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Soil erosion is a process in which soil particles are first detached from the soil surface
and then transported by erosive agents such as rainfall, overland flow and channelized
flows in rills, ephemeral gullies and gullies [1–3]. Accelerated soil erosion affects both
natural and anthropogenic environments. It is also responsible for land productivity
decrease due to the removal of soil organic matter and plant nutrients [4,5]. The negative
effects of soil erosion include in-site effects, such as degradation of soil structure, loss of
organic matter and nutrient content, and reduction in the cultivable soil layer [6]. Erosion
also determines off-site damages due to soil particles entering the water system, such as
sedimentation into channels, loss of reservoir storage, eutrophication of waterways, and
contamination due to fertilizer and chemical pesticides [7].

Accurate and repeatable measurements of erosion processes are required both for
understanding and realizing correct modeling. Experiments provide an opportunity to
investigate to what extent the concepts used in models are a truly valid descriptions of the
erosion processes occurring.

The main aim of this Special Issue was to collect papers dealing with (1) experimental
sites for measuring soil erosion at different spatial (plot, hillslope, basin) scales, (2) field
experiments that aim to study the soil erosion processes (interrill, rill, and gully erosion),
and (3) new methods and procedures for measuring soil erosion processes (e.g., three-
dimensional photo-reconstruction techniques, measurement of erosion features using aerial
and terrestrial acquisition platforms, and tracers).

Eleven articles (ten research articles and one review) are published in this Special Issue.
They cover different aspects of erosion processes, investigate cause–effect relationships, and
develop new models for predicting soil erosion. The effects of rainfall, cropping system,
etc., on soil erosion have been discussed, and different types of erosion (i.e., rills, gullies)
have been studied.

Among the research articles, the papers by de Oliveira et al. [8] and Nicosia et al. [9]
deal with rill erosion. In particular, the first [8] presents the development and verification
of an improved and cost-effective flume apparatus and corresponding testing methodol-
ogy. The authors tested both the apparatus and methodology using statically compacted
specimens of a latosol from the central region of Brazil. They produced erosion curves with
repeatability that were superior with respect to their initial linear and transition portions.
The second [9], instead, assessed the influence of the rill profile shape on flow resistance
law. The analysis demonstrated that the component of the Darcy–Weisbach friction factor
due to the profile shape varies in the range 0.68–14.6% of the overall friction factor for the
concave profile, and from 3.4 to 26.9% for the convex profile. The authors also proved that
the concave profile leads to an eroded rill volume lower than those detected for the uniform
and convex profiles (reduction of 57.9% compared to the uniform profile).

Only the paper by Nkonge et al. [10] deals with gully erosion. They studied the sus-
ceptibility of the Kakia–Esamburmbur catchment in Narok, Kenya, to this kind of erosion.
The authors obtained that land use/cover, distance to road, sediment transport index, and
topographic wetness index significantly influence gully occurrence in the catchment.
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Many papers investigated new solutions for preventing soil erosion phenomena or
proposed their relationship with the examined variables. Merlo et al. [11], in turn, evaluated
the relationship between soil properties (microbial biomass carbon, basal soil respiration,
and metabolic quotient) and erosion in areas managed with different cropping system prac-
tices under no-tillage in the Brazilian Cerrado. They demonstrated that not only physical
and chemical, but also biological properties are deeply affected by erosion. Regarding
the application of agricultural practices, Vianney Nsabiyumva et al. [12] evaluated, in
three provinces of Morocco, their effects, combined with olive tree plantations, on the
hydrological response (final infiltration, imbibition of rainwater, runoff coefficient, and
soil detachment). The authors demonstrated that vegetation has an important role in
moisture conservation in surficial depths in all sites and reduces runoff. Banu and At-
tom [13] proposed the use of quicklime to stabilize cohesionless soils, demonstrating its
efficiency for both poorly graded and well-graded soils. Its use significantly improves
the strength, critical shear stress, and erosion rate index of the soil. Bombino et al. [14]
presented an interesting case study, developed in Calabria, using burned felled logs for con-
trolling soil erosion and favoring forest self-regeneration in post-fire conditions, obtaining
encouraging results.

Todisco et al. [15] developed a runoff correction factor for the USLE using rainfall and
satellite antecedent soil moisture data. They also validated the obtained estimates of runoff
and soil loss using plot-scale measurements obtained at SERLAB (Soil Erosion Laboratory)
of the University of Perugia. The authors found that the event rainfall depth added to the
antecedent soil moisture is a suitable predictor of the runoff.

The article by De Girolamo et al. [16] deals with the measurements of the suspended
sediment load in two mountainous river basins in Apulia. The authors developed sedi-
ment rating curves to address gaps in the suspended sediment concentration time series.
They also obtained that the majority of the suspended sediment load was transported
during high-flow conditions, accounting for over 80% of the total load, while, for low-flow
conditions, it constituted less than 1% of the total load.

Vergni and Todisco [17] used the datasets comprising many years of soil loss observa-
tions at the plot-scale experimental site SERLAB, and applied the random forest machine
learning model. This model achieved a global accuracy of 84.8% in recognizing erosive
and non-erosive events, demonstrating slightly better performances than non-machine
learning methodologies.

Finally, the review paper by Pampalone et al. [18] provides an insight into the scientific
activity conducted from the 2000s using the data collected in the plots installed at the
Sparacia experimental area for soil erosion measurement in Sicily (South Italy). The authors
also described methods and procedures for quantify soil erosion processes (sediment
sampling and water level reading in the storage tanks for total erosion measurements;
profilometer, and structure from motion technique for rill erosion measurements).

The research’s new and relevant findings will help to study soil erosion and understand
the dynamics of some processes regarding this topic. The chosen articles advance our
knowledge on how water soil erosion can be controlled and reduced, and could give
further ideas about what can be investigated in future and what the main challenges are in
this field of study.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.
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Suspended Sediment Transport in Mediterranean Streams:
Monitoring and Load Estimation
Anna Maria De Girolamo 1 , Giovanni Francesco Ricci 2,* , Ossama M. M. Abdelwahab 2, Antonio Lo Porto 1 ,
Fabio Milillo 2 , Addolorata Maria Netti 2 and Francesco Gentile 2
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annamaria.degirolamo@ba.irsa.cnr.it (A.M.D.G.); antonio.loporto@ba.irsa.cnr.it (A.L.P.)

2 Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70126 Bari, Italy;
ossama.abdelwahab@uniba.it (O.M.M.A.); fabio.milillo@uniba.it (F.M.); a.netti21@studenti.uniba.it (A.M.N.);
francesco.gentile@uniba.it (F.G.)

* Correspondence: giovanni.ricci@uniba.it; Tel.: +39-080-5442958

Abstract: The suspended sediment (SS) load provides valuable insights into soil loss magnitude,
requiring comprehensive monitoring of streamflow (Q) and SS concentrations (SSC) across various
hydrological conditions. The primary aim of this paper was to quantify SS loads in two mountainous
river basins: the Carapelle (506 km2) and the Celone (72 km2) located in Apulia (Southeast Italy) where
different monitoring strategies were adopted (i.e., continuous and discrete). The specific objective
was to develop sediment rating curves to address gaps in the SSC time series. An optical probe
was used to continuously monitor the SSC during 2007 to 2011 in a river section of the Carapelle
river, while Q was measured with the ultrasonic method. A comprehensive dataset comprising
continuous Q measurements and discrete SSC measurements was systematically acquired for the
Celone river over the period of 2010 to 2011. Distinct sediment rating curves were formulated for
three specific subsets of data delineated by discernible hydrological conditions (i.e., high, normal,
and low flow) and SSCs were computed for the missing daily records. The annual specific sediment
load exhibited a range of 2.4 to 6.06 t ha−1 yr−1 for the Celone river, while the Carapelle river
displayed a range of 0.9 to 7.45 t ha−1 yr−1. A significant majority of the SS load was transported
during high-flow conditions, accounting for over 80% of the total load. In contrast, during low-flow
conditions, the SS load constituted less than 1% of the total load. The findings of this study highlight
the significance of the hydrological regime as a critical factor influencing sediment transport in
mountainous Mediterranean rivers. Furthermore, it demonstrates that the duration of the sampling
period, along with its specific characteristics, such as dry or wet conditions, can have a substantial
impact on the accurate quantification of the sediment load.

Keywords: monitoring; suspended sediment concentrations; streamflow; sediment rating curves;
specific sediment load; temporary rivers

1. Introduction

Soil erosion and land degradation are prevalent issues observed in the majority of
river basins across the Mediterranean region [1]. In these basins, the geomorphologic and
climatic characteristics and the agricultural practices adopted (e.g., tillage) contribute to soil
loss [2]. Local, national, European, and international policymakers have shown a growing
interest in erosion and its effects on soil and surface waterways in the last few decades.
Extensive research efforts have been dedicated to investigating the factors influencing the
transport of suspended sediment (SS) and developing models for predicting sediment yield
and load [3–5].

Soil erosion may greatly affect soil and surface ecosystems. SS transport may be of
concern because it plays a significant role in the transport of contaminants to surface waters

4



Water 2023, 15, 2715

resulting from anthropogenic activities (such as farming and breeding) [2,6]. Furthermore,
sediment transfer may contribute to lake eutrophication and reservoir siltation [2,7].

The hydrological regime of Mediterranean rivers exerts a substantial influence on
the processes of soil erosion and sediment delivery [8,9]. As a result of the pronounced
heterogeneity observed in rainfall patterns across space and time, Mediterranean rivers
commonly exhibit abrupt fluctuations in flow and a period without flow. These hydrological
dynamics give rise to the notable transport of suspended materials and erosional processes
within such rivers [10]. These peculiarities make it more challenging to take precise
and ongoing measurements of suspended sediment concentrations (SSC) [11], and it also
suggests that computing the SS load is highly challenging [12].

Several techniques were used to estimate loads by using measurements of SSC and
streamflow (Q) for medium and large catchments [13,14]. The selection of which method
is going to be adopted mainly depends on the availability of data, catchment size, and
streamflow regime even though each of these techniques has its own drawbacks [12]. All
the methods require measurements of Q and SSC that must cover all of the hydrograph
characteristics, especially flood events. Also, approaches based on modelling soil losses
were developed to quantify sediment loads at different times and spatial scales [15–18].
However, models rely on extensive measurements of Q and SSC, which serve as essential
components for validating the model’s prognostications [19].

Continuous monitoring of SS transport involves employing infrared optical probes
to measure turbidity, while laboratory analysis of water samples is used to determine
SSC. These methodologies are commonly adopted for monitoring the transport of SS.
Continuous measurements allow us to determine the sediment load during flood events
with sufficient accuracy. Since optical technology is regarded as a reliable tool for measuring
suspended sediment, its usage for continuous river monitoring has greatly expanded in
recent years [18]. These optical instruments demonstrate sensitivity toward the particle size
distribution flowing in the water. This trait could be of less significance in small catchments
(where rainfall regimes and erodibility are uniform) while it is of great impact in large
catchments [20].

In situations where continuous measurements are obtained for both Q and SSC, the
sediment load transported through a specific river section within a given time interval is
determined by calculating the integral of the product of SSC and Q over that time interval.
This equation cannot be applied when SSC are discrete measurements [12]. In this case,
sediment load computation requires the estimation of the SSC for the days when no records
are available. A common approach for estimating SSC is based on a regression equation,
the so-called “sediment rating curve” (SRC), that relates SSC to Q at the time of sampling.

SRCs are also used for filling the gaps in the SSC time series in the case of the failure
of continuous measurements, since interruptions due to the malfunction noise of the in-
struments are quite common. However, according to Horowitz [21], due to the significant
degree of dispersion of the SSC data, the SRC leads to an underestimation of loads. Hy-
drologists have invested a lot of time and energy into developing reliable approaches for
reducing bias [22,23]. In-depth knowledge of the flow regime, seasonality, and sediment
properties may be useful to adopt a strategy to improve SRC [12].

The present paper aimed to (i) quantify SS loads in two river basins of the Daunia
Mountains: the Carapelle river and the Celone river (Apulia Region, Southeast Italy), and
(ii) develop different SRCs based on the flow regime (i.e., high flow, normal flow, and low
flow conditions) to fill the gaps in the SSC time series. The results are expected to advance
the knowledge of SS load quantification in Mediterranean rivers and to provide water
resource decision-makers with a rapid and affordable tool for SSC and load estimations.

2. Study Area: The Carapelle and the Celone River Basins

The experimental site for monitoring SSC and Q is situated at the Ordona bridge
(Figure 1) along the main course of the Carapelle River, a prominent watercourse in
northern Apulia. The stream rises in the Apennine mountains, runs across the Tavoliere
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floodplain, and discharges into the Adriatic Sea. The catchment area (considering the
outlet at the gauging station) is 506 km2, and the elevation ranges from 120 to 1075 m a.s.l.,
with an average slope of 8.2%. The mountainous hilly parts of the catchment experience
considerable erosion mainly due to agricultural activities [2]. They are made up of flysch
formations, whilst clay–sand Plio-Pleistocene sediments define the alluvial plain [16]. The
majority of the soils in the region are fine clay loam textured Entisols with low levels of
organic matter.
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Figure 1. Study area: Celone catchment and Carapelle catchment (Apulia, Italy). (a) Elevation;
(b) Land Use; and (c) Lithology. Green and red dots represent the position of the gauging stations of
the Celone and of the Carapelle, respectively.

The primary economic activity is agriculture, with deciduous oaks and hardwoods
(Quercus pubescens s.l. and Quercus cerris L.) covering the higher hillslopes along with
conifers, pastures, and meadows [24]. Flat areas and low-lying plains are primarily covered
by wheat cultivation, and to a lesser extent, olive orchards and other agricultural crops. The
catchment has a Mediterranean climate with wet autumn/winter and dry spring/summer
seasons with average temperatures that vary from 10 ◦C to 16 ◦C. Average annual rainfall
ranges from 779 mm (1921–2012), at Bisaccia station, to 531 mm (1921–2012) at Castelluccio
dei Sauri station according to the Department of Civil Protection. August (6.4 mm) is the
driest month, while March (94.9 mm) and November (81.4 mm) represent the rainiest [2,25].
The hydrological regime is characterized by considerable spatial and temporal variability,
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with exceptionally low flow conditions or absence of flow in some areas of the river network
during the summer (June to August).

The Celone river basin, spanning 72 km2, encompasses steep slopes ranging from
150 m to 1150 m above sea level (a.s.l.). The river channel exhibits incision in the upper
part of the basin and transitions into a braided course within the initial alluvial plain,
which serves as a deposition zone for significant quantities of both suspended and bed-
load material. In the lowland areas of the basin, the soils predominantly consist of deep
clay loam and sandy clay loam textures, reaching depths of 1.5 to 2 m. In the hill and
mountainous regions, the soils are moderately deep. The Celone river basin is primarily
an agricultural area, with major cultivations including winter and durum wheat (45%),
sunflower (9%), pasture (6%), and olive groves (8%). Vegetables and vineyards are minor
land uses (2%). Forests (29%) are widely spread in mountainous areas. Urbanized regions
account for only 1% of the total area. The basin experiences a climate characterized by a
wet season extending from November to May, followed by a dry season. Historical records
from 1960 to 2001 indicate an average annual rainfall of 792 mm in the upper part of the
basin and 623 mm in the lowland areas. The Celone river shows an intermittent nature
with a long dry season interrupted by flash flood events that may occur leading to high SS
material transportation. Both catchments experience soil erosion caused by water due to
the implementation of conventional tillage practices. Indeed, in autumn and winter, most
of the agricultural fields (seeded and ploughed fields for spring crops) are unprotected by
the vegetation from erosion. Both soil erosion (i.e., sheet and rill) and river bank erosion
contribute to SS transport.

3. Materials and Methods
3.1. Monitoring SSC and Q

At the Carapelle Ordona bridge gauge Q and SSC were continuously monitored (2007–2011).
However, due to the lack of data caused by the maintenance of the gauging station, 2009
was not included in this study [8]. The Hach–Lange Solitax hs-line sc probe was installed for
measuring SSC (Figure 2) as it is able to measure high values of SSC (SSC > 15 g L−1) [26].
For fouling prevention, the probe has a screen wiper with a customizable time interval. By
merging signals, the Hach–Lange Solitax sc100 controller transforms them into SSC [27]
(Figure 2c). This approach considers the stray light effects, organic matter, and the colour of
the watery medium while allowing for the examination of a wide range of concentrations
(0.001–4000 Nephelometric Turbidity Units—NTU—for turbidity and 0–150 g L−1 for
suspended particles).

The probe is securely housed in a drilled tube, providing protection against the impact
of coarse materials in the stream and preventing potential measurement errors caused by
stray radiant energy entering the infrared field. At the same time, the holes drilled on
the tube (Figure 2d) allow an efficient exchange of the flowing suspension, as observed
through several simultaneous manual samplings, which gave the same SSC values inside
and outside the shelter tube.

The mechanical system consists of a pulley (Figure 2c), float (Figure 2d), and counter-
weight group which allow the probe to be always submerged 20 cm below the free water
surface. By employing a data acquisition framework and a transmission infrastructure, the
data are sent to a server in the Department. An ultrasonic stage recorder, managed by the
Centro Funzionale Decentrato (CFD) of the Sezione Protezione Civile della Regione Puglia,
is operated for Q measurements. CFD developed the rating curves and provided Q data.

Laboratory experiments evaluated the functionality of the Solitax sc probe in relation to
river sediments, offering versatile applications across various water conditions. Operating
in the turbidity-nephelometric mode for low turbid water and suspended sediment-ratio
detection system mode for highly concentrated sediments, the instrument’s two-detector
optical system enabled accurate measurements of high Suspended Sediment Concentra-
tions (SSCs) while compensating for colour variations, light fluctuations, and stray light.
The study involved tests on suspensions with fixed granulometric mixtures and vary-
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ing ratios of sandy and fine fractions, derived from sediment samples collected from the
Carapelle stream’s riverbed. Gravimetric analysis revealed predominant sandy content
(87.5%) with minor proportions of silt (8.8%) and clay (3.7%). The suspensions were pre-
pared in wet, oven-dried, and separated forms to examine their impact on measurements.
The experiments yielded valuable insights into the probe’s performance, the influence of
sediment composition, and the relationship between optical data and gravimetric SSCs
(Figures A1–A3 in Appendix A). Following that, the equipment was field-calibrated con-
sidering the most significant flood events, and the SSC was plotted against discharge with a
30 min time step. Detailed information about instrument calibration is reported by Gentile
et al. [28]. Over the study period, several gaps in continuous measurements of SSC were
recorded due to problems with the powering. The percentage of SSC missing data was
21.7% (20 gaps in 2007; 165 in 2008; 21 in 2010; and 112 in 2011).
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(from upstream), (c) data acquisition instruments, and (d) side view of the probe sheltered within the
tube. The sensor is submerged at 20 cm.

SSC and Q were monitored at the Celone river at the M. Pirro gauge (Figure 3) for a
year (July 2010 to June 2011). Discrete samplings for SSC determination were carried out
by using an automatic sampler (ISCO model 6712FS; with 24 bottles; pumped volume 1 L).
The instrument was connected to a Flow Module (ISCO 750 Area Velocity) for continuous
measurements of Q. The sensor provided continuous (5 min) measurements of flow velocity
and stream water stage. These values were converted to Q by using a stage-discharge rating
curve based on the river cross-section, which had a regular and permanent shape. Therefore,
by using a template (Excel worksheet), the cross-sectional area corresponding to each water
stage was calculated. Q was determined by multiplying flow velocity by the corresponding
cross-sectional area. Several tests were completed to verify the sensor measurements.
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Figure 3. Gauging station and data acquisition system at the Celone M. Pirro, Celone river (Apulia
Region, Italy). The red arrow shows the flow direction.

The automatic sampler was set for two different programs. A regular protocol was
established for timed samplings to ensure periodic sample collection at biweekly or monthly
intervals during the arid season (from July to October). Subsequently, as the season
shifted from November to June, the sampling frequency escalated to once or twice a week.
The second program was oriented to monitor flood events. Specifically, it was based on
fluctuations in water level during the hydrograph rising limb and flow velocity variations
during the recession phase. The sampling intervals within the rising limb ranged from
15 min to 2 h, while in the recession limb, they varied from 2 h to 1 day. Over the course of
the study, a comprehensive total of 216 samples were meticulously collected, encompassing
all hydrological conditions. The IRSA-CNR laboratory conducted the analysis of SSCs using
the esteemed APAT-IRSA analytical standard method. More details about instruments and
monitoring plans are reported in [3,29].

3.2. Developing Sediment Rating Curves

SRCs were created to fill the gaps in the SSC recorded dataset at the Carapelle moni-
toring station, and for quantifying the SSC for those days during which no measurements
were available at the Celone gauge.

The SRC is a regression equation determined by using a log-transformed least squares
regression (Equation (1)), where the Q is the independent variable and SSC′ is the dependent
variable.

Log SSC′ = log a + b logQ (1)

The result of Equation (1) is needed in the original units. The back-transformation
to the original scale by exponentiation introduces a bias that is an underestimation of the
mean value on the original scale [30,31]. Several attempts have been carried out to enhance
the SSC–Q relationships by introducing a bias correction factor [30,32–34]. In the present
work, the bias correction factor proposed by Duan [33], the so-called Smearing Estimator
(CF), was adopted (Equation (2)). The CF does not require any assumptions about the
distribution of residuals.

CF =
∑N

1 10εi

N
(2)
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where N is the number of measurements, εi is the residual (Equation (3)).

εi = log (SSCi)− log
(
SSC′i

)
(3)

where SSCi is the observed concentration and SSCi
′ is the predicted values obtained through

regression.
To improve the estimation of SSC′, several authors proposed to develop SRC for

subsets of data defined on a seasonal basis, or on classes of Q rather than the entire
available data set [23,35]. De Girolamo et al. [12] highlighted that for intermittent rivers,
using subsets of data based on the flow regime provides higher accuracy than seasonal
data stratification when estimating SSC′ and load with SRCs. In this research, three distinct
datasets were identified based on classes of Q: high flow, normal flow, and low flow. These
datasets were utilized to construct logarithmically transformed linear functions. To identify
the sub-sets, the Flow Duration Curve (FDC) was used. FDC represents graphically the
percentage of time (X-axis) in which a specific value of flow (Y-axis) is equalled or exceeded.
All the flow conditions are represented in FDC, with lower percentages corresponding to
high flows (i.e., floods) and higher percentages corresponding to low discharges (i.e., low
flows) [36]. This methodology allows representation of the hydrologic response of a river
basin and, therefore the Q variability [37,38].

The following three data stratifications were adopted: R1 (0–5%; 5–70%; 70–100%), R2
(0–10%; 10–70%; 70–100%), and R3 (0–20%; 20–70%; 70–100%), by using different thresholds
for high-flow conditions. Specifically, the flex point observed at 70% of FDC was used to
set the low flow class, which is the same for all the stratifications (70–100%). This range
is associated with low-flow conditions [39]. For high flow instead, three different ranges
were considered 0–5, 0–10%, and 0–20%. The values of 5%, 10%, and 20% are associated
with flood and high-flow conditions [8,11].

The mean error (E) (Equation (4)) was calculated for each dataset as a percentage of
the variances between SSCi and SSCi

′ [21],

E (%) =




∑N
1

(
(SSC′i−SSCi)

SSCi

)

N


× 100 (4)

after evaluating the SSC′, specific SS loads (t ha−1 yr−1) were computed both at the Cara-
pelle gauge and at the Celone gauge at daily, and yearly time scales by the integration of
the product of SSC and Q.

4. Results
4.1. Monitoring Streamflow and SSC

The transport of SS is greatly influenced by the flow regime of the rivers (Figures 4 and 5).
It is characterized by a long period (summer) of extremely low flow and a wet period
(winter–spring) with continuous flow and floods. The pattern of SSC strictly follows the
hydrograph for both rivers.

At the Carapelle gauge, the highest Q value (94.4 m3 s−1) was registered on 10 Novem-
ber 2010 when also the highest SSC value (18.92 g L−1) was recorded. In the wet season,
the largest flood can generate a high value of SSC due to the whole basin contributing to
sediment generation [8]. Low values of Q (0.005 m3 s−1) and SSC (<0.05 g L−1) are gener-
ally recorded in late summer. In the study period, the absence of flow was not recorded
at the Ordona bridge. However, as reported in the historical time series of Q there are
several years with zero flow conditions and the river is classified as a temporary river [8].
Different SSC magnitudes were recorded for equal discharge peaks, for instance, the floods
recorded on 3 November 2010 (22.19 m3 s−1; 1.53 g L−1), and 10 March 2010 (22.03 m3 s−1;
0.52 g L−1). The observed behaviour can be attributed to various factors, including the
impact of vegetation, spatial variability of precipitation, and variations in antecedent soil
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moisture content. Indeed, lands with the main crop production (wheat) in the area are
unprotected in November, meanwhile, they are completely covered by vegetation in March.
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Figure 4. Observed flow (Q), observed suspended sediment concentrations (SSC), and observed
precipitation at the Carapelle Ordona bridge gauge. The year 2009 was not included in this study
due to the lack of data caused by the maintenance of the gauging station.
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of November 2010 was not considered in this study due to a malfunctioning of the gauge station.

11



Water 2023, 15, 2715

In the case of the Celone river, it is noteworthy that similar peak values of Q resulted
in a range of magnitudes of SSC, as depicted in Figure 5. For instance, on 30 November
(10.83 m3 s−1; 3.92 g L−1) and 16 May (10.44 m3 s−1; 0.81 g L−1), it is evident that the
interplay of vegetation, potential variations in rainfall patterns, and variations in antecedent
soil moisture content plays a significant role in soil erosion and the transport of SS. The
maximum SSC recorded in the wet season was 7.13 g L−1, associated with a streamflow
value of 23.5 m3 s−1 (5 March 2011). In summer, flash flood events may be critical for SS
transport. Particularly, on 21 July 2010, during a period of intense precipitation (Faeto gauge
recorded 73.6 mm h−1), the recorded SSC was 37.60 g L−1, accompanied by a Q value of
5.95 m3 s−1. This event marked the highest ratio of SSC to Q observed throughout the study
period. In summer, flash floods characterized by high SSC despite low Q, are frequent. This
is caused by the fact that in summer most of the wheat fields are harvested and, therefore,
the soils in the basin are bare [12]. In this case, if an intense rainfall event occurs, infiltration
excess is the dominant process that generates the overland flow, therefore, Q increase and
decrease quickly and a large amount of SS can be transported into the river including the
sediment accumulated on the river bed [11].

As described by De Girolamo et al. [12] flash floods were considered outliers, therefore,
they were not included in the dataset for developing the SRC.

Based on the dataset presented in this study, at the Carapelle gauge, SSC and Q are
significantly correlated (r = 0.69). The coefficient of determination (R2 = 0.48) shows that
the variance of SSC may be explained for 48% by Q, meanwhile, other factors such as
rainfall factors (i.e., intensity, spatial distribution), vegetation cover, and tillage may hold
for the 52% of the variance (Figure 6b). At the Celone gauge, after excluding four outliers,
Q and SSC data from the monitoring campaign (July 2010 to June 2011) were significantly
correlated. The coefficient of determination (R2 = 0.66) designates that the variance of SSC
may be explained for 66% by Q (Figure 6a).
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4.2. Developing Sediment Rating Curves

To identify the subsets of data for developing SRC, the FDC was used. For both rivers,
SSC values resulted scattered, especially in high-flow conditions (Figure 7a,b) indicating
that for the same value of Q, different values of SSC were recorded. At the Celone gauge,
the coefficient of variation (CV) for SSC ranged from 109 (low flow) to 251 (high flow;
0–20%). The data stratification R1 showed the lowest CV in high-flow conditions. At
the Carapelle gauge, the CV varied from 28 (70–100%) to 204 (5–70%). R1 showed the
lowest CV for the high-flow conditions compared with R2 and R3. Log-transformed linear
equations were derived to construct SRCs for the previously mentioned data stratifications
(Figures 8 and 9).
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The CF values computed for high-flow conditions were higher than the values
recorded in normal- and low-flow conditions for all the stratification data sets (Table 1)
at the Carapelle gauge. This result indicates that the differences between measured and
modelled values are higher in high flow than in the other conditions. At the Celone gauge,
the highest values of CF were detected for the normal-flow condition clearly indicating very
high residuals in this flow condition. The number of observations and their distribution
among the flow conditions may have influenced the CF values. The latter hypotheses
could also explain the fact that at the Celone gauge the CF values were higher than those

13



Water 2023, 15, 2715

recorded at the Carapelle gauge. High variability was also detected in the values assumed
by E (%) among the datasets R1, R2, and R3 for both rivers (Table 2). High values of E (%)
were detected for the Celone river, especially for normal- and low-flow conditions. This
result is due to the different monitoring strategies adopted in the two catchments, discrete
and continuous.
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Carapelle gauge. R1 is for the data stratification 0–5%, 5–70%, 70–100%; R2 is for the data stratification
0–10%, 10–70%, 70–100%; R3 is for the data stratification 0–20%, 20–70%, 70–100%.

Celone River Carapelle River

R1 R2 R3 R1 R2 R3

High flow 2.04 2.12 2.20 1.64 2.06 1.87
Normal flow 4.69 3.62 3.13 1.41 1.25 1.16
Low flow 1.24 1.24 1.24 1.04 1.04 1.04

Table 2. Percentage error, E (%), computed for the classes of flow (Q) at the Celone gauge and
Carapelle gauge. R1 is for the data stratification 0–5%, 5–70%, 70–100%; R2 is for the data stratification
0–10%, 10–70%, 70–100%; R3 is for the data stratification 0–20%, 20–70%, 70–100%.

Celone River Carapelle River

R1 R2 R3 R1 R2 R3

High flow 19.10 29.61 35.52 36.64 59.98 40.08
Normal flow 98.94 191.49 126.39 19.98 15.53 13.15
Low flow 99.97 99.97 99.97 4.67 4.67 4.67
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4.3. Sediment Loads

The annual specific SS load estimated for the Carapelle catchment showed a high
inter-annual variability (Table 3), from 0.878 (2007) to 7.452 t ha−1 yr−1 (2010). Specifically,
its mean annual value ranged from 3.30 to 3.34 t ha−1 yr−1, computed without and with CF,
respectively. Slight differences among the three data stratifications (R1, R2, and R3) resulted
in specific SS loads (Table 2). In addition, upon analysis, slight variations were observed
in the results when considering the back-transformation correction CF, compared to the
results obtained without its consideration (i.e., 1.479 t ha−1 yr−1 and 1.542 t ha−1 yr−1,
respectively) (Table 3).

Table 3. Annual specific suspended sediment (SS) loads (t ha−1 yr−1) evaluated by applying three
different data stratifications (R1; R2; and R3) and with the back-transformation correction (R1_CF;
R2_CF; and R3_CF) at the Carapelle gauge and Celone gauge.

R1 R1_CF R2 R2_CF R3 R3_CF

Carapelle
2007 0.878 0.881 0.878 0.880 0.878 0.879
2008 1.479 1.542 1.475 1.543 1.474 1.565
2010 7.426 7.437 7.430 7.452 7.431 7.449
2011 3.420 3.439 3.424 3.459 3.429 3.465
Celone
2010–2011 2.610 6.060 2.550 5.780 2.400 5.200

As previously described, the whole data set of the Celone river was limited to one year
(from July 2010 to June 2011), hence, no investigations were carried out regarding the inter-
annual variability. On a yearly basis, the specific SS load, computed by using the three data
stratifications spanned in the interval 2.400 to 2.610 t ha−1 yr−1 (Table 3). A wide difference
in specific SS loads was detected when using the CF (5.200 to 6.060 t ha−1 yr−1). There-
fore, the actual value of specific SS load could vary in the interval 2.610–6.060 t ha−1 yr−1

showing a large uncertainty in the estimation.
SS load was mainly delivered during high flow in both catchments. Specifically, the

suspended material transported during the low flow accounts for less than 0.1% of the
total suspended material with slight differences between the basins. More than 80% is
transported in high-flow conditions. Indeed, approximately 94% and 93% were delivered
in the high-flow conditions (>20% of exceedance) in the Carapelle and Celone rivers,
respectively (Table 4).

Table 4. Average specific suspended (SS) sediment loads (t ha−1 yr−1) evaluated for high, normal, and
low flow by using three different data stratification (R1; R2; and R3) and with the back-transformation
correction (R1_CF; R2_CF; and R3_CF) at the Carapelle gauge and Celone gauge.

R1
(t ha−1

yr−1)
%

R1_CF
(t ha−1

yr−1)
%

R2
(t ha−1

yr−1)
%

R2_CF
(t ha−1

yr−1)
%

R3
(t ha−1

yr−1)
%

R3_CF
(t ha−1

yr−1)
%

Carapelle
High Flow 2.74 83.2 2.75 82.8 3.00 91.0 3.02 90.8 3.14 95.2 3.17 95.0
Normal Flow 0.54 16.5 0.56 16.9 0.29 8.7 0.30 8.9 0.15 4.5 0.15 4.6
Low Flow 0.01 0.4 0.01 0.4 0.01 0.4 0.01 0.4 0.01 0.4 0.01 0.4
Celone
High Flow 2.23 85.6 4.91 81.1 2.27 89.2 4.83 83.5 2.27 94.3 4.62 88.8
Normal Flow 0.36 13.7 1.12 18.5 0.26 10.1 0.93 16.1 0.26 4.9 0.56 10.7
Low Flow 0.02 0.7 0.02 0.4 0.02 0.7 0.02 0.4 0.02 0.7 0.02 0.4

5. Discussion

This study showed that among the factors influencing the SS load determination are
the duration of the sampled period and its characteristics (i.e., dry, wet conditions). Indeed,
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substantial year-to-year fluctuations were recorded for the Carapelle catchment, where the
specific SS load ranged from 0.9 to 7.45 t ha−1 yr−1 (2007–2011). Also, monitoring strategies
such as the frequency, the type of instrument (i.e., automated water sampling, turbidity
monitoring), and the methodological approach adopted for estimating loads proved to
influence the SS load computation. At the Celone M. Pirro, the specific SS load ranged from
2.40 to 6.06 t ha−1 yr−1 (from July 2010 to June 2011) depending on the computation method.

The present study identified the flow regime as the primary factor influencing SS de-
livery in mountainous catchments. Therefore, it is essential to carefully design monitoring
plans that consider the streamflow behaviour.

Regarding discrete SSC samplings, it is essential to carefully determine the samplings
timing and frequency. This ensures that the temporal variations in SSC are adequately
captured, allowing for a representation of the complete range of Q conditions [40]. Both
steady and sporadic measurements of Q and SSC offer distinct advantages and disadvan-
tages. Steady continuous measurement of SSC offers the advantage of closely tracking the
variations in Q, thereby facilitating the determination of sediment loads. However, this
approach can be expensive and pose challenges, particularly when conducting measure-
ments over extended periods of time. Infrared-based turbidity probes offer the advantage
of providing continuous measurements of SSC. However, the use of these probes presents
certain challenges. Some of the identified issues include the sensitivity of the probe’s out-
put to environmental conditions and the variability in particle size, shape, and colour. To
improve measurements, particle size could be further analysed using laser diffraction [41].
However, a cross-calibration with laboratory determinations is required. Furthermore, it
should be noted that these turbidity probes have a limited operational range. Consequently,
during situations with extreme variations in particle composition, there is a possibility
of underestimating the SSC, particularly in conditions with very high values of SSC [42].
Automatic samplers offer the advantage of collecting regular samples and the ability to
operate also in flood events. However, it is important to note that their usage can be
costly. A limitation in their use is that the number of bottles available (typically 24) may
not be sufficient to adequately cover certain floods, especially those of extended duration.
In addition, in the case of discrete measurements of SSC, the SS load estimation may be
affected by a high uncertainty level depending on the method used for its computation.

In this study, SRCs were formulated and employed to estimate SSC. This methodology
was selected considering its ease of use, and its possibility to be applied in semi-arid regions
characterized by data scarcity [11,43,44]. Indeed, other complex hydrological and morpho-
dynamics models may be used, but they require a large input dataset to be implemented
and a tough training phase [2,11,45,46]. Prior research has pointed out that SRCs underesti-
mate high concentrations and overestimate low concentrations of SSC [9,11,12,21,23,31,47].
Hence, to enhance the accuracy of the SRCs, in this study, the complete dataset was split
into subsets, based on the flow regime using FDC. This methodology allows us to generally
assess the characteristics of Q and of a specific river basin, through a comparison between
the magnitude and frequency [37]. On the other hand, one of the limits associated with
this methodology is that the seasonality of the flow cannot be considered. Indeed, since all
the data were plotted excluding the date of occurrence, the time-dependent information is
lost [48]. Consequently, when FDC is associated with rating curves for the SS load estima-
tion the accuracy can be low due to the non-linear relationship between Q and SSC [37].
This issue could be accentuated in Mediterranean rivers, in which, due to several factors
(i.e., rainfall regime, the shape of the basin, and the location of the sediment sources), the
peak of the SSC may occur before or after the peak of Q [8,49]. Moreover, flash floods in the
dry season may be characterized by high SSC and low Q [11]. One solution which can be
adopted to improve the accuracy is to develop FDC using sub-daily data [50].

The application of CF was then employed to address the error associated with the
back-transformation process. The results in terms of annual specific SS loads are included
in a very short interval when using the three data stratifications at the Carapelle gauge.
Also, the use of CF showed slight differences in specific SS loads on a yearly basis (<0.3%).
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For the Celone river, differences in specific SS load estimations among the three data
stratifications were detected (i.e., 2.40 t ha−1 yr−1 and 2.61 t ha−1 yr−1). In contrast with
the Carapelle catchment, a large interval was detected in the SS load estimated by using
the CF at the Celone catchment (for instance 2.61 t ha−1 yr−1 and 6.01 t ha−1 yr−1, for the
R1 data stratification). These results were due to the fact that at the Carapelle gauge the
SRCs were used only for filling the gaps, which in some cases were limited to a few dozen
(20 data in 2007, and 21 in 2010), therefore the difference among the three data stratification
was deemed negligible, as well as the use of the CF. In the case of the Celone catchment, it
was observed that the number of measurements and the specific methodology employed
for computing the sediment load had a significant impact on the results. Furthermore,
these factors contributed to a notable level of uncertainty associated with the findings [12].
Consistent with expectations, a substantial portion of the SS load was observed to be
transported during high-flow conditions, accounting for over 80% of the total load in both
the Carapelle and the Celone catchments. Similarly, Benselama et al. [51] highlighted that
flood can contribute approximately 64%, and that in wet season almost 78% of SS load
was recorded. In contrast, during low-flow conditions, the SS load was significantly lower,
comprising less than 0.7% in the Celone catchment and approximately 0.4% in the Carapelle
catchment. High variability was also detected in the values assumed by E (%) among the
datasets R1, R2, and R3 for both rivers. Data stratification R1 showed the lowest E (%) in
the high-flow condition compared with R2 and R3. Considering that most of the SS load
was transported during the high flow, R1 is the best data stratification strategy for assessing
SS load. The values of specific SS load (t ha−1 yr−1) observed in the Mediterranean areas
are extremely variable [8]. Liquete et al. [52], for different river basins located in Spain,
reported specific SS load values ranging from 0.004 to 2.00 t ha−1 yr−1. A slightly higher
value (2.94 t ha−1 yr−1) was indicated for the Wadi El Maleh basin (Algeria) [51]. Estrany
et al. [43] reported an SS load ranging from 2.20 to 4.50 t ha−1 yr−1. In Italy, within an
analysis involving 40 different basins, Van Rompay et al. [53] observed a range between
0.20–19.6 t ha−1 yr−1. A higher value (32 t ha−1 yr−1) was evidenced for a basin located in
central Apennine [54]. The values obtained for the two studied basins were similar to what
is reported here for Mediterranean environment and, also in line with the average value of
6.73 t ha−1 yr−1 reported in Vanmaercke et al. [55].

Several studies that analysed the soil formation rates clearly indicated that soil for-
mation is highly variable [56,57]. Alewell et al. [58] reported an average soil production
rate in alpine areas ranging between 0.54 and 1.13 t ha−1 yr−1 for old soils and between
1.19 and 2.48 t ha−1 yr−1 for young soils. Similarly, soil loss tolerance (SLT) can assume
different rates based on environmental factors (i.e., soil type, soil depth, and climate) [59,60].
Europe’s environment assessment [61] reported SLT in the range 1–5 t ha−1 yr−1 (shallow
sandy soils and deep soils, respectively). However, over the long period, it is clear that
annual soil loss higher than 1 t ha−1 yr−1 may produce irreversible soil damage if the soil
formation rate is low [62]. The European Commission [63] recommended that the Member
States adopt SLT values suitable to guarantee soil functions and sustainable soil use. Cur-
rently, SLTs of 0.3–2 t ha−1 yr−1 are adopted in Europe depending on the soil formation rate.
This study highlighted that both in the Carapelle and the Celone catchments the specific SS
load is higher than SLT, and confirms other studies carried out in neighbouring areas [47].
We argue that soil erosion values are higher than STL in the entire mountainous area of
“Monti della Daunia”, hence, in both catchments, a program of mitigation or conservation
measures is needed to reduce soil losses.

6. Conclusions

The annual variation in specific suspended sediment (SS) load in a catchment is
influenced by factors such as wet or dry conditions and sediment load estimation methods.
This study emphasizes the importance of monitoring streamflow and suspended sediment
concentration (SSC) to assess soil loss. The findings reveal that both the Carapelle and
Celone catchments experience soil losses exceeding the rate of soil formation.
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The study demonstrates the effectiveness of sediment rating curves (SRCs) for estimat-
ing SSCs and filling data gaps. However, accurate SRCs require a comprehensive dataset
covering diverse hydrological conditions, including flood events. The study implemented
a data stratification approach based on flow regimes to enhance sediment load estimation
by developing and testing multiple sediment rating curves.

These findings are valuable for water resource managers in quantifying suspended
sediment loads. Further research should investigate the relationship between agricultural
management practices, soil erosion, and suspended sediment loads. Identifying effectively
the best management practices to reduce soil losses in the Carapelle and Celone catchments
is crucial. These studies can contribute to strategies for mitigating sediment transport and
improving water resources management in the area.
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Abstract: The easy implementation of ecologically-sound remediation measures for the prompt
stabilisation of burned areas may be crucial in Mediterranean forest environments. Manual in situ
contour redirection of burned felled logs could aid in soil erosion control and facilitate forest self-
regeneration. In this study, a plot-scale runoff/sediment yield survey was conducted in Calabria,
Italy, within a Mediterranean pine forest that was affected by an extreme wildfire spanning over
15,000 hectares in the summer of 2021. The hydrological response to 24 rainfall events was analysed
after one year of monitoring using nine Wischmeier and Smith 20% sloping plots, which were
distributed into three plot-blocks representing different conditions (forested, burned with randomly
directed fallen logs, and burned with fallen logs manually redirected along contour lines). The
post-fire condition (with felled logs in random positions) exhibited a consistent overall increase
(approximately four times) in runoff and sediment yield compared to the pre-fire situation. This
degradation effect was mitigated by approximately 30% through the manual redirection of burned
logs, which promoted early (three to five weeks) vegetation regeneration (including tree emergence)
and enhanced coverage as vegetation spread from the log positions. The results obtained so far
provide encouraging insights and warrant further research on steeper slopes and complementary
aspects (regulatory, biological, mechanical, economic, etc.).

Keywords: forest wildfire; mountain areas; burned logs; soil erosion; erosion control; erosion barrier;
runoff; sediment yield; forest regeneration

1. Introduction

Mediterranean forest fires have a long history [1] and represent a relevant ecological
factor [2]. Since the early 1960s, the expansion of the wildland–urban interface, rural
depopulation, and the abandonment of land management practices have dramatically
increased the frequency and extent of wildfires [3].

While wildfires are widely classified according to their intensity [4–6] and sever-
ity [7–9], the scientific literature shows a wide terminological variability in the definition
of forest fires depending on the fire characterization criteria (e.g., fire size or burnt area
distinguishing “large/mega/giga/tera-fires”, fire behaviour, fire resistance to control, de-
scending socio-economic, environmental, or human impacts). However, the differentiation
between “ordinary” and “extreme” wildfire events is easy and intuitive to perceive. Ex-
treme events of high intensity and severity can certainly produce devastating effects on
the forest ecosystem. Approximately 65,000 fires take place every year in the European
region, burning an average of approximately half a million forested hectares. In the EU
Mediterranean area, approximately 85% of wildfires affect approximately 300,000 to almost
one million ha y−1, with an average burnt area of approximately 550,000 ha y−1 (data
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updated to 2021 [10–12]). Of these fires, 95% are of human origin, with arson accounting
for 55.8% of cases. In the Mediterranean basin, extreme events are fortunately rare (less
than 3%), but they are responsible for over 50% of the total burned area, as observed in
Portugal, Spain, and Greece [13]. High-intensity and severity extreme wildfires have been
relatively frequent [11] in recent decades and recur every two to three years. These extreme
events often manifest as simultaneous fires that can affect large areas (more than 10,000 ha,
as occurred in Italy in 2021), exhibiting extraordinary characteristics in terms of size and
complexity, which usually escape human control operations.

In the European Mediterranean region, large areas have been reforested with monospe-
cific tree species (e.g., conifers) that are more vulnerable to fire. The ongoing changes in
socio-economic and climate scenarios [14] could favour the diffusion and magnitude of
wildfires [15–18].

Among others, the worst consequences of high-intensity and severity wildfires are:
(i) the loss of biodiversity [19–22], and (ii) the degradation of the physical–chemical prop-
erties of soil due to high heating effects [2]. Fire causes a decrease in soil porosity and
an increase in bulk density due to prolonged and elevated temperatures. High-intensity
fires also alter organic matter and produce ash, which forms a hydrophobic coating on the
soil surface. This coating reduces soil moisture and infiltration capacity, increasing runoff
propension and soil erodibility [2]. The chemical properties of the soil show changes in
pH in the top soil horizons, an increase in electrolyte concentration, a decrease in cation
exchange capacity and sodium adsorption ratio, and pronounced leaching of nutrients
caused by precipitation. These factors result in a reduced infiltration rate, increased runoff,
and soil erosion [2].

After a wildfire, the soil protection provided by forest cover is weakened [23–25].
The bare soil is exposed to the action of raindrop impact, leading to enhanced runoff and
erosion processes [26–30]. In the Mediterranean area, summer wildfires can be followed by
frequent and high-intensity rains [2]. Studies have measured runoff volume and sediment
yield ranging from 1–4 orders of magnitude higher in burnt areas of several Mediterranean
countries (e.g., [2,31–37]), both at the plot scale and to a lesser extent at the watershed level.

A high-intensity/severity fire can easily move upward, spreading through tree crowns
(known as a crown fire), causing trees to fall either during the event or later (when weak-
ened are felled by the weather). Trees felled by extreme fires may slide downstream,
particularly on steep slopes. As they slide down, the logs can reach the hydrographic
network, where they may (i) obstruct channel water sections, and (ii) compromise the
hydraulic functionality of river works and infrastructure that interact with watercourses.

The need to restore the protective action of the forest is especially felt in the semi-arid
Mediterranean area (e.g., in morphologically complex territories such as Calabria). In
these regions, hydro-geomorphological, climatic, and anthropic factors accentuate erosive
phenomena and hydrogeological instability [38].

Many techniques are available for the stabilisation of areas damaged by wildfires,
commonly classified as “bioengineering techniques”. The objective of these techniques is
to trigger the protective action of the vegetation cover after the adverse event. However,
these techniques have a certain level of invasiveness. Among them, log erosion barriers
(LEBs) show a lower ecological impact coupled with relative affordability. The use of logs
(including logs fallen by wildfires), along contour lines as a post-fire measure to control
erosion processes and trigger natural forest auto-regeneration capacity, has been widely
investigated by several authors [2,13,39–45]. There are few (if any) experiences in Italy,
especially in the South (which is characterised by a semi-arid Mediterranean climate).

The standard installation technique involves felling burned trees and laying them on
the ground along the slope contour [44,46]. Each log is anchored in place and gaps between
the log and the soil surface are filled with soil to create a storage basin on the upslope side
of the log. This configuration obstructs overland flow and traps sediments. The LEBs are
usually laid out in staggered tiers designed to eliminate long uninterrupted flows paths [44].
A number of experiences with LEBs have been conducted in Mediterranean environments,
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providing highly variable (though generally positive) results across a wide range of slopes
tested (25–60%) [41,47–50]. The effectiveness of LEBs depends on climatic conditions, soil
characteristics, forest type, and the timing of intervention. However, Raftoyannis and
Spanos [49] reported a limited post-fire ecosystem recovery, specifically regarding the
regeneration of Quercus coccifera, which is a notoriously non-pioneer species. The slope
gradient seems to have a significant influence on the effectiveness of this measure, which
tends to decrease above a 30% gradient [13,42–44]. Moreover, LEBs appear ineffective
for rain events with larger return periods [44]. This reclamation measure emulates the
philosophy of other more common and well-tested bioengineering techniques (e.g., brush
barriers, live palsied, fascines, live branches, wattles/bundles, the use of logs as construc-
tion elements, etc.) [51]. However, these measures, which can be relatively labour-intensive
and not always implemented manually, do not consider the utilization of landed burnt logs
as an ecological tool.

In Italy, the current legislation on forest fires (Law n. 353/2000) prohibits, among
other actions, “ . . . reforestation and environmental engineering activities supported with
public financial resources . . . ” in areas affected by fire, except for areas with “documented
hydrogeological instabilities . . . ” (Art. 10 par. 1). The law’s main objective is to discourage
any form of speculation on fire-damaged areas. It may be administratively difficult to
quickly document hydrological instabilities (as the lawmaker suggests), especially potential
instabilities linked to the disappearance of the forest’s protective action. Environmental
engineering activities would require the installation of a worksite, which could further
disturb the already fragile ecosystem due to mechanised operations (e.g., soil compaction,
removal of new/young plants, etc.). Even the simple removal of collapsed logs (e.g.,
skidding) is very expensive [52] (approximately up to 15–20 € m−3, depending on local
condition such a slope steepness and a 28–40 cm log diameter), and it can have significant
impacts [53]. On the other hand, fallen logs can play an important ecological role as they
degrade and add organic matter to the soil [54].

