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Editorial

Artificial Intelligence in Healthcare: ChatGPT and Beyond
Tim Hulsen

Data Science & AI Engineering, Philips, 5656 AE Eindhoven, The Netherlands; tim.hulsen@philips.com

Artificial intelligence (AI), the simulation of human intelligence processes by machines,
is having a growing impact on healthcare [1]. As healthcare all around the globe is suffering
from personnel shortages [2], AI can be of crucial importance. It can help in three ways:
by helping health researchers, by helping medical staff, and by helping patients. Via AI,
researchers can provide new approaches to merge, analyze, and process complex “big
data” and gain more actionable insights, understanding, and knowledge at an individual
and population level [3]. Medical staff can be helped by AI-assisted clinical decision
support (CDS), by machine learning (ML) and deep learning (DL) models analyzing
large medical datasets, by summarizing radiology and pathology reports using Natural
Language Processing (NLP), by automating repetitive but time-consuming tasks, and much
more [4]. Patients can talk to chatbots who have access to all medical knowledge in the
world, including the patient’s medical history, and provide personalized advice [5]. The
increasing use of AI in healthcare provides many new and interesting possibilities but also
causes issues around trust (the “black box” problem: what does the AI algorithm actually
do? [6]) and privacy. This Special Issue intends to show some examples of how AI impacts
healthcare, with some discussion on potential future developments as well as challenges.
Since this Special Issue contains papers from 2023 and 2024, the era of Generative AI
(GenAI) [7], naturally there are papers related to ChatGPT and chatbots. There are also
papers on prediction modeling in primary care, polychronic conditions, and heart disease.
Other papers focus on the classification of colon cancer and Alzheimer’s disease. Finally,
there are papers on orthodontic diagnosis and treatment planning, anxiety treatment, and
explainable AI (XAI).

“Chat GPT in Diagnostic Human Pathology: Will It Be Useful to Pathologists? A
Preliminary Review with ‘Query Session’ and Future Perspectives” by Cazzato et al. (con-
tribution 1) conducts a systematic review on the use of ChatGPT in pathology. It follows
the PRISMA guidelines and uses literature from the PubMed, Scopus, and Web of Science
(WoS) databases. Five publications were included after screening for eligibility and inclu-
sion criteria. They also performed a ‘query session’ with ChatGPT regarding pathologies
such as pigmented skin lesions, malignant melanomas and variants, and Gleason’s score
of prostate adenocarcinomas. ChatGPT is shown to be able to advise the pathologist by
providing large amounts of scientific data for use in routine microscopic diagnostic practice.
However, there are certain limitations that need to be addressed and resolved, such as bias
in the training data, the amount of data available, and ‘hallucination’ phenomena. The
authors also stress that an AI-driven system should always provide support and never
have a decision-making motive during the histopathological diagnostic process.

“Design of an Educational Chatbot Using Artificial Intelligence in Radiotherapy” by
Chow et al. (contribution 2) shows how to design an AI-enabled chatbot for educational
purposes in radiotherapy, using the dialogue tree and layered structure with AI features
such as NLP. The chatbot can provide humanlike communication to users requesting
information on radiotherapy, based on the question-and-answer approach. When the user
may not be able to pinpoint the question exactly, it will be user-friendly and reassuring,
offering a list of questions for the user to select. The NLP system helps the chatbot predict
the intent of the user and provide the most accurate and precise response. Preferred
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educational features in a chatbot are functional features such as mathematical operations,
which should be modified and updated regularly. The authors conclude that an AI-enabled
educational chatbot can be created to provide information transfer to users with different
levels of radiotherapy knowledge (e.g., patients, the general public, or radiation staff). The
chatbot should be upgraded and fine-tuned regularly, while its performance should be
tested and evaluated.

“Machine-Learning-Based Prediction Modelling in Primary Care: State-of-the-Art
Review” by El-Sherbini et al. (contribution 3) summarizes the potential of ML and its
subsets in influencing two domains of primary care: pre-operative care and screening.
ML can be utilized in preoperative treatment to predict postoperative results and assist
physicians in selecting surgical interventions. Clinicians can reduce risk and improve
patient outcomes using ML algorithms. ML can also improve the precision and effectiveness
of screening tests. Healthcare professionals can identify diseases at an early and curable
stage by using ML models to scan medical images for diseases or anomalies. ML can be used
to identify people at an increased risk of developing specific disorders or diseases, even
before any symptoms are visible. It can assess patient data such as medical history, genetics,
and lifestyle factors to identify patients at higher risk, enabling targeted interventions such
as lifestyle adjustments or early screening. In conclusion, the use of ML in primary care can
potentially improve patient outcomes, reduce healthcare costs, and boost the productivity
of healthcare personnel.

“Predictive Analytics with a Transdisciplinary Framework in Promoting Patient-
Centric Care of Polychronic Conditions: Trends, Challenges, and Solutions” by Wan and
Wan (contribution 4) comments on an innovative approach to the development of predictive
analytics, which is centered on the development of predictive models for varying stages of
chronic disease through integrating all types of datasets, adding various new features to a
theoretically driven data warehousing, creating purpose-specific prediction models, and
integrating multi-criteria predictions of chronic disease progression based on a biomedical
evolutionary learning platform. This commentary identifies trends, challenges, and solu-
tions in conducting innovative AI-based healthcare research, improving understandings of
disease-state transitions from diabetes to other chronic polychronic conditions. Therefore,
better predictive models could be further formulated to expand from inductive to deductive
inquiries in care management research.

“Evaluating the Performance of Automated Machine Learning (AutoML) Tools for
Heart Disease Diagnosis and Prediction” by Paladino et al. (contribution 5) discusses
the creation of ten machine learning models using the standard practices of exploratory
data analysis (EDA), data cleansing, feature engineering, and others, utilizing the Python
“sklearn” library. Their toolkit included an array of models: logistic regression, support
vector machines, decision trees, random forest, and various ensemble models. Employing
five-fold cross-validation, these traditionally developed models demonstrated accuracy
rates spanning from 55% to 60%. Automated machine learning (AutoML) tools perform
better and have superior capability in generating predictive models. Their findings suggest
that AutoML tools can simplify the generation of robust ML models with higher perfor-
mance than models created by traditional ML methodologies. However, the limitations of
AutoML tools must be considered, and strategies need to be developed to overcome them.
The successful deployment of ML models designed via AutoML could revolutionize the
treatment and prevention of heart disease globally.

“Convolutional Neural Networks in the Diagnosis of Colon Adenocarcinoma” by
Leo et al. (contribution 6) analyzes different architectures and ensembling strategies to
develop the most efficient network combinations to improve binary and ternary classifica-
tion of colorectal cancer. They propose a two-stage pipeline approach to diagnose colon
adenocarcinoma grading from histological images in a similar manner to that of a patholo-
gist, using a transformer architecture with subsequent classification using a convolutional
neural network (CNN) ensemble, which improved the learning efficiency and shortened
the learning time. Moreover, they prepared and published a dataset for clinical validation
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of the developed artificial neural network, which suggested the discovery of novel his-
tological phenotypic alterations in adenocarcinoma sections that could have prognostic
value. They conclude that AI can significantly improve the reproducibility, efficiency, and
accuracy of colon cancer diagnosis, which are required for precision medicine to personalize
cancer treatment.

“A new Convolution Neural Networks and Graph Convolution Networks-based
architecture for AI applications in Alzheimer’s Disease Stages Classification” by Hasan
and Wagler (contribution 7) proposes a computer-assisted method based on an advanced
DL algorithm to differentiate between people with varying degrees of dementia. They
developed the following four separate models for classifying different dementia stages:
(1) CNNs built from scratch; (2) pre-trained VGG16 with additional convolutional layers;
(3) graph convolutional networks (GCNs); and (4) CNN-GCN fusion models. These models
were trained and evaluated using 6,400 whole-brain magnetic resonance imaging (MRI)
scans obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). A five-fold
cross-validation technique was applied to all the models. Particularly, the CNN-GCN model
shows excellent performance in classifying different stages of dementia. Understanding the
stages of dementia can assist researchers in uncovering molecular markers and pathways
connected with each stage.

“AI and Face-Driven Orthodontics: A Scoping Review of Digital Advances in Diag-
nosis and Treatment Planning” by Tomášik et al. (contribution 8) highlights the current
digital advances that, thanks to AI tools, allow us to implement facial features beyond
symmetry and proportionality and incorporate facial analysis into diagnosis and treatment
planning in orthodontics. The topics with the greatest research potential within digital
orthodontics over the last five years were identified. The most researched and cited topic
was AI and its applications in orthodontics. AI can be applied in automated 2D or 3D
cephalometric analysis, facial analysis, decision-making algorithms, and the evaluation of
treatment progress and retention.

“A Flower Pollination Algorithm-Optimized Wavelet Transform and Deep CNN for
Analyzing Binaural Beats and Anxiety” by Rankhambe et al. (contribution 9) discusses
binaural beats, a low-frequency form of acoustic stimulation that can help reduce anxiety
as well as alter other psychological situations and states by affecting mood and cognitive
function. They analyzed the level of anxiety when hearing binaural beats using a novel
optimized wavelet transform in which optimized wavelet parameters are extracted from
the electroencephalogram (EEG) signal using the flower pollination algorithm, whereby
artifacts are effectively removed from the EEG signal. They applied deep CNN-based signal
processing, in which deep features are extracted from optimized EEG signal parameters.
The proposed model outperforms existing techniques. Therefore, the optimized wavelet
transform with a deep CNN can perform an effective decomposition of EEG data and extract
deep features related to anxiety to analyze the effect of binaural beats on anxiety levels.

Finally, “Explainable Artificial Intelligence (XAI): Concepts and Challenges in Health-
care” by Hulsen (contribution 10) discusses the term XAI, which has been gaining mo-
mentum recently. XAI tries to ensure that AI algorithms (as well as their decisions) can be
understood by humans, transforming “black box” algorithms to more transparent “glass
box” algorithms. The paper mentions some central concepts in XAI, such as transparent and
post-hoc models, AI-assisted decision-making, and explanation methods. It also describes
several challenges around XAI in healthcare, such as legal and regulatory compliance,
privacy and security, the balance between explainability and accuracy/performance, and
explainability metrics. It provides discussion on whether XAI can really help healthcare
advance, for example, by increasing understanding and trust, and offers future research
possibilities in the area of XAI.

The manuscripts in this Special Issue give us only a brief overview of the wide use of AI
in healthcare. It shows how Generative AI can help pathologists and educate patients, how
AI can help build predictive models based on medical data, how it can help classify diseases,
how it can assist with treatments, and it explains the concept of XAI. As the importance of
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AI, and specifically Generative AI with its Large Language Models (LLMs) consuming TBs
of data and using many MWhs of electricity during training [8], is growing, data quality
as well as sustainability are becoming more prominent as well. LLMs in the healthcare
arena need high-quality, reliable medical data to work with. The large computing power
needed to run LLMs causes sustainability issues in a world that is already heading towards
an energy crisis. Luckily, researchers are working on ways to minimize computation power
by inventing methods to reduce computations while preserving model accuracy [9]. While
AI is gaining importance, there is also more focus on responsible AI (RAI) [10], which tries
to prevent negative effects, especially in Generative AI, such as toxicity and hallucinations.
AI in healthcare needs to be both explainable and responsible to make sure that clinical
decisions are fully transparent and ethical. In the future, AI might also converge with other
technological trends such as the Digital Twin [11] and the Metaverse [12], offering many
opportunities to improve healthcare.
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Chat GPT in Diagnostic Human Pathology: Will It Be Useful to
Pathologists? A Preliminary Review with ‘Query Session’ and
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Abstract: The advent of Artificial Intelligence (AI) has in just a few years supplied multiple areas
of knowledge, including in the medical and scientific fields. An increasing number of AI-based
applications have been developed, among which conversational AI has emerged. Regarding the latter,
ChatGPT has risen to the headlines, scientific and otherwise, for its distinct propensity to simulate a
‘real’ discussion with its interlocutor, based on appropriate prompts. Although several clinical studies
using ChatGPT have already been published in the literature, very little has yet been written about its
potential application in human pathology. We conduct a systematic review following the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, using PubMed,
Scopus and the Web of Science (WoS) as databases, with the following keywords: ChatGPT OR Chat
GPT, in combination with each of the following: pathology, diagnostic pathology, anatomic pathology,
before 31 July 2023. A total of 103 records were initially identified in the literature search, of which
19 were duplicates. After screening for eligibility and inclusion criteria, only five publications were
ultimately included. The majority of publications were original articles (n = 2), followed by a case
report (n = 1), letter to the editor (n = 1) and review (n = 1). Furthermore, we performed a ‘query
session’ with ChatGPT regarding pathologies such as pigmented skin lesions, malignant melanoma
and variants, Gleason’s score of prostate adenocarcinoma, differential diagnosis between germ cell
tumors and high grade serous carcinoma of the ovary, pleural mesothelioma and pediatric diffuse
midline glioma. Although the premises are exciting and ChatGPT is able to co-advise the pathologist
in providing large amounts of scientific data for use in routine microscopic diagnostic practice, there
are many limitations (such as data of training, amount of data available, ‘hallucination’ phenomena)
that need to be addressed and resolved, with the caveat that an AI-driven system should always
provide support and never a decision-making motive during the histopathological diagnostic process.

Keywords: ChatGPT; chatbot; artificial intelligence; AI; pathology; histology

1. Introduction

Artificial Intelligence (AI) has revolutionized medical and scientific fields in just a few
years, allowing for significant changes and the integration of diagnostic, therapeutic and
patient care pathways [1]. Although at first it was mainly represented by the development
of Machine Learning (ML) models [2], further advances such as Deep Learning (DL) with,
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among others, Convolutional Neural Networks (CNN) soon came to the fore [3]. A branch
of AI includes conversational artificial intelligence, which has experienced unprecedented
development in recent years, with numerous models and platforms developed to enable
machines to understand and respond to natural language input [4]. In more detail, a
chatbot is an item of software that simulates and develops human conversations (spoken
or written), allowing users to interact with digital devices as though they were speaking
with real people [5]. Chatbot might be as basic as a program that responds to a single
enquiry or as complex as a digital assistant that learns and develops as it gathers and elabo-
rates information to provide higher levels of personalization [6]. The chatbots designed
specifically for activities (declarational) are ‘single-purpose’ software that focus on carrying
out a certain function; regulated responses to user requests are generated using Natural
Language Process (NLP) and very little machine learning [7]. The interactions with these
chatbots are quite particular and structured, and they are best suited for assistance and
service functions like frequently asked and consolidated questions. Common questions
can be managed by activity-specific chatbots, such as inquiries about working hours or
straightforward transactions that do not involve many variables. Even while they employ
NLP in a way that allows users to experiment with it easily, their capabilities are still
somewhat limited. These are the most popular chatbots right now [7,8]. Virtual assistants,
also known as digital assistants or data-driven predictive (conversational) chatbots, are
significantly more advanced, interactive and customized than task-specific chatbots. These
chatbots use ML, NLP and context awareness to learn. They employ data analysis and
predictive intelligence to offer customization based on user profiles and past user behavior.
Digital assistants can gradually learn a user’s preferences, make suggestions and even
foresee needs. They can start talks in addition to monitoring data and rules. Predictive
chatbots that focus on the needs of the user and are data-driven include Apple’s Siri and
Amazon’s Alexa [9].

A clear example of such an approach is ChatGPT, an acronym for Generative Pretrained
Transformer, which is a powerful and versatile NLP tool that uses advanced machine
learning algorithms to generate human-like responses within a conversation (https://
chat.openai.com, accessed on 1 July 2023). Released on 30 November 2022 by OpenAI,
ChatGPT (version 3.5) was trained until the end of 2021 on more than 300 billion words,
with the ability to respond to a huge variety of topics and with the ability to learn from
its human interlocutor [10]. In the first few months after its official launch, many papers
were published in the purely informatic field, but, as the weeks went by, the medical and
scientific fields were also interested, with a particular interest in the education, research
and simulation of clinical pictures of patients, as well as applications in hygiene and public
health, clinical medicine, oncology and surgery [11].

On the other hand, in the literature there is a paucity of information regarding the
reliability of ChatGPT in assisting the routine activity of the pathologist [12]; among other
papers, a recent manuscript by Schukow C. et al. [12,13] underlined the lack of studies
that evaluate this relationship, focusing more on the three fundamental criteria on which a
potential use of ChatGPT should be based: (1) a chatbot should have a strong performance;
(2) an ideal chatbot should be freely accessible for public use; (3) it should be trained on
known and recoverable data.

In this review paper, we will try to summarize the potential use of ChatGPT in
pathological anatomy, discuss the fields of application studied so far, perform some ‘query
sessions’ about pathological topics that could help the pathologist and try to outline future
perspectives, with particular regard to present limitations.

2. Materials and Methods

A systematic review was elaborated following the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) guidelines, using PubMed, Scopus and
Web of Science (WoS) databases before 31 July 2023 with the following terms: ChatGPT
OR Chat GPT, in combination with each of the following: pathology, diagnostic pathology,
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anatomic pathology. Only articles in English were recorded. Review articles, meta-analyses,
observational studies, case reports, survey snapshot studies, letters to the editor and
comments to the letters were all included. Other potentially relevant articles were identified
by manually checking the references of the included literature. The articles all had to meet
the following inclusion criteria: (1) covering pathological anatomy topics in light of the use
of ChatGPT, with the opportunity to discuss strengths and/or limitations; (2) the articles
had to necessarily relate ChatGPT to pathology. Exclusion criteria were articles that talked
about ChatGPT in general or relating it to other aspects not pertaining to pathological
anatomy.

An independent extraction of articles was performed by two investigators (G.C. and
M.C.) according to the inclusion criteria, before 31 July 2023. Disagreement was resolved
by discussion between the two review authors (Figure 1).
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Furthermore, to explore the reliability of ChatGPT in potentially supporting the
pathologist’s routine diagnostic activity, we developed questions (G.C. and M.C.) that we
asked ChatGPT regarding examples of diagnostic approaches in real-life patient cases.
Specifically, the first author (G.C.) created a free account on the Open AI site and conducted
the conversations with the chatbot. No plugins or other accessories were used in the
platform, and all results presented were obtained with ChatGPT version 3.5 and the query
sessions were performed between 1 October and 30 October 2023. Some examples of the
conversations are summarized in Figures 2–6.
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Figure 2. The first author (G.C.) posted a request to ChatGPT: “Could you make a differential
diagnosis in a case of this type: woman, 32 years-old with a pigmented lesion on the thigh. What is
the diagnostic process?” ChatGPT replied, “Diagnosing a pigmented lesion on the thigh, also known
as a skin lesion, requires a systematic approach that typically involves several steps. It is important
to remember that I cannot provide a definitive diagnosis, but I can outline a general process for
the evaluation of such lesions and provide a list of possible differential diagnoses. For an accurate
diagnosis, it is essential for the patient to consult a healthcare professional, such as a dermatologist.
Here is a general diagnostic process and some potential differential diagnoses [. . .]” (see Figure 2 for
the rest). The version of ChatGPT used was dated 25 September 2023, and the average time taken
from request entry was about 23.43 s.
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clinical features useful for suspecting malignant melanoma. ChatGPT provided the ABCDE criteria
together with other parameters (detectability, hardness/compactness and lesion growth). The version
used was always that of 25 September 2023. ChatGPT had an average response time of 44.32 s.
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Figure 6. Another query session related to immunohistochemical features and molecular characteris-
tics of pleural mesothelioma and to molecular features of pediatric diffuse midline glioma (diffuse
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3. Results

A total of 103 records were initially identified in the literature search, of which 19 were
duplicates. After screening for eligibility and inclusion criteria, only five publications were
ultimately included (Figure 1). The majority of publications were original articles (n = 2),
followed by a case report (n = 1), letter to the editor (n = 1) and review (n = 1).

