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Preface

This Special Issue on “Bioelectronics and Wearable Devices: Sensing, Signal Processing, and

Powering” explores an exciting and rapidly evolving field that stands at the convergence of

engineering and medicine. The primary subjects of this publication are the development and

application of bioelectronic devices and wearable technology in monitoring and assessing human

health. The scope of this Special Issue extends from technical advancements in device engineering to

innovative applications in real-world healthcare settings, aiming to push the boundaries of how these

technologies can be used to enhance healthcare outcomes.

The motivation for compiling this Special Issue arises from the transformative potential of

bioelectronics and wearables within the healthcare sector. As technology progresses, the integration

of the Internet of Things (IoT) and advanced wireless communications like 5G is making it possible to

not only collect but also share critical health data in real time. This capability is pivotal for developing

personalized healthcare strategies that can respond dynamically to an individual’s health needs.

This Special Issue is aimed at a diverse audience, including researchers, engineers, and clinicians,

all of whom play a crucial role in advancing the field of bioelectronics. It is also intended for

policymakers and health tech enthusiasts who are interested in the implications of these technologies

for public health and regulatory frameworks.

The articles and reviews presented in this Special Issue have been contributed by a group of

leading authors whose expertise spans a broad range of disciplines related to bioelectronics and

wearable devices. Their contributions reflect the interdisciplinary nature of this field, incorporating

perspectives from engineering, medicine, and data science.

We extend our sincere thanks to all the authors and peer reviewers whose diligent efforts have

ensured the high quality of the published works. We are also grateful for the logistical and editorial

support provided by our publishing team and the various institutions that have backed the research

included in this Special Issue. Their collective assistance has been invaluable in bringing this project

to fruition.

By highlighting recent developments and ongoing research in bioelectronics and wearable

technologies, this Special Issue aims to foster a deeper understanding of their role in shaping the

future of healthcare. We hope that it serves as a catalyst for further innovation and collaboration in

this vital field.

Xiao Xiao and Gang Ge

Editors
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Singapore 117583, Singapore
* Correspondence: jyang46@xust.edu.cn (J.Y.); ggeup@nus.edu.sg (G.G.)
† These authors contributed equally to this work.

Abstract: Flexible stress sensor arrays, comprising multiple flexible stress sensor units, enable accurate
quantification and analysis of spatial stress distribution. Nevertheless, the current implementation
of flexible stress sensor arrays faces the challenge of excessive signal wires, resulting in reduced
deformability, stability, reliability, and increased costs. The primary obstacle lies in the electric ampli-
tude modulation nature of the sensor unit’s signal (e.g., resistance and capacitance), allowing only
one signal per wire. To overcome this challenge, the single-line multi-channel signal (SLMC) mea-
surement has been developed, enabling simultaneous detection of multiple sensor signals through
one or two signal wires, which effectively reduces the number of signal wires, thereby enhancing
stability, deformability, and reliability. This review offers a general knowledge of SLMC measure-
ment beginning with flexible stress sensors and their piezoresistive, capacitive, piezoelectric, and
triboelectric sensing mechanisms. A further discussion is given on different arraying methods and
their corresponding advantages and disadvantages. Finally, this review categorizes existing SLMC
measurement methods into RLC series resonant sensing, transmission line sensing, ionic conductor
sensing, triboelectric sensing, piezoresistive sensing, and distributed fiber optic sensing based on
their mechanisms, describes the mechanisms and characteristics of each method and summarizes the
research status of SLMC measurement.

Keywords: pressure sensor array; tactile sensor array; resonators; array integration; soft sensor array;
force sensor array; parallel signal processing

1. Introduction

Stress refers to the internal resistance or response that occurs within an object when it is
subjected to external forces or loads. A stress sensor is an electronic device used to measure
and detect mechanical strain or deformation in materials. These sensors convert the physical
stress into measurable electrical signals [1–3]. Stress sensors find wide applications in
engineering and materials science, where they are used to assess the integrity of structures,
monitor deformations, and determine load distributions. Typically, these sensors utilize
rigid materials such as metals and semiconductors. However, their limited ability to
withstand significant deformations restricts their usefulness. With the advent of wearable
electronic devices, flexible stress sensors have become more desirable due to their high
sensitivity, good repeatability, and large stretchable range, making them ideal for wearable
devices, human-computer interaction, intelligent robots, and health monitoring.

The research work of Professor Zhenan Bao and Professor John A. Rogers is of great
significance in the field of flexible electronics, particularly in the development of high-
performance flexible stress sensors [4–12]. Their research achievements have provided
crucial technical support and guidance for stress sensors in flexible electronic applications.

1
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For instance, in their review, professor Rogers et al. [13]. introduced unconventional meth-
ods for fabricating and patterning nanomaterials, which laid a new scientific foundation
for the fabrication of small-sized and patterned structures. These methods have significant
implications in specific domains and in combination with other fabrication techniques.
On the other hand, professor Bao’s research [14] has made significant progress in the scal-
able synthesis of multifunctional polyaniline hydrogels and their outstanding electrode
performance, offering strong support for the preparation of flexible stress sensors. These
studies provide important references for our understanding and application of flexible
stress sensors.

Flexible stress sensor array, consisting of multiple flexible stress sensor units, can better
quantify and analyze the magnitude and distribution of spatial stress, with advantages in
flexibility, integration, and systematicity [15,16]. These sensors can be fabricated by con-
ductive materials such as metal [17–19], carbon based [20–22], conducting polymer [23–25].
However, current implementations of flexible stress sensor arrays encounter the challenge
of excessive signal wires, leading to reduced deformability, stability, and reliability, as well
as increased costs [16,26,27]. While wireless signal transmission is commonly employed to
reduce the number of signal wires between the sensor array and readout circuit, it does
not address the issue within the flexible stress sensor array itself. The primary hindrance
posed by the abundance of signal wires is the nature of the sensor unit’s electric amplitude
modulation signal (e.g., resistance and capacitance), which restricts the transmission of
only one signal per wire.

To address this challenge, the single-line multi-channel (SLMC) signal measurement
has been developed, enabling simultaneous detection of multiple sensor signals through
one or two signal wires [15,16,28–40]. By utilizing SLMC technology, the flexible stress
sensor array can measure the magnitude and location of the stress by one or two signal
lines. This approach effectively reduces the number of signal wires, enhancing stability, de-
formability, and reliability, and facilitating the application of flexible stress sensor arrays in
bionic robots and rehabilitation medicine. Existing research has successfully implemented
various mechanisms including RLC series resonant sensing, transmission line sensing,
ionic conductor sensing, triboelectric sensing, piezoresistive sensing, and distributed fiber
optic sensing [15,16,28,31–34,36,41–46]. These advancements have demonstrated promising
potential in the domains of bionic robots, medical rehabilitation, and other related fields, as
depicted in Figure 1.

2
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Figure 1. Implementation methods of single-line multi-channel signal measurement. (a) Triboelec-
tric sensing (reprinted with permission from [42]; copyright 2022, Elsevier). (b) RLC series resonant 
sensing (reprinted with permission from [28]; copyright 2019, Wiley-VCH). (c) Ionic conductor sens-
ing (reprinted with permission from [36]; copyright 2021, Elsevier). (d) Piezoresistive sensing (re-
printed with permission from [41]; copyright 2020, Springer Nature). (e) Distributed fiber optic sens-
ing (reprinted with permission from [34]; copyright 2020, AAAS). (f) Transmission line sensing (re-
printed with permission from [47]; copyright 2023, Wiley-VCH (reprinted with permission from 
[48]; copyright 2022, AAAS). 

2. Traditional Flexible Stress Sensor Array 
Flexible stress sensors have significant potential in the fields of bionic robotics and 

rehabilitation medicine due to their outstanding flexibility and stretchability. Novel ma-
terials and structures are the most common approaches to enhance the performance of 
flexible stress sensors, which are determined by the mechanism [49]. Piezoresistive [50–
52], capacitive [53–55], triboelectric [56,57], and piezoelectric [58] are the four mechanisms 
for flexible stress sensors, as shown in Figure 2. 
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Figure 1. Implementation methods of single-line multi-channel signal measurement. (a) Triboelectric
sensing (reprinted with permission from [42]; copyright 2022, Elsevier). (b) RLC series resonant
sensing (reprinted with permission from [28]; copyright 2019, Wiley-VCH). (c) Ionic conductor
sensing (reprinted with permission from [36]; copyright 2021, Elsevier). (d) Piezoresistive sensing
(reprinted with permission from [41]; copyright 2020, Springer Nature). (e) Distributed fiber optic
sensing (reprinted with permission from [34]; copyright 2020, AAAS). (f) Transmission line sens-
ing (reprinted with permission from [47]; copyright 2023, Wiley-VCH (reprinted with permission
from [48]; copyright 2022, AAAS).

2. Traditional Flexible Stress Sensor Array

Flexible stress sensors have significant potential in the fields of bionic robotics and
rehabilitation medicine due to their outstanding flexibility and stretchability. Novel ma-
terials and structures are the most common approaches to enhance the performance of
flexible stress sensors, which are determined by the mechanism [49]. Piezoresistive [50–52],
capacitive [53–55], triboelectric [56,57], and piezoelectric [58] are the four mechanisms for
flexible stress sensors, as shown in Figure 2.
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2.1. Piezoresistive Flexible Stress Sensor Array Method

Piezoresistive flexible stress sensor consists of a piezoresistive material that converts
mechanical stress into resistance when subjected to stress, resulting in a change in resis-
tance by modifying the shape or relative position of the conductive filler, as shown in
Figure 2a [50,59]. The equation for resistance can be expressed as:

R =
ρL
wt

(1)

where R is resistance, ρ is resistivity, L, ω and t are the length, width, and thickness of the
resistor, respectively.

Several research works have been conducted to develop stress sensors using different
materials and structures. Park et al. [60] developed a hyperelastic stress sensor, which is
based on silicone rubber and eutectic gallium-indium (EGaIn). The sensor contains EGaIn
in microchannels of the silicone rubber elastic body. The stress applied to the sensor causes
deformation in the cross-sectional area of the EGaIn, which changes the resistance and
enhances the sensitivity of the sensor. Figure 2a(i) is another example of EGaIn-based
hyperelastic stress sensor [61]. As shown in Figure 2a(ii), Liao et al. [41] designed a sensor
array that can measure stress position using conductive graphite film, paper, and an
intermediate spacer. The sensor’s output resistance depends on the stress position from
the connecting electrode, providing high sensitivity and accurate measurement of stress
position. As shown in Figure 2a(iii), Shi et al. [62] developed a transparent and flexible
stress sensor that utilizes polydimethylsiloxane (PDMS) and urchin-like hollow carbon
spheres (UHCS). Stress-induced changes in the relative position of UHCS in PDMS lead
to changes in resistance with ultrahigh sensitivity and high transparency. As shown in
Figure 2a(iv), Yun et al. [63] created a mixed material stress sensor that contains PDMS,
EGaIn, and iron powder. The sensor’s conductive fillers change their shape and position in
response to stress, leading to changes in resistance. The conductive fillers return to their
initial state when the stress is removed, and the initial resistance is restored. Figure 2a
illustrates the different stress sensors developed in the works mentioned above.
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Figure 2. Sensing mechanisms and basic structures of flexible strain sensors. (a) Piezoresistive sensing
mechanisms. (i) Cross-sectional area change in conductive filler eutectic gallium indium (reprinted
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with permission from [61]; copyright 2016, American Chemical Society). (ii) Change in relative
position of biomimetic sensory transmission nerve (reprinted with permission from [41]; copyright
2020, Springer Nature). (iii) Change in relative position of polydimethylsiloxane (PDMS) and sea
urchin-shaped hollow carbon spheres (reprinted with permission from [64]; copyright 2020, Springer
Nature). (iv) Change in shape of conductive filler (PDMS, eutectic gallium indium, Fe) (reprinted
with permission from [41]; copyright 2019, Springer Nature). (b) Capacitive sensing mechanisms.
(i) Variable distance type capacitive sensor (reprinted with permission from [64]; copyright 2023,
MDPI). (ii) Variable dielectric type capacitive sensor (reprinted with from [64]; copyright 2020,
Wiley-VCH). (iii) Hybrid capacitive sensor combining variable distance and variable dielectric
types (reprinted with permission from [64]; copyright 2021, Wiley-VCH). (c) Triboelectric sensing
mechanisms. (i) Contact-separation type (reprinted with permission from [64]; copyright 2017,
Elsevier). (ii) Contact-sliding type (reprinted with permission from [64]; copyright 2014, Wiley-
VCH). (iii) Independent type (reprinted with permission from [65]; copyright 2018, Wiley-VCH).
(d) Piezoelectric sensing mechanisms. (i) Multifunctional electronic skin based on interlocking
structure (reprinted with permission from [34]; copyright 2015, AAAS). (ii) Piezoelectric composite
based on stacking structure (reprinted with permission from [64]; copyright 2020, Wiley-VCH).

There are three methods available for implementing piezoresistive flexible stress sensor
arrays. These include unit-independent measurement [66], row-column multiplexing
measurement [67], and anisotropic electrical impedance tomography [68,69], which are
illustrated in Figure 3.

The unit-independent measurement involves using independent electrodes and signal
wires for each sensing unit. While this method has high measurement accuracy, it can
reduce reliability due to the large number of signal wires required. As shown in Figure 3a,
Wu et al. [66] utilized this method to design a sensor array for real-time monitoring of
pressure and temperature in smart insoles, using a pressure-sensitive layer based on
a mixed carbon nanotube/polydimethylsiloxane (CNT/PDMS) material and a pair of
independent electrodes in each sensing unit. The row–column multiplexing measurement
method arranges upper and lower electrodes in a cross pattern to reduce the number of
signal wires. However, this method may be susceptible to signal crosstalk between sensor
units. As shown in Figure 3b, Yu et al. [67] designed a stretchable and flexible stress sensor
array for electronic skin, consisting of 6 × 6 sensing units, using a three-layer structure in
each sensing unit: top electrode, stress-sensitive medium layer, and bottom electrode. The
top and bottom electrodes adopt a cross-arrangement structure. The anisotropic electrical
impedance tomography calculates the multi-dimensional resistivity distribution inside a
composite material to measure the stress magnitude and position, eliminating the need for a
complicated flexible electrode array on the sensor surface. However, this method may also
be susceptible to signal crosstalk between sensor units, and the calculation of composite
material resistivity can be complex. As shown in Figure 3c, Lee et al. [68] designed a
stretchable 3D stress sensor array for human–machine interfaces that used this method.
Applying stress increases the resistivity, enabling measurement of stress magnitude and
position. As shown in Figure 3d, Duan et al. [69] proposed using anisotropic electrical
impedance tomography on piezoresistive conductive fabric to realize low-cost and large-
area touch sensing for dynamic touch stress mapping of single or multiple points.

Piezoresistive flexible stress sensors are highly sensitive, offer a wide measurement
range, are cost-effective, and have simple signal acquisition circuitry, making them a
popular choice. These sensors can be integrated into arrays using techniques, including
unit-independent measurement [66], row-column multiplexing measurement [67], and
anisotropic electrical impedance tomography [68,69]. Despite their usefulness, these tech-
niques have certain limitations, such as the requirement of numerous signal wires, intricate
structures, and complicated acquisition circuits.

5
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Figure 3. Array measurement methods for piezoresistive flexible stress sensors. (a) Unit-independent
measurement (reprinted with permission from [70]; copyright 2020, Wiley-VCH). (b) Row-
column multiplexed measurement (reprinted with permission from [70]; copyright 2020, Elsevier).
(c) Anisotropic electrical impedance tomography (reprinted with permission from [70]; copyright
2017, Springer Nature). (d) Anisotropic electrical impedance tomography (reprinted with permission
from [70]; copyright 2019, Springer Nature). Note: In (c,d), the same Anisotropic electrical impedance
tomography is presented but from different references.
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2.2. Capacitive Flexible Stress Sensor Array Method

The capacitive flexible stress sensor is composed of upper and lower electrodes sep-
arated by a compressible dielectric material [53,54,71]. Applying stress to the electrodes
compresses the dielectric material, decreasing the distance between the two electrodes
and converting stress into capacitance, as shown in Figure 2b [72]. The equation for the
capacitive sensor can be written as:

C =
εrε0 A

d
(2)

where C represents the capacitance, εr is the effective dielectric constant of the dielectric
material, ε0 is the vacuum dielectric constant, A is the overlap area of the electrodes, and
d is the distance between the electrodes.

Applying stress changes the electrode overlap area (A) and spacing (d) of the capacitive
sensor, resulting in a variation in capacitance [73,74]. Capacitive stress sensors are divided
into two types: variable distance and variable dielectric sensors. The former involves
one stationary electrode while the other moves relative to it. As shown in Figure 2b(i),
Zhao et al. [75] proposed a micro-pyramid dielectric layer with graphene electrodes and
PDMS as the dielectric layer, which increases sensitivity. In the variable dielectric type, a
compressible dielectric material is placed on top of parallel finger-shaped electrodes, and
stress changes the dielectric constant above the electrodes, resulting in a change in capac-
itance. As shown in Figure 2b(ii), Mahmoudinezhad et al. [76] designed a compressible
stress sensor based on PDMS foam and finger-shaped electrodes. Our team proposed a
flexible capacitive stress sensor based on liquid metal elastomer foam, which combines the
variable distance and variable dielectric types. Liquid metal elastomer foam has a high
dielectric constant that gradually increases during compression, providing high sensitivity
and a wide measurement range. Recently, the Lu group proposed a hybrid response stress
sensor that combines resistance and capacitance [77]. As shown in Figure 2b(iii), The sensor
comprises porous nanocomposites (PNC) made of carbon nanotubes (CNT) and Ecoflex,
placed between two parallel electrodes, and an ultra-thin insulating layer (500 nm) added
between the PNC and one electrode. Applying stress transforms the PNC from a dielectric
material to a conductive material, increasing the propagation distance of AC current within
the PNC, and greatly reducing the effective distance between the two electrodes. This
achieves high sensitivity and a large range for the capacitive stress sensor.

The measurement techniques for capacitive flexible stress sensor arrays are akin to
those used for piezoresistive sensor arrays, and comprise unit-independent and row–
column multiplexing measurements, as illustrated in Figure 4.

The unit-independent measurement involves independent top and bottom electrodes
and signal wires for each sensor unit, providing high accuracy but reduced reliability due
to the large number of signal wires. As shown in Figure 4a, Bae et al. [20] proposed a
flexible sensor array with 4 × 4 units for real-time monitoring and discrimination of stress
and temperature in electronic skin, where each sensing unit consists of a top part (Parylene
C substrate, Ni/Ti electrodes, reduced graphene oxide thermistor, and dielectric layer) and
a bottom part (Parylene C substrate and a microstructural CNT/PDMS). Stress changes
the shape of the micro-protruding electrodes, reducing the electrode spacing and changing
the capacitance. The proposed sensor array individually connects each sensing unit to
two signal wires. In contrast, the row–column multiplexing measurement involves the
cross-arrangement of the top and bottom electrodes, resulting in fewer signal wires but
with the disadvantage of parasitic capacitance interference between sensing units [78].
Wang et al. [79] developed a flexible capacitive tactile sensor array for real-time contact
force measurement in prosthetics, which integrates 8 × 8 sensing units, each consisting
of four layers: copper electrodes arranged in a cross pattern, a PDMS film, and a PDMS
bump layer for stress concentration. The sensor array is integrated into the prosthetic
device, achieving real-time visualization of grip force. As shown in Figure 4b, Zhou et al.
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also proposed a capacitive stress sensor array based on the row–column multiplexing
measurement [80].
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Capacitive flexible stress sensors are advantageous due to their good temperature
independence, low power consumption, high sensitivity, compact circuit layout, and
simple device structure. Flexible capacitive stress sensor arrays can be fabricated using
unit-independent measurement [20] and row–column multiplexing measurement [79].
Nevertheless, similar to the flexible piezoresistive stress sensor array, these methods have
drawbacks such as crosstalk, multiple signal wires, and a complicated structure.

2.3. Triboelectric Flexible Stress Sensor Array Method

The triboelectric flexible stress sensor utilizes the coupling effect of frictional elec-
trification and electrostatic induction to generate and convert mechanical energy into
electrical energy for stress measurement [56]. As shown in Figure 2c, the sensor comprises
two materials with different electron affinities. When the two different friction materials
make contact, their varying electron affinity leads to a difference in electron attraction abil-
ity, resulting in the formation of a potential difference. The material with stronger electron
affinity has a negative surface charge, while the material with weaker electron affinity has a
positive surface charge. Electrons flow through an external circuit to generate current. The
triboelectric nanogenerator (TENG) comprises three structures: contact-separation type,
contact-sliding type, and independent type. In the contact-separation type, two materials
with different electron affinity face each other, and external force causes them to contact
perpendicularly, generating a potential difference that forms a current after the external
force is removed. Figure 2c(i) shows a TENG based on a high-polymer aerogel film pro-
posed by Tang et al. [81] to improve the performance of the contact-separation type TENG.
The porous structure of the aerogel produces a larger potential difference at the contact
surface, increasing the output of the electric signal. The contact-sliding type generates
current by repeatedly sliding two seamlessly contacting materials laterally relative to each
other, polarizing the electrode. Figure 2c(ii) depicts a TENG with a linear grating struc-
ture proposed by Xie et al. [82], which achieved up to 85% total conversion efficiency at
low operating frequencies. The independent type differs slightly from the contact-sliding
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type. It comprises two electrodes placed on the same horizontal plane and separated by a
certain distance. Another piece of insulating film acts as a slider that seamlessly contacts
the two electrodes, generating charge on the slider surface. Zhu et al. [83] designed an
independent TENG with a rotating structure, which fixes the independent friction layer
above the two electrodes and rotates to produce a periodic potential difference, allowing
electrons to flow between the two fixed electrodes. The sensor has an output power of up
to 1.5 W, and an energy conversion efficiency of 24%. Figure 2c(iii) shows another example
of a TENG with a rotating structure [65].

The triboelectric flexible stress sensor array measurement includes two approaches: the
unit-independent measurement [84] and the row-column multiplexing measurement [70],
as shown in Figure 5. The unit-independent measurement refers to each sensor unit having
an independent upper and lower triboelectric material and signal wire. Its advantage lies in
high accuracy, while the disadvantage is the poor reliability caused by the large number of
signal wires. As shown in Figure 5a, Zhou et al. [84] prepared a triboelectric nanogenerator
with high sensitivity and high stretchability based on thermoplastic polyurethane (TPU)
and silver nanowire/reduced graphene oxide (AgNWs/rGO). The authors proposed a
5 × 5 sensor array, and each sensing unit is connected by a separate AgNWs/rGO conduc-
tive layer. Stress makes the independent polymer materials in contact, producing an output
voltage signal that indicates the magnitude and position of the stress. The row–column
multiplexing measurement refers to the upper and lower layers of triboelectric materials
arranged in a cross pattern, which reduces the number of signal wires, but introduces signal
interference between sensing units. As shown in Figure 5b, Ning et al. [70] prepared a
fiber-shaped triboelectric nanogenerator with ultra-high flexibility and stretchability based
on silver nanowire/carbon nanotube and PDMS. The authors proposed an 8 × 8 sensor
array, and each sensing unit includes cross-arranged fiber-shaped friction layers. When
touching the sensor array, the corresponding pixels of the tactile sensor array produce
output voltage signals that can reflect the tactile trajectory and stress distribution, showing
promising applications in human–machine interaction and health monitoring.
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The triboelectric flexible stress sensor array method can convert mechanical energy
into electrical energy, which could potentially solve the issue of frequent recharging or
battery replacement for wearable electronic devices. They offer advantages such as energy
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efficiency, good dynamic performance, low cost, a wide range of material options, and
broad applications. However, triboelectric flexible stress sensor requires continuous friction
to generate charges and are unable to detect static stress. Triboelectric flexible stress sensor
arrays can be achieved through unit-independent measurements [84] and row–column
multiplexing measurements [70]. Similar to capacitive sensors, these arraying methods
have disadvantages such as multiple signal wires, complicated structures, and complicated
acquisition circuits.

2.4. Piezoelectric Flexible Stress Sensor Array Method

Piezoelectric flexible stress sensors are made of materials that exhibit the piezoelectric
effect. When stress is applied to these materials, they polarize, accumulate, or release
charges, and convert stress into charge, enabling stress measurement [58]. Figure 2d shows
commonly used piezoelectric materials, including single crystals, ceramics, and polymers.
In addition, flexible materials such as porous polypropylene (PP) and porous polyvinyli-
dene fluoride (PVDF) are also utilized. Park et al. [70] developed a multifunctional flexible
electronic skin, shown in Figure 2d(i), based on PVDF and RGO with an interlocking
microstructure and fingerprint-like patterns. This electronic skin can detect both static and
dynamic tactile signals. Chu et al. [64], as shown in Figure 2d(ii), utilized piezoelectric
polymers to create piezoelectric composites with a superposition structure, allowing for
real-time monitoring of pulse signals at the radial artery and promising applications in
wearable human health monitoring.

Piezoelectric flexible stress sensor arrays can be measured using two methods: row–
column multiplexing measurement and shared electrode measurement, as illustrated in
Figure 6. The row-column multiplexing measurement involves arranging the upper and
lower electrodes in a cross pattern, which reduces the number of signal wires but leads
to signal crosstalk between sensing units. To solve this issue, as shown in Figure 6a,
Lin et al. [85] developed a flexible piezoelectric tactile sensor array with 25 sensing units
arranged in a 5 × 5 matrix. They employed a double-layer comb-shaped structure for
the row and column electrodes to eliminate signal crosstalk and reduce the number of
connecting lines. Each sensing unit was composed of two protective layers (PDMS),
two sensing layers (PVDF), and one insulation layer (PDMS). By applying stress to the
protective layer, the sensing layer could convert the stress into charge, facilitating the
identification of stress and position. This sensor array exhibited zero crosstalk, fast response
time, high sensitivity, and durability. As shown in Figure 6b, Liu et al. [86] also developed
a piezoelectric tactile sensor array, which used PVDF fibers and comprised two orthogonal
arrays of 5 × 5 based on nanofiber-reinforced polyurethane films. This sensor array enabled
real-time localization of the pressing position and tracking of the pressing trajectory, offering
high resolution and flexibility. On the other hand, the shared electrode measurement
involves independent electrodes and signal wires for each sensing unit, while sharing the
same electrode and signal wire. This method provides high accuracy but still requires
many signal wires. Liu et al. [87] presented a piezoelectric tactile sensor array based on
PDMS and aluminum. The array consisted of four sensing units arranged in a 2 × 2 matrix,
and each sensing unit was composed of a PDMS protrusion layer, a PET strip layer, a
shared aluminum (Al) electrode layer, a PVDF film layer, an Al electrode layer, and a PET
strip layer. The upper electrode layer, PVDF film layer, and lower electrode layer formed
the piezoelectric sensing unit, with the four units sharing the same upper electrode. By
applying three-dimensional stress to the top of the protrusion, different charge changes were
generated in the four sensing units, enabling the measurement of normal and tangential
stress and identification of roughness at variable speeds. As shown in Figure 6c, Yu et al.
present a piezoelectric sensor array based on shared electrode method [88].

Piezoelectric flexible stress sensors offer advantages such as high sensitivity, good
dynamic performance, and a simple structure. However, they are susceptible to temper-
ature changes, leading to poor temperature stability. Similarly to flexible triboelectric
stress sensors, piezoelectric flexible stress sensors are unable to measure static stress. The
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piezoelectric stress sensors array also present challenges, including a high number of signal
wires, complicated structures, and complicated acquisition circuits.
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In summary, piezoresistive, capacitive, triboelectric, and piezoelectric flexible stress
sensors have all been employed in sensor arrays. While these methods fulfill the require-
ments for spatial stress distribution and high spatial resolution, increasing the integration
levels in existing methods results in a significant rise in the number of signal wires, which
decreases in flexibility and stretchability of the sensor array, along with increased com-
plexity and cost. To address these issues, researchers have explored a novel sensor array
measurement method known as the single-line multi-channel (SLMC) measurement. This
approach utilizes one or two signal wires to simultaneously measure signals from multiple
sensors, thereby reducing the number of signal wires required for the sensor array. The
SLMC measurement has the potential to enhance the deformability, reliability, and stability
of flexible stress sensor arrays, facilitating their practical application.

3. Single-Line Multi-Channel Measurement

SLMC measurement can simultaneously measure multiple sensor signals using one or
two signal wires. Depending on the mechanism, SLMC measurement can be classified into
various types, including RLC resonant sensing [15,28,29,32], transmission line sensing [16],
ionic conductor sensing [33,36], triboelectric sensing [42,43], piezoresistive sensing [41],
and distributed fiber optic sensing [34].
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3.1. RLC Resonant Sensing

The RLC resonant sensing utilizes the interaction between inductance and capaci-
tance. By adjusting the resonant frequency of the RLC resonant circuit, it is possible to
obtain multiple sensor signals using only two signal lines. Implementing this technol-
ogy requires selecting appropriate inductance and capacitance components, as well as
designing and fabricating the circuit. An RLC resonator consists of resistors, inductors,
and capacitors connected in series, forming a resonant circuit with a specific frequency
and frequency-selective capability. By parallel connecting multiple RLC resonant circuits
and adjusting their resonant frequencies, a multi-frequency resonant signal can be gener-
ated. Each resonant frequency corresponds to the output characteristics of a sensor unit,
which can modify the resonant frequency or amplitude of the multi-frequency signal
by converting stress into changes in resistance, inductance, or capacitance, as shown in
Figure 7.

As shown in Figure 7a, Wen et al. [15] developed a flexible wireless passive LC stress
sensor using a flexible composite protein film as the substrate. By adding regenerated
silk fibroin film, which makes better air permeability and water permeability. The sensor
employs a commercial printed circuit board and magnetron sputtering methods to
create the inductor and capacitor in the LC circuit. The study combines radio frequency
identification technology and the LC resonant circuit to design a wireless insole sensor
for measuring sole stress distribution. The RLC series resonant sensing simplifies sensor
wiring and reduces costs. As shown in Figure 7b, inspired by the somatosensory system,
Lee et al. [28] proposed a stress sensor system using a wireless system to differentiate
parallel signals. The sensor system comprises multiple stress sensors with polypyrrole-
coated microstructured PDMS placed on top of electrodes, which operates as a capacitive
sensor. By altering the number of turns of the coil, the system assigns specific resonant
frequencies to each sensor. A stacked coil structure is adopted to conserve space and
minimize crosstalk between coils. The sensor can simultaneously receive resonant signals
from multiple stress sensors and utilize a convolutional neural network to train data for
simultaneous measurement of stress magnitude and location. As shown in Figure 7c,
Kim et al. [32] introduced a flexible sensor array composed of multiple bandpass filters.
The array consists of parallel bandpass filters (RLC resonant circuits) and two wires.
Each sensing unit corresponds to a bandpass filter, which can be assigned different
filtering frequencies by adjusting the values of inductance and capacitance. The sensor
array consists of an inductor, a capacitor, and a variable resistor made of a microfluidic
channel filled with EGaIn. This enables separate measurements while sharing the same
signal wire. The article also demonstrates the application of the flexible sensor array in
tactile sensing and foot pressure measurement.

The RLC resonant circuit allows for the selection of a specific frequency, facilitating
the acquisition of multiple sensor signals using only two signal wires. By connecting RLC
resonant circuits in parallel and series while adjusting their resonant frequencies, multiple
resonant frequencies can be generated. Each resonant frequency in the multi-frequency
resonant signal corresponds to the output characteristic of a sensor unit. The flexible
sensor array based on RLC resonant sensing utilizes only two external wires to scan the
sensor array, regardless of the number of sensors. The RLC sensing has the advantages
of two signal lines, tunable sensitivity, and multi-model sensing. However, due to the
RLC resonant circuit, the sensor array has a complicated circuit design, and has a crosstalk
between different RLC resonators. RLC resonant sensing has wide applications in areas
such as wireless communication, biomedical, and environmental monitoring. In wireless
sensor networks, it enables wireless monitoring and data transmission of various physical
parameters [31] (temperature, humidity, etc.). In bio-sensors, it can be used to monitor
physiological parameters [5] and disease indicators within the human body.
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3.2. Transmission Line Sensing

The transmission line sensing measures the voltage or current on the transmission
line to obtain information about the target physical quantity. When the target physical
quantity changes, it affects the electromagnetic field distribution on the transmission line,
thereby altering the characteristics of the transmission line, such as resistance, inductance,
and capacitance. Implementing this technology requires selecting appropriate transmission
line types and parameters, as well as designing and manufacturing the sensors. The
transmission line, composed of multi-core cables, coaxial cables, optical fibers, or wireless
devices, can transmit electromagnetic energy. The transmission performance is influenced
by several factors, such as transmission rate, signal bandwidth, data transmission quality,
and anti-interference capability. As the working frequency increases and the wavelength
decreases, the voltage and current on the transmission line vary with spatial position,
resulting in wave-like fluctuations. These fluctuations of the electromagnetic signal on the
transmission line can indicate the magnitude of stress at different positions, enabling the
achievement of a SLMC measurement.

Leber et al. [16] proposed a stretchable transmission line for measuring stress at
various positions using a single line. This transmission line is created by enclosing a liquid
metal (65% Ga, 22% In, and 10% Sn) in a thermoplastic elastomer dielectric (pol(styrene-
b-(ethylene-co-butylene)-b-styrene), SEBS) via thermal stretching and uses time-domain
reflectometry to send high-frequency pulses. Stress magnitude and location are determined
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by analyzing the reflection resulting from applied stress. The stretchable transmission
line exhibits high sensitivity, and repeatability, making it suitable for measuring stress
distributions in electronic textiles, wearable electronic devices, and electronic skins. This
approach offers several advantages, including complexity reduction and high productivity.

In transmission line sensing, the reflected electromagnetic pulse signal conveys infor-
mation about the magnitude of stress at different locations by exploiting the fluctuations
of voltage and current along the spatial position of the transmission line. The transmis-
sion line sensing only has one signal line, which has the advantage of high integration.
While it has drawbacks, including high cost, complicated fabrication, and complexity of
information decoding.

3.3. Ionic Conductor Sensing

The ionic conductor sensing utilizes the contact resistance and capacitance between
the human hand and the ionic conductor under AC current. Ionic conductors can be made
from ion-containing hydrogels or organic hydrogels. When exposed to high-frequency
AC current, human touch on the ionic conductor causes changes in the contact resistance
and capacitance within the electric double layer structure of the ionic conductor. The
contact resistance is measured to determine the position of touch, while the newly formed
contact capacitance after human touch is used to measure the magnitude of stress, as shown
in Figure 8. The ionic conductor sensing enables the determination of stress magnitude
and location information through two single-signal lines, providing a low-cost, easily
operated for measuring stress distribution in electronic skins, wearable electronic devices.
In addition, implementing this technology requires the selection of suitable ion conductor
materials and the design of corresponding circuits.

Gao et al. [33] developed a pressure-sensitive touchpad with self-healing properties us-
ing an ionic conductor, as shown in Figure 8a. The ionic conductor is a polyzwitterion-clay
nanocomposite hydrogel, which has flexibility, stretchability, transparency, and pressure-
sensitivity. When touched, the hydrogel exhibits changes in the resistance and capacitance
of the electric double layer structure, enabling the measurement of touch position and
magnitude. The touch position is determined by the resistance, whereas the capacitance is
dependent on the distance between the touch point and the electrode. This study provides
an innovative solution for human–machine interfaces with self-healing properties of poly-
mer nanocomposite hydrogels, along with the recognition and differentiation of multi-touch
signals. As shown in Figure 8b, Wu et al. [36] proposed a multifunctional, wearable, and
transparent human–machine interface based on ionic hydrogels. An anti-drying sodium
alginate/polyacrylamide/ionic liquid double-network organohydrogel was synthesized
using a wet spinning method. The interface utilizes a parallel mutual detection structure
that allows for both single-point touch and multi-point touch using only two electrodes.
The interface is composed of a pair of horizontal or spiral ionic hydrogel strips embedded
in a flexible substrate. The ionic hydrogel exhibits excellent stretchability, transparency, and
durability. When a finger touches the interface, the ionic hydrogel between the electrode
and the touch point acts as a resistor that is connected to the circuit and is in series with
the electric double-layer capacitor. This configuration allows for the determination of
touch position and magnitude through variations in current and capacitance. This study
employs only two electrodes for touch sensing, which simplifies maintenance and opera-
tion. Furthermore, the detection of multi-touch enhances the diversity of human–machine
interaction and advances the development of the Internet of Things.

The ionic conductor exhibits varying resistances and capacitances based on the mag-
nitude and location of the touch when it contacts with the human body. The resistance
of the sensor indicates different positions on the sensor, whereas the capacitance corre-
sponds to the intensity of the touch force. Two-dimensional planar touch sensing can be
accomplished by utilizing four wires, offering the benefits of a streamlined circuit layout
and a straightforward device structure. The ionic conductor sensing technology has the
advantages of two signal lines and multi model measurement. However, it still needs to
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address challenges such as low temperature stability and complicated signal decoding.
The ionic conductor sensing finds application potentials in fields such as human–machine
interfaces and biosensing.
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3.4. Triboelectric Sensing

Triboelectric sensing is a sensing array composed of triboelectric materials with unique
physical and chemical properties (electron affinity, mobility, adhesion energy, and surface
potential), which measures the change in the applied stress through the charge variation
generated by the friction between the triboelectric materials. These materials are arranged
in a way that generates triboelectric signals exhibiting diverse voltage or charge density.
When subjected to triboelectric force, the different positions of the materials produce distinct
signal responses, enabling the simultaneous detection of multiple frictional positions, as
shown in Figure 9.

To reduce the number of connection wires and achieve high spatial resolution, Jang et al. [42]
proposed a wearable single-ended triboelectric tactile sensor array that can detect multi-point
friction, as shown in Figure 9a. This array consists of different stretchable block copolymer
elastomeric dielectrics that are patterned with UV light. By adjusting the UV exposure
time of the thermoplastic block copolymer film, triboelectric patterns with varying relative
charge densities can be generated. With just one electrode, the tactile sensor array can
discern the touch position. Guo et al. [43] developed a self-powered electronic skin based
on an Archimedean spiral structure, as shown in Figure 9b. The electronic skin comprises
a triboelectric layer (such as polymer, metal), patterned AgNW electrodes, and a PDMS
substrate, capable of determining the frictional position without the need for an external
power supply. These materials are distributed on the electrodes through a multilayer align-
ment transfer process. By designing the electrode with an Archimedean spiral structure,
the triboelectric signal is distinguished into digital “0” or “1” based on the intrinsic electron
affinity of the materials. Only four electrodes are needed to identify 280 frictional positions.
The electronic skin easily integrable into portable electronic devices, such as laptops and
healthcare devices, showing application potential in the fields of human–machine interface
and artificial intelligence.

Applying friction to triboelectric sensors generates voltage or charge density based on
the different friction positions and the triboelectric materials with different properties, there-
fore enabling SLMC measurement. Triboelectric sensing technology has the advantages of
two signal lines, low energy consumption, high dynamic performance, but it still needs
to solve the challenges of poor static measurement and low signal stability. Triboelectric
sensing has the application potential in the fields of friction and wear monitoring and
tactile sensing.
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3.5. Piezoresistive Sensing

The piezoresistive sensing consists of materials with piezoresistivity that transforms
the stress position into a corresponding resistance value. Applying stress at different
positions leads to different resistance variation, which enables the realization of a SLMC
measurement, as shown in Figure 10.

As shown in Figure 10a, Liao et al. [41] introduced a biomimetic sensory transmission
neural sensor array capable of accurately determining the position of stress. The sensor
array consists of a conductive graphite film, a grid paper, and a sheet in between. The
proposed sensor array, known as the artificial perception and transmission neural sensor
array, employs an independent two-layer electrode structure with progressively decreasing
resistance in each electrode. Applying stress contacts the two electrodes, and the resulting
resistance determines the stress position. The sensor array exhibits remarkable attributes
such as rapid response, robustness, durability, and flexibility, enabling diverse applications
such as multi-functional touch interaction. Furthermore, by integrating the spatiotemporal
resolution function of the sensor array with artificial intelligence algorithms, this study
demonstrated its applicability in neural prostheses and robots. The sensor array designed
with a distinct double-layer structure, effectively resolves challenges related to complicated
structures, intricate interconnections, and signal transmission interference.

By manipulating the resistance at different positions within the piezoresistive material,
piezoresistive sensing-based sensor array can determine the stress location by analyzing
the resulting resistance. Piezoresistive sensing has several advantages, such as one signal
line, simple structure, low cost, and simple signal acquisition circuit. However, for some
application scenarios, it is necessary to consider its stress magnitude and multiple-channel
unmeasurably. Piezoresistive sensing technology is widely used in the field of structural
monitoring. The sensors can be used to monitor stress changes in multiple key locations
such as buildings or bridges to assess the health and safety of the structure. In the med-
ical field, piezoresistive sensing technology can be applied to the measurement of stress
distribution on human body, such as on mattresses, to improve treatment.
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3.6. Distributed Fiber Optic Sensing

Distributed fiber optic sensing utilizes the continuous one-dimensional characteristic
of optical fibers. The distributed fiber optic sensing relies on optical time-domain reflec-
tometry, which is based on the principle of backscattering of light emitted by a source
as it propagates through the fiber. The intensity of the backscattered light decreases in
proportion to the distance and time traveled. By detecting changes in the time and intensity
of the backscattered light, an optical detector can determine the magnitude of stress at
different positions along the fiber, as shown in Figure 10.

As shown in Figure 10b, Bai et al. [34] developed a stretchable fiber optic sensor based
on silicon dioxide. The sensor consists of a dual-core lightguide with one dyed core doped
with absorbing dyes at discrete locations and one clear core, separated by silicone cladding.
The sensor can measure the location, magnitude, and mode (stretching, bending, or twist-
ing) of deformations using an elastic optical waveguide containing continuous or discrete
colored patterns. Applying stress changes the chromaticity and intensity of the waveg-
uide, allowing the position and magnitude of the stress to be determined through total
internal reflection and absorption phenomena. The researchers successfully integrated this
stretchable fiber optic sensor into a glove and demonstrated its effectiveness in monitoring
various hand movements.

Applying stress to the distributed fiber optic sensor modifies the reflection and re-
fraction of light sources within the fiber, resulting in variations in the detection time and
intensity of the light source. These variations can indicate the magnitude and position
of stress on the sensing array, making it possible to implement SLMC measurement. Dis-
tributed fiber optic sensing provides significant advantages, including one signal line, high
spatial resolution, and multi-model detection. However, it also faces challenges such as
fiber brittleness, signal parsing and data processing complexity.

Fiber Bragg Grating Sensors (FBGs) are used to realize fiber sensing by introducing a
periodic index modulation structure into the fiber. Specifically, FBGs are composed of re-
fractive index periodic modulation regions in optical fibers that cause specific wavelengths
of light to be reflected or transmitted. Applying stress or temperature to FBGs changes
their periodic refractive index structure, resulting in a shift in the reflected or transmitted
wavelength, and then the stress or temperature is measured. FBGs has the advantages of
high precision, fast response and anti-electromagnetic interference, and has been widely
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used in the fields of structure monitoring, pipeline inspection, aerospace and medical
diagnosis. However, higher costs and flexibility limitations are some of the drawbacks of
FBGs. Li et al. [89] proposed a sensor manufacturing method for joint motion monitoring
in stroke rehabilitation by embedding silicon fiber grating in silicone tubes. The materials
used include silicon fiber FBG and silicon tubes. The sensor has demonstrated excellent
performance in detecting and differentiating joint movements, making it a promising medi-
cal tool for rehabilitation of stroke patients and potential detection of Parkinson’s tremor in
stroke survivors.

Intensity modulation polymer optical fiber (POF) sensor is a fiber based sensing
technology, its working principle is based on the intensity modulation of the optical signal.
The sensor uses a sensitive material or structure that causes the intensity of the light
signal to change when affected by the measured parameters. This intensity change can be
measured and analyzed by the photodetector, so that the measurement parameters can
be monitored and measured. Intensity modulated POF sensors have the advantages of
simplicity, economy and high sensitivity, and are suitable for applications that measure
changes in the intensity of optical signals, but are limited by changes in light intensity and
the influence of ambient light [90].

FBGs uses the grating structure in fiber to measure optical signals, which is suitable for
point measurement and has high spatial resolution and complicated reading system. The
distributed optical fiber sensor is suitable for continuous measurement, with low spatial
resolution and simplified reading principle. Intensity modulated POF sensors measure by
adjusting the intensity of the optical signal, which is different from FBGs and distributed
optical fiber sensors in working principle, spatial resolution and application field.

We summarized the advantages and disadvantages of the existing single-wire multi-
channel measurement technology, as shown in Table 1.

Table 1. The advantages and disadvantages of the existing sensor array measurement method.

Method Advantages Limitations

RLC Resonant Sensing
• Two signal lines
• Tunable sensitivity
• Multi-model sensing

• Complicated circuit design
• Crosstalk between frequencies

Transmission Line Sensing • One signal line
• High integration

• High cost
• Complicated fabrication
• Complicated signal decoding

Ionic Conductor Sensing • Two signal lines
• Multi model measurement

• Low temperature stability
• Complicated signal decoding

Triboelectric Sensing
• Two signal lines
• Low energy consumption
• High dynamic performance

• Poor static measurement
• Low signal stability

Piezoresistive Sensing
• One signal line
• Simple signal acquisition
• Low cost

• Stress magnitude unmeasurably
• Multiple-channel unmeasurably

Distributed Fiber
Optic Sensing

• One signal line
• High spatial resolution
• Multi-model detection

• Fiber brittleness
• Complicated signal decoding

Unit-Independent
Measurement • High precision

• Tedious signal line
• Complicated design

Row–Column
Multiplexed Measurement

• High precision
• Reduced signal line

• Signal crosstalk
• Tedious signal line

Anisotropic Electrical
Impedance Tomography • Reduce design complexity

• Signal crosstalk
• Low resolution
• Complicated signal processing
• Tedious signal line

Shared Electrode
Measurement • Reduced signal line

• Complicated design
• Signal crosstalk
• Tedious signal line

In summary, the SLMC measurement reduces the need for multiple signal wires,
enhancing the flexibility, stability, and reliability of flexible stress sensor arrays while
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also reducing costs. Additionally, the SLMC measurement introduces new concepts to
the fundamental theory of measuring flexible stress sensor arrays, overcomes technical
challenges, and promotes widespread adoption of soft stress sensor arrays.

4. Summary and Prospect

Flexible stress sensor arrays have gained popularity due to their high sensitivity,
functionality, deformability, and stretchability. However, the sensor signal is an electric
amplitude modulation signal (such as resistance and capacitance), which cannot simultane-
ously distinguish multiple signals through a single-signal wire. Thus, a large number of
signal wires are needed to meet the measurement requirements over a large measurement
area, which greatly increases costs, decreases equipment reliability and operability, and
hinders their widespread application in wearable electronic devices such as electronic skin
and health monitoring.

In this review, we introduce the stress sensing mechanisms based on piezoresistive,
capacitive, triboelectric, and piezoelectric principles, as well as their array structures and
performance. We focus on SLMC measurement that can transmit multiple signals through
one or two signal wires. According to the mechanism of SLMC measurement, we classify
the methods into RLC resonant sensing, transmission line sensing, ionic conductor sensing,
triboelectric sensing, piezoresistive sensing, and distributed fiber optic sensing. We describe
the mechanisms and characteristics of each method and summarize the research status of
SLMC measurement.

Several techniques mentioned in this article have successfully verified the feasibility
and reliability of the SLMC measurement, which reduces the number of signal wires,
reduces costs, and improves the flexibility, stability, and reliability of flexible sensor arrays.
Nevertheless, the scalability of each technology from sensors to large-scale commercial
applications requires improvement. We can promote the application of SLMC signal
transmission methods on flexible sensor arrays by optimizing structural design, material
selection, and signal processing.

In previous studies, multiple sensing units were concatenated to achieve multimodal
measurement, resulting in poor operability, reliability, and efficiency. To improve oper-
ability and efficiency, simple structural designs such as vertical stacking structures can be
used to achieve higher-dimensional measurement [91–93]. Wearable electronic devices,
such as electronic skin, are vulnerable to damage due to their flexible material, which
negatively impacts usability and reduces efficiency. The use of self-healing polymer ma-
terials, such as composite hydrogels with self-repairing properties, can provide quick
self-repair during use, which improves the stability and durability of wearable electronic
devices [94–96]. Previous signal processing was based on simple threshold judgments,
which is inadequate for signal decoupling that is affected by noise, signal damage, or multi-
ple signals. The use of machine learning algorithms can improve the accuracy and efficiency
of sensing. In conclusion, SLMC measurement is a new breakthrough in signal process-
ing for flexible stress sensor arrays [27,97,98]. By optimizing structural design, material
selection, and signal processing, they can promote implementation in health monitoring,
human–machine interaction.

The SLMC measurement technologies reduce the number of signal lines, enhancing the
deformability, stability, and reliability of the flexible stress sensor array. These advantages
make the SLMC technology well suited for a wide range of applications, including wearable
devices, biomedical sensing, structural health monitoring, and robotics, where accurate and
real-time measurement of spatial stress distribution is crucial for performance optimization
and safety enhancement. However, it is important to acknowledge that challenges may
arise in certain aspects of the technology.

The distributed fiber sensing has the property of brittle fracture. However, distributed
fiber sensing provides continuous, real-time monitoring along the entire fiber length,
enabling the measurement of strain, temperature, and other physical parameters at high
spatial resolution. This makes the SLMC suitable for applications that require distributed
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sensing over large areas or long distances. Additionally, future advances in optical fiber
materials such as the development of bendable fiber will greatly improve the durability
and flexibility of the fiber. RLC resonant sensing often requires complicated circuit design,
due to resistors, inductors, and capacitors. Future research can combine RLC resonant
sensing with other sensing materials to achieve simultaneous measurement of multiple
parameters (humidity, temperature, etc.), and simplify circuit design to achieve higher
integration. Transmission line sensing still presents challenges in terms of the complexity of
fabrication and cost, and future research could simplify fabrication processes by applying
screen printing, gravure printing or spin coating and use less expensive materials. Ionic
conductor sensing and triboelectric sensing are easily disturbed by environmental factors,
and future research can develop new ionic/triboelectric conductor materials to expand its
application field and improve its stability.

This review introduces the mechanisms of flexible stress sensors, as well as discusses
the advantages and disadvantages of the design of flexible stress sensor arrays. To address
the issue of excessive signal wires in current flexible stress sensor arrays, solutions for
flexible stress sensor arrays are summarized, and the implementation principle and pros
and cons of existing SLMC measurement are analyzed. In summary, flexible stress sensor
arrays allow for quantification and analysis of the magnitude and distribution of spatial
stress, while also offering advantages such as flexibility, integration, and systematization.
However, increasing the number of signal wires may negatively impact the stability and
reliability of the sensor array. Thus, it is essential to develop more efficient, reliable, and
cost-effective methods for arraying flexible stress sensors to promote their application in
various fields.
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Abstract: With the rapid advancement of tracking technologies, the applications of tracking systems
in ultrasound imaging have expanded across a wide range of fields. In this review article, we discuss
the basic tracking principles, system components, performance analyses, as well as the main sources
of error for popular tracking technologies that are utilized in ultrasound imaging. In light of the
growing demand for object tracking, this article explores both the potential and challenges associated
with different tracking technologies applied to various ultrasound imaging applications, including
freehand 3D ultrasound imaging, ultrasound image fusion, ultrasound-guided intervention and
treatment. Recent development in tracking technology has led to increased accuracy and intuitiveness
of ultrasound imaging and navigation with less reliance on operator skills, thereby benefiting the
medical diagnosis and treatment. Although commercially available tracking systems are capable of
achieving sub-millimeter resolution for positional tracking and sub-degree resolution for orientational
tracking, such systems are subject to a number of disadvantages, including high costs and time-
consuming calibration procedures. While some emerging tracking technologies are still in the research
stage, their potentials have been demonstrated in terms of the compactness, light weight, and easy
integration with existing standard or portable ultrasound machines.

Keywords: tracking; ultrasound imaging; optical tracking; electromagnetic tracking; 3D ultrasound
imaging; ultrasound–guided interventions; ultrasound image fusion

1. Introduction

An object tracking system locates a moving object (or multiple objects) through time
and space [1]. The main aim of a tracking system is to identify an object regarding the posi-
tion and orientation in space recorded in an extension of time, characterized by precision,
accuracy, working range as well as degree-of-freedom (DOF), depending on the systems
and applications [2]. With the rapid development of computational and sensing technolo-
gies, nowadays tracking systems have been widely utilized in various fields, including
robotics [3,4], military [5,6], medicine [7,8] and sports [9,10]. In the medical field, tracking
of rotation and translation of medical instruments or patients plays a substantial role in
many important applications, such as diagnostic imaging [11], image-guided navigation
systems for intervention and therapy [12,13], as well as rehabilitation medicine [14].

Ultrasound (US) imaging is a well-established imaging modality that has been widely
utilized in clinical practice for diagnosing diseases or guiding decision-making in ther-
apy [15]. Compared with other medical imaging modalities, such as computed tomography
(CT) and magnetic resonance imaging (MRI), US shows the major advantages of real-
time imaging, non-radiation exposure, low-cost, and ease to apply [16]. Despite its many
advantages, ultrasonography is considered to be highly operator-dependent [17]. Man-
ually guiding of the US probe to obtain reproducible image acquisition is challenging.
Moreover, in order to correctly interpret the information acquired by the scanning, rich
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clinical experience is required for sonographers. Besides the operator dependency that
brings the high risk of interpretive error influencing the diagnosis and therapy results,
the restricted field of view (FOV) of US probe poses challenges for image visualization
and feature localization, thus limiting diagnosis or therapy accuracy. The integration of
object tracking system with US imaging can resolve the above-mentioned limitations. By
integrating tracking devices with US probes, an extended FOV of US probe can be obtained,
resulting in a less operator-dependent scanning procedure and more accurate results. Over
the past decade, there has been a significant growth of studies on integration of various
tracking systems with US imaging systems for biomedical and healthcare applications.
The applying of emerging tracking systems for biomedical US imaging applications has
resulted in improved accuracy and intuitiveness of US imaging and navigation with less
reliance on operator skills, thereby benefiting the medical diagnosis and therapy.

The purpose of this article is to provide a literature review on the various tracking
systems for biomedical US imaging applications, as illustrated in Figure 1. The rest of the
article is organized as follows: in Section 2, the principles of different tracking techniques,
including optical tracking, electromagnetic tracking, mechanical tracking, acoustic tracking
and inertial tracking, are summarized. The typical tracking systems and their technical
performances, such as accuracy and latency are provided in Section 3. Section 4 details the
advancement of different tracking systems for US imaging applications, including freehand
3D US imaging, US image fusion, US-guided diagnosis, and US-guided therapy. Finally, a
summary and concluding remarks are presented in Section 5.
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Figure 1. Various tracking systems for biomedical US imaging applications.

2. Physical Principles of Tracking Technologies

The latest advancements in tracking technologies have enabled conventional medical
devices to be equipped with more advanced functions. In biomedical US imaging, object
tracking technologies are key to locate US probes and other medical tools for precise
operation and intuitive visualization. The underlying physical principles behind the most
common tracking technologies will be reviewed in this section.

2.1. Optical Tracking

An optical tracking system is among the most precise tracking technologies with 6 DOF
that achieves a sub-millimeter accuracy level. Multiple spatially synchronized cameras track
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the markers attached to the target in the designed space. There are two types of markers:
active and passive [18]. Infrared light emitting diodes (LEDs) are used in active markers for
the purpose of emitting invisible light that can be detected by cameras. A passive marker is
covered with a retro-reflective surface that can reflect incoming infrared light back to the
camera. There are usually three or more unsymmetrical markers in a target object. The
6 DOF position and orientation of the object are determined by triangulation [19].

Similar to the human vision system, optical tracking requires at least two cameras that
are fixed at a known distance from each other. Adding additional cameras will improve
tracking accuracy and robustness. In Figure 2, a trinocular vision system is illustrated as an
example of triangulation [20]. P is observed simultaneously by three lenses. Additionally,
it generates three projection points on the focal plane. A right-handed, Y-up coordinate is
assigned to each lens, with coordinate origins at O1, O2, and O3. The reference coordinate
XcYcZc coincides with the coordinate X2Y2Z2 of the middle lens. A baseline lij is defined
to be the distance between any two lenses. Three parallel principal axes are present in the
three fixed lenses. There is a perpendicular relationship between the principal axes and
the baseline.
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Figure 2. Principle of the camera-based optical tracking technique. (a) The three coordinates represent
the three lenses integrated in the camera bar. The camera bar is looking at point P(x, y, z), where
P1, P2, and P3 are the intersections on the image plane. (b) The top view demonstrates the similar
triangles used to calculate the position information. The depth d of point P can be determined via
triangulation. Reprinted from [20] with permission.

To perceive the depth with two lenses i and j, where i, j ∈ {1, 2, 3}, and i 6= j. With
the known focal length f , and the disparity xpi − xpj representing the offset between the
two projections in the XOZ plane, the depth Z can be derived as

Z =
f lij

xpi − xpj
(1)

Furthermore, the other two coordinates of P(X, Y, Z) can thus be calculated as

X =
xpiZ

f

Y =
ypjZ

f

(2)

Given all the markers’ positions, the orientation of the marker set is determined. With
the known positions of all markers, the orientation of the target is also determined. The
6 DOF poser information is delivered in the form of a transformation matrix TC

M, with
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the subscript and superscript representing the marker set coordinate (M) to the camera
coordinate (C), respectively.

TC
M =

[
R p
0 1

]
(3)

where p = (XM, YM, ZM)T is the offset between the two origins of coordinates M and C.
Additionally, R is a 3× 3 rotational matrix in the form of

R =




cosϕcosθ cosϕsinθsinψ− sinϕcosψ cosϕsinθcosψ+ sinϕsinψ
sinϕcosθ sinϕsinθsinψ+ cosϕcosψ sinϕsinθcosψ− cosϕsinψ
−sinθ cosθsinψ cosθcosψ


 (4)

From the above matrix, the orientations ϕ (yaw), θ (pitch), and ψ (roll) can thus be
solved as follows: 




ϕ = arctan R12
R11

θ = −arcsinR31

ψ = arctan R32
R33

(5)

2.2. Electromagnetic Tracking

Tracking systems using electromagnetic signals can also provide sub-millimeter accu-
racy in dynamic and real-time 6 DOF tracking. Its advantages include being lightweight
and free of line-of-sight. In biomedical engineering, it is commonly used for the navigation
of medical tools.

Electromagnetic tracking systems consist of four modules: transmission circuits, re-
ceiving circuits, digital signal processing units, and microcontrollers. Based on Faraday’s
law, electromagnetic tracking systems use transmitted voltages to estimate the position and
orientation of objects in alternating magnetic fields when the object is coupled to a receiver
sensor [21,22].

Figure 3 illustrates the involved coordinate systems. The reference coordinate system
is denoted as X0Y0Z0, which is fixed at the emission coil. XsYsZs is the coordinate system
fixed at the receiver sensor. The location of its origin O1(X, Y, Z) with respect to X0Y0Z0,
can also be denoted as O1(R,α,β) in spherical coordinate. Additionally, the orientation is
represented as Euler angles ϕ, θ, and ψ.
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Assuming the excitation current i(t) = Ii sin(ωt +φ), the transmitter parameter along
each direction defined as Ci =

µNiIiSi
4π , where i = x, y, z, Ni is the number of turns in the

coil, and Si is the area of the coil, the excitation signal can be defined as

f0 = C =




Cx 0 0
0 Cy 0
0 0 Cz


 (6)

Accordingly, the receiver parameter can be written as

K =




Kx 0 0
0 Ky 0
0 0 Kz


 (7)

where ki = ωnigisi, with ω representing the radian frequency of the source excitation
signal, ni and si denoting the number of turns in the coil and the area of the coil, and gi
indicating the system gain. According to Faraday’s law of induction, the amplitude of the
voltage from the receiver coil is expressed as

Sij = ωKjCih(R,α,β,ϕ, θ,ψ) = ωKjBij (8)

With the position and orientation of the receiver fixed, the value of h(R,α,β,ϕ, θ,ψ)
is determined. Bij is the amplitude of the magnetic field produced at that location.

From Equation (8), by defining the final sensor output to be

fs =




sxx syx szx
sxy syy szy
sxz syz szz


 (9)

the magnetic field expressed in XsYsZs is

B = K−1 fs =




sxx
kx

sxy
ky

sxz
kx

syx
ky

syy
ky

syz
ky

szx
kz

szy
kz

szz
kz


 (10)

When the equivalent transmitter coil along each direction is excited, the square ampli-
tude of the magnetic field P can be expressed as

P =




sxx
kx

2 +
syx
kx

2
+ szx

kx

2

sxy
ky

2
+

syy
ky

2
+

szy
ky

2

sxz
kz

2 +
syz
kz

2
+ szz

kz

2


=




4C2
x

r6

(
x2 + 1

4 y2 + 1
4 z2
)

4C2
y

r6

(
1
4 x2 + y2 + 1

4 z2
)

4C2
z

r6

(
1
4 x2 + 1

4 y2 + z2
)


 (11)

Canceling out the unknown position (x, y, z) by summing up all three entries, the
only unknown parameter r can be deduced.

With two rotational matrices T(α) and T(β) as

T(α) =




cosα sinα 0
−sinα cosα 0

0 0 1




T(β) =




cosβ 0 −sinβ
0 1 0

sinβ 0 cosβ




(12)

A key matrix F can be defined as
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F = r6( f T
0
)−1 f T

s K−1K−1 fs f−1
0

=




1 + 3 cos2 α cos2β 3sinα cosα cos2β −3cosα sinβ cosβ
3sinα cosα cos2β 1 + 3 sin2 α cos2α −3sinα sinβ cosβ
−3cosα sinβ cosβ −3sinα sinβ cosβ 1 + 3 sin2 β


 (13)

As sij,ω, Ci, Kj as known parameters, the unknown α and β can be solved as





α = arctan F23
F13

β = arcsin
√

F33−1
3

(14)

From the spherical coordinates, the position of the target P can be written as




x = rcosβcosα
y = rcosβsinα
z = rsinβ

(15)

Substituting

T(ϕ) =




1 0 0
0 cosϕ sinϕ
0 −sinϕ cosϕ




T(θ) =




cosθ 0 −sinθ
0 1 0

sinθ 0 cosθ




T(ψ) =




cosψ sinψ 0
−sinψ cosψ 0

0 0 1




(16)

into
fs = KB =

2
r3 KT(ϕ)T(θ)T(ψ)T(−α)T(−β)ST(β)T(α) f0 (17)

matrix T is defined as

T = T(ϕ)T(θ)T(ψ)

=




cosϕ cosψ cosϕ sinψ −sinϕ
sin θ sinϕ cosψ− cos θ sinψ sinϕ sin θ sinψ+ cos θ cosψ sin θ cosϕ
cos θ sinϕ cosψ+ sin θ sinψ cos θ sinϕ sinψ+ sin θ cosψ cos θ cosϕ


 (18)

Therefore, the target’s orientation can be solved as




ϕ = arctan

(
− T13

(T2
23+T2

33)
1
2

)

θ = arctan
(

T23
T33

)

ψ = arctan
(

T12
T11

)
(19)

2.3. Mechanical Tracking

Robotic tracking systems use articulated robotic arms to manipulate the target attached
to the end effector. Typically, industrial robots are composed of a number of joints and
links. Joint movement is continuously detected by potentiometers and encoders in-stalled
on each joint. The real-time position and orientation of the effector can be deter-mined by
calculating homogeneous transformations from the collected robotic dynamics. In clinical
practice, the operator can either control the movement of the robot to a certain location
with the desired orientation, or specify the destination, and the robot solves the path using
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inverse dynamics based on the spatial information of the destination and the architecture
of the robot. Following the Denavit and Hartenberg notation, the forward dynamics will
be applied to illustrate how the 6 DOF pose information is transformed be-tween adjacent
joints and links, as illustrated in Figure 4 [23].
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The 4× 4 homogeneous transformation matrix for each step is shown below.

A1 =




cosθi −sinθi 0 0
sinθi cosθi 0 0

0 0 1 0
0 0 0 1


, A2 =




1 0 0 ai
0 1 0 0
0 0 1 0
0 0 0 1




A3 =




1 0 0 0
0 1 0 0
0 0 1 di
0 0 0 1


, A1 =




1 0 0 0
0 cosαi −sinαi 0
0 sinαi cosαi 0
0 0 0 1




(20)




xi
yi
zi
1


 = A1 A2 A3 A4︸ ︷︷ ︸

T




xi
yi
zi
1


 =




cosθi −sinθicosαi sinθisinαi aicosθi
sinθi cosθicosαi −cosθisinαi aisinθi

0 sinαi cosαi di
0 0 0 1







xi
yi
zi
1


 (21)

The transformation matrix T can also be represented in terms of position
(

px, py, pz
)

in the reference coordinate and orientation (ϕ, θ,ψ) in yaw-pitch-roll representation.

T =




cosϕcosθ cosϕsinθsinψ− sinϕcosψ cosϕsinθcosψ+ sinϕsinψ px
sinϕcosθ sinϕsinθsinψ+ cosϕcosψ sinϕsinθcosψ− cosϕsinψ py
−sinθ cosθsinψ cosθcosψ pz

0 0 0 1


 (22)

Based on Equations (21) and (22), the 6 DOF pose information can be solved as




px = aicosθi
py = aisinθi
pz = di

(23)

31



Micromachines 2022, 13, 1855





θ = arcsin(−T31)

ϕ = arccos
(

T33
cosθ

)

ψ = arccos
(

T11
cosθ

) (24)

2.4. Acoustic Tracking

An acoustic tracking system is one of the three DOF positional tracking systems.
To determine the spatial location of the target object, an ultrasonic transmitter transmits
a carrier signal that is received by multiple receivers operating at the same frequency.
Specifically, by estimating the actual travel/arrival times (TOF/TOA) or the time difference
between travel/arrival (TDOF/TDOA), the 3D coordinates of the object (x, y, z) can be
determined to centimeter accuracy levels with receivers fixed at known locations, as shown
in Figure 5. A TDOF/TDOA algorithm is more practical and accurate than a TOF/TOA
algorithm since it circumvents the synchronization issue between the transmitter and
receiver. A limitation of acoustic tracking is that the accuracy of the tracking is affected by
the temperature and air turbulence in the environment [24]. This problem can be addressed
by including the speed of sound (c) as an unknown parameter in the calculation [25].
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The predetermined geometry of the receivers was notated as (xi, yi, zi), where i repre-
sents the ith receiver, where i {1, 2, 3, 4, 5, 6}. The reference distance between the transmitter
and receiver R1 is denoted as d. ∆T1j indicates the TDOF between receiver R1 and Rj,
where j ∈ {2, 3, 4, 5, 6}.
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Occlusion can also affect the accuracy of an acoustic tracking system. A receiver
configuration should be taken into serious consideration when implementing such a system
for biomedical US imaging applications [26]. In addition to reducing occlusion, an optimal
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configuration also contributes to improved tracking performance. As an acoustic tracking
system is not able to identify a target’s object, other tracking systems, such as inertial
tracking, are frequently required [27].

2.5. Inertial Tracking

Inertial tracking systems are based on an inertial measurement unit (IMU), which
is a small, lightweight, cost-effective sensor enabled by microelectromechanical systems
(MEMS) (Figure 6) [28]. An IMU sensor with 9 axes that integrates accelerometers, gyro-
scopes, and magnetometers is commonly used for 6 DOF object tracking. Accelerometers
measure the target’s acceleration. The angular velocity of a target is measured by a gy-
roscope. Additionally, a magnetometer detects the magnetic field strength at the target’s
location. With sensor fusion of the raw measurements, an IMU sensor is able to obtain
more accurate readings [29]. As a result, after calibration and compensation for drifts and
errors, the position and orientation of the target can be determined [27].
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By taking integration of the angular velocity from time 𝑡  to 𝑡 , 𝚽 = mω(τ)tktk−1  d (26)

where τ is the discrete time. The solution of the orientation, under the assumption, can 
be written as 𝚽 = 𝛚𝑘−1 + 𝛚𝑘2 (𝑡𝑘 − 𝑡𝑘−1) (27)

For simplicity, three rotation matrices were defined as follows. 𝑅 = 𝑐𝑜𝑠θ 0 −𝑠𝑖𝑛θ0 1 0𝑠𝑖𝑛θ 0 𝑐𝑜𝑠θ  

𝑅 = 1 0 00 𝑐𝑜𝑠ψ 𝑠𝑖𝑛ψ0 −𝑠𝑖𝑛ψ 𝑐𝑜𝑠ψ  

𝑅 = 𝑐𝑜𝑠φ −𝑠𝑖𝑛φ 0𝑠𝑖𝑛φ 𝑐𝑜𝑠φ 00 0 1  

The rotational matrix 𝑅 is expressed as 𝑹 = 𝑅 ⋅ 𝑅 ⋅ 𝑅  (28)

Due to the effect of the Earth’s gravity, 𝛖 = 𝑹𝒂 − 𝒈 (29)

where υ is the velocity of the object and 𝒈 = [0,0,9.8] . 
According to the midpoint method, the velocity 𝛖𝒌 = 𝛖 + 𝑹 𝒂 + 𝑹 𝒂2 − 𝒈 (𝑡 − 𝑡 ) (30)

Thus, the position 𝒑 = [𝑥, 𝑦, 𝑧]  at time 𝑘 is 𝒑 = 𝒑 + 𝛖 (𝑡 − 𝑡 ) + 12 𝑹 𝒂 + 𝑹 𝒂2 − 𝑔 (𝑡 − 𝑡 )  (31)

Figure 6. MPU 9250 and its coordinate system with Euler angles. Reprinted from [27] with permission.

The tri-axial measurements of the accelerometer are accelerations of each axis, where

a =
[
ax, ay, az

]T
=
[

d2x
dt2 , d2y

dt2 , d2z
dt2

]T
. Readings from the gyroscope indicate the angular rates

of the sensor when rotated, where ω =
[
ωx, ωy, ωz

]T
=
[

d2ϕ
dt2 , d2θ

dt2 , d2ψ
dt2

]T
. Additionally,

[pitch, roll, yaw]T is denoted as Φ = [ϕ, θ,ψ]T .
By taking integration of the angular velocity from time tk−1 to tk,

Φ =
∫ tk

tk−1

mω(τ) d (26)

where τ is the discrete time. The solution of the orientation, under the assumption, can be
written as

Φ =
ωk−1 +ωk

2
(tk − tk−1) (27)

For simplicity, three rotation matrices were defined as follows.

Rpitch =




cosθ 0 −sinθ
0 1 0

sinθ 0 cosθ




Rroll =




1 0 0
0 cosψ sinψ
0 −sinψ cosψ




Ryaw =




cosϕ −sinϕ 0
sinϕ cosϕ 0

0 0 1
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The rotational matrix R is expressed as

R = Rpitch · Rroll · Ryaw (28)

Due to the effect of the Earth’s gravity,

.
υ = Ra− g (29)

where υ is the velocity of the object and g = [0, 0, 9.8]T .
According to the midpoint method, the velocity

υk = υk−1 +

(
Rk−1ak−1 + Rkak

2
− g
)
(tk − tk−1) (30)

Thus, the position p = [x, y, z]T at time k is

pk = pk−1 + υk−1(tk − tk−1) +
1
2

(
Rk−1ak−1 + Rkak

2
− g
)
(tk − tk−1)

2 (31)

3. Tracking Systems

Different types of tracking systems have been developed and marketed over the past
decade. In this section, the main tracking systems in the market are reviewed in terms of
their technical specifications.

3.1. Optical Tracking Systems

A large number of manufacturers have developed various kinds of optical track-
ing systems for biomedical applications, as summarized in Table 1. The main technical
specifications that relate to the tracking performances are measurement volume (or FOV),
resolution, volumetric accuracy, average latency, and measurement rates. Due to angle
of view, the shape of measurement volume is usually a pyramid, which can be repre-
sented by radius × width × height. Some manufacturers prefer to use the term “field of
view”, i.e., horizontal degree × vertical degree, to show the dimension of work volume.
In addition, the advances of cameras promote the resolution of the image, and further
increase the volumetric accuracy. To date, some advanced optical tracking system can
obtain 26 megapixels (MP) resolution with 0.03 mm volumetric accuracy [30]. However,
the high resolution of the captured images will burden the processor for data analysis,
causing the increase of average latency and reduce of measurement rates.

Table 1. Summary of commercially available optical tracking systems.

Manufacturer Model
Measurement Volume

(Radius ×Width × Height) or
FOV

Resolution Volumetric
Accuracy (RMS)

Average
Latency

Measurement
Rate

Northern
Digital Inc.,

Waterloo, ON,
Canada

Polaris Vega ST
[31]

2400 × 1566 × 1312 mm3

(Pyramid Volume:)
3000 × 1856 × 1470 mm3

(Extended Pyramid)

N/A

0.12 mm
(Pyramid Volume)

0.15 mm
(Extended
Pyramid)

<16 ms 60 Hz

Polaris Vega VT
[32]

2400 × 1566 × 1312 mm3

(Pyramid Volume)
3000 × 1856 × 1470 mm3

(Extended Pyramid)

N/A

0.12 mm
(Pyramid Volume)

0.15 mm
(Extended
Pyramid)

<16 ms 60 Hz

Polaris Vega XT
[33]

2400 × 1566 × 1312 mm3

(Pyramid Volume)
3000 × 1856 × 1470 mm3

(Extended Pyramid)

N/A

0.12 mm
(Pyramid Volume)

0.15 mm
(Extended
Pyramid)

<3 ms 400 Hz

Polaris Vicra
[34] 1336 × 938 × 887 mm3 N/A 0.25 mm N/A 20 Hz
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Table 1. Cont.

Manufacturer Model
Measurement Volume

(Radius ×Width × Height) or
FOV

Resolution Volumetric
Accuracy (RMS)

Average
Latency

Measurement
Rate

ClaroNav Inc.,
Toronto, ON,

Canada

H3-60 [35] 2400 × 2000 × 1600 mm3 1280 × 960 0.20 mm ~60 ms 16 Hz

SX60 [35] 1150 × 700 × 550 mm3 640 × 480 0.25 mm ~20 ms 48 Hz

HX40 [35] 1200 × 1200 × 900 mm3 1024 × 768 0.20 mm ~50 ms 20 Hz

HX60 [35] 2000 × 1300 × 1000 mm3 1024 × 768 0.35 mm ~50 ms 20 Hz

BTS
Bioengineering
Corp., Quincy,

MA, USA

SMART DX 100
[36] 2000 × 2000 × 2000 mm3 0.3 MP <0.20 mm N/A 280 FPS

SMART DX 400
[36] 4000 × 3000 × 3000 mm3 1.0 MP <0.30 mm N/A 300 FPS

SMART DX 700
[36] 4000 × 3000 × 3000 mm3 1.5 MP <0.10 mm N/A 1000 FPS

SMART DX
6000 [36] 4000 × 3000 × 3000 mm3 2.2 MP <0.10 mm N/A 2000 FPS

SMART DX
7000 [36] 6000 × 3000 × 3000 mm3 4.0 MP <0.10 mm N/A 2000 FPS

NaturalPoint,
Inc., Corvallis,

OR, USA

OptiTrack
PrimeX 41 [37]

FOV 51◦ × 51◦ 4.1 MP 0.10 mm 5.5 ms 250+ FPS

OptiTrack
PrimeX 22 [38]

FOV 79◦ × 47◦ 2.2 MP 0.15 mm 2.8 ms 500+ FPS

OptiTrack
PrimeX 13 [39]

FOV 56◦ × 46◦ 1.3 MP 0.20 mm 4.2 ms 1000 FPS

OptiTrack
PrimeX 13W

[40]
FOV 82◦ × 70◦ 1.3 MP 0.30 mm 4.2 ms 1000 FPS

OptiTrack
SlimX 13 [41]

FOV 82◦ × 70◦ 1.3 MP 0.30 mm 4.2 ms 1000 FPS

OptiTrack V120:
Trio [42] FOV 47◦ × 43◦ 640 × 480 N/A 8.33 ms 120 FPS

OptiTrack V120:
Duo [43] FOV 47◦ × 43◦ 640 × 480 N/A 8.33 ms 120 FPS

OptiTrack Flex
13 [44] FOV 56◦ × 46◦ 1.3 MP N/A 8.3 ms 120 FPS

OptiTrack Flex
3 [45] FOV 58◦ × 45◦ 640 × 480 N/A 10 ms 100 FPS

OptiTrack Slim
3U [46] FOV 58◦ × 45◦ 640 × 480 N/A 8.33 ms 120 FPS

TrackIR 4 [47] 46◦ (Horizontal) 355 × 288 N/A N/A 120 FPS

TrackIR 5 [47] 51.7◦ (Horizontal) 640 × 480 N/A N/A 120 FPS

Qualisys Inc.,
Gothenburg,

Sweden

Arqus A5 [30] FOV 77◦ × 62◦
5 MP

(normal) 1MP
(high-speed)

0.06 mm N/A
700 FPS
(normal)
1400 FPS

(high-speed)

Arqus A9 [30] FOV 82◦ × 48◦
9 MP

(normal)
2.5 MP

(high-speed)
0.05 mm N/A

300 FPS
(normal)
590 FPS

(high-speed)

Arqus A12 [30] FOV 70◦ × 56◦
12 MP

(normal)
3 MP

(high-speed)
0.04 mm N/A

300 FPS
(normal)
1040 FPS

(high-speed)

Arqus A26 [30] FOV 77◦ × 77◦
26 MP

(normal)
6.5 MP

(high-speed)
0.03 mm N/A

150 FPS
(normal)
290 FPS

(high-speed)

Miqus M1 [48] FOV 58◦ × 40◦ 1 MP 0.14 mm N/A 250 FPS

Miqus M3 [48] FOV 80◦ × 53◦
2 MP

(normal)
0.5 MP

(high-speed)
0.11 mm N/A

340 FPS
(normal)
650 FPS

(high-speed)
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Table 1. Cont.

Manufacturer Model
Measurement Volume

(Radius ×Width × Height) or
FOV

Resolution Volumetric
Accuracy (RMS)

Average
Latency

Measurement
Rate

Qualisys Inc.,
Gothenburg,

Sweden

Miqus M5 [48] FOV 49◦ × 49◦
4 MP

(normal)
1 MP

(high-speed)
0.07 mm N/A

180 FPS
(normal)
360 FPS

(high-speed)

Miqus Hybrid
[49] FOV 62◦ × 37◦ 2 MP N/A N/A 340 FPS

3+ [50] N/A
1.3 MP

(normal)
0.3 MP

(high-speed)
N/A N/A

500 FPS
(normal)
1750 FPS

(high-speed)

5+ [50] 49◦ (Horizontal)
4 MP

(normal)
1 MP

(high-speed)
N/A N/A

180 FPS
(normal)
360 FPS

(high-speed)

6+ [50] 56◦ (Horizontal)
6 MP

(normal)
1.5 MP

(high-speed)
N/A N/A

450 FPS
(normal)
1660 FPS

(high-speed)

7+ [50] 54◦ (Horizontal)
12 MP

(normal)
3 MP

(high-speed)
N/A N/A

300 FPS
(normal)
1100 FPS

(high-speed)

Vicon
Industries Inc.,

Hauppauge,
NY, USA

Valkyrie VK26
[51] FOV 72◦ × 72◦ 26.2 MP N/A N/A 150 FPS

Valkyrie VK16
[51] FOV 72◦ × 56◦ 16.1 MP N/A N/A 300 FPS

Valkyrie VK8
[51] FOV 72◦ × 42◦ 8.0 MP N/A N/A 500 FPS

Valkyrie VKX
[51] FOV 66◦ × 66◦ 7.2 MP N/A N/A 380 FPS

Vantage+ V16
[52] FOV 76.4◦ × 76.4◦

16 MP
(normal)
4.2 MP

(high-speed)
N/A 8.3 ms

120 FPS
(normal)
500 FPS

(high-speed)

Vantage+ V8
[52] FOV 61.7◦ × 47◦

8 MP
(normal)
2.2 MP

(high-speed)
N/A 5.5 ms

260 FPS
(normal)
910 FPS

(high-speed)

Vantage+ V5
[52] FOV 63.5◦ × 55.1◦

5 MP
(normal)
1.8 MP

(high-speed)
N/A 4.7 ms

420 FPS
(normal)
1070 FPS

(high-speed)

Vero v2.2 [53] FOV 98.1◦ × 50.1◦ 2.2 MP N/A 3.6 ms 330 FPS

Vero v1.3 [53] FOV 55.2◦ × 43.9◦ 1.3 MP N/A 3.4 ms 250 FPS

Vero v1.3 X [53] FOV 79.0◦ × 67.6◦ 1.3 MP N/A 3.4 ms 250 FPS

Vero Vertex [53] FOV 100.6◦ × 81.1◦ 1.3 MP N/A 3.4 ms 120 FPS

Vue [54] FOV 82.7◦ × 52.7◦ 2.1 MP N/A N/A 60 FPS

Viper [55] FOV 81.8◦ × 49.4◦ 2.2 MP N/A 3.2 ms 240 FPS

ViperX [56] FOV 50.2◦ × 50.2◦ 6.3 MP N/A 3.2 ms 240 FPS

Atracsys LLC.,
Puidoux,

Switzerland

fusionTrack 500
[57] 2000 × 1327 × 976 mm3 2.2 MP 0.09 mm ~ 4 ms 335 Hz

fusionTrack 250
[58] 1400 × 1152 × 900 mm3 2.2 MP 0.09 mm ~ 4 ms 120 Hz

spryTrack 180
[59] 1400 × 1189 × 1080 mm3 1.2 MP 0.19 mm <25 ms 54 Hz

spryTrack 300
[60] 1400 × 805 × 671 mm3 1.2 MP 0.14 mm <25 ms 54 Hz
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Table 1. Cont.

Manufacturer Model
Measurement Volume

(Radius ×Width × Height) or
FOV

Resolution Volumetric
Accuracy (RMS)

Average
Latency

Measurement
Rate

Motion
Analysis Corp.,
Rohnert Park,

CA, USA

Kestrel 4200
[61] N/A 4.2 MP N/A N/A 200 FPS

Kestrel 2200
[62] N/A 2.2 MP N/A N/A 332 FPS

Kestrel 1300
[63] N/A 1.3 MP N/A N/A 204 FPS

Kestrel 300 [64] N/A 0.3 MP N/A N/A 810 FPS

STT Systems,
Donostia-San

Sebastian,
Spain

EDDO
Biomechanics

[65]
N/A N/A 1 mm N/A 120 FPS

Advanced
Realtime

Tracking GmbH
& Co. KG,

Oberbayern,
Germany

ARTTRACK6/M
[66] FOV 135◦ × 102◦ 1280 × 1024 N/A N/A 180 Hz

ARTTRACK5
[67] FOV 98◦ × 77◦ 1280 × 1024 N/A 10 ms 150 Hz

SMARTTRACK3
[68] FOV 135◦ × 102◦ 1280 × 1024 N/A 9 ms 150 Hz

3.2. Electromagnetic Tracking Systems

Compared to optical tracking systems, electromagnetic tracking system can cover a
larger volume of measurement space, but normally has lower position accuracy. Table 2
summarizes the specification of some representative, commercially available electromag-
netic tracking systems. Since it does not require the transmission of light, electromagnetic
tracking systems are promising in intracorporeal biomedical applications. For example,
Polhemus Inc. (Colchester, VT, USA) developed a miniatured electromagnetic motion
tracking sensors with outer diameter of 1.8 mm. It can be inserted into human vessel with
a catheter for both position and orientation tracking [69].

Table 2. Summary of commercially available electromagnetic tracking systems.

Manufacturer Model Tracking
Distance

Position
Accuracy

(RMS)

Orientation
Accuracy

(RMS)

Average
Latency

Measurement
Rate

Northern
Digital Inc.,

Waterloo, ON,
Canada

Aurora-Cube Volume-5DOF [70] N/A 0.70 mm 0.2◦ N/A 40 Hz
Aurora-Cube Volume-6DOF [70] N/A 0.48 mm 0.3◦ N/A 40 Hz
Aurora-Dome Volume-5DOF [70] 660 mm 1.10 mm 0.2◦ N/A 40 Hz
Aurora-Dome Volume-6DOF [70] 660 mm 0.70 mm 0.3◦ N/A 40 Hz
3D Guidance trakSTAR-6DOF [71] 660 mm 1.40 mm 0.5◦ N/A 80 Hz
3D Guidance driveBAY-6DOF [71] 660 mm 1.40 mm 0.5◦ N/A 80 Hz

Polhemus
Inc.,

Colchester,
VT, USA

Viper [72] N/A 0.38 mm 0.10◦ 1 ms 960 Hz
Fastrak [73] N/A 0.76 mm 0.15◦ 4 ms 120 Hz
Patriot [74] N/A 1.52 mm 0.40◦ 18.5 ms 60 Hz

Patriot Wireless [75] N/A 7.62 mm 1.00◦ 20 ms 50 Hz
Liberty [76] N/A 0.76 mm 0.15◦ 3.5 ms 240 Hz

Liberty Latus [77] N/A 2.54 mm 0.50◦ 5 ms 188 Hz
G4 [78] N/A 2.00 mm 0.50◦ <10 ms 120 Hz

3.3. Mechanical Tracking Systems

Unlike other tracking systems, the development of mechanical tracking systems,
especially for biomedical applications, is limited. This might be due to the fact that
mechanical tracking systems are usually bulky and heavy. Meta motion. Inc. presented a
mechanical tracking system, named Gypsy 7, decades ago, which had a position accuracy
of 0.125◦ [79]. However, this kind of exoskeleton system consists of 14 joint sensors and the
total weight is 4 kg.
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3.4. Acoustic Tracking Systems

Most commercially available acoustic tracking system is related to marine positioning,
the use for in-door positioning is still in its infancy. Sonitor Technologies, Inc. developed
a Forkbeard system, which applied 40 kHz US for echo location [80]. Although it can
cover a floor, the volumetric accuracy is 1–2 feet, while the latency is 1–2 s. The nature of
low accuracy and high latency of acoustic tracking hamper its applications in biomedical
field. However, considering that US has the benefit of non-ionizing radiation, it might be
promising for some specific biomedical applications.

3.5. Inertial Tracking Systems

Inertial tracking systems are also commercially available for many years. Some prod-
ucts that can be purchased on the market are summarized in Table 3. Due to the fact that
it does not require both transmitters and receivers as optical tracking, electromagnetic
tracking or acoustic tracking, the size of the inertial tracking device can be very compact,
such as a dot [81]. This feature contributes to a friendly and comfortable condition for
tracking objects, which hardly affect the normal motion of objects. However, the inertial
tracking system can only provide a position information relatively, and it always needs the
assistance from other kinds of tracking systems.

Table 3. Summary of commercially available inertial tracking systems.

Manufacturer Model
Static

Accuracy
(Roll/Pitch)

Static
Accuracy
(Heading)

Dynamic
Accuracy

(Roll/Pitch)

Dynamic
Accuracy
(Heading)

Average
Latency

Update
Rate

Xsens
Technologies

B.V.,
Enschede,

The
Netherlands

MTw Awinda [82] 0.5◦ 1.0◦ 0.75◦ 1.5◦ 30 ms 120 Hz
Xsens DOT [81] 0.5◦ 1.0◦ 1.0◦ 2.0◦ 30 ms 60 Hz

MTi-1 [83] 0.5◦ N/A N/A N/A N/A 100 Hz
MTi-2 [83] 0.5◦ N/A 0.8◦ N/A N/A 100 Hz
MTi-3 [83] 0.5◦ N/A 0.8◦ 2.0◦ N/A 100 Hz
MTi-7 [83] 0.5◦ N/A 0.5◦ 1.5◦ N/A 100 Hz
MTi-8 [83] 0.5◦ N/A 0.5◦ 1.0◦ N/A 100 Hz

MTi-20 [84] 0.2◦ N/A 0.5◦ N/A N/A N/A
MTi-30 [84] 0.2◦ N/A 0.5◦ 1.0◦ N/A N/A
MTi-200 [84] 0.2◦ N/A 0.3◦ N/A <10 ms N/A
MTi-300 [84] 0.2◦ N/A 0.3◦ 1.0◦ <10 ms N/A
MTi-710 [84] 0.2◦ N/A 0.3◦ 0.8◦ <10 ms 400 Hz
MTi-610 [85] N/A N/A N/A N/A N/A 400 Hz
MTi-620 [85] 0.2◦ N/A 0.25◦ N/A N/A 400 Hz
MTi-630 [85] 0.2◦ N/A 0.25◦ 1.0◦ N/A 400 Hz
MTi-670 [85] 0.2◦ N/A 0.25◦ 0.8◦ N/A 400 Hz
MTi-680 [85] 0.2◦ N/A 0.25◦ 0.5◦ N/A 400 Hz

STT Systems,
Donostia-San

Sebastian,
Spain

iSen system [86] N/A N/A <0.5◦ <2.0◦ N/A 400 Hz

VectorNav
Technologies,

Dallas, TX,
USA

VN-100 [87] 0.5◦ N/A 1.0◦ 2.0◦ N/A 800 Hz
VN-110 [88] 0.05◦ N/A N/A 2.0◦ N/A 800 Hz
VN-200 [89] 0.5◦ 2.0◦ 0.2◦, 1σ 0.03◦, 1σ N/A 800 Hz
VN-210 [90] 0.05◦ 2.0◦ 0.015◦, 1σ 0.05–0.1◦, 1σ N/A 800 Hz
VN-300 [91] 0.5◦ 2.0◦ 0.03◦, 1σ 0.2◦, 1σ N/A 400 Hz
VN-310 [92] 0.05◦ 2.0◦ 0.015◦, 1σ 0.05–0.1◦, 1σ N/A 800 Hz
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Table 3. Cont.