A feasible mitigation action that complies with the different constraints is the in
situ use of collapsed burned logs, which are manually redirected along the contour lines.
This elementary operation (i) appears to comply with the law, (ii) requires minimal work-
force and is cost-effective, (iii) can be implemented quickly (a few weeks after the fire),
(iv) is ecologically sustainable, and (v) can contribute to slope stabilization and ecosystem
auto-regeneration. The implementation of this measure could also facilitate the prompt
registration of forest fires, as required by the law but only in partially enforced. In this
context, the aim of this work is to evaluate, the effectiveness of the in situ use of collapsed
burned logs redirected along the contour lines to control erosive phenomena (in terms of
runoff volume and sediment yield) and trigger a stabilisation effect that supports ecosystem
auto-regeneration through a case study in Calabria, Italy.

2. Materials and Methods
2.1. Description of the Extreme Fire Events in Summer 2021 in Aspromonte Massif, Southern
Calabria, Italy

In the summer of 2021, Italy, particularly the southern part of the country, was affected
by extreme wildfires in terms of intensity and severity [13]. In the southernmost part of
the Calabria region (Aspromonte massif), 14,840 ha were burned, with 5600 ha located
within the Aspromonte National Park (data measured through ground surveys and satellite
imagery, Copernicus Emergency Management Service). These wildfires resulted in the loss
of two lives, several hundred livestock, and ruinous damage to many buildings and farms.
The extraordinary wildfires, some of which started simultaneously, affected even the most
remote areas of the Aspromonte Massif, including the centuries-old beech forest (known
as “Valle infernale”, a UNESCO World Heritage and site) and the pine forest (known as
“Acatti” and “Afreni” woods, which are old-growth forests of more than 500 years old).
Among the most affected areas by that wildfire was Roccaforte del Greco, a mountain village
within the well-known “Greek island” within the Aspromonte National Park. Within a
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few days (approximately ten), a high-intensity/severity crown-fire destroyed hundreds
of hectares of forest (mostly pine reforestations from the 1950s), resulting in the felling of
thousands of trees (Scheme 1). This provided the occasion to implement the experimental
monitoring site and campaign described herein.
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Scheme 1. Representative photo of the Aspromonte areas affected by the wildfires in the summer of
2021.

2.2. Study Area Description

The study area is located in the southernmost part of the Calabria (Southern Italy,
Figure 1), specifically within the mountain municipality of Roccaforte del Greco (As-
promonte, Metropolitan area of Reggio Calabria, Figure 1). It is located at the headwaters of
the fiumara Amendolea watershed (150.4 km2), with an average hillslope gradient of 97.2%.
The hydro-geomorphological, ecological, and climatic conditions in this region are typical
of Southern Italy [55]. The headwater areas consist of igneous and metamorphic rocks, with
sequences of grey and black biotite schist [56,57]. High-magnitude erosion processes are
common after heavy storms, and large amounts of coarse material are transported to the
valley reach of the fiumara Amendolea, which has a large riverbed (up to 1 km) [55]. These
hydro-geomorphological activities result in significant land instability and vulnerability,
which are subject to specific regulatory hydro-geological restrictions that cover a large
part of the Aspromonte Massif. The environment is characterised by dense Mediterranean
scrub and forests with a wide variety of trees, both deciduous and evergreen. Coniferous
reforestation projects have been implemented since the middle of the last century to control
erosion phenomena. In the experimental area, the vegetation cover mainly consists of Pinus
subsp. Afforestation, with Pinus radiata, an exotic species from the west coast of North
America, being the dominant species. This species was imported to address the shortage
of native conifers [58]. No specimens survived to the wildfires that occurred in 2021. The
climate and forest characteristics of the study area are reported in Table 1.
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Figure 1. The study area located within the territory of Aspromonte Massif, Metropolitan Area of
Reggio Calabria, Southern Calabria, Italy. Satellite imagery provided by Google Earth Pro shows
the study area (red circle) before and after the wildfire that occurred in August 2021 (territory of
Roccaforte del Greco).

Table 1. Main characteristics of the study area within the territory of Roccaforte del Greco (As-
promonte, Calabria, Italy).

Orography
Coordinates 38◦03′ N; 15◦54′ E

Altitude 970 m a.s.l.

Aspect North

C
lim

at
e

Condition (according to the Köppen
classification [59]) Csa 1

Mean monthly air temperature * 5 ◦C (January)–23 ◦C (August)

Mean annual rainfall depth * 1036 mm

Mean monthly rainfall depth range * 13.7 mm (July)–153 mm (December)

Fo
re

st
se

tt
in

g Species Pinus radiata

Density 800–1000 per ha

Height 14–20 m

Crown diameter 4–7.5 m

Notes: 1 Hot Mediterranean climate and semiarid conditions. * Database ARPACAL, meteorological station of
Roccaforte del Greco (time series covering the period 1940–2022, n = 57, variation coefficient = 29%).

2.3. Experimental Scheme

Three plot-blocks (up to 120 m apart) were established in the north-facing study area
in September 2021, with a down slope of 20%± 2% (Figure 2a). Each plot-block represented
a specific condition as follows (Figure 2b):

• “Forested” (F): representative of the pre-fire condition;
• “Burned” (B): casually directed downed logs, representative of the post-fire asset;
• “Burned and rearranged” (BR): contour-redirected downed logs, resembling log ero-

sion barriers.
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In the B sub-plots, there were casually directed downed logs, with lengths ranging 
between 1.5 and 4 m. Two cases had 6 logs, while one case had 9 logs (Figure 2b). In the 
BR plot-block, the downed logs were manually redirected (by a local rotation) along the 
contour lines within each sub-plot (Figure 3). The number of downed logs redirected 
within the BR sub-plots was 7 in 2 cases and 6 in one case. The logs, approximately 4 m 
long with an average diameter of 33 cm (ranging from 21 to 49 cm), were reallocated at an 
average downslope distance of 4 m, resulting in partial fragmentation of the slope path 
(Scheme 2a). The rotation and locking of the logs only required manual work and light 
equipment (hammer) to fix the wooden stakes (Scheme 2b,c). The ratio between the sub-
plot area (110 m2) and the total length of the contour logs was within the range of 3.9–4.6 
m. 

The necessary manpower for the in situ manual redirection of the felled logs can be 
extrapolated at 4 days ha−1 for two operators. 

 
Figure 3. Sketch of the manual redirection along the contour lines (brown lines) and hammering of 
downed burned logs (dashed yellow lines indicate the rotation of logs). 

Figure 2. (a) Location of the three plot-blocks in Roccaforte del Greco, Southern Calabria, Italy;
(b) experimental sketch showing the three conditions studied: F, forested; B, burned with casually directed
downed logs; BR, burned rearranged with manually redirected downed logs along contour lines.

Each plot-block was further divided into three 22 × 5 m sub-plots of the Wischmeier
and Smith type (Figure 2b). These sub-plots were hydraulically isolated using aluminium
foil embedded into the soil to a depth of 20 cm.

In the B sub-plots, there were casually directed downed logs, with lengths ranging
between 1.5 and 4 m. Two cases had 6 logs, while one case had 9 logs (Figure 2b). In
the BR plot-block, the downed logs were manually redirected (by a local rotation) along
the contour lines within each sub-plot (Figure 3). The number of downed logs redirected
within the BR sub-plots was 7 in 2 cases and 6 in one case. The logs, approximately 4 m
long with an average diameter of 33 cm (ranging from 21 to 49 cm), were reallocated
at an average downslope distance of 4 m, resulting in partial fragmentation of the slope
path (Scheme 2a). The rotation and locking of the logs only required manual work and
light equipment (hammer) to fix the wooden stakes (Scheme 2b,c). The ratio between the
sub-plot area (110 m2) and the total length of the contour logs was within the range of
3.9–4.6 m.

Water 2023, 15, x FOR PEER REVIEW 6 of 22 
 

 

 
 

(a) (b) 

Figure 2. (a) Location of the three plot-blocks in Roccaforte del Greco, Southern Calabria, Italy; (b) 
experimental sketch showing the three conditions studied: F, forested; B, burned with casually 
directed downed logs; BR, burned rearranged with manually redirected downed logs along contour 
lines. 

In the B sub-plots, there were casually directed downed logs, with lengths ranging 
between 1.5 and 4 m. Two cases had 6 logs, while one case had 9 logs (Figure 2b). In the 
BR plot-block, the downed logs were manually redirected (by a local rotation) along the 
contour lines within each sub-plot (Figure 3). The number of downed logs redirected 
within the BR sub-plots was 7 in 2 cases and 6 in one case. The logs, approximately 4 m 
long with an average diameter of 33 cm (ranging from 21 to 49 cm), were reallocated at an 
average downslope distance of 4 m, resulting in partial fragmentation of the slope path 
(Scheme 2a). The rotation and locking of the logs only required manual work and light 
equipment (hammer) to fix the wooden stakes (Scheme 2b,c). The ratio between the sub-
plot area (110 m2) and the total length of the contour logs was within the range of 3.9–4.6 
m. 

The necessary manpower for the in situ manual redirection of the felled logs can be 
extrapolated at 4 days ha−1 for two operators. 

 
Figure 3. Sketch of the manual redirection along the contour lines (brown lines) and hammering of 
downed burned logs (dashed yellow lines indicate the rotation of logs). 
Figure 3. Sketch of the manual redirection along the contour lines (brown lines) and hammering of
downed burned logs (dashed yellow lines indicate the rotation of logs).

27



Water 2023, 15, 2378Water 2023, 15, x FOR PEER REVIEW 7 of 22 
 

 

 
Scheme 2. (a) Overall view of the BR sub-plots under construction (in orange, plastic gutters), (b) 
view of the burned log hammering, and (c) rearranged burned sub-plots (BR). 

2.4. Data Collection and Processing 
The experimental campaign took place from September 2021 (approximately 1 month 

after the wildfire ended and before the first autumn rains) to September 2022, covering a 
period of 13 months. 

2.4.1. Soil 
Within the 5 cm of the topsoil, 27 soil samples (3 × 9 sub-plot) were collected, located 

at the top, middle, and bottom of the nine sub-plots along their median axis (Table 2). 
Soil texture was measured using the hydrometer method with sodium 

hexametaphosphate as a dispersant [60] and classified using the USDA triangle method. 
pH values were measured using a soil/water suspension ratio of 1/2.5 (w/v) with a 

glass electrode. 
Electrical conductivity (EC) was determined in distilled water using a 1/5 

residue/water suspension. The suspension was mechanically agitated at 15 rpm for 1 h to 
dissolve soluble salts, and EC was then measured using a Hanna conductivity meter. 

Organic carbon (C) content was determined using the dichromate oxidation method 
according to Walkley and Black [61] and titration with iron sulphate (FeSO4, 0.2 N). 

Total nitrogen (N) was measured using the method described by Kjeldahl [62]. 
Water infiltration rate (IR) was determined using an Eijkelkamp® portable rainfall 

simulator [63]. 
Soil water repellency (SWR) was estimated using the Water Drop Penetration Test 

(WDPT) method [64], conducted in the vicinity (approximately 0.25 m) of the IR 
measurement point. In this test, 15 drops of distilled water were released on the soil 
surface using a pipette. The time taken for the droplets to penetrate the soil was measured 
to estimate the WDPT. 

Before measuring IR and SWR, the litter was removed, and the soil surface was lightly 
levelled. 

Soil aggregate stability (AS) was determined using the rain simulator method 
(working with an intensity of 6 mm min−1). One sample per sub-plot was tested for the 
three size fractions (0.25–0.50, 0.5–1.0, 1.0–2.0 mm), following the method described by 
Roldán et al. [65] based on the method of Benito et al. [66]. 

  

Scheme 2. (a) Overall view of the BR sub-plots under construction (in orange, plastic gutters),
(b) view of the burned log hammering, and (c) rearranged burned sub-plots (BR).

The necessary manpower for the in situ manual redirection of the felled logs can be
extrapolated at 4 days ha−1 for two operators.

2.4. Data Collection and Processing

The experimental campaign took place from September 2021 (approximately 1 month
after the wildfire ended and before the first autumn rains) to September 2022, covering a
period of 13 months.

2.4.1. Soil

Within the 5 cm of the topsoil, 27 soil samples (3 × 9 sub-plot) were collected, located
at the top, middle, and bottom of the nine sub-plots along their median axis (Table 2).

Table 2. Main physical–chemical characteristics of the soil in the three plot-blocks.

Physical/Chemical Features Plot-Block

F B BR

Water 2023, 15, x FOR PEER REVIEW 8 of 22 
 

 

Table 2. Main physical–chemical characteristics of the soil in the three plot-blocks. 

Physical/Chemical Features  Plot-Block 
  F B BR 

  

 

   
Silt (%) 9.4 ± 1.1 
Clay (%) 11.7 ± 0.1 
Sand (%) 78.9 ± 0.94 
pH  5.76 ± 0.2 6.19 ± 0.3 6.21 ± 0.3 
EC1:1 (dS/m)  0.199 ± 0.043 0.202 ± 0.031 0.274 ± 0.047 
Organic matter (%) 3.38 2.98 2.96 
C (%) 1.96 ± 0.2 1.72 ± 0.1 1.71 ± 0.1 
N (%) 0.79 ± 0.1 0.83 ± 0.0 0.83 ± 0.0 
C:N  22.8 25.3 26.1 
Mean infiltration rate (mm h−1) 23.8 16.1 15.8 
Soil water repellency  39.6 93.6 94.3 
Ash cover (%) 0.0 47.0 ± 4.8 46.6 ± 5.1 

AS 
(n = 3) Si

ze
  

fr
ac

tio
n 

(m
m

) 0.25–0.50 

(%) 

78 ± 1.0 72 ± 1.3 72 ± 1.2 
0.50–1.0 83 ± 1.4 76 ± 1.4 76 ± 1.3 

1.0–2.0 31 ± 1.4 28 ± 1.2 28 ± 1.3 
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the sandy-loamy category (Table 2). It is acid, low in organic matter, and exhibits a high 
infiltration rate and a moderate aggregate stability. 

2.4.2. Rainfall 
Rainfall data were continuously recorded at the meteorological station located in 

Roccaforte del Greco (approximately 3 km away from the plot-blocks). In addition, 
cumulative rainfall depth was gauged within each plot-block. Due to logistical limitations 
(mountainous context, distance), it was generally not possible to collect runoff volume 
and sediment yield immediately after each rainfall event. Consequently, rainfall data were 
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volume. Sediments in the plastic gutters were collected at the same frequency as the runoff 
volume. The wet sediment samples were weighed and dried in an oven at 105 °C for 24 h. 
Organic matter was removed from the samples using the LOI Method (at approximately 
375 °C for 16 h [67]), and the dried samples were weighed. Sediment concentrations were 
collected by mixing the stored volume in the tank and taking three successive samples, 
totalling approximately 0.5 L. The dried sediment from the samples was weighed and 
related to the sample volume in order to evaluate the sediment concentration. The 
sediment concentration was multiplied by the runoff volume to estimate the dissolved 
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Silt (%) 9.4 ± 1.1
Clay (%) 11.7 ± 0.1
Sand (%) 78.9 ± 0.94

pH 5.76 ± 0.2 6.19 ± 0.3 6.21 ± 0.3
EC1:1 (dS/m) 0.199 ± 0.043 0.202 ± 0.031 0.274 ± 0.047
Organic matter (%) 3.38 2.98 2.96
C (%) 1.96 ± 0.2 1.72 ± 0.1 1.71 ± 0.1
N (%) 0.79 ± 0.1 0.83 ± 0.0 0.83 ± 0.0
C:N 22.8 25.3 26.1
Mean infiltration rate (mm h−1) 23.8 16.1 15.8
Soil water repellency 39.6 93.6 94.3
Ash cover (%) 0.0 47.0 ± 4.8 46.6 ± 5.1

AS
(n = 3) Si

ze
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on
(m

m
) 0.25–0.50

(%)
78 ± 1.0 72 ± 1.3 72 ± 1.2

0.50–1.0 83 ± 1.4 76 ± 1.4 76 ± 1.3
1.0–2.0 31 ± 1.4 28 ± 1.2 28 ± 1.3

Soil texture was measured using the hydrometer method with sodium hexametaphos-
phate as a dispersant [60] and classified using the USDA triangle method.

pH values were measured using a soil/water suspension ratio of 1/2.5 (w/v) with a
glass electrode.
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Electrical conductivity (EC) was determined in distilled water using a 1/5 residue/water
suspension. The suspension was mechanically agitated at 15 rpm for 1 h to dissolve soluble
salts, and EC was then measured using a Hanna conductivity meter.

Organic carbon (C) content was determined using the dichromate oxidation method
according to Walkley and Black [61] and titration with iron sulphate (FeSO4, 0.2 N).

Total nitrogen (N) was measured using the method described by Kjeldahl [62].
Water infiltration rate (IR) was determined using an Eijkelkamp® portable rainfall

simulator [63].
Soil water repellency (SWR) was estimated using the Water Drop Penetration Test (WDPT)

method [64], conducted in the vicinity (approximately 0.25 m) of the IR measurement point.
In this test, 15 drops of distilled water were released on the soil surface using a pipette. The
time taken for the droplets to penetrate the soil was measured to estimate the WDPT.

Before measuring IR and SWR, the litter was removed, and the soil surface was lightly
levelled.

Soil aggregate stability (AS) was determined using the rain simulator method (working
with an intensity of 6 mm min−1). One sample per sub-plot was tested for the three size
fractions (0.25–0.50, 0.5–1.0, 1.0–2.0 mm), following the method described by Roldán
et al. [65] based on the method of Benito et al. [66].

According to the USDA Soil Texture Classification System, the analyzed soil falls into
the sandy-loamy category (Table 2). It is acid, low in organic matter, and exhibits a high
infiltration rate and a moderate aggregate stability.

2.4.2. Rainfall

Rainfall data were continuously recorded at the meteorological station located in
Roccaforte del Greco (approximately 3 km away from the plot-blocks). In addition, cu-
mulative rainfall depth was gauged within each plot-block. Due to logistical limitations
(mountainous context, distance), it was generally not possible to collect runoff volume
and sediment yield immediately after each rainfall event. Consequently, rainfall data were
cumulated (except in one case) in 24 rainfall event groups.

2.4.3. Runoff

Runoff volume was measured on 24 occasions using a tank connected to a plastic
gutter (with a 2% gradient towards the outlet) at the bottom of each sub-plot. The collected
volume was then divided by the sub-plot area.

2.4.4. Sediment Yield

Sediment dry weight was measured by collecting sediment from the plastic gutter
at the bottom of each sub-plot and sampling the sediment concentration in the stored
runoff volume. Sediments in the plastic gutters were collected at the same frequency as
the runoff volume. The wet sediment samples were weighed and dried in an oven at
105 ◦C for 24 h. Organic matter was removed from the samples using the LOI Method
(at approximately 375 ◦C for 16 h [67]), and the dried samples were weighed. Sediment
concentrations were collected by mixing the stored volume in the tank and taking three
successive samples, totalling approximately 0.5 L. The dried sediment from the samples was
weighed and related to the sample volume in order to evaluate the sediment concentration.
The sediment concentration was multiplied by the runoff volume to estimate the dissolved
sediment yield component. Finally, the sediment yield was obtained by adding to the
amount of sediment deposited in the plastic gutter (averaging 10% ± 6 of the total).

2.4.5. Vegetation Cover

The vegetation cover in each B and BR sub-plot was monitored twice a month using
the grid method [68] with a 0.75 × 0.75 m square. The abundance–dominance index
of each species collected within the sub-plots was determined according to the Braun–
Blanquet method [69]. In order to assess the effect on vegetation development, the degree

29



Water 2023, 15, 2378

of vegetation cover in plot-blocks B and BR was compared, and the relationships between
vegetation cover, runoff volume, and sediment yield were investigated.

2.4.6. Statistical Analysis

The statistical analyses of runoff volume and sediment yield data were carried out
using Jamovi v.2.3.21 (2022). A descriptive assessment was first carried out to determine
whether the data set was normally distributed using the Shapiro–Wilk test. Based on
this result, a correlation matrix was applied using Spearman’s correlation coefficient to
determine the degree of relationship between the “runoff” and “sediment” measures with
the “rainfall depth” and “rainfall intensity” factors.

In order to assess the differences between the variables recorded in the “runoff” and
“sediment” data collection plots, a repeated measures ANOVA was applied using Fried-
man’s method (non-parametric). Pairwise comparisons were obtained using the Durbin–
Conover test, which was employed to determine the differences between treatments in the
analysed plots with a confidence interval of 95%.

Furthermore, the effects of rainfall depth and intensity on runoff volume and sedi-
ment yield were evaluated using a factorial analysis. A One-Way ANOVA following the
Kruskal–Wallis test (non-parametric) was performed, with three categories used as group-
ing variables based on the following parameters: rainfall depth—first category: values
between 0–35 mm, second category: values between 35–70 mm, third category: values
greater than 70 mm; rainfall intensity—first category: values between 0–10 mm h−1, second
category: values between 10–30 mm h−1, third category: values greater than 30 mm h−1.
Pairwise comparisons of the categories were carried out using the Steel–Dwass–Critchlow–
Fligner method, with a 95% confidence interval used to establish the thresholds of change
in the effect of the variables analysed. Finally, the existence of statistical differences between
the average values of the degree of vegetation cover in the two different burned plot-blocks
(B and BR) was verified.

3. Results and Discussion
3.1. General View of Plot Hydrological Responses

The recorded rainfall data for the 13-months monitoring period are reported in
Table A1 in Appendix A. There were a total of 88 rainy days, and the 24 rainfall event groups
ranged in depth from 14 mm (April 2022) to 249.4 mm (October 2021). The maximum
5-min intensity varied from 2.2 mm h−1 (April 2022) to 35.4 mm h−1 (August 2022). The
consequent total annual rainfall sum (10 September 2021 to August 2022) was 1278.6 mm,
which was significantly above the mean historical annual depth. This higher value was
within the range of variability observed in the historical series (variation coefficient of 29%).
The cumulative rainfall measured within the plot-blocks was systematically lower, likely
due to lower altitude (with respect to the main meteorological station) and the location
of the rain gauges at the base of the slope. Except for plot-block F, which experienced
expected canopy interference, the average rainfall deficit compared to the Roccaforte del
Greco station was 3.09% and 2.92% for B and BR, respectively. Since there were no statistical
differences between the rainfall values recorded at the meteorological station (Roccaforte
del Greco) and those collected in the plot-blocks (except for F), the subsequent analysis of
the plot’s hydrological response was based on the Roccaforte del Greco data set, which also
provided maximum intensity data. The summary values of runoff volumes and sediment
yields measured for each event group are reported in Table 3.
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Table 3. Descriptive values (n = 24) of sub-plot runoff volume and sediment yields. The Shapiro–Wilk
test shows the assumption of normality at p values > 0.05.

Runoff Volume (mm) Sediment Yield (kg)

Plot F Plot B Plot BR Plot F Plot B Plot BR

Mean 0.73 3.84 2.87 0.196 1.028 0.791
Median 0.40 2.29 1.73 0.171 1.040 0.615
Standard
deviation 0.93 3.77 2.70 0.141 0.838 0.746

Minimum 0.02 0.30 0.20 0.007 0.060 0.018
Maximum 3.84 15.82 10.87 0.575 2.434 2.312
Shapiro–Wilk p <0.001 <0.001 0.002 0.199 0.007 0.007

Two particularly severe events occurred during the observation period (Table A1):

• Event no. 7, which occurred in November 2021, had a cumulative rainfall depth of
249.4 mm and a maximum 5-min rainfall intensity of 30.6 mm h−1. This event occurred
over the plots that were only partially covered by vegetation, producing the highest
values of runoff volume (15.77 mm) and sediment yield (2076.25 g) from plot-block B.

• Event no. 23, which occurred in August 2022 (105.4 mm, 35.4 mm h−1), generated a
runoff volume of 7.03 mm and a sediment yield of 403.65 g (plot-block B).

Nevertheless, the absolute highest sediment value (2.434 kg corresponding to 0.022 kg m−2,
plot B) was recorded after event no. 1, despite its relatively moderate characteristics (36.4 mm,
18.0 mm h−1). This event occurred immediately after the wildfire when the ground was
completely bare. For the same events, slightly lower values of runoff volume and sediment
yield (33%± 12% and 76%± 80% on average, respectively) were observed in plot-block BR.

The correlation analysis conducted between rainfall and runoff/sediment data showed
statistically significant relationships in every sub-plot (Table 4). The Spearman’s correlation
coefficient indicated that the highest values for runoff were observed between rainfall depth
and intensity. Regarding the sediment data, the correlation was stronger with intensity
data compared to rainfall depth.

Table 4. Correlation matrix of runoff and sediment with precipitation and intensity using Spearman’s
correlation coefficient.

Runoff Sediments

Plot F Plot B Plot BR Plot F Plot B Plot BR

Rainfall depth Spearman Rho 0.93 *** 0.79 *** 0.78 *** 0.57 ** 0.47 * 0.43 *
p value < 0.001 < 0.001 <0.001 0 0.02 0.04

Rainfall intensity Spearman Rho 0.66 *** 0.78 *** 0.77 *** 0.67 *** 0.58 ** 0.6 **
p value <0.001 <0.001 <0.001 <0.001 0 0

Note: * p < 0.05, ** p < 0.01, *** p < 0.001.

A direct relationship between runoff and rainfall volumes was observed (Figure 4a).
In contrast, sediment yield was more closely associated with rainfall intensity (Figure 4d),
although no cohesive trend was observed. The recorded data showed an increase in runoff
volume and sediment yield depending on the loss of forest vegetation coverage. This effect
was somewhat mitigated by the redirection of burned logs in plot-block BR. The decreasing
distribution of sediment yield, regardless of the rainfall or intensity patterns reported in the
rainfall events, suggests the possibility of studying how the presence of additional factors
may explain the evolution of erosion processes.
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sub-plots related to rainfall depth and maximum 5-min intensity.

3.2. Relations between Vegetation Cover Evolution, Runoff, and Sediment Yield after Wildfire

The analysis of the values shown in Figure 4 (Table A1) highlights that the runoff
volume and sediment yield were always lower in the BR plots compared to the B plots,
with an average (n = 24) reduction of approximately 30% (standard deviation of 80%, which
includes events with differences ranging from 5% in event 1 to values greater than 200% in
events 6, 20, 22, 23) and 29% (±14%), respectively. However, the minor differences occured
in the first three events. The first rains immediately after the wildfire encountered soil
without vegetation and covered by a blanket of ash (Table 2), leading to a drastic reduction
in soil infiltration [70]. In the first three events, the hydrological response of the BR and B
plots appeared high, even though the rainfall characteristics (rainfall depth and intensity)
were not particularly severe. A significant reduction in runoff and sediment yield in the
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BR plots was recorded from the fourth rainfall event. On the other hand, the absence of
tree cover resulted in accentuated insolation; this encouraged the entry and development
of wild vegetation (mainly bracken and bramble), which tends to cover the plots within
a short time. Monitoring (twice a month) of the ground cover exerted by spontaneous
vegetation showed consistently higher values (35% on average; n = 48) in the BR plots [71].
The combined effect of redirected logs and vegetation became evident from the 13th event
onwards, with a drastic decrease in runoff volume and sediment yield even during the
heaviest rainfall events (for example, see events 17, 19, 23, and 24 in Figure A1).

The mean values (n = 3) of vegetation cover were consistently higher in the BR
plots, where the vegetation settled and established itself immediately upstream of the logs
(Scheme 3b). From there, it gradually spread, occupying larger areas until it uniformly
covered the entire plot (Scheme 3c). This phenomenon (although less pronounced) was
also observed in the B plots.

The positive effects of the vegetation were quantified by correlating the differences
in vegetation cover (VCBR − VCB) with those of runoff volume (RB − RBR) and sediment
yield (SB − SBR) for each rainfall event group. The analysis showed that the increased stage
of vegetation cover in the BR plots contributed to the reduction in both runoff volume
(R2 = 0.63) and sediment yield (R2 = 0.66) (Figure 5).
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Figure 5. Correlation between the differences in the values of vegetation cover (VCBR − VCB) and
runoff volume (RB − RBR) (a) and sediment yield (SB − SBR) (b) for each event group.

This observation highlights the positive control action of the redirected contour logs,
which stabilize the slope and promote the rapid colonization of herbaceous vegetation
(Rubus ulmifolius L., Pteridium aquilinum L., Cytisus villosus L., Lolium sp. pl., Hypochaeris
achyrophorus L., Hypochaeris laevigata L., Geranium robertianum L., and Myosotis arvensis L., as
indicated by their abundance–dominance value). This vegetation quickly protects the soil
after the fire. This propitious action creates favourable conditions for the auto-regeneration
of the wood, as demonstrated by the presence of young pine seedlings (Scheme 3d).

This result can be explained by the partial “breaking effect” of the slope length due
to the contour-directed logs. The presence of contour logs, which fragment the slope
path, limits the runoff velocity (which also encourages infiltration and runoff volume
control) and reduces the detach/transport capacity of sediments. These effects arise as
the result of complex interacting processes and representative relationships [72,73]. This
effect is influenced by the incomplete logging of the transversal section, which results in
the presence of zig-zag overland flow between logs, log overflow, underpass, and local
sediment trapping. The effect is partially appreciable in the case of casually directed burned
logs (B plot-block) and may be somewhat linked to the extent of their geometric contour
projection (maximized in the case of contour-directed logs).
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3.3. Comparative Analysis of Runoff and Sediment Yields

The results obtained from the repeated measures ANOVA revealed evidence of dif-
ferences among all plots in terms of hydrological aspects. Pairwise comparisons showed
significant differences between plots F vs. B, F vs. BR, and B vs. BR, which indicates a high
variability in the runoff results. The analysis of the effect of rainfall depth and intensity
provided by the one-way ANOVA showed significant differences in all plots, highlighting
a greater effect of rainfall (Table 5).
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Table 5. Runoff analysis on rainfall depth and intensity using a one-way ANOVA following the
Kruskal–Wallis test (non-parametric).

Kruskal-Wallis
Rainfall Depth Rainfall Intensity

χ2 gl p ε2 χ2 gl p ε2

Plot F 16.6 2 <0.001 0.724 10.4 2 0.005 0.453
Plot B 16.6 2 <0.001 0.723 12.3 2 0.002 0.537
Plot BR 16.2 2 <0.001 0.706 12.2 2 0.002 0.530

Notes: Bold p values show statistically significant relationships greater than a 95% confidence interval.

Furthermore, differences in runoff volume were observed among plots across all
ranges of rainfall, highlighting the strong correlation between runoff and rainfall volume
(Table 6). On the other hand, rainfall intensity only provided differences in all plots within
the 0–10 mm h−1 range. Beyond that range, the runoff data recorded in plots B and BR dd
not show significant differences, except for plot F at rainfall intensities above 30 mm h−1.
This finding can be explained by the interception effect of the canopy cover as well as by
the wetting processes of the vegetation, which can store significant volumes of rainfall. The
decrease in runoff occurs at low rainfall intensities, whereas lower vegetation coverage at
higher rainfall intensities decreases the water retention effect [74].

Table 6. Pairwise comparison of runoff volume for different categories of rainfall depth and intensity
using the Dwass–Steel–Critchlow–Fligner method. Rainfall depth: 1st category, values between
0–35 mm; 2nd category, values between 35–70 mm; 3rd category, values greater than 70 mm. Rainfall
intensity: 1st category, values between 0–10 mm h−1; 2nd category, values between 10–30 mm h−1;
3rd category, values greater than 30 mm h−1.

Pairwise Comparisons
(Dwass Steel Critchlow-Fligner)

Rainfall Depth Rainfall Intensity

Plot F Plot B Plot BR Plot F Plot B Plot BR

W p W p W p W p W p W p

Category 1 Category 2 3.63 0.028 3.56 0.032 3.50 0.036 3.59 0.030 4.30 0.007 4.30 0.007
Category 1 Category 3 4.94 0.001 4.93 0.001 4.94 0.001 3.13 0.069 3.13 0.070 3.14 0.068
Category 2 Category 3 3.54 0.033 3.64 0.027 3.43 0.040 2.67 0.142 2.00 0.334 1.67 0.466

Notes: Bold p values show statistically significant relationships greater than a 95% confidence interval.

Compared to the F plot-block, the B plot-block shows an average increase in sediment
equal to an order of magnitude (about five times higher). In comparison to the B plot-
block, the BR plot-block demonstrated a control effect of approximately 20% (Table 3). This
distinction is evident from the average plot-block sediment yield of 0.196 kg (corresponding
to 0.002 kg m−2 and to 0.40 ton ha−1 y−1 in the F plot-block), 0.791 kg (0.007 kg m−2;
2.07 ton ha−1 y−1 in the B plot-block) and 1.028 kg (0.009 kg m−2; 1.59 ton ha−1 y−1 in the
BR plot-block). Similar sediment yields to those produced by the F plot-block were found
in Spain, Israel, and Italy by other authors [33,37,75–78] under similar climatic conditions.

In order to analyse the aspects related to soil erosion, a repeated measures ANOVA
was used to determine the variances among the plots under study. The results showed
the existence of significant differences between all three cases, as confirmed by Durbin–
Conover pairwise comparisons. To establish the effect of rainfall depth and intensity on
each plot, a more detailed study was carried out by applying a one-way ANOVA based on
the Kruskal–Wallis test. The results showed that the effect of rainfall was not involved in
plots B and BR, whereas rainfall intensity was a determining factor (Table 7).

The factorial analysis results made it possible to determine the thresholds at which soil
loss was affected, in which changes were only observed for plot F when rainfall increased
considerably (pairwise comparison of Category 1 vs. Category 3). The effect of intensity
on sediment production was higher, revealing significant differences between categories 1
and 2 in all three analysed plots (p values: 0.033, 0.047, and 0.027 for plots F, B, and BR,
respectively). However, for the rest of the pairwise comparisons, there were no differences
(Table 8). Therefore, rainfall intensities below 10 mm h−1 determined differences in sediment
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yield depending on the rainfall events. However, higher rainfall intensity resulted in erosion
processes to varying degrees in every plot due to the rise in kinetic energy of raindrops [79].

Table 7. Sediment statistic analysis on rainfall depth and intensity using a one-way ANOVA following
the Kruskal–Wallis test (Non-parametric). Bold values show statistically significant relationships
greater than a 95% confidence interval.

Plot
Rainfall Depth Rainfall Intensity

χ2 gl p ε2 χ2 df p ε2

Plot F 6.34 2 0.042 0.276 8.36 2 0.015 0.364
Plot B 3.12 2 0.211 0.135 6.35 2 0.042 0.276
Plot BR 2.44 2 0.295 0.106 7.26 2 0.027 0.316

Notes: Bold p values show statistically significant relationships greater than a 95% confidence interval.

Table 8. Rainfall depth and intensity category pairwise comparison in sediments using the Dwass–
Steel–Critchlow–Fligner method. Rainfall depth: 1st category, values between 0–35 mm; 2nd category,
between 35–70 mm; 3rd category, greater than 70 mm. Rainfall intensity: 1st category, values between
0–10 mm h−1; 2nd category, between 10–30 mm h−1; 3rd category, greater than 30 mm h−1.

Pairwise Comparisons
(Dwass Steel Critchlow-Fligner)

Rainfall Depth Rainfall Intensity

Plot F Plot B Plot BR Plot F Plot B Plot BR

W p W p W p W p W p W p

Category 1 Category 2 0.142 0.994 1.706 0.450 1.14 0.701 3.54 0.033 3.35 0.047 3.64 0.027
Category 1 Category 3 3.522 0.034 2.241 0.252 2.11 0.294 2.64 0.148 1.92 0.363 1.92 0.363
Category 2 Category 3 2.424 0.200 0.808 0.836 1.01 0.755 1.33 0.614 0.00 1.000 0.00 1.000

Notes: Bold p values show statistically significant relationships greater than a 95% confidence interval.

4. Conclusions

The results of the plot-scale experimental investigation conducted after the extreme
wildfires in August 2021 in Calabria, Italy, generally support the effectiveness of the in
situ contour re-direction of felled burned logs, inspired by log erosion barriers, in terms of
runoff and sediment yield control. This approach shows promise as a means of promptly
stabilizing topsoil and triggering forest auto-regeneration.

The reference forest asset (F) with Pinus radiata shows a runoff volume and sediment yield
conservative control under natural rainfall (about 1300 mm in one year from
24 event groups of 14 to about 250 mm) similar to that previously found in Spain, Israel, and
Italy. However, the presence of randomly felled burned logs (B plot-block) following the high-
intensity/severity wildfire exacerbates the hydrological response, resulting in approximately
five times higher runoff volume and sediment yield. The implemented remediation measure
in September 2021, targeting the 20% sloping plots, showed an overall significant reduction in
runoff volume and sediment yield (30% and 29%, respectively, compared to condition B). A
direct relationship linked the runoff and rainfall volume, while the sediment yield was more
dependent on the maximum 5-min rainfall intensity (ranging from 2.2 to 35.4 mm h−1). With
respect to the existing post-fire situation conditions (bare soil with randomly directed fall-
down burned logs) and the pre-fire Pinus radiata asset, a prompt colonization of spontaneous
herbaceous vegetation was observed three weeks after the treatment. This was followed by
the establishment of natural forest renewal within five weeks. There was a positive correlation
between the increased vegetation cover stage in the areas behind the re-directed logs and
the reduction in both runoff volume and sediment yield. The implemented measure was
exclusively manual and has the potential to be economically/environmentally sustainable. It
also complies with the stringent Italian law on burned forests, making it well-suited for timely
intervention in hydrogeologically fragile contexts.

An extended monitoring period and further in-depth research are required to further
understand the effects of the treatment at higher rainfall intensities and operational slopes
(e.g., 30% or more), as well as to explore other aspects (e.g., regulatory, biological, mechani-
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cal, economic. These efforts aim to establish a comprehensive framework that is effective in
developing protocols and facilitating the dissemination of this measure.
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Appendix A

Table A1. Main characteristics of rainfall events recorded by the meteorological station located in
Roccaforte del Greco, Southern Calabria, Italy.

Month Event Group Number of Rainy
Days

Cumulated
Rainfall Depth

(mm)

Maximum 5-min
Rainfall Intensity

(mm h−1)

September 2021 1 2 36.4 18.0
2 3 15.8 13.0

November

3 6 79.6 22.4
4 3 19.4 6.0
5 3 75.2 16.0
6 2 14.0 4.6
7 5 249.4 30.6
8 5 180.2 10.2

November

9 5 66.4 10.6
10 2 33.4 9.0
11 2 20.0 10.6
12 4 37.2 4.4

December
13 5 14.4 2.6
14 5 70.4 7.8
15 3 34.2 3.2

January 2022 16 6 23.8 5.4

February 17 3 24.4 11.4
18 2 35.6 5.4

March 19 5 58.8 3.4

April 20 3 14.0 2.2

May 21 4 53.2 7.0

June 22 1 17.4 4.6

August 2022 23 7 105.4 35.4

September 2021–August 2022
(12 months) 86 1278.6 -

September 2022 24 2 89.0 18.6

Overall period 24 88 1367.6 (2.2–35.4)
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Figure A1. Evolution of vegetation cover in relation to runoff volume (a) and sediment yield (b). 

References 
1. Carrión, J.S.; Sánchez-Gómez, P.; Mota, J.F.; Yll, R.; Chaín, C. Holocene Vegetation Dynamics, Fire and Grazing in the Sierra de 

Gádor, Southern Spain. Holocene 2003, 13, 839–849. 
2. Hosseini, M.; Keizer, J.J.; Pelayo, O.G.; Prats, S.A.; Ritsema, C.; Geissen, V. Effect of Fire Frequency on Runoff, Soil Erosion, and 

Loss of Organic Matter at the Micro-Plot Scale in North-Central Portugal. Geoderma 2016, 269, 126–137. 
https://doi.org/10.1016/j.geoderma.2016.02.004. 

3. Fernandez-Anez, N.; Krasovskiy, A.; Müller, M.; Vacik, H.; Baetens, J.; Hukić, E.; Kapovic Solomun, M.; Atanassova, I.; 
Glushkova, M.; Bogunović, I.; et al. Current Wildland Fire Patterns and Challenges in Europe: A Synthesis of National Perspec-
tives. Air Soil Water Res. 2021, 14, e117862212110281. https://doi.org/10.1177/11786221211028185. 

4. Whelan, R.J. The Ecology of Fire; Cambridge University Press: Cambridge, UK, 1995. 
5. Morgan, P.; Hardy, C.C.; Swetnam, T.W.; Rollins, M.G.; Long, D.G. Mapping Fire Regimes across Time and Space: Understand-

ing Coarse and Fine-Scale Fire Patterns. Int. J. Wildland Fire 2001, 10, 329–342. 
6. DeBano: Fire Effects on Ecosystems—Google Scholar. Available online: https://scholar.google.com/scholar_lookup?hl=en&pub-

lication_year=1998&pages=%00empty%00&author=LF+De+Bano&author=DG+Neary&author=PF+Ffol-
liott&isbn=%00null%00&title=Fire%27s+Effects+on+Ecosystems (accessed on 25 May 2023). 

7. Neary, D.G.; Klopatek, C.C.; DeBano, L.F.; Ffolliott, P.F. Fire Effects on Belowground Sustainability: A Review and Synthesis. 
For. Ecol. Manag. 1999, 122, 51–71. 

8. Key, C.H.; Benson, N.C. Post-Fire Assessment by Remote Sensing on National Park Service Lands. In Proceedings of the Second 
U.S. Geological Survey Wildland Fire Workshop, Los Alamos, NM, USA, 31 October–3 November 2000. 

9. Smith, A.M.S.; Hudak, A.T.; Smith, A.M.S.; Hudak, A.T. Estimating Combustion of Large Downed Woody Debris from Residual 
White Ash. Int. J. Wildland Fire 2005, 14, 245–248. https://doi.org/10.1071/WF05011. 

10. Ascoli, D.; Marchetti, M. Territorio, bioeconomia e gestione degli incendi: Una sfida da raccogliere al più presto. For.-J. Silvic. 
For. Ecol. 2018, 15, 71. 

11. San-Miguel-Ayanz, J.; Durrant, T.; Boca, R.; Maianti, P.; Libertá, G.; Artés-Vivancos, T.; Oom, D.; Branco, A.; de Rigo, D.; Ferrari, 
D.; et al. Forest Fires in Europe, Middle East and North Africa 2021; Publications Office of the European Union: Luxembourg, 2022. 

12. Shakesby, R. Post-Wildfire Soil Erosion in the Mediterranean: Review and Future Research Directions. Earth-Sci. Rev. 2011, 105, 
71–100. https://doi.org/10.1016/j.earscirev.2011.01.001. 

13. Dimitrakopoulos, A.; Gogi, C.; Stamatelos, G.; Mitsopoulos, I. Statistical Analysis of the Fire Environment of Large Forest Fires 
(>1000 Ha) in Greece. Pol. J. Environ. Stud. 2011, 20, 327–332. 

14. Cos, J.; Doblas-Reyes, F.; Jury, M.; Marcos, R.; Bretonnière, P.-A.; Samsó, M. The Mediterranean Climate Change Hotspot in the 
CMIP5 and CMIP6 Projections. Earth Syst. Dynam. 2022, 13, 321–340. https://doi.org/10.5194/esd-13-321-2022. 

Figure A1. Evolution of vegetation cover in relation to runoff volume (a) and sediment yield (b).

References
1. Carrión, J.S.; Sánchez-Gómez, P.; Mota, J.F.; Yll, R.; Chaín, C. Holocene Vegetation Dynamics, Fire and Grazing in the Sierra de

Gádor, Southern Spain. Holocene 2003, 13, 839–849. [CrossRef]
2. Hosseini, M.; Keizer, J.J.; Pelayo, O.G.; Prats, S.A.; Ritsema, C.; Geissen, V. Effect of Fire Frequency on Runoff, Soil Erosion, and

Loss of Organic Matter at the Micro-Plot Scale in North-Central Portugal. Geoderma 2016, 269, 126–137. [CrossRef]
3. Fernandez-Anez, N.; Krasovskiy, A.; Müller, M.; Vacik, H.; Baetens, J.; Hukić, E.; Kapovic Solomun, M.; Atanassova, I.; Glushkova,
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Abstract: Predicting the occurrence of erosive rain events and quantifying the corresponding soil
loss is extremely useful in all applications where assessing phenomenon impacts is required. These
problems, addressed in the literature at different spatial and temporal scales and according to the
most diverse approaches, are here addressed by implementing random forest (RF) machine learning
models. For this purpose, we used the datasets built through many years of soil loss observations
at the plot-scale experimental site SERLAB (central Italy). Based on 32 features describing rainfall
characteristics, the RF classifier has achieved a global accuracy of 84.8% in recognizing erosive
and non-erosive events, thus demonstrating slightly higher performances than previously used
(non-machine learning) methodologies. A critical performance is the percentage of erosive events
correctly recognized to the observed total (72.3%). However, since the most relevant erosive events are
correctly identified, we found only a slight underestimation of the total rainfall erosivity (91%). The
RF regression model for estimating the event soil loss, based on three event features (runoff coefficient,
erosivity, and period of occurrence), demonstrates better performances (RMSE = 2.30 Mg ha−1) than
traditional regression models (RMSE = 3.34 Mg ha−1).

Keywords: soil water erosion; USLE models; plot scale; artificial intelligence; data-driven approach;
SERLAB experimental site

1. Introduction

In its accelerated forms, soil water erosion leads to several adverse on-site (loss of nu-
trients and organic matter, permeability) and off-site (pollution of water bodies, destruction
of habitats, siltation of water bodies and flood risk increase) effects [1,2]. The effectiveness
of environmental programs and policies or specific soil erosion control strategies strictly de-
pends on the knowledge of the complex mechanism and factors conditioning the occurrence
and the extent of erosive processes. This knowledge necessarily derives from the availability
of adequate datasets (with the fundamental contribution of experimental and monitoring
activities) and appropriate modelling approaches. Among the numerous model types
(empirical, conceptual, physically based, or process-oriented) proposed in the literature to
estimate soil loss at different spatial and temporal scales, empirical models are still the most
used due to their capacity to combine simplicity and reliability [3,4]. In particular, the Uni-
versal Soil Loss Equation (USLE, [5]) or its revised version (Revised USLE, RUSLE, [6]) are
the most widely applied models to predict long-term average soil loss values. They are also
considered the standard applications of soil conservation workers [7,8]. However, since
a large proportion of soil loss is due to a few particularly erosive events [9–11], mitigation
and management strategies should rely on models capable of predicting event-scale erosion
rather than the long-term average. Various studies have moved in this direction [12–15],
proposing changes to the USLE approach (or subsequent revisions) to make it reliable on
the single-event scale. These changes usually consist of the use of an erosivity index given
by the combination of the event runoff coefficient, QR (dimensionless), and the single-storm
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erosion index, E·I30 = R (MJ mm ha−1 h−1) by Wischmeier and Smith [5]. For example,
the studies conducted to date at various Italian plot scale experimental sites [4,10,16] have
proposed and tested a model (named USLE-MM) of the following type:

Ae = (QR·R)b1KUMMLSCUMMPUMM (1)

where Ae (Mg ha−1) is the event soil loss per unit area, L and S (dimensionless) are, respec-
tively, the USLE slope length and steepness factors, KUMM (Mg ha h ha−1 MJ−1 mm−1) is
the soil erodibility factor, CUMM (dimensionless) is the cover and management factor, PUMM
(dimensionless) is the support practice factor, and b1 is an exponent to be parametrized
based on collected data. Although the model of Equation (1) demonstrates decidedly supe-
rior performance at the event scale to the original USLE (which suffers from a systematic
bias, [12]), there is still a large portion of unexplained variance, which stimulates both the
continuation of the monitoring activities and the search for new modelling approaches.

In addition to modelling soil loss, the literature has long investigated the possibility of
identifying erosive events based only on rainfall characteristics. This information may be
helpful in various research and practical applications. For example, it allows us to determine
the triggering of erosion processes of different entities and consequently to understand
their dynamics better; reduces the work necessary to manage and process erosive events;
allows us to study the spatio-temporal frequency of erosive events [17]. The first reference
in this context is that in [5], which indicated as erosive the rainfalls capable of exceeding
the depth thresholds of 12.7 mm or 6.35 mm in 15 min. More recent studies [17–19] have
searched for such a type of thresholds in large datasets of variables characterizing, not
only considering the overall characteristics of rainfall (e.g., depth, duration), but also their
internal structure (e.g., presence and duration of high-intensity showers). For example,
Todisco et al. [17], based on the data observed at the Masse (central Italy) and Sparacia
(south Italy) experimental sites, demonstrated that some of these variables could effectively
classify non-erosive and erosive events and even separate erosive events that produce sheet
or rill erosion.

Both the classification and the quantification of erosion processes, which are physically
very complex and depend on many concomitant and interacting factors, can certainly be
tackled with good prospects using artificial intelligence and machine learning technologies.
These approaches have been increasingly applied in all scientific areas [20] as a result
of their ability to process large amounts of data in a relatively simple way and identify
complex patterns and relationships from the data itself to make reliable predictions on data
not seen before. This strength is, at the same time, also a weakness, as without large enough
datasets to train on, such models provide inaccurate estimates. Applications in the field of
soil erosion processes mainly refer to the use of artificial neural network (ANN) models,
usually applied to predict runoff and soil loss [21–25] or other erosion-related factors [26].
Among the various machine learning techniques, the random forest (RF) is increasingly
applied as a result of its several advantageous characteristics, such as the relative ease of
managing large datasets, the possibility of using nominal and numerical data, the high
accuracy of the predictions, and the possibility of being used for both classification and
regression problems [27]. Overfitting, which happens when a model is too focused on
the training data and fails to generalize well to new data, is less likely to occur in RF
than in ANN [28]. This is due to the bootstrap and randomized feature sampling used
in RF algorithm. Moreover, although both RF and ANN appear as “black boxes”, RF
allows a more straightforward interpretation of the factors affecting the prediction. RF
algorithms have been used with promising results in several research fields related to
hydraulics and hydrology [29], such as pipe breaks in water supply networks [30], water
flow in porous media [31], flooding [32] and drought [33] events. RF applications in soil
water erosion studies are limited in the literature and, therefore, can be considered quite
innovative. One of the few examples is the recent work by Tarek et al. [34], demonstrating
the higher accuracy of the RF approach compared to other machine learning methods in
the classification of erosive events.
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This work aims to develop and evaluate RF algorithms for classifying erosive and
non-erosive rain events and quantifying the soil loss at the single event time scale and
plot spatial scale. The study is based on the large datasets obtained over many years of
soil erosion monitoring at the Soil Erosion LABoratory (SERLAB) experimental site. By
comparison with the results obtained from more traditional empirical methods, the good
potential of RF algorithms in this type of application is demonstrated.