Figure 1 summarizes the review process following PRISMA guidelines and Table 1
summarizes the features of the five studies included in our review.

Table 1. Features (name of author, year, number of reference, type of application of ChatGPT,
strengths and weaknesses) of ChatGPT in the publication analyzed in our literature review.

Year
Authors Type of Paper Application of

ChatGPT Strengths Weakness

Sallam
2023
[12]

Scientific research Speeding of the review Erroneous contents

Computer code generation Hallucination phenomena

Medical practice Simplification of the workflow
Risk of

incorrect/inaccurate
information

Improved diagnostics, cost
savings, improved health

literacy

Transparency and legal
issues

Limited knowledge before
2021

Risk of spreading
misinformation

Review

Health education

Copyright issues

Lack of originality

Sinha
[14]
2023

Article Query session of 100
questions Reasonable level of rationality

Lack of true understanding
of the underlying

significance and context of
the information

Sorin
[15]
2023

Article ChatGPT in a
molecular tumor board

Clinical recommendations of
ChatGPT in line with those of
the oncology committee in 70%

of the cases

High difficulty in
providing empirical

decisions on the
therapeutic path

Naik
[16]
2023

Case Report ChatGPT in the setting
of clinical management

Provide clinical and
pathological information Allucination phenomena

Yamin MA
[17]
2023

Summarize patient records Risk of inaccurate
information

Incorporation into digital
pathology Allucination phenomenaArticle

ChatGPT in
gastrointestinal

pathology
Education and research

Regarding the ‘query session’, the first question was related to the diagnostical and
therapeutical approach in a clinical case of a ‘32 years-old woman with a pigmented lesion
on the thigh’. ChatGPT was able to answer correctly and comprehensively, summarizing
the different anamnestic stages peculiar to the case, with a satisfactory explanation of con-
cepts such as dermoscopy, biopsy and main differential diagnosis. Furthermore, ChatGPT
cautioned against using this information without proper vetting and validation by an expe-
rienced pathologist. We consider this first step very satisfactory (ChatGPT’s responses were
assessed individually by three reviewers who checked each response to the standardized
responses to evaluate the response’s consistency. Based on their ranking, responses were
classified as either “consistent” or “inconsistent.” Throughout the evaluation process, there
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was strong agreement amongst the three reviewers, guaranteeing a consistent and unbiased
assessment of the responses).

Going into more detail, the first author went on to ask ChatGPT: “OK, thank you
ChatGPT. Now, could you please explain to me the clinical criteria for suspecting ma-
lignant melanoma?” and ChatGPT, in a very performant and correct manner, replied:
“Certainly, I can provide you with an overview of the clinical criteria for suspecting ma-
lignant melanoma, but please keep in mind that I am not a medical professional, and
you should consult with a healthcare professional for personalized advice. The diagnosis
and evaluation of skin lesions should be done by a qualified dermatologist or healthcare
provider.

Malignant melanoma is a type of skin cancer that arises from melanocytes, the pigment-
producing cells in the skin. Detecting melanoma involves assessing various clinical features,
often using the ABCDE criteria:

Asymmetry: One half of the mole does not match the other half in terms of shape,
size, or color.

Border irregularity: The edges of the mole are not well-defined; they may be uneven,
notched, or blurred.

Color variations: Melanomas often have uneven coloring, with different shades of
brown, black, or even red, white, or blue.

Diameter: Melanomas are typically larger than common moles. While size alone is
not a definitive indicator, moles larger than 6 millimeters (about the size of a pencil eraser)
should be examined.

Evolution or change in appearance: Any change in size, shape, color, or elevation,
or the development of new symptoms such as bleeding or itching, should be carefully
evaluated.

In addition to the ABCDE criteria, the “EFG” rule is sometimes used:
Evolving: The mole is changing in size, shape, or color.
Firm: The mole feels hard or lumpy.
Growing: The mole is increasing in size.
It’s important to note that while these criteria are helpful, not all melanomas exhibit

all these characteristics, and some benign moles may exhibit similar features. Regular skin
self-exams and professional skin checks are crucial for early detection”. (see Figure 3 for
the rest of ChatGPT’s response).

Again, ChatGPT proved to be quite performant and was able to provide correct
answers to the appropriate questions (Figure 3).

Finally, the first author asked ChatGPT: “OK, thank you very much ChatGPT. Now
could you please explain to me the histological features of Malignant Melanoma?” and
ChatGPT replied: “Certainly. Malignant melanoma is diagnosed through a biopsy, where a
small sample of the suspicious skin lesion is removed and examined under a microscope.
The histological features, or the characteristics observed in the tissue at a microscopic level,
play a crucial role in confirming the diagnosis of malignant melanoma. Here are some key
histological features associated with malignant melanoma:

Nesting and Invasion: Malignant melanoma often exhibits a nested or “nest within
a nest” growth pattern. Melanoma cells can invade surrounding tissues, including the
epidermis (the outer layer of the skin) and the dermis (the deeper layer of the skin).

Asymmetry of Melanocytes: The melanocytes in melanoma are often irregularly
distributed and asymmetrical in shape and size. This is in contrast to normal skin, where
melanocytes are more evenly distributed.

Cytological Atypia: Melanoma cells typically show significant variation in size and
shape, a feature known as cytological atypia. This atypical appearance is one of the
hallmarks of malignant cells.

Mitotic Figures: Mitotic figures, which are indicators of cell division, are often in-
creased in melanoma. The presence of a higher number of mitotic figures suggests a more
aggressive and rapidly growing tumor.
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Pigment Variation: Melanomas can exhibit variable pigmentation within the tumor,
resulting in areas of dark and light pigmentation. This can be seen on microscopic examination.

Inflammatory Infiltrate: Inflammatory cells may be present around and within the
tumor, reflecting the body’s immune response to the malignant cells.

Ulceration: In some cases, melanomas may ulcerate, meaning there is a breakdown of
the overlying skin. Ulceration is associated with a poorer prognosis.

It’s important to note that there are different subtypes of malignant melanoma,
each with its own histological characteristics. The subtypes include superficial spread-
ing melanoma, nodular melanoma, lentigo maligna melanoma, and acral lentiginous
melanoma, among others.

The histological examination is a critical component of the diagnostic process and
provides valuable information about the nature of the melanoma, its aggressiveness, and
the appropriate course of treatment. If you have concerns about a suspicious skin lesion,
it’s crucial to consult with a dermatologist or healthcare provider for a thorough evaluation
and biopsy if necessary”. Then, G.C. ask to ChatGPT: “Perfect ChatGPT, and could you
explain me “balloon cell melanoma”?

ChatGPT
“Balloon cell melanoma” is a rare and distinct variant of malignant melanoma charac-

terized by the presence of balloon cells within the tumor. Balloon cells are large, rounded
or oval-shaped cells with clear cytoplasm, giving them a balloon-like appearance under the
microscope.

Here are some key features associated with balloon cell melanoma:
Cellular Morphology: The hallmark feature of balloon cell melanoma is the presence

of balloon cells, which are large and have a clear or vacuolated cytoplasm. These cells can
sometimes be mistaken for other cell types due to their distinctive appearance.

Melanocytic Origin: Despite the unusual morphology, balloon cell melanoma is still
considered a type of malignant melanoma. The tumor arises from melanocytes, the pigment-
producing cells in the skin.

Histological Examination: Diagnosis is confirmed through histological examination of
a biopsy specimen. The biopsy allows pathologists to analyze the cellular characteristics,
including the presence of balloon cells, and determine the malignancy of the lesion.

Clinical Presentation: Balloon cell melanoma may present as a pigmented lesion on
the skin, similar to other forms of melanoma. It can occur in sun-exposed areas or less
commonly in areas not typically exposed to sunlight.

Immunohistochemistry: Special staining techniques, such as immunohistochemistry,
may be used to further characterize the tumor cells and confirm their melanocytic origin.
Immunohistochemistry involves using antibodies to detect specific proteins, helping to
identify the type of cells present in the tissue (Figure 4).

Further, when ChatGPT was asked to provide references on balloon cell melanoma,
two non-existent papers were provided (hallucination phenomenon), confirming what had
already been reported by several papers previously.

4. Discussion

The application of AI to medicine has significantly co-assisted physicians’ therapeutic
decision-making processes, not replacing but instead complementing and enhancing the
indispensable figure of the human [8]. The advent of ChatGPT has further enabled a break-
through in Large Language Models (LLM) that enable the simulation of a real conversation
on a wide variety of topics, including medical and scientific notions [11].

In a recent paper by Sallam [12], the various advantages and limitations of using
ChatGPT in areas such as scientific research, practice and health education were analyzed.
In particular, scientific research could really benefit from a useful and powerful tool such as
ChatGPT by speeding up the process of literature reviews and computer code generation,
allowing the human user to focus more on experimental design [13,18–21]; on the other
hand, several authors [13,19,22] have highlighted issues of reliability of the data provided
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by ChatGPT with the generation of erroneous and/or inaccurate content, phenomena
of ‘hallucination’ (by which is meant the generation of erroneous content but which can
be considered plausible from a scientific point of view [23]) and the bias of the answers
provided by ChatGPT, which is a reflection of the dataset used in training [12]. Finally, it is
important to consider that ChatGPT may generate nonexistent references, as pointed out
by Chen T.J. [24] and Lubowitz [25].

If in the early months the field of application was mostly restricted to clinical medicine,
in recent times a number of papers have studied, tested and commented on the applicability
of Chat GPT in the field of human pathology, making it possible to outline its real usefulness
and current limitations.

The article by Sinha et al. [14] describes a study conducted on ChatGPT’s ability
to resolve complex rationality problems in the area of human pathology. Based on the
clear finding that AI is used to analyze medical images, such as histopathologic slides, in
order to identify and diagnose diseases with high precision, the authors take a cautious
approach to the fact that NLP algorithms are used to analyze the relationships between
pathologies, extract relevant information and aid in disease diagnosis. The goal of the
study was to assess ChatGPT’s ability to address high-level rational questions in the field
of pathology. One hundred questions that were randomly chosen from a bank of inquiries
regarding diseases and divided into 11 different systems of pathology were used. Experts
have evaluated the responses provided by ChatGPT using both a scale of 0 to 5 and the
tassonomy SOLE to assess the depth of understanding demonstrated in the responses.

The outcomes have shown that the responses provided by ChatGPT achieve a rea-
sonable level of rationality, with a score of four or five. This means that AI is capable of
correctly responding to high-level inquiries requiring in-depth knowledge of the subject.
The report also highlights the limitations of AI in diagnosing diseases. Although it is
possible to recognize schemes and categorize data, a true understanding of the underlying
significance and context of the information is lacking. AI is unable to make logical judge-
ments or evaluative decisions because it lacks the ability to comprehend personal values
and judgements. Therefore, it is suggested that careful consideration should be given to
the use of AI in medical education, with the goal of assisting human judgement rather than
replacing it.

There are some limitations to the study, including the subjective nature of the evalua-
tion procedure and the selection of particular questions from a single bank of data. The
authors suggest that in order to obtain results that are more generally applicable, future
studies may be conducted on a larger sample size and by a variety of institutions.

In the paper by Sorin V. et al. [15], the authors discuss how ChatGPT 3.5 can also oper-
ate within the molecular tumor board, not only starting from histopathological/diagnostic
data, but also integrating other key components such as the genetic or molecular response
and/or prediction of treatment response and prognosis data. Ten consecutive cases of
women with breast cancer were considered and an attempt was made to assess how consis-
tent the recommendations provided by the chatbot were with those of the tumor board.
The results showed that ChatGPT’s clinical recommendations were in line with those of the
oncology committee in 70% of the cases, with concise clinical case summaries and explained
and reasoned conclusions. However, the lowest scores (which were given by the second
reviewer) were for the clinical recommendations of the chatbot, suggesting that deciding
on clinical treatment from pathological/molecular data is highly challenging, requiring
medical understanding and experience in the field. Furthermore, it was curious to note
that ChatGPT never mentioned the role of medical radiologists, suggesting that incomplete
training (and the consequent risk of bias) may influence the performance, and thus the
responses, of the chatbot.

In another recent paper by Naik H.R. et al. [16], the authors described the case of
a 58-year-old woman with bilateral synchronous breast cancer (s-BBC) who underwent
bilateral mastectomy, sentinel lymph node biopsy (BLS), axillary lymphadenectomy with
adjuvant radiotherapy and chemo/hormonotherapy. The particularity of the paper was
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related to the so-called ‘hallucination phenomenon’, i.e., a clear and confident response
from ChatGPT but which is not real. One of the authors of the paper (Dr. Gurda), when
asking the chatbot about s-BBC, noted that although the answer was plausible, the reference
provided did not exist, although there were articles with similar information and authors.

This aspect is well addressed by the paper by Metze K. et al. [26], who conducted a
study to assess the ability of ChatGPT to contribute to a review on Chagas disease, focusing
on the role of individual researchers. Therefore, 50 names of researchers with at least
four publications on Chagas disease were selected from Clarivate’s Web of Science (WoS)
database and for each researcher, the chatbot was asked to provide conceptual contributions
related to the study of the disease. The answers were checked by two observers against the
literature and incorrect information was removed. The percentage of correct words in the
text generated by ChatGPT was calculated and the literature references were classified into
three categories: completely correct, minor errors and major errors.

The results showed that the average percentage of correct words in the text generated
by ChatGPT was 59.4% but the variation was wide, ranging from 10.0% to 100.0%. A
positive correlation was observed between the percentage of correct words and the number
of indexed publications of each author of interest, as well as with the number of citations
and the author’s H-index. However, the percentage of correct references was very low,
averaging 7.07%, and both minor and major errors were found in the references.

In conclusion, the results of this study suggest that ChatGPT is still not a reliable
source for literature reviews, especially in more specific areas with a relatively low number
of publications, as there are still accuracy and misinformation issues to be addressed,
especially in the field of medicine.

Yamin Ma [17], in a paper of July 2023, discusses the application of ChatGPT in
the context of gastrointestinal pathology, hypothesizing three possible applications for
ChatGPT:

(1) Ability to summarize patient records: ChatGPT could be integrated into the patent
table to summarize patients’ previous clinical information, helping pathologists better
understand patients’ current health status and saving time before case reviews.

(2) Incorporation into digital pathology: ChatGPT could improve the interpretation of
computer-aided diagnosis (CAD) systems in gastrointestinal pathology. It would en-
able pathologists to ask specific questions on digitized images and obtain knowledge-
based answers associated with diagnostic criteria and differential diagnosis.

(3) Role in education and research: ChatGPT could be used for health education, offering
scientific explanations associated with medical terms in pathology. However, atten-
tion should be paid to the quality of the training data to avoid biased content and
inaccurate information. The use of ChatGPT in research also requires caution as it
may be insufficient or misleading.

Finally, the paper emphasizes that while recognizing the potential of ChatGPT, it is
important to proceed with caution when using artificial intelligence-based technologies
such as ChatGPT in gastrointestinal pathology. The aim should be to integrate such
language models in a regulated and appropriate manner, exploiting their advantages to
improve the quality of healthcare without replacing human expertise and without ignoring
expert consultation in particular cases.

From what has been discussed so far and bearing in mind a paper published a few
days ago [13], it would appear that at present, the use of ChatGPT in pathology is still
in its early stages. In particular, with regard to ChatGPT version 3.5, it seems clear that
the amount of data on which the algorithm has been trained plays a key role in its ability
to provide correct answers to certain prompts. In particular, several papers have warned
of the risk of possible bias and transparency issues [27,28] and of damage resulting from
inaccurate or outright incorrect content [29–32]. One of the most problematic phenomena is
hallucination, as ChatGPT seems, at present, to produce correct scientific content but not to
direct the content itself to a real source/reference. Therefore, its use in pathology and, more
generally, in scientific research must necessarily take these limitations into account [33].
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Furthermore, it is important to say that there is need for a new framework on pub-
lication/authorship ethics in a new age of AI-sourced digital composition; it is always
important to address the hallucination phenomena with a check of the user.

From an ethical point of view, it is very important to understand the issue of patients’
private data, and if the use of medical clinical records is necessary, it will be important to
find a way of protecting patient information.

Future Roadmaps

As highlighted in the work of Schukow et al. [13], it is imperative to outline future
perspectives that the implementation of AI models will bring to the fore; first of all, it is
important to consider how the use of AI methods applied to the writing of scientific articles
will be managed, how to address the issue of consent and whether to modify the editorial
lines of journals taking into account the use of chatbots. Secondly, it is very important to
understand how ChatGPT can impact the possible option of specialization in pathological
anatomy (increase or reduction) and how and to what extent there will be a need for a
critical review of AI-generated content and whether or not the role of teacher/mentor can
be delegated to ChatGPT.

Projecting to a future in which such systems may become more active, their integration
with clinical, genetic, anamnestic, morphological and immunohistochemical data, which
have always been key to pathologists’ roles, will have to be screened by professionals with
medical experience and knowledge, which are areas in which ChatGPT struggles the most.