Manufacturer Model
Static

Accuracy
(Roll/Pitch)

Static
Accuracy
(Heading)

Dynamic
Accuracy

(Roll/Pitch)

Dynamic
Accuracy
(Heading)

Average
Latency

Update
Rate

Advanced
Navigation,

Sydney,
Australia

Motus [93] 0.05◦ 0.8◦ N/A N/A N/A 1000 Hz
Orientus [94] 0.2◦ 0.8◦ 0.6◦ 1.0◦ 0.3 ms 1000 Hz

Boreas D90 [95] 0.005◦ * 0.006◦ * N/A N/A N/A 1000 Hz
Spatial FOG Dual [96] 0.005◦ * 0.007◦ N/A N/A N/A 1000 Hz

Certus Evo [97] 0.01◦ * 0.01◦ N/A N/A N/A 1000 Hz
Certus [98] 0.03◦ * 0.06◦ N/A N/A N/A 1000 Hz
Spatial [99] 0.04◦ * 0.08◦ N/A N/A 0.4 ms 1000 Hz

GNSS Compass [100] 0.4◦ 0.4◦ N/A N/A N/A 200 Hz

Inertial Labs,
Paeonian

Springs, VA,
USA

KERNEL-100 [101] 0.05◦ 0.08◦ N/A N/A <1 ms 2000 Hz
KERNEL-110 [102] 0.05◦ 0.08◦ N/A N/A <1 ms 2000 Hz
KERNEL-120 [102] 0.05◦ 0.08◦ N/A N/A <1 ms 2000 Hz
KERNEL-210 [103] 0.05◦ 0.08◦ N/A N/A <1 ms 2000 Hz
KERNEL-220 [103] 0.05◦ 0.08◦ N/A N/A <1 ms 2000 Hz

IMU-P [104] 0.05◦ 0.08◦ N/A N/A <1 ms 2000 Hz

4. Biomedical Ultrasound Imaging Applications

Over the past decade, a range of commercial and research tracking systems have been
developed for biomedical US imaging-related applications. Following sections categorically
review the applications of different tracking systems reported till date.

4.1. Freehand 3D Ultrasound Imaging

Over the past few decades, US imaging has become a valuable tool in clinical diag-
nostic and therapeutic procedures across a broad range of fields, ranging from routine
screening, early cancer detection, diagnosis of cardiovascular disease to real-time mon-
itoring [105]. Compared with CT, MRI, and PET, US demonstrates the advantages of
safe for patients (no risk of ionizing radiation or high magnetic fields), real-time imaging,
portability, and low-cost [11,106,107]. In clinical practice, a handheld US probe typically
composed of a 1D linear US transducer array is routinely used to generate 2D US images in
real-time, displaying cross-sectional images of the human anatomy. While 2D US imaging
offers several advantages for medical applications, it can only acquire selectively-sampled,
cross-sectional slice images of a 3D anatomic structure, and the orientation of each image
plane depends on how the operator positions the handheld probe (i.e., operator depen-
dency) [108]. If clinicians need to view 3D anatomic structures, they have to imagine the
3D volume with the planar 2D images mentally, thus limiting the diagnostic accuracy.

In order to overcome the limitations of 2D US, volumetric 3D US imaging has been
developed, allowing direct visualization of the arbitrary plane of 3D volume and helping
obtain a more accurate view of the shape, size, and location of the organ and lesion [16].
Up to now, three different types of methods have been utilized for the construction of
3D US volumes: employing a 2D phased array transducer, mechanical 3D US scanning,
and freehand 3D US scanning [109,110]. Instead of using 1D array ultrasonic transducer
for conventional 2D US systems, 3D US volume can also be generated by using a 2D
phased array ultrasonic transducer with its elements spreading on a 2D aperture, which
can deflect and focus the ultrasonic beam in a volumetric space [111,112]. Since the US
beams are steered and focused on the region of interest by electronic scanning, the 2D array
remains stationary during the procedure. Although this approach can acquire 3D volume
straightforwardly and in real-time, manufacturing process of a 2D phased array transducer
is complex and manufacturing cost is high due to a large number of array elements and the
electrical connection of each element [113]. Another approach to obtain a 3D US volume is
via mechanical 3D scanning using conventional linear array transducer. In this method,
a mechanical motor is used to control the transducer rotation, tilt, or translation with
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designed scanning trajectory [109]. The 3D US volumes can then be reconstructed by
using the acquired 2D US images with their predefined positions and orientations. While
the 3D US imaging systems based on this kind of method can be operated conveniently
by controlling mechanical motor, the whole system is bulky due to a mechanical motor
integrated and the system flexibility is low due to the controlled movement limitation.

In addition to the above-mentioned approaches for 3D US imaging, freehand 3D US
has become the most rapidly advancing technique over the years due to the advantages
of scanning flexibility, convenience to operate and low cost. Freehand 3D US images
are acquired by rigidly attaching a 6-DOF position sensor to a handheld US probe that
generates a sequence of B-mode US images [114]. The position sensor records the positions
and orientations of the probe during the scanning procedure, and then the 3D volumes are
constructed by combining the sequence of the 2D US images along with the corresponding
position information (Figure 7a). It is noted that for reconstructing a 3D US volume, the
position and orientation data of each 2D US image is required. Various techniques have
been reported for obtaining the position and orientation data of the US probe during
freehand US scanning. The most commonly used position sensors during freehand 3D US
imaging are optical tracking sensor and electromagnetic tracking sensor.

In a typical optical tracking system, either light-reflective makers (passive markers)
or light-emitting markers (active markers) are attached to the US probe and the markers
are monitored by two or more cameras fixed in a position (Figure 7b). Passive markers
are usually matt spheres coated with retroreflective material and reflect light back to the
cameras. Three or more markers are usually arranged asymmetrically, allowing the cameras
to infer the orientation in space. Contrary to passive markers that reflect light generated by
the external sources to the cameras, active markers are made of infrared LEDs, powered
by themselves to emit infrared light. In a typical electromagnetic tracking system, a time-
varying 3D magnetic field is transmitted through the volume in which the US scanning
is to be conducted. Three sensor coils are attached to an US probe and utilized to obtain
the field in the 3D Cartesian coordinates (x, y, z) (Figure 7c). This information enables the
position and orientation of the sensor coils to be acquired [109].
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Due to the advantages of flexible operation and simultaneous visualization, freehand
3D US imaging is increasingly gaining popularity in medical applications. For example,
Chung et al. [116] reported an imaging system based on optical motion tracking technique
with the objective of developing a carotid artery contour detection procedure for carotid
atherosclerosis diagnosis (Figure 8a). The 3D motion tracking system consisted of 8 Eagle
digital CCD cameras for motion detection in 3D space and 4 passive fluorescent markers
attached to an US probe, showing spatial and temporal resolutions of 10 µm and 0.01 s,
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respectively. Daoud et al. [117] developed a freehand 3D US imaging system using a 3D
electromagnetic position tracking system (trakSTAR, NDI, ON, Canada). The position
and orientation of the US probe in 3D space were tracked by one of the electromagnetic
sensors attached to the probe (Figure 8b). Herickhoff et al. [17] invented a volumetric 3D
US imaging system at a very low cost (under USD 250) by using a single IMU sensor for
orientation acquisition and a light-weight fixture customized to the US probe (Figure 8c).
The preliminary results demonstrated the capability of the low-cost method for recon-
structing a 3D US image volume, providing a solution for solving the problem of operator
dependence. In another study, Chen and Huang [118] reported a freehand 3D US imaging
system that could obtain volume reconstruction and visualization during data acquisition at
real-time level. The real-time freehand 3D US system mainly consisted of a linear probe, an
electromagnetic sensing system, and a computer with a GPU for image data reconstruction
and visualization of the 3D volume image. A summary of the various reported freehand
3D US imaging system during the past decade is provided in Table 4.
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Figure 8. (a) A freehand 3D US imaging system with optical motion tracking system settings.
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electromagnetic tracking. Reprinted from [122] with permission. (c) A low-cost 3D US image
acquisition method. Reprinted from [126] with permission.

Table 4. A summary of freehand 3D US imaging study.

Reference Tracking Principle Tracking System Accuracy Application

Chung et al. [116] Optical tracking Motion Analysis, Santa
Rosa, CA, USA

Spatial: 10 µm
Temporal: 0.01 s

Carotid atherosclerotic
stenosis detection

Pelz et al. [119] Electromagnetic
tracking

Curefab CS system
(Curefab Technologies

GmbH,
Munich, Germany)

None Internal carotid artery
stenosis diagnosis

Miller et al. [120] Optical tracking
VectorVision2 navigation

system (BrainLAB,
Munich, Germany)

None Image-guided surgery

Mercier et al. [121] Optical tracking Polaris (Northern Digital,
Waterloo, ON, Canada)

Spatial: 0.49–0.74 mm
Temporal: 82 ms Neuronavigation

Chen et al. [122] Electromagnetic
tracking

Aurora (NDI, ON,
Canada) None Image-guided surgery

Wen et al. [115] Optical tracking Polaris (Northern Digital,
Waterloo, ON, Canada) None Image-guided

intervention

Sun et al. [123] Optical tracking
OptiTrack V120:Trio
(NaturalPoint Inc.,

Corvallis, OR, USA)
Spatial: <1 mm Image-guided

intervention
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Table 4. Cont.

Reference Tracking Principle Tracking System Accuracy Application

Worobey et al. [124] Optical tracking Vicon Motion Systems;
Centennial, Colorado None Scapular position

Passmore et al. [125] Optical tracking Vicon Motion Systems,
Oxford, UK None Femoral torsion

measurement

Daoud et al. [117] Electromagnetic
tracking

trakSTAR, NDI, ON,
Canada None 3D US imaging

Chen and Huang [118] Electromagnetic
tracking

MiniBird, Ascension
Technology Corp.,

Burlington, VT, USA
None Real-time 3D imaging

Cai et al. [20] Optical tracking
OptiTrack V120: Trio

(NaturalPoint Inc.,
Corvallis, OR, USA)

Positional:
0.08–0.69 mm

Rotational: 0.33–0.62◦
3D US imaging

Herickhoff et al. [17] Inertial tracking

IMU sensor (iNEMO-M1;
STMicroelectronics,

Geneva,
Switzerland)

None Low-cost 3D imaging
platform

Kim et al. [126] Inertial tracking

Ultrasonic sensor + IMU
sensor (HC-SR04,

Shenzhen AV, Shenzhen,
China)

Spatial: 0.79–1.25 mm Low-cost 3D imaging
platform

Lai et al. [127] Optical tracking T265, Intel, Santa Clara,
CA, USA Spatial: 2.9 ± 1.8◦ Scoliosis assessment

Jiang et al. [128] Electromagnetic
tracking

Ascension Technology,
Burlington, VT, USA None Scoliosis assessment

4.2. Ultrasound Image Fusion in Multimodality Imaging

Medical image fusion refers to the co-display of registered images from the same or
different imaging modalities, such as US, CT, MRI, and PET [129]. Since the fused image
contains all the important features from each input image, it can offer a more comprehensive,
more reliable and better description of lesions, so as to assist the preclinical research
and clinical diagnosis as well as therapy, such as routine staging, surgical navigation,
radiotherapy planning, etc. [130] Percutaneous interventional procedures, particularly
percutaneous biopsy and percutaneous tumor ablation, play an important role in caring
for patients with cancer. To guide percutaneous interventional procedures, US imaging
is the most widely used imaging modality owing to its real-time capability, no radiation
exposure, and easy accessibility [131]. However, compared with CT and MRI, US imaging
shows a narrower field of view and lower contrast resolution. In addition, the imaging
performance is reduced by the presence of gas and fat in human body [132]. To localize and
characterize lesions more precisely, applying US fusion imaging allows exploitation of the
strengths of different imaging modalities simultaneously, eliminating or minimizing the
weakness of every single modality [133]. The procedures of fusing CT/MRI images and US
images are detailed in reference [134], the interested readers can refer to it. After the image
fusion procedure, the CT/MRI images will be displayed on the monitor side-by-side with
the real-time US images in a synchronous manner and updated simultaneously according
to the change in position and imaging plane of US probe. A process of US and MRI fusion
is illustrated in Figure 9.
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As we have discussed in Section 3, to track an US probe in 3D space, there are
5 available tracking techniques. However, for US image fusion applications in percuta-
neous interventional procedures, the electromagnetic tracking system is the one mostly
implemented [129], as shown in Figure 10. For instance, Krucker et al. [136] developed
an Aurora (Northern Digital Inc, Waterloo, ON, Canada) electromagnetic tracking system
to fuse real-time US with CT, providing real-time visualization of tracked interventional
needles within preprocedural CT scans. Appelbaum et al. [137] compared conventional
CT-guided biopsy to biopsy employing a U.S. Food and Drug Administration–approved
electromagnetic biopsy navigation system (Veran IG4, Veran Medical Technologies). Phan-
tom model study results showed that by using electromagnetic tracking system, needle
placement accuracy had been improved and radiation exposure had been reduced com-
pared with conventional CT techniques. Venkatesan et al. [138] fused US image to CT and
18F-FDG-PET/CT with an electromagnetic tracking system (Northern Digital Inc, Waterloo,
ON, Canada) for biopsy of technically challenging FDG-avid targets. By using conventional
US imaging, a total number of 36 lesion samples could not be well seen or were completely
inapparent during the biopsy procedures. However, by using the combined electromagnetic
tracking and US/CT/18F-FDG-PET fusion, 31 out of 36 biopsies were diagnostic.

In recent decade, US image fusion has developed significantly and can now per-
form crucial roles in diagnosis and clinical management across various anatomical
regions [129,139–143]. One of the most widely applied examples in clinics is US fused
with MRI images for percutaneous image-guided prostate biopsy [144,145]. Although
US is the commonest modality utilized for real-time guidance during biopsy, it is limited
in its ability to visualize deep targets. In addition, the biopsy procedure is performed
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targeting only the different anatomic locations of the prostate, thus the underdetection rate
of transrectal US-guided biopsy is high. Fusing US images with MRI images allows the
information from MRI to be used to direct biopsy needles under US guidance. It combines
the superior diagnostic accuracy of MRI for detecting suspicious lesions in the prostate
with the practicality and familiarity of US [145,146]. Several U.S. FDA approved systems
for fusion imaging of real-time US with MRI are commercially available (summarized in
Table 5), as shown in Figure 11.
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In addition to US/MRI fusion-guided prostate biopsy, US image fusion has been
investigated for clinical applications in various anatomical regions including liver, kidney,
pancreas, and musculoskeletal system. A summary of US image fusion for applications in
different anatomical regions is illustrated in Table 6.

Table 5. U.S. Food and Drug Administration approved US/MRI fusion system [147].

System Type Manufacturer Year of FDA
Approval

US Image
Acquisition Tracking Principle Biopsy Route

UroNav Philips 2005 Manual sweep Electromagnetic
tracking Transrectal

Artemis Eigen 2008 Manual rotation Mechanical arm Transrectal

Urostation Koelis 2010 Automatic US probe
rotation Real-time registration Transrectal

HI-RVS Hitachi 2010 Real-time biplanar
transrectal US

Electromagnetic
tracking

Transrectal or
transperineal

GeoScan BioJet 2012 Manual sweep Mechanical arm Transrectal or
transperineal
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Table 6. A summary of US image fusion applications.

Reference Modality for Fusion Tracking Principle Application

Park et al. [148] Liver CT or MRI Electromagnetic tracking
Biopsy of focal hepatic lesions with poor
conspicuity on conventional B-mode US

image

Lee et al. [149] Liver CT or MRI Electromagnetic tracking Lesion detection of small hepatocellular
carcinomas (HCCs)

Song et al. [150] Liver CT or MRI Plane registration
and point registration

Improve sonographic conspicuity of
HCC and feasibility of percutaneous

radiofrequency ablation for HCCs not
visible on conventional US images

Helck et al. [151] Renal CT or MRI Electromagnetic tracking Identifiability and assessment of the
dignity of renal lesions

Andersson et al. [152] Renal CT Electromagnetic tracking
Image-guided percutaneous

radiofrequency ablation
of small renal masses

Zhang et al. [153] Pancreatic CT Real-time registration
Image-guided percutaneous catheter

drainage in treatment of acute
pancreatitis

Klauser et al. [143] Musculoskeletal CT Internal landmarks Image-guided sacroiliac joint injection

Lee et al. [141] Thigh MRI Real-time registration Selecting the appropriate biopsy site in
patients with suspected myopathies

Rubenthaler et al. [154] Renal MRI/contrast
enhanced US Electromagnetic tracking Classification of unclear and difficult

renal lesions

4.3. Ultrasound-Guided Diagnosis

Percutaneous needle biopsy plays an important role in the diagnosis, staging, and
treatment planning for various tumors [155,156]. The success of needle insertion procedures
mainly depends on accurate needle placement to minimize complications and to avoid
damage to neighboring tissues [156]. In many applications, US guidance has been shown to
increase the safety and success rate of the procedure due to its real-time imaging capability,
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easy operation, portability, etc. [157–159]. During the procedure, the physician manually
manipulates the needle and the US probe simultaneously while mentally relating US images
acquired to locations inside a patient’s body [160]. Practically, it is very challenging for the
physician to visualize the needle trajectory inside the patient tissue just by checking the US
image [156]. In order to let the needle tip follow the desired trajectory and hit the target
location in the image plane, it is beneficial and necessary to track the pose of the needle
with respect to the coordinate system of the US image.

Three different types of tracking systems have been applied for US-guided needle
insertion: electromagnetic, optical and mechanical trackers. For electromagnetic trackers,
Franz et al. [161] assessed the precision and accuracy of a compact electromagnetic field
generator (Aurora, Northern Digital Inc., Waterloo, ON, Canada) attached to 6 different
US probes with various operating frequencies. Based on the assessment results, the error
of the field generator was <0.2 mm; the positional accuracy was <1.0 mm. Xu et al. [162]
evaluated the effectiveness of magnetic navigation in US-guided interventional procedures
(Figure 12). A commercially available magnetic navigation system (GE Healthcare, Milwau-
kee, WI, USA) was applied. They found that compared with conventional US guidance,
magnetic navigation in US-guided interventional procedure was especially useful for some
complicated clinical situations, such as liver tumor ablation. In addition, Hakime et al. [163]
evaluated the accuracy and safety of electromagnetic needle tracking for US-guided liver
biopsy. An electromagnetic transmitter was placed near the scanning area and a pair of
electromagnetic receiving sensors were attached to the US probe. The clinical results demon-
strated that the overall diagnostic success rate of liver lesion was 91%. März et al. [164]
proposed an interventional imaging system based on a mobile electromagnetic field gen-
erator (Aurora, Northern Digital Inc., Waterloo, ON, Canada) attached to an US probe.
The tracking and calibration accuracy of the system was assessed in a clinical setting. The
tracking accuracy was tested to be <1 mm and the calibration error was 1–2 mm.

For optical trackers, Wang et al. [165] utilized a low-cost Kinect sensor (a stereo cam-
era) for interventional needle tracking. The accuracy of needle tracking was measured,
ranging from 2.6 ± 1.7 to 6.9 ± 5.1 mm. Stolka et al. [166] developed a camera-based track-
ing system for US-guided interventions, consisting of an optical sensing head mounted
on an US probe. The head could be mounted to support both in- or out-of-plane inter-
ventions. The phantom test results showed that the mean accuracy of the system was
3.27 ± 2.28 mm. Najafi et al. [167] proposed a single camera-based tracking system for
US-guided needle insertion (Figure 13). The camera was directly mounted on the US probe
and the needle location was tracked by using the needle markers. A needle tracking accu-
racy of 0.94 ± 0.46 mm was achieved, which was higher than that of the existing solutions.
Daoud et al. [168] also reported a camera-based tracking system for US-guided needle
interventions. An USB web camera (IceCam2, Macally Peripherals, Ontario, CA, USA) was
attached to a 3D curvilinear US probe using a plastic housing. Dynamic needle tracking in
a sequence of 3D US volumes was achieved. Based on the ex vivo animal experiments, the
maximum error rate of 1.2 mm for the needle tip was measured in individual US volumes.

In addition to the magnetic and optical tracking devices, Ho et al. [169] invented an
US-guided robotic system for transperineal prostate intervention, consisting of a gantry,
a gun-holder, and an US probe holder (Figure 14). The system was constructed based on
the dual-cone concept, ensuring that any part of the prostate can be accessed with minimal
skin puncture. The egg phantom experimental results illustrated the system accuracy
was <1 mm. Orhan et al. [170] reported design and modeling of a 5-DOF parallel robot
for autonomous US-guided biopsy. The robot was composed of 5-DOF and 3 main stages;
front stage, back stage, syringe mechanism. The biopsy needle connected to the syringe
mechanism passed through the gimbal in the front stage. Poquet et al. [171] designed a
6-DOF, serial robotic co-manipulator system for assisting endorectal prostate biopsy. The
robotic system consisted of three brakes and three motors. The system could provide
freedom to the urologist to position the probe with respect to the prostate in the free mode
while leaving him/her to focus on insertion only during locked mode.
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4.4. Ultrasound-Guided Therapy

US-guided surgery is an area of minimally invasive surgery where surgical procedures
are performed with the aid of US imaging throughout the operation. Contrary to traditional
surgical access, US-guided surgery uses computer-based systems to provide real-time US
images to help the physician precisely visualize and target the surgical site by updating the
intraoperative information [12]. While other imaging modalities, such as CT and MRI, have
also been applied for surgery navigation, US-guided surgery shows several advantages,
including real-time imaging, equipment portability, low cost and reduced hospital stays [13].
Figure 15 shows a basic process of 3D US-guided surgery navigation [172]. In order to
utilize US to guide surgical procedures, the US probe must be tracked. Although several
tracking technologies are commercially available today, which are review in the last section,
the most widely used solutions are optical and electromagnetic systems.
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with permission.

For instance, Stoll et al. [173] presented a novel approach for tracking surgical instru-
ments in 3D US imaging by using a series of passive echogenic markers. The markers
were attached near the distal end of the surgical instrument, and the marker position and
orientation could be simply determined in a 3D US volume using image processing. Since
the markers were completely passive, they can be easily implemented without prior inte-
gration with the imaging system. Moreover, the error of registering the tracking coordinate
frame to the image frame can be eliminated. In another study, Li et al. [174] systematically
compared the real-time US-guided percutaneous nephrolithotomy (PCNL) using SonixGPS
navigation system with conventional US-guided PCNL using an US machine for the treat-
ment of complex kidney stones. Based on their clinical results, the SonixGPS system was
superior to the conventional method in terms of stone clearance rate and puncture accuracy.
Hamamoto et al. [175] investigated the efficacy of applying real-time virtual sonography
(RVS) guidance for renal puncture for endoscopic combined intrarenal surgery (ECIRS)
treatment of large renal calculi (Figure 16). The RVS system synchronized real-time US im-
ages with CT images via a magnetic navigation system to provide volume and position data
side by side. Compared with US-guided puncture, RVS-guided renal puncture illustrated
lower incidence of bleeding-related complications. In addition, Gomes-Fonseca et al. [176]
assessed the performance of electromagnetic tracking system guidance for percutaneous
renal access in the operating room environment. Their experimental results demonstrated
that ureterorenoscopes and 2D US probe did not affect the precision and accuracy of the
electromagnetic tracking systems, suggesting that these instruments may be used for a safe
percutaneous renal access.
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system; (B) The magnetic sensor attached to an US probe; (C) The magnetic field generator; (D) US
image and CT volume data displaying side by side on the same monitor. Reprinted from [175]
with permission.

Bharat et al. [177] measured the accuracy of the electromagnetic tracking system for
identification of the position and shape of the treatment catheters in high-dose-rate (HDR)
prostate brachytherapy (Figure 17). The tracking experiments were performed in both
a controlled laboratory environment and a typical brachytherapy operating room. The
robotic validation of the electromagnetic system found that the mean accuracy of the system
was <0.5 mm, illustrating the potential value of using electromagnetic tracking for catheter
mapping in HDR brachytherapy. Schwaab et al. [178] developed an US based motion
tracking method for real-time motion correction in ion beam therapy. It was found that by
using US tracking, it can yield nearly real-time position information at high frame rate of
moving targets. Yu et al. [179] also evaluated the accuracy and precision of a transperineal
US image-guided system (Clarity Autoscan US system (Elekta, Stockholm, Sweden)) for
prostate radiotherapy. Based on a male pelvic phantom experimental result, the accuracy of
US tracking performance in the lateral direction was better than that in the axial direction;
the precision of US tracking performance in the axial (superior-inferior) direction was better
than that in the lateral (left-right) direction.
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Brattain et al. [181] designed a probe-mounted US guidance system for US-guided proce-
dures. The system consisted of a lockable, articulating needle guide that attached to an US 
probe and a user-interface that provided real-time visualization of the predicted needle 
trajectory overlaid on the US image. The system illustrated the potential to increase effi-
ciency, safety, quality, and reduce costs for US-guided procedures. Kobayashi et al. [182] 
invented an US-guided needle insertion manipulator for central venous catheterization 
(Figure 18). The performance of the manipulator was evaluated in vivo in a porcine model. 
The animal study results found that a venous placement rate of 80% could be obtained 
with opened skin, and this system was especially effective for jugular venous puncture of 
opened skin. 

Figure 17. The experimental setup for catheter tracking in a controlled laboratory environment
(a–c) and in a brachytherapy operating room (d,e). (a) The experimental phantom setup; (b) The
flexible electromagnetic-tracked guidewire and catheter; (c) Catheters inserted into the prostate model
through the grid; (d) The experimental setup positioned on the treatment table in the operating room;
(e) Mimicking a typical brachytherapy setup. Reprinted from [177] with permission.

In addition to US-guided surgical navigation and radiotherapy, US-guided catheteri-
zation has also attracted the attention of many researchers. Jakola et al. [180] reported a
method to guide the placement of ventricular catheters using 3D US navigation system.
The US-based navigation system (Sonowand Invite, Sonowand AS, Trondheim, Norway)
consisted of an US probe integrated with an optical tracking system. Based on the patient
studies, this 3D US navigation system was promising for accurate placement of catheters.
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Brattain et al. [181] designed a probe-mounted US guidance system for US-guided pro-
cedures. The system consisted of a lockable, articulating needle guide that attached to
an US probe and a user-interface that provided real-time visualization of the predicted
needle trajectory overlaid on the US image. The system illustrated the potential to increase
efficiency, safety, quality, and reduce costs for US-guided procedures. Kobayashi et al. [182]
invented an US-guided needle insertion manipulator for central venous catheterization
(Figure 18). The performance of the manipulator was evaluated in vivo in a porcine model.
The animal study results found that a venous placement rate of 80% could be obtained
with opened skin, and this system was especially effective for jugular venous puncture of
opened skin.
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5. Conclusions

In this paper, we categorized and reviewed different types of tracking devices for
biomedical US imaging applications based on the different tracking principles. The ap-
plications of various tracking systems reported in the literature in the past decade were
categorized into four types: freehand 3D US imaging, US image fusion, US-guided diagno-
sis as well as US-guided therapy. In this review article, the working principles of different
tracking technologies were analyzed in terms of their advantages and disadvantages for
biomedical applications. A comprehensive overview of the state-of-the-art tracking devices
on the market is provided in terms of their technical specifications, including accuracy,
update rate and latency. With the rapid advancement of various tracking devices over the
past decade, the usefulness of different tracking systems has been illustrated by a diverse
range of biomedical applications, as reviewed in this paper.

6. Future Perspectives

Although the utilization of tracking device is becoming more and more essential
for providing better information and navigation for biomedical applications, there is still
much room for improvement. Nowadays, many different types of commercial tracking
devices have been introduced and no significant specification differences have been found
among them. For the biomedical applications, such as image-guided surgery, perhaps the
existing tracking technologies do not fully meet the requirements, and the best choice of
tracking device is highly application dependent. The future research of tracking systems
may be focused on further improving accuracy and reducing the registration error of these
technologies for medical applications. While freehand 3D US has already demonstrated
its benefits for obstetrics, cardiology, and image-guided intervention applications, more
preclinical studies are required to allow physicians to integrate 3D US imaging effectively
and safely into US-guided interventional procedures. In addition, while real-time US
image fusion has demonstrated its usefulness in different anatomical regions, such as
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prostate, liver, and kidney, future studies need to explore its effectiveness in imaging other
anatomical regions or during surgery. Although the advancement of different tracking
devices has accelerated the development of US image-guided systems, most of these
systems are still in the prototype stage, and so far, only limited clinical trials have been
carried out. As surgery continues to move toward minimally invasive interventions, US
image-guided systems will increasingly be used to improve the precision and quality of
medical procedures. More studies from the fields of biomedical engineering, medical
physics as well as clinical research are necessary to move this technology from laboratory
to hospital to improve patient care.
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The following abbreviations are used in this manuscript:

2D Two dimensions
3D Three dimensions
CCD Charge-coupled device
Corp. Corporation
CT Computed tomography
DOF Degree-of-freedom
ECIRS Endoscopic combined intrarenal surgery
FDA Food and drug administration
FOV Field of view
FPS Frames per second
GPU Graphics processing unit
HCC Hepatocellular carcinoma
HDR High-dose-rate
IMU Inertial measurement unit
Inc. Incorporated
LED Light emitting diode
MEMS Microelectromechanical system
MP Megapixel
MRI Magnetic resonance imaging
NDI Northern Digital Inc.
PCNL Percutaneous nephrolithotomy
PET Positron emission tomography
RMS Root mean square
RVS Real-time virtual sonography
TDOA Time difference of arrival
TDOF Time difference of flight
TOA Time of arrival
TOF Time of flight
TRUS Transrectal ultrasound
US Ultrasound
USB Universal serial bus
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Abstract: With a focus on disease prevention and health promotion, a reactive and disease-centric
healthcare system is revolutionized to a point-of-care model by the application of wearable devices.
The convenience and low cost made it possible for long-term monitoring of health problems in long-
distance traveling such as flights. While most of the existing health monitoring systems on aircrafts
are limited for pilots, point-of-care systems provide choices for passengers to enjoy healthcare at the
same level. Here in this paper, an airline point-of-care system containing hybrid electrocardiogram
(ECG), breathing, and motion signals detection is proposed. At the same time, we propose the
diagnosis of sleep apnea-hypopnea syndrome (SAHS) on flights as an application of this system
to satisfy the inevitable demands for sleeping on long-haul flights. The hardware design includes
ECG electrodes, flexible piezoelectric belts, and a control box, which enables the system to detect
the original data of ECG, breathing, and motion signals. By processing these data with interval
extraction-based feature selection method, the signals would be characterized and then provided for
the long short-term memory recurrent neural network (LSTM-RNN) to classify the SAHS. Compared
with other machine learning methods, our model shows high accuracy up to 84–85% with the lowest
overfit problem, which proves its potential application in other related fields.

Keywords: point-of-care system; wearable biosensors; machine-learning; airline industry security

1. Introduction

Point-of-care systems have received great attention in recent years since it aims to
provide diagnosis and therapeutic services with imperceptible devices [1–4]. Traditional
healthcare systems are always lagging and can often only be applied after disease onset
or diagnosis [5,6]. Moreover, some chronic diseases require continuous monitoring and
long-term nursing, which causes a huge burden on public healthcare resources [7–9]. To this
end, point-of-care shows its advantages in serving patients with economic and convenient
healthcare monitoring, which enable individual diagnosis ahead of time [10–12]. Combined
with variable wearable devices, such as seatbelts and bracelets [13–15], the new-type
point-of-care system can be comfortably used by patients in their daily life. As a result,
the systems supply sufficient and instant medical services for patients with long-term
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monitoring, which decrease the medical burden for patients and hospitals, and provide an
attractive alternative for customers to enjoy health care in flight.

For the airline industry, there is nothing more important than the safety of passen-
gers [16–18]. However, during air travel, passengers are inevitably exposed to unusual
situations such as overweight, weightlessness, low atmospheric pressure, and the fluctu-
ations [19,20]. The occurrence of in-flight medical emergencies is rare while associated
costs derived from en route diversion might significantly influence airlines’ budgetary
equilibrium [21]. Published data suggest that the incidence of inflight deaths from medical
conditions is between 0.3 and 1 per million passengers [22]. For a person who recently
underwent chest surgery, it has a 25% expansion of any residual trapped gas with compro-
mise to both circulation and respiration [23]. It is more reasonable for passengers to choose
airlines that provide onboard medical services. Considering that associated costs derived
from en route diversion might significantly influence airlines’ budgetary equilibrium and
the occurrence of inflight medical emergency is rare [21], which has a death incidence be-
tween 0.3 and 1 per million passengers [22], the healthcare system can act as an inexpensive
way for aviation corporations to reduce the risks of diversion. For some special customers,
such as the persons who recently underwent chest surgery recently and therefore have
a 25% expansion of any residual trapped gas with compromise to both circulation and
respiration [23], it is more reasonable for them to choose airlines that provide onboard
medical services. The growing population of older people suffers more medical emergency
under these extreme conditions because the elders are often accompanied by various car-
diovascular disease [24,25]. Multiple assessment methods based on ECG signals have been
applied for the pilot to observe the physiological characteristics during flight operation [26].
Current wearable monitoring equipment on the market for pilots mainly uses belt type and
cap type wearable physiological parameters monitoring equipment; belt type equipment
can measure and record parameters such as ECG, respiration, and three-phase acceleration
in real time, while cap type equipment can measure and record parameters such as head
pulse signal and blood oxygen saturation in real time. These devices are usually only given
to pilots and captains of dedicated aircrafts. Therefore, retrofitting an existing long-distance
transport seat into a novel and modern standardized point-of-care system for general
passengers is necessary and offers significant cost savings [21,27].

Sleeping on long trips is almost inevitable, so it makes sense to monitor sleep-related
disorders during the flight. Among sleep-related disorders, SAHS is highly prevalent in
the general population and is associated with an increased risk of hypertension, diabetes,
coronary disease, stroke, and myocardial infarction [28]. However, 75–85% of patients with
SAHS are undiagnosed and untreated, which causes irreparable consequences [29,30]. Since
the risk of death is associated with SAHS, potential patients are suffering a shortage of being
diagnosed. The severity of SAHS is assessed by the apnea-hypopnea index (AHI), defined
as the number of apnea and insufficient breathing per hour during sleep [31,32]. In addition,
the standard diagnostic test of SAHS is done by polysomnography (PSG) [33]. In clinical
settings, patients go to a professional sleep laboratory to complete the acquisition of several
signals under the guidance of professional staff, mainly ECG, electroencephalography,
electromyography, respiratory airflow signal, blood oxygen saturation, nasal pressure,
snoring sounds, etc. Abnormalities of airflow signals or ECG signals in the sensors are
used as a basis for clinical judgment. This method quantitatively analyzes the sleep quality
of patients and then accurately diagnoses the incidence of SAHS.

Herein, we suppose a point-of-care system with wearable chest belts for detection of
ECG, breath, and motion signals, combined with a designed algorithm to classify SAHS for
airlines. This work proposes a system to detect SAHS through a wearable device based
on flexible dry ECG electrodes and a machine learning-based classifier algorithm. The
signal acquisition terminal is a smart chest band consisting of flexible ECG electrodes and
a control box that integrates various signal processing circuits and Bluetooth modules.
The wearable ECG electrodes are used to detect ECG signal, while the control box with
control circuits is used to detect tri-axis acceleration, and flexible piezoelectric material
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breathing coil belt is used to detect the breath signal. The detected signals are dealt with
by these circuits and then transferred by the Bluetooth module to the Microcontroller Unit
(MCU). These signals can then be dealt with by our designed algorithm, which includes
the ECG signal denoising, RR interval data extraction, and extraction and selection of HRV
features. Then, the characterized signals are analyzed through our designed LSTM to
diagnose whether the user is a potential SAHS patient. The results show that the average
recognition accuracy of the ECG-SAHS discriminant model is up to 84–85%. Besides that,
the chest band design and the material of the electrode made longtime SAHS detection
more comfortable, which is especially suitable for transoceanic flights.

Creativity:

1. Originality: Retrofitting existing safety belts, first extending of the point-of-care
system on the aircraft to passengers besides pilots.

2. Feasibility: The cost of the equipment is lower than nearly 90% of commercial products
since our design is a cost-saving approach by retrofitting of existing safety belts.

3. Accuracy: With the LSTM-RNN based algorithm, the average recognition accuracy of
the model is up to 84–85%.

4. Extensibility: Data of hybrid ECG, breathing, and motion signals can also be used for
monitoring other diseases.

2. Design and Methods

At the hardware design aspect, the system contains a controller box, printed circuit
board (PCB), textile electrode, and electrode button on the surface of human skin [34]. The
connection of these layer structures is displayed in Figure 1a, while the well-fabricated
device and wear model is shown in Figure 1b. Figure 1c indicates that the cause of sleep
apnea is the obstruction of throat airflow, which can be further explained as the different
aspirations between normal breath. Therefore, we designed the wearing position on the
wearer’s chest for better detection of breathing-related signals as Figure 1d shows.

The design of software includes both the ECG signal and the breathing signal. Mean-
while, the motion capture is added into the system as the final classification criterion
considering the movement of the user. After A/D conversion, the signal is processed to
MCU and then transferred by Bluetooth module to the user’s client on smartphones. The
users could access their sleep assessment through the mobile terminal, which is presented
in Figure 1e. A learning-based model will classify the user’s aspiration model in Figure 1f.
As stated before, the design of our system aims at the application of long-distance traveling.
The ECG electrodes are connected to a chest band which could be integrated into safety
belts to make the detection comfortable, as Figure 1g shows.

2.1. Hardware Design and Signals Acquisition

The flexible dry ECG electrodes with good biocompatibility are selected for the wear-
able terminal, which is also soft, washable, comfortable, durable, reusable, and easy to
integrate with clothing [35–37]. Meanwhile, the sensor close to the skin could collect
complete and reliable signals. The wearable terminal consists of single lead and double
electrodes, which aim to simulate the standard 1-lead to realize the acquisition of ECG
signal. As Figure 2a shows, the elastic chest strap is used to fix the flexible electrode to
human skin. The fabrication embeds polymers such as polyvinylidene difluoride (PVDF)
and other material to form piezoelectric film into the elastic chest strap of the wearable
terminal to form a breathing coil, and the front-end collection of human breathing signals
is realized through the breathing coil [38–40]. The piezoelectric film is subjected to force
by human respiration and periodic respiratory rhythm deformation [41]. The surficial
charge generated by the piezoelectric film also changes. Human respiration stresses the
piezoelectric film and produces periodic deformation with the respiratory rhythm, and
the amount of charge generated by the piezoelectric film also changes. By extracting the
surface charge of the piezoelectric film and converting it into voltage amount, and then
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after signal conditioning, the respiratory signal can be obtained. Therefore, the acquisition
method used in this paper is the piezoelectric breath tracing method.
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Figure 1. Airline point-of-care system on seat belt. (a) Illustration of the layered hardware structure of
our designed chest band and (b) the fabricated chest band device. (c) Aspiration difference between
normal breath and sleep apnea caused by airflow. (d) Physical photos of the chest belt on a human
subject. (e) Working flowchart of the monitoring system with hardware and software. (f) Neural
network that applied in the system as a classifier. The red nodes represent input layer, the blue nodes
represent hidden layers, and the gray node represent the output layer in the network. (g) Schematic
of airline point-of-care monitoring system in the user’s client with Bluetooth-based data transmission
to the mobile terminal for hybrid physiological signal detection.

Compared with the patch electrode, the flexible electrode can fit closely with the skin
surface and change its shape to maintain continuous contact with the skin, which is useful
for wearable ECG signal monitoring equipment [42]. The electrodes commonly used in
clinical practice are traditional patch electrodes, which can cause skin irritation to the user
over a long period of time. In addition, the impedance between the electrode interface
and the skin will become larger as the detection time increases, resulting in a decrease in
signal sensitivity and signal-to-noise ratio (SNR). Applying flexible fabric electrodes is to
attach conductive materials to the fabric through various coating processes and braiding
the lead wire on the clothing to prevent the lead wire from winding [43]. The inner side
of the elastic chest strap facing the skin is the base layer and the conductive sensing layer.
The base layer is made of polyester fiber. The base-layer fabric is wear-resistant, elastic,
and easily washable. The conductive sensing layer is made of copper-plated conductive
fabric and then blended with acrylic fiber. As a thinner electrode results in a larger area
and better ECG signal quality [44], the experimental results show that the flexible electrode
has a higher signal-to-noise ratio and higher stability than the conventional electrode [45].
Figure 2d shows the flexible ECG electrodes. From the inner side of the elastic chest strap
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facing the skin in the direction of the base layer, the elastic support layer, and the conductive
fabric sensing layer, in turn, greatly reduces the thickness of the electrodes and improves
the wearing comfort and is suitable for dynamic and long-time ECG monitoring. The
system sews the two flexible fabric electrodes closely to the left and right inner side of
the elastic chest strap near the controller box so that they can fit close to the skin, and the
ECG signals collected using the flexible fabric electrodes need to be processed before the
next step.
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Figure 2. Architecture of the components of airline point-of-care system. (a) Fabrication process
of breathing coil in elastic chest strap of the wearable terminal, the green line represents PVDF.
(b) Breathing signal conditioning circuit pattern, including charge amplifier, voltage amplifier, low-
pass filter, and voltage lift circuit. (c) PCB board displayed in layers. (d) Fabrication process of flexible
ECG electrodes: from the inner side are the basal layer, the elastic support layer and the conductive
fabric, respectively. (e) ECG signal conditioning module including right leg drive circuit, amplifier,
and low-pass filter, finally 24 Bit ADC.

The circuit pattern of the wearable signal acquisition terminal is shown in Figure 2b.
The signal collected through the breathing coil is relatively weak, with a frequency of
0.1–1 Hz, easily disturbed by various noises. Therefore, the breathing signal needs to be
conditioned, including signal charge amplification, voltage method, low pass filtering, and
voltage boosting, and the system designs a conditioning circuit for the breathing signal
based on the TLV2464 chip, which is used to extract the effective breathing signal [46].
The charge amplification circuit of the respiratory signal and the voltage amplification
circuit are designed through the first op-amp and the second op-amp of the TLV2464 chip,
respectively. The amplification of the amplifier circuit is 80 times. A second-order active
low-pass filter circuit is designed to filter out high-frequency noise with a cutoff frequency
of 88.46 Hz. A voltage boost circuit is designed based on the fourth op-amp of the TLV2464
chip to boost the signal to a standard that the microprocessor can recognize, and the signal
is transmitted to the microprocessor through the TLV_OUT pin. Use the A/D module in
the microprocessor for analog-to-digital conversion processing.

The signal acquisition terminal consists of a controller box, a biomedical sensor, and an
elastic chest strap, which enables 8 h of continuously monitoring. The extended monitoring
time of the flexible electrode shows almost no influence on the signal sensitivity and the
SNR. The collected ECG signal is processed by the circuit and sent to the microprocessor,
and then transmitted to the computer through a Bluetooth module for further analysis
and processing. The removable controller box contains a power supply, a communication
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module, a signal processing module, the main control chip, and the memory, which is
integrated on a fast-prototyping PCB board that patterned using a UV laser system (LPKF;
Protolaser U4), as shown in Figure 2c. Four electrode buttons are mounted on the elastic
chest strap. The biomedical sensor is a flexible ECG electrode stitched tightly to the elastic
chest strap to ensure continuous contact with the skin surface. The control box of the belt
comes with a three-axis acceleration sensor MPU9150 to collect motion signals, MPU9150
sensor role is to measure the X, Y, Z-axis acceleration signal into electrical signals, through
the analog-to-digital conversion and then convert the measured analog signal into a digital
signal, so as to complete the extraction of human body position information of the subject.

In collecting ECG signals, certain noise will be introduced, requiring the circuit to
have a high common-mode rejection ratio (CMRR) and high-precision analog-to-digital
conversion (ADC). Therefore, the high-precision medical chip ADS1292 is used to design
the ECG signal conditioning circuit, which has a built-in amplifier circuit and a high-
resolution ADC and can reduce common mode interference [47]. The pin configuration
and the peripheral circuit of ADS1292 are shown in Figure 2e. The pin configuration and
peripheral circuit diagram of ADS1292 can be found in the supplementary Figure S1. After
the ECG signal is input through the CH2 channel, the ADS1292 will amplify the ECG signal
and perform A/D conversion through the internal modulation circuit, where the gain is set
to 1000. The system directly feeds back the output of the right leg drive to the two detecting
electrodes to realize the function of the right leg drive circuit. The SPI communication
interface transmits the ECG signals after ADC to the microprocessor (EFM32), in which
the ADS1292 is the slave device for communication. EFM32 is responsible for the overall
control of the system, including initializing, configuring Bluetooth, ADC, and reading and
storing ECG data. The photo of the industrial produced PCB is shown in Figure S2.

After we built the signal acquisition terminal, 18 adult volunteers aged between
20 and 39, including 9 males and 9 females, were selected for experimental verification.
They had good sleep quality and did not suffer from respiratory and heart diseases. The
subjects knew the content of the experiment in advance and agreed with it. The subjects
were required to wear the terminal for a 3 h sleep experiment in a quiet room with both
normal breathing and apnea. During the experiment, each subject was asked to discontinue
breathing randomly, and the time and duration of artificial apnea were recorded. The
details of the 18 adult volunteers can be found in the Supplementary Material Table S1.

The ECG signal collected by the terminal was transmitted to the computer by a
Bluetooth module. The collected data then dealt with denoising and classification in the
next steps. The details of collection methods will be discussed in the next section.

We computationally extracted three shallow feature signals of ECG: the RR interval sig-
nal (RRI), the R peak amplitude sequence signal (RAMP), and the ECG-derived respiratory
(EDR), and used them as features for the detection of SAHS. It is important to note that the
EDR signal is obtained starting from the R peaks detected by the Pan–Tompkins algorithm.
It is just a pseudo-breathing signal. The calculated EDR signal has a certain amplitude error
compared with the real respiratory signal, which cannot completely replace the respiratory
signal. However, the EDR signal is an effective feature for detecting SAHS. Although
SAHS have many subcase categories due to causes, since they have similar performance,
we did not distinguish these subcases here.

These three signals are calculated using only the R-peak position index (RP_idx) and
the denoised ECG (ECGF, F is just a marker to distinguish from denoised ECG and ECG, no
special meaning) signal. The RRI signal refers to the time interval between adjacent R-peak
positions. The RRI signal refers to the time interval between adjacent R-peak positions as
Equation (1) shows.

RRI = RP_idxi+1 − RP_idxi (1)

The RAMP signal refers to the amplitude sequence of the R-peak position in the
denoised ECG signal ECGF in Equation (2), where L is the length of the current R-peak
position index.

RAMPi = ECGF[RP_idxi], 0 <= i <= L (2)
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The EDR signal can show the current respiratory airflow and is often used in the
detection of SAHS. In this paper, the kurtosis of the ECG signal between the adjacent R
peaks and the ECG signal between the adjacent R peaks is calculated to obtain the sampling
of the EDR signal at the current R peak, and then the complete EDR signal is obtained by
sample bar interpolation. First, the kurtosis of the ECG signal between the adjacent R peaks
is calculated as Equation (3) [48]

Ki =
(1/n)∑Ji−1

t=0 (ECGFSit − ECGFSit)
4

(1/n)∑Ji−1
t=0 {(ECGFSit − ECGFSi)

2}
2 − 3, 0 <= i <= L− 1 (3)

Ji = RP_idxi+1 − RP_idxi + 1 (4)

where ECGFSi is the segment of the signal ECGF from RP_idxi to RP_idxi+1, ECGFSi is
the arithmetic mean of ECGFSi, and Ji is the length of the ECGFSi signal segment, Ji can be
calculated as Equation (4). After obtaining the kurtosis of the ECG signal between adjacent
R peaks, the peak EDR signal sampled on that segment of the ECG signal can be obtained
as Equation (5),

EDRi =

{
(σ4 +

(
γ4 − 3σ4)Ki)

1/2 − σ2

γ4 − 3σ4

} 1/2

, 0 <= i <= L− 1 (5)

γ4 = exp
{
(ECGFSi − exp(ECGFSi))

4
}

(6)

where σ is the standard deviation of the signal ECGFSi, γ4 is the fourth-order central
moment of the signal ECGFSi that can be calculated as Equation (6), exp is the expectation,
and K is the kurtosis of the signal ECGFSi. At last, the EDR signal can be obtained by
using spline interpolation for the discrete EDR signal.

2.2. ECG and Breathing Signal Collecting and Processing

The ECG signals were collected at a normal sleep state by asking the subjects to
close their eyes and breathe normally. The data were filtered by cutting the beginning and
denoising to avoid subject psychological factors or other interference, finally the comparison
of raw and denoising data under the normal sleep model can be observed as a waveform
in Figure 3a. Although there are some small disturbances caused by body movement and
electrode sliding, such as baseline drifts and interference, the ECG characteristics can still be
clearly identified through the waveform in raw data. Through the noise reduction process,
the ECG characteristics of the signal become more obvious and easier for the subsequent
classification process. Then, the subjects were asked to simulate sleep apnea by changing
the breath model. After a period of normal breathing, when the subjects’ breathing was
stable, their breath situations were measured and then randomly held their breath for 10 s or
more. When the airflow through the mouth and nose stopped and the chest and abdomen
breathing disappeared, the apnea could be confirmed. The ECG signal waveforms of the
subjects under sleep apnea are shown in Figure 3b, which also contain the comparison
between raw ECG data and denoising ECG. Then, the denoised ECG signals of normal and
abnormal waveforms were dealt with time between the successive R peaks to obtain the
R-R interval in Figure 3c. Then, the HRV time-domain and frequency-domain analyses from
RRI data were processed, which could extract and select features for further classification.
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Figure 3. The display of hybrid physiological signal. (a) ECG signal before and after denoising at
normal breath model. (b) ECG signal before and after denoising without apnea occurs. (c) ECG
signals in normal and apneic RR classification. (d) Breathing signal and position signal in normal
condition. (e) Breathing signal and position signal when apnea occurs. (f,g) Details of local fragments
of position signals.

For the breathing signal, the breathing and position changes in a three-dimensional
direction were collected and analyzed. The breathing data could help analyze the breathing
signal to verify the situation of the user because when SAHS occurs, the breathing and
breathing signal will also vary to a lower stable waveform [49]. Our system is designed
to detect the breathing and position signals on two scales. For the large-scale time, in
Figure 3d,e, the waveforms show the difference between normal conditions and when
SAHS occurs. In addition, the R-peak in the ECG signal can characterize the respiratory
activity, with inspiration and expiration corresponding to a decrease and an increase in the
R-wave peak, respectively. During the onset of OSA, the corresponding R-wave peak will
be lower than normal due to the lungs inhaling harder than normal. The R-peak interval
of the ECG signal in the normal segment is mainly between 0.8 and 1.0 s, and the R-peak
amplitude fluctuates in the range of 0.6 and 0.8 mV. In contrast, the R-peak interval of the
ECG signal in the OSA fragment was mainly between 1.1 and 1.2 s, which was significantly
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larger than the R-peak interval of the normal ECG signal. In addition, the R-peak amplitude
fluctuated slightly around 0.6 mV, which was significantly lower than that of the normal
ECG signal. Generally, when the abnormal waveforms last for 8 s, it means that the SAHS
occurs. The large-scale waveform that directly reflects the user’s situation suffers obstacles
from the abnormal stable waveform’s appearance in Figure 3e, while the system also
designed a small-scale detection for accurate analysis. In Figure 3f,g, the change of position
is recorded in terms of three-dimensional displacement, which has an accuracy of less
than 0.01. Our design of hardware of flexible electrodes enables detection accuracy. This
accuracy ensures the waveforms on a large scale with credibility and operability. Although
these two kinds of signals contribute a little to the system for the function of verification of
SAHS, they will be helpful for other diseases’ point-of-care detection.

2.3. Machine Learning-Enabled SAHS Recognition

To distinguish the ECG signal, the classification algorithm can be used to deal with the
data efficiently. The above signals are not unstable for a typical man, and by coupling with
modern computer science technology [49], multiple methods including Support vector
machine (SVM), Random Forest Classifier (RFC) [50], Decision Trees (DT), K-Nearest
Neighbour (KNN) [51], Adaptive Boosting Algorithm (ADABoosta), Gaussian naïve Bayes
Classifier (GNB), Quadratic Discriminant Analysis (QDA), and BP are used to classify
these data. Statistical methods mainly use mathematical and statistical analysis methods
to establish models such as autoregressive models, binary tree classification models, and
classify and analyze signals through them. However, due to the characteristics of ECG
signals, it is difficult to establish a reasonable classification model and ensure the accuracy
of it. The deep convolutional neural network (CNN) model seems to be a feasible choice as
the sample data in this paper are small, but the severe overfitting problem of it is yet to
be solved.

Here we choose (LSTM-RNN) to avoid the overfitting problem. LSTM has the function
of memory effect, which is more efficient for dealing with time series data. As an extension
model of RNN, it also solves the Vanishing Gradient problem of gradient back-propagation
process due to gradual reduction. The working mechanism of LSTM-RNN is presented in
Figure 4a. Three manual features were first extracted from the ECG signal as RR interval
signal RRI, R peak amplitude sequence signal RAMP, and respiratory signal EDR derived
from the ECG signal (not the respiratory signal acquired directly by the instrument), then
fed into the model. Because traditional methods only use the RRI signal as the input
signal of the neural network, only the variation of heart rate can be reflected, and the
variation of respiratory airflow and the variation of chest and abdomen during breathing.
The model consists of three LSTM loop layers and four fully connected layers with nodes
128, 64, 32, and 1. The output is either 0 or 1 to determine the presence or absence of
apnea in the one-minute ECG signal segment. The training results of 50 epochs were
recorded in supplementary material Table S2, and these data are presented in the form of
a graph in Figure 4b. Despite suffering from overfitting starting at around 10 epochs, the
model achieves an accuracy of over 80 percent in Apnea-ECG database [52]. The detail of
Apnea-ECG database could be found in the SI Apnea-ECG database section.
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ods in terms of accuracy.

Binary cross-entropy as loss function was given as follows,

L(Y, P) = −∑x Yxlg(Px) (7)

where Px represents the prediction of the LSTM-RNN network for ECG fragment x, i.e., the
Y of the output in the LSTM-RNN network, represents the true label of ECG fragment x.
The final trained loss and accuracy are approaching 0.4 and 0.9, whereas the validation
loss and accuracy are approaching to 0.8 and 0.2. Compared with other networks stated
before, SVM, RFC, DTC, KNN, ADAboosta, GNB, QDA, and BP, our model gets the highest
accuracy, which is shown in Figure 4c. The details of comparison of different methods in
terms of accuracy could be found in supplementary material Table S3. For a fair comparison,
the same manual features and training strategies were used.

To evaluate the classifier, Se, Sp, +PV, Acc, and F-score were applied as judgment
categories, where Se represents the correct recognition rate of SAHS, Sp represents the
detection rate of normal samples, +PV represents the actual response rate determined as
SAHS, Acc represents the detection accuracy of any sample, and F-score is a comprehensive
evaluation of the classification performance of our model. The detail of each evaluation
criteria could be found in the supplementary material Table S4. Finally, we use the model
of this paper to test its performance on the collected 18 subjects. The result shows high
accuracy up to 84–85%.

3. Conclusions

In this paper, we build a point-of-care system model based on ECG electrode, flexible
piezoelectric materials, and a control box to achieve ECG, breathing, and position signal
detection. The diagnosis of SAHS for flight traveling is taken as a long-term application
of this paper. Results show that the cost of the equipment is lower than nearly 90% of
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commercial products, while the average recognition accuracy of the model is up to 84–85%.
The system originally retrofits existing safety belts to our system, firstly expanding point-
of-care system from pilots to regular passengers in the post-epidemic era. By using flexible
materials in the hardware design, the device is highly fitted to the human body, thus
guaranteeing the accuracy of the breathing signal obtained by the piezoelectric sensor. At
the same time, the data features extracted from the mixed acquisition of ECG, breath, and
motion signals can reduce the diagnosis error rate since these signals reflect the variations
of airflow and chest. At last, LSTM-RNN is applied to avoid the overfitting problem while
ensuring high classification accuracy. The designed system also has important research
significance and broad application prospects since the ECG, breathing, and motion signals
could be applied to diagnose other diseases. It is worth believing that the system could have
potential applications in future human aeronautics and astronautical space exploration.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/mi13111880/s1, Table S1: The Screening Model Test Results;
Table S2: Loss/accuracy versus epoch for train and validation sets; Table S3: Comparison of different
methods in terms of accuracy; Table S4: Classifier evaluations index; Table S5: Cost of each component
for the point-of-care system in detail.; Figure S1: Pin configuration and peripheral circuit diagram of
ADS1292; Figure S2: Photo of fabricated PCB.
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Abstract: Flexible piezoresistive sensors (FPSs) have the advantages of compact structure, convenient
signal acquisition and fast dynamic response; they are widely used in motion detection, wearable
electronic devices and electronic skins. FPSs accomplish the measurement of stresses through
piezoresistive material (PM). However, FPSs based on a single PM cannot achieve high sensitivity
and wide measurement range simultaneously. To solve this problem, a heterogeneous multi-material
flexible piezoresistive sensor (HMFPS) with high sensitivity and a wide measurement range is
proposed. The HMFPS consists of a graphene foam (GF), a PDMS layer and an interdigital electrode.
Among them, the GF serves as a sensing layer, providing high sensitivity, and the PDMS serves
as a supporting layer, providing a large measurement range. The influence and principle of the
heterogeneous multi-material (HM) on the piezoresistivity were investigated by comparing the three
HMFPS with different sizes. The HM proved to be an effective way to produce flexible sensors with
high sensitivity and a wide measurement range. The HMFPS-10 has a sensitivity of 0.695 kPa−1, a
measurement range of 0–14,122 kPa, fast response/recovery (83 ms and 166 ms) and excellent stability
(2000 cycles). In addition, the potential application of the HMFPS-10 in human motion monitoring
was demonstrated.

Keywords: soft sensors; pressure sensors; stress sensors; high dynamics range; graphene

1. Introduction

Flexible stress sensors are flexible electronics that conform to curved surfaces and
convert stress into electrical signals [1–4]; they are widely used in motion detection [5–7],
wearable electronics [8,9], human–computer interaction [10–12], and electronic skin [13–15].
Flexible stress sensors can be classified into piezoresistive [16], capacitive [17,18], piezoelec-
tric [19] and triboelectric [20] sensors according to different sensing mechanisms. Among
them, flexible piezoresistive sensors (FPSs) can convert stress into electrical signals through
changes in the conductive paths, which have the advantages of simple structure, conve-
nient signal acquisition, fast dynamic response and cost-efficiency [21,22]. Two important
parameters of FPSs are sensitivity and measurement range [18,23]. High sensitivity enables
the sensor to accurately identify small stress [24], while a wide measurement range is the
key to ensuring the applicability of the sensor in various stress scenarios. Therefore, it
is of great significance to achieve an FPS with high sensitivity and a wide measurement
range [25].

FPSs usually consist of electrodes and the piezoresistive materials (PM), which deter-
mine the sensitivity and measurement range of the sensor. There are three typical piezore-
sistive materials: conductive films (CFs) [26,27], conductive composites (CCs) [28,29] and
conductive porous foam (CPFs) [30,31]. CFs are composed of conductive films on flexible
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substrates [26,27]. Cracks or breaks appear on the surface’s conductive layer after it is
stressed, which changes the conductive path and causes a variation in resistance. CFs
have the advantage of high sensitivity, while the measurement range of CFs is limited
due to the low deformability [32]. CCs are conductive ingredient-doped polymers [33,34].
Appling stress changes the relative position of the conductive filler inside the CCs, resulting
the establishment or break of the conductive paths. The change in the conductive paths
requires a decent strain, resulting in a large measurement range and a low sensitivity.
CPFs are conductive material-coated porous polymers [31,35]. Applying stress deforms
the three-dimensional conductive skeleton of the porous polymer, which establishes con-
ductive paths through contact with conductive skeletons. CPFs has better flexibility and
piezoresistive properties. Compared with CFs, the three-dimensional porous skeleton can
provide a larger measurement range. Comparing with CCs, the three-dimensional porous
skeleton has a lower modulus and can provide higher sensitivity.

To improve the sensitivity and measurement range of CPF-based sensors, surface mi-
crostructures (such as micropillars [36], domes [37,38], micro-pyramids [39],
microgrooves [40], and folds [41]) or gradient porous structures [18,42] are proposed.
Although these works improve the sensitivity or measurement range, achieving high sensi-
tivity and wide measurement range simultaneously is still a severe bottleneck that restricts
the practical applications of these sensors.

Heterogeneous multi-material (HM) is composed of different materials with contin-
uous or discontinuous structures distribution, and can obtain properties that cannot be
achieved by a single material [43,44]. The CPF has a piezoresistivity and lower elastic
modulus, while the elastomer has a high elastic modulus. Therefore, combining the CPF
and the elastomer to design an HM is a potential solution to achieve high sensitivity and a
wide measurement range in one sensor.

To solve the problem, a heterogeneous multi-material flexible piezoresistive sensor
(HMFPS) with high sensitivity and a wide measurement range is proposed. The HMFPS
consists of a graphene foam (GF) sensing layer, a polydimethylsiloxane (PDMS) supporting
layer and an interdigital electrode. Among them, the GF is fixed at the center of the PDMS
supporting layer, and the flexible interdigital electrode is placed under the surface of the
GF, as shown in Figure 1a. We prepared the HMFPS with different PDMS supporting layer
areas, namely HMFPS-3, HMFPS-5, HMFPS-10. The influence of the HM structure on
the performance of the sensor and its working principle is investigated, proving that the
HM structure is an effective way to improve the piezoresistivity of the FPS. Among them,
HMFPS-10 has the best comprehensive performance, with a sensitivity of 0.695 KPa−1,
a measurement range of 0–14,122 KPa, fast response/recovery (83 ms and 166 ms) and
excellent stability (2000 cycles). In addition, the flexible sensor can be applied to human
movement monitoring.
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2. Experimental
2.1. Materials

PDMS (Sylgard 184) and curing agent were provided by Dow Corning Co., Ltd.
(Midland, MI, USA). Graphene oxide (GO) powder was purchased from Nanjing XFNANO
Materials Tech. Co., Ltd. (Nanjing, China). Melamine foams (MF) were obtained from
Shenzhen Siyuan Rubber and Plastic Products Factory (Shenzhen, China). Vitamin C
(VC) was purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China).
An interdigital electrode with polyimide (PI) substrate was purchased from Rigorous
Technology Co., Ltd. (Shenzhen, China). All the materials and chemicals were used
as received.

2.2. Preparation of HMFPS

The HMFPS consists of a GF sensing layer, a PDMS supporting layer and an interdigital
electrode. Among them, the GF is fixed at the center of the PDMS supporting layer, and the
flexible interdigital electrode is placed under the surface of the GF, as shown in Figure 1a.
The preparation process of the HMFPS is shown in Figure 1b. First, the GFs were prepared
by a dip-coating method. MFs (10 mm × 10 mm × 8 mm) were washed in deionized water
and ethanol for 10 min then dip-coated in GO solution (2 mg mL−1) under vacuum for
10 min. The resulting GOMFs were immersed in vitamin C (VC) solution (12 mg mL−1) for
6 h at 90 ◦C to reduce the GO to rGO. The obtained GFs were washed in deionized water
to remove the excess VC, and dried at 80 ◦C. We prepared five groups of GOMFs with
different dip-coating times, respectively. The samples were chemically reduced to prepare
the GF, expressed as GFx (where x = 1, 2, 3, 4, and 5). Second, the PDMS supporting layers
were prepared. PDMS and curing agent were mixed in a ratio of 10:1, then poured into a
Teflon mold after removing bubbles. The mixture was cured at 80 ◦C for 4 h to obtain a
PDMS supporting layer. We prepared three different sizes of PDMS supporting layers with
widths of 3 mm, 5 mm, and 10 mm, respectively. Finally, the GF, PDMS supporting layer
and interdigital electrode were assembled to obtain the HMFPS. The GF is fixed on the
surface of the interdigital electrode using a conductive silver paste. Additionally, the copper
wire is fixed to the interdigital electrode by soldering tin. The interdigital electrode enables
the sensor to be compact and avoid exposed wire connections, increasing the stability of the
sensor. The HMFPSs with three different supporting layer sizes are defined as HMFPS-3,
HMFPS-5, and HMFPS-10, respectively.
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2.3. Characterizations and Measurement

The structures of MF and GF were characterized by scanning electron microscopy
(SEM) (Gemini SEM500, Zeiss, Oberkochen, Germany) at an operating voltage of 2 kV.
Raman spectrums were recorded using a Raman spectrometer (Jobin Yvon LavRam HR800,
Horiba, Japan) with laser excitation of 514 nm.

The mechanical and electrical property tests were conducted on HMFPS-3, HMFPS-
5 and HMFPS-10 using a high-precision stress testing machine (TianYuan Test Instru-
ment TY8000, Shanghai, China) and a precision source meter (2450, Keithley, Cleveland,
OH, USA), respectively. The sensors were compressed to strain at a constant speed of
20 mm min−1, and the loading rate remained at 60 mm min−1 for the endurance cycle tests.
All the tests were conducted at room temperature.

3. Results and Discussion
3.1. Structure and Morphology

The HMFPS consists of three parts: the GF sensing layer, the PDMS supporting layer
and an interdigital electrode. The GF is 3 mm higher than the PDMS supporting layer,
which is fixed at the center of the PDMS supporting layer. The GF is connected to the
interdigital electrode by silver paste. Three HMFPSs with different PDMS supporting
layer areas (HMFPS-3, HMFPS-5 and HMFPS-10) are prepared. The photographs of the
samples are shown in Figure 2a. We took the SEM images to observe the morphology of
the GF sensing layer. Figure 2b–d and Figure 2e–g are the SEM images of MF and GF under
different magnifications, respectively. The microscopic porous structures of the MF and GF
are similar, indicating that the GF prepared by dip-coating method preserves the original
pore structure of the MF. In addition, the surface of the MF is flat and smooth, while the
surface of the GF presents an obvious fold structure, indicating that graphene sheets are
successfully assembled on the MF skeleton.
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The porosity of the GF can be expressed as Q =
Vp
V0

× 100%, where V0 represents the
volume of GF in its natural state (V0 = 0.8 cm−3), and Vp represents the porous volume of
GF). We tested the porosity of the GF by drainage method. The quality of the GF is 6.75 mg.
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The density of the GF can be calculated as 8.43 kg m−3. Additionally, when the GF is full
of water, its quality is 635.71 mg. Therefore, the quality of water absorbed by GF pores is
628.96 mg, which is equivalent to the volume of GF pores (Vp = 0.629 cm−3). Hence, the
porosity of the GF is 78.62%.

Figure S2 shows the Raman spectra of the GOMF and the GF contain D and G valence
bands at 1343 cm−1 and 1580 cm−1, respectively. The D band is attributed to sp3 defects
in the graphene sheet, and the G band is attributed to the E2g phonon mode in the sp2
carbon atoms plane. The ratio of the intensity of the D valence band to the G valence band
(ID/IG) of the GOMF was 0.82. The ID/IG of GF was 1.28 after chemical reduction by VC,
indicating that the GO sheets attached to MF are efficiently reduced to G.

3.2. Sensing Mechanism and Piezoresistivity of the HMFPS

The sensing mechanism of the HMFPS is shown in Figure 3. Applying stress makes
the GF skeleton of the HMFPS contact, which decreases the resistance by establishing new
conductive paths. The sensitivity of the stress sensor (S) can be defined as S = (∆I/I0)/P,
where ∆I is the current variation, I0 is the original current, and P is the applied stress.
Due to the PDMS supporting layer and protruding GF, the piezoresistive effect of HMFPS
presents two modes, as shown in Figure 3a. Without stress, the GF is higher than the
PDMS supporting layer. With a small stress (<1.8 kPa), the GF above the PDMS supporting
layer is compressed, while the PDMS supporting layer is not compressed. At this time,
the overall equivalent elastic modulus of the sensor is equal to the GF, leading to a high
S. However, with the stress increasing, the GF above the PDMS supporting layer is
completely compressed. With more compressive strain, the GF and PDMS supporting layer
are compressed simultaneously. In this case, the equivalent elastic modulus of the sensor
is approximately equal to the PDMS supporting layer. Compared to only compressed GF,
greater stress is required at the same strain, which greatly improves the measurement range
of the sensor. In conclusion, the GF above the PDMS supporting layer allows the sensor to
sense small stresses (<1.8 kPa). When the PDMS supporting layer is compressed, the sensor
can sense large stress (14,122 kPa). Based on the HM design method, the low modulus of
the GF can be combined with the high modulus of the PDMS, producing a sensor with high
sensitivity and a large measurement range, simultaneously.
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To further analyze the piezoresistivity of the sensor, we established the equivalent
circuit model of the sensor, as shown in Figure 3b. The total resistance (Rtotal) of the HMFPS
consists of the GF bulk resistance (Rb), the interdigital electrode resistance (R f ) and the
contact resistance between the GF and the interdigital electrode (Rc). The total resistance can
be calculated as follows: Rtotal = Rb + R f + Rc. Generally, the R f and Rc can be neglected,
and the piezoresistivity of the sensor is mainly determined by Rb. In this study, five groups
of GF samples were prepared by changing the dip-coating times. The conductivity of GF
increases with the increase in dip-coating times, as shown in Figure S1. The conductivity of
the GF increased rapidly for the first three dip-coating times, while it increased slowly for
the fourth and fifth dip-coating times. According to the threshold effect, higher sensitivity
can be obtained by keeping the conductivity of piezoresistive composites near the threshold
value. Therefore, in order to obtain better pressure-sensitive characteristics, GF3 foam
samples with the largest change in conductivity should be selected. The conductivity of
GF3 is about 0.086 S m−1. In the follow-up studies of this experiment, GF3 samples were
used. Rb depends on the number of conductive paths of the GF and can be equivalent to a
sliding rheostat. Without stress, HMFPS remains in its original state, with a resistance of
R0. Applying stress compresses the GF, resulting in a deformation (∆h). The Rb of the GF
decreases according to Rb ∝ 1/∆h. The sensitivity and measurement range of the sensor
are determined by the relationship between the ∆h and the P, which can be expressed as
E = P/∆h (where E represents elastic modulus of the sensor). Within a certain stress range,
the applied stress only works on the GF, and the E of the sensor is small. The smaller P can
produce a larger ∆h, indicating a large variation rate of the Rb, so that the sensor has high
sensitivity. Beyond a certain range, the existence of the PDMS supporting layer increases
the E of the sensor, which generates a certain amount of the ∆h that requires a larger P. The
variation rate of the Rb decreases, increasing the measurement range of the sensor.

The sensing mechanism of the HMFPS is shown in Figure 3c. The entire sensing range
can be divided into two stages, which are the low stress range and the high stress range.
In the original state, graphene is uniformly covered on the MF surface, forming a stable
conductive network. Applying stress contacts the adjacent skeleton of the GF, establishing
new conductive paths and decreasing the Rb. With the increase in the stress, the foam
skeletons further contact each other to establish conductive paths, and the Rb reduced. The
changes in the entire sensing process are attributed to the “contact effects”.

3.3. Mechanical Properties of the HMFPS

The size of the PDMS supporting layer determines the equivalent elastic modulus of
the sensor, thereby affecting the sensitivity and measurement range. Figure 4a–d are the
compressive stress–strain curves of the GF, the HMFPS-3, the HMFPS-5, and the HMFPS-10
under 40%, 60%, and 80% compressive strain.

Figure 4e shows the compressive stress–strain curves of the GF, the HMFPS-3, the
HMFPS-5, the HMFPS-10 and the PDMS. The stress required at the same strain for the
HMFPS is sharply increased with the presence of the PDMS supporting layer. The stress of
the HMFPS increases nonlinearly with the strain greater than 37.5%. When the strain is less
than 37.5%, only the GF is compressed. Due to the lower elastic modulus of the GF, the
sensor exhibits a lower elastic modulus (0.0633 kPa). When the strain is greater than 37.5%,
the GF and the PDMS supporting layer need to be compressed simultaneously, which
equivalently increases the stress required for the deformation of the GF. Figure 4f compares
the E of the GF, the HMFPS-3, the HMFPS-5, the HMFPS-10 and the PDMS when the strain
is less than 37.5% and greater than 37.5%. When the strain is less than 37.5%, the E of the
sample decreases with the increase in the PDMS supporting layer area, which is because
the compressed area of the sample (S) is equivalent to the size of the entire sensor during
the experiment, that is, SGF < SHMFPS−3 < SHMFPS−5 < SHMFPS−10. The applied stress
(P) can be defined as P = F/S, where F represents the applied stress, and S represents
the area of the applied stress. The same F (FGF = FHMFPS−3 = FHMFPS−5 = FHMFPS−10)
leads to the same ∆h (∆hGF = ∆hHMFPS−3 = ∆hHMFPS−5 = ∆hHMFPS−10), resulting in
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PGF > PHMFPS−3 > PHMFPS−5 > PHMFPS−10. Additionally, as E = P/∆h, it can be seen that
EGF > EHMFPS−3 > EHMFPS−5 > EHMFPS−10. During this process, the sensitivity of the
sensor is equal to that of the GF, which enables the small stress (<1.8 kPa) sensation. When
the strain is greater than 37.5%, the E of the sample increases with the increase in the PDMS
supporting layer area, which increases the measurement range of the sensor. Therefore, the
HMFPS has a larger measurement range compared with the GF, and has high sensitivity
compared with the CC-based sensors.
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3.4. Piezoresistivity of the HMFPS

The current response curves of the GF, the HMFPS-3, the HMFPS-5 and the HMFPS-10
under different stresses are shown in Figure 5a,b. The sensitivity (S) of the HMFPS can
be defined as S = (∆I

I0
)/P, where ∆I is the current variation under a certain stress, I0 is

the original current of the GF, and P is the applied stress. Under small stress (<1.8 kPa),
the sensor has ultra-high sensitivity of 0.695 kPa−1 due to the compression of only the
GF sensing layer. With the increase in the stress, the GF sensing layer and the PDMS
supporting layer are compressed simultaneously. The required stress increases with the
current increases, which is affected by the PDMS supporting layer. The sensitivity of the
HMFPS decreases, while the measurement range of the increases. This is consistent with the
sensor mechanism of the sensor. Figure 5c shows the sensitivity and measurement range of
the GF, the HMFPS-3, the HMFPS-5 and the HMFPS-10. In the small stress range (<1.8 kPa),
the sensitivity of the HMFPS is 0.695 kPa−1. HMFPS-10 has a wide stress measurement
range of 0–14122 kPa.

The current response–strain curve of the HMFPS-10 is shown in Figure S3. The current
variation rate of the HMFPS increases with the increase in the strain. The current variation
rate of the HMFPS increases relatively slowly when the strain is less than 76%, while the
current variation rate of the HMFPS increases rapidly when the strain is more than 76%.
This is related to the porosity of the GF sensing layer. With the compressing deformation of
the GF, the foam skeletons contact each other and establish new conductive paths, resulting
in the current increasing. When the compressing deformation is smaller than the range
of the GF porosity, the contact between the foam skeleton is limited, the new conductive
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path is less, and the current increases slowly. When the compressing deformation is close
to or greater than the porosity of the GF, the deformation leads to direct contact of the
foam skeleton, resulting in a large number of conductive paths and a sharp increase in
the current.
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In order to study the dynamic performance of the sensor, we tested the dynamic
response of the sensor under 20%, 40%, 60% and 80% compressive strain, as shown in
Figure 5d. The response of the sensor can be clearly distinguished with increasing stress,
and the three loading cycles under the same stress exhibit good repeatability. In addition,
the dynamic responses of the sensor at four different loading rates of 10, 20, 40, and 60 mm
min−1 under 60% strain are shown in Figure 5e. The results show that the response of the
sensor is independent for different compression speeds. Figure 5f shows the response and
recovery time of the HMFPS. The HMFPS has a fast response speed to the applied stress,
and its response time and recovery time are 83 ms and 166 ms, respectively.

Repeatability and stability are important indicators in the practical application of
stress sensors. In order to investigate the cyclic repeatability and stability of the HMFPS,
2000 cyclic loading/unloading tests were performed on the HMFPS, as shown in Figure 5g.
The current variation rate of the sample remains stable during multiple cycles. The illus-
tration in Figure 5g shows that the current variation is almost the same for each cycle.
Experiments show that our proposed HMFPS has good repeatability and stability. Fur-
thermore, we compared the performance of this work with existing literature on piezore-
sistive stress sensors, as shown in Figure 5h and Table S1 [17,18,37,45–62]. Benefiting
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from the HM design of the sensor, the prepared HMFPS has high sensitivity and wide
measurement range.

3.5. Applications of the HMFPS

In order to verify the applicability of the HMFPS in human motion detection, the
fabricated HMFPS was attached to different parts of the human body with breathable
medical bandage. Additionally, the upper surface of the sensor is covered with the same
size paper. Figure 6a is the current response curve of the finger pressing the HMFPS, which
shows that the HMFPS can respond to the stress in real time and the current variation
rate is proportional to the compressive stress. Figure 6b–f shows the response results of
the sensors fixed on the finger, the neck, the elbow, the wrist, and the knee, respectively.
The results show that the HMFPS can respond to the motion of the human body through
the current variation rate, indicating that the proposed sensor can be used for human
motion detection.
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Figure 6. Monitoring human motion using HMFPS; (a) Finger pressing, (b) wrist bending,
(c) nodding, (d) finger movement, (e) arm bending, and (f) knee bending.

4. Conclusions

In summary, we propose a HMFPS with high sensitivity and wide measurement range
through HM design. The HMFPS consists of a GF sensing layer, a PDMS supporting layer
and an interdigital electrode. We prepared three HMFPS with different area (HMFPS-3,
HMFPS-5, HMFPS-10), and investigated the effect and mechanism of the PDMS supporting
layer area on the piezoresistivity of the sensor. Moreover, we analyzed the sensing mecha-
nism of the HMFPS, and proved that the HM design is an effective method to achieve high
sensitivity and a wide measurement range. Among them, HMFPS-10 has the best overall
performance, with a sensitivity of 0.695 kPa−1, a measurement range of 0–14,122 kPa, fast
response/recovery (83 ms and 166 ms) and excellent stability (2000 cycles). In addition, the
application of the HMFPS in human motion monitoring was demonstrated.
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Abstract: This paper presents a 10-bit successive approximation register analog-to-digital converter
with energy-efficient low-complexity switching scheme, automatic ON/OFF comparator and au-
tomatic ON/OFF SAR logic for biomedical applications. The energy-efficient switching scheme
achieves an average digital-to-analog converter switching energy of 63.56 CVref

2, achieving a re-
duction of 95.34% compared with the conventional capacitor switching scheme for CDACs. With
the switching scheme, the ADC can lower the dependency on the accuracy of Vcm and complexity
of DAC control logic and DAC driver circuit. Moreover, dynamic circuits and automatic ON/OFF
technology are used to reduce power consumption of comparator and SAR logic. The prototype
is designed and fabricated in a 180 nm CMOS with a core size of 500 µm × 300 µm (0.15 mm2). It
consumes 7.6 nW at 1 kS/s sampling rate and 1.8-V supply with an achieved signal-to-noise-and
distortion ratio of 45.90 dB and a resulting figure of merit of 51.7 fJ/conv.-step.

Keywords: analog-to-digital converter (ADC); energy-efficient; successive approximation register
(SAR)

1. Introduction

The development of low-power integrated circuits (ICs) will help bring portable and
implantable biomedical devices and biosensors to the market. Analog front end (AFE)
circuits in these products may consume most of the total power budget because they
usually need to remain online to sense input signals continuously [1]. Various biomedical
signals and their frequency ranges are shown in Table 1. Most biomedical signals have
frequencies below 1 kHz. Figure 1 shows the basic processing units in a biomedical
implantable device [2]; ADC is an intermediate unit that converts analog signals into digital
signals. Successive-approximation register (SAR) analog-to-digital converter (ADC) has
become an appropriate choice for low-power biomedical applications in recent years due
to its low-power characteristics [2–5]. Figure 2 shows the basic components in an SAR
ADC. Among the building blocks in an SAR ADC, a capacitive DAC always consumes
a significant part of the total power consumption [6–8]. Recently, some energy-efficient
switching schemes have been proposed to reduce the energy consumption of DAC capacitor
arrays. [8–10]. Compared to conventional techniques [11], Charge-Recovery [8], Charge-
Sharing [8], Capacitor-Splitting [8], Set-and-down [10], and Vcm-based [9] techniques reduce
the switching energy by 12.52%, 24.99%, 37.48%, 81.26%, and 87.52%, respectively. However,
these schemes have various drawbacks. Capacitor-Splitting [8] and Vcm-based [9] schemes
have complex DAC drive circuits, the Set-and-down scheme [10] has large common-mode
voltage shift, and the Vcm-based scheme [9] has a high dependence on the middle reference
voltage (Vcm).
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Table 1. Frequency ranges of various biomedical signals.

Biomedical Signals Frequency Range

ECG [2] 0.05–100 Hz
ECoG [12] 70–110 Hz
EMG [13] 50–150 Hz
EEG [14] 0–100 Hz
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In this paper, the energy-efficient and low-complexity switching scheme [15] is used
to realize successive approximation conversion. In the first comparison, no switching
energy was consumed due to the use of top-plate sampling technology [10]. In the second
comparison, no switching energy was consumed due to the closed-loop charge recycling
method [16]. From the third comparison to the (N−1)th comparison, the reference voltage
of the corresponding capacitor in the lower voltage capacitor array changes from gnd to
Vref. In the last comparison, the reference voltage of the last capacitor in the lower voltage
capacitor array changes from gnd to Vcm. From the third comparison to the last comparison,
since there is only one capacitor-switching reference voltage for each comparison, the power
consumption is low. As a result, the energy-efficient and low-complexity switching scheme
achieves an average switching energy of 63.56 CV2

re f . Compared with the conventional
switching scheme [11], this switching scheme reduces the switching energy by 95.34%. In
addition, only the least significant bit (LSB) depends on the accuracy of Vcm, and each
capacitor only uses two reference voltages, which reduces the dependence on the accuracy
of Vcm and the complexity of DAC control logic and DAC driver circuit. An automatic
ON/OFF comparator is used to achieve low power consumption. The comparator consists
of three parts: the automatic ON/OFF clock circuit, the dynamic preamplifier stage, and
the dynamic latch stage. The automatic ON/OFF clock circuit allows the comparator
to work only during comparing. Automatic ON/OFF SAR Logic consists of three parts:
automatic ON/OFF clock circuit, shift control, data latch. The automatic ON/OFF clock
signal is generated by the comparator output signal, and the clock is output only when the
comparator is active. In order to simplify the DAC control logic and DAC driver circuit,
the latch of SAR logic uses a dynamic latch with differential output. When the proposed
SAR ADC uses 180 nm CMOS process and operates at a sampling rate of 1 kS/s, the ADC
achieves 45.90 dB SNDR and 58.79 dB SFDR and consumes only 7.6 nW [17]. The proposed
SAR ADC is suitable for portable and implantable medical sensors.

This paper is organized as follows. Section 2 describes the ADC architecture and
low-power circuits. Section 3 shows the measurement results and the comparison with
other ADCs. Finally, Section 4 concludes.
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2. Proposed ADC Architecture

As shown in Figure 3, the proposed SAR ADC consists of comparator, SAR logic,
capacitor array DAC and DAC drive circuit. Because each capacitor of the capacitor array
DAC has only two reference voltages, the DAC drive circuit and DAC control logic are
simple. In addition, because the last capacitor uses Vcm as the reference voltage, the number
of unit capacitors is reduced by half.
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2.1. Switching Scheme

As shown in Figure 4, the operation of the switching scheme can be performed in five
phases: sampling, the 1st comparison, the 2nd comparison, the 3rd to (N−1)th comparison,
and the Nth comparison.

Sampling: In the sampling phase, the input signals are sampled on the top-plates of all
capacitors via sampling switch, with the bottom-plates of the largest capacitors connecting
to Vref and other capacitors to gnd.

The 1st comparison: After sampling, the sampling switches are turned off. The output
voltages of the DAC capacitor array are found to be

{
VDACP(1) = Vip
VDACN(1) = Vin

(1)

The comparator compares the sampling signals (Vip and Vin) and gets D1(MSB). No
switching energy is consumed in the first comparison.

E1 = 0 (2)

The 2nd comparison (level-shift-gnd): If D1 = 1, the reference voltage of the largest
capacitor in the positive capacitor array changes from Vref to gnd. If D1 = 0, the reference
voltage of the largest capacitor in the negative capacitor array becomes gnd. As a result, the
voltage of the higher side is decreased by Vref/2, and the output voltages are found to be

{
VDACP(2) = Vip − D1

Vre f
2

VDACN(2) = Vin − (1 − D1)
Vre f

2

(3)
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The comparator compares VDACP(2) with VDACN(2) and gets D2. Due to the closed-
loop charge recycling method [16], there is no switching energy consumption in the
second comparison.

E2 = 0 (4)

The 3rd to (N−1)th comparison (“up” operation): According to the previous com-
parison results, the reference voltage of the corresponding capacitor in the lower voltage
capacitor array is switched from gnd to Vref, while the other one (in the higher voltage
capacitor array) remains unchanged. For example, in the third comparison, if D2 = 1, the
reference voltage of the second largest capacitor in the negative capacitor array is switched
from gnd to Vref. If D2 = 0, the reference voltage of the second largest capacitor in the
positive capacitor array is switched from gnd to Vref. The ADC repeats the procedure until
the (N−1)th comparison is completed. The output voltages of each comparison are found
to be 




VDACP(i) = Vip − D1
Vre f

2 +
i−1
∑

j=2

(
1 − Dj

)Vre f

2j

VDACN(i) = Vin − (1 − D1)
Vre f

2 +
i−1
∑

j=2
Dj

Vre f

2j

(5)

The comparator compares VDACP(i) with VDACN(i) and gets Di. During the switching
procedure, there is only one capacitor switch for each comparison, resulting in less switch-
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ing activity and lower energy. Based on the switching energy calculation method in [6], the
switching energy of each comparison is found to be

Ei =





2N−i−1 − 2N−2i − Di−1
i−2
∑

j=1
D[j]2N−j−i−1

−(1 − Di−1)
i−2
∑

j=1
(1 − D[j])2N−j−i−1





CV2
re f (6)

Nth comparison: In the Nth comparison, the reference voltage of the last capacitor in
the lower side is switched from gnd to Vcm while the other one (on the higher side) remains
unchanged. The output voltages and switching energy are found to be





VDACP(N) = Vip − D1
Vre f

2 +
N−1
∑

j=2

(
1 − Dj

)Vre f

2j

VDACN(N) = Vin − (1 − D1)
Vre f

2 +
N−1
∑

j=2
Dj

Vre f

2j

(7)

EN =





D1(1 − DN−1)

[
2−2 − 2−N −

N−2
∑

j=1
(1 − D[j])2−j−1

]

+(1 − D1)DN−1

[
2−2 − 2−N −

N−2
∑

j=1
D[j]2−j−1

]





CV2
re f (8)

The average switching energy of the switching scheme is derived as

Eaverage =
11···1
∑

D1D2···DN=00···0

(
N

∑
i=1

Ei

)
=
(

2N−4 − 2−1 + 2−4
)

CV2
re f (9)

Figure 5 shows switching energy at each output code for different switching schemes.
The average switching energy of the switching scheme used for 10-bit SAR ADC is
63.56 CV2

re f . Compared with the conventional switching scheme [11], the used switch-
ing scheme [15] and Capacitor-Splitting [8], Set-and-down [10], and Vcm-based [9] schemes
reduce the switching energy by 95.34%, 37.48%, 81.26%, and 87.52%, respectively. Fig-
ure 6 presents the 500-run Monte Carlo simulation results of the proposed DAC switching
scheme with unit capacitor mismatch of σu/Cu = 1%. The RMS DNL and the RMS INL of
the proposed DAC switching scheme are 0.325 LSB and 0.326 LSB, respectively.