2. Materials and Methods
2.1. Experimental Site

In the study, we used the data collected at the Masse experimental site (42◦59′34′ ′ N
12◦17′27′ ′ E) of the Department of Agricultural, Food and Environmental Sciences of the
University of Perugia. This site (Figure 1), also known as Soil Erosion LABoratory (SER-
LAB), was established in 2007 to monitor and characterize erosive processes at plot scale in
central Italy’s typical agricultural context dominated by hills. The average annual rainfall
is about 900 mm, and the soil is silt–clay–loam (clay = 34%, silt = 59%, and sand = 7%).
Organic matter content is about 1%, and the gravel content is negligible. There are currently
10 Wischmeier-type plots of various sizes (four plots 22 × 8 m2, two plots 22 × 4 m2,
two plots 11 × 4 m2 and two plots 11 × 2 m2) with a 16% slope. The plots are kept in
cultivated fallow through frequent tillage operations to remove vegetation and restore
soil surface structure after erosive events. Each plot is equipped in its terminal part with
a channel conveying solid and liquid runoff into 1-m3 storage tanks, the number of which
varies with the plot size. After each erosive event (or occasionally, after a series of events
if they are close to one another), the runoff and soil loss are measured with a specially
calibrated sampling technique [35], and the tanks are emptied and cleaned to be ready to
receive the runoff of a new event. The SERLAB meteorological station has several weather
instrumentations, including a tipping bucket rain gauge set to record rainfall depths with
a 5 min time step.
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2.2. Datasets

The study relies on two datasets (DB1 and DB2), built with rainfall and soil loss data
collected over several years of monitoring at the SERLAB site. The characteristics of the
two datasets are detailed in the following sections.

2.2.1. Dataset (DB1) Used for the RF Classifier

For the development of an RF algorithm capable of classifying erosive and non-erosive
events, we used the same dataset (DB1) considered in previous studies aimed at identifying
the best rainfall variables (and the corresponding thresholds), able to separate erosive
and non-erosive events [17,19,36]. The DB1 dataset includes 528 events (158 erosive and
370 non-erosive). The decision to consider the same dataset allows for a more straightfor-
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ward comparison of the RF algorithm with other classification techniques applied recently.
The dataset DB1 was built according to the steps detailed below.

The 5 min rainfall records from 1 January 2008 to 31 December 2017 were analysed to
identify the individual storms, i.e., the rain events preceded and followed by 6 h or more of
no rain (according to Wischmeier and Smith [5]).

Each individual storm was therefore categorized as erosive (E) if a measurable soil
loss was found in the storage tanks, while it was considered non-erosive (NE) if it did not
produce runoff or if the soil loss was so irrelevant that it could not be measured. Sometimes,
when individual events are very close, soil loss refers to a sequence of individual storms.
In this case, the individual storms included in the sequence were classified as non-erosive
(erosive) if their rainfall depth was lower (higher) than the minimum depth observed for
the individual erosive rainfalls [17].

For each individual storm, 31 variables (Table A1) describing the hyetograph’s overall
and pattern characteristics were quantified. In particular, the internal storm structure is
represented by the characteristics (number, duration, severity, etc.) of bursts (i.e., intervals
of continuous rain) and runs (i.e., intervals of continuous rain exceeding a predetermined
truncation value p0). The identification of the truncation level, p0, was based on the
frequency analysis of rainfall records by excluding zero values. The selected p0 value
corresponds to a cumulative frequency of 95% [17], giving p0 = 0.8 mm in 5 min (9.6 mm/h).
More calculation details about the rainfall variables can be found in Todisco et al. [17].

2.2.2. Dataset (DB2) Used for the RF Regression Model

The dataset DB2 used to develop an RF regression model for predicting the event soil
loss is new and derives from an update of previous datasets used for the same purpose,
based on more traditional methods. The DB2 consists of 667 records of soil loss at the plot
scale measured at the SERLAB site between February 2008 and June 2022.

The rainfall depth, P (mm), and the single-storm erosion index, R (MJ mm ha−1 hr−1 [5]),
were determined for each erosive event. The event total runoff, Q (mm), the runoff coeffi-
cient, QR = Q/P, and soil loss Ae (Mg ha−1) were quantified for each plot. A normalized
value of the soil loss was then obtained as follows:

Ae,N =
Ae

LS
(2)

where L and S are the plot length and steepness factors by Renard et al. [6] and Nearing [37],
respectively. The summary statistics related to these variables are given in Table 1.

Table 1. Summary statistics of runoff coefficient, QR, single-storm erosion index, R, and normalized
soil loss, Ae,N, related to the 667 records of the DB2 dataset.

Statistic QR (-) R (MJ mm ha−1 h−1) QR·R (MJ mm ha−1 h−1) Ae,N (Mg ha−1)

Mean 0.121 115.538 20.262 2.799
Median 0.059 70.841 3.461 0.289

CV 1.182 1.018 1.881 1.966
Min 0.001 3.894 0.076 0.002
Max 0.955 629.903 269.549 42.476

Using Ae,N as the dependent variable and considering CUMM and PUMM equal to
1 (bare soil without conservation practices), the USLE_MM (Equation (1)) assumes the
following form:

Ae,N = KUMM(QRR)b1 (3)

More details about the measurement methods used at the SERLAB can be found in
Bagarello et al. [4], Vinci et al. [38], and Todisco et al. [35].
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2.3. Random Forest

RF is a supervised machine learning technique that can be used for both classification
and regression problems. It relies on a large number of decision trees that work as an en-
semble. The final decision is based on the majority of votes for classification, while the
average prediction is considered the solution to regression problems [27].

Usually, the original dataset, consisting of a response variable and one or more predic-
tor variables (features), is subsetted to form training and validation datasets. Each decision
tree of the forest is then obtained from a bootstrap sample of the training dataset and
uses only some randomly chosen features during tree growth. The out of bag (OOB) set
is the data not selected in the sampling process of a specific tree. The subsequent steps
differ depending on whether the objective is to obtain a classification or a regression model.
The following sections provide details of the procedures and evaluations applied in the
two cases. All the RF analyses were implemented in the R environment using the library
randomForest [39].

2.3.1. Random Forest Algorithm for Classification of Erosive and Non-Erosive Events

The initial DB1 dataset consisted of 528 storm events described by a dichotomous
response variable (i.e., NE or E) and by the 31 rainfall variables used as features. The total
number of features has been brought to 32 (Table A1) with the addition of a dichotomous
nominal variable roughly describing the hydrological conditions of the period in which
the storm event occurs (“dry” between Aprile and September, “wet” in the other months).
The DB1 was randomly split into 50% for training and 50% for validation. A random split
(unlike a chronological split) minimizes the chances that the two datasets (training and
validation) have differences in the records due to long-term or seasonal trends. The number
of features considered at each node split, M, was set as M = 6 by applying an iterative tuning
method which minimizes the OOB error [39]. The number of trees was set to 5000 after
a preliminary evaluation based on the classification accuracy convergence [40].

The relative importance of each feature was evaluated by quantifying the correspond-
ing mean decrease in accuracy (MDA). The MDA of a specific feature is the average (over
all trees) decrease in the accuracy obtained in the prediction of the OOB datasets before and
after the permutation of that feature. The features with higher MDA are relatively more
important than the others for the overall accuracy of the RF classifier.

The performance of the RF classifier was evaluated by applying the trained classifier
to the corresponding validation dataset and computing the overall accuracy OA (%), the
producer’s accuracy PA (%), and the user’s accuracy UA (%), [41].

The OA is obtained as:
OA =

TC
N

(4)

where TC is the number of events truly classified, and N is the total number of events
considered in the validation dataset. The PA, also known as recall, is given by:

PAk =
TCk
Ok

(5)

where TCk is the number of events of category k truly classified and Ok is the number of
events observed in category k. The UA, also indicated as precision, is given by:

UAk =
TCk
Ck

(6)

where Ck is the number of events classified in the category k.
Both UA and PA can be quantified for each category (in this study, for both E and NE

rainfall events). A classifier is considered highly accurate when obtaining a combination
of high recall and precision values. In particular, high recall (PA) corresponds to a low
representation of omission errors and high precision (UA) to a low value of commission
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errors [42]. In previous works based on different classification techniques [17] other indi-
cators had been used among the performance measures, including the Correct Selection
Index (CSI), which is mathematically identical to the PAE and the Wrong Selection Index
(WSI), which is mathematically equal to 1-UAE. Figure 2a shows the steps carried out to
develop and assess the RF classifier.
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Figure 2. Workflow of the analyses carried out for the development and assessment of (a) an RF
classifier of erosive and non-erosive rainfall events; (b) an RF regression model to predict the event
soil loss at the plot spatial scale.

2.3.2. Random Forest Regression to Predict Event Soil Loss

The initial dataset (DB2) included 667 records. The Ae,N variable is the response
variable, and the features considered were QR, R, and the period of occurrence of the
erosive event, defined as illustrated in Section 2.3.1. The initial dataset was randomly split
into 50% for training and 50% for validation. The number of features at each split and the
number of trees were set to 2 and 5000, respectively, based on the same preliminary tunings
described in Section 2.3.1. The relative importance of a generic feature j was evaluated by
quantifying the corresponding average per cent increase in mean squared error (%IncMSE).
The %IncMSE of a specific feature in a particular tree is computed as:

%IncMSEj =

(
MSEj −MSE0

)

MSE0
(7)

where MSE0 is the MSE of that tree in the OOB dataset, and MSEj is the MSE in the same
OOB dataset after the permutation of the feature j. The features with higher %IncMSE
are relatively more important than the others for the accuracy of the model prediction.
Figure 2b shows the steps carried out to develop and assess the RF regression model.

3. Results
3.1. RF Classifier of Erosive and Non-Erosive Events

As explained, the RF classifier was trained on a random 50% of the DB1 dataset and
then applied to the remaining validation dataset. Since the results depend on the specific
observations included in the random training and validation datasets, this procedure was
repeated 100 times (Figure 2) to enable a more general and objective assessment. The
average feature importance, based on the MDA criterion, is presented in Figure 3.
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Figure 3. Importance of the features considered in the RF classifier, based on the mean decrease
accuracy (MDA) criterion. Black dots and grey bars represent the mean and 90% confidence interval
of the MDA values obtained in 100 random repetitions. The definition of the variables is given in
Table A1.

From Figure 3, six features are found with decidedly higher relative importance
than the other variables: the total precipitation P, the kinetic energy E, the erosivity R,
the maximum rainfall depth from the start of the event to a burst Max_P_pre_burst, the
maximum rainfall amount in a burst Max_P_burst, the maximum intensity over 60 min I60.
The “period” feature does not seem helpful for the RF classifier.

The results shown in Figure 4 (dark blue bars) indicate the following accuracy mea-
sures: OA 84.8%, PAE 72.3%, PANE 91.0% UAE 79.2% and UANE 87.2%. For comparison
purposes, Figure 4 also shows the accuracy values (light blue bars) obtained with a dataset
reduced to the 6 top features based on the ranking given Figure 3. It is evident that there is
only a slight reduction in the accuracy performances.
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3.2. RF Regression Model for Prediction of Event Soil Loss

The RF regression model has been trained on a random 50% of the DB2 (training
dataset) and then applied to predict the soil loss Ae,N on the remaining data (validation
dataset). For comparison purposes, the same datasets were used to parameterize and vali-
date the USLE_MM model of Equation (3). Since the model performances vary according
to the random datasets, this procedure has been repeated 100 times (Figure 2) in order to
have a more global and objective evaluation. As for the RF regression model, the variable
importance indicates the predominant role of QR (mean %IncMSE = 30.2%, CV = 19%)
followed by R (%IncMSE = 6.8%, CV = 25%) and the “Period” (%IncMSE = 5.5%, CV = 24%).
The average root mean square error (RMSE) of the RF regression model is 2.30 Mg ha−1

(CV = 11%).
The fitting of the USLE_MM model of Equation (3) on the 100 random validation

datasets did not lead to a relevant variability in the model parameters (b1 and KUMM): the
average values of b1 and KUMM are 1.067 and 0.081 with CV of 1.9% and 5.0%, respectively,
and they are nearly equal to those obtained on the whole 667-record dataset. Moreover,
these values are aligned with those determined in the previous SERLAB 532-record dataset
(b1 = 1.0479, KUMM = 0.0896, [4]) and even with those recently estimated from a small
SERLAB 47-record dataset (b1 = 1.10, KUMM = 0.032, [16]). This indicates that the SERLAB
dataset has now reached a size that makes it relatively stable to new data and subsetting.
The performance of the USLE_MM model is decidedly lower than the RF regression model,
with an average RMSE of 3.34 Mg ha−1 (CV = 9%).

A graphical comparison of the performance of the two models is presented in Figure 5,
which shows the scatter plots of observed (x-axis) and predicted (y-axis) Ae,N against the
1:1 line for 1 of the 100 random training/validation datasets.
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Figure 5. Comparison between observed and estimated normalized soil loss Ae,N obtained using
(a) the RF regression model; (b) the USLE mm regression model. Both models are trained on the same
random 50% dataset and then applied to the remaining data.

4. Discussion

The analysis demonstrates that an RF algorithm can be remarkably effective for classi-
fying NE and E storm events based on rainfall characteristics alone. Regarding the variable
importance, the results (Figure 3) are consistent with those of previous studies, particularly
with those of Todisco et al. [17], which indicated P, R, E, P_max_burst and I60 among
the best variables. The importance of the rainfall depth P is also confirmed, as initially
proposed by Wischmeier and Smith [5]. The accuracy measures of the classifier (Figure 4)
are satisfactory, especially considering that the evaluation refers to a part of the dataset not
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used for the model training. The most critical accuracy value is the PAE (72.3%), i.e., the per-
centage of erosive events correctly recognized to the observed total. Conversely, when the
model assigns the “erosive” category to an event, it has a higher success rate (UAE = 79.2%).
These percentages decrease slightly when the model works with the six most significant
features (PAE = 70.0% and UAE = 76.1%).

The RF classifier appears to be a valid alternative compared to other techniques
previously used for the same purpose and on the same dataset. In Todisco et al.’s work [17],
the best results (obtained by applying compound rainfall thresholds) indicate higher PAE
(about 82–85%) but lower UAE (about 72–74%). Furthermore, in that case, the methodology
for identifying the thresholds to separate NE and E events had not been made considering
the separation between training and validation datasets.

The underestimation of the number of erosive events by the RF classifier does not
significantly affect the estimation of the long-term erosivity of rainfall. In fact, the events
correctly classified as erosive represent about 91% of the erosivity of all erosive events. This
happens because, as known [10,11], the total erosivity is largely due to a few particularly
intense or long-lasting storm events that are correctly identified by the RF classifier. The
model could therefore be applied in real-time or on past time series to obtain an almost
correct identification of the occurrence of the most significant erosion events. Indeed,
although it is possible to analyse the variable importance, it is not straightforward to
understand how the RF classifier uses the variables (and the corresponding thresholds) to
arrive at the final classification.

The RF regression model, developed on only three features (QR, R, and “Period”),
demonstrates decidedly superior performances (average RMSE = 2.30 Mg ha−1) compared
to the traditional USLE_MM power relationship (average RMSE = 3.34 Mg ha−1) tested on
the same datasets. This difference can depend on several factors. The first is undoubtedly
attributable to the fact that, unlike the USLE_MM, the RF model uses the supplementary
explanatory nominal variable “Period”. This feature, useless in the classification algorithms
(Figure 3), here proves to be relevant, with importance only slightly lower than the erosivity
factor R. As further proof of its importance, an RF regression model, trained only on the QR
and R features, led to a significant increase in the average RMSE (2.67 Mg ha−1), which is,
however, still lower than that of the USLE_MM. The interpretation of the reason of why
a simple variable such as the “period” (with only two modes “wet” and “dry”) can improve
the soil loss prediction is not accessible, especially in such a type of “black box” model.
An influence of the season on the reliability of soil loss prediction models has already been
observed by Todisco et al. [43], which attributed this to the different conditions of the soil
surface. The climatic conditions (particularly precipitation and air temperature) roughly
described by the variable “period” can affect the dynamics of various soil properties such
as roughness [44], infiltration and bulk density [45,46], and hydraulic conductivity [47].
Therefore, even if the RF model already explicitly considers essential features such as
QR and R, the “period” becomes important to allow the model to evaluate the seasonal
variability of their effect on soil loss. Finally, the “period” can directly contribute to
describing the soil erodibility dynamics not explicitly considered in the model. Indeed,
soil erodibility could vary with the “period” due to different environmental and climatic
conditions (e.g., different soil moisture and soil temperature), capable of influencing the
soil aggregate stability. This type of effect has been widely demonstrated in the literature,
such as in [48–50]. Therefore, it would seem that the model’s behaviour is consistent with
the physical interpretation of the process.

Even without the “period” variable, the RF model is still superior to the USLE_MM
one. This is undoubtedly due to the greater flexibility of RF in the use of input variables. In
traditional regression, the independent variables are constrained in a precise functional
form. In the case of the USLE_MM, using the product variable QRR further reduces the
possibility of differentiating the effect of QR and R.
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5. Conclusions

The random forest approach has proven to be more effective than traditional (i.e., non-
machine learning) methods in classifying erosive and non-erosive events and in quantifying
soil loss at the event temporal scale and plot spatial scale. In this second application, it
is conceivable that further performance improvements could be obtained by develop-
ing models with feature sets not constrained in the mathematical form of Equation (1).
An interesting perspective of this study will be to compare different machine-learning
techniques. In general, the possibility of applying such models still strongly depends on the
availability of relatively large datasets. This indicates the need to continue investing in ex-
perimental and monitoring activities to increase the databases available in the most diverse
environmental conditions and make machine learning approaches even more efficient.
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Appendix A

The list of the thirty-two features considered in the RF classifier is given in Table A1.

Table A1. List of the features used in the training of the random forest classifier for the separation of
erosive and non-erosive storms.

Variable Symbol Unit

Total rainfall P mm
Total duration D h
Wet duration D_wet h
Dry duration D_dry h
Mean intensity I mm h−1

Mean wet intensity I_wet mm h−1

Rainfall erosivity R MJ mm ha−1 h−1

Rainfall kinetic energy E MJ ha−1

Maximum intensity over 30 min I30 mm h−1

Maximum intensity over 5 min I5 mm h−1

Maximum intensity over 10 min I10 mm h−1

Maximum intensity over 15 min I15 mm h−1

Maximum intensity over 20 min I20 mm h−1

Maximum intensity over 25 min I25 mm h−1

Maximum intensity over 40 min I40 mm h−1

Maximum intensity over 50 min I50 mm h−1

Maximum intensity over 60 min I60 mm h−1

Rainfall amount above truncation level p0 P_run mm
Rainfall duration above truncation level p0 D_run h
Number of runs N_run -
Maximum duration of an individual run Max_D_run h
Maximum rainfall amount of an individual run Max_P_run mm
Maximum peak of the run (p-p0) Max_peak_run mm
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Table A1. Cont.

Variable Symbol Unit

Maximum rainfall depth from the start of the
storm to a run Max_P_pre_run mm

Maximum slope of the rising limb of a burst Max_slope_burst %
Maximum mean run intensity Max_I_run mm h−1

Number of bursts in a storm N_burst -
Maximum rainfall amount in a burst Max_P_burst mm
Maximum burst duration Max_D_burst h
Maximum rainfall depth from the start of the
event to a burst Max_P_pre_burst mm

Maximum mean burst intensity Max_I_burst mm h−1

Period of occurrence Period -
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Abstract: In the last decades, the Rif area in Morocco has been frequently affected by soil erosion due
to intense rainfall events. In order to help farmers improve their lives and avoid damages caused
by this phenomenon, a management project (the MCA Project) aiming to grow fruit trees has been
realized. The objective of this study was to evaluate, in three provinces of Morocco, the effect on
the hydrological response of selected erosion control management techniques combined with olive
tree plantations. The investigated variables were the final infiltration (If), the imbibition of rainwater
(Pi), the runoff coefficient (Kr), and the soil detachment (D). In particular, for each investigated soil
utilization, three replications of a rain simulation test (80 mm/h) and soil sampling were conducted.
Results for surface conditions demonstrate that under vegetation in matorral and fallow, the surface is
covered at more than 75% with a high content of organic matter (OM) at 4.5% and 2.6%, respectively.
Despite the compaction observed in those land uses, the surface area opened exceeded 90% in the
study area. Regarding the soils physical properties, they were rich in silt at more than 40%; the rate
of porosity is high where bulk density is low. At the Taounate site, low porosity was at 62% in fallow
and at 55% in plowing, with high densities of 1.01 g/cm2 and 1.2 g/cm2, respectively. Tests also
demonstrate that vegetation has an important role in moisture conservation in the depths of 0 to
10 cm at all sites with macroagregate stability (MA%) compared to plowing sites. In terms of soil
hydrology, vegetation reduces the runoff because, under matorral (it was at 0%), it avoids soil erosion.

Keywords: erosion control management; hydrological parameters; runoff risk; Rif; agro-sylvo-
pastoral systems; olive trees; agroforestry; soil erosion management; Mediterranean

1. Introduction

In the Mediterranean basin, soil erosion due to intense rainfall events, i.e., water
erosion, is one of the major processes of land degradation, hence constituting a great source
of desertification [1]. Moreover, there is an increasing trend of aridity that accelerates such
a process [2]. According to FAO studies [3], water erosion affects 50% of the soil in Turkey,
40% in Morocco, and 35% in Greece.

The factors favoring water erosion in this area are generally the fragility of the soil,
the irregularity of intense rainfall events, the soil slope, the high air temperatures, which
accelerate the mineralization of organic matter, and the vegetation cover reduction caused
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by climate and man [4]. The most visible form of erosive action is represented by the
gullies, which cause the formation of “badlands”, which have no agricultural interest, and
mudslides, which clog reservoirs and cause a reduction in their storage capacity. Given the
problems caused by water erosion, it is necessary to take adequate measures to slow down
this phenomenon and ensure sustainable management of water and soil resources [5].

In this regard, many countries of the southern Mediterranean have started, in the last
decades, a proactive policy of land development and conservation. Several anti-erosion
techniques have been introduced and popularized on sloping land [6–10]. Some countries
adopted traditional practices or improved them; others took inspiration from technologies
developed in Europe or the United States [11].

In Morocco, there are many national intervention plans dealing with water erosion.
Many Soil Defense and Restoration (DRS) intervention actions use fruit trees (such as olive
trees, almond trees, and vines) to conserve soil and water, improve the incomes of farmers,
and create jobs in the areas of intervention [12].

In the western Rif, Heusch [13] showed that water erosion causes each year more
than 3000 t/km2 of soil to be poured into the sea, and 60% of the eroded soils in Morocco
come from this area, which covers only 6% of the national territory. The causes of this
degradation are deforestation due to land cultivation and other natural causes such as
climate and the nature of the substrate.

Under these constraints, a considerable effort has been provided by the population of
the western Rif, thanks to the developed agro-forestry-pastoral farming systems. Various
fruit tree species have been planted on the terraces, on the boundaries of plots and proper-
ties, and in the gullies [14]. The growing fruit is of capital interest to the population, not
only for economic aspects but also for the fruit trees’ capacity against water erosion [15].

However, knowledge of the variation of the soil hydrological parameters (e.g., infil-
tration and runoff) associated with the soil’s physical properties (e.g., apparent density,
roughness, and porosity) is very important to define the susceptibility of soils to water
erosion [16,17]. Equally important is to develop experimental studies for the analysis of
erosion phenomena at the basin scale [18]. For instance, the infiltration capacity of surface
horizons essentially depends on the state of the soil surface, which is affected by its rough-
ness, biological activity, plant cover [19,20], humidity, cracking, stoniness, aggregation, and
water repellency [21].

In the western Rif region (Larache) and in the pre-Rif regions (Taounate and Taza)
studies evaluating the impact of fruit tree DRS on the hydrological soil characteristics
are rare. Most of such studies have shown only that the production of runoff from the
soil is strongly linked to its physical characteristics, surface condition, and vegetation
cover [22,23]. In 2015, Simonneaux et al. [24] provided an interesting study on soil erosion
in Morocco, where the “soil loss” was estimated by indirect measures.

Due to the limited availability of peer-reviewed experimental studies on erosion in the
Moroccan Rif area, the present work represents a novel contribution, especially considering
that the majority of experiments on soil conservation based on experimental plots are
located in China and the USA, with very limited availability in the South Mediterranean [25].
Most of the recent contributions focus on modeling applications [26] or trackers [27]. At
the same time, the Rif is one of the most critical areas for environmental development and
is a hotspot for erosion [28].

The study was carried out as a part of the Millennium Challenge Account (MCA)—
Morocco Project for the fruit tree component in the Moroccan Rif. The component aims
to stimulate the growth of the agricultural sector in this area through the transition from
annual extensive crops, and in particular cereals, to multi-annual fruit tree crops that are
market-oriented (e.g., olives, almonds, and figs).

Specifically, we first aim at determining the effects of the development on hydro-
dynamics, surface condition, and other soil characteristics; and second, we study the
relationships between hydrological parameters and selected soil characteristics that can
serve as indicators of runoff and soil erosion.
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2. Materials and Methods
2.1. The Study Area

The study area was included in the MCA—Morocco Project and is part of the Rif in
northern Morocco. It extends over the western, central, and eastern Rif.

The three provinces of Larache, Taounate, and Taza were selected as investigation areas.
In each of these provinces, some of the perimeters developed in the Fruit Arboriculture
Project (FAP-MCA) have been selected as our experimental sites. Table 1 summarizes the
investigated study perimeters, and their location is represented in Figure 1.

Table 1. FAP-MCA perimeters retained in each province of our study area.

Project Area Zone 1 Zone 2 Zone 3

Provinces Larache Taounate Taza

Study Perimeters

Ain Maabad Dar Lkhil El Gara Ahl Zaouia

Ain Hadid Faytora Lkassibat

Sidi Ait Atmane Ait Maalla
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Figure 1. Location of study areas in the provinces of Larache, Taounate, and Taza.

Additionally, for comparative studies, other study perimeters have been added in the
first two provinces despite not being developed under the FAP. In Larache, we chose a
matorral and a perimeter plowed at Ain Maabid Dar Lkhil; and in Taounate, we chose a
third Kifah perimeter developed as part of the “Economic and rural development of the
western Rif Project” known in Morocco as the DERRO Project.

2.1.1. Description of the Study Area’s Physical Environment

The geological and pedological situation of the study area is reported in Table 2 [29].
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Table 2. Comparison among three study sites on geological and pedological conditions.

Sites Geology Soils

Larache marly material of the Cretaceous;
schistose scales and quartzite debris

little evolved soils of erosion;
calcimagnesic soils with vertic

caracter and vertic soils

Taounate clayey marls vertic soils eroded

Taza Soft bedrock or hard geological bedrock
and marly material

mineral soils, little evolved soils,
calcimagnesic soils, isohumic soils, and

soils with iron sesquioxides

About the bioclimate, the province of Larache has a subhumid bioclimate with a warm
winter, an average yearly rainfall of 689 mm, an average maximum temperature of the
hottest month equal to 33 ◦C, an average minimum temperature of the coldest month
of 7 ◦C, and a rainfall quotient of 91.9 mm. The province of Taounate has a subhumid
bioclimate with a temperate winter; the yearly rainfall is 505 mm; the mean maximum
temperature of the hottest month is 36 ◦C; the average minimum temperature of the coldest
month is 5 ◦C; and the rainfall is 56.4 mm. The province of Taza has a semi-arid to temperate
winter; the average cumulative yearly rainfall is 557 mm; the mean maximum temperature
of the hottest month is 45 ◦C; the average minimum temperature of the coldest month
is 4 ◦C; and the rainfall quotient is 45.7 mm. Moreover, the plots studied in those three
provinces had slopes ranging from 13% to 40%. In particular, at Larache, the slope of the
plots varies between 16% and 37%; in Taounate, the slope is between 16% and 24%. Finally,
in Taza, the plots studied were located on a slope of between 13% and 40%.

2.1.2. Land Uses

Regarding land use, forest trees are almost absent except for a few reforested Euca-
lyptus and pine trees in Taounate, but in the fallow land there were a few trees (juniper)
scattered around. Chamærops humilis (doum) was present in these perimeters because they
were traditionally areas of large crops. Oleander was along the banks of the wadis.

Since the investigated project areas are non-irrigated agricultural areas that were
adapted to the olive tree species, the farming system is dominated by cereals and extensive
farming to take advantage of pasture stubble and straw during the lean season to feed
livestock. This cereal usually grows from medium to steep slopes; hence, it accentuates soil
erosion and degradation. According to the beneficiaries of the studied perimeters, farmers
in the area tend to abandon extensive breeding (cattle, sheep, and goats) for fruit growing,
especially olive trees. This fruit arboriculture project encourages the association of olive
trees and cereals in these regions, which will make it possible to conserve water and soil in
addition to maintaining livestock farming. Moreover, the discussions with farmers in the
field revealed that there are also vegetables, market gardening, and fallow land.

2.1.3. Choice of Experimental Perimeters

The objects of experiments were chosen according to the empirical method according
to the knowledge of the field, and the objectives were fixed within the framework of this
research. These perimeters are part of those planted by the FAP; it was deemed appropriate
to take two types per perimeter, namely plowing and fallowing, to conduct comparative
studies to better understand the impact of the cultivation techniques used at each cultivated
site on soil erosion. Thus, fallow and plowing were considered when simulating rainfall in
these three provinces for each zone. Therefore, in Larache, Taounate, and Taza, there were,
respectively, 6, 4, and 6 sites for the simulation of rainfall. However, all the perimeters
added for the comparison were not concerned by rainfall, except the Larache matorral,
which showed no runoff. In total, the rainfall simulation concerned 17 sites in 3 repetitions,
therefore 51 simulation plots.
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2.2. Methods
2.2.1. Rainfall Simulation Tests

Before conducting the rainfall simulation, the choice of the location of the experimental
plot was made according to the following criteria: the representativeness and homogeneity
of the soil surface, and the degree and direction of the slope. In each selected plot, there
was the installation of the simulation plot, which has an area of 1.66 m × 0.6 m (1 m2).
Two 1.66-m metal angles were inserted into the ground for about 5 cm to avoid lateral water
losses (leaks). Downstream of these two angles, a triangular metal platform was installed to
direct runoff water and sediment into a container. Afterward, the ground surface condition
was described by the quadrat point method [30] using the diagonals and a stake every 2 cm.
Thus, the surfaces covered at ground level (SC, %) include all that is litter (L, %), vegetation
(Veg, %), and pebbles not integrated into the soil mass (CNI, %). The open surfaces (SO, %)
mainly concern the cracks (Fiss, %), the galleries, and the clods (Mt, %), while the closed
surfaces (SF, %) correspond to the areas closed off by a film (Pel, %) or to the visible pebbles
embedded in the ground (CI, %). In addition, the total soil organic matter (OM, %) was
obtained after the determination of the carbon content (C, %) since the ratio of organic
matter to carbon is almost constant and equal to OM/C = 1.72 [31]. In addition, other
parameters such as the soil penetration resistance (PEN, kg/cm2) and the shear strength to
the force used by the water in detaching the aggregates (SS, kg/cm2) related to the surface
condition were measured, respectively, by a pocket penetrometer and a scissometer in nine
measurements (3 repetitions × 3 for each simulation plot). The simulation plot (Figure 2)
was divided into three parts along the angles delimiting the plot. Finally, the roughness
index (Ir, %) was measured by the chain method [30], which consists of using a metal chain
laid in a straight line. The roughness index is determined by Ir = (Ld − l)/l) where Ld (m) is
the length of the extended chain and l (m) is the width of the plot over the width of the
plot. Three repetitions were carried out to also measure the roughness index.
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After the evaluation of the surface condition, the preparation of the rainfall simulation
device has been carried out. This consisted of a watering ramp 50 cm wide, less than that
of the plot, and connected by a flexible pipe to a tank that was filled with 60 L of water and
that was located a few meters higher than the plot. Subsequently, the adjustment of the
simulated rainfall intensity (on average 80 mm/h) was carried out after several tests using
a valve at the outlet of the tank. A graduated cylinder and a stopwatch were used. The
measurement of the simulated rainfall intensity was carried out at the beginning and end
of the simulation.

After obtaining the desired rainfall intensity, the rainfall simulator was used. The
rainfall simulator can be considered a simple manual irrigator [30], which allows drops
with relatively little energy to be projected onto a surface of 1 m2. Watering was performed
at an average height of 50 cm above the soil surface. It was a question of distributing the
water and avoiding watering outside the plot. The watering was carried out simultaneously
with the timing: at the beginning, the elapsed time (reaction time: Tr, min) was recorded
for the triggering of the runoff to quantify the height of the imbibition rain (Pi, mm).

Then, the recording of the amount of runoff water every 5 min was performed until
the stabilization of the runoff; otherwise, until the time reached one hour. The collected
runoff water has been put in a container and then stored in a transparent jerrycan with a
capacity of 10 L to later measure the quantities of sediments in the laboratory.

On a previously prepared simulation sheet, the various measurements were noted:
location of the site and coordinates, degree of slope, date, surface condition, runoff trigger
time, runoff volumes, and so on. A simulation test required, on average, 3 h of work
for a team of 3 people. Through these simulation tests, we managed to determine the
final infiltration (If, mm/h), which corresponds to the average of the last two permanent
infiltration values, and the imbibition rain (Pi, mm), which is the height of water infiltrated
before the start of runoff. Pi is calculated from the soil reaction time (Tr, min) and the
simulation rainfall intensity (i, mm/h). It was given by the following formula:

Pi = (i × Tr)/60.

2.2.2. Soil Sampling

Two soil samples (1 kg each) were taken next to the rainfall simulation plot at a
depth ranging from 0 to 5 cm to determine the soil structural stability (rate of water-stable
macroaggregates) and to carry out other soil analyses (particle size and organic matter) in
the laboratory.

The undermining facilitated their removal. At three points around the rainfall simula-
tion plot, a soil sample is taken in depth increments of 0–5, 5–10, and 10–15 cm to assess the
soil bulk density using a 10 cm long cylinder and 4 cm in diameter. All the samples were
kept away from heat and transported to the laboratory for the following analysis.

2.2.3. Physical Analyses of Samples

The physical analyses of the samples concerned the following parameters: bulk density,
total porosity, soil moisture, structural stability measured by macroaggregate stability, and
detachability. The analyses were conducted in the laboratories of the National Forestry School
of Engineers and the Agronomic and Veterinary Institute (IAV) Hassan II. In particular:

• Bulk density (Da, g/cm3):

After having placed the soil samples taken at different depths in boxes for drying, the
samples have been weighed fresh and dried after 24 h in an oven at 105 ◦C. According to
Blake [32], the formula for calculating the bulk density is:

Da = ma/V

With ma = anhydrous mass of soil (g); V = volume of sampling cylinder (cm3).

• Total porosity (P, %) is deduced by the following formula [32]:
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P = 100 − [(Da/Dr) × 100]

With Dr = actual soil density, which is a constant = 2.65 g/cm3

• Soil moisture (H, %)

The collected samples were weighed to determine their fresh weight (Pf, g). In the
laboratory, these samples were dried in an oven at 105 ◦C for 24 h and weighed again to
find their dry weight (Ps, g). The difference between the fresh weight (Pf) and the dry
weight (Ps), which gives the weight of water (Pwater, g) and the soil moisture (H, %), was
obtained by this formula [33]:

H = Pwater/Ps × 100

• Rate of water-stable macroaggregates (MA, %)

For this study, the structural stability is estimated by a stability test that is based on
disaggregation combining wetting and sieving. This method [34] is used to estimate the
rate of water-stable macroaggregates with a diameter greater than 1 mm but between 1 and
2 mm. Aggregates of 1 to 2 mm in diameter are shaken vigorously in the test tube, and stable
aggregates of more than 0.25 mm in diameter are measured. Each study perimeter has been
considered to have a homogeneous stratum, and it has been subjected to three repetitions.

• Detachability of soils (D, g/m2/h)

After agitation to mix the runoff collected in the simulation plot, quantification was
performed after water removal by pipette. Then, the drying of the deposited sediments was
carried out in the oven for 24 h. Finally, the weighing made it possible to give the quantity
of sediments from which the detachability of the soils (D) is obtained by the following
formula [35]:

D = Sediment weight (g) × [60/simulation time (min)]

2.3. Statistical Data Processing

To be able to compare the effects of land uses on the hydrological behavior of soils
and to find the correlations that may exist between the different parameters and the
investigated variables, statistical processing was carried out on the observed data. The
treatment consisted of analyses of variance (ANOVA) and simple and multiple comparisons
of the means according to the method of the least significant difference (P.P.D.S.).

Since the soil samples collected in Larache have different numbers depending on the
land use, the Scheffé test was used [36]. For the other regions (Taounate and Taza), there
are only two situations to compare (plowed land and fallow). For this, the recommended
test is a T-Student for independent samples. The probability threshold considered for all
the tests is 5%. Through a simple linear regression, the Pearson correlation coefficient R
was obtained, and regression equations were determined to better understand the soil
parameter that most influences the hydrological parameters (If, Pi, Kr, and D).

3. Results and Discussions
3.1. Results
3.1.1. Effects of Land Uses on the Surface Conditions

After the application of the statistical tests and the comparison of the average values
obtained for each property of the soil in the different land uses between the three provinces
(Table 3), it was noticed that the higher contents of organic matter (OM) are observed
under matorral and fallow (4.50% and 2.60%, respectively). For plowed sites, we obtained
values ranging between 2.03% and 3.56%. In addition, it was found that the studied surface
parameters are statistically significantly different between plowing and fallow.
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Table 3. Effects of land uses on the surface conditions of the FAP-MCA perimeters in Larache,
Taounate, and Taza provinces in Morocco.

Provinces Larache Taounate Taza

Land Uses Matorral Fallow Plowing Fallow Plowing Fallow Plowing

Organic matter

OM (%) 4.43 3.56 2.8 3.46 3.1 2.56 2.03

Surface conditions

SN (%) 1.08 a 9.00 a 83.69 b 22.83 a 75.67 b 18.25 a 90.83 b
SC (%) 99.25 b 91.00 b 16.31 a 77.17 a 24.50 b 81.75 b 9.17 a
SO (%) 99.90 b 90.78 a,b 78.67 a 96.67 a 90.17 b 92.33 b 82.50 a
SF (%) 0.10 a 9.22 a,b 19.67 b 3.34 a 9.83 b 7.58 a 17.50 a

PEN (kg/cm2) 0.71 a 0.68 a 0.59 a 0.37 a 0.25 a 1.30 a 1.50 a
SS (kg/cm2) 2.49 b 2.37 a,b 1.69 a 3.22 a 2.06 b 2.80 a 2.63 a

Ir (%) 3.16 a 16.94 a,b 22.17 b 21.21 a 44.33 b 16.12 a 31.26 a

Note: OM—rate of organic matter; SN—percentage of the bare surface; SC—rate of the cover surface; SO—rate of
the open surface; SF—rate of the closed area; PEN—force of penetration resistance; SS—force of shear resistance;
Ir—rate of roughness. The means of the same row followed by the same letter are not statistically different
(p < 0.05).

However, the results obtained show that the soils under fallow were covered (SC)
and open (SO) to more than 75%, and the soils of the plowed plots had bare and open
surfaces greater than 75%. In terms of fallow land, we have covered areas of 91% in Larache,
82% in Taza, and a lower rate in Taounate (77%). The open surfaces exceed 90% for the
three regions.

Moreover, the soils under fallow are more compacted and more resistant in Larache and
Taounate. At Taza, the trends are reversed only for penetration (PEN) and shear strength (SS).
Although the penetrometer values are not statistically different, the value is more pronounced
in Taza in both fallow (PEN = 1.3 kg/cm2) and plowing (PEN = 1.5 kg/cm2) compared to
the other two regions. This situation in Taza could be due to the presence of crusts formed
on the surface during previous rains on the plowed and sun-dried land under which our
experiments were carried out.

3.1.2. Effects of Land Uses on Soil Physical Properties

Among the physical properties of the soils in the three provinces is the soil’s texture.
Then, the soils analyzed are generally rich in silt, at more than 40%, despite the presence of
a high rate of clay and a few sandy particles.

Moreover, according to the results obtained, the soils of Larache have a sandy clay
texture with 40.11% clay, 43.96% silt, and 15.22% sand. Those of Taounate have a silty
clay texture composed of 39.24% clay, 40.46% silt, and 20.29% sand. In Taza, the soils
analyzed had 37.61% clay, 42.83% silt, and 19.58% sand, and they had a texture of fine clay
silt (Table 4).

Table 4. Texture of soils analyzed of the FAP-MCA perimeters in Larache, Taounate, and Taza
provinces at Morocco.

Provinces SF (%) SG (%) Arg (%) LG (%) LF (%) Texture

Larache 7.60 7.62 40.81 29.15 14.81 Sandy clay

Taounate 16.92 3.37 39.24 25.86 14.60 Silty-clayey

Taza 6.92 12.66 37.61 19.46 23.37 Fine clay silt
Note: SF (%): Fine sand rate; SG (%): Coarse sand; Arg (%): Clay rate; LG (%): Coarse silt rate; LF (%): Fine
silt rate.

Regarding the physical properties of the soils in the three provinces (Table 5), it can
be noticed that the soils are generally loosely packed because the bulk density (Da) varies

63



Water 2023, 15, 2120

from 0.79 to 1.20 g/cm3 at the soil surface (0–10 cm). At sites covered by litter or vegetation
(matorral and fallow), the density values do not show significant statistical differences and
have low surface values (0.80 to 1.00 g/cm3). The highest values (1.01 and 1.20 g/cm3) are
observed in Taounate for fallow and plowing, respectively. These density values increase
from surface to depth.

Table 5. Effects of land uses on the physical properties of soils in the FAP-MCA perimeters in Larache,
Taounate, and Taza provinces in Morocco.

Provinces Larache Taounate Taza

Land Uses Matorral VPO Fallow Plowing Fallow Plowing Fallow Plowing

Soil Physical Properties

Da10 (g/cm3) 0.79 a 0.82 a 0.90 a 0.88 a 1.01 a 1.20 b 0.90 a 1.00 a
Da20 (g/cm3) 0.87 a 0.93 a 0.99 a 0.88 a 1.11 a 1.31 a 1.00 a 1.14 b
Da30 (g/cm3) 1.09 a 0.94 a 1.00 a 0.92 a 1.31 a 1.27 a 1.03 a 1.13 a

P10 (%) 70.22 a 69.14 a 65.99 a 66.65 a 61.97 b 54.64 a 66.10 a 62.25 a
P20 (%) 67.00 a 65.01 a 62.70 a 66.86 a 58.75 a 50.54 a 62.26 b 56.72 a
P30 (%) 58.71 a 64.42 a 62.10 a 65.19 a 58.30 a 52.04 a 61.03 a 57.18 a
H10 (%) 34.59 b 29.87 a,b 29.79 a,b 24.49 a 42.10 b 18.04 a 19.28 a 16.93 a
H20 (%) 32.31 b 31.70 a,b 28.51 a 28.23 a 40.54 b 17.57 a 22.03 a 20.02 a
H30 (%) 29.04 a 46.01 a 25.29 a 28.13 a 44.67 b 20.84 a 22.03 a 22.10 a
MA (%) 34.02 a,b 58.37 b 19.82 a 17.46 a 54.51 b 40.94 a 59.00 a 43.46 a

Note: Da “n”: Bulk density at “n” (cm) soil depth; P “n”: Rate of porosity at “n” (cm) soil depth; H “n”: Soil
moisture at “n” (cm) soil depth; the means of the same row followed by the same letter are not statistically
different (p < 0.05).

For the porosity (P) at the level of these three provinces, an expected opposite trend
to that of the evolution of bulk density was observed, with the lowest values in Taounate
(respectively 62% and 55% on the surface for fallow and plowing) where densities were
high. The porosity increased from surface to depth. However, the porosity values in the
plots covered by vegetation (matorral and fallow) are not statistically different except
in Taounate.

The soil moisture content (H) at the level of the provinces of study increased with
depth. These values presented significant differences in covered and non-plowed plots,
even if these values cannot be directly linked to erosion control.

However, on the surface and at depth (0–10 cm), this rate remains high at the level
of fallow land compared to plowing. Thus, the fallow land in Taounate had 42.10% soil
moisture, followed by that of Larache with a soil moisture rate of 29.79%, and finally that
of Taza with a soil moisture rate of 19.28%. The lowest soil moisture levels exist at the
plowing level and vary from 16% to 25% for these three regions.

As for the stable macroaggregate rate (MA), there are no significant statistical differ-
ences in terms of plowing in the three provinces. However, these values are statistically
significantly different in plots covered by vegetation or litter. They are high in all fallows in
the three provinces compared to plowing.

3.1.3. Effects of Land Uses on Soils Hydrological Properties

From the point of view of hydrological properties (Table 6), the values of the final
infiltration (If) do not show a statistically significant difference at the level of fallows despite
the existence of runoff. The final infiltration remains higher in the plowings than in the
fallows at the level of the three provinces. Indeed, the plowing being freshly stirred is very
loose and very open, as demonstrated by P (%) values. This state favored infiltration in all
the plowing perimeters in the three regions after one hour of simulation. The furrows along
contour lines have created a roughness favorable to infiltration, especially in Taounate and
Taza, where the runoff coefficient is zero and without detachability.

In Larache, since the plowing was carried out on the steepest slope, this situation
favors runoff (15%) and soil detachability (29 g/m2/h).
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Table 6. Effects of land uses on the hydrological properties of soil of the FAP-MCA perimeters in
Larache, Taounate, and Taza provinces in Morocco.

Provinces Larache Taounate Taza

Land Uses Fallow Plowing Matorral Fallow Plowing Fallow Plowing

Soil Hydrological Properties

If (mm/h) 39.68 a 64.70 ab 74.4 b 55.52 a 73.43 a 69.36 a 71.53 a
Pi (mm/h) 4.74 a 24.03 a 74.4 b 36.57 a 73.43 a 46.12 a 71.53 a

Kr (%) 46.61 b 14.63 a 0.00 a 13.18 a 0.00 a 2.23 b 0.00 a
D (g/m2/h) 2.28 a 29.21 a 0.00 a 1.07 a 0.00 a 0.20 a 0.00 a

Note: If—final infiltration; Pi—imbibition of rainwater; Kr—rate of runoff coefficient; D—detachability. The
means of the same row followed by the same letter are not statistically different (p < 0.05).

For the fallow sites, we found a higher runoff coefficient but fewer eroded particles in
the direction of the slopes than in cultivated soils.

In Larache province, the vegetation under matorral seems to promote infiltration as
much as possible (If = 74.4 mm/h) and reduce runoff and detachability as much as possible
(D = 0 g/m2/h).

3.1.4. Influences of Soil Parameters on Their Hydrological Properties in Larache, Taounate,
and Taza Provinces of Morocco

The highlighting of the influence of soil parameters on their hydrological properties
was conducted by studying the correlation between the hydrological properties and the
explanatory variables (Table 7).

Table 7. Relationship between hydrological properties (If, Pi, Kr, and D) and physical parameters
and soil surface condition in Larache province.

Explanatory Variables Regression Equations R2

Final infiltration: If (mm/h)

SO If = −50.352 + 1.289 × SO 0.785
PEN If = 85.263 − 49.559 × PEN 0.696
SS If = 127.589 − 33.978 × SS 0.653

P20 If = −254.402 + 4.771 × P20 0.428

imbibition rainwater: Pi (mm/h)

SO Pi = −107.779 + 1.616 × SO 0.619
PEN Pi = 62.387 − 62.319 × PEN 0.550
P10 Pi = −499.655 + 7.865 × P10 0.446

Runoff coefficient: Kr (%)

SO Kr = 134.580 − 1.326 × SO 0.696
PEN Kr = −7.292 + 55.027 × PEN 0.564
SS Kr = − 47.579 + 34.514 × SS 0.717

Detachability: D (g/m2/h)

<60%
Note: If—final infiltration; Pi—imbibition rainwater; Kr—runoff coefficient; D—detachability; SO—open surface;
PEN—resistance to penetrometry; SS—resistance to shear strength; P “n”—porosity at “n” cm of soil depth;
R2—correlation coefficient.

Thus, the variables considered more explanatory of hydrological properties (final
infiltration (If), imbibition of rainwater (Pi), runoff coefficient (Kr), and detachability
(D)) are those whose coefficient of determination (R2) is greater than 60%. The variables
that influenced them were different in the investigated provinces. The final infiltration
was positively correlated with soil cohesion parameters (open surface and porosity) and
negatively correlated with settlement ones. The open surface explained its variation at 79%,
and resistance to penetration (PEN) explained it at 70%. In the province of Taounate, the
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final infiltration is positively correlated with the roughness index (Ir), which explains it at
93%, and negatively correlated with the shear strength (SS), which explains it at 86%. For
Taza, the final infiltration is mainly explained by the roughness index (Ir) and the surface
porosity at a soil depth of 0 to 10 cm (P10).

Concerning the imbibition of rainwater (Pi), the open surface with a positive correla-
tion is the only variable that explains it to more than 60% in Larache. In the province of
Taounate, its variation is explained by three parameters at more than 74%. Thus, two of
these parameters were negatively correlated with Pi, such as the shear strength (SS) and
the resistance to penetrometry (PEN). They explained its variation, respectively, at 94% and
87%. However, the correlation with the roughness index (Ir) was positive and explained Pi
at 75%. For Taza province, the open surface (SO), the roughness index (Ir), and the porosity
at a soil depth of 0 to 10 cm (P10) exerted their influence with respective rates of 87%, 84%,
and 73% with a positive correlation.