Author Contributions: Conceptualization, G.C. (Gerardo Cazzato) and M.C.; methodology, G.C.
(Gerardo Cazzato), F.A. and E.M.; software, G.C. (Gerardo Cazzato), F.A. and V.L.; validation, G.C.
(Gerardo Cazzato), M.C., A.M. and G.I.; formal analysis, P.P. and A.M.; investigation, G.C. (Gerardo
Cazzato); resources, G.C. (Gerardo Cazzato); data curation, G.C. (Gerardo Cazzato); writing—original
draft preparation, G.C. (Gerardo Cazzato); writing—review and editing, G.C. (Gerardo Cazzato) and
G.C. (Gennaro Cormio); visualization, G.I.; supervision, P.P., G.C. (Gennaro Cormio) and G.I. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Xiang, Y.; Zhao, L.; Liu, Z.; Wu, X.; Chen, J.; Long, E.; Lin, D.; Zhu, Y.; Chen, C.; Lin, Z.; et al. Implementation of artificial

intelligence in medicine: Status analysis and development suggestions. Artif. Intell. Med. 2020, 102, 101780. [CrossRef]
2. Haug, C.J.; Drazen, J.M. Artificial Intelligence and Machine Learning in Clinical Medicine, 2023. N. Engl. J. Med. 2023, 30,

1201–1208. [CrossRef] [PubMed]
3. Venerito, V.; Angelini, O.; Cazzato, G.; Lopalco, G.; Maiorano, E.; Cimmino, A.; Iannone, F. A convolutional neural network with

transfer learning for automatic discrimination between low and high-grade synovitis: A pilot study. Intern. Emerg. Med. 2021, 16,
1457–1465. [CrossRef] [PubMed]

4. Eysenbach, G. The Role of ChatGPT, Generative Language Models, and Artificial Intelligence in Medical Education: A Conversa-
tion with ChatGPT and a Call for Papers. JMIR Med. Educ. 2023, 9, e46885. [CrossRef]

5. Bozic, J.; Tazl, O.A.; Wotawa, F. Chatbot Testing Using AI Planning. In Proceedings of the 2019 IEEE International Conference on
Artificial Intelligence Testing (AITest), Newark, CA, USA, 4–9 April 2019; pp. 37–44. [CrossRef]

6. Adamopoulou, E.; Moussiades, L. An Overview of Chatbot Technology. Artif. Intell. Appl. Innov. 2020, 584, 373–383. [CrossRef]
7. Okonkwo, C.W.; Ade-Ibijola, A. Chatbots applications in education: A systematic review. Comput. Educ. Artif. Intell. 2021, 2,

100033. [CrossRef]
8. Khan, R.A.; Jawaid, M.; Khan, A.R.; Sajjad, M. ChatGPT-Reshaping medical education and clinical management. Pak. J. Med. Sci.

2023, 39, 605–607. [CrossRef]
9. Caldarini, G.; Jaf, S.; McGarry, K. A Literature Survey of Recent Advances in Chatbots. Information 2022, 13, 41. [CrossRef]

17



AI 2023, 4

10. Panch, T.; Pearson-Stuttard, J.; Greaves, F.; Atun, R. Artificial intelligence: Opportunities and risks for public health. Lancet Digit.
Health 2019, 1, e13–e14, Erratum in Lancet Digit. Health 2019, 1, e113. [CrossRef]

11. Mago, J.; Sharma, M. The Potential Usefulness of ChatGPT in Oral and Maxillofacial Radiology. Cureus 2023, 15, e42133.
[CrossRef]

12. Sallam, M. ChatGPT Utility in Healthcare Education, Research, and Practice: Systematic Review on the Promising Perspectives
and Valid Concerns. Healthcare 2023, 11, 887. [CrossRef] [PubMed]

13. Schukow, C.; Smith, S.C.; Landgrebe, E.; Parasuraman, S.; Folaranmi, O.O.; Paner, G.P.; Amin, M.B. Application of ChatGPT in
Routine Diagnostic Pathology: Promises, Pitfalls, and Potential Future Directions. Adv. Anat. Pathol. 2023, 27, 406. [CrossRef]
[PubMed]

14. Sinha, R.K.; Deb Roy, A.; Kumar, N.; Mondal, H. Applicability of ChatGPT in Assisting to Solve Higher Order Problems in
Pathology. Cureus 2023, 15, e35237. [CrossRef] [PubMed]

15. Sorin, V.; Klang, E.; Sklair-Levy, M.; Cohen, I.; Zippel, D.B.; Balint Lahat, N.; Konen, E.; Barash, Y. Large language model
(ChatGPT) as a support tool for breast tumor board. NPJ Breast Cancer 2023, 9, 44. [CrossRef] [PubMed]

16. Naik, H.R.; Prather, A.D.; Gurda, G.T. Synchronous Bilateral Breast Cancer: A Case Report Piloting and Evaluating the
Implementation of the AI-Powered Large Language Model (LLM) ChatGPT. Cureus 2023, 15, e37587. [CrossRef]

17. Ma, Y. The potential application of ChatGPT in gastrointestinal pathology. Gastroenterol. Endosc. 2023, 1, 130–131. [CrossRef]
18. Nature editorial Tools such as ChatGPT threaten transparent science; here are our ground rules for their use. Nature 2023, 613,

612. [CrossRef]
19. Moons, P.; Van Bulck, L. ChatGPT: Can artificial intelligence language models be of value for cardiovascular nurses and allied

health professionals. Eur. J. Cardiovasc. Nurs. 2023, 22, e55–e59. [CrossRef]
20. Biswas, S. ChatGPT and the Future of Medical Writing. Radiology 2023, 307, e223312. [CrossRef]
21. Lund, B.; Wang, S. Chatting about ChatGPT: How may AI and GPT impact academia and libraries? Library Hi Tech News 2023, 40,

26–29. [CrossRef]
22. The Lancet Digital Health. ChatGPT: Friend or foe? Lancet Digit. Health 2023, 5, e112–e114. [CrossRef]
23. Cascella, M.; Montomoli, J.; Bellini, V.; Bignami, E. Evaluating the Feasibility of ChatGPT in Healthcare: An Analysis of Multiple

Clinical and Research Scenarios. J. Med. Syst. 2023, 47, 33. [CrossRef] [PubMed]
24. Chen, T.J. ChatGPT and Other Artificial Intelligence Applications Speed up Scientific Writing. J. Chin. Med. Assoc. 2023, 86,

351–353. [CrossRef] [PubMed]
25. Lubowitz, J. ChatGPT, An Artificial Intelligence Chatbot, Is Impacting Medical Literature. Arthroscopy 2023, 39, 1121–1122.

[CrossRef]
26. Metze, K.; Morandin-Reis, R.C.; Lorand-Metze, I.; Florindo, J.B. The Amount of Errors in ChatGPT’s Responses is Indirectly

Correlated with the Number of Publications Related to the Topic Under Investigation. Ann. Biomed. Eng. 2023, 51, 1360–1361.
[CrossRef]

27. Holzinger, A.; Keiblinger, K.; Holub, P.; Zatloukal, K.; Müller, H. AI for life: Trends in artificial intelligence for biotechnology. New
Biotechnol. 2023, 74, 16–24. [CrossRef]

28. Jeblick, K.; Schachtner, B.; Dexl, J.; Mittermeier, A.; Stuber, A.T.; Topalis, J.; Weber, T.; Wesp, P.; Sabel, B.; Ricke, J.; et al. ChatGPT
Makes Medicine Easy to Swallow: An Exploratory Case Study on Simplified Radiology Reports. arXiv 2022, arXiv:2212.14882.
[CrossRef]

29. Ahn, C. Exploring ChatGPT for information of cardiopulmonary resuscitation. Resuscitation 2023, 185, 109729. [CrossRef]
30. D’Amico, R.S.; White, T.G.; Shah, H.A.; Langer, D.J. I Asked a ChatGPT to Write an Editorial About How We Can Incorporate

Chatbots into Neurosurgical Research and Patient Care. Neurosurgery 2023, 92, 663–664. [CrossRef]
31. Patel, S.B.; Lam, K. ChatGPT: The future of discharge summaries? Lancet Digit. Health 2023, 5, e107–e108. [CrossRef]
32. Ali, S.R.; Dobbs, T.D.; Hutchings, H.A.; Whitaker, I.S. Using ChatGPT to write patient clinic letters. Lancet Digit. Health 2023, 5,

e179–e181. [CrossRef] [PubMed]
33. Goddard, J. Hallucinations in ChatGPT: A Cautionary Tale for Biomedical Researchers. Am. J. Med. 2023, 136, 1059–1060.

[CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

18



Citation: Chow, J.C.L.; Sanders, L.; Li,

K. Design of an Educational Chatbot

Using Artificial Intelligence in

Radiotherapy. AI 2023, 4, 319–332.

https://doi.org/10.3390/ai4010015

Academic Editor: Tim Hulsen

Received: 6 January 2023

Revised: 14 February 2023

Accepted: 28 February 2023

Published: 2 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Design of an Educational Chatbot Using Artificial Intelligence
in Radiotherapy
James C. L. Chow 1,2,* , Leslie Sanders 3 and Kay Li 4

1 Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network,
Toronto, ON M5G 1X6, Canada

2 Department of Radiation Oncology, University of Toronto, Toronto, ON M5T 1P5, Canada
3 Department of Humanities, York University, Toronto, ON M3J 1P3, Canada
4 Department of English, University of Toronto, Toronto, ON M5R 0A3, Canada
* Correspondence: james.chow@rmp.uhn.ca; Tel.: +1-416-946-4501

Abstract: Context: In cancer centres and hospitals particularly during the pandemic, there was a
great demand for information, which could hardly be handled by the limited manpower available.
This necessitated the development of an educational chatbot to disseminate topics in radiotherapy
customized for various user groups, such as patients and their families, the general public and
radiation staff. Objective: In response to the clinical demands, the objective of this work is to explore
how to design a chatbot for educational purposes in radiotherapy using artificial intelligence. Methods:
The chatbot is designed using the dialogue tree and layered structure, incorporated with artificial
intelligence features such as natural language processing (NLP). This chatbot can be created in
most platforms such as the IBM Watson Assistant and deposited in a website or various social
media. Results: Based on the question-and-answer approach, the chatbot can provide humanlike
communication to users requesting information on radiotherapy. At times, the user, often worried,
may not be able to pinpoint the question exactly. Thus, the chatbot will be user friendly and reassuring,
offering a list of questions for the user to select. The NLP system helps the chatbot to predict the
intent of the user so as to provide the most accurate and precise response to him or her. It is found
that the preferred educational features in a chatbot are functional features such as mathematical
operations, which should be updated and modified routinely to provide new contents and features.
Conclusions: It is concluded that an educational chatbot can be created using artificial intelligence to
provide information transfer to users with different backgrounds in radiotherapy. In addition, testing
and evaluating the performance of the chatbot is important, in response to user’s feedback to further
upgrade and fine-tune the chatbot.

Keywords: artificial intelligence; machine learning; natural language processing; chatbot; radiotherapy;
Internet of Things; healthcare

1. Introduction

User interfaces in computer applications can be in different forms such as graphical
user interfaces, command lines, menu driven, form based and natural language [1,2]. Recent
development of computer technology, Internet of Things (IoT) and artificial intelligence (AI)
generated more advanced interfaces such as chatbots and virtual reality [3–5]. A chatbot is
a software application designed to replace humans to provide user communication through
an on-line chat conversation. Our research team proposes that there is a need to make
the chatbot humanlike, by simulating the ways a human would behave and respond in
the user conversation, especially when covering emotional and sensitive topics [6–8]. The
chatbot is talking to real human beings, often worried and in distress. A chatbot should
not just be vocalizing the written content available on a website. It should be constructed
like a fictional character in literature, to whom the user can feel connected, who can be a
reassuring voice in times of need. We named our chatbot the RT Bot.
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Technically, the RT Bot has the necessary features, complete with routine testing,
turning and updates necessary to pass the standard of the Turing test [9,10]. Nowadays, a
chatbot in any domain is very popular as a virtual assistant to answer questions from users
in business, industry and healthcare [11–13].

First, the RT Bot must be loaded with the necessary information. It is not just reading
out information regarding cancer health that can be found in cancer centre or hospital
websites. Such websites usually provide a list of topics which are neither interactive nor
offer any personal touches, in attempting to understand the concerns of the users. Cancer
patients, families and practitioners, on the other hand, are in challenging, often stressful,
situations, wanting to access accurate information as efficiently as possible. On top of this,
there is seldom any information specifically on radiotherapy, despite the large number of
cancer patients, especially those with advanced stage (metastatic) disease that have to go
through this process. Having “someone” with professional knowledge who can “listen”
to them, provide the medical information with good will and encouragement goes a long
way to help patients and families struggling with death [14,15]. As it is quite impossible to
have real medical professionals to stand by around the clock to answer questions especially
during the pandemic period, an educational chatbot would be essential to disseminate
health information to the users. For example, the radiation treatment process is often a black
box for cancer patients and families. They may scramble for answers everywhere, from
visits to libraries, to Google search, asking Siri, or posting their questions to WhatsApp
groups. However, they may not be getting the sort of accurate information they need.
Recent innovative computer technology and technique such as IoT and AI apps in mobile
devices can be used to provide the information about radiotherapy needed by patients
and their families [16,17]. However, these still need to be customized to be relevant to the
user’s query.

The performance of a chatbot can be enhanced by AI, which makes the chatbot more
powerful than a conventional website and Google searches, because the machine learns
from the user’s request and improves its knowledge base with each interaction [11]. It is
situational, providing answers specific to the situations and environment of the query [18].
Machine learning (ML) and natural language processing (NLP) are two branches of AI
generating the chatbot. Machine learning can read text to discern the sentiment of the user
through natural language understanding [19]. The NLP applications try to understand
natural human communication and respond to the user using a similar and natural lan-
guage [20]. Machine learning is used to understand vast nuances in human language and
to learn to answer in a way that the user is likely to comprehend. The innovation in AI
through powerful ML algorithms and NLP can enable the chatbot to hold conversations
with the user without too much human intervention.

Medical chatbots can carry out different functionalities. In cancer treatment,
Bibault et al. [21] have investigated and found that chatbots can create bi-directional in-
formation exchange with patients, which could be leveraged for the treatment process,
screening and follow-up. This AI-assisted chatbot can be deployed over various modalities
such as text messaging, mobile applications and chat rooms. In healthcare, Chung et al. [22]
proposed a chatbot-based healthcare service with a knowledgebase for cloud computing.
They proposed a mobile health service based on a chatbot in response to accidents or
change of conditions of patients with chronic disease, which may occur in everyday life.
Lokman et al. [23] designed a chatbot that can function as a virtual diabetes physician. The
chatbot allows diabetic patients to have diabetes management advice without going to the
hospital. Hajare et al. [24], on the other hand, proposed a chatbot that not only can answer
each and every query asked by the end user, but also focuses on a local database as well as a
web database for educational purposes. The chatbot is built making use of the most recent
technologies such as ML, NLP, pattern matching, data processing algorithms to enhance
the performance. Setiaji et al. [25] draws attention to a human-to-machine conversation
model using knowledge in a database. This chatbot includes a core and an interface that
accesses that core in relational database management systems. The database stores the
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knowledge, and the interpreter stores the programs of function and procedure sets for
pattern-matching requirements. The above AI-assisted chatbots in medicine show that the
main challenges are to train the chatbot to understand the context of the user, to learn how
the chatbot handles open-ended or unstructured inputs from the user, especially about
emotional or sensitive topics.

In this paper, we present the design of an educational chatbot for different kinds
of users: cancer patients and their families, general public and radiation staff working
in the cancer centre or hospital. We will cover the different stages of design, including
defining the problem, creating conversational flow, chatbot training, testing and evaluation,
maintaining and updating. We also discuss the programming and implementation issues
we encountered when creating the educational chatbot in radiotherapy. The objective of
the chatbot is to conduct a basic and comprehensive information transfer from the chatbot
provider to the user regarding simple knowledge in radiotherapy, customized for different
kinds of users. The chatbot is designed taking advantage of some AI features such as NLP
and informed by communication strategies for the targeted audience.

2. Materials and Methods
2.1. Overview of the Workflow
2.1.1. Identification of User Group

First, the scope of the project has to be defined by identifying the types of potential
users and their needs. Such information can be gathered through workshops, meetings and
conferences. In radiotherapy, the user groups may include the radiation staff working in the
cancer centre, cancer patients, and people from the general public including the patient’s
family members. After understanding their needs, a chatbot can be created to address the
issues. The chatbot is designed to simulate conversation with different kinds of human
users through the internet. Figure 1 shows an example of the basic workflow of the chatbot.
In Figure 1, the chatbot begins with questions identifying the user. The user may be a
radiation staff member such as a radiotherapist or medical physicist looking for specific
radiation treatment information in their fields (e.g., radiation safety), or a patient or his/her
family member looking for general information about a specific radiation treatment process
(e.g., external beam radiotherapy). Both groups of users have their specific needs. For
example, radiation staff may want to confirm some specific rules and policies in radiation
safety [26], while patients may want to understand some basic terms in external beam
radiotherapy [27]. Therefore, it is necessary to classify and direct the user into his or her
groups linked to the related database.
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Figure 1. An example of the basic workflow of a chatbot.

The basic conversional flow for the chatbot is shown in Figure 1, when the user asks
the chatbot what information about cancer treatment he wants to know. Then the chatbot
will start to identify and categorize the user: e.g., a radiotherapist. If the answer is yes, the

21



AI 2023, 4

chatbot will direct the user to the staff user group. If the answer is no, further identification
will follow. When the user finds it difficult to answer such a question, the chatbot will
provide guidance or a choice. Such an initial communication approach through Q and A
also builds the connection between the chatbot and the user. From the responses of the user,
the chatbot tries to predict the type of information the user is looking for. This involves
creating a set of intents, entities and actions that the chatbot will be able to recognize and
respond to. In case the user cannot answer well or the chatbot cannot understand the
response from the user, guidance will be provided by the chatbot to help the user to focus.
The application of AI can help the chatbot to predict the response (intent) from the user
accurately and provide more humanlike conversation.

2.1.2. Identification of Different Scenarios

The chatbot will put on a different persona with respect to the user’s group. It
first identifies the user’s needs and then follows a suitable scenario tailored to the user
based on the needs. To create an educational chatbot in radiotherapy, we use three user
groups in the pilot, namely, patient and family, general public, and radiation staff or
student. The approach and response of the chatbot as per each scenario to the user are
different. For example, if the user is identified as a patient, the chatbot will act as a
friend or mentor with friendly wording for the user. However, if the user is a radiation
staff member, the chatbot will act professionally like an assistant trying to provide the
requested information accurately, quickly and precisely. The scenarios can be a cancer
patient looking for information about brain surgery, a user from the general public looking
for information about breast cancer screening, or a medical physicist looking for dosimetric
data on radiation beams. The chatbot needs to be trained with the data in the scenario
of each user group, including both the input and expected output. Then the chatbot can
understand and respond to different users appropriately. These scenarios can be identified
by healthcare providers and clinical workers based on their experiences through interviews,
meetings or workshops. If the chatbot cannot communicate to the user due to unexpected
or unstructured wording, guidance will be provided by the chatbot to help the user. This
guidance will be included in the script and workflow of the chatbot. Any unanswered
questions will be added to a corpus of questions to be used to train the chatbot, so that it
can become smarter with ML. This iterative approach is necessary, using what we learn
from the former session to influence the inputs for the subsequent session. Improving the
chatbot through iterations has the advantage of delivering the chatbot quickly, and while it
is undergoing continuous improvement.