2.2. Automatic ON/OFF Comparator

A low-power two-stage full dynamic comparator is reported in [18]. In order to
save more power consumption of the comparator, an automatic ON/OFF clock circuit is
added to the comparator. As shown in Figure 7a, the comparator consists of automatic
ON/OFF clock circuit, dynamic preamplifier stage, and dynamic latch stage. In the dynamic
preamplifier stage, VDACP and VDACN are the output signals of the DAC capacitor array
and are connected to the differential inputs of the comparator. AP and AN are differential
outputs of the dynamic preamplifier stage. In the dynamic latch stage, COMP and COMN
are the comparison results, which are obtained by AP, AN, and CCLK driving the latch. In
the process of result latching, no power-to-ground current path is formed, so the comparator
only has a dynamic power supply. The automatic ON/OFF clock circuit generates the
clock for comparator operation. When the RST is high or P10 + N10 (P10 and N10 are the
10th comparison result that latched in SAR logic) is high, there is no clock output, the
comparator is in the OFF state, and the comparator has no power consumption. Figure 7b
shows the timing diagram of the comparator.
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2.3. Automatic ON/OFF SAR Logic

As shown in Figure 8, the automatic ON/OFF SAR logic consists of an automatic
ON/OFF clock circuit, a sequencer, and a data register. The sequencer is a shift register that
shifts the set signal through a series of D flip-flops. The set signal is then used to activate
the Latch in the data register. When the last D flip-flop in the sequencer is triggered, the
sequencer will be reset and await the next conversion cycle. The data register is composed
of dynamic latches, which can latch the differential outputs of the comparator and output
differential data. Differential output makes DAC logic circuit simpler. The automatic
ON/OFF clock circuit is used to provide the drive clock signal for the shift register. Drive
clock is only ON while comparison results are being latched, thus reducing SAR logic
power consumption. Figure 8b shows the timing diagram of the SAR logic.

2.4. DAC Driver Circuit

As shown in Figure 9, each capacitor requires two reference voltages. The reference
voltages of C2 to C9 capacitors are Vref and gnd, and the drive circuit can be realized by
CMOS inverter. The reference voltage of C1 capacitor is Vcm and gnd, and the driving
circuit adopts a hybrid structure of CMOS transmission gate and CMOS inverter circuit.

2.5. Capacitor Array

Figure 10 illustrates the floorplan of the capacitor array DAC for a single side. Both
sides have identical layout design. DAC capacitors and dummy capacitors are repre-
sented by squares (unit capacitors) in different colors. DAC capacitors are surrounded by
dummy capacitors to minimize the proximity effects and second-order lithographic errors.
Additionally, a common centroid layout is used to reduce parasitic effects.
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3. Results 
Figure 11 shows the chip micrograph of the ADC prototype fabricated in 180 nm 
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3. Results

Figure 11 shows the chip micrograph of the ADC prototype fabricated in 180 nm CMOS
process with a core area of 0.15 mm2 (500 µm × 300 µm). Figure 12 shows the measurement
environment. The power supply device provides power and reference voltage for the SAR
ADC chip. The FPGA generates timing signals to control the work of SAR ADC chip. The
signal generator generates a differential sinusoidal signal and connects to the analog signal
input of the SAR ADC chip. The logic analyzer is connected to the digital signal output of
the SAR ADC chip and collects the output data. The PC takes out the measured data from
the logic analyzer and then analyzes various performance indicators of the chip. As shown
in Figure 13, the signal-to-noise-and-distortion ratio (SNDR) is 45.15 dB, and the effective
number of bits (ENOB) is 7.2 bit at 1.8 V supply and 1 kS/s sampling rate. The SAR ADC
consumes 7.6 nW, and the calculated FoM is 51.7 fJ/conv.-step. The Figure-of-Merit (FoM)
was calculated from the following equation:

FoM =
Power

2ENOB × fsamping
(10)

Table 2 shows the performance comparison between the proposed ADC and other
ADCs. Compared with another 180 nm ADC, the proposed ADC has a convincing perfor-
mance. If the proposed SAR ADC uses the 65 nm process, it may have better performance.
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4. Conclusions

This paper has presented a low-power SAR ADC for biomedical applications. The
ADC uses an energy-efficient, low-complexity switching scheme to reduce power con-
sumption. Because of the top-plate sampling and level-shift-gnd operations, the switching
scheme did not consume energy in the first and second comparisons. Thanks to the use of
Vcm for the last capacitor, the total capacitance is reduced by half, so the energy consump-
tion of DAC is also reduced. In addition, because of the automatic ON/OFF technology,
the comparator and SAR logic only generate energy consumption during operation. The
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Abstract: This paper presents a novel nano-material composite membrane for detecting aflatoxin
B1 (AFB1). The membrane is based on carboxyl-functionalized multi-walled carbon nanotubes
(MWCNTs-COOH) @ antimony-doped tin oxide (ATO)-chitosan (CS). To prepare the immunosensor,
MWCNTs-COOH were dissolved in the CS solution, but some MWCNTs-COOH formed aggregates
due to the intertwining of carbon nanotubes, blocking some pores. ATO was added to the solution
containing MWCNTs-COOH, and the gaps were filled by adsorbing hydroxide radicals to form a
more uniform film. This greatly increased the specific surface area of the formed film, resulting in a
nano-composite film that was modified on screen-printed electrodes (SPCEs). The immunosensor was
then constructed by immobilizing anti-AFB1 antibodies (Ab) and bovine serum albumin (BSA) on an
SPCE successively. The assembly process and effect of the immunosensor were characterized using
scanning electron microscopy (SEM), differential pulse voltammetry (DPV), and cyclic voltammetry
(CV). Under optimized conditions, the prepared immunosensor exhibited a low detection limit of
0.033 ng/mL with a linear range of 1 × 10−3–1 × 103 ng/mL. The immunosensor demonstrated
good selectivity, reproducibility, and stability. In summary, the results suggest that the MWCNTs-
COOH@ATO-CS composite membrane can be used as an effective immunosensor for detecting AFB1.

Keywords: immunosensor; aflatoxin B1; multi-walled carbon nanotubes; antimony-doped tin oxide;
field real-time detection

1. Introduction

Aflatoxin (AFT), a potent natural carcinogen, is a biologically active secondary metabo-
lite mainly produced by Aspergillus flavus, Aspergillus parasiticus, and Aspergillus
oryzae [1]. Among them, Aflatoxin B1 (AFB1) is the most toxic and widespread, pos-
ing a significant threat to human health [2]. It is almost impossible to avoid AFB1 in
agricultural products, and its continuous consumption, even at low levels, can lead to a
dramatic increase in the incidence of cancer and other diseases, particularly in developing
countries, where AFB1 is associated with many types of cancers. Therefore, the maximum
residue levels of AFB1 in foods must be strictly controlled. Traditional methods of AFB1 de-
tection are time-consuming and not suitable for on-site monitoring of agricultural products.
Hence, there is an urgent need to develop rapid and quantitative methods and instruments
for AFB1 detection to achieve effective control of its levels in agricultural products.
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To safeguard food safety and protect human health, a range of instrument detection
techniques have been developed, such as thin-layer chromatography (TLC) [3], high-
performance liquid chromatography (HPLC) [4], and HPLC-mass spectrometry (MS) [5].
Although these methods offer high detection accuracy and stability, their complex and time-
consuming operations have hindered their advancement in the realm of rapid detection [6].
Hence, the need of the hour is to devise a simple, swift, and efficient means of detecting
AFB1. In recent years, immunosensors have emerged as a promising detection method
that leverages the specific binding of antigens and antibodies to detect small molecules [7].
Owing to their high detection accuracy, low cost, time efficiency, and ease of use, a range
of immunosensors have been deployed to detect AFTs [8]. Among the electrochemical
signal transduction techniques, electrochemiluminescence immunosensors [9] and elec-
trochemical immunosensors [10] have exhibited high sensitivity and are widely applied
in diverse immune reactions using voltammetry and amperometry, which are the most
prevalent and widely adaptable methods [11]. Enhancing the current response of the
immunosensor through the incorporation of nanomaterials represents an effective means of
heightening its sensitivity. Nanomaterials such as gold nanoparticles [12], Fe3O4 [13], and
graphene oxide [14] are typically employed to modify electrodes. This incorporation not
only improves the transmission efficiency on the surface of the electrode but also amplifies
the specific surface area.

Chitosan, a naturally-occurring alkaline polysaccharide compound, is also known as
polyglucosamine (1-4)-2-amino-B-D glucose. It is obtained by the deacetylation of chitin,
and is highly versatile due to its abundant amino groups. When chitosan is dissolved in
acidic solution, these amino groups become free and protonated, giving it polycationic
electrolyte properties. This remarkable feature allows chitosan to serve as a highly effective
dispersant, capable of chelating various heavy metal ions. In addition, chitosan exhibits
exceptional anion adsorption capabilities and is naturally biodegradable, making it a highly
attractive and eco-friendly option [15].

Multi-walled carbon nanotubes (MWCNTs) possess remarkable electrical conductivity,
thermal conductivity, and mechanical properties, rendering them ideal for developing high-
performance polymer composites with multifunctional capabilities. The unique structure
and high specific surface area of MWCNTs allow for precise control of electronic properties
through molecular adsorption, doping, and charge transfer [16]. Furthermore, the deposi-
tion of MWCNTs onto electrode surfaces can create a continuous, ordered arrangement on
the electrode, establish a favorable micro-environment for immobilizing enzymes, aptamers,
or antibodies, and provide a pathway for electron transfer [17]. However, nano-films of
MWCNTs have the tendency to non-specifically adsorb small molecules, which may lead
to inaccuracies in small molecule detection.

Nanostructured doped oxides have become a focal point in the realm of research due
to their remarkable electrochemical properties [18]. Among them, antimony-doped tin
oxide (ATO) stands out as a promising alternative, as it enhances the conductivity of the
doping agent without compromising on high optical transparency [19]. Additionally, ATO
also exhibits exceptional electrocatalytic performance [20]. When added to a solution of
carboxyl-functionalized multi-walled carbon nanotubes (MWCNTs-COOH), ATO engulfs
the aggregates of MWCNTs-COOH to generate novel nanocomposites. The integration of
ATO results in a denser and more uniform nanocomposite film, which in turn reduces the
interaction between MWCNTs-COOH and the reaction substrate, thus lowering the rate of
electron transfer.

In this work, taking advantage of the combination of MWCNTs-COOH and ATO
nanomaterials, we developed nanocomposite membranes and used them for the construc-
tion of the AFB1 immunosensor. The aim of this work is to provide a sensitive and stable
membrane for quantitative determination of AFB1 in food and agricultural products.
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2. Experimental
2.1. Apparatus

The cyclic voltammetry (CV) and differential pulse voltammetry (DPV) measurements
were conducted using a CHI660D electrochemical workstation purchased from Shanghai
Chenhua Co., Shanghai, China. The screen-printed carbon electrodes (SPCEs, TE100,
d = 3 mm) used in the experiment were purchased from Zensor R&D (Taiwan, China). The
morphology of the modified electrodes was observed using a scanning electron microscope
(SEM) from the Netherlands. Ultrasonication was performed using a SK3300H ultrasonic
cleaner from Shanghai, China, and the solution was blended using a PTR-35 SPC vortex
mixer from Britain. All experiments were performed at room temperature.

2.2. Reagents and Materials

The antibodies (Abs) were procured from the Oil Crops Research Institute of the
Chinese Academy of Agricultural Sciences (Wuhan, China). The antimony-doped tin oxide
(ATO) with an OD of 20 nm and purity of 99% and carboxyl-functionalized multi-walled
carbon nanotubes (MWCNTs-COOH) with an OD range of 10–20 nm were purchased from
Beijing Gold Deco Island Co., Ltd. (Beijing, China). Potassium ferrocyanide (K3[Fe(CN)6])
and potassium ferricyanide (K4[Fe(CN)6]) were purchased from Yongda Chemical Reagent
Co., Ltd. (Tianjin, China). The 0.01 M pH 7.2–7.4 phosphate buffer solutions (PBS) were
procured from Beijing Solarbio Science & Technology Co., Ltd., Beijing, China. All other
chemicals used were of analytical reagent grade. Ultrapure water (18.2 MΩ·cm) purified
with an LS MK2 PALL-water purification system was used for the preparation of all
solutions. Chitosan (CS) was obtained from Sangon Biotech Co., Ltd. (Shanghai, China).

2.3. Preparation of MWCNTs-COOH @ ATO-CS Composites

A total of 0.2 g of CS was dissolved in 100 mL of 1% acetic acid solution, and magnetic
stirring was continued for more than 8 h to prepare a 0.1% (w/v) CS solution. Then, 2 mg
of MWCNTs-COOH powder and 1.2 mg of ATO powder were accurately weighed and
dissolved in 4 mL of CS solution using 2 h of ultrasonic treatment and 2 h of mixing with a
mixer until the suspension became uniform and stable. The resulting highly dispersed and
dark grey suspension was the MWCNTs-COOH @ ATO-CS solution, which was stored in a
refrigerator (4 ◦C) for the experiment.

2.4. Preparation of Immunosensor Based on SPCEs
2.4.1. Preparation of SPCEs

To prepare the electrode for modification, it was thoroughly cleaned by ultrasonic
cleaning in NaOH and HCl solutions for 5 min each. The electrode was then washed with
ultrapure water and dried with nitrogen gas. To further ensure cleanliness, the electrode
was washed with anhydrous ethanol and dried again with nitrogen gas. The treated
electrodes were then immersed in pH 5.0 PBS solution for 300 s with a potential of 1.75 V
and subsequently scanned from 0.3 V to 1.25 V and from 0.3 V to −1.3 V until a steady state
CV curve was obtained [21].

2.4.2. Preparation of AFB1/BSA/Ab/MWCNTs-COOH @ ATO-CS/SPCEs Immunosensor

A total of 6 µL MWCNTs-COOH @ ATO-CS solution was applied to the pre-treated
SPCE surface and allowed to dry at room temperature, creating the MWCNTs-COOH @
ATO-CS/SPCE. Next, 6 µL of Ab was added to the modified electrode surface to form
Ab/MWCNTs-COOH@ATO-CS/SPCE. To create the BSA/Ab/MWCNTs-COOH@ATO-
CS/SPCE, 6 µL of BSA was added to the nanomaterial-modified electrode surface and
dried at −4 ◦C. The electrode was then stored at 4 ◦C for AFB1 detection. The preparation
process of the immunosensor is illustrated in Figure 1.
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2.4.3. Electrochemical Measurements

The composites of MWCNTs-COOH @ ATO-CS were subjected to scanning elec-
tron microscopy (SEM) to analyze their properties. All electrochemical measurements
were carried out in 15 mL of 0.1 M PBS (pH 7.0) that contained a 1:1 mixture of 5 mM
K3[Fe(CN)6]/K4[Fe(CN)6] as a redox probe and 0.1 M KCl at ambient temperature. CV
was conducted within a potential range from −1.0 V to 1.0 V at a scan rate of 100 mV/s.
Electrochemical differential pulse voltammetry (DPV) measurements were performed un-
der the following conditions: voltage was scanned from −0.30 V to 0.60 V with a pulse
height of 100 mV, while the step height and frequency were maintained at 4 mV and 15 Hz,
respectively. To investigate the sensitivity and specificity of the proposed immunosensor,
DPV was utilized. Additionally, parameters that affected the immunosensor response, such
as the Ab concentration and response time, were optimized. Following optimization, the
proposed immunosensor was used to detect AFB1.

2.5. Immunosensor Specificity Analysis

In order to validate the specificity of the immunosensor, control experiments were
conducted using five different fungal toxins, namely, AFM1, α-zearalenone (α-ZEN), zear-
alenone (ZEN), ochratoxin A (OTA), and fumonisin B1 (FB1) at a concentration of 5 µg/mL.
In addition, AFB1 at a concentration of 100 ng/mL was also detected using the same
sensor under unchanged experimental conditions. The detected currents from the control
experiments were compared to observe any differences in response.

2.6. Peanut Oil Sample Pretreatment Method

Weigh precisely 5 g of peanut oil into a 100 mL triangular flask, and then add 25 mL
of 10% methanol PBS solution. Different concentrations of AFB1 should be added and
the mixture should be shaken vigorously with an oscillator for 30 min to ensure thorough
mixing. Next, the mixture should be centrifuged in a centrifuge for 10 min at 10,000 r/min.
After centrifugation, 1 mL of the supernatant should be taken and 4 mL of methanol PBS
solution should be added. Vigorous shaking for 5 s is necessary to ensure proper mixing,
and then the sample should be stored in a refrigerator for further use.
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3. Results and Discussion
3.1. Characterizations of Modified Electrodes

The modified electrodes were characterized using scanning electron microscopy (SEM)
to investigate the morphology and structure of the prepared materials. The SEM images in
Figure 2A revealed the presence of nano-scale cracks and holes on the electrode surface
after the MWCNTs-COOH-CS composite film was modified onto the electrode. Figure 2B
showed uniform density and size distribution of ATO-CS nanoparticles. The SEM image in
Figure 2C depicted the morphology of MWCNTs-COOH @ ATO-CS. The MWCNTs-COOH
formed clusters that were wrapped by a layer of ATO through electrostatic interaction,
which increased the specific surface area of the nanocomposite material and made the
material distribution more uniform. Compared to MWCNTs-COOH-CS or ATO-CS alone,
MWCNTs-COOH @ ATO-CS was denser, which helped to increase the transfer rate of
electrons. During the early stage of the formation of MWCNTs-COOH, they were prone to
stacking together layer by layer, and many cracks or gaps appeared during the stacking
process, resulting in the surface of MWCNTs-COOH being full of small holes. However,
the addition of ATO compensated for these gaps and improved the uniformity of the
nanocomposite, while also greatly enlarging its specific surface area. The EDS image in
Figure 2D showed the analysis of the composition of C, O, Sn, Sb, and other elements in
MWCNTs-COOH @ ATO-CS.
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(D) EDS image of MWCNTs-COOH @ ATO-CS.

In addition, the stability of the MWCNTs-COOH @ ATO modified electrode was
also evaluated. Six consecutive tests were conducted on the modified SPCE using the
nanomaterials. As depicted in Figure 3, the six curves exhibited a high degree of consistency,
suggesting that the nanocomposites demonstrated excellent stability.
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3.2. Electrochemical Behavior of the Modified Electrodes

The assembly process of the immunosensor was investigated using CV and DPV
techniques, where the bottom liquid contained 5 mM [Fe(CN)6]3−/4− and 0.1 M KCl. As
illustrated in Figure 4, the redox peaks of bare SPCEs were evident. Upon modification of
the electrode with MWCNTs-COOH @ ATO, the peak current increased substantially to
160 µA (curve b), suggesting that the MWCNTs-COOH @ ATO possessed a large surface
area and good electronic conductivity. Since antibodies lack conductivity as macromolec-
ular proteins, their addition impeded electron transfer between [Fe(CN)6]3−/4− and the
electrode surface. BSA acted as a blocker, eliminating non-specific binding by closing
specific sites on the surface of the electrode. Furthermore, since BSA had no conductivity,
electron transfer was further obstructed, resulting in a rapid decrease in peak current.
These results imply that the antibodies and BSA were successfully immobilized on the
electrode surface.
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Figure 4. (A) CVs of modified screen-printed carbon electrodes; (B) DPVs of modified screen-printed
carbon electrodes a: MWCNTs-COOH @ ATO-CS/SPCE, b: Ab/MWCNTs-COOH @ ATO-CS/SPCE,
c: BSA/Ab/MWCNTs-COOH @ ATO-CS/SPCE, d: SPCE, e: AFB1/BSA/Ab/MWCNTs-COOH @
ATO-CS/SPCE.

3.3. Optimization Parameters of the Immunosensor Performance

The impact of Ab concentration on the immunosensor’s response was investigated
and the results are presented in Figure 5. As shown in the figure, the peak current increased
gradually with increasing Ab concentration until it reached a maximum value at 20 ng/mL.
Subsequently, the response remained relatively stable as the Ab concentration continued
to increase, indicating that the maximum number of Ab molecules had already been
immobilized on the electrode surface. Thus, 20 ng/mL was identified as the optimal Ab
concentration for fabrication of the immunosensor.
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Figure 5. Influence of immunosensor concentration.

A study was conducted to investigate the effects of reaction time on the response of
the immunosensor, and the findings are illustrated in Figure 6. It was observed that the
peak current increased in a gradual manner with the increase in reaction time and reached
its highest value at 40 min. Furthermore, the response became almost stable as the reaction
time was further extended, indicating that the reaction time had reached a saturation point
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on the immunosensor. Based on these observations, 40 min was deemed the most suitable
reaction time for the fabrication of the immunosensor.
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3.4. Calibration Curve

The unknown solution’s AFB1 concentration was deduced by analyzing the current
response of the immunosensor at various AFB1 concentrations immobilized on the electrode
surface. A correlation between different AFB1 concentrations and the immunosensor was
established, revealing that as the AFB1 concentration increased, the current response
difference decreased.

Figure 7 demonstrates a remarkable linear relationship between the current variance
and the corresponding AFB1 concentration. With the ideal experimental conditions, the AFB1
concentration could be accurately determined in the range of 1 × 10−3 to 1 × 103 ng/mL
using the linear equation y = 15.771 + 3.318x (R2 = 0.995). The immunosensor also exhibited a
remarkable detection limit of 0.03 ng/mL (S/N = 3).
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3.5. Selectivity and Stability of Immunosensor

The selectivity of the immunosensor was evaluated by comparing the sensing results of
five different mycotoxins: α-zearalenone (α-ZEN), ochratoxin A (OTA), fumonisin B1 (FB1),
zearalenone (ZEN), and AFM1, all at concentrations of 5 µg/mL, while the concentration of
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AFB1 was maintained at 100 ng/mL. As illustrated in Figure 8, except for AFM1, the current
response of other toxins was lower than 5 µA. Although AFM1 exhibited a current response
of 7 µA, its concentration was 50 times higher than that of AFB1. These findings indicate that
the developed immunosensor possessed an excellent selectivity for practical applications.
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A (OTA), fumonisin B1 (FB1), zearalenone (ZEN) and AFM1.

To ensure the success of the immunosensor preparation, the stability of the prepared
immunosensors was assessed as a crucial factor. Following optimized conditions, a to-
tal of 12 immunosensors were fabricated and stored at 4 ◦C for 15 days. Subsequently,
these immunosensors were used to detect AFB1 at a concentration of 100 ng/mL. The
results revealed a slight decrease of approximately 9.2% in the measured current difference,
indicating that the immunosensor exhibited good stability.

3.6. Determination of Spiked Recovery of AFB1 in Peanut Oil

To assess the accuracy of the immunosensor, spiked recoveries were measured in
peanut oil samples after pretreatment. AFB1 was added to the peanut oil samples at
spiked concentrations of 10−1 ng/mL, 10 ng/mL, and 102 ng/mL. These experiments were
conducted under optimal conditions, and the results are presented in Table 1. The results
demonstrated spiked recoveries ranging from 95.15 to 111.60%, with relative standard
deviations ranging from 2.3 to 5.3%. These findings suggest that the immunosensor
exhibited good detection accuracy.

Table 1. Detection of peanut oil by immunosensor.

Sample AFB1 Addi-
tion(ng/mL)

Standard Current
Difference (µA)

∆I
(µA)

RSD
(%, n = 5)

Recovery Rate
(%)

1 10−1 5.82 5.6 5.2 95.15
2 10 9.14 10.2 3.2 111.60
3 102 12.45 12.08 2.3 96.10

3.7. Sensor Performance Comparison

Referring to Table 2, to conduct a comprehensive evaluation of the sensor developed in
this study, we compared and assessed various performance indicators of immune sensors.
Notably, our sensor boasts a wider detection range and a superior detection limit, which
suggests its great potential for practical applications.
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Table 2. Comparison of the performance of the sensor prepared in this study to other immunosensors.

Sensors Detection Method LOD Linear Rang Practical Samples Ref.

Porous AuNPs/GCE DPV 0.94 ng/mL 0.01–20 ng/mL Glutinous rice/Corn/Rice [22]
Au/Bi2S3/ERGO/CF DPV 8 pg/mL 10 pg–20 ng/mL Cornflour [23]

MWCNTs/RTIL/Ab/AFB1/GCE EIS 0.03 ng/mL 0.1–10 ng/mL Olive oils [24]
BSA/Ab/MWCNTs-COOH @

ATO-CS/SPCEs DPV 0.033 ng/mL 1 × 10−3–1 × 103 ng/mL Peanut oil This Work

GCE: glassy carbon electrode, ERGO: electrochemically reduced graphene oxide, CF: carbon fiber, RTIL: room
temperature ionic liquid, EIS: electrochemical impedance spectroscopy.

4. Conclusions

This study aimed to develop an AFB1 immunosensor using a nanocomposite material,
MWCNTs @ ATO-CS, via an experimental approach. The nanocomposite film was created
by incorporating multi-walled carbon nanotubes with nano-stannic oxide antimony and
CS as a dispersant, resulting in a film with excellent adhesion and biocompatibility. SEM
and CV were used to characterize the nanocomposite film, which exhibited a high level
of uniformity, allowing for amplified current signal detection in the immunosensor and
facilitating the immobilization of Ab. The immunosensor was constructed by immobi-
lizing MWCNTs @ ATO-CS, Ab, and BSA on SPCE through the layer-wise self-assembly
method. Each step of sensor fabrication was characterized using CV and DPV. Parameters,
such as the loading of antibodies and the incubation time of the immune reaction, were
optimized. The calibration curve was established under optimal conditions, showing a
linear relationship for AFB1 in the range of 10−3 to 103 ng/L with a linear equation of
y = 3.318x + 15.771 (R2 = 0.995). The immunosensor also demonstrated a limit of detection
of 0.03 ng/L (S/N = 3). The specificity and stability of the immunosensor were verified,
demonstrating excellent performance. Furthermore, the spiked recovery detection test in
peanut oil samples illustrated the immunosensor’s potential for practical sample detection.
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Highlights:

• Recent report on paper-based genosensor for the diagnosis of ZIKV target DNA.
• Silver nanoparticles were characterized by XRD/UV-Vis/TEM.
• Cross-reactivity of genosensor was deduced.
• Electrochemical validation was performed through CV.

Abstract: Zika virus (ZIKV), a positive-sense single-stranded RNA virus, has been declared as the
cause of a ‘worldwide public health emergency’ by the WHO since the year 2016. In cases of acute
infections, it has been found to cause Guillain–Barre syndrome and microcephaly. Considering the
tropical occurrence of the infections, and the absence of any proper treatments, accurate and timely
diagnosis is the only way to control this infectious disease. Currently, there are many diagnostic
methods under investigation by the scientific community, but they have some major limitations, such
as high cost, low specificity, and poor sensitivity. To overcome these limitations, we have presented
a low-cost, simple-to-operate, and portable diagnosis system for its detection by utilizing silver
nanoparticles. silver nanoparticles were synthesized via chemical methods and characterization
was confirmed by UV/TEM and XRD. The paper platform was synthesized using a graphene-based
conductive ink, methylene blue as the redox indicator, and a portable potentiostat to perform the
cyclic voltammetry to ensure true point-of-care availability for patients in remote areas.

Keywords: Zika virus; genosensor; paper electrodes; cross-reactivity; synthetic serum

1. Introduction

A mosquito-borne flavivirus, ZIKV, has been the cause of multiple public health con-
cerns and a long-running epidemic since 1947. Previously limited to occasional instances
in Africa and Asia, the virus’ outbreak in 2015 in Brazil suggested an immediate spread
throughout the US. The WHO declared it a worldwide public health emergency in 2016 [1].
ZIKV has recently emerged as a major worldwide threat because it causes microcephaly
in infants born to infected mothers. Epidemiological monitoring of infection has been
hampered by the lack of reliable tests capable of distinguishing between Zika and other
Flavivirus infections, especially the dengue virus. Various Zika-based biosensors have been
developed, which offer advantageous features such as low detection limit, linear range,
and stability, but have some limitations such as the use of the bulky three-electrode setup
and high reagent/sample volume, which restrict their application as POC-based devices.
ZIKV, like other Flaviviruses, is primarily an enveloped virus with a single-stranded RNA
(ssRNA) genome of nearly 11Kb +ve polarity-based gene encoding a single polyprotein,
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bound by an icosahedral enclosure comprising 180 copies within every envelope (E) glyco-
protein with about 500aa (amino acids), and approx. 75aa membrane protein and approx.
165aa precursor-membrane ‘prM’ protein [2,3] Symptoms include moderate influenza,
neurological symptoms, and subclinical presentations in a child born to an infected mother,
and Guillain–Barre syndrome (GBS) in adults [4]. There is currently no cure for ZIKV. The
ZIKV may be detected quickly and easily, lowering the risk of infection and improving its
management. Traditional ZIKV testing methods, such as virus isolation, identification of
ZIKV-specific antibodies, ELISA, and PCR, have some drawbacks. There is a requirement
for an immediate and uncomplicated technique for the diagnosis of ZIKV [5–10]. Scientists
are very interested in developing an effortless and portable approach for diagnosing ZIKV.
Screen-printed electrodes (SPEs) can be fabricated from a variety of materials, including
plastic, paper, and tattoos, and they provide a lot of flexibility in terms of size, shape,
dimensionality, and customizing options. SPEs could be especially useful in the devel-
opment of new approaches and research. Screen printing is distinguished by its ease of
production and application, as it does not necessitate the usage of cleanrooms and can be
performed with low-cost components and even homemade setups. Conductive inks, an
electrode-patterned mesh screen, a squeegee, and an oven are all that are needed for the
screen-printing process [11].

Nanobioconjugates are nanomaterials that have been combined with biomolecules to
form hybrid nano (bio) materials. Hundreds of functional biomolecules and tags immobi-
lized on nanomaterials(nanobioconjugates) have been proven to boost signal enhancement
in a variety of biosensors. Such hybrid systems outperform their individual components,
with each component contributing a unique trait or function to the hybrid that the other
does not [12]. The conjugation of AgNPs with single-stranded DNA (ssDNA) provides a
simple way to create nanobioconjugates with exceptional capabilities for signal extension,
improved sensitivity, and reduced LOD in bioassays [13]. Alves et al. [14] developed
a genosensor based on the graphite carbon electrode. A DNA probe was immobilized
covalently onto the sensing interface and hybridization was detected by the differential
current response. The major advantage of the developed sensor was that it was applied in
an experimental sample and interference with other flaviviruses was also studied. Another
Zika-based genosensor was developed on SPEs by Cajigas et al. [12]. SPEs were modified
with gold nano-architecture and Ru was used as a labeling agent. The sensor was also
applied in serum samples, but the SPEs are very expensive and corrode easily, which limits
their application in POC-based devices. Faria et al. [15] developed a disposable electrode,
which offers many advantageous features such as being economical, having a low reagent
volume, and no bulky electrode set up. The developed biosensor has some limitations,
such as higher response time (1.5 h), and the sensor was not tested to an experimental
sample. Paper-based carbon conductive SPEs modified with AgNPs were utilized as a
platform for immobilization of the oligonucleotide probe of ZIKV. This substance is simple
and economical, has a high reaction yield, an extensive surface area, and the ability to be
functionalized, and is biocompatible. Thus, taking into account things such as enhanced
performance, this effort represents a novel platform for detecting ZIKV, including the
potential to fill the gap in the lack of approaches that sense the target at very low con-
centrations, while also delivering ZIKV analysis in the sample with stability, portability,
and quick analysis. Therefore, PBG is a suitable substitute for easy, stable, low-cost, and
quick identification. As a consequence of the high specificity of DNA, electrochemical
DNA sensing approaches have received a lot of attention. The precision and sensitivity of
DNA-based electrochemical biosensors has improved due to the use of nanomaterials for
signal improvement. Specifically, the working electrode of PBG was modified with silver
nanoparticles on account of its high electrical and thermal conductivity. Furthermore, the
biosensor specific to the target TDNA of ZIKV was immobilized on the surface-modified
working electrode of PBG and an electrochemical investigation was executed to verify the
respective hybridization.
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The current study aimed to develop an electrochemical paper-based device for the de-
tection of ZIKA virus target DNA, which has many advantages such as low sample/reagent
volume, ease of preparation, and more stable printing on paper versus plastic substrate,
and the sensor was also tested in artificial serum samples to ensure sensor applicability in
complex matrices. The use of a cutting-edge portable potentiostat limits the device’s LOD,
but this is mitigated by the fact that it can be replicated in any remote corner of the world,
effectively making the device truly capable of providing POC diagnosis, which is critical
taking the tropical presence of the disease under consideration.

The analytical performance of AgNP/PBG-based biosensor for the selective recog-
nition of ZIKV TDNA was confirmed in this study, establishing the created sensor as a
possible candidate for precise and sensitive Zika virus diagnosis.

2. Methods
2.1. Chemicals, Reagents, Apparatus

Methylene blue was purchased from Sigma Aldrich, India, and all the other chemicals
were of AR grade: silver nitrate (Qualigens) and sodium borohydride (GLR Innovations).
ZIKA target was dissolved in sterile water (100 µM). For the making of synthetic serum:
NaCl, CaCl2, KCl, MgSO4, NaHCO3, Na2HPO4, and NaH2PO4 were used. A 23-base
oligonucleotide probe DNA(PDNA) was obtained from Merck (Rahway, NJ, USA) for
capturing the 23-base target DNA (TDNA), which it was complimentary to. The used
sequence of ZIKV target DNA and probe DNA was acquired from the work of Zhang
et al. [16].

Probe Sequence: AGCCATGACCGACACCACACCGT
Target Sequence: TCGGTACTGGCTGTGGTGTGGCA
The yellow fever oligonucleotide, used for testing the specificity of the device, was

also obtained from Merck (Rahway, NJ, USA).
Target Sequence: CGATTAACTCCACATAACCAGACG
For the preparation of silver NPs: chloroauric acid (John Baker Inc.), trisodium citrate

(LOBA), NaBH4 (GRL Innovations), CTAB (HIMEDIA), and ascorbic acid (SRL) were used.
All other chemicals are purchased from LOBA (Colaba, Mumbai, India).

The electrochemical measurements including cyclic voltammetry (CV) were performed
on Metrohm Dropsens (Asturias, Spain) (µStat-I 400s). Photometric analysis of absorbance
was performed using UV-Visdouble beam spectrophotometer (HALO DB-20R) (Dynam-
ica Scientific, Livingston, United Kingdom). The microstructural characterizations were
executed via using X-ray diffraction (XRD) (Smart Lab guidance, Rigaku, Tokyo, Japan)
to check the phase and crystallinity. AgNP morphology was inspected via TEM on Talos
L120C (Thermo Fisher Scientific, Waltham, MA, USA).

2.2. Synthesis of Silver NPs

Silver NPs were synthesized by the chemical reductant method. A total of 10 mL of
freshly prepared 1mM AgNO3 solution was added in a dropwise fashion (1 drop/second)
to 30 mL of 2 mM ice-cold NaBH4 solution, while continuously stirring the solution, to
form a bright yellow solution when all the silver nitrate was added; this bright yellow
solution contains the AgNPs.

AgNO3 + NaBH4→Ag + 1/2H2 + 1/2B2H6 + NaNO3

The bright yellow solution containing the Ag nanoparticles was analyzed by photo-
metric analysis and showed peak absorbance at 387.5 nm using a HALO DB-20R UV-Vis
beam spectrophotometer.

2.3. Preparation of Synthetic Serum

For the preparation of synthetic serum, 6.8 g of NaCl, 0.2 g CaCl2, 0.4 g KCl, 0.1 g
MgSO4, 2.2 g NaHCO3, 0.126 g Na2HPO4, and 0.026 g of NaH2PO4 were dissolved in
distilled water, and the pH was maintained at 7.4.
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2.4. Development of PBGs

A silk screen with a laser-cut patterned solid skin adhered to it, according to prede-
termined dimensions for a two-electrode system, was used for hand printing. Carbon
conductive ink was pressed onto cellulose papers through the open regions of the overhead
specified screen using a squeegee. The dimensions of the electrode were pre-fixed and
framed on the silk screen, which was further used as a stencil for the preparation of the
electrodes. The printed electrodes were a two-electrode system: a counter electrode (CE)
and a working electrode (WE). This led to the construction of the PBGs.

2.5. Deposition of the Silver Nanoparticles and Immobilization on the PBG

The synthesized silver nanoparticles were drop-deposited (20 µL) on the circular
working area of the paper-based biosensor. The paper-based biosensor was then dried on
a hot plate at 60 ◦C. After modification with silver nanoparticles, the working area was
immobilized with the consensus biosensor of the probe. For this, 20 µL of the probe DNA
was dropped over the working area. This biosensor-modified electrode was further used
for the recognition of the target DNA of Zika.

2.6. Stages for Electrochemical Detection

In order to make a functioning and selective biosensor for detecting Zika virus cDNA,
the probe DNA needs to be deposited onto the working electrode with the help of the
nanoparticles. For this, cyclic voltammetry (CV) values of bare electrodes with no deposi-
tion were analyzed. Next, the AgNPs were deposited onto the paper-based biosensor and
dried over night after which each voltammetry was repeated as before; for the next step,
the PDNA was deposited on a paper-based biosensor containing dried AgNPs, and CV
values were recorded at each fabrication stage. For the last phase of the biosensor design,
the analyte molecule, the TDNA, was deposited onto electrodes containing both AgNPs
and PDNA; CV was performed and values were recorded.

2.7. Optimization of Physicochemical Parameters

The detection capacity of the genosensor was optimized by observing the alterations
in the voltammograms caused by changes to the different detection parameters. This was
achieved by manipulating the required parameters in the TDNA sample. Concentrations
of 0.1, 1, 10, and100 µM were made, the TDNA was incubated at different temperatures
(15, 25, 30, and 45 ◦C), and the time given for hybridization by the potentiostat (tcond) was
altered.

2.8. Binding of the Analyte on AgNPs/Probe/Target/PBGs

The different concentrations of the biosensor (0.1, 1, 10, and100 µM) were detected by
dropping a mixture of target DNA and MB. The CV measurements were performed so that
the hybridization between the biosensor and target DNA could be confirmed. TDNA was
drop-deposited over PDNA/AgNPs/PBGs with different concentrations of TDNA.

2.9. Procedure for Experimental Sample Analysis, Repeatability, and Stability Analysis

The capability of the genosensor to perform in experimental samples was checked by
adding a known concentration of the target DNA in the synthetic serum. This solution along
with the hybridization indicator was added over a probe biosensor-modified paper-based
electrode system. Electrochemical assessments were performed to check the results.

2.10. Principle behind Sensing

The proposed PBG works on the principle that the hybridization of DNA into the
double-helical structure causes a lowering of the peak current value of the CV curve, as
demonstrated by Pan et al. [17]. This can be attributed to the molecular interaction of MB
with ssDNA and dsDNA, while with ssDNA it can only have electrostatic interactions;
however, when the DNA is present in its double-stranded helical form, it can also intercalate
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between the structure in addition to the electrostatic interactions. Therefore, in ssDNA, MB
has a significantly lower binding constant, thus allowing for a better passage of current.
This results in a greater negative formal potential with dsDNA than with ssDNA.

3. Results

The fabrication method of the electrode involves the deposition of AgNPs onto the
working surface of the paper electrode. The AgNPs were drop-deposited onto the surface of
the electrode. After the drop-deposition of the AgNPs, the DNA probe was also put onto the
working surface of the paper electrodes. The AgNPs provided a biocompatible environment
to the biological identification component and accelerated the electron transfer.

3.1. Morphological Characterization of Silver Nanoparticles

The XRD patterns of silver nanoparticles are shown in Figure 1a. The XRD pattern
revealed that it has a face-centered cubic crystal structure. According to the obtained
XRD result, the 111, 200, 220, and 311 crystallographic planes of silver nanoparticles were
responsible for the 2thata values of 38.15◦, 44.06◦, 66.20◦, and 76.61◦ peaks, respectively.
The XRD pattern demonstrated that the Ag-NPs synthesized in this work were crystalline
in nature. The formation of Ag-NPs was also confirmed by measuring the SPR over the
wavelength range of 300–800 nm using UV-Vis spectroscopy. According to the reported
data, the spherical Ag-NPs contribute to the absorption bands at approximately 400–450 nm
in the UV-visible spectra. The UV-visible absorption spectrum revealed that the wide SPR
band had a single peak at 445 nm, which was located in the broad SPR band. This peak
confirmed the presence of a uniform distribution of Ag-NPs in the synthesized sample
as shown in Figure 1b. TEM images (Figure 1c) depicted that the silver nanoparticles are
spherical in shape and 30 nm in size. Figure 1d shows the average particle size of the
nanoparticles to be around 25nm.
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3.2. Electrochemical Properties of DNA Probe/AgNPs/PBGs

The electrochemical characterization of the DNA probe/AgNP/PBG-modified elec-
trodes was performed by employing the electrochemical CV technique. Figure 2 shows
the differential current response at different stages of the electrode. As the bare electrode
showed a smaller peak current response (0.26 µA), which is attributed to the lower electron
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transfer kinetics. Upon deposition of the AgNPs onto the working surface, there was
a significant two-fold increase in current response (1.59 µA), which was due to the fast
electron transfer kinetics provided by silver nanoparticles. After immobilization of the
biological recognition element (DNA probe) onto the working surface, the current (1.07 µA)
was drastically decreased due to the nonconductive nature of DNA. After the introduction
of target DNA, the current response (0.81 µA) was further decreased due to the well-known
MB principle. MB was intercalated between the bases, which significantly decreased the
current response.
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3.3. Effect of Different Target DNA Concentrations on the DNA Probe/AgNPs/PBGs

Different concentrations of TDNA were analyzed to depict the quantitative perfor-
mance of the developed sensor. Different concentrations varying from 0.1 to 100 µM were
employed for the hybridization of the ssDNA probe. The results concluded that TDNA is
showing hybridization with the ssDNA probe, and at different concentrations a varying
current response was observed, which confirmed the quantitative performance of the de-
veloped sensor. The results obtained were in line with the earlier reported sensors. Upon
increasing the concentrations of TDNA, there was a decreased current response as more
insulating layers of biological recognition element retarded the electron transfer. A linear
relationship was found between the log value of the TDNA concentration and the anodic
current value, and a good r2 value was found. The detection limit was found to be 0.1 µM
(Figure 3).
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Figure 3. (a) CV of DNA probe/AgNP/PBG-modified electrode using different concentrations
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50 mV s−1 in the potential range from −1 V to +1 V. (b) Linear curve of the current value and log of
the target DNA concentration. The error bar represents the standard deviation of the sensor for each
concentration repeated 5 times.
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3.4. Optimization of DNA Probe/AgNP/PBG Platform in Terms of Temperature and Time

Optimization of the sensor is very important for the smooth functioning of the de-
veloped sensor. The performance of the sensor depends on pH, temperature, and time.
Therefore, the sensor was optimized in terms of these experimental variables so that max-
imum response could be achieved (Figure 4). The performance of the developed sensor
DNA probe/AgNPs/PBGswas extensively studied in varying different ranges of tempera-
ture and time. The cyclic voltammogram of the DNA probe/AgNPs/PBGs was observed
at different temperatures ranging from 15 to 45 ◦C at a scan rate of 50 mV/s. The highest
response was observed at 45 ◦C, with its peak almost approaching the peak of the CV
without TDNA; this could be due to instability of the double helical structure at high
temperatures, as the high-energy TDNA would not easily bind to the PDNA. Therefore, the
sensor was optimized at 25 ◦C. The created sensor was tuned at various times to provide
the best possible response at any given moment. After 20 s, there was no significant change
in anodic current value as current values of 20 s and 30 s were overlapping with each
other, implying that 20 s is the optimal reaction time. An ideal incubation time of 20 s was
maintained prior to the anticipated sweep runs.

Micromachines 2022, 13, x FOR PEER REVIEW 8 of 12 
 

 

 
Figure 4. Cyclic voltammetry obtained at DNA probe/AgNPs/PBGs for different (a) temperature 
(15–45 °C) and (b) time (10–40 s) in 10 mM methylene blue in 0.1 M KCl at 50 mV s−1 in the potential 
range from −1 V to +1 V. 

3.5. Evaluation Parameters 
The developed sensor was evaluated in terms of its reproducibility, recovery, and 

stability (Figure 5 and Table 1). The recovery of the developed sensor was checked by 
adding 4 µM to the initial concentration 1 µM. The current response of the original con-
centration (5 µM) was similar to the current response obtained after addition. The devel-
oped sensor was able to show good recovery. CV was taken to check the reproducibility 
of the modified sensor. The developed sensor was checked at five replicates’ determina-
tion. The target DNA was estimated on a single day five times and it was observed that 
the current remained unchanged at different determinations. The response of the sensor 
was also estimated after one week and the sensor response was found to be almost the 
same. The observations demonstrated that the sensor showed high reproducibility. The 
developed sensor was tested for its long-term stability. The paper electrodes were checked 
after 15 days. The sensor showed almost the same response as it did on day one. 

 
Figure 5. Bar graph depicting the stability of the modified electrode DNA probe/AgNPs/PBGS for 
TDNA on the 7th, 14th, 21st, and 30th day in 10 mM methylene blue in 0.1MKCl at 50 mV s−1 in the 
potential range from −1 V to +1V. 

Figure 4. Cyclic voltammetry obtained at DNA probe/AgNPs/PBGs for different (a) temperature
(15–45 ◦C) and (b) time (10–40 s) in 10 mM methylene blue in 0.1 M KCl at 50 mV s−1 in the potential
range from −1 V to +1 V.

3.5. Evaluation Parameters

The developed sensor was evaluated in terms of its reproducibility, recovery, and
stability (Figure 5 and Table 1). The recovery of the developed sensor was checked by
adding 4 µM to the initial concentration 1 µM. The current response of the original concen-
tration (5 µM) was similar to the current response obtained after addition. The developed
sensor was able to show good recovery. CV was taken to check the reproducibility of the
modified sensor. The developed sensor was checked at five replicates’ determination. The
target DNA was estimated on a single day five times and it was observed that the current
remained unchanged at different determinations. The response of the sensor was also
estimated after one week and the sensor response was found to be almost the same. The
observations demonstrated that the sensor showed high reproducibility. The developed
sensor was tested for its long-term stability. The paper electrodes were checked after
15 days. The sensor showed almost the same response as it did on day one.
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Table 1. Recovery test of constructed biosensor of ZIKV.

Initial Concentration
(µM)

Concentration
Added (µM)

Concentration
Found (µM)

Recovery
(Percentage)

1 4 5.1 102

3.6. Specificity and Reliability

This PBG selectivity was estimated via analysis with the target yellow fever virus
(YFV) DNA. Reactivity was observed only in the target DNA of ZIKV. Results show that
there was no major change in the current peak of the DNA probe of ZIKV before or after
the addition of the target DNA for YFV, respectively; the current peak remained unchanged
(Figure 6). This study revealed that the target DNA YFV had no specific binding to the
specific probe DNA of ZIKV. However, in presence of the target ZIKV DNA, binding
occurred between the DNA probe and the target ZIKV TDNA. The bar graph in Figure 6
represents the confirmation of the above results.
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3.7. Analysis of Experimental Sample

The CV response of the sensor when the TDNA ZIKV was spiked into a synthetic
serum sample was found to be similar to the target DNA alone (Figure 7). The developed
sensor was able to detect the target DNA in synthetic serum as the current response was
found to be almost the same as the target DNA alone.
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Figure 7. CV peak current study of TDNA of ZIKV in synthetic serum at modified DNA
probe/AgNPs/PBGs in10 mM methylene blue in 0.1 M KCl at 50 mV s−1 in the potential range
from −1 V to +1 V. CV peak current was compared with the synthetic serum, TDNA, and TDNA in
synthetic serum.

4. Discussion

The present work aimed to develop an electrochemical paper-based device for the
detection of ZIKA virus target DNA, which offered many advantages, such as low sam-
ple/reagent volume, ease of preparation, and more stable printing on paper, unlike plastic
substrate, and the sensor was also applied in artificial serum samples so that sensor ap-
plicability could be checked in complex matrices. The use of a state-of-the-art portable
potentiostat acts as a limiting factor for the device’s LOD, as can be seen in Table 2, but this
diminishes when the fact that this can be replicated in any remote corner of the world is
taken into consideration, effectively making the device truly capable of providing POC
diagnosis, which is crucial considering the tropical presence of the disease in question. Still,
the developed genosensor has major disadvantages in that the sensor was not able to detect
the direct antigen, which can be overcome by employing aptamers a biological recognition
elements. The employment of aptamers as biological or structural recognition elements
can be considered as a future perspective of the developed study. The advancement in
technology and the development of more sensitive potentiostat devices also open the scope
of lower LODs and better detection capabilities for such devices.
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Table 2. Comparative study of various ZIKV-based genosensors.

Biosensors Linear Range LOD References

Electrochemical genosensor for Zika virus based
on a poly-(3-amino4-hydroxybenzoic

acid)-modified pencil carbon graphite electrode
84.0 pM to 1.41 nM 25.4 pM [14]

Gold nanoparticle/DNA-based
nanobioconjugate for electrochemical detection

of Zika virus

10 to 600 fM and from 500 fM
to 10 pM of the target

0.2 and 33 fM at the SPAuE
and SPCE/Au [12]

Label-free electrochemical DNA biosensor for
Zika virus identification - 25.0 ± 1.7 nM [15]

A sensitive label-free impedimetric DNA
biosensor based on

silsesquioxane-functionalized gold nanoparticles
for Zika virus detection.

1.0 ×10−12–1.0 ×10−6 M 0.82 pM [18]

Electrochemical biosensor based on surface
imprinting for Zika virus detection in serum 10 fM–1 µM 9.4 fM [19]

Acrylic-based genosensor utilizing metal
salphen labeling approach for reflectometric

dengue virus detection
1 × 10−15 M to 1 × 10−3 M 1.21 × 10−16 M [20]

Rapid, point-of-care, paper-based plasmonic
biosensor for Zika virus diagnosis 10–105 nM 1 nM [21]

Diagnosis of Zika infection using a ZnO
nanostructure-based rapid electrochemical

biosensor
0.1 nM to 100 nM 1.00 pM [22]

Cyclic voltammetric PBG-based detection of the
target DNA of Zika virus 0.1 to 100 µM 0.1 µM

This
present
work

5. Conclusions

The current research describes the synthesis of electrochemical PBGs for the identi-
fication of ZIKV TDNA. AgNPs deposited on paper-based electrodes were utilized for
boosting the signal response. The sensor displayed an enhanced linear range from 0.1 to
100 µM and the lower limit of detection was 0.1 µM. The usage of paper-based electrodes
also put on the benefit of being disposable and lower-cost, as well as having the capability
of being fabricated in-house. All of these features together make the current effort ideal for
developing point-of-care systems. With a few adjustments, this approach could develop
into a technology that could be employed at the bedside of ZIKV patients.
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Abstract: Blood pressure (BP) is an essential physiological indicator to identify and determine
health status. Compared with the isolated BP measurement conducted by traditional cuff approaches,
cuffless BP monitoring can reflect the dynamic changes in BP values and is more helpful to evaluate the
effectiveness of BP control. In this paper, we designed a wearable device for continuous physiological
signal acquisition. Based on the collected electrocardiogram (ECG) and photoplethysmogram (PPG),
we proposed a multi-parameter fusion method for noninvasive BP estimation. An amount of
25 features were extracted from processed waveforms and Gaussian copula mutual information (MI)
was introduced to reduce feature redundancy. After feature selection, random forest (RF) was trained
to realize systolic BP (SBP) and diastolic BP (DBP) estimation. Moreover, we used the records in
public MIMIC-III as the training set and private data as the testing set to avoid data leakage. The
mean absolute error (MAE) and standard deviation (STD) for SBP and DBP were reduced from
9.12 ± 9.83 mmHg and 8.31 ± 9.23 mmHg to 7.93 ± 9.12 mmHg and 7.63 ± 8.61 mmHg by feature
selection. After calibration, the MAE was further reduced to 5.21 mmHg and 4.15 mmHg. The
result showed that MI has great potential in feature selection during BP prediction and the proposed
multi-parameter fusion method can be used for long-term BP monitoring.

Keywords: blood pressure; wearable device; feature extraction; GCMI

1. Introduction

Blood pressure (BP) is one of the most important parameters for monitoring the status
of the body and can be used in the diagnosis and treatment of many diseases. Unfortunately,
in recent years, the number of hypertension (HPT) patients continued to increase and
became an urgent global health problem [1]. HPT could increase the pressure of blood
on the walls of the arteries, which gradually affects several organs, including the heart,
brain, and kidneys. HPT even has the potential to cause the blockage or rupture of blood
vessels that supply oxygen to the brain, which greatly increases the risk of accidents [2–4].
BP regulation is influenced by a variety of factors, such as cardiac ejection, peripheral
resistance, and vessel wall elasticity, and also has a relation with mood and age. As HPT is a
chronic disease that requires long-term monitoring, a single BP measurement is not able to
provide an accurate view of the body’s condition. Therefore, it is very important to propose
a noninvasive continuous blood pressure estimation method, which can reflect the physical
condition of the human body in real time and reduce the incidence of cardiovascular
diseases [5].

The mainstream cuffless BP measurement methods analyze the features of phys-
iological signals such as photoplethysmogram (PPG) [6], electrocardiogram (ECG) [7],
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ballistocardiogram (BCG) [8], etc., and predict BP by machine learning (ML). The key
technologies are physiological signals acquisition [9] and feature extraction [10,11]. In the
last decade, with the development of semiconductor technology and the popularity of
wearable health monitoring devices, people were found to use such devices to achieve a
variety of physiological signal acquisition without interfering with normal human activities.
The quality of signals directly affects the accuracy of prediction. This poses a challenge
to the design of acquisition hardware but also makes continuous BP monitoring possible.
In [12], Rachim et al. designed a multimodal biosensor to measure PPG and impedance
plethysmography (IPG) from the participant’s wrist. Then, 14 PTT-features were calcu-
lated between the IPG peak-point and PPG. The comparative experiment showed that the
extracted PTT-features had a certain correlation with BP, but its correlation coefficient for
SBP was weaker than that of conventional PAT, which was located by ECG. In addition,
compared with the fingertip, the wrist was more active and had a bad influence on the
collected PPG signals. Therefore, the author only analyzed the time characteristics and
did not use other amplitude characteristics. Bui et al. [13] chose the ear as the measuring
location to minimize motion interference and ensure comfort. Benefiting from the good
contact between the ear and the sensor, the author collected the PPG signal with high
quality. However, because of the lack of ECG as a reference, the features provided by a
single PPG are still limited. Multiple types of signals are conducive to obtaining richer
features and improving the accuracy of results. Hence, researchers must consider comfort,
signal diversity, and quality while using wearable devices to collect physiological signals.

For feature extraction, scholars try to synthesize multiple physiological signals and
select information in multiple dimensions such as the time domain and frequency domain.
Among them, pulse transit time (PTT) [14], pulse arrival time (PAT) [15], pulse wave veloc-
ity (PWV) [16], etc. were proven to be effective. Chen W et al. [17] adopted that PTT was
highly correlated with the high-frequency components of BP. Through calibration, more
accurate blood pressure estimation can be achieved. Meanwhile, age, gender, cardiovascu-
lar disease, and other factors determine arterial stiffness, which is significantly correlated
with PTT [18]. Zhang et al. [19] considered how the autonomic nervous system affects
the heart and blood vessels. He extracted nine features related to heart rate variability
(HRV) and combined them with other PPG features. The result proved the effectiveness of
HRV features. Geerthy et al. [20] extracted informative features such as SDI, Womersley,
and QRS from PPG and ECG signals and used a genetic algorithm (GA) to select features.
The best optimal feature set reduced the mean absolute error (MAE) from 13.20 mmHg to
9.54 mmHg for systolic BP (SBP) and 9.91 mmHg to 5.48 mmHg for diastolic BP (DBP),
respectively. Wang et al. [21] collected 30 sets of PPG and ECG signals by Finometer. Then,
39 features were extracted and 10 features were finally retained by comparing their correla-
tions with BP. In [22], 32 features from PPG were extracted to estimate BP. These features
almost comprehensively contained multiple scale information such as amplitude, time,
and frequency. Shuo et al. [23] introduced the mean impact value (MIV) to investigate the
impact of each feature and the genetic algorithm (GA) to implement parameter optimiza-
tion. After optimization, the MAE of SBP and DBP reached 3.27 mmHg and 1.16 mmHg.
Through the joint analysis of the PPG signal and its derivatives, Chowdhury et al. [24]
extracted up to 101 features, among which 75 features were from the time domain, 16 were
from the frequency domain, and the remaining 20 were computed using statistical analysis.
It was observed that the number of features extracted from the signal increased, which not
only aggravated the workload of feature extraction but also made model training more
difficult. Compared with the feature extraction itself, how to screen out the optimal solution
from many features became another issue for scholars to research.

Different from traditional ML methods, deep learning (DL) methods avoid the draw-
backs of manual feature extraction. It can automatically learn more abstract and high-
dimensional features from the input signal, which enables it to have stronger adaptability
for nonlinear system complexity [11]. Benefiting from its powerful data mining capabilities,
machine learning can be combined with biological signal processing and achieved good
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performance [25]. Yu et al. [26] introduced an attention-based residual block to U-Net to
predict BP. The result showed that the combination of PPG raw signal, first derivative, and
second derivative as model input was helpful for the network to extract more information.
Wang et al. [27] proposed an end-to-end model to measure BP. The model consisted of
one-dimensional convolutional layers, depth-separable convolutional layers, and a gated
recurrent unit (GRU). The average absolute error (MAE) was 3.95 mmHg for SBP and
2.14 mmHg for DBP, which met the international standard. Senturk et al. [28] analyzed
the performance of dynamic learning methods, such as recurrent neural networks (RNN),
nonlinear autoregressive networks with exogenous inputs neural networks (NARX-NN),
and long short-term memory neural networks (LSTM-NN). The experiment showed that
NARX had the most potential.

Despite the great performance in BP prediction, DL still has the following shortcom-
ings. On the one hand, it relies on a large amount of data during the training process, and
it is difficult to achieve good performance on small batches of data. On the other hand,
neural network features are not easily understood at the semantic level, which makes it
more challenging for scholars to interpret the experimental results.

Above all, as ECG and PPG signals have irreplaceable effects on BP assessment, we
designed a wearable physiological signal acquisition device that could continuously collect
and transmit two signals in real time. In order to make the acquisition process comfortable,
we adopted a separate design for the host and the sensor. Meanwhile, combining individ-
ual features with waveform features, a multi-parameter fusion method for non-invasive
continuous BP estimation was proposed and mutual information (MI) [29] was introduced
for feature selection. The main contributions in this paper are as follows:

(1) We used a split design where the acquisition host and sensor were connected via
a type-C interface. This not only ensured the quality of the collected signal but
also facilitated the replacement of the sensor. The host can either transmit data
wirelessly in real time or store data locally as a backup. The whole host size was only
42 mm × 29 mm × 13 mm and caused a little burden on the human body.

(2) We constructed a private database by self-collected data. Then, the model was trained
on the MIMIC III dataset [30] (accessed on 10 January 2020) and tested on the private
dataset, which avoided data leakage. After training, we calibrated the model with a
quarter of the records in the testing set.

(3) Gaussian copula MI (GCMI) was used to rank the initial 25 features. Then, 11 and
15 features were retained for SBP and DBP prediction, respectively. The results showed
that the optimal feature set improved performance.

2. Data Preparation

In this section, we will describe the wearable device structure and the data acquisition
process for noninvasive continuous BP estimation.

2.1. Cuff-Less Continuous BP Measurement System

The hardware block diagram of the BP monitoring system designed in this paper is
shown in Figure 1a. The host system consisted of five parts: the main control unit, the signal
acquisition front-end (AFE) circuit, the storage circuit, the wireless transmission circuit,
and the power supply management circuit. The STM32F205 chip was chosen as the main
control, which had an Arm Cortex-M3 core with a maximum main frequency of 120 MHz.
The acquisition circuit contained the synchronous record of PPG and ECG signals. For
ECG signals, ADS1298 was selected as the AFE chip to collect the lead II signals. It could
provide 24-bit analog-to-digital conversion accuracy and up to 12× signal amplification.
At the same time, it had a 500 Mohm input impedance and ±400 mV dynamic input range,
which met the requirements of ECG acquisition. For PPG signals, AFE4490 was used as
the analog AFE. It had two programmable 8-bit resolution current output functions. The
maximum output current was 200 mA and could drive red light and infrared light. For the
convenience of acquisition, we designed a peripheral sensor that integrated a finger-clip
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blood oxygen probe and ECG electrodes, which were connected to the main circuit through
a type-C interface. The sampling rate was set to 125 Hz. We chose nRF52832 as the wireless
transmission chip, which was equipped with Bluetooth Low-power Energy (BLE) wireless
communication protocol and can communicate with other Bluetooth devices. Meanwhile,
considering the instability of wireless transmission, we selected a 32 GB eMMC as the local
storage, which was suitable for long-term collection.

Micromachines 2023, 14, x FOR PEER REVIEW 4 of 16 
 

 

was used as the analog AFE. It had two programmable 8-bit resolution current output 

functions. The maximum output current was 200 mA and could drive red light and infra-

red light. For the convenience of acquisition, we designed a peripheral sensor that inte-

grated a finger-clip blood oxygen probe and ECG electrodes, which were connected to the 

main circuit through a type-C interface. The sampling rate was set to 125 Hz. We chose 

nRF52832 as the wireless transmission chip, which was equipped with Bluetooth Low-

power Energy (BLE) wireless communication protocol and can communicate with other 

Bluetooth devices. Meanwhile, considering the instability of wireless transmission, we se-

lected a 32 GB eMMC as the local storage, which was suitable for long-term collection. 

Host system

MCU

Power Management

USB
Local 

Storage

AFE 

Interface
PC

TypeC

PPG

ECG

BLE
TypeC

(a)General block diagram of hardware

(c)Host system

Phone

Peripheral 

Sensor

(b)Peripheral Sensor
 

Figure 1. Hardware system. (a) General block diagram of hardware; (b) Peripheral sensor; (c) Host 

system.  

The whole hardware system is shown above. Figure 1b exhibits the customized ECG 

electrodes and oximetry probe and Figure 1c exhibits the final host device and the internal 

PCB circuit. 

2.2. Data Collection 

A total of 15 volunteers participated in the data collection of this experiment, includ-

ing 13 males and 2 females, aged from 20 to 30 years old. These experiments were con-

ducted according to the Helsinki declaration. All subjects volunteered to participate in the 

study and signed a written consent form before participation. Participants did not take 

any specific medications. During the acquisition, RA and LL electrodes were connected to 

the subject to collect II-lead ECG. In order to reduce the noise effect, an additional RL 

electrode was added as the reference ground. The PPG signal was collected at the index 

finger by the finger clip-type oximetry probe. Figure 2a illustrates an example of wearing 

the device during acquisition. 

Figure 1. Hardware system. (a) General block diagram of hardware; (b) Peripheral sensor; (c) Host
system.

The whole hardware system is shown above. Figure 1b exhibits the customized ECG
electrodes and oximetry probe and Figure 1c exhibits the final host device and the internal
PCB circuit.

2.2. Data Collection

A total of 15 volunteers participated in the data collection of this experiment, including
13 males and 2 females, aged from 20 to 30 years old. These experiments were conducted
according to the Helsinki declaration. All subjects volunteered to participate in the study
and signed a written consent form before participation. Participants did not take any
specific medications. During the acquisition, RA and LL electrodes were connected to the
subject to collect II-lead ECG. In order to reduce the noise effect, an additional RL electrode
was added as the reference ground. The PPG signal was collected at the index finger by
the finger clip-type oximetry probe. Figure 2a illustrates an example of wearing the device
during acquisition.
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After the connection, volunteers were asked to sit in the chair with a relaxed posture
and PPG and ECG signals were simultaneously collected for 30 s. Next, SBP and DBP
values were obtained by measuring the left arm of the volunteers using a traditional cuff
BP monitor (OMROM HEM-7211) after two minutes of rest, as shown in Figure 2b. This
process was repeated five times with a 2 min interval between each measurement. The
lowest and highest values of the five measurements were removed, and the mean value
of the remaining three measurements was referred to as ground truth. Finally, a total of
90 records were saved as a private dataset.

2.3. MIMIC-III Dataset

MIMIC-III is an extensive and freely available database comprising health-related
data associated with over forty thousand patients who stayed in critical care units of the
Beth Israel Deaconess Medical Center between 2001 and 2012 (Johnson et al., 2016) [30]. It
consists of a clinical database and a waveform database. The clinical database is a relational
database composed of 26 tables and the clinical records can be queried by SQL language.
The waveform database contains the waveform records, and the sampling rate was 125 Hz.
Although the original database contained a large number of data records, many patients
had incomplete information, which did not meet the experimental requirement, and so, we
conducted a preliminary screening of the data. Furthermore, since the data in the collected
database were from young people, we only retained the data of patients aged between
20 and 40 years to avoid bias in model training. Finally, we kept 900 records as a training
data set.

2.4. Preprocessing

The same preprocessing procedure was performed for both the data in MIMIC-III and
the collected data. ECG signal acquisition process was mixed with various interferences,
such as baseline drift, electrode motion, muscle artifact, and power line interference [31].
We used a bidirectional infinite impulse response filter to denoise the ECG signal. Firstly,
the mean value of the ECG signal was subtracted to remove the direct current component.
Then, the fourth-order bidirectional low-pass filter was used to remove the high-frequency
noise with a cut-off frequency of 35 Hz [32]. Finally, the second-order bidirectional high
pass filter was used to remove the baseline drift with a cut-off frequency of 0.9 Hz.

To prevent waveform distortion caused by denoising, we used a low-pass filter and
cubic spline interpolation to denoise the PPG signal. Firstly, the mean value of the PPG
signal was subtracted to remove the direct current component, and then, the high-frequency
noise was removed by using a low-pass filter with a cut-off frequency of 10 Hz. Finally, we
used cubic spline interpolation to remove the baseline drift.

121



Micromachines 2023, 14, 804

MIMIC-III contains continuous ambulatory blood pressure waveforms, and so, we
located the peaks and valleys of each segment as SBP and DBP labels, respectively. In order
to facilitate subsequent feature extraction, we extracted corresponding feature points in
ECG and PPG, respectively. Feature point detection mainly includes R-wave peak detection
of the ECG signal, peak, valley, and maximum slope point detection of the PPG signal.
In Figure 3, point A is the R-wave peak of the ECG signal. Points B, C, and D are the
valley, maximum slope point, and the peak of the PPG signal, respectively. We used the
Pan-Tompkin algorithm [33] to realize R-wave peak detection. Peak detection of the PPG
signal was realized by the double-threshold detection algorithm [34]. Once the peak was
determined, the search area of other feature points could be obtained. Starting from the
peak, we searched forward the 0.4 times of the peak interval to find the zero-crossing point
of the first derivative of the PPG signal from negative to positive, to realize the valley
detection. The peak point of the first derivative was found in the area from the valley to
the peak of the ascending branch of the PPG signal to detect the maximum slope point.
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3. Proposed Method

In this section, we will introduce the process of feature extraction, selection, and BP
prediction. Figure 4 demonstrates the block diagram of the proposed method.
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3.1. Feature Extraction

We extracted 3 individual features and 22 waveform features. Table 1 lists the abbrevi-
ation and definition of features.
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Table 1. Feature abbreviation and definition.

Index Feature Definition

1 Gender Gender of subjects
2 Age Age of subjects
3 Weight Weight of subjects
4 PATp Pulse transit time from the R peak of ECG to the peak point of PPG
5 PATf Pulse transit time from the R peak of ECG to the valley point of PPG
6 PATd Pulse transit time from the R peak of ECG to the maximum difference point of PPG
7 HR Heart rate
8 PP The peak-to-peak interval of PPG
9 PPT The time interval from the first peak point to the second peak or the inflection point of PPG
10 PIRp PPG intensity ratio of the peak point to valley point
11 PIRmd PPG intensity ratio of the maximum difference point to the valley point
12 PIavg The average amplitude of PPG
13 PIsd The standard deviation of PPG
14 PImax The maximum amplitude of PPG
15 PImin The minimum amplitude of PPG
16 SA The sum of ascending branch value of PPG
17 AA The average of ascending branch value of PPG
18 SD The sum of descending branch value of PPG
19 AD The average descending branch value of PPG
20 SR The sum ratio of ascending branch value to descending branch value of PPG
21 K K value of PPG
22 AT Ascending time of PPG
23 DT Descending time of PPG
24 AS The ascending slope of PPG
25 DS The descending slope of PPG

1. Individual features

It was proved that age and gender were correlated with arterial stiffness and PWV [35,36],
and so, we took individual information into account. During the collection process, we
recorded the gender, age, and weight information of each volunteer. Meanwhile, by querying
the MIMIC-III clinical database, this information can also be obtained.

2. PAT

PAT is defined as the time required for blood to flow from the beginning of the
electrical activation of the heart to the distal point [15]. As it contains the PTT feature, PAT
is often used as a critical parameter for BP estimation [14]. Generally, the R- peak of the
ECG signal is taken as the starting point, and the feature points of the PPG signal are taken
as the ending point to calculate PAT. We extracted PATp, PATf, and PATd, which means the
distance from the R-peak of the ECG signal to the peak, the valley, and the maximum slope
point of the PPG signal, which is shown in Figure 3.

3. Other time-related features

Heart rate (HR): HR reflects the heart cycle and can be calculated by the RR interval
of the ECG signal. Cardiac output can be correlated with PTT through HR, and so, there
is also a correlation between heart rate and blood pressure. HR can be calculated by the
following formula:

HR =
60× f s

RR
(1)

The peak-to-peak interval of the PPG signal (PP): PP is the time interval between two
peaks. Studies found that participants with HPT or arteriosclerosis had “longer PP interval”
than healthy participants [37].

The PPG waveform consists of ascending branches and descending branches. The
ascending branch time (AT) is the time from the valley to the peak of the PPG signal, which
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was proven to be a useful feature for classifying the PWV. The descending branch time (DT)
is the time from the peak to the next valley of the PPG signal.

Peak-to-peak time (PPT) is defined as the time between the first peak and the second
peak or inflection point of the PPG signal. Its definition depends on the contour of the PPG
waveform [38]. The second peak or inflection point is generated by reflection waves, which
is related to the time required for the PPG signal to transit from the heart to the peripheral
and return, so it can be used to evaluate the artery’s stiffness and the PWV.

4. Intensity-related features

From the perspective of the formation of BP, it is mainly affected by five factors: cardiac
output, peripheral resistance, arterial wall elasticity, circulating blood volume, and blood
volume ratio. PPG intensity ratio (PIR) is related to changes in arterial diameter, which is
the main cause of peripheral resistance and blood volume. PIR can be used to evaluate the
smooth muscle tension that regulates arterial blood pressure in the low-frequency range
and improve the accuracy of blood pressure estimation [39,40]. We selected the ratio of
peak intensity to valley intensity (PIRp) and the ratio of maximum slope point intensity to
valley intensity (PIRmd), which can be calculated by the Formula (2).

PIRx =
PIx

PIv
(2)

where PIRx is the PPG intensity ratio, PIx is the PPG intensity of the peak or the maximum
slope point, and PIν is the PPG intensity of the valley.

To reflect the change in the PPG intensity, we also added the statistical features of
the PPG intensity, including the average value of the PPG intensity (PIavg), the standard
deviation of the PPG intensity (PIsd), the maximum value of the PPG intensity (PImax), the
minimum value of the PPG intensity (PImin).

5. K value

K value can reflect the physiological factors of the human cardiovascular system, such
as vascular peripheral resistance, vascular wall elasticity, and blood viscosity. It is an
important physiological index for the clinical examination of cardiovascular disease and
has important clinical application value. It was calculated according to Formula (3):

K =
Pm − PIv

PIp − PIv
(3)

where Pm is the average intensity of the PPG signal in one cardiac cycle, which was
calculated by Formula (4):

Pm =
1
T

∫ T

0
PI(t)dt (4)

PI(t) is the intensity of the PPG signal at time t, and T is the time of one cycle of the
PPG signal.

6. Other waveform features

The slope of ascending branch and descending branch can be calculated by PIp, AT, and
DT. The area of ascending branch and descending branch can be obtained by integrating
the PPG intensity. We added seven features to the model, including the ascending slope of
the PPG signal (AS), the descending slope of the PPG signal (DS), the sum of ascending
branch value of the PPG signal (SA), the average of ascending branch value of the PPG
signal (AA), the sum of descending branch value of the PPG signal (SD), the average of
descending branch value of the PPG signal (AD), and the sum ratio of the ascending branch
value to the descending branch value of the PPG signal (SR).
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3.2. Regression Model

Random forest (RF) [41] uses decision trees as weak learners and combines multiple
decision trees to make predictions through random sampling with replacement. It can be
used in classification and regression tasks, in which the final result is obtained by voting in
classification and the average value is taken as the final result in regression. Even if there is a
non-linear relationship between the input and label, it can still maintain good performance.
Each decision tree constructed is different to reduce the deviation and variance of the
prediction results. Because of the multiple combinations of the prediction results, RF is not
sensitive to outliers and has a better ability for anti-overfitting and stability.

Compared with random search, grid search is time-consuming and easy to result in
dimension disaster, and so, we used the bootstrap method to train the random forest. The
number of decision trees was set to 100, the maximum depth of trees was set to 50, the
min_samples_split was set to 2, and the min_samples_leaf was set to 1.

3.3. GCMI

MI is a measure of the mutual dependence between two random variables [42]. It
measures the degree of information about one variable that is learned through observing
the other [43]. It is a non-negative value, with higher values indicating stronger dependence
between the variables. When two random variables follow the Gaussian distribution and X
is a multidimensional vector, the calculated MI is the GCMI [29]. It can be obtained by the
following formula:

I(X, Y) = 0.5× log2[
|∑ X||∑ Y|
|∑ XY| ] (5)

where ∑ X and ∑ Y are the covariance matrices of X and Y, respectively, and ∑ XY is the
covariance matrix of the joint variables (X, Y). The detailed feature selection process is
shown in Algorithm 1. First, each feature is calculated GCMI with SBP and DBP. If the
value is zero, the corresponding feature will be removed. Due to the redundancy between
features, the GCMI of the combined group may not necessarily be the highest. Therefore,
we took the approach of deleting features and gradually eliminating the features that
contributed the least to the group. Meanwhile, we set a threshold. When the minimum MI
loss of the group exceeded the threshold after eliminating a feature, the feature selection
process was stopped. The rest features were the filtered feature set.

Algorithm 1. GCMI-based feature selection method.

Input : Training set D : F = { f1, f2, · · · , fn }, the label C
Output: Selected features F′

Steps:
(1) For i = 1 to n, do
(2) If I( fi , C) = 0, then F1 = F− fi
(3) end
(4) Repeat
(5) Calculate I1 = I (F′, C)
(6) For i = 1 to n, do
(7) F2 = F′ − fi, Calculate I2 = I (F2, C)
(8) end
(9) Find min (I2) with fi, then
(10) F′ = F′ − fi|min(I2)
(11) Until I1 −min (I2) > 0.002
(12) Return F′
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4. Results

In this paper, the mean absolute error (MAE) and standard deviation (STD) are used
to evaluate the prediction results, given by

MAE =
1
N

N

∑
i

∣∣∣ỹi
BP − yi

BP

∣∣∣ (6)

STD =

√√√√ 1
N

N

∑
i=1

(ỹi
BP − yBP)

2 (7)

where N is the number of samples, i is one of the samples, ỹi
BP, yi

BP, and yBP are the
reference BP, estimated BP, and average BP, respectively.

4.1. Waveform Display

Figure 5 shows the raw and filtered waveforms recorded within 30 s. It was observed
that the raw ECG contained significant baseline drift due to respiration and body movement.
After processing, the noise was removed, and the characteristic waveforms of the ECG,
such as the P wave, QRS complex, and T wave, were well preserved. For PPG, with the
use of the finger-clip blood oxygen probe, the shape of the original PPG signal was already
very good, and the peak points, valley points, and dicrotic notch points were all very
clear. High-quality signals provided a guarantee for the accurate extraction of more feature
information. Moreover, comparing the ECG and PPG signals, they contained the same
number of peaks during the same period, indicating that the recording of the signals was
synchronous. It should be noted that due to PAT, there was a slight delay in their peak
value of them. The waveform demonstrated that the entire hardware acquisition system
was working well.
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BPy  are the 

reference BP, estimated BP, and average BP, respectively. 
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Figure 5. Raw and filtered PPG and ECG signals acquired from eMMC within 30 s.

4.2. Feature Selection

Figure 6 shows the GCMI between BP values and different feature sets. It can be seen
that there was almost no change in GCMI when the features were initially deleted. This
indicates that these features were redundant and the information they contained could
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be replaced by other features. As the number of features decreased, the GCMI started to
decrease gradually. When the number of features of SBP and DBP was less than 11 or
15, respectively, the value of GCCI decreased significantly. Therefore, we chose these two
values as thresholds for the feature subset. Unfortunately, if the number of features was
less than 10, the GCMI values decreased rapidly for both SBP and DBP, suggesting that the
feature set was no longer favorable for BP prediction at this time, because most information
was lost.
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4.3. Model Performance

According to the threshold, 11 and 15 optimal feature sets were retained for SBP and
DBP, respectively, which are described in Table 2. It was found that almost all individual
information was retained, which reflects that individual information plays an essential role
in BP values. Meanwhile, from the definition, we can conclude that there was a certain
similarity between the feature “PP” and “HR”. Only one of them was retained in the
filtered feature set after screening.

Table 2. Optimal feature subset for SBP and DBP.

SBP DBP

Age AA DS Gender HR AD
Weight SD Age K SR

Feature PATf AD Weight PIsd AT
HR SR PATf AA AS
PIsd AT PATd SD DS

The predicted results before and after feature selection are compared in Table 3. After
feature selection, the MAE and STD were 7.93 ± 9.12 mmHg and 7.63 ± 8.61 mmHg, which
was smaller than before. This indicates that there were abnormal features in the initial
feature set, which negatively affected the robustness of the system. The selected feature set
not only accelerated the training speed of the model but also improved its performance
This also demonstrated the effectiveness of feature screening.
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Table 3. Results before and after feature selection.

Feature Selection MAE ± STD (mmHg)

SBP No 9.12 ± 9.83
Yes 7.93 ± 9.12

DBP No 8.31 ± 9.23
Yes 7.63 ± 8.61

Since the records in the training and testing sets were from different individuals,
calibration was necessary for BP prediction. Based on the model trained on the training
sets, we further selected a quarter of the testing sets to fine-tune the model, and used
the calibrated model to predict the remaining data [44]. This operation is also known as
personal calibration and is beneficial to reduce error. The result after calibration is shown
in Table 4 and Figure 7. It can be seen that after calibration, the MAE and STD for SBP
and DBP were significantly reduced, and both reached grade “A” on the criteria of British
Hypertension Society Standard (BHS). This proves that after calibration, the optimal feature
set achieved great performance.

Table 4. The MAE and STD for SBP and DBP after calibration.

MAE ± STD The Proportion of MAE Grade

(mmHg) ≤5 mmHg ≤10 mmHg ≤15 mmHg

SBP 5.21 ± 5.98 65% 86% 97% A
DBP 4.15 ± 5.66 72% 89% 98% A

- 60% 85% 95% A
BHS - 50% 75% 90% B

- 40% 65% 85% C
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To further analyze the results of this experiment, we displayed the Bland–Altman
plots of the predicted SBP and DBP under different conditions. As shown in Figure 6,
the feature selection proposed in this paper was effective by comparing A and B. The
low and upper limits of agreement reduced from [−17.2, 15.7] mmHg to [−12.6, 10.8]
mmHg for SBP and [−12.9, 12.1] mmHg to [−9.74, 8.84] mmHg for DBP. The calibration
process helped it down further to [−7.5, 6.75] mmHg for SBP and [−5.78, 5.12] mmHg
for DBP, respectively.

4.4. Comparison with Related Works

Many scholars conducted research on BP prediction based on feature extraction and
selection from PPG and ECG signals. Table 5 provides details and the performance of these
methods. Before calculation, although the prediction for DBP was slightly worse, the error
for SBP in this paper was smaller than that of other methods. Furthermore, the calibration
operation made up for this deficiency, and the results were further improved. After feature
screening, the number of features retained were the least. However, in [45], the MAE for
SBP and DBP was much smaller. On the one hand, the author trained and tested the model
on a single dataset and the distribution difference of the data was small. On the other hand,
the performance of Bi-GRU and attention mechanism was superior to traditional machine
learning methods but also increased the computational complexity.

Table 5. Performance comparison with related works.

Calculation Works Feature Methods SBP (mmHg) DBP (mmHg)

Num.* MAE STD MAE STD

No
Ours 11/15 * RF 7.93 9.12 7.63 8.61

Kachuee [15] 15/15 Adaboost 11.17 10.09 5.35 6.14
Zhang [19] 20/20 Adaboost 10.03 14.43 5.35 8.33

Yes

Ours 11/15 RF 5.21 5.98 4.15 5.66
Zhang [19] 20/20 Adaboost 7.73 7.96 4.30 4.50

Geerthy [20] 23/17 RF 9.00 - 5.48 -
Kachuee [15] 15/15 Adaboost 8.21 5.45 4.31 3.52
El-Hajj [45] 22/22 Bi-GRU 2.58 3.35 1.26 1.63

*: The number before and after “/” is the feature number for SBP and DBP respectively.

5. Discussion

Recently, wearable devices made great achievements in human multi-physiological
signal detection [46,47]. The research of noninvasive continuous BP estimation based on the
ECG signal and PPG signal attracted people’s attention, which makes the BP measurement
equipment more portable and convenient. BP changes with time and is affected by multiple
factors, such as exercise, age, emotion, diet, and temperature. It is easy to manifest the
“white coat hypertension effect” when measuring BP in the hospital, which makes the
accurate value more difficult to obtain [48]. Most databases such as UCI [15] contain
multiple physiological signals, but information about age, gender, and weight is not
available. Previous research had found that BP is highly related to these factors, which
brings disadvantages to the research.

The designed device had the necessary functions for physiological signals acquisition,
and the overall size was very small and convenient for daily signal acquisition. This
provides a technical guarantee for our subsequent research without having to be limited
by the public database. Meanwhile, as the number of extracted features grows, it is
critical to obtain the most optimal set of features. Since the MI is nonlinear and simple to
calculate [49], it can effectively represent the dependence between features and is suitable
for BP prediction.
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6. Conclusions

In this paper, we designed a wearable device to collect ECG and PPG signals. Then,
we proposed a multi-parameter fusion method for noninvasive continuous BP estimation.
GCMI method was introduced to reduce features from 25 to 11 and 15 for SBP and DBP,
respectively. This procedure effectively avoided the influence of redundant features on the
model. We trained the model on a public dataset and tested it on a private dataset. The
results showed that after calibration, the proposed method achieved good results.

In the future, we intend collect more signals from the hospital or community, especially
from the elderly over 60 years old with hypertension. The amount of current private
datasets is still small and the source of data is concentrated in younger people. The old
are at high risk for HPT and have a more complex physical situation. It is meaningful to
improve the accuracy of continuous BP monitoring for the old. Furthermore, we attempted
to combine the traditional features with the CNN and LSTM networks. The 25 features
extracted in this paper were still limited. For information mining of big data, these networks
have more advantages than manual extraction.
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Abstract: Non-invasive continuous blood pressure monitoring is of great significance for the prevent-
ing, diagnosing, and treating of cardiovascular diseases (CVDs). Studies have demonstrated that
photoplethysmogram (PPG) and electrocardiogram (ECG) signals can effectively and continuously
predict blood pressure (BP). However, most of the BP estimation models focus on the waveform
features of the PPG signal, while the peak value of R-wave in ECG is only used as a time reference,
and few references investigated the ECG waveforms. This paper aims to evaluate the influence of
three characteristic waveforms in ECG on the improvement of BP estimation. PPG is the primary
signal, and five input combinations are formed by adding ECG, P wave, QRS complex, T wave, and
none. We employ five common convolutional neural networks (CNN) to validate the consistency of
the contribution. Meanwhile, with the visualization of Gradient-weighted class activation mapping
(Grad-CAM), we generate the heat maps and further visualize the distribution of CNN’s attention
to each waveform of PPG and ECG. The heat maps show that networks pay more attention to the
QRS complex and T wave. In the comparison results, the QRS complex and T wave have more
contribution to minimizing errors than P wave. By separately adding P wave, QRS complex, and
T wave, the average MAE of these networks reaches 7.87 mmHg, 6.57 mmHg, and 6.21 mmHg for
systolic blood pressure (SBP), and 4.27 mmHg, 3.65 mmHg, and 3.73 mmHg, respectively, for diastolic
blood pressure (DBP). The results of the experiment show that QRS complex and T wave deserves
more attention and feature extraction like PPG waveform features in the continuous BP estimation.

Keywords: ECG characteristic waveforms; Grad-CAM; PPG; CNN; blood pressure

1. Introduction

Hypertension is one of the most serious but potential public health problems in the
world, which will threaten the patients’ life and can even result in many diseases such as
heart failure, stroke, coronary heart disease, etc. [1]. Modern medical evidence shows that
early detection and strict control of hypertension could slow its further development and
reduce the risk of disease [2]. Nevertheless, as it is often referred to as a “silent killer”,
most people with pre-hypertension have no significant symptoms and always ignore it. The
Lancet reports that the number of people with hypertension between the ages of 30 and 79
doubled from 1990 to 2019, and nearly 580 million people are unaware of it [3]. Therefore,
continuous BP monitoring is an effective and necessary solution for the early detection and
control of these diseases [4].

In general, there are two basic kinds of BP measurement methods: direct and indirect.
Direct measurement, as the gold standard, is carried out by the insertion of a catheter, but
is often restricted in critical situations such as intensive care units and clinical surgeries; its
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result is the most accurate and continuous in nature [5]. As this method is invasive and
carries multiple risks, clinically people tend to use indirect methods. Traditionally they use
an inflatable cuff to compress the blood vessel and observe changes in pulse wave signal
during this process. However, the measurement mechanism of inflation and deflation
is cumbersome and not suitable for long-term observation [6]. What is more, due to the
pressure on blood vessels, the time interval between two monitoring readings needs to be
greater than 2 min. In the past decade, with the emergence of wearable devices that are
convenient for physiological signal collection [7], continuous blood pressure monitoring
has gradually shown a lot of promise. Based on PPG and ECG, the researchers summarized
three basic physiological indicators highly related to BP: pulse arrival time (PAT), pulse
transit time (PTT) [8,9], and pulse wave velocity (PWV) [10]. Many studies have proved
the effectiveness of these three indicators [11]. Once the PTT, PAT, or PWV are determined,
BP can be calculated from a mathematical model.

The above three indicators are essentially based on the blood flow velocity in the
blood vessel, and another research trend is the shape of the waveform. The propagation of
pulse waves along the artery is affected by heart, vascular consistency, vascular stiffness,
vascular resistance [12], etc. Changes in these factors will also be reflected in the waveform
shape. Therefore, researchers focus on morphology and are keen to extract characteristic
features from these signals [13,14]. Kruylyak [15] extracted 21 physiological indices from
PPG features and used an artificial neural network (ANN) model to verify the improvement
in accuracy. Liu et al. [16] extracted 14 feature parameters from the second derivative of the
PPG(SDPPG) and combined 21 regular time-domain PPG features to establish a Support
Vector Regression (SVM). In addition to using PPG and ECG signal features, Yin [17] also
added personal information, such as age, weight, and gender from 186 volunteers. From
PPG and its derivatives, Lin et al. [18] proposed 19 new physiological parameters and the
predicted BP value achieved a decrease when tested on 22 subjects. In the literature [19],
the author combined up to 107 features from each PPG signal, including 75 time-domain,
16 frequency-domain and 10 statistical features, as well as 6 demographic data. Then,
the feature selection technique was used to reduce the amount of computation, and the
Gaussian Process Regression (GPR) method is used. The estimation performance of the
ReliefF feature selection algorithm outperformed other algorithms in estimating. The
authors above have made full use of PPG waveform characteristics, while only a few
articles discussed ECG features. To the best of our knowledge, Jamal [20] firstly explored
the importance of the ECG waveform in a BP model. They applied the CNNs to extract
56 features from PPG and ECG segments. By adding and removing ECG features, they
proved that ECG waveforms contained important information which is helpful to improve
accuracy. Then Geerthy [21] compared the model trained with PPG features fused with
18 ECG features and PPG features alone. They investigated the influence of these features
and used random forest-based genetic algorithm (GA) and confirmed that significant
features like QRS complex, QT interval, SDI, and heart rate could improve the results.

Compared with classical machine learning models, neural network models have grad-
ually been applied to the field of continuous BP monitoring based on physiological signals
and have become a new trend. This method eliminates the step of manual feature extraction
and takes advantage of its powerful data mining and feature extraction capabilities [22].
In [23], a four-layer long short-term memory (LSTM) network was employed to estimate
systolic blood pressure (SBP) and diastolic blood pressure (DBP). The model contains a
bidirectional structure for accessing larger-scale context information of input sequence
and residual connections to allow efficient gradient in the LSTM network to propagate.
Tanveer et al. [24] combined the preprocessed PPG and ECG waveforms into the hierar-
chical ANN-LSTM to obtain the value of SBP and DBP. Yu et al. [25] improved U-Net
with an attention-based residual and added derivatives of the PPG signal as additional
inputs, aiming to improve the effectiveness of information mining. Rong [26] proposed a
multi-type features fusion (MTFF) neural network model. This model contains two basic
blocks: one is CNN block, which was used to learn the morphological and frequency
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spectrum features, and the other is Bi-directional LSTM (BLSTM) block, which was used to
focus on temporal features.