For the runoff coefficient (Kr), in Larache province, it is positively correlated to shear
strength (SS) and negatively correlated to the open area (SO) that influenced it, respectively,
at 72% and 70%. In Taounate, the roughness index (Ir), with its negative correlation to Kr,
and the shear strength (SS), with a positive correlation, explained their influence on Kr, re-
spectively, at 85% and 79%. For Taza province, the highest correlations for Kr were obtained
with the open surface (SO) and the roughness index (Ir), at 88% and 79%, respectively.

In these three provinces, the three hydrological parameters (If, Pi, and Kr) were
explained by the parameters of soil cohesion (SO, Ir, and P10), which allow water to
infiltrate. In addition, they are also explained by the settlement parameters (SS and PEN),
which promote runoff by reducing the infiltration time.

For detachability, all variables explained it to less than 60% in Larache (see Figure 3
and Table 7). However, in Taounate (see Figure 4 and Table 8), it is more positively
correlated with shear strength (SS), surface of 0–10 cm (H10) soil moisture, and resistance
to penetrometry (PEN). The latter explain it respectively at 99%, 85%, and 84%. In addition,
detachability is negatively correlated with the roughness index (Ir), which explains its
82% variation. Finally, in Taza (see Figure 5 and Table 9), the correlations for detachability
were negative for all three explanatory parameters. However, it is explained by the open
area (SO) at 89%, the roughness index (Ir) at 79%, and the surface porosity at a soil depth
of 0 to 10 cm (P10) at 66%. Apart from surface soil moisture (H10), which is the only new
explanatory parameter of detachability, the others related to cohesion (SO, Ir, and P10) and
compaction (SS and PN) had already explained If and Pi in these three provinces. Thus,
they are those related to soil compaction that positively influence detachability.
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Figure 3. Effect of land use (fallow, plowing, and matorral) on the infiltration capacity [I (mm/h)] of
soils in the perimeters studied in Larache province.
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Figure 4. Effect of land use (fallow and plowing) on the infiltration capacity (I (mm/h)) of soils in the
perimeters examined in Taounate province.

Table 8. Relationship between hydrological properties (If, Pi, Kr, and D) and physical parameters
and soil surface condition in Taounate province.

Explanatory Variables Regression Equations R2

Final infiltration: If (mm/h)

PEN If = 89.09 − 80.699 × PEN 0.464
SS If = 75.374 − 9.629 × SS 0.858
Ir If = 0.572 + 2.729 × Ir 0.930

Imbibition rainwater: Pi (mm/h)

PEN Pi = 112.150 − 187.376 × PEN 0.873
SS Pi = 74.298 − 17.052 × SS 0.938
Ir Pi = −42.142 + 4.148 × Ir 0.749

Runoff coefficient: Kr (%)

PEN Kr = −12.165 + 61.487 × PEN 0.400
SS Kr = −1.993 + 7.583 × SS 0.790
Ir Kr = 56.813 − 2.145 × Ir 0.853

H10 Kr = −8.877 + 0.402 × H10 0.517

Detachability: D (g/m2/h)

PEN D = −1.133 + 5.463 × PEN 0.835
SS D = −0.056 + 0.521 × SS 0.986
Ir D = 3.561 − 0.129 × Ir 0.819

H10 D = −0.685 + 0.032 × H10 0.849
Note: If—final infiltration; Pi—imbibition rainwater; Kr—runoff coefficient; D—detachability; PEN—resistance
to penetrometry; SS—resistance to shear strength; Ir—roughness index; H10—soil moisture at 10 cm depth;
R2—correlation coefficient.
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Figure 5. Effect of land use (fallow and plowing) on the infiltration capacity [I (mm/h)] of soils in the
perimeters examined in Taza province.

Table 9. Relationship between hydrological properties (If, Pi, Kr, and D) and physical parameters
and soil surface condition in Taza province.

Explanatory Variables Regression Equations R2

Final infiltration: If (mm/h)

SO If = 30.777 + 0.429 × S0 0.603
PEN If = 77.428 − 4.427 × PEN 0.534

Ir If = 53.539 + 0.853 × Ir 0.824
P10 If = 40.453 + 0.451 × P10 0.819

Imbibition rainwater: Pi (mm/h)

SO Pi = -214.019 + 2.950 × SO 0.874
Ir Pi = −38.642 + 4.916 × Ir 0.839

P10 Pi = −102.471 + 2.426 × P10 0.726

Runoff coefficient: Kr (%)

SO Kr = 23.542 − 0.242 × SO 0.879
Ir Kr = 8.865 − 0.391 × Ir 0.788

Detachability: D (g/m2/h)

SO D = 2.107 − 0.022 × SO 0.879
Ir D = 0.793 − 0.035 × Ir 0.788

P10 D = 1.230 − 0.017 × P10 0.662
Note: If—final infiltration; Pi—imbibition rainwater; Kr—runoff coefficient; D—detachability; SO—open surface;
PEN—resistance to penetrometry; Ir—roughness index; P10—porosity at 10 cm soil depth; R2—correlation coefficient.

3.2. Discussion
3.2.1. Effects of Land Uses on Surface Conditions

In those three provinces, the results obtained on organic matter, which are superior
to 2% in plowed sites and superior to 2.60% under matorral or fallow, can be justified
considering the prevention of organic matter mineralization during soil aeration following
tillage, confirming the previous literature [36].

In this situation, the open surfaces exceed 90% in all three regions. This situation could
be explained by the plant cover of the herbaceous carpet and the litter observed, as well as
the cracks and galleries created under the effect of the very intense pedofaunal activity at
the level of these fallows. In addition, as vertisols are the dominant soils there, cracks due
to roots explain these high values.
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Indeed, many researchers [37–39] showed that in vertisols with plants, there are
much smaller cracks in the rows of these plants. This pattern has been attributed to the
proliferation of roots holding the soil together. In addition, vertisols are known to have
open cracks at the surface or at depth during some years. These cracks can be at least 1 cm
wide and up to 50 cm deep. Those cracks are absent if these soils are irrigated [40]. These
high proportions of open and covered surfaces obtained at the fallow level are consistent
with these studies, which have shown that fallow land allows organic restitution and
stimulates the activity of soil fauna and microflora [41–43] in Africa south of the Sahara, in
the Central African Republic [44], and in the Ivory Coast [45].

The highest rate of bare surfaces is observed in the Taza region at 90.83%, and that of
open surfaces is obtained in the Taounate region at 90.17%. This could be explained by the
fact that the plowed soils were freshly disturbed and that the clods, cracks, and embedded
stones would have contributed to the increase in the opening in these regions. These results
agree with those of the authors, who specified that the clods crack but that they experience
significant variability in the state of cracking and their size after plowing in the compacted
treatment [46]. In addition, these cracks and clods are also related to swelling clays found
in vertisols [40].

The high observed penetrometer values would be signs of compaction due to tram-
pling by livestock, which has been confirmed by other studies [47–49]. Concerning the
results in Taza, previous works show that, in plowed sites, precipitation-led erosion with
detaching and displacement of soil particles can lead to the clogging of the interstices of
the soil surface, forming a slacking crust a few millimeters deep in thickness [50,51]. The
roughness (Ir, %) was much more pronounced at the level of the plowing than the fallows in
all three provinces, which is explained by the fact that the clods at the level of the plowing
in this study area created microreliefs consisting of random irregularities or oriented by the
tillage [52].

3.2.2. Effects of Land Uses on Soil Physical Properties

This situation on the bulk density could be explained by the compaction under the
effect of the trampling of animals in matorral and fallow land as well as the effect of the
plow pan at field level. In some research work, it has been shown that the passage of
agricultural machinery aggravates compaction because the mechanical strength of the
aggregates decreases [53,54]. Agricultural tools, in particular the plow, can induce the
formation of the slaking crust down to a depth of 20 to 30 cm [55].

For porosity (P), the situation observed is in line with the research of Richard et al. [56],
which attests that compaction reduces the pores in the soil. Therefore, compaction increases
the bulk density of the soil [57,58] and decreases porosity. Porosity values remained higher
in plots under plant cover than in plowed ones. Some studies qualify this porosity as of
biological origin because the presence of plant residues on the surface and the absence
of mechanical disturbance favor the installation of earthworms, which create cavities or
galleries [59–61].

For the soil moisture content (H), vegetation, litter, and surface pebbles hinder evap-
oration, which would explain the high soil moisture rate in Taounate in fallow land. At
the level of plowing, evaporation is relatively higher, which reduces the soil moisture rate.
Several authors have found similar results, which testify that under vegetation cover or
mulch, there is better conservation of soil moisture compared to plowed and uncovered
soils because they prevent water evaporation [62,63]. The values for stable macroaggregate
rate (MA) obtained in all fallows remain high in the three provinces compared to plowing.
Some authors have shown that working the soil would reduce its structural stability [64].

3.2.3. Effects of Land Uses on Soils Hydrological Properties

Regarding the soil hydrological properties, the final infiltration has been influenced
by the surface state. So, at Taounate and Taza, the runoff coefficient was zero. The
irregularities created by the clods and the roughness due to the used tools allow the storage
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of the water volume in their orientation [65]. In addition, Lipiec et al. [60] testify that the
macroporosity is more important at the level of the plowing and that the infiltration passes
through this structural porosity. From there, these results in Larache are confirmed by
Lipiec et al. [60] on the importance of macroporosity and microreliefs in plowing because
infiltration reached 85%. These results are in the same direction as those of other authors
who specify that, on cultivated soils, the pores are clogged by the fractionated aggregates
because of the mechanical disintegration due to the raindrops. There is then the formation
of the capping crust, which reduces infiltration [66] because the reduction in roughness
leads to a reduction in the stored water volume [67]. The diminished microreliefs will
then be exceeded, and there will be runoff oriented in the direction of the roughness [65],
and indeed, in Larache, this orientation is according to the slope. This same author also
explained the tearing mechanism of the particles during runoff in cultivated soil. It can be
diffuse or in a concentrated way, as in the thalwegs, and the soil particles are torn by the
force exerted on its bed to form rills or gullies as well as the incisions [65], from where this
high detachability of 29 g/m2/h comes.

These results are similar to those obtained by other researchers who have shown that
uncultivated soils are more effective in controlling erosion than runoff [68]. Additionally,
uncultivated soils have low microporosity, encountered mainly at the level of plowing [61].
The latter is of biological origin [60]. This high runoff can also be explained by the fact
that at depth there is already high soil moisture; hence, it should have been due to the
soil, which was close to saturation [69]. In addition, the density that was observed at the
level of the fallow soils would have been due to the compaction. Therefore, the decrease in
porosity facilitated runoff. The low loss of sediments in these fallows cannot be explained
by the fact that the raindrops’ kinematic energy is intercepted by the plant cover and the
litter [70], and the water reaches the ground with lower energy and is less disruptive of soil
structure [71].

In Larache province, results on infiltration and runoff with detachability have been
influenced by cracks due to the roots of plants, as well as the biological porosity that is
created when the soil is not mechanically disturbed and dry, which favor infiltration more
than runoff [60,72,73].

3.2.4. Influences of Soil Parameters on Hydrological Properties in Larache, Taounate, and
Taza Provinces of Morocco

In these three provinces of the study area, the three hydrological parameters (If, Pi, and
Kr) were explained by the parameters of soil cohesion (SO, Ir, and P10), which allow water
to infiltrate. In addition, they are also explained by the settlement parameters (SS and PEN),
which promote runoff by reducing the infiltration time. These results agree with those of
Lipiec et al. [60], who show that macroporosity and microreliefs facilitate infiltration. As
for the settlement parameters, Richard et al. [56] showed that settlement disconnects the
pores by decreasing the path taken by the infiltration, and hence the imbibition of rainwater
decreases. When the percentage of pores decreases in the soil, Assouline et al. [74] say that
the water conductivity goes to saturation, which increases the runoff coefficient (Kr).

About detachability, apart from surface soil moisture (H10), which is the only new
explanatory parameter of detachability, the others related to cohesion (SO, Ir, and P10) and
compaction (SS and PN) had already explained If and Pi in these three provinces. Thus,
they are those related to soil compaction that positively influence detachability. These
reduce porosity and facilitate runoff [56], which tears soil particles from plowed soil in
the direction of the slope. Additionally, on that plowed soil, the slaking crust forms, clogs
the pores, and facilitates runoff, which removes the soil, leaving rills or gullies as well as
scratches [65].

4. Conclusions

This research was carried out as part of the Defense and Restoration of Soils (DRS) by
fruit trees using the olive tree in the Moroccan Rif.
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The results of this study allowed us to highlight the importance of plant cover (herba-
ceous stratum) in increasing the water balance of the soil. Indeed, final infiltration (If) and
imbibition of rainwater (Pi) were high in the matorral of Larache (74.4 mm/h), lower in the
plowed olive orchard, and even lower in the level of the fallow planted with olive trees. In
addition, the role of vegetation cover in protecting soil against erosion has been elucidated.
Although the fallow soils present a higher runoff coefficient (Kr = 46.61%), they were less
detachable (2.28 g/m2/h) than the plowed soils (30 g/m2/h).

Regarding the hydrological characteristics (If, Pi, Kr, and D), they were favored posi-
tively by a high roughness of the ground in the direction of the contour lines in Taounate
and Taza. Moreover, in the three regions, they were positively influenced by the open
surface and the porosity. All these soil characteristics can be used for the choice of devel-
opment and for modeling the risks of runoff and erosion since they are easily measurable
for future research in the study area. As a further improvement in terms of soil erosion
reduction and land management, considering the role of plant cover, it could be suggested
to alternate plowing and fallow in this fruit tree to promote restructuring and enrichment
in organic matter and fight against erosion.
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Abstract: Soil embankments are valuable for the adequate reserve and supply of water to multiple
industries. However, they are susceptible to internal soil erosion, which may ultimately lead to
structural collapse. To counteract this issue, soil stabilization is practiced in the construction industry.
This paper proposes the internal erosion stabilization of cohesionless soil using quicklime. For this
research, two cohesionless soil types were investigated and treated with quicklime: poorly graded
and well-graded cohesionless soils. For poorly graded soil, the lime percentage varied from 0.0% to
6.0% based on the soil’s weight, while for well-graded soil, it ranged from 0.0% to 3.0%. All the soil
specimens were cured for 24 h and tested using the hole erosion test (HET) to replicate the internal
erosion effortlessly. The analyzed results demonstrated the efficiency of quicklime as an internal
erosion stabilizer for cohesionless soils. The optimum lime content for poorly graded cohesionless
soils was 5.0%; for well-graded, the percentage was approximately 3.0%. Moreover, adding lime
significantly improved the strength, critical shear stress, and erosion rate index of the soil.

Keywords: hole erosion test (HET); internal erosion; piping erosion; poorly graded cohesionless soil;
soil stabilization; well-graded cohesionless soil

1. Introduction

The adequate availability and supply of water is essential for the effective operation of
industries such as construction and agriculture. Earthen embankment structures generally
provide proper water sources to these industries by alternating, averting, or reserving
water [1]. Thus, the structural failure of earthen embankments can lead to a catastrophe,
destroying multiple lives and properties [2]. Luthi [3] argued that approximately 30–50% of
embankment failures and mishaps are caused by the internal erosion of the soil. Even
Hanneman [4] and Foster et al. [5] found that internal erosion is the most prominent reason
for embankment failures. Internal soil erosion is triggered by soil particle erosion due
to water penetration through the structure [3,6]. A continuous flow of water through
the soil leads to the formation of holes in the structure, resulting in structural failure.
Hence, seepage is considered a threat to earthen structures during construction’s design
and operation stages. Therefore, engineers are advised to be cautious and aware of the
properties of materials used in earthen structures [2]. Due to the gravitas of this issue,
recent studies [7,8] have emphasized the effects of internal erosion of soil on earthen
structures and their counteractive measures. Many studies [9–12] have investigated the
factors affecting internal soil erosion, such as soil type, water, and material properties,
and soil-piping resistance relationships. For dispersive soil, soil resistance against erosion
rate increases with higher salt content in the water [9]. To measure the embankment soil
erosion parameters, hole erosion test (HET) and slot erosion test (SET) methods were
established by Wan and Fell [13]. Soil investigation determined that factors such as fine
soil and clay content, clay mineralogy, dry density, compaction water content, dispersity,
degree of saturation, plasticity, and cementing materials (such as iron oxides) affect their
shear strength parameters, permeability, settlement, and erosion rate values [14–16]. In
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addition, it was concluded that higher erosion with reduced critical shear stress occurs in
non-cohesive and coarse-grained soils compared to fine-grained soils.

To prevent embankment dam failure, stabilization techniques are performed on the
soil, increasing the soil strength and restricting the formation of holes in the structure.
Soil stabilization may be performed by physical or chemical means [17]. Many research
studies [18–27] have focused on the effect of adding stabilization materials to the soil.
Lemaire et al. [18] investigated the inclusion of a cement–lime mix in silty soils. The silty
soil was stabilized by adding 5.0% and 1.0% of cement and lime, respectively. Moreover, a
significant increase in the structure’s unconfined compressive strength and microporosity
filling was noticed. In addition, stabilization with a lime and micro silica admixture of silty
sand soils was investigated by Karimi et al. [19] in the presence of sulfates. The results
demonstrated a significant increase in the soil’s California Bearing Ratio (CBR) value and
reduced swelling properties. Thus, micro silica waste material successfully improved
the silty sand soil resistance. Khemissa and Mahamedi [20] mixed cement and lime in
over-consolidated clay and determined that the addition of 8.0% of cement and 4.0% of
lime into the clay improved its bearing capacity, durability, and shear strength. Al-Aghbari,
Mohamedzein, and Taha [21] tested the stabilization effects of Portland cement and cement
kiln dust on desert sands. The results showed remarkable improvements in the shear
strength, maximum dry density, and unconfined compressive strength of the soil. Hence,
the study concluded that combining cement and cement kiln dust enhances desert sand’s
shear strength and compressibility properties [21]. They also investigated the impact of
utilizing municipal solid waste incinerator ash to strengthen desert sand soil. Incinerator
ash enhanced the shear and unconfined compressive strength characteristics with lower
permeability [22]. Recently, Soundarya [23] studied the effects of fly ash and ground
granulated blast-furnace slag (GGBS) on lime-stabilized mud blocks. Approximately
5% of lime was added, and the fly ash and GGBS contents varied from additions of 0% to
10% (with a 2% increment). The results demonstrated a positive correlation between the
amount of fly ash and GGBS and the compressive strength of the mud blocks. Wet com-
pressive strength was significantly affected by the increase in the GGBS amount compared
to the fly ash amount. Additionally, fly ash improved water absorption rates more than
GGBS since fly ash is more efficient in producing cementitious materials with lime and
reducing pore interconnectivity. Stabilized compressed earth blocks were also tested with
lime and a combination of cement and lime by Malkanthi, Balthazaar, and Perera [24].
It was found that the cement and lime addition provided higher compressive strength
than the addition of just lime. Ten percent lime gave one of the best performances, and it
was concluded that lime-stabilized blocks might be used for single-story buildings. How-
ever, for Grade 2 block strength with 15% and 10% of clay and silt, respectively, a mix of
5% of cement and 5% of lime was required. For blocks with 5% clay and silt, approximately
7% cement and 3% lime were required. Studies have also used a combination of cement
and rice husk ash [28] or cement and fly ash [29] to stabilize the soil. Attom and Shatnawi
determined that clayey soil is strengthened with the inclusion of wheat husk [30]. Internal
erosion soil stabilization using chemicals was investigated by Vinod et al. [25] and Vakili
et al. [26]. Vinod et al. [25] found that adding lignosulfonate to dispersive soils results
in better soil erosion coefficients and critical shear stress, ultimately providing higher
soil strength and stabilization. In comparison, Vakili et al. [26] mixed lignosulfonate and
reinforced polypropylene in dispersive soil to stabilize it against internal erosion. Other
studies emphasizing soil stabilization include [31–39]. Although significant research has
been performed using lime to stabilize clayey soils, a lack of research exists on using lime
to stabilize cohesionless soils such as sand. One of the few studies on the effect of lime
stabilization on cohesionless (sandy) soil with different curing times was conducted by the
authors [40]. For this study, poorly and well-graded soil types were mixed with quicklime
and tested after 1, 2, and 7 days of curing. Using the hole erosion test (HET), the soil types
were determined to be stabilized to an optimum level with a minimum of 2 days of curing.
Another study on the effect of lime stabilization of coarse sandy soil against internal erosion
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was performed by Elandaloussi et al. [41]. The erosion test results showed that the lime
stabilization effect begins with a curing time of only 24 h due to the agglomeration of fine
particles. Moreover, as per their reported results, longer curing times, such as 3 months,
did not significantly increase the efficiency of lime treatment.

Thus, this research studies the effect of different lime percentages at a single curing
time, and this emphasizes the effect of the internal erosion stabilization of cohesionless soils
with different lime percentages and a short (24 h) curing time. As mentioned, the authors
performed a similar investigative study on the effect of curing time on lime-stabilized
cohesionless (sandy) soil in [40]. Poorly and well-graded soils were examined with quick
lime in these studies. Different lime percentages were mixed with the soil based on the
soil weight. The soil samples were compacted and prepared in a standard proctor mold
with a relative compaction rate of 95.0%. Lime addition resulted in improvement in the soil
strength and erosion rate index. The rest of the paper has been organized in the following
manner: Firstly, the research significance is presented. Next, the methodology used to
prepare and test the soil samples is provided. Following this, the results and their detailed
discussion are presented, including the addition of lime effect on water flow path, critical
shear stress, erosion rate index, and internal soil erosion. Lastly, the conclusion of the study
is provided.

2. Research Significance

Soil embankments are essential for providing, diverting, and retaining water for
different purposes. Since the primary component of any soil embankment is sand, it is vital
to stabilize the sand being used for the effective and successful operation of the structure.
Based on the reviewed literature, lime is found to be an efficient and cost-effective stabilizer
for clayey soil. However, to the best of the author’s knowledge, there has been insufficient
research investigating the stabilization effect of the addition of lime to cohesionless soil.
Hence, this study tries to increase the knowledge base by studying the internal erosion
stabilization of cohesionless soil using lime and promoting its utilization with confidence
in the industry. This research studied two cohesionless soil types (poorly and well-graded),
which were cured for 24 h. The poorly graded soil was mixed with lime in percentages
from 0.0% to 6.0% (based on the soil’s weight), and well-graded soil was mixed with lime
in percentages from 0.0% to 3.0%. The hole erosion test (HET) was adopted to replicate
the internal erosion of the soil scenario. This study assists in analyzing lime-stabilized
cohesionless soil properties. It also supports the raising of awareness about internal soil
erosion in earth-fill dams and counteractive measures using soil stabilization. Further
studies may be performed on this topic using other stabilization materials, such as solid
waste and bitumen.

3. Experimental Program and Methodology

The experimental program of this study is inspired by [13] and the authors performed
a similar investigation previously [40] to study the curing time effect.

3.1. Material Properties

The material properties of the soil studied are displayed in Table 1. Specific tests
were performed to determine the initial soil properties in accordance with ASTM standard
procedures. Based on the results in Table 1, it is clear that Soil A was poorly graded
while Soil B was well-graded cohesionless soil. The manufacturer provided the quick lime
properties (which can be found in [40]).
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Table 1. Soil Properties (similar to [40]).

Property Soil A Soil B

Specific Gravity, Gs of soil 2.60 2.67
Amount of Clay (%) 0.00 4.00
Amount of Silt (%) 0.60 8.00

Amount of Sand (%) 99.40 88.00
Coefficient of Uniformity, Cu 1.60 11.05
Coefficient of Curvature, Cc 0.90 2.26

Optimum Moisture (or Water) Content,ωop (%) 11.95 13.00
Maximum Dry Density, ρdmax (kg/m3) 1690.00 1908.00

Classification Poorly Graded Well Graded

3.2. Specimen Preparation

Lime percentages from 0.0% to 6.0% were added for Soil A, while, for Soil B, lime
percentages from 0.0% to 3.0% were used. Thus, three soil specimens were prepared
and cured for each lime percentage for 24 h. The soil specimen preparation included the
following steps: Firstly, the amount of soil, lime, and water (based on optimum moisture
content) was measured and mixed. Then, compaction of the prepared mix in a mold was
performed with a relative compaction rate of 95%. Following this, a hole was drilled with
a diameter of 6 mm through the compacted soil specimen’s cross-section, as shown in
Figure 1a (this step was conducted to initiate soil piping erosion). Lastly, the specimen
was labeled and stored for its curing time. An average of two specimens for each lime
percentage was considered for higher accuracy of the results. The final results are discussed
in this paper for each lime percentage. As mentioned, this study adopted the hole erosion
test, HET (by Wan and Fell [13]) to analyze the soil resistance against internal erosion.
This method is preferred because of its simplicity, ease, and lower cost. Moreover, it is
considered the best method to replicate piping erosion behavior [42]. The HET apparatus
and schematic diagram are displayed in Figure 1b,c, respectively.
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3.3. Specimen Testing Process

The upstream chamber of the HET apparatus was filled with gravel particles of 20 mm
in diameter to regulate and filter the water flow. Subsequently, the prepared specimen was
fitted between the inlet and outlet chambers with the help of O rings and bolts (as shown
in Figure 1b). The water head ranged between 800 and 1200 mm, and the test was initiated
by allowing the water to flow through the hole of the specimen. At different intervals of
test run time, the rate of flow was measured using the outlet pipe. The test ran until the
specimen’s failure, with a minimum of 45 min. At the end of the test, the water flow was
stopped, and the specimen was extracted. Finally, the final hole diameter was determined,
and the test apparatus was cleaned before reusing it for other specimens. It is advised that
future researchers interested in researching this topic should ensure that the HET apparatus
is built to be leakproof to avoid any water leaks during the testing process. Additionally,
during the test, the flow rate (water volume and time) must be determined accurately by
measuring them at multiple time intervals throughout the test. Furthermore, the final hole
diameters are advised to be measured using a vernier caliper for higher accuracy.

3.4. Process for Analysing the Data

The HET test data helped determine the soil’s shear stress at the start of erosion and
the erosion rate index. Erosion occurs when the water force outpaces the hydraulic shear
stress [13]. The soil erosion rate index (I) parameter is a good indicator of the soil’s internal
erosion resistance. Stronger soil internal erosion resistance provides a higher erosion rate
index. The soil erosion descriptions for different erosion rate indices are provided in Table 2.

Table 2. Internal Erosion Descriptions for Various Erosion Rate Indices [13,40].

Group Number Erosion Rate Description

1 Less than 2 Extremely Rapid Erosion
2 2 to 3 Very Rapid Erosion
3 3 to 4 Moderately Rapid Erosion
4 4 to 5 Moderately Slow Erosion
5 5 to 6 Very Slow Erosion
6 Greater than 6 Extremely Slow Erosion

Initially, Reynold’s number (R) was utilized to determine the type of water flow as per
Equations (1) and (2):

Vt =
Qt

π
(

ϕ2
t

4

) (1)

R =
Vϕtρw

ν
(2)

where Vt denotes the average velocity of water flowing through the hole (m/s) at time t, Qt is
the flow rate at time t (m3/s), ϕt is the water flow path (hole) diameter at time t (m), ρw is the
water density (kg/m3), and ν denotes the absolute water viscosity
(Pa·s) = 1.00 × 10−3 [40,43]. Using the flow type, flow rate, and initial and final mea-
sured hole diameters, the friction factors ( fTt or fLt) were determined at the start and end
of the test with the help of Equations (3) and (4) [13,40]:

Turbulent Flow : ϕt = [
64Q2

t fTt

π2ρwgst
]
1/5

(3)

Laminar Flow : ϕt = [
16Qt fLt
πρwgst

]
1/3

(4)

where fTt or fLt is the turbulent or laminar friction factors at any time, respectively, ρw is
the water density, g is the acceleration due to gravity, and st is the soil sample hydraulic
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gradient. Based on the calculated initial and final friction factors, the friction factor versus
the time curve was plotted, giving the friction factor value at any time ( fTt or fLt). Then,
the hole diameter at any time (ϕt) was calculated by reusing Equations (3) or (4) with the
evaluated friction factors at any time ( fTt or fLt). Further, knowing the ϕt values, the rate
of diameter change with time

(
dϕt
dt

)
was determined. Next, using the evaluated values,

soil dry density (ρd) and Equations (5) and (6), hydraulic shear stress (τt) and erosion rate
per unit surface area (ε·t) at time t were determined [13,40]:

τt = ρwgst
ϕt

4
(5)

ε·t =
ρd
2

dϕt

dt
(6)

ε·t = Ce(τt − τc) (7)

I = −log(Ce) (8)

Subsequently, as illustrated in Figure 2, the erosion rate (ε·t) was plotted against
hydraulic shear stress (τt) to obtain the soil erosion coefficient (Ce) (as per Equation (7)).
Lastly, utilizing the Ce value and Equations (7) and (8), the critical shear stress (τc) and soil
erosion rate index (I) values were respectively determined. The I value was then compared
with the details in Table 2 to describe the soil erosion type [13,40].
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4. Results and Discussion
4.1. Addition of Lime Effect on Water Flow Path

The effect of lime percentage on the water flow path (hole) diameter over their test run
time (in minutes) for Soils A and B with 24 h curing time is illustrated in Figure 3. For Soil
A, with an initial hole diameter of 6.0 mm, an increase in hole diameter of approximately
27.0 mm (33.0–6.0 mm) was observed at 1.0% of lime, with a test run time of approximately
7 min. However, at 2.0% of lime, the increase in the hole diameter was approximately
15.5 mm (21.5–6.0 mm), with a test run time of 10 min. Therefore, a 42.6% reduction in hole
diameter occurred with the increase in lime content from 1.0% to 2.0%, along with a longer
test run time. This demonstrates that the internal erosion resistance of the soil improved
with the increase in the addition of lime. Moreover, it is evident from Figure 3a that with a
further increase in lime percentage, the change in water flow path (hole) diameter reduces,
with the lowest change and longest test run time occurring at 6.0% lime for Soil A. At
6.0% lime, only a 4.3 mm increase (10.3–6.0 mm) in the hole diameter was observed with a
test run time of approximately an hour (60 min). Thus, an 84.1% reduction in the change in
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diameter was obtained with the increase in lime from 1.0% to 6.0%. Hence, the soil strength
improved significantly with a higher lime content and reduced the internal erosion rate by
resisting the change in the water flow path (hole) diameter. The results for 0.0% of lime
in Soil A are not provided since the soil specimen collapsed within a few seconds of the
test run time; thus, data could not be derived for this specimen. Therefore, it was noted
as a failure point and was deemed insignificant. Similarly, Soil B portrayed that a higher
lime percentage decreased the change in water flow path diameter (as shown in Figure 3b).
An increase of 9.0 mm (15.0–6.0 mm) was noted at 0.0% lime with a test run time of 6 min.
At 1.0% of lime, the hole diameter change was approximately 2.2 mm (8.2–6.0 mm), with
a test run time of 51 min. Thus, the water flow path diameter change was decreased by
75.6% with a longer test run time. A minimalistic change in water flow path diameter
of 2.0 mm (8.0–6.0 mm) was noticed at 3.0% lime with a test run time of more than 2 h
(approximately 135 min). Hence, the inclusion of 3.0% lime in Soil B and 24 h of curing time
decreased the diameter change by 77.8% compared to the Soil B specimen without any lime.
Therefore, a higher amount of lime strengthened the cohesionless soil and significantly
improved its internal erosion resistance ability.
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Additionally, Figure 4 illustrates the water flow path (hole) diameter (mm) at the end
of the test against their lime percentages (%) for Soils A and B. It displays that the final hole
diameter reduced with more lime. Furthermore, it demonstrates that Soil B specimens at
24 h curing time performed considerably better than Soil A specimens. Since 0.0% of lime
in Soil B did not fail instantly, unlike Soil A, it resisted internal erosion briefly. Additionally,
the final diameter of the hole for all lime percentages was lower in Soil B when compared
to Soil A. This occurred due to the soil’s physical properties. Soil A was a poorly graded
cohesionless soil with lower strength due to the absence of clayey and silty soil elements,
resulting in lower stability. On the other hand, Soil B (well-graded cohesionless soil) showed
a significant amount of silt and clay (which react well with lime) and, therefore, had slightly
higher strength and stability, and thus it showed better resistance against internal erosion.
In addition, Soil A required double the amount of lime (approximately 6.0% of lime)
compared to Soil B (which required only approximately 3.0% lime) to significantly reduce
the change in diameter. Hence, Soil B reacted and stabilized better with lime in comparison
with Soil A. Similar findings were deduced in [40].
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4.2. Addition of Lime Effect on Critical Shear Stress

Figure 5 displays the critical shear stress values for Soils A and B with their respective
lime contents (%) and 24 h curing time. Higher lime percentages resulted in an increase in
critical shear stress values for both Soil A and Soil B, as illustrated in Figure 5. Although an
increase in lime from 1.0% to 2.0% in Soil A did not improve the critical shear stress value
(=85 N/m2), a further increase in lime to 3.0% slightly improved the value to 97 N/m2.
Thus, an approximately 14.1% increase in critical shear stress occurred at 3.0% lime, com-
pared to 1.0% lime in Soil A. According to the results, the highest critical shear stress of
115 N/m2 for Soil A was obtained at 5.0% lime. Thus, increasing the lime from 1.0% to
5.0% resulted in 35.3% higher critical shear stress. Moreover, a further increase in lime did
not increase the shear stress value, it can thus be deduced that Soil A was optimally stabi-
lized at 5.0% lime and 24 h of curing time. In contrast, the critical shear stress of Soil B rose
from 100.5 to 105 N/m2 with an increase in lime from 0.0% to 1.0%, respectively. Therefore,
for Soil B, the stress increased by 4.5% with the addition of 1.0% lime in comparison to the
Soil B specimen without any lime. Moreover, a further increase in lime to 3.0% improved
the critical shear stress value to 140 N/m2, which was approximately 39.3% higher com-
pared to the critical shear value of 0.0% lime. A lime percentage greater than 3.0% was
not performed since the soil was observed to be optimally stabilized at 3.0% lime and 24 h
curing time. Hence, higher lime percentages resulted in improving the critical shear stress
of the soil. Previous researchers also deduced these findings [34,40,44,45]. In addition, the
critical shear stress values of Soil B were determined to be higher in comparison with Soil
A. As mentioned, this is attributed to the fact that Soil A was a poorly graded cohesionless
soil with lower strength and stability, while Soil B was a well-graded cohesionless soil with
slightly higher strength and stability due to the presence of clay and silt. Due to this, Soil B
required only approximately 3.0% of lime to reach a shear stress value of 140 N/m2, while
Soil A required approximately 5.0% lime to reach a shear stress value of 115 N/m2. Hence,
it is evident that Soil B reacted well with lime, providing higher critical shear stress and
strength to resist internal erosion compared to Soil A, similar to the reported results in [40].

4.3. Addition of Lime Effect on Erosion Rate Index (IHET)

To adequately represent the effectiveness of the internal erosion stabilization of cohe-
sionless soil using lime, the erosion rate index (IHET) value was evaluated for the two soil
types. Figure 6 provides the erosion rate indices for different lime percentages in Soils A
and B within 24 h of curing. This figure demonstrates that higher lime percentages result in
improving the IHET value until the effective lime stabilization of the soil occurs. For Soil A
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with 1.0% lime and 24 h curing, the IHET was 3.69, representing a moderately rapid erosion
type, as per Table 2. Increasing the amount of lime to 2.0% increased the IHET to 4.00, a
moderately slow erosion type, as per Table 2. Therefore, increasing the lime percentage
increased the IHET value (by 8.4%) and the soil’s internal erosion resistance ability. With
higher lime percentages such as 5.0% (or 6.0%) and 24 h of curing, the IHET of Soil A
improved to a value of 4.69, which is considered to be a moderately slow erosion type,
as per Table 2. Therefore, increasing lime from 1.0% to 5.0% led to a 27.1% improvement
in the IHET value (as shown in Figure 6). This validates that an increase in Soil A’s lime
content caused the internal erosion stabilization of the soil. For Soil B at 0.0% lime and
24 h curing time, the IHET was determined to be 3.69, a moderately rapid erosion type, as
per Table 2. With the addition of 1.0% lime, the IHET increased by 27.1%, changing the soil
erosion resistance from a moderately rapid to a moderately slow erosion type. A further
increase in lime to 3.0% increased the IHET to a value of 5.301, representing a very slow
erosion type, as per Table 2. Therefore, increasing the lime from 0.0% to 3.0% resulted in
improving the IHET value by 43.7%. These results also validate that increasing the lime
content improves the internal erosion resistance of soil, similar to the deductions reported
in [34,40,44]. Moreover, Soil B again demonstrated better results, with comparatively higher
erosion rate indices with respect to Soil A (refer to Figure 6). Soil B reached a 13.0% higher
IHET value with a lime content of only 3.0%, in comparison to Soil A with a higher lime
content of 5.0%, demonstrating the significance of the initial soil properties.
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4.4. Internal Erosion Types of Soil A and Soil B

The erosion parameters for Soils A and B at different lime percentages are displayed
in Table 3. Increasing the lime percentage caused a reduction in the final water flow path
diameter and an increase in the critical shear stress (τc) and erosion rate index (IHET) values.
Thus, higher IHET means stronger soil, higher shear strength, and lower internal erosion
hole diameter values. Based on the results in Table 3, Soil A required approximately 5.0% of
lime to effectively stabilize against internal erosion. As Soil A achieved the highest IHET
and τc values of 4.69 and 115 N/m2, respectively, at 5.0% lime, and as per Table 2, this soil
demonstrated a moderately slow erosion type. Moreover, Soil A showed a significantly
small rise in water flow path diameter at 5.0% lime with a test run time of 60 min (1 h).
Table 3 shows that a further increase in lime does not improve the strength and internal
erosion resistance of the soil. Thus, Soil A was optimally stabilized with the addition of
5.0% lime and curing of 24 h. For Soil B, approximately 3.0% of lime was required for its
optimum stabilization with curing of 24 h. At 3.0% lime in Soil B, the IHET and τc were
equal to 5.301 and 140 N/m2, respectively. This IHET value represents a very slow erosion
type, as per Table 2. In addition, Soil B displayed a minimal increase in the water flow
path of 2.0 mm with a constant pressure head of 1200 mm and a test run time of 135 min
(more than 2 h). Thus, it can be deduced that the soil was stabilized. Hence, Soil B was
stabilized with 3.0% lime with curing of 24 h. Similar conclusions were drawn by [40]. For
an illustration of some soil specimens’ final water flow path holes, refer to Figure 7.

Table 3. Final hole erosion test results of Soils A and B.

Lime Percentage Erosion Parameters Soil A Soil B

0.0%

Final Hole Diameter, ϕf (mm) - 15
Critical Shear Stress, τc (N/m2) - 100.5

Erosion Rate Index, IHET - 3.69
Soil Erosion Type Failed Instantly Moderately Rapid

1.0%

Final Hole Diameter, ϕf (mm) 33 8.2
Critical Shear Stress, τc (N/m2) 85 105

Erosion Rate Index, IHET 3.69 4.69
Soil Erosion Type Moderately Rapid Moderately Slow

2.0%

Final Hole Diameter, ϕf (mm) 21.5 8
Critical Shear Stress, τc (N/m2) 85 133.33

Erosion Rate Index, IHET 4 5.22
Soil Erosion Type Moderately Slow Very Slow

3.0%

Final Hole Diameter, ϕf (mm) 19 8
Critical Shear Stress, τc (N/m2) 97 140

Erosion Rate Index, IHET 4 5.301
Soil Erosion Type Moderately Slow Very Slow

4.0%

Final Hole Diameter, ϕf (mm) 12.5 -
Critical Shear Stress, τc (N/m2) 100 -

Erosion Rate Index, IHET 4.22 -
Soil Erosion Type Moderately Slow -

5.0%

Final Hole Diameter, ϕf (mm) 10.5 -
Critical Shear Stress, τc (N/m2) 115 -

Erosion Rate Index, IHET 4.69 -
Soil Erosion Type Moderately Slow -

6.0%

Final Hole Diameter, ϕf (mm) 10.3 -
Critical Shear Stress, τc (N/m2) 115 -

Erosion Rate Index, IHET 4.69 -
Soil Erosion Type Moderately Slow -
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Figure 8 demonstrates the relationship between the obtained final hole diameter (ϕf)
and τc against the IHET values of Soils A and B with different lime percentages and 24 h
of curing. It displays that a higher erosion rate index lowered the final internal erosion
hole diameter and increased the critical shear stress (τc) values for both soil types. For
Soil A, adding 5.0% lime resulted in a 68.2% lower final hole diameter, 35.3% higher τc
value, and 27.1% higher IHET value. For Soil B, the addition of only 3.0% lime resulted
in a 46.7% lower final hole diameter, 39.3% higher τc value, and 43.7% higher IHET value.
Thus, Soil B reacted significantly better with lime than Soil A. Again, this was because Soil
B contained clay and silt (refer to Table 1). Since clay and silt are binding materials and
lime reacts much better with soils with binding materials, Soil B showed better results. In
contrast, Soil A was poorly graded with an absence of clay and silt; consequently, it showed
lower shear strength and a relatively weaker reaction with lime. Hence, Soil A required a
higher lime content (5.0%) for stabilization than Soil B. Nevertheless, even with a higher
lime percentage, Soil A (due to its weak properties) resulted in lower IHET and τc values by
11.5% and 17.9%, respectively, compared to Soil B. Additionally, the internal erosion type of
Soil A with 5.0% lime (moderately slow) was inferior than Soil B with only 3.0% lime (very
slow). Therefore, it was determined that the initial soil type, properties, and gradation
played a vital role in the internal erosion stabilization effect of the soil using lime.
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5. Conclusions

The internal erosion stabilization of cohesionless soil using lime was investigated in
this paper. The hole erosion test (HET) was adopted and conducted to execute the experi-
mental testing of the study, as it best replicated the soil’s internal erosion. Two cohesionless
soil types, poorly graded and well-graded, were tested with various lime percentages and
24 h of curing time. HET test results were analyzed, and different erosion parameters,
including water flow path diameter, critical shear stress (τc), and erosion rate index (IHET),
were evaluated. Based on the findings, the following conclusions were drawn:

1. Quick lime is an adequate internal erosion stabilizer for cohesionless soils;
2. The water flow path diameter can be reduced and controlled with a higher amount of

lime for both types of cohesionless soil;
3. An increase in lime content leads to stronger critical shear stress (τc) and higher

erosion rate index (IHET) values for cohesionless soil;
4. The inclusion of 5.0% lime in poorly graded soil resulted in a 68.2% lower final hole

diameter, 35.3% higher critical shear stress (τc), and 27.1% higher erosion rate index
(IHET) value. In contrast, for Soil B, the addition of only 3.0% lime resulted in a
46.7% lower final hole diameter, 39.3% higher τc, and 43.7% higher IHET value;

5. For poorly graded cohesionless soil, with 5.0% optimum lime content, the internal
erosion improved from a moderately rapid erosion type to a moderately slow ero-
sion type, and for well-graded soil, with only 3.0% of lime, the internal soil erosion
improved from a moderately rapid to a very slow erosion type;

6. Lower lime is required to stabilize well-graded cohesionless soil as opposed to poorly
graded soil. Moreover, stabilized well-graded soil demonstrated comparatively better
erosion parameters than stabilized poorly graded soil. This is related to the clay and
silt (binding materials) present in well-graded soil, which gives higher strength and
better supports the lime reaction. Hence, well-graded soil is preferred in construction
compared to poorly graded cohesionless soil.

6. Recommendations for Future Work

This study was performed at the American University of Sharjah (AUS) as part of
their research program to investigate the internal erosion stabilization of cohesionless soil
using lime. Based on the experience, it is highly recommended to ensure that the testing
apparatus is built to be leakproof and that multiple flow rates are noted at various time
intervals to increase the accuracy of the results. Moreover, due to the limited scope of this
study, not all factors could be investigated. Thus, further research may be performed to
investigate internal soil erosion with different (1) soil properties such as clay, silt, and sand
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contents; cohesions; angles of internal friction; optimum moisture contents; maximum dry
densities; and gradations; (2) hole erosion test factors such as the pressure head and test run
time; and (3) internal erosion testing methods such as the slot erosion test (SET), rotating
cylinder test, jet erosion test (JET), and soil dispersity tests (such as pinhole, Emerson
crumb, and double hydrometer tests). Additionally, studies related to other soil stabilizers
(bitumen, oil shale, fly ash) can be conducted on this topic.
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Notations

AUS American University of Sharjah
CBR California Bearing Ratio
Cc Coefficient of Curvature
Ce Soil Erosion Coefficient
Cu Coefficient of Uniformity
fLt Laminar Friction Factors at any time, t
fTt Turbulent Friction Factors at any time, t
g Gravitational Acceleration (m/s2)
GGBS Ground Granulated Blast-furnace Slag
Gs Specific Gravity of Soil
HET Hole Erosion Test
I Soil Erosion Rate Index
IHET Erosion Rate Index determined using Hole Erosion Test
JET Jet Erosion Test
OAP Open Access Program
Qt Flow Rate at time, t (m3/s)
R Reynold’s Number
SET Slot Erosion Test
st Soil Sample Hydraulic Gradient
Vt Average Water Flow Velocity at time, t (m/s)
ε·t Erosion Rate per Unit Surface Area at time, t (kg/m2/s)
ν Absolute Water Viscosity (Pa·s)
ρd Soil Dry Density (kg/m3)
ρdmax Maximum Dry Density (kg/m3)
ρw Water Density (kg/m3)
τc Critical Shear Stress (N/m2)
τt Hydraulic Shear Stress at time, t (N/m2)
ϕf Final hole (water flow path) diameter
ϕt Water Flow Path (Hole) Diameter at time t (m)(

dϕt
dt

)
Rate of Diameter Change with Time (m/s)

ωop Optimum Moisture (or Water) Content
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Abstract: Gully erosion is the most intensive type of water erosion and it leads to land degradation
across the world. Therefore, analyzing the spatial occurrence of this phenomenon is crucial for
land management. The objective of this research was to predict gully erosion susceptibility in the
Kakia-Esamburmbur catchment in Narok, Kenya, which is badly affected by gully erosion. GIS
and ensemble techniques using weight of evidence (WoE) and logistic regression (LR) models were
used to map the susceptibility to gully erosion. First, 130 gullies were detected in the study area
and portioned out 70:30 for training and validation, respectively. Nine gully erosion conditioning
factors were selected as predictors. The relationships between the gully locations and the factors were
identified and quantified using WoE, LR and WoE–LR ensemble models. The results show that land
use/cover, distance to road, sediment transport index (STI) and topographic wetness index (TWI)
are the factors that have the most influence on gully occurrence in the catchment. Additionally, the
WoE–LR model performed better than the WoE and LR models, producing an AUC value of 0.88,
which was higher than that of the WoE model, 0.62 and the LR model, 0.63. Therefore, the WoE–LR
ensemble model is useful in gully erosion susceptibility mapping and is of help to decision makers in
land-use planning.

Keywords: gully susceptibility; weight of evidence (WoE); logistic regression (LR); ensemble; soil
loss; Kakia-Esamburmbur; Narok

1. Introduction

Soil erosion caused by water is considered to be one of the primary causes of land
degradation worldwide [1]. Soil erosion, which is a natural process that entails detachment,
transportation and deposition of soil particles, can be exacerbated by anthropogenic ac-
tivities [2]. Water induced soil erosion is usually caused by deforestation, climate change,
intensification of agriculture, urbanization and tectonic activities, all of which threaten
land and water resources sustainability [3]. Soil erosion leads to reservoir siltation [4]; loss
of fertile topsoil [5]; flooding and decline in species [6,7]; and eutrophication in streams,
reservoirs and lakes [8]. Furthermore, there has been an increase in soil erosion rates over
the years [9], for instance soil erosion is responsible for soil loss in most landscapes in
Ethiopia and Kenya [10].
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Water erosion occurs in various forms including splash, interrill (sheet), rill, stream
bank and gully erosion [11]. Gully erosion is the most complex type of erosion amongst
these, as it is triggered and accelerated by heavy rainfall and land use change [12]. Studies
conducted around the world have shown that gully erosion can contribute between 10%
and 94% of the total catchment erosion [13]. Gullies decrease soil productivity through the
incision of agricultural lands, and cause restrictions on roads, land use and structures [14].

A gully is defined as an erosion channel with steep side walls and head-cut that is
actively eroding due to the surface flows that remove and transport soil particles [15].
It can be defined as having a cross-sectional area greater than 929 cm2 [13], and is too
big to be removed by ordinary tillage practices [16]. Gully erosion is a threshold process
and therefore several studies have put emphasis on defining the topographic as well as
hydraulic conditions to predict gully erosion susceptibility [16,17].

In contrast to the significant contribution of gullies to total erosion on watersheds, few
models have been developed for quantifying the effects of this phenomenon [18]. There
are few physically based models that can assess gully erosion. They include CREAMS
(chemicals, runoff and erosion from agricultural management systems), EGEM (ephemeral
gully erosion mode) and WEPP (Water Erosion Prediction Project), which have been ap-
plied in the Loess Plateau [19,20]. However, the above models need a lot of geophysical
and geochemical input data. Furthermore, the physical methods cannot assess the spatial
distribution of gullies, which is important in visualizing the exposure of an area to gully-
ing [21]. In regions where there is data scarcity, statistical and data mining methods can be
successfully used.

Natural hazards have been assessed using a variety of data mining, bivariate and
multivariate statistical methods. Some of these have been used to assess the susceptibility
to gully erosion. Logistic regression (LR) [14,22]; weight of evidence (WoE) [23]; maximum
entropy (ME) [24]; stochastic gradient tree boost (SGT) [16]; frequency ratio (FR) [25];
random forest (RF) [26]; multivariate adaptive regression splines (MARS) [17,27]; index of
entropy (IoE) [28]; certainty factor (CF) [29] and support vector machine (SVM) [30].

