of Methods

The time series obtained contain the values of the amounts of ZTD and TEC that can
be seen in the atmosphere. A series of statistical and analytical techniques will be applied
to these time series at different times to see what the evolution of these values has been.

The following methodology will be applied. Firstly, we will apply an initial filtering
to eliminate possible outliers, then we will use the ARIMA, ARMA, and Kalman methods
and the decomposition of the time series in relation to its seasonality, trend, and noise
components.

To give an idea of the behavior of the series, the corresponding results of applying the
methodology, previously described, for the IZAN station in the time interval 2010–2020 are
visualized, thus eliminating the possible influences that have occurred in the troposphere
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due to the volcano of La Palma, and, due to its location, the influence of the submarine
volcano of El Hierro is also eliminated [15]. In addition, the graphs of the ZTD and PWV
values corresponding to the EH01 station from September 2017 to 2018 will be shown.

The ARIMA, ARMA, and Kalman methods will be applied to the permanent stations
mentioned above, thus comparing the results obtained from each of the applied techniques,
and the comparison between the ZTD and TEC values during the period from August to
December in the years 2018, 2019, 2020, 2021, and 2022, marking the eruptive period in
each of the years, the eruption occurring in the year 2021. A translation has been applied to
these data to achieve an optimal visual comparison for the different years.

7. Conclusions

This paper seeks to know the influence that the eruption of the Cumbre Vieja vol-
cano had on the ZTD and TEC values, for which the results obtained by applying the
ARMA, ARIMA, and Kalman methods at different times have been analyzed. Observing
the Figures 3 and 4 shows the behavior without the volcanic influence of the IZAN station
during the period 2010–2020. In both images, it can be seen that the data present a periodic-
ity, after half the year it is seen how the time series grows, thus producing a seasonality
that provides maximum points in the graph, which can be seen in the seasonal component
that returns the STL decomposition. Figure 5 shows the comparison between the values of
ZTD and PWV for station EH01 (El Hierro). Figure 6 shows the application of the ARMA,
ARIMA and Kalman models for different stations. In the Figures 7 and 8 obtained by
comparing the methods during the months of August to December in the years 2018, 2019,
2020, 2021, and 2022, the data obtained by applying the various methods have been shown.
A translation has been applied to these data to achieve a better visual comparison for the
different years. It can be seen, as the data corresponding to the year 2021 are slightly more
linear than the rest.

You can see the STL decomposition in Figure 9 for the TEC data, in the trend compo-
nent the solar cycle that occurs every 11 years [2] is observed. In addition, Figure 9 shows
the STL decomposition of MAZO (La Palma), in the seasonal component it can be seen that
before 2022 the TEC values are higher. In Figure 10, the application of the ARIMA, ARMA
models and the Kalman technique on the filtered data is shown. In Figure 11, there is a
comparison of the ARIMA model for different stations with the dates on which the active
volcano was marked; a rise can be seen during this period in the TEC values.

Figure 3. STL decomposition to IZAN (Tenerife) during the period 2010–2020.
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Figure 4. Application of ARMA, Kalman, and ARIMA (from left to right) on the IZAN station in the
period 2010–2020. The blue graph represents the one obtained by applying the methods and the red
elements are the data of the filtered series.

Figure 5. Comparative of ZTD and PWV values for station EH01 (El Hierro).

Figure 6. Application of ARMA, Kalman and ARIMA methods on ANTI (Fuerteventura), STEI
(Tenerife), and FRON (El Hierro) stations, respectively.

(a) MORJ station (Fuerteventura) (b) AGUI station (Gran Canarias)

Figure 7. Kalman comparative techniques during the years 2018 to 2022. Marking os the eruption
period throughout each year.

(a) MAZO station (La Palma) (b) YAIZ station (Lanzarote)

Figure 8. Kalman comparative techniques during the years 2018 to 2022. Marking os the eruption
period throughout each year.
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Figure 9. STL decomposition to MAZO (La Palma) during the period from 2010 to 2022.

Figure 10. Application of ARIMA, ARMA and Kalman methods on ARGU, GRAF and ALAJ stations,
respectively.

Figure 11. Comparison of the ARIMA model for the MAZO (La Palma), HRIA (Lanzarote), ALDE
(Gran Canarias) and ANTI (Lanzarote) stations. Marked eruptive period.
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