To sum up, it can be found that BP prediction models based on physiological signals
are the mainstream trend of continuous BP monitoring. On the one hand, researchers
focus on the extraction of new effective artificial features. However, most of the literature
pays too much attention to the characteristics of PPG signal, with the R-peak of the ECG
signal used as the time reference point, while few articles use the characteristics of ECG
waveform. On the other hand, the CNN models have been continuously improved to
extract features, and ECG and PPG signals are used as the original signal input. However,
due to the uninterpretable nature of neural networks, it is difficult for people to know
which feature of the signal the networks have learned.

In order to better understand and explain CNNs, a visualization technique known as
Grad-CAM [27] was developed for visual interpretation. It utilizes gradient information
flowing into the last convolutional layer of the CNNs to assign importance values to each
neuron for a specific attention decision. Grad-CAM is an improvement of CAM [28] that
overcomes the problem inherent in CAM. The obvious shortcoming of CAM is that the
network structure needs to be modified, which means that the data need to be retrained.
Grad-CAM solved this problem and is suitable for any CNN-based network without
modifying the structure. Li et al. [29] applied Grad-CAM to the channel selection of
Electroencephalography (EEG) signal and achieved great accuracy. Kin et al. [30] used Grad-
CAM for the interpretation of the basis of the judgment of the ECG classification model.
They proposed a visual-DenseNet for ECG model using Grad-CAM. These experiments
show that Grad-CAM is also suitable for 1-dimensional signals.

Finally, the main contributions of this study are listed as follows:

(1) This paper specifically compares the contribution of the three characteristic waveforms
of ECG to the BP prediction model. Each ECG signal is masked as separate P, QRS,
and T waves. Then these signals are put into different networks combined with PPG
signal for training, rather than directly adding or deleting whole ECG signals [20].

(2) This paper introduces Grad-CAM into a BP regression model so that we can more
clearly understand which features of physiological signals will receive more attention
or be ignored in the model, so as to provide a reference for artificial feature extraction
or modification of the network model. Meanwhile, the visualization results further
corroborate with (1), which strongly illustrate the different characteristics that ECG
signals and PPG signals provide in the model.

2. Materials and Methods
2.1. Dataset

In this study, original PPG, II-lead ECG, and continuous arterial blood pressure (ABP)
signals are from the MIMIC-III database [31]. MIMIC-III is an extensive, freely available
database comprising health-related data from more than 40,000 patients who stayed in
critical care units of the Beth Israel Deaconess Medical Center between 2001 and 2012 [32].
It contains thousands of distinct physiological signal records and vital sign time series
collected from bedside patient monitors in the adult and neonatal intensive care unit, and
the sampling rate is 125 Hz. Due to human operation factors, these records can last from a
few seconds (usually abnormal) to several hours. For details of the MIMIC-III database,
see https://mimic.physionet.org/ accessed on 13 January 2021. PPG and ECG signals
are inputs, and the ABP signals are used for calculating the SBP and DBP values as the
reference values in this experiment.

2.2. Preprocessing
2.2.1. Signal Selection and Filtering

Since the whole database is very large and the signal quality is even, we conduct a
detailed cleaning procedure by the following criteria: First, we used raw PPG and ECG
waveforms as network input, and ABP was used to make labels. Some records may lack
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one of these signals. Second, each waveform needs to be long enough to contain some
changes in SBP and DBP. The minimal required record length was set to 1 min. Third, due
to occasional human activity that led to sensor separation, a flat line appeared for a period
of time in some records, which caused the loss of valid data [33]. Fourth, some records
may contain abnormal ABP values (e.g., SBP ≥ 180 or DBP ≤ 60) [34]. Once a record has
any of the above conditions, the corresponding record will be removed. The final database
retained 938 subject records.

In order to remove the impacts of noise and artifacts during the collection process,
some filters were further implemented to denoise the signals. PPG is susceptible to baseline
drift, motion artifacts, and high-frequency noise, so a 4th order Butterworth bandpass
filter with cutoff frequencies of 0.05 and 10 Hz was used to remove interfering signals [35].
For ECG, we used a 3rd order Butterworth bandpass filter with cutoff frequencies of 0.05
and 35 Hz [21]. Then each filtered signal was cut into 8 s fragments. In order to make
blood pressure labels, we conducted peak detection on ABP signals, taking the mean peak
value of each fragment as SBP and the valley value as DBP. The final dataset consists of
9280 fragments and is split into the training set, validating set, and testing set according to
the ratio of 6:2:2.

2.2.2. ECG Detection

An ECG normal cardiac cycle contains three essential components: P wave, QRS
complex, and T wave, representing different stages of cardiac activity. P wave is the first
upward wave, which reflects the process of atrial depolarization and is an important detail
in the diagnosis of arrhythmia. QRS complex is the most significant part, which is formed
by ventricular contraction. T wave is the slow waveform that appears later, with a longer
duration and gentle fluctuations representing the recovery process of ventricular excitation.
Guillermo [36] applied the U-net architecture [37], which has been successfully applied in
the field of biomedical image segmentation, for ECG delineation and achieved excellent
results compared with traditional DSP methods. We adopted this architecture to extract
three waveforms. Because the database in paper [36] is different from that of this paper,
the accuracy of detection results cannot be guaranteed. However, the delineation results
have a direct impact on the subsequent experiments, so we adopt a machine-based and
manual-assisted strategy to manually verify the results of network segmentation. Because
in an ECG cycle, the three characteristic waveforms have standard intervals, the automatic
segmentation and manual inspection can reduce the workload and ensure the accuracy of
the results. The extracted results of each ECG signal fragment are shown in Figure 1.

2.3. Multiple Regression Models

PPG has been widely used in BP prediction models. In order to verify the improvement
of ECG waveform characteristics, we used five combinations as the input of the network:
(1) PPG; (2) PPG + P wave; (3) PPG + QRS wave; (4) PPG + T wave; and (5) PPG + ECG.
Meanwhile, to avoid accidental errors caused by a single model, we explored several
well-known CNN architectures in our experiments, detailed as follows:

(1) AlexNet [38]: was one of the classic CNN networks in the past decade, which has
laid an important foundation for the network and proved the effectiveness of CNN in
complex models.

(2) GoogLeNet [39]: multiple convolutions or pooling operations were assembled into an
inception module, and the network structure was constructed with this module. Then
the network was concentrated in feature dimension, which reduced the number of
parameters and further improved the network performance.

(3) ResNet18 [40]: proposed in 2015. It established the “shortcut connection” between the
front and the back layer, which is useful for the back-propagation of gradients in the
training process and deepens the number of layers.

(4) DenseNet121 [41]: established a dense connection between all previous layers and the
back layer and realizes feature reuse by connecting features on the channel.
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(5) DPN68 [42]: combined the fundamental ideas of ResNet and DenseNet. ResNet was
the main framework to ensure low redundancy of features and a DenseNet branch
was added to generate new features.

Micromachines 2022, 13, x FOR PEER REVIEW 5 of 12 
 

 

 
Figure 1. Raw ECG and P wave, QRS complex, T wave. 

2.3. Multiple Regression Models 
PPG has been widely used in BP prediction models. In order to verify the improve-

ment of ECG waveform characteristics, we used five combinations as the input of the net-
work: (1) PPG; (2) PPG + P wave; (3) PPG + QRS wave; (4) PPG + T wave; and (5) PPG + 
ECG. Meanwhile, to avoid accidental errors caused by a single model, we explored several 
well-known CNN architectures in our experiments, detailed as follows: 
(1) AlexNet [38]: was one of the classic CNN networks in the past decade, which has laid 

an important foundation for the network and proved the effectiveness of CNN in 
complex models. 

(2) GoogLeNet [39]: multiple convolutions or pooling operations were assembled into 
an inception module, and the network structure was constructed with this module. 
Then the network was concentrated in feature dimension, which reduced the number 
of parameters and further improved the network performance. 

(3) ResNet18 [40]: proposed in 2015. It established the “shortcut connection” between 
the front and the back layer, which is useful for the back-propagation of gradients in 
the training process and deepens the number of layers. 

(4) DenseNet121 [41]: established a dense connection between all previous layers and 
the back layer and realizes feature reuse by connecting features on the channel. 

(5) DPN68 [42]: combined the fundamental ideas of ResNet and DenseNet. ResNet was 
the main framework to ensure low redundancy of features and a DenseNet branch 
was added to generate new features. 
These original networks all take 2-dimensional images as input, while our experi-

mental data are 1-dimensional signals. Therefore, we modified the first parameter of the 
convolution kernel to 1, so that the network structure could adapt to the experimental 
data. Other network parameters are not modified. The experiments were performed on a 
computer with 1 CPU at 2.6 GHz, 1 NVIDIA GeForce RTX2060 GPU and 64-Gb memory. 
All the models are run over highly efficient GPU using the PyTorch deep learning frame-
work 

2.4. Visualization with Grad-CAM 
As a classification localization technology, Grad-CAM [27] can generate visual inter-

pretation from any CNN-based network without an attention mechanism. Therefore, we 
can visualize the location of feature maps for these five models. For Grad-CAM, it uses 

0 100 200 300 400 500 600 700 800 900 1000
Sampling Points(n)

0

0.5

1 ECG

0 100 200 300 400 500 600 700 800 900 1000
Sampling Points(n)

0

0.5

1 ECG P-wave Label P-wave

0 100 200 300 400 500 600 700 800 900 1000
Sampling Points(n)

0

0.5

1 ECG QRS-complex Label QRS-complex

0 100 200 300 400 500 600 700 800 900 1000
Sampling Points(n)

0

0.5

1 ECG T-wave Label T-wave

Figure 1. Raw ECG and P wave, QRS complex, T wave.

These original networks all take 2-dimensional images as input, while our experi-
mental data are 1-dimensional signals. Therefore, we modified the first parameter of the
convolution kernel to 1, so that the network structure could adapt to the experimental
data. Other network parameters are not modified. The experiments were performed on a
computer with 1 CPU at 2.6 GHz, 1 NVIDIA GeForce RTX2060 GPU and 64-Gb memory. All
the models are run over highly efficient GPU using the PyTorch deep learning framework

2.4. Visualization with Grad-CAM

As a classification localization technology, Grad-CAM [27] can generate visual inter-
pretation from any CNN-based network without an attention mechanism. Therefore, we
can visualize the location of feature maps for these five models. For Grad-CAM, it uses the
gradient to calculate the fusion weights of target feature images. The activation function
Relu is then added to eliminate negative values and retain only those that have a positive
effect on the results. As expressed by (1) and (2), A represents a feature map of size i, j, and
dimension k. Then the importance weights are achieved by a global average pooling on i
and j. Similar to CAM, it is possible to get Lc

(Grad−CAM)
by weighted sum.

αc
k =

1
Z ∑

i
∑

j
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ij
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Grad−CAM = ReLU(∑

k
αc

k Ak) (2)

For the selected five CNN models, we use the last convolution output before the fully
connected layer as the input of Grad-CAM, and the output of Grad-CAM is a heat map of
hot regions of a specific class that has the same size to the input signal [29]. The overall
experimental process is shown in Figure 2.
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3. Results
3.1. Metrics

In this study, the quantitative indicators for the performance evaluation of the blood
pressure estimation model include the following [35,43]: mean error (ME), mean absolute
error (MAE), standard deviation (SD), and root mean square error (RMSE). ME can reflect
the relationship between the predicted value and the actual value. SD can reflect the
dispersion degree of the prediction results. MAE and RMSE are also two important scales
for evaluating models in machine learning. Compared with MAE, RMSE is more sensitive
to outliers. These four indices are all expected to be as small as possible. Among them, N
is the number of test segments, ŷi, yi, and yi represent the predicted BP, reference BP, and
average BP, respectively.
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3.2. Analysis of Error Distribution

Table 1 presents the numerical comparison results of the mentioned five models with
different signal combinations. Figure 3 compares the MAE estimated by different models
for SBP and DBP under the five signal combinations. It can be found that the performance
of these five CNN models was basically consistent, and the combination of PPG and ECG
achieved the best results. This result is consistent with [20] that ECG contains important
information related to BP, because the formation of BP is related to cardiac contractility,
blood volume, and peripheral blood resistance. As an external manifestation of electrical
signals of cardiac activity, ECG can be used to assess cardiac contractility, thus significantly
improving the accuracy of blood pressure models.
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Table 1. MAE and RMSE of five models with different input signal combinations.

Models
AlexNet GoogLeNet ResNet18

SBP/mmHg DBP/mmHg SBP/mmHg DBP/mmHg SBP/mmHg DBP/mmHg

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

PPG 7.74 10.53 4.02 5.19 8.35 11.15 5.25 6.71 13.46 17.53 6.81 8.47
PPG + P wave 5.83 7.98 3.34 4.50 8.04 10.57 5.41 7.06 11.08 14.35 5.54 7.16

PPG + QRS wave 6.42 8.80 2.95 3.95 7.70 10.33 4.75 6.34 8.21 10.74 4.64 5.91
PPG + T wave 5.25 6.96 2.67 3.47 6.57 8.68 4.17 5.38 7.80 10.39 4.81 5.87

PPG + ECG 4.93 6.2 2.44 4.19 4.75 6.44 2.97 3.97 7.63 10.26 4.58 6.21

Models
DenseNet121 DPN68

SBP/mmHg DBP/mmHg SBP/mmHg DBP/mmHg

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

PPG 8.75 11.81 4.52 5.91 8.48 11.41 4.46 5.98
PPG + P wave 7.25 9.80 3.54 4.71 7.16 9.64 3.69 4.95

PPG + QRS wave 7.70 10.33 4.75 6.34 6.22 8.50 3.40 4.55
PPG + T wave 4.80 6.87 3.37 4.35 6.62 9.14 3.62 4.90

PPG + ECG 3.69 5.18 1.95 2.71 4.92 6.86 2.86 3.97
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For the specific three ECG characteristic waveforms, no matter which one was added, it
would have a positive effect on BP prediction, which is more obvious in Figure 3. Generally,
the P wave contributes the least to the accuracy of the model, and the QRS complex and
T wave have relatively high contributions. In the QRS complex, the R-wave morphology
can reflect the intensity of ventricular contraction and then affect cardiac ejection. The
contribution of the T wave to the results was unexpected; it followed the QRS complex
with a small amplitude but the longest duration of the three characteristic waveforms. This
enlightens us that we can pay more attention to these two characteristic waveforms when
performing feature extraction.

Figure 4 is a Bland–Altman plot established between the estimated and reference
values in the testing group. The mean and limits of agreement (mean ± 1.96SD) are
illustrated with the solid dots and short solid lines. The error distribution range with PPG
and ECG as inputs is more concentrated. By adding ECG characteristic waveforms, the
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error distribution range becomes obviously more concentrated and reaches an optimum
when PPG and ECG are used as inputs. This result is consistent in all five models.
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3.3. Performance of Visualization

Figure 5 shows the heat map of the features that each model learns when PPG and
ECG are used as the signal input, in which the warm-colored parts indicate the more
attention, and the cool-colored parts represent less attention on signal segments. For the
ECG signal, it can be found that the networks show different degrees of highlight for each
wave group. In Figure 5a,b,d,e, QRS and T waves receive more attention than P waves.
Especially in Figure 5c, there is a significant periodic highlight in the QRS wave. This can
be consistent with the results in Figure 3. Adding QRS and T waves greatly improves the
accuracy of the prediction results because the network has learned more features in these
two parts.

For PPG signal, we find that CNN networks are more likely to focus on the locations
of peaks, valleys, and dicrotic notch, which are all the extreme points in a cycle of PPG.
In traditional manual extraction of features [15–18], these points represent much time
information and amplitude features, and scholars have deeply excavated them in both
the time and frequency domains. This indicates that the features learned by the network
inherit the advantages of artificial features.

It can be seen from Figure 3 that the prediction error of model Resnet18 is much
larger than that of the other models when PPG and ECG are used as input signals. By
comparing Figure 5c and others, we find that the focus of model Resnet18 is limited to the
QRS complex, ignoring the rest waveform features; the characteristics learned in PPG are
not significant, with only a narrow highlight at the peaks.
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4. Discussion

Literature [44] has proved that ECG signals can be used to evaluate the contractility
of the heart, which has a direct impact on the formation of blood pressure. The external
manifestation of cardiac activity is the ECG signal, so the study of ECG waveform has an
important role in predicting blood pressure. In the past, the blood pressure prediction
models were mainly based on PPG, supplemented by ECG, or the whole ECG waveform
as input, without specific analysis of the influence of the three characteristic waveforms of
ECG on blood pressure prediction. In this paper, two experimental methods are used to get
a consistent conclusion: QRS complex and T wave have a better effect on BP than P wave.
In the first method, different ECG characteristic waveforms are combined to evaluate the
results directly. In the second method, we try to explain the black box of CNN network
with the use of Grad-CAM.

The experimental results may be due to the following two reasons. As can be seen
from Figure 1, the QRS complex is the most prominent characteristic waveform during
the ECG cycle [36,45]. Its amplitude fluctuates the most, and the amount of information it
can provide is higher than that of the P and T waves with smaller amplitude changes. The
addition of T wave also significantly improved the results, because the T wave lasts the
longest and accounts for a larger proportion in a cycle. This experimental result shows that
we can focus on these two waveforms if we need the most effective feature extraction for
ECG in the blood pressure regression task. These results suggest that we should focus on
these two waveforms when we need to extract features most efficiently or add attention
mechanisms to the ECG in blood pressure regression tasks.
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5. Conclusions

In this study, to explore the importance of the ECG characteristic waveforms in the BP
estimation model, we used a common ECG detection procedure supplemented by manual
annotation and divided the ECG signal into three parts: P wave, QRS complex, and T
wave. Then we adopted five CNN models with multi-combination of signals as input. The
results showed that compared with the single PPG, adding ECG waveforms can effectively
improve the accuracy and the contribution of QRS and T wave is better than that of P
wave. Meanwhile, we introduced the Grad-CAM to generate heat maps. Comparing the
heat maps of different models, we found that the networks have a response to almost all
segments of the ECG but the QRS and T waves received more highlights. This means that
the network has learned more valuable features at these two waveforms. At the same time,
if the network focuses on too one-sided parts, it is not conducive to the final result.

Extracting multiple features from an entire ECG may be a bit blind, but this article
points out important directions: QRS and T waves. In future work, based on the information
contained in the ECG signal, we will try to extract several effective artificial features; QRS
and T wave will be the focus of research. Then they will be combined with PPG features to
build a BP regression model. Attention mechanisms or other modules can also be added to
the structure to take advantage of the CNN networks feature mining.
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Abstract: The rapid growth in demand for portable and intelligent hardware has caused tremendous
pressure on signal sampling, transfer, and storage resources. As an emerging signal acquisition
technology, compressed sensing (CS) has promising application prospects in low-cost wireless sensor
networks. To achieve reduced energy consumption and maintain a longer acquisition duration
for high sample rate electromyogram (EMG) signals, this paper comprehensively analyzes the
compressed sensing method using EMG. A fair comparison is carried out on the performances of
52 ordinary wavelet sparse bases and five widely applied reconstruction algorithms at different
compression levels. The experimental results show that the db2 wavelet basis can sparse EMG signals
so that the compressed EMG signals are reconstructed properly, thanks to its low percentage root
mean square distortion (PRD) values at most compression ratios. In addition, the basis pursuit (BP)
reconstruction algorithm can provide a more efficient reconstruction process and better reconstruction
performance by comparison. The experiment records and comparative analysis screen out the suitable
sparse bases and reconstruction algorithms for EMG signals, acting as prior experiments for further
practical applications and also a benchmark for future academic research.

Keywords: compressed sensing; electromyogram; reconstruction algorithm; wavelet basis

1. Introduction

Electromyography (EMG) is a technique for evaluating and recording the electrical
activity produced by skeletal muscles [1]. Electromyography is performed using an in-
strument called an “electromyograph” to generate a record of electromyography. When
myocytes are activated by electricity or nerves, electromyography can detect the potential
that is generated. The signals can be analyzed to detect medical abnormalities, activa-
tion levels or recruitment sequences, or to analyze the biomechanics of human or animal
movements. In computer science, EMG is also used as a middleware for gesture recogni-
tion to allow physical actions to be input into a computer as a form of human computer
interaction [2]. The efficient acquisition, storage and transmission of electromyography
(EMG) data is important for emerging applications such as telemedicine. However, the
transmission and storage of EMG data is challenging due to limitations relating to Internet
speed and hardware resources. These problems have been effectively solved with the
emergence of wireless body sensor networks (WBSNs) [3–5].

Compressed sensing is widely implemented in the WBSN to reduce the power con-
sumption of the sensors and to increase the security of the data. Xu et al. presented a
compressed sensing-based approach to co-recognize human activities and sensor locations
in a single framework [6]. Kimia et al. proposed a new method for EMG data compression
using deep convolutional autoencoders (CAE) [7]. Shoaib et al. proposed a method to
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capture and detect EEG signals based on compressed perception, which reduced the energy
consumption during communication and computation [8]. Zhang et al. came up with a
method called block sparse Bayesian learning (BSBL) to solve the problem of compressed
sensing and applied it for long-distance EEG monitoring [9]. Imtiaz et al. proposed a
low-power MSP430 compressive sensing implementation, focusing mainly on the impact
of the sensor node architecture on the compression performance [10]. Liu et al. solved the
problem whereby EEG signals cannot be represented sparsely and shortened the computing
time of single-channel EEG signals in compressed sampling. An optimization model with
the l0 norm and Schatten-0 norm was proposed to enforce sparsity and low-rank structures
in the reconstructed multi-channel EEG signals [11]. Selin Aviyente applied a compression
sensing framework for EEG signal compression [12], and the Gauss random matrix was
utilized to compress the input signal in the measurement. In the reconstruction process,
a discrete cosine matrix was selected as a sparse basis and the EEG signal recovery was
completed by combining it with an orthogonal matching pursuit (OMP) algorithm [13].
Amir et al. [14] proposed a reconstruction scheme analysis framework, which employed
a Gaussian random matrix to compress the original signal. Then, different sparse bases
and several main reconstruction algorithms were combined separately. After this, they ex-
ploited the compressive sensing theory to analyze the refactored EEG signals and analyzed
the performances of various combinations in detail. Zhao et al. [15] studied and improved
the disadvantages of the high power consumption and large area of random dense binary
measurement matrices. They proposed the QCAC matrix and random sparse binary matrix,
and achieved a positive signal reconstruction effect while saving hardware computing
resources. Moreover, they implemented the two measurement matrices in hardware based
on a 65 nm CMOS processor. Emil Jovanov and Aleksandar Milenkovic designed the
infrastructure for a wireless body area network based on an intelligent motion sensor
for computer-aided physical rehabilitation [5]. In 2010, Hyunwoong Park put forward a
space–time block coding (STBC) scheme based on a double transmitter and single receiver.
They studied the influence of three communication channels on the body, through the
body, diffraction around the body, and reflection of the body, and composed a propagation
channel model of the body’s surface [16].

Mamaghanian et al. applied the hardware platform of a shimmer wireless body area
network to compare the compression performance for ECG based on a wavelet transform
and compressed sensing. They indicated that the compressed sensing of ECG signals
consumed less power and was suitable for the body area network with high real-time
requirements [17]. Zhang et al. exploited the intra-block correlation of ECG signals under
the framework of the compressed sensing theory and came up with a reconstruction
algorithm based on block sparse Bayesian learning. Compared with other reconstruction
algorithms, this algorithm has better ECG reconstruction performance and was beneficial
in the data analysis and diagnosis of body area network telemonitoring centers [18]. Dixon
et al. presented a 1-bit Bernoulli compressed sensing observation matrix for the dynamic
threshold method of ECG signals, which reduced the transmission power consumption of
body area network sensor nodes by increasing the compression ratio [19].

In this paper, we applied EMG compressed sensing on wireless body area networks.
A fixed measurement matrix and reconstruction algorithm were selected and the most
suitable wavelet base for the EMG signal was determined according to the reconstruction
quality of the EMG signal. Our research was based on the existing research results, adding
different sparse bases and reconstruction algorithms and evaluating the compression
sensing performance of the EMG signals. The contributions can be summarized as follows:
(1) The fixed measurement matrix (Bernoulli matrix) and the fixed BP reconstruction
algorithm were employed [20]. Fifty-two kinds of sparse wavelet bases were selected, and
the compression ratio range was set from 10% to 90%. Finally, after sparse decomposition
and reconstruction, the average PRD value for 500 segments of EMG signals for each
wavelet basis was calculated. From this, the most suitable wavelet basis for the EMG
signals was evaluated. (2) A fixed measurement matrix (Bernoulli matrix) and wavelet
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basis were applied. Five reconstruction algorithms were evaluated via PRD, along with
the time consumed. (3) The future development prospects were discussed and trends
were identified.

The remainder of this paper is structured as follows. The basic concepts of CS and
its application in WBSN are elucidated in the Methods section. In the results section, the
compressed sampling results based on the EMG signals are shown and compared in detail.
Finally, in the discussion section, the experimental results are summarized, the deficiencies
are put forward, and the future implementation plan is preliminarily formulated.

2. Materials and Methods
2.1. WBSN

As a communication network for the long-distance, real-time continuous monitor-
ing of a patient’s physical conditions, important links applied via the Internet of Things
(IoT) [21,22]. A WBSN is a wireless network for wearable devices [23–26]. It transmits
physiological signal data between patients and hospitals far away via wireless networks
based on wearable devices [27]. As a portable device, it has intimate connections with the
surface of the human skin [28]. Although the acquisition device is small, the application
management system in the data center and the user interface require a larger intelligent
device and greater support [29]. WBSNs became popular at the end of the 20th century.
The original idea was to connect individuals and surrounding devices based on a wireless
personal area network (WPAN). To cover a more expansive space, WPAN technology
is utilized as the gateway of the WBSN system so that the device placed in the human
body can be connected to the Internet. Benefiting from this, medical staff can read the
physiological data of remote patients in real time through the Internet.

As shown in Figure 1, there are five stages for the real-time monitoring and remote
transmission of human physiological signals.
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Figure 1. Real-time monitoring and remote transmission of human physiological signals.

Stage1: Physiological signal acquisition stage. Sensors for measuring ECG, EEG, EMG,
and other physiological signals are placed on the body’s surface or implanted under the
skin. The data collected by the sensors are sent to the master node (MN) following IEEE
standard 802.15.6. Then, the MN transmits the data to the local mobile devices (mobile
phones, tablets, laptops) through wireless media and the local processing unit transmits
the data to the next level.

Stage2: Wireless communication transmission stage. The further transmission of
physiological signal data is achieved through the access point, WIFI, or cellular base station.

Stage3: Internet transmission stage. In this stage, long-distance data transmission is
achieved through optical fiber technology.

Stage4: Data storage and analysis stage. The physiological signal data transmitted
by long-distance are stored and analyzed in this stage. After the analysis, the data are
classified and stored.

Stage5: Medical diagnosis and treatment stage. In this stage, the stored data are
transmitted to the medical and health institutions. The doctor diagnoses the patient’s
condition according to the remote output data and gives the treatment plan [30].
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Patient medical problems have caused various countries to bear many economic
expenditures in recent years. WBSNs can be employed as a feasible solution to reduce
medical expenses.

2.2. Compressed Sensing

Figure 2 shows the CS sampling process, in which the signal x to be collected is only
non-zero at k times (k is the sparse degree). To manage the information in x, it is projected
on a given set of sensing waveforms φ (that is to say, x is scented with a given set of
waveforms). The most common measurement matrices are the Gaussian random matrix
and the Bernoulli matrix, which do not correlate with the sparsest matrices. In addition,
the measurement matrix can also use deterministic matrices such as a polynomial matrix,
chaos matrix, and structured random matrix (e.g., the Toeplitz matrix).

Micromachines 2022, 13, x FOR PEER REVIEW 4 of 13 
 

 4 

Stage4: Data storage and analysis stage. The physiological signal data transmitted by 
long-distance are stored and analyzed in this stage. After the analysis, the data are 
classified and stored. 

Stage5: Medical diagnosis and treatment stage. In this stage, the stored data are 
transmitted to the medical and health institutions. The doctor diagnoses the patient’s 
condition according to the remote output data and gives the treatment plan [30]. 

Patient medical problems have caused various countries to bear many economic 
expenditures in recent years. WBSNs can be employed as a feasible solution to reduce 
medical expenses. 

2.2. Compressed Sensing 
Figure 2 shows the CS sampling process, in which the signal x to be collected is only 

non-zero at k times (k is the sparse degree). To manage the information in x, it is projected 
on a given set of sensing waveforms 𝜙 (that is to say, x is scented with a given set of 
waveforms). The most common measurement matrices are the Gaussian random matrix 
and the Bernoulli matrix, which do not correlate with the sparsest matrices. In addition, 
the measurement matrix can also use deterministic matrices such as a polynomial matrix, 
chaos matrix, and structured random matrix (e.g., the Toeplitz matrix). 

 
Figure 2. The CS sampling process. 

The Bernoulli matrix is selected as a fixed measurement matrix in this paper. It 
constructs a matrix 𝜙 of size M × N in order that every element in 𝜙 independently obeys 
the Bernoulli distribution: 

𝛷 , = ⎩⎨
⎧+ 1√𝑀 P = 12− 1√𝑀 P = 12 = 1√𝑀 +1 P = 12−1 P = 12 (1)

and a set of measures y, which is far less than the original length of the signal that is 
obtained: 𝑦 = 𝜙𝑥 (2)

When compressible, the method can also estimate the items with a larger amplitude. 
In practical applications, the signal x to be collected is usually not sparse, but in the 
transformation coefficient on an individual basis it is sparse or compressible. 

The EMG is not sparse in the time domain, so it is necessary to design a suitable 
sparse transformation matrix to obtain the EMG signal projected onto the sparse matrix 
representation. Considering the embedded hardware system used in the wearable EMG 

Figure 2. The CS sampling process.

The Bernoulli matrix is selected as a fixed measurement matrix in this paper. It
constructs a matrix φ of size M × N in order that every element in φ independently obeys
the Bernoulli distribution:
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and a set of measures y, which is far less than the original length of the signal that
is obtained:

y = φx (2)

When compressible, the method can also estimate the items with a larger amplitude.
In practical applications, the signal x to be collected is usually not sparse, but in the
transformation coefficient on an individual basis it is sparse or compressible.

The EMG is not sparse in the time domain, so it is necessary to design a suitable
sparse transformation matrix to obtain the EMG signal projected onto the sparse matrix
representation. Considering the embedded hardware system used in the wearable EMG
monitoring device and the excellent performance of wavelets in signal compression [31],
the sparse representation of EMG signals under a discrete wavelet transform (DWT) will be
discussed. The Mallat decomposition of discrete sequences is performed for the myoelectric
signal X. We construct a discrete wavelet transform matrix, i.e., the sparse matrix used in
CS, as shown in Equations (3) and (4):

Gj+1(n) = G(n)Xj(n) = ∑∞
k=−∞ G(k)Xj(n− k) (3)

Hj+1(n) = H(n)Xj(n) = ∑∞
k=−∞ H(k)Xj(n− k) (4)

H(n) and G(n) are the high-pass and low-pass filter coefficient sequences correspond-
ing to the selected wavelet function for both G(n) and H(n) ∈ Rl×1. When the decompo-
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sition level j = 0, X0(n) is the EMG signal X to be compressed. After convolution, G1(n)
∈ R(N+L−1)×N . We remove the front L/2 = −1 line and the rear L/2− 1 line and select
even rows from the remaining N + 1 rows, giving a total of N/2 rows. Similarly, we select
N/2 rows from H1(n) and superimpose them to form a decomposed wavelet transform
matrix Ψ ∈ RN×N . The N/2 rows selected from H1(n) form the low-frequency part X1(n).
The multi-layer decomposed wavelet transform matrix can be gained by continuing the
iteration process according to Formulas (3) and (4).

A sparse basis needs to be exploited for sparse decomposition in compression mea-
surements. To acquire a sparse basis suitable for EMG signals, a total of 52 types of wavelet
bases in 6 wavelet functions are tested in this paper. They are haar, dbn, symn, coifn, bior,
and rbio:

x = ψθ (5)

The transformation coefficient θ is sparse, and a few coefficients contain almost all of
the energy. Combining Equations (2) and (5), the relationship between the perceptual data
and transform coefficients can be expressed as follows:

y = φx = φψθ (6)

If A (measurement matrix) = φψ, then:

y = Aθ (7)

Since Equations (2) and (7) have the same form and assumption, the transformation
coefficient can also be estimated according to the optimization method. Then, the signal
x to be collected can be estimated through transformation. The sparsity of x itself can
be regarded as the sparsity of x on the unit matrix, and the measurement matrix is the
perception matrix.

When matrix A satisfies RIP, sparse signals can be recovered by minimizing the l1
norm. The more uncorrelated the perception matrix (φ) and the transformation matrix
(ψ), the less sparse the signal that can be recovered [32]. Moreover, the random matrix’s
probability that it is not related to any fixed transformation matrix is exceptionally high;
that is to say, it is optimal to collect the unknown signal by collecting the random projection
coefficient of the signal. In addition, the sparser the signal, the less perceptual data are
needed to rebuild the original signal.

The compressed sensing method aims to restore all contents of the signal x through
the measure y, which is far less than the amount of collected signal data.

There are two conditions under which recovery is possible [33]. Firstly, the signal is
required to be sparse in a specific domain. The second one is incoherence, which is applied
through the isometric property, which is sufficient for sparse signals [34].

Solving x from Formula (8) is an underdetermined problem, but on the other hand,
the signal has only K unknown variables at unknown positions; that is, the signal has
only K + 1 degrees of freedom. Therefore, under certain conditions, when the number
of measurements exceeds the signal degrees of freedom, it can be recovered using some
non-linear methods.

Obviously, when the K + 1 column of the perception matrix φ is selected arbitrarily
and the linearity is independent, the signal with the sparsest characteristic found in all
cases satisfying y = φx is required, solving the following optimization problem:

min‖x‖0
subject to y = φx

(8)

where ‖x‖0 represents the zero norm of x; that is, the number of non-zero elements.
For the CS reconstruction, some greedy algorithms are proposed to reduce the amount

of computation. The greedy algorithms include the matching pursuit [35], compressive
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sampling matching pursuit (CoSaMP) [36], iteratively reweighted least squares (Irls) [37],
subspace pursuit (SP) [38], and stage-wise orthogonal matching pursuit [39] algorithms.

The OMP algorithm is a representative greedy algorithm. As shown in Algorithm 1,
its principle is to add the best column of each iteration to the estimation. Then, to achieve
orthogonality between the estimated value and the residual, the optimization operation
is implemented and the least square method is used in the subspace of the selected best
fitting columns [40].

Algorithm 1 Orthogonal matching pursuit (OMP)

Input: matrix φ, measurements y, sparsity K
Output: sparse reconstruction xK

1: r0 = y and Γ0 = ∅
2: for i = 1 . . . , K do
3: λi ⇐ argmaxj

∣∣∣
〈

ri−1, φj

〉∣∣∣
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Find best fitting column

4: Γ0 ⇐ Γi−1 ∪ λi

5: xi ⇐ argminx

∣∣∣
∣∣∣ri−1 − φΓi x

∣∣∣
∣∣∣
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Residual update
7: end for

In the fifth step of Algorithm 1, the least squares (LS) optimization problem will be
generated. QR decomposition (QRD) is applied to solve this problem. This process will be
decomposed into two matrices, the unitary matrix and upper triangular matrix, respectively
represented by Q and R. In the last step of the OMP iteration, a new iterative decomposition
is reused via QRD to calculate Q and R.

However, l0 is an NP hard problem [41], which can replace non-convex problems via
the solving convex. As a classical convex optimization method, the BP algorithm is often
employed for CS reconstruction. The L1 minimum norm is equivalent to the L0 minimum
norm under certain conditions, and the same solution can be obtained. Then, the above
Equation (8) can be transformed into the optimization problem under the minimum norm
of L1, as shown in Equation (9):

min‖x‖1
subject to y = φx

(9)

Under the condition of a restricted isometry property (RIP) [42], the minimum value
of l0 is equal to l1, and l1 can be found in polynomial time.

The theory of compressed sensing requires that the sensing matrix satisfy the RIP. For
any k-sparse vector θ, if δk ∈(0,1) is satisfied then:

(1− δk)‖θ‖2 ≤ ‖Aθ‖2 ≤ (1 + δk)‖θ‖2 (10)

Then, matrix A satisfies the RIP.
However, it is arduous to verify the RIP conditions. If confirmed, cross-correlation is

demonstrated as the equivalent condition of the RIP conditions. The measurement matrix φ
is uncorrelated with the sparse representation matrix ψ; that is, any one of φ’s rows cannot
be represented linearly by ψ’s columns, nor can any column of ψ be represented linearly
by φ’s rows. Specifically, the correlation between the measurement matrix φ and sparse
representation matrix ψ is defined as:

µ(φ, ψ) = max
∣∣〈φi, ψj

〉∣∣ = max|〈A(i, j)〉| = max

∣∣〈ai, aj
〉∣∣

‖ai‖2‖aj‖2
1 ≤ i ≤ j ≤ N (11)

In Formula (11), φ represents the measurement matrix and ψ is the sparse base. The
correlation of φ and ψ is expressed by µ(φ, ψ). Here, φi and ψj are row and column vectors
of φ and ψ, respectively. In addition, ai and aj represents the ith row and jth column of
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matrix A, respectively. The more uncorrelated the matrix φ and sparse matrix ψ, the smaller
the value of µ (φ, ψ), indicating the smaller the observation value that is required.

This paper is based on the existing compressed sensing theory for research. Although
our theoretical innovations are limited, this ingenious sampling method is used to discuss
the sparse basis and reconstruction algorithm of EMG signals in compressed sampling.
Through the use of different compression ratios, a fixed measurement matrix, and a large
number of calculations, the compressed sensing sparse basis and reconstruction algorithm
most suitable for EMG signal are obtained.

2.3. Description of the EMG Datasets

A variety of physiological signals of the human body are stored in the MIT-BIH
Polysomnographic Database [43], from which the EMG signals are extracted to analyze the
compressed sensing accurately. We select the data for 5 channels here (slp32, slp37, slp41,
slp45, slp48) and extract 100 fragments from the data for each channel, with 1024 points in
each fragment. The sampling frequency is 250 Hz.

2.4. Performance Indicator

Several performance indicators are applied in this paper: the compression ratio (CR),
percentage root mean square difference, and the time consumption.

2.5. Compression Ratio

Here, CR represents the measurement of the number of actual acquisition points
required to collect the original signal x, which stands for the ratio of the number of actually
collected signals to the number of original signals, along with the number of measurement
M needed to obtain the accurately reconstructed signal. If M represents the dimensions of
the measurement matrix and N represents the real length of the original signal x, CR can be
expressed as:

CR = 1− M
N

(12)

Since M is less than N, the value of CR is less than 1. Therefore, in actual measurements,
only a small amount of data is needed to obtain a large amount of plain text information.
In this paper, a total of 9 CR values are selected from 0.1 to 0.9 at equal intervals.

2.6. Percentage Root Mean Square Distortion

The percentage root mean square distortion (PRD) is an indicator of the difference
between the reconstructed signal X̂ and the original signal X, defined as:

PRD =
‖X̂− X‖2
‖X‖2

· 100 (13)

Lower PRD numbers represent better reconstruction performance. Another indicator
is the execution time, reflecting the reconstruction algorithm’s efficiency.

2.7. Sparse Basis

Since EMG signals are not sparse in the time domain, a sparse basis needs to be utilized
for sparse decomposition in the compression measurement. To acquire the sparse basis
suitable for EMG signals, a total of 52 types of wavelet bases in 6 wavelet functions were
tested in this paper. They were haar, dbn, symn, coifn, bior, and rbio, respectively.

2.8. Reconstruction Algorithms

The quality and efficiency of five kinds of commonly utilized reconstruction algorithms
were tested to recover the signal. The five reconstruction algorithms were OMP, BP, CoSaMP,
Irls, and SP.
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2.9. Hardware Platform

The experiment was run on a laptop with a 1.9 GHz Intel Core i7-8650u CPU, 16 GB of
memory, and a 512 GB hard disk. The program was run on MATLAB 2018b.

3. Results

This section may be divided by subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.

3.1. Compressed Sensing with Different Kinds of Wavelet Bases

Fifty-two different kinds of wavelet bases were applied for the sparse decomposition of
EMG signals. The Bernoulli matrix and BP algorithm belonging to the convex optimization
were exploited as fixed measurement matrices and reconstruction algorithms, respectively.
Table 1 shows that the test effect, CR, and PRD values are inversely proportional. This
means that the reconstruction quality is positively related to the number of measurements.

Table 1. PRD of reconstructed signals based on different wavelet bases. Values are means ± SD.

Wavelet
CR

10% 20% 30% 40% 50% 60% 70% 80% 90%

haar 30.67 ± 9.64 44.71 ± 15.35 56.62 ± 19.77 67.72 ± 21.97 78.64 ± 21.76 89.84 ± 21.33 100.41 ± 20.97 111.34 ± 20.98 120.4 ± 21.71
db2 23.74 ± 7.82 35.66 ± 10.63 45.99 ± 12.71 55.71 ± 13.83 65.23 ± 13.93 74.68 ± 13.09 84.34 ± 11.21 94.2 ± 7.93 103.48 ± 3.77
db3 34 ± 13.6 45.17 ± 15.65 55.86 ± 18.73 66.26 ± 20.84 77.4 ± 20.99 88.59 ± 19.82 99.2 ± 18.65 109.18 ± 17.97 115.23 ± 14.19
db4 24.15 ± 7.61 36.33 ± 10.45 46.9 ± 12.67 56.74 ± 13.94 66.32 ± 13.87 75.88 ± 12.83 85.49 ± 10.6 95.25 ± 7.36 103.65 ± 3.57
db5 34.51 ± 13.95 44.91 ± 14.47 54.38 ± 16.07 63.69 ± 16.75 73.42 ± 16.39 83.56 ± 14.94 93.56 ± 13.43 104.01 ± 11.12 112.27 ± 9.95
db6 26.25 ± 5.08 39.05 ± 6.1 50.01 ± 6.96 60.13 ± 7.2 69.63 ± 7.34 78.71 ± 6.83 87.81 ± 5.66 96.87 ± 3.88 104.78 ± 1.8
db7 26.4 ± 4.98 39.31 ± 5.96 50.19 ± 6.92 60.12 ± 7.26 69.65 ± 7 78.77 ± 6.6 87.91 ± 5.4 96.76 ± 3.74 104.87 ± 1.59
db8 26.5 ± 5.15 39.23 ± 6.17 50.09 ± 6.9 60.22 ± 7.02 69.8 ± 6.9 78.99 ± 6.15 88.17 ± 5.45 96.97 ± 3.83 105.06 ± 1.38
db9 26.55 ± 4.99 39.41 ± 6 50.43 ± 6.77 60.41 ± 7.09 69.92 ± 6.84 79.2 ± 6.34 88.16 ± 5.32 96.98 ± 3.71 104.93 ± 1.49

db10 26.65 ± 5.08 39.52 ± 6.05 50.42 ± 6.92 60.55 ± 6.97 69.82 ± 6.88 79.18 ± 6.27 88.12 ± 5.57 97.13 ± 3.66 104.99 ± 1.51
sym2 25.7 ± 5.1 38.51 ± 6.02 49.29 ± 7.08 59.37 ± 7.65 68.93 ± 7.56 78.25 ± 7.06 87.46 ± 6.07 96.44 ± 4.25 104.82 ± 1.61
sym3 25.81 ± 5.31 38.49 ± 6.26 49.4 ± 7.19 59.53 ± 7.45 68.94 ± 7.54 78.17 ± 6.89 87.44 ± 6.05 96.35 ± 4.19 104.64 ± 1.82
sym4 25.87 ± 5.2 38.58 ± 6.31 49.38 ± 7.16 59.44 ± 7.48 68.92 ± 7.71 78.27 ± 6.9 87.46 ± 6.16 96.39 ± 4.49 104.54 ± 1.81
sym5 25.93 ± 5.16 38.61 ± 6.2 49.49 ± 7.1 59.41 ± 7.46 69.03 ± 7.55 78.2 ± 6.99 87.41 ± 5.92 96.44 ± 4.17 104.63 ± 1.86
sym6 25.93 ± 5.16 38.67 ± 6.21 49.56 ± 7.17 59.54 ± 7.44 69.04 ± 7.74 78.33 ± 6.83 87.57 ± 6.03 96.36 ± 4.53 104.61 ± 1.8
sym7 26.03 ± 5.32 38.79 ± 6.21 49.55 ± 7.03 59.68 ± 7.36 69 ± 7.58 78.42 ± 6.84 87.42 ± 6.05 96.53 ± 4.24 104.68 ± 1.71
sym8 25.99 ± 5.13 38.73 ± 6.14 49.64 ± 7.15 59.62 ± 7.38 69.07 ± 7.7 78.35 ± 6.79 87.63 ± 5.98 96.4 ± 4.47 104.67 ± 1.7
coif1 25.65 ± 5.12 38.39 ± 6.07 49.19 ± 7.01 59.22 ± 7.68 68.78 ± 7.61 78.06 ± 7.03 87.33 ± 5.92 96.49 ± 4.24 104.5 ± 1.77
coif2 25.83 ± 5.21 38.51 ± 6.23 49.25 ± 7.13 59.41 ± 7.49 68.9 ± 7.62 78.06 ± 7 87.35 ± 6.08 96.22 ± 4.35 104.54 ± 1.8
coif3 25.95 ± 5.14 38.82 ± 6.17 49.55 ± 7.07 59.63 ± 7.39 69.15 ± 7.3 78.34 ± 6.98 87.54 ± 5.61 96.71 ± 4.09 104.47 ± 1.94
coif4 26.01 ± 5.12 38.77 ± 6.18 49.54 ± 7.12 59.64 ± 7.42 69.16 ± 7.47 78.29 ± 6.77 87.53 ± 5.86 96.39 ± 4.32 104.69 ± 1.57
coif5 26.05 ± 5.1 38.89 ± 6.12 49.73 ± 6.89 59.84 ± 7.32 69.25 ± 7.17 78.59 ± 6.57 87.69 ± 5.56 96.57 ± 4.06 104.7 ± 1.64

bior1.1 25.38 ± 5.22 38.16 ± 6.3 48.93 ± 7.15 59.22 ± 7.62 68.59 ± 7.79 77.89 ± 7.23 87.16 ± 6.47 96.3 ± 4.47 104.3 ± 2.35
bior1.3 26.13 ± 5.24 39.08 ± 6.3 50.02 ± 7.15 60.3 ± 7.49 69.84 ± 7.63 79.06 ± 7.09 88.03 ± 6.27 97.12 ± 4.09 104.76 ± 2.07
bior1.5 26.74 ± 5.32 39.89 ± 6.35 50.99 ± 7.15 61.28 ± 7.4 70.8 ± 7.56 79.95 ± 6.96 88.81 ± 6.19 97.68 ± 3.98 105.06 ± 1.99
bior2.2 27.19 ± 5.32 40.77 ± 6.25 52.45 ± 7.26 63.25 ± 7.7 73.29 ± 7.6 83.16 ± 6.78 92.33 ± 5.58 101.39 ± 3.46 108.44 ± 1.31
bior2.4 27.01 ± 5.31 40.46 ± 6.25 51.98 ± 7.13 62.56 ± 7.57 72.54 ± 7.48 82.12 ± 6.77 91.22 ± 5.52 100.33 ± 3.73 107.45 ± 1.33
bior2.6 27.12 ± 5.33 40.6 ± 6.26 52.09 ± 7.05 62.61 ± 7.49 72.56 ± 7.4 82.17 ± 6.75 91.22 ± 5.54 100.28 ± 3.79 107.41 ± 1.44
bior2.8 27.28 ± 5.33 40.83 ± 6.25 52.32 ± 7.02 62.83 ± 7.45 72.76 ± 7.32 82.4 ± 6.71 91.43 ± 5.51 100.39 ± 3.81 107.48 ± 1.45
bior3.1 31.7 ± 5.32 47.76 ± 6.35 61.99 ± 7.2 75.45 ± 7.31 88.62 ± 6.63 101.05 ± 5.78 114.82 ± 5.26 128.26 ± 3.62 135.14 ± 1.27
bior3.3 30.81 ± 5.07 45.97 ± 6.38 59.09 ± 7.18 71.06 ± 7.51 82.48 ± 6.86 93.13 ± 6.18 103.41 ± 4.95 113.08 ± 2.79 118.76 ± 0.9
bior3.5 30.59 ± 5.12 45.37 ± 6.41 58.1 ± 7.21 69.95 ± 7.44 80.92 ± 6.9 91.26 ± 6.02 100.76 ± 4.87 110.2 ± 2.87 115.69 ± 0.84
bior3.7 30.52 ± 5.2 45.12 ± 6.41 57.72 ± 7.17 69.49 ± 7.41 80.36 ± 6.94 90.51 ± 6.07 99.96 ± 4.93 109.31 ± 2.89 115.01 ± 0.85
bior3.9 28.26 ± 5.08 41.86 ± 6.01 53.02 ± 7.04 63.32 ± 7.44 72.8 ± 7.2 81.82 ± 6.59 90.73 ± 5.4 99.52 ± 3.82 106.96 ± 2.08
bior4.4 27.66 ± 5.05 40.99 ± 5.95 52.06 ± 6.98 62.27 ± 7.29 71.89 ± 7.03 81.06 ± 6.43 90.17 ± 5.35 99.19 ± 3.77 106.92 ± 1.97
bior5.5 27.71 ± 5.07 41.03 ± 5.97 52.08 ± 6.95 62.32 ± 7.19 71.96 ± 6.89 81.11 ± 6.29 90.26 ± 5.25 99.28 ± 3.64 107.03 ± 1.92
bior6.8 27.83 ± 5.08 41.19 ± 6.01 52.25 ± 6.94 62.53 ± 7.13 72.17 ± 6.8 81.29 ± 6.2 90.45 ± 5.16 99.43 ± 3.53 107.15 ± 1.87
rbio1.1 51.95 ± 6.79 67.99 ± 5.93 78.33 ± 5.85 85.43 ± 5.45 91.67 ± 4.53 97 ± 4.04 102.15 ± 3.49 107.48 ± 3.11 110.34 ± 2.02
rbio1.3 35.01 ± 5.42 52.02 ± 5.99 64.7 ± 6.58 74.85 ± 6.3 83.53 ± 5.58 91.01 ± 4.74 98.25 ± 3.97 105.47 ± 3.28 110.4 ± 2.1
rbio1.5 32.77 ± 5.26 48.84 ± 6 61.35 ± 6.63 71.9 ± 6.64 81.07 ± 5.98 89.16 ± 4.99 96.97 ± 4.23 104.85 ± 3.29 110.48 ± 2.09
rbio2.2 32.44 ± 5.2 48.1 ± 6.06 60.4 ± 6.69 70.97 ± 6.71 80.14 ± 6.1 88.41 ± 5.18 96.51 ± 4.25 104.61 ± 3.34 110.57 ± 2.08
rbio2.4 32.4 ± 5.19 47.84 ± 6.13 60.06 ± 6.72 70.61 ± 6.73 79.78 ± 6.13 88.18 ± 5.24 96.38 ± 4.21 104.55 ± 3.35 110.63 ± 2.11
rbio2.6 26.28 ± 5.16 39.22 ± 6.13 50.06 ± 7.12 60.13 ± 7.62 69.82 ± 7.49 79.08 ± 6.87 88.16 ± 5.78 97.04 ± 4.05 104.8 ± 1.8
rbio2.8 26.57 ± 5.3 39.77 ± 6.33 50.96 ± 7.18 61.36 ± 7.69 71.29 ± 7.64 80.76 ± 7.05 89.85 ± 5.76 98.73 ± 4 106.28 ± 1.68
rbio3.1 26.19 ± 5.13 39.06 ± 6.13 49.83 ± 6.98 59.83 ± 7.46 69.44 ± 7.28 78.71 ± 6.7 87.85 ± 5.63 96.82 ± 3.94 104.92 ± 1.8
rbio3.3 28.26 ± 5.08 41.86 ± 6.01 53.02 ± 7.04 63.32 ± 7.44 72.8 ± 7.2 81.82 ± 6.59 90.73 ± 5.4 99.52 ± 3.82 106.96 ± 2.08
rbio3.5 27.66 ± 5.05 40.99 ± 5.95 52.06 ± 6.98 62.27 ± 7.29 71.89 ± 7.03 81.06 ± 6.43 90.17 ± 5.35 99.19 ± 3.77 106.92 ± 1.97
rbio3.7 27.71 ± 5.07 41.03 ± 5.97 52.08 ± 6.95 62.32 ± 7.19 71.96 ± 6.89 81.11 ± 6.29 90.26 ± 5.25 99.28 ± 3.64 107.03 ± 1.92
rbio3.9 27.83 ± 5.08 41.19 ± 6.01 52.25 ± 6.94 62.53 ± 7.13 72.17 ± 6.8 81.29 ± 6.2 90.45 ± 5.16 99.43 ± 3.53 107.15 ± 1.87
rbio4.4 51.95 ± 6.79 67.99 ± 5.93 78.33 ± 5.85 85.43 ± 5.45 91.67 ± 4.53 97 ± 4.04 102.15 ± 3.49 107.48 ± 3.11 110.34 ± 2.02
rbio5.5 35.01 ± 5.42 52.02 ± 5.99 64.7 ± 6.58 74.85 ± 6.3 83.53 ± 5.58 91.01 ± 4.74 98.25 ± 3.97 105.47 ± 3.28 110.4 ± 2.1
rbio6.8 32.77 ± 5.26 48.84 ± 6 61.35 ± 6.63 71.9 ± 6.64 81.07 ± 5.98 89.16 ± 4.99 96.97 ± 4.23 104.85 ± 3.29 110.48 ± 2.09
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3.2. Compressed Sensing with Different Kinds of Construction Algorithms

In this paper, we applied the PRD and execution time as performance indicators to
evaluate five kinds of reconstruction algorithms. In this test, the Bernoulli matrix and
coif5 wavelet basis were employed as the fixed measurement matrix and sparse basis,
respectively.

From the perspective of the deviation between the original and reconstructed signals
shown in Table 2 and Figure 3, the BP and Irls reconstruction algorithms were better than
the other three algorithms. To be more precise, the BP reconstruction algorithm has a better
recovery effect under all compression ratios.

Table 2. PRD values of the reconstruction signals for the different compression ratios (CRs) based on
the same wavelet basis. Values are means ± SD.

Method CR
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

OMP 48.24 ± 16.85 65.04 ± 21.35 79.3 ± 24.66 92.13 ± 25.64 104.56 ± 23.64 117.41 ± 20.89 128.26 ± 16.89 139.69 ± 11.11 146.37 ± 4.82
BP 23.87 ± 7.98 35.71 ± 10.75 46.1 ± 12.81 55.87 ± 13.86 65.31 ± 13.97 74.71 ± 13.07 84.48 ± 11.31 94.23 ± 7.95 103.51 ± 3.86

CoSaMP 55.61 ± 18.29 65.58 ± 21.42 77.07 ± 24.22 88.58 ± 25.93 101.44 ± 24.29 113.75 ± 20.46 123.59 ± 15.49 132.66 ± 10.19 132.89 ± 4.04
Irls 24.99 ± 8.44 37.53 ± 11.39 48.37 ± 13.65 58.42 ± 14.87 68.03 ± 14.85 77.49 ± 13.62 87 ± 11.47 96.1 ± 7.79 103.63 ± 3.59
SP 55.51 ± 17.55 62.37 ± 19.22 70.17 ± 20.76 78.89 ± 21.43 88.76 ± 20.44 98.88 ± 18.09 108.94 ± 14.9 119.03 ± 9.39 125.35 ± 4.43
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The execution times of the five reconstruction algorithms are shown in Table 3 and
Figure 4. There were significant differences among each algorithm.

The IRLS algorithm consumed the most time under all compression ratios as compared
with the other algorithms. When the CR increases from 0.1 to 0.9, the time consumed
increases by more than 100 times. The reconstruction speed of the BP algorithm was
the fastest under almost all compression ratios. When CR > 80%, the CoSaMP and SP
algorithms took about the same time as the BP algorithm.

Combined with the results in Tables 2 and 3 and Figures 3 and 4, providing a compre-
hensive evaluation of the reconstruction quality and execution time, the BP reconstruction
algorithm had superior reconstruction quality and high efficiency at all compression ra-
tios. Although the Irls algorithm also showed high reconstruction quality, the execution
efficiency was not satisfied. Conversely, the although CoSaMP and SP algorithms showed
excellent efficiency when the CR was over 0.8, the reconstruction quality was poor. There-
fore, considering these two factors, the BP algorithm was the most suitable for EMG signals
in practical applications.
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Table 3. Execution times (in seconds) of various reconstruction algorithms. Values are mean ± SD.

Method CR
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

OMP 2236.66 ± 574.21 1368.17 ± 300.14 849.29 ± 169.05 496.98 ± 96.43 275.77 ± 57.91 141.54 ± 41.09 65.38 ± 32.34 23.88 ± 17.25 21.01 ± 0.82
BP 24.35 ± 3.71 20.49 ± 3.18 19.55 ± 6.75 13.43 ± 1.62 10.68 ± 1.75 9 ± 2.73 6.8 ± 2 5.43 ± 1.51 3.89 ± 0.82

CoSaMP 722.35 ± 173.09 519.86 ± 130.66 401.89 ± 152.8 221.14 ± 64.39 134.06 ± 54.4 63.89 ± 29.86 26.77 ± 15.09 9.69 ± 5.96 1.9 ± 1.4
Irls 3207.79 ± 817.23 2405.05 ± 578.46 1548.56 ± 346.9 1086.58 ± 230.09 705.22 ± 120.33 423.7 ± 83.59 206.53 ± 34.87 94.26 ± 20.81 26.17 ± 9.02
SP 431.65 ± 112.13 397.19 ± 221.28 194.22 ± 61.99 128.29 ± 55.02 68.97 ± 35.96 36.75 ± 20.47 18.9 ± 12.11 4.48 ± 1.7 1.33 ± 0.87
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4. Discussion

The continuous and real-time monitoring of physiological signals play a significant
role in disease diagnosis. However, in the long-term signal monitoring and wireless
transmission of physiological signals, a large number of node resources will be required.
Although the storage requirements can be satisfied due to Moore’s law, the physiological
signal collection systems are also supposed to ensure the energy consumption efficiency.
As an effective post-acquisition processing method, CS can reduce the power consumption
and improve the physiological signal sampling efficiency significantly.

The experimental results indicated that via CS one can transmit and compress EMG
signals efficiently. The db2 wavelet base was the most suitable sparse basis for EMG
signals under various compression ratios and can be utilized as a sparse transform basis
for EMG. In addition, under most compression ratios, the BP algorithm provided better
reconstruction quality and higher reconstruction efficiency.

However, although the most suitable wavelet basis and reconstruction algorithm was
acquired for EMG compressed sensing, there was still a gap between the rebuilt signal
and the original one according to the PRD performance parameter. This implied that the
existing convex optimization and greedy reconstruction algorithms cannot reorganize the
information from the EMG signals well. A similar conclusion was also presented in [44].
Casson et al. used the BP reconstruction algorithm and cubic B-spline dictionary sparse
basis to conduct a compression sensing sampling test on EMG signals, which also showed
that the EMG signals could not be restored satisfactorily (the PRD values were above 50% in
all cases). In our study, although the results were not very satisfactory, compared with the
conclusions of Casson et al., when a suitable compression ratio is selected, the PRD value
will be reduced to less than 50%. In practical applications, the db2 and BP algorithms can
be used as the sparse basis and reconstruction algorithm, respectively, for the compression
sensing sampling of EMG signals, and EMG signals with minor errors can be obtained by
reducing the compression ratio.

In other words, the CS approach is not fully functional at present in terms of the
post-acquisition processing. Nevertheless, the wavelet basis most suitable for compressed
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EMG sensing was found through a calculation and analysis process. Our future work will
focus on EMG rebuilding process and deep learning applications in reconstruction.

5. Conclusions

This research aimed to evaluate the wavelet bases and reconstruction algorithms best
suited for the compressive sampling of EMG signals. From the analysis based on the
sampling quality and speed, it was concluded that the db2 wavelet basis provides a more
balanced performance, while the BP reconstruction algorithm can achieve high accuracy in
a short time.
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Abstract: The electrocardiogram (ECG) is a highly effective non-invasive tool for monitoring heart
activity and diagnosing cardiovascular diseases (CVDs). Automatic detection of arrhythmia based on
ECG plays a critical role in the early prevention and diagnosis of CVDs. In recent years, numerous
studies have focused on using deep learning methods to address arrhythmia classification problems.
However, the transformer-based neural network in current research still has a limited performance in
detecting arrhythmias for the multi-lead ECG. In this study, we propose an end-to-end multi-label
arrhythmia classification model for the 12-lead ECG with varied-length recordings. Our model, called
CNN-DVIT, is based on a combination of convolutional neural networks (CNNs) with depthwise
separable convolution, and a vision transformer structure with deformable attention. Specifically,
we introduce the spatial pyramid pooling layer to accept varied-length ECG signals. Experimental
results show that our model achieved an F1 score of 82.9% in CPSC-2018. Notably, our CNN-DVIT
outperforms the latest transformer-based ECG classification algorithms. Furthermore, ablation
experiments reveal that the deformable multi-head attention and depthwise separable convolution
are both efficient in extracting features from multi-lead ECG signals for diagnosis. The CNN-DVIT
achieved good performance for the automatic arrhythmia detection of ECG signals. This indicates that
our research can assist doctors in clinical ECG analysis, providing important support for the diagnosis
of arrhythmia and contributing to the development of computer-aided diagnosis technology.

Keywords: arrhythmia; deep learning; ECG signal; deformable attention transformer; depthwise
separable convolution

1. Introduction

Cardiovascular disease (CVD) is the leading cause of death, accounting for over
32% of all deaths worldwide [1]. Cardiac arrhythmia (CA) serves as a warning signal
for cardiovascular disease and enables clinicians to provide timely interventions through
early diagnosis. Electrocardiogram (ECG) is an effective non-invasive tool for monitor-
ing heart activity and diagnosing CA [2]. Precisely detecting arrhythmia has become a
significant focus for biomedical researchers. However, accurately recognizing these com-
plex CA-associated ECG rhythms requires considerable clinical experience and expertise.
Manual detection of arrhythmia consumes considerable time for expert clinicians and
cardiologists and it can be a task prone to errors even for these human experts. In fact,
research shows that cardiologists or diagnosing doctors sometimes misjudge the type of
arrhythmia [3,4]. The introduction of computer-aided diagnosis has aimed to enhance
accurate ECG interpretation and reduce costs. Consequently, it has become increasingly
essential to automatically detect arrhythmia using ECG signals, as this can assist clinical
diagnosis during ECG analysis [5].

158



Micromachines 2023, 14, 1155

As digital ECG data become more widely available and deep learning algorithms
continue to advance [6], an increasing number of researchers are turning to deep learning
approaches for automated arrhythmia detection. These studies have demonstrated that
automated feature extraction, as opposed to manual ECG morphological feature extraction,
leads to more accurate prediction results when using deep-learning-based methods [7–9].
In the automatic ECG analysis algorithms based on deep learning, convolutional neural
networks (CNNs), which can achieve data feature extraction through local receptive fields,
weight sharing, downsampling, and other methods [10], are usually used as the backbone
to extract features automatically. For instance, Kiranyaz et al. proposed an adaptive 1D
CNN model that integrates feature extraction and classification into a single learning body
for ECG classification. The model was trained using relatively small sets of common
and patient-specific training data and achieved remarkable accuracy [11]. Rajpurkar et al.
proposed a 34-layer CNN for classifying 14 types of cardiac arrhythmias. The model was
trained end-to-end on a single-lead ECG signal and outperformed the average cardiologist
in terms of both recall (sensitivity) and precision (positive predictive value) [12]. Acharya
et al. utilized an 11-layer CNN algorithm for automated detection of normal and myocardial
infarction ECG beats. Their model was able to accurately detect unknown ECG signals even
in the presence of noise [13]. He et al. developed a 2D CNN for detecting atrial fibrillation
(AF) episodes, achieving sensitivity, specificity, positive predictive value, and overall accu-
racy rates of 99.41%, 98.91%, 99.39%, and 99.23%, respectively [14]. Jun et al. proposed an
effective ECG arrhythmia classification model that utilizes two-dimensional convolutional
neural networks with ECG images as an input [15]. Then, in the detection of life-threatening
cardiac arrhythmias, Elola et al. proposed two deep neural network (DNN) architectures to
classify the rhythm into pulseless electrical activity (PEA) or pulse-generating rhythm (PR)
using short ECG segments, and both architectures achieved excellent performance [16].
Dubatovka et al. explored deep neural networks (DNNs) for learning cardiac cycles and
reliably detecting AF from single-lead electrocardiogram (ECG) signals with a superior
performance [17]. Krasteva et al. reported the optimal hyperparameters of an end-to-end
fully convolutional DNN architecture for detecting shockable and nonshockable rhythm
using single-lead raw ECG signals with life-threatening arrhythmias [18]. Jekova et al.
optimized the architecture of a computationally efficient end-to-end CNN models for ECG
rhythm analysis during cardiopulmonary resuscitation [19].

Although the aforementioned methods have achieved great success in the detection of
ECG arrhythmia, it is widely acknowledged that temporal information plays an important
role in tackling even more complex arrhythmia detection problems [20]. As a time series
of data, ECG signals inherently contain temporal dependencies within their waveform.
Recurrent neural networks (RNNs) can capture temporal dependencies in sequential data
more efficiently compared to CNNs [8]. For example, Wang et al. proposed a global and
updatable classification scheme called the global RNN (GRNN) in which RNN was used
for automatic feature learning and classification based on the morphological and temporal
information of ECG [21]. Recognizing the unique characteristics of ECG signals, Chen
et al. achieved excellent performance in arrhythmia classification by fusing the CNN and
RNN models [22].

In recent years, the transformer has become a popular deep learning model along-
side CNNs and RNNs. It utilizes an attention mechanism to capture temporal features
and context vectors and was originally developed for natural language processing (NLP)
tasks [23–26]. However, it has also demonstrated superior performance on various vi-
sion tasks [27,28], including image classification. One representative work is the vision
transformer (ViT) [29], which processes images as sequences of patches using a standard
transformer encoder used in NLP. Compared to CNNs, transformer-based models have
larger receptive fields and excel at modeling long-range dependencies, resulting in bet-
ter performance on many image classification data sets [30,31]. As ECG signals exhibit
temporal dependencies in their waveforms, the ViT’s mechanism can be applied to ar-
rhythmia classification tasks. Yan et al. proposed a heartbeat classification model based
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on a transformer that utilized the encoder part to process segmented single-lead ECG
signals [32]. Natarajan et al. developed a wide and deep transformer neural network that
combined handcrafted ECG features determined by a random forest model with discrimi-
native feature representations automatically learned from a transformer neural network
to classify each 12-lead ECG sequence into 27 cardiac abnormality classes [33]. Che et al.
embedded a transformer network in a CNN to capture the temporal information of ECG
signals for arrhythmia classification while introducing a new link constraint to the loss
function to enhance the classification ability of the embedding vector [34]. These studies
demonstrate the effectiveness of utilizing the transformer network structure for solving
arrhythmia classification problems. However, due to the interference on the ECG waveform
morphology of different diseases and the complex relationship between them, existing
transformer approaches still have several limitations.

In summary, the existing automatic ECG analysis algorithms that solely used CNN
cannot fully exploit the temporal features of ECG signals. Compared to CNN, RNNs can
more efficiently capture temporal dependencies in sequential data, and the models fusing
CNN and RNN have demonstrated excellent performance in arrhythmia classification.
However, these models typically use isolated heartbeat signals as input, which results in a
failure to leverage inter-heartbeat dependencies and requires the explicit segmentation of
heartbeats. The segmentation of heartbeats usually necessitates the use of QRS detection
algorithms such as Wavedet [35] and Pan–Tompkins [36]. For real-world scenarios, this
means that an additional preprocessing step is required. As mentioned in the previous
paragraph, the transformer architecture can capture temporal features through an attention
mechanism and research has demonstrated the effectiveness in solving arrhythmia classifi-
cation problems. However, the attention mechanism in the current approaches based on
the transformer has a wide receptive field that can include irrelevant information outside
the region of interest, affecting the amplitude and local statistical information from ECG
signals. Moreover, the majority of existing methods take equal-length ECG signal segments
as input. To address these issues, we propose the CNN-DVIT model, an end-to-end multi-
label classification model that combines CNN with depthwise separable convolution and a
vision transformer structure with deformable attention.

The major contributions of our model are as follows: Firstly, our approach involves
replacing the multi-head self-attention mechanism in the original vision transformer model
with a more effective deformable self-attention module, which enables the self-attention
module to focus on relevant regions and capture more informative features. Secondly, we
introduce the spatial pyramid pooling layer to accept variable-length 12-lead ECG signals
as input, which eliminates the explicit segmentation of heartbeats beforehand and can make
use of inter-heartbeat dependencies to improve the classification performance. Thirdly,
to further mine the information of every lead for multi-lead ECG signals, the depthwise
separable convolutions replace the conventional convolution in the CNN backbone.

2. Methods

In this section, we will initially provide an overview of the model’s overall structure,
and then proceed to introduce the specific structure of each individual component.

2.1. Model Architecture

Our proposed model, illustrated in Figure 1, is able to take continuous 12-lead ECG
signals as input and output the arrhythmia diagnosis result in an end-to-end manner.
Concretely, the model is composed of three main components: (1) a CNN-based backbone
for feature extraction from each lead; (2) a deformable attention transformer encoder
module to combine the CNN-extracted features and the positional encoding; and (3) the
classification layer to obtain the probability that each patient may have for each type of
heart disease. The first part, the CNN-based backbone, is based on the original Inception
module with residual connections, in which the depthwise separable convolutions replace
the conventional convolutions. We attempt to extract details of waveform variation from
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every lead of ECG by using depthwise separable convolutions that operate independently
on each lead. Following the CNN-based backbone, the extracted features combined with
positional encoding pass through the deformable attention transformer encoder module.
The output from the deformable transformer encoder is then fed into the classification layer,
which generates the predicted probability distribution over the nine classes.
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2.2. CNN-Based Backbone

CNNs can extract data features using local receptive fields, weight sharing, down-
sampling, and other methods [10], which are commonly used as the backbone for feature
extraction due to their ability to capture local features and translation invariance [37]. The
depthwise separable convolutions were utilized in the Xception architecture developed by
Google and demonstrated enhanced performance in image classification [38]. A depthwise
separable convolution consists of a depthwise convolution and a pointwise convolution.
The depthwise convolution is a spatial convolution performed independently over each
channel of an input; and then the pointwise convolution is a 1 × 1 convolution projecting
the channel output by the depthwise convolution onto a new channel space. For multi-lead
ECG signals, the spatial convolutions are applied to each lead, and then the feature map
of every channel is projected onto a new space, enabling ECG details to be extracted from
every lead. Actually, our CNN-based backbone is built on the original Inception module
with residual connections, where conventional convolutions are replaced by depthwise sep-
arable convolutions. Specific configuration details are shown in Figure 2. In the early stage
of this part, we use a large convolution kernel with a size of 15, increasing the receptive
field of the convolution network and facilitating the detection of large-scale waveforms.
In the middle, we utilize the residual network structure and Inception structure. To learn
information from different scales, we employ three different scales of convolution kernels.
At the end of the CNN-based backbone, we introduce the spatial pyramid pooling layer to
convert the different dimensions of the final output feature map into a fixed-dimensional
CNN feature without considering the length of input signals [39]. As depicted in Figure 2,
we divide the output feature graph from each lead in the first part into 36 blocks, 9 blocks,
4 blocks, and 1 block, and then compute the maximum pooling for each block individually.
Therefore, the model can accommodate arbitrary-length ECG signals.
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2.3. Deformable Vision Transformer

The deformable vision transformer [40] was developed based on a deformable self-
attention module, where the positions of key and value pairs in self-attention are selected
in a data-dependent way. In the ECG signal classification problem, this flexible scheme
enables the self-attention module to focus on relevant regions and capture more informative
features to accurately identify the distinct characteristic wave types and recognize different
arrhythmia categories. The structure is shown in the deformable vision transformer module
in Figure 1. The deformable vision transformer network in our model contains two identical
layer stacks and each layer has two sub-layers. The first sub-layer is the deformable
attention module; the second is the multi-layer perceptron (MLP) block which adopts two
linear transformations and a GELU activation. In addition, LayerNorm (LN) is applied
before every block, and residual connections after every block [41,42].

Deformable Attention Module

The ability to flexibly model relevant features is a crucial aspect of our proposed model.
This crucial characteristic is implemented by the deformable attention module described in
the Ref. [40], and the structure is shown as Figure 3. Specifically, the deformable attention
can be viewed as a spatial adaptive mechanism to effectively model the relationship
between tokens under the guidance of important regions in the feature maps. These regions
are computed from sets of deformed points which are learned from the queries by an offset
network. After obtaining the regions, a bilinear interpolation method is applied to sample
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features from the feature maps, and then the sampled features are input into the key and
value projections to obtain the deformed keys and values. Finally, standard multi-head
attention is applied to attend queries to the sampled keys and aggregate features from the
deformed values. This can be better understood mathematically using a set of theoretical
notations, as follows.
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We take a feature map x ∈ RH×W×C as the input, and then generate a uniform
grid of reference points p ∈ RH/r×W/r×2, where r is the factor by which the grid size is
downsampled from the input feature map size. To obtain the offset for each reference
point, the feature maps are projected linearly to obtain the query tokens q, and then fed
into a lightweight sub-network offset network to generate the offsets ∆p of the reference
points p. Specifically, the sub-network contains two convolution modules with a nonlinear
activation. First, the input features pass through a depthwise convolution to capture local
features. Then, GELU activation and a 1 × 1 convolution are adopted to calculate the
offsets. After generating the offsets for the reference points, the features at the locations of
deformed points are sampled by the bilinear interpolation method and then projected as
keys k̃ and values ṽ. Next, we perform standard multi-head attention on q, k̃, and ṽ, where
a multi-head attention block with M heads is formulated as:

q = xWq, k̃ = x̃Wk, ṽ = x̃Wv (1)

z(m) = σ
(

q(m) k̃(m)>/
√

d
)

ṽ(m), m = 1, . . . , M (2)

z = Concat
(

z(1), . . . , z(M)
)

Wo (3)

where Wq, Wk, Wv, Wo ∈ RC×C are the projection matrices, x̃ = φ(x; p + ∆p), ∆p =
θo f f set(q), and the sampling function φ(·; ·) is a bilinear interpolation as Equation (4). In
Equation (2), σ(·) denotes the softmax function, and d = C/M is the dimension of each
head. z(m) denotes the output of the m-th attention head, and q(m), k̃(m), ṽ(m) represent
query, the deformed key, and value embeddings, respectively.

φ(z; (px, py)) = ∑
(rx ,ry)

g(px,rx)g(py,ry)z[ry, rx, :] (4)

where the g(a, b) = max(0, 1− |a− b|) and
(
rx, ry

)
indexes all the locations on z ∈

RH×W×C.Finally, the features of each head are concatenated together and projected through
Wo to obtain the final output z as Equation (3). To build up a deformable vision transformer,
the normalization layer and an MLP block with two linear transformations and a GELU
activation are adopted after the deformable attention module [43].

163



Micromachines 2023, 14, 1155

2.4. Classification Layer

The deformable vision transformer network is connected to the classification layer for
multi-classification. The classification layer consists of a full connection layer and a softmax
layer, which outputs the predicted probability indicating the likelihood that each patient
has each type of cardiac arrhythmia.

3. Experiments and Results

In this section, we will delineate the data sources, expound on the experimental design,
and elaborate on the analysis of experimental results.

3.1. Data Description and Experiment Setup

Our paper utilized data from the 1st China Physiological Signal Challenge (CPSC-
2018), consisting of 6877 12-lead ECG recordings collected from 11 hospitals [44]. The
signals contained normal heart rhythms and eight types of cardiac arrhythmia, namely,
Normal (N), Atrial fibrillation (AF), First-degree atrioventricular block (I-AVB), Left bundle
branch block (LBBB), Right bundle branch block (RBBB), Premature atrial contraction (PAC),
Premature ventricular contraction (PVC), ST-segment depression (STD), and ST-segment
elevated (STE). The recordings had one, two, or three labels, with some designated as
First, Second, and Third. Thus, the ECG arrhythmia detection task in our paper became a
multi-label classification problem.

The model being suggested is evaluated on every data category present in the CPSC-
2018 data set using a train/validation/independent-test strategy. In the ten-fold cross-
validation experiment, the training data set was divided into ten parts, with nine parts used
as training data and one part as validation data. After iterations of training and validation,
the model with the best performance on the validation set was evaluated on unseen test
data for final performance evaluation. The Adam optimizer with default parameters and
a learning rate of 0.0001 was used to train the model, and the Focal Loss function was
adopted as the objective loss function [45].

3.2. Classification Performance
3.2.1. Evaluation Metrics

To measure the classification performance of our method from multiple perspectives,
we introduce three performance indicators: the average precision, recall rate, and F1 score.
The details are as follows:

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

F1 =
2× Precision× Recall

Precision + Recall
(7)

In our multi-label classification task, for a certain class, TP indicates the number of
correctly classified samples in this class. FN indicates the number of samples belonging
to this class that are misclassified as in other classes. FP indicates the number of samples
misclassified as in this class when they belong to other classes. The averages of all nine
categories of the F1 score were used to evaluate the final performance of the model.

3.2.2. Comparison with Existing Methods

To verify the performance of our proposed model, we compared our CNN-DVIT with
recently proposed ECG classification methods as well as basic neural networks. Table 1
presents the results for the class-level F1 score and average F1 score of our model and
six reference models. As shown in Table 1, our proposed CNN-DVIT has an average F1
score of 0.829, which is comparatively better than the other methods. Our model achieved
the highest F1 score in six out of the nine ECG categories. Specifically, our approach
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outperformed the conventional Resnet [30] and LSTM [8] methods in all nine categories,
with an average F1 score that was 0.092 and 0.165 higher than them, respectively. Moreover,
the F1 scores of all categories performed better than the other methods except for PVC,
where VGG-16 [10] obtained a slightly higher score. Notably, compared to the latest
competitor [34], which also introduced the transformer, our CNN-DVIT outperformed in
each category with an average F1 score improvement of 0.112.

Table 1. Classification performance on CPSC-2018 data set.

Type
F1 Score

ResNet [30] LSTM [8] VGG-16 [10] Mostayed et al.,
2018 [46]

Chen et al.,
2020 [22]

Che et al.,
2021 [34] CNN-DVIT

N 0.730 0.730 0.750 0.702 0.795 0.817 0.831
AF 0.882 0.792 0.861 0.815 0.897 0.858 0.924

I-AVB 0.877 0.763 0.874 0.767 0.865 0.878 0.887
LBBB 0.786 0.848 0.857 0.847 0.821 0.800 0.905
RBBB 0.905 0.909 0.918 0.898 0.911 0.872 0.935
PAC 0.487 0.268 0.333 0.397 0.734 0.618 0.704
PVC 0.733 0.763 0.859 0.807 0.852 0.830 0.842
STD 0.784 0.800 0.814 0.768 0.788 0.711 0.823
STE 0.444 0.105 0.462 0.286 0.509 0.686 0.610

Average F1 0.737 0.664 0.748 0.699 0.797 0.786 0.829

Additionally, we present the confusion matrix, receiver operating characteristic (ROC)
curve, and area under the curve (AUC) for CNN-DVIT in Figure 4a,b, respectively. The
confusion matrix demonstrates our model’s strong classification ability for almost all types
of ECGs. However, in Figure 4a, we can observe that the PAC, STD, and STE categories
exhibited relatively poor performance compared to other categories in the data set. This is
attributed to a limited distribution of data within these categories. Meanwhile, the normal
and STE classes demonstrated high similarity, particularly with regard to the morphology
of their T waveforms. As a consequence, there was confusion and misclassification between
these two classes. The ROC curve illustrates the network output at different classification
criteria with FP and TP as the axis co-ordinates, effectively reflecting the classification
performance of the network structure. As shown in Figure 4b, the AUC values of our CNN-
DVIT model are greater than 95% for most classes, except for ST-segment elevated (STE).
Therefore, it can be concluded that our model has excellent performance in classifying
different cardiac diseases. These results align well with our F1 score assessment.
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4. Discussion

In this section, we analyze the effectiveness of key components in our CNN-DVIT
model through ablation experiments. We present the results for the ECG arrhythmia
detection task in the CPSC-2018 data set.

First, we assess the effectiveness of the deformable attention module. In our CNN-
DVIT model, we apply the deformable multi-head attention (DMHA) module to replace
the multi-head self-attention (MHSA) block of the vision transformer. We compare the
classification performance of both methods, and the results are recorded in Table 2. As
shown in Table 2, the average F1 score of the models that use the DMHA module is higher
than those using the multi-head self-attention (MHSA) block. These experimental results
indicate that the deformable multi-head attention can more effectively extract information
from ECG signals and exhibit outstanding performance in ECG classification on CPSC-2018
data sets.

Table 2. Results of ablation experiments.

DMHA MHSA DWS-CNN CNN
Average

F1 Precision Recall
√ √

0.797 0.751 0.860√ √
0.789 0.775 0.825√ √
0.819 0.814 0.830√ √
0.829 0.819 0.849

Next, we investigate the impact of depthwise separable convolution (DWS-CNN) in
our model. We conduct an ablation experiment by comparing the DWS-CNN with conven-
tional convolution (CNN). As shown in Table 2, models that apply the DWS-CNN have a
clear advantage over those using conventional convolution. These ablation experiments
demonstrate that the depthwise separable convolution (DWS-CNN), which is applied to
each lead and projects the feature map of every channel to a new space, can effectively
extract features of heart disease from multi-lead ECG signals for diagnosis.

5. Conclusions

This paper presents an end-to-end model named CNN-DVIT for arrhythmia classifica-
tion of multi-lead ECG signals. The model combines a CNN backbone and a transformer
block to extract information from ECG signals through two steps: the first step is learning
the details of waveform variation from every lead of ECG by the CNN backbone with
depthwise separable convolutions; and the second step involves combining the features
extracted by CNN with positional encoding using the deformable attention transformer
encoder module. Particularly, in the first step, we employ a spatial pyramid pooling layer
to convert the variable dimensions of the final output feature graph into fixed-dimensional
CNN features. This enables our model to accept ECG signals of varying lengths. Our
CNN-DVIT network architecture exhibits exceptional performance in ECG classification
on CPSC-2018 data sets, achieving an average F1 score of 82.9% across eight types of
arrhythmias and sinus rhythms. These results demonstrate that deformable attention is
well-suited to the unique characteristics of ECG signals and can effectively perform ECG
classification tasks.

In the task of arrhythmia classification, CNN-DVIT synthesizes feature data more
effectively than using any single method alone, such as LSTM, ResNet, or the transformer
with the multi-head self-attention. In recent years, advancements in hardware technology,
information transmission, and computing capabilities have contributed to the increasing
significance of wearable ECG devices as a diagnostic modality [47]. However, our model in
this study is a multi-label arrhythmia classification model for the 12-lead ECG. As such, it
may not be suitable for dynamic ECG data from wearable ECG devices, which are subject
to greater interference. In a clinical setting, the timeliness of the auxiliary diagnosis system
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is generally required. Therefore, we plan to shift our focus towards developing lightweight
models with fewer parameters that are better suited for analyzing dynamic ECG data from
wearables in future work.

Author Contributions: Conceptualization, Y.D. and Y.Y.; methodology, Y.D. and L.W.; software,
Y.D., and L.Q.; validation, Y.D., M.Z. and L.W.; formal analysis, Y.D. and Y.Y.; investigation and
resources, Y.D. and L.W.; data curation, Y.Y.; writing—original draft preparation, Y.D., M.Z. and L.W.;
writing—review and editing, Y.D., Y.Y. and L.W.; visualization and supervision, Y.D. and L.W. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the National Key Research and Development Program of
China (2021YFC2501500).

Data Availability Statement: The data presented in this study are available from the corresponding
author upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hu, R.; Chen, J.; Zhou, L. A transformer-based deep neural network for arrhythmia detection using continuous ECG signals.

Comput. Biol. Med. 2022, 144, 105325. [CrossRef]
2. Kibos, A.S.; Knight, B.P.; Essebag, V.; Fishberger, S.B.; Tintoiu, I.C. Cardiac Arrhythmias: From Basic Mechanism to State-of-the-Art

Management; Springer: London, UK, 2014; pp. 43–60.
3. Hanna, E.B.; Glancy, D.L. ST-segment depression and T-wave inversion: Classification, differential diagnosis, and caveats. Clevel.

Clin. J. Med. 2011, 78, 404. [CrossRef] [PubMed]
4. Shiyovich, A.; Wolak, A.; Yacobovich, L.; Grosbard, A.; Katz, A. Accuracy of diagnosing atrial flutter and atrial fibrillation from a

surface electrocardiogram by hospital physicians: Analysis of data from internal medicine departments. Am. J. Med. Sci. 2010,
340, 271–275. [CrossRef] [PubMed]

5. Schläpfer, J.; Wellens, H.J. Computer-Interpreted Electrocardiograms: Benefits and Limitations. J. Am. Coll. Cardiol. 2017, 70,
1183–1192. [CrossRef]

6. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
7. Baloglu, U.B.; Talo, M.; Yildirim, O.; Tan, R.S.; Acharya, U.R. Classification of Myocardial Infarction with Multi-Lead ECG Signals

and Deep CNN. Pattern Recognit. Lett. 2019, 122, 23–30. [CrossRef]
8. Saadatnejad, S.; Oveisi, M.; Hashemi, M. LSTM-based ECG classification for continuous monitoring on personal wearable devices.

IEEE J. Biomed. Health Inform. 2019, 24, 515–523. [CrossRef]
9. Qin, L.; Wang, X.; Li, S.; Wen, J.; Gao, X. An End-to-End 12-Leading Electrocardiogram Diagnosis System Based on Deformable

Convolutional Neural Network with Good Antinoise Ability. IEEE Trans. Instrum. Meas. 2021, 70, 1–13. [CrossRef]
10. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
11. Kiranyaz, S.; Ince, T.; Gabbouj, M. Real-time patient-specific ecg classification by 1-D convolutional neural networks. IEEE Trans.

Biomed. Eng. 2016, 63, 664–675. [CrossRef]
12. Rajpurkar, P.; Hannun, A.Y.; Haghpanahi, M.; Bourn, C.; Ng, A.Y. Cardiologist-level arrhythmia detection with convolutional

neural networks. arXiv 2017, arXiv:1707.01836.
13. Acharya, U.R.; Fujita, H.; Oh, S.L.; Hagiwara, Y.; Tan, J.H.; Adam, M. Application of deep convolutional neural network for

automated detection of myocardial infarction using ECG signals. Inf. Sci. 2017, 415, 190–198. [CrossRef]
14. He, R.; Wang, K.; Zhao, N.; Liu, Y.; Yuan, Y.; Li, Q.; Zhang, H. Automatic detection of atrial fibrillation based on continuous

wavelet transform and 2D convolutional neural networks. Front. Physiol. 2018, 9, 1206. [CrossRef]
15. Jun, T.J.; Nguyen, H.M.; Kang, D.; Kim, D.; Kim, D.; Kim, Y.-H. ECG arrhythmia classification using a 2-D convolutional neural

network. arXiv 2018, arXiv:1804.06812.
16. Elola, A.; Aramendi, E.; Irusta, U.; Picón, A.; Owens, P.; Idris, A. Deep neural networks for ECG-based pulse detection during

out-of-hospital cardiac arrest. Entropy 2019, 21, 305. [CrossRef]
17. Dubatovka, A.; Buhmann, J.M. Automatic Detection of Atrial Fibrillation from Single-Lead ECG Using Deep Learning of the

Cardiac Cycle. BME Front. 2022, 2022, 2765–8031. [CrossRef]
18. Krasteva, V.; Ménétré, S.; Didon, J.-P.; Jekova, I. Fully convolutional deep neural networks with optimized hyperparameters for

detection of shockable and non-shockable rhythms. Sensors 2020, 20, 2875. [CrossRef]
19. Jekova, I.; Krasteva, V. Optimization of End-to-End Convolutional Neural Networks for Analysis of Out-of-Hospital Cardiac

Arrest Rhythms during Cardiopulmonary Resuscitation. Sensors 2021, 21, 4105. [CrossRef]

167



Micromachines 2023, 14, 1155

20. Qiu, X.; Liang, S.; Meng, L.; Zhang, Y.; Liu, F. Exploiting Feature Fusion and Long-term Context Dependencies for Simultaneous
ECG Heartbeat Segmentation and Classification. Int. J. Data Sci. Anal. 2021, 11, 181–193. [CrossRef]

21. Wang, G.; Zhang, C.; Liu, Y.; Yang, H.; Fu, D.; Wang, H.; Zhang, P. A Global and Updatable ECG Beat Classification System Based
on Recurrent Neural Networks and Active Learning. Inf. Sci. 2019, 501, 523–542. [CrossRef]

22. Chen, T.-M.; Huang, C.-H.; Shih, E.S.; Hu, Y.-F.; Hwang, M.-J. Detection and Classification of Cardiac Arrhythmias by a
Challenge-Best Deep Learning Neural Network Model. iScience 2020, 23, 100886. [CrossRef] [PubMed]

23. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention Is All You Need.
NeurIPS 2017, 30, 5998–6008.