All the aforementioned techniques have some drawbacks in the effectiveness of their
predicted results, despite being able to determine gully erosion susceptibility. These dis-
advantages can be reduced through ensemble modeling. Recently, ensemble modeling
has received significant attention in the spatial prediction of natural hazards such as
landslides [31], groundwaters [32], droughts [33] and floods [34] due to improved predic-
tion performance and the ability to deal with complex data [11]. Ensemble methods are
techniques in which a prediction model is formed from a combination of various base
classifiers [35].

WoE and LR have been used in particular in gully erosion susceptibility mapping,
nonetheless, they have their own weaknesses. The main advantage of WoE is that it
calculates the weight of the factors through statistical methods and thus avoids subjective
weighting. In addition, input maps with missing data can be accommodated and have
no significant impact on the result [23]. However, it neglects the correlation between the
factors, which is important in gully erosion susceptibility because the conditioning factors
should not be correlated. LR is able to evaluate the association between conditioning factors
but it cannot analyze the influence of different classes within a conditioning factor [36].
Hence, their drawbacks can be solved and performance improved through their integration.

Starting from such premises, the main objectives of this study were to: (i) determine
the level of influence of environmental conditioning factors causing the occurrence of gully
erosion in the study area and (ii) assess the capability of WoE–LR to predict gully erosion
susceptibility.

2. Materials and Methods
2.1. Study Area

The study area is composed of Kakia and Esamburmbur sub-catchments, which are
30.5 km2 and 15.7 km2, respectively (Figure 1), and are located in Narok County, South-West
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of Kenya. It lies between longitudes 35.83◦ E and 35.93◦ E and between latitudes 1.00◦ S
and 1.10◦ S. The region’s elevation ranges from 1828 to 2147 m above sea level [37]. The
main drainage channel is the permanent Enkare Narok River, which rises from the Mau
Forest and flows through Narok town. The Enkare Narok has two tributaries, which are
the seasonal Esamburmbur and Kakia streams that flow through Narok town and converge
a few meters before draining into it [38]. The catchment experiences bimodal rainfall in a
year [36]. The long rainy season is usually between the months of March and May, while
the short rainy season occurs between October and December. The mean annual rainfall for
the area is 750 mm while the temperature range for the area is between 8 ◦C and 28 ◦C [39].
The main land use/cover in the catchment includes cropland, forests, built-up areas and
shrubs. Cropland, which is the main land use, is made up of crops such as maize and
wheat [38].
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2.2. Methodology

Gully erosion susceptibility was carried out in four steps including: (1) preparation
of a gully inventory which contains locations of gullies in the catchment; (2) preparation
of the gully conditioning factors; (3) gully erosion susceptibility modeling using WoE and
WoE–LR; and (4) model evaluation by constructing the receiver operating characteristic
(ROC) curve and calculating the area under the ROC curve (AUC). Figure 2 is a flow
diagram indicating the methodology used in this study.
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2.2.1. Gully Erosion Inventory

Gully erosion mapping in the Kakia-Esamburmbur catchment was performed through
field survey using GPS and Google Earth satellite images. Figure 3 shows some of the
gully erosion in the study area. Eventually, a reliable and detailed inventory map with
a total of 130 gullies was created. The gully locations were randomly divided into two
groups which include the training (70%) and the validation (30%) sets, and which were
differentiated from one another using a random dividing algorithm [40]. Both the training
and validation sets were merged with an equal number of randomly selected locations
that represent absence of gully erosion [24]. The absence dataset was created in ArcGIS by
using the random-point tool [24].

2.2.2. Conditioning Factors

There are various environmental factors that control the critical conditions for gully
development and these are mainly related to rainfall, topography, soil and land use [18]. In
order to recognize the susceptible areas, good knowledge of the main gully erosion-related
factors is needed. Therefore, conditioning factors were chosen from previous studies [21,41].
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In this study, ArcGIS, QGIS and a system for automated geoscientific analyses (SAGA)
were used to generate and exhibit such a data grid. The conditioning factors that were
used in this study are (1) slope, (2) plan curvature, (3) topographic wetness index (TWI),
(4) distance to streams (m), (5) distance to roads (m), (6) topographic position index (TPI),
(7) stream power index (SPI), (8) sediment transport index (STI) and (9) land use/land cover.
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Slope controls the velocity and volume of concentrated flow thus affecting surface
erosion and soil erosion [18]. Slope was derived from a 12.5 m resolution DEM from
ALOS PALSAR [42] using ArcGIS and ranges from 0% to 42.19% (Figure 4a). Curvature
assessment is important for inferring suitable geomorphological data. Plan curvature
influences slope erosion processes through the convergence and divergence of water fluxes
downhill. In this research, the plan curvature was derived from the DEM with a spatial
resolution of 12.5 m in ArcGIS. The plan curvature values range from−3.2 to 3.2 (Figure 4b).
Plan curvature can be classified into three classes: concave (positive curvature), flat (zero
curvature) and convex (negative curvature) conditions, which were used in this study [36].

Topographic wetness index (TWI) is a secondary topographic factor that is used to
evaluate the hydrological features of a region and is a crucial gully erosion determining
factor. It represents the spatial distribution of wetness conditions [43]. It was calculated
using Equation (1). The ArcGIS software was used for TWI mapping and the values range
from 3.6 to 18.6 (Figure 4c).

TWI = ln
(

Ac

tan β

)
(1)

where
Ac = upstream contributing area (m2) and
β = slope gradient (◦).
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Distance to streams is important in evaluating the role of runoff in gully erosion [44].
Road construction has an adverse influence on hill sustainability at which flow may be
suitable for gullies [18]. They were both calculated in ArcGIS using the Euclidean distance
tool, which will give the distance (m) from each raster cell to the closest stream/road
section [45]. The distance ranged from 0 to 2530 m for streams (Figure 4d) and 0 to 1674 m
for roads (Figure 5a).
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Topographic position index (TPI) is a widely used approach for evaluating topographic
slope location. It is the difference between the elevation of a cell and the average of the
surrounding cells [17]. It was calculated for each cell using the algorithm [46] denoted by
Equation (2) in QGIS using SAGA-GIS. The TPI values for the study area range between
−6.7 and 7 and were divided into five classes (Figure 5b).

TPI = Z0 − Z (2)
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where
Z0 = elevation at the central point and
Z = average elevation around it within a predetermined radius (R).
The stream power index (SPI) has direct proportionality to stream power, which is the

time rate of energy being used, and therefore can be used to estimate the overland flow
erosive power. The SPI reflects the discharge and flow erosive power, which influences
gully erosion susceptibility [47]. A higher value of SPI indicates that the stream has a much
more powerful erosion on the slope surface [35]. The SPI value was calculated from the
DEM in ArcGIS using the Equation (3).

SPI = (Ac × tanβ ) (3)

where Ac is the upstream contributing area (m2) and β is slope gradient (◦). The SPI values
of the study area range between 0 and 13,639 (Figure 5c).

The sediment transport index (STI) has been used to analyze erosion and deposition
processes and topographic effects on soil loss. It was calculated using Equation (4) [28] in
ArcGIS.

STI =
(

Ac

22.13

)0.6( sinβ

0.0896

)1.3
(4)

where Ac is the upstream contributing area (m2) and β is slope gradient (◦). The STI values
in the study range from 0 to 246 and were classified into five classes (Figure 5d).

Land use/land cover (LULC) has a significant influence on hydrological and geomor-
phological pathways due to its direct or indirect effect on infiltration, evapotranspiration,
runoff and sediment dynamics [48]. It also influences nutrients, structure and soil prop-
erties [45]. Vegetation protects the soil against erosion and surface runoff. Roots offer
reinforcement thus increasing shear strength of the soil [45]. The land use/land cover map
was acquired from Sentinel-2 [49] and prepared in ArcGIS. It has seven classes, i.e., trees,
shrubs, grassland, cropland, vegetation aquatic/regularly flooded, bare and built-up areas
(Figure 6).
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2.3. Multi-Collinearity Test

As the independent variable, the above-mentioned conditioning factors were used to
examine the effect of correlation among them. It is a problem in the modeling process if both
predictor variables are strongly related. The problem is known as collinearity. Tolerance
and the VIF (variance inflation factor) are both significant measures of multi-collinearity
identification. Tolerance is the inverse of VIF [50]. The test was carried out in the R software.

2.4. Weight of Evidence Model

The weight of evidence (WoE) is a probabilistic approach model based on a log
linear form of Bayes’ theorem of conditional probability [51]. It has been used for flood
susceptibility mapping [37] and landslide susceptibility mapping [52]. By overlaying gully
locations with each conditioning factor, their statistical relationship can be identified and
assessed to establish whether and how significantly the conditioning factor is responsible
for gully occurrence. WoE is expressed as shown in Equation (5)

P(A|B) = P(B|A)× P(A)

P(B)
(5)

where A represents the presence of a gully and B represents the presence of the gully
conditioning factor. Conditional independence is a very important aspect that should be
considered in the WoE method. Positive, W+ and negative, W- weights are used to calculate
the WoE model. The weight for each B is calculated based on the presence or absence of A
as shown in Equations (6) and (7).

W+ = ln
P(B|A)

P
(

B
∣∣∣∣
−
A
) (6)

W− = ln
p
(−

B
∣∣∣∣A
)

p
(−

B
∣∣∣∣
−
A
) (7)

where P denotes the probability and ln denotes the natural log function. A and
−
A indicate

the presence and absence of a gully, respectively. The presence of a gully conditioning factor

is represented by B, and the absence of a gully conditioning factor is represented by
−
B. A

positive (W+
)

weight explains the presence of the conditioning factor at the gully location
and its value indicates the correlation between the gullies and the gully conditioning
factor [53]. A negative (W−) weight explains the gully conditioning factor’s absence and
indicates the degree of negative correlation [41]. The final weight, Wfinal = W+ −W−

will be used to quantify and indicate the spatial relationship between the effective gully
conditioning factors and gully occurrence. If Wfinal is positive, it indicates a positive spatial
relationship and if it is negative, it indicates a negative spatial relationship [40]. After
applying the WoE model, the weights of the factors Wfinal were summed to produce a map
of gully erosion susceptibility based on the Equation (8) [54].

GESI = ∑ Wfinal (8)

where GESI is the gully erosion susceptibility index.

2.5. Logistic Regression Model

Logistic regression (LR) is a multivariate statistical technique used in the development
of predictive models from either discrete or continuous explanatory variables [18]. LR
allows the development of a multivariate regression association linking a dependent
variable and explanatory variables, which are important in predicting presence or absence
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of an outcome based on values of a set of explanatory variables [51]. In this case, the
outcome is the presence of gullies and the LR is applied to predict variable (Y) that can
be equal to presence of gully (1) or absence of gully (0). The LR uses a logistic function to
assess the association linking the dependent variable and the explanatory variables. The
logistic function is expressed as Equation (9) [52].

P =
1

1 + e−l (9)

where P is the probability of gully erosion occurrence, which varies from 0 to 1 and l is the
linear logistic factor, whose value varies from −∞ to + ∞ and is defined by Equation (10).

l = intercept+b1x1 + b2x2 + . . . + bkxk (10)

where x1, x2 and xk are the explanatory variables and b1, b2 and bk are the coefficients of
the LR model. In this study, LR was performed using the R software and ArcGIS, adopting
forward stepwise regression to select the explanatory variables.

For the LR–WoE ensemble model, the determined class values of the WoE model were
used to create the input for the LR model. The LR model requires a numerical rather than a
categorical dependent variable. In order to address this issue, the weights of the classes of
the conditioning factors were determined using the WoE model. The weights were then
employed to transform the categorical variables into numerical variables. Therefore, all
the classes of the conditioning factors were converted to numerical variables as shown in
Tables 1 and 2. Finally, using the natural break method, the gully susceptibility map was
reclassified into very low, low, moderate, high and very high classes after applying the
LR–WoE model [22].

Table 1. Multicollinearity test statistics of gully conditioning factors.

Parameter Collinearity statistics

Tolerance VIF

Curvature 0.85 1.17
Distance to road 0.83 1.20

Distance to stream 0.92 1.09
Landcover 0.94 1.06

Slope 0.88 1.14
SPI 0.96 1.04
STI 0.41 2.41
TPI 0.88 1.14
TWI 0.40 2.49

Table 2. Weights of conditioning factors Slope, Curvature, TWI, Distance to stream and Distance to
road as analyzed using WoE method.

Factors Class W+ W- Wfinal

Slope (%) 0–4.4 −0.8852 0.0099 −0.8951
4.5–8.1 −0.5559 0.0441 −0.6000

8.2–11.2 −0.3376 0.0359 −0.3735
11.3–16.0 −0.2115 0.1523 −0.3638
16.1–42.1 0.4138 −0.3441 0.7579

Curvature Concave −0.1319 0.0420 −0.1739
flat 0.1961 −0.2273 0.4233

convex −0.3327 0.0938 −0.4266

TWI 3–6.1 −0.4293 0.2090 −0.6383
6.1–7.7 −0.1982 0.0832 −0.2814
7.7–9.6 0.0501 −0.0105 0.0606

9.6–11.8 0.4188 −0.0441 0.4629
11.8–18.7 1.8308 −0.1672 1.9979
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Table 2. Cont.

Factors Class W+ W- Wfinal

Distance to stream (m) 0–38 −0.2149 0.2410 −0.4559
38–89 −0.6371 0.1579 −0.7949
89–150 1.3807 −0.3503 1.7310

150–224 −0.7861 0.0261 −0.8122
224–539 −0.5384 0.0051 −0.5434

Distance to road (m) 0–204 3.8957 −0.2429 4.1387
204–434 0.5204 −0.0521 0.5725
434–683 −0.7537 0.1270 −0.8807
683–959 −0.9306 0.2262 −1.1568
959–1511 0.0563 −0.0442 0.1005

Note: W+ is positive weight, W− is negative weight, Wfinal is W+ −W−.

2.6. Model Evaluation

The model performance was evaluated by drawing the receiver operating characteristic
(ROC) and calculating the area under the curve (AUC). It was generated by plotting the
sensitivity, also known as true positive rate (TPR), on the y-axis, Equation (11) against the
1-specificity, which is the false positive rate (FPR), on the x-axis using Equation (12) [52]. A
ROC of 1 indicates perfect prediction. The model sensitivity is the percentage of existing
gully pixels correctly predicted using the model, while the 1-specificity is the percentage of
predicted gully pixels over the total study area.

y-axis = TPR =

(
TP

TP + FN

)
(11)

x-axis = FPR = 1−
(

TN
TN + FP

)
(12)

where TP stands for true positive, TN stands for true negative, FP stands for false positive
and FN stands for false negative. The TP and TN are the proportions of gully cells that
are correctly classified as gully and non-gully, while the FP and FN are the proportions of
gully cells that are incorrectly classified as gully and non-gully [11]. The AUC is a common
method for assessing models used in prediction of natural hazards [55,56]. The AUC is
calculated using the Equation (13).

AUC =
(
∑ TP + ∑ TN

)
/(P + N) (13)

where P denotes the total number of gullies and N denotes the total number of non-gullies.

3. Results
3.1. Conditioning Factor’s Effect
3.1.1. Multicollinearity Test

The VIF ranges from 1.04 to 2.49, according to the multicollinearity test, while the TOL,
which is the reciprocal of the VIF, ranges from 0.40 to 0.96. (Table 1). VIF values greater than
five, with corresponding TOL values less than 0.2, indicate significant multicollinearity
among factors [57]. The results indicate that there is no multi-collinearity between the
conditioning factors.

3.1.2. Weight of Evidence Model

It is observed that there is a higher chance of gully occurrence at the high slope range
of 16.1–42.1 while the lower slope classes have a low possibility of gully occurrence, which
means the relationship is positive as seen from Table 2. The convex curvature had the
highest Wfinal value, indicating that such areas in the study area are most vulnerable to gully
erosion. From the results it can be seen that higher values of TWI indicate a higher chance
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of gully erosion occurrence while lower values indicate lower chances of gully erosion
occurrence, thus there is a positive association. This can be attributed to the fact that at low
TWI, less runoff is generated and at higher TWI, gully development is encouraged [54].

The results in Table 2 show that there is a higher possibility of gully occurrence near
a road network. This can be seen through the high positive value of the final weight for
the least distance from the roads (Wfinal = 4.1). This can be explained by the fact that the
development of roads leads to soil disturbance which exacerbates gully formation [47].

TPI has a negative relationship with gully erosion. The lowest values of TPI had the
highest Wfinal values while the highest TPI values had the lowest Wfinal values. Table 3
shows that higher values of SPI are associated with higher chances of experiencing gully
erosion and vice versa.

Table 3. Weights of conditioning factors TPI, SPI, STI, LULC as analyzed using WoE method.

Factors Class W+ W− Wfinal

TPI −6.8–−1.5 0.4019 −0.0427 0.4446
−1.5–−0.5 0.2975 −0.1021 0.3996
−0.5–0.5 0.0118 −0.0067 0.0185
0.5–1.6 −0.3065 0.0890 −0.3955
1.6–7.1 −0.8978 0.0529 −0.9507

SPI 0–160 −0.1122 1.3792 −1.4915
160–750 −1.3833 0.0208 −1.4041
750–1925 2.1774 −0.0437 2.2211

1925–4120 3.9965 −0.0769 4.0735
4120–13640 2.9584 −0.0065 2.9649

STI 0–4 −0.1340 0.6750 −0.8090
4–11 0.2549 −0.0254 0.2803

11–27 1.0322 −0.0511 1.0834
27–60 1.7170 −0.0346 1.7516
60–247 1.7125 −0.0056 1.7181

LULC Trees −1.3375 0.0196 −1.3570
Shrubs −0.9576 0.0343 −0.9918

Grassland −0.8827 0.0098 −0.8925
Cropland 0.1143 −1.0517 1.1660

Vegetation aquatic/regularly flooded 3.1360 −0.0066 3.1425
Bare 4.0024 −0.0067 4.0091

Built-up areas −2.1744 0.0553 −2.2296
Note: W+ is positive weight, and W− is negative weight, Wfinal is W+ −W−.

This shows that gully occurrence increases with an increase in SPI. This can be at-
tributed to the fact that SPI is a product of slope and catchment area. It is used in showing
areas of concentrated runoff and thus higher values of SPI indicate higher chances of
experiencing gully erosion. The results also agree with a study carried out by [58].

Lower STI values have lower Wfinal values while higher STI values have higher Wfinal
values. There is a positive association between STI and gully erosion. It indicates that
gully occurrence increases with an increase in STI. This can be attributed to the fact that
STI accounts for topographic effect on erosion. Similar results were also found in research
carried out by [23].

The main land coverages which were identified in the catchment are: trees, shrubs,
grassland, cropland, vegetation aquatic/regularly flooded, bare and built-up areas. The
built-up area is mostly around Narok town at the outlet of the catchment. The bare land
cover class has a high positive final weight (Wfinal = 4.0) while the built-up area has the
highest negative final weight (Wfinal = −2.2).

These results show that there is a positive association between gully erosion occurrence
and bare land while there is a strong positive association between the occurrence of gullies
and built-up areas. From the above results, there is an implication that change in land
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cover/use from forest to agriculture, which increases the presence of bare soil, leads to
gully development in the study area.

These findings agree with [59] who found that there is an association between gully
erosion formation with the change in land cover/use from forest to cropland. Land use
change has occurred in the Kakia-Esamburmbur catchment where forest cover has declined
by 39% and agriculture has increased by 55.4% [39]. These findings are in agreement with
the knowledge that forested areas experience less erosion in the form of gullies than barren
land or wastelands [60].

3.1.3. Logistic Regression Model

The result for the LR model is given by Equation (14).

Z = −23.4199 + (5.519× slope) + (−1.890× curvature) + (7.590× SPI)+
(1.183×Distance to road) + (−5.323× STI)+
(0.639×Distance to stream) + (2.211× TPI)+

(4.154× LULC) + (5.994 × TWI)

(14)

3.1.4. LR–WoE Ensemble Model

The LR–WoE ensemble model developed for prediction of gully erosion susceptibility
in the study area at 10% significance level is given by Equation (15). The significance of the
conditioning factors is shown in Table 4.

Z = −7.026 + (0.061 × TWI) + (0.03 × Distance to stream) + (0.007 × Distance to road) −
(0.023 × STI) + (0.008 × LULC)

(15)

From Equation (15) it is obvious that TWI, distance to stream, distance to road and
LULC have positive coefficients.

This means that these factors are related to the occurrence of gullies in a positive way.
The coefficient of STI, on the other hand, is negative, indicating a negative relationship with
the occurrence of gullies in the study area.

Table 4. Significance levels of the conditioning factors.

Estimate Standard Error Z Value Pr (>|z|)

(Intercept) −7.025994 741.6681 −0.009 0.99244
Curvature −0.003545 0.002803 −1.265 0.20593

Distance to road 0.00677 0.001605 4.218 2.46 × 10−5 ***
Distance to stream 0.002653 0.001544 1.719 0.08569 .

Land use/cover 0.007804 0.003642 2.143 0.03214 *
Slope 0.004048 0.00634 0.639 0.52313
SPI 0.008114 0.030244 0.268 0.78847
STI −0.023267 0.006674 −3.486 0.00049 ***
TPI −0.00194 0.002445 −0.793 0.42765
TWI 0.061095 0.014213 4.299 1.72 × 10−5 ***

Note: Significance codes: ‘***’ 0.001 ‘*’ 0.05 ‘.’ 0.1.

3.2. Gully Erosion Hazard
3.2.1. Weight of Evidence Model

The total weight, which is a result of summing the final weight (Wfinal) values pre-
sented in Tables 2 and 3, is shown in Figure 7. The total weighted map was converted into
five classes: very low, low, moderate, high and very high hazard. It can be seen from the
map that the areas around the forests have very low susceptibility levels. This implies that
increasing forest cover in the Kakia-Esamburmbur catchment can be carried out in order to
reduce soil erosion. The majority of the catchment that has moderate to high susceptibility
levels is agricultural land.
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3.2.2. LR Model and WoE–LR Ensemble Model

A gully erosion susceptibility map was created with the LR (Figure 8) and WoE–LR
ensemble (Figure 9) using Equations (14) and (15), respectively, in ArcGIS interface and
using the Jenks natural breaks classification method, reclassified into five classes (very low,
low, moderate, high and very high) for visual interpretation.

3.3. Model Validation

The model performance was evaluated by drawing the receiver operating characteristic
(ROC) curve. A ROC of 1 indicates perfect prediction. The following is a classification
of the relationship between prediction accuracy and AUC: 0.9–1 equals excellent; 0.8–0.9
equals very good; 0.7–0.8 equals good; 0.6–0.7 equals average; and 0.5–0.6 equals poor [55].
It was found that the WoE model has an accuracy of 62% during training and a validation
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accuracy of 67% as shown in Figure 10. This accuracy level is average but lower than
that obtained by [5] of 79.5% and by [23] of 67.8%. The LR model has an accuracy of
63% and 67% during training and validation, respectively, as shown in Figure 11. The
WoE–LR ensemble performed much better and had an accuracy of 88% during training and
a validation accuracy of 78% as shown in Figure 12.
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4. Discussion

Gully erosion has a two-fold impact on the environment: first, it degrades the surface
and subsurface horizons of the soil, increasing the production of sediment, and second,
it increases surface runoff and decreases groundwater recharge [61,62]. The first step in
managing gully erosion is through gully erosion risk assessment that is conducted using
gully erosion susceptibility models. Susceptibility maps can be helpful to government
institutions, particularly since they can facilitate mitigation decisions for gully erosion [63].
In this research, three approaches along with the GIS technique were used for gully erosion
susceptibility mapping: (1) using weight of evidence, (2) logistic regression and (3) their
ensemble model. Using ROC curves and AUC values, the overall accuracy of the gully
erosion susceptibility models was assessed.
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In gully erosion investigations, it is critical to assess the significance of conditioning
factors in gully susceptibility mapping. The results of the current study also showed that
distance to roads, distance to streams, land use, TWI and STI are the most influential factors
on gully occurrence. The output of the models reveals different gullying susceptibility
value ranges. The results show that gully formation is more likely to develop in regions
that are closer to roads and streams, have sparser vegetation and have higher drainage
densities than other areas. These results are consistent with [17].

Maps showing gully erosion susceptibility classified areas of the basin with low slopes
and close proximity to roads/paths as having high and extremely high susceptibility. In
contrast, forest regions with steep slopes showed low susceptibility to gully erosion. In
the forest, roughness due to vegetation cover may result in medium runoff factors in this
area as well, resulting in a low concentrated flow force of degradation [63]. The outcomes
further showed that the LR model’s prediction accuracy was improved by combining the
WoE method with the LR approach. Therefore, rather than employing a single model that
is tailored to each study area, it is crucial to assess the efficacy of a combination/ensemble
of multiple models.

5. Conclusions and Recommendations

Gully erosion can lead to damage to the environment and agriculture lands thus
leading to migration and less agricultural productivity. Many methods have recently been
used to assess gully erosion susceptibility. In this paper, the WoE model and a proposed
WoE–LR model were used to produce a gully erosion susceptibility map.

Nine conditioning factors were used including: slope, plan curvature, distance to
streams (m), distance to roads (m), topographic position index (TPI), topographic wetness
index (TWI), stream power index (SPI), sediment transport index (STI) and land use/land
cover. Using the natural break method, the susceptibility maps were classified into five
susceptibility classes (very low, low, moderate, high and very high). The WoE technique pro-
duced a map of areas susceptible to gully erosion with a prediction accuracy of 62% while
the LR model and the WoE–LR ensemble had an accuracy of 63% and 88%, respectively.

These results show that an ensemble model performs better than an individual model.
Amongst the conditioning factors, it was found that STI, land use/cover, TWI, distance
to stream and distance to road had the most influence on the occurrence of gullies. The
areas that were found to have low susceptibility include the forested areas and also near
the already developed Narok town. The areas where agriculture is practiced and next to
the roads were found to more susceptible to gully erosion.

The Kakia-Esamburmbur faces major land degradation due to loss of top fertile soil
caused by water erosion. The susceptibility map can be used as a basic rule of thumb refer-
ence for land management in the Kakia-Esamburmbur catchment. The proposed ensemble
model and gully erosion susceptibility map should be helpful to environmentalists and
engineers for future planning and management.
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Abstract: Satellite observations (Copernicus Sentinell-1) can supply antecedent soil moisture data,
which helps to predict thresholds triggering runoff and runoff volume. In the paper, we developed
a runoff correction factor to the USLE, using rainfall and satellite antecedent soil moisture data,
following the approach of the modified USLE models such as the USLE-M and USLE-MM. The
runoff and soil loss estimations accuracy are validated by plot-scale measurements (2008–2020 period)
provided by SERLAB (Soil Erosion Laboratory) of the University of Perugia. The results show
that the event rainfall depth added to the antecedent soil moisture is a fairly suitable predictor of
the runoff. Using the simulated runoff in a USLE-MM model, the capability to predict event soil
losses is enhanced with an RMSE = 0.57 Mg/ha lower than the RMSE ≈ 3.1 Mg/ha obtained by the
USLE model. Using a modified USLE model, albeit with remote estimated runoff data, is still more
advantageous at the event scale than the USLE model, which does not consider the runoff. These
results are particularly significant for the estimation of runoff and soil losses. Satellite data shows
the potential of applying the modified USLE models for large-scale monitoring and quantification of
event soil erosion and runoff.

Keywords: USLE; remote sensing; soil water erosion; Copernicus Sentinel-1; runoff thresholds;
runoff generation; rainfall runoff erosivity factor; runoff models; erosion models; hydrological
processes seasonality

1. Introduction

Several models (empirical, conceptual, physical, and process-oriented) have been
proposed to estimate soil loss at different spatial and temporal scales [1,2]. The empirical
approaches, among which the Universal Soil Loss Equation (USLE) and its subsequent
updates (RUSLE and RUSLE2) [3] dominate, continue to find a wide application at all
the spatial scales [4,5]. The reason for this diffusion of USLE models is to be found in the
relative ease of application and reliability of the estimates [6]. The growing availability of
remote sensing data, useful for quantifying USLE factors [7], has increased its popularity
even more. On the other hand, the original USLE model [8], developed to predict the long-
term average annual soil loss, cannot be considered the most effective tool for planning
soil conservation measures since a large fraction of the total soil loss in a given area
is due to a relatively few large storms [9,10]. The most common way to improve the
reliability of the USLE model at the event scale is to modify the rainfall erosivity factor
by multiplying it by the runoff coefficient (i.e., the ratio of the event runoff to the event
rainfall depth) as in the USLE-M [11] and USLE-MM models [12,13]. Runoff, however,
is not just a function of certain constant characteristics of the soil and the space-time
characteristics of the rainfalls. On the contrary, using runoff means knowing how to
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predict it with reasonable precision through sufficiently accurate models, applicable in
most cases. Todisco et al. [14] explained that although the modification of the erosivity
with the runoff coefficient makes the USLE/RUSLE model more accurate at the event
scale, it also makes its application more difficult, given the poor availability of runoff
measurements. This problem can be solved by employing rainfall runoff simulation models,
but in the literature, there are only a few examples of the application of USLE/RUSLE
models in combination with rainfall runoff models [14–16]. The reason lies in the complexity
of the rainfall runoff processes, which depend on several interacting factors, such as
topographic characteristics, meteo-climatic conditions (including rainfall intensity and
duration), lithological and hydraulic properties of soils, vegetation cover types, agricultural
practices, etc. [17–20]. A recent approach to this problem is investigating the threshold
patterns in stormflow resulting from changes in antecedent moisture conditions such as
antecedent volumetric water content (θ), Antecedent Soil Moisture Index (ASI), degree of
saturation (Sr), or a combination of these with cumulated rainfall, P, (e.g., ASI + P). The
ASI index was introduced by [21]; it is expressed in mm, and it is defined by the product
of the average volumetric water content (θ) and the depth of investigation (D). Some of
these parameters are widely available all over the Earth as satellite data. Detty et al. [19]
highlighted a high correlation between ASI + P and quick flow volumes for 13 runoff events,
investigating runoff generation mechanisms in till-mantled headwater catchment (NH,
USA). Penna et al. [22] proposed a threshold between θ and streamflow, analyzing a small
alpine headwater catchment located in the Italian Dolomites. In detail, soil moisture and
streamflow started to rise concurrently during wet conditions, while soil moisture peaked
earlier than streamflow during dry conditions. In addition, runoff resulting from changes in
antecedent moisture conditions was investigated. Ali et al. [23] reported different nonlinear
input-output relationship shapes, such as the hockey stick shape [24], step function (or
Heaviside) [25], Dirac function [26], and sigmoid function [27]. Threshold behavior in
different ecohydrological processes (e.g., runoff generation) is strictly related to the spatial
and temporal scales, climatic conditions, and physical controls. Following [23], other
studies focused on the hydrologic response threshold values, trying to explain what might
drive the differences among the sites. [28], noticed differences in runoff coefficients and
hydrological dynamics between summer and fall/spring rainfall events, which were related
to ASI + P. The study on a small, forested catchment in the Italian Pre-Alps equipped with
soil moisture probes, weirs, and piezometers suggested a mix of intensity-dependent and
wetness-dependent processes (ASI + P) controlling the runoff production mechanism. As
reported by [29], seasonal variations in the threshold behaviors depend on vegetation
canopy interception and wet/dry conditions. Scaife et al. [30] obtained different ASI + P
thresholds on three forested catchments in North Carolina (USA). In these cases, maximum
hourly rainfall intensity had a relatively small effect on quick flow generation compared
to ASI + P. The authors presented straight lines above and below the thresholds, which
are useful to compute the runoff based on ASI + P values. The role of P and ASI + P
on the surface, subsurface, and epikarst seepage runoff (SR, SSR, and ESR) have been
recently investigated in twelve 5 × 20 m karst plots in southwest China [31]. Based on
the various shapes of the relationship between P or ASI + P and runoff [23], different
models for karst slopes, such as hockey stick, step function, and the sigmoid function,
have been detected [31]. Therefore, using P or ASI + P to derive generation thresholds
(triggering stormflow), rise thresholds (rapid responses of stormflow), and predict runoff is
challenging. The cited studies are focused on equipped small catchments or plots, where
the volumetric water content is monitored continuously to capture the moisture content
before the stormflow event. Unfortunately, the water content is not monitored in most of
the small catchments worldwide, and when done, the data acquired may not represent
the whole basin. Moreover, soil moisture equipment for continuous monitoring, especially
those working at low frequency, needs to be calibrated before their use in the field to
improve the reliability of measurements [32–36]. Nowadays, the increased detail of remote
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sensing satellite data products can provide information on moisture conditions in the first
centimeters of soils, making available information helpful for defining runoff thresholds.

In this framework, the general objective of the present work is to investigate the
possibility of using satellite soil moisture data to predict runoff thresholds, runoff and soil
loss on an experimental plot (8 × 22 m) at the SERLAB experimental station (central Italy),
characterized by fine fluvial-lacustrine deposits. The specific objectives are (i) to investigate
the hydrologic response threshold values and dynamics with satellite soil moisture and
rainfall data and (ii) to predict soil loss at the event scale with a USLE-MM model coupled
with runoff models based on rainfall and satellite soil moisture data. Soil moisture data
from Copernicus Sentinel-1 are integrated with data acquired on the ground (rainfall and
runoff) at SERLAB. Runoff thresholds are presented by considering the seasonality and
intensity of the events. Similar to the Scaife et al. [30] approach, the empirical runoff models
below and above the thresholds are defined and coupled with the USLE-MM model to
simulate the event of soil loss.

2. Materials and Methods
2.1. The SERLAB Experimental Station and the Runoff/Soil Loss Database

The Masse experimental station for soil erosion measurement of the Perugia University
(SERLAB, Soil Erosion LABoratory, Figure 1) was established in 2007. It is located 20 km
south of Perugia (42◦59′34′′ N 12◦17′27′′ E) in the Umbria region, central Italy. The station
includes twelve plots:

- Four plots of 8 × 22 m2;
- Two plots of 4 × 22 m2;
- Two plots of 4 × 11 m2;
- Two plots of 2 × 11 m2;
- Two microplots of about 1 × 0.92 m2.
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Figure 1. View of the Masse experimental station, SERLAB (Central Italy). (42◦59′34′′ N 12◦17′27′′ E).

All plots are oriented parallel to a 16% slope. The area has a characteristic Mediter-
ranean climate with an average annual rainfall of about 900 mm. The soil texture is
silty-clay-loam (clay = 34%, silt = 59%, and sand = 7%) and the gravel content is negligible.
The soil structure, massive when the soil is wet, becomes weak, fine, subangular, and blocky
upon drying.
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Each plot is equipped with a runoff collection system whose capacity (0.86 to 2.72 m3)
varies with the plot size. When a rainfall event producing runoff occurs, the collected
volume is analyzed to measure the sediment concentration in the tanks and to derive the
soil loss. All the plots (except for the first two on the right in Figure 1) are maintained in
cultivated fallow through frequent tillage operations to remove any spontaneous vegetation
and obliterate the presence of any rills formed during erosive events. The consistency of
the data set is over 600 measures of event runoff and soil loss. Furthermore, the climatic
station (tipping-bucket rain gauge, anemometer, thermometer, hygrometer) located within
the experimental site provides the complete time series of climatic data since 2007 at a
5 min resolution. More details about the experimental schemes, technical features, and
procedures of SERLAB can be found in previous papers [6,12–14,37,38]. For the study, only
the data of one plot (8 × 22 m2) were considered. This plot was equipped with a sonic
distance sensor that enabled a detailed analysis of runoff formation and accumulation
dynamics in the collecting tanks.

2.2. USLE Models for Soil Loss Estimation at the Event Scale

The original USLE equation for the estimation of the mean annual soil loss [8] has the
following expression:

A = RKLSCP (1)

where A (Mg ha−1 year−1) is the mean annual soil loss per unit area, R = EI30
(MJ mm ha−1 h−1 year−1) is the mean annual rainfall erosivity calculated as the prod-
uct of the rainfall kinetic energy E (MJ ha−1) by the maximum 30 min rainfall intensity
observed during the event, I30 (mm h−1), K (Mg ha h ha−1 MJ−1 mm−1) is the soil erodi-
bility factor, L (dimensionless) is the slope length factor, S (dimensionless) is the slope
steepness factor, C (dimensionless) is the cover-management factor, and P (dimensionless)
is the support practices factor.

Equation (1) can also be used to estimate the soil loss at event scale Ae (Mg ha−1)
using the erosivity factor of the single event Re. A normalized value of the event soil loss
Ae,N can be obtained as:

Ae,N =
Ae

LSCP
= ReK (2)

Equation (2), however, tends to overestimate the lowest and underestimate the highest
values [11]. The reason for this systematic error is the lack of explicit consideration of
runoff. Various authors have proposed modifications to the USLE model to consider this
aspect. The best-known models are the USLE-M, proposed by Kinnell and Risse [11], and
the USLE-MM, proposed by Bagarello et al. [12]; both models include the runoff to correct
the erosivity factor that becomes, actually, a rainfall runoff factor. The following expression
can describe the two models:

Ae,N = (QRRe)
αKu (3)

where QR (mm/mm) is the event runoff coefficient, defined as the ratio of runoff volume Q
(mm) and rainfall volume P (mm), with α = 1 in the USLE-M and α > 1 in the USLE-MM
and where Ku is a modified erodibility factor that varies with the selected model.

The use of the USLE-MM model proved to be more efficient than the USLE-M model in
the Italian experimental sites of Sparacia (Sicily) and Masse SERLAB [6]. In [6], based on the
532 measures of the SERLAB data set from 2008 to 2015, model (3) was parametrized with
Ku = 0.0896 and α = 1.0479. Other attempts were made in [14] that modified Equation (3)
using soil moisture in place of the runoff coefficient in the rainfall runoff factor, deriving
the model named Soil Moisture For Erosion, SM4E.

In this work, the possibility of using in the USLE-MM model the QR estimated by
models based on the integrated use of satellite soil moisture data and event rainfall depth
(i.e., QR = f[(ADSI + P)]/P) is evaluated and discussed. To focus the analysis on this
objective, the USLE-MM model will be parametrized using the data selected in this study
and deriving from the intersection of the SERLAB and Sentinel-1 data sets. The efficacy of
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the methodology is tested by comparing the estimated runoff, runoff coefficient, and soil
loss with the corresponding measures available in the SERLAB data set.

2.3. Monitoring Soil Moisture from Satellite Data

The European Copernicus Project (Copernicus Global Land Service—CGLS), in service
since 2013, aims to provide timely and high-quality essential bio-geophysical information
and climate variables on the Earth′s surface on a global scale. The satellite product data
(e.g., land surface temperature, water bodies area, vegetation index, soil moisture, etc.)
make it possible to monitor the status and evolution of vegetation, energy cycles, and
water on a global scale [39,40]. The Sentinel-1 mission comprises a constellation of two
identical radar imagery satellites in the same orbit; Sentinel-1A was launched in April
2014 and Sentinel-1B in April 2016. Specifically, the Sentinel-1 SAR satellite sensor can
derive the Copernicus Global Land SSM (Surface Soil Moisture) product that describes
the soil moisture of the first 50 mm of soil on a 1 km (0.1◦) spatial sampling. SSM1 km
data are derived from observations using the model TU-Wien-Change-Detection [41–43].
Since January 2015, the Copernicus SSM 1 km product has been available for the Euro-
pean continent per individual location every 3–8 days, and since October 2016, every
1.5–4 days (thanks to Sentinel-1B satellite) in general. The SSM1 km products can be
requested and downloaded free of charge from the website https://land.copernicus.eu/
global/products/ssm (accessed on 10 January 2022), with the following naming standard:
c_gls_SSM1 km_<YYYYMMDDHHMM>_CEURO_S1CSAR_<VX.Y.Z>.nc., where <YYYM-
MDDHHMM> gives the temporal location of the file. The SSM1 km products include a
netCDF4 file containing full resolution bands (ssm and ssm_noise), an XML file containing
the metadata, and a colored geo-tiff file.

Sentinel-1 derives SSM(t) (Surface Soil Moisture at t time) directly from the observed
radar backscatter; the changes in backscatter are interpreted as changes in soil moisture,
while other surface properties such as geometry and roughness, and vegetation structure
are interpreted as static parameters. The incidence angle dependency of the backscatter
is modeled by the linear slope parameter, which allows normalization to a common ref-
erence observation angle (θr = 40◦). The model parameters describe maximum dry and
wet conditions and average signal contributions from vegetation and surface geometry.
The long-term backscatter measurements are used to derive dry and wet soil conditions
(parameters σ0

dry(40) and σ0
wet(40)) from the radar backscatter signal [44]. The relative

surface soil moisture is given by:

SSM(t) =
σ40(t)− σ0

dry(40)

σ0
wet − σ0

dry
(4)

SSM(t) represents a degree of saturation and ranges between 0% and 100% [40]. The
volumetric water content SSMa(t) can be obtained by introducing the soil porosity (n)
as follows:

SSMa(t) = n
SSM(t)

100
(5)

As reported in the introduction, identifying runoff thresholds by empirical approaches
requires the knowledge of the antecedent soil moisture content, i.e., SSMa(t) at the time (t)
just before the rainfall event triggering runoff. Since the first centimeters of soil layers are
often tilled and, therefore, the porosity is very variable in space and time [45–47], obtaining
SSMa(t) values from SSM(t) is not possible. In other words, SSMa(t) values obtained by
Equation (5) may not be reliable. A possible way to overcome this problem is using SSM(t)
satellite data to calculate the Antecedent Degree of Saturation Index (ADSI) similarly to
ASI in [21]:

ADSI = h
SSM(t)

100
(6)
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where h is the thickness of the investigated soil, which is the first 50 mm for satellite
observations, and ADSI is expressed in mm.

For this investigation, the SERLAB data set overlapped with the SSM1 km data by
Copernicus Sentinel-1 available from January 2015. Considering that SSM(t) data are not
continuous, only rainfall runoff events that occurred concurrently or just after the satellite
SSM(t) measures were selected for the analysis.

3. Results
3.1. SERLAB Data Set

Forty-seven measurements were captured by overlapping the SSM1km Copernicus
Sentinel-1 and the SERLAB data set; eighteen correspond to rainfall events that did not
produce runoff, and three lacked soil loss measures. Table S1 shows the information
available for the crossing set of data. From the SERLAB data set, the rainfall depth (P),
runoff event (Q), and the soil loss, Ae, for the erosive events and other rainfall characteristics
along with the corresponding date of occurrence are extracted. From Copernicus Sentinel-1,
the corresponding SSM values with the date of satellite data acquisitions are extracted.

Most runoff values are lower than 2.0 mm (about 83% of the observations), while the
others are higher than 5 mm, with a maximum value of 15.5 mm. The no runoff events
(about 38% of the observation) have rainfall depth, P, lower than 10.0 mm, while the runoff,
along with the soil loss, occurs for rainfall higher than 18.8 mm. Overall, the maximum P is
about 87.4 mm, with a mean value of 30.4 mm. Six runoff events occurred with antecedent
SSM(t) higher than 80%, one of which contributed to producing the highest runoff and
erosive event during the autumn–winter season coupled with a cumulated rainfall of about
68.8 mm. The maximum rainfall intensity in 30 min, I30, varies between 2.0 and 54.0 mm/h,
with three events over 40.0 mm/h and soil loss values higher than 17.0 t/ha. These events
in the data set are surveyed as rill events while the others are classified as interrill.

3.2. Definition of the Relationship between the Runoff and the ADSI + P

The rainfall data compared with the runoff values measured at SERLAB since 2008 con-
sist of about a hundred measures (Figure 2a). Data points for which Copernicus SSM1km
data are available (Table S1) are highlighted in Figure 2a. As expected, P values do not
explain the runoff processes alone (i.e., for the same rainfall event, different runoff values
correspond). Hence it is impossible to derive an accurate mathematical relationship esti-
mating runoff from rainfall only. Therefore, when available, we tried to improve the runoff
prediction model by correcting the rainfall depth with the antecedent soil moisture condi-
tions. Although the consistency of the database is drastically reduced (47 measurements),
a first attempt to improve the runoff estimation was carried out. Similar to the widely used
approach that relates runoff and (ASI + P), the runoff values have been associated with
ADSI + P (Figure 2b). Multiple thresholds are highlighted under the hypothesis that the
data set can be classified on the basis of the season of occurrence. By separating the data set
into the autumn–winter and the spring–summer events and according to [29], it is possible
to identify the generation threshold (occurring at ADSI + P = 38.0 mm), the rise threshold
for spring–summer events (ADSI + P = 63.2 mm), and the rise threshold for autumn–winter
events (ADSI + P = 93.2 mm). In this analysis generation threshold corresponds to the
ADSI + P value triggering runoff, while rise thresholds identify the ADSI + P values when
the runoff behavior changes mainly due to the specific characteristics of the rainfall graph.
Therefore, the rise thresholds separate events in high from the low hydrological response.
A single linear model has been fitted to the events with low runoff (lower than 2.0 mm)
to obtain an empirical relationship between ADSI + P and the runoff. Although runoff
events higher than 2.0 mm are few, straight lines are used to describe the high runoff events
maintaining the seasonal classification. This procedure seems to be viable even if, in this
case, the few data available do not provide certainty that the hypothesis is reliable. The
regressions models that are also drawn in Figure 2b, are as follows:
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- For autumn–winter events

Q = 0.0188 (ADSI + P)− 0.503 38.0 < ADSI + P < 93.2 R2 = 0.390 (7a)

Q = 0.814 (ADSI + P)− 75.826 93.2 ≤ ADSI + P < 109.0 R2 = 0.934 (7b)

- For spring–summer events

Q = 0.0188 (ADSI + P)− 0.503 38.0 < ADSI + P < 63.2 R2 = 0.39 (8a)

Q = 0.425 (ADSI + P)− 26.823 63.2 ≤ ADSI + P < 84.0 R2 = 0.824 (8b)

The analysis indicates that some spring–summer events cannot be explained only by
the ADSI + P approach (the three events indicated with triangles in Figure 2b). These three
events are classified as rill in the SERLAB data set (Table S1) and have not been included in
the regression analysis to determine the models given in Equations (7a,b) and (8a,b). This
choice is discussed later in the paper. Moreover, few events behave differently, deviating
from the linear regression models proposed. For example, point no. 15 in Figure 2b
(occurring in September 2016, Table S1) provides a low runoff than that predicted by the
spring–summer rise threshold model (Equation (8b)); the point no. 22 (occurring in May
2018, Table S1) is among the spring–summers but behaves like the autumn–winter ones.
This latter event is characterized by one of the most prolonged duration (12.33 h), and it is
preceded by very wet soil conditions (SSM(t) = 76%).
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Figure 2. Runoff events separated into spring–summer and autumn–winter periods. (a) Runoff
vs. event rainfall depth (P) for the 2008–2020 period; (b) Runoff vs. the sum of Antecedent Degree
of Saturation Index and P (ADSI + P), with generation threshold and rise thresholds for the two
periods (only events with Copernicus SSM1km data available are considered, Table S1). The numbers
associated with some selected events in Figure 2b refer to Table S1.

3.3. Estimation of the Runoff, Runoff Coefficient, and the Soil Loss

The functions Q = f (ADSI + P) given in Figure 2b (Equations (7a,b) and (8a,b)) have
been used to estimate the runoff (Q) from ADSI data and the gauging station P records. The
comparison between the estimated and measured runoff (Table S1) is given in Figure 3a. In
Figure 3b, the same comparison is presented in terms of runoff coefficients (QR).
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The highest estimation errors derive from the events nos. 15 and 22 (Table S1). Al-
though these events have ADSI + P values higher than the rise threshold ones, the measured
runoff is lower than those estimated by steeper linear models. The root mean square errors
(RMSE) associated with the estimated runoff (Figure 3a) are 0.8, 4.17, and 2.78 mm, for the
autumn–winter, spring–summer, and overall data set, respectively. The RMSE obtained for
the spring–summer, and overall data sets are very negatively affected by events 15 and 22
(Figure 3) already mentioned above in the paper. However, even excluding these events, the
RMSE for spring–summer events becomes 2.0 mm, remaining higher than autumn–winter
events. Similar considerations can be made for the runoff coefficient (Figure 3b). In this
case, the RMSEs for the different data sets are 0.02, 0.07, and 0.05 for the autumn–winter,
spring–summer, and overall data sets, respectively (average 2.14 mm).

The 27 events for which the soil loss measures are available (Table S1) are used to
parametrize a USLE-MM model. This model is optimized for this study but is not to be
intended as representative of the full SERLAB data set (2008–2020).

Referring to the parametrized USLE-MM model (Equation (3)), the regression analysis
in Figure 4 for the data set in Table S1 gives Equation (9).

Ae,N = 0.0317(QRRe)
1.1038 (9)

Using Equation (9), with the QR values calculated as the ratio between the runoff
calculated from the satellite and rainfall data (Q = f (ADSI + P), Equations (7a,b) and (8a,b)),
and the corresponding P, the normalized soil loss Ae,N was estimated. Figure 5 compares
these Ae,N values and those estimated by Equation (9) using the measured QR (Table S1).
Most events are distributed around the 1:1 line, thus indicating a moderate effect on the
USLE-MM model prediction by using a QR estimated by satellite and rainfall data instead of
the measured one. The role of the season does not appear particularly marked. In addition,
in this case, the estimation errors are very negatively affected by the events commented on
above in the paper. In particular, for the event no. 22, there is a relevant overestimation
of the soil loss deriving from the estimated runoff. Events nos. 15 and 34 provide the
same kind of error, although less. Opposite consideration can be done for the events nos.
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12, 47, and 46. The graph in Figure 5 is bi-logarithmic to visualize better the low events
otherwise grouped around the origin of the axes. Meanwhile, this representation enables
one to appreciate the goodness of fit of the higher values of soil loss, which greatly affects
the quantification of the erosion process over a long period.
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Figure 5. Comparison between the soil loss estimated by Equation (4) with the QR measured and
estimated as the ratio between the runoff, Q = f (ADSI + P), Equations (7a,b) and (8a,b), and the
corresponding measured rainfall P. Blue dots and orange diamonds indicate autumn–winter and
spring–summer events, respectively. The numbers associated with some selected events are referred
to in Table S1.