2.1.3. Communication Framework with Dialogue Tree and Layered Approach

The chatbot is designed using two phases of a communication framework. The first
phase considers structured questions and answers based on the scenarios for patients and
family, the general public and radiation staff. This means proceeding with a set of questions
and answers like multiple choices, but with tips and feedback from the chatbot. This
minimizes human monitoring and maximizes usage. In the second phase, after identifying
the popular scenarios for each of the three user groups, the chatbot is added with the ability
to answer open-ended questions asked by the users. This phase allows AI to learn from
the Q and A through ML. We need to do this in Phase 2 after identifying the most needed
scenarios in Phase 1 and build sufficiently substantial big data to train the chatbot in Phase
2 [26,27].

In the interaction logic of Phase 1, the user can select related items step by step as per
his or her needs and finally acquire the information. For example, the chatbot first identifies
the user’s background as shown in Figure 2a. When the user selects the user group, a list
of items will be provided. The list is based on the scenarios previously identified for the
user group. For example, the general public likely wants to know information about cancer
statistics, healthy life style and cancer screening, while radiation staff may want to know
information about the radiotherapy process, radiation safety and so on. If the user is a

22



AI 2023, 4

patient and selects “Cancer sites”, then a further breakdown of the item will be followed as
shown in Figure 2b. The chatbot will ask the user which cancer sites he or she is interested
in. A list of cancer sites such as brain, head-and-neck, breast and so on is shown to the user
for selection. In this case, if the user selects “Brain”, then further breakdown of such an item
will be shown in Figure 2c. In the list, the user can select which category regarding brain
cancer he or she wants to know about. If “Brain Radiotherapy” is selected, the chatbot will
provide information related to such a topic. This is different from websites as this works
through Q and A with the chatbot.
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Figure 2. The interaction logic of the chatbot when the user (a) is identified in the “Patient” group and
(b) selects to know information in “Cancer Sites” and then (c) wants to know information regarding
the “Brain” site. The box in blue represents the enquiry from the chatbot and the box in green
represents the selection of the user.

In Phase 1, for example, the interaction logic of the chatbot starts with a brief introduc-
tion and asks what it can help the user with (e.g., Figure 3: “Hello! I am RT Bot. How can I
help you?”). The chatbot can answer most direct questions regarding radiotherapy such as
“What is radiotherapy?” typed in by the user as shown in Figure 3. After answering, the
chatbot follows if the user wants to know the definition of radiotherapy or how it works.
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However, if the chatbot does not understand the user’s text, a systematic guidance will be
provided to the user as a structured Q and A set.
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Figure 3. Chatbot in conversation to answer the question: “What is radiotherapy” from the user. In
addition to the answer, the chatbot will provide further guidance, adding if the user would like to
know more.

2.2. Artificial Intelligence used in Chatbot

The architectural diagram of the chatbot created on the IBM Watson Assistant platform
can be seen in Figure 4. The chatbot is created by the Watson Assistant and can be integrated
into social media or customized IoTs such as cell phones. The Watson Assistant provides
AI features such as NLP and is linked to the IBM Cloud. The Cloud is further connected to
other Watson services such as speech to text conversation and the backend systems.
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The chatbot is powered by AI, which analyses the user’s response, breaking down the
text or speech to work out rules and recognize patterns. This means with the application
of ML, the chatbot can convert the user’s response into a structured format. One ML tool
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used in chatbots is the NLP technology which is included in various chatbot development
platforms such as the IBM Watson Assistant [28,29]. The NLP includes pattern matching
and linguistic analysis. For example, the IBM Watson Assistant can specifically recognize
keywords from the user’s response and weigh them to determine the intent of the sentence.
This is then cross-referenced with the database of intents to evaluate the response that the
chatbot can provide.

When the chatbot is communicating with the user using the Q and A approach, the
questions are integrated individually into the dialogue nodes. While each node is self-
contained, it also leads to the next question. The dialogue tool provides the user with
the ability to access the dialogue tree. This allows the tree to control the dialogue nodes
completely. The dialogue tree of the IBM Watson Assistant is shown in Figure 5. At a given
node, such as the “Welcome” node in Figure 5, the user can give a variety of responses.
In the Watson Assistant platform, for example, it is possible to set the response variation
to either random, sequential, or multiline. To create a general flow of the dialogue tree,
each node has an option button allowing the chatbot developer to add a new node either
below or above it. Each node also has an option to have child nodes and this is important
considering there are various ways that a user can answer a question.

1 
 

 
 

Figure 5. An example of the dialogue tree created by the IBM Watson Assistant.

A powerful tool provided by the IBM Watson Assistant to build the chatbot is the
Intent, which allows the chatbot to process the user input and predict the intent of the
user [30]. This tool is supported by the ML and NLP of the platform. As shown in Figure 5,
for certain nodes of conversation to be accessed, the chatbot has to recognize the specific
intents in the user’s input. One example is the Hint node, which will pop up when the
user does not understand the question from the chatbot and can only be accessed when
the user asks for help. The node can be created by the Intent node to evaluate the possible
user inputs as a response to that node. For example, if the user types “help” or “hint” as
an answer for a question of the chatbot, an intent called “#Hint” is called. This and other
intents are created by feeding the chatbot examples of the intent. The chatbot then runs
these examples through ML and NLP and learns to recognize them from user input.

It should be noted that some intents require less than a few examples as the chatbot
expects the user to answer only “Yes” or “No”, as there are limited ways to write them.
However, in some specific cases such as name collection when the chatbot asks the name
of the user, the Intent works alongside Entities using the “Annotate Entities” function
as shown in Figure 6. When the chatbot collects the user’s name, the only part of the
input that the chatbot is interested in is the name itself but it is not interested in other
words. Therefore, the function of the “Annotate Entities” is to select the region of interest
in the example sentences (i.e., the blue boxes in Figure 6). In this way, the chatbot may
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categorize any future names as entities, even the ones that it has not seen before. For the
tool of Entities, the function can be considered a database that the chatbot has access to,
can cross-reference and extract data. For example, a list of 6000 most common names in
America can be used as a database [8]. The chatbot can extract names, when recognizing
the related “#Collect_name” intent as shown in Figure 6.

 

2 

 

Figure 6. The Intent node named “#Collect_name” in the IBM Watson Assistant. The boxes in blue
indicate the user’s names that the chatbot is only interested in.

3. Results

To demonstrate the communication flow and running at the start, the chatbot created
based on the architectural scheme in Figure 4 begins by introducing itself and asking the
user questions to categorize the user into patient, radiation staff, from the general public or
from the patient’s family as shown in Figure 7.
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belonged to the group of radiation staff, general public or patient’s family.
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In this example, the user identified himself as radiation staff in the cancer centre. The
chatbot then displayed a list of items showing a variety of information that the user might
want to know (Figure 8).
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Figure 8. The chatbot displayed a list of items which the user might want to know.

The contents of the list included different categories of information such as patient
consultation, simulation, treatment planning, treatment delivery, patient follow-up, quality
assurance and so on. This list was designed specifically for the radiation staff. For patients
and the general public, they had their own list of information. When the user (radiation
staff) selected “Simulation” from the list, the chatbot further asked the user to clarify if
he or she was interested in “CT-SIM” or “Conventional SIM”. These are two common
treatment simulation methods in radiotherapy. To answer that, the user only needed to
click the icons to obtain the information as shown in Figure 9.
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Figure 9. The chatbot noted the user wanted to know information regarding “Simulation” and
further clarified which type of simulation, namely, “CT-SIM” or “Conventional SIM” the user wanted
to know.
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The workflow in Figures 7–9 can be found in Figure 10 for the group of radiation staff.
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Sometimes, the user may ask the chatbot a question directly. For example, the user
asked the chatbot “What is clinical trial?” in radiotherapy as shown in Figure 11. In that
case, the chatbot answered the question and asked the user if he or she wanted to know
more, such as different phases of clinical trial. The user could then select a phase (Phase 1–4)
from the chatbot. In Figure 11, the user picked up Phase 1. The chatbot would then explain
further the Phase 1 trial in greater details.
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Figure 11. The user may ask the chatbot a question directly. In this example, the user asked the
chatbot “What is clinical trial?”. In addition to provide the answer to the user, the chatbot could
further ask which phase of clinical trials (i.e., Phase 1–4) the user wanted, to refine the response.
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4. Discussion
4.1. NLP and ML

George Bernard Shaw said: “Progress is impossible without change, and those who
cannot change their minds cannot change anything.” [31]. ML brought about sweeping
changes in recent years and accounted for significant progress in medicine such as in
creating medical chatbots. The Turing test is used to evaluate the intelligence of the
machine, and the test is passed if a human being cannot distinguish the machine from
another human being through conversation [32]. Since then, NPL was developed to enhance
interactions between computer and human language. In the past, NLP depended on a set of
hand-written rules coupled with dictionary look up to learn and understand the language
from the user. It can be seen that such hand-written rules would only become more and
more complex and unmanageable. ML, on the other hand, can simplify and enhance the
learning process because the computer can automatically focus on some common cases
selectively based on the ML algorithm. These automatic learning procedures supported by,
for example, neural networks, can help to generate models to manipulate unfamiliar and
erroneous user’s input.

NLP includes a number of developed tasks in text and speech processing. These tasks
include word segmentation, text-to-speech, stemming, sentence breaking, relationship
extraction and so on [33]. Compared to other conversational and prescriptive medical
chatbots, the goal of our educational chatbot is to provide information transfer to users
who may be radiation staff, patients or people from the general public. Therefore, the
main focus of the NPL in our design is to understand and classify the expression from
user’s with different backgrounds. In creating such a chatbot, some NLP tasks were used
such as (1) Name Entity Recognition: this process helps to find out the entity of a person,
location and organization from the user’s input; (2) Intent: this process helps to execute
an appropriate action to achieve the user’s goal; (3) Context: this process differentiates the
user’s input to investigate if the message may have different meaning in the conversation;
and (4) Entity Linking: this process helps to link any words which are referred to an entity
such as a popular location, a well-known company or a famous person.

4.2. Programming and Implementation

In programming and running the educational chatbot, one issue found was the lack of
global ability to restart the conversations freely by the user, as the chatbot is deposited on an
IoT. For the IBM Watson Assistant, though the “Clear” function in the developer tools allows
the conversation to reset back to the first node, when creating the chatbot in the platform,
such a function is not available once the chatbot is published. Therefore, to implement this
ability globally, every single node needs to be reworked manually. The solution is to add a
new intent, linked to an exit node back to the first node. However, adding an exit node to
some key parts of conversation would result in unforeseen error because the initial design
of logic in programming did not foresee the need for this functionality.

Another programming issue in creating an educational chatbot for radiotherapy is the
lack of ability to perform mathematical operations for the context variables. For example,
when the chatbot offers a radiation safety test to the user (radiation staff) as training, it
is desired that the chatbot could calculate the final mark of the test and provide a letter
grade or percentage result to the user. In this case, the results can only be displayed in text
format, where each question is either “Correct” or “Incorrect”. When creating the chatbot,
the development tool does not allow the developer to add up the context variables of the
result of each question.

For the AI-assisted chatbot, NLP is used to understand and interpret user inputs.
Sometimes, this is challenging and can be a difficult task due to the complexity and
variability of human language. Moreover, the chatbot may have difficulty in understanding
the context of a conversation. To avoid a poor understanding of open-ended or unstructured
user inputs, and to address the difficulty in identifying intents and entities, the chatbot will
first identify the user’s background and classify the user into a user group (e.g., patient,
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radiation staff and general public). This can direct the chatbot to access the data related to
the user’s background. In addition, to further avoid confusion and inappropriate responses,
the chatbot will include guidance with fixed options to help the user.

For integration and implementation, the chatbot can be included in a website. IBM
Watson Assistant allows the developer to integrate the chatbot into different third-party
media such as WhatsApp with Twilio, Slack, Facebook Messenger, SMS with Twilio and
Intercom as shown in Figure 4. The chatbot can also be deposited into a website setting up
through, for example, Weebly or WordPress. Since the educational chatbot in radiotherapy
is quite specific, depositing it into a website allows the chatbot to be found by web crawlers.
This ensured that if someone looks for a radiotherapy chatbot on a search engine, the
chatbot can be found readily. This would not be the case if the chatbot was implemented
through WhatsApp or Facebook.

For the privacy and security concerns, our educational chatbot only provides a single
directional information flow from the chatbot to the user. Therefore, there is no storage and
record of any user information such as personal data in the chatbot. Moreover, we do not
find any significant time delay issue in the chatbot created using the IBM Watson platform.

4.3. Testing and Updating

Although the chatbot is powered by innovative computer technologies such as ML to
provide humanlike communication to the user, various human user tests are necessary to
find out any bugs in the chatbot and to evaluate its performance. This involves testing the
chatbot with real users or simulated user input, and evaluating its performance based on
accuracy and user satisfaction. The tests can be conducted by inviting different stakeholders
to use the chatbot, including, people from the general public, patients and radiation staff,
to test the chatbot for their respective databases. In the test, an evaluation template can be
set up to measure different metrics regarding the user’s experience in using the chatbot.
For example, the test can ask the evaluators to score their experience on a scale in a range
of grades, based on the metrics of information quality, user experience and navigability,
or the test can be designed following the recent international standards for measuring the
“quality in use” of medical chatbots [34]. The test can be carried out remotely through email
invitation, or in person in a research meeting or conference, gathering a number of potential
users such as radiation staff. To further evaluate and improve the chatbot, workshops for
healthcare workers working with patients and families can be conducted to introduce the
chatbot and ask them for feedback. These workshops are decent and essential in quality
assurance to improve and fine-tune the chatbot.

When the educational chatbot is created and implemented, a continuous update of
the contents and features are necessary. These include making adjustments to the conver-
sational flow, adding new intents and entities or updating the training data. Although
the chatbot has been validated before implementation, it may find it difficult to handle
some edge cases which may not be covered by the training data, or the user may use
an unexpected input. Moreover, some small errors which are missed in the validation
process due to human variation may exist. These errors would be found occasionally by
the users. Their feedbacks to the developer are important to further improve the chatbot.
This process would take time but is worthwhile to continue in order to maintain the quality
of the chatbot. Moreover, the content of the chatbot needs to be updated routinely to keep
pace with new developments in radiotherapy, such as new cancer treatment techniques,
new radiation safety policies or new statistical data in radiotherapy. The chatbot should
be subject to continuous improvement, updated and modified frequently based on the
feedback from the user, new features (e.g., new NLP algorithm) offered to the chatbot and
new information in radiotherapy.

4.4. Chatbot Content Management

Building the content for the chatbot is a time-consuming process as the scope of
information demanded by different groups of users can be extensive and under continuous
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update. Each item of information is subject to further breakdown of sub-items and so
on. Since each item in the category is unique, the chatbot should provide information in
a simple and comprehensive way as per different user classes. A careful selection and
filtration of the content is necessary. For example, if the user asks for information about
“Brain radiotherapy”, a simple explanation should be displayed with a further question
following a customized chatbot conversation stream. In this case, the chatbot can further
ask the user if he or she wanted to know more about different options of brain radiotherapy
such as gamma knife, cyber knife or stereotactic radiosurgery offered by a medical linear
accelerator. In addition, plain English should be used for patient and user from the general
public while technical terms should be used if the user group is radiation staff.

5. Conclusions

A chatbot integrated into the IoT can be designed using a layered structure and
dialogue tree approach for educational purposes in radiotherapy. By taking advantage of
some AI features such as NLP offered by some development platforms like the IBM Watson
Assistant, the educational chatbot can be created with humanlike character. Using the Q
and A approach, the chatbot can communicate with the user from different backgrounds
and provide guidance to the user who is difficult to acquire information. It is concluded
that the chatbot is not a one-off finished product, but needs to be updated and improved
continuously to respond to the user’s needs, and to keep pace with the advancements
of computer technology and radiotherapy. Further work will include adding functional
features in the chatbot and enabling the chatbot to handle multiple languages rather than
English only.
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Abstract: Primary care has the potential to be transformed by artificial intelligence (AI) and, in
particular, machine learning (ML). This review summarizes the potential of ML and its subsets in
influencing two domains of primary care: pre-operative care and screening. ML can be utilized in
preoperative treatment to forecast postoperative results and assist physicians in selecting surgical
interventions. Clinicians can modify their strategy to reduce risk and enhance outcomes using
ML algorithms to examine patient data and discover factors that increase the risk of worsened
health outcomes. ML can also enhance the precision and effectiveness of screening tests. Healthcare
professionals can identify diseases at an early and curable stage by using ML models to examine
medical pictures, diagnostic modalities, and spot patterns that may suggest disease or anomalies.
Before the onset of symptoms, ML can be used to identify people at an increased risk of developing
specific disorders or diseases. ML algorithms can assess patient data such as medical history, genetics,
and lifestyle factors to identify those at higher risk. This enables targeted interventions such as
lifestyle adjustments or early screening. In general, using ML in primary care offers the potential to
enhance patient outcomes, reduce healthcare costs, and boost productivity.

Keywords: artificial intelligence; machine learning; deep learning; primary care

1. Introduction

Artificial intelligence (AI) is a field of study that attempts to replicate natural human
intelligence in machines [1]. The machines can then independently perform activities
that would otherwise require human intelligence. AI can be broken down into several
subsets, such as machine learning (ML) and deep learning (DL) [2]. ML makes a software
application more accurate in predicting outcomes by feeding it with data rather than explicit
programming. Comparatively, DL, a subset of ML, builds a hierarchy of knowledge based
on learning from examples. These fundamental ideas of AI are utilized to develop analytic
models to turn this productive technology into practice. Since its introduction in the 1950s,
AI has made significant strides in manufacturing; sports analytics; autonomous vehicle;
and more recently, primary care and preventive medicine [3].

Primary care and preventive medicine, otherwise expressed as day-to-day health-
care practices including outpatient settings, are a growing sector in the realms of AI and
computer science. Although AI has endless applications in healthcare, particular sectors
of primary care have been more progressive and accepting of AI and its potential. For
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instance, the Forward clinic is a primary care service incorporating standard doctor-led
programs with technology to provide a more inclusive and long-term care [3]. The addition
of the technology allows for 24/7 monitoring, skin cancer screening, testing of genes, and
biometric monitoring. As with all AI interventions, the Forward clinic endures multiple
challenges, such as additional physician training and fees. Although the Forward clinic
is just a singular example of how AI can be integrated into primary care, AI’s implemen-
tation into primary care can be further broken down into sections of healthcare, such as
pre-operative care and screening. This review summarizes AI’s, specifically ML’s, short yet
productive impact on primary care and preventive medicine and aims to inform primary
care physicians about the potential integration of ML (Figure 1 and Table 1).
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Figure 1. Current methods vs. AI-assisted methods in primary care. Figure Description: AI has the
potential to assist current primary care methods in three domains: pre-operative care, screening, and
detection. In pre-operative care, this includes using AI for predictions of outcomes and mortality. For
screening, AI serves a prominent role in screening tools for numerous diseases. Similarly, AI can be
used for real-time detection tools and AI-assisted histopathology tools.