24. Onan, A.; Korukolu, S. Exploring Performance of Instance Selection Methods in Text Sentiment Classification. In Artificial
Intelligence Perspectives in Intelligent Systems; Springer: Berlin/Heidelberg, Germany, 2016; pp. 167–179.

25. Onan, A.; Korukolu, S. A Feature Selection Model Based on Genetic Rank Aggregation for Text Sentiment Classification. J. Inf. Sci.
2017, 43, 25–38. [CrossRef]

26. Onan, A. Sentiment Analysis on Product Reviews Based on Weighted Word Embeddings and Deep Neural Networks. Concurr.
Comput. Pract. Exp. 2020, 33, e5909. [CrossRef]

27. Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin Transformer: Hierarchical Vision Transformer using Shifted
Windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October
2021; pp. 10012–10022. Available online: https://openaccess.thecvf.com/content/ICCV2021/html/Liu_Swin_Transformer_
Hierarchical_Vision_Transformer_Using_Shifted_Windows_ICCV_2021_paper.html (accessed on 27 April 2023).

28. Wang, W.; Xie, E.; Li, X.; Fan, D.-P.; Song, K.; Liang, D.; Lu, T.; Luo, P.; Shao, L. Pyramid Vision Transformer: A Versatile Backbone
for Dense Prediction Without Convolutions. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
Montreal, QC, Canada, 10–17 October 2021.

29. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;
Gelly, S.; et al. An Image Is Worth 16 × 16 Words: Transformers for Image Recognition at Scale. arXiv 2020, arXiv:2010.11929.

30. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016.

31. Huang, G.; Liu, Z.; Pleiss, G.; Van Der Maaten, L.; Weinberger, K. Convolutional Networks with Dense Connectivity. IEEE Trans.
Pattern Anal. Mach. Intell. 2019, 44, 8704–8716. [CrossRef]

32. Yan, G.; Liang, S.; Zhang, Y.; Liu, F. Fusing Transformer Model with Temporal Features for ECG Heartbeat Classification. In
Proceedings of the 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), San Diego, CA, USA, 18–21
November 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 898–905.

33. Natarajan, A.; Chang, Y.; Mariani, S.; Rahman, A.; Boverman, G.; Vij, S.; Rubin, J. A Wide and Deep Transformer Neural Network
for 12-Lead ECG Classification. In Proceedings of the 2020 Computing in Cardiology, Rimini, Italy, 13–16 September 2020; IEEE:
Piscataway, NJ, USA, 2020; pp. 1–4.

34. Che, C.; Zhang, P.; Zhu, M.; Qu, Y.; Jin, B. Constrained Transformer Network for ECG Signal Processing and Arrhythmia
Classification. BMC Med. Inform. Decis. Mak. 2021, 21, 184. [CrossRef]

35. Martínez, J.P.; Almeida, R.; Olmos, S.; Rocha, A.P.; Laguna, P. A Wavelet-Based ECG Delineator: Evaluation on Standard
Databases. IEEE Trans. Biomed. Eng. 2004, 51, 570–581. [CrossRef]

36. Pan, J.; Tompkins, W.J. A Real-Time QRS Detection Algorithm. IEEE Trans. Biomed. Eng. 1985, 32, 230–236. [CrossRef]
37. Shang, L.; Yang, Q.; Wang, J.; Li, S.; Lei, W. Detection of Rail Surface Defects Based on CNN Image Recognition and Classification.

In Proceedings of the 20th International Conference on Advanced Communication Technology (ICACT), Chuncheon-si, Republic
of Korea, 11–14 February 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 45–51.

38. Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. In Proceedings of the 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; IEEE: Piscataway, NJ, USA, 2017.

39. He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. IEEE Trans.
Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [CrossRef]

40. Xia, Z.; Pan, X.; Song, S.; Li, L.E.; Huang, G. Vision Transformer with Deformable Attention. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 4794–4803.

41. Wang, Q.; Li, B.; Xiao, T.; Zhu, J.; Li, C.; Wong, D.F.; Chao, L.S. Learning Deep Transformer Models for Machine Translation. arXiv
2019, arXiv:1906.01787.

42. Baevski, A.; Auli, M. Adaptive Input Representations for Neural Language Modeling. arXiv 2018. [CrossRef]
43. Ba, J.L.; Kiros, J.R.; Hinton, G.E. Layer Normalization. arXiv 2016, arXiv:1607.06450.
44. Liu, F.; Liu, C.; Zhao, L.; Zhang, X.; Kwee, E.N.Y. An Open Access Database for Evaluating the Algorithms of Electrocardiogram

Rhythm and Morphology Abnormality Detection. J. Med. Imaging Health Inform. 2018, 8, 1368–1373. [CrossRef]
45. Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollar, P. Focal Loss for Dense Object Detection. IEEE Trans. Pattern Anal. Mach. Intell.

2019, 99, 2999–3007.

168



Micromachines 2023, 14, 1155

46. Mostayed, A.; Luo, J.; Shu, X.; Wee, W. Classification of 12-Lead ECG Signals with Bi-directional LSTM Network. arXiv 2018,
arXiv:1811.02090.

47. Tomasic, I.; Petrovic, N.; Linden, M.; Rashkovska, A. Comparison of Publicly Available Beat Detection Algorithms Performances
on the ECGs Obtained by a Patch ECG Device. In Proceedings of the 2019 42nd International Convention on Information and
Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, 20–24 May 2019; IEEE: Piscataway, NJ,
USA, 2019; pp. 275–278.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

169



Citation: Pentsos, V.; Spantidi, O.;

Anagnostopoulos, I. Dynamic Image

Difficulty-Aware DNN Pruning.

Micromachines 2023, 14, 908. https://

doi.org/10.3390/mi14050908

Academic Editors: Xiao Xiao

and Gang Ge

Received: 3 March 2023

Revised: 14 April 2023

Accepted: 21 April 2023

Published: 23 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

micromachines

Article

Dynamic Image Difficulty-Aware DNN Pruning
Vasileios Pentsos †, Ourania Spantidi † and Iraklis Anagnostopoulos *

School of Electrical, Computer and Biomedical Engineering, Southern Illinois University,
Carbondale, IL 62901, USA
* Correspondence: iraklis.anagno@siu.edu
† These authors contributed equally to this work.

Abstract: Deep Neural Networks (DNNs) have achieved impressive performance in various im-
age recognition tasks, but their large model sizes make them challenging to deploy on resource-
constrained devices. In this paper, we propose a dynamic DNN pruning approach that takes into
account the difficulty of the incoming images during inference. To evaluate the effectiveness of our
method, we conducted experiments on the ImageNet dataset on several state-of-art DNNs. Our
results show that the proposed approach reduces the model size and amount of DNN operations
without the need to retrain or fine-tune the pruned model. Overall, our method provides a promising
direction for designing efficient frameworks for lightweight DNN models that can adapt to the
varying complexity of input images.

Keywords: Deep Neural Networks; pruning; embedded systems; image difficulty

1. Introduction

Deep Neural Networks (DNNs) have emerged as a popular choice for solving various
challenging machine learning tasks, especially in the field of computer vision. Inside
a DNN, matrix multiplication is a fundamental operation that forms the backbone of
many common network layers, such as fully connected and convolutional layers. These
operations are typically implemented using multiply accumulate (MAC) units, which
perform both multiplication and addition in a single operation [1]. While MAC operations
are essential for DNNs to function accurately, they also contribute significantly to the
elevated energy consumption of these networks [2,3].

Therefore, even though DNN models have demonstrated remarkable accuracy on
different image recognition benchmarks, their high computational and memory require-
ments limit their deployment on resource-constrained devices such as embedded systems.
A commonly used technique is pruning, where the weight tensors of a DNN are modified
to be sparse [4]. This approach involves removing a subset of network parameters, such as
weights or neurons, that are deemed unnecessary or redundant. By reducing the number of
parameters, DNN pruning reduces the number of MAC operations required for inference,
thereby decreasing the energy consumption of the network. However, this removal of
parameters from the original DNN model can lead to drops in the final accuracy, which is
usually recovered through additional retraining or fine-tuning on the pruned model [5].

Previous research on DNN pruning has proposed various techniques for lightweight
models. An approach is to zero weights whose magnitude exceeds a specified threshold [6].
A more aggressive approach is the removal of entire filters and neurons [7]. Instead of prun-
ing individual weights, the work in [8] prunes groups of weights through the introduction
of depth-wise and shape-wise sparsity instead. Through reinforcement learning, the work
in [9] prunes convolution channels. To recover from the pruning-induced accuracy loss,
these works fine-tune and retrain the compressed generated models. However, retraining
is not always a feasible task. The required dataset might not even be available, or there
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might be privacy issues [10]. At the same time, retraining on embedded devices is a very
time-consuming and computationally-intensive procedure [11].

In this work, we present a pruning framework that takes into account the difficulty of
the input image during inference . In contrast to related works, we do not employ extensive
offline explorations or retraining, and at the same time, we allow for a more data-driven
and dynamic selection of pruning combinations. Image difficulty refers to the level of
challenge posed by an input image for a DNN. Different images may require different
levels of network complexity to achieve high accuracy. Some images may be relatively easy
to classify, while others may be more challenging due to factors such as occlusion, lighting,
or complexity. However, the term image difficulty can be subjective and arbitrary, and
previous works have relied on human feedback alone to categorize an image as difficult for
classification [12]. However, human perception may not always be an accurate measure
of image difficulty, as DNNs extract features that are not visible to the human eye and
process image information in a different way. Therefore, it is necessary to develop objective
metrics that can quantify image difficulty and accurately assess the network’s performance
on different input images.

Overall, we propose a framework that:

1. Utilizes difficulty metrics that incorporate human observations as well as image
quality scores to build a prediction model that can predict the difficulty of an image at
run-time;

2. Introduces a lightweight exploration loop for pruning combinations; and
3. Adaptively prunes DNNs during inference time based on the predicted image

difficulty scores.

2. Methodology

This section will present the proposed framework and its different components. First,
we will present our employed metric for image difficulty and its utilization in a Support
Vector Machine (SVM) classifier model. Afterwards, we will show an exploration loop
that generates a pool of candidate pruned DNN models, and finally, we will present
how to combine the SVM classifier and the pruned DNN models at run-time to achieve
lightweight inference.

2.1. Quantifying and Classifying Image Difficulty

For this part of the methodology, we employed the minimum required viewing times
dataset [13]. This dataset assesses the time required by human subjects to recognize objects
from the ImageNet and ObjectNet datasets. The dataset provides valuable insights into how
long it takes humans to classify images. We propose that this human-based information
can be used toward building an effective prediction model. By analyzing the dataset in [13],
we can identify patterns and characteristics of images that are easy or difficult for humans
to classify. Intuitively, an image that requires a longer viewing time to classify is likely
to have more complex features, occlusions, or ambiguities that make it challenging for
humans to recognize. On the other hand, an image that can be classified quickly likely has
clearer and more distinctive features that make it easier for humans to identify. Alongside
the viewing times dataset, the work in [13] also proposed two difficulty metrics. The
first metric is a difficulty score, which measures the proportion of humans who were able
to correctly classify a given image. The second metric is the minimum amount of time
required to reliably classify an image. This metric takes into account the time taken by
the participants to accurately recognize the image, with longer times indicating greater
complexity and difficulty.

To that end, we propose an image difficulty metric that combines both of these aspects
into a single value. Therefore, for an image i, we define the difficulty as follows:

Di f f icultyi =
Correct_Classi f ications

Total_Participants
× (1 − Avg_Timei − min(Timetotal)

max(Timetotal)− min(Timetotal)
) (1)
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In Equation 1, the fraction Correct_Classi f ications
Total_Participants corresponds to the number of correct

classifications observed out of all of the participants. Timei is the average response time
spent by all human subjects on the classification of image i, and Timetotal is a list that
contains all Timei values for each image i recorded in the viewing times dataset [13]. With
this metric, a value near 0 would mean that it is highly likely the specific image lies in the
most difficult group of images in the dataset, while a value closer to 1 would indicate that
the image was rarely misclassified and could be deemed an easier one. At this point, we
want to mention that we do not conduct any further experiments on human subjects but
solely rely on the dataset found in [13]. We use the recorded values from the participants as
our only indicator of human-measured image difficulty.

We use the image difficulty metric defined in Equation (1) to build an SVM model that
classifies any input image into one of the following three classes: Easy, Medium, and Hard.
An overview of the SVM training process is shown in Figure 1. The input image is analyzed
for its image quality (BRISQUE) [14], spatial information (SI) [15] and Gradient Sparsity
Index (GSI) [16] metrics, which are used as the input to an SVM model with a polynomial
kernel. As the output of the SVM, we combine two different pieces of information to
acquire the final class: the difficulty metric defined in Equation (1) and the information of
whether the DNN classifies correctly or not the image which can be obtained by running
a single inference on the input image. Note that this procedure is being performed only
for the training of the SVM predictor. Therefore, the final metric we use as the utilized
difficulty is defined by:

Di f f icultyi = 0.8 ∗ Correct_Classi f ications
Total_Participants

× (1 − Avg_Timei − min(Timetotal)

max(Timetotal)− min(Timetotal)
) + 0.2 ∗ DNN_Classi f ication (2)

The DNN_Classi f ication value in Equation (2) will either be 1 or 0 depending on
whether the DNN can correctly classify the input image or not. We include the DNN’s
ability to classify the image to have a well-rounded difficulty metric that includes not only
human perception abilities but also takes into consideration how difficult the image is from
the DNN’s perspective. However, we still consider the human-measured metric to be the
most significant in terms of importance.

Support Vector 
Machine Model

Easy 

Image 
quality

Hard

Medium
Spatial 

information

DNN 
classified?

Inputs: Image Output: Difficulty class

Human-
measured 
difficulty

Gradient 
sparsity 
index

Figure 1. the SVM model to predict image difficulty of an input image for a target DNN.

Finally, instead of employing the SVM for a regression task where it would try to
map an image’s metrics to a single difficulty value as defined in Equation (2), we simply
divide all the difficulty values we observe for the dataset in [13] to three equally sized
categories (Easy, Medium, and Hard), and we use the SVM to classify the input image to
one of these three classes. Therefore, at run-time, where we do not have the knowledge of
the DNN’s classification score for a previously unseen image, the SVM will simply return a
classification score which will be either Easy, Medium, or Hard.

2.2. DNN Pruning Tolerance

As mentioned in Section 1, related works that utilize pruning toward more efficient
DNN inference usually employ extensive explorations that also require retraining. In this
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framework, however, one of our main goals is to prune DNNs while completely avoiding
retraining and further fine-tuning.

An overview of this step is shown in Figure 2. During the pruning stage, we avoid
fine-grain time-consuming explorations and initially employ layer-wise pruning, i.e., we
apply pruning, and specifically channel pruning [17] at a 10% consistent sparsity to one
layer at a time. The proposed strategy involves adding pruning to each layer of the DNN
individually, starting with the first layer and moving toward the last (Figure 2 1©). After
pruning each layer, the accuracy of the resulting network is evaluated on the validation
set of the target dataset, and the respective accuracy is monitored. This process allows
us to evaluate the impact of pruning each layer of the DNN in isolation. This helps us to
identify the relative importance of each layer and its contribution to the overall accuracy of
the DNN.

Figure 2. Overview of the pruning combination explorations on a given pretrained DNN model. No
retraining is involved in this procedure, and the final outcome is three different combinations that
will be invoked as the Easy, Medium, and Hard models.

Once each layer has been pruned individually, we can determine the resilience of each
layer to pruning based on its accuracy drop. The layer with the least accuracy drop is
considered the most resilient, while the layer with the highest accuracy drop is considered
the least resilient. We then add pruning back to the network one layer at a time, starting
with the most resilient layer and moving toward the least resilient (Figure 2, 2©). Every
combination is being evaluated on the validation set of the target dataset, and we monitor
not only the accuracy drop but the reduction in parameters and MAC operations this time
as well.

So far, steps 1© and 2© as described above and shown in Figure 2 correspond to a 10%
sparsity ratio. For step 3©, we repeat steps 1© and 2© for 20% sparsity. Note that we have
already tested the layers for resilience in step 1©, so their resilience is going to be similar if
not identical for more aggressive sparsity ratios, too. Then, starting from the most resilient
layer to the least resilient one, we swap the initially set 10% pruning ratio to 20% until an
accuracy threshold is violated. We then take the Pareto front of all generated combinations
and keep only three based on the reduction in the DNN’s model size. All final three selected
combinations should lie on the Pareto front and have increasing accuracy and model size
reduction and will be used as the Easy, Medium, and Hard models during run-time.

2.3. Bringing It All Together: Run-Time Pruning Based on Image Difficulty

We combine the approaches presented in Sections 2.1 and 2.2 to achieve lightweight
DNN inference without compromises in terms of accuracy at run-time. We consider run-
time scenarios where real-time performance is prioritized [18] and therefore target DNN
inference where each image is processed independently rather than in big batches.

Figure 3 shows how we combine the SVM from Section 2.1 with the pruning pool
resulting from the exploration described in Section 2.2. For each incoming image in the
input stream, we calculate the metrics that are needed by the SVM, which then classifies
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it as Easy, Medium, or Hard. From the pruned models pool that we have generated in
Section 2.2, we select the respective model for inference based on the verdict of the SVM,
and finally, we evaluate it on a DNN accelerator. We keep the resulting accuracy, model
parameters, and total MAC operations to evaluate our model in Section 3.

Input DNN

Filter SRAM

IF
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Pruned DNNs pool
Incoming stream of 

images

Support Vector 

Machine Model

Image 

quality
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Gradient 
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Easy HardMedium

Selected

Pruned

DNN
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Accuracy

Parameters

MACs
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Figure 3. The execution flow of the proposed framework at run-time. For a target DNN model, each
image during inference is being analyzed for its metrics and classified through the SVM. Then, the
respective DNN model is selected for inference on a DNN accelerator.

3. Evaluation

The human-based dataset presented in [13] targets the ImageNet dataset which we
also employ in this work [19]. The ImageNet dataset is a widely recognized benchmark
in the field of computer vision and deep learning. It consists of more than a million
images distributed over 1000 categories, making it a comprehensive and diverse dataset
for evaluating the performance of DNNs. The accuracy achieved on this dataset by DNNs
has become a standard metric of their evaluation. We evaluate the proposed framework
on the entire validation dataset of ImageNet which is 50,000 images in total. We used
pretrained models on the ImageNet from Pytorch [20], which is a popular open-source
machine learning library heavily used in the development of DNNs. We evaluate a variety
of DNNs with diverse structures which are the following: ResNet18 and ResNet50 [21],
VGG11 and VGG16 [22], AlexNet [23] and GoogLeNet [24]. We use channel pruning [17]
as the employed pruning technique and evaluate DNN inference on the systolic accelerator
simulator in [25]. We simulate a systolic array following the Eyeriss [26] architecture
paradigm, where the input feature map (IFMAP), filter, and output feature map (OFMAP)
SRAM sizes are 108 kB, and the array has a height of 12 and a width of 14.

It is important to note that the aim of this paper is not to propose a new pruning
method but utilize an already proposed approach such as channel pruning. In the case of
channel pruning, there are various methods for retraining the pruned model to recover the
lost accuracy, such as fine-tuning the model on the pruned architecture or using knowledge
distillation to transfer the knowledge from the original model to the pruned model [27].
However, these methods can be computationally expensive and time-consuming, and
they may not be feasible or practical in all scenarios [18]. On the contrary, the proposed
method does not involve retraining or fine-tuning; therefore, to keep evaluations fair, we
avoid directly comparing our results with other pruning methods that do involve such
techniques. Instead, we provide comparisons in terms of the efficiency and effectiveness of
the proposed methodology based on the compression achieved alongside the drop in final
inference accuracy.

Our proposed approach is intended for lightweight Convolutional Neural Networks
(CNNs) utilized in image classification tasks. While we evaluate our approach on several
state-of-the-art CNNs on the ImageNet dataset, it can be applied to any CNN architecture.
It is important to note that our evaluation is limited to the image classification task and
convolutional neural networks. However, the same principles of layer sensitivity to pruning
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ratios can be applied to other neural network architectures. The ImageNet dataset is widely
used in the computer vision community due to its large size and complexity, and evaluating
on this dataset provides valuable insights into the effectiveness of our approach.

Table 1 contains all the results of the conducted evaluation of the proposed framework.
We can observe that there are three different behavior patterns based on the type of DNN
deployed with our framework.

1. The ResNet models: The ResNet models are overall more tolerant to pruning, allowing
for significant speedups and a reduction in MAC operations and model size. Both
of the examined ResNets comprise multiple convolutional layers, allowing for more
pruning combinations to be explored. An illustrative example on the ResNet-18
specifically is shown in Figure 4. For all the combinations, we only consider solutions
that lie on the Pareto front, and we select three different accuracy drop thresholds of
increasing aggressiveness to select the Hard, Medium, and Easy DNNs: 1%, 4% and
8%, respectively. This way, we aim to have an overall average accuracy that does not
fall more than 4% below the baseline accuracy on average. As shown in Table 1, we
manage to stay below a 2% drop in accuracy for all DNNs considered in this work
due to the adaptive nature of the framework at run-time.

2. AlexNet and GoogLeNet: Both of these models have very different structures. AlexNet
has a small amount of convolution layers (just 8 in total), but its model requires tens
of millions of parameters (61.1M) as opposed to the GoogLeNet model that has
22 convolution layers but requires just 6.62M parameters. The parameter amount for
each DNN was calculated through [17]. Even though different in structure, convo-
lution layers and parameters, they exhibit the same behavior, which is fairly conser-
vative: they do not tolerate pruning as well, and the acceptable solutions found by
the proposed framework led to lower reductions in MAC operations and parameters,
which however came with a lower drop in the average accuracy.
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Figure 4. A visualization of all the explored pruning combinations of ResNet-18 alongside the
underlying Pareto frontier. We select the best combination (maximum number of parameters reduced)
for accuracy drops less than 1%, 4% and 8% for the Hard, Medium, and Easy DNNs, respectively.

We additionally evaluated two VGG models, as shown in Table 2. Even though
the observed accuracy drops for the VGG-11 and VGG-16 models are similar to those of
the ResNets, the reduction in parameter size and MAC operations is not as significant
as the ResNet models. This is attributed to the fact that the VGG models comprise a
smaller number of convolutional layers, which are however of higher depth. Therefore,
applying a 10% sparsity to the multiple convolution layers can significantly lower the
model size, which can lead to drastic drops in accuracy, as shown in the first two lines of
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Table 2. Therefore, for these two cases only, instead of following the procedure described in
Section 2.2 with an initial sparsity of 10% followed by the more aggressive 20%, we started
the procedure with a 5% sparsity ratio followed by 10%.

Table 1. Evaluation results.

Accuracy
Drop (%)

MAC
Reduction (%)

Parameter
Reduction (%) Speedup

ResNet-18 1.84 12.11 9.65 ×1.28
ResNet-34 1.75 11.53 9.41 ×1.36
ResNet-50 1.79 11 9.32 ×1.35

AlexNet 0.58 5.61 4.23 ×1.1
GoogLeNet 0.78 7.88 5.82 ×1.15

Table 2. Evaluation results for VGG networks: At first, with no alterations in the initial pruning ratio
(PR) (10%) and then with the adjusted initial PR (5%).

Accuracy
Drop (%)

MAC
Reduction (%)

Parameter
Reduction (%) Speedup

VGG11 (10% PR) 3.25 8.4 6.6 ×1.22
VGG16 (10% PR) 4.13 9.1 8.91 ×1.26

VGG11 (5% PR) 1.61 6.67 3.5 ×1.08
VGG16 (5% PR) 1.42 7.32 6.68 ×1.14

Overall, the proposed framework always produced final solutions that achieved
speedups compared to the baseline execution due to the reduction of MAC operations
and parameters without surpassing 1.85% accuracy drop from the baseline. Therefore,
this evaluation indicates that incorporating image difficulty and incoming data attributes
during pruning can provide several benefits. Specifically, by pruning more aggressively on
easy images, we can save more computational resources without sacrificing accuracy on
the most challenging samples.

Cost Efficiency Analysis

The utilized SVM comprises a third-degree polynomial kernel and is only trained once.
The main reason why the SVM is efficient for run-time deployment is that it can quickly
classify new data points based on the decision boundary learned during training. To classify
a new image at run-time, the SVM computes the dot product between the image’s features
and the weights of the support vectors. The resulting values are then passed through a
decision function that maps them to the predicted class label. This process is relatively fast
since it involves only a few computations and does not require iterative training steps.

The utilized SVM is only used to classify images into three difficulty levels (Easy,
Medium, and Hard) at run-time, the classification time is expected to be very fast, and
it should not be a significant bottleneck in the overall inference process. Additionally,
computing the necessary inputs for the SVM (image quality, spatial information, and
gradient sparsity index) is in the range of microseconds.

In our evaluation, we found that the additional time required to perform SVM infer-
ence and image property calculations was negligible compared to the overall time required
for DNN inference. We observed that even with the added SVM inference step, the pruned
DNNs still resulted in significantly faster inference times compared to the baseline un-
pruned DNNs. None of the evaluated DNNs showed a final inference time similar to the
baseline, indicating that the pruning of the DNN more than compensated for the minimal
overhead of SVM inference.
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4. Conclusions

Deep Neural Networks (DNNs) are becoming increasingly complex, making them
difficult to deploy on resource-constrained devices. While pruning mechanisms can result
in lightweight DNNs, they typically require additional retraining to recover from accuracy
losses induced by pruning. This paper proposes a dynamic DNN pruning approach that
takes into account the difficulty of incoming images during inference on pretrained DNNs.
Experimental results on the ImageNet dataset demonstrate that the proposed approach
effectively reduces model size and DNN operations without the need for retraining or
fine-tuning on the pruned model, resulting in speedups during inference. By considering
the attributes of the input data, the proposed approach presents a promising direction for
improving the deployment of DNNs on resource-constrained devices.
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Abstract: Recurrent Neural Networks (RNN) are basically used for applications with time series and
sequential data and are currently being used in embedded devices. However, one of their drawbacks
is that RNNs have a high computational cost and require the use of a significant amount of memory
space. Therefore, computer equipment with a large processing capacity and memory is required.
In this article, we experiment with Nonlinear Autoregressive Neural Networks (NARNN), which
are a type of RNN, and we use the Discrete Mycorrhizal Optimization Algorithm (DMOA) in the
optimization of the NARNN architecture. We used the Mackey-Glass chaotic time series (MG) to
test the proposed approach, and very good results were obtained. In addition, some comparisons
were made with other methods that used the MG and other types of Neural Networks such as
Backpropagation and ANFIS, also obtaining good results. The proposed algorithm can be applied to
robots, microsystems, sensors, devices, MEMS, microfluidics, piezoelectricity, motors, biosensors, 3D
printing, etc.

Keywords: optimization; nonlinear autoregressive neural networks; Mackey–Glass

1. Introduction

Optimization is not limited to applied mathematics, engineering, medicine, economics,
computer science, operations research or any other science, but has become a fundamental
tool in all fields, where constantly developing new algorithms and theoretical methods have
allowed it to evolve in all directions, with a particular focus on artificial intelligence, such
as deep learning, machine learning, computer vision, fuzzy logic systems, and quantum
computing [1,2].

Optimization has grown steadily over the past 50 years. Modern society not only lives
in a highly competitive environment, but is also forced to plan for growth in a sustainable
manner and be concerned about resource conservation. Therefore, it is essential to optimally
plan, design, operate and manage resources and assets. The first approach is to optimize
each operation separately. However, the current trend is toward an integrated approach:
synthesis and design, design and control, production planning, scheduling and control [3].

Theoretically, optimization has evolved to provide general solutions to linear, non-
linear, unbounded and constrained network optimization problems. These optimization
problems are called mathematical programming problems and are divided into two differ-
ent categories: linear and nonlinear programming problems. Biologically derived genetic
algorithms and simulated annealing are two equally powerful methods that have emerged
in recent years. The development of computer technology has provided users with a variety
of optimization codes with varying degrees of rigor and complexity. It is also possible to
extend the capabilities of an existing method by integrating the features of two or more
optimization methods to achieve more efficient optimization methodologies [4]; current
optimization methods that can solve specific problems are still being developed, as we do
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not yet have a method that can solve them all, such as explained by the No Free Lunch
(NFL) Algorithm [5], although the research trend is moving in that direction.

RNNs are a special class of neural network characterized by their inherent self-
connectivity [6], and their variants are used in many contexts where temporal dependence
of data is an important latent feature in model design [7]. The most important applications
of RNNs include time series prediction [8], sequence transduction [9], language model-
ing [10–13], speech recognition [14], word embedding learning [15], sound modeling [16],
handwriting recognition [17,18], and image generation [19]. A common variant of RNN
called long short-term memory [20] is used in many of these studies.

One of the main advantages of this method with respect to others is that in general the
NARNN-DMOA method is much easier to implement with better results, and with lower
computation costs. Other methods use very robust Ensemble Neural Network architectures
of several layers and of more than 2000 neurons and different architectures of Interval
Type-2 Fuzzy Logic Systems (IT2FLSs), in addition to optimization algorithms such as PSO
Genetic Algorithms [21–23], which implies a high computational cost.

The algorithm can be applied, as we previously mentioned, to robots, microsystems,
sensors, devices, etc., in the optimization of the parameters of their models that are being
experimented upon. The proposed algorithm can be used in the optimization of the
architecture of a neural network or in the parameters of the membership functions of a
fuzzy logic system; as we have seen in other articles [24–27], this type of experimentation
with the DMOA is the subject of a future work that we plan to undertake in due course

The main contribution of this research is to use the DMOA algorithm to optimize the
architecture of the NARNN neural network using the MG chaotic time series, which has
not previously been done in the current literature.

The structure of this paper is as follows: (1) brief introduction of Optimization and
Recurrent Neural Networks (RNNs), (2) we include a brief description of Nonlinear
Autoregressive Neural Networks (NARNNN), (3) presentation of the Discrete Mycor-
rhiza Optimization Algorithm (DMOA) inspired by the symbiosis of plant roots and MN,
(4) proposed method using the NARNN, the new DMOA algorithm and Mackey Glass
chaotic time series, (5) results obtained from this research, such as statistical data, hy-
pothesis testing and comparison of the DMOA-NARNN method with other methods,
(6) in-depth discussion of the results and comparison of the error with other methods, and
(7) conclusions of the obtained results.

2. Nonlinear Autoregressive Neural Networks

An Artificial Neural Network (ANN) is a type of neural network represented by
a mathematical model inspired by the neural connections of the human brain. It is an
intelligent system capable of recognizing time series patterns and nonlinear features.

Therefore, it is widely used to model nonlinear dynamic time series [28]. ANN incor-
porates artificial neurons to process information. It consists of single neurons connected
to a network via weighted links. Each input is multiplied by a weight calculated by a
mathematical function that determines the activation of the neurons. Another activation
function calculates the output of the artificial neuron based on a certain threshold [29].

The output of a neuron can be written as Equation (1):

y = f

(
b + ∑

i
wixi

)
(1)

where b is the bias of the neuron, the bias input to the neuron algorithm is an offset value
that helps the signal exceed the threshold of the activation function, f is the activation
function, wi is the weight, xi is the input, and y is the output.

Several types of ANNs have been presented in the literature, including Multilayer Per-
ceptron (MLP), in which neurons are grouped into an input layer, one or more hidden layers,
and an output layer. These also include RNNs such as Layer Recurrent Networks [30],
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Time Delay Neural Networks (TDNN) [31], and NARNN [32]. In RNNs, the output of a
dynamic system depends not only on the current inputs, but also on the history of inputs
and states of the system. The NARNN is a recurrent dynamic network based on a linear
autoregressive model with feedback connections, and consists of several network layers.

Humans do not start their thinking from scratch every second. As we read, we
understand each word based on our understanding of the previous words. We never start
thinking from scratch every time we do; our thoughts have permanence. A traditional
ANN cannot do this, and it seems like a major shortcoming. For example, imagine that you
want to classify what kind of event is happening at each point in a movie. It is not clear
how a traditional ANN could use its reasoning about earlier events in the movie to inform
later events, and RNN address this problem. They are networks with loops in them which
allows information to persist.

An RNN is a type of artificial neural network that uses sequential or time series da-ta.
These deep learning algorithms are commonly used for ordinal or temporal problems, such
as language translation, natural language processing (NLP) [33,34], speech recognition, and
image captioning [35]. They are distinguished by their "memory" because they take infor-
mation from previous inputs to influence the current input and output. While traditional
deep neural networks assume that inputs and outputs are independent of each other, the
output of recurrent neural networks depends on previous elements within the sequence.

NARNNs are a type of RNN with memory and feedback capabilities. The output
of each point is based on the result of the dynamic synthesis of the system before the
current time. It has great advantages for modeling and simulating dynamic changes in time
series [36]. Typical NARNNs mainly consist of an input layer, a hidden layer, an output
layer and an input delay function, the basic structure of which is shown in Figure 1.
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In Figure 1, y(t) is the output of the NARNN, 1..19 represents the delay order, w is
the joint weight and b is the threshold of NARNNs. The model of NARNN networks can
be expressed as in Equation (2), where d is the delay order and f are a nonlinear function,
where the future values depend only on the previous values d of the output signal.

From the equation, it can be seen that the value of y(t) is determined by the values of
y(t − 1), . . . , y(t − d), which indicates that based on the continuity of data development,
the model uses past values to estimate the current value [37,38].

The prediction method of the NARNN model adopts the recursive prediction method.
The main purpose of this prediction method is to reproduce the predicted value one step
ahead.

The future values of the time series y(t) are predicted only from the past values of this
series. This type of prediction is called Nonlinear Autoregression (NAR) and can be written
as Equation (2):

y(t) = f (y(t − 1), . . . y(t − d)) (2)

This model can be used to predict financial instruments, but it does not use additional
sequences [39].
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Looking at Figure 2, NARNN represents the entire neural network. Figure 3 “Un-
rolled” represents the individual layers, or time steps, of the NARNN network. Each layer
corresponds to a single piece of data [40,41].
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Figure 3. Unrolled NARNN.

Predicting a sequence of values in a time series is also known as multi-pass fore-
casting. Closed-loop networks can perform multi-step forecasting. When external feedback
is missing, closed-loop networks can still make predictions using internal feedback. In
NARNN prediction, the future values of a time series are predicted only from the past
values of that series.

The current literature provides a history of very extensive research on the use of
NARNNs in the following areas:

• The use of NARNN in medical devices such as continuous glucose monitors and drug
delivery pumps that are often combined with closed-loop systems to treat chronic
diseases, for error detection and correction due to their predictive capabilities [42].

• The use of NARNNs as Chinese e-commerce sales forecasting to develop purchasing
and inventory strategies for EC companies [43], to support management decisions [44],
the effects of air pollution on respiratory morbidity and mortality [45], the relationship
between time series in the economy [46], to model and forecast the prevalence of
COVID-19 in Egypt. [47], etc.

3. Discrete Mycorrhiza Optimization Algorithm

Most of the world’s plant species are associated with mycorrhizal fungi in nature;
this association involves the interaction of fungal hyphae on plant roots. Hyphae extend
from the roots into the soil, where they absorb nutrients and transport them through the
mycelium to the colonized roots [48]. Some hyphae connect host plants in what is known
as a Mycorrhizal Network (MN). The MN is subway and is difficult to understand. As a
result, plant and ecosystem ecologists have largely overlooked the role of MNs in plant
community and ecosystem dynamics [49].
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It is clear that most MN are present and provide nutrition to many plant species. This
has important implications for plant competition for soil nutrients, seedling formation,
plant succession and plant community and ecosystem dynamics [50].

Plant mycorrhizal associations have large-scale consequences throughout the eco-
system [51,52]. The origins of plant-fungal symbiosis are ancient and have been proposed
as a mechanism to facilitate soil colonization by plants 400 Mya [53,54]. Mycorrhizal
symbiosis is a many-to-many relationship: plants tend to form symbioses with a diverse set
of fungal species and, similarly, fungal species tend to be able to colonize plants of different
species [55].

In Figure 4 we can see that through the MN resources such as carbon (CO2) from
plants to fungi and water, phosphorus, nitrogen and other nutrients from fungi to plants
are exchanged, in addition to an exchange of information through chemical signals when
the habitat feels threatened by fire, floods, pests, or predators. It should be noted that this
exchange of resources can be between plants of the same species or of different species.
Figure 5 shows the symbiosis between plants and the fungal network and how the carbon
in the form of sugars flows from the plants to the MN and how the MN fixes the nutrients
in the roots of the plants.
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The Nobel optimization algorithm DMOA is inspired by the nature of the Mycorrhiza
Network (MN) and plant roots with this intimate interaction between these two organisms
(plant roots and the network of MN fungi), a symbiosis is generated and it has been
discovered that in this relationship [56–60]:

1. There is a communication between plants, which may or may not be of the same
species, through a network of fungi (MN).

2. There is an exchange of resources between plants through the fungal network (MN).
3. There is a defensive behavior against predators that can be insects or animals, for the

survival of the whole habitat (plants and fungi).
4. The colonization of a forest through a fungal network (MN) thrives much more than a

forest where there is no exchange of information and resources.
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The launch and publication of the DMOA algorithm has just been carried out in
2022 [61].

Figure 6 describes the flowchart of the DMOA algorithm: we initialize the parameters
such as dimensions, epochs, number of iterations, etc., and we also initialize the two
populations of plants and mycorrhizae; with these populations we find the best fitness
of plants and mycorrhizae, while with these results we use the biological operators. The
first operator is represented by the Lotka-Volterra System of Discrete Equations (LVSDE)
Cooperative Model [62], whose result has inference on the other two models represented by
LVSDE, Defense and Competitive [63,64], and in this frequency we evaluate the fitness to
determine if it is better than the previous one and we update the same as the populations,
if not we continue with the next iteration and continue the calculation with the biological
operators. If the stop condition is fulfilled we obtain the last solution before evaluation and
the algorithm ends.
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4. Proposed Method

The proposed method is to use the Discrete Mycorrhiza Optimization Algorithm
(DMOA) to optimize the architecture of the Nonlinear Autoregressive Neural Network
(NARNN), and as input data we use the Mackey-Glass chaotic time series. In Figure 7 and
Algorithm 1 we can find the DMOA-NARNN flowchart and DMOA-NARNN pseudocode,
respectively. The DMOA algorithm is explained in Figure 6 in the previous section, in this
flowchart we include the optimization of the NARNN, evaluating its results by means of
the RMSE, until we manage to find the minimum error of that architecture through the
iterations and the populations of the DMOA algorithm (Algorithm 1).
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Algorithm 1 DMOA-NARNN Pseudocode. Discrete Mycorrhiza Optimization Algorithm
(DMOA)

1. Objective min or max f(x), x = (x1, x2, . . . , xd)
2. Define parameters (a, b, c, d, e, f, x, y)
3. Initialize a population of n plants and mycorrhiza with random solutions
4. Find the best solution fit in the initial population
5. while (t < maxIter)
6. for i = 1:n (for n plants and Mycorrhiza population)
7. Xp = abs(FitA)
8. Xm = abs(FitB)
9. end for
10. a = minorXp
11. d = minorXm
12. Apply (LV-Cooperative Model)

13. xt+1
i = (axi−bxiyi)

(1−gxi)

14. yt+1
i = (dyi+exiyi)

(1+hyi)

15. if xi < yi
16. xt = xi
17. else
18. xt = yi
19. end if
20. rand ([1 2])
21. if (rand = 1)
22. Apply (LV-Predator-Prey Model)
23. xt+1

i = axi(1 − xi)− bxiyi

24. yt+1
i = dxiyi − gyi

25. else
26. Apply (LV- Competitive Model)

27. xt+1
i = (axi−bxiyi)

(1+gxi)

28. yt+1
i = (dyi−exiyi)

(1+hyi)

29. end if
30. Evaluate new solutions.
31. NARNN-Architecture
32. Evaluate Error
33. Error minor?
34. Update NARNN-Architecture.
35. Find the current best NARNN-Architecture solution.
36. end while

Difference equations often describe the evolution of a particular phenomenon over
time. For example, if a given population has discrete generations, the size of (n + 1) 1st
generation x(n + 1) is a function of the nth generation x(n). This relationship is expressed
by Equation (3):

x(n + 1) = f (x(n)) (3)

We can look at this issue from another perspective. You can generate a sequence from
the point x0, Equation (4):

x0, f (x0), f ( f (x0)), f ( f ( f (x0))), . . . (4)

f(x0) is called the first iterate of x0 under f.
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Discrete models driven by difference equations are more suitable than continuous
models when reproductive generations last only one breeding season (no overlapping
generations) [65,66].

An example would be a population that reproduces seasonally, that is, once a year.
If we wanted to determine how the population size changes over many years, we could
collect data to estimate the population size at the same time each year (say, shortly after the
breeding season ends). We know that between the times at which we estimate population
size, some individuals will die and that during the breeding season many new individuals

187



Micromachines 2023, 14, 149

will be born, but we ignore changes in population size from day to day, or week to week,
and look only at how population size changes from year to year. Thus, when we build a
mathematical model of this population, it is reasonable that the model only predicts the
population size for each year shortly after the breeding season. In this case, the underlying
variable, time, is represented in the mathematical model as increasing in discrete one-year
increments.

The LVSDE Equations (5)–(10), have many uses in applied science. These models were
first developed in mathematical biology, after which research spread to other fields [67–71].

Discrete Equations (5) and (6) Cooperative Model (Resource-Exchange), for both
species, where parameters a, b, d, e, g, and h are positive constants, xi and yi represent the
initial conditions of the population for both species and are positive real numbers [72].

The biological operators are represented by LVSDE, the mathematical description of
the Discrete Equations (7) and (8) Defense Model (Predator-Prey), where the parameters a,
b, d and g are positive constants, xi and yi represent the initial population conditions for
both species and are positive real numbers [73,74].

Discrete Equations (9) and (10) Competitive Model (Colonization), for two species,
where the parameters a, b, d, e, g, and h are positive constants, xi and yi are the populations
for each of the species respectively and are positive real numbers. Each of the parameters
of the above equations is described in Table 1, [74].

xt+1
i =

(axi − bxiyi)

(1 − gxi)
(5)

yt+1
i =

(dyi + exiyi)

(1 + hyi)
(6)

xt+1
i = axi(1 − xi)− bxiyi (7)

yt+1
i = dxiyi − gyi (8)

xt+1
i =

(axi − bxiyi)

(1 + gxi)
(9)

yt+1
i =

(dyi − exiyi)

(1 + hyi)
(10)

Table 1 contains the parameters used in all the experiments performed in this research,
both those of the DMOA algorithm and those of the NARNN neural network.

The theory of Differential Equations, as well as that of Equations by Differences, can
be found in Youssef N. Raffoul. Qualitative Theory of Volterra Difference Equations [75], Sigrun
Bodine et al., Asymptotic Integration of Differential and Difference Equations [76], Takashi
Honda et al., Operator Theoretic Phenomena of the Markov Operators which are Induced by
Stochastic Difference Equations [77], Ronald E. Mickens, Difference Equations Theory, Appli-
cations and Advanced Topics [78], and Konrad Kitzing, et al., A Hilbert Space Approach to
Difference Equations [79].

188



Micromachines 2023, 14, 149

The metric for measuring error is RMSE (Root Mean Square Error) or root mean square
deviation, which is one of the most commonly used measures for evaluating the quality of
predictions. It shows how far predictions fall from measured true values using Euclidean
distance Equation (11), where n is the number of data points, yi is the ith measurement and
ŷi is the expected prediction [80,81].

RMSE =

√
n

∑
i=1

(ŷi − yi)
2 (11)

Table 1. DMOA-NARNN Parameters.

Parameter Description Value

DMOA—Parameters:
xt+1

i Population x at time t
yt+1

i Population y at time t
xi Grow rates of populations x at time t
yi Grow rates of populations y at time t
t time
a Population growth rate x 0.01
b Influence of population x on itself 0.02
g Influence of population y on population x 0.06
d Population growth rate y 0
e Influence of population x on population y 1.7
h Influence of population y on itself 0.09
x Initial population in x 0.0002
y Initial population in y 0.0006

In the absence of population x = 0, In the absence of population y = 0
a, b, c, d, e and f —are positive constants

Population Population size 20
Populations Number of populations 2
Dimensions Dimensions size 30, 50, 100

Epochs Number of epochs 30
Iterations Iteration’s size 30, 50, 100, 500

NARNN—Parameters:
h Hidden Layers 2, 3
n Neurons 2–10

Vector time delay 01:06:19

Mackey-Glass

Chaotic and random time series are both disordered and unpredictable. In extreme
cases, the data are so mixed up that those consecutive values seem unrelated to each other.
Such disorder would normally eliminate the ability to predict future values from past data.

The Mackey-Glass chaotic time series Equation (12) is a nonlinear differential equation
of time delay, and this equation is widely used in the modeling of natural phenomena to
make comparisons between different forecasting techniques and regression models [82–84],
where a = 0.1, b = 0.2, and τ = 17 are real numbers, t is the time, and with this setting
the series produces chaotic behavior, and we can compare the forecasting performance of
DMOA-NARNN with other models in the literature.

.
y(t) = −by(t) +

cy(t − τ)

1 + y10(t − τ)
(12)
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5. Results

This section shows the results of the experiments performed in the research involving
the Non-Optimized and Optimized results of the method.

Table 2 presents 10 different non-optimized NARNN architectures using only the Mackey-
Glass chaotic time series; in the table the columns are represented by: N—Experiment Num-
ber, Experiment Name, S—Sample size, T—Training, V—Validation, P—Prediction, HL—
Hidden Layers of the NARNN, E—Number of experiment and RMSE (Root Mean Square
Error), while the best architecture of the non-optimized NARNN is found in experiment
number 4, with the RMSE of 0.1670.

Table 2. Results of non-optimized experiments.

N Name S T V P HL E RMSE

1 NARNN401 700 300 400 400 [1 1] 3000 0.2777
2 NARNN402 700 400 300 300 [1 1] 3000 0.1683
3 NARNN403 1000 400 600 600 [3 1] 3000 0.2307
4 NARNN404 1000 500 500 500 [9 2] 3000 0.1670
5 NARNN405 1000 600 400 400 [2 2] 3000 0.2488
6 NARNN406 1500 600 900 900 [4 1 9] 3000 0.2550
7 NARNN407 1500 700 800 800 [8 5 2] 3000 0.2158
8 NARNN408 1500 800 700 700 [1 2 1] 3000 0.4001
9 NARNN409 1500 900 600 600 [2 3 2] 3000 0.2810

10 NARNN410 1500 1000 500 500 [6 6 8] 3000 0.1712

In Figures 8–13, the y axes represent the input values (Validation-Training) and output
values of the samples (Prediction-Error), the x axis represents the number of samples in
time, Name is the name of the experiment, Samples is the total number of samples in the
experiment, Training is the number of samples for training, Error is the minimum error
obtained in the experiment, and HL represents the number of neurons in the hidden layers.

Figure 8 shows the behavior of the data for 1000 samples of the NARNN403, obtaining
an RMSE of 0.2307, with the reference data at the top of the figure.

Figures 9 and 10 show the data behavior for 1000 samples of the NARNN404 and
NARNN405, obtaining an RMSE of 0.167 and 0.2488, respectively, with the reference data
at the top of each figure.

Table 3 shows the results of 39 NARNN architectures optimized with the DMOA
algorithm using the Mackey-Glass chaotic time series, in the table the columns are rep-
resented by: N - Experiment Number, Experiment Name, S—Sample size, T—Training,
V—Validation, P—Prediction, HL—Hidden Layers of the NARNN, I—Number of itera-
tions, Tt—total time of the experiments in seconds, T—time in which the best result was
found and RMSE (Root Mean Square Error). The best architecture of the non-optimized
NARNN is found in experiment number 31, with the RMSE of 0.0023.

190



Micromachines 2023, 14, 149
Micromachines 2023, 14, x  13 of 25 
 

 

 

Figure 8. Performance of NARNN403 for 1000 samples  

Figures 9 and 10 show the data behavior for 1000 samples of the NARNN404 and 

NARNN405, obtaining an RMSE of 0.167 and 0.2488, respectively, with the reference data 

at the top of each figure.  

 

Figure 9. Performance of NARNN404 for 1000 samples. 

Figure 8. Performance of NARNN403 for 1000 samples.

Micromachines 2023, 14, x  13 of 25 
 

 

 

Figure 8. Performance of NARNN403 for 1000 samples  

Figures 9 and 10 show the data behavior for 1000 samples of the NARNN404 and 

NARNN405, obtaining an RMSE of 0.167 and 0.2488, respectively, with the reference data 

at the top of each figure.  

 

Figure 9. Performance of NARNN404 for 1000 samples. 
Figure 9. Performance of NARNN404 for 1000 samples.

191



Micromachines 2023, 14, 149
Micromachines 2023, 14, x  14 of 25 
 

 

 

Figure 10. Performance of NARNN405 for 1000 samples 

Table 3 shows the results of 39 NARNN architectures optimized with the DMOA 

algorithm using the Mackey-Glass chaotic time series, in the table the columns are repre-

sented by: N - Experiment Number, Experiment Name, S—Sample size, T—Training, V—

Validation, P—Prediction, HL—Hidden Layers of the NARNN, I—Number of iterations, 

Tt—total time of the experiments in seconds, T—time in which the best result was found 

and RMSE (Root Mean Square Error). The best architecture of the non-optimized NARNN 

is found in experiment number 31, with the RMSE of 0.0023. 

Table 3. Results of optimized experiments 

N Name S T V P HL I Tt T RMSE 

1 NARNN041 700 300 400 400 [5 6] 900   0.0114 

2 NARNN042 700 300 400 400 [5 6] 1000   0.0054 

3 NARNN043 700 300 400 400 [5 6] 1000   0.1012 

4 NARNN053 700 300 400 400 [6 6] 500  405 0.0044 

5 NARNN055 700 300 400 400 [6 1] 100  4 0.0202 

6 NARNN056 700 300 400 400 [6 6] 500  486 0.0067 

7 NARNN057 700 300 400 400 [4 3] 1000  807 0.0075 

8 NARNN058 700 300 400 400 [8 7] 2500  154 0.0131 

9 NARNN058r 700 300 400 400 [6 5] 2500  75 0.0202 

10 NARNN059 700 300 400 400 [5 4] 1000  445 0.0061 

11 NARNN060 700 300 400 400 [6 2] 1000  259 0.0081 

12 NARNN061 700 300 400 400 [5 6] 1000  496 0.0044 

13 NARNN062 700 400 300 300 [5 6] 5000  688 0.0024 

14 NARNN201 700 400 300 300 [9 4] 5000 2948 1476 0.0024 

15 NARNN202 1000 600 400 400 [7 5] 5000  1905 0.0035 

16 NARNN203 1000 500 500 500 [4 7] 1000  681 0.0084 

17 NARNN204 1000 400 600 600 [8 3] 1000  917 0.0144 

18 NARNN205 1000 400 600 600 [7 8] 5000 2849 2741 0.0076 

19 NARNN206 1000 500 500 500 [8 5] 5000 3262 2517 0.0059 

20 NARNN207 1000 600 400 400 [6 2] 5000 3659 1822 0.0047 

21 NARNN208 1500 600 900 900 [7 9] 5000 3666 1686 0.0187 

Figure 10. Performance of NARNN405 for 1000 samples.

Micromachines 2023, 14, x  15 of 25 
 

 

22 NARNN209 1500 700 800 800 [7 7] 5000 4039 2665 0.0104 

23 NARNN210p 1500 800 700 700 [7 3] 6000 5750 5226 0.0122 

24 NARNN211 1500 900 600 600 [7 3] 3000 5439 1658 0.0136 

25 NARNN212 1500 900 600 600 [5 6] 3000 6479 606 0.0055 

26 NARNN213 1500 800 700 700 [5 6] 3000 12685 470 0.0080 

27 NARNN214p 1500 700 800 800 [5 6] 5000 6183 4739 0.0157 

28 NARNN215 1500 600 900 900 [5 6] 3000 2848 1910 0.0230 

29 NARNN311 1500 1000 500 500 [6 1] 3000 6919 1917 0.0047 

30 NARNN301 700 300 400 400 [7 8 3] 2000 1371 1313 0.0052 

31 NARNN302 700 400 300 300 [6 7 5] 3000 5353 1235 0.0023 

32 NARNN303 1000 600 400 400 [9 2 8] 3000 2348 2003 0.0033 

33 NARNN304 1000 500 500 500 [4 5 4] 3000 5072 1334 0.0040 

34 NARNN305 1000 400 600 600 [8 7 1] 3000 4435 2414 0.0070 

35 NARNN306 1500 600 900 900 [5 5 1] 3000 5610 2309 0.0851 

36 NARNN307 1500 700 800 800 [8 4 1] 3000 3151 1664 0.0245 

37 NARNN308 1500 800 700 700 [8 1 1] 3000 3161 76 0.0127 

38 NARNN309 1500 900 600 600 [8 2 7] 3000 3175 1502 0.0098 

39 NARNN310 1500 1000 500 500 [8 3 8] 3000 3333 1050 0.0074 

Figures 11–13 show the data behavior for 700, 700 and 1000 samples of the 

NARNN053, NARNN302 and NARNN303, obtaining an RMSE of 0.0044, 0.0023 and 

0.0033, respectively, with the reference data at the top of each figure. 

 

Figure 11. Performance of NARNN053 for 700 samples Figure 11. Performance of NARNN053 for 700 samples.

192



Micromachines 2023, 14, 149
Micromachines 2023, 14, x  16 of 25 
 

 

 

Figure 12. Performance of NARNN302 for 700 samples 

 

Figure 13. Performance of NARNN303 for 1000 samples 

As for the complexity of the DMOA algorithm, it is a linear order algorithm that uses 

the discrete equations of Lotka-Volterra Equations (5)–(10), and in the search to find the 

global minimum it performs iterations and in each cycle it compares the best previous 

local minimum with the lowest current minimum and updates the value in the case that 

this is the case. As for the times, Table 3 shows the times Tt which represents the total time 

(seconds) of the experiment and T (seconds) the time in which the DMOA algorithm found 

the lowest local minimum; in terms of its efficiency the algorithm took 1235 s, about 21 

min, to find the lowest minimum 0. 0023, which seems to us a short time compared to the 

times used by the method [22] of up to 3 h and a half, the method [21], its experiments 

took up to 81 h to find the lowest minimum and as for the method [23] it does not provide 

the times of its experiments. 

Figure 12. Performance of NARNN302 for 700 samples.

Micromachines 2023, 14, x  16 of 25 
 

 

 

Figure 12. Performance of NARNN302 for 700 samples 

 

Figure 13. Performance of NARNN303 for 1000 samples 

As for the complexity of the DMOA algorithm, it is a linear order algorithm that uses 

the discrete equations of Lotka-Volterra Equations (5)–(10), and in the search to find the 

global minimum it performs iterations and in each cycle it compares the best previous 

local minimum with the lowest current minimum and updates the value in the case that 

this is the case. As for the times, Table 3 shows the times Tt which represents the total time 

(seconds) of the experiment and T (seconds) the time in which the DMOA algorithm found 

the lowest local minimum; in terms of its efficiency the algorithm took 1235 s, about 21 

min, to find the lowest minimum 0. 0023, which seems to us a short time compared to the 

times used by the method [22] of up to 3 h and a half, the method [21], its experiments 

took up to 81 h to find the lowest minimum and as for the method [23] it does not provide 

the times of its experiments. 

Figure 13. Performance of NARNN303 for 1000 samples.

193



Micromachines 2023, 14, 149

Table 3. Results of optimized experiments.

N Name S T V P HL I Tt T RMSE

1 NARNN041 700 300 400 400 [5 6] 900 0.0114
2 NARNN042 700 300 400 400 [5 6] 1000 0.0054
3 NARNN043 700 300 400 400 [5 6] 1000 0.1012
4 NARNN053 700 300 400 400 [6 6] 500 405 0.0044
5 NARNN055 700 300 400 400 [6 1] 100 4 0.0202
6 NARNN056 700 300 400 400 [6 6] 500 486 0.0067
7 NARNN057 700 300 400 400 [4 3] 1000 807 0.0075
8 NARNN058 700 300 400 400 [8 7] 2500 154 0.0131
9 NARNN058r 700 300 400 400 [6 5] 2500 75 0.0202

10 NARNN059 700 300 400 400 [5 4] 1000 445 0.0061
11 NARNN060 700 300 400 400 [6 2] 1000 259 0.0081
12 NARNN061 700 300 400 400 [5 6] 1000 496 0.0044
13 NARNN062 700 400 300 300 [5 6] 5000 688 0.0024
14 NARNN201 700 400 300 300 [9 4] 5000 2948 1476 0.0024
15 NARNN202 1000 600 400 400 [7 5] 5000 1905 0.0035
16 NARNN203 1000 500 500 500 [4 7] 1000 681 0.0084
17 NARNN204 1000 400 600 600 [8 3] 1000 917 0.0144
18 NARNN205 1000 400 600 600 [7 8] 5000 2849 2741 0.0076
19 NARNN206 1000 500 500 500 [8 5] 5000 3262 2517 0.0059
20 NARNN207 1000 600 400 400 [6 2] 5000 3659 1822 0.0047
21 NARNN208 1500 600 900 900 [7 9] 5000 3666 1686 0.0187
22 NARNN209 1500 700 800 800 [7 7] 5000 4039 2665 0.0104
23 NARNN210p 1500 800 700 700 [7 3] 6000 5750 5226 0.0122
24 NARNN211 1500 900 600 600 [7 3] 3000 5439 1658 0.0136
25 NARNN212 1500 900 600 600 [5 6] 3000 6479 606 0.0055
26 NARNN213 1500 800 700 700 [5 6] 3000 12685 470 0.0080
27 NARNN214p 1500 700 800 800 [5 6] 5000 6183 4739 0.0157
28 NARNN215 1500 600 900 900 [5 6] 3000 2848 1910 0.0230
29 NARNN311 1500 1000 500 500 [6 1] 3000 6919 1917 0.0047
30 NARNN301 700 300 400 400 [7 8 3] 2000 1371 1313 0.0052
31 NARNN302 700 400 300 300 [6 7 5] 3000 5353 1235 0.0023
32 NARNN303 1000 600 400 400 [9 2 8] 3000 2348 2003 0.0033
33 NARNN304 1000 500 500 500 [4 5 4] 3000 5072 1334 0.0040
34 NARNN305 1000 400 600 600 [8 7 1] 3000 4435 2414 0.0070
35 NARNN306 1500 600 900 900 [5 5 1] 3000 5610 2309 0.0851
36 NARNN307 1500 700 800 800 [8 4 1] 3000 3151 1664 0.0245
37 NARNN308 1500 800 700 700 [8 1 1] 3000 3161 76 0.0127
38 NARNN309 1500 900 600 600 [8 2 7] 3000 3175 1502 0.0098
39 NARNN310 1500 1000 500 500 [8 3 8] 3000 3333 1050 0.0074

Figures 11–13 show the data behavior for 700, 700 and 1000 samples of the NARNN053,
NARNN302 and NARNN303, obtaining an RMSE of 0.0044, 0.0023 and 0.0033, respectively,
with the reference data at the top of each figure.

As for the complexity of the DMOA algorithm, it is a linear order algorithm that uses
the discrete equations of Lotka-Volterra Equations (5)–(10), and in the search to find the
global minimum it performs iterations and in each cycle it compares the best previous local
minimum with the lowest current minimum and updates the value in the case that this
is the case. As for the times, Table 3 shows the times Tt which represents the total time
(seconds) of the experiment and T (seconds) the time in which the DMOA algorithm found
the lowest local minimum; in terms of its efficiency the algorithm took 1235 s, about 21 min,
to find the lowest minimum 0.0023, which seems to us a short time compared to the times
used by the method [22] of up to 3 h and a half, the method [21], its experiments took up to
81 h to find the lowest minimum and as for the method [23] it does not provide the times
of its experiments.
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5.1. Statistical Data

Table 4 shows 30 experiments with eight non-optimized NARNNN architectures. Each
column represents the total number of samples and the number of training samples used
for each architecture (700 × 300), and at the end of the table we can find the results of the
total sum, mean and standard deviation for each column.

Table 4. 30 Experiments with non-optimized NARNN.

No

Non Optimized

2 Hidden Layers 3 Hidden Layers

700 × 300 700 × 400 1000 × 400 1000 × 500 1000 × 600 1500 × 600 1500 × 700 1500 × 800

1 3.58 × 10−1 3.17 × 10−1 2.84 × 10−1 2.45 × 10−1 3.01 × 10−1 9.88 × 10−1 2.78 × 10−1 7.27 × 10−1

2 2.97 × 10−1 2.39 × 10−1 2.81 × 10−1 2.32 × 10−1 2.96 × 10−1 3.41 × 10−1 2.72 × 10−1 5.39 × 10−1

3 2.84 × 10−1 2.35 × 10−1 2.77 × 10−1 2.26 × 10−1 2.90 × 10−1 3.39 × 10−1 2.44 × 10−1 4.67 × 10−1

4 2.81 × 10−1 2.23 × 10−1 2.66 × 10−1 2.25 × 10−1 2.55 × 10−1 3.38 × 10−1 2.36 × 10−1 4.35 × 10−1

5 2.68 × 10−1 2.22 × 10−1 2.60 × 10−1 2.22 × 10−1 2.49 × 10−1 3.27 × 10−1 2.34 × 10−1 4.27 × 10−1

6 2.66 × 10−1 2.22 × 10−1 2.47 × 10−1 2.06 × 10−1 2.47 × 10−1 3.19 × 10−1 2.33 × 10−1 4.23 × 10−1

7 2.65 × 10−1 2.21 × 10−1 2.39 × 10−1 2.03 × 10−1 2.44 × 10−1 3.16 × 10−1 2.31 × 10−1 4.18 × 10−1

8 2.62 × 10−1 2.19 × 10−1 2.39 × 10−1 1.83 × 10−1 2.44 × 10−1 3.07 × 10−1 2.30 × 10−1 4.18 × 10−1

9 2.62 × 10−1 2.16 × 10−1 2.34 × 10−1 1.75 × 10−1 2.43 × 10−1 3.00 × 10−1 2.30 × 10−1 4.08 × 10−1

10 2.52 × 10−1 2.13 × 10−1 2.33 × 10−1 1.74 × 10−1 2.40 × 10−1 2.92 × 10−1 2.27 × 10−1 4.02 × 10−1

11 2.51 × 10−1 2.12 × 10−1 2.32 × 10−1 1.73 × 10−1 2.36 × 10−1 2.73 × 10−1 2.27 × 10−1 3.98 × 10−1

12 2.50 × 10−1 2.11 × 10−1 2.31 × 10−1 1.72 × 10−1 2.34 × 10−1 2.73 × 10−1 2.21 × 10−1 3.94 × 10−1

13 2.50 × 10−1 2.10 × 10−1 2.31 × 10−1 1.71 × 10−1 2.33 × 10−1 2.69 × 10−1 2.19 × 10−1 3.91 × 10−1

14 2.49 × 10−1 2.09 × 10−1 2.29 × 10−1 1.69 × 10−1 2.31 × 10−1 2.63 × 10−1 2.16 × 10−1 3.89 × 10−1

15 2.49 × 10−1 2.08 × 10−1 2.29 × 10−1 1.69 × 10−1 2.15 × 10−1 2.60 × 10−1 2.14 × 10−1 2.53 × 10−1

16 2.43 × 10−1 2.07 × 10−1 2.29 × 10−1 1.68 × 10−1 2.11 × 10−1 2.47 × 10−1 2.04 × 10−1 2.51 × 10−1

17 2.43 × 10−1 2.00 × 10−1 2.28 × 10−1 1.67 × 10−1 2.10 × 10−1 2.33 × 10−1 1.97 × 10−1 2.42 × 10−1

18 2.43 × 10−1 1.95 × 10−1 2.27 × 10−1 1.66 × 10−1 2.08 × 10−1 2.29 × 10−1 1.95 × 10−1 2.38 × 10−1

19 2.36 × 10−1 1.93 × 10−1 2.23 × 10−1 1.66 × 10−1 2.07 × 10−1 2.29 × 10−1 1.87 × 10−1 2.33 × 10−1

20 2.36 × 10−1 1.89 × 10−1 2.17 × 10−1 1.66 × 10−1 2.05 × 10−1 2.27 × 10−1 1.86 × 10−1 2.27 × 10−1

21 2.36 × 10−1 1.89 × 10−1 2.13 × 10−1 1.54 × 10−1 2.02 × 10−1 2.12 × 10−1 1.86 × 10−1 2.25 × 10−1

22 2.33 × 10−1 1.89 × 10−1 2.01 × 10−1 1.52 × 10−1 2.02 × 10−1 2.06 × 10−1 1.82 × 10−1 2.25 × 10−1

23 2.33 × 10−1 1.88 × 10−1 1.95 × 10−1 1.35 × 10−1 2.02 × 10−1 2.04 × 10−1 1.75 × 10−1 2.24 × 10−1

24 2.28 × 10−1 1.82 × 10−1 1.90 × 10−1 1.30 × 10−1 2.01 × 10−1 2.03 × 10−1 1.72 × 10−1 2.23 × 10−1

25 2.26 × 10−1 1.78 × 10−1 1.85 × 10−1 1.19 × 10−1 2.00 × 10−1 1.98 × 10−1 1.69 × 10−1 2.22 × 10−1

26 2.25 × 10−1 1.78 × 10−1 1.85 × 10−1 1.19 × 10−1 1.97 × 10−1 1.96 × 10−1 1.67 × 10−1 2.19 × 10−1

27 2.24 × 10−1 1.77 × 10−1 1.74 × 10−1 1.14 × 10−1 1.74 × 10−1 1.96 × 10−1 1.59 × 10−1 2.16 × 10−1

28 2.23 × 10−1 1.70 × 10−1 1.60 × 10−1 1.09 × 10−1 1.62 × 10−1 1.95 × 10−1 1.58 × 10−1 2.15 × 10−1

29 2.10 × 10−1 1.70 × 10−1 1.45 × 10−1 1.01 × 10−1 1.32 × 10−1 1.92 × 10−1 1.57 × 10−1 2.14 × 10−1

30 1.96 × 10−1 1.65 × 10−1 5.20 × 10−2 6.12 × 10−2 7.29 × 10−2 1.61 × 10−1 1.50 × 10−1 1.94 × 10−1

Sum: 7.48 × 10+0 6.15 × 10+0 6.53 × 10+0 4.97 × 10+0 6.54 × 10+0 8.34 × 10+0 6.16 × 10+0 9.86 × 10+0

Mean: 2.49 × 10−1 2.05 × 10−1 2.18 × 10−1 1.66 × 10−1 2.18 × 10−1 2.78 × 10−1 2.05 × 10−1 3.29 × 10−1

SD: 3.00 × 10−2 2.91 × 10−2 4.59 × 10−2 4.25 × 10−2 4.58 × 10−2 1.44 × 10−1 3.40 × 10−2 1.27 × 10−1

Table 5 shows 30 experiments with eight optimized NARNNN architectures; each
column represents the total number of samples and the number of training samples used
by each architecture (700 × 300), and at the end of the table we can find the results of the
total sum, mean and standard deviation for each column.
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Table 5. 30 Experiments with optimized NARNN.

No

Optimized

2 Hidden Layers 3 Hidden Layers

700 × 300 700 × 400 1000 × 400 1000 × 500 1000 × 600 1500 × 600 1500 × 700 1500 × 800

1 1.72 × 10−1 4.62 × 10−2 2.63 × 10−1 1.97 × 10−1 2.71 × 10−1 3.88 × 10−1 2.85 × 10−1 2.93 × 10−1

2 1.52 × 10−1 4.44 × 10−2 2.34 × 10−1 1.97 × 10−1 1.92 × 10−1 3.07 × 10−1 2.67 × 10−1 2.67 × 10−1

3 1.35 × 10−1 4.21 × 10−2 2.32 × 10−1 1.92 × 10−1 1.92 × 10−1 3.06 × 10−1 2.53 × 10−1 2.66 × 10−1

4 1.34 × 10−1 4.07 × 10−2 2.31 × 10−1 1.91 × 10−1 1.91 × 10−1 2.97 × 10−1 2.43 × 10−1 2.36 × 10−1

5 1.18 × 10−1 3.98 × 10−2 2.30 × 10−1 1.87 × 10−1 1.91 × 10−1 2.94 × 10−1 2.39 × 10−1 2.29 × 10−1

6 1.09 × 10−1 3.73 × 10−2 2.28 × 10−1 1.86 × 10−1 1.89 × 10−1 2.90 × 10−1 2.36 × 10−1 2.28 × 10−1

7 1.07 × 10−1 3.59 × 10−2 2.27 × 10−1 1.86 × 10−1 1.89 × 10−1 2.86 × 10−1 2.25 × 10−1 2.27 × 10−1

8 9.68 × 10−2 3.40 × 10−2 2.26 × 10−1 1.83 × 10−1 1.89 × 10−1 2.74 × 10−1 2.22 × 10−1 2.24 × 10−1

9 9.67 × 10−2 3.26 × 10−2 2.22 × 10−1 1.80 × 10−1 1.86 × 10−1 2.74 × 10−1 2.21 × 10−1 2.23 × 10−1

10 9.61 × 10−2 3.08 × 10−2 2.20 × 10−1 1.75 × 10−1 1.83 × 10−1 2.72 × 10−1 2.19 × 10−1 2.17 × 10−1

11 9.54 × 10−2 3.06 × 10−2 2.18 × 10−1 1.74 × 10−1 1.74 × 10−1 2.70 × 10−1 2.17 × 10−1 2.13 × 10−1

12 9.23 × 10−2 2.19 × 10−2 2.18 × 10−1 1.73 × 10−1 1.69 × 10−1 2.66 × 10−1 2.16 × 10−1 2.09 × 10−1

13 9.01 × 10−2 2.18 × 10−2 2.16 × 10−1 1.72 × 10−1 1.69 × 10−1 2.62 × 10−1 2.14 × 10−1 2.08 × 10−1

14 8.57 × 10−2 2.14 × 10−2 2.12 × 10−1 1.72 × 10−1 1.57 × 10−1 2.53 × 10−1 2.04 × 10−1 2.07 × 10−1

15 8.11 × 10−2 1.91 × 10−2 2.09 × 10−1 1.72 × 10−1 1.50 × 10−1 2.53 × 10−1 1.78 × 10−1 2.05 × 10−1

16 7.47 × 10−2 1.91 × 10−2 2.08 × 10−1 1.71 × 10−1 1.40 × 10−1 2.51 × 10−1 1.74 × 10−1 2.02 × 10−1

17 7.13 × 10−2 1.79 × 10−2 1.89 × 10−1 1.69 × 10−1 1.35 × 10−1 2.44 × 10−1 1.73 × 10−1 1.99 × 10−1

18 6.11 × 10−2 1.77 × 10−2 1.89 × 10−1 1.69 × 10−1 1.33 × 10−1 2.37 × 10−1 1.71 × 10−1 1.98 × 10−1

19 5.99 × 10−2 1.31 × 10−2 1.85 × 10−1 1.67 × 10−1 1.32 × 10−1 2.33 × 10−1 1.58 × 10−1 1.98 × 10−1

20 5.76 × 10−2 1.25 × 10−2 1.78 × 10−1 1.66 × 10−1 1.32 × 10−1 2.28 × 10−1 1.53 × 10−1 1.90 × 10−1

21 5.43 × 10−2 1.12 × 10−2 1.78 × 10−1 1.66 × 10−1 1.29 × 10−1 2.27 × 10−1 1.53 × 10−1 1.78 × 10−1

22 5.35 × 10−2 1.02 × 10−2 1.77 × 10−1 1.64 × 10−1 1.29 × 10−1 2.24 × 10−1 1.52 × 10−1 1.66 × 10−1

23 3.96 × 10−2 9.31 × 10−3 1.76 × 10−1 1.45 × 10−1 1.28 × 10−1 2.21 × 10−1 1.50 × 10−1 1.65 × 10−1

24 3.58 × 10−2 9.11 × 10−3 1.74 × 10−1 1.42 × 10−1 1.28 × 10−1 2.12 × 10−1 1.45 × 10−1 1.61 × 10−1

25 2.82 × 10−2 6.99 × 10−3 1.71 × 10−1 1.37 × 10−1 1.27 × 10−1 1.98 × 10−1 1.44 × 10−1 1.58 × 10−1

26 2.27 × 10−2 5.98 × 10−3 1.71 × 10−1 1.30 × 10−1 1.26 × 10−1 1.98 × 10−1 1.42 × 10−1 1.58 × 10−1

27 2.13 × 10−2 5.63 × 10−3 1.54 × 10−1 1.16 × 10−1 1.26 × 10−1 1.92 × 10−1 1.41 × 10−1 9.36 × 10−2

28 1.89 × 10−2 4.96 × 10−3 1.19 × 10−1 1.15 × 10−1 1.24 × 10−1 1.91 × 10−1 1.38 × 10−1 6.64 × 10−2

29 1.84 × 10−2 4.21 × 10−3 1.03 × 10−1 8.25 × 10−2 1.23 × 10−1 1.88 × 10−1 1.37 × 10−1 5.36 × 10−2

30 1.14 × 10−2 3.52 × 10−3 5.66 × 10−2 1.51 × 10−2 1.11 × 10−1 1.75 × 10−1 1.35 × 10−1 4.84 × 10−2

Sum: 2.29 × 10+0 6.50 × 10−1 5.81 × 10+0 4.79 × 10+0 4.71 × 10+0 7.51 × 10+0 5.70 × 10+0 5.69 × 10+0

Mean: 7.63 × 10−2 2.17 × 10−2 1.94 × 10−1 1.60 × 10−1 1.57 × 10−1 2.50 × 10−1 1.90 × 10−1 1.90 × 10−1

SD: 4.21 × 10−2 1.38 × 10−2 4.35 × 10−2 3.81 × 10−2 3.52 × 10−2 4.60 × 10−2 4.47 × 10−2 5.91 × 10−2

5.2. Hypothesis Test

Equation (13) represents Hypothesis Testing, Null Hypothesis Equation (14) and
Alternative Hypothesis Equation (15), with which comparisons were made between the
non-optimized and optimized experiments of the method proposed here.

z =
(x1 − x2)− D0√

σ2
1

n1
+

σ2
2

n2

(13)

H0 : µ1 ≥ µ2 (14)

Ha : µ1 < µ2 claim (15)

where x1 is the Mean of sample 1, x2 Mean of sample 2, σ1 Standard Deviation of sample
1, σ2 Standard Deviation of sample 2, n1 Number of sample data 1, n2 Number of sample
data 2, µ1 − µ2 = D0 and µ1 − µ2 = D0.

Significance Level α = 0.05, Confidence Level = 95%, Confidence Level = 1 − α;
1−0.05 = 0.95 o 95%, Since the p-value is less than 0.01, the null hypothesis is rejected.
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Tables 6 and 7 show the results of the hypothesis testing done on the non-optimized
and optimized methods shown above; of the eight different architectures, the test results
show that in only six were the optimized NARNNs better, and the non-optimized NARNNs
were better in two.

Table 6. Data for the eight non-optimized and optimized architectures.

NARNN—Non-OPTIMIZED NARNN—OPTIMIZED

N Name Error
HL and N

Name Error
HL and N

1 2 3 1 2 3

1 NARNN401 0.2777 1 1 NARNN053 0.0052 6 6
2 NARNN402 0.1683 1 1 NARNN062 0.0023 5 6
3 NARNN403 0.2307 3 1 NARNN205 0.0070 7 8
4 NARNN404 0.1670 9 2 NARNN206 0.0040 8 5
5 NARNN405 0.2488 2 2 NARNN207 0.0033 6 2
6 NARNN406 0.2550 4 1 9 NARNN306 0.0851 5 5 1
7 NARNN407 0.2158 8 5 2 NARNN307 0.0245 8 4 1
8 NARNN408 0.4001 1 2 1 NARNN308 0.0127 8 1 1

Table 7. Hypothesis test results of the eight non-optimized and optimized NARNNs.

Samples
Results

Non-Optimized Optimized

Total T V P p-Value

700 300 400 400 8.25 × 10−26

700 400 300 300 6.00 × 10−38

1000 400 600 600 4.23 × 10−2

1000 500 500 500 5.59 × 10−1

1000 600 400 400 3.13 × 10−7

1500 600 900 900 3.25 × 10−1

1500 700 800 800 1.46 × 10−1

1500 800 700 700 1.14 × 10−6

In Table 6, N and Name represent the number and name of the experiment, respectively.
Error is the minimum error found, HL are the Hidden Layers of neural network (1, 2, 3),
and N is the number of neurons in each HL. In Table 7, the samples are represented by Total
number of samples, T is the training samples, V is the validation samples, P represents the
prediction, and p-value represents the results of the hypothesis test.

5.3. Comparisone with Other Methods

Table 8 shows the comparison with other methods that performed experimentation
with the chaotic Mackey-Glass time series, and it can be seen from the table that the lowest
error belongs to the optimized NARNN-302.

Table 8. Error comparison with three different methods and the non-optimized and optimized
NARNN.

N Experiment Description Error Serie Ref

1 Genetic Algorithm—Ensemble ANFIS—T1FLS—IT2FLS 0.0219 MG [21]
2 Ensemble Neural Network Architecture 0.008945 MSE [22]

2 Modules, 2 Hidden Layers, 2116 and 2128 Neurons respectively, PSO Optimized
3 SNR(dB) ANFIS IT2FNN-0 IT2FNN-1 IT2FNN-2 IT2FNN-3 0.0028 MG [23]

30 0.0225 0.0106 0.0079 0.0045 0.0028
4 NARNN-DMOA (No-Optimized) 0.167 MG
5 NARNN-DMOA (Optimized) 0.0023 MG
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In Table 8, case number 1, the method is the Optimization of the Fuzzy Integrators
in Ensembles of ANFIS Model for Time Series Prediction [21], where the authors use the
Mackey-Glass chaotic time series, with genetic optimization of Type-1 Fuzzy Logic System
(T1FLS) and Interval Type-2 Fuzzy Logic System (IT2FLS) integrators in Ensemble of
ANFIS models and evaluate the results through Root Mean Square Error (RMSE). ANFIS is
a hybrid model of a neural network implementation of a TSK (Takagi-Sugeno-Kang) fuzzy
inference system. ANFIS applies a hybrid algorithm which integrates BP (Backpropagation)
and LSE (least square estimation) algorithms, and thus it has a fast learning speed.

Case number 2 refers to the method using Particle Swarm Optimization of ensemble
neural networks with fuzzy aggregation for time series prediction of the Mexican Stock
Exchange [22]. In this case, the authors propose an ensemble neural network model
with type-2 fuzzy logic for the integration of responses; in addition, the particle swarm
optimization method determines the number of modules of the ensemble neural network,
the number of layers and number of neurons per layer, and thus the best architecture of
the ensemble neural network is obtained. Once this architecture is obtained, the results of
the modules with type-1 and type-2 fuzzy logic systems are added, the inputs to the fuzzy
system are the responses according to the number of modules of the network, and this is
the number of inputs of the fuzzy system.

Case number 3 refers to the Application of Interval Type-2 Fuzzy Neural Networks
(IT2FNN) in non-linear identification and time series prediction (MG) [23]. The authors
propose IT2FNN models that combine the uncertainty management advantage of type-2
fuzzy sets with the learning capabilities of neural networks. One of the main ideas of this
approach is that the proposed IT2FNN architectures can obtain similar or better outputs
than type-2 interval fuzzy systems using the Karnik and Mendel (KM) algorithm, but with
lower computational cost, which is one of the main disadvantages of KM mentioned in
many papers in the literature. Cases 4 and 5 have already been explained earlier in this
article.

By making a brief description of the techniques of the different methods above, we
can observe the complexity of their designs using optimization algorithms such as PSO and
GAs as optimizers, robust Ensemble Neural Networks, T1FLS and IT2FLS, in comparison
with our method that uses the optimization algorithm DMOA and NARNNN, which are
neural networks with short memory, and according to the results are made precisely for
the prediction of time series. In a future work we plan to perform experiments with the
RNN LSTM networks, which have short- and long-term memories.

6. Discussion of Results

The use of metaheuristics in the optimization of methods is a constant in all research
work in artificial intelligence, and in this work the DMOA algorithm was used to optimize
the architecture of the NARNN neural network using the MG chaotic series as input
data. We also performed experiments without optimizing the NARNN network, while
with the optimization we performed experiments with 39 different architectures, and
without optimization we performed experiments with 10 different architectures. When
we performed the optimization we found an extremely fast algorithm that found the right
architecture with very satisfactory results. Of the 39 different optimized architectures,
the one that gave us the best results was number 31 (narAll303) Table 3, a NARNN
network with three hidden layers of 6, 7, and 5 neurons, respectively. With this architecture
we performed 3000 experiments with a total time of 5353 s and in the second 1235 we
obtained the best result of 0.0023 (error). Of the 10 experiments without optimization, with
architecture number 4 (narAll404) Table 2, a NARNN network with two hidden layers of
9 and 2 neurons, respectively, we also performed 3000 experiments with this architecture
and obtained the best result of 0.1670 (error). We performed eight hypothesis tests under
equal conditions with these results and found that in five tests the NARNN architectures
optimized with the DMOA algorithm were better and in three tests the non-optimized
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architectures were better, as shown in Table 6. We also performed error comparisons with
three other different methods of which the DMOA-NARNN was better, as shown in Table 8.

7. Conclusions

A total of 49 different architectures were designed, of which 10 non-optimized and
39 were optimized by the DMOA algorithm, 30,000 experiments were performed with
the non-optimized architectures, and approximately 110,000 experiments were performed
with the optimized architectures. A total of 700, 1000 and 1500 samples were generated
with the MG chaotic time series, of which between 300 and 1000 were used for training,
between 300 and 900 were used for validation in different combinations, and between 300
and 900 points were generated as prediction points, as can be seen in Tables 2 and 3. The
design of the NARNN architectures were two and three hidden layers, with neurons in the
range of 2–9, and the graphs of the most representative results of the non-optimized and
optimized NARNNs are presented in Figures 8–13.

The optimization of the NARNN network with the DMOA algorithm obtained good
results, better than without optimizing the network, and better than the other methods
with which it was compared, although not all of the optimized architectures were better
in the hypothesis test (only five of them were), the results of the error were much better,
as can be seen in Table 7. In the comparison with other methods, the results were also
better, as demonstrated in Table 8. We were also able to verify that the DMOA optimization
algorithm is fast and efficient, which was really the reason for this research. We wish to
continue investigating the efficiency of the algorithm in the optimization of architectures
with other types of neural networks, also in Fuzzy Logic Systems Type-1 and Type-2, and
also to do the same with the optimization algorithm CMOA (Continuous Mycorrhiza
Optimization Algorithm). In addition, the proposed algorithm can be applied to robots,
microsystems, sensors, devices, MEMS, microfluidics, piezoelectricity, motors, biosensors,
3D printing, etc.

We also intend to conduct further research and experimentation with the DMOA
method and other time series. We will also consider the DMOA and the LSTM (Long Short-
Term Memory) Neural Regression Network for Mackey-Glass time series, weather and
financial forecasting, and we are interested in hybridizing the method with Interval Type-2
Fuzzy Logic System (IT2FLS), and Generalized Type-2 Fuzzy Logic System (GT2FLS).
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Abstract: Due to ethical issues and the nature of the ear, it is difficult to directly perform experimental
measurements on living body elements of the human ear. Therefore, a numerical model has been
developed to effectively assess the effect of the replacement of artificial ossicles on hearing in the
inner ear. A healthy volunteer’s right ear was scanned to obtain CT data, which were digitalized
through the use of a self-compiling program and coalescent Patran-Nastran software to establish a 3D
numerical model of the whole ear, and a frequency response of a healthy human ear was analyzed.
The vibration characteristics of the basilar membrane (BM) after total ossicular replacement prosthesis
(TORP) implantation were then analyzed. The results show that although the sound conduction
function of the middle ear was restored after replacement of the TORP, the sensory sound function
of the inner ear was affected. In the low frequency and medium frequency range, hearing loss was
5.2~10.7%. Meanwhile, in the middle–high frequency range, the replacement of a middle ear TORP
in response to high sound pressure produced a high acoustic stimulation effect in the inner ear,
making the inner ear structures susceptible to fatigue and more prone to fatigue damage compared
to the structures in healthy individuals. This developed model is able to assess the effects of surgical
operation on the entire hearing system.

Keywords: hearing system; assessing model; a minimal artificial ossicles chain; total ossicular
replacement prosthesis; the inner ear

1. Introduction

Since the beginning of the 21st century, the two journals “Science” and “Nature” have
respectively reported that “The problems of deafness are deeper and more complex, which
are even more important than those of blindness” and “Restoration of auditory function
remains a lofty, (challenge), but achievable goal for deaf patients and for scientists. Because
hearing loss is a multifactorial problem arising from many possible causes, it is unlikely
that any single strategy will be an effective cure-all” [1]. Thus, up to now, the investigation
of hearing mechanisms in humans is still a medical challenge for mankind [2].

Middle ear lesions can lead to conductive deafness. At present, artificial ossicular
replacement is an effective method for the treatment of conductive deafness. Some re-
search has been conducted in this relevant area. Murphy [3] investigated and evaluated
the degree of hearing recovery after total ossicular replacement prosthesis (TORP) im-
plantation. Yao et al. studied the effect of artificial ossicular replacements with different
materials on postoperative hearing recovery [4]. Kelly et al. [5] investigated the effect of
different artificial ossicular quality on sound transmission. Marchese et al. researched the
effect of stapes footplate (SF) perforation on hearing improvement in the human ear [6].
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Kelly and Fisch [5,7] conducted a study on human ear hearing recovery after TORP im-
plantation using different shapes of artificial ossicular implants. Kelly [5] found that the
amplitude of vibrations was more similar to that of a healthy ear when implanted with a
Kurz TORP; while Fisch’s results showed that the L-shaped Fisch titanium total prosthesis
implant was functionally superior to comparable small columned titanium prostheses [7].
Morris et al. [8] studied the effect of different lengths of artificial ossicles on sound transmis-
sion. In the ossicular reconstruction, three different lengths of partial ossicular replacement
prostheses were used, and the best stapes vibration results in their models were achieved
with shorter prostheses that resulted in reduced tension [8]. Vincent et al. used new technol-
ogy to make the TORP implant in artificial ossicular connection more reliable and stable [9].
Liu et al. researched a new suspension middle ear hearing aid device, including the influ-
ence of a suspension oscillator on sound propagation [10]. Huttenbrink et al. investigated
improvements in human hearing after TORP implantation based on experiments [11].

The function of the middle ear is sound conduction, which converts the sound signals
received by the external ear into mechanical signals and conducts them to the inner ear,
thus causing a pressure difference between the vestibular and tympanic steps that causes
the basilar membrane (BM) in the inner ear to vibrate. Vibration of the basilar membrane
in the inner ear is the key step in the perception of sound. Because of the complexity and
delicacy of the inner ear, few scholars have carried out experimental measurements of
the BM in the human inner ear. Gundersen et al. experimentally researched the vibration
of the BM and the malleus head of the human ear [12]. Stenfelt et al. [13] investigated
the vibration characteristics of the BM and the osseous spiral lamina in human cadavers
under bone conduction and air conduction stimuli, respectively. Nakajima et al. found
that when the artificial prosthesis has a certain contact area with the cochlear window,
cochlear window excitation with the prosthesis can produce a pressure similar to normal
conditions [14].

The finite element (FE) simulation model compensates for the difficulty of conducting
experiments. Lim et al. [15] established a nonlinear active cochlear model to study the
steady-state and transient-state response of BM movement. Kim et al. established a finite
element (FE) model including the middle ear and the straightened inner ear to further
understand the mechanism of bone conduction hearing [16]. Yao et al. developed an
analytical model of the BM and a numerical simulation model of the cochlea to discover
new vibration modes at low frequencies [17] and performed a time-domain analysis of the
cochlear BM [18].

According to previous research reports, numerical simulation is an effective and feasi-
ble method for analyzing the biomechanical behavior of hearing in the human ear. It also
provides an effective method for analyzing and predicting the outcome of hearing recovery
in the human ear after TORP replacement surgery. So far, the study of the vibration charac-
teristics of the spiral BM by simulating the TORP using numerical simulation methods has
not been reported to the public. Therefore, based on the CT images obtained by scanning
the right ear of healthy volunteers in Zhongshan Hospital, which is affiliated with Fudan
University, a three-dimensional numerical model of the whole human ear was developed.
In this paper, the influence of TORP replacement on the vibration characteristics of the
spiral BM was analyzed in order to provide a numerical simulation platform for clinical
surgical treatment.