The estimation error of the runoff and runoff coefficient results in a noticeable worsen-
ing of soil loss estimation. In Figure 6, the observed values Ae,N are compared with those
estimated by the USLE-MM model (Equation (9)) in two conditions: with QR measured and
with QR derived from satellite and rainfall data (Q = f (ADSI + P) by using Equation (7a,b)
for autumn–winter events, Equation (8a,b), for spring–summer events.
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Figure 6. Goodness of fit of the soil loss measured and estimated by the USLE-MM model
(Equation (9)) with QR measured and estimated by Equations (7a,b) and (8a,b). Blue dots and
orange diamonds indicate autumn–winter and spring–summer events, respectively. The numbers
associated with some selected events are referred to in Table S1.

In terms of RMSE, the estimation errors are similar, 0.46 and 0.57 t/ha, respectively,
but as expected, are higher when the ADSI + P data are used to calculate the runoff instead
of QR measured. In addition, in this case, the results are very negatively affected by the
events with nos. 12, 15, 22, 34, 46, and 47 (Table S1).

4. Discussion

The data set used for the analysis included events with records of satellite soil water
content (expressed by the index ADSI), and rainfall (P), runoff (Q), rainfall erosivity (Re),
soil loss (Ae) measured at plot scale (SERLAB experimental field). Four different behaviors
can be identified when plotting the points in a cartesian plane (Q vs. ADSI + P, Figure 2b).
First of all, the three events classified as rill in the SERLAB data set show behavior on
their own, with a very high hydrological response (runoff and soil loss) at a medium
ADSI + P value. A specific model describing rill events has not been built due to the small
data set. Classifying of the events in rill/interrill is also possible according to specific
activation thresholds [48,49] based only on widely available rainfall graph characteristics.
In particular, the three recognized rill events are characterized by Re values (Table S1)
higher than or very close to the value Re = 359 mm ha−1 h−1 proposed in [49] as the
threshold for the rill erosion process activation at the SERLAB. In addition, in terms of I30,
these events differentiate from the others (Table S1, Figure 2b).

Another group of five events (nos. 1, 4, 12, 26, and 45 in Table S1) shows an inter-
mediate hydrological response (runoff and soil loss) at a medium ADSI + P. Three of
them enable the determination of the summer-spring relationship above the rise thresh-
old (Equation (8b)) and the other two the analogous line for the winter-autumn period
(Equation (7b)). In addition, in this case, it is possible to explain the specific behavior of this
group in terms of hydrological response, mainly based on the characteristics of the rainfall
graph. The two events intercepted by the autumn–winter rise (nos. 26 and 45) are char-
acterized by mean intensity (IM), generally much lower than the events belonging to the
spring–summer rise (nos. 1, 4, and 12). An exception is represented by event no. 4, which
has an IM only slightly higher than those of events 26 and 45. However, a detailed analysis
of the rainfall graphs of the spring–summer events (nos. 1, 4, and 12) revealed that these
consist almost entirely of a single shower (“burst”) to which more than 90% of rain belongs.
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Autumn–winter events, instead, have their total precipitation distributed in numerous
showers. Evidently, events with higher IM and more concentrated volumes over time (as
typically occurs for summer events) can lead to a more rapid decay of the infiltration rate
and an earlier occurrence of the runoff with the same ADSI + P. The last two groups show,
respectively, null runoff response at low ADSI + P and low hydrological response (runoff
and soil loss) at a medium ADSI + P. The models predicting Q from ADSI + P data were
derived based on this classification. The segmented linear regression models with a low
slope for low hydrological response and a high slope for high hydrological response, in
the literature, are named “hockey stick” behavior [23] and seem the most appropriate to
describe the relationship between the ADSI + P and Q in the database analyzed. A different
hockey stick model was associated with “spring–summer” and “autumn–winter” groups,
respectively, with a higher rise threshold for the latter.

The performance of the Q = f (ADSI + P) models is fairly satisfactory, estimating quite
accurately both the low and high runoff (Figure 3). This result is very important as the
most intense events, although rare, are those that produce the greatest runoff and soil loss.
It is widely recognized [6,10] that the annual soil loss is produced almost entirely by a few
very intense events that modify the hydrological connectivity and drag downstream the
detached material only partially displaced by less intense events.

This fact results in a pretty suitable estimate of the event soil loss when the runoff sim-
ulated with the inferred models is used to input the USLE-MM (Equation (9)). As expected,
the USLE-MM model provides a less accurate estimate with a slightly higher RMSE (0.57) if
compared with the performance obtained using the measured
QR (RMSE = 0.49) with a more scattered point cloud (Figure 6). However, the bench-
mark for the correct assessment of the USLE-MM (Equation (9)) with runoff coefficient
derived from satellite and rainfall data ADSI + P is the performance of USLE-derived
models that include predicted runoff coefficient [14,15,50]. Todisco et al. [14], analyzing a
SERLAB database of about 60 plot soil loss values (average 3.5 Mg/ha) and the estimated
soil loss by a USLE-MM model coupled with MISDc model [51], found RMSE = 2.96 Mg/ha.
We obtain a moderately worse result by using the Q values obtained by the presented
models (Equations (7a,b) and (8a,b)) in Equation (9): RMSE 0.57 Mg/ha compared to an
average of 0.35 Mg/ha.

Furthermore, the differentiation of the rainfall runoff models according to the season
(autumn–winter and spring–summer) agrees with the results obtained by [14] when stating
that the hydrological behavior is different for summer and winter rainfalls due to the
particular characteristics of summer rainfall events in central Europe [48]. As a consequence,
the performance in the estimation of the soil loss differs whether evaluated for the entire
data set or separately for the two seasons, being much better for the autumn–winter period.
The small database considered and the resulting uncertainty about the “hockey stick”
relationships identified may certainly have negatively affected the results.

Due to the small data set available, we used all data to create the predictive rela-
tionships, representing the main weak point of the analysis. Hence, it was impossible to
validate the relationships using an independent data set. Unfortunately, in recent years, in
which satellite data are available, few rainy events were able to produce runoff and soil
loss at SERLAB. Therefore, the relationships derived (Equations (7a,b) and (8a,b)) and the
actual contribution of the antecedent soil water content in the accuracy of runoff prediction
has to be considered as a preliminary result. The study aims mainly to show the concept,
which will have to be confirmed with further measures. On the other hand, runoff is a
very complex process depending on several components such as locally specific rainfall,
crop and soil use, soil conditions, and slope [52]. In this context, the satellite moisture data,
even at low resolutions, can represent an explanatory variable helpful in improving the
accuracy of the runoff estimate, especially when in-field monitoring data are unavailable.
This is demonstrated by the growing use of Copernicus SSM1km data for hydrological
applications, even at the slope scale [14,53–55].
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Furthermore, it is necessary to underline that the performance obtained is better than
that provided by the original USLE model, which is still the most widely used model for
estimating soil loss, given the difficulty in measuring runoff. In fact, by applying the USLE
model (Equation (2)) with the soil erodibility factor K = 0.02 estimated from the SERLAB
database (2008–2020), we obtain for the data set of Table S1 an RMSE ≈ 3.1 Mg/ha that
is much higher than the value (RMSE 0.57 Mg/ha) derived using Q = f (ADSI + P) in
Equation (9). Therefore, using a USLE-MM model (albeit with remote estimated runoff
data) is still advantageous at the event scale compared to the USLE model, which does not
consider the runoff.

5. Conclusions

The work analyzed the Masse SERLAB data set of erosive and non-erosive events,
jointly with that derived from Copernicus Sentinel-1 of surface soil moisture (from 2015
onward). The events simultaneously present in the two data sets were extracted and
analyzed. For these events, we have all the erosion data: soil loss (Ae), runoff event (Q),
runoff coefficient (QR), and rainfall data (P, I30, Re), and at the same time, the surface soil
moisture (SSM) and the corresponding Antecedent Degree of Saturation Index (ADSI) in
the first 50 mm of the soil. The data set was analyzed with the dual purpose of verifying
the possibility of identifying a relationship between ADSI + P and Q and evaluating the
possibility of using these models to estimate the runoff Q and the corresponding runoff
coefficient QR. The estimated runoff coefficient has also been used in a USLE-MM model to
estimate the soil loss event. The following findings were achieved:

1. As expected, the event rainfall depth (P), if corrected with the corresponding ADSI
value, does explain the runoff process reasonably well, at least with the available data;

2. By separating the data set into the autumn–winter and the spring–summer events, it
is possible to identify the generation threshold (ADSI + P value triggering runoff) and
the rise thresholds (ADSI + P values at which the runoff behavior changes, Table S1);

3. The relationship Q = f (ADSI + P) was derived for spring–summer events and autumn–
winter events (Equations (7a,b) and (8a,b));

4. Using a USLE-MM model (albeit with remote estimated runoff data) is still advanta-
geous at the event scale compared to the USLE model.

The small database considered and the resulting uncertainty about the relationships
identified may certainly have negatively affected the result. The database used is not large
enough to interpret the results correctly. In particular, there is a double open question:
the events that it was possible to analyze (as they fall within the temporal intersection of
the two databases) are few in absolute terms; furthermore, the number of rill data is low
in the Masse SERLAB data set, and this prevented an overall assessment of events with
high runoff. Future developments could use other erosion databases to make the analysis
more robust.

We highlight that the obtained results open interesting scenarios in the overview
of the studies aimed at defining USLE-derived models that could improve the unit soil
loss estimation at the event scale. In particular, the choice of using SSM data to estimate
the runoff is very important for the practice. Moreover, remote sensing soil moisture
data are widely available globally. Satellite data shows the potential of applying the
developed USLE-derived model for large-scale monitoring and quantification of the soil
erosion process.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w14132081/s1, Table S1. SERLAB and Sentinel-1 databases of
rainfall, runoff and antecedent soil moisture observations.

Author Contributions: Conceptualization, F.T. and L.D.M.; methodology, F.T. and L.D.M.; validation,
L.V. and S.O.; investigation, F.T. and L.V.; formal analysis, resources, data curation, writing, F.T., L.V.,
L.D.M., and S.O.; funding acquisition, F.T., L.V. All authors have read and agreed to the published
version of the manuscript.

124



Water 2022, 14, 2081

Funding: This work was funded by the ‘Ricerca di Base, 2019′ project, University of Perugia - Italy
(principal investigator Francesca Todisco) and ‘Ricerca di Base, 2017′ project, University of Perugia -
Italy (principal investigator Lorenzo Vergni).

Data Availability Statement: All the data used in the work are available in Table S1.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bisantino, T.; Bingner, R.; Chouaib, W.; Gentile, F.; Trisorio, L.G. Estimation of runoff, peak discharge and sediment load at the

event scale in a medium-size Mediterranean watershed using the ANNAGNPS model. Land Degrad. Dev. 2015, 26, 340–355.
[CrossRef]

2. Borrelli, P.; Märker, M.; Schütt, B. Modelling post-tree-harvesting soil erosion and sediment deposition potential in the Turano
River basin (Italian Central Apennine). Land Degrad. Dev. 2015, 26, 356–366. [CrossRef]

3. Foster, G.R.; Toy, T.E.; Renard, K.G. Comparison of the USLE, RUSLE1.06 and RUSLE2 for application to highly disturbed lands.
First Interag. Conf. Res. Watersheds 2003, 27, 154–160.

4. Borrelli, P.; Robinson, D.A.; Fleischer, L.R.; Lugato, E.; Ballobio, C.; Alewell, A.; Meusburger, K.; Modugno, S.; Schutt, B.; Ferro, V.;
et al. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. 2017, 8, 2013. [CrossRef]

5. Panagos, P.; Ballabio, C.; Borrelli, P.; Meusburger, K.; Klik, A.; Rousseva, S.; Tadić, M.P.; Michaelides, S.; Hrabalíková, M.; Olsen,
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Abstract: The main purpose of this article is to give a general idea of the scientific activity that was
carried out starting from the 2000s on the basis of the data collected in the plots installed at the
Sparacia experimental station for soil erosion measurement in Sicily, South Italy. The paper includes
a presentation of the experimental site, a description of the methods and procedures for measuring
soil erosion processes both available in the literature and applied at the Sparacia station (sediment
sampling and water level reading in the storage tanks for total erosion measurements; profilometer,
and Structure from Motion technique for rill erosion measurements), and the main results obtained
in the monitoring period in the experimental site. The latter concern the effects of plot size and
steepness on soil loss, the measurement variability, the frequency analysis of soil loss, the rill erosion
characterization, and the comparison between rill and interrill erosion rates. Each of these topics is
addressed with multi-temporal analyses performed with increasing size of the available database,
which allowed to draw robust conclusions. Soil loss did not vary appreciably with plot length in
contrast with the assumption made in the USLE/RUSLE. The variability of the measurements of soil
loss, runoff volume, and sediment concentration at the event scale in replicated plots decreased as
the mean measured value increased. The normalized event soil loss was distributed according to a
two-component distribution. A power relationship between rill volumes and lengths was established.
The measurements also confirmed the morphological similarity between the channels of the rills and
ephemeral gullies described by a power dimensionless relationship. Rill erodibility of the sampled
clay soil varied over time, maintaining relatively low values. Finally, rill erosion was dominant
relative to interrill erosion, and a more efficient sediment transport system through the rill network
occurred as plot steepness increased.

Keywords: soil loss; plot measurements; interrill; rill; physical model concept; SfM technique

1. Introduction

In the research field of water soil erosion, the measurement of a representative variable
of the phenomenon (e.g., plot soil loss, basin sediment yield) and its controlling factors (e.g.,
rainfall energetic characteristics, soil grain size distribution) allows for directly evaluating
the magnitude of the phenomenon in the area of interest, extending and improving the
knowledge of the erosive processes, and establishing the effectiveness of soil conservation
practices. Moreover, the simulation of the erosive phenomenon by mathematical models
needs measurement of the parameters and/or variables included in the equations used to
describe the different subprocesses. The measurements are also necessary to calibrate and
validate the models through the comparison between the estimated and measured values
of the variable expressive of the erosive phenomenon.
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Laboratory erosion research can be carried out in highly controlled experimental
conditions and is ideal for fast and repeatable experiments, but it usually requires using
scale models and disturbed soil samples whose representativeness of field conditions is
rather uncertain. Instead, field erosion research allows for gaining data at the proper scale
and with undisturbed soils. Moreover, field data are generally representative of the climatic,
soil, morphologic, and land use characteristics of the sampled site. However, these types of
data are less accurate than the laboratory ones due to the practical problems of experimental
field activities. In addition, to obtain representative data of average or extreme conditions
for the sampled site, a multiyear monitoring period is needed, with noticeable costs and
practical problems.

This paper summarizes the scientific activity that has been going on for more than
twenty years in the Sparacia experimental station for soil erosion measurement in Sicily,
South Italy. The Sparacia station of the Department of Agricultural, Food, and Forest
Sciences—Palermo University is located approximately 100 km south of Palermo. The
climate is of Mediterranean semiarid type with an average annual rainfall of 700 mm.
The soil is a Vertic Xerocrept and has a clay texture (62% clay, 33% silt, and 5% sand)
and negligible gravel content. The experimental station includes 20 plots with different
lengths λ, widths wi, and slope steepness s. Six plots of 22 m × 8 m (λ × wi), two plots of
33 m × 8 m, two plots of 44 m × 8 m, two plots of 11 m × 4 m, two plots of 11 m × 2 m
and two plots of 22 m × 2 m are installed on a 14.9% slope (Figure 1a), where a recording
rain gauge operates with a 1 min resolution. Two plots of 22 m × 6 m are established on a
22% slope, and two plots of 22 m × 6 m are established on a 26% slope (Figure 1b). Rainfall
data are measured with a recording rain gauge located near the four plots at 1 min intervals.
The oldest plots (four plots of 22 m × 8 m) were constructed in 1999, whereas the most
recent plots (two plots of 22 m × 2 m) were constructed in 2007. Plots are maintained in
cultivated fallow, with up and downhill tillage, by a power cultivator. Tillage is conducted
3–4 times per year when the soil is relatively dry.
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Runoff and associated sediments are intercepted by a gutter placed at the lower end
of each plot and collected into a storage system consisting of tanks of known geometric
characteristics that are arranged in series (Figure 2a). Total runoff and soil loss are measured
after each erosive event (i.e., an event producing measurable runoff and sediment) or
after a sequence of events if they are separated by a short time interval. Microplots of
0.25 m × 0.25 m and 0.40 m × 0.40 m were also installed on the 14.9 and 22% slopes, and
two experimental basins of 3.67 ha and 30 ha are also located in the experimental area.
The present paper focuses only on the soil erosion measurement at the plot scale. These
measurements allowed parameterizing and validating Universal Soil Loss Equation (USLE)-
based models for estimating event soil loss where the runoff coefficient is included in the
erosivity factor [2,3]. Among these models, the so-called USLE-MM was developed through
main steps starting from 2008 [4], while the USLE-MB [5] was proposed more recently and
resulted in similar estimate performances as the former.

The paper reports both the methods to measure rill, interrill erosion, and total, i.e.,
rill + interrill, erosion at the Sparacia station and the main results concerning the effects of
plot size and steepness on soil loss, the measurement variability, the frequency analysis
of soil loss, the rill erosion characterization, and the comparison between rill and interrill
erosion rates. A section concerning a review on soil loss measurement is first presented.

Water 2022, 14, 1881 3 of 26 
 

 

Runoff and associated sediments are intercepted by a gutter placed at the lower end 

of each plot and collected into a storage system consisting of tanks of known geometric 

characteristics that are arranged in series (Figure 2a). Total runoff and soil loss are meas-

ured after each erosive event (i.e., an event producing measurable runoff and sediment) 

or after a sequence of events if they are separated by a short time interval. Microplots of 

0.25 m × 0.25 m and 0.40 m × 0.40 m were also installed on the 14.9 and 22% slopes, and 

two experimental basins of 3.67 ha and 30 ha are also located in the experimental area. 

The present paper focuses only on the soil erosion measurement at the plot scale. These 

measurements allowed parameterizing and validating Universal Soil Loss Equation 

(USLE)-based models for estimating event soil loss where the runoff coefficient is in-

cluded in the erosivity factor [2,3]. Among these models, the so-called USLE-MM was de-

veloped through main steps starting from 2008 [4], while the USLE-MB [5] was proposed 

more recently and resulted in similar estimate performances as the former.  

The paper reports both the methods to measure rill, interrill erosion, and total, i.e., 

rill + interrill, erosion at the Sparacia station and the main results concerning the effects of 

plot size and steepness on soil loss, the measurement variability, the frequency analysis 

of soil loss, the rill erosion characterization, and the comparison between rill and interrill 

erosion rates. A section concerning a review on soil loss measurement is first presented. 

  

(a) (b) 

Figure 2. View of the (a) storage tanks and (b) concentration profile (modified from [6]). 

2. A Brief Summary on Soil Loss Measurement in the Literature 

The spatial scale at which the measurement is performed (splash cup, microplot, plot, 

hillslope, or watershed) and the applied measurement technique have to be chosen in the 

light of the considered erosion subprocesses (e.g., impact, interrill, rill, and gully). Field 

plots with different sizes and steepness are often used to measure interrill and rill erosion. 

Microplots, with a small surface area varying approximately between 0.04 m2 and 10 m2 

[6,7], are used to measure interrill erosion because rill development is not usual. Plots 

approximately 10–200 m long and 2–50 m wide [8] can be used to measure total, i.e., rill + 

interrill, erosion. Soil erosion and runoff were recognized to be dependent on the spatial 

scale [9,10], which makes questionable upscaling of plot erosion measurement to the basin 

scale. This scale dependency is attributed to spatial variability in infiltration, temporal 

variations in rainfall intensity during a storm event, hillslope sediment sinks, and sedi-

ment delivery along flow paths within a basin [11] that are not generally represented at 

the plot scale. As a result, measured erosion rates per unit area are higher on the plot than 

on the basin scale. On the other hand, larger plots allow for a better representation of the 

hydrological and erosive response of a given ecosystem [9,12], and a plot length of 20 m 

is sufficient to determine runoff and sediment export rates representative of a basin [13]. 

The measurement of the total soil loss from the experimental plots is performed ei-

ther by collecting a portion of the total surface runoff coming from a conveyance system 

(e.g., H-flume or pipe) [14] in a sampling unit or the whole runoff inside a storage system. 

Figure 2. View of the (a) storage tanks and (b) concentration profile (modified from [6]).

2. A Brief Summary on Soil Loss Measurement in the Literature

The spatial scale at which the measurement is performed (splash cup, microplot, plot,
hillslope, or watershed) and the applied measurement technique have to be chosen in
the light of the considered erosion subprocesses (e.g., impact, interrill, rill, and gully).
Field plots with different sizes and steepness are often used to measure interrill and rill
erosion. Microplots, with a small surface area varying approximately between 0.04 m2

and 10 m2 [6,7], are used to measure interrill erosion because rill development is not usual.
Plots approximately 10–200 m long and 2–50 m wide [8] can be used to measure total, i.e.,
rill + interrill, erosion. Soil erosion and runoff were recognized to be dependent on the
spatial scale [9,10], which makes questionable upscaling of plot erosion measurement to
the basin scale. This scale dependency is attributed to spatial variability in infiltration,
temporal variations in rainfall intensity during a storm event, hillslope sediment sinks, and
sediment delivery along flow paths within a basin [11] that are not generally represented at
the plot scale. As a result, measured erosion rates per unit area are higher on the plot than
on the basin scale. On the other hand, larger plots allow for a better representation of the
hydrological and erosive response of a given ecosystem [9,12], and a plot length of 20 m is
sufficient to determine runoff and sediment export rates representative of a basin [13].

The measurement of the total soil loss from the experimental plots is performed either
by collecting a portion of the total surface runoff coming from a conveyance system (e.g.,
H-flume or pipe) [14] in a sampling unit or the whole runoff inside a storage system. In the
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former case, once calibrated in the field, the sampling unit directly allows for measuring
runoff volume and sediment concentration (e.g., Coshocton wheel [15], Fagna-type unit [16])
or storing runoff and sediments for large runoff events (multislot divisors [8,17]). In the
second case, the water–sediment mixture is usually collected into tanks of known geometry,
and its volume is determined by measuring the water depth. The plot soil loss is equal to
the sediment mean concentration by volume. Sediment concentration can be measured by
either catching the whole sediment amount after siphoning the supernatant-cleared water
or collecting a sample of the mixed suspension [18]. The good accuracy of the first technique
is paid by the necessity to remove high mud volumes to oven-dry in the laboratory, which
makes this technique more and more cumbersome and time-consuming as stored runoff
and plots’ number and size increase. In order to obtain reliable soil loss measurements by
the second technique, the sample has to be representative of the whole suspension; that
is, the sampled suspended sediment concentration has to be equal to the actual one. This
occurs in the case of homogeneity of the suspension, i.e., when the sample concentration in
any measurement point of the tank is equal to the actual concentration. This occurrence
can be hindered by the incomplete mixing of the suspension [6,19].

For instance, Lang [20] detected that sampling with a bottle at the bottom of the tank,
where the soil–water mixture was vigorously agitated to suspend sediment, determined
underestimations of sediment concentration ranging from −17 to −74%. Zobisch et al. [21]
measured total soil loss by adding the suspended sediment stored in a large tank and the
sediment settled in a smaller metal bucket placed within the tank. The suspension was
stirred, and its concentration was determined on a sample taken by an immersed labora-
tory beaker. The dry weight of the total settled sediments was also determined. Zobisch
et al. [21] verified a poor accuracy of soil loss measurement and its strong dependence on
the field workers, which negatively affected the repeatability of the sampling procedure.
They concluded that the differences were due to the level of mixing thoroughness of the sus-
pended sediment and the timing and plunging depth of the sample beaker. The sampling
procedure of Ciesiolka et al. [22] consisted of stirring the mixture in the tank and taking
samples simultaneously at three depths. The average of three sediment concentrations
was used as a representative value for the entire depth of the mixture. The measured
sediment concentration systematically underestimated the actual one. The authors pro-
posed an equation based on settling theory to remove the error due to the delay time
between stirring and sampling, which reduced the underestimation to values generally
ranging from −66 to −6%. The residual underestimation could be due to other sources
of error, such as a not uniform sediment distribution within the tank and the sampling
technique. A cylindrical sampler was used by Nikkami [23] after stirring the suspension
in the storage tank to withdraw a column of suspension, and the results were compared
with those obtained by bottle and pipette samplings. The latter underestimated the actual
sediment concentration and were unreliable, while the measurements by the cylindrical
sampler were affected by errors ranging from −18 to −4%. A similar sampling cylinder
with a closing valve at the bottom was proposed by Carollo et al. [24] (Figure 3) and tested
to be applied for soil loss measurement at the Sparacia experimental area. The details
regarding the cylinder and the applied sampling procedure are reported below. Bagarello
and Ferro [19], Bagarello et al. [6], and Todisco et al. [25] evaluated factors affecting the
measured sediment concentration and derived calibration curves for the sediment storage
tanks at the Sparacia and Masse (Umbria, central Italy) stations. The experimental stations
are characterized by the same type of plots, runoff storage system, and different soils.
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3. Measurement of Total Erosion at Sparacia
3.1. Measurement Methods

The total weight of the solid particles in the suspension collected into each tank is
calculated as mean concentration by volume. The latter is easily determined by the water
level reading. In order to measure mean concentration, two different procedures were
applied over the monitoring period. By using the former procedure, after mixing the
suspension for a given time, the sediment is sampled from 10 taps deployed along the
middle vertical of the tank wall to determine the sediment concentration profile and, by
integration, the mean concentration (Figure 2b). The samples are oven-dried at 105 ◦C
for 48 h, and both the sediment weight and the associated water volume are determined.
The measured mean sediment concentration differs from the actual concentration Ce as
the sampling procedure determines an incomplete mixing condition, and sedimentation
phenomena occur over the sampling time [19,20,25]. The measured mean concentration
is then converted into the actual concentration using the calibration curve of the storage
system [6,19]. According to the calibration curve, the actual concentration is equal to four-
fold the measured mean concentration. When considering the high number of equipped
plots in the experimental area, the above procedure was highly time-consuming for both the
field sampling phase and the oven-drying one in the laboratory. Therefore, since September
2013, a quick sampling procedure using an efficient sampler has been applied [24]. The
sampler is a brass cylinder with a height of 120 cm and an inner diameter of 4.75 cm. It
is equipped with a closing valve ‘guillotine’ fitted with a sealing gasket (Figure 3). The
valve is controlled from above using a knob joined to a drive pin. The sampler allows
the extraction of a whole column, i.e., bounded by the free surface and the tank bottom
of the suspension. The sampling procedure adopted in the field is based on the analysis
of laboratory measurements performed by Carollo et al. [24]. Specifically, this analysis
allowed us to establish that the mean value of the measured concentration in different
verticals can be considered equal to the actual concentration, i.e., this sampling procedure
does not need a calibration curve of the storage system, and that five samples are sufficient
to obtain a relatively low margin of error. The margin of error decreases sharply as the
actual concentration increases.

3.2. Experimental Results
3.2.1. Effects of Plot Size and Steepness

Plot size is expected to affect soil loss due to spatial variability in infiltration, the
potential for sediment to be trapped by roughness components and other sinks, and
changes in erosion rates and processes with increasing amounts of runoff [26,27].

Bagarello and Ferro [28] selected 19 events monitored during the period November
1999–October 2008 to assess the effects of plot length, λ, on event soil loss per unit plot
area Ae, runoff volume per unit plot area Ve, and sediment concentration Ce. The most
frequent results were that soil loss did not vary significantly with λ, runoff decreased as
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plot length increased, and sediment concentration generally did not vary significantly with
λ. Therefore, shortening the plot length was not an effective practice to control event soil
loss for the Sparacia area. The analysis of the measurements of the interrill and rill erosion
components available for two events supported the idea that shortening λ produces a
moderate decrease in rill erosion rates but also an appreciable increase in interrill erosion
rates and that shortening λ becomes effective when rill erosion is dominant (λ ≥ 33–44 m)
(Figure 4). Bagarello et al. [29] investigated the plot width and length effects on Ae, Ve,
and Ce by using data collected on plots differing in width (2–8 m) and length (11–22 m). A
reduced data set in terms of plot length was considered to compare the results with those
available at the Masse station [25]. Plot width did not have a statistically significant effect on
long-term mean values of runoff, soil loss, and sediment concentration, while the plot width
effects at the event temporal scale varied from negligible to significant for low erosivity
events and tended to vanish for highly erosive events. Plot length did not have a statistically
significant effect on mean runoff, soil loss, and sediment concentration. Moreover, in this
case, for low erosivity events, the plot length effect varied from negligible to significant,
while it greatly decreased for highly erosive events (Figure 5). Similar results were obtained
for Masse station, characterized by soil with a prevailing silt fraction. Accordingly, both
long-term and severe storm-related data collected on narrow and short plots are expected
to be representative of wider and longer plots. For low erosivity events, local soil conditions
at the beginning of the rainfall and more relevant measurement errors likely produced
varying plot width and length effects. For highly erosive events, the importance of local
soil conditions and the measurement error is reduced, and the effects of plot size on the
measured variables tended to vanish. The analysis of the measurements of the interrill and
rill erosion components available for an additional event to those analyzed by Bagarello
and Ferro [28] highlighted that shortening λ increased total erosion since the rill erosion
rate decreased, but more deposition of sediment coming from the rill channels occurred
within the 22 m long plots relative to the 11 m long plots. In other words, rill interruption
within the plot, which prevents the sediment from contributing to total soil loss measured
at the plot outlet, was more frequent on the longer plot.
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Figure 4. Relationship of total, Ae, rill, and interrill soil loss vs. plot length, λ, for the (a) 1 September
2005 event and (b) 28 June 2008 event (modified from [28]).
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Figure 5. Log of the ratio between soil losses, Ae, measured in the plots with length λ = 22 m and
plots with λ = 11 m vs. the erosivity index, Re (MJ mm ha−1 h−1) (modified from [29]).

Bagarello et al. [30] established plot length and steepness effects on Ae, Ce, and the
event runoff coefficient QRe, i.e., Ve per unit rainfall depth, using measurements collected
until February 2012. The database was developed by considering, for a given event, the
individual plots yielding a simultaneous measurement of both Ae and Ve. A total of 317 data
were collected for the plots with λ = 11, 22, 33, and 44 m and s = 14.9% were considered for
testing plot length effects. The selected events were those with the simultaneous functioning
of at least a plot for each length to obtain reasonably homogeneous and comparable
data. The 278 data collected for the 22 m long plots with s = 14.9, 22, and 26% were
considered for testing plot steepness effects. The selected events were characterized by the
simultaneous functioning of at least a plot for each steepness value. The mean and median
values of the erosive and hydrological variables, which were expressive of the long-term
average responses, confirmed that, generally, Ae did not vary appreciably with λ because
the decrease in runoff coefficient was offset by an increase in sediment concentration
(Figure 6). Therefore, how the physical erosion process occurred at the sampled site was
not consistent with the assumption made in the USLE/RUSLE that soil loss per unit area
increases with plot length. The authors verified that the short duration of individual rain
showers, which determines a flow discontinuity along the hillslope [31], can favor the
occurrence of more noticeable sediment deposition on longer plots, determining practically
constant Ae values on plots differing in length. The moderately increasing relationship of Ce
against λ was attributed to the advanced sediment transport efficiency on the longest plots,
where concentrated flow, which notoriously has a higher capacity to transport sediment as
compared to the overland flow, is expected to be more pronounced.

Moreover, for the event of October 2011, for λ varying from 22 to 44 m Ae decreased
because of increasing rill erosion rates and increasing deposition phenomena in the interrill
areas. These behaviors agree with the preceding ones obtained by Bagarello and Ferro [28]
and Bagarello et al. [29] with reduced databases.

Slope steepness s had a positive effect on Ae because of a runoff coefficient QRe that did
not vary appreciably with s and a sediment concentration Ce increasing with s (Figure 7).
The detected steepness effects were well reproduced by the relationships used in the
USLE/RUSLE models to predict the slope steepness factor. The availability of the rill and
interrill erosion rates for three sampled events on 14.9 and 22% sloped plots (λ = 22 m) did
not reveal clear slope effects on the rill, interrill, and total soil loss rates.
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Bagarello and Ferro [32] checked plot-scale effects on hydrological and erosion vari-
ables using a larger dataset as compared with that considered by Bagarello et al. [30].
Similar information on the scale effects was obtained with four different scenarios combin-
ing dependent variables, i.e., individual values of Ae, Ve, and Ce for each plot or the mean
of their replicated values, and scale indicators, i.e., plot length, λ, or plot area, A. Following
Chen et al. [33], Bagarello and Ferro [32] checked scale effects using common regression
analysis techniques to fit a power relationship of Ae, Ve, and Ce against λ or the plot area A
to the data. The power exponent, b1, which is the scaling exponent, represented a measure
of the scale effect on the considered variable. Statistically significant relationships were
detected for a minor part of the sampled events, regardless of the considered variables and
scenarios (19–43%).

Therefore, the lack of any scaling effect was the most common result while, when
scale effects were detected, runoff always decreased, sediment concentration generally
increased, and soil loss per unit area most frequently decreased in longer or larger plots.
For the scenario with the largest number of scale effects, i.e., individual values of the
considered variable against plot length, further analysis confirmed that lack of scale effects
was the prevailing result and, when scale effects were detected, runoff decreased, sediment
concentration generally increased, and soil loss per unit area generally decreased with
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λ. For the latter two variables, scale effects were highly dependent on the event (high
variability of b1 with the event), while they showed a reduced variability with the event
for runoff (reduced variability of b1 with the event). Rainfall characteristics were not able
to discriminate between significant and nonsignificant scale effects. For events with a
significant correlation, for the Ve − λ relationship, the exponent b1 became less negative
with an increase in both rainfall amount and erosivity. In other words, scale effects for
runoff were less evident when heavy rainfall occurred. The rainfall characteristics were not
able to describe b1 variations for Ce and Ae.

An alternative approach was finally developed for testing scale effects with reference
to the whole historical sequences of events, regardless of the single events. A statistical
check was performed to establish if the probability distribution of Ae for λ = 11 m was able
to reproduce the empirical frequency distribution of Ae for λ = 44 m and vice versa. The
discrepancy between the probability and frequency distributions indicated the occurrence
of scale effects.
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3.2.2. Measurement Variability and Physical Model Concept

Soil loss measurements are affected by a measurement variability due to the applied
measurement technique [19] and a natural variability [34] that produces an unexplained
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variance of runoff and soil loss measurements in identical plots subjected to the same rainfall
events. As a consequence of the natural variability, the single or few plot measurements are
not coincident with the expected mean value for a particular treatment.

The information derived by Bagarello and Ferro [35] from measurements collected in
the period 2000–2001 on 8 m × 22 m plots suggested that the coefficient of variation CV of
Ae decreases as the mean measured value increases. Then, Bagarello et al. [36], by using
5 years of data from plots differing in length, highlighted that the variability of both runoff
and soil loss measurements decreases as the mean value increases. This trend was detected
above a threshold mean value of 3 mm for Ve and 0.1 t ha−1 for Ae, while a relatively
low variability was generally detected for mean values lower than the threshold one. The
analysis of the events that occurred until October 2008 [28] on 8 m× 22 m plots, jointly with
the literature plot measurements, clarified that the relative variability of soil loss, runoff
volume, and sediment concentration decreased as the mean measured value increased
all over the experimental range. This analysis also indicated that runoff and sediment
concentration were generally less variable than soil loss measurements and allowed to
obtain, for each variable, a decreasing CV vs. mean relationship useful to estimate the
optimum number of replicated plots for erosion studies [34,37], i.e., allowing to determine
a representative value of the variable for given experimental conditions.

The natural variability of plot soil erosion measurements raises the problem of their
usability to test the applicability of erosion prediction models, which is performed by
comparing the measurements to the model estimations for a given temporal interval.
Indeed, the difference between the measured and predicted value is due to both model
error and unexplained variance of the measurements. Nearing [38] suggested a method
for evaluating the performances of the model by accounting for the natural variability of
plot data. According to the author, the best possible model to predict the erosion from
an area of land is a physical model of the area that has similar soil type, land use, size,
shape, slope (i.e., a replicated plot), and erosive inputs. Nearing [39], using a large USA
soil loss database, suggested that the model prediction has to be considered acceptable if
the departure from the measured value lies within the population of differences between
pairs of measured values.

Bagarello and Ferro [40] tested the physical model concept by Nearing [39] using
erosion data collected on the 33 m and 44 m long plots and the 22 m long plots established
on 14.9%, 22%, and 26% slopes from November 1999 to April 2011. The relative difference,
Rdiff, was calculated as follows [39]:

Rdi f f =
P−M
P + M

(1)

where P is the predicted value from the physical model and M is the measured value. In
order to define the physical model, differences in width between the plot and its replicate
were neglected. The highest measured values showed fewer relative differences between
replicates (Figure 8), in accordance with the results obtained by Nearing [39]. The Rdiff data
falling within the empirically calculated 95% occurrence interval (Equation (3) in [39]) were
equal to 88% of the total. When considering the relatively low discrepancy between these
percentages, the investigation supported the applicability of the analysis by Nearing [39] for
model evaluations. Bagarello et al. [41] used bare plot soil loss data (November 1999–May
2012) from Sparacia and Masse experimental stations. A total of 819 Ae values were
available, varying from 0.00012 to 21.7 kg m−2. The Italian (P, M) database was compiled
by considering four plot lengths (λ = 11, 22, 33, and 44 m), four slope steepness values
(s = 14.9, 16.0, 22.0, and 26.0%), and defining a physical model as a plot with the same
length and width to the sampled one.
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Figure 8. Relative differences in measurements of soil loss between replicated plots, Rdiff, vs. the
measured soil loss value, M, for all plots established at the Sparacia station and 90 and 95% occurrence
intervals for the data (L = lower limit; U = upper limit) calculated according to [39] (modified
from [40]).

Indeed, the preliminary linear regression analysis between the M and P values sug-
gested that the physical model has to be defined in terms of perfect planimetric equivalence.
The percentage of Rdiff values falling within the 95% occurrence interval (Equation (3)
in [39]) was equal to 88.9%, which was in line with the previous result by Bagarello and
Ferro [40]. However, Rdiff values decreasing with an increase in M, which is the premise of
the analysis by Nearing [39], were only detected for M > 1 kg m−2, and the corresponding
Rdiff values falling within the 95% occurrence interval were equal to only 85.1% of the total
(Figure 9). Accordingly, a new applicative criterion of the physical model concept was
developed and expressed by the following relationship between the absolute difference
between the physical model prediction and measurement (Figure 10):

|P−M| = 0.356M0.91 (2)

where R2 = 0.72. For a given soil loss value (M), Equation (2) predicts the mean absolute dif-
ference associated with the sampling of a replicated plot. A model prediction is acceptable
if the absolute difference with the measured soil loss is lower than or equal to the value
calculated by Equation (2).
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Figure 9. Relative differences in the measurement of soil loss between replicated plots, Rdiff, vs. the
measured soil loss value, M, for all plots established at the Sparacia and Masse stations (modified
from [41]).
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Figure 10. Plot of the absolute difference in measurement of soil loss between replicated plots,
|P −M|, vs. the measured value, M, and of Equation (2), the regression line associated with a
frequency F = 0.87 and the data enveloping line (modified from [42]).

The general objective of the investigation by Bagarello et al. [42] was to compare the
two applicative criteria of the physical model concept by Nearing [39] (original criterion)
and Bagarello et al. [41] (new criterion) through three soil erosion empirical models and
plot soil loss data from Sparacia. The criterion by Bagarello et al. [41], which was expressed
in terms of Rdiff to be directly comparable with that of Nearing [39], was analytically
demonstrated to be characterized by a greater selectivity. Indeed, the fraction of the
acceptable model predictions relative to the total varied from 29% for the former to 54% for
the latter.

A less restrictive new criterion was developed by carrying out a frequency analysis
of all the data used to obtain Equation (2). In particular, the data were divided into half
log-cycle intervals, and within each division, the value associated with a frequency higher
than 0.5, which practically yields Equation (2), was determined. The power regression
equation between the values associated with a frequency F of 0.87 and M values (Figure 10)
featured a similar selectivity level as that of the original criterion. Both the original and new
criteria accept predictions characterized by relative maximum errors that decrease as M
increases. For example, Equation (2) accepts predictions with a maximum error decreasing
from 80% to 27% as M increases from the minimum (0.00012 kg m−2) to the maximum
(21.7 kg m−2) value. Based on all available data, the models’ accuracy ranking depended
on the evaluation criterion, while for the highest soil losses, both criteria gave the same
accuracy ranking. In order to increase the significance of the comparison between the two
criteria, they should be calibrated by merging the American and Italian databases.

3.2.3. Statistical Analysis of Soil Loss Measurements

Field investigations (e.g., [43]) have clearly shown that rare and severe events control
total soil erosion over a long period. Consequently, soil conservation strategies should be de-
veloped considering soil loss of a given return period rather than long-term average erosion.

Bagarello et al. [44] developed a frequency analysis of relatively long-term (2000–2008)
soil loss data collected in a high number of simultaneously operating plots and microplots of
different lengths (λ = 0.25, 0.4, 11, 22, 33, and 44 m) and slope of 14.9%. This analysis allowed
establishing both the theoretical distribution reproducing the frequency distribution and
the soil loss of a given return period. Each event’s soil loss value, Ae, measured on a plot of
given length λ, was normalized using the mean soil loss, µ(Ae), calculated for that event and
all the plots with the same length. Normalization allowed assuming that the probability
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distribution P(x) of the variable x = Ae/µ(Ae) is unique. For both the microplots and plots,
the frequency distributions of x were perfectly overlapping, and thus P(x) was independent
of both the scale length λ and the temporal scale, which were completely represented by
the mean value, µ(Ae).

For a given plot length, the values (334 data) of the annual maximum event soil loss
were then extracted from the complete dataset (1403 data). As the x frequency distributions
for both the complete dataset and the annual maxima were overlapping, the parameters of
the probability distribution of the annual maximum soil loss and the quantiles of a given
return period were estimated using all available data. The empirical frequency distribution
of x was described by a two-component distribution (Figure 11), with the two components
discriminated by a return period of 25 years. The soil loss of a given return period was
estimated by multiplying the mean soil loss by a frequency factor determined by fitting
Gumbel’s distribution to the two components of the frequency distribution.
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Figure 11. Gumbel’s plot for the sequence of annual maximum soil losses (x = Ae/µ(Ae), y = −ln
ln(1/F(x)) is the normalized Gumbel’s variable, αi and ui are the two parameters of Gumbel’s
distribution, modified from [44]).

The subsequent study by Bagarello et al. [45] was conducted using soil loss measure-
ments from individual plots in the period from November 1999 to January 2009. First, this
study confirmed the results by Bagarello et al. [44] that the distribution of the normalized
soil loss does not vary with λ, and the parameters of the probability distribution of the
annual maximum soil loss and the quantiles of a given return period can be estimated
using all available data. Then, the authors deduced that, according to the USLE scheme
applied at the event temporal scale, the soil loss of a given return period is obtained by
amplifying the mean soil loss for a sequence of events by a frequency factor estimated with
the frequency distribution of the rainfall erosivity index. The reliability of this deduction
was verified by the available measurements of rainfall erosivity index and event soil loss for
each considered plot length. Assuming that this result is also valid at the annual temporal
scale, an estimating criterion of the annual soil loss of a given return period was developed.
By this criterion, the probability distribution of the yearly rainfall erosivity factor, which is
available for the Sicilian region, can be used to design soil conservation practices.
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4. Measurement of Rill Erosion at Sparacia
4.1. Measurement Methods

Rill erosion measurements were firstly performed by the traditional direct method
and, more recently, applying an indirect technique (image-based) [46–60]. In the former
case [1,61–65], the rill channels were visually identified in the field and divided into
segments bounded by two measurement cross-sections with a varying distance interval
depending on the variability of rill depth, width, and appearance of tributaries along
the rill length (Figure 12). On average, this distance interval was equal to 2 m. In order
to measure the rill segment features, i.e., mean width w, maximum scour depth H, and
cross-section area σ, a rillmeter [61] was used. The rill segment length Lr,s was measured
by a metric ruler. Specifically, the values of w, H, and σ were set equal to the mean of the
values measured at the bounding sections, and the rill segment volume Vr,s was equal to σ

Lr,s. The plan-altimetric survey of the rill network was carried out using a total station, and
the segment slope was determined along the rill thalweg. The widely used direct method
is very simple, low-cost [66], and invasive as the operators tend to modify the surface of
the rilled area. In addition, it was time-consuming due to the high number of experimental
plots established at the Sparacia station.
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Figure 12. View of the plot (a) before and (b) after rill network formation. Rill channels are numbered
from 1 to 10 (modified from [61]).

Advancements in automatic 3D-photo reconstruction techniques induced us to apply
the Structure from Motion (SfM) technique (image-based) to measure rill erosion using
low-altitude aerial [62,67] and terrestrial acquisition platforms [67]. Image-based model-
ing creates a three-dimensional Digital Terrain Model (3D-DTM) using a set of oblique
photographs taken from the same rilled surface [68] with uncalibrated and non-metric
cameras, coupled with photogrammetric software packages, such as Photoscan professional
(Agisoft). Camera model parameters and scene geometry are simultaneously solved [69],
using redundant information coming from oblique photographs. The generated 3D point
cloud has to be scaled and georeferenced using some ground control points (GCPs) located
within the monitored rilled area. Di Stefano et al. [67] deployed six GCPs on the plot
perimeter (Figure 13) and collected their (x, y, z) coordinates with a total station. From the
3D point cloud, a 2.5D surface (i.e., Digital Elevation Model, DEM) and the orthophoto
were also generated. Unlike DEM, which represents the surface of the rilled area from
a vertical perspective, the 3D-DTM can also represent cross-section areas with undercut
walls [68] where different z-elevations can be associated with the same couple of plane
coordinates x–y. In this case, the DEM underestimates the area of the cross-section and,
therefore, the eroded rill volume [70]. However, the DEM is often used for hydrological
analyses, and it can be easily managed as it is a raster model.

In order to extract channel networks from DEM, Carollo et al. [62] applied both a man-
ual method, which consisted of tracing rills from the visual interpretation of orthophotos,
and an automatic procedure based on the theory of drop analysis by Broscoe [71]. In the
last case, drainage paths were identified by following the maximum slope direction and
by all of the cells of the DEM with a value of drainage area greater than an established
threshold. The value of this threshold was obtained by the drop analysis. By using the hier-
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archical approach of Horton and Strahler, Broscoe [71] defined drop as the height difference
between the two points defining a channel from the source/confluence to the confluence
with another stream. According to Broscoe [71], the threshold value of drainage area is that
for which the drop mean values, calculated for each stream order, are almost equal.
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Figure 13. View of the P3 plot (22 m × 6 m, s = 26%) with Ground Control Points (GCPs) numbered
from 1 to 6, contributing rills, non-contributing rills, and example of sediment deposition area
(modified from [67]).

Di Stefano et al. [67] applied a method based on the combination of a drainage algo-
rithm and the convergence index CI, which is defined by the following relationship:

CI =

(
1

n− 1

n−1

∑
i=1

θi

)
− 90 (3)

where n is the number of kernel cells, and for each external cell i, θi (◦) is the angle
between the aspect of the cell and the direction of the vector joining the center of the
cell and the center of the kernel [72]. The convergence index ranges from −90◦ to 90◦.
Positive values relate to divergent areas, negative values relate to convergent areas, and
null values represent areas without curvature as planar slopes. In order to determine
cells that should correspond to the rill channel, an objective threshold, beyond which
the CI values could be considered significantly different from a plane landform, was set
equal to two times the standard deviation, std, of CI [73]. When considering that only
negative CI values relate to convergent areas, significant flow convergence cells were
characterized by CI ≤ −2 std. At the end of this step, the disconnected convergent areas
were identified and considered as rill features. In order to achieve the connection, the
flow accumulation algorithm was weighted with the threshold convergence grid following
Thommeret et al. [72]. Finally, a grid representing the rill thalweg was obtained. Rills
detected by Di Stefano et al. [67] were automatically separated into contributing rills, which
were connected to the network reaching the plot outlet and contributed to total soil loss
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measured at the plot outlet and non-contributing rills, which were interrupted within the
plot (Figure 13). Each contributing rill was divided into segments, each of them bounded
by two 0.25 m long transects perpendicular to the rill thalweg and spaced 0.3 m apart, and
Vr,s was calculated as 0.3 σ. The use of the SfM technique allowed for obtaining accurate
rill erosion measurements with rapid and not invasive field surveys but time-consuming
image post-processing.

For both direct and indirect measurement methods, the total rill volume V was calcu-
lated by adding the volumes Vr,s, and converted into the weight of eroded soil by the soil
bulk density. The latter was experimentally determined on different dates by collecting soil
samples uniformly distributed on the erosion plots. Soil samples were taken by cylindric
samplers [74], with a diameter of 8 cm and a height of 5 cm, and oven-dried at 105 ◦C for
48 h.

4.2. Experimental Results

In the monitoring period from September 2004 to February 2006, Bruno et al. [61]
carried out measurements on rills formed on a 22% sloping plot in five erosion events.
The authors verified the applicability of a power relationship between rill length L and rill
volume V; thereby, rill length can be employed to estimate the severity of the rilling process.
By applying the Π-theorem of the dimensional analysis and the incomplete self-similarity
hypothesis [75,76], they also proposed a power dimensionless relationship among the
rill morphological variables (length Lr,s, width w, depth H, and volume Vr,s). Di Stefano
and Ferro [63] pointed out that the scale parameter of the L-V relationship varies with
channel type (rills, Ephemeral Gullies (EGs), and gullies) while the exponent is constant.
Moreover, the authors verified that the above power dimensionless relationship describes a
morphological similarity between the channels of rills, EGs, and gullies.

The analysis of the rill cross-sections detected by Bruno et al. [61] along the channel
highlighted changes from the narrow and deep upstream sections to enlarged downstream
sections conserving the depth. In the terminal reach, the cross-section area diminished
because of a decreasing flow transport capacity due to rill slope reduction.