Table 1. Abbreviations.

Name Abbreviation

Acute kidney injury AKI
Adaptive boosting ADA
Age-related macular degeneration AMD
Artificial intelligence AI
Atherosclerotic cardiovascular disease ACSVD
Atrial fibrillation AF
Blood pressure BP
Chronic kidney disease CKD
Chronic obstructive pulmonary disease COPD
Convolutional neural network CNN
Coronary artery calcium score CACS
Coronary artery disease CAD
Decision tree DT
Deep learning DL
Deep neural network DNN
Deep vein thrombus DVT
Diabetes mellitus DM
Electronic health records EHR
Extreme gradient boosting XGB
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Table 1. Cont.

Name Abbreviation

Familial hypercholesterolemia FH
Generative adversarial network GAN
Gradient boosting GB
Gradient boosting tree GBT
Heart failure HF
Human immunodeficiency virus HIV
K-nearest neighbors KNN
Logistic regression LR
Low-density lipoprotein LDL
Machine learning ML
Neural network NN
Obstructive sleep apnea syndrome OSAS
Photoplethysmogram PPG
Potential pre-exposure prophylaxis PrEP
Pulmonary embolism PE
Pulmonary hypertension PH
Random forest RF
Support vector machine SVM
Urinary tract infection UTI

2. Pre-Operative Care

Pre-operative risk prediction and management have been promising areas of AI
research and its application. PubMed and Google Scholar were searched using keywords
for English literature published from inception to December 2022 (Figure 2). Studies
were included if they reported outcomes regarding the effectiveness of ML models in
pre-operative care or similar domains. Studies have utilized AI to predict mortality and
postoperative complications. Such applications are necessary for clinical decision-making,
forethought of healthcare resources such as ICU beds, the cost of the patient, and the
possible need for transition of care [4]. Typically, researchers utilize a designated number of
electronic health records (EHR) to train the analytic model and the remainder to test it. For
instance, Chiew et al. utilized EHRs to predict post-surgical mortality in a tertiary academic
hospital in Singapore [5]. The study compared five candidate models (Random Forest (RF),
Adaptive Boosting (ADA), Gradient Boosting (GB), and Support Vector Machine (SVM))
and found that all GB was the greatest performing model (specificity (0.98), sensitivity
(0.50), PPV (0.20), F1 score (0.28), and AUROC (0.96)). Five other studies by Fernandes
et al., Jalai et al., COVIDSurg Collaborative, Sahara et al., and Pfitzner et al. have also
evaluated how differing types of analytic models (Logistic Regression (LR), RF, Neural
Network (NN), SVM, Extreme GB (XGB), Decision Tree (DT), GB, Deep Neural Network
(DNN), GRU, and classification tree) can predict postoperative mortality [6–10]. The
patient population included those undergoing cardiac surgery, pancreatic surgery, or
hepatopancreatic surgery or those infected with SARS-CoV-2. Of the studies undergoing
cardiac surgery, the selected ML models were good predictors of mortality and prolonged
length of stay. In Fernandes et al., when utilizing pre-operative and intra-operative risk
factors alongside intraoperative hypotension, XGB was the best performing model (AUROC
(0.87), PPV (0.10), specificity (0.85), and sensitivity (0.71) [6]. In the other study by Jalai
et al., deep neural network (DNN) was the best performing of the five models (accuracy
(89%), F-score (0.89), and AUROC (0.95)) [7]. Neither study compared its models with
established pre-operative risk scores, such as the Revised Cardiac Risk Index or Gupta score.
Similarly, Pfitzner et al. used pre-, intra-, and short-term post-operative data on a number
of models to assess its ability to predict pre-operative risk for those undergoing pancreatic
surgery [8]. The study found maximum AUPRCs of 0.53 for postoperative complications
and 0.51 for postoperative mortality, with LR as the best model. As for those undergoing
hepatopancreatic surgery, Sahara et al. found that the classification tree model better

35



AI 2023, 4

predicted 30-day unpredicted deaths than the traditional American College of Surgeons
National Surgery Quality Improvement Program surgical risk calculator [9]. Finally, a
COVIDSurg Collaborative study that generated 78 AI models found that when combining
an LR model with four features (ASA grade, RCRI, age, and pre-op respiratory support),
an AUC of 0.80 in the testing dataset was achieved. This generated model was the best
performing in predicting postoperative mortality among those infected with SARS-CoV-
2 [10]. Ultimately, ML models present great promise in its integration into pre-operative
care, particularly for simplifying pre-operative evaluations, as observed in Figure 3.
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Post-Operative Complications

Other pre-operative risk prediction objectives include assessing models on postopera-
tive complications [11–13]. These studies have evaluated how varying ML models (SVM,
LR, RF, GBT, DNN, GBT, and XGB) can predict a number of post-operative complications.
One study utilized electronic anesthesia records (pre-operative and intra-operative data) to
predict deep vein thrombus (DVT), delirium, pulmonary embolism, acute kidney injury
(AKI), and pneumonia [11]. GBT was the most promising model, with AUROC scores
of 0.905 (pneumonia), 0.848 (AKI), 0.881 (DVT), 0.831 (pulmonary embolism), and 0.762
(delirium). Similarly, Corey et al. utilized EHR data, including 194 clinical features, to
train ML models on 14 postoperative complications [12]. Amongst the models, AUC scores
ranged from 0.747 to 0.924, with the Lasso penalized regression being the best performing
(sensitivity (0.775), specificity (0.749), and PPV (0.362)). Comparably, Bonde et al. trained
three multi-labels DNNs to compete against traditional surgical risk prediction systems on
post-operative complications [13]. The mean AUCs for the test dataset on models 1, 2, and 3
were 0.858, 0.863, and 0.874, all of which outperformed the ACS-SRC predictors. Ultimately,
ML methods appear to be high-performing for predicting post-operative complications,
but additional studies comparing models are required to validate the findings.
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Figure 3. Example of AI in pre-operative evaluation. Figure Description: The integration of AI into
pre-operative care allows for the refinement of more effective guidelines. For instance, in Figure 2,
current guidelines recommend a seven-step pre-operative evaluation before surgery for patients with
CAD risk factors. In this process, AI could be utilized to provide risk prediction and MET monitoring
through wearable technology, ultimately cultivating a more straightforward process.

3. Screening

The applications of AI in screening are by far the most precedented. PubMed and Google
Scholar were searched from inception to December 2022, and the databases were searched
for studies investigating the role of ML in screening for several diseases and disorders.
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3.1. Hypertension

One of these leading domains is hypertension, where studies have assessed the risk of
hypertension and predicted resistant hypertension while concurrently estimating blood pres-
sure (BP). Zhao et al. compared four analytical models (RF, CatBoost, MLP neural network,
and LR) in predicting the risk of hypertension based on data from physical examinations [14].
RF was the best-performing model with an AUC of 0.92, an accuracy of 0.82, a sensitivity of
0.83, and a specificity of 0.81. In addition, no clinical or genetic data was utilized for training
the models. Similarly, Alkaabi et al. utilized ML models (DT, RF, and LR) to assess the risk
of developing hypertension in a more effective manner [15]. RF was the best-performing
model (accuracy (82.1%), PPV (81.4%), sensitivity (82.1%), and AUC (86.9)). Clinical factors,
such as education level, tobacco use, abdominal obesity, age, gender, history of diabetes,
consumption of fruits and vegetables, employment, physical activity, mother’s history of
high BP, and history of high cholesterol, were all significant predictors of hypertension.
Ye et al. investigated an XGBoost model that had AUC scores of 0.917 (retrospective) and
0.870 (prospective) in predicting hypertension. Similarly, LaFreniere et al. investigated
an NN model which had 82% accuracy in predicting hypertension given the chosen risk
factors [16,17]. Regarding BP, Khalid et al. compared three ML models (regression tree, SVM,
and MLR) in estimating BPs from pulse waveforms derived from photoplethysmogram
(PPG) signals [18]. The regression tree achieved the best systolic and diastolic BP accuracy,
−0.1 ± 6.5 mmHg and −0.6 ± 5.2 mmHg, respectively. In summary, ML appears to be an
effective tool for predicting hypertension and BP, though its clinical utility remains to be
delineated, since hypertension can be diagnosed through non-invasive procedures.

3.2. Hypercholesterolemia

AI applications on hypercholesterolemia have outputted similar findings, as seen in
Myers et al. [19]. Using data on diagnostic and procedures codes, prescriptions, and labora-
tory findings, the FIND FH model was trained on large healthcare databases to diagnose
familial hypercholesterolemia (FH). The model achieved a PPV of 0.85, a sensitivity of 0.45,
an AURPC of 0.55, and an AUROC score of 0.89. This model effectively identified those
with FH for individuals at high risk of early heart attack and stroke. Comparatively, Pina
et al. evaluated the accuracy of three ML models (CT, GBM, and NN) when trained on ge-
netic tests to detect FH-causative genetic mutations [20]. All three models outperformed the
clinical standard Dutch Lipid score in both cohorts. Similar findings have been produced
for hyperlipidemia, where Liu et al. trained an LTSM network on 500 EHR samples [21].
The model achieved an ACC score of 0.94, an AUC score of 0.974, a sensitivity of 0.96, and a
specificity of 0.92. Regarding low-density lipoproteins (LDLs), Tsigalou et al. and Cubukcu
et al. concluded that ML models were productive alternatives to direct determination
and equations [22,23]. In both studies, ML models (MLR, DNN, ANN, LR, and GB trees)
outperformed the traditional equations: the Friedewald and Martin–Hopkins formulas.
Although the researched algorithms show great potential, additional studies are warranted
to validate these conclusions.

3.3. Cardiovascular Disease

Arguably, the largest field of primary care in which AI has made significant strides is
predicting and assessing cardiovascular risk. As cardiovascular diseases are the leading
cause of death globally, any advancements in risk prediction and early diagnosis are
of substance. In 2017, Weng et al. compared four ML models (RF, LR, GB, and NN)
in predicting cardiovascular risk through EHR [24]. The AUC scores of RF, LR, GB,
and NN were 0.745, 0.760, 0.761, and 0.764, respectively. The study concluded that the
applications of ML in cardiovascular risk prediction significantly improved the accuracy.
Zhao et al. reproduced a similar study with LR, RF, GBT, CNN, and LSTM trained on
longitudinal EHR and genetic data [25]. The event prediction was far better using the
longitudinal feature for a 10-year CVD prediction. Kusunose et al. applied a CNN to
identify those at risk of heart failure (HF) from a cohort of pulmonary hypertension
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(PH) patients using chest x-rays [26]. The AUC scores of AI, chest x-rays, and human
observers were 0.71, 0.60, and 0.63, respectively. In a unique perspective, Moradi et al.
employed generative adversarial networks (GANs) for data augmentation on chest x-rays
to assess its accuracy in detecting cardiovascular abnormalities when a CNN model was
trained on it [27]. The GAN data augmentation outperformed traditional and no data
augmentation scenarios on normal and abnormal chest X-ray images with accuracies of
0.8419, 0.8312, and 0.8193, respectively. Studies have also compared ML models relative to
traditional risk scores, such as a study by Ambale-Venkatesh et al. [28]. A random survival
forest model was assessed in its prediction of six cardiovascular outcomes compared
with the Concordance index and Brier score. The model outperformed traditional risk
scores (decreased Brier score by 10–25%), and age was the most significant predictor.
Similarly, Alaa et al. compared an AutoPrognosis ML model with an established risk score
(Framingham score), a Cox PH model with conventional risk factors, and a Cox PH model
with all 473 variables (UK Biobank) [29]. The AUROC scores were 0.774, 0.724, 0.734,
and 0.758, respectively. Pfohl et al. developed a “fair” atherosclerotic cardiovascular
disease (ACSVD) risk prediction tool through EHR data [30]. The experiment ran through
four experiments (standard, EQrace, EQgender, and EQage) and achieved AUROC scores of
0.773, 0.742, 0.743, and 0.694, respectively. The tool has reduced discrepancies across races,
genders, and ages in the prediction of ACSVD. Generally, AI can aid in mitigating gaps
in ACSVD risk prevention guidelines, as observed in Figure 4. In the United States alone,
one in every three patients undergoing elective cardiac catheterization is diagnosed with
obstructive coronary artery disease (CAD). This begs the question of new methodologies
to better diagnose the population. Al’Afref et al. assessed how applying an XGBoost
model on Coronary Computed Tomography Angiography can predict obstructive CAD
using clinical factors [31]. The ML model achieved an AUC score of 0.773, but more
notably, when combined with the coronary artery calcium score (CACS), the AUC score
was 0.881. Therefore, an ML model and CACS may accurately predict the presence of
obstructive CAD. Based on the present literature, AI models screen effectively and predict
cardiovascular risks while predominantly outperforming established risk scores.

3.4. Eye Disorders and Diseases

Another area of primary care that has used ML is vision-centric diseases, such as
diabetic retinopathy, glaucoma, and age-related macular degeneration (AMD). Ting et al.
assessed AI’s metrics in this sector by training a DL system on retinal images (76,370 im-
ages of diabetic retinopathy, 125,189 images of possible glaucoma, and 72,610 images of
AMD) [32]. For referable diabetic retinopathy, the model achieved an AUC of 0.936, a
sensitivity of 0.905, and a specificity of 0.916. As for vision-threatening retinopathy, the
AUC was 0.958, sensitivity was 1.00, and specificity was 0.911. For possible glaucoma im-
ages, the model achieved an AUC of 0.942, a sensitivity of 0.964, and a specificity of 0.872.
Finally, the model on AMD testing retinal images achieved an AUC of 0.931, a sensitivity
of 0.923, and a specificity of 0.887. Retinal fundus images can also be used by AI models
to extract further information, such as predicting cardiovascular risk factors in the case
of the study by Poplin et al. [33]. After training the model on 284,445 and validating it on
two datasets, the model could predict age (mean absolute error (MAE) within 3.26 years),
gender (AUC 0.97), smoking status (AUC 0.71), systolic blood pressure (MAE within
11.23 mmHG), and major adverse cardiac events (AUC 0.70). In another study, Kim et al.
utilized retinal fundus images for training a CNN model to predict age and sex [34].
The MAE for patients, those with hypertension, those with diabetes mellitus (DM), and
smokers were 3.06 years, 3.46 years, 3.55 years, and 2.65 years, respectively. Ultimately,
well-trained ML models appear to be effective in predicting eye diseases.
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Figure 4. Example of AI in ASCVD assessment. Figure Description: ASCVD risk assessment is
exceptionally extensive and varies significantly based on age groups. Although the guidelines are
thorough, AI has the potential to address potential gaps in the evaluation. For instance, AI can
provide risk prediction for individuals > 75 and it could fine-tune ACSVD scores based on race. AI
could also detect risk enhancers of ASCVD based on HbA1C monitoring, EHR, and lipid profiles.
This may allow for appropriate adjustments to lipid-lowering therapy. AI also has the potential to
use phenomapping instead of age categories, allowing for stronger classification.

3.5. Diabetes

More than 400 million individuals globally are diagnosed with DM. AI’s implemen-
tation into primary care has been shown to be effective when targeting this widespread
disease’s risk prediction. In one study, Alghamdi et al. used medical records of cardiores-
piratory fitness to train and compare five models (DT, naïve bayes, LR, logistic model
tree, and RF) in predicting DM. When RF, logistic model tree, and naïve bayes were en-
sembled with the developed predictive model classifier, a maximum AUC (0.92) was
achieved. Similarly, through administrative data, Ravaut et al. trained a GB decision tree on
1,657,395 patients to predict T2DM 5 years prior to onset [35]. While validating the model
on 243,442 patients and testing it on 236,506 patients, an AUC score of 0.8026 was achieved.
In another study, Ravaut et al. also assessed if a GB decision tree can predict adverse
complications of diabetes, including retinopathy, tissue infection, hyper/hypoglycemia,
amputation, and cardiovascular events [36]. After being trained (1,029,366 patients), vali-
dated (272,864 patients), and tested (265,406 patients) on administrative data, the model
achieved an AUC score of 0.777. To support the conclusion on DM, Deberneh et al. found
reasonably good accuracies in a Korean population, with DT (77.87%), LR (76.13%), and
ANN having the lowest accuracy (73.23%) [37]. In Alhassan et al., when predicting T2DM,
the LTSM and gated-recurrent unit outperformed MLP models with a 97.3% accuracy [38].
In India, Boutilier et al. attempted to find the best ML algorithm for predicting DM and
hypertension in limited resource settings [39]. RF models had a higher prediction accuracy
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than established UK and US scores, with an improved AUC score from 0.671 to 0.910 for
diabetes and from 0.698 to 0.792 for hypertension. With the current evidence, ML methods
appear to be exceptionally effective in predicting diabetes; however, there lacks discussion
on the benefits of using ML over a simple blood draw.