2. Materials and Methods
2.1. Establishment of an FE Model of the Human Ear
2.1.1. Establishment of the Model

The geometric dimensions of the numerical model were based on images obtained
from CT scanning of healthy human ears at Zhongshan Hospital (GE lightspeed VCT
64 slice spiral CT machine; scanning parameters: collimation 0.625 mm, tube rotation time
0.4 s, reconstruction layer thickness 0.625 mm, interval 0.5–0.625 mm, and a voxel size of
1.0 × 1.0 × 0.75 mm3). CT scanning images were digitized by a self-compiling program
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and then imported into the Patran software to reconstruct the three-dimensional model
of the human ear. The mesh was then divided and the boundary conditions and material
parameters were set. Finally, three-dimensional fluid–solid coupling dynamic analysis was
carried out using the Nastran software. This study was approved by the Ethics Committee
of the Zhongshan Hospital affiliated to Fudan University. Written informed consent was
obtained from the patient.

The mesh of the whole human ear finite element (FE) numerical model was divided
into the following elements: 1. The gas in the external ear canal: 7581 nodes, 600 six-node
pentahedral (Wedge6) elements and 6600 eight-node hexahedral (Hex8) elements, and
element properties defined as Fluid. 2. Tympanic membrane (TM): 361 nodes, 30 three-
node triangular (Tria3) elements and 330 four-node quadrilateral (Quad4) elements, and
element properties defined as 2D-Membrane. 3. TM and malleus connector: 264 nodes,
135 eight-node hexahedral (Hex8) elements, and element properties defined as Solid.
4. The ossicular chain–ligament–tendon: 6254 nodes, 60 eight-node hexahedral (Hex8)
elements and 26,567 four-node tetrahedral (Tet4) elements, and element properties defined
as Solid. 5. The perilymph of the inner ear: 5872 nodes, 3852 eight-node hexahedral
(Hex8) elements, and element properties defined as Fluid. 6. Oval window (vestibular
window): 45 nodes, 32 four-node quadrilateral (Quad4) elements, and element properties
defined as 2D-Membrane. 7. Round window (fenestra cochleae): 25 nodes, 16 four-node
quadrilateral (Quad4) elements, and element properties defined as 2D-Membrane. 8. BM:
505 nodes, 400 four-node quadrilateral (Quad4) elements, and element properties defined
as 2D-Membrane. The mesh of the structure of the human ear is shown in Figure 1.
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Figure 1. Numerical model of the whole human ear (the BM is shown).

2.1.2. Material Properties

The material properties of the ossicular chain numerical model are shown in Table 1 [19–24],
and the material properties of the soft tissue finite element model (FEM) are shown in
Table 2 [24,25]. The Poisson’s ratio of each part of the middle ear structure is 0.3, the
structural damping coefficient is 0.4, the viscosity of the fluid is 0.001 NS/m2, and the
damping coefficient β of the fluid is 0.0001 s.

Table 1. Material properties of the numerical model of the middle ear ossicular chain [19–24].

Structure Density
(kg·m−3)

Published
Data

Young’s
Modulus (Pa) Published Data

Malleus head 2.55 × 103 Kirikae et al. 1.41 × 1010 Herrmann et al.
Malleus neck 4.53 × 103 Kirikae et al. 1.41 × 1010 Herrmann et al.

Malleus handle 3.70 × 103 Kirikae et al. 1.41 × 1010 Herrmann et al.
Incus body 2.36 × 103 Kirikae et al. 1.41 × 1010 Herrmann et al.

Incus short process 5.08 × 103 Kirikae et al. 1.41 × 1010 Herrmann et al.
Incus long process 2.26 × 103 Kirikae et al. 1.41 × 1010 Herrmann et al.

Stapes 2.2 × 103 Kirikae et al. 1.41 × 1010 Herrmann et al.
Incudomalleolar joint 3.2 × 103 Sun et al. 1.41 × 1010 Sun et al.
Incudostapedial joint 1.2 × 103 Sun et al. 0.6 × 106 Wada et al.

TM (par tensa) 1.2 × 103 Wada et al. 3.5 × 107 2.0 × 107 Bekesy et al.
TM (par flaccida) 1.2 × 103 Wada et al. 1.0 × 107 4.0 × 107 Kirikae et al.
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Table 2. Material properties of the numerical model of middle ear soft tissue [24,25].

Soft Tissue
Young’s Modulus (MPa)

FEM Published Data

Tympanic annulus ligament 0.6 0.6 (Wada et al.)
Anterior mallear ligament 10 2.1 (Gan et al.)
Lateral mallear ligament 6.7 6.7 (Gan et al.)

Superior mallear ligament 4.9 4.9 (Gan et al.)
Tensor tympani tendon 8.7 7 (Gan et al.), 2.6 (Wada et al.)

Superior incudal ligament 4.9 4.9 (Gan et al.)
Posterior incudal ligament 6.5 6.5 (Gan et al.)

Stapedial tendon 5.2 5.2 (Wada et al.)
Stapedial annulus ligament 0.2 0.2 (Wada et al.)

The material properties of the inner ear structure shown above were obtained from the
relevant published references [26–28]. The material properties of each part of the inner ear
in the numerical model in this paper are as follows: Oval window: the elastic modulus is
E = 0.2 MPa, Poisson’s ratio is µ = 0.3, density is ρ = 1200 kg/m3, and the damping
coefficient is β = 0.5 × 10−4 s. Round window: the elastic modulus is E = 0.35 MPa,
Poisson’s ratio is µ = 0.3, and the damping coefficient is β = 0.5 × 10−4 s. Lymphatic fluid
(scala vestibuli, scala tympani, scala media, 3 semicircular canals, and lymphatic fluid in
the vestibuli): density is ρ = 1000 kg/m3, sound velocity is C = 1400 m/s, the damping
coefficient is β = 1.0 × 10−4 s, and viscous damping is D = 0.001 NS/m. BM: As the length
of the BM changes, the elastic modulus decreases linearly from 50 MPa at the base of the
cochlea to 15 MPa at the middle and then decreases linearly to 3 MPa at the apex. The
damping coefficient β varies linearly from 0.2 × 10−3 s at the base to 0.1 × 10−2 s at the
apex, with a Poisson’s ratio of 0.3.

2.1.3. Boundary Conditions of the Whole Ear FEM

Because the boundary conditions need to be provided for the numerical model’s
calculations according to the structural characteristics of the human ear and the connec-
tion relationship and related characteristics between the structures of the human ear, the
boundaries of some tissues of the human ear are set appropriately based on the mechanical
principle. The details are as follows:

(1) Application of 80 dB SPL (0.2 Pa), 90 dB SPL (0.632 Pa), and 105 dB SPL (3.56 Pa)
surface pressure to the opening surface of the external ear canal or TM to simulate pure
tone sound pressure stimulation (100–10,000 Hz);

(2) The positions of soft tissues (tensor tympani, superior mallear ligaments, anterior
mallear ligaments, lateral mallear ligament, superior incudal ligament, posterior incudal
ligament, stapedial tendon) associated with the temporal bone were defined as the fixed
constraint (constrain all displacement and all rotation);

(3) The outer edge of the TM’s annular ligament was defined as the hinged constraint
(only constrains all displacement, not rotation);

(4) The outer edge of the SF annular ligament was defined as the fixed constraint
(constrain all displacement and all rotation);

(5) The outer edge of the oval window and the round window were fixed constraints;
(6) The three edges of the BM (both sides and the base of the cochlea) were considered

as hinged constraints (only constrains all displacement, not rotation);
(7) The external ear canal wall and the inner ear bony labyrinth wall were set as the

rigid wall;
(8) The TM, SF, and annular ligament were set up as a fluid–solid coupling interface.
The FE numerical model of the human ear with boundary constraints is shown

in Figure 2.
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2.2. Establishment of the TORP Model

In this study, an artificial ossicular TORP (produced by the Medtronic Xomd Company
in the USA) was applied for FE analysis. The size of the TORP (363) was as follows: the
length was 6.7 mm in total and the diameter of its columella was 0.9 mm. In addition, the
undersurface diameter of the round terminal disc was 3.2 mm, and the end face of the
columella was a plane. The model and mesh of the TORP were established using the Patran
FE software. The mesh was divided into 539 nodes (100 eight-node hexahedral (Hex8)
elements and 325 six-node pentahedral (Wedge6) elements) and the element property was
defined as Solid. The round terminal disc of the TORP was connected to the center of
the TM and its columella’s end face was connected to the SF or oval window membrane.
Additionally, a 0.5 mm cartilage slice was set between the TM and the undersurface of
the round terminal disc of the TORP. The material properties of the titanium in the TORP
were as follows [5]: the elastic modulus was 116 GPa, density was 4500 kg·m−3, and the
Poisson’s ratio was 0.33. The mesh division of the model is shown in Figure 3.
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3. Results and Discussion
3.1. Verification of the FEM of the Human Ear
3.1.1. Load Acting on the TM

Frequency response analysis was performed by applying a sound pressure of 90 dB
SPL (0.632 Pa) and 105 dB SPL (3.56 Pa) to the TM without considering the effect of the
external ear canal.

The frequency response curves of the umbo and SF were obtained through numerical
simulation analysis and compared to the experimental data of Gan et al. [29,30], as shown
in Figures 4 and 5.
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As can be seen from Figure 4 in the frequency range of 200–2000 Hz, the amplitude–
frequency response curve of the umbo obtained from the numerical simulation of this
model is within the upper and lower limits of the curve obtained from the experiment of
Gan et al., and the numerical simulation results are consistent with the experimental data.
In the frequency range of 2000–10,000 Hz, the numerical simulation results are slightly
lower than the experimental results of Gan et al., and the average error is about 18.7%.

It can be seen from Figure 5 that the amplitude–frequency response curve for the SF
obtained by numerical simulation with this model is within the upper and lower limits of
the curve obtained from the experiment of Gan et al. in the frequency range of 200 Hz to
2000 Hz, and the numerical simulation results are consistent with the experimental data. In
the frequency range of 2000 Hz to 10,000 Hz, the numerical simulation results are slightly
lower than the experimental data of Gan et al., and the average error is about 16.5%.

208



Micromachines 2023, 14, 483

3.1.2. Verification of the FEM of the Spiral BM

Since the vibration of external sound through the TM and the ossicular chain drives
the vibration of the SF, it is the vibration of the SF that provokes the response of the BM
through cochlear lymphatic fluid, and the vibration of the stapes has a direct relationship
with the response of the BM. The ratio of the amplitude of the BM to the amplitude of the
SF represents the response of the BM caused by the vibration of the SF per unit, which
clearly reflects the amplification characteristics and frequency selection characteristics of
the BM.

Considering the influence of the spiral BM in the cochlea, a sound pressure of 90 dB
SPL was applied to the opening surface of the external ear canal for frequency response
analysis, as shown in Figure 2.

The BM data derived from the spiral inner ear numerically simulated by this model,
and the experimental data at 12 mm from the base of the BM obtained by Gundersen et al.
and Stenfelt et al. [12,13], were compared to some extent, and the BM to SF amplitude
ratio–frequency response curves were constructed, as shown in Figure 6.
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As shown in Figure 6, in the frequency range of 100–1000 Hz, the amplitude
ratio–frequency response curve of the BM and SF obtained by numerical simulation with
this model is slightly higher than that of Gundersen et al., Stenfelt et al., and other ex-
perimental curves, and the average error is about 12%. The peak value of this frequency
range appears at 400 Hz, which is between the Gundersen et al. experimental peak and the
Stenfelt et al. experimental peak. In the frequency range of 1000–3000 Hz, the amplitude
ratio–frequency response curve of the BM to the SF obtained by numerical simulation is
between the Gundersen et al. experimental curve and the Stenfelt et al. experimental curve.
In the frequency range of 3000–8000 Hz, the amplitude ratio–frequency response curve of
the BM to the SF obtained by numerical simulation is close to the experimental curve of
Gundersen et al., and the curve trend is consistent with the peak value of this frequency
range. The peak value appears at about 3500 Hz, and the average error in this interval is
about 6%.

In Figure 6, comparing these curves, the amplitude ratio–frequency response curves
of the BM to the SF measured by Gundersen et al. and Stenfelt et al. have two peaks, and
those derived from numerical simulations of the spiral cochlea in the model also have two

209



Micromachines 2023, 14, 483

peaks over the entire frequency range (100–8000 Hz), one at approximately 400 Hz and
the other at 3500 Hz, which occur in the low and mid-frequency ranges, respectively. This
shows that the vibration characteristics of the BM obtained from FE method simulation of
the spiral inner ear (including the spiral BM) are closer to those obtained from inner ear
experiments, that is, FE simulation of the spiral inner ear may also accurately reflect the
inner ear characteristics of the actual human inner ear, thus providing good theoretical
guidance and help for clinical research in this area. Figure 7 more clearly shows the error
in the results of the model calculation in this paper and experimental results in terms of
frequency. In the frequency range of 1000–3000 Hz, the average error was minimal (only
1.6%). In the frequency range of 100–1000 Hz, the average error was 12%. In the frequency
range of 1000–10,000 Hz, the average error was 6%. The overall average error was 8%.
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In summary, the SF and umbo data obtained from the human ear FEM simulations
in this paper are close to the experimental data in terms of amplitude and trend, respec-
tively, thus verifying the correctness of this model. In addition, the simulation of nodal
vibrations on the spiral BM and a comparison with experimental data were used to verify
the correctness of the spiral cochlea (contains the spiral BM).

3.2. Numerical Analysis of the Vibration Characteristics of the BM after Replacement with a TORP

In this paper, the frequency response analysis of the FEM of the whole hearing system
after replacement with a titanium TORP in the frequency range of 100–10,000 Hz was
performed by applying a sound pressure of 90 dB SPL over the opening surface of the
external ear canal while considering the effect of the spiral BM built into the cochlea, as
shown in Figure 8.

Micromachines 2023, 14, x FOR PEER REVIEW 8 of 13 
 

 

1.6%). In the frequency range of 100–1000 Hz, the average error was 12%. In the frequency 
range of 1000–10,000 Hz, the average error was 6%. The overall average error was 8%. 

In summary, the SF and umbo data obtained from the human ear FEM simulations 
in this paper are close to the experimental data in terms of amplitude and trend, respec-
tively, thus verifying the correctness of this model. In addition, the simulation of nodal 
vibrations on the spiral BM and a comparison with experimental data were used to verify 
the correctness of the spiral cochlea (contains the spiral BM). 

 
Figure 7. The curve of error between calculations in this model and the experiment. 

3.2. Numerical Analysis of the Vibration Characteristics of the BM after Replacement with a 
TORP 

In this paper, the frequency response analysis of the FEM of the whole hearing sys-
tem after replacement with a titanium TORP in the frequency range of 100–10,000 Hz was 
performed by applying a sound pressure of 90 dB SPL over the opening surface of the 
external ear canal while considering the effect of the spiral BM built into the cochlea, as 
shown in Figure 8. 

 
Figure 8. FEM of the whole ear after replacement with a TORP (showing the spiral BM). 

Since the vibration of external sound through the TM and the ossicular chain drives 
the vibration of the SF, it is the vibration of the SF that provokes the response of the BM 
through cochlear lymphatic fluid, and the vibration of the stapes has a direct relationship 
with the response of the BM. In order to clearly reflect the amplification characteristics 
and frequency selection characteristics of the spiral BM after replacement with a titanium 
TORP, the ratio of BM amplitude to the amplitude of the SF is used in this paper, which 
indicates the BM response caused by the vibration of the SF. 

The amplitude–frequency response curves of the nodes at the center of the SF and at 
12 mm from the base of the cochlea on the BM were obtained by simulation analysis, and 
the relationship between the ratio of the BM amplitude and the stapes amplitude at 12 
mm from the base of the cochlea on the BM and frequency was calculated. The BM data 
were also compared to those of the healthy human ear, as shown in Figure 9. 

Figure 8. FEM of the whole ear after replacement with a TORP (showing the spiral BM).

Since the vibration of external sound through the TM and the ossicular chain drives
the vibration of the SF, it is the vibration of the SF that provokes the response of the BM
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through cochlear lymphatic fluid, and the vibration of the stapes has a direct relationship
with the response of the BM. In order to clearly reflect the amplification characteristics and
frequency selection characteristics of the spiral BM after replacement with a titanium TORP,
the ratio of BM amplitude to the amplitude of the SF is used in this paper, which indicates
the BM response caused by the vibration of the SF.

The amplitude–frequency response curves of the nodes at the center of the SF and at
12 mm from the base of the cochlea on the BM were obtained by simulation analysis, and
the relationship between the ratio of the BM amplitude and the stapes amplitude at 12 mm
from the base of the cochlea on the BM and frequency was calculated. The BM data were
also compared to those of the healthy human ear, as shown in Figure 9.
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Figure 9. Comparison of the characteristics of the BM after TORP replacement with those of normal
conditions (90 dB).

From Figure 9, it can be seen that, in the frequency range of 20–10,000 Hz, the ampli-
tude ratio–frequency response curve of the BM and the SF after replacement with a TORP
is closer to the vibration characteristics of the BM of the healthy ear in terms of amplitude
and overall trend. There are also two peaks at 600 Hz and 4000 Hz, and the peak of the
amplitude ratio–frequency response curve of the BM to the SF after replacement with a
TORP is somewhat more lagged than in healthy persons, where the two peaks occur at
approximately 400 Hz and 3500 Hz.

In the frequency range of 100–600 Hz, the amplitude ratio of the BM to the SF increased
gradually with frequency after the TORP replacement, and the curve was slightly lower
than that of healthy persons. In this frequency range, the difference between the amplitude
ratio of the BM and the SF was about 1.03 dB to 3.72 dB, with an average relative error of
about 5.2% compared with that of healthy persons.

In the frequency range of 600–2000 Hz, the BM to SF amplitude ratio after TORP
replacement tended to decrease slowly with frequency, and the curve was somewhat higher
than that of healthy persons. In this frequency range, the difference between the BM and
SF amplitude ratios compared to healthy persons was about 0.67 dB to 5.33 dB, with an
average relative error of about 8.3%.

In the frequency range of 2000–4000 Hz, the BM to SF amplitude ratio after TORP
replacement tended to increase slowly with frequency, and the curve was somewhat lower
than that of healthy persons. In this frequency range, the difference between the amplitude
ratio of the BM and the SF was about 2.01 dB to 5.54 dB compared with that of healthy
persons, with an average relative error of about 10.7%.
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In the frequency range of 4000–7000 Hz, the amplitude ratio of the BM to the SF after
TORP replacement decreased linearly with frequency, and the curve was higher than that
of healthy persons. In this frequency range, compared with the amplitude ratio of the BM
to the SF in healthy persons, the difference was about 1.89–9.22 dB, and the average relative
error was about 9.1%.

In the frequency range of 7000–10,000 Hz, the amplitude ratio of the BM to the SF
after TORP replacement was lower than that of healthy persons. At this frequency range,
the amplitude ratio of the BM to the SF was about 1.32–6.43 dB different from that of
healthy persons.

A fluid–solid coupling cloud diagram of the whole hearing system (ossicular chain, a
displacement diagram of the BM, and a pressure diagram of the external ear canal air and
inner ear perilymph) is shown in Figures 10 and 11.
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Figure 11. Displacement cloud diagram of the middle ear ossicular chain and BM. (a) Ossicular chain
in middle ear; (b) BM’s displacement diagram (visual angle 1); (c) BM’s displacement diagram (visual
angle 2).

Through numerical simulation with this model, the displacement cloud diagram of
the BM after TORP replacement at different frequencies (500 Hz, 1000 Hz, 4000 Hz) is
compared with that of healthy human ears, as shown in Figures 12 and 13 below.
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Figure 13. Displacement cloud diagram of a human ear BM at different frequencies after TORP
replacement. (a) 500 Hz; (b) 1000 Hz; (c) 4000 Hz.

From the comparison of Figures 12 and 13, the following can be determined:
At 500 Hz, the displacement of the BM in the healthy human ear ranged from 0 to

7.63 × 10−6 mm, and the maximum value of this displacement was observed near the base
of the cochlea. The displacement of the BM in the human ear after TORP replacement
ranged from 0 to 7.48 × 10−6 mm, and the maximum displacement value was observed
near the apex of the cochlea. BM displacement after TORP was smaller than in the healthy
human ear, with the maximum displacement occurring at different positions; however, the
values of the displacements were in the same order of magnitude.

At 1000 Hz, the displacement of the BM in the healthy human ear ranged from 0 to
4.83 × 10−6 mm, and the maximum value of displacement at this time was close to the apex
of the cochlea. Displacement of the BM in the human ear after TORP replacement ranged
from 0 to 2.65 × 10−6 mm, and the maximum displacement value was observed close to
the apex of the cochlea. The position of the maximum displacement at this frequency is
closer to that of the BM in the healthy human ear, though the values are somewhat different.
Compared to the healthy human ear, BM displacement after TORP replacement decreased.

At 4000 Hz, the displacement of the BM in the healthy human ear ranged from 0 to
1.49 × 10−7 mm, and the maximum displacement value was observed in the first lap of
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the upper cochlea. The displacement of the BM in the human ear after TORP replacement
ranged from 0 to 1.17 × 10−7 mm, and the position of maximum displacement at this
frequency was basically the same as it was in the healthy human ear. BM displacement
after TORP replacement was smaller than it was in the healthy human ear, though the
values of the displacements were in the same order of magnitude.

4. Conclusions

After the TORP replacement based on the whole hearing system, the vibration charac-
teristics of the spiral BM changed at low and high frequencies. Compared to the healthy
human ear, the position of the peak amplitude value in the BM after TORP replacement
was somewhat more lagged than in healthy persons based on the amplitude–frequency
response curve. In the low frequency range, BM amplitude after TORP replacement was
lower than in the healthy human ear, and the decrease increased as frequency increased,
with an average relative difference between the two of 5.2%. In the middle frequency
range, BM amplitude after TORP replacement increased slowly with increasing frequency,
amplitude was lower than in the healthy human ear, and the average relative difference
between the two was 10.7%. In the middle–high frequency range, BM amplitude after
TORP replacement is higher than in the healthy human ear, and the average relative differ-
ence between the two was 9.1%. In the high frequency range, BM amplitude after TORP
replacement was lower than in the healthy human ear, and the average relative difference
between the two was 8.6%.

In conclusion, TORP replacement in the middle ear also has some infaust effects on
the acoustic sensing function of the inner ear, especially in the low frequency and medium
frequency range. Meanwhile, in the middle–high frequency range, TORP replacement in
the middle ear in response to high sound pressure produces a high acoustic stimulation
effect on the inner ear, making the inner ear structures susceptible to fatigue and more
prone to fatigue damage.

The numerical model in this paper can not only study the level of sound conduction
recovery in the human middle ear, but also predict the effect of clinical surgery involving
TORP replacement on the whole hearing system.
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Abstract: Precise segmentation of tooth lesions is critical to creation of an intelligent tooth lesion
detection system. As a solution to the problem that tooth lesions are similar to normal tooth tissues
and difficult to segment, an improved segmentation method of the image cascade network (ICNet)
network is proposed to segment various lesion types, such as calculus, gingivitis, and tartar. First, the
ICNet network model is used to achieve real-time segmentation of lesions. Second, the Convolutional
Block Attention Module (CBAM) is integrated into the ICNet network structure, and large-size
convolutions in the spatial attention module are replaced with layered dilated convolutions to
enhance the relevant features while suppressing useless features and solve the problem of inaccurate
lesion segmentations. Finally, part of the convolution in the network model is replaced with an
asymmetric convolution to reduce the calculations added by the attention module. Experimental
results show that compared with Fully Convolutional Networks (FCN), U-Net, SegNet, and other
segmentation algorithms, our method has a significant improvement in the segmentation effect, and
the image processing frequency is higher, which satisfies the real-time requirements of tooth lesion
segmentation accuracy.

Keywords: attention model; asymmetric convolution; ICNet; tooth lesions

1. Introduction

Continuous advancements in the field of computer vision have propelled online
intelligent diagnosis and treatment system research. As human living conditions have
improved, the interest in dental lesions has increased, and the impact of the epidemic
has made hospital diagnoses inconvenient. The following problems occur in clinical
settings: (1) Some lesions are similar to the tooth structure, and doctors are prone to miss
or misdiagnose the problem. (2) With an increased number of consultations, reviewing
numerous films has increased the workload for doctors, resulting in slower review times
and a lack of timely feedback to patients. Because of an unequal distribution of medical
resources, patients in remote areas lack access to in-depth treatment options. As a result,
the online clinic industry continues to emerge to meet the additional needs. The dental
lesion identification system can play a role in pre-diagnosis and auxiliary diagnoses so
that patients with less severe problems can save time in seeing a doctor, and patients with
severe diseases can be diagnosed thoroughly and can obtain their dental lesion diagnosis
results anytime and anywhere. This reduces the number of on-site diagnoses necessary
during the epidemic and prevents spreading of the COVID-19 virus. The study of real-time
segmentation algorithms for dental lesions has become the key to developing intelligent
dental lesion detection systems.

Dental diagnosis technology primarily enhances or segments X-ray films and optical
coherence tomography (OCT) images to assist doctors in their diagnoses. Lee et al. [1]
proposed vertical intensity transform function (VIFT) to solve the problem of lessening the
illumination-based differences in tooth grayscales, then used the K-means algorithm and
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Markov random field to specify the detection range and finally segmented the candidate
block of dental calculus. However, the accuracy of these traditional methods for specific
dental diagnosis tasks still has room for improvement, and for a single image with multiple
lesions, traditional methods cannot identify and segment multiple categories.

At present, many scholars are also trying to use deep learning methods for dental
diagnoses. Kreis [2] used Convolutional Neural Network (CNN) to detect periodontal
bone loss (PBL) on panoramic dental X-rays. Casalegno et al. [3] used near-infrared light
transmission (NILT) images for caries segmentation. Jae-Hong Lee [4] evaluated the
effectiveness of the deep CNN algorithm in detecting and diagnosing caries on X-rays of
the periapical period. Yu [5] and others also evaluated the performance of the CNN in the
classification of bones by lateral head measurement. Recently, Wen et al. [6] used deep
learning methods to detect tooth lesions. They built a multitask network structure, and the
model was composed of three subnets: FNet (feature extraction subnet), LNet (location
subnet), and CNet (classification subnet). This work mainly detected dental calculus,
gingivitis, and soft deposits. They identified calculus and gingivitis with different color
candidate frames, while for soft deposits, only an image-level classification was performed.
The problem with this work is that the shape of the tooth lesion is irregular. The rectangular
labeling method learns the characteristics of the surrounding normal tissues by using the
network, and the detection result range is larger than the actual pixel range of the lesion.
In addition, the LNet subnet in the network model is a two-stage positioning network, so
the real-time nature of the model is a problem. Different from previous work, we used an
intraoral camera to collect RGB images of dental lesions and used deep learning methods to
segment multiple lesions at the pixel level to more accurately detect the scope of the lesions.

Many diagnostic methods are based on currently popular 3D imaging techniques such
as CT, 3DMD, and others [7]. Therefore, 3D point cloud data segmentation is also one of
the hot research topics. Karatas et al. introduce basic 3D image segmentation methods
and summarize the current status of 3D imaging techniques and evaluate their application
in orthodontics. To address the sparsity of point cloud data, Graham et al. proposed
new sparse convolutional operations SSCNs [8] to handle sparse data more efficiently.
Liu et al. proposed a convolutional BEACon network [9] with embedded attentional
boundaries for point cloud instance segmentation, which combines geometry and color
into attentional weights based on how humans perceive geometry and color for object
recognition motives. SMU-Net [10] uses saliency mapping to guide the primary and
secondary networks to learn foreground saliency and background saliency representations,
respectively, to obtain good segmentation results, but its effectiveness for edge segmentation
of fuzzy lesions on small-scale datasets needs to be improved.

Deep learning uses end-to-end training to predict complex models and is able to
accomplish lesion segmentation in complex scenarios. Long et al. [11] proposed a fully
convolutional network based on CNN, which, for the first time, achieved a pixel-level
classification. They cleverly used convolutional layers to replace fully connected layers that
contained complex calculations and used deconvolutions to restore the original sizes after
convolutions. Subsequently, encoder–decoder was widely used in semantic segmentation.
The proposed SegNet [12] network is similar to FCN, with the difference that the location
of the maximum value is recorded during the maximum pooling operation in the decoding
operation, and then a nonlinear upsampling is achieved by the corresponding pooling
index during decoding. A sparse feature map is obtained after upsampling, and then a
dense feature map is obtained by ordinary convolution, and the upsampling is repeated.
This reduces the amount of computation in the encoding phase. The U-Net [13] proposed
by Ronneberger et al. is an improvement on the encoder–decoder architecture, which
by connecting the corresponding layers of the encoder and decoder, the low-level and
high-level features are merged to bridge the gap.

In the actual segmentation scenario, we have to pursue real-time performance while
ensuring accuracy. ENet [14] believes that the decoding structure is only used for the output
of upsampling coding and is only used for fine-tuning the edge details, so it does not need
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to be particularly deep. In addition, the full convolution process is very time-consuming,
so ENet only uses one layer of full convolution and makes use of fewer parameters and
obtains a faster speed. However, ENet guarantees real-time performance while giving
up a certain accuracy rate, resulting in lower segmentation accuracy. ICNet [15] uses the
pyramid pooling module of PSPNet [16] to fuse multiscale context information and divide
the network structure into three branches: low resolution, medium resolution and high
resolution. It uses low resolution to complete the semantic segmentation, and a high-
resolution strategy to refine the segmentation results improves the model’s segmentation
accuracy. In addition, its use of cascading labels to guide the training of each branch speeds
up the model’s convergence and prediction and improves real-time performance.

The above segmentation network has good performance in the segmentation of remote
sensing images [17], street view images [18], and lesion images [19], but it does not have an
application in dental lesions thus far. We found that there is oversegmentation and under-
segmentation when testing with segmentation algorithms such as FCN, SegNet, ENet, etc.
The analysis believes that tooth lesions and normal tooth tissues are similar in texture and
color and have similar features, which makes it difficult to segment tooth lesions and their
edges correctly. In addition, the segmentation of dental lesions needs to ensure accuracy
in a reasonable time, thus meeting the needs of the diagnostic equipment and massive
amounts of data. In this article, we propose to integrate the attention mechanism into the
ICNet network to solve the above two problems. The salient points and contributions of
this paper are as follows:

1. The self-built dental lesion dataset included four types of lesions: calculus, gingivitis,
tartar, and worn surfaces and was preprocessed with the ACE color equalization
algorithm for overexposed images caused by light sources.

2. The lightweight Convolutional Block Attention Module (CBAM) attention module is
integrated into the low and middle branches of the image cascade network (ICNet)
network so that the high-resolution branches can better guide the features of the low
and middle branches, and the large-size convolution of spatial attention uses stacked
hollow volumes for product replacement.

3. The regular convolution in the low- and medium-resolution branches are replaced
with asymmetric convolutions to reduce the computational effort.

2. Related Work

In this section, we introduce the semantic segmentation architecture and model related
to our method. These architectures and models are widely used in image segmenta-
tion tasks.

2.1. Encoder–Decoder Network

Our segmentation network is based on the encoder-decoder network structure. In
2015, the FCN [11] proposed by Long et al. used a convolution layer to replace the com-
plete convolution layer of the entire network and used the deconvolutional layer for
upsampling to restore the segmentation results. This fully convolutional network is called
an encoder–decoder network [20–22]. Since then, most image segmentation networks have
adopted the form of codec networks. Based on FCN, U-Net [13] built a more complex de-
coder, adding compensation at the corresponding level to compensate for local information.
SegNet [12] is a further extension of U-Net, which implements the maximum pixel pool
operation in the encoder model and reduces the amount of calculation in the decoding
stage. ICNet [15] first changes the input image size to one-half and one-quarter of the
original image and combines the original image to form the input image, which is input
into the low-, medium-, and high-resolution branches. There are many network layers at
the low and medium resolutions, but the image resolution is low, which saves calculation
time. Although the high-resolution branch has a large image, the number of input network
layers is small, resulting in a relatively small time overhead, thus achieving the real-time
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goal. The feature maps extracted from each branch are fused through the CFF [15] module,
and finally, the segmentation results are obtained through decoding.

2.2. Attention Mechanism

A limitation of CNN is that it is difficult to effectively learn the global information,
and the segmentation of the details of an image is not perfect. In recent years, researchers
have integrated feature fusion and attention mechanisms [22–25] into network models
to increase the network’s ability to learn global features to better segment the details.
PspNet is proposed through the pyramid pooling module, which aggregates contextual
information based on different regions and extends pixel-level features to a specially
designed global pyramid pooling. Local and global clues work together to make the
final prediction more reliable. In recent years, a large number of studies have proven
that introducing the attention module into the network model can effectively improve
performance. SA-UNet [26] introduced a spatial attention module SE [27], which can infer
attention maps along the spatial dimension and multiply the attention maps with the input
feature maps for adaptive feature refinement. The effect of this work on retinal vessel
segmentation exceeds the original U-Net of Ronneberger et al. [24] proposed an attention
gate structure. The AG module is connected to the end of each hop connection, and the
attention mechanism is implemented for the extracted features. In our proposed model,
we use the convolution block attention module CBAM, which takes the input image and
applies the attention sequence to the channel and then applies it to the spatial dimension.
The result of CBAM is a weighted feature map that takes into account the channels and
spatial regions of the input image.

2.3. Multiple Forms of Convolution

Many studies have proposed various forms of convolutions to improve the perfor-
mance of the segmentation network. Szegedy et al. [28] first proposed the concept of a 1 × 1
convolution, and its main function was to reduce the dimensionality and save calculation
costs. The 1× 1 convolution is not different from a conventional convolution in terms of the
convolution method; the main difference lies in the application scenario and function. They
also proposed an asymmetric convolution; that is, the convolution of n*n can be replaced
by the convolution of 1 × n followed by n × 1 so that the effect obtained is the same as that
of a conventional convolution and the calculation amounts are reduced. A depth separable
convolution [29] is an innovation based on a 1 × 1 convolution, and it includes two parts, a
deep convolution and 1 × 1 convolution. The purpose of a convolution is to convolve each
of the inputs separately using a convolution kernel to convolve it; that is, the channels are
separated and then combined. Koltun et al. [30] first used a dilated convolution for image
segmentation. A dilated convolution is the process of expanding the convolution kernel by
adding some spaces between the elements of the convolution kernel, which increases the
receptive field without increasing the number of parameters. The DeepLabV2 algorithm
proposed by Papandreou et al. [31] uses a dilated convolution to extract features. Many
studies have used a dilated convolution [31,32] to replace a conventional convolution.

3. Methods
3.1. Adding the CBAM Attention Module to Low- and Medium-Resolution Branches

The network framework in this paper is mainly an ICNet network, which consists
of three network branches: low-, medium-, and high-resolution branches, as shown in
Figure 1. In our designed network, the low-resolution network is designed according to
the first 11 convolutional blocks of Resnet50, using dilated convolution to enhance the
feature perception field and asymmetric convolution to reduce the computational effort.
The medium-resolution branch is designed according to the first 5 convolution blocks of
Resnet50, using asymmetric convolution in the last two convolutions, and both branch
network heads include a 7 × 7 convolution and maximum average pooling. The high-
resolution branch is designed as a lightweight network, which consists of three convolution
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blocks, including 3 × 3 convolution, Relu activation function, BN layer, 1 × 1 convolution,
and Relu activation function, in that order.
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Figure 1. Improved ICNet network structure.

There is a morphological similarity between dental lesions and normal teeth, and
the edges are difficult to distinguish. In addition, although ICNet retains most of the
semantic information when performing feature extraction in low-resolution branches, there
is a loss of detail and edge information, which results in an unsatisfactory segmentation
accuracy. In this paper, the CBAM module is added to the low-resolution branch, as shown
in Figure 1. Through the serial combination of channel and spatial attention, important
features can be enhanced, and unimportant features can be suppressed, thereby improving
the performance of the network and improving the model’s ability to learn details.

CBAM applies attention to both channel and spatial dimensions, as shown in Figure 2.
CBAM, like the SE module, can be embedded in most current mainstream networks. It can
improve the feature extraction ability of the network model without significantly increasing
the number of calculations and parameters.
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Figure 2. The serial structure of channel attention and spatial attention.

CBAM includes two pieces of content, the channel attention module and spatial
attention module; that is, the channel attention CAM and spatial attention SAM.

The network embedded with the CBAM mechanism first performs global pooling
and maximum pooling on the constitutionally generated feature maps F using channel
attention mapping. The pooling result is connected to the multilayer perceptron for the
addition operation, and the channel weight coefficient Mc is generated through the sigmoid
activation function. Finally, this weighting coefficient is multiplied by the original feature
map F to obtain the feature map F′ after the channel weighting adjustment as shown in
Figure 3. The channel attention mapping process is shown in Equation (1).

Mc = δ(MLP(AvgPool(F)) + MLP(MaxPool(F))) (1)
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Figure 3. Embedding CBAM outside the convolution block.

In Equation (1), MLP stands for the multilayer perceptron; δ is the activation function.
After that, the feature map generated by the channel attention is sent to the spatial

attention for processing. Spatial attention mapping performs a serial connection of global
maximum pooling and average pooling on the weighted feature map F′, uses convolution
to reduce the dimensionality into a single-channel feature map, and uses the sigmoid
function to activate the spatial feature matrix Ms. The weight matrix and the feature map F
are subjected to the dot multiplication operation to obtain the final required spatial feature
map F′′, and the spatial attention mapping process is shown in Equation (2):

Ms(F) = δ
(

f7×7{AvgPool(F); MaxPool(F)}
)

(2)

In the formula, f7×7 represents that the convolution kernel is a 7 × 7 convolution layer;
δ is the activation function; and; represents the serial connection.

In this paper, we replace the 7 × 7 large convolution kernel in the spatial attention
module with two 3 × 3 dilated convolutions with a dilated rate of 2, reducing the number
of parameters in the spatial attention module. The modified CBAM model is shown in
Figure 4, where X and Y represent the input and output feature matrices, respectively, and
C, W, and H and Cl, Wl, and Hl represent the three-dimensional information of X and
Y, respectively.
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Figure 4. Use stacked dilated convolution to replace the spatial attention structure diagram of
large-size convolution.

To suppress the influence of the useless features on the model, the CBAM attention
model is connected to the outside convolution of the last three convolution blocks in the
one-quarter resolution branch and the last two convolution blocks in the one-half resolution
to improve the segmentation accuracy. The convolution block in front of the low- and
medium-resolution branches mainly extracts image features, and then the attention layer is
used to enhance the feature extraction so that the obtained features are more accurate, and
the high-resolution branch can better guide us in low resolution and medium resolution to
better achieve the segmentation effect.

Finally, the feature maps generated by the three branches are fused through the CFF
module, as show in Figure 5.
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Figure 5. Feature maps F1 and F2 are fused through CFF.

The CFF module has three inputs, the feature maps F1, F2, and label. For F1, it is
upsampled twice to make it the same size as F2, and then the features of F1 are refined by
convolution with a hole of size 3× 3 and a dilation rate of 2. For F2, it is convolved by 1 × 1
to make it the same number of channels as F1, and then the features are normalized using
the BN layer. This is then added to the F1 features obtained above to obtain F2′. To enhance
the learning of feature F1, the upsampled features of 1 are guided using an auxiliary label,
optimizing the loss. Where, for the first CFF module, F1 and F2 are the features obtained
from the low- and medium-resolution branches, respectively.

3.2. Asymmetric Convolution Replaces Regular Convolution

A large convolution kernel can create a larger receptive field, but it also means there are
more parameters. An asymmetric convolution can greatly reduce the calculation amounts
in the convolution stage without reducing the accuracy, which reduces the size of the model
and improves the real-time segmentation of the model. This article replaces part of the
regular convolution with an asymmetric convolution to further reduce the quantity of
ICNet calculations.

Adding the CBAM attention module to the ICNet network results in a small increase
in the calculations of the model. Compared with conventional convolution, asymmetric
convolution can greatly reduce the amount of calculation in the convolution stage without
losing accuracy. First, an n × 1 convolution is performed, then a 1 × n convolution is
performed, as shown in Figure 6, which is consistent with the result of directly performing
an n × n convolution, but the scale of the multiplication operation changes from n × n
to 2 × n; so, the larger the n, the more obvious the effect of asymmetric convolution in
reducing the calculation amounts. In this paper, the one-half and one-quarter resolution
branches replace the 3 × 3 convolution with a 3 × 1 convolution, and then a 1 × 3
convolution is joined, as shown in Figure 6, thereby reducing the calculation amounts.
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4. Experiment
4.1. Datasets
4.1.1. Data Collection

An intraoral camera was used to collect images of dental calculus, gingivitis, tartar,
and worn surfaces. Two hundred images of dental lesions were obtained by shooting from
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three angles: the exterior, interior, and top views. The number of occurrences of various
lesions in the collected images are shown in Table 1.

Table 1. The number of times that various lesions appear on the collected images.

Calculus Gingivitis Tartar Worn Surfaces

209 215 33 100

4.1.2. Data Augmentation

To expand the difference between the samples and ensure the generalization ability
of the later model training, randomly crop the collected dental lesion pictures and restore
the original size and flip it over, then adjust the contrast, brightness, saturation, etc. Then,
the original tooth lesion image is scaled to 512 × 512 pixels according to the principle
of proportional invariance, the distorted image is removed by manual screening, and
400 dental lesion images are selected as the original dataset. Figure 7 shows that dataset
example and Figure 8 shows that the number of various lesions before and after data
augmentation. Finally, the Label Me labeling tool was used to imitate the PASCAL VOC2012
dataset format to manually label the four categories of calculus, gingivitis, tartar, and wear
surface in the lesion image and the dataset was divided into a training set, validation set,
and test set at a ratio of 7:2:1.

Micromachines 2022, 13, x FOR PEER REVIEW 8 of 16 
 

 

 

Figure 6. Asymmetric convolution process. 

4. Experiment 

4.1. Datasets 

4.1.1. Data Collection 

An intraoral camera was used to collect images of dental calculus, gingivitis, tartar, 

and worn surfaces. Two hundred images of dental lesions were obtained by shooting from 

three angles: the exterior, interior, and top views. The number of occurrences of various 

lesions in the collected images are shown in Table 1. 

Table 1. The number of times that various lesions appear on the collected images. 

Calculus Gingivitis Tartar Worn Surfaces 

209 215 33 100 

4.1.2. Data Augmentation 

To expand the difference between the samples and ensure the generalization ability 

of the later model training, randomly crop the collected dental lesion pictures and restore 

the original size and flip it over, then adjust the contrast, brightness, saturation, etc. Then, 

the original tooth lesion image is scaled to 512 × 512 pixels according to the principle of 

proportional invariance, the distorted image is removed by manual screening, and 400 

dental lesion images are selected as the original dataset. Figure 7 shows that dataset ex-

ample and Figure 8 shows that the number of various lesions before and after data aug-

mentation. Finally, the Label Me labeling tool was used to imitate the PASCAL VOC2012 

dataset format to manually label the four categories of calculus, gingivitis, tartar, and wear 

surface in the lesion image and the dataset was divided into a training set, validation set, 

and test set at a ratio of 7:2:1. 

 

Figure 7. Example of combined dataset. Figure 7. Example of combined dataset.

Micromachines 2022, 13, x FOR PEER REVIEW 9 of 16 
 

 

 

Figure 8. Comparison of the number of occurrences of each lesion on the original dataset and the 

combined dataset. 

The tartar data is small, but it has more prominent features such as color and texture. 

To cope with the small amount of tartar data, we incorporate some training techniques in 

the training process, such as pre-training the tartar dataset to initialize the weights and 

then using the pre-trained model to train our multi-class lesion segmentation model. We 

also oversample the tartar data during training by random replication, so that the predic-

tion is more accurate for small amounts of tartar, and we add dropout to the network to 

prevent overfitting of the tartar data. 

In addition, the tooth lesion dataset was overexposed, resulting in unclear edges and 

unclear details in the lesion image. The histogram of the normal tooth image is more bal-

anced, while the overexposed tooth image has too many pixels with high brightness, 

which causes the histogram to shift to the right, as show in Figure 9. 

 

Figure 9. Comparison of gray histogram between a normal tooth image and an overexposed tooth 

image. 

This article uses the ACE [33] automatic color equalization algorithm to color balance 

the unclear images in the dataset. The algorithm considers the spatial positional relation-

ship between color and brightness in the image, performs adaptive filtering of local char-

acteristics, makes image brightness and color adjustments and contrast adjustments with 

local and nonlinear characteristics, and satisfies the gray world theory hypothesis and 

white speckle hypothesis. The ACE algorithm consists of two steps. The first step is to 

adjust the color/spatial domain of the image, complete the chromatic aberration correction 

of the image and obtain a spatially reconstructed image, as shown in Equation (3). 

Figure 8. Comparison of the number of occurrences of each lesion on the original dataset and the
combined dataset.

The tartar data is small, but it has more prominent features such as color and texture.
To cope with the small amount of tartar data, we incorporate some training techniques in
the training process, such as pre-training the tartar dataset to initialize the weights and then
using the pre-trained model to train our multi-class lesion segmentation model. We also
oversample the tartar data during training by random replication, so that the prediction is
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more accurate for small amounts of tartar, and we add dropout to the network to prevent
overfitting of the tartar data.

In addition, the tooth lesion dataset was overexposed, resulting in unclear edges and
unclear details in the lesion image. The histogram of the normal tooth image is more
balanced, while the overexposed tooth image has too many pixels with high brightness,
which causes the histogram to shift to the right, as show in Figure 9.
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Figure 9. Comparison of gray histogram between a normal tooth image and an overexposed tooth image.

This article uses the ACE [33] automatic color equalization algorithm to color bal-
ance the unclear images in the dataset. The algorithm considers the spatial positional
relationship between color and brightness in the image, performs adaptive filtering of local
characteristics, makes image brightness and color adjustments and contrast adjustments
with local and nonlinear characteristics, and satisfies the gray world theory hypothesis and
white speckle hypothesis. The ACE algorithm consists of two steps. The first step is to
adjust the color/spatial domain of the image, complete the chromatic aberration correction
of the image and obtain a spatially reconstructed image, as shown in Equation (3).

Rc(p) = ∑
j=subset

r(Ic(p)− Ic(j))
d(p, j)

(3)

In the formula, Rc is the intermediate result, Ic(p)− Ic(j) is the brightness difference
between two different points, d(p, j) is the distance degree function, and r (*) is the degree
performance function, which must be an odd function. This step can adapt to the local
image contrast, r (*) can amplify small differences, enrich large differences and expand
or compress the dynamic range according to the local content. It is generally agreed that
r (*) is:

r(n) =





1, X < T
X/T,−T < X < T
−1, X > T

(4)

4.2. Metrics

In order to compare the performance of our method, we use the training model to
segment the test set and compare the segmented image with the masked label. In terms of
segmentation accuracy, our metrics mainly include pixel accuracy (Acc), average interaction
ratio (mIoU), and F1 score. In terms of real-time performance, we mainly compare the
amount of calculation and the reasoning time of a single picture. We perform semantic
segmentation on tooth lesions, which is a pixel-level segmentation. In the field of deep
learning image segmentation in computer vision, the mIoU value is an important metric
to measure the accuracy of image segmentation. Assuming there are k + 1 classes, Pij
represents the number of pixels whose actual class is class i but whose predicted result is
class j. The calculation formula of mIoU is shown in Equation (5).
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MIou =
1

K + 1

k

∑
i=0

Pii
k
∑

i=0
pij +

k
∑

i=0
pji − pii

(5)

4.3. Loss Function

ICNet adds a loss weight to each branch training and optimizes the weighted SoftMax
cross-entropy, and its loss function L can be expressed as:

L = W1L1 + W2L2 + W3L3 (6)

where L1, L2 and L3 are the loss of the low-, medium-, and high-resolution branches,
respectively, and W1, W2 and W3 are the weights of the loss function of the low-, medium-,
and high-resolution branches, respectively. Normally, if the high-resolution branch weight
W1 is set to 1, the weights W2 and W3 of the medium-resolution and low-resolution
branches are 0.4 and 0.16, respectively.

4.4. Experimental Details

We evaluated our method on a self-built dental lesion dataset. During the training
process, we use Resnet50 as our backbone network and we use the SGD optimization
method for training when the loss of the validation set does not decrease in 20 epochs.
The data transformation of loss and acc in the training process is shown in Figure 10. Our
method has a faster convergence rate. We replace the large-size convolution in the spatial
attention module in CBAM and perform ablation experiments. Finally, we enhanced and
reduced the brightness of the original image and tested the segmentation results of our
model under different brightness levels.
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Figure 10. Comparison of loss and ACC curve.

The experiments in this article are all based on the TensorFlow deep learning frame-
work, completed on the Bit hub cloud server, and the graphics card information is gtx1080.

5. Results
5.1. Contrast Test with Other Segmentation Algorithms

At present, with the development of convolutional neural networks, an increasing
number of deep learning methods are used for semantic image segmentation. However,
the segmentation performance of different tasks and methods is significantly different. To
further test the pros and cons of this method for real-time semantic segmentation of dental
lesion images, the training parameters of the above four models are the same as those of
the improved ICNet. They are all trained based on the strategy of automatically saving the
optimal model and then tested on the verification set. The test indicators mainly start from
the two aspects of segmentation accuracy and time performance and include Acc, mIoU,
the F1 score, and the reasoning time of a single picture. It can be seen from Table 2 that our
method has the highest Acc, mIoU, and F1 score, with scores of 0.8897, 78.67%, and 0.8890,
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respectively. Compared with ICNet, the improved ICNet segmentation accuracy, mIoU,
and F1 scores are 0.0384, 3.91%, and 0.0397 higher, respectively.

Table 2. Comparison of various segmentation indices of different algorithms.

Model Acc mIoU F1_Score Times (ms)

FCN8 0.8215 68.17 0.8045 833

ENet 0.8160 62.30 0.7749 696

U-Net 0.8875 78.61 0.8838 739

SegNet 0.8284 69.24 0.8162 805

ICNet 0.8513 74.76 0.8493 307

Ours 0.8897 78.67 0.8890 395

In addition, from the results of the visualization in Figure 11, U-Net and SegNet have
oversegmentations. That is, the no lesion part is segmented, while ENet and ICNet have
undersegmentations, which makes it difficult to correctly identify normal tooth tissues
and lesions. The improved ICNet greatly improves the oversegmentation, and the result is
closer to the label.
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In terms of real-time segmentation, ENet, UNet, SegNet, ICNet, and the improved
ICNet took 833 ms, 696 ms, 739 ms, 805 ms, 307 ms, and 395 ms for a single image,
respectively. Compared with ENet, U-Net, and SegNet, the improved ICNet shortens the
time by 34.63%, 38.43%, and 43.47%, respectively, and shortens the time by nearly half
compared with FCN and increases less time compared with ICNet. From Table 3, we can
see that the improved ICNet is slightly more computationally expensive than ICNet.

Table 3. Comparison of calculations before and after ICNet improvement.

Model FLOPs

ICNet 13,524,726

Ours 15,608,042
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From the above evaluation indicators, it can be seen that our method has the best
segmentation effect, and when the segmentation time is close to ICNet, the three indicators
of our method have improved to varying degrees. The indicators have improved to varying
degrees. Among the visualization results of all methods, our segmentation effect is the
closest to the real label. The abscissa of Figure 12 is the frequency of division, the ordinate
is MIOU, and the upper-right corner of the figure is the optimal method. Figure 12 shows
that our method is optimal in terms of accuracy and time.
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Figure 12. Comparison of accuracy and efficiency of different segmentation algorithms.

Among the four types of lesions, dental calculus and wear surface are the most similar
to normal tooth tissue characteristics. Figure 13 shows the segmentation visualization
results of dental calculus and wear surface by our method and other algorithms. FCN,
U-Net, and SegNet oversegment for calculus. ENet and ICNet have certain undersegmen-
tation problems. The visualization effect of our method is closest to the label. Among the
visualization results of wear surface segmentation, ENet segmentation has the worst effect,
the segmentation results of the other algorithms are not much different, and the results are
relatively close.
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5.2. Segmentation under Different Brightness

When an oral image is collected, the brightness of each image is difficult to maintain,
and the brightness becomes one of the important factors that affects the quality of the
segmentation. Therefore, this article compares the segmentation and dental lesion images
under different brightness levels. We set the original image brightness to P, reduce the
image brightness to 0.7 times that of the original image, and increase it to 1.3 times that of
the original image for image segmentation.

It can be seen from Table 4 that when the brightness is adjusted to 0.7 P or 1.3 P,
the segmentation accuracy is reduced. The analysis believes that it is more difficult to
identify the characteristics of the lesion in the image that is too bright and too dark.
The ICNet segmentation accuracy dropped by 2.33% and 4.5%, respectively, and our
method’s segmentation accuracy dropped by 2.68% and 5.34%, respectively. According
to the visualization results, in Figure 14, ICNet has an undersegmentation at 0.7 P and an
oversegmentation at 1.3 P. Our method is closer to the real label at 0.7 and 1.3 P.
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Table 4. mIoU comparison of our method with the ICNet method at different luminance.

mIoU

Model 0.7P P 0.8P

ICNet 58.50 60.83 56.38

Ours 58.65 61.33 55.99
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5.3. Ablation Experiment of CBAM

We replace the 7 × 7 large-size convolution kernel in the spatial attention in CBAM
with a convolution kernel with a size of 3 × 3 and a dilated rate of 2. As shown in
Table 4, the standard convolution with a convolution kernel size of 7 × 7 is represented
by ICnet + CBAM7 × 7; the convolution kernel size is 3 × 3, and the void convolution with
the void ratio is 2, using ICNet + CBAM3 × 3 means. We use a dilated convolution with a
convolution kernel size of 3 × 3 and a dilated rate of 2 twice, denoted by CBAM2 × 3 × 3.
Compared with the parameter quantity of ICNet + CBAM3 × 3 as the benchmark, we set
the parameter increment of ICNet + CBAM3 × 3 to 0.

From Table 5, we can see that after replacing the 7 × 7 convolution in the spatial
attention with two 3 × 3 convolutions, the mIoU increased by 0.55% when the number of
parameters was reduced. Experiments show that a 3 × 3 dilated convolution with a dilated
rate of 2 has the same perceptual field as a standard convolution of 7 × 7, and the effect of
both is approximate. In addition, comparing the results of the third group of experiments,
it is found that stacking multiple convolutional layers with dilated layers can also improve
the feature expression abilities of the spatial attention module.

Table 5. Replace the 7 × 7 convolution in the spatial attention in CBAM with a different convolution.

Model MIOU Add Param

ICNet + CBAM3 × 3 76.84 0

ICNet + CBAM7 × 7 77.42 240

ICNet + CBAM2 × 3 × 3 77.97 180

6. Conclusions

In this paper, for a small sample of dental lesion datasets, the data are augmented by
random cropping and flipping. The ACE automatic color equalization algorithm addresses
the problems of blurred images of the lesion caused by the light source. Combining the
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augmented data and processed image with the original dataset into a new dataset makes
the resulting model more generalizable.

The edge of the tooth lesion is highly similar to the normal tooth, and the edge is
difficult to subdivide. Moreover, although ICNet obtains most of the semantic information
when performing feature extraction in low- and medium-resolution branches, the details
are easily lost, resulting in inaccurate lesion segmentations. Therefore, this article adds
a lightweight CBAM module to the feature extraction stage, which can better obtain the
semantic information of the image so that the high-resolution branch can better guide the
low-resolution-generated feature map, thereby improving the segmentation accuracy.

We replace the 3 × 3 convolution with an asymmetric convolution in the low- and
medium-resolution convolution stages, which further reduces the computational complex-
ity of the model. We also ensure that the time it takes to improve the accuracy of the model
does not increase significantly.

Although our method has significantly improved the segmentation of a variety of
dental lesions, the light intensity has a large impact on the segmentation effect. In addition,
the labeling of lesion images requires a great deal of effort. In future research, we will
establish a highly generalized, weakly supervised network to solve the problems of difficult
labeling and the large impact of the light.
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Abstract: An exoskeleton is a kind of intelligent wearable device with bioelectronics and biome-
chanics. To realize its effective assistance to the human body, an exoskeleton needs to recognize
the real time movement pattern of the human body in order to make corresponding movements at
the right time. However, it is of great difficulty for an exoskeleton to fully identify human motion
patterns, which are mainly manifested as incomplete acquisition of lower limb motion information,
poor feature extraction ability, and complicated steps. Aiming at the above consideration, the mo-
tion mechanisms of human lower limbs have been analyzed in this paper, and a set of wearable
bioelectronics devices are introduced based on an electromyography (EMG) sensor and inertial
measurement unit (IMU), which help to obtain biological and kinematic information of the lower
limb. Then, the Dual Stream convolutional neural network (CNN)-ReliefF was presented to extract
features from the fusion sensors’ data, which were input into four different classifiers to obtain the
recognition accuracy of human motion patterns. Compared with a single sensor (EMG or IMU) and
single stream CNN or manual designed feature extraction methods, the feature extraction based
on Dual Stream CNN-ReliefF shows better performance in terms of visualization performance and
recognition accuracy. This method was used to extract features from EMG and IMU data of six
subjects and input these features into four different classifiers. The motion pattern recognition ac-
curacy of each subject under the four classifiers is above 97%, with the highest average recognition
accuracy reaching 99.12%. It can be concluded that the wearable bioelectronics device and Dual
Stream CNN-ReliefF feature extraction method proposed in this paper enhanced an exoskeleton’s
ability to capture human movement patterns, thus providing optimal assistance to the human body at
the appropriate time. Therefore, it can provide a novel approach for improving the human-machine
interaction of exoskeletons.

Keywords: feature extraction; artificial intelligence; motion pattern recognition; wearable sensors;
EMG; IMU

1. Introduction

Exoskeleton is an intelligent wearable device, which can assist the movement of human
beings’ upper or lower limbs. In recent years, it has become a research hotspot in the field of
robotics. By wearing an exoskeleton, the wearer’s motor abilities and muscular endurance
are enhanced, and the wearer can perform tasks that would otherwise be impossible [1].
Based on the above advantages, exoskeletons have a broad range of application prospects
in medical rehabilitation, logistics, and military fields [2–6]. Exoskeletons rely on human-
machine interaction to function efficiently. They need to recognize the current motion mode
of a human body in real time so as to make corresponding motion at the appropriate time
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and determine the necessary assistance to the human body. Although the technology of
exoskeletons has been greatly improved, there are still some deficiencies in human motion
pattern recognition, wherein exoskeletons lack the ability to fully recognize the actions
and intentions of human wearers. Therefore, exoskeletons cannot help the wearer at the
right time, a shortcoming also highlighted in reference [7]. It is therefore necessary to study
human motion pattern recognition. In this paper, the recognition of human lower limb
motion pattern will be deeply studied.

In the whole process of lower limb movement pattern recognition, firstly, the human
lower limb movement information should be obtained based on data acquisition equipment.
Then, the obtained movement information should be extracted with features. Finally, the
features are input into the classifier to identify various human movement patterns. If
the motion information acquisition and feature extraction methods are not appropriate,
the accuracy of human movement mode recognition will be affected. At present, a lot
of work has been carried out on motion pattern recognition. Song et al. [8] used EMG
sensor to collect data of five movement patterns (up the stairs, down the stairs, sit, stand
and walk), and extracted frequency domain features and time domain features, including
the mean frequency, median frequency, mean absolute value, wave length, slope sign
change, variance, integrated, zero-crossing, and Willison amplitude. The random forest
(RF) algorithm optimized by grid search method identified five motion patterns with an
average recognition rate of 97.5%. Lopez-delis et al. [9] characterized knee motion patterns
from EMG signals of erector spine muscles, extracted three features of mean absolute value,
waveform length, and auto-regressive model and used linear discriminant analysis (LDA),
K-nearest neighbor (KNN) and support vector machine (SVM) classification algorithms to
identify eight human motion patterns, respectively. The recognition accuracy was greater
than 95%. Xi et al. [10] extracted fifteen features (including time domain, frequency domain,
time-frequency domain and entropy) and five classification algorithms for recognizing
seven activities of daily life from the obtained surface EMG signals, and finally determined
the optimal surface EMG features and classifiers. Peng et al. [11] used the designed plantar
pressure sensing shoes to collect the plantar pressure of human body under different
movement modes, and extracted five characteristics of average value, standard deviation,
maximum value, minimum value, and difference deviation. The proposed KPCA-SVM
classifier can recognize different motion patterns with an accuracy of 91.1%. Zhang et al. [12]
collected data under dynamic (walking) and static (sitting, standing and lying) activities
of the elderly by using IMU. Mean absolute value, zero-crossing, slope sign change, and
waveform length were obtained, and the SVM algorithm was used to classify the above
activities. A better classification effect has been achieved. Dhindsa et al. [13] obtained the
EMG data of subjects during the process from sitting on a chair to standing up, extracted
15 features, and input them into the classifier after dimensionality reduction, and evaluated
the performance of different classifiers. The SVMQ classifier performed best, and its
recognition accuracy can reach about 92.2%. Gupta et al. [14] used acceleration sensors tied
to the waist to obtain acceleration signals and extracted seven features including mean trend,
windowed mean difference, detrended fluctuation analysis (DFA) coefficient, variation
trend, windowed variance difference, energy uncorrelated, and maximum acceleration
difference. They used Naive Bayes and KNN classifier to identify six different daily
activities. The results showed that each individual activity was more than 95%. However,
there are two main problems with the above work. Firstly, since the movement of human
lower limbs is an extremely complex process, it needs to involve many types of data before
it can be characterized comprehensively. It is difficult to fully obtain the motion information
of human lower limbs by relying on a single type of sensor data. In addition, if the single
sensor is affected by external uncertainty, it may lead to wrong recognition results (that is,
it is difficult to meet the requirements of reliability by using a single sensor). Secondly, in
the aspect of feature extraction, the time domain and frequency domain features mentioned
in the above work are predefined and are manually designed based on previous research
results and experience. When people use these methods to extract features, they often
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need to have some professional knowledge of mathematics and signal processing to select
suitable features for extraction. Features extracted in this way are easily affected by the
combination and number of different features, so it takes a lot of time to select the best
combination and number of features, and features selected by manual experience may not
be able to obtain the best classification accuracy.

In view of the above problems, this paper is based on the advantages that EMG
sensor can collect human biological information and IMU can intuitively reflect the three-
dimensional kinematics information of the human body [15]. These two sensors are used to
obtain more comprehensive information of human lower limb movement so as to improve
the accuracy of human motion pattern recognition. Then, a feature extraction method based
on Dual Stream CNN-ReliefF is proposed. It can automatically extract well differentiated
fusion features from EMG and IMU data, and the extracted features have a high accuracy
of motion pattern recognition. Thus, the major contributions of this paper are as follows:

Firstly, this paper presents a bioelectronic motion information acquisition device
based on the fusion of EMG and IMU sensors. Compared with the information based
on a single sensor, our device can collect more human lower limb motion information,
which mainly consist of bioelectric information (EMG signal) and biological kinematics
information (acceleration, angular velocity and angle of joint motion). It is suggested that
the combination of the two kinds of information will enhance the accuracy and reliability
of motion pattern recognition.

Secondly, a feature extraction method based on Dual Stream CNN-ReliefF is proposed.
This method is improved on the basis of the Dual Stream CNN recognition model. The
improved Dual Stream CNN-ReliefF method can automatically extract well differentiated
fusion features from EMG and IMU data. The Dual Stream CNN-ReliefF feature extraction
method proposed in this paper avoids the problems that the traditional manual design
feature extraction involves, including a need to rely on manual experience, tedious steps,
and low accuracy of feature recognition. Compared with single sensor (EMG or IMU) and
Single Stream CNN or manual designed feature extraction methods, the feature extraction
based on Dual Stream CNN-ReliefF shows better performance in terms of visualization
performance and recognition accuracy. This method was used to extract features from EMG
and IMU data of six subjects and input these features into four different classifiers. The
motion pattern recognition accuracy of each subject under the four classifiers is above 97%,
with the highest average recognition accuracy reaching 99.12%.

The structure of the paper is as follows: Section 2 introduces the mechanism of human
lower limb movement, the wearable bioelectronics device of human lower limb movement
information fusion, and the specific experimental scheme, respectively, and also introduces
the feature extraction methods based on manual designs, Single Stream CNN and Dual
Stream CNN-ReliefF. Section 3 presents the visual analysis of the features extracted by the
three feature extraction algorithms and the accuracy analysis of motion pattern recognition
under different classifiers. Section 4 presents the conclusions of our research.

2. Materials and Methods
2.1. Analysis of Human Lower Limb Movement Mechanism

Human lower limb movement is mainly completed by three parts: bone, bone con-
nection, and skeletal muscle. Bones are the basic framework of human body; they cannot
move itself and can be regarded as a rigid connecting rod. The connection between bones
(that is, joints) can be regarded as motion pairs. Under the action of the nervous system,
bone connection provides an external force for the joint through the contraction and re-
laxation of skeletal muscles in order to realize joint movement. Therefore, human lower
limb movement relies on the synergistic effect between multiple joints and multiple muscle
groups [16]. In order to comprehensively obtain the movement information of human lower
limbs, it is necessary to obtain the movement information of each joint and muscle group of
lower limbs during the movement of human body. Comprehensive movement information
is helpful to improve the accuracy of human movement pattern recognition. All of the
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joints of the human body can only carry out rotating motion but not translational motion,
which is decided by the particularity of human skeleton structure. Usually, kinematics
concepts are used to represent joint motion information, such as angular velocity and angle
and acceleration of joint rotation. The activity status of human muscle groups belongs to
biological information. EMG signals are the superposition of action potential sequences
of motor units generated during muscle contraction, which can reflect the intensity of
muscle contraction. Therefore, EMG signals have been widely used in the recognition and
prediction of human motion intentions [17].

2.2. Wearable Bioelectronics Device of Human Lower Limb Movement Information Fusion

From the above analysis of movement mechanism, it can be found that in order to
comprehensively obtain the movement information of human lower limbs, a device is
required to collect not only human biological information but also human kinematics
information. In this paper, we proposed a set of wearable bioelectronics with human
lower limb motion information acquisition device based on the EMG sensor and IMU. The
device uses non-invasive EMG sensors to acquire the surface EMG signals generated by the
muscles that play major roles in the movement of human lower limbs. For the collection of
human kinematics information, IMU, a wearable inertial sensor, can usually be directly or
indirectly placed on the human body, and can generate acceleration and rotation signals
corresponding to human actions [18] so as to intuitively reflect the three-dimensional
kinematics information of human lower limbs. Therefore, IMU was used to measure the
angular velocity, angle and acceleration of joint rotation of human lower limbs, and these
obtained data were used to represent the kinematics information. The entire wearable
bioelectronics device is shown in Figure 1.
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Figure 1. Wearable bioelectronics device of human lower limb movement information fusion.

The EMG sensor (Neu Sen WM, 2000 Hz) is developed by China Changzhou Neuracle
Technology Co., Ltd. (Changzhou, China). The product can simultaneously collect four
channels of human surface EMG signals, and has the advantages of signal stability and
high shielding. IMU (BWT901CL, 200 Hz) adopts micro-electro-mechanical system (MEMS)
technology based high performance three-dimensional motion posture measurement sys-
tem developed by China Shenzhen Wit-Motion Technology Co., Ltd. (Shenzhen, China). It
adopts advanced filtering technology, which can effectively reduce measurement noise and
improve measurement accuracy. It has a built-in three-axis accelerometer and three-axis
gyroscope, which can collect the acceleration, angular velocity, and angle of object rotation,
respectively. The basic principle of the wearable bioelectronics device can be described as
follows: three-dimensional motion information of human lower limbs is obtained through
IMU, and IMU returns acceleration, angular velocity and angle signals of three axes at a
sampling rate of 200 Hz, thus forming original IMU data. Then, the original IMU data
collected by the Bluetooth receiver is transmitted to the PC for storage. The EMG sensor
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returns four channels of human lower limb EMG signals at a sampling rate of 2000 Hz
and transmits them to the amplifier. Since the human EMG signals are weak, the amplifier
needs to amplify the signals. Then, the signal is sent wirelessly to the multi parameter
synchronizer to form the initial raw EMG signal. Finally, the data will be transmitted to the
PC for storage through a wireless mode.

2.3. Installation of the EMG and IMU Sensors

To obtain a human EMG signal by an EMG sensor, first of all it is necessary to determine
the attachment point of the electrode in the EMG sensor in the human lower limb muscles;
a reasonable electrode attachment point can better extract a human EMG signal. By
consulting the biomedical experts from Aerospace Central Hospital (Asch, Beijing, China),
and referring to relevant references [19,20], we learned that some muscles of the human
lower limbs play a major role in the process of exercise, as shown in the following Table 1:

Table 1. Muscles and functions that play a major role in lower limb movement.

Muscle Motor Function

rectus femoris (RF) stretch the calf, bend the thigh

vastus lateralis (VL) stretch the calf

gastrocnemius (GA) bend the calf, lift the heel, fix the knee, balance the body

musculus peroneus longus (ML) foot valgus, plantarflexion

tibialis anterior (TA) dorsiflexion, varus, adduction

biceps femoris (BF) bend the calf, stretch the thigh, rotate the calf outward

soleus (SL) bend the calf, lift the heel, fix the knee, balance the body

semitendinosus (SD) stretch the thigh, bend the calf, rotate the thigh inside

In the course of our experiment, we found that some muscles in lower limbs are
not convenient for the posting of EMG electrodes. Meanwhile, the EMG signals of some
muscles are relatively weak, which is not conducive to the analysis of human motion
patterns. Based on our experimental findings and the suggestions of biomedical experts,
we finally selected four muscles (rectus femoris (RF), tibialis anterior (TA), biceps femoris
(BF) and gastrocnemius (GA)) as the attachment points of EMG electrodes.

According to the IMU installation, we choose to place the IMU on the thigh, calf,
and heel to obtain the kinematic information of human lower limbs. Then, we found that
although all IMUs have been fixed with bandages. The IMU installed on the thigh and
calf move up and down to a certain extent during human movement, which will affect the
stability and accuracy of data acquisition, while the IMU installed on the heel shows better
stability. Based on the IMU data collected in the thigh, calf, and heel during the experiment,
it is found that there exist many burrs and drifts in the kinematic image of IMU installed
on the thigh and calf. However, the kinematic information obtained by IMU installed on
the heel shows stability, regularity, and smoothness. To sum up, we choose to install it on
the heel to measure the acceleration, angular velocity, and angle of the ankle joint rotation
around the Y-axis of IMU (the X-axis is perpendicular to the ground upward, Y-axis parallel
to the ground and faces to the right, and Z-axis opposite to the forward direction of human
body). Since the motion amplitude of the human body in the X and Z axes of IMU is small
and the motion of the exoskeleton in these two directions is generally passive, the motion
in the X and Z axes will be ignored in this paper.

Before the motion information collection test, in order to reduce the influence of
environmental conditions (such as humidity, electro-magnetic interference, human sub-
ject’s conditions, etc.) on EMG and IMU information, we took the following series of
measurements:
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(1) The experiment of human motion information collection is carried out in the labora-
tory, and the indoor temperature and humidity remain relatively constant.

(2) We removed the hair from the tested muscle, and wiped the skin with alcohol. Then,
we used conductive paste to reduce the interference of skin on EMG signals and
improve the conductivity and stability of EMG electrodes.

(3) The backing material of the EMG electrode used is non-woven fabric, which has better
air permeability. Therefore, it is suitable for long-term skin use and can reduce the
interference of sweat and other factors on EMG signals.

(4) The selected IMU and EMG sensors are transmitted wirelessly, which avoids the
interference to the normal movement of the human body during data acquisition.
The IMU uses the self-developed and improved Kalman filter fusion algorithm to
solve the triaxial acceleration, angular velocity, and angle data, which avoids the
situation that IMU is vulnerable to electro-magnetic interference and drift under
dynamic conditions. The accuracy of acceleration, angular velocity and angle data
output under dynamic conditions can reach 0.01 g, 0.05◦/s and 0.03◦, respectively. The
EMG sensor has ultra-low input noise (<0.7 uVpp) and ultra-high input impedance
(>1 GOhm), which can ensure high-quality EMG signals.

(5) Based on the IMU and EMG data obtained under the above conditions, we also
performed filtering (see Section 2.4 for details) to eliminate noise and interference.
Through the above methods, we ensure the reliability and authenticity of the
collected data.

After the placement of the electrodes and IMU, the subjects will perform some simple
lower limb movements to test whether the EMG and IMU data are clear or whether there is
obvious noise. The attachment points of EMG electrodes on human lower limb muscles
and IMU placement are shown in Figure 2.

Micromachines 2022, 13, x FOR PEER REVIEW 6 of 19 
 

 

axes of IMU is small and the motion of the exoskeleton in these two directions is generally 

passive, the motion in the X and Z axes will be ignored in this paper. 

Before the motion information collection test, in order to reduce the influence of en-

vironmental conditions (such as humidity, electro-magnetic interference, human subject's 

conditions, etc.) on EMG and IMU information, we took the following series of measure-

ments: 

(1) The experiment of human motion information collection is carried out in the labora-

tory, and the indoor temperature and humidity remain relatively constant. 

(2) We removed the hair from the tested muscle, and wiped the skin with alcohol. Then, 

we used conductive paste to reduce the interference of skin on EMG signals and im-

prove the conductivity and stability of EMG electrodes. 

(3) The backing material of the EMG electrode used is non-woven fabric, which has bet-

ter air permeability. Therefore, it is suitable for long-term skin use and can reduce 

the interference of sweat and other factors on EMG signals. 

(4) The selected IMU and EMG sensors are transmitted wirelessly, which avoids the in-

terference to the normal movement of the human body during data acquisition. The 

IMU uses the self-developed and improved Kalman filter fusion algorithm to solve 

the triaxial acceleration, angular velocity, and angle data, which avoids the situation 

that IMU is vulnerable to electro-magnetic interference and drift under dynamic con-

ditions. The accuracy of acceleration, angular velocity and angle data output under 

dynamic conditions can reach 0.01 g, 0.05°/s and 0.03°, respectively. The EMG sensor 

has ultra-low input noise (<0.7 uVpp) and ultra-high input impedance (>1 GOhm), 

which can ensure high-quality EMG signals. 

(5) Based on the IMU and EMG data obtained under the above conditions, we also per-

formed filtering (see Section 2.4 for details) to eliminate noise and interference. 

Through the above methods, we ensure the reliability and authenticity of the col-

lected data.  

After the placement of the electrodes and IMU, the subjects will perform some simple 

lower limb movements to test whether the EMG and IMU data are clear or whether there 

is obvious noise. The attachment points of EMG electrodes on human lower limb muscles 

and IMU placement are shown in Figure 2. 

 

(a) (b) 

Figure 2. Electrode attachment point and IMU position. (a) Frontal side of human lower limbs; (b) 

back side of human lower limbs. 

2.4. Lower Limb Movement Information Collection Scheme 

This paper will consider four daily activities of the human body, including running, 

level ground walking, stair ascent, and ramp ascent. These daily activities can be easily 

RF

TA

BF

GA

IMU
X

Y

Z

Figure 2. Electrode attachment point and IMU position. (a) Frontal side of human lower limbs;
(b) back side of human lower limbs.

2.4. Lower Limb Movement Information Collection Scheme

This paper will consider four daily activities of the human body, including running,
level ground walking, stair ascent, and ramp ascent. These daily activities can be easily
carried out in the laboratory and no additional equipment is required. The four motion
modes are illustrated in Figure 3.

236



Micromachines 2022, 13, 1205

Micromachines 2022, 13, x FOR PEER REVIEW 7 of 19 
 

 

carried out in the laboratory and no additional equipment is required. The four motion 

modes are illustrated in Figure 3. 

 

(a) (b) (c) (d) 

Figure 3. Four daily patterns of human movement. (a–d) represent running, level ground walking, 

stair ascent and ramp ascent. 

The subjects collected the motion data of running, level ground walking, and ramp 

ascent on the treadmill (STAR TRAC, 10-TRx, Core health and fitness group in Vancouver, 

Washington, USA) and stair ascent on the climbing machine (RISING, LMX-1100, 

Nantong, China). When we start walking or stop walking, we should stay still for 10 s so 

that we can better distinguish the two different states of static and walking when 

analyzing data. Four groups of data were collected for each motion pattern, and the 

duration of each group was 5 minutes. In order to minimize the impact of muscle fatigue 

on data collection, 50 minutes of rest is required after each motion mode. The participants 

included six healthy subjects, all of whom had given informed consent before 

participating in this study. After data collection, we use cubic spline interpolation to 

increase the sampling frequency of IMU from 200 Hz to 2000 Hz, which ensure that the 

sampling frequencies of EMG (2000 Hz) and IMU are synchronous and accurate. In 

addition, noise will be mixed in the process of data collection, and too much noise will 

adversely affect the accuracy of recognition. Therefore, denoising is necessary. Compared 

with other denoising methods, Butterworth can maintain good characteristics in its 

passband and stopband, which helps to retain useful information in the process of EMG 

and IMU signal denoising to obtain less signal distortion and noise. The noise of EMG 

signal is mainly caused by poor contact between electrode and body surface. Since the 

spectrum of EMG signals is mainly distributed in the range of 20 to 500 Hz [21], we use a 

Butterworth filter to filter out all noises outside this range. In addition, we use Butterworth 

low-pass filter to filter IMU data at a cut-off frequency of 10 Hz [22]. Some filtered data 

are shown in Figure 4a–d. 

  
(a) (b) 

Cycle 1 Cycle 2
...

Cycle 3
Cycle 1 Cycle 2 Cycle 3

...

Figure 3. Four daily patterns of human movement. (a–d) represent running, level ground walking,
stair ascent and ramp ascent.

The subjects collected the motion data of running, level ground walking, and ramp
ascent on the treadmill (STAR TRAC, 10-TRx, Core health and fitness group in Vancouver,
Washington, DC, USA) and stair ascent on the climbing machine (RISING, LMX-1100,
Nantong, China). When we start walking or stop walking, we should stay still for 10 s so
that we can better distinguish the two different states of static and walking when analyzing
data. Four groups of data were collected for each motion pattern, and the duration of each
group was 5 min. In order to minimize the impact of muscle fatigue on data collection,
50 min of rest is required after each motion mode. The participants included six healthy
subjects, all of whom had given informed consent before participating in this study. After
data collection, we use cubic spline interpolation to increase the sampling frequency of IMU
from 200 Hz to 2000 Hz, which ensure that the sampling frequencies of EMG (2000 Hz)
and IMU are synchronous and accurate. In addition, noise will be mixed in the process
of data collection, and too much noise will adversely affect the accuracy of recognition.
Therefore, denoising is necessary. Compared with other denoising methods, Butterworth
can maintain good characteristics in its passband and stopband, which helps to retain
useful information in the process of EMG and IMU signal denoising to obtain less signal
distortion and noise. The noise of EMG signal is mainly caused by poor contact between
electrode and body surface. Since the spectrum of EMG signals is mainly distributed in
the range of 20 to 500 Hz [21], we use a Butterworth filter to filter out all noises outside
this range. In addition, we use Butterworth low-pass filter to filter IMU data at a cut-off
frequency of 10 Hz [22]. Some filtered data are shown in Figure 4a–d.
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Although the quality of the measurements and the filtering algorithm have been
implemented, the repeatability and reproducibility of the collected data should be verified.
According to the four activity patterns of the lower limbs, including running, level ground
walking, stair ascent and ramp ascent, we choose the running pattern as the analytic target,
which impact the sensors data more than the others due to the large and rapid motion.
Figure 4 showed parts of the IMU and EMG data from the first and second groups of
running mode tests. The detailed testing method and results are as follows:

(1) According to the data repeatability, the IMU and EMG sensors were fixed on the
lower limbs under the same conditions in one test. Then, the data illustrate the
periodical variations (partial data of IMU and EMG sensors are shown in Figure 4a,b).
Therefore, the similarity coefficients between the five random cycles test data of each
IMU signal were calculated by using the Pearson correlation, which were higher than
0.87. Next, the fluctuation of the average value of iEMG (integrated EMG) showed
a slight oscillation, which the average value and standard deviation of RF, TA, BF,
and GA are 188.609 ± 3.109, 127.313 ± 2.050, 262.253 ± 3.948 and 459.762 ± 3.274,
respectively. To sum up, the results indicate that the data of five random cycles with
each signal presented preferable similarity and repeatability.

(2) According to the reproducibility of the data, another three group tests with the running
motion mode were carried out under the same position, same sensor, and same
nominal program (partial data of IMU and EMG sensors are shown in Figure 4c,d).
Then, a similar approach was also adopted to validate the reproducibility with the
data under the same sample periods in the four groups. Specifically, the similarity
coefficients were calculated for IMU data, and the average value of iEMG were
calculated for EMG data intercepted by each group of tests. The conclusions showed
the similarity coefficients among each group of IMU signal data intercepted were
higher than 0.85, and the average value and standard deviation of RF, TA, BF, and GA
are 188.609 ± 3.109, 127.313 ± 2.050, 262.253 ± 3.948 and 459.762 ± 3.274, respectively.
To sum up, it is indicated that the reproducibility among each group of data under
the different tests can be demonstrated.

In summary, the collected IMU and EMG data showed available repeatability and
reproducibility based on the above analysis, which can be input into the feature extraction.

2.5. Feature Extraction
2.5.1. Extracting Features Based on Traditional Manual Design

Feature extraction plays an important part in pattern recognition, and the extraction
of appropriate features will have a higher resolution, which will have an impact on the
recognition accuracy [23]. The original human motion data extracted through the experi-
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ment can not be directly applied to the classification algorithm due to the large amount of
data and poor performance. Therefore, it is necessary to extract the features of the original
data. The processed data is more expressive and more conducive to the identification of
the algorithm. Traditional feature extraction methods based on manual design tend to rely
too much on manual experience and the combination and number of different features
will affect the accuracy of classification. We will calculate the time and frequency domain
features commonly used by IMU and EMG signals in motion pattern recognition [24–26],
in order to compare with the feature extraction method based on Dual Stream CNN-ReliefF
proposed in this paper. The specific feature expressions of IMU and EMG signals are shown
in Tables 2 and 3:

For IMU data, we calculate four time domain features (MAV, AVR, RMS, ZC) and
two frequency domain features (MDF, MNP). For EMG data, we calculate six time do-
main features (MAV, AVR, RMS, WAMP, ZC, WL) and two frequency domain features
(MDF, MNP).

2.5.2. Feature Extraction Based on Dual Stream CNN-ReliefF

In recent years, CNN, an artificial intelligence algorithm, has become a hot research
topic in many fields, especially in image classification. Traditional CNN classification is
generally based on the structure of single stream CNN, whose model structure mainly
includes the convolution layer (Conv), pooling layer (Pool), full connection layer (FC)
and output layer, as shown in Figure 5. The convolution layer performs convolution
operation on the input image, extracts the image features, and then outputs the convolution
results by forming feature mapping through activation function. The Pooling layer is also
called the down-sampling layer, whose purpose is to compress the feature graph obtained
by Convolution layer, so as to optimize the computational efficiency of the model. The
full connection layer maps the distributed feature representation obtained through the
convolution layer and pooling layer to the sample tag space. Finally, the softmax function
is applied in the output layer to export the classification results, and the error between the
results and the real classification results is calculated and the weight and paranoid value
are updated by back propagation.

Table 2. Time and frequency domain features expression of IMU.

Feature Mathematical Definition

Mean Absolute Value (MAV) 1
N

N
∑

i=1
|xi|

Variance (VAR) 1
N−1

N
∑

i=1
x2

i

Root Mean Square (RMS) RMS =

√
1
N

N
∑

i=1
x2

i

Zero Crossing (ZC)





ZC =
N
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i=1
zi × zci

zci = sgn(−xixi+1)

zi =





1, |xi − xi+1| > δz

0, else

Median Frequency (MDF)
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∑
i= fmin

pi =
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∑
i=MDF
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Table 3. Time and frequency domain features expression of EMG.

Feature Mathematical Definition

Mean Absolute Value (MAV) 1
N

N
∑

i=1
|xi|

Variance (VAR) 1
N−1

N
∑

i=1
x2

i

Root Mean Square (RMS) RMS =

√
1
N

N
∑

i=1
x2

i

Wilson Amplitude(WAMP)

WAMP =
N−1
∑

i=1
[ f (|xn − xn+1|)]

f (x) =





1, i f x ≥ threshold

0, otherwise

Zero Crossing (ZC)

ZC =
N
∑

i=1
zi × zci

zci = sgn(−xixi+1)

zi =





1, |xi − xi+1| > δz

0, else

Waveform Length (WL)
N−1
∑

i=1
|xi+1 − xi|

Median Frequency (MDF)
MDF

∑
i= fmin

pi =
fmax

∑
i=MDF

pi

Mean power (MNP) MNP =
M
∑

j=1
pj/M
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Figure 5. Single Stream CNN algorithm structure diagram.

The dual Stream CNN recognition model is improved based on Single Stream CNN
and is widely used in video action recognition [27]. The main idea is to send RGB im-
ages (representing spatial information) and optical flow images (representing temporal
information) to two neural networks for feature extraction, fuse the extracted features, and
finally output the classification results. Based on the above ideas, the authors designed
a Dual Stream CNN feature extractor based on multiple timing information fusion. The
basic principle of the extractor can be specifically described as follows: First, a complete
Dual Stream CNN recognition model is built (whose structure is shown in the blue-line
box in Figure 6). IMU and EMG signals were input into the model to carry out convolution
and pooling operations, respectively, and two eigenvalues were obtained. Then, the two
eigenvalues are fused at the convergence layer and calculated at the full connection layer.
Finally, the fusion features after operation are transferred to the output layer to export
the classification results. In this process, the parameters of each layer in the model are
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determined and retained through continuous iteration and updating of weights and devi-
ations by back propagation algorithm. According to the loss rate and accuracy rate, the
training state of the current model is judged and the excess number is adjusted in time.
Finally, the batch size of the training model was set as 64, the learning rate was 0.001,
and the number of iterations was 200. Use ReLu function as activation function of each
convolution layer. The cross-entropy loss function is used to measure the gap between the
predicted result and the actual result. The above process is the training process of Dual
Stream CNN recognition model. Then, the output layer in the trained Dual Stream CNN
recognition model is removed, and the remaining network structure is used to extract data
features (that is, a feature extractor only used for feature extraction is formed; its structure
is shown in the yellow-line box in Figure 6). In this way, the feature extractor can be used
to extract fusion features from the data set composed of IMU and EMG. In this process, the
feature extractor can perform in-depth feature re-mining for the two different time series
information and, finally, extract well differentiated fusion features. However, the features
extracted by Dual Stream CNN model still have too high data dimensions. For motion
pattern recognition, when the feature dimension of the data sample is high, two aspects
will be affected. First, the feature dimension is high, which will cause redundancy among
features, affecting the recognition accuracy. Second, the increase of feature dimension
will greatly prolong the time of model training. Therefore, it is necessary to reduce the
dimension of extracted features. ReliefF is a heuristic search filter method generated by
Kononenko [28] based on Kira’s work, which can process incomplete data and solve noisy
multi-classification and regression problems [29,30]. At the same time, ReliefF provides
feature selection with high search accuracy and efficiency. Therefore, the ReliefF feature
selection method was introduced to eliminate redundant features in the initial feature set
extracted by Dual Stream CNN so as to reduce the dimension of features, thus improving
the classification accuracy of the model and reducing the training time of the model. The
processing flow of ReliefF algorithm for feature selection is as follows:

(1) First, sample S is randomly selected from the initial feature set.
(2) From the samples with the same label as the sample, samples k are determined

according to the nearest neighbor principle, constituting the sample subset H.
(3) According to the nearest neighbor principle, samples k with different labels from the

sample are successively determined to form the sample subset M.
(4) Calculate the weight W(N) of each feature N.

W(N) = W(N)− 1
mk

k

∑
i=1

di f f (N, S, Hi) +
1

mk ∑
C/∈class(C)

[
P(C)

1− P(class(S))

k

∑
j=1

di f f
(

N, S, Mj(C)
)
]

(1)

where P(C) represents the proportion of samples with category C in the training set,
and P(class(S)) represents the proportion of samples with the same category as the
sample S. if N is continuous,

di f f (N, S1, S2) =
|S1(N)− S2(N)|

max(N)−min(N)
(2)

if N is discrete,

di f f (N, S1, S2) =

{
0, S1(N) = S2(N)
1, S1(N) 6= S2(N)

(3)

where S1 and S2 represent the value of feature N on sample S1 and S2, respectively.
(5) The above process is iterated m times in order to select m random samples. Finally,

filter the features whose weight corresponding to the calculated features is less than
the set threshold.
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Figure 6. The whole process of feature extraction based on Dual Stream CNN-ReliefF.

The above is the working principle of the Dual Stream CNN-ReliefF feature extraction
model proposed in this paper. The whole process of the Dual Stream CNN-ReliefF feature
extraction method is shown in Figure 6.

The specific feature extraction and fusion process is as follows:

(1) The data set from IMU sensors is divided into the training set, verification set and
test set according to the ratio of 7:1:2, and the data set of EMG sensors is also divided
according to the above method. In order to facilitate the input of IMU and EMG data
into the model, the input size of IMU data is set as 3 × 600, where 3 is the number of
channels (acceleration, angular velocity, angle), and 600 is the length of input data.
Then, set the input size of EMG data as 4 × 600, where 4 is the number of channels
(RF, TA, BF, GA), and 600 is the length of input data.