Di Stefano et al. [1] extended the available database, including measurements collected
in the year 2008 on all the plots established in the experimental area. The availability of
measurements carried out on different slopes (14.9, 22, and 26%) allowed detection of the
influence of the plot slope on rill width and depth. In particular, for a given flow discharge
and increasing slope values, the rills deepened and narrowed. Di Stefano et al. [1] validated
the L-V (Figure 14) and the power dimensionless (Figure 15) relationships previously
calibrated by Di Stefano and Ferro [63].
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Figure 14. Relationship between the total length, L, and the total volume, V, for rills, EGs, and gullies
(modified from [1]).
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The reliability of these equations was further confirmed by Di Stefano et al. [64] using
rill measurements performed in the event of October 2011. In this case, the indirect survey
of the rill network was also conducted, for the first time at Sparacia, by an Unmanned Aerial
Vehicle (UAV). Rills tracks were derived from the visual interpretation of orthophotos. For
a single plot of 8 m × 44 m, Di Stefano et al. [64] compared the L-V pairs and the two
groups of the power dimensionless relationship detected both with the direct and indirect
measurement method and pointed out the consistency of the results obtained with the
two methods.

Di Stefano et al. [64] proposed a simplified method to estimate the rill erodibility based
on the simplifying assumptions concerning temporal variability of the bottom shear stress
and wetted perimeter and neglecting the effect of sediment load on flow detachment. The
application of the method requires only the knowledge of the geometric characteristics
of the rills at the end of the erosion event and the duration of the event and gives a first
approximation of the rill erodibility. Rill erodibility values were relatively low compared
to those reported on a global dataset regarding field plot experiments on agricultural
soils [77]. This result agrees with the relatively low value of the USLE erodibility factor
for the Sparacia soil [78]. The rill erodibility variation between plots was negligible, and
the plot erodibility was not stationary. The method was also validated by using the Water
Erosion Prediction Project (WEPP) database for the condition ‘rainfall plus flow addition at
the head of each rill’, which showed that a reliable value of rill erodibility could be obtained
for 71 rills of 27 USA experimental sites [65].

For an 8 m × 44 m plot and the event of October 2011, Carollo et al. [62] compared
the rill cross-sections obtained by both the direct method (rillmeter) and DEM jointly with
the manual method to identify flow paths. By assuming the rillmeter measurements as a
reference, the analysis showed that the indirect method provided lower values of depth
and higher values of surface width, resulting in a substantial invariance of the cross-section
area. The automatic extraction of the rill network by the drop analysis detected a higher
number of rills and longer compared to those detected by the manual method, highlighting
the difficulty of identifying rills in the downstream end of the plot from visual observation
of the orthophoto. The measurements obtained with the automatic extraction of the rills for
three 22, 33, and 44 m long plots confirmed the applicability of the L-V (Figure 16) and the
power dimensionless (Figure 17) relationships, which were calibrated by Di Stefano and
Ferro [63] by measurements performed by rillmeter and a metric ruler. In other words, the
calibration coefficients of these equations were independent of the survey method.
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Figure 16. Comparison between the L-V power equation and the L-V pairs detected for the plots L
(44 m× 8 m), G (33 m× 8 m), and C (22 m× 8 m) using the automatic extraction of the rills (modified
from [62]).
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Figure 17. Comparison between the dimensionless power equation and the (wH/Lr,s
2, Vr,s/Lr,s

3)
pairs detected for the plots L (44 m × 8 m), G (33 m × 8 m), and C (22 m × 8 m) using the automatic
extraction of the rills (modified from [62]).

Di Stefano et al. [67] applied the SfM technique with a terrestrial (TS) and a UAV survey
of rills formed on two 6 m× 22 m plots with the steepness of 22% and 26% during a rainfall
event in October 2016. In order to increase the density of the UAV point cloud, for the
22% sloping plot, a further point cloud was built, merging all aerial photos and 40 terrestrial
photos (UAV + TS survey). Rill network extraction was performed by the CI method, and
the drainage density, i.e., the total length of rills per unit plot area, and the drainage
frequency, i.e., the number of rill segments per unit plot area, were determined. For each of
the four combinations plot—rill type (i.e., contributing and not contributing)—the highest
values of drainage density (ranging from 0.74 to 1.45 m m−2) and drainage frequency
(ranging from 0.25 to 0.85 m−2) were measured by TS, denoting its better capability of
detecting rills, which was consistent with the highest density of the 3D point cloud. In order
to investigate the plot slope, s, effect on the morphometric parameters, their mean values

145



Water 2022, 14, 1881

obtained by different surveys were used. The ratio between the contributing rill length and
the total length was significantly higher for s = 26% (64%) than for s = 22% (45%). Moreover,
for contributing rills, the available measurements and the literature data [79] indicated that
the drainage density increases with plot steepness, whereas an opposite trend occurs for
non-contributing rills (Figure 18). Both the results showed an increase in the connectivity
degree and thus the efficiency of the sediment transport system, with plot steepness.
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Figure 18. Effect of plot steepness s on drainage density Dk for contributing and non-contributing
rills (modified from [67]).

A further analysis aimed to compare the amount of sediment stored in the tank with
the rill component due to contributing rills. When considering the former as a reference
value (DM, Figure 19), soil loss measurement error by the 3D model was equal to 6% (TS)
and −6% (UAV) for the 26% sloping plot and equal to 13% (TS), −8% (UAV), and 10%
(UAV + TS) for the 22% sloping plot (Figure 19). In any case, these errors were within
the margin of error of the reference value for a probability level of 5% [23], which was
equal to ±10.4% for the 26% sloping plot (Ce = 390 g L−1), and equal to ±13.1% for the
22% sloping plot (Ce = 282 g L−1). Finally, this analysis confirmed the reliability of the SfM
measurement technique.
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5. Comparing Interrill and Rill Erosion

A first attempt to determine the relative importance of interrill and rill erosion on
total soil loss was carried out by Bagarello and Ferro [35] by using the data collected on
the 8 m × 22 m plots and square microplots of different lengths (0.2 and 0.4 m) and areas.
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The study examined three events in the period of April–December 2000, for which soil
loss data were available for the three plot types. In the microplots, only interrill erosion
likely occurred while rills developed in the USLE-plots. For a given event, a mean value
of soil loss per unit area was determined by averaging the data collected in all operating
plots of a given surface area. For each event, soil loss decreased in the passage from the
smaller to the larger microplots. The straight line passing through the two data points
representative of the microplots was extrapolated to the USLE-plot area to estimate the
interrill soil erosion (Figure 20a). In this case, the rill component was obtained as the
difference between total (rill + interrill) soil loss and the interrill component determined by
extrapolation of the straight line. In all events, interrill soil erosion was a minor or negligible
part of total soil erosion (0.1–7.1%). Methodological improvements, including the use of
other microplot sizes (1 × 1, 1 × 2, 1 m × 5 m), were applied by Di Stefano et al. [64]. Their
analysis was carried out using all soil loss measurements by microplots and USLE-plots
established on the 14.9% slope simultaneously working for a given event in the period
2000–2013. The data points corresponding to 1 m × 5 m microplots aligned with those of
other microplots in some events, whereas they were over the interrill line in other events
(Figure 20b,c). Therefore, a plot length equal to 5 m was sufficient for the occurrence
of rill erosion processes, at least in some events. The data points representative of the
measurements carried out on USLE plots only aligned with those representatives of the
microplots for four events, indicating that only interrill erosion occurred. For most events,
rill erosion was dominant as it ranged from 70% to 99.9% of total soil erosion measured in
the different plots. Moreover, the rill erosion rate was not dependent on the rainfall erosivity
factor, as evaluated by the USLE approach, which varied from 42.7 MJ mm ha−1 h−1 to
686.3 MJ mm ha−1 h−1.

The investigation by Bruno et al. [61] was conducted by measuring total soil loss
and the direct survey of the rill channels in a plot 6 m × 22 m with s = 22% in the period
September 2004–February 2006. For the five events for which a rill network developed,
rill erosion was equal, on average, to 69.5% of total soil loss, and interrill erosion ranged
from 193 to 4183 g m−2. For the five events for which rills were not visually detectable,
interrill erosion was assumed to be coincident with total soil loss and ranged from 10 to
96 g m−2. The comparison between the interrill erosion rates for the two cases pointed out
the interaction between rill and interrill processes. Indeed, the presence of a rill network
promotes the transport efficiency of the sediments coming from the interrill areas. These
sediments are transported by overland flow into the rill channels where the rill flow, which
is characterized by a higher velocity than the overland flow, can effectively transport them
and sediment particles detached from the rill wetted perimeter.

Di Stefano et al. [1] extended the investigation by Bruno et al. [61] by using the direct
surveys of the rill channels performed in all the plots but two of the experimental station in
the period 2004–2008 for a total of 41 plot-event combinations. The authors detected rill
erosion higher than total soil loss for almost one-half of combinations and attributed this
result to the occurrence of sediment delivery processes for the not contributing rills. Indeed,
they calculated rill erosion from both contributing and not contributing rills, overestimating
then the rill sediment that had reached the downstream tank. The occurrence of sediment
delivery processes could not be excluded even if rill erosion was less than total soil loss.
However, in this case, the rill erosion rates, calculated by neglecting possible sediment
delivery processes, ranged between 24% and 94% of the total soil loss, with a mean value
equal to 63%. As a general result, rill erosion was confirmed to be dominant relative to
interrill erosion.

For testing the reliability of the aforementioned method based on the extrapolation of
the interrill line, Di Stefano et al. [64] compared the rill erosion estimated by this method
and that obtained by the direct survey of the rills. This comparison was possible for a single
erosion event for which rill erosion was detected by the two methods. When assuming the
direct measurement as a reference, the absolute error generally varied from 11% to 36%,
indicating quite satisfactory reliability of the method based on the interrill line.
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Figure 20. Relationship between mean soil loss, µ(Ae), and plot area, A, for some selected events
(modified from (a) [35], and modified from (b,c) [64]).

6. Conclusions

Efficient management of a large experimental station for soil erosion measurement
needs the use of methods and procedures that can guarantee a rapid and accurate field
measurement. Currently, in the Sparacia plots, this is obtained by a quick sampling
procedure using an efficient cylindrical sampler to measure total soil loss and by the
Structure from Motion technique to measure the rill component.

The main results that were obtained during the extended monitoring period can be
summarized by the following points:

• The long-term average soil loss per unit area generally did not vary appreciably with
the plot length because the decrease in runoff coefficient was offset by an increase
in sediment concentration. Moreover, the analysis at the event scale suggested that
soil loss per unit area most frequently decreased in longer plots. In any case, these
results were not consistent with the assumption made in the USLE/RUSLE model.
On the contrary, the long-term steepness effect was well reproduced by the predictive
relationships of the USLE/RUSLE slope steepness factor;

• The relative variability of soil loss, runoff volume, and sediment concentration de-
creased as the mean measured value increased, and soil loss measurements were
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generally more variable than runoff volume and sediment concentration. In order to
account for the natural variability of the soil loss measurements in the evaluation of the
predictive capability of the erosion models, a new applicative criterion of the physical
model concept was developed using measurements performed at the Sparacia and
Masse experimental stations;

• In the sampled site, for a given plot length, the soil loss of a given return period can
be estimated by multiplying the mean soil loss by a frequency factor. The latter is
determined by fitting Gumbel’s distribution to the two components of the frequency
distribution of the normalized event soil loss;

• The measurements of the rill volumes and lengths allowed us to verify the reliability
of a power relationship between the two variables. The measurements also confirmed
the morphological similarity between the channels of the rills and EGs described by a
power dimensionless relationship;

• The rill erodibility of the clay soil of Sparacia was estimated by a simplified method,
which was also validated by using the WEPP database. Rill erodibility varied over
time, maintaining relatively low values;

• The reliability of the SfM technique to measure rill erosion was positively tested;
• For the contributing rills, the drainage density increased, indicating a more efficient

sediment transport system as plot steepness increased;
• As a general result, rill erosion was dominant relative to interrill erosion.

Further research could be developed to increase the reliability of the new applicative
criterion of the physical model concept, e.g., by using data from the American database,
while further soil loss measurements in the Sparacia station could be used to update the
frequency analysis.

Moreover, the dynamics of a rill network during a rainfall season could be investigated.
Rill channels are usually obliterated after each erosion event to re-establish plot standard
conditions, while for this purpose, rills would not be deleted. Multi-temporal surveys,
using the SfM technique, could allow for assessing the hydrological and erosive responses
of plots with pre-existing rills when rainfall event occurs.

Finally, future research activities could benefit from the upgrade of the experimental
site with an optical disdrometer to measure both the size and falling velocity of the rain-
drops. These measurements allow for determining the rainfall kinetic energy. Considering
that, for given plot characteristics (soil, steepness, size), variations in soil loss exclusively
depend on variations in rainfall characteristics, that is, according to the USLE-type models,
on variations in rainfall erosivity, the soil loss measurement is proportional to the measure-
ment of rainfall erosivity. Therefore, the comparison between soil loss measurements with
intensity and kinetic energy of the rainfall can permit verifying if the rainfall erosivity is
adequately represented by the current erosion models or if they need to be improved.
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Abstract: Many researchers have reported relationships of physical and chemical properties with
water erosion; however, little is known about microbiological properties in this context. Thus, the
aim of this study was to evaluate soil properties in relation to erosion in areas with different cropping
system practices under no-tillage in the Brazilian Cerrado. The experiment has been carried out
since 2014 in a Typic Haplustox under soybean (S) and maize (M) monoculture, maize/soybean
annual rotation (MS), maize/brachiaria/soybean/brachiaria rotation (MBSB), two of those treatments
with high input of fertilizer (MBSB-HI and MS-HI), and bare soil (BS). Soil losses were quantified in
erosion plots. The design was completely randomized. The greater vegetation cover crop, provided by
intercropping/succession with brachiaria, increased microbial biomass carbon. The lack of vegetation
cover affected the basal soil respiration and metabolic quotient. Basal soil respiration proved to
be inversely related to soil and water losses. Vegetation cover was a key factor regulating water
erosion. Penetration resistance and aggregate stability correlated with soil and water losses. Thus, not
only physical and chemical, but also biological properties are deeply affected by erosion, aiding in
early monitoring of water erosion. Soil quality improvement in ecologically supported management
contributes to mitigating erosion.

Keywords: soil erosion; microbial biomass; basal soil respiration; cover crop; no-tillage

1. Introduction

The sustainable use of environmental resources and their conservation is a current
issue that has attracted worldwide attention. Soils play a central role in this context, as
they are an important part of the water cycle and the basis for healthy food production.
Nonetheless, soil functions are threatened by land use changes combined with the intensi-
fication of agricultural systems, which have proved to lead to soil degradation, reducing
its production capacity. High soil erosion rates and a decline in soil physical and chemical
quality are examples of harmful impacts that directly affect the food production capacity
necessary for a growing population [1,2]. However, there is a lack of information on the
relationship between soil microbiological properties and soil erosion processes.

It is evident, therefore, that there is a need to quantify and assess the environmental
impacts resulting from land use changes to determine the real capacity of soil use, exploiting

153



Water 2022, 14, 614

production potential while mitigating degradation of natural resources. In this respect
soil conservation practices can be important tools for farmers to intensify land use while
avoiding acceleration of erosion processes. Otherwise, inadequate soil management can
promote erosion rates that deplete soil quality and, consequently, the production capacity
of the land [2–5].

The no-tillage system is a set of conservation practices already widely used in the
Brazilian Cerrado and with notable benefits in terms of soil and water conservation. Main-
taining crop stover on the soil surface reduces the impact of raindrops, preventing surface
sealing, favoring infiltration, and decreasing surface runoff, and consequently controlling
the removal of the soil surface layer by water erosion. Considering that the topsoil of the
soil layer is the richest in nutrients, organic carbon, and biodiversity, the no-tillage system,
when well-managed, acts as a provider of soil quality. An example of improvement of soil
physical, chemical, and biological quality is the increase in carbon stocks, which has great
importance for soil aggregation and porosity, as observed by Mota et al. [6], for the release
of nutrients, and for the maintenance and survival of microbiota.

Microbial properties can be considered good and quick-response indicators of soil
quality [7], although they are still little assessed in studies evaluating soil conservation
techniques. The metabolic activity of the microbiota can be detected before some significant
evidence of change in the soil physical and chemical properties. For that reason, the activity
of soil microorganisms is a sensitive indicator of soil quality [8–11] and may be related to
soil susceptibility to erosion processes. The relationship between soil erosion and microbial
properties is not yet well understood, although some efforts toward understanding have
been made recently, such as the study of Qui et al. [12], which reported negative impacts
related to soil erosion on soil microbial communities.

In this context, we hypothesized that microbiological properties can aid in early moni-
toring of the effects of water erosion, since they can be more sensitive and indicate changes
in soil quality more quickly. Therefore, the aim of this study was to relate microbiological
properties with soil losses due to water erosion in areas under different cropping practices
in no-tillage systems in the Brazilian Cerrado. Different crop rotation systems were inves-
tigated, assessing overall soil quality but focusing on the relationship between biological
quality and susceptibility to water erosion.

2. Materials and Methods

The experiment was conducted on the Brazilian Agricultural Research Corporation
(Embrapa) experimental farm in the municipality of Sete Lagoas in the central region of the
state of Minas Gerais, Brazil, at 19◦28′30” S and 44◦15′08” W and average elevation of 732 m.
The soil in the experimental site was classified as Typic Haplustox [13], corresponding to a
Latossolo Vermelho distrófico típico [14], found in a landscape with an average slope of 8%,
characterized as gently sloping. The predominant climate in the region is humid subtropical
(Cwa) according to the Köppen classification, with an average annual temperature of 20 ◦C
and mean annual rainfall of 1416 mm [15], mainly concentrated from October to April
(Figure 1). This region has a characteristic dry season with frequent occurrence of dry spells
during the rainy season [16].

The treatments were set up in the 2014/2015 agricultural year in a total area of 4.4 ha
(Figure 2). Prior to the experiment setting up, the area had been used for maize and soybean
production under conventional soil tillage for more than two decades. The experiment
was prepared first by chisel plowing the soil to a depth of 25 cm to mitigate compaction.
Dolomitic limestone and agricultural gypsum were applied and incorporated into the soil
profile with a moldboard plow and a disk plow. The experimental site was then separated
into stripes with terraces between them, creating a single large experimental block, with
each stripe corresponding to a treatment (Figure 2).
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Figure 1. Daily average temperature and monthly precipitation data during the monitoring period 

(August 2018 to July 2019). The normal precipitation corresponds to the period from 1927 to 2013. 

Adapted from Silva et al. [16]. 

The treatments differed by soil management practices such as different crop rotation 

systems and different levels of fertilizer input. Monocultures of soybean (SS) and maize 

(MM) were compared to rotation systems of maize-soybean (MS) and maize-Brachiaria-

soybean-Brachiaria (MBSB) and two additional treatments with a high level of fertilizer 

input, designated MS-HI and MBSB-HI, while the other treatments were maintained with 

a medium fertilizer input. The amounts of fertilizers applied were 148, 250, 250, 250, 415 

and 415 kg ha−1 of NPK 08-28-16 + 0.3% boron and 2.1% sulfur for the treatments SS, MM, 
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Gerais, Brazil. SS = soybean monoculture, MM = maize monoculture, MS = maize/soybean annual
rotation, MBSB = maize/brachiaria/soybean/brachiaria rotation, BS = bare soil, and HI = high input
of fertilizers.

The treatments differed by soil management practices such as different crop rotation
systems and different levels of fertilizer input. Monocultures of soybean (SS) and maize
(MM) were compared to rotation systems of maize-soybean (MS) and maize-Brachiaria-
soybean-Brachiaria (MBSB) and two additional treatments with a high level of fertilizer
input, designated MS-HI and MBSB-HI, while the other treatments were maintained with
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a medium fertilizer input. The amounts of fertilizers applied were 148, 250, 250, 250, 415
and 415 kg ha−1 of NPK 08-28-16 + 0.3% boron and 2.1% sulfur for the treatments SS, MM,
MS, MBSB, MBSB-HI, and MS-HI, respectively. For the 2018/2019 crop season, maize was
grown in MS and MBSB treatments, and soybeans in MSSB-HI and MS-HI.

In the 2018/2019 crop season, the seeds of brachiaria (Urochloa brizantha syn. Brachiaria
brizantha) cv. BRS Piatã were sown at different times according to the crop used in intercrop-
ping, for treatments MBSB and MBSB-HI. Brachiaria seeds were mixed with fertilizers and
sown in maize rows, simultaneously with the maize sowing. However, when Brachiaria was
intercropped with soybean, the grass seeds were sown when the soybean plants reached
the R5 growth stage, corresponding to the phenological stage of grain filling.

2.1. Erosion Assessment and Soil Sampling

In December 2018, three unitary erosion plots of 1 m2 (0.5 m width × 2 m length) were
implemented for each treatment, arranged with their length in the direction of the slope.
Erosion plots were delimited by galvanized zinc sheet metal inserted 0.20 m into the soil
and kept 0.20 m above the soil surface. At the lower end of each plot, there was a 20 L
container for storing water and sediments from runoff and the transported soil particles.

From December 2018 to March 2019, samples were collected after rainfall events.
The runoff volume was fully measured. Meanwhile, for evaluation of soil loss, after
homogenizing the solution, we sampled 250 mL in each collecting container positioned at
the plots, to later quantify the sediments in the laboratory by the gravimetric method. The
slope of each plot was measured individually, ranging from 7% to 10%. For standardization,
the values of water and soil losses were corrected considering a slope of 9%, according to
Wishmeier and Smitsh [17].

Soil and plant residues were sampled within each erosion plot. The plant residues
on the surface were manually collected to quantify the soil cover rate. Soil samples were
collected in crop rows and in interrows at a 0–10 cm depth, for a total of 39 disturbed and
21 undisturbed soil samples. A separation between crop row and interrow was not made
for the bare soil plots, as this treatment remained without plants throughout the experiment.
Samples were taken when maize and soybean were at the grain maturation phase.

2.2. Soil Physical Quality Indicators

Soil penetration resistance was assessed under field conditions using a Stolf impact
penetrometer [18] within the erosion plots. Simultaneously, soil cores were collected at
0–20 cm, 20–40 cm, and 40–60 cm deep, to quantify the soil water content in a laboratory by
the gravimetric method.

The undisturbed soil samples were saturated for determination of total porosity.
Microporosity was determined using Buchner funnel suction units for a matric potential of
−6 kPa, and macroporosity was calculated by the difference between total porosity and
microporosity [19,20]. Soil bulk density was determined after oven-drying the undisturbed
samples at 105 ◦C [21].

For aggregate stability analysis, aggregates with diameters between 8 and 4.75 mm
were subjected to the wet-sieving method with Yoder-type equipment [22]. Particle size
analysis was performed by the pipette method [21].

2.3. Soil Chemical Quality Indicators

Particles of 2 mm were separated for soil fertility and organic matter analysis. The
following chemical attributes were evaluated: pH in water; phosphorus and potassium,
obtained by the Mehlich-1 method; calcium and magnesium, determined using the potas-
sium chloride (KCl) extractor; and organic matter content, estimated by dry combustion.
All analyses were performed using the protocols described in Teixeira et al. [23].
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2.4. Soil Biological Quality Indicators

For analysis of microbial biomass carbon and soil basal respiration, particles smaller
than 1 mm were separated and kept under refrigeration. Basal soil respiration (BSR)
was estimated by incubation [24], using sodium hydroxide to capture the carbon dioxide
released by the microorganisms. After 3 days, 0.5 M barium chloride was added to stop the
reaction with carbon dioxide from air. The reaction indicator used was phenolphthalein
and the titrant was 0.05 M hydrochloric acid.

Microbial biomass carbon (MBC) was quantified by the fumigation-extraction method [25],
dividing the samples into control and fumigated samples and incubating them for 24 h
with the addition of potassium sulfate and stirring them at 120 rpm for 30 min. The samples
were then filtered to obtain the carbon extract, which was boiled for 5 min with potassium
dichromate, sulfuric acid, and phosphoric acid. The indicator used for titration was
diphenylamine with ammoniacal ferrous sulfate. The metabolic quotient was determined
according to Anderson and Domsch [26] as the ratio between BSR and MBC.

The hydrolysis of fluorescein diacetate (FDA) was determined by the method proposed
by Dick, Breakwell, and Turco [27]. Sodium phosphate buffer solution was added to the
soil samples at pH 7.0 with fluorescein diacetate and incubated under rotation at 3840 rpm
for 24 h at 35 ◦C. The reaction was stopped with acetone and samples were stirred for 5 min.
Then, the samples were filtered and read in a spectrophotometer at 490 nm. For the control
samples, the same procedures were performed, except for addition of fluorescein diacetate.

2.5. Data Analysis

Considering the study area formed by a large experimental block, a completely ran-
domized design was adopted, as recommended by Ferreira et al. [28] and successfully used
in previous studies of long-term field experiments [29,30] and also in the same experiment
in anterior studies [6,16,31]. Thus, for soil losses, water losses, penetration resistance, total
porosity, macroporosity, microporosity, and soil bulk density, the different cropping systems
(seven treatments) were evaluated. As for the other variables (i.e., chemical and biological
indicators), the same treatments were evaluated considering two different positions from
the crop rows and interrows. Soil losses by erosion and water losses by runoff were log-
transformed due to heteroscedasticity. After checking the assumptions, analysis of variance
(ANOVA) and Tukey’s test at 5% probability were performed. Pearson’s correlation matrix
and a principal component analysis (PCA) were performed as an aid for understanding
data variance and the relationships between the variables evaluated.

3. Results
3.1. Soil Losses, Water Losses, and Soil Physical Indicators

Table 1 shows the soil losses (SL), water losses (WL), cover rate (CR), total porosity
(TP), macroporosity (Ma), microporosity (Mi), and bulk density (Bd) for the treatments
evaluated during the field experiment. The highest values of SL and WL were found for the
soybean monoculture (SS) and bare soil (BS), both showing similar losses. No differences
were found for the soil physical properties shown in Table 1.

The in-field penetration resistance (PR) and the soil moisture at this evaluation moment
are shown in Figure 3. Considering the top soil layer (0 to 10 cm), the most prone to
water erosion, it is observed that the highest PR were in the SS and BS treatments, with
averages of 3.88 and 4.26 MPa, respectively. In contrast, the lowest PR was observed in the
MBSB-HI treatment (2.02 MPa), where the smallest losses of sediment and water were also
obtained. Soil moisture showed significant differences at the surface (0–20 cm depth) and
subsurface (20–40 cm depth) soil layers. These differences may restrict conclusions about
the mechanical impedance of PR itself, as PR is strongly affected by soil moisture; the two
are negatively correlated. However, maximum variation in the soil moisture range among
treatments is only 27.2–32.7% at the 0–20 cm depth. Although soil moisture affects the PR,
the BS showed greater PR at the 0–20 cm depth. Furthermore, MBSB-HI showed lower PR
than SS, even though it had higher soil moisture than SS.
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Table 1. Soil losses, water losses, cover rate, total porosity, macroporosity, microporosity, and bulk
density for each treatment evaluated.

Soil Management
System

SL WL CR TP Ma Mi Bd

Mg ha−1 mm Mg ha−1 m3 m−3 m3 m−3 m3 m−3 g cm−3

SS 20.364 a 144.747 a 1.216 cd 0.612 ns 0.196 ns 0.416 ns 0.958 ns

MM 1.025 b 13.290 b 1.75 bcd 0.593 0.18 0.414 1.018
MS 0.630 c 11.959 b 1.5 cd 0.589 0.171 0.418 1.013

MBSB 0.156 d 7.032 bc 3.55 ab 0.589 0.156 0.433 0.993
MBSB-HI 0.122 d 3.893 c 4.650 a 0.599 0.184 0.415 0.902

MS-HI 0.251 d 16.005 b 2.433 bc 0.581 0.15 0.432 1.038
BS 20.144 a 120.442 a 0.000 d 0.606 0.192 0.414 0.951

Means followed by different letters differ by Tukey’s test (p < 0.05). SS = soybean monoculture, MM = maize
monoculture, MS = maize/soybean annual rotation, MBSB = maize/brachiaria/soybean/brachiaria rotation,
BS = bare soil, HI = high input of fertilizers, and ns = not significant. The samples used for TP, Ma, Mi, and Bd
were collected randomly in each treatment, without distinction between crop rows or interrows.
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Figure 3. Soil penetration resistance (PR) for each treatment assessing 0–60 cm (A) and soil moisture
(B) for three different depths (0–20 cm, 20–40 cm, and 40–60 cm) at the time of evaluation of soil
penetration resistance. Means followed by different letters among treatments differ by Tukey’s test
(p < 0.05). SS = soybean monoculture, MM = maize monoculture, MS = maize/soybean annual
rotation, MBSB = maize/brachiaria/soybean/brachiaria rotation, BS = bare soil, HI = high input of
fertilizers, and ns = not significant.
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3.2. Physical, Chemical, and Microbiological Indicators in Crop Rows

The soil physical, chemical, and microbiological indicators for the crop rows are shown
in Table 2. The treatments MBSB-HI and MBSB had higher MBC and FDA than the other
treatments. A high variance among replicates was found for BSR, which restricted the
evidence of differences between treatments. In general, regarding BSR, the MM treatment
had a higher basal respiration rate than the SS and BS treatments. MS-HI also showed
higher basal respiration than SS did. The MM and MS-HI treatments exhibited high qCO2,
which is an ecosystem stress indicator. In addition, MM had lower MBC than BS did and
this was lower than all the treatments that used crop rotation. The FDA in MM had the
lowest value, but it did not differ from SS, MS-HI, and BS. The lowest concentration of
phosphorus was observed in the MBSB treatment, differing from MS. We did not find
differences among the treatments for organic carbon, calcium, GMD, and MWD.

Table 2. Physical, chemical, and microbiological indicators evaluated in crop rows for each treatment.

Soil Management
System MBC BSR qCO2 FDA P Sb m K Mg Ca OC GMD MWD

SS 272 cd 194 c 0.72 bc 110 c 21.6 ab 6.41 ab 1.27 ab 148 ab 1.36 ab 4.68 ns 1.63 ns 4.58 ns 4.75 ns

MM 196 d 424 a 2.19 a 107 c 45.1 ab 5.58 b 1.49 a 153 ab 0.89 b 3.98 1.56 4.39 4.77
MS 311 bc 288 abc 0.93 bc 127 b 68.8 a 6.58 ab 0.71 cd 154.6 ab 1.49 a 4.70 1.43 4.76 4.91

MBSB 361 ab 292 abc 0.81 bc 137 ab 20.6 b 5.57 b 1.18 abc 66.6 b 1.28 ab 4.12 1.42 4.49 4.86
MBSB-HI 423 a 272 abc 0.65 c 147 a 27.6 ab 6.73 ab 0.57 d 124.7 ab 1.38 ab 5.03 1.47 4.60 4.85

MS-HI 316 bc 384 ab 1.24 ab 111 c 22.1 ab 7.60 ab 0.70 d 199.7 a 1.39 ab 5.71 1.75 4.68 4.90
BS 311 bc 251 bc 0.82 bc 113 c 29.1 ab 8.58 a 0.85 bcd 70.3 b 1.61 a 4.83 1.63 4.64 4.85

Means followed by different letters differ by Tukey’s test (p < 0.05). SS = soybean monoculture, MM = maize mono-
culture, MS = maize/soybean annual rotation, MBSB = maize/brachiaria/soybean/brachiaria rotation, BS = bare
soil, and HI = high input of fertilizers. MBC = microbial biomass carbon (mg C kg dry soil−1), BSR = basal soil respi-
ration (mg C-CO2 kg of dry soil−1 d−1); qCO2 = metabolic quotient (mg C-CO2 g MBC−1 d−1), FDA = fluorescein
diacetate hydrolysis (mg F kg−1 of dry soil d−1), P = phosphorus (mg dm−3), Sb = sum of bases (cmolc dm−3),
m = aluminum saturation of soil (%), K = potassium (mg dm−3), Mg = magnesium (cmolc dm−3), Ca = calcium
(cmolc dm−3), OC = organic carbon (dag kg−1), GMD = geometric mean diameter (mm), and MWD = mean
weight diameter (mm), ns = not significant.

The correlation matrix between the variables observed in crop rows is shown in
Figure 4 and the PCA is presented in Figure 5. According to Vieira (2018), the linear
correlation coefficient can have an inverse correlation (negative values) or direct corre-
lation (positive values), and correlations can be classified as small (0 ≤ r < 0.25), weak
(0.25 ≤ r < 0.50), moderate (0.50 ≤ r < 0.75), strong (0.75 ≤ r < 1.00), or perfect (r = 1.00).

SL correlated directly and strongly with WL and moderately with PR10, and it mod-
erately and inversely correlated with CR, BSR, and SM, and weakly correlated with FDA.
The same correlations were observed for WL, indicating that these soil physical and micro-
biological properties are associated with soil and water losses. The soil vegetation cover
rate (CR), however, was positively correlated with MBC, FDA, and SM, and negatively
correlated with PR10. In both cases, the correlation was moderate.

MBC was strongly correlated with FDA; moderately correlated with qCO2, Sb, and
m, and weakly correlated with Mg and MWD. qCO2 was negatively correlated with FDA
(moderate) and Mg (weak), although the FDA had a moderate correlation coefficient with
SM and Bd.

The soil chemical indicators, i.e., organic carbon, sum of bases, aluminum satura-
tion of soil, potassium, phosphorus, calcium, magnesium; other soil physical indicators,
i.e., total porosity, macroporosity, microporosity, GMD, MWD, and bulk density; and some
microbiological indicators, MBC and qCO2, do not show correlations with soil and water
losses, indicating that they do not provide evidence of association with water erosion under
the conditions of our study.

The PCA reinforces, in general, that the BS and SS treatments were strong components
of the WL, SL, and PR10 variations, and inversely related to the soil cover rate. Among the
variables, the basal respiration rate was negatively correlated with soil and water losses
and was positively correlated with soil cover rate, providing useful insights regarding the
relationship between soil erosion and microbial activity.
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Figure 4. Pearson correlation matrix for variables sampled in crop rows. SL = soil losses,
WL = water losses, CR = cover rate, MBC = microbial biomass carbon, BSR = basal soil respiration,
qCO2 = metabolic quotient, FDA = fluorescein diacetate hydrolysis, OC = soil organic carbon, Sb = sum
of bases, m = aluminum saturation of soil, K = potassium, P = phosphorus, Ca = calcium, Mg = mag-
nesium, MWD = mean weight diameter, GMD = geometric mean diameter, PR10 = soil resistance to
root penetration at 10 cm depth, SM = soil moisture in situ, TP = total porosity, Ma = macroporosity,
Mi = microporosity, and Bd = bulk density. Values in bold print: significant at 5%.
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Figure 5. Principal component analysis for variables sampled in the crop rows. SL = soil losses,
WL = water losses, CR = cover rate, MBC = microbial biomass carbon, BSR = basal soil respiration,
qCO2 = metabolic quotient, FDA = fluorescein diacetate hydrolysis, OC = soil organic carbon, Sb = sum
of bases, m = aluminum saturation of soil, K = potassium, P = phosphorus, Ca = calcium, Mg = mag-
nesium, MWD = mean weight diameter, GMD = geometric mean diameter, PR10 = soil resistance
to root penetration at 10 cm depth, SM = soil moisture in situ, TP = total porosity, Ma = macrop-
orosity, Mi = microporosity, Bd = bulk density, SS = soybean monoculture, MM = maize monocul-
ture, MS = maize/soybean annual rotation, MBSB = maize/brachiaria/soybean/brachiaria rotation,
BS = bare soil, and HI = high input of fertilizers.
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3.3. Physical, Chemical, and Microbiological Indicators in Crop Interrows

The soil physical, chemical, and microbiological indicators observed at the crop inter-
rows are shown in Table 3. The MBSB-HI treatment, as per what occurred for crop rows,
had the highest MBC and the lowest qCO2 among the treatments. The FDA of MBSB-HI
had the lowest value among the treatments, being statistically equal to SS, MS, and BS,
differently to what was observed in the crop rows. The lowest MBC value, in this case, was
observed in the MS treatment, which also had high BSR and the highest qCO2, indicating
possible agroecosystem stress. For the crop rows, however, this response was observed
for the MM treatment. In general, the values obtained for MBC, BSR, and qCO2 for the
interrow were higher than the values for the crop row (Table 2), showing that vegetation
cover is necessary to the agroecosystem’s balance. The MS-HI treatment did not show
significant differences regarding K and Ca in relation to the other treatments, except for
MM (for both elements) and MBSB (only for K). For Mg, however, only MBSB-HI and MS
differed from SS and MM. Organic carbon, GMD, and MWD did not show differences
among the treatments.

Table 3. Physical, chemical, and microbiological indicators evaluated in crop interrows for each treatment.

Soil Management
System MBC BSR qCO2 FDA P Sb m K Mg Ca OC GMD MWD

SS 395 b 352 c 0.90 cd 112.1 c 21.5 ab 6.71 abc 0.70 bc 123.3 ab 1.37 b 4.81 ab 1.48 ns 4.39 ns 4.78 ns

MM 380 b 480 b 1.27 bc 142.6 a 26.3 ab 6.49 abc 1.95 a 87.8 b 1.22 b 4.05 b 1.80 4.66 4.90
MS 178 d 483 ab 2.7 a 118.5 bc 51.1 a 5.50 c 0.74 bc 122.6 ab 1.95 a 5.32 ab 1.73 4.58 4.84

MBSB 256 cd 459 b 1.83 b 126.1 b 18.8 b 7.59 abc 1.01 b 79.0 b 1.50 ab 4.56 ab 1.53 4.71 4.89
MBSB-HI 498 a 424 b 0.85 d 117.1 c 18.6 b 6.26 bc 0.49 c 135.1 ab 1.95 a 5.98 ab 1.80 4.76 4.92

MS-HI 389 b 532 a 1.37 b 99.2 d 22.9 ab 8.27 ab 0.58 bc 199.1 a 1.60 ab 6.47 a 1.46 4.76 4.93
BS 311 bc 251 c 0.82 d 112.7 c 29.1 ab 8.58 a 0.85 bc 105.6 ab 1.61 ab 4.83 ab 1.63 4.64 4.85

Means followed by different letters differ by Tukey’s test (p < 0.05). SS = soybean monoculture, MM = maize mono-
culture, MS = maize/soybean annual rotation, MBSB = maize/brachiaria/soybean/brachiaria rotation, BS = bare
soil, and HI = high input of fertilizers. MBC = microbial biomass carbon (mg C kg dry soil−1), BSR = basal soil respi-
ration (mg C-CO2 kg of dry soil−1 d−1); qCO2 = metabolic quotient (mg C-CO2 g MBC−1 d−1), FDA = fluorescein
diacetate hydrolysis (mg F kg−1 of dry soil d−1), P = phosphorus (mg dm−3), Sb = sum of bases (cmolc dm−3),
m = aluminum saturation of soil (%), K = potassium (mg dm−3), Mg = magnesium (cmolc dm−3), Ca = calcium
(cmolc dm−3), OC = organic carbon (dag kg−1), GMD = geometric mean diameter (mm), and MWD = mean
weight diameter (mm), ns = not significant.

The Pearson correlation matrix showing the correlation between the soil erosion
indicators and the soil physical, chemical, and microbiological properties evaluated in the
interrows is shown in Figure 6, and its PCA in Figure 7. In the interrows SL correlated
strongly and positively with WL, just as in the row, and these losses correlated moderately
and negatively with CR, resulting in the same linear correlation coefficient values for both.
In addition, soil and water losses were positively and moderately correlated with PR10.

Both SL and WL showed a strong inverse correlation with BSR (Figure 6), stronger
than that observed for these indicators for the crop row data (Figure 4). Furthermore, SL
and WL were significantly inversely correlated with CR, qCO2, GMD, MWD, and SM.
CR was not correlated with MBC, but had a strong positive correlation with BSR. BSR
was moderately correlated with PR10, and SM; and FDA was inversely correlated with
K and Ca.

The PCA (Figure 7) shows that soil and water losses were correlated with soil physical
properties, positively correlated with PR10 and negatively correlated with GMD and MWD.
In addition, the BSR microbiological property was negatively correlated with SL and WL,
just as observed for data from the crop rows (Figure 5). In general, treatments with cover
crops or crop rotation led to improved soil microbiological and chemical properties, whereas
the BS and SS monoculture systems led to a loss of soil physical quality (mainly PR10).
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Figure 6. Pearson correlation matrix for variables sampled in crop interrows. SL = soil losses,
WL = water losses, CR = cover rate, MBC = microbial biomass carbon, BSR = basal soil respiration,
qCO2 = metabolic quotient, FDA = fluorescein diacetate hydrolysis, Sb = sum of bases, m = aluminum
saturation of soil, Mg = magnesium, MWD = mean weight diameter, PR10 = soil resistance to root
penetration at 10 cm depth, SM = soil moisture in situ, and Bd = bulk density. Values in bold print:
significant at 5%.
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Figure 7. Principal component analysis for variables sampled in crop interrows. SL = soil losses,
WL = water losses, CR = cover rate, MBC = microbial biomass carbon, BSR = basal soil respiration,
qCO2 = metabolic quotient, FDA = fluorescein diacetate hydrolysis, OC = soil organic carbon, Sb = sum
of bases, m = aluminum saturation of soil, K = potassium, P = phosphorus, Ca = calcium, Mg = mag-
nesium, MWD = mean weight diameter, GMD = geometric mean diameter, PR10 = soil resistance to
root penetration at 10 cm depth, SM = soil moisture in situ, TP = total porosity, Ma = macroporos-
ity, Mi = microporosity, Bd = bulk density, SS = soybean monoculture, MM = maize monoculture,
MS = maize/soybean rotation, MBSB = maize/brachiaria/soybean/brachiaria rotation, BS = bare
soil, and HI = high input of fertilizers.
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4. Discussion

The high soil and water losses for the SS treatment indicate that soybean monoculture
is a system of low sustainability in the Cerrado and high susceptible to water erosion, and it
similar to a bare soil surface (like the BS treatment). Those conditions are explained by the
low production of biomass, thus not promoting enough covering to protect the soil surface
against the impact of raindrops. Soybean stover not only has low biomass production
compared to grasses (e.g., maize and brachiaria), it also has high nitrogen content, i.e., a low
C/N ratio, therefore being rapidly decomposed without providing permanent protection to
the soil surface [32]. Furthermore, the surface sealing due to the direct impact of raindrop
causes a reduction in soil water infiltration rates, increasing direct runoff and, consequently,
water and soil losses [33]. Conversely, treatments with more stover production, e.g., due
to inclusion of Urochloa sp. or due to maize biomass production [34], reduce water and
soil losses.

No differences were found for the soil physical properties shown in Table 1. Therefore,
the duration of our study was not sufficient to provide strong evidence of differences in
soil physical quality evaluated by porosity and static indicators, even though it showed
strong differences when evaluating dynamic attributes, such as soil and water losses, as
discussed above. In the same experimental area, Mota et al. [6] observed that porosity-based
indicators did not correlate with grain yield, but the pore size distribution indicator and
organic carbon were effective in distinguishing the cropping systems. Silva et al. [16], in
the same experimental area, observed that soil and water losses were negatively correlated
with crop yield and vegetation cover rate. Therefore, these findings and the absence of
differences in porosity-based indicators further reinforces the role of vegetation cover as
a key factor in controlling the erosive process. The soil aggregation indicators GMD and
MWD, the first representing the size of aggregates and the second the ratio of large size
aggregates, can provide evidence regarding soil resistance to water erosion [35–38], since
they can indicate the physical condition of the soil surface, providing insights regarding
soil structural quality and infiltration capacity.

The soil physical indicator PR generated different insights. The lower PR observed
in the MBSB-HI treatment can be explained by the abundance of grass roots in the upper
soil layers and the time that had passed since the experiment was first set up (since the
2014/2015 crop year). This created so-called biopores through periodic renewal of the
aggressive root system of brachiaria grass [39,40]. These biopores contribute to soil structure
alleviation and improve soil porosity [41,42], which is crucial for water percolation in the
soil profile and reduction of direct runoff. However, it is noteworthy that PR is strongly
affected by soil moisture of the moment of its assessment, which showed significant
differences, though in a relatively small range. Thus, it is difficult to draw conclusions
based only on the results of PR, since treatments with lower soil moisture will have greater
PR and vice versa, even if there are no differences in the mechanical impediment itself [18].
Meanwhile, Moura et al. [31], in the same experimental area, found that the least limiting
water range indicator, which considers PR, distinguished the monoculture treatments
(SS and MM) from the diversified crop systems already early in 2015/2016. PR could also
contribute to these insights or predictions, since it may also encompass changes in soil
structure due to biopores in diversified cropping systems, as already discussed.

Considering that the water supply is homogeneous throughout the area (only rainfed),
the difference in in-field soil moisture can also provide useful insights about the differences
among the cropping systems. The reduced soil moisture in the SS and BS treatments may
be related to little or no stover over the soil surface (i.e., low cover rate), which causes
an increase in soil temperature and evaporation. Furthermore, the absence of pores with
diameters greater than that of the soil, coming from the stover, generates continuity of
upward movement of water from the soil to the atmosphere, resulting in higher water loss
by evaporation.

Soil and water losses also showed a negative correlation with in-field soil moisture.
Several studies have reported the effect of antecedent soil moisture content on soil losses
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by erosion [43–46]. Soil water infiltration decreases as the soil moisture content increases.
Thus, infiltration rate reduction leads to greater runoff and consequently greater soil loss.

The positive correlation between SL and WL highlights the direct impact of raindrops
on the soil, which break down aggregates and carry away soil particles, organic material,
and nutrients [47], and lead to surface sealing, reducing infiltration capacity and increasing
direct runoff. The more elevated the water losses by runoff and soil losses by erosion
transport, the greater the potential for decline in agricultural yield, and pollution of aquatic
ecosystems [48].

The strong inverse relationship of SL and WL with BSR is a result of reduction in the
richest organic layer of the soil. Organic compounds are a source of energy for microbial
biomass, and reducing their quantity will inevitably reduce decomposition and, conse-
quently, respiration [8,49]. The carryover of microorganisms previously attached to soil
particles may also be a factor contributing to reduction in BSR. The increased WL due to
surface sealing also contributes to BSR reduction, since there is less water infiltration and,
consequently, soil water storage [50]. These findings were not reported for tropical soils,
and could be relevant information for early diagnosis and monitoring of erosion processes.
Future studies can investigate this microbiological indicator and calibrate reference values
or relative indexes for on-farm management tools.

The higher MBC found in treatments with inclusion of brachiaria (MBSB-HI and
MBSB) may be associated with the role of the grass in thermal and water insulation [34],
which affects moisture, temperature, and plant residues on the soil surface. The higher
values of MBC in more diversified cropping systems, considering the use of intercropped
Urochloa sp., have already been reported by Araujo et al. [51], who found similar results,
especially in the soil surface layer (0–10 cm), corroborating our results.

The study of Hoffmann et al. [8] states that the soil organic matter, mainly by quanti-
fying the MBC, can reveal important data on the stock of soil organic components, which
are closely linked to soil quality. Cândido et al. [52] also reported the importance of soil
organic carbon for increasing soil quality and reducing soil erosion. This confirms the
important role played by organic carbon in the sustainability of agricultural systems, af-
fecting physical, chemical, and biological properties, with reflections on the stability of
yield on production systems [52]. Thus, the maintenance of conservation management
systems (e.g., no-tillage with intercropped brachiaria grass) is linked to the sustainability
of production systems and a better plant development, leading to improvements in the
agroecosystems and the environment itself.

Araujo et al. [51], working with maize in monoculture, also reported high qCO2, which
indicates stress conditions of the soil microbial community, since a small microbial mass
has a high energy consumption to maintain metabolic activity. In our study, the MBSB-HI
and MBSB treatments had higher MBC and FDA compared to the other treatments. Thus,
the sensitivity of MBC to different land uses indicates that treatments including brachiaria
were more stable in terms of soil moisture and availability of organic matter and nutrients,
resulting in an increase in the microbial population and, consequently, in metabolic activity.
Therefore, qCO2 combined with high BSR may indicate environmental change due to higher
energy consumption for soil organic matter decomposition.

Considering high BSR values, Odum [53] reported that respiration of the microbial
community can be the first sign of imbalance, since energy is directed towards cell main-
tenance instead of growth and reproduction, leading to loss of C in the form of CO2.
Furthermore, Hoffmann et al. [8] highlighted that cropping systems with greater plant
diversity and less soil disturbance favor the MBC increase, possibly due to the greater offer
of soil organic matter, thus providing greater soil quality.

5. Conclusions

Monoculture grain cropping systems of soybeans and maize contrasted with diverse
cropping systems with soybean/maize rotation, intercropped brachiaria grass, and higher
fertilization, regarding soil quality and water erosion. The higher soil losses by erosion
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(SL) and water losses by runoff (WL) occurred for soybean monoculture (SS) and bare soil
treatment (BS), confirming the importance of maintaining crop stover over the soil surface
over time.

Soil penetration resistance (PR) was important for distinguishing cropping systems,
allowing recognition of better soil quality in cropping systems with intercropped grass. PR
and aggregate stability indicators (GMD and MWD) were correlated with SL and WL, and
this contributes to identifying erosion issues.