3.6. Cancer

In 2020, cancer was responsible for nearly 10 million deaths globally, making it a
hotspot for ML implementations and strategies in primary care [40]. Fortunately, ML
models have been proven to have potential in the early diagnosis and screening of lung,
cervical, colorectal, breast, and prostate cancer [41]. Regarding lung cancer, Ardilla et al.
trained a DL algorithm on CT images to predict the risk of lung cancer in 6716 national trial
cases [42]. The model achieved an AUC score of 0.944. Similarly, Gould et al. compared
an ML model in predicting a future lung cancer diagnosis with the 2012 Prostate, Lung,
Colorectal and Ovarian Cancer Screening Trial risk model (mPLCOm2012) [43]. The novel
algorithm outperformed the mPLCOm2012 in AUC scores (0.86 vs. 0.79) and sensitivity
(0.401 vs. 0.279). Using NNs, Yeh et al. developed a model to screen patients at risk of
lung cancer on EHR data [44]. For the overall population, the algorithm achieved an AUC
score of 0.90 and 0.87 for patients over the age of 55 years. Guo et al. trained ML models
on low-dose CT and found an accuracy of 0.6778, a F1 score of 0.6575, a sensitivity of
0.6252, and a specificity of 0.7357 [45]. More notably, the interactive pathways were BMI,
DM, first smoke age, average drinks per month, years of smoking, year(s) since quitting
smoking, sex, last dental visit, general health, insurance, education, last PAP test, and last
sigmoidoscopy or colonoscopy. Concerning cervical cancer, CervDetect, a number of ML
models that evaluate the risk of cervical cancer elements forming, has been a leader in this
subject. In 2021, Mehmood et al. used cervical images to evaluate CervDetect and found a
false negative rate of 100%, a false positive rate of 6.4%, an MSE error of 0.07111, and an
accuracy of 0.936 [46]. Similarly, DeepCervix is another DL model that attempts to combat
the high false-positive results in pap smear tests due to human error. Rahaman et al. trained
DeepCervix, a hybrid deep fusion feature technique, on pap smear tests [47]. The DL-based
model achieved accuracies of 0.9985, 0.9938, and 0.9914 for 2-class, 3-class, and 5-class
classifications, respectively. Considering that 90% of cervical cancer is found in low-middle
income settings, Bae et al. set out to implement an ML model onto endoscopic visual
inspection following an application of acetic acid images [48]. Although resource-limited,
the KNN model was the best performing, with an accuracy of 0.783, an AUC of 0.807, a
specificity of 0.803, and a sensitivity of 0.75. In parallel, Wentzensen et al. developed a DL
classifier with a cloud-based whole-slide imaging platform and trained it on P16/Ki-67
dual-stained (DS) slides for cervical cancer screening [48]. The model achieved a better
specificity and equal sensitivity to manual DS and pap, resulting in lower positivity than
manual DS and cytology. With respect to breast cancer screening, multiple studies have
been conducted to achieve better accuracy in its diagnosis. Using screening mammograms,
Shen et al. trained a DL algorithm on 1903 images and achieved an AUC of 0.88, and
the four-model averaging improved the AUC score to 0.91 [49]. Similarly, using digital
breast tomosynthesis images, Buda et al. achieved a sensitivity of 65% with a DL model for
breast cancer screening [50]. Similarly, Haji Maghsoudi et al. developed Deep-LIBRA, an
AI model trained on 15661 digital mammograms to estimate breast density and achieved
an AUC of 0.612 [51]. The model had a strong agreement with the current gold standard.
Another study by Ming et al. compared three ML models (MCMC GLMM, ADA, and
RF) to the established BOADICEA model by training them on biennial mammograms [52].
When screening for lifetime risk of breast cancer, all models (0.843 ≤ AUROC ≤ 0.889)
outperformed BOADICEA (AUROC = 0.639. Similar findings have been concluded in
prostate cancer, where three studies (Perera et al., Chiu et al., and Bienecke et al.) compared
numerous ML models (DNN, XGBoost, LightGBM, CatBoost, SVM, LR, RF, and multiplayer
perceptron) [53–55]. Although all studies trained their respective models differently (PSA
levels, prostate biopsy, or EHRs), all concluded that the ML algorithms were efficacious in

41



AI 2023, 4

predicting prostate cancer. Ultimately, there appears to be a substantial body of literature
supporting the effectiveness of ML methods in predicting different types of cancer.

3.7. Human Immunodeficiency Virus and Sexually Transmitted Diseases

Another sector of primary care requiring additional applications to assist in its diagno-
sis and screening is the human immunodeficiency virus (HIV) and sexually transmitted
diseases (STDs). In 2021, Turbe et al. trained a DL model on the rapid diagnostic test to
classify rapid HIV in rural South Africa [56]. Relative to traditional reports of accuracy
varying between 80 and 97%, this model achieved an accuracy of 98.9%. Similarly, Bao et al.
compared 5 mL models predicting HIV and STIs [57]. GBM was the best performing, with
AUROC scores of 0.763, 0.858, 0.755, and 0.68 for HIV, syphilis, gonorrhea, and chlamydia,
respectively. Another study, Marcus et al., developed and assessed an HIV prediction
model to find potential pre-exposure prophylaxis (PrEP) patients [58]. Using EHR data to
train the model, the study reported an AUC score of 0.84. In terms of future predictions,
Elder et al. compared 6 mL algorithms when determining patients at risk of additional STIs
within the next 24–48 months through previous EHR data [59]. The Bayesian Additive RT
was the best-performing model with an AUROC score of 0.75 and a sensitivity of 0.915. A
number of studies have also reported plausible applications of AI on urinary tract infec-
tions (UTIs). Gadalla et al. have assessed how AI models can identify predictors for a UTI
diagnosis through training on potential biomarkers and clinical data from urine [60]. The
study concluded that clinical information was the strongest predictor, with an AUC score of
0.72, a PPV of 0.65, an NPV of 0.79, and an F1 score of 0.69. Comparatively, in Taylor et al.,
vitals, lab results, medication, chief complaints, physical exam findings, and demographics
were all utilized for training, validating, and testing a number of ML algorithms to predict
UTIs in ED patients [61]. The AUC scores ranged from 0.826 to 0.904, with XGBoost being
the best-performing algorithm. Therefore, the benefits of using ML models to predict and
screen for HIV and STDs are evident.

3.8. Obstructive Sleep Apnea Syndrome

There are a number of studies that have reported the use of ML for detecting obstruc-
tive sleep apnea syndrome (OSAS). For OSAS, findings have generally been positive, as
in the case of a study by Tsai et al. [62]. LR, k-nearest neighbor, CNN, naïve Bayes, RF,
and SVM were all compared for screening moderate-to-severe OSAS by being trained on
demographic and information-based questionnaires. The study found that BMI was the
most influential parameter, and RF achieved the highest accuracy in screening for both
types. In another study, Alvarez et al. trained and tested a regression SVM on polysomnog-
raphy and found that the dual-channel approach was a better performer than oximetry
and airflow [63]. Mencar et al. used demographic and information questionaries again to
predict OSAS severity [64]. SVM and RF were the best in classification, with the strongest
average in classification being 44.7%. This study demonstrates some variability in studies
attempting to define a conclusion between AI and OSAS. Overall, there is lack of literature
to make a comprehensive conclusion regarding the use of ML for OSAS.

3.9. Osteoporosis

Regarding osteoporosis and related diseases, four studies have compared a number of
AI models (XGBoost, LR, multiplayer perceptron, SVM, RF, ANN, extreme GB, stacking
with five classifiers, and SVM with radial basis function kernel) [65–68]. Models were
trained on EHR, CT and clinical data, or abdomen-pelvic CT. All studies concluded that
ML methods were valid and presented great potential in screening for osteoporosis. An
additional study trained ML models (RF, GB, NN, and LR) on genomic data for fracture
prediction [69]. The study found that GB was the best-performing model, with an AUC
score of 0.71 and an accuracy of 0.88. Ultimately, more studies are required to confirm the
effectiveness of ML for predicting osteoporosis.
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3.10. Chronic Conditions

Chronic obstructive pulmonary disease (COPD) is characterized by permanent lung
damage and airway blockage. To enhance life quality and lower mortality rates, COPD
must be diagnosed and treated early. The early identification, diagnosis, and prognosis of
COPD can be aided by ML methods [70]. The likelihood of hospitalization, mortality, and
COPD exacerbations have all been predicted using ML algorithms. These algorithms create
predictive models using a variety of data sources, including patient demographics, clinical
symptoms, and imaging data. For instance, Zeng et al. developed an ML algorithm trained
on 278 candidate features [71]. The model achieved an AUROC of 0.866. Another chronic
condition, chronic kidney disease (CKD), is characterized by a progressive decline in kidney
function over time. Kidney failure can be prevented, and patient outcomes can be enhanced
by early detection and care of CKD. The early detection, diagnosis, and management
of CKD can be helped by ML algorithms. For instance, Nishat et al. developed an ML
system to predict the probability of CKD. Eight supervised algorithms were developed,
and RF was the best-performing mode reporting an accuracy of 99.75% [72]. At the final
stage of CKD, known as ESKD, patients require dialysis or a kidney transplant. The early
detection, diagnosis, and management of ESKD can be facilitated by ML algorithms. ML
algorithms have been used to forecast mortality and the risk of ESKD in CKD patients.
These algorithms create predictive models using a variety of data sources, including medical
records, test results, and demographic information. For instance, Bai et al. trained five
ML models on a longitudinal CKD cohort to predict ESKD [73]. LR, naive Bayes, and
RF achieved similar predictability and sensitivity and outperformed the Kidney Failure
Risk Equation. Since chronic conditions are a critical aspect of primary care, more studies
involving a variety of ML models are needed to confirm MLs’ potential.

3.11. Detecting COVID-19 and Influenza

ML has shown great promise in detecting and differentiating between common condi-
tions, propagating more effective recommendations and guidelines (Figure 5). Specifically,
detection research has rocketed with the rise and timeline of the COVID-19 virus [74]. Zhou
et al. developed an XGBoost algorithm to distinguish between influenza and COVID-19 in
case there are no laboratory results of pathogens [75]. The model used EHR data to achieve
AUC scores of 0.94, 0.93, and 0.85 in the training, testing, and external validation datasets.
Similarly, in Zan et al., a DL model, titled DeepFlu, was utilized to predict individuals at
risk of symptomatic flu based on gene expression data of influenza A viruses (IAV) or the
infection subtypes H1N1 or H3N2 [76]. The DeepFlu achieved an accuracy score of 0.70
and an AUROC of 0.787. In another study, Nadda et al. combined LSTM with an NN model
to interpret patients’ symptoms for disease detection [77]. For dengue and cold patients,
the combination of models achieved AUCs of 0.829 and 0.776 for flu, dengue, and cold,
and 0.662 for flu and cold. For influenza, Hogan et al. and Choo et al. trained multiple ML
models on nasopharyngeal swab samples and the mHealth app, respectively, for influenza
diagnosis and screening [78,79]. Both studies concluded that ML methods are capable of
being utilized for infectious disease testing. Similar findings were presented for chronic
coughs in Luo et al., where a DL model, BERT, could accurately detect chronic coughs
through diagnosis and medication data [79]. Additionally, in Yoo et al., severe pharyngitis
could be detected through the training of smartphone-based DL algorithms on self-taken
throat images (AUROC 0.988) [80]. In summary, ML appears to be effective in screening
and distinguishing between COVID-19, influenza, and related illnesses.

3.12. Detecting Atrial Fibrillation

Another large center for AI detection is atrial fibrillation (AF). Six studies have eval-
uated unique ways to detect AF through ML models [80–84]. Through wearable devices,
countless algorithms (SVM, DNN, CNN, ENN, naïve Bayesian, LR, RF, GB, and W-PPG
algorithm combined with W-ECG algorithm) have been trained on primary care data, RR
intervals, W-PPG and W-ECG, electrocardiogram and pulse oximetry data, or waveform
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data. All studies concluded that ML is capable and has the potential to detect AF through
wearable devices and through a number of different information. However, more studies
to confirm these findings are required.
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Figure 5. Example of AI in Pulmonary Embolism Evaluation. Figure Description: Current guidelines
for a suspected pulmonary embolism (PE) in a patient without hemodynamic instability requires a
clinical probability assessment of the PE. Based on the clinical judgment and a potential D-dimer test,
a CT pulmonary angiogram is conducted to determine whether treatment or no treatment will occur.
AI has the potential to be integrated into this process by potentially detecting deep vein thrombosis,
detecting high moderate vs. moderate PE phenotypes, and predicting the risk of thrombectomy.

4. Limitations

While AI’s applications have been relatively positive, several limitations have set back
its implementation. For one, the introduction of AI into healthcare practices raises a number
of concerns, such as a lack of trust, ethical issues, and the absence of accountability [85].
Certain human traits, such as empathy, comfort, and trust, are essential to a doctor–patient
relationship, and the use of AI makes these components an issue. To add on, traditionally,
physicians and healthcare workers are held accountable for their practice [86]. There is no
law to keep ML models intact, and there is no defined ownership to take responsibility
when an AI algorithm is at fault. This drawback raises several legal and ethical concerns
yet to be answered. The common novelty in ML applications across primary care requires
additional clinical trials to support the potential advantages. Table 2 presents all ongoing or
completed clinical trials registered in ClinicalTrials.gov and found through the keywords
“Artificial Intelligence” and “Primary Care”, which were searched for ongoing or completed
clinical trials investigating the role of AI in primary care. In addition, there remains mixed
findings regarding the potential benefits of ML-based prediction models. For instance, in
one systematic review of 71 studies, there was no evidence of a better performance from ML
models compared with LR [87]. An additional drawback is that the implementation of ML
is costly and would require additional education for incoming medical practitioners [88].
Regarding AI research, many studies suffer from a number of drawbacks that limit the
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quality of the results. These include a small sample, retrospective data, the inability to
separate pre-operative and intra-operative data, missing data, the absence of external
validation, data from a single institution, and several biases.

Table 2. Clinical Trials on Artificial Intelligence in Primary Care.

Trial or Registry N Aim Inclusion Criteria Exclusion Criteria Status

NCT05166122 1600
Use AI to screen
for diabetic
retinopathy

>18 years, screened for
diabetic retinopathy, with
diabetes, can take retina
pictures

Part of community hospital
with ophthalmologist,
previously diagnosed with
some retinal conditions,
laser retinal treatment, has
other eye diseases

Recruiting

NCT05286034 4000

AI ChatBot to
improve women
participation in
cervical cancer
screening program

30–65, did not perform pap
smear in last 4 years, living
in deprived clusters

Outside age group, had pap
smear in last 3 years, had
hysterectomy including
cervix, pregnant beyond 6
months, already scheduled
screening appointment

Not yet
recruiting

NCT04551287 16,164

Cervical cancer AI
screening for
cytopathological
diagnosis

25–65 years old, availably of
confirmed diagnosis results
of cytological exam

Unsatisfactory samples of
cytological exam, women
diagnosed with other
malignant tumors

Completed

NCT05435872 2000

AI for
gastrointestinal
endoscopy
screening

Patients received
gastroscopy and
colonoscopy, endoscopic
exam with AI can be
accepted

Patients refusing to
participate, patients with
intolerance or
contraindications to
endoscopic exams

Recruiting

NCT05697601 2905

Finding predictors
of ovarian and
endometrial cancer
for AI screening
tool

Women with gynecological
symptoms, women
underwent routine
gynecological exam

Unable to undergo serial
gynecological exam Recruiting

NCT04838756 100,000
AI for
mammography
screening

Women eligible for
population-based
mammography screening

None Active, not
recruiting

NCT05452993 330
AI screening for
diabetic
retinopathy

Adult patients with
diabetes, ongoing diabetes
treatment, regular pharmacy
customer, informed consent

Unable to read, write, or
give consent, refusing to
share results with general
practitioner

Not yet
recruiting

NCT04778670 55,579 AI for large-scale
breast screening

Participants in regular
population-based breast
cancer

Incomplete exam, breast
implant, complete
mastectomy, participant in
surveillance program

Active, not
recruiting

NCT05139797 300
AI-guided echo
screening of rare
diseases

Patients with high suspicion
for cardiac amyloidosis by
AI

Patients that decline to be
seen at specialty clinic,
patients that passed away

Recruiting

NCT05139940 2432
AI-enabled TB
screening in
Zambia

18 years or older with
known HIV status

Individuals that do not meet
inclusion criteria Recruiting
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Table 2. Cont.

Trial or Registry N Aim Inclusion Criteria Exclusion Criteria Status

NCT04743479 5000 AI screening of
pancreatic cancer

Subject can provide
informed consent, detailed
questionnaire filled, and
subject has one of several
listed conditions

Subject has been diagnosed
with pancreatic cancer or
other malignant tumors in
past 5 years, subject
contraindicates MRI or CT,
subjects is in another clinical
trial

Recruiting

NCT04949776 27,000 AI for breast
cancer screening

50–69 years old, women
studied in the program in
the set period and for the
first time

Unable to give consent,
breast prostheses,
symptoms or signs of
suspected breast cancer

Recruiting

NCT05587452 950 AI screening for
colorectal cancer

Informed consent, provide
blood samples, diagnosed
with colorectal cancer or
colorectal adenoma

Pregnant or breastfeeding,
diagnosed with another
cancer, selective exclusions
for colorectal cancer and
healthy people

Recruiting

NCT05456126 125 AI for infant motor
screening

Mothers older than 20, no
history of recreational drugs,
married or live with fathers.
Specific criteria for term and
preterm infants

None Recruiting

NCT05024591 32,714 AI for breast
cancer screening

Eligible for national
screening, provides consent

History or current breast
cancer, currently pregnant
or plans to become
pregnant, history of breast
surgery, has mammography
for diagnostic purposes

Recruiting

NCT04732208 410

AI screening of
diabetic
retinopathy using
smartphone
camera

Over 18 years, informed
consent, established cases of
DM, subjects dilated for
ophthalmic evaluation

Acute vision loss,
contraindicated for fundus
imaging, treated for
retinopathy, other retinal
pathologies, at risk of acute
angle closure glaucoma

Completed

NCT05311046 2400 AI screening for
pediatric sepsis

3 months–17 years of age,
diagnosed with sepsis,
blood sample collection

Participating in outside
interventions, parents or
LARs that do not speak
English or Spanish,
pregnancy

Recruiting

NCT05391659 1200
AI screening for
diabetic
retinopathy

Diagnosed with DM,
>18 years old, informed
consent, fluent in written
and oral Dutch

History of diabetic
retinopathy or diabetic
macular edema treatment,
contraindicated for imaging
by fundus imaging

Recruiting

NCT04307030 5000

AI screening for
congenital heart
disease by heart
sounds

0–18 years of age, children
with or without congenital
heart disease, informed
consent

>18 years of age, unable to
undergo echo, not able to
provide informed consent

Not yet
recruiting

NCT04000087 358
ECG AI-guided
screening for low
ejection fraction

Primary care clinicians who
are part of a participating
care team

Primary care clinicians
working in pediatrics, acute
care, nursing homes, and
resident care teams

Completed
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Table 2. Cont.

Trial or Registry N Aim Inclusion Criteria Exclusion Criteria Status

NCT04156880 1000

AI in
mammography-
based breast cancer
screening

Women had undergone
standard mammography,
histopathology-proven
diagnosis

Concurring lesions on
mammograms, no available
pathologic diagnosis or long
term follow up exams,
undergone breast surgery,
diagnosed with other kinds
of malignancy

Recruiting

NCT05645341 400

AI screening of
malignant
pigmented tumors
on ocular surface

Dark-brown lesions on
ocular surface

Non-pigmented ocular
surface tumors and image
quality does not meet
clinical requirements

Recruiting

NCT05048095 15,500 AI in breast cancer
screening

Women participating in
regular breast cancer
screening program

Women with breast
implants or other foreign
implants in mammogram
and women with symptoms
or signs of suspected breast
cancer

Completed

NCT04894708 1572
AI for polyp
detection in
colonoscopy

>35 years, planned
diagnostic colonoscopy’s
screening colonoscopy for
men >50 or women >55

Colon bleeding, colon
carcinoma, known polyps
for removal, IBD, colonic
stenosis, other suspected
colon disease, follow-up
care after colon cancer
surgery, anticoagulant
drugs, poor general
condition, incomplete
colonoscopy planned

Recruiting

NCT04160988 703
AI for screening
diabetic
retinopathy

>20 years, DM, image taken
by color fundus, include
includes macula and optic
nerve

Color fundus image
previously use, macula,
optic nerve or other part is
unclear

Completed

NCT04213183 1789
DL screening for
hepatobiliary
diseases

Quality of fundus and
slit-lamp images is
acceptable, more than 90%
of fundus image area
includes four main regions,
more than 90% of slit-lamp
image area includes three
main regions

Images with light leakage
(>10% of the area) Completed

NCT04832594 2500
AI screening for
breast cancer for
supplemental MRI

Four-view screening
mammography exam

Women in surveillance
program, breast implants,
prior breast cancer, breast
feeding, MRI
contraindication

Recruiting

NCT05704491 100
AI screening for
diabetic
retinopathy

DM diagnosis, diabetes
duration >5 years, >18 years
old, informed consent,
fluent in writing and
speaking German

History of laser treatment,
contraindication to fundus
imaging systems

Not yet
recruiting

NCT04699864 630
AI for screening
diabetic
retinopathy

>18 years and older,
informed consent,
diagnostic for diabetes,
diabetic patient followed
and referred by physician

Patients less than 18 years
old, no informed consent,
patient already had
treatment for retinal
condition

Not yet
recruiting

47



AI 2023, 4

Table 2. Cont.

Trial or Registry N Aim Inclusion Criteria Exclusion Criteria Status

NCT04859634 2000
AI for detecting
multiple ocular
fundus lesions

Participants who agree to
take ultra-widefield fundus
images

Patients that cannot
cooperate with
photographer, no informed
consent

Recruiting

NCT05734820 312 AI screening
colonoscopy

>45 years old, referred for
screening colonoscopy,
adequate bowel preparation,
authorized for endoscopic
approach

Pregnancy, clinical
condition making
endoscopy inviable, history
of colorectal carcinoma, IBD,
no informed consent

Recruiting

NCT04859530 5886
AI smartphone for
cervical cancer
screening

Informed consent

No initiation of sexual
intercourse, pregnancy,
condition altering cervix
visualization, previous
hysterectomy, health not
sufficient

Recruiting

NCT03773458 500
AI for large-scale
screening of
scoliosis

Pretreatment back photos
and whole spine standing
X-ray or ultrasound images

Patients considered as
non-idiopathic scoliosis Completed

NCT05704920 2722 AI for lung cancer
screening

50–80 years old, active or
ex-smoker, smoking history
of at least 20 pack-years,
informed consent, affiliated
with French social security

Clinical signs of cancer,
recent chest scan, health
problems affecting life
expectancy or limiting
ability to undergo lung
surgery, vulnerable people

Not yet
recruiting

NCT05236855 200

AI and
spectroscopy for
cervical cancer
screening

Women undergoing
standard HPV screening NA Not yet

recruiting

NCT05527535 34,500
AI for diabetic
retinopathy
screening

T1DM or T2DM, no
full-time ophthalmologist,
>18 years old, eligible for
fundus photo imaging

T1DM or T2DM with an
ophthalmologist, previous
diagnosed with macular
edema, history of retinal
laser, other ocular disease,
not eligible for fundus
imaging

Not yet
recruiting

NCT05745480 2 NLP for screening
opioid misuse

Adults hospitalized at UW
health NA Recruiting

NCT05490823 1000 AI smartphone for
anemia screening Informed consent Ophthalmic or fingernail

surgery in past 30 days Recruiting

NCT04896827 244 DL and AI for
DNIC

18–70 years old, chronic or
no chronic pain, informed
consent

CVD, Raynaud syndrome,
severe psychiatric disease,
injuries or loss sensitivity,
pregnant women

Recruiting

NCT05752045 1389 AI for screening
eye diseases

>18 years, T1DM or T2DM,
presenting screening for
diabetic retinopathy,
benefits of social security
scheme, informed consent

Patient with known DR, any
condition affecting study,
presenting social or
psychological factors,
participates in another
clinical research study

Not yet
recruiting
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Table 2. Cont.

Trial or Registry N Aim Inclusion Criteria Exclusion Criteria Status

NCT05243121 5000
AI for MRI in
screening breast
cancer

Patients with clinical
symptoms, undergoing full
sequence BMRI exam, at
least 6 months of follow-up
results

Received therapy,
contraindications of
breast-enhanced MRI exams,
prosthesis is implanted in
affected breast, patients
during lactation or
pregnancy

Recruiting

NCT04996615 924

AI for identifying
diabetic
retinopathy and
diabetic macular
edema

Routine exams, routine laser
treatment, diagnosed with
T1DM or T2DM, presents
visual acuity

Currently using AI system
integrated into clinical care,
inability to provide
informed consent

Recruiting

NCT03975504 6000 AI for lung cancer
screening

Eligible participants aged
45–75 years with one of
several risk factors

Had CT scan of chest in past
12 months, history of any
cancer within 5 years

Recruiting

NCT05626517 2000
Developing risk
stratification tools
using AI

21 years or older, sufficient
English or Chinese language
skills, informed consent

<21 years old, cardiac event,
no informed consent

Not yet
recruiting

NCT04994899 800 AI screening for
mental health

13–79 years old,
English-speaking

Previous participant, unable
to verbally respond to
standard questions, cannot
participate in virtual visit,
no informed consent

Recruiting

NCT05195385 2400
Lung cancer
screening with
low-dose CT scans

50–74 years, smoked at least
20 pack years, quit less than
15 years ago, gives consent,
affiliated with social security
system

Presence of clinical
symptoms suggesting
malignancy, evolving cancer,
history of lung cancer,
2-year follow-up not
possible, chest CT scan
performed

Recruiting

NCT04240652 500,000
AI for diabetic
retinopathy
screening

T2DM or T1DM, subjects
from other medical
institutes are diabetes,
non-diabetic patients and
healthy participants

History of drug abuse, STDs,
any condition not suitable
for study

Recruiting

NCT04126239 1610
AI for food
addiction
screening test

BMI >30, able to give
informed consent

Non-French speaker, unable
to use internet tools Recruiting

NCT04603404 430

Multimodality
imaging in
screening,
diagnosis, and risk
stratification of
HFpEF

LVEF > 50%, NT-proBNP >
220pg/mL or BNP >
pg/mL, symptoms and
syndromes of HF, at least
one criteria of cardiac
structure

Special types of
cardiomyopathies,
infarction, myocardial
fibrosis, severe arrhythmia,
severe primary cardiac
valvular disease, restrictive
pericardial disease, refuses
to participate in study

Recruiting

NCT05159661 1000

AI for screening
brain connectivity
and dementia risk
estimation

Male and female
60–75 years, MCI diagnosis
with MMSE > 25, MCI
diagnosis with MoCa > 17

Confirmed dementia,
history of cerebrovascular
disease, AUD identification
test, severe medical
disorders associated with
cognitive impairment,
severe head trauma, severe
mental disorders

Recruiting
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Table 2. Cont.

Trial or Registry N Aim Inclusion Criteria Exclusion Criteria Status

NCT05650086 700 AI for breast
screening

Understands the study,
informed consent, complies
with schedule, >21 years,
fits cohort specific criteria

Does not fit cohort specific
criteria, unable to complete
study procedures

Recruiting

NCT05426135 3000 AI for tumor risk
assessment

Participants with suspected
cancer, informed consent,
detailed EHR data, healthy
participants

Participants with primary
clinical and pathological
missing data, lost to
follow-up, poor medical
image quality

Recruiting

NCT05639348 650

AI for risk
assessment of
postoperative
delirium

Surgical patients, >60 years
old, planned postoperative
hospital stay >2 days,
informed consent

Preoperative delirium,
insufficient knowledge in
German or French,
intracranial surgery, cardiac
surgery, surgery within two
previous weeks, unable to
provide informed consent

Recruiting

NCT05466864 120 Screening of OSA
using BSP

Hospitalized with acute
ischemic stroke, 18–80,
informed consent

History of AF, LVEF < 45%,
aphasia, unstable
cardiopulmonary status,
recent surgery including
tracheotomy in 30 days,
narcotics, on O2, PAP
device, ventilator, unable to
understand instructions

Recruiting

NCT05655117 440
AI for detecting
eye complications
in diabetics

Diabetic patients aged 18–90 Severely ill patient or
patient with cancer

Not yet
recruiting

NCT03688906 3275
AI colorectal
cancer screening
test

Differs across three cohorts Differs across three cohorts Completed

NCT05246163 1500
AI smartphone for
skin cancer
detection

Patients with one or two
lesions meeting one of
several criteria, informed
consent

Lack of informed consent Recruiting

NCT05730192 950

AI for detection of
gastrointestinal
lesions in
endoscopy

Screening or surveillance
colonoscopy, age 40 or older,
informed consent

Emergency colonoscopies,
IBD, CRC, previous colonic
resection, returning for
elective colonoscopy,
polyposis syndromes,
contraindications

Not yet
recruiting

NCT05566002 2000
AI evaluation of
pulmonary
hypertension

>18 years, previous received
diagnostic imaging

Patients without RHC,
quality of exams cannot
meet requirement, severe
loss of results

Recruiting

5. Implementing AI in Primary Care

Choosing the correct ML model for a primary care task depends on several factors,
including the nature of the task, the available data, and the desired outcome (Table 3). First,
a definition of the problem and the necessary data must be identified to select the appropri-
ate model [89]. Subsequently, a suitable AI technique, such as supervised, unsupervised, or
reinforcement learning, must be chosen. Following the selection of the model, evaluation
of the model’s performance using validation data and fine-tuning is necessary [89]. Several
factors must be considered to evaluate the benefits and risks of implementing a specific AI
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model into a primary care routine. Accuracy and reliability must be assessed by testing the
ML model’s performance on validation data [89]. Clinical relevance must be determined
by evaluating whether the model is based on relevant risk factors and whether the predic-
tions are helpful for clinical decision-making. Potential benefits such as improving patient
outcomes, reducing medical errors, increasing efficiency and productivity, and enhancing
the quality of care must also be assessed. Ethical implications of using the AI model in
primary care, such as the responsibility of healthcare providers to explain how the AI
model works and how decisions are made, and potential issues related to patient autonomy
and informed consent, must be considered. Finally, the cost-effectiveness of implementing
the AI model, considering the costs of development, implementation, maintenance, and
training, as well as potential cost savings and benefits, must be evaluated [90]. Finally, we
can anticipate a number of ML technologies, such as sophisticated chatbots and virtual
assistants, decision support tools, predictive analytics, wearable technology, and population
health management, to become commonplace in primary care during the next two years.
These tools could aid primary care providers in making better judgements, delivering
more individualized care, and spotting high-risk patients or those needing more intense
interventions. However, regulatory approval, patient and healthcare provider acceptance,
and integration into current clinical workflows will all be necessary before ML can be
deployed. Despite these obstacles, there will likely be major advancements in integrating
AI into primary care in the upcoming years, given the rate of technological advancement
and the growing desire for more individualized and effective healthcare.

Table 3. Machine learning models.

ML Model Advantages Limitations Clinical Applications in
Primary Care

Logistic Regression
Easy to implement and interpret,
handles binary and multi-class

classification

Does not perform well with
outliers, assumes linear

relationship

Diagnostic tests, selection of
treatment, prognostic modeling,

predicting disease risk

Convolutional Neural
Network

Excels in video and image
recognition, learns hierarchical

features

Needs a lot of data and
resource, interpretation is

limited

Image classification, diagnosing
from medical imaging

Support Vector
Machine

Handles non-linear decision
boundaries, great generalization

Precise kernel function and
hyperparameters selection,

difficult with noisy data

Diagnosing disease, risk
stratification, classifying clinical

data

K-Nearest Neighbors Easy, simple, handles non-linear
decision boundaries

Needs a lot of memory and
time, sensitivities to certain

features

Assisting in disease progression
through forecasting

Random Forest
Performs well with

high-dimensional data, handles
non-linear effects

Hard to interpret, overfits
noisy data

Identifying risk factors,
predicting outcomes,

Adaptive Boosting
Handles regression and

classification problems, combines
weak learners

Overfits with weak learners,
sensitive to noisy data

Predicting risk of disease, and
detecting high risk

Gradient Boosting
Performs with large datasets,

handles regression and
classification

Overfits with weak learners,
sensitive to noisy data

Forecasting outcomes and
diagnosing disease

Neural Network
Handles large datasets, performs

well on speech and image
recognition

Needs a lot of computational
resources and data, overfits if

complex

Diagnosing disease, selecting
treatment, predicting risk of

disease

Extreme Gradient
Boosting

Fast with large datasets, handles
regression and classification

Needs tuning of
hyperparameters, overfits

with complex weak learners

Predicting outcomes, detecting
high-risk patients, diagnosing

disease
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Table 3. Cont.

ML Model Advantages Limitations Clinical Applications in
Primary Care

Decision Tree Simple, easy, handles categorical
and numerical data

Overfits with noisy data,
sensitivity to variations in

training

Identifying risk factors,
diagnosing disease, predicting

risk of disease

Deep Neural Network
Good performer with large datasets,

automatically learns hierarchical
features

Requires a lot of data, overfits
with complex network

Diagnosing disease, detecting
high-risk patients, predicting

the risk of disease

Gated Recurrent Unit
Great performer with time-series

data, handles variable-length
sequences

Sensitivity to some conditions
and parameters, poor

generalization to new data

Predicting risk of disease,
diagnosing diseases, and

determining outcomes

XGBoost Fast, accurate, handles regressions
and classification problems

Needs tuning of
hyperparameters, overfits

with noisy data

Predicting outcomes,
identifying risk factors

CatBoost
Handles categorical data, handles

regression and classification
problems

Needs resources and data,
needs tuning of

hyperparameters

Identifying risk factors,
forecasting outcomes

Naïve Bayes Simple, efficient, handles
high-dimensional data

Independent between
features, poor performer with

correlated features

Diagnosing diseases, forecasting
risk of disease

Logistic Model Tree Combination of DT and LR to get
non-linear effects

Overfits with noisy data,
needs tuning of

hyperparameters

Determining risk factors,
predicting risk of disease

Long Short-Term
Memory

Good performer with time-series
data, handles variable-length

sequence

Computational complexity,
difficult interpretation,

overfitting, difficult to handle
long sequences

Forecasting outcomes,
diagnosing diseases, forecasting

risk of disease

6. Conclusions

AI in primary care and preventive medicine is a relatively new field of study that has
developed endless possibilities. The applications are widespread, as seen through a number
of studies on all facets of primary care. Although there is some variability within the findings
of studies in specific fields, the general development and implementation of ML algorithms
are successful and constructive. The models are usually more effective than previously
established models or scores. Future research should focus on tackling the aforementioned
limitations and furthering the research on promising sectors of primary care.
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Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I., Eds.; Lecture Notes in Computer Science; Springer
International Publishing: Cham, Switzerland, 2018; Volume 11141, pp. 468–478. [CrossRef]

39. Boutilier, J.J.; Chan, T.C.Y.; Ranjan, M.; Deo, S. Risk Stratification for Early Detection of Diabetes and Hypertension in Resource-
Limited Settings: Machine Learning Analysis. J. Med. Internet Res. 2021, 23, e20123. [CrossRef]

40. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN
Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [CrossRef]

41. Alharbi, F.; Vakanski, A. Machine Learning Methods for Cancer Classification Using Gene Expression Data: A Review. Bioengi-
neering 2023, 10, 173. [CrossRef]

42. Ardila, D.; Kiraly, A.P.; Bharadwaj, S.; Choi, B.; Reicher, J.J.; Peng, L.; Tse, D.; Etemadi, M.; Ye, W.; Corrado, G.; et al. End-to-end
lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat. Med. 2019, 25,
954–961. [CrossRef]

43. Gould, M.K.; Huang, B.Z.; Tammemagi, M.C.; Kinar, Y.; Shiff, R. Machine Learning for Early Lung Cancer Identification Using
Routine Clinical and Laboratory Data. Am. J. Respir. Crit. Care Med. 2021, 204, 445–453. [CrossRef]

44. Yeh, M.C.-H.; Wang, Y.-H.; Yang, H.-C.; Bai, K.-J.; Wang, H.-H.; Li, Y.-C.J. Artificial Intelligence–Based Prediction of Lung Cancer
Risk Using Nonimaging Electronic Medical Records: Deep Learning Approach. J. Med. Internet Res. 2021, 23, e26256. [CrossRef]

45. Guo, Y.; Yin, S.; Chen, S.; Ge, Y. Predictors of underutilization of lung cancer screening: A machine learning approach. Eur. J.
Cancer Prev. 2022, 31, 523–529. [CrossRef]

54



AI 2023, 4

46. Mehmood, M.; Rizwan, M.; Ml, M.G.; Abbas, S. Machine Learning Assisted Cervical Cancer Detection. Front. Public Health 2021,
9, 788376. [CrossRef] [PubMed]

47. Rahaman, M.; Li, C.; Yao, Y.; Kulwa, F.; Wu, X.; Li, X.; Wang, Q. DeepCervix: A deep learning-based framework for the
classification of cervical cells using hybrid deep feature fusion techniques. Comput. Biol. Med. 2021, 136, 104649. [CrossRef]
[PubMed]

48. Wentzensen, N.; Lahrmann, B.; Clarke, M.A.; Kinney, W.; Tokugawa, D.; Poitras, N.; Locke, A.; Bartels, L.; Krauthoff, A.; Walker,
J.; et al. Accuracy and Efficiency of Deep-Learning–Based Automation of Dual Stain Cytology in Cervical Cancer Screening. JNCI
J. Natl. Cancer Inst. 2020, 113, 72–79. [CrossRef] [PubMed]

49. Shen, L.; Margolies, L.R.; Rothstein, J.H.; Fluder, E.; McBride, R.; Sieh, W. Deep Learning to Improve Breast Cancer Detection on
Screening Mammography. Sci. Rep. 2019, 9, 12495. [CrossRef]

50. Buda, M.; Saha, A.; Walsh, R.; Ghate, S.; Li, N.; Swiecicki, A.; Lo, J.Y.; Mazurowski, M.A. A Data Set and Deep Learning Algorithm
for the Detection of Masses and Architectural Distortions in Digital Breast Tomosynthesis Images. JAMA Netw. Open 2021, 4,
e2119100. [CrossRef]

51. Maghsoudi, O.H.; Gastounioti, A.; Scott, C.; Pantalone, L.; Wu, F.-F.; Cohen, E.A.; Winham, S.; Conant, E.F.; Vachon, C.; Kontos, D.
Deep-LIBRA: An artificial-intelligence method for robust quantification of breast density with independent validation in breast
cancer risk assessment. Med. Image Anal. 2021, 73, 102138. [CrossRef]

52. Ming, C.; Viassolo, V.; Probst-Hensch, N.; Dinov, I.D.; Chappuis, P.O.; Katapodi, M.C. Machine learning-based lifetime breast
cancer risk reclassification compared with the BOADICEA model: Impact on screening recommendations. Br. J. Cancer 2020, 123,
860–867. [CrossRef]

53. Perera, M.; Mirchandani, R.; Papa, N.; Breemer, G.; Effeindzourou, A.; Smith, L.; Swindle, P.; Smith, E. PSA-based machine
learning model improves prostate cancer risk stratification in a screening population. World J. Urol. 2021, 39, 1897–1902. [CrossRef]

54. Chiu, P.K.-F.; Shen, X.; Wang, G.; Ho, C.-L.; Leung, C.-H.; Ng, C.-F.; Choi, K.-S.; Teoh, J.Y.-C. Enhancement of prostate cancer
diagnosis by machine learning techniques: An algorithm development and validation study. Prostate Cancer Prostatic Dis. 2021,
25, 672–676. [CrossRef]

55. Beinecke, J.M.; Anders, P.; Schurrat, T.; Heider, D.; Luster, M.; Librizzi, D.; Hauschild, A.-C. Evaluation of machine learning
strategies for imaging confirmed prostate cancer recurrence prediction on electronic health records. Comput. Biol. Med. 2022, 143,
105263. [CrossRef]

56. Turbé, V.; Herbst, C.; Mngomezulu, T.; Meshkinfamfard, S.; Dlamini, N.; Mhlongo, T.; Smit, T.; Cherepanova, V.; Shimada, K.;
Budd, J.; et al. Deep learning of HIV field-based rapid tests. Nat. Med. 2021, 27, 1165–1170. [CrossRef]

57. Bao, Y.; Medland, N.A.; Fairley, C.K.; Wu, J.; Shang, X.; Chow, E.P.; Xu, X.; Ge, Z.; Zhuang, X.; Zhang, L. Predicting the diagnosis
of HIV and sexually transmitted infections among men who have sex with men using machine learning approaches. J. Infect.
2020, 82, 48–59. [CrossRef]

58. Marcus, J.L.; Hurley, L.B.; Krakower, D.S.; Alexeeff, S.; Silverberg, M.J.; Volk, J.E. Use of electronic health record data and machine
learning to identify candidates for HIV pre-exposure prophylaxis: A modelling study. Lancet HIV 2019, 6, e688–e695. [CrossRef]

59. Elder, H.R.; Gruber, S.; Willis, S.J.; Cocoros, N.; Callahan, M.; Flagg, E.W.; Klompas, M.; Hsu, K.K. Can Machine Learning Help
Identify Patients at Risk for Recurrent Sexually Transmitted Infections? Sex. Transm. Dis. 2020, 48, 56–62. [CrossRef]

60. Gadalla, A.A.H.; Friberg, I.M.; Kift-Morgan, A.; Zhang, J.; Eberl, M.; Topley, N.; Weeks, I.; Cuff, S.; Wootton, M.; Gal, M.; et al.
Identification of clinical and urine biomarkers for uncomplicated urinary tract infection using machine learning algorithms. Sci.
Rep. 2019, 9, 19694. [CrossRef]

61. Taylor, R.A.; Moore, C.L.; Cheung, K.-H.; Brandt, C. Predicting urinary tract infections in the emergency department with machine
learning. PLoS ONE 2018, 13, e0194085. [CrossRef]

62. Tsai, C.-Y.; Liu, W.-T.; Lin, Y.-T.; Lin, S.-Y.; Houghton, R.; Hsu, W.-H.; Wu, D.; Lee, H.-C.; Wu, C.-J.; Li, L.Y.J.; et al. Machine
learning approaches for screening the risk of obstructive sleep apnea in the Taiwan population based on body profile. Inform.
Health Soc. Care 2021, 47, 373–388. [CrossRef]

63. Álvarez, D.; Cerezo-Hernández, A.; Crespo, A.; Gutiérrez-Tobal, G.C.; Vaquerizo-Villar, F.; Barroso-García, V.; Moreno, F.; Arroyo,
C.A.; Ruiz, T.; Hornero, R.; et al. A machine learning-based test for adult sleep apnoea screening at home using oximetry and
airflow. Sci. Rep. 2020, 10, 5332. [CrossRef]

64. Mencar, C.; Gallo, C.; Mantero, M.; Tarsia, P.; Carpagnano, G.E.; Barbaro, M.P.F.; Lacedonia, D. Application of machine learning to
predict obstructive sleep apnea syndrome severity. Health Inform. J. 2020, 26, 298–317. [CrossRef]

65. Park, H.W.; Jung, H.; Back, K.Y.; Choi, H.J.; Ryu, K.S.; Cha, H.S.; Lee, E.K.; Hong, A.R.; Hwangbo, Y. Application of Machine
Learning to Identify Clinically Meaningful Risk Group for Osteoporosis in Individuals Under the Recommended Age for
Dual-Energy X-Ray Absorptiometry. Calcif. Tissue Int. 2021, 109, 645–655. [CrossRef]

66. Kim, S.K.; Yoo, T.K.; Oh, E.; Kim, D.W. Osteoporosis risk prediction using machine learning and conventional methods. In
Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC),
Osaka, Japan, 3–7 July 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 188–191. [CrossRef]

67. Liu, L.; Si, M.; Ma, H.; Cong, M.; Xu, Q.; Sun, Q.; Wu, W.; Wang, C.; Fagan, M.J.; Mur, L.A.J.; et al. A hierarchical opportunistic
screening model for osteoporosis using machine learning applied to clinical data and CT images. BMC Bioinform. 2022, 23, 63.
[CrossRef] [PubMed]

55



AI 2023, 4

68. Lim, H.K.; Ha, H.I.; Park, S.-Y.; Han, J. Prediction of femoral osteoporosis using machine-learning analysis with radiomics features
and abdomen-pelvic CT: A retrospective single center preliminary study. PLoS ONE 2021, 16, e0247330. [CrossRef] [PubMed]

69. Wu, Q.; Nasoz, F.; Jung, J.; Bhattarai, B.; Han, M.V. Machine Learning Approaches for Fracture Risk Assessment: A Comparative
Analysis of Genomic and Phenotypic Data in 5130 Older Men. Calcif. Tissue Int. 2020, 107, 353–361. [CrossRef] [PubMed]

70. Moslemi, A.; Kontogianni, K.; Brock, J.; Wood, S.; Herth, F.; Kirby, M. Differentiating COPD and asthma using quantitative CT
imaging and machine learning. Eur. Respir. J. 2022, 60, 2103078. [CrossRef] [PubMed]

71. Zeng, S.; Arjomandi, M.; Tong, Y.; Liao, Z.C.; Luo, G. Developing a Machine Learning Model to Predict Severe Chronic Obstructive
Pulmonary Disease Exacerbations: Retrospective Cohort Study. J. Med. Internet Res. 2022, 24, e28953. [CrossRef]

72. Nishat, M.; Faisal, F.; Dip, R.; Nasrullah, S.; Ahsan, R.; Shikder, F.; Asif, M.A. Hoque A Comprehensive Analysis on Detecting
Chronic Kidney Disease by Employing Machine Learning Algorithms. EAI Endorsed Trans. Pervasive Health Technol. 2018, 7,
170671. [CrossRef]

73. Bai, Q.; Su, C.; Tang, W.; Li, Y. Machine learning to predict end stage kidney disease in chronic kidney disease. Sci. Rep. 2022, 12,
8377. [CrossRef]

74. Heidari, A.; Navimipour, N.J.; Unal, M.; Toumaj, S. Machine learning applications for COVID-19 outbreak management. Neural
Comput. Appl. 2022, 34, 15313–15348. [CrossRef]

75. Zhou, X.; Wang, Z.; Li, S.; Liu, T.; Wang, X.; Xia, J.; Zhao, Y. Machine Learning-Based Decision Model to Distinguish Between
COVID-19 and Influenza: A Retrospective, Two-Centered, Diagnostic Study. Risk Manag. Healthc. Policy 2021, 14, 595–604.
[CrossRef]

76. Zan, A.; Xie, Z.-R.; Hsu, Y.-C.; Chen, Y.-H.; Lin, T.-H.; Chang, Y.-S.; Chang, K.Y. DeepFlu: A deep learning approach for forecasting
symptomatic influenza A infection based on pre-exposure gene expression. Comput. Methods Programs Biomed. 2021, 213, 106495.
[CrossRef]

77. Nadda, W.; Boonchieng, W.; Boonchieng, E. Influenza, dengue and common cold detection using LSTM with fully connected
neural network and keywords selection. BioData Min. 2022, 15, 5. [CrossRef]

78. Hogan, C.A.; Rajpurkar, P.; Sowrirajan, H.; Phillips, N.A.; Le, A.T.; Wu, M.; Garamani, N.; Sahoo, M.K.; Wood, M.L.; Huang, C.;
et al. Nasopharyngeal metabolomics and machine learning approach for the diagnosis of influenza. EbioMedicine 2021, 71, 103546.
[CrossRef]

79. Choo, H.; Kim, M.; Choi, J.; Shin, J.; Shin, S.-Y. Influenza Screening via Deep Learning Using a Combination of Epidemiological
and Patient-Generated Health Data: Development and Validation Study. J. Med. Internet Res. 2020, 22, e21369. [CrossRef]

80. Lown, M.; Brown, M.; Brown, C.; Yue, A.M.; Shah, B.N.; Corbett, S.J.; Lewith, G.; Stuart, B.; Moore, M.; Little, P. Machine learning
detection of Atrial Fibrillation using wearable technology. PLoS ONE 2020, 15, e0227401. [CrossRef]

81. Ali, F.; Hasan, B.; Ahmad, H.; Hoodbhoy, Z.; Bhuriwala, Z.; Hanif, M.; Ansari, S.U.; Chowdhury, D. Detection of subclinical
rheumatic heart disease in children using a deep learning algorithm on digital stethoscope: A study protocol. BMJ Open 2021, 11,
e044070. [CrossRef]

82. Kwon, S.; Hong, J.; Choi, E.-K.; Lee, E.; Hostallero, D.E.; Kang, W.J.; Lee, B.; Jeong, E.-R.; Koo, B.-K.; Oh, S.; et al. Deep Learning
Approaches to Detect Atrial Fibrillation Using Photoplethysmographic Signals: Algorithms Development Study. JMIR mHealth
uHealth 2019, 7, e12770. [CrossRef]

83. Tiwari, P.; Colborn, K.L.; Smith, D.E.; Xing, F.; Ghosh, D.; Rosenberg, M.A. Assessment of a Machine Learning Model Applied to
Harmonized Electronic Health Record Data for the Prediction of Incident Atrial Fibrillation. JAMA Netw. Open 2020, 3, e1919396.
[CrossRef]

84. Sekelj, S.; Sandler, B.; Johnston, E.; Pollock, K.G.; Hill, N.R.; Gordon, J.; Tsang, C.; Khan, S.; Ng, F.S.; Farooqui, U. Detecting
undiagnosed atrial fibrillation in UK primary care: Validation of a machine learning prediction algorithm in a retrospective
cohort study. Eur. J. Prev. Cardiol. 2021, 28, 598–605. [CrossRef]

85. Kelly, C.J.; Karthikesalingam, A.; Suleyman, M.; Corrado, G.; King, D. Key challenges for delivering clinical impact with artificial
intelligence. BMC Med. 2019, 17, 195. [CrossRef]

86. Sunarti, S.; Rahman, F.F.; Naufal, M.; Risky, M.; Febriyanto, K.; Masnina, R. Artificial intelligence in healthcare: Opportunities and
risk for future. Gac. Sanit. 2021, 35, S67–S70. [CrossRef]

87. Christodoulou, E.; Ma, J.; Collins, G.S.; Steyerberg, E.W.; Verbakel, J.Y.; Van Calster, B. A systematic review shows no performance
benefit of machine learning over logistic regression for clinical prediction models. J. Clin. Epidemiol. 2019, 110, 12–22. [CrossRef]

88. Ahuja, A.S. The impact of artificial intelligence in medicine on the future role of the physician. PeerJ 2019, 7, e7702. [CrossRef]
[PubMed]

89. Raschka, S. Model Evaluation, Model Selection, and Algorithm Selection in Machine Learning. arXiv 2018, arXiv:1811.12808.
[CrossRef]

90. de Vos, J.; Visser, L.A.; de Beer, A.A.; Fornasa, M.; Thoral, P.J.; Elbers, P.W.; Cinà, G. The Potential Cost-Effectiveness of a Machine
Learning Tool That Can Prevent Untimely Intensive Care Unit Discharge. Value Health 2021, 25, 359–367. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

56



Citation: Wan, T.T.H.; Wan, H.S.

Predictive Analytics with a

Transdisciplinary Framework in

Promoting Patient-Centric Care of

Polychronic Conditions: Trends,

Challenges, and Solutions. AI 2023, 4,

482–490. https://doi.org/10.3390/

ai4030026

Academic Editor: Tim Hulsen

Received: 20 May 2023

Revised: 8 July 2023

Accepted: 11 July 2023

Published: 13 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Commentary

Predictive Analytics with a Transdisciplinary Framework in
Promoting Patient-Centric Care of Polychronic Conditions:
Trends, Challenges, and Solutions
Thomas T. H. Wan 1,* and Hunter S. Wan 2

1 School of Global Health Management and Informatics, University of Central Florida, 500 W Livingston Street,
Orlando, FL 32801, USA

2 Department of Biology, Grove City College, 100 Campus Drive, Grove City, PA 16127, USA; wanhs20@gcc.edu
* Correspondence: thomas.wan@ucf.edu

Abstract: Context. This commentary is based on an innovative approach to the development of
predictive analytics. It is centered on the development of predictive models for varying stages of
chronic disease through integrating all types of datasets, adds various new features to a theoretically
driven data warehousing, creates purpose-specific prediction models, and integrates multi-criteria
predictions of chronic disease progression based on a biomedical evolutionary learning platform.
After merging across-center databases based on the risk factors identified from modeling the pre-
dictors of chronic disease progression, the collaborative investigators could conduct multi-center
verification of the predictive model and further develop a clinical decision support system coupled
with visualization of a shared decision-making feature for patient care. The Study Problem. The
success of health services management research is dependent upon the stability of pattern detection
and the usefulness of nosological classification formulated from big-data-to-knowledge research
on chronic conditions. However, longitudinal observations with multiple waves of predictors and
outcomes are needed to capture the evolution of polychronic conditions. Motivation. The transitional
probabilities could be estimated from big-data analysis with further verification. Simulation or
predictive models could then generate a useful explanatory pathogenesis of the end-stage-disorder
or outcomes. Hence, the clinical decision support system for patient-centered interventions could
be systematically designed and executed. Methodology. A customized algorithm for polychronic
conditions coupled with constraints-oriented reasoning approaches is suggested. Based on theoretical
specifications of causal inquiries, we could mitigate the effects of multiple confounding factors in
conducting evaluation research on the determinants of patient care outcomes. This is what we
consider as the mechanism for avoiding the black-box expression in the formulation of predictive
analytics. The remaining task is to gather new data to verify the practical utility of the proposed
and validated predictive equation(s). More specifically, this includes two approaches guiding future
research on chronic disease and care management: (1) To develop a biomedical evolutionary learning
platform to predict the risk of polychronic conditions at various stages, especially for predicting the
micro- and macro-cardiovascular complications experienced by patients with Type 2 diabetes for
multidisciplinary care; and (2) to formulate appropriate prescriptive intervention services, such as
patient-centered care management interventions for a high-risk group of patients with polychronic
conditions. Conclusions. The commentary has identified trends, challenges, and solutions in con-
ducting innovative AI-based healthcare research that can improve understandings of disease-state
transitions from diabetes to other chronic polychronic conditions. Hence, better predictive models
could be further formulated to expand from inductive (problem solving) to deductive (theory based
and hypothesis testing) inquiries in care management research.

Keywords: polychronic conditions; predictive analytics; care management interventions; patient care
outcomes and modeling; decision support system design and evaluation
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1. Introduction

A transdisciplinary framework for chronic disease research has been established by
health services researchers [1,2] in the selection of relevant variables for the prediction
of disease transition during a life course, as particularly related to Type 2 diabetes [3–5],
heart failure [6,7], and chronic kidney disease [8]. The Centers for Medicare and Medi-
caid Services (CMS) has strongly advocated for the use of practical selfcare management
strategies to tackle chronic disease management under severe resource constraints [9,10].
It offers a detailed analytical plan with problem-solving steps for delivering high-quality
research results.

The concomitant development of the theoretical framework and methodological rigor
required for verifying predictive analytics is germane to the formulation of artificial intelli-
gence applications in healthcare. This care management approach may generate pertinent
information for implementing and evaluating effective multidisciplinary care for chronic
diseases. The present research and review paper offers a novel approach to the design and
implementation of Support Vector Machine (SVM), a simple supervised machine learning
algorithm used for classification and/or regression. The SVM-based predictive models en-
hance the prescriptive clinical care for polychronic conditions [11,12]. The transdisciplinary
and collaborative nature of confirmatory research may generate useful care management
and policy-relevant information to guide the improvement of chronic disease care for a
targeted group of high-risk patient population members [13].

The central research inquiry is to address what and how AI healthcare research on the
management of chronic diseases can be solidified and guided by the development of theo-
retically sound and methodologically rigorous approaches to selfcare management research.
The purpose of this commentary is twofold: (1) To develop a biomedical evolutionary learn-
ing platform for predicting the micro- and macro-cardiovascular complications experienced
by patients with chronic conditions for multidisciplinary care; and (2) to formulate ap-
propriate prescriptive intervention services, such as patient-centered care management
interventions, for a high-risk group of patients with polychronic conditions.

2. Critical Issues for Chronic Disease and Care Management Research

This paper addresses four critical issues pertaining to the application of artificial
intelligence technologies: (1) global trends in chronic care and outcomes evaluation,
(2) critical needs for assessing patient-centered care interventions, (3) challenges and solu-
tions for chronic care in promoting coordinated or guided care, and (4) opportunities in
transdisciplinary and collaborative care management research.

2.1. Global Trends in Chronic Care and Outcomes Evaluation

As the growth of an aging population is associated with an increase in demand for care,
it is natural to pay special attention to the complex needs of frail elders. Four specific care
management trends are presented below. First, the path to polychronic conditions reflects
the need for covering both physical and mental health domains. The reciprocal relationship
between them should be better investigated by health services researchers. Second, chronic
care management has emerged as a highly specialized field in clinical medicine. Integrated
care coupled with chronic care management requires the development of transdisciplinary
orientation and teamwork in the phase of design, implementation, and evaluation of care
plans. In