(2) Build a complete Dual Stream CNN recognition model. The purpose of inputting
the training sets of IMU and EMG into the model is to train the model. In the whole
process of model training, the convolution kernel size of EMG data twice convolution
operation is set to 1 × 101 and 3 × 11. The convolution kernel depth is 16 and 8,
respectively. The pool kernel size of the two pooling operations is set to 1 × 10 and
2 × 2, respectively. Compared with EMG data, IMU data is only different from EMG
data in the convolution kernel setting in the second convolution process, which size is
set to 2 × 11, and the other parameters are the same setting. After two convolution
and pooling operations, the two types of training sets are expanded into 1 × 160
eigenvectors, respectively. Then, the two feature vectors are fused and operated in
the convergence layer and the full connection layer to generate 1 × 320 and 1 × 32
feature vectors, respectively. Finally, the feature vector is input into the Output layer
to export the classification results. After the above steps, the final required features
can be formed, and the formed features will be transmitted to the classifier for motion
pattern recognition. After the above steps, the complete Dual Stream CNN recognition
model training is completed.

(3) The training set and test set of IMU and EMG are input into the trained Dual Stream
CNN recognition model, and the features before the full connection layer are reserved,
which are the fusion features of the training set and test set respectively. Finally, ReliefF
algorithm is used to filter the above fusion features with weights lower than 0.1.

After completing the above steps, the fusion features of training set and test set
extracted by the Dual Stream CNN-ReliefF model can be obtained, respectively, and the
extracted features will be input into different classifiers for motion pattern recognition.
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2.6. Classifier

After feature extraction, another key point is to select the classifier. Since when different
feature vectors and classifiers are combined, the accuracy of recognition will be different [31,32].
In this paper, we choose the commonly used classifiers in the field of motion pattern
recognition, which are SVM, KNN, Decision Tree (DT) and RF [33–35]. In Section 3.2, we
input the features extracted based on Dual Stream CNN-ReliefF, Single Stream CNN and
manual design methods into the four classifiers, respectively, for comparative analysis of
recognition accuracy.

3. Results and Discussions
3.1. Visual Analysis of Extracted Features Based on Different Methods and Different Types of
Sensor Data

In order to verify the feature extraction capability of the Dual Stream CNN-ReliefF
method proposed in this paper, it was used for feature extraction of fused EMG and IMU
data, while Single Stream CNN was used for feature extraction of single EMG, single IMU,
and fusion data, respectively. The extracted features are visualized in 3D images. The
feature visualization images extracted based on Dual Stream CNN-ReliefF are shown in
Figure 7a, and the feature visualization images extracted based on Single Stream CNN are
shown in Figure 7b–d. Then, time and frequency domain features were extracted from
single EMG, single IMU, and their fusion data by manual design method. Some features
with better effects were visualized as shown in Figure 7e,f, respectively.
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Figure 7. Visualization of feature extraction based on different methods and different types of
sensor data. LW (level ground walking), SA (stair ascent), RA (ramp ascent). (a) represent the
features extracted by using Dual Stream CNN-ReliefF based on the fusion of EMG and IMU data;
(b–d) represent the features extracted by using Single Stream CNN based on a single EMG, a single
IMU and the fusion of the two data, respectively; (e,f) represent the features with better visual effects
extracted by manual design based on a single EMG, a single IMU and the fusion of the two data,
respectively.

As can be seen from Figure 7, the feature aggregation of the same motion mode and the
feature differentiation of different motion modes extracted by Dual Stream CNN-ReliefF
method are obviously better than those extracted by Single Stream CNN and manual design.
The features extracted by Single Stream CNN and manual design have partial aliasing and
poor feature aggregation. In addition, it can be seen that the features of the motion modes
extracted by Dual Stream CNN-ReliefF and Single Stream CNN based on the data fusion
are better than the features extracted by single EMG and single IMU data. In conclusion,
we can verify that the proposed Dual Stream CNN-ReliefF method can effectively extract
the features of each motion mode from the original signals. Furthermore, it can effectively
characterize the four motion modes at the feature visualization performance. The visual
performance of the extracted features based on the fusion of EMG and IMU data is better
than that of the extracted features based on EMG and IMU data alone.

3.2. Recognition Accuracy Analysis of Extracted Features Based on Different Methods and
Different Types of Sensor Data

In order to compare the difference in feature extraction ability among Single Stream
CNN, manual design and Dual Stream CNN-ReliefF. The Dual Stream CNN-ReliefF method
is used to extract features from the fused EMG and IMU data. Then these features are input
into SVM, KNN, DT, and RF classifiers based on five-fold cross-validation to obtain the
accuracy of motion pattern recognition. Meanwhile, the Single Stream CNN and manual
design are used to extract features from a single EMG signal, a single IMU, and the fusion
of the two data. Then, these features are also input into SVM, KNN, DT and RF classifiers
based on five-fold cross-validation to obtain the accuracy of motion pattern recognition.

The recognition accuracy of feature extraction based on Dual Stream CNN-ReliefF
and Single Stream CNN is shown in Figure 8a–d, and the recognition accuracy of feature
extraction based on manual design is shown in Figure 8e–h. In addition, in the abscissa
of Figure 8a–d, ISL, ESL, and IESL represent feature extraction of single IMU data, EMG
data and fusion of two kinds of data based on Single Stream CNN algorithm, respectively.
IEDL means feature extraction of fused EMG and IMU data based on Dual Stream CNN-
ReliefF. In Figure 8e–h abscissa, ITD, IFD and ITF represent the time and frequency features
extracted based on single IMU data, as well as the combination of time domain features
and frequency domain features, respectively. ETD, EFD, and ETF represent the time and
frequency features extracted based on single EMG data, as well as the combination of time
domain features and frequency domain features, respectively. "+" indicates the fusion of
time domain or frequency domain features extracted from EMG or IMU data.
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Figure 8. Recognition accuracy analysis of extracted features based on different methods and different
types of sensor data. (a–d) represent the recognition accuracy of features extracted based on Dual
Stream CNN-ReliefF and Single Stream CNN under SVM, KNN, DT and RF classifiers, respectively;
(e–h) represent the recognition accuracy of features extracted based on manual design under SVM,
KNN, DT and RF classifiers, respectively.
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As can be seen from Figure 8, the recognition accuracy of the features extracted by Dual
Stream CNN-ReliefF is higher than that extracted by Single Stream CNN and manual design
methods in the four classification algorithms, furthermore, the recognition accuracy of the
four classification algorithms reaches more than 97%, and the best recognition accuracy can
reach 99.25%. The feature extraction method based on manual design not only has tedious
steps, but also the combination of different features will affect the recognition accuracy.
Therefore, researchers need to rely on manual experience to pick out feature combinations
with high recognition accuracy. However, relying only on manual experience is not always
able to select the best combination of features, so the best recognition accuracy may not be
obtained. In this paper, the best recognition accuracy is only 95.51% by selecting different
feature combinations. In addition, as can be seen from Figure 8, the data based on EMG and
IMU signals fusion in four kinds of classification algorithm accuracy are higher than single
sensor (EMG or IMU) data. This indicates that the biological information and kinematic
information brought by EMG and IMU signals can better represent the motion status of
human lower limbs, thus improving the accuracy of human motion pattern recognition,
indicating that the data fusion of the two sensors is effective.

3.3. Discussion

In order to further verify the generalization ability of the features extracted by the
Dual Stream CNN-ReliefF method for motion pattern recognition of different subjects. We
used the Dual Stream CNN-ReliefF method for feature extraction of EMG and IMU data
from six healthy subjects. The features of each subject are input into SVM, KNN, DT, and
RF classifiers based on five-fold cross-validation to obtain the accuracy of motion pattern
recognition. The specific results are shown in Table 4.

Table 4. The accuracy of motion pattern recognition of different subjects under five-fold cross-validation.

Subject Age Height
[cm] SVM KNN DT RF Average Accuracy

S1 23 167 99.25% 98.16% 97.85% 98.25% 98.37%
S2 24 170 99.46% 99.15% 98.36% 98.63% 98.90%
S3 26 165 99.69% 97.68% 99.13% 97.66% 98.54%
S4 28 172 99.13% 99.38% 97.46% 98.17% 98.53%
S5 29 176 99.73% 99.34% 98.25% 99.16% 99.12%
S6 30 173 99.67% 98.61% 98.74% 99.31% 99.08%

As can be seen from Table 4, the motion pattern recognition accuracy of each subject
under the four classifiers is above 97%, with the highest average recognition accuracy
reaching 99.12%.

In addition, we compare the wearable bioelectronics device and the Dual Stream
CNN-ReliefF feature extraction method proposed in this paper with other references. The
specific comparison is shown in Table 5.

Table 5. Comparison of the methods and experimental results.

Research Sensor Feature Motion Pattern Accuracy

Song [8] EMG 9 time-frequency
features

5 motion
patterns 97.5%

Peng [11] Plantar
pressure

5 time-frequency
features

5 motion
patterns 91.1%

Dhindsa [13] EMG 15 time-frequency
features

2 motion
patterns 92.2%

Gupta [14] Acceleration 7 time-frequency
features

6 motion
patterns >95%

This work EMG + IMU Dual Stream
CNN-ReliefF

4 motion
patterns 99.12%
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Since the movement of human lower limbs is complex, which involves different kinds
of information type. Compared with Re [8,11,13,14], the information obtained by a single
sensor is insufficient to characterize the motion of human lower limbs, which will affect
the recognition accuracy of human motion patterns. The wearable bioelectronics device
proposed in this paper can collect more information of human lower limb motion, namely
bioelectric information (EMG) and biological kinematics information (acceleration, angular
velocity and angle of joint motion). It is suggested that the combination of these two kinds
of information is more helpful to improve the accuracy of motion pattern recognition. In
addition, Refs. [8,11,13,14] adopts the traditional manual design method to extract features.
The steps of extracting features based on this method are not only tedious, but also the
features selected by relying on human experience may not obtain best recognition accuracy
when they are input into the classifier. In contrast, the Dual Stream CNN-ReliefF method
proposed in this paper can automatically extract well differentiated fusion features from
EMG and IMU data. The proposed method was used to extract features from six subjects,
and these features were input into four different classifiers (SVM, KNN, DT, RF). The
motion pattern average recognition accuracy obtained through five-fold cross-validation
was up to 99.12%. However, compared with other references, the inadequacy of this paper
is the lack of more research on the types of human lower motion pattern, such as jumping,
squatting and so on.

Therefore, the wearable bioelectronics device based on EMG and IMU with the Dual
Stream CNN-ReliefF feature extraction method proposed in this paper can improve the
accuracy of human motion pattern recognition, and have better generalization ability for
the motion pattern recognition of different subjects.

4. Conclusions

This paper firstly analyzed the motion mechanism of human lower limbs, and designed
a set of wearable bioelectronics device based on EMG and IMU sensors, which can obtain
biological information and kinematics information of human lower limbs. Based on the
information fusion, we collected the lower limb movement information of four common
movement modes of human body. Then, a feature extraction method based on Dual
Stream CNN-ReliefF is proposed, which can automatically extract well differentiated fusion
features from EMG and IMU data. Finally, the Dual Stream CNN-ReliefF was adopted
for feature extraction of the fusion data of EMG and IMU. Meanwhile, the Single Stream
CNN and manual design were used for feature extraction of single EMG, single IMU, and
their fusion data, respectively. The extracted features based on the above three methods are
analyzed and compared in feature visualization and recognition accuracy. We concluded
that the wearable bioelectronics device information fusion and Dual Stream CNN-ReliefF
feature extraction method proposed in this paper enhanced an exoskeleton’s ability to
capture human movement patterns, thus providing optimal assistance to the human body
at the appropriate time. Therefore, it can provide a novel approach for improving the
human-machine interaction of exoskeletons. In the future, on the one hand, we will study
the recognition of more motion patterns of human lower limbs; on the other hand, we will
conduct indepth research on the motion pattern recognition of human upper limbs, so as
to provide certain direction for the motion pattern recognition of exoskeletons in human
upper and lower limbs.
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Abstract: The Ilizarov external fixator plays an important role in the correction of complex malformed
limbs. Our purpose in this work was to reveal the transmission of adjustable forces between the
external fixator and the broken bone, and express the stress distribution at the end of the broken
bone during the orthopedic treatment. Firstly, the screw model of the fixator was established and
the theoretical relationship between the adjustable force and the stress was obtained. A sheep
tibia was taken as a representative research object and its ediTable 3D entity was obtained by CT
scanning. Then the mechanical model of the fixator and tibia was built using the ABAQUS software.
Correction experiments were performed on the sheep tibia to measure the adjustable/support forces
and tensions of the tibia. The measured results were imported to the screw and mechanical model,
and the theoretical and simulation values were calculated. The theoretical tensions calculated by
the screw model had a similar shape and doubled the value compared with that of the measured
results. The transfer efficiency between the two results was improved and kept at about 50% after the
initial 2~3 periods. The maximum stress occurring at the surface of the broken bone end was near the
Kirschner wire pinhole. The simulation results for the tensions from the mechanical model showed
a similar change trend, and the value was slightly higher. A biomechanical model of the Ilizarov
external fixator was derived and verified through calculations, simulations and experiments. The
change law of the adjustable forces and the tensions existing in the broken sheep tibias is presented
herein, and offers a helpful contribution to orthopedic treatment.

Keywords: Ilizarov external fixator; screw theory; orthopedic treatment; tension of broken bone;
stress distribution

1. Introduction

As a surgical instrument, the Ilizarov external fixator plays an important role in the
correction of complex malformed limbs. It can adjust the configuration of the bone external
fixator according to the treatment progress, and may affect the results of surgery in the
orthopedic process. Watson proposed that the engineering structure of the external fixator
is related to bone healing [1]. However, this orthopedic treatment is mostly based on
doctors’ experience, and its orthopedic mechanism, including the tension at the broken
bone and the transfer efficiency, has not been well studied. A mechanical study of the
external fixator can reveal the mechanical relationship between the adjustable force and the
broken bone end, which is helpful for doctors in adjusting external fixators [2].

As a practical and simple theoretical calculation method, screw theory has attracted the
attention of many researchers and has been widely used in kinematics and static analysis
of the mechanism. Based on the screw theory, Niu J, Wang H, Shi H, et al. analyzed the
constraints and basic motion of the leg mechanism and solved the kinematics of the leg
mechanism [3]. Researchers from Beihang university proposed an analytical algorithm
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for measuring three-dimensional forces and three-dimensional torques, which can achieve
high precision measurement of interactive forces on the Stewart platform [4]. Cunfeng
Kang and Zixiao Liu et al. proposed a position transformation method that can generate
circular trajectory more accurately [5]. To investigate the motion around the libration
points, Yingjing Qian, Zixiao Liu et al. transformed the origin of the coordinate system
from the center of the system to translational points through coordinate transformation [6].
Further study of screw theory reveals that it also provides various feasible schemes in the
configuration of parallel mechanism, such as 3CRU translational parallel mechanism, 2-UR-
RRU parallel robot, etc. [7,8], which provide ideas for theoretical analysis and experimental
study of the Ilizarov external fixator.

Due to the special environment of bone injury in the body, it is impossible to reproduce
the true intervention process of orthopedic devices on broken bones. Therefore, many
researchers have studied the relationship between various orthopedic devices and fracture
healing through finite element analysis. The axial tension and compression of the tibia are
real-time detected by simulating the actual motion state of the bone external fixator [9].
Karunratanakul K used a finite element model to predict the stiffness of the fixer [10].
Malayan researchers used polyethylene tubes to represent the tibia bone and applied the
above methods to study the mechanical behaviors of different configurations of bone
external fixators [11]. Although the various configurations and biological environment of
the fixator have been discussed above, few of them have studied the stress and strain of the
fixator and the tibia’s broken end during the entire orthopedic process.

The mechanical model of the Ilizarov external fixator is the basis of numerical sim-
ulation, which can provide better prediction of mechanical properties and comparative
analysis of the correction process. This study intended to establish an accurate mechanical
model of the fixator and simulate the force transmission process in the normal fracture
healing process using the screw theory. A tibia fracture correction and recovery experi-
ment was performed on a special experimental bench. Referring to Cunfeng Kang and
Zixiao Liu et al., the finite element analysis of the welding pipeline was carried out and
compared with the experiment of [12], the measured data were imported into the mechani-
cal model and the loading process was simulated using ABAQUS software. The simulated
and actual tensions and stresses of the tibia were compared to improve understanding of
the force transmission relationship between the Ilizarov external fixator and the broken
tibia end.

2. Materials and Methods
2.1. Screw Model of Ilizarov External Fixator

The Ilizarov external fixator has various configurations in clinical applications. The
specifications of the hole rings and the diameters and angles of the Kirschner wires effect the
healing of broken bone tissue [9,13] and are determined according to the actual situations
of patients. The corresponding classic parameters are shown in Table 1.

Table 1. Classic parameters of Ilizarov external fixator.

Parameter Value Parameter Value

Hole ring 2 Diameter of hole ring 190 mm
One-way hinge 4 pairs Diameter of Kirschner wire 2.5 mm

Broken bone space 10 mm Pulling speed 1 mm/d
Tibia varus angle 6.85◦ Number of adjustments 10 times

In orthopedic treatment, the mechanical analysis between the adjustable rods and the
tibial broken end is insufficient, and it is difficult to achieve quantitative orthopedic and
precise assessment, which greatly hinders the corresponding applications. The general
kinematics analysis method is the D-H parameter method, but this method has a funda-
mental defect: all the motion is in the x-axis and z-axis, while it cannot represent the motion
in the y axis. Therefore, it is necessary to use another method to establish the kinematics
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model: the screw theory. Using the screw to describe the kinematics of the rigid body has
two advantages: first, it only needs two coordinate systems—the basic coordinate system
and the tool coordinate system—to describe the motion of the rigid body from the whole, so
as to avoid the singularity caused by using a local coordinate system in the D-H parameter
method; secondly, the screw method describes the geometric meaning of rigid body motion
clearly, which avoids the disadvantages of abstract mathematical symbols, thus greatly
simplifying the analysis of the mechanism [14]. The screw theory can describe the rigid
motion of each joint as a rotation around the joint axis and a translational motion along
this axis. In the existing external fixator, only two of the screw coordinate systems of the
broken bone end and the adjustable/support rod with respect to the base platform need
to be established to avoid the singularities of the traditional D-H parametric method and
simplify the kinematics and dynamics analyses [15]. Meanwhile, the rigid motion in the
orthopedic treatment can be clearly described.

In the kinematics analysis, the motion screw and wrench represent an instantaneous
motion of a rigid body and the force/moment acting on a rigid body, respectively, where
there exists a dual relationship between them [16,17]. Hence, a set of dual vectors in space
can represent the angular/linear velocities in the kinematics and the force/moment in
rigid-body mechanics. The wrench can be compounded by a force along an axis and a
torque around the axis. The generalized force acting on the rigid body consists of a moving
component f (pure force) and a rotating component τ (pure torque), which can be expressed
in a six-dimensional vector in the inertial coordinate system [18]:

F =

(
f
τ

)
=

(
s

r× s + hs

)
, h is f inite, (1)

F =

(
0
τ

)
=

(
0
s

)
, h = ∞, (2)

where f, τ∈R3, h is called the pitch and denotes the ratio of moment to force, r × s is the
distance of the axis of rotation from the origin of the inertial coordinate system {o1}, and F
denotes the wrench along the screw motion s.

The adjustable and support rods are defined as two kinematic chains by the screw
theory. Since the adjustable and support rods are symmetrical and parallel to each other,
they possess the same kinematic features, and only one of them needs to be analyzed in
detail. During the orthopedic treatment, the movements of the kinematic chain can be
decomposed into a translation motion along the rod and a rotational motion around the
hinge. The adjustable forces can be transmitted to the moving platform and achieve prede-
termined orthopedic movements of the severed tibia. The inertial coordinate system {o1} of
the adjustable rod and the coordinate system {o2} of the broken tibia end are established on
the initial posture of this fixator, as shown in Figure 1.

During the orthopedic period, the adjustable rod only has a translational motion along
the axis o1z1, and the spinor ξ1 of the rod can be expressed as:

w1 =




0
0
0


, v1 =




0
0
1


, ξ1 =

(
0
v1

)
=




0
0
0
0
0
1




,

where w1 and v1 are defined as the angular/linear velocity of the adjustable rod. However,
the adjustable rod moves only along the axis o1z1 in the initial stage of orthosis. The spinor
ξ1 only contains the velocity v1, which is straight up, and the angular velocity w1 is equal
to zero.
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Figure 1. Kinematic model of Ilizarov external fixator.

The upper end of the adjustable rod is hinged to a unidirectional hinge. The unidirec-
tional hinge has a rotational motion around the axis o2x2, where the corresponding spinor
ξ2 is:

w2 =




1
0
0


, r2 =




0
0
l


, ξ2 =

(
w2

r2 × w2

)
=




1
0
0
0
l
0




,

where w2 and v2 are defined as the angular/linear velocity of the unidirectional hinge, and
r2 denotes the corresponding position in the coordinate system {o1}.

The Lie algebra ξ̂i (i = 1, 2) attitude change matrix eθi ξ̂i of the spinor ξi can be calculated:

ξ̂i =

[
ω̂i vi
0 0

]
, (3)

eθiξ̂i =

[
eθiŵi

(
I − eθiŵi

)
(wi × vi) + θi · wi · w

T

i · vi
0 1

]
, (4)

Substituting Equation (4) into Equation (5), the function of eθi ξ̂i with respect to ∆l can
be solved:

eθ1 ξ̂1 =




1 0 0 0
0 1 0 0
0 0 1 ∆l
0 0 0 1


, (5)

eθ2 ξ̂2 =




1 0 0 0
0 cos θ − sin θ l sin θ
0 sin θ cos θ l(1− cos θ)
0 0 0 1


, (6)

where θi denotes the rotation angle of the unidirectional hinge and l and ∆l are the length
and the change of the adjustable rod, respectively.
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Substituting Equations (6) and (7) into the exponential product formula, the posture
of the fixator can be obtained:

p(θ) = eθ1 ξ̂1 eθ2 ξ̂2 p(0)

=




1 0 0 0
0 cos θ − sin θ l sin θ
0 sin θ cos θ ∆l + l(1− cos θ)
0 0 0 1


,

(7)

where p(θ) is the attitude matrix of the unidirectional hinge and p(0) is the attitude matrix
of the initial posture in the coordinate system {o1}:

p(0) =




I




0
l
0




0 1


.

The upper broken tibia is installed on the moving platform through the Kirschner
wires. The moving platform drives the upper broken tibia to achieve the correction function
with help of the hinge. The coordinate system {o3} is established at the center of the
hinge. The coordinate system {o2} of the broken tibia end is obtained through shifting the
coordinate system {o3} by the displacements a and b along the axes o3y3 and o3z3. Similarly,
according to the transformation formula of the motion screw, the relationship between the
wrenches F( fi τi) (i = 1, 2) and F( fo2 τo2) of the adjustable rod and the broken tibia end can
be established.

F( fo2 τo2) = RxF( fi τi)

=




1 0 0
0 cos θ − sin θ
0 sin θ cos θ


F( fi τi),

(8)

where fi and τi denote the force and the wrench in the coordinate system {o1}.

2.2. Mechanical Model of Ilizarov External Fixator

A finite element model of the Ilizarov external fixator needs to be established corre-
sponding to the screw model. In order to reduce the error caused by the clearance, the
connection part is simplified, and the external fixator is divided into seven main parts: base
platform, moving platform, adjustable rod 1, adjustable rod 2 and support rod3, support
rod4, and tibia, as shown in Figure 2. At the same time, the operation is simplified and
the force is applied directly on the adjustable rod, so that the measured value obtained is
more accurate. The proximal and distal hole rings are the base and moving platforms. Two
pieces of the broken tibia are fixed by Kirschner wires, which are installed on the hole ring
through retaining clips. The adjustable and support rods are inserted in the proximal hole
ring and locked during the orthopedic treatment. Similarly, the rods are connected to the
distal hole ring through the unidirectional hinges. The hinges are inserted in the distal hole
ring and fixed by nuts. The hinges, nuts and distal hole rings are taken as a part, then the
rods and the proximal hole ring are taken as another part. The moving platform can rotate
around the axes of the two hinges connected to the support rods.

The original 3D model of the sheep tibia is taken as the subject and obtained by CT
scanning. The ediTable 3D entity can be generated by the softwares Mimics and Geomagics.
The tibia entity is imported into the ABAQUS software to analyze its mechanical properties.
The Ilizarov external fixator is made of stainless steel, which possesses the properties of
the linear elasticity and isotropy. The tibia is composed of cancellous and compact bones,
and osteoporosis affects their function, distribution areas and load capacity [19]. Hence,
the tibia can be simplified as an isotropic material composed of cancellous and compact
bones. The proper values of the Poisson ratio λ and elastic modulus E are assigned to the
tibia model.
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Figure 2. Schematic diagram of simulation model.

CT images can completely and accurately reflect the relationship between material
characteristics and gray values. The CT images are imported into Mimics software and
the values of the parameters are assigned to the mesh model. There is a linear relationship
between the apparent density ρ of human bones and the gray value HU [20,21]:

ρ = ρmaxHU/HUmax, (9)

where ρmax and HUmax are the maximum of the parameters ρ and HU. Further, the rela-
tionship between the apparent density ρ and the elastic modulus Ei is as follows [22]:

E1/MPa = 2065 ∗
[
ρ/
(

g · cm−3
)]3.09

, (10)

E2/MPa = 1904 ∗
[
ρ/
(

g · cm−3
)]1.64

, (11)

where E1, E2 are the elastic moduli of compact and cancellous bones. The values of Poisson
ratio λ of dense and cancellous bones are equal to 0.3.

The binding constraints are adopted in the bolts and nuts of the unidirectional hinges
to simulate the behavior of bolt fastening. Finite element model parameters of the Kirschner
wire, steel wire holder, and tibia are shown in Table 2, and the finite element model is
shown in Figure 3.

Table 2. Finite element model parameters of fixator.

The Typical Sites Number of Elements Number of Nodes Type of Mesh

Kirschner wire, steel
wire holder 90,635 504,474 hexahedral mesh

tibia 67,973 127,614 tetrahedral mesh

The frictional coefficient between stainless steels was defined as 0.05. The tibia and
Kirschner wires were defined as the common surface-to-surface contact and the frictional
coefficient was equal to 0.1. During the adjustment of the fixator, the base platform was
fixed and the osteotomy section was kept stationary relative to the base platform. The base
platform and osteotomy section were completely constrained to simulate the fixation of the
tibia to the moving platform.
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2.3. Measurement of Orthopedic Forces

The sheep tibia was taken as the research object in the orthopedic experiments. Com-
pared with human tibia, the sheep tibia is of smaller diameter and higher hardness, match-
ing the tensile strength of animal experiments [23,24]. Meanwhile, the sheep tibia can
withstand greater stress over long periods of time. The tibia was taken from a sheep with-
out obvious anatomical abnormalities that had been slaughtered within 3 h previously. The
tibia was at an initial deviation angle of 6.85◦, and was cut into two pieces in the osteotomy.
The two pieces were installed to the fixator by the Kirschner wires. A six-dimensional force
sensor was installed at the osteotomy site to accurately measure the tensions along three
directions, as shown in Figure 4. A uniaxial force sensor was serially installed in each rod
to measure the adjustable or support force. During the installation of the sensors, the tibia
should be kept in the middle position and vertical posture.
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The process of fracture healing was simulated by changing the lengths of the two
adjustable rods. According to the pulling speed in Table 1, the osteotomy surface of the
upper broken tibia and the moving platform were rectified to the position parallel to the
base platform by the standard limb lengthening methods [25].

The adjustable forces F1 and F2 were measured by the installed sensors and the support
forces F3 and F4 were obtained. The tensions Fm

x,2 Fm
y,2, Fm

z,2 between the upper and lower
broken tibias along the three axes of {o2} were measured. The pre-tightening forces of the
fixator and the osteotomy site were measured at the beginning of the orthopedic process.
During the orthopedic experiments, the adjustable/support forces Fi and the tensions were
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measured and recorded in real time, as shown in Figure 5. Ten orthopedic experiments
were completed and the measurement data had similar variation laws and consistency.
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3. Results
3.1. Orthopedic Force Analysis

The adjustable rods were taken as the actuators to simulate the orthopedic treatment.
The adjustable and support forces Fi in the rods had significant effects on the orthopedic
treatment of the tibia. The tension Fm

z,2 at the broken tibia is an important factor to stimulate
the process of the bone regeneration which should be continuous and periodic. Besides,
the frequency of adjusting the rods and magnitude of the tension also should be appro-
priated [26,27]. Excessive tension will lead to bone disorders in the extension area of the
broken bone. Otherwise, the lack of tension will lead to the healing of the broken tibia
ahead of schedule [28].

The adjustable and support forces Fi during the orthopedic process are shown in
Figure 6. The entire treatment is divided into 10 periods, each lasting one day. A period
consists of correction and stay stages. The adjustable nut is rotated a single revolution
for each correction stage, and the length of the rod is lengthened or shortened by 1 mm.
As patients experience pain when the nut is rotated, a stay stage is added between two
correction stages. In the stay stage, the adjustable and support forces remain almost
unchanged in order to relieve the pain of patients. The clinical treatment of bone correction
lasts 10 days, but it is difficult to work with fresh sheep tibias for such a long time. Hence,
each period in the simulated experiment was compressed to 24 s.
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The changes in the forces emerging in the rods and tibia are shown in Figure 6. The
adjustable rods used as actuators aggravated the generation of internal stress in the fixator.
The forces F1 and F2 first increased and then decreased to a stable level during the correction
stages. The support rods as passive components shared the loads of the fixator. The forces
F1 and F2 were determined by the load distribution during the whole treatment. Since
the load distribution was closely related to the initial pre-tightening state, and there were
losses between the adjustable force and the support force, the support forces were always
less than the adjustable forces. Meanwhile, during the correction stages, the changing trend
of the support forces was opposite to that of the adjustable forces. All the four forces Fi
remained unchanged during the stay stage. The sixth correction period was selected, and a
dotted line was added at the time of 121 s (Figure 6a). The cross points of the dotted line
and the force curves denoted by A, B, C, and D were extreme points of the four curves
in this period. It can be seen that the four rods with motion consistency restricted each
other. The tensions between the two broken pieces of tibia are depicted in Figure 6b. The
tension Fm

z,2 along the axis of the broken end, which was important to the correction area,
had similar changes compared with that of the forces F1 or F2. The tension Fm

z,2 increased
gradually in the correction stage and remained unchanged in the stay stage. The other
horizontal components, Fm

x,2 and Fm
y,2, which were harmful to the orthopedic treatment,

remained at small values.
The load applied to the fixator through the adjustable rods and support rods was about

300 N, and the average stress transmitted to the broken bone end was 140 N. Compared
with Gessmann’s results [29] of indirectly pressurizing the four rings Ilizarov fixator with
300 N and the load on the broken bone end with 110–120 N, the results were slightly
different, due to certain differences in structure and pressurization method. However, the
similar trend proves the correctness of the experimental data.

3.2. Orthopedic Force Theoretical Calculate

The forces Fi and the rotation angle θ were substituted into Equation (8) where the
rotation angle θ varied uniformly from 6.85◦ to 0◦. The theoretical tensions at the extension
area of the broken bone were calculated by the software Matlab, as shown in Figure 7.
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Figure 7. Theoretical tensions at the osteotomy.

The influences of pre-tightening, frictions in the fixator and the motion synchronization
of the adjustable rods were disregarded in the theoretical calculation. The theoretical
tensions Ft

z,2 at the correction and stay periods were consistent with the measured tension
Fm

z,2. In addition, the other two tensions Ft
x,2 and Ft

y,2 all had a similar shape to that of Fm
x,2

and Fm
y,2 in the experiments. Hence, the screw model established in Section 2.1 is suitable

for the actual movements of the fixator and has good simulation accuracy. However, the
maximum of Ft

z,2 was nearly twice that of Fm
z,2. This was because the influences mentioned

above led to the loss of the adjustable and support forces.
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The transfer efficiency ηz between the measured and theoretical forces was defined to
evaluate the efficiency of converting the adjustable and support forces into the tensions of
broken tibia in orthopedic treatment, where ηz could be obtained by:

ηz =
Ft

z,2

Fm
z,2

. (12)

The index ηz was calculated based on the obtained data in Figures 6b and 7, as shown
in Figure 8. In the first 50 s of the experiment, the adjustable and support forces Fi were
used for the pre-tightening of the fixator and rods. Few tensions were transmitted to
the extension area of the broken bone. After 2~3 periods, the transfer efficiency ηz was
improved and kept at about 50%.
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3.3. Stress Distribution of Ilizarov External Fixator and Tibia

In order to analyze the stress distribution of the fixator and tibia, a finite element
model of this mechanical system was established to simulate the correction periods under
the software of ABAQUS, as shown in Figure 9.
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The mean value of the two adjustable forces F1 and F2 in each correction period was
applied to the end of the adjustable rod, as shown in Table 3. The tension Fs

z,2 in the tenth
correction period reached the peak value, which had the most obvious stretch effect on
the tibia end. Hence, this correction period was selected for further analysis, as shown in
Figure 10. The adjustable forces were transferred from the adjustable rods to the Kirschner
wires, and the upper broken tibia end was stretched. The stress concentration appeared in
the unidirectional hinges connecting the moving platform and the adjustable/support rods.

Table 3. Average orthotic force in each treatment period.

Correction Period F1/N F2/N Fm
z,2/N

1 0.56 8.56 5.26
2 12.18 20.78 11.03
3 16.89 30.31 15.58
4 27.28 40.03 48.11
5 35.81 53.04 59.75
6 43.17 63.83 72.83
7 58.65 77.15 93.52
8 70.51 91.92 111.37
9 90.77 99.39 130.25
10 99.62 117.54 145.39
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During the simulation, the average of the stresses on the section of the broken bone
surface along the axis o2z2 is multiplied by the total area is defined as the tensile force
simulation value Fs

z,2, as shown in Table 4.

Table 4. Tensions Fs
z,2 of the broken bone surface.

Period/Time 1 2 3 4 5 6 7 8 9 10

Tension/N 3.667 22.32 32.71 50.89 68.53 81.28 120.00 130.60 151.31 155.0

On the outer surface of the broken bone, the maximum stress occurred at the Kirschner
pinhole. Hence, the stresses on the surface were symmetrically distributed, and it was
found that the maximum stress occurred at the broken bone end surface near the Kirschner
wire pinhole, where points O and P were peak points close to the support and adjustable
rods, respectively, as shown in Figure 10.

The tensions Fs
z,2 affecting the broken bone segment lead to changes in the biological

environment/skeleton morphology. Figure 11 shows a line OP connecting the points O and
P, with the stresses distributed on the line OP. The stresses decrease from the peak point O
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and increase to another peak point P. The stress of point P is higher than that of point O.
The difference indicated that the tibia was significantly affected by the tensions during the
treatment process. The orthopedic treatment of the broken tibia could be completed with
the help of the tensions.
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3.4. Comparison of Theoretical, Simulation and Experimental Results

In order to better compare the accuracy of the three methods, the corresponding
results of the tensions are shown in Figure 12. Point B is the pre-tightening point of the
unidirectional hinges during the experiment. Before pre-tightening, the hinges and rods
were still in a loose state, which led to gaps between various parts. Hence, the measured
tensions Fm

z,2 were less than the simulation tensions Fs
z,2. After point B, the adjustable

forces reached the critical point of pre-tightening and the gaps among the components
disappeared. The measured tensions Fm

z,2 increased faster. However, the curves of the
tensions Fm

z,2 and Fs
z,2 had similar shapes. During the orthopedic experiments, various

factors influenced the force transmission efficiency of the adjustable forces and led to the
difference between the results Fm

z,2 and Fs
z,2.
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The theoretical/measured/simulation results increased synchronously according to
the ratio of force conduction efficiency, since the theoretical data did not consider friction
and there was no gap problem. Hence, there was no pre-tightening critical point in the
theoretical analysis, in which the growth rate was twice that of the simulated value, and
the growth rate was maintained at a stable rate.
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Through comparing the tensions obtained by the three methods, it was found that the
occurrence of the pre-tension critical point was related to the installation of the fixator, the
adjustable forces and the synchronization of the physician. In the stage of orthosis, these
problems will lead to unsatisfactory correction results and should be eliminated as much
as possible in the correction periods to improve orthopedic treatments.

4. Discussion

The Ilizarov external fixator has attracted the attention of researchers due to its versatile
configuration and good clinical results, and because it mainly changes the skeletal force line
by fixing or limiting the movement of the limb to achieve the function of orthopedic limb
bone, which has good clinical prospects for the treatment of knee osteoarthritis and limb
orthopedics. Many researchers have achieved results in the study of external fixators. Thiart
G, Herbert C, Sivarasu S, et al. studied the influence of different connecting rod structures
on the stability of the Ilizarov external fixator [30]. However, the clinical application relies
on physician experience, and the orthopedic features are still not clearly explained. This
study analyzed the mechanical characteristics of the Ilizarov external fixator by combining
theoretical analysis, clinical experiment and finite element analysis, which provide a reliable
basis for the application of external fixators. The results are beneficial for the development
of bone external fixation techniques.

First of all, based on the screw theory, the screw model of the Ilizarov external fixator
was deduced innovatively and the geometric explanation of the fixator was given. After-
wards, in contrast with the study of Karunratanakul K, who used resin rodlets to conduct
simulation experiments [10], orthopedic experiments were conducted using sheep tibia
innovatively, and the theoretical tensions based on geometric explanation were compared
with the experimental tensions obtained by orthopedic experiments on sheep tibia. It was
found that there are interactions and constraints between the adjustable rod and the sup-
port rod due to the structural configuration of the external fixator. The transfer efficiency
between the fixator and the broken bone end was calculated and analyzed. The analysis of
the experimental results can provide a direction and theoretical basis for the innovative
design of orthopedic parameters.

On this basis, a finite element model was established to accurately describe the stress
and strain of the fixator and tibia during the process of orthopedic treatment. In contrast
with the study of Donaldson F E, Pankaj P et al., who used pipe for simulation analysis [31],
we used CT scans of tibia for modeling to obtain a more accurate model, and the model
was able to respond to some phenomena that were difficult to obtain in the experiments.
Similarly to the research results of Donaldson F E, the maximum stress appeared in the
pinhole of Kirschner wire [32], and it can be seen from the results that the stress value
of the pinhole near the adjustable rods was greater than that of the support rods. These
results can provide a theoretical basis for the precise regulation of the external fixator and
assist physicians in formulating special treatment plans. The finite element model shows
some adaptability and can be applied to the optimization of the Ilizarov external fixator
and other orthopedic simulations.

Ganesharajah, Ganadhiepan, Saeed, et al. proposed that callus healing was related
to stress between broken bone ends [33]. Based on the established biomechanical model,
biomechanical analysis and prediction can be performed to evaluate the degree of callus
healing and bone alignment. However, it is difficult for in vitro animal experiments to
simulate the muscle system. The influences of cartilage and ligaments on the orthopedic
process have not been considered in theoretical calculations and experiments and simula-
tions. In the future, the osteomuscular system of the biomechanical model will continue to
be improved to obtain more accurate research results.
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Abstract: A soft exoskeleton for the hip flexion, named H-Suit, is developed to improve the walking
endurance of lower limbs, delay muscle fatigue and reduce the activation level of hip flexors. Based
on the kinematics and biomechanics of the hip joints, the ergonomic design of the H-Suit system is
clearly presented and the prototype was developed. The profile of the auxiliary forces is planned
in the auxiliary range where the forces start at the minimum hip angle, reach the maximum (120 N)
and end at 90% of each gait cycle. The desired displacements of the traction unit which consist of
the natural and elastic displacements of the steel cables are obtained by the experimental method.
An assistance strategy is proposed to track the profile of the auxiliary forces by dynamically adjusting
the compensation displacement Lc and the hold time ∆t. The influences of the variables Lc and ∆t
on the natural gaits and auxiliary forces have been revealed and analyzed. The real profile of the
auxiliary forces can be obtained and is consistent with the theoretical one by the proposed assistance
strategy. The H-Suit without the drive unit has little effect on the EMG signal of the lower limbs.
In the powered condition, the H-Suit can delay the muscle fatigue of the lower limbs. The average
rectified value (ARV) slope decreases and the median frequency (MNF) slope increases significantly.
Wearing the H-Suit resulted in a significant reduction of the vastus lateralis effort, averaged over
subjects and walking speeds, of 13.3 ± 2.1% (p = 2 × 10−5).

Keywords: soft robotic suit; hip assistance; gait prediction; performance evaluation; EMG signal

1. Introduction

The expanding elderly and disabled population poses considerable challenges to the
current healthcare system [1]. A lower-limb exoskeleton has been developed to reduce
the metabolic consumption of human walking or running [2–5] and is widely used in
rehabilitation and strength enhancement [6]. According to the stiffness of the robot’s main
components, the lower-limb exoskeleton can be divided into two types, rigid and soft
exoskeletons. The traditional rigid exoskeleton robots, which are worn by lower limbs
and moved with the human body, imitate the biological structure of human lower extremi-
ties. The rigid linkages or components are taken as the main mechanical backbone [7,8].
The rigid exoskeleton can provide gait correction for patients with dyskinesia and walking
assistance for healthy persons (such as BLEEX [9], HAL System [10], EKSO [11], and Re-
Walk [12]). However, the additional mass of lower extremities and the axis misalignment
of the human–machine system after wearing can easily lead to the increase of additional
torques, a disorder of natural gait, and dislocation of auxiliary forces [13–16]. The energy
consumption of the human body will rise substantially and it is difficult to be applied to
humans fast walking or running. Currently, assistive devices focus more on comfort and
personalization [17], in order to overcome the shortcomings of the rigid exoskeleton men-
tioned above, many scholars have studied soft exoskeletons with better wearing comfort
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(SEU-EXO [14], Exosuit [18], and Myosuit [19]), namely the soft power-assisted system,
which can assist the lower limbs in the state of walking or running. The flexible driving
units, such as the Bowden cable, pneumatic muscle and airbag, are applied to transmit the
auxiliary forces/moments to the hip, knee or ankle joints [20].

The soft power-assisted system supported by the lower limb skeleton transfers the
auxiliary forces through the flexible elements (nylon belt, flexible cable, pneumatic muscles,
etc.) distributed along the skin surface to the single or multiple joints [21], and reduces
the additional loads and metabolic consumption of the corresponding flexor/extensor
muscles. Ding et al. [22] developed a functional coat called Exosuit which was worn
on the skin surface of lower limbs. The multi-joint assistance was provided for the hip
extension and ankle plantar flexion through Bowden cables and an external traction unit.
Kim and Ding et al. [18,23] designed an Exosuit with a waist belt and tight trousers as
the substrate and developed a portable drive device worn on the waist. The Exosuit
system only provided auxiliary forces for hip extension and was suitable for walking and
running at a specific speed. Aiming at the gravity intensive activities (sitting, standing,
squatting, etc.) of the knee joint, Schmidt et al. [19] developed Myosuit, which consisted
of corsetry, ligament layer and active layer, to achieve the function of the external bionic
muscle by controlling the contraction and relaxation of the active layer. The pneumatic
muscle was applied in a Power Assist Wear [24] to improve the independent walking
ability of the elderly and the tension force was transmitted to the hip and knee joints
by nylon belts. Tian et al. [25] developed a unilateral power-assisted exoskeleton based
on the pneumatic muscle, which could assist the flexion and extension of the hip/knee
joints and reduce the muscle activation by 14.6%. A flexible ankle-assisted exoskeleton
developed by John et al. [26] proposed a cross-line power suit with four Bowden cables. The
cables were distributed along the front and rear sides of the thigh and could be controlled
independently to provide auxiliary force/moment for the hip joint. Based on the above
studies, a soft assistance suit system, which consists of the suit body, Bowden cables and
traction unit, is proposed for the hip flexion.

Based on the kinematics and biomechanics of the hip joint, a new soft power-assisted
system named H-Suit is proposed to provide a suitable auxiliary force for the forward
flexion of the hip joint. An assistance strategy is established to produce a desired profile of
the auxiliary force. The fatigue and activation of hip flexors (iliopsoas muscle, rectus femoris
and vastus lateralis, etc.) are analyzed comprehensively under different experimental
conditions and walking speeds. Understanding how the H-Suit affects the hip flexors
of human bodies is fundamental for quantifying its benefits and drawbacks, guiding a
continuous data-driven design refinement. Furthermore, the H-Suit system can be worn
for a long time for healthy persons, especially soldiers who need to walk a long distance
with a heavy load. Besides, the additional mass and gait interference of lower limbs can be
reduced as much as possible with the help of the ergonomic design method.

2. Ergonomic Design of the H-Suit
2.1. Kinematics and Biomechanics of Hip Joint

The lower extremities of humans are mainly composed of the hip, knee and ankle
joints. The main activities of the lower limbs (walking or running) are mainly composed of
flexion/extension (FL/EX) of the three joints. Hence, the muscle groups that dominate hip
FL/EX are analyzed in this paper. During human walking, the flexor and extensor muscles
work together to control FL/EX movements. Hip flexors mainly consist of the iliopsoas
muscle, rectus femoris and vastus lateralis [27]. The main action interval of hip flexors and
extensors is complementary in a single gait cycle T [28]. The activation times of the flexors
are concentrated in the middle stage of gait cycle T, namely the late support phase and the
prometaphase of the swing phase. The corresponding activation of extensors is distributed
at the beginning and end stage of a gait cycle. The corresponding activation intensity can
be easily detected and measured [29,30]. Besides, the leg lift that occurred in the flexion
movements should overcome the gravity of lower limbs rapidly and have greater energy
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expenditures. Hence, the flexion movements are selected as the assistance object in this
study. The kinematics and biomechanics of the hip joint in a single gait cycle T are shown
in Figure 1 where θh and Th denote the rotation angle and biological torque of the hip joint,
respectively.

Figure 1. Kinematics and biomechanics of the hip joint. (a) When the hip joint moves to the absolute
minimum angle (maximum extension), the thigh begins to flex forward and enter the early swing
phase. (b) The flexion torque gradually increases with the forward flexion until the later stage of
the swing phase. (c) The activations of the flexors are concentrated in the middle stage of the gait
cycle [27].

2.2. Ergonomic Design of H-Suit

The H-Suit consists of a soft exosuit, external traction units and Bowden cables.
The soft exosuit is composed of waist belts, thigh belts, inertial measurement units (IMUs)
and load cells, as shown in Figure 2a. The waist and thigh belts are embraced around the
waist and thighs separately. The anchors used to fix Bowden cables are sutured on the belt
surfaces. In order to improve the rated output of the traction unit and the smoothness of
auxiliary torques, the optimal positions of anchors (Figure 2b) were selected in our previous
study [31]. Three IMUs are respectively stuck on the front sides of the waist and thigh to
detect the kinematics information of the hip joint. Besides, the load cells are connected
in series between the steel cable and the thigh anchor to measure the auxiliary forces in
real-time. The power of the external traction units is transmitted to the soft exosuit through
Bowden cables which consist of sheaths and steel cables. The H-Suit has two identical
traction units for the right and left legs. One end of the sheath is fixed at the waist anchor
and the other at the frame of the traction units. Similarly, one end of the steel cable is
installed at the thigh anchor and the other at the slider of traction units. Based on the gait
information, an expected profile of auxiliary forces can be applied to the H-Suit and assist
flexions movements by controlling the traction displacements.
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Figure 2. Development of the H-Suit system. (a) The H-Suit consists of a soft exosuit, external traction
units and Bowden cables where A, B, C and D are anchor points. (b) The sheath and steel cable of
the Bowden cable are respectively fixed in the upper and lower components. (c) The open frames
of the waist and thigh are designed and fitted with the physiological structures of the human body.
(d) The synchronous belt transmission is adopted in the traction unit and the steel cable is reciprocally
dragged by the slider. (e) The H-Suit has few constraints on the dexterity of low limbs and daily
activities.

According to the average body sizes of our research group (height 175 cm, weight
75 kg), four bottom garments are selected and bought. The waist and thigh belts consist
of open frames and Velcro. The open frames are designed and fitted with the physio-
logical structures of the human body to improve the corresponding twisting resistance
(Figure 2c) [32]. Four short nylon belts (width 25 mm) are sewn on the anchor locations
denoted by A, B, C and D (Figure 2a). Two types of anchor components with butterfly
shapes are fixed on the short belts. The sheath is inserted and bonded in the hole of the
upper component. The steel cable with a plug is mounted in the lower component, passed
through the upper one and enters the sheath. In order to increase the cable resilience during
the no-assistance period, a compression spring is added between the upper and lower
components. Two load cells are installed at the upper short belts in series to measure the
auxiliary forces. Furthermore, shoulder straps are connected at the front and back of the
waist belt to avoid the dislocation of the H-Suit. In order to collect the gait information
of lower limbs, two IMUs are fixed on the left and right thigh belts, respectively, and
a third one at the waist as reference. IMUs only collect the motion angle in the human
sagittal plane.

There are two external traction units for the right and left lower extremities. The syn-
chronous belt with advantages of smooth motion and small backlash is adopted in the
traction unit. A slider is reciprocally pulled by a synchronous belt driven by a brushless
motor (TBM7646, Kollmorgen Inc., New York, NY, USA) and the steel cable is connected
to this slider (Figure 2d). The tension and release of the cable are accomplished by those
reciprocal motions. The traction displacements of the cable are measured by a draw-wire
displacement sensor (WFS1000; Fiaye Inc., Shanghai, China).

The total mass except for the traction unit is 0.995 kg where 0.8 kg is distributed around
the waist and 0.195 kg around the thigh. The H-Suit has few constraints on the dexterity of
low limbs and daily activities. When the subjects wear the H-Suit, they can easily complete
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the actions of half-kneeling, squatting down and bending over, etc. (Figure 2e). The weight
of each traction unit is 1.5 kg. The traction units are installed on a cart and used to test the
assistance strategy. The cart can move with the subjects when evaluating the performance
of the H-Suit.

2.3. Control Unit

The control unit of H-Suit is mainly composed of a PC, an interactive interface, and the
control board of MCU. The gait detection/prediction algorithm and the control algorithm
are integrated into the software. PC can communicate with MCU through a serial port to
realize data receiving and sending, and all data of the gait, auxiliary forces and traction
displacement are displayed constantly in the interactive interface. MCU receives the control
instructions from PC and controls the brushless motors through the CAN bus to realize
the assistance of hip flexion. The data of IMUs, load cells and displacement sensors are
collected by MCU and sent to the PC in real-time. Besides, a DC power supply, electric
relays and limit switches are necessary to guarantee the stable work of the control unit.
In order to serve the performance evaluation of H-Suit expediently, a cart with four floors
is designed and manufactured. The two traction units connected to the exosuit body
through Bowden cables are fixed on the second floor and the control unit on the third floor.
The exosuit is folded up and placed on the bottom layer when not in use. The subjects can
wear the H-Suit and walk on the treadmill or indoors where the cart is put aside.

3. Assistance Strategy of H-Suit

It is necessary to analyze the activations of hip flexors and the characteristics of the
lower limb’s gait and optimize the assistance strategy. According to the parameters of lower
limbs and the stiffness of the exosuit body, the desired auxiliary forces are transformed into
the trajectory of the traction unit. Then, the assistance strategy of H-Suit is established to
ensure smooth assistance for lower limbs.

3.1. Auxiliary Force

The assistance performance is directly affected by the starting/ending time and the
peak value of the auxiliary forces. The hip flexion which dominates 40% of the whole
gait cycle only can occur when going from the maximum extension (minimum θmin of
hip angle θ) to the maximum flexion (maximum θmax). Further, the hip flexion is divided
into two stages: 1© The first stage is from θmin to the zero-point θzero, 2© The second one is
from θzero to θmax, as shown in Figure 3a. Compared with the first stage, the second one
processes a longer duration. Besides, the zero-point θzero, the beginning of the second stage,
can be easier predicted through the prediction algorithm of “Newton + triple exponential
smoothing” proposed in the previous research [31]. When the lower limb reaches the
maximum extension position (Figure 3a), the flexors are activated and start isometric
contraction to produce biological forces for the hip flexion. When the hip angle θ is about
zero in the region of flexion, the activation of the flexor muscles reaches the maximum and
produces the maximum biological forces for hip flexion [33]. The activation decreases to a
stable level when the lower limb reaches 90% of a gait cycle T. Therefore, the profile of the
auxiliary force Ft begins at t = tθ ,min, reaches the peak value Ft,max at t = tθ ,zero, and ends at
t = t90%, as shown in Figure 3b.

Based on the biological force of the flexor muscles [27], the 15% of the biological
peak force is taken as Ft, max which is equal to 120 N. The profile of Ft is designed and the
corresponding expression of Ft is obtained as follows:

Ft = 109.5 sin
[
(1103P− 1.298)× π

180

]
+ 21.13 cos

[
(2826P + 10.83)× π

180

]
(1)

where P is the percentage of the gait cycle T (60% < P < 90%). The time tθ ,min and tθ ,zero can
be substituted by the parameter P which stays in dynamic changes according to the time
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tθ ,min and gait cycle T. When the angle θ reaches θmin, the percentage P corresponding to
the time tθ ,min is obtained.

Figure 3. Profile of auxiliary forces Ft. (a) The hip flexion is divided into two stages: 1© The first stage
is from θmin to the zero-point θzero, 2© The second one is from θzero to θmax. (b) The profile of the
auxiliary force Ft begins at t = tθ ,min, reaches the peak value Ft, max at t = tθ ,zero, and ends at t = t90%.

3.2. Desired Displacement of the Traction Unit

Based on the profile of forces Ft, the desired displacement of the traction unit can
be calculated which is closely related to the hip angle θ and the total stiffness ktotal of the
H-Suit. A coordinate system xoy is built at the center o of the hip joint and the axis ox is
horizontal, as shown in Figure 4a. The vectors oA and oB are the position vector of the
waist and thigh anchors. According to the optimal position of A and B, the length of oA
and oB denoted loA and loB can be calculated. The corresponding included angle α indicates
the dynamic position of the thigh during the walking. The changes in the length lAB of AB,
without the auxiliary forces, are the natural traction displacement Ln to adapt the positions
of the thigh. The initial length l0 of AB at the standing posture can be obtained by the
cosine theorem:

l0 =
√

l2
oA + l2

oB − 2loA · loB · cos α0 (2)

where α0 is the angle α in the standing posture.

Figure 4. Measurement of the total stiffness. (a) The desired displacement consists of the natural
displacement of Bowden cables and the elastic deformations of the human–machine system. (b) The
total stiffness ktotal was measured when the hip flexed forwards 15◦. (c) The external force Ft,ex at the
equal intervals of displacements are presented and ktotal can be fitted.
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Assuming that the angle of the anchor A relative to the hip center is constant during
the human walking, the anchor B is rotated around the center o and the angle α is obtained:

α = α0 − θ (3)

Hence, the length lAB of AB can be calculated:

lAB =
√

l2
oA + l2

oB − 2loA · loB · cos α (4)

The natural displacement Ln of the traction unit can be acquired:

Ln = lAB − l0 (5)

The auxiliary force Ft is applied to the anchors along the vector AB. There exist elastic
deformations in the exosuit, Bowden cables and local tissues. Due to the intercoupling of
the H-Suit and local tissues, it is difficult to measure and calculate the stiffness of three parts
denoted by ks, kc and kt, respectively. However, the total stiffness ktotal can be measured by
the experimental method [22,23]. A subject wore H-Suit and the right lower limb flexed
forwards 15◦, as shown in Figure 4b. A traction force Ft,ex was applied to the anchors
from 0 to 120 N with the help of the traction unit. The subject kept still to complete the
experiments. The displacements of the traction unit were measured to indicate the elastic
deformations Le by the displacement sensor. The external force Ft,ex at the equal intervals
of displacements are presented in Figure 4c.

According to the measured data, the expression of ktotal is fitted and calculated where
ktotal = 2100 N/m. The elastic deformations Le of the human–machine system are obtained:

Le =
Ft

ktotal
(6)

Hence, by combining Equations (5) and (6), the output displacement L of the traction
unit can be acquired:

L = lAB − l0 +
Ft

ktotal
(7)

According to the profiles of Ft and θ, the desired displacement L can be calculated as
shown in Figure 5. The displacement L reaches the maximum L′max = 106 mm at t = t90%
and descends quickly to the initial position.

Figure 5. Desired displacement L.

3.3. Assistance Strategy

When the hip angle is about to reach the minimum, the traction unit will be moved
along the profile of the displacement L to produce the corresponding auxiliary force Ft.
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Then the traction unit returns to the initial position immediately and waits for the next gait
cycle. The drivers need to detect the current positions of the servo motors and consume
the majority of the internal resource of the MCU. Besides, the algorithms of gait detection
and prediction also occupy part of the internal resource. The motion lags appear in the
movements of the traction unit and seriously restrict the performance of the H-Suit. Hence,
the theoretical profile of the displacement L is simplified to a trapezoidal profile Ls with
three segments, as shown in Figure 5. The traction unit moves from the initial position
to the maximum with a constant speed, stays for a hold time ∆t and returns to the initial
position immediately.

According to the activation times of the iliopsoas muscle and the rectus femoris, the
traction unit reaches the maximum position at θ = θzero. The theoretical maximum L′max of
the trapezoidal profile Ls can be calculated:

L′max = L′n + L′e (8)

Where L′n is the natural displacement Ln at θ = θmax/2 (θmax denotes the maximum of hip
angle θ) and L′e is the elastic deformations Le at Ft,max = 120 N. The deformation L′e is
acquired:

L′e =
Ft,max

ktotal,120
(9)

where ktotal,120 is the total stiffness ktotal at Ft,ex = 120 N.
Due to the initial wearing deviations and the disturbances of the external force Ft, the

position deviations of the anchors are inevitable. A compensation displacement Lc is added
to the theoretical maximum L′max for compensating the deviations. Hence, the maximum
Lmax of the trapezoidal profile Ls during the assistance process can be obtained:

Lmax = L′max + Lc (10)

The compensation displacement Lc and the hold time ∆t mainly affect the magnitude
and duration of the peak force Ft, max. With the help of the load cells, the auxiliary forces
Ft during the gait cycle Ti can be measured and the actual maximum Fi

t,max are selected.
The displacement Lc can be obtained based on the forces Fi

t,max of the last n gait cycles.

Lc =

n
∑

i=1
(Fi

t,max − Ft,max)

n · ktotal,120
(11)

The hold time ∆t can improve the auxiliary profile and reduce the impacts of the
forces Ft. Under the constant peak forces, a long hold time ∆t can enhance the assistance
performance, especially the heartbeat index. There is a linear relationship between heart
rate and oxygen consumption [34]. However, if the hold time ∆t is too long, it will hinder the
backward extension of lower limbs and aggravate the metabolic consumption. The traction
and release times of the steel cable denoted by ∆ttraction and ∆trelease can be measured by
the encoder of the control unit. The auxiliary time ∆T of the forces Ft can be calculated:

∆T = ∆ttraction+ ∆trelease+ ∆t (12)

The auxiliary time ∆T is continuously changed for different walking speeds. Hence,
during the assistance performance, the hold time ∆t and the compensation displacement Lc
are dynamically adjusted within the time ∆T according to the heartbeat index. Based on
the control strategy, an algorithm is added to the control unit.

272



Micromachines 2022, 13, 825

4. Performance Evaluation
4.1. Experimental Platform

There are three experiments for the performance evaluation: (I) Turn on H-Suit when
walking with it (Powered); (II) Turn off H-Suit (Unpowered); (III) Not wear H-Suit (No-Suit).
A subject performs each experiment by walking on the treadmill for 10 min and resting for
20 min, as shown in Figure 6. Eight subjects (average age 26, height 175 cm, weight 75 kg)
wear the H-Suit and walk on the treadmill at the speed v1 = 0.75 m/s, as shown in Figure 7.
When the curve of the hip angle θ is stable, the established prediction algorithm will be
executed and the angle θ is predicted in real-time. Then, the traction units are opened and
moved along the profile of the output displacements. The data of the angle θ and force Ft
are measured by load cells and IMUs and recorded in the upper computer to analyze the
assistance strategy.

Figure 6. Scheme of assistance experiments. The subjects rested for 20 min before the test and walked
in the state of Powered, Unpowered and No-Suit for 10 min.

Figure 7. Experimental platform of the H-Suit. (a) The subjects walked on the treadmill at three
different speeds. (b) The data of EMG, auxiliary forces and displacements are measured and depicted
in the visual interface.

4.2. Evaluation of Auxiliary Force

During the assistance experiments, the initial values of compensation displacement
Lc and the hold time ∆t are 17 mm and 300 ms, respectively. When a subject walked on
the treadmill at the speed v1 = 0.75 m/s, the dynamic data of three gait cycles during the
assistance process are shown in Figure 8. Compared with the real curve of θ, the prediction
curve has a similar shape and advances at a time interval of 30 ms (Figure 8a). Meanwhile,
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the hip angle θ (such as the maximum, zero, minimum, etc.) can be forecasted early by a
time of 30 ms. The predicted time of the minimum angle θmin, which is the start time of
the traction unit, will be sent to the control unit. The steel cables are pulled quickly to the
maximum position (Lmax = 123 mm) which is calculated by Equation (10), stayed for 300 ms
and returned to the initial position immediately (Figure 8b). The traction of steel cables
can produce the useful forces during the assistance phase where Fi

t,max = 135 N. Since the
compensation displacement Lc is larger than the appropriate value, the actual peak forces
of Ft are bigger than the ideal force Ft,max and has a slight impact on the hip joint. Similarly,
the hold time ∆t is also too long, the traction unit still stays at the maximum position even
though the hip joint begins to stretch backward. When the H-Suit works without correctly
adjusting the controller, the auxiliary forces Ft at the resistance phase hinder the extension
movements at the later stage (Figure 8c). Hence, the improper values of Lc and ∆t will
interfere with the natural movements of lower limbs.

Figure 8. Dynamic data during the assistance process (v1 = 0.75 m/s, Lc = 17 mm, ∆t = 300 ms).
(a) The prediction curve of the hip angle θ has a similar shape and advances a time interval compared
with the real curve. (b) The output displacement L is determined by the parameters Lc and ∆t. (c) The
auxiliary forces Ft hinder the extension movements at the later stage due to the improper values of Lc

and ∆t.

According to the effects of the two parameters, the established algorithm of the control
strategy begins to work during performance experiments. Before the experiments, the steel
cables should keep a tension state (Ft ≤ 5 N). A subject wears the H-Suit and walks on the
treadmill at v1 = 0.75 m/s. Based on the peak forces Fi

t,max and the average heart rates
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measured by a cardiotachometer, the optimum values of Lc and ∆t are obtained through the
control algorithm after 10 gait cycles where Lc = 7 mm and ∆t = 200 ms. The changes in the
average heart rates were analyzed and discussed in our previous work [31] where the heart
rates have decreased remarkably. The corresponding dynamic data are shown in Figure 9.
It can be found that the minimum θmin is predicted 50 ms in advance and the traction unit
starts to move along the profile of the displacements L. The traction unit can release the
steel cable immediately after the hold time ∆t and not hinder the deceleration of the flexion
movement. Then the right leg completes the extension movements. The switching time
from the flexion to extension is shorter and the real curve of θ is smoother compared with
that of Figure 8a. Hence, the added mass and the traction movement of steel cables have
few influences on the natural gait of lower limbs. The assistance phase dominates the whole
activation interval of the H-Suit and the lag phase almost disappears. Although the traction
unit tries to move along the ideal displacement curve with high precision, the real curve of
L still has a few deviations at the peak stage. The real profile of the auxiliary forces Ft is
in good agreement with the theoretical profile (Figure 9c) where Fi

t,max is approximately
equal to 120 N. The subject feels it is easier to walk under the assistance condition.

Figure 9. Experimental data of the effective assistance (v1 = 0.75 m/s, Lc = 7 mm, ∆t = 200 ms) (a) The
switching time from the flexion to extension is shorter and the real curve of θ is smoother compared
with that of Figure 8a. (b) The assistance phase dominates the whole activation interval of the H-Suit
and the lag phase almost disappears. (c) The real profile of the auxiliary forces Ft is in good agreement
with the theoretical profile.
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4.3. EMG Signals of Rectus Femoris and Vastus Lateralis

In order to evaluate the performance of H-Suit, the EMG signals of the rectus femoris
and vastus lateralis of the subjects were measured through pasting electrodes according to
SENIAM standards [35]. The corresponding EMG data were obtained at a normal speed
(v2 = 1.25 m/s) and in three conditions (No-Suit, Unpowered, Powered), as shown in
Figure 10. Figure 10a shows the EMG signals of the rectus femoris and vastus lateralis of
15 gait cycles under the condition of No-Suit. It can be found that the EMG signals of the
two muscles have similar trends. While the periodic of the vastus lateralis is more obvious
than the rectus femoris, the vastus lateralis was selected for further analysis. Figure 10b
shows the EMG signals of the vastus lateralis of 5 gait cycles under the three conditions. The
vastus lateralis has obvious periodic characteristics. Combined with the average rectified
value (ARV) and median frequency (MNF) slopes in Figure 10c, it can be found that the
change trends of the two indexes in the No-Suit and Unpowered are basically identical,
while ARV decreases and MNF increases significantly at the powered condition. It shows
that the H-Suit without the drive unit has little effect on the EMG signal of the lower limbs.
In the powered condition, H-Suit can delay the muscle fatigue of the lower limbs where
a steeper positive slope for ARV and a steeper negative one for MNF indicate a faster
onset of fatigue [36]. The ARV slope during the powered condition was decreased by
0.5178 ± 0.1110/min and the MNF slope was increased by 0.2280 ± 0.0714/min.

Figure 10. Fatigue analysis. (a) Raw signal and envelope of EMG of the rectus femoris and vastus
lateralis of one subject at a normal speed (v = 1.25 m/s). (b) Raw signal and envelope of EMG of
the vastus lateralis in the conditions of No-Suit, Unpowered and Powered. (c) Trend of the average
rectified value (ARV) and median frequency (MNF) of the EMG signal of one subject in the 10 min
of tests. Indexes are expressed in percentage of their initial value. (d) Slope of ARV and MNF. Both
indexes confirm that wearing the H-Suit significantly reduces the onset of fatigue (p = 0.03 for ARV
and p = 0.01 for the MNF). Error bars show the standard error of the mean.
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In order to further evaluate the performance of the H-Suit, eight healthy subjects with
a 10 kg load walked on the treadmill at three speeds (0.75 m/s, 1.25 m/s and 1.75 m/s) [37].
The electromyography (EMG) signals of the vastus lateralis were measured and analyzed,
as shown in Figure 11. As the H-Suit provided the assistance for the flexion movements,
it reduced the amount of effort that flexor muscle needed to exert. Figure 11a shows a
representative case of the activation (raw EMG and its envelope) of the vastus lateralis
during the three walking speeds, in both powered and unpowered conditions. The EMG’s
values under the powered condition decreased markedly. Besides, the corresponding
excitation was delayed and the action time was shortened. The net change in the vastus
lateralis effort (Figure 11b), evaluated as the difference in the root mean square (RMS) of
the EMG signals between the powered and unpowered cases, was significantly smaller
than 0 for all velocities (p = 2 × 10−3, p = 7.0 × 10−3, p = 4 × 10−3 at v = 0.75 m/s,
1.25 m/s, 1.75 m/s). Figure 11c shows the change in the activation of the valtus lateralis
as a percentage of its activation in the unpowered condition. The performance of the
H-Suit degraded for higher speeds. Wearing the H-Suit resulted in a significant reduction
of the vastus lateralis effort, averaged over subjects and walking speeds, of 13.3 ± 2.1%
(p = 2 × 10−5).

Figure 11. Changes in muscular activation. (a) Raw signal and envelope of the vastus lateralis’ EMG.
(b) Net change (Powered—Unpowered) of RMS of the EMG signals of the vastus lateralis, for the
three walking speeds. Opaque contoured circles are the values for each individual subject, bigger
circles indicate the mean over subjects. (c) Changes in the activation of the vastus lateralis, expressed
as a percentage of its activation in the unpowered condition (net change/Unpowered). Error bars
show the standard error of the mean.

5. Discussion

The ergonomic design of the H-Suit system is clearly presented, such as optimization
of anchor points, comfort evaluation, analysis of biomechanical characteristics of lower
limbs, etc. Compared with the development of the existed soft assistance systems [14,18,19],
the design process is presented in more detail. The H-Suit processes the advantages of being
lightweight, having high wearing comfort and has minimal impact on the natural gaits.

The profile of the auxiliary forces is planned in the auxiliary range where the forces
start at the minimum of hip angle, reach the maximum (120 N) when the hip angle is
equal to zero and end at 90% of each gait cycle. The beginning of the profile is dynamically
changed according to the time of the minimum hip angle and the gait cycle. Compared with
the profile proposed by Ding [22,23], our designed profile uses fewer memory resources
and allows for faster processing speed. An assistance strategy is proposed to track the
profile of the auxiliary forces by dynamically adjusting the compensation displacement
Lc and the hold time ∆t. The force-based position control [38] and admittance-based force
tracking [39,40] are usually applied to track and compensate for the profile of auxiliary
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force. However, the assistance strategy proposed in this paper can achieve approximate
performance and provide a new idea for the robotic suit. Furthermore, the influences of the
variables Lc and ∆t on the natural gaits and auxiliary forces have been analyzed to reveal
the interactions between lower limbs and the H-Suit.

The changes in human metabolic consumption are essentially caused by the activation
degree of muscles which can be evaluated by the slopes of the average rectified value and
the median frequency [39]. During the performance evaluations, our H-Suit delayed the
onset of fatigue and reduced the muscular activation of hip flexors. Wearing the H-Suit
resulted in a significant reduction of the vastus lateralis effort, averaged over subjects and
walking speeds, of 13.3 ± 2.1% (p = 2 × 10−5). A similar finding is described in [18], where
a cable-driven suit for the hip extension is shown to reduce activation in muscles that do not
cross the assisted joints (such as vastus lateralis). Unfortunately, a quantitative comparison
here is not possible because of the different metrics used to assess fatigue in [18].

6. Conclusions

The advantages of a svelte and portable exosuit for the lower limbs, able to intuitively
assist its wearer and reduce the effort required to walk, make it a good candidate for both
industrial and clinical applications. Our results showed that the H-Suit can improve the
walking endurance of lower limbs, delay muscle fatigue and reduce the activation level of
hip flexors.

7. Limitations of the Study

The traction unit of the H-Suit is an external device and cannot be carried by the
subjects. This study mainly analyzes the influences of the assistance strategy on the fatigue
and activation of hip flexors. More flexors, especially the iliopsoas muscle, should be
measured to evaluate metabolic consumption. Meanwhile, the experimental conditions
(Powered, Unpowered and No-Suit) and walking speeds are not randomly distributed in
the experiments of performance evaluation. In future research, a portable traction unit
will be developed and subjects can complete all experiments when wearing the H-Suit
system. The scheme of performance experiments will be improved by considering the
randomization of experimental conditions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/mi13060825/s1. Table S1: Parameters of the lower limb. All data
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Appendix A

The coordinate system xoy is established where the origin o is located on the rotation
center of the hip joint, as shown in Figure A1. The waist and thigh anchors are denoted
by P and Q. The direction of the auxiliary force F is parallel to the direction of the vector
QP. The point Qx is the projection point of the thigh anchor Q on the axis ox when the
volunteer is upright. The direction of the vector oQx is parallel to the positive direction
of the axis ox, and its modulus depends on the diameter of the human thigh, as shown in
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Figure A1a. Since the upper body keeps upright during walking, the vertical displacement
of the hip joint is small, and the rotation angle θ of the hip joint can be represented by the
direction change of the vectorQxQ. Meanwhile, the angle θ of the hip joint extension stage
is defined as negative, and the forward flexion stage as positive, as shown in Figure A1b,c.
The vector oR is perpendicular to the vector QP, and the modulus of oR represented as lOR
is the auxiliary force arm.

Figure A1. Simplified model of human lower limbs. (a) Standing phase (θ = 0). (b) Stretching stage
(θ < 0). (c) Buckling stage (θ > 0).

In the process of walking, assuming that the upper body of the human remains upright,
the position vector oP of the waist anchor P depends on the vertical distance between the
waist anchor P and hip joint, and the waist thickness Tw of the human body. Since the waist
anchor P is fixed on the waist belt, the variation range of P is small. Through comparing
and measuring the walking posture of eight healthy subjects, the waist anchor P is fixed
at 50 mm above the hip joint. In addition, the thigh anchor Q is fixed on the thigh belt.
According to the above analysis, the direction of the vector QxQ is consistent with the
rotation angle θ of the hip joint. The modulus of QxQ is equal to the vertical component of
the distance between the thigh anchor Q and the hip joint, which is named as lah, therefore,
the position vector oQ and QP of the thigh anchor Q can be represented as:

oQ = oQx + QxQ (A1)

QP = oP− (oQx + QxQ) (A2)

Assuming the auxiliary force produced by the traction unit is nearly constant, the
changes in the auxiliary torque can be indirectly reflected by calculating the length loR of
the torque arm. Combined with the structure of the lower limbs shown in Figure A1, the
length loR is obtained:

loR = loQ ·
√

1−
(

oQ ·QP
loQ · lQP

)2
(A3)

where loQ is the modulus of the vector oQ.
According to the measurement of eight subjects, the average body sizes of the subjects

(male, 26 years, height 175 cm, weight 75 kg) during the walking are obtained, as shown in
Table S1.
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Substitute the above parameters into Equations (A2) and (A3), and the torque arm
loR corresponding to different positions of the thigh anchor are calculated by the software
MATLAB, as shown in Figure A2.

Figure A2. Auxiliary force arm in different states.

When the distance lah between the thigh anchor Q and the hip joint is more than
200 mm, the torque arm loR corresponding to the same hip joint angle remains approxi-
mately unchanged, and the curve of loR arm is changed smoothly. Moreover, in order to
improve the servo performance of the wire rope during the assisting process, the length
of lah should not be too large and the thigh anchor Q is fixed 200 mm below the hip joint.
Hence, the waist anchor P is fixed at 50 mm above the hip joint and the thigh anchor Q at
200 mm below the hip joint.
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Abstract: Hepatocellular carcinoma (HCC) is a tumor that poses a serious threat to human health,
with an extremely low five-year survival rate due to its difficulty in early diagnosis and insensitivity
to radiotherapy and chemotherapy. To improve the therapeutic efficiency of HCC, we developed a
novel multifunctional nanoplatform (SCF NPs) with an amphiphilic polymer (Ce6-PEG2000-FA) and
a multitarget tyrosine kinase inhibitor sunitinib. SCF NPs showed superior therapeutical efficiency
for HCC due to the synergetic effect of molecular targeted therapy and phototherapy. The Ce6-
PEG2000-FA not only serves as a nanocarrier with excellent biocompatibility but also can act as a
therapeutic reagent for photothermal therapy (PTT) and photodynamic therapy (PDT). Furthermore,
the folic acid group of Ce6-PEG2000-FA enhanced the active targeting performance of SCF NPs.
As a multitargeted tyrosine kinase inhibitor, sunitinib in SCF NPs can play a role in molecular
targeted therapies, including tumor growth inhibition and anti-angiogenesis. In vivo experiments,
SCF NPs showed multimode imaging capabilities, which can be used for tumorous diagnosis and
intraoperative navigation. Meanwhile, SCF NPs showed outstanding synergetic tumor inhibition
ability. Tumors of SCF NPs group with laser radiation were eradicated without any recrudescence
after 14 days of treatment. Such theranostic nanoparticles offer a novel therapeutic tactic for HCC.

Keywords: multifunctional nanoplatform; sunitinib; photodynamic therapy; photothermal therapy;
hepatocellular carcinoma

1. Introduction

Hepatocellular carcinoma (HCC), accounting for 90% of primary liver cancers, is
the sixth most common malignancy worldwide and the second leading cause of cancer
deaths in China [1,2]. It is mainly caused by chronic hepatitis B and C virus infection [3].
Currently, the potential therapeutic options for early-stage patients with HCC include liver
transplantation, surgical resection, and local ablation [4]. However, only 30% of patients
present with resectable tumors, and the poor liver reserve capacities and high postoperative
recurrence hinder tolerance to surgical treatment [5,6]. HCC is inherently resistant to
radiotherapy and chemotherapy due to the expression of multiple drug-resistance genes [7].
Furthermore, HCC is often asymptomatic in the early stage, missing the optimal period for
treatment [8]. Therefore, novel diagnostic and therapeutic approaches are essential to be
explored for treating this lethal disease.

Sunitinib, a novel small-molecule multitargeted tyrosine kinase inhibitor, has been
reported to inhibit HCC growth [9–11]. In a recent study, synergizing sunitinib and ra-
diofrequency ablation as a novel therapeutic strategy significantly suppressed HCC growth
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by triggering the antitumor immune response. Sunitinib, rather than sorafenib (classical
first-line drug for HCC), abolished tumor-induced profound immunotolerance to ignite
immunological antitumor immune response by significantly suppressing Treg production
and PD-1 expression [12]. Additionally, compared to sorafenib, sunitinib has a partial
overlap but a significantly distinct target inhibition spectrum [9]. Chemoimmunotherapy
of sunitinib combined with anti-PDL-1 antibody has been reported to increase antitumor
immunity, inhibit tumor growth, and achieve optimal tumor control [13]. Sunitinib can
not only inhibit tumor growth by blocking the signaling pathways of receptor tyrosine
kinase, including c-KIT, FLT-3, RET, etc., but also inhibit angiogenesis by targeting vascular
endothelial growth factor receptors (VEGFR) and platelet-derived growth factor receptors
(PDGFR) [14]. Despite its efficacy, the severe side effects of sunitinib, such as hypertension,
myelosuppression, hypothyroidism, and neutropenia, limit its further clinical application
in the treatment of HCC [15,16]. Furthermore, the emergence of drug resistance to small-
molecule targeted drugs is also a major challenge that cannot be overlooked in the treatment
of HCC [17,18]. Among them, the issue of sunitinib resistance has attracted increasingly
widespread attention [19–21]. Therefore, it is urgent to explore novel therapeutic modalities
to tackle the problems of serious side effects and drug resistance of Sunitinib. Compared to
traditional therapeutic methods of tumors, phototherapy, including photodynamic therapy
(PDT) and photothermal therapy (PTT), has great potential applications in oncotherapy
due to its high efficiency, low side effects, and no resistance [22–26]. PDT can transform
oxygen into toxic reactive oxygen species (ROS), which have the capability to damage
lipids, proteins, and DNA, and further kill cancer cells [27–29]. PTT is a promising strategy
to rapidly convert localized light into heat in order to kill cancer cells when the temperature
exceeds 45 ◦C [30,31]. However, insufficient oxygen supply (hypoxia) and short half-life
(<40 ns) of ROS significantly reduced antitumor efficacy of PDT [32]. The upregulation
of the heat shock protein expression and the damage to surrounding tissue severely re-
strict the clinical application of PTT [24]. Therefore, it is suggested that other therapeutic
approaches should be combined with PDT/PTT to address the limitations and enhance
the treatment efficacy. In recent years, the application of polymers in the field of medicine
and health care has attracted extensive attention. For example, crosslinked polymers with
high biocompatibility have attracted much attention in the field of wearable electronics
and microfluidic chips for enhancing healthcare status [33–35]. Biodegradable polymers
are commonly used for controlled-release drug delivery, tissue engineering, and temporary
prosthetic implants.

Herein, we employed an amphiphilic polymer (Ce6-PEG2000-FA) to fabricate a novel
nanoparticle by self-assembly method, sunitinib@Ce6-PEG2000-FA NPs (SCF NPs), with
synergistic antivascular activity and PDT/PTT [36,37]. Sunitinib can induce apoptosis
of vascular endothelial cells, thereby inhibiting tumor angiogenesis. Meanwhile, Ce6-
PEG2000-FA can achieve PDT and PTT, killing HCC cells. Furthermore, folate receptors on
the surfaces of HCC cells can be targeted by the FA molecules of the Ce6-PEG2000-FA to
enhance the active targeting capability of NPs [38]. Accordingly, the resulting SCF NPs not
only possess excellent passive (enhanced permeability and retention effect) and proactive
(folate receptors) targeting ability towards tumors but also present superior synergistic
effects with anti-angiogenic therapy and phototherapy (Scheme 1).

284



Micromachines 2023, 14, 613
Micromachines 2023, 14, x FOR PEER REVIEW 3 of 12 
 

 

 
Scheme 1. A schematic illustration depicting the fabrication and application of SCF NPs for anti-
vascular and PDT/PTT therapy at the tumor site is presented. 

2. Materials and Methods 
2.1. Preparation of SCF NPs 

The SCF NPs were prepared by the self-assembly method. Firstly, 2 mg of sunitinib 
and 10 mg of Ce6-PEG2000-FA were dissolved in 2 mL of THF. Subsequently, the mixed 
solution was added to 10 mL of ultrapure water under sonication. Then, the THF was 
removed by rapid stirring for 48 h. Finally, the solution filtered through a 220 nm filter 
was freeze-dried, and the resulting solid powder was stored in the refrigerator at 4 °C.  

Remarks: Poly(ethyleneglycol) (PEG), chlorin e6 (Ce6), nanoparticles (NPs), folic acid 
(FA), tetrahydrofuran (THF).  

2.2. Singlet Oxygen Detection  
The 1O2 generation was detected by a singlet oxygen sensor green (SOSG) reagent. 

Briefly, 5 μM SOSG was dissolved in SCF NPs aqueous solution. The mixed solution was 
irradiated by a 660 nm laser (150 mW cm−2) for 100 s. The fluorescence was collected every 
10 seconds (excitation wavelength: 404 nm). 

2.3. Photothermal Effect 
Various concentrations of SCF NPs were irradiated by a 660 nm laser (800 mW cm−2, 

10 min). Furthermore, 100 μg/mL SCF NPs was irradiated with different power of 660 nm 
laser irradiation. Temperature variations were measured by using a FLIR infrared camera. 

2.4. Cell Lines and Culture Conditions 
Hep-3B cell lines were purchased by the Institute of Biochemistry and Cell Biology, 

SIBS, CAS (Shanghai, China). Hep-3B Cells were cultured in Dulbecco’s modified Eagle’s 
medium (DMEM) with 10% fetal bovine serum at 37 °C atmospheres containing 5% CO2. 

2.5. In Vitro Cytotoxicity Assay 

Scheme 1. A schematic illustration depicting the fabrication and application of SCF NPs for antivas-
cular and PDT/PTT therapy at the tumor site is presented.

2. Materials and Methods
2.1. Preparation of SCF NPs

The SCF NPs were prepared by the self-assembly method. Firstly, 2 mg of sunitinib
and 10 mg of Ce6-PEG2000-FA were dissolved in 2 mL of THF. Subsequently, the mixed
solution was added to 10 mL of ultrapure water under sonication. Then, the THF was
removed by rapid stirring for 48 h. Finally, the solution filtered through a 220 nm filter was
freeze-dried, and the resulting solid powder was stored in the refrigerator at 4 ◦C.

Remarks: Poly(ethyleneglycol) (PEG), chlorin e6 (Ce6), nanoparticles (NPs), folic acid
(FA), tetrahydrofuran (THF).

2.2. Singlet Oxygen Detection

The 1O2 generation was detected by a singlet oxygen sensor green (SOSG) reagent.
Briefly, 5 µM SOSG was dissolved in SCF NPs aqueous solution. The mixed solution was
irradiated by a 660 nm laser (150 mW cm−2) for 100 s. The fluorescence was collected every
10 s (excitation wavelength: 404 nm).

2.3. Photothermal Effect

Various concentrations of SCF NPs were irradiated by a 660 nm laser (800 mW cm−2,
10 min). Furthermore, 100 µg/mL SCF NPs was irradiated with different power of 660 nm
laser irradiation. Temperature variations were measured by using a FLIR infrared camera.

2.4. Cell Lines and Culture Conditions

Hep-3B cell lines were purchased by the Institute of Biochemistry and Cell Biology,
SIBS, CAS (Shanghai, China). Hep-3B Cells were cultured in Dulbecco’s modified Eagle’s
medium (DMEM) with 10% fetal bovine serum at 37 ◦C atmospheres containing 5% CO2.

2.5. In Vitro Cytotoxicity Assay

The cytotoxicity of Ce6-PEG2000-FA and SCF NPs was estimated by cell viability assay
using the Cell Counting Kit-8 (CCK-8) method. Hep-3B and LO2 cells were incubated in
96-well plates in the presence of SCF NPs for 12 h. The light group was illuminated with a
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660 nm laser (600 mW cm−2) for 3 min, followed by incubation for 12 h. Subsequently, CCK-
8 solution was added per well, and the cells were incubated for 2 h at 37 ◦C in the presence
of 5% CO2. Finally, the experimental results were detected with a microplate reader.

2.6. Cellular Uptake

Hep-3B cells were cultured in confocal dishes with incubation for 12 h. Then, 7.6 µg/mL
SCF NPs were added into confocal dishes and incubated for 12 h. The cells were washed
three times with PBS and fixed with paraformaldehyde for 15 min. DAPI was used to
stain the nucleus. The cellular uptake was observed by confocal fluorescence microscope
(Olympus FV3000, Tokyo, Japan).

2.7. Hemolysis Assay

Fresh blood from nude mice was incubated with saline containing heparin. The whole
blood was washed with saline 3 times to obtain a 4% red blood cell (RBC) suspension.
Then, 1.0 mL SCF NPs (10, 25, 50, and 100 µg/mL) and the RBC solution (0.2 mL) were
mixed and incubated for 6 h. The mixed solution was photographed after centrifugation
(3000 rpm/min). Finally, the absorption of supernatant was recorded at 540 nm by ultravi-
olet spectrophotometer. Hemolysis rate % = (ASCF NPs − APBS)/(Aultrapure water − APBS) ×
100%.

2.8. In Vivo Fluorescence Imaging

200 µL of SCF NPs (100 µg/mL) were intravenously administered to the Hep-3B
tumor-bearing nude mice. Photos were photographed at 2, 4, 6, 8, and 12 h by the IVIS
Lumina K Series III system (Perkin Elmer, Waltham, MA, USA).

2.9. In Vivo Tumor Therapy

Hep-3B cells were subcutaneously injected into the subcutaneous tissue of male nude
mice. When the tumor volumes reached about 75 mm3, the tumor-bearing nude mice
were randomly divided into three groups (control, SCF NPs without laser irradiation,
SCF NPs with laser irradiation). After 6 h of tail vein injection of SCF NPs, the tumors
of the light group were illuminated by a 660 nm laser for 10 min (600 mW cm−2). All
groups were treated every 2 days, and the volumes of the tumors were recorded. After two
treatments, one nude mouse was taken from each group for hematoxylin and eosin (H&E)
staining of tumor tissue. After treatment for 14 days, the nude mice were sacrificed, and
the main organs (heart, liver, spleen, lung, and kidney) were dissected. Histopathological
examination of main organs was conducted by H&E staining.

3. Results and Discussion
3.1. Characterization of SCF NPs

As shown in Scheme 1, the water-soluble nanoplatform (named SCF NPs) was ob-
tained by a facile self-assembled approach using amphiphilic polymers (Ce6-PEG2000-FA)
(Figure S1) to encapsulate multitarget tyrosine kinase inhibitor (sunitinib) (Figure S2).
The detailed synthetic route of SCF NPs was described in the experimental section. The
scanning electron microscope (SEM) and transmission electron microscope (TEM) were
utilized to evaluate the morphologies of SCF NPs (Figures 1a, S3 and S4), and the results
recapitulated that the prepared nanoparticle was uniformly spherical morphology with a
diameter of around 58 nm (Figure 1b) and the Zeta potential (Figure 1c) was +25.93 mV,
suggesting successful synthesis of the nanoparticles. The suitable size of SCF NPs can
facilitate nanoparticles targeting tumor tissue through enhanced permeability and retention
(EPR) effect. After incubation with PBS for 14 days, no obvious aggregation or precipitate
was observed, indicating superior solubility and good stability of SCF NPs. (Figure S5).
In Figure 1d, SCF NPs displayed two obvious absorption peaks at 411 nm and 678 nm, a
slight red shift could be observed compared to free Ce6-PEG2000-FA, which proved the
successful loading of drugs (Figure 1d). Furthermore, the clear fluorescence peak (Figure 1e)
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and fluorescence photos of various concentrations (10, 50, 100, 200 µg/mL) (Figure 1f)
indicated the potential of SCF NPs for fluorescence imaging applications. To assess the
efficiency of PDT in vitro, a typical molecular singlet oxygen sensor green (SOSG) was used
as the probe to detect the 1O2 generation in SCF NPs aqueous solution via detecting the
change of fluorescence intensity spectrum. Under laser irradiation (150 mW cm−2), the
fluorescence intensity increased gradually, which proved that SCF NPs possess remarkable
1O2 generation performance (Figure 1g). Furthermore, the 1O2 generation ability of SCF
NPs was further verified by monitoring the changes in the ultraviolet absorption spectrum
of 1,3-diphenylisobenzofuran (DPBF) at 418 nm with 660 nm laser irradiation.
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Figure 1. (a) SEM image of SCF NPs, scale bar: 200 nm. (b) Size distribution of SCF NPs. (c) Zeta
potential of SCF NPs. (d) Ultraviolet absorption spectrum of sunitinib, Ce6-PEG2000-FA, and SCF NPs
(Ce6-PEG-FA donated as Ce6-PEG2000-FA). (e) The fluorescence emission spectrum of SCF NPs in
PBS. (f) The fluorescence imaging intensity of various concentration SCF NPs. (g) Fluorescence spectra
of SOSG mixed with SCF NPs excited by 660 nm laser irradiation. (h) Photothermal property of SCF
NPs at different concentrations under laser irradiation (660 nm, 800 mW cm−2). (i) Photothermal
property of SCF NPs (100 µg/mL) with different power densities.