Cropping systems with intercropped brachiaria grass showed higher microbial biomass
carbon (MBC) and basal soil respiration (BSR). BSR was negatively correlated with SL and
WL, due to the removal of surface organic matter, which acts as source of energy for the
microbiota. Soil without surface organic matter can lead to surface sealing, which reduces
water infiltration and soil moisture, directly affecting microbiological communities and
the erosion process. Therefore, higher BSR indicates lower soil and water losses and,
consequently, better soil quality. These results provide useful insights regarding the close
relationship between soil microbiological quality and intensity of the soil erosion process
in cropping systems. Thus, not only physical and chemical, but also biological properties
are deeply affected by erosion, aiding in early monitoring of water erosion. Soil quality
improvement in ecologically supported management contributes to mitigating erosion.
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Abstract: In this paper, for the first time, the effect of the longitudinal profile shape of the rill (uniform,
concave, and convex) on flow resistance law was studied. The first part of the paper is based on
a theoretical equation to estimate the Darcy–Weisbach friction factor f, deduced from the power
velocity distribution and rill measurements performed on a plot. At first, the equation to estimate
the Γ parameter of the velocity profile was calibrated using all available measurements. Then an
analysis of the hydraulic characteristics at reach scale, for comparable values of discharge, was carried
out, comparing the different profile shapes. To assess the influence of the rill profile shape on flow
resistance law, this calibration was also carried out using the data categorized by profile. In the
second part of the paper, an analysis of the scour depth and eroded rill volume was developed for
four rills of each configuration. The results showed that an accurate estimate of f can be obtained by
calibrating the flow resistance equation for each profile shape. The component of the Darcy–Weisbach
friction factor that is due to the profile shape varied from 0.68 to 14.6% of the overall friction factor
for the concave profile, and from 3.4 to 26.9% for the convex profile. The analysis also showed that,
for the convex profile, the scour was concentrated downstream of the slope change, while for the
uniform and concave profiles, it was uniformly distributed. Furthermore, the scour depth measured
in correspondence of the rill thalweg had a generally increasing trend, with discharge for all the
investigated profile shapes. Total eroded rill volume of the concave profile was lower than those
detected for the uniform and convex profiles and was characterized by a reduction of 57.9%, as
compared to the uniform profile.

Keywords: slope profile; concave profile; convex profile; rill erosion; rill hydraulics

1. Introduction

Many researchers have studied the effects of length and slope gradient on runoff and
soil loss using uniform plots, i.e., having a constant slope, while a small number of studies
have focused on the effect of profile shape (concave, convex) [1,2].

Young and Mutchler [3,4] investigated experimentally the effect of slope shape (convex,
concave, uniform) on runoff and soil loss at plot scale and showed that concave hillslopes
tends to have reduced total sediment loss compared to a uniform profile slope.

Rieke-Zapp and Nearing [2] carried out laboratory experiments to determine the
relationship between slope shapes and soil erosion using five slope shape treatments
(convex-linear, concave-linear, nose slope, head slope and uniform). These experiments
demonstrated that rill patterns, sediment yield and runoff, all changed with slope shape.
In particular, these authors reported a decrease of 75% of soil loss for concave slopes, as
compared to uniform ones with similar surface area.

Sensoy and Kara [5] carried out an experimental investigation using nine experimental
field plots with different profile shapes, established on a 30% hillslope, subjected to natural
rainfall. This field experiment indicated that slope shape (uniform, concave, convex)
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affected both runoff and soil loss. In particular, the uniform slope was characterized by the
highest values of runoff and soil loss, while the concave slope produced the lowest values.
The experimental results also indicated that the soil eroded from the uniform plots was
mainly composed of fine particles (<2 mm), while both the concave and convex slopes were
characterized by a large size variability of the eroded particles.

Jeldes et al. [6] compared concave and uniform hillslopes having the same degree of
mechanical stability and concluded that concave slopes produced 15–40% less sediment
than uniform slopes. This value was lower than that reported in the literature, which varied
from 50% [7] to 80% [8].

Mombini et al. [9] studied the effect of surface roughness on soil loss using different
complex hillslopes in terms of plan shapes (convergent, parallel, and divergent) and profiles
(convex, concave and uniform). This research, carried out in laboratory conditions using
three different soil surface roughness values and a single simulated rainfall intensity,
indicated that the highest soil loss due to soil roughness was observed on uniform parallel
hillslopes.

Despite the current availability of techniques able to produce a more accurate and
detailed representation of the hillslope surface [10–13], the rill erosion processes on non-
linear profiles (concave, convex) have been barely studied by the scientific community.

Rill erosion results from soil particle detachment and transport by channelized flows.
When overland flow tends to convert into a concentrated flow, the formation of rills occurs.
Rills are eroded channels, characterized by rapid morphological evolution, that represent a
relevant sediment source and a transport path for eroded particles from hillslopes [14,15].
The increased flow shear stress and velocity within the rill increase sediment yield pro-
moting the transport of soil particles that are detached by rill flow and delivered from the
interrill areas to the rill channels [16–23]. Rill erosion has both on-site (reduction of soil
fertility and productivity) and off-site (river over-sedimentation, reservoir sedimentation
and degradation of water quality) impacts [24] and is dominant as compared to interrill
erosion [21].

In previous papers, a theoretical approach based on the integration of a power-velocity
profile, was proposed to deduce the Darcy–Weisbach friction factor [25,26], and its applica-
bility was tested for rill flows [27–35] on uniform plots with different slope gradients.

In this paper, for the first time, the theoretical approach by Ferro [25,26] is applied to
rill measurements carried out on three plots having different profiles (concave, convex and
uniform).

The specific aims of this study are to: (a) test the reliability of the abovementioned
theoretical approach; (b) estimate the component of Darcy–Weisbach friction factor cor-
responding to the profile shape; (c) investigate the evolution of the rill thalweg for the
three examined profile shapes and (d) compare the volumes eroded by flow with similar
discharges for the different profiles.

2. Materials and Methods
2.1. The Experimental Plots and Measurements

A plot, 2 m wide and 7 m long (Figure 1), located in the experimental area of the
Department of Agriculture, Food and Forest Sciences of the University of Palermo, was
used to carry out the experiments.
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The plot was prepared with three different profiles (concave, convex and uniform)
(Figure 1) using a mean plot slope sp of 18%. In particular, for the concave and convex
profiles, the plot was divided into two 3.27 m long parts, and two slope values (12 and 24%)
were set up to obtain a mean value of 18% (Figure 2). The soil was a clay loam characterized
by 32.7%, 30.9% and 36.4% of clay, silt, and sand, respectively.
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For all the profile shapes, soil was manually hoed and raked and then compacted by
a woody bar. The bulk density of the soil was determined by sampling the soil, using a
metal cylinder of known volume, and determining its weight after drying. A uniform soil
moisture condition for all the experiments was achieved by wetting the soil until infiltration
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stopped. Then, rills were manually incised along the maximum slope direction of the plot
and were shaped using a clear flow discharge of 0.1 L s−1, applied for 3 min. The rills
had the same longitudinal profile as the plot. For each rill, nine longitudinal segments,
bounded by two cross-sections spaced 0.624 m apart (Figure 3), were determined.

Water 2022, 14, x FOR PEER REVIEW 4 of 19 
 

 

 

Figure 3. View of the plot area with some tested rills (a), scheme of cross-sections (b), and examples 
of rill reaches (c). 

A constant clear inflow discharge, ranging from 0.18 to 0.63 L s−1, was used for the 
experiments. 

Measurements of water depth h, cross-section area σ, wetted perimeter C, bed slope 
s, and flow velocity V were carried out for rill reaches (i.e., the channel between a given 
measured cross-section and the rill end) on uniform (99 reaches), concave (71 reaches), 
and convex (72 reaches) rills. The indirect measurements of Reynolds number Re = V h/vk, 
in which νk is the kinematic viscosity, Froude number F = V/√(g h), in which g is the accel-
eration due to gravity, and Darcy–Weisbach friction factor f = 8 gRs /V2, where R is the 
hydraulic radius, were also obtained. 

For each experimental run, a 3D-DTM of the plot area was built from a set of 70 pho-
tographs using a 3D-photo reconstruction technique with the image-processing software 
Agisoft Photoscan Professional (Version 1.1.6, Agisoft, St. Petersburg, Russia). The slope 
gradient of each rill segment was determined using the rill thalweg imaged by the 3D-
DTM. The slope of each rill reach was calculated by averaging the values measured in the 
considered reach. 

The mean water depth h and the mean hydraulic radius R in the reach were deter-
mined using the method developed by Di Stefano et al. [36]. This method couples an ac-
curate ground survey of the rill channel, obtained by close-range photogrammetry, with 
the survey of the water tracks inside the channel marked by a dye solution. The measured 
water depths and geometric cross-sections obtained by the 3D-DTM, at a distance interval 
of 6.2 cm within the reach, were used to calculate the values of the hydraulic cross-section 
area σ and wetted perimeter C in the reach and the values of h and R using the following 
equations [36]: 

Figure 3. View of the plot area with some tested rills (a), scheme of cross-sections (b), and examples
of rill reaches (c).

A constant clear inflow discharge, ranging from 0.18 to 0.63 L s−1, was used for the
experiments.

Measurements of water depth h, cross-section area σ, wetted perimeter C, bed slope
s, and flow velocity V were carried out for rill reaches (i.e., the channel between a given
measured cross-section and the rill end) on uniform (99 reaches), concave (71 reaches), and
convex (72 reaches) rills. The indirect measurements of Reynolds number Re = V h/νk,
in which νk is the kinematic viscosity, Froude number F = V/

√
(g h), in which g is the

acceleration due to gravity, and Darcy–Weisbach friction factor f = 8 gRs /V2, where R is the
hydraulic radius, were also obtained.

For each experimental run, a 3D-DTM of the plot area was built from a set of 70 pho-
tographs using a 3D-photo reconstruction technique with the image-processing software
Agisoft Photoscan Professional (Version 1.1.6, Agisoft, St. Petersburg, Russia). The slope
gradient of each rill segment was determined using the rill thalweg imaged by the 3D-
DTM. The slope of each rill reach was calculated by averaging the values measured in the
considered reach.

The mean water depth h and the mean hydraulic radius R in the reach were determined
using the method developed by Di Stefano et al. [36]. This method couples an accurate
ground survey of the rill channel, obtained by close-range photogrammetry, with the survey
of the water tracks inside the channel marked by a dye solution. The measured water
depths and geometric cross-sections obtained by the 3D-DTM, at a distance interval of
6.2 cm within the reach, were used to calculate the values of the hydraulic cross-section
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area σ and wetted perimeter C in the reach and the values of h and R using the following
equations [36]:

h =
∑N−1

i=2

( σ1
2 + σi +

σN
2
)

∑N−1
i=2

(w1
2 + wi +

wN
2
) (1)

R =
∑N−1

i=2

( σ1
2 + σi +

σN
2
)

∑N−1
i=2

(
C1
2 + Ci +

CN
2

) (2)

in which w is the surface width and N is the number of the cross-sections in the reach.
A methylene blue solution was applied as a dye tracer to measure the flow

velocity [28,37–40]. The measured surface velocity was converted to the mean flow velocity
V by a correction factor of 0.8 [41–43].

For four rills of each profile shape, Digital Elevation Models (DEMs) at the ends
of the shaping phase (D1) and the experimental runs (D2) were obtained from the 3D-
DTM. The DEM of the difference (DoD) between D2 and D1 was used to measure the
scour depth values inside the whole rill channel and calculate the total eroded rill volume
RV. Considering that the minimum level of detection of the used DEMs was ±0.005 m,
variations of bed elevation in the range ±0.005 m were not detectable.

Finally, for the same rills, the scour depth values SD were measured, at 0.005 m
intervals along the rill thalweg, as the difference in height between the longitudinal profiles
at the end of the shaping phase (D1) and at the end of the experimental runs (D2) (an
example for one rill with a convex profile shape is plotted in Figure 4). For each rill, the
mean scour depth SDm was also calculated as the mean of the SD values.
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2.2. The Rill Flow Resistance Equation

For an open channel flow, the local flow velocity profile v(y) along a given vertical is
represented by the following functional relationship [44–46]:

ϕ

(
dv
dy

, y, h, d, u∗, s, ρ, µ, g
)
= 0 (3)

where ϕ is a functional symbol, v is the local velocity, y is the distance from the bottom, d
is a characteristic bed particle diameter, u*=

√
(g R s) is the shear velocity, ρ is the water

density and µ is the dynamic water viscosity.
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Applying the Π-Theorem of the dimensional analysis and using as dimensional inde-
pendent variables y, u* and µ, Equation (3) can be expressed by the following dimensionless
functional relationship [30]:

y
u∗

dv
dy

= ϕ1

(
h
d

, s,
u∗y
νk

, Re, F
)

(4)

in which ϕ1 is a functional symbol.
Hypothesizing the Incomplete Self-Similarity in u*y/νk [25,47–50], neglecting the

influence of Re (turbulent flow regime) and considering that the flow Froude number
accounts also for the ratio h/d [26], the integration of Equation (4) yields to the following
velocity profile:

v
u∗

= Γ(s, F)
(

u∗ y
υk

)δ

(5)

where Γ(s, F) is a function to be defined by velocity measurements and the exponent δ is
calculated by the following theoretical equation [51,52]

δ =
1.5

ln Re
(6)

The following expression of the Darcy–Weisbach friction factor f is deduced [25,48,53]
by integrating Equation (5):

f = 8
[

21−δ Γ Reδ

(δ + 1) (δ + 2)

]−2/(1+δ)

(7)

From the velocity profile (Equation (5)) the following estimate Γv of Γ function [25,53]
is obtained by setting equal to α h the distance y at which the local velocity is equal to the
cross-section average velocity V:

Γv =
V

u∗
(

u∗αh
νk

)δ
(8)

The coefficient α, which is less than 1, takes into account that both V is located below
the water surface and the mean velocity profile in the cross-section is considered. The
coefficient α has to be calculated by the following theoretical relationship deduced by
Ferro [25]:

α =

[
21−δ

(δ + 1) (δ + 2)

]1/δ

(9)

For this investigation α varied in a narrow range and the mean value of 0.124 was
assumed. Considering that, according to Equation (5), Γ theoretically depends only on s
and F [26,54], Γv can be estimated using the following power equation:

Γv = a
Fb

sc (10)

where a, b and c are coefficients to be determined from experimental measurements.

3. Results
3.1. Rill Flow Resistance for Different Profile Shapes

The experimental runs were carried out for Reynolds numbers corresponding to
turbulent flow (2764 ≤ Re ≤ 11015 for the uniform profile, 2282 ≤ Re ≤ 14346 for the
concave one, and 2486 ≤ Re ≤ 9487 for the convex one) and for Froude number values
corresponding to subcritical and supercritical flow conditions (0.54 ≤ F ≤ 1.70 for the
uniform profile, 0.64 ≤ F ≤ 1.63 for the concave one, and 0.44 ≤ F ≤ 1.71 for the convex
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one) (Figure 5). In other words, the investigated ranges of Re and F are very similar for the
three different profiles.
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Figure 5. Experimental values of Froude and Reynolds number for each profile shape.

Using all the 242 measurements, i.e., neglecting the influence of the profile shape,
Equation (10) was calibrated obtaining the following relationship:

Γv = 0.4322
F1.0857

s0.5235 (11)

characterized by a coefficient of determination equal to 0.9894. The comparison between
the 242 measured Γv values, obtained by Equation (8) and those calculated applying
Equation (11) is plotted in Figure 6a.

Introducing Equation (11) into Equation (7), the following flow resistance law was
obtained:

f = 8
[
(δ + 1) (δ + 2)
21−δ Reδ0.4322

s0.5235

F1.0857

]2/(1+δ)

(12)

A good agreement, characterized by a root mean square error RMSE equal to 0.1743,
between the measured Darcy–Weisbach friction factor values and those calculated by
Equation (12) was detected (Figure 6b), even if Equation (12) tended to slightly overestimate
the f values for the uniform profile. The friction factor values calculated by Equation (12)
were characterized by errors less than or equal to ±20% for 96.3% of cases and less than or
equal to ±10% for 78.5% of cases. Figure 6 highlights that the f measurements obtained
for the convex profile covered a different range than those obtained from the uniform and
concave profiles. Different characteristics of the convex profile are also revealed by the
frequency distributions of the hydraulic variables F, f, s and V plotted in Figure 7.
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Figure 6. Comparison between the measured Γv values obtained by Equation (8) and those calculated
applying Equation (11) (a) and measured Darcy–Weisbach friction factor values and those calculated
by Equation (12) (b).

As this analysis showed that profile shape influences flow characteristics, the theoreti-
cal flow resistance law was calibrated for each investigated condition. Table 1 lists the a, b
and c coefficients of Equation (10) obtained for the uniform, concave, and convex profiles.

Table 1. Values of a, b and c coefficients of Equation (10) obtained for the uniform, concave, and
convex profiles.

Profile Shape a b c

Uniform 0.4419 1.0127 0.5224
Concave 0.4025 1.1084 0.5469
Convex 0.5187 1.0437 0.3795
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velocity (d).

Figure 8a shows the comparison between the measured Γv values obtained by Equation (8)
and those calculated applying Equation (10), with the specific a, b and c coefficients (Table 1)
for the different profiles. The coefficient of determination of the obtained relationships is
equal to 0.9812, 0.9979 and 0.9882 for the uniform, concave, and convex profiles, respectively.

Figure 8b shows good agreement, characterized by a RMSE equal to 0.1234, be-
tween the measured values of the Darcy–Weisbach friction factor and those calculated by
Equations (7) and (10), with a, b and c coefficients obtained for each profile shape. In this
case, the calculated friction factor values are characterized by errors always less than or
equal to ±20% and less than or equal to ±10% for 86.8% of cases.
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Figure 8. Comparison between the measured Γv values obtained by Equation (8) and those calculated
by Equation (10) with the shape profile-specific a, b and c coefficients (a) and measured Darcy–
Weisbach friction factor values and those calculated by Equations (7) and (10) with the shape profile-
specific a, b and c coefficients (b).

Moreover, to study the influence of profile shape on rill flow resistance, the additive
method of shear stresses [55], already used to investigate the effects of sediment transport
for rills [29,56], and of riparian vegetation for a vegetated channel [57], was applied. In
particular, the Darcy–Weisbach friction factor, fmor, corresponding to the effect of the profile
on flow resistance, was calculated as the difference f -fu between the measured f value
of the concave or convex profile and that of, fu, calculated for the uniform profile in the
same hydraulic conditions (Equations (7) and (10), with a, b and c coefficients obtained for
the uniform profile). This fmor value is almost equal to zero for 9.9% (concave) and 4.2%
(convex) of the measured values. The ratio fmor/f varies from 0.68 to 14.6% for concave
profile and from 3.4 to 26.9% for convex profile (Figure 9).
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3.2. Analysis of Rill Scour Depth and Eroded Volume for Different Profile Shapes

Figure 10 shows the DoD obtained for the uniform (a), concave (b) and convex (c)
profiles were characterized by comparable ranges of flow discharge (0.26–0.58 L s−1 for
uniform, 0.18–0.46 L s−1 for concave, and 0.21–0.60 L s−1 for convex profiles). This figure
clearly shows that the concave profile is characterized by scour depth values (ranging from
0.005 to 0.08 m) lower than those of uniform (0.005–0.153 m) and convex (0.005–0.176 m)
profiles.

For all three investigated profile shapes, Figure 10 also shows that rills are generally
scoured by flow. The blue areas of this figure identify rill zones where the variation of
bed elevation is lower than the minimum level of detection (±0.005 m), or lack variation.
Moreover, for the convex profile, the scour is concentrated downstream of the slope change,
while for uniform and concave profiles, it is uniformly distributed.

The knowledge of the scour depth values obtained by the DoDs allows calculation
of the total eroded volume RV. Figure 11 shows the comparison between the applied
discharge Q and RV using an example of four rills analysed for each profile. The evident
trend, as expected, is that RV increases with Q for all the investigated profiles. Finally, for
the uniform, concave, and convex profiles, the sum of the four RV values resulted in 0.0644,
0.0271 and 0.0654 m3, respectively.

For the forementioned four experimental runs for each profile shape, the frequency
distribution of the scour depth values SD was plotted in Figure 12. This figure highlights
that scour depth, measured in corresponding rill thalwegs, has a generally increasing trend
with discharge for all investigated profile shapes.
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Figure 13 shows the frequency distribution of the SD/SDm ratio for the investigated
discharges. This figure demonstrates that the variable SD/SDm can be considered indepen-
dent of discharge.

Figure 14 shows the empirical frequency distribution of SD/SDm for each profile
shape, using an example for a single discharge value (≈0.35 L s−1). The overlapping of the
three distributions suggested that SD/SDm does not depend on profile shape.
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The relationship between SDm and the discharge was determined for each profile
shape (Figure 15). The mean scour depth increased with discharge according to a power
relationship depending on the profile.
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4. Discussion
4.1. Rill Flow Resistance for Different Profile Shapes

Figure 5 shows that the rill flows for the three examined profiles were characterized by
comparable Reynolds numbers, while for the convex profile, they were characterized, on
average, by Froude numbers lower than those related to the uniform and concave profiles,
and less than 1 for 93% of cases. For the latter, the pairs (Re, F) were generally overlapped.
The detected trend for Froude number confirmed that the profile shape influences the
kinematic flow characteristics (Figure 7a), while the comparable Reynolds number values
(Figure 5) suggest that the profile does not affect the flow regime.

Figure 7 confirmed this overlapping trend for the measured flow velocity (Figure 7d)
and Froude number (Figure 7a) on uniform and concave profiles. The slope values of the
concave profile were less than those of the uniform profile, while the s values of the convex
profile were greater than those measured on the uniform profile (Figure 7c). For the convex
profile, the occurrence of the highest slope values and the lowest velocity values can be
explained by the relevant erosion phenomena. Indeed, the highest RV values detected for
the convex profile at the single rill and plot scale, demonstrate that for this profile, the
erosion phenomena determine a major increase of grain roughness and sediment transport
that lower flow velocity and increase the Darcy–Weisbach friction factor (Figure 7b). The
overlapping values of flow velocity and friction factor f for uniform and concave profiles
can be explained by the similar distribution of erosion phenomena occurring in the rill
channels (Figure 10a,b).

The comparison between Figures 6b and 8b and the error statistics highlight that a
single flow resistance equation (Equation (12)) is applicable to all investigated profiles,
despite the differences highlighted by the analysis of hydraulic characteristics at reach scale.
However, the f estimate is more accurate if specific calibration coefficients (a, b and c) are
applied for each profile.

Figure 9 demonstrates that the ratio fmor/f was greater than 10% for 39.1% and 69.6%
of the investigated cases for the concave and convex profiles, respectively. Thus, for the
examined conditions, the effect of profile shape on flow resistance can be considered
relevant.

The convex profile was characterized by the highest values of the ratio fmor/f (3.4–26.9%)
(Figure 9), which demonstrates that the contribution of the component of total flow resis-
tance due to the profile was more pronounced than for the concave profile. This result
can be explained as higher eroded volumes were detected for the convex profile and fmor
accounts for sediment transport and roughness effects on the flow resistance.
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4.2. Analysis of Rill Scour Depth and Eroded Volume for Different Profile Shapes

Previous studies [23,58] considered a slope value of 18% as a threshold to discriminate
between the gentle (GS) and the steep slope (SS) condition. This distinction is explained
as differences in hydraulic (flow depth, velocity, Reynolds number, Froude number) and
sediment transport (flow transport capacity, actual sediment load) variables occur. For
the SS condition, results by Nicosia et al. [58] supported the conclusion that the sediment
transport capacity Tc was so high that it was not a limiting factor for the actual sediment
transport, while for the GS case, the actual sediment transport could be limited by both Tc
and the soil particle detachability and transportability.

For the convex profile, Figure 10c shows that the scour was concentrated, while it
was evenly distributed for uniform (Figure 10a) and concave profiles (Figure 10b). In
particular, the noticeable scour of the rills in convex profiles was located downstream
of the slope change from a gentle (12%) to a steep (24%) slope condition, because in the
upstream half of the rill, the actual sediment transport was limited by Tc, while in the
downstream half, it was not. Notwithstanding, the spatial distribution of the scour was
similar for uniform and concave profiles, the scour depth values of concave profiles were
lower than those of uniform and convex profiles, which instead were similar (Figure 10).
Consequently, also the eroded volume of the rill for the concave profile was lower than
the eroded volumes for the uniform and convex profiles (Figure 11). In particular, the
concave profile resulted in 57.9% less soil loss than the uniform profile. This result confirms
the literature findings [2,6–8], which have reported 50 to 80% less soil loss from concave
hillslopes than from uniform slopes.

Figure 11 also shows that increasing values of flow discharge determine a higher
RV. This result agrees with that obtained by Di Stefano et al. [56] who found that when
discharge increased, the contribution of sediment transport to flow resistance and the
eroded rill volume also increased.

The results shown in Figures 13 and 14 suggest that SD/SDm was independent of
discharge and profile shape, respectively. In other words, the mean value SDm accounted
for the effects of both discharge and profile shape on scour depth.

Finally, Figure 15 demonstrates that profile shape determined a different increasing
relationship between mean scour depth along the rill thalweg and discharge. The mean
scour depth for the uniform profile was always higher than that obtained for the convex
profile. Instead, the total eroded volume obtained for the uniform profile was slightly
lower than that obtained for the convex profile. This result can be explained as the DoD
information accounts for the spatial distribution of scour depth, while SDm represents the
mean value of measurements performed along a single linear flow path.

5. Conclusions

In this paper, the effect of the rill profile on flow resistance law was evaluated using
measurements obtained from uniform, concave, and convex profiles.

At first, the equation to estimate the velocity profile parameter Γ was calibrated by all
the available measurements and an accurate estimate of the Darcy–Weisbach friction factor
(Equation (12)) was obtained. Then, to assess the influence of each profile on flow resistance
law, the equation to estimate Γ was also calibrated when the data for each profile shape was
distinguished. This choice determined an appreciable improvement of the friction factor
estimate.

The Darcy–Weisbach friction factor corresponding to the effect of the profile on flow
resistance, varied from 0.68 to 14.6% of the overall f factor for the concave profile, and from
3.4 to 26.9% of f for the convex profile.

The developed analysis also showed that for convex profiles, scour was concentrated
downstream of the slope change, while for uniform and concave profiles, it was uniformly
distributed. Furthermore, the scour depth measured in the corresponding rill thalwegs,
had a generally increasing trend with discharge for all investigated profiles.
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The total eroded volume for the concave profile was lower than those obtained for
uniform and convex profiles and was characterized by being 57.9% less than for the
uniform profile.

Finally, the analysis indicated that the mean value of scour depth in the rill thalweg
accounted for the effects of both discharge and profile shape, and increases with increased
discharge according to a relationship varying with the profile shape.

The main limitations of the study are the use of a single soil type and one mean plot
slope. These can be overcome by other experiments using different soils and values of
mean plot slope.

The present investigation highlights a markedly less soil loss from concave slopes than
from either uniform or convex slopes. Moreover, the proposed approach allows estimating
rill flow velocity, which is an essential component of process-based soil erosion models.
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Abstract: This paper presents the development and verification of an improved and cost-effective
flume apparatus and corresponding testing methodology. A rigorous analysis of the flow conditions
during testing was considered and an interpretation of test results was carried out following the
premises of the Water Erosion Prediction Project (WEPP) rill erosion model. The apparatus and
methodology were verified using statically compacted specimens of a latosol from the central region
of Brazil. Tests were performed on samples with void ratios of 1.0 and 1.5 and under variable
hydraulic conditions to verify the repeatability and ideal analysis time for the soil loss curves. The
soil loss curves presented hyperbolic behavior, with a maximum value that appeared to be randomly
behaved, which can be attributed to the complex nature of the erosion processes at later stages. The
equipment and testing methodology produced erosion curves with repeatability that were superior
with respect to their initial linear and transition portions. Recommendations are made regarding
the adequate interpretation of the testing data and the selection of the ideal elapsed time for soil
loss analysis.

Keywords: soil erosion; water erosion; flume test; experimental tests; WEPP model

1. Introduction

Water erosion of soils and its quantification through rational models poses a significant
challenge due to the complexity of the processes involved, which include numerous soil
properties and hydraulic conditions [1–4]. The Water Erosion Process Project (WEPP)
model, proposed by Foster [5], is considered to be one of the main basic frameworks that is
available for the quantification of water erosion [6–10]. The WEPP model evaluates water
erosion by incorporating physical concepts associated with the erosion mechanisms and by
dividing the erosion process into (a) interstitial erosion caused mainly by splashing and
by water flow in areas adjacent to streams and (b) rill erosion resulting from the effects of
hydraulic energy of the flow concentration on the stream bed.

According to the WEPP modeling approach, the evaluation of rill erosion parameters
should be based on flume tests performed under controlled hydraulic conditions. The
interpretation of such tests assumes that erosion takes place due to the hydraulic shear
stress imposed by the flow in the flume bed, as shown in Figure 1. Based on these flow
conditions, the hydraulic shear stress τh (Pa) in the flume bed can be given by

τh = γwh sin α (1)
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where γw is the unit weight of the water (kN m−3); h is the piezometric head (m); and α is
the slope of the channel.
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Figure 1. Erosion formation: (a) hydraulic conditions; (b) erosion function.

The general concepts shown in Figure 1 were first presented by Du Boys [11], who
stated that particle detachment occurs when the hydraulic shear stress is higher than the
shear strength generated by frictional forces due to the submerged unit weight of the soil.
This shear strength limit is known as the critical shear stress, τc. The WEPP approach is in
part based on the concepts introduced by Du Boys [11] and indicates that when is greater
than τc, a progressive detachment of soil layers takes place along the stream bed (Figure 1a).
The rate of mass loss, Dc (g cm−2 min−1), is generally assumed to be proportional to the
difference between the hydraulic shear stress acting on the flume bed and the critical
hydraulic shear stress, which can be represented as follows:

Dc = Kr(τh − τc) (2)

where Kr is the soil erosion coefficient (g cm−2 min−1 Pa−1).
The proportionality between Dc and τh − τc has been demonstrated by numerous au-

thors, such as Partheniades [12], Foster [5], Nearing et al. [13], Zhang et al. [14], Bastos [15],
Dey [8] and Kimiaghalam; Clark; and Ahmari [16]. There is also significant evidence in
the literature showing that the relationship between the rate of mass loss and the shear
stress may also be nonlinear for certain ranges of hydraulic shear stress [5,17–22]. However,
according to Lane, Foster, and Nicks [23], assuming a linear relationship may be often
acceptable for the approximate quantification of soil loss.

Lim and Khalili [24] state that the most used laboratory test for studying soil erodibility
is the hydraulic flume. The soil erosion parameters τc and Kr may be determined based on
flume tests where the value of τh is varied under strictly controlled conditions and where
the corresponding values of Dc are measured. Such tests depend on the establishment
of rigorous experimental protocols regarding sampling or remolding procedures and the
control of the initial water content [25,26], the establishment of an adequate hydraulic
regime [27], the monitoring of soil conditions and mass loss [28], and the interpretation
methods of results, including the selection of adequate testing periods [29]. Several stud-
ies have presented variations in flume apparatus design and testing protocols, such as
Lyle and Smerdon [25], Ghebreiyessus et al. [30], Kamphuis et al. [31], Zhu et al. [32],
Cantalice et al. [33], Shepard et al. [34], and Ni et al. [35].

Some studies [15,33,36–43] have adopted flume apparatuses with relatively simpler
construction, which leads to more cost-effective alternatives. The following common
design characteristics are generally observed in these apparatuses: (a) the use of an open
channel; (b) the piezometric head and corresponding hydraulic shear stress are varied by
changing the flume tilt angle; and (c) the specimen is placed flush with the flume bed, and
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the specimen is not raised during testing. In this case, the soil loss may be measured by
obtaining the dry weigh of the specimen or by collecting the water and sediment that flow
over the specimen using a set of sieves.

Unfortunately, the aforementioned cost-effective design approach is often adopted
with little regard for the determination of ideal flow regimes and frequently leads to
erosion curves that are difficult to interpret. These flume designs are not standardized,
and there are several methodologies that can be used to execute and interpret test results.
The following aspects vary significantly between the different flume test methodologies
that were previously presented: (a) geometry of the flume; (b) geometry of the specimen
surface exposed to water flow; (c) position of the specimen with respect to the flume;
(d) procedure for measuring soil loss; and (e) procedure for interpreting soil loss curves
and obtaining erosion parameters. It is apparent that further standardization is required
in order to promote testing methodologies that produce data that are consistent and
comparable. In this context, this paper presents a new flume test apparatus and data
interpretation procedure. Great focus is given to the establishment of highly controlled
hydraulic conditions, the verification of testing repeatability, and to the establishment of
sound procedures for the interpretation of test results.

2. Materials and Methods
2.1. General Apparatus Characteristics and Hydraulic Design

The general arrangement of the developed apparatus is presented in Figure 2. It
consists of (a) a reservoir made of polymethyl methacrylate, which can be used to regulate
the water flow; (b) a flume made of the same material; (c) systems for regulating the flow
and leveling the flume; and (d) a sample port. The system has a ramp length of 2.0 m, a base
width of 0.18 m, and sidewalls that are 0.20 m in height. These dimensions were defined
according to a flow analysis that will be described later on. The specimen enclosure is cubic
and has edges of 18.0 cm in length. Ports were included in the specimen enclosure and
were placed along uniformly spaced positions in the direction orthogonal to the specimen
surface, allowing the instrumentation of the specimen using tensiometers and/or water
content probes. The flume was designed to operate with tilt angles varying between 5 and
60 degrees. The design flow rates vary between 1.0 × 10−4 m3 s−1 and 2.4 × 10−3 m3 s−1

when the flume is set with a tilt angle of 5 degrees and between 4.0 × 10−4 m3 s−1 and
9.0 × 10−3 m3 s−1 in the maximum slope of 60 degrees.

As a design requirement, it was established that the apparatus should ensure a
uniform flow condition in a supercritical regime over the specimen surface. A uniform
flow corresponds to a constant flow velocity at any instant and at every point along the
flume, including the specimen area. This design condition has been generally overlooked in
previous open channel flume designs. A supercritical regime would allow the reproduction
of uniform and controlled hydraulic shear stresses along the specimen surface [44]. In
addition, flow disturbance that may occur in the downstream portions of the specimen as
the erosion process advances would not propagate to upstream regions, keeping the flow
characteristics relatively uniform.

In previous studies, it was assumed that the critical flow depth was equal to the
normal depth along the flume, corresponding to a constant uniform flow under a critical
regime. However, feeding the canal in a typical flume causes a phenomenon known as
hydraulic backwater, resulting in a non-uniform flow regime at the entrance point of the
flume. According to Munson et al. [44], this flow regime tends to evolve rapidly towards a
permanent and non-uniform flow in a critical regime, in which the normal flow height is
affected, compromising the strict control of hydraulic shear stresses.
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Figure 2. Flume apparatus; all dimensions are in meters.

The normal flow height value in the uniform flow region can be obtained using
explicit solutions for trapezoidal channels, as presented in Vatankhah [45]. Taking the
difference between the discharge in the uniform flow region and the feed discharge (Q),
which depends on the flow height itself, the following equation is obtained:

f (y0) =
1
n
(by0)

5/3(sin α)1/2

(b + 2y0)
2/3 −Q (3)

where f (y0) is the tolerance for discharge variation; n is Manning’s roughness coefficient
(assumed to be 0.085 for polymethyl methacrylate); b is the flume width (m); y0 is the flow
depth, taken normal to the flume bed (m); α is the tilt slope of the flume; and Q is the
system discharge (m3 s−1).

Equation (3) is a non-linear and indeterminate equation. The value of y0 can be
obtained iteratively, using Newton’s method, as follows:

y0(n+1)
= y0(n) −

f (y0(n))

f ′(y0(n))
(4)
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where y0(i) is the ith value of y0, which is evaluated during the iterative procedure, and

f ′
(

y0(i)

)
is the first-order derivative of f (y0). The derivative estimation can be completed

using the complex step approach method, described in Martins et al. [46]:

f ′(y0) =
Im[ f (y0 + ip)]

p
(5)

where Im is the image of the complex function, and p is the finite difference interval.
To guarantee uniform flow in a supercritical regime along the entire flume, including

its entry and exit sections, the flow rate and the slope of the flume must be constrained
by certain limits so that the hydraulic backwater dissipates before the specimen insertion
region. Therefore, for each selected discharge, the distance between the starting point of the
flow and the point where the normal height reaches the value of y0 was calculated. It was
thus possible to confirm the occurrence of the specified flow regime. Such evaluation was
conducted for each selected discharge using the direct step numerical integration method
as presented by Munson et al. [44].

2.2. Soil Characteristics and Specimen Preparation for Flume Tests

The soil selected for this study has characteristics that are typical of soils from the state
of Goiás, Brazil. Disturbed samples were collected in the city of Goiânia at the geographical
coordinates 16.7289◦ S and 49.2958◦ W. Samples were collected between 50 cm and 150 cm
below the ground surface, reaching the B horizon. The soil has a clay content above 20%.
The soil presents liquid and plastic limits of 33% and 22%, respectively, and a pH of 5.6,
which is typical for lateritic soils from the region. The in situ void ratio varies from 1.0 to 1.8,
and the saturated hydraulic conductivity ranges from 1 × 10−6 m s−1 to 2 × 10−5 m s−1.
Finally, the soil has a cation exchange capacity of 2.29 cmol dm−3 and an amount of organic
matter of 9 g dm−3.

Laboratory specimens were reconstituted under highly controlled conditions. A
quasistatic compaction procedure was adopted, using the Emic DL2000 automated loading
frame manufactured by Instron (Norwood, MA, USA). The specimen enclosure shown in
Figure 2 was used as a mold. Specimen compaction was achieved using four soil layers of
50 mm in height each, each one compressed at a constant rate of 0.017 mm/s. A 50 mm
extension collar was used to hold the loose soil before compression. After compaction,
the collar was gently removed, exposing 20 mm of excess compacted material. Finally,
the excess material was scraped using a beveled ruler so that the specimen would reach
the final 180 mm in height. This scraping procedure ensured that the specimen surface
roughness was not influenced by the compaction piston, which often produces undesired
particle orientation. Specimens were sealed and stored to reach hydraulic equilibrium for
at least two days before testing.

Specimens were reconstituted using air-dried samples that were later wetted to a
gravimetric water content of 18%. The selected remolding void ratios were equal to 1.0
and 1.5. The mean value and coefficient of variation (CV) obtained for the gravimetric
water content, considering all reconstituted specimens, was 17.8% and 0.4%, respectively.
The mean value obtained for the void ratio of remolded specimens was 1.02 and 1.51.
The corresponding values for CV of the void ratios were 0.6% and 0.4%, respectively.
The obtained mean and CV values indicate that the compaction procedure was adequate,
producing specimens that correspond closely to the specified conditions. It is important to
note that the remolding process does not necessarily produce specimens with the same soil
structure as the one found in natural undisturbed soil. However, flume test repeatability
benefits greatly from the use of the relatively homogeneous specimens obtained from the
compaction procedure.
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2.3. Flume Testing Procedure

Before the execution of each test, the specimens were unsealed and weighed to confirm
the remolding water content after the equilibrium period. The placement of the specimens
in the flume was achieved to ensure the strict alignment between the specimen surface
and the hydraulic flume. The relatively narrow gap (smaller than 1 mm) located along
the edges of the specimen surface was sealed using silicone glue, removing excess glue,
and leveling it. Next, the specimen surface was covered with a polyethylene plastic film.
Water was allowed to flow over the covered specimen until the desired flow rate and flow
regime uniformity was observed. The start of the test proper was established by carefully
removing the protection film.

The eroded material was collected using sieves covered with non-woven polyester
geotextile with a mass of 140 g m−2 and an apparent opening equal to 0.094 mm, which
was calculated based on the retention criteria presented by Christopher and Holtz [47]. The
geotextile was oven-dried at approximately 104 ◦C for at least 24 h and were weighed on a
precision scale before use in the test.

To investigate the evolution of erosion over time, from its initial seconds to prolonged
periods of flow, the eroded material was collected after 0.25, 0.5, 1, 2, 3, 4, 5, 10, 15, 30, 45,
and 60 min. The eroded mass between each time step was determined by placing a new
sieve-geotextile set on top of the existing one and by removing the latter. Each sediment
collection geotextile was placed in an oven that was set at approximately 105 ◦C for at least
24 h, and the geotextiles were then weighed to obtain the eroded dry soil mass.

2.4. Flume Testing Program

The experimental program presented herein involved a total of 31 specimens with
hydraulic conditions that were selected to allow the determination of the erosion param-
eters established by the WEPP model framework. The test conditions were combined to
produce the following sets:

• Out of the 31 specimens, a total of 16 specimens were compacted at a void ratio of 1.5.
The remaining 15 specimens were compacted with a void ratio of 1.0;

• Out of the 31 specimens, 12 were used to assess the repeatability of the tests performed
with the new apparatus. This was accomplished by testing six pairs of specimens
under identical flow conditions;

• Five different flow conditions were used to analyze the influence of the hydraulic
shear stress on the erosion curves.

Hydraulic stresses of 0.98 Pa, 1.26 Pa, and 1.93 Pa were applied to specimens with void
ratios of 1.0. Hydraulic stresses of 0.82 Pa, 0.98 Pa, and 1.26 Pa were selected for specimens
with void ratios of 1.5. To obtain the aforementioned hydraulic stresses, a 10-degree tilt
was adopted and was combined with flow rates of 1.5 × 10−3 m3 s−1, 2.0 × 10−3 m3 s−1,
2.5 × 10−3 m3 s−1, 3.0 × 10−3 m3 s−1, and 6.0 × 10−3 m3 s−1. These conditions were based
on their recurrence in previous studies.

3. Results and Discussion

As shown in Figure 1b, flume tests executed under multiple hydraulic shear stresses,
τh, are required to define pairs of values of τh and Dc, thereby allowing the determination
of the soil erosion properties, τh and Kr. Unfortunately, the erosion rate, Dc, may vary
during testing. This is particularly true when fixed specimens are employed because the
erosion curves under these testing conditions often present a hyperbolic behavior. As
a result, several authors recommend that Dc be defined using a secant to the soil loss
curve [15]. The secant value of Dc is obviously dependent on the time interval that is
adopted. However, there is a lack of consensus in the literature regarding the elapsed
time to be used for the computation of a secant erosion rate. Such a relatively imprecise
definition of Dc prompted an investigation of the effect of the time interval.

Figure 3 presents the results of 12 flume tests. Accumulated soil loss (E) curves are
shown over time for three pairs of hydraulic shear stress values and for two void ratio
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values. The erosion curves obtained from the tests performed on the specimens with void
ratio of 1.5 (Figure 3b) and under hydraulic shear stresses of 0.82 Pa and 1.26 Pa indicated
superior repeatability during the beginning of the erosion process, particularly within the
first five minutes of testing. On the other hand, curves for the same hydraulic stress diverge
for times longer than five minutes. Erosion curves obtained for specimens prepared with
a void ratio of 1.0 presented significantly higher variability, which indicates some degree
of randomness, even during the first five minutes. This fact can be explained by the low
erodibility of the specimen surface with eroded material that is likely to only corresponded
to the loosened soil particles present on the specimen surface before the test started.
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Figure 3. Flume test results for void ratios of: (a) 1.0; (b) 1.5; (c) 1.0 modelled curves; and (d) 1.5 modelled curves. Filled
and empty markers of the same shape indicate test pairs that were conducted under identical conditions.

The data presented in Figure 3 were modelled using a nonlinear fitting procedure
aimed at defining the initial rate of soil loss and the maximum accumulate erosion value in
a rigorous unbiased manner. The soil loss accumulated over time has a behavior that may
be approximated by a hyperbolic function, as is apparent from Figure 3. The hyperbolic
behavior may be mathematically represented as follows:

E =
t

1
Eult

t + 1
a0

(6)

where E is the soil loss by unit area accumulated at any given elapsed time (g cm−2); t is
the elapsed time (min); Eult is the maximum asymptotic value of E, which is somewhat
similar to the main erosion parameter defined in [15,42,48]; and a0 is a fitting parameter
(g cm−2 min−1).
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The fitting parameter a0 is the rate of erosion taken at the origin of the erosion curve
and may be considered as the erosion rate defined in the WEPP model [5], Dc:

dE
dt

∣∣∣∣
∆t→0

= a0 = Dc (7)

Nonlinear regression was conducted for the data presented in Figure 3 and only
considered the first five minutes of testing. The analysis time was limited to the first five
minutes because of the random nature of the erosion curves at later stages. Table 1 presents
the results of the regression analysis. The continuous curves shown in Figure 3 present
the corresponding best-fit curves. The results shown in Table 1 indicate RMSE values
that range between 0.66 × 10−4 and 17.6 × 10−4 and R2 values that range between 0.912
and 0.999. The quality of the fitting results was considered adequate for the purposes of
this analysis.

Table 1. Results of nonlinear regression modelling using the hyperbolic equation.

Void Ratio Test τh
(Pa)

Dc(×10−2)
(g cm−2 mim−1)

Eult (×10−2)
(g cm−2)

RMSE
(×10−4) R2

1.000

1 0.98 0.81 0.14 0.73 0.931
2 0.98 1.25 0.60 2.52 0.950
3 1.26 1.00 0.70 4.46 0.940
4 1.26 2.85 0.62 0.66 0.937
5 1.93 4.03 0.35 1.14 0.972
6 1.93 5.55 0.55 1.20 0.984

1.500

7 0.82 0.89 2.01 6.27 0.993
8 0.82 0.52 0.97 8.78 0.912
9 0.98 0.83 1.48 9.24 0.942
10 0.98 4.00 5.43 15.9 0.999
11 1.26 2.85 5.54 12.5 0.998
12 1.26 2.20 4.65 17.6 0.997

The values of Dc shown in Table 1 present a clear increasing trend for larger values of
hydraulic shear stress, τh. The relationship between τh and Eult, however, did not indicate
a clear positive correlation for tests 1–6. Some variability is observed in the repeatability
analyses comparing the values of tests under the same shear stress. The relative difference
of Dc between identical tests ranged between 30% and 380%. The relative difference of Eult
between identical tests range between 13% and 326%. The higher relative differences can be
partially attributed to the fact that the mass loss of specimens compacted with void ratios
of 1.0 was relatively low and only corresponded to loosened soil particles. Unfortunately,
previous studies using open channels and fixed specimens have not presented similar
systematic evaluations of repeatability that could be compared to those presented herein.

Figure 4a,b show the variation of τc and Kr as a function of the adopted analysis time
interval for the tests conducted with a void ratio of 1.5. There is some variation in the values
of τc and Kr according to the adopted time interval, and the values of τc reach a constant
value after 5 min. Thus, while simultaneously meeting the requirements of repeatability
and stabilization of erosion parameters, the analysis time of 5 min is recommended for the
soil studied here. The typical behavior of the mass loss curves in the flume trials [41,48]
indicate that the analysis time selection criterion proposed here has the potential to be
applied to other soils.
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Figure 4. Evaluation of the time interval effect adopted in the definition of the parameters of the WEPP methodology
(w0 = 18%, e = 1.5): (a) τc; (b) Kr.

The criterion for establishing the ideal analysis time seems to be related to the transi-
tion between an initial test stage in which erosion occurs uniformly along the specimen
surface and a later stage in which cavities start to be randomly formed on the soil surface,
as shown in Figure 5. The random character of the formation of the cavities and the loss of
uniformity of the hydraulic conditions on the surface of the specimens indicate that the
time interval representative of the flume test must be delimited for each soil based on the
examination of the accumulated mass loss curve over time. Such an ideal time interval
would correspond to the initial erosion stage, which can be identified as an approximately
linear relationship between accumulated erosion and time. The curve transition and the
maximum mass loss tend to have a random character that depends on the manner in which
the specimen surface develops grooves and cavities.

The lateritic soil studied herein presented a τc from 0.69 to 0.78 Pa and a Kr from 0.0014
to 0.012 g cm−2 min−1 Pa−1. The values of τc and Kr for the lateritic soils vary greatly
and depend on the soil texture, soil weathering, and stability of particle aggregations.
Some of the values of τc reported in the literature for lateritic soils range between 0.01 and
1.33 Pa [15,41,49]. The range of Kr for the lateritic soils reported by the same authors varies
between 0.01 and 36.5 g cm−2 min−1 Pa−1 [15,41,49]. Therefore, the results presented in
Figure 4 fall within these typical ranges but also indicate that the soil studied herein has a
relatively low erodibility when considering the values for other lateritic soils.
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4. Final Remarks

The apparatus presented herein met the established requirements, allowing the control
of imposed hydraulic conditions, which were defined by the flume’s slope and flow rate.
The effluent collection method proved to be adequate, allowing the evaluation of the
erodibility and of the conditions of the specimen during the test. The use of uniform
flow in a supercritical regime allowed the strict control of the water flow height and of
the hydraulic shear stresses that were imposed. In this sense, the cost-effective design
characteristics of the apparatus (i.e., the use of an open channel and of a fixed specimen)
proved to be a viable alternative for studying the erosion characteristics of soils subjected
to water flow.

It was possible to perceive a relatively low test repeatability when comparing the
results for identical conditions. However, this variability is expected given the complex
nature of water erosion processes in soils. Further studies are recommended regarding
ideal testing methodologies that would ensure improvements in test result repeatability.
Future comparisons of the test results obtained using fixed and moving specimens (i.e.,
extruded at a speed defined by the erosion rate) would be of great value.

The results from the experimental program presented herein indicate that the slope
of the initial stage of the mass loss curve give more consistent results when compared
against the final maximum mass loss. Thus, it is proposed that only the initial section of
the mass loss curves be considered during the analysis of erosion tests. The interpretation
of the mass loss curves must also consider the observation of the physical characteristics
of the specimen surface since the randomness of the maximum mass loss value can be
attributed to the cavities that form after the linear rate erosion phase. Finally, the definition
of the erodibility parameters of the WEPP methodology must consider time intervals that
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are within the initial erosion phase and that correspond to the linear portion of the mass
loss curves.

This study was specifically focused on establishing adequate techniques for the eval-
uation of soil erodibility parameters. In this sense, the determination of representative
field hydraulic conditions is of paramount importance for the adequate planning and
specification of flume testing parameters. The hydraulic shear stresses and corresponding
flow velocities selected for soil testing must be based on expected field values, which may
be obtained based on an adequate hydrological model [50].

Finally, it is important to note that field testing devices and approaches based on the
monitoring of field plots offer important alternatives for the assessment of soil erosion, in
particular for bioengineering studies, the evaluation of the effect of vegetation, and the
study of soil management practices [51,52]. Field testing also offers unique alternatives for
considering real atmospheric events, including realistic rainfall patterns [53], which are
difficult to reproduce under laboratory conditions [54,55]. Improving laboratory techniques,
such as the device presented herein, allows inexpensive and relatively fast evaluations of
soil erosion. However, the use of small-scale laboratory apparatuses and techniques have
not been widely employed in the study for the effect of vegetation and bioengineering
applications, and further studies are welcomed.
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