The absorption intensities of DPBF mixed with SCF NPs in PBS (pH 7.4) time-dependently
decrease under the 660 nm laser irradiation (Figure S6). Meanwhile, after the conjugation
of PEG2000 with Ce6, SCF NPs still exhibited superior 1O2 photogeneration owing to the
action of Ce6-PEG2000-FA (Figure S7). These results unambiguously demonstrated that
SCF NPs can be employed as an outstanding PDT therapeutic agent for tumor therapy.
Considering the existing near-infrared-region (NIR) absorption of SCF NPs, the photother-
mal effect was further investigated in PBS aqueous solution. The temperature changes
of SCF NPs at different concentrations were investigated using a thermal imaging device
under illumination conditions (800 mW m−2). The temperature changes of SCF NPs in-
creased gradually with the increasing concentrations (Figure 1h). The temperature of SCF
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NPs increased by 14.5 ◦C even at a low concentration (25 µg/mL), and the photothermal
performance may be attributed to the presence of Ce6. The photothermal properties of Ce6
were retained after successful conjugation with PEG2000, and with increasing laser power,
a corresponding increase in temperature was observed at a concentration of 100 µg/mL of
SCF NPs (Figure 1i). Taken together, these results suggested that SCF NPs could serve as a
potential nanoplatform for both PDT and PTT.

3.2. Cellular Experiment of SCF NPs

The intracellular uptake of SCF NPs was observed using a confocal fluorescence
microscope with Ce6 as a fluorescent probe. As shown in Figure 2a, the green fluorescence
of Ce6 could be observed within the cytoplasm of Hep-3B cells by confocal fluorescence
microscopy, suggesting that SCF NPs are efficiently endocytosed by tumor cells. Biosafety
assessment is critical before nanocarriers are used for biomedical research. The Hep-3B
and human normal hepatocytes (LO2) were employed to evaluate the biocompatibility of
Ce6-PEG2000-FA. CCK-8 assays were conducted to detect the cytotoxicity of Ce6-PEG2000-
FA. As described in Figure S8, the result of CCK-8 indicated that the Ce6-PEG2000-FA
showed superior biosafety. Both cell lines maintained high cell viability (>90%) even at
concentrations greater than 200 µg/mL. As the nanocarrier of SCF NPs, Ce6-PEG2000-
FA not only have a good encapsulation effect but also show little toxicity to normal cell
and tumor cell. Then, the efficacy of combination therapy comprising phototherapy and
molecular targeted therapy was evaluated. As indicated in Figure 2b, the cell survival rates
of tumor cells treated with SCF NPs with or without laser radiation were concentration
dependent. It is worth noting that dark toxicity of SCF NPs is rather high, with 46.5%
cell viability at a concentration of 8 µg/mL. This phenomenon may be attributed to the
successful loading of sunitinib, effective cellular uptake of nanoparticles, and smooth
intracytoplasmic release of sunitinib. Importantly, SCF NPs exhibited strong phototoxicity,
with 30.9% cell viability at a concentration of 8 µg/mL. The IC50 values of SCF NPs with
or without laser irradiation are 7.8 and 4.3 µg/mL for Hep-3B cells, respectively. Therefore,
SCF NPs showed remarkable synergistic therapeutic outcomes based on phototherapy
and molecular targeted therapy. Subsequently, we further investigated the intracellular
ROS generation of various groups by using DCFH-DA as the fluorescence probe. In
Figure 2c, the strongest fluorescence emission could be detected in the group of MCS
NPs with laser irradiation. The quantitative analysis of the fluorescence intensity further
confirmed this result (Figure 2d). Notably, the group of SCF NPs without light irradiation
also displayed a slight fluorescent signal, which may be attributed to sunitinib-induced
generation of reactive oxygen species (ROS) [39,40]. In order to verify the antivascular
properties of SCF NPs, a blood vessel formation experiment was performed. As displayed
in Figure 2e,f, SCF NPs can be successfully taken up by HUVEC cells, and SCF NPs group
could effectively fight against angiopoiesis (vascular length, tightness, and intersections
significantly decreased) than the control group. Therefore, a synergistic therapeutic strategy
combining phototherapy with molecular targeted therapy can effectively eliminate tumor
cells in vitro.
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Figure 2. (a) Cellular uptake of SCF NPs in Hep-3B cells, scale bar: 30 µm. (b) In vitro cytotoxicity of
SCF NPs for Hep-3B cell measured by CCK-8. (c) DCFH-DA probe staining to detect the generation
of 1O2. Green fluorescence represents the generation of 1O2. Scale bar: 50 µm. (d) Fluorescence
intensity quantitative analysis of DCFH-DA. (e) Cellular uptake of SCF NPs in HUVEC cells, scale
bar: 30 µm. (f) In vitro anti-angiogenesis assay of control group and SCF NPs group.

3.3. Multimodal Imaging and In Vivo Experiments

The imaging performance of nanoparticles is of great significance for early diagnosis,
targeted treatment, and intraoperative guidance of tumors. To investigate the in vitro
imaging properties of SCF NPs, a hemolysis experiment was performed to assess the
biocompatibility of nanoparticles. As illustrated in Figure 3a, the hemolysis rate (2.91%)
was less than 5% even at a concentration of 100 µg/mL SCF NPs, demonstrating satisfactory
biosafety in vivo. Subsequently, we used real-time fluorescence imaging to assess the
targeting performance of SCF NPs in vivo. Figure 3b,c showed the real-time fluorescence
imaging and fluorescence intensity change in vitro. Before intravenous injection of SCF
NPs, no fluorescence signals at the tumor site could be observed. After intravenous
injection of nanoparticles, a gradual increase in fluorescence signal at the tumor site was
observed, reaching a maximum after approximately six hours, followed by a gradual
decrease. The results of fluorescence imaging experiments confirmed the superior tumor-
targeting properties of SCF NPs, which may be attributed to the size-dependent passive
targeting properties and the folate-relevant active targeting properties. Owing to the
outstanding photothermal peculiarity of SCF NPs, after 6 h intravenous injection of SCF
NPs, the real-time photothermal photos at the tumor site can be visually evaluated by the
infrared camera. The thermal imaging photos indicated the effective enrichment of SCF
NPs at tumor sites. As shown in Figure 4a,b, the temperature of the tumor area in mice
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injected with SCF NPs can be elevated by more than 17 ◦C upon 660 nm laser irradiation,
providing an effective photothermal treatment. In comparison, the temperature of mice
injected with saline only increased slightly by about 3.7 ◦C. In a word, the multimodal
imaging of SCF NPs could provide effective diagnosis and precise intraoperative navigation.
The excellent tumor-targeting ability and imaging performance of SCF NPs encourage us
to further evaluate therapeutic efficacy in vivo. To validate the antitumor effect of SCF NPs
in vivo, tumor volumes were recorded every two days during 14 days of treatment. As
shown in Figure 4c,d, compared to the control group, the tumor growth was effectively
inhibited but not eliminated entirely for the group treated with SCF NPs. Noteworthy,
we surprisingly observed that the SCF NPs group with laser radiation can completely
eradicate tumors after two or three treatments without any recrudescence. The results
indicate that SCF NPs can remarkably inhibit tumor growth by combining phototherapy
and molecular targeted therapy. After two treatments, tumors were removed from nude
mice and stained for hematoxylin and eosin (H&E). The histopathology results indicate that
SCF NPs with laser radiation could effectively induce cell apoptosis and necrosis of tumor
tissues (Figure 4e). To evaluate the toxicology of SCF NPs on major organs (heart, liver,
spleen, lung, and kidney), after 14 days of treatment, mice were sacrificed and dissected
to recover major organs, which were subsequently fixed in 10% buffered formalin and
embedded in paraffin wax for routine histological examination via H&E staining (Figure 5).
The experimental results showed no obvious damage, which indicating the prepared SCF
NPs have no obvious toxicity. These results indicated that SCF NPs exhibited promising
antitumor efficacy through PDT/PTT and molecular targeting therapy.
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Figure 4. (a) IR thermal images of mice bearing Hep-3B tumors injected with saline or SCF NPs,
irradiated with 660 nm laser (600 mW cm−2). (b) The curves of temperature changes at the tumor site
under laser irradiation. (c) Tumor volume growth curves of various groups. * p < 0.05. (d) Images of
dissected tumors from different groups (Control, SCF NPs, SCF NPs with laser radiation). (e) H&E
staining of tumor tissue for each group, scale bars: 50 µm.

Micromachines 2023, 14, x FOR PEER REVIEW 10 of 12 
 

 

 
Figure 5. H&E staining for major organ sections (heart, liver, spleen, lung, and kidney) from differ-
ent groups of mice. Scale bar: 50 μm. 

4. Conclusions 
In summary, we developed a multifunctional nanoplatform (SCF NPs) by utilizing a 

novel amphiphilic polymer (Ce6-PEG2000-FA) to deliver a multitarget tyrosine kinase in-
hibitor (sunitinib). The Ce6-PEG2000-FA exhibited outstanding biocompatibility, and the 
final prepared nanoparticles possess a diameter of around 58 nm, which can target tumor 
tissue through the EPR effect. The folic acid group in Ce6-PEG2000-FA can enhance the 
active targeting performance of nanoparticles. The SCF NPs showed antivascular ability 
due to the successful loading of sunitinib. The SCF NPs demonstrated superior therapeu-
tic effects based on PDT, PTT, and molecular targeted therapy. Simultaneously, SCF NPs 
exhibited remarkable photothermal and fluorescence imaging properties, which can be 
utilized for tumor diagnosis and intraoperative navigation. This novel sunitinib-based na-
noplatform for multimodal therapy offers a promising tactic for the treatment of HCC. 

Supplementary Materials: The following supporting information can be downloaded at: 
www.mdpi.com/xxx/s1, Figure S1: The chemical formula of Ce6-PEG2000-FA; Figure S2: The chem-
ical formula of sunitinib; Figure S3: SEM images of SCF NPs; Figure S4: TEM image of SCF NPs; 
Figure S5: The photo of PBS aqueous solution after incubuating SCF NPs for 14 days; Figure S6: The 
degradation of DPBF with the presence of SCF NPs under 660 nm laser irradiation; Figure S7: The 
degradation of DPBF with the presence of Ce6-PEG2000-FA under 660 nm laser irradiation; Figure 
S8: Cytotoxicity assay of Hep-3B and LO2 cell incubuated with different concentrations (20, 40, 60, 
80, 100, 200 μg/mL) of Ce6-PEG2000-FA. 

Figure 5. H&E staining for major organ sections (heart, liver, spleen, lung, and kidney) from different
groups of mice. Scale bar: 50 µm.

4. Conclusions

In summary, we developed a multifunctional nanoplatform (SCF NPs) by utilizing
a novel amphiphilic polymer (Ce6-PEG2000-FA) to deliver a multitarget tyrosine kinase
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inhibitor (sunitinib). The Ce6-PEG2000-FA exhibited outstanding biocompatibility, and the
final prepared nanoparticles possess a diameter of around 58 nm, which can target tumor
tissue through the EPR effect. The folic acid group in Ce6-PEG2000-FA can enhance the
active targeting performance of nanoparticles. The SCF NPs showed antivascular ability
due to the successful loading of sunitinib. The SCF NPs demonstrated superior therapeutic
effects based on PDT, PTT, and molecular targeted therapy. Simultaneously, SCF NPs
exhibited remarkable photothermal and fluorescence imaging properties, which can be
utilized for tumor diagnosis and intraoperative navigation. This novel sunitinib-based
nanoplatform for multimodal therapy offers a promising tactic for the treatment of HCC.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/mi14030613/s1, Figure S1: The chemical formula of Ce6-PEG2000-
FA; Figure S2: The chemical formula of sunitinib; Figure S3: SEM images of SCF NPs; Figure S4:
TEM image of SCF NPs; Figure S5: The photo of PBS aqueous solution after incubuating SCF NPs
for 14 days; Figure S6: The degradation of DPBF with the presence of SCF NPs under 660 nm laser
irradiation; Figure S7: The degradation of DPBF with the presence of Ce6-PEG2000-FA under 660 nm
laser irradiation; Figure S8: Cytotoxicity assay of Hep-3B and LO2 cell incubuated with different
concentrations (20, 40, 60, 80, 100, 200 µg/mL) of Ce6-PEG2000-FA.
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Abstract: Holographic microwave imaging (HMI) has been proposed for early breast cancer diag-
nosis. Automatically classifying benign and malignant tumors in microwave images is challenging.
Convolutional neural networks (CNN) have demonstrated excellent image classification and tumor
detection performance. This study investigates the feasibility of using the CNN architecture to
identify and classify HMI images. A modified AlexNet with transfer learning was investigated to
automatically identify, classify, and quantify four and five different HMI breast images. Various
pre-trained networks, including ResNet18, GoogLeNet, ResNet101, VGG19, ResNet50, DenseNet201,
SqueezeNet, Inception v3, AlexNet, and Inception-ResNet-v2, were investigated to evaluate the
proposed network. The proposed network achieved high classification accuracy using small training
datasets (966 images) and fast training times.

Keywords: microwave imaging; breast cancer; deep learning; AlexNet; transfer learning

1. Introduction

Breast cancer is the leading cause of female cancer deaths [1]. Previous studies showed
that early breast cancer detection methods combined with suitable treatment could im-
prove survival rates significantly [2]. X-ray mammography is the current gold-standard
imaging tool for diagnosing breast cancer, but it produces harmful radiation and is un-
suitable for dense breasts [3]. Microwave imaging has been proposed as one of the most
potential breast imaging tools [4]. Researchers have extensively investigated microwave
imaging in many aspects, including measurement of the microwave dielectric properties
of breast tissues [5,6], image algorithms [7,8], numerical models [9,10], data acquisition
systems [11–13], microwave antennas [14–16], clinical trials [17,18], image enhancement
and improvement methods [19–21], and image classification [22–24]. If microwave images
contain specific qualitative and quantitative indicators, this may help characterize benign
and malignant tumors and predict disease. However, this work is challenging because this
interdisciplinary study involves several disciplines, such as microwave science, medical
imaging, machine learning, and computer vision.

Over the past two decades, deep learning has attracted increasing attention and has
achieved excellent performance in medical image classification and disease detection [25,26].
For example, Chen et al. employed the biclustering mining method in ultrasound images
to identify breast lesions with accuracy, sensitivity, and specificity of 96.1, 96.7, and 95.7%,
respectively [27]. However, the image datasets were too small to implement generalizations.
Le et al. applied a deep neural network to enhance microwave images [28]. Khoshdel
et al. investigated the feasibility of using 3D U-Net architecture to improve microwave
breast images [29]. Rana et al. investigated machine learning for breast lesion detection
using microwave radar imaging [22]. Mojabi et al. applied convolutional neural networks
(CNN) to microwave and ultrasound images to classify uncertainty quantification and
breast tissue [24]. However, obtaining big microwave image datasets for training networks
is challenging.
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AlexNet is one of the most popular CNN architectures, and it is exploited on ImageNet
datasets (including 50 million images) [30]. Previous studies demonstrated that small
datasets (a few hundred) are employed for image classification [31]. However, small
datasets are unsuitable for training networks due to easy overfitting. With the help of
transfer learning, the training process can be conducted on a personal computer using
small datasets [32].

In our previous studies, the holographic microwave imaging (HMI) method was pro-
posed and tested for breast lesion detection [33–35]. This paper investigates the feasibility of
using modified AlexNet with transfer learning to identify, classify, and quantify five classes
of HMI datasets (fatty, dense, heterogeneously dense, very dense, and very dense breasts
containing tumors), thereby solving the highly subjective judgment problem of lesions or
abnormal tissues. Experimental validations are conducted on realistic MRI-based breast
models to investigate the effectiveness and accuracy of modified AlexNet with transfer
learning. In addition, a comparison study of several deep learning networks, including
ResNet18, ResNet50, ResNet101, GoogLeNet, Inception v3, AlexNet, and VGG19, was
conducted to evaluate the performance of HMI image classification. The research findings
not only extend the application of deep learning but also help to understand microwave
science from the perspective of deep learning with computer vision. The rest of this paper
is organized as follows: Section 2 describes the proposed materials and method. Section 3
presents experimental validations and results. Section 4 concludes the study.

2. Materials and Method
2.1. Convolutional Neural Network

A typical CNN contains an input layer (that receives pixel values), a convolution layer
(that extracts image features), a pooling layer (that reduces the pixels to be processed and
formulates abstract elements), and an output layer (that maps the extracted features into
classification vectors corresponding to the feature categories) that can be described as:

zl = W l ∗ xl−1 + bl

al = σ
(

zl
) (1)

where l denotes the lth layer and ∗ is a convolution operation. W l , bl , and zl denote the
weights matrix, bias matrix, and weighted input of the lth layer. σ is the nonlinear activation
function. When l = 2, x2−1 = x1 is the image matrix whose elements are pixel values.
When l > 2, xl−1 is the feature maps matrix al−1, which is extracted from the (l− 1)th layer,
i.e., xl−1 = al−1 = σ

(
zl−1

)
. Let L be the output layer and aL is the final output vector.

Nonlinear activation functions are employed from the second layer to the last layer.
The cost function is:

EL
0 = − 1

n

n

∑
i=1

N

∑
k=1

[
tL
k lnaL

k +
(

1− tL
k

)
ln
(

1− aL
k

)]
(2)

where n is the training number and N is the number of neurons in the output layer
corresponding to the N classes. tL

k is the targeted value corresponding to the kth neuron of
the output layer and aL

k is the actual output value of the kth neuron of the output layer.
The output layer error can be defined as:

δL =
∂EL

0
∂zL (3)

where ∂(·) denotes the partial derivative operation. l = { L− 1, L− 2, . . . , 2}, then:

δl = W l+1δl+1◦σ′
(

zl
)

(4)
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where ◦ is the Hadamard product. The partial derivative from EL
0 to W l+1 and bl can be

calculated as follows:
∂EL

0
∂W l =

∂EL
0

∂al
◦ ∂al

∂W l = δl◦xl−1

∂EL
0

∂bl =
∂EL

0
∂al
◦ ∂al

∂bl = δl



 (5)

the changes can be computed by:

∆W l = −η
∂EL

0
∂W l

∆bl = −η
∂EL

0
∂bl



 (6)

where η denotes the learning rate.
The ResNet architecture reduces training errors and network layers [36]. Adding a

quick identity link to the primary network unit is the key to the ResNet architecture:

H(X) = F(X) + X (7)

where H(X) is the ideal image and F(X) is the residual map.

2.2. Datasets

As shown in Table 1, publicly available MRI-derived breast phantoms from 9 human
subjects were used to develop realistic breast models by converting pixel values in MRI
images to complex-valued permittivity [37,38]. Figure 1 shows a sample (breast 9) of
12 phantoms and the real and imaginary parts of the relative complex-valued permittivity.
Figure 2 shows the real and imaginary parts of 12 breast phantoms. The HMI method was
applied to generate HMI breast image datasets using the developed, realistic numerical
microwave breast models. The numerical model simulated a sphere-shaped inclusion as a
tumor (radius of 5 and 10 mm).

Table 1. Characteristics of breast phantoms.

Number Phantom Class Quantity Model Size

No 1 I: fatty 253 RGB 310× 355× 253
No 2 I: fatty 288 RGB 267× 375× 288
No 3 II: dense 307 RGB 316× 352× 307
No 4 II: dense 270 RGB 300× 382× 270
No 5 II: dense 251 RGB 258× 253× 251
No 6 III: heterogeneously dense 202 RGB 269× 332× 202
No 7 III: heterogeneously dense 248 RGB 258× 365× 248
No 8 III: heterogeneously dense 273 RGB 219× 243× 273
No 9 IV: very dense 212 RGB 215× 328× 212
No 10 V: very dense breast contains two tumors 212 RGB 215× 328× 212
No 11 V: very dense breast contains two tumors 212 RGB 215× 328× 212
No 12 V: fatty breast contains two tumors 253 RGB 310× 355× 253
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and three Class V models were investigated in this study (see Table 1). 

  

Figure 2. (a,b) real and imaginary parts of the relative complex-valued permittivity of breast 1;
(c,d) real and imaginary parts of the relative complex-valued permittivity of breast 2; (e,f) real and
imaginary parts of the relative complex-valued permittivity of breast 3; (g,h) real and imaginary parts
of the relative complex-valued permittivity of breast 4; (i,j) real and imaginary parts of the relative
complex-valued permittivity of breast 5; (k,l) real and imaginary parts of the relative complex-valued
permittivity of breast 6; (m,n) real and imaginary parts of the relative complex-valued permittivity
of breast 7; (o,p) real and imaginary parts of the relative complex-valued permittivity of breast 8;
(q,r) real and imaginary parts of the relative complex-valued permittivity of breast 9; (s,t) real and
imaginary parts of the relative complex-valued permittivity of breast 10; (u,v) real and imaginary
parts of the relative complex-valued permittivity of breast 11 and; (w,x) real and imaginary parts of
the relative complex-valued permittivity of breast 12.

This study used two datasets to train and test the CNN networks (see Table 2).
Dataset 1 consists of the real part of HMI breast images, and dataset 2 consists of the
imaginary part of HMI breast images. According to [37], the dataset in this study includes
five classes of HMI images (12 phantoms), which are fatty, dense, heterogeneously dense,
very dense, and breasts containing tumors. Class V was identified based on tumors that
existed, and three Class V models were investigated in this study (see Table 1).
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Table 2. Training parameters.

Dataset 1 2

Modality Real part of HMI breast Imaginary part of HMI breast
Number of phantoms 12 12

Classes of images 5 5
Number of HMI images 1379 1379

Image size 227 × 227 × 3 227 × 227 × 3
Number of training images 966 966

Number of validation images 275 275
Number of test images 138 138

Number of Class I 160 160
Number of Class II 457 457
Number of Class III 444 444
Number of Class IV 108 108
Number of Class V 210 210

Cross-validation group 8-fold 8-fold
Maximum number of epochs 50 50

Minimum batch size 25 25
Validation frequency 30 30
Initial learning rate 0.0003 0.0003

2.3. Training and Testing Data
2.3.1. Image Segmentation

An original HMI image contains different types of tissues with different sizes and
cannot be applied directly for classification. We applied the image segmentation method
to partition each original HMI image into sub-images and created the total of the sub-
images. Sub-image properties are 227 × 227 pixels (a RGB image). The segmentation
method helps to change the representation to a more meaningful and easier-to-analyze
image while changing the scale to fit AlexNet. Image segmentation makes HMI images in
each sub-image more uniform, which is suitable for classification and facilitates the final
determination of the percentage of each mechanism. In addition, to ensure the authenticity
of extracted features from the training dataset, image augmentation techniques such as
rotation, height, and width shift were not used to ensure the integrity of the original images.

2.3.2. Image Labeling

Both datasets 1 and 2 were classified into five classes (see Figure 2 and Table 2). The
fatty breast (class I) consists of skin, muscle, and fat tissue. Dense breast (Class II) consists of
skin, muscle, fat, and dense tissue (which has higher dielectric properties than fatty tissue).
Heterogeneously dense breast tissue (Class III) consists of skin, muscle, fat tissue, and het-
erogeneously dense tissue. A very dense breast (Class IV) consists of skin, muscle, fat, dense
tissue (which has higher dielectric properties than fat), and very dense fatty tissues (which
have higher dielectric properties than fat and dense tissues). A breast contains tumors (Class
V) consisting of skin, muscle, fat, heterogeneously dense tissue, and two tumors.

The created HMI images illustrate the application behavior of the trained network.
Therefore, their sub-images were not labeled. Different numbers of sub-images from each
class were selected for manual labeling and then used for training and testing the proposed
network. Training and testing datasets were utterly independent to ensure the reliability
and stability of the proposed method.

For each dataset, 70% of the total images were used to train the proposed network,
20% of the total images were used to validate the network, and 10% of the total images were
used to test the network. All breast image datasets were resized to 227 × 227 × 3 pixels.
The training image dataset was applied to tune the network parameters using a gradient-
based method. The testing image dataset was involved in the testing process to generate
predictions. Table 2 shows the parameters used for training the networks.
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2.4. Network Architecture
2.4.1. Modified AlexNet

AlexNet is the most popular CNN architecture due to its better performance in image
classification. Thus, this study applied a modified AlexNet with transfer learning (see
Table 3) to HMI images to improve image classification accuracy. Table 3 shows the structure
of modified AlexNet with transfer learning. The first convolution layer of the network
takes input datasets and passes them through convolution filters. Thus, the input image is
required to be resized to 227 × 227 × 3 pixels, corresponding to the breadth, height, and
three-color channels representing the depth of the input image. The last convolutional layer
implements the reconstructed image process, aggregating the high-resolution patch-wise
representations to produce the output image. The cross-entropy loss function is used
to reduce errors. The batch normalization function is performed before each activation
function to solve overfitting problems. The ReLU layer provides faster and more efficient
training, mapping negatives, and maintaining positive values. The max pooling layer
simplifies the output and reduces the resolution by reducing the number of parameters
needed to learn. The fully connected layer combines all features to classify the images into
four classes. The SoftMax function normalizes the output of the fully connected layer.

Table 3. AlexNet with transfer learning.

Schematic No. Name Type Activations Weights & Bias
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1 data Image input 227 × 227 × 3

2 conv1 Convolution 55 × 55 × 96 Weights: 11 × 11 × 3 × 96;
bias: 1 × 1 × 96

3 relu1 ReLu 55 × 55 × 96
4 norm1 Cross-channel normalization 55 × 55 × 96
5 pool1 Max pooling 27 × 27 × 96
6 conv2 Grouped convolution 27 × 27 × 96

7 relu2 ReLU 27 × 27 × 256 Weights: 5 × 5 × 48 × 128;
bias: 1 × 1 × 128 × 2

8 norm2 Cross-channel normalization 27 × 27 × 256
9 pool2 Max pooling 13 × 13 × 256

10 conv3 Convolution 13 × 13 × 384 Weights: 3 × 3 × 25 × 384;
bias: 1 × 1 × 384

11 relu3 ReLU 13 × 13 × 384

12 conv4 Grouped convolution 13 × 13 × 384 Weights: 3 × 3 × 192 × 192;
bias: 1 × 1 × 192 × 2

13 relu4 ReLU 13 × 13 × 384

14 conv5 Grouped convolution 13 × 13 × 256 Weights: 3 × 3 × 192 × 128;
bias: 1 × 1 × 128 × 2

15 relu5 ReLU 13 × 13 × 256
16 pool5 Max pooling 6 × 6 × 256

17 fc6 Fully connected 1 × 1 × 4096 Weights: 7029 × 9216;
bias: 4096 × 1

18 relu6 ReLU 1 × 1 × 4096
19 drop6 Dropout 1 × 1 × 4096

20 fc7 Fully connected 1 × 1 × 4096 Weights: 4096 × 4096;
bias: 4096 × 1

21 relu7 ReLU 1 × 1 × 4096
22 drop7 Dropout 1 × 1 × 4096
23 fc8 Fully connected 1 × 1 × 4 Weights: 4 × 4096; bias: 4 × 1
24 softmax SoftMax 1 × 1 × 4
25 output Classification output

2.4.2. Transfer Learning

As shown in Table 3, the last three layers of AlexNet were replaced by transfer learning
to avoid overfitting. The proposed AlexNet network consists of a pre-trained network and
a transferred network. The parameters in the pre-trained network were trained on publicly
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available ImageNet datasets. Therefore, it could be adapted to extract features from the
HMI image dataset. The parameters in the transferred network represent a small part of
the proposed AlexNet network. Thus, a small training dataset can meet the requirements
of transfer learning.

2.5. Data Analysis and Image Processing

MATLAB version R2020a with the deep learning library tool was used for data analysis
and image processing. The proposed network was developed on a laptop (ThinkPad P53)
with an Intel i7-8700K CPU (2.60 GHz) and 256 GB of RAM. Stochastic gradient descent
with momentum (SGDM) was selected to train the transferred part of AlexNet.

The MATLAB Transfer Learning of Pretrained Network for Classification tool was
used to train and test various deep learning networks using dataset 2, including ResNet18,
GoogLeNet, ResNet101, VGG19, ResNet50, DenseNet201, SqueezeNet, Inception v3, AlexNet,
and Inception-Res-Net-v2.

2.6. Performance Metrics

The overall performance of the proposed architecture depends on the evaluation
matrix, which contains True Positives (TP), False Positives (FP), False Negatives (FN),
and True Negatives (TN). The AlexNet architecture was evaluated on the testing dataset
using four performance metrics, including precision and accuracy. Precision quantifies the
exactness of a model and represents the ratio of carcinoma images accurately classified out
of the union of predicted same-class images [39].

Precision =
TP

TP + FP
(8)

where TP refers to images correctly classified as breast tumor images and FP represents the
typical images mistakenly classified as breast tumor images.

Accuracy evaluates the correctness of a model and is the ratio of the number of images
accurately classified out of the total number of testing images.

Accuracy =
TP + FN

TP + TN + FP + FN
(9)

where TN refers to the correctly classified standard images.

3. Results and Discussion
3.1. Results

Figure 3a shows the training progress of the proposed network using dataset 1 and
the SGDM method, including classification accuracy and cross-entropy loss for each epoch
of training and validation. At 50 epochs, the highest classification accuracy of training and
validation was 100 and 100%, respectively, and the lowest cross-entropy loss of training and
validation was 0 and 0%, respectively. The training time was 11 min and 13 s for training
966 images from dataset 1.

Figure 3b displays the training progress of modified AlexNet with transfer learning
using dataset 2 and the SGDM method. At 50 epochs, the highest classification accuracy of
training and validation was 100 and 100%, respectively, and the lowest cross-entropy loss
of training and validation was 0 and 0%, respectively. The training time was 10 min and
55 s for training 966 images from dataset 2.

As shown in Figure 4a, the performance of the proposed network was evaluated using
the confusion matrix on testing images (from dataset 1). The actual horizontal row and
predicted vertical column demonstrate the classification accuracy and sensitivity of the
proposed network, respectively. For example, in the first row, 16 images were used to
classify Class IV in the testing dataset, and 16 images (100%) were classified accurately.
Therefore, the classification accuracy of Classes I, II, III, IV, and V was 100, 100, 100, 91.7,
and 67.7%, respectively. In the first column, 16 images were used to predict class I of the
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testing images (from dataset 1), where 16 images (100%) were classified accurately. The
sensitivity of Classes I, II, III, IV, and V was 100, 78.3, 97.7, 100, and 100%, respectively.
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Figure 4b shows the performance of modified AlexNet with transfer learning on
testing images (from dataset 2). In the first row, 16 images were used to classify Class I in
the testing dataset, and 16 images (100%) were classified accurately. The proposed network
obtained a classification accuracy of 100, 100, 100, 100, and 100% for Classes I, II, III, IV, and
V, respectively. In the first column, 16 images were used to predict Class I in the testing
images, where 16 images (100%) were classified accurately. The proposed network obtained
a sensitivity of 100, 100, 100, 100, and 100% for Classes I, II, III, IV, and V, respectively.

Figure 5a,b demonstrate the randomly selected 16 examples of training images (from
dataset 1) and randomly selected 16 examples of testing images (from dataset 1) using
AlexNet with a transfer learning network, respectively.

Figure 6a,b display the randomly selected 16 examples of training images (from dataset
2) and randomly selected 16 examples of testing images (from dataset 2), respectively.
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Figure 6. (a) randomly selected 16 examples of training images (from dataset 2); (b) randomly
selected 16 examples of testing images (from dataset 2).

Table 4 presents the prediction results of dataset 2 using several deep learning net-
works. MobileNet-v2 obtained the highest accuracy (96.84%), and the training time was
28 min and 38 s. AlexNet used the shortest training time (3 min and 4 s) with relatively low
accuracy (79.89%), Inception-ResNet-v2 obtained the lowest accuracy (79.34%) and used
a long training time (106 min and 48 s), and DenseNet201 used the longest training time
(132 min and 25 s) with relatively high accuracy (96.01%). Modified AlexNet with transfer
learning achieved higher classification accuracy than other deep learning networks, which
is suitable for classifying HMI images.

Table 4. HMI image classification using different deep learning networks.

Architecture Accuracy Training Time Result

MobileNet-v2 96.84% 28 min 38 s
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Table 4. Cont.

Architecture Accuracy Training Time Result
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Table 4. Cont.

Architecture Accuracy Training Time Result
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Table 4. Cont.

Architecture Accuracy Training Time Result
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3.2. Discussion

In this study, five classes of breast phantoms were developed using the method
presented in [37]. The initial HMI breast images were created using the HMI method
detailed in [33]. The initial images were analyzed and processed using the proposed
CNN architecture. The proposed architecture offered higher classification accuracy and
sensitivity for image dataset 2 (imagery-part HMI images; see Figure 4a) than image dataset
1 (real-part HMI images; see Figure 4b). For image dataset 1, the modified AlexNet with
transfer learning offers higher classification accuracy for classes I–III (100%) than classes IV
(91.7%) and V (67.7%), and higher sensitivity for classes I (100%), IV (100%), and V (100%)
than classes II (78.3%) and III (97.7%). However, no significant difference in classification
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accuracy and sensitivity was obtained for dataset 2. Figure 4 demonstrates that image
datasets affect the performance classification accuracy and sensitivity of the modified
AlexNet with transfer learning.

The randomly selected 16 testing examples of image dataset 1 are shown in Figure 5b,
and the 16 randomly selected testing examples of image dataset 2 are shown in Figure 6b.
Although a classification accuracy of 100% was obtained for examples of image dataset 1
(see Figure 5b), it does not mean that the classification accuracy of dataset 1 is as high as
100%. For example, the classification accuracy rates of 91.7% and 67.7% were obtained for
classes IV and V, respectively (see Figure 4a). Although the proposed CNN architecture
provides accuracy and sensitivity of 100% to classify dataset 2 (see Figure 4b), the classifica-
tion accuracy of some testing examples is below 100% (96.36–99.96%; see Figure 6b). This
may be caused by MATLAB calculation errors.

Compared with some popular deep learning networks (see Table 4), modified AlexNet
with transfer learning has apparent advantages in classification accuracy and training time.
For example, modified AlexNet with transfer learning obtained higher accuracy (100% vs.
96.84%) and required shorter training time (10 min 55 s vs. 28 min 38 s) to classify image
dataset 2 than MobileNet-v2. The experimental results demonstrated that the modified
AlexNet with transfer learning could identify, classify, and quantify HMI images with high
accuracy, sensitivity, and reasonable training time. Several factors may affect the test results,
including image preprocessing, the number of training images (in percentages), the total
number of image datasets, and MATLAB calculation errors.

4. Conclusions

In this study, the CNN architecture was introduced for analyzing HMI images. A
modified AlexNet with transfer learning was developed to identify, classify, and quantify
five classes of HMI images (fatty, dense, heterogeneously dense, very dense, and very dense
breasts containing tumors). Various experimental validations were conducted to validate
the performance of the proposed network. Various popular deep learning networks,
including AlexNet, were studied to evaluate the proposed network. Results demonstrated
that the proposed network could automatically identify and classify HMI images more
accurately (100%) than other deep learning networks. In conclusion, the proposed network
has the potential to become an effective tool for analyzing HMI images using small training
datasets, which offers promising applications in the microwave breast imaging field.
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Abstract: In this work, we developed and characterized a novel fluidic platform that enables long-
term in vitro cell culture in a semi-automated fashion. The system is constituted by a control unit
provided with a piezoelectric pump, miniaturized valves, and a microfluidic network for management
and fine control of reagents’ flow, connected to a disposable polymeric culture unit resembling the
traditional multiwell-like design. As a proof of principle, Human Umbilical Vein Endothelial Cells
(HUVEC) and Human Mesenchymal Stem Cells (hMSC) were seeded and cultured into the cell culture
unit. The proliferation rate of HUVEC and the osteogenic differentiation of hMSC were assessed and
compared to standard culture in Petri dishes. The results obtained demonstrated that our approach is
suitable to perform semi-automated cell culture protocols, minimizing the contribution of human
operators and allowing the standardization and reproducibility of the procedures. We believe that
the proposed system constitutes a promising solution for the realization of user-friendly automated
control systems that will favor the standardization of cell culture processes for cell factories, drug
testing, and biomedical research.

Keywords: cells-on-a-chip; microfluidics; fluid automation; micro-bioreactors; smart fluidics

1. Introduction

Traditional in-vitro techniques for cell culture allow the growth and proliferation
of cells in an artificial and controlled environment and play a key role in elucidating
physiology, disease mechanisms, and in testing new drugs [1–4]. These well-established
approaches, which rely on 2D culture of cell lines and primary cells in standard Petri dishes
and flasks, are still the most diffused in biology and biotechnology research, as well as in
the pharmaceutical industry, cell factories, and other biomedical application areas [5].

Nowadays, cell cultivation practices are not very different from those used on a
large scale in the second half of the 20th century [6]. Although these procedures enabled
the understanding of a number of phenomena concerning cellular life and activity and
proved to be determinants for applications such as drug testing and tissue regeneration,
they present several intrinsic limitations. In fact, traditional cell culture systems require
numerous and complex manual handling methods, limiting the standardization of the
cultivation in terms of cell yield and activity [7]. Moreover, long-term cell maintenance is
expensive and time consuming, requiring high quantities of reagents, test samples, and
effort. The transition to user-friendly automated devices would favor the standardization
of the cultivation process and the reduction of production costs and preparation times for
cell culture through the decrease of the number of interventions by the operator [8].
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Microfluidics and lab-on-a-chip technologies constitute a strategical solution to favor
this transition. Performing cellular assays in microfluidic devices provided the advantages
of reduced reagent consumption by replacing traditional Petri dishes and flasks with micro-
culture systems, offering a cost-effective route for high-throughput cell production and
culture in a controlled environment [9]. The micro-bioreactor is a simple yet archetypal mi-
crofluidic device that operates similarly to a standard multi-well plate, but with integrated
fluidics circuits [10]. The design of this system is an array of cylindrical culture chambers
connected to a network of micro- and/or millimeter-sized channels for the injection and
withdrawal of cell media and fluids of interest for a specific cell assay [11]. Soft lithography
and polymer micro-fabrication technologies allowed for the rapid prototyping of such de-
vices based on polymeric biocompatible materials, such as polydimethylsiloxane (PDMS),
polyethylene glycol diacrylate (PEGDA), hydrogels, and thermoplastics [12–15]. The in-
vitro culture in fluidics micro-bioreactors has been reported in the literature, both in static
and dynamic conditions, for a variety of cells, including stem cells, immortalized tumor
cells (HeLa), cardiomyocytes and skeletal muscle cells of murine myoblasts, CrFk-type
fibroblasts, and HN9.10e neuronal cell models [16–19].

At the present time, the operation of such micro-devices is restricted to the use of
relatively complex, specific, and bulky external equipment and macro-to-micro interface
systems for fluidic control, requiring the constant contribution of human operators to
manage fluids flow in a manual and not standardized manner [20–22]. These approaches
recently stimulated a paradigmatic question in the lab-on-a-chip community about the
effective impact of microfluidic devices in standard cell culture: are we dealing with
“lab-on-a-chip” or “chip-in-a-lab” systems? [23]. The usability and readout reliability
of micro-bioreactors would massively benefit from the systematic implementation of a
suitable integrated control system for precise fluid handling in a remote control framework.
This is a key factor to render cell culture protocols automatic, minimizing the operator’s
contribution, and to drastically reduce the number of connection tubes and inlet and outlet
ports and external bulky equipment.

Several works have been reported in the literature concerning automated cell culture
on-chip, as automation is widely recognized as a benchmark parameter in modern microflu-
idic systems for cell biology [24–26]. At the research laboratory level, the minimization and
miniaturization of additional peripheral equipment is considered a key requirement for
the usability of automated devices in cell culture, along with the need for systems that are
ready-to-use in a plug-and-play manner [24,27]. Representative examples of microfluidic
platforms that target fulfilling these requirements and that are already on the market are the
automation systems produced by LabSmith (uProcess™), PreciGenome (iFlow Touch™),
and ElveFlow (Liquid Handling Pack). To our knowledge, these and other similar com-
mercial systems only focus on providing the source for a pressure-driven flow. In order to
realize a more complex fluidic system to achieve high-integration and high-parallelization
(i.e., increasing system compactness and enabling the precise management of multiple
channels), there would be a large number of tubes and interconnections involved, as well as
relatively large valves, increasing the overall device dimension, and making the platform
setup and usage cluttered and error prone.

Here, we present a novel fluidic platform for semi-automated cell culture into fluidic
miniaturized bioreactors, prototyped based on a traditional multiwell-like design. The
platform is composed of an electronic system equipped with integrated micro-pumps,
valves, and microfluidic circuits for the management and fine control of reagents’ flow and
a disposable polymeric cell culture unit provided with fluidic channels and culture sites.
This system combines the features of standard cell culture techniques (monolayer culture
in cylindrical wells) with the possibility to conduct specific culture protocols remotely,
simplifying the entire process, minimizing the contribution of human operators, and
allowing the systematic culture of complex cell systems. At odds with what is on the market
and reported in the literature, our fluidic system presents active valves interlocked on a
fluidic backplane with relatively complex interconnections. The combination between the
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complexity of the fluidic design and the use of embedded micro-valves actuated by shape
memory alloys actuators renders the system compact and highly performing in managing
multiple fluidic channels suitable for cell culture protocols. Our fluidic platform was tested
on two different primary human cell types, Umbilical Vein Endothelial Cells (HUVEC) and
Mesenchymal Stem Cells (hMSC). The cells were cultured in a semi-automated fashion and
morphology, known to predict cell health, which was analyzed by confocal microscopy.
In addition, the proliferation rate of HUVEC and the osteogenic differentiation of hMSC
were investigated. All the data obtained were compared to the cells cultured in standard
culture dishes.

System Design and Semi-Automated Culture Approach

The system (Figure 1) consists of two main units: (i) a fluidic control unit, for the
fine control; transport; and perfusion of reagents, culture media, and cells within the
system. The fluid transportation takes place within an integrated polymeric fluidic platform,
supplied with a network that includes several precision valves and a piezoelectric pump
of micro-channels for the handling of the liquids of interest. (ii) A disposable multi-well
like cell culture unit, produced in polydimethyilsiloxane (PDMS) via soft-lithography,
connected to the fluidic unit through silicone tubes.
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Figure 1. Schematic representation of the microfluidic control platform, including the control module
and disposable PDMS unit.

The feasibility of the fluidic platform and PDMS-based device for semi-automated
on-chip cell culture was assessed using HUVEC and hMSC as test cellular models. In
both cases, the culture protocol operations, such as the change of culture medium and
the injection of reagents of interest, were timed and controlled externally via the fluidic
control unit, while the fluidic cell culture unit was positioned in an incubator at 37 ◦C and
5% CO2. We chose 500 µL/min as the flow rate, providing a laminar flow and low values
of shear stress during the assays. With this setup and conditions, we were able to perform
a 3-days-long cell culture experiment for HUVEC and a 4-days-long culture for hMSC.

2. Materials and Methods
2.1. Fluidic Control Unit

Implemented by Dolphin Fluidics in cooperation with memetis GmbH, the fluidic
control unit is a pressure-driven flow system for fluid transportation and delivery. The
source fluids are stored in six chemically inert glass vessels (fluid reservoir bottles) in the
back of the fluidic control unit (Figure 2a). These vessels can be pressurized by a single
piezoelectric air pump from TTP Ventus Ltd. (Royston, UK), which operates completely
silently. A thin PTFE tube (inner diameter 0.8 mm) also reaches through the cap of each
vessel, down to its bottom. This way, the internal air pressure will drive fluid from the
vessel through the tube when its external end is open.
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unit and from there to collector bottles. The fluids are transported by pressure-driven flow.

Distribution of the six supply fluids to the inlets of the cell culture platform is managed
by a custom 3D-printed biocompatible manifold within the fluidic control unit (Figure 2b),
which has two internal levels of flow paths. Eleven normally closed microvalves “Series 09”
by Memetis are flange-mounted to the manifold to allow automatic control of fluid path-
ways (“in-block”). Fluids that leave the fluidic platform are handled by four additional
valves (“out-block”) on the same manifold and directed to three collector vessels. The
schematic diagram of the fluidic circuit is reported into the Supplementary Material File.

The control electronics for the silently operating miniature valves, integrated in the
front part of the unit, support automated valve control via USB connection and I2Cprotocol,
as well as manual operation using toggle buttons in the front panel. Due to their functional
principle, the valves do not only support fully closed/fully open switching states, but
can also adopt intermediate states to enable precise flow rate adjustments via closed-loop
control. The maximum pressure achievable with this system is 2 bar, while the maximum
flow rate value is 80 mL/min, which can be obtained at a pressure of 1 bar. Both pressure
and flow rate resolution are +/−2%.

The extreme compactness of the valves with an installation pitch of only 5 mm is
enabled by a fatigue-free shape memory alloy (SMA) thin film actuator, allowing for more
than 20 million switching cycles. A low-power consumption of 0.15 W holding power
(0.3 W switching power) per valve assures that heat introduction into the controlled media
is minimal.

2.2. Disposable Cell Culture Unit Fabrication

The disposable cell culture unit was produced by means of soft-lithography, using
micro-molding of PDMS, a soft polymer, typically employed for prototyping this kind of flu-
idic system. In fact, PDMS is an elastomeric polymer with suitable properties for biomedical
applications, including physiological indifference, excellent resistance to biodegradation,
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biocompatibility, chemical stability, gas permeability, excellent optical transparency, and
can be easily processed using replica molding [28–30].

Suitable master molds (Figure 3a) were fabricated by numerically controlled micro-
milling of aluminum slabs to obtain protruding microstructures, resembling the final
device design (Figure 3b–d). The disposable unit is designed with cylindrical culture wells
with a 15 mm diameter, typical of that of a standard 24 multi-well plate, and is provided
with micro-fluidic channels with a submillimeter-sized cross section (800 µm) for fluid
transportation into the culture sites. The channels and chamber height were dimensioned
to enable low flow rates (100 to 500 µL/min) with associated low values of shear stress
affecting the cultured cells during chamber perfusion.
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Figure 3. (a) Master obtained by micro-milling aluminum components, resembling the final cell
culture unit’s microstructures; (b) cell culture unit, sealed and bonded to a PDMS membrane (upper
part) and to a glass coverslip (bottom part); (c) final PDMS cell culture unit sandwiched between
PC layers. PC were provided with inlet and outlet ports, positioned to match the ends of the PDMS
cell culture unit, machined to accommodate standard fittings for the four ports for flowing fluids
through the cell culture unit; (d) close-up view of the cell culture chambers, sealed on top with the
oxygen-permeable PDMS membrane.

PDMS (Sylgard 184 Silicone Elastomer Kit, Daw Corning) was cast over the master
to replicate the fluidic network according to the following protocol. The elastomeric part
was mixed with a curing agent at a standard ratio of 10:1 w/w. The mixture was stirred
for 20 min and placed in a vacuum desiccator to remove air bubbles. The PDMS was
then poured into the aluminum master and placed in oven for about 2 h and 15 min at
80 ◦C. After fabrication, the PDMS platform was bonded to 0.1-mm-thick glass coverslips
using oxygen plasma treatment to seal the bottom part of the channels. The treatment was
performed inside a low-pressure Zepto Plasma Surface treatment machine, purchased from
Diener Electronic GmbH (Ebhause, Germany). The oxygen pressure inside the chamber
was fixed at 1.0 mbar, and the surface treatment was applied at a power of 80 W for 1 min
and 30 s. Surfaces were bonded together by direct contact, applying pressure manually.

A 0.03-mm-thick PDMS membrane serving as the roof for the culture wells was
produced by spin coating. This specific thickness allows for oxygen exchange between
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the cell culture chambers and the incubation environment [31,32]. The PDMS-membrane
was stacked over the cell culture unit via the same optimized oxygen plasma treatment
(Figure 3b). The PDMS cell culture unit was then finally sandwiched into a manifold,
consisting of two fastened polycarbonate (PC) frames produced by means of CNC milling,
in order to ensure fluidic seal of the system (Figure 3c).

2.3. Semi-Automated Cell Culture

The device has two independent cell culture chambers of 1.9 cm2 surface area and
containing 500 µL of medium and cells. Cell cultivation took place directly on glass, since
no cell adhesion coatings were added at the bottom of the culture chambers. In order to
ensure sterilization and removal of circulating bubbles, we preliminarily fluxed 70% ethanol
inside the chip, connected to the machine, and in each channel of the fluidic platform. We
then exposed the whole system to UV-c bactericidal action for 30 min, inside the biological
hood. Each beaker, inside the platform, was preliminarily. We next proceeded to seed cells
inside the chip, linking it to the microfluidic control platform through silicone tubes: The
microfluidic control platform enabled us to perform semi-automated cells seeding in a
controlled manner at a flow rate of 500 µL/min. These procedures are strictly carried out
inside the biological hood, except for the sterilization and bubbles removal, which can take
place on a lab bench.

2.3.1. Culture of HUVEC

HUVEC were purchased from Lonza (Basel, Switzerland) and cultured at 37 ◦C and
5% CO2 in EBM-2 medium (Lonza), supplemented with 10% fetal bovine serum and
EGM-2 SingleQuots Supplements (Lonza). They were used up to passage 4. 104 HUVEC
were seeded on each chamber of the cell culture unit and on glass coverslips (13 mm in
diameter) allocated on a 24-well plate as control. After 3 days, the cells were trypsinized via
microfluidic control platform, in a semi-automated manner, collected in the collector bottle,
and counted using a cell counter. The experiment was repeated five times in duplicate. At
the end of the experiments, some samples were fixed for confocal analysis.

2.3.2. Culture of hMSC

hMSC were purchased from CliniSciences and were cultured at 37 ◦C and 5% CO2
in Dulbecco’s Modified Eagle’s Medium containing 10% fetal bovine serum and 2 mM
glutamine (culture medium, CM). All the reagents for hMSC culture were from Sigma-
Aldrich. The cells were used between passage 2 and 6. In total, 3.5 × 104 hMSC were
seeded on each chamber of the cell culture unit and on glass coverslips as control. To
induce osteogenic differentiation, once the cells were confluent, the CM was changed via
microfluidic control platform with an osteogenic medium (OM) containing 2 × 10−8 M
1α,25-Dihydroxyvitamin D3, 10 mM β-glycerolphosphate, and 0.05 mM ascorbic acid
(Sigma-Aldrich, St. Louis, MO, USA). After 24 h of culture, the cells were trypsinized and
collected for Real-Time PCR or fixed for confocal analysis.

2.3.3. Real-Time PCR

Total RNA was extracted by the PureLink RNA Mini kit (Thermo Fisher Scientific,
Waltham, MA, USA). Single-stranded cDNA was synthesized from 0.3 µg RNA in a 20 µL
final volume using High Capacity cDNA Reverse Transcription Kit, with RNase inhibitor
(Thermo Fisher Scientific) according to the manufacturer’s instructions. Real-time PCR
was performed on 20 ng of cDNA using TaqMan™ Fast Universal PCR Master Mix
(Thermo Fisher Scientific, Waltham, MA, USA) and TaqMan Gene Expression Assays
(FAM) (Thermo Fisher Scientific, Waltham, MA, USA). The following primers were used:
RUNX2 (Hs00231692_m1), Sp7 (Hs01866874_s1), COL1A1 (Hs00164004_m1), and SPP1
(Hs00959010_m1). The housekeeping gene GAPDH (Hs99999905_m1) was used as an inter-
nal reference gene. The reactions were performed with CFX96 Real-Time PCR Detection
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System (Bio-Rad, Hercules, CA, USA). Relative changes in gene expression were analyzed
with the 2−∆∆Ct method.

2.3.4. Confocal Microscopy

HUVEC and hMSC were fixed in phosphate buffered saline containing 4% paraformalde-
hyde and 2% sucrose pH 7.6 and permeabilized with Triton 0.3%. HUVEC were incu-
bated with anti-cyclophilin (CYP) D and anti-VE-Cadherin overnight at 4 ◦C, and stained
with Alexa Fluor 488 and 647 secondary antibodies respectively (ThermoFisher Scientific,
Waltham, MA, USA). hMSC were incubated with anti-CYP D overnight at 4 ◦C, and stained
with Alexa Fluor 488 secondary antibodies (ThermoFisher Scientific, Waltham, MA, USA).
Rhodamine-labeled phalloidin was used to visualize the cytoskeleton. 4′,6-Diamidine-2′-
phenylindole dihydrochloride (DAPI, Sigma) was used to stain the nuclei. Finally, cells
were mounted with ProLong Gold Antifade Mountant (Invitrogen, Carlsbad, CA, USA)
and images were acquired using a 40× objective in oil by a SP8 Leica confocal microscope.

2.3.5. Statistical Analysis

Data are expressed as the mean ± standard deviation. The data were analyzed using
one-way ANOVA. Statistical significance was defined as p-value ≤ 0.05.

3. Results & Discussion

The validation of the disposable cell culture unit and the fluidic control platform was
assessed by culturing two different cell types, HUVEC and hMSC. HUVEC were cultured
for 3 days and the proliferation rate and imaging analyses were performed. hMSC were
cultured for 3 days in CM till they reached the confluence and for an additional day in the
presence of the OM to induce the osteogenic differentiation. Osteogenic marker expression
and imaging analyses were then performed. Both cell cultures were performed in a semi-
automated fashion, providing fresh medium exchange every 24 h in a semi-automated
manner at 500 µL/min flow rate. We selected this flow rate value according to the channels
geometry and dimensions in order to keep low shear stresses in the culture chamber during
perfusion [33,34]. As shown in Figure 4, HUVEC cultured in the cell culture unit grows as
fast as the cells cultured on a standard glass coverslip. Taken together, these results suggest
that the design of our cell culture unit provides the proper amount of gas and nutrients
exchange between cultured cells and inner/outer environments, allowing them to grow
and proliferate according to standard culture on wells. Moreover, the use of precision
miniaturized valves and a pulsation-free pump embedded in the control unit is crucial
for avoiding harsh shear stress during medium perfusion and to keep a laminar flow
throughout the performed assays, avoiding fluidic-mechanical stresses on the cell cultures.

By confocal microscopy, we analyzed HUVEC actin cytoskeleton. Figure 4b demon-
strates that the cells cultured on cell culture unit maintain the same polygonal morphology
of the control cells seeded on glass coverslips.

In both samples, the actin is organized as a network of well-defined stress fibers
spanning the entire cell body. We also analyzed the vascular endothelial (VE)-cadherin,
which is an endothelial-specific adhesion molecule located at junctions between endothelial
cells. A correct VE-cadherin-mediated adhesion is fundamental not only to control vascular
permeability but also to modulate cell proliferation and apoptosis [31]. As shown in
Figure 4b, VE-cadherin is well expressed at the cell junctions of both samples.

Then we focused on mitochondria analysis since their morphology reflects the function
of the organelles [35,36] and is continuously modified in response to the different functional
requirements of the cell. The anti-CYP D antibody highlights a complex mitochondrial
network with elongated mitochondria in HUVEC cultured in the cell culture unit and on a
traditional coverslip (Figure 4b).

We also tested hMSC as a model to investigate cell differentiation in response to
specific stimuli. Initially, the cells were cultured in CM for 3 days in the chip and on a
glass coverslip, and then analyzed by confocal microscope. Figure 5a confirms the similar
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cellular morphology of the two samples with a well-organized actin fiber-network. In both
samples, the mitochondria appeared elongated, forming a complex network.
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expression of some osteogenic markers. In particular, we analyzed RUNX2, which is the 
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Figure 4. HUVEC were seeded via microfluidic control platform on cell culture unit or on glass
coverslips as control. (a) The cells were counted using an automated cell counter. Data are the
means ± standard deviation of five independent experiments in duplicate. (b) HUVEC were cultured
on cell culture unit and on glass coverslips for 72 h. The cells were fixed and observed by confocal
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in cyclophilin staining image. Scale bar: 50 µm.
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Once the cells reached the confluence, the medium was changed with the OM and
the hMSC were cultured for an additional 24 h. Then, by real time PCR we analyzed
the expression of some osteogenic markers. In particular, we analyzed RUNX2, which is
the first gene to be expressed during osteogenesis, and Sp7 and collagen 1A1 (COL1A1),
which are involved in the early stages of differentiation and osteopontin (SPP1), which is
one of the most abundant non-collagenous components of the bone extracellular matrix.
Figure 5b shows that 24 h of culture in the presence of the osteogenic cocktail induces a
similar upregulation of all the osteogenic markers both in the cells cultured on the cell
culture unit and in the cells cultured on glass coverslips.

According to these results, the culture system proposed proved to be efficient and time
saving, reproducing in a semi-automated framework the traditional culture and analysis
protocols in a standard multi-well plate-like disposable culture unit. This system will allow
to perform different experiments and assays in parallel, scaling-up for high-throughput
cell culture processes in a controlled manner. In fact, the control unit offers the possibility
to choose a unique and personal set of media/reagents perfusion time, flow rate, and
static/dynamic culture conditions. Moreover, the integrated platform avoids the use of
bulky and highly specific equipment and interfaces, while reducing to the minimum the
complexity of assembling the units. The optimization of this platform, in view of a full
automation of the process, will also allow to culture and co-culture complex biological
systems (e.g., primary cells, stem cell lines and organoids) without the request for human
operators’ contribution. The combination of these features makes this automated culture
system a promising solution to implement automation in cultivation processes for cell
factories, cells-based precision medicine, and biomedical research.

4. Conclusions

In this study, we developed and evaluated the suitability of a novel fluidic platform
for the semi-automated culture of cells into miniaturized devices. The platform comprises
two main units: a fluidic control unit for the fine control and perfusion of reagents, and a
disposable multi-well like cell culture unit produced in PDMS via soft-lithography. HUVEC
and hMSC were seeded via the fluidic platform in a semi-automated fashion, setting the
proper timing and flow rate, in order to avoid harsh shear stress on cells during media
perfusion and to keep a laminar flow throughout the performed assays. In the fluidic
system, the cells are vital and maintain their morphology. The HUVEC proliferation rate
and the hMSC osteogenic differentiation potential are comparable to the respective control
cells cultured on glasses coverslips

The semi-automated approach for cell culture reported here offers several advantages,
such as the reduction of time, reagents, and media consumption, and enables the repro-
duction of traditional culture and analysis protocols using a standard multi-well plate-like
disposable culture unit, massively decreasing the operators’ efforts. We plan to develop
and optimize a fully automated system to perform remotely different cultures and assays
in parallel, scaling-up the system for a high-throughput culture process in a time saving
and cost-effective manner. In this way, the entire procedures will be simplified, minimizing
the contribution of human operators and allowing the standardization and reproducibility
of the in-vitro culture of complex cell systems, such as organoids.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/mi13070994/s1, Figure S1: Schematic diagram of the fluidic
circuit of the control platform.
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Abstract: Cells are complex biological units that can sense physicochemical stimuli from their
surroundings and respond positively to them through characterization of the cell behavior. Thus,
understanding the motions of cells is important for investigating their intrinsic properties and
reflecting their various states. Computer-vision-based methods for elucidating cell behavior offer
a novel approach to accurately extract cell motions. Here, we propose an algorithm based on area
change to automatically extract the self-rotation of cells in an optically induced dielectrophoresis
field. To obtain a clear and complete outline of the cell structure, dark corner removal and contrast
stretching techniques are used in the pre-processing stage. The self-rotation speed is calculated by
determining the frequency of the cell area changes in all of the captured images. The algorithm is
suitable for calculating in-plane and out-of-plane rotations, while addressing the problem of identical
images at different rotation angles when dealing with rotations of spherical and flat cells. In addition,
the algorithm can be used to determine the motion trajectory of cells. The experimental results show
that the algorithm can efficiently and accurately calculate cell rotation speeds of up to ~155 rpm.
Potential applications of the proposed algorithm include cell morphology extraction, cell classification,
and characterization of the cell mechanical properties. The algorithm can be very helpful for those
who are interested in using computer vision and artificial-intelligence-based ideology in single-cell
studies, drug treatment, and other bio-related fields.

Keywords: ODEP; self-rotation; area change

1. Introduction

With the intensive research into micro and nano mechanics and the rapid advance-
ment of microscopy, cellular level research has become a hot topic in many fields. As the
most basic unit of life in higher organisms, cells can not only grow, develop, proliferate,
age, and die independently in an adapted environment, but they can also organically
form tissues and organs with different morphologies and functions in order to maintain
the functions necessary for life, thereby forming a complete living organism [1]. Cells
have specific tissue and organ functions, and are therefore regarded as single units to
examine and analyze the multidimensional characteristics of cells during proliferation,
differentiation, movement, and other physiological activities. This is significant for re-
vealing the complex and diverse changes in living bodies, as well as their distribution
patterns in time and space [2,3]. The multidimensional information of cells includes cellular
morphological information, electrophysiological information, and mechanical properties,
among others [4–10]. The mechanical properties of cells play a pivotal role in characterizing
different cellular states and functions. Cells live in a complex mechanical and chemical
environment where changes in the physical mechanics of the cell activate cellular signaling
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channels and induce reorganization of the cytoskeleton [11]. At different levels of the
cellular hierarchy, changes in the cellular organization can be characterized by changes
in the specific mechanical properties. Clearly, cells of different structures vary greatly in
several aspects, including biological activities, such as cell differentiation, growth, and
adhesion, and the pathogenic mechanisms of life, such as oxidative stress, viral attack, and
parasites of life [12,13]. Thus, quantifying the mechanical properties of living cells provides
information about the actual conditions of the cells. To understand how cells respond to
their surroundings, it is necessary to characterize their mechanical properties. Researchers
at the University of Texas discovered, for the first time, that changes in the mechanical
properties of cells may be responsible for tumorigenesis [14]. Changes in the mechanical
properties of cells will eventually lead to uncontrolled cell division, and such uncontrolled
cells have a low mortality rate and give rise to the growth of malignant tumors. Plenty of
research on cancer has shifted focus to the biochemical perspective in order to address the
various interdependent factors associated with biochemical carcinogenesis. Meanwhile,
the mechanical properties of cells affect their ability to be deformed, to be moved, and to
perceive external stimuli in their microenvironment. Research has shown that changes
in the mechanical properties of cells define the direction for the investigation of many
cellular diseases [15]. New techniques for the precise capture and manipulation of cells at a
microscale have also made it possible to characterize the mechanical properties of cells.

Several techniques are currently available for cell manipulation and are being used in
different fields, such as optical, ultrasound, magnetic, and electric fields [16–22]. Optical
tweezers, which use lasers to generate forces to trap cells, require high-intensity light.
This method has several limitations. Specifically, the cells may easily become damaged;
the applied range is limited by the area in which the optical tweezer system can operate,
which impedes the manipulation of cells in large quantities. Meanwhile, acoustic forces
generated using ultrasound can be used to trap or lift cells. Nowadays, it is commonplace
to manipulate cells using electrical forces, such as dielectrophoresis (DEP) [23–25]. A new
technique for manipulating tiny particles based on DEP forces, also known as optically in-
duced dielectrophoresis (ODEP), was first introduced by Ming et al. [26]. ODEP can realize
label-free and non-invasive manipulation of cells [27,28] and microparticles [29,30] through
optically projected patterns serving as virtual electrodes. Hence, fabricated metal electrodes
for generating a non-uniform electric field in DEP are not required [31]. In addition, ODEP
can manipulate individual cells or particles, which is not easy for DEP [32]. ODEP combines
the advantages of optical tweezers and DEP for the manipulation, sorting, organization,
and pattern formation of micro and nano particles, offering a powerful technique for optical
manipulation. Subsequently, by combining microfluidic, electrophoretic, and microscopic
imaging techniques in a rotating chamber, L. Huang et al. generated a rotating electric
field by applying an appropriate alternating current (AC) signal to the electrodes to drive
controlled three-dimensional (3D) rotation of a single cell, enabling 3D cell imaging [33].
The area-specific membrane capacitance and cytoplasmic conductivity of different cell types
were determined through tests. The 3D cell imaging of cancer cells and normal leukocytes
demonstrated that there were subtle differences in the geometric parameters of the two
cell types. Some cells with specific intrinsic dielectric properties can also self-rotate in a
linearly polarized (i.e., non-rotating) AC field. For example, the self-rotation of Melan-A
pigment cells can be induced through a specific optical electrode pattern that generates
ODEP forces and a bandwidth of AC bias frequencies [34]. The self-rotation phenomenon is
used to obtain the behavioral information of pigment cells so as to elucidate their physical
properties, which in turn allows for the separation of pigment cells from non-pigment
ones. Our group proposed a method that can extract the mechanical properties of cells by
manipulating Raji cell translation and self-rotation through DEP/ODEP-based microflu-
idics [32,35]. An advantage of this method is that it allows individual cells to rotate in a
known and controlled direction in a rotation-free electric field, without any requirement
on the threshold of the electric field. This method opens up further possibilities for the
label-free identification of cancer and related clinical applications. This method achieves
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rotational control of the cells, but relies on rotation speed data to obtain the final measure-
ments of the physical properties. Usually, the rotation speed of cells is measured visually
by manually timing their rotation under a video microscope using a stopwatch [33,35].
However, manual measurement can be tedious and prone to large errors. Therefore, an
automated computer-vision-based method is required to identify the morphology of the
cell accurately and quickly, and to measure its rotation speed. A number of cell rotation
speed extraction methods have been proposed by various research groups. For example, a
computer-based real-time machine vision algorithm was first proposed by G. De Gasperis
et al. for measuring cell rotation and analyzing rotational spectra [36]. However, this
method has the limitation that it can only measure in-plane rotation when only a single
cell is present in the image. A multi-cell visual tracking algorithm capable of achieving an
automatic process for determining cell information has been reported [37]. The algorithm
uses the Sobel operator to extract horizontal and vertical gradients in order to identify cells
in a computationally cumbersome manner. It is difficult for this proposed algorithm to
obtain out-of-plane rotating cell speeds [37]. Our group proposed an automated algorithm
based on image matching that can accurately determine the rotation speed of cancer cells in
an ODEP-based microfluidic chip [27,38–42]. An optical-flow-based method was proposed
in order to obtain 2D kinematic field data from the image sequences. Then, the data were
back-propagated onto a 3D sphere model to calculate the rotation axis and rotation speed
of the cell [43]. Both methods are effective at measuring the self-rotation speed of cells in
the ODEP field, but the algorithms are too complex and computationally intensive. To
improve the automation and efficiency of the cell self-rotation speed extraction, we recently
developed a new area change algorithm to overcome the limitations of the existing meth-
ods. Specifically, this algorithm provides a simplified process for cell self-rotation speed
extraction compared with previous algorithms. In addition, this algorithm employs three
key techniques to achieve the following goals: (1) It reduces the influence of experimental
conditions on the measurement results by removing vignettes and improving the contrast
of cells, and it can extract a complete cell morphological profile. This demonstrates the
good adaptability of the algorithm. (2) After selecting cells of interest in the first frame, the
algorithm calculates the area of the cells, regardless of whether they are rotating in-plane
or out-of-plane and without interference from other cells within the image. This eliminates
the need to manually observe the video, and thereby reduces the reliance on the manual
intervention for results and ensures higher stability. (3) The algorithm denoises the area
change curve using a convolution method, allowing for more accurate extraction of the cell
rotation period and more accurate measurements of the cell rotation speed.

In this paper, we proved that the self-rotation of cells can be characterized automat-
ically, efficiently, and accurately through captured videos of multiple cells experiencing
different motions using a new area change algorithm. We presented the key steps involved
in the proposed algorithm in detail, including outline extraction and speed calculation
based on the microscopic images of cells. We first calculated the self-rotation speed of Raji
cells under a given AC bias parameter to demonstrate the specific calculation process. Then,
this process was repeated to calculate the self-rotation speed of Raji cells under several
other AC bias parameters.

2. Theory

In general, ODEP makes use of the light-sensitive properties of the low-conductivity
optical semiconductor material to generate an electric field perpendicular to the chip
between the upper and bottom electrodes of the chip. The structure of the electrodes is
determined by the incident optical pattern. In addition, the optical semiconductor material
has an extremely high resistance in the dark region, and most of the applied voltage falls
on the hydrogenated amorphous silicon (a-Si:H) layer. The optical semiconductor material
generates a large number of optically induced carriers in the lighted region, thus sharply
increasing the local conductivity. When a voltage is applied, different partial pressures
are generated in the bright and dark regions, so that an inhomogeneous electric field is
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created between the upper and lower pole plates of the chip. If suspended particles are
in close proximity to this inhomogeneous electric field, the interaction between the two
particles and the electrically polarized dipole moment of the liquid solution generates
a force, which is called the DEP function and is defined as ODEP. Generally, when the
polarization capacity of the particles is greater than that of the solution, the particles are
induced to move to a higher electric field gradient by generating a positive DEP force. On
the contrary, a negative dielectrophoretic force is induced to move to a lower electric field
gradient. This means that DEP forces can be either positive or negative. In the case of an
inhomogeneous electric field, the DEP force on a spherical particle can be expressed as [44].

〈→
F DEP

〉
= 2πR3εmRe[K(ω)]∇

∣∣∣∣
→
Erms

∣∣∣∣ (1)

where Erms is the square root mean of the electric field strength; R is the cell radius; εm
denotes the dielectric constant of the liquid medium; ω is the angular frequency with the
expression ω = 2πf, where f is the frequency of the voltage applied across the liquid medium;
and Re [K (ω)] is the real part of the Clausius−Mossotti (CM) factor that determines the
direction of the DEP force. For cells, the expression for Re [K (ω)] is usually written as

Re[K(ω)] = Re
[
− ω2(τ1τ2 − τcτ2

′) + jω(τ2
′ − τ1 − τ2)− 1

ω2(τcτ2′ + τ1τ2)− jω(τ2′ + 2τ1 + τ2)− 2

]
(2)

where τc = εc/σc, τ1 = εm/σm, τ2 = Cmem/σc, and τ2
′ = Cmem/σm; the subscripts c, mem,

and m denote the cytoplasm, cell membrane, and liquid medium, respectively; Cmem
denotes the capacitance value of the cell membrane; and ε and σ denote the dielectric
constant and conductivity, respectively. When the electric field frequency approaches zero,
the size of the real part of the CM factor is mainly affected by the conductivity of the
solution and the particles. On the contrary, when the electric field frequency is very high,
the real part of the CM factor is only affected by the dielectric constant. If the positive
and negative values of the CM factor are known at different frequencies, the particles
can be manipulated by modulating specific frequencies to produce positive and negative
DEP forces.

In terms of cell manipulation, previous studies have not only reported the translational
motion of cells in ODEP fields, but also demonstrated that certain types of cells self-rotate
in linearly polarized AC fields along an axis perpendicular to the electric field lines [27,42].
Turcu et al. proposed that a theoretical analysis can explain the fact that certain cells with
specific dielectric properties can self-rotate in a non-rotating electric field [45]. Based on
previous studies, our group attempted to describe the rotational behavior of colored cells
with different contents of intrinsic melanin in a linearly polarized AC electric field [35]. We
also experimentally confirmed the rotation phenomenon by implanting foreign particles
into the cells. Prior to inoculation, these cells did not initially rotate in the presence of
an externally applied non-rotating AC electric field. In general, the rotation equation is
defined as

T =
9
4

Vε1E2
0

εr − σr

(εr + 2)(σr + 2)

(
X + X0

(X + X0)
2 + 1

+
X− X0

(X− X0)
2 + 1

)
(3)

where V is the volume of cells. The other symbols are as follows:





εr = εp/εm
σr = σp/σm
ω0τ = X0
ωτ = X
τ =

(
εp + 2εm

)
/
(
σp + 2σm

)
(4)
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where ω0 is the angular frequency of the cellular motion. From the above equation, we
can clearly conclude that the electrophysiological information and mechanical properties
of the cell can be extracted from its behavioral information, as the self-rotation varies
with frequency.

3. Materials and Methods
3.1. Experimental Setup and Working Principles

An ODEP-based microfluidic platform was designed as the experimental setup in this
study. Its structure is shown schematically in Figure 1. The system has been described in
detail in our previous work [42]. We used a CCD camera to record the movement of cells in
the ODEP chip as an image injected through a charge-coupled projector. The ODEP chip
consists of four layers from top to bottom. The top layer is a transparent film of indium tin
oxide (ITO) glass; the middle part is a custom-designed microchannel with a hydrogenated
amorphous silicon (a-Si:H) layer, which is connected to the top layer by a fabricated tape;
and the bottom part is an ITO glass substrate with a hydrogenated amorphous silicon
(a-Si:H) film deposited on top.

Figure 1. Schematic illustration of the ODEP-based microfluidic platform used as the experimental
setup. The inset is an exploded view of the ODEP chip.

When the designed optical pattern was projected onto the a-Si:H surface, the electron−hole
pairs were excited and enhanced by the migration of electrons from the valence band to the
conduction band of the a-Si:H layer, resulting in a large number of optically induced carriers
and a significant increase in local conductivity. When a voltage was applied, different
partial voltages were generated in the light and dark regions, which in turn created an
inhomogeneous electric field between the upper and lower pole plates of the chip. The
electric field at the end of the liquid chamber then increased sharply above the locally
illuminated a-Si:H region, as most of the applied voltage was shifted sharply into the liquid
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chamber. As a result, an inhomogeneous non-rotating electric field was generated in the
liquid chamber.

3.2. Cell Preparation

The cells used in the experiments were Raji cells bought from the Cell Bank of the
Chinese Academy of Sciences (Shanghai, China). They were suspended in the cell culture
medium supplied by the Roswell Park Memorial Institute (RPMI1640, Thermo Fisher Sci-
ence, Bridgewater, NJ, USA), which contained 10% (v/v) fetal bovine serum, 1% penicillin
(v/v) (100 U/ml), and 1% streptomycin (v/v) (100 µg/ml), and were incubated at 37 ◦C in
a humidified atmosphere of 5% CO2. The diameter of the Raji cells was about 12 µm.

Before the experiment, 1 mL of the Raji cell suspension was centrifuged at 1000 rpm
for 5 min at 4 ◦C and then the supernatant was removed. The collected Raji cells were
resuspended in 1 mL of RPMI-1640 culture medium and centrifuged again with the same
parameters to remove the remaining culture medium. The remaining Raji cells were then
resuspended in 1 mL of isotonic solution for further experiments. The isotonic solution
was prepared from 8.5% (ω/v) sucrose, 0.3% (ω/v) glucose, and 0.5% (ω/v) bovine serum
albumin (BSA) in deionized water. The purpose of using BSA was to reduce the affinity
between the cells and the a-Si:H substrate. The conductivity of the isotonic solution was
measured using a conductivity meter (Cond3110, VWR International, RADNOR, PA, USA)
at 1.5 × 10−2 S/m. The cell concentration of the cell suspension was kept constant at
1 × 105 cells/mL.

3.3. Self-Rotation Speed Extraction

Generally speaking, the projected area between each frame captured by the CCD
camera varied as the cells rotated in an ODEP field. Therefore, a curve of cell area changes
could be obtained by measuring the area of the rotating cells in all of the frames. As the
images captured by the camera contained multiple cycles of cell rotations, the cell area
change curve varied periodically. Moreover, the time required to perform a complete
rotation could be obtained by selecting the trough points of adjacent cycles in the cell area
change curve, i.e., the frames with the smallest area points in the adjacent rotation cycles.
Therefore, the cell area change curve is a reliable method for obtaining the rotation speed
of the cell.

Considering the characteristics of the cells, the imaging conditions, the low contrast
between cells and the image background, the unclear cell edges, and the presence of
impurities such as regionally brighter light sources and broken incomplete cells in the
image background, a fluorescent microscope was used to capture the experimental images
under poor lighting conditions. Through image processing, a complete and smooth cell
outline was efficiently segmented without destroying the integrity of the characteristic
points inside the cells. In addition, the self-rotation speed of the self-rotating cells in the
cell physical field was extracted efficiently, automatically, and accurately by extracting
the morphological characteristics of the cell from the 2D cell microscopic images. This
algorithm contains three important steps for achieving more accurate and faster speed
extraction. First, in order to extract the cell outline completely, the original cell image was
vignetted to reduce errors in cell image segmentation, thus improving the accuracy of area
calculation. Second, the rotating cells were selected, and the areas of those cells in each
frame of the image were extracted and used to plot a cell area change curve. Third, the cell
area change curve was denoised to obtain a periodically changing curve. The specific steps
are described in Figure 2.
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Figure 2. Flow chart of the algorithm for extracting cell speed based on area change.

3.3.1. Removing shadows

As a result of the presence of a light source in the center of the image, the corners
of the image were less bright or saturated than the middle part of the image. The dark
shadows in the corners of the image needed to be removed, so as to minimize the noise in
the image after binarization of the final segmentation, as shown in Figure 3.

Figure 3. Binarization of cell images without removing the dark corners.

The first method we used was shadow correction based on entropy minimization [46].
Minimizing the entropy of the whole image has also been proven to be an effective method
for shadow correction. However, the optimization process could cause the ordinary entropy
to fall into a local optimum. Therefore, according to the concept of logarithmic entropy,
if the histogram of an original normal image has a single-peaked distribution, then for
an image with dark corners, there must be another distribution of low luminosity in the
histogram. The purpose of correcting dark corners is to make the distribution of low
luminosity closer to the original normal luminosity. Ordinary entropy calculations will
not decrease until there is a partial overlap between the two histograms. Before this, the
entropy is always increasing, while the logarithmic entropy at least remains constant until
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there is no overlap. This, in turn, offers a better way to obtain a global optimum. The
luminance is first mapped logarithmically and the mapping equation is as follows

i(L) = (N − 1)log(1 + L)/log 256 (5)

where L is the input image of cells, i is the grey-scale value, and N is the pixel value.
The first method has a slightly slower calculation speed, and typically takes 15,000 ms

to process a 1392 × 1040 color map. Therefore, we used gamma correction as the second
method [47]. As the gamma curve of the image was edited for non-linear tone editing of
the image, the dark and bright parts of the image signal were detected and the ratio of the
two was increased to improve the image contrast. Then, gamma correction enhanced the
storage accuracy of the dark luminance, i.e., it removed the dark parts by increasing the
luminance of the dark corners.

f
(

Ioutput
)
= Iinput

γ (6)

The value of γ determines how the grey scale is mapped between the input image
and the output image, i.e., whether the contrast in the lower or higher grey-scale areas is
enhanced. If γ > 1, this indicates enhanced contrast in the higher grey-scale areas of the
image; if γ < 1, this indicates enhanced contrast in the lower grey-scale areas of the image.
This results in a brightness-enhanced image.

3.3.2. Enhancing contrast

As a result of the low contrast between the cells and the background and the presence
of brighter noise within the image, a segmented linear method was used to highlight
the targets or grey-scale intervals of interest and suppress grey-scale areas not of interest.
The grey-scale interval [a, b] was extended, and the grey-scale intervals [0, a] and [b, Mf]
were compressed (as shown in Figure 4). By adjusting the position of the fold inflection
points and controlling the slope of the segmented straight lines, the grey-scale intervals
of interest could be extended. Ultimately, the parameters were adjusted to enhance the
contrast between the cells and the background and to reduce the contrast between the light
source and the background, thereby allowing for clearer observation of the cell outline.

Figure 4. Grey-scale stretching curve.

As a result of the generally low concentration of grey values in the pixels, the whole
image can be very dark and not quite as contrasted. With grey-scale transformation, as
shown in Equation (7), we stretched the grey values to a specified interval to enhance the
contrast significantly.

I(x, y) =
I(x, y)− Imin

Imax − Imin
(MAX−MIN) + MIN (7)
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where Imax and Imin are the minimum and maximum grey values of the original image,
respectively. MAX and MIN are the minimum and maximum grey values of the grey
space, respectively.

3.3.3. Binarization

After linear stretching of the image contrast, the morphological characteristics of the
cells could be distinguished more clearly. At this point, the Otsu method was used for
binarization [48]. The image was segmented into two parts—the background and the
foreground—according to the grey-scale characteristics of the image. As variance is a
measure of the uniformity of the grey-scale distribution, the greater the interclass variance
between the background and foreground, the greater the difference between the two parts
of the image. When part of the foreground was mis-segmented into the background or
part of the background was mis-segmented into the foreground, the interclass variance
between the two parts became smaller. Therefore, the segmentation that resulted in the
largest interclass variance had the lowest probability of misclassification [49]. The Otsu
method is less affected by image brightness and contrast, which can further reduce the
effect of low contrast in dark parts on the segmentation results.

3.3.4. Post-Processing

As observed from the binarized image, the cell outline was not smooth and complete,
and there were still some impurities around the cells. Therefore, the image needed to be
post-processed. Using a morphological approach, objects with small areas in the binary
image were removed to reduce the excess noise. In addition, an expansion operation was
performed to smooth out the cell outline. Finally, a complete and smooth cell outline
was obtained.

3.3.5. Extraction of Cell Behavior

After the previous morphological manipulation, narrow junctions in the binary image
were disconnected, small protrusions were eliminated, and cell contours were smoothly
extracted. All adjacent white pixels in the binary image were labelled based on the traversal
of the image, and pixels with the same marker formed a connected domain. White pixels in
different connected domains were labelled differently so that each connected domain in the
image could be extracted. Finally, all cells in the resulting binary image were identified and
labelled using an external rectangle to frame the connected domains and a shape center
to determine the location of the connected domains. A cell of interest was selected and
extracted separately. Its area was calculated using a morphological method. When the cell
was rotated in-plane, the smallest outer rectangular box of the cell was determined and the
cell area within a quarter of the box was extracted. The cell rotation period was determined
by the change in cell area within this section.

This experimental image had 159 frames. The above operation was performed on each
frame to obtain an area change curve of this cell projected onto the 2D plane as it self-rotated
in the physical field. From the area change curve, it could be tentatively determined that
the area of the cell varied periodically, i.e., the speed of its self-rotation could be determined
by the area change. To obtain a clearer period, the area change curve was smoothed and
denoised to filter out the excess peaks using a convolution method.

Finally, the self-rotation speed was extracted through the processed area change curve.
When the cells were rotated out-of-plane along a fixed axis, the area of the cell image varied
at different moments during one rotation cycle. Then, the trough of a cell area change cycle
was labeled where the cell area reached a minimum value. When the cell area shifted to the
trough point of the next cycle, the cell would rotate for a complete week. The final rotation
speed was calculated using Equation (8).

n =
60 ffps

Xi − Xi−1
(8)
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where ƒfps denotes the frame rate of the video, ƒfps =15 fps; Xi and Xi-1 denote the frame
numbers of the wave valley points in two adjacent cycles of area change; and n is the
average self-rotation speed (in rpm).

In addition, for extracting the displacement information of the cells, the frame differ-
ence method was used to detect the moving targets in each frame of the image. Tracking
of the moving targets was achieved using a time-series-based prediction model and the
displacement trajectory of the cell was plotted.

4. Results and Discussion
4.1. Self-Rotation Speed of Raji Cells under a Given AC Bias Parameter

In our experiment, the bias voltage was set to 10 VPP and Raji cells with a diameter of
approximately 12 µm were observed at a 70 kHz AC frequency. A total of 159 cell images
were acquired using a CCD camera, and the last 59 frames of five cycles of stabilization were
used to calculate the average rotation speed. The original image and the image with dark
corners removed are presented in Figure 5. Figure 6 shows the effect of a contrast-enhanced
image. The image was binarized using the Otsu method, as shown in Figure 7. Figure 8
shows the way that the cell was identified and labeled, and Figure 9 shows a selected cell
of interest. Figure 10 shows the area change curve obtained based on the area calculated for
all of the frames. The data selected from frames 101 to 159 were convolved and denoised to
obtain a clear area cycle change curve with an average self-rotation speed of 86 rpm over
five cycles, as shown in Figure 11. The motion trajectory of the cell of interest is shown in
Figure 12. The method for detecting the cell area when the cell was in-plane rotation is
shown in Figure 13.

Figure 5. (a) Original cell image taken by CCD and (b) cell image with dark corners removed.

Figure 6. Grey-scale image after contrast stretching.
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Figure 7. Image binarized using the OTSU method.

Figure 8. Complete cell outline after the image was denoised using the morphological method.

Figure 9. Cell identification and labelling.
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Figure 10. Area change curve based on the area of the cell of interest calculated in 159 images.

Figure 11. A smooth area change curve obtained based on data selected from the last 59 frames,
which were then convolved and denoised.

Figure 12. Motion trajectory of the cell of interest.
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Figure 13. A method for calculating the cell area when the plane is rotated.

4.2. Self-Rotation Speed of Raji cells under Different AC Bias Parameters

By varying the applied AC frequency and bias potential, it was possible to characterize
the change in the self-rotation speed of Raji cells under different AC bias parameters.
Figure 14 shows the self-rotation speeds of Raji cells as a function of different AC frequencies
at a voltage maintained at 10 Vpp, using only one Raji cell for the measurements. The
Raji cell was capable of self-rotation motion at a frequency scope ranging from 20 kHz to
180 kHz. The extracted self-rotation speed of the Raji cell proved an increase from 20 kHz to
65 kHz and then the self-rotation speed reached a maximum value of 129.4 rpm at 65 kHz.
Furthermore, the characterization of the self-rotation speed of the Raji cells with respect to
the AC bias potential was also investigated, as shown in Figure 15. In this figure, the AC
frequency was maintained at 60 kHz. The results demonstrated a quadratic relationship
between the self-rotation speed of the Raji cells and AC bias potential.

Figure 14. Self-rotational speeds of Raji cells with different AC frequencies at an external AC bias
potential of 10 Vpp. The measurement points in this figure were obtained for one Raji cell only. At
each measurement point, the period of stable continuous cell rotation was selected for measurement,
and the number of cell rotation periods was {3, 3, 5, 6, 4, 5, 5, 5, 5, 3, 5, 6, 5, 5, 3, 5, 2, 2, 2, 2, 2, 3, 2}. In
the figure, each data point represents a mean ±maximum deviation.
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Figure 15. Self-rotational speeds of Raji cells with different AC bias potentials at an external AC
frequency of 60 kHz. The measurement points in this figure were obtained for one Raji cell only.
At each measurement point, the period of stable continuous rotation of the cell was selected for
measurement, and the number of rotation periods for the applied AC bias potential of {4, 6, 8, 10} VPP
was {1, 2, 3, 5}, respectively. In the figure, each data point represents a mean ±maximum deviation.

4.3. Discussion

The algorithm provides an effective method to calculate the self-rotation speed of
cells in an ODEP field and to depict the motion trajectory of the cells. It can extract the
rotation speed of cells quickly and accurately under different experimental conditions. All
of the steps, except the selection of cells of interest, can be done automatically, eliminating
interference with the experimental results through manual intervention. For cells with a
homogeneous structure, the algorithm can calculate their rotation speed based on changes
in their internal structure. In the case of in-plane rotation, the algorithm can also offer
a highly adaptable and stable method for calculation. In the future, the algorithm can
potentially provide some new ideas for the fast calculation of other rotational targets
and rotational methods. The algorithm can also be combined with various microfluidic
rotation platforms to expand its scope of application. For example, it can be used with a
number of structure-based, acoustic-based, or optical-based microfluidic platforms for cell
manipulation, which involve rotation and translation to extract the physiological properties
of cells from their behavioral information [5–56]. Capturing cells of interest when they are
rotating with high-speed translation will be a challenge that can, for example, be addressed
by increasing the frame rate of cameras. In addition, multi-target rotation speed detection
should be a priority area of research in future studies.

5. Conclusions

In this study, an area change algorithm was presented for the accurate extraction
of self-rotation speeds and translational motions of cancer cells suspended in an ODEP
chip, i.e., an AI-powered optical−electrical−microfluidic platform. The algorithm works
well with microscopic images of cells under poor lighting conditions and with low con-
trast. The algorithm enables the automatic identification of cells and the extraction of their
self-rotation speed. With a pre-processing stage that removes dark corners for increased
contrast, the algorithm can clearly extract the cell outline, proving to be effective in process-
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ing cell micrographs under poor lighting conditions and with low contrast. A convolution
method is used to process the area change curve, from which the cell rotation period can
be determined clearly to help measure the self-rotation speed of the cells more accurately.
The algorithm can process spherical and flat cells in the same image rotating at different
angles by extracting the outline of the internal cell structure. In addition, it has a strong
capability for processing cells rotating in-plane and out-of-plane. Furthermore, the algo-
rithm can obtain the motion trajectory of cells of interest to allow for a more comprehensive
analysis of the morphological and behavioral information of cells. Potential applications of
this algorithm include separating different types of cancer cells in different populations,
distinguishing normal cells from cancer cells, and characterizing the morphological and
electrical properties of cells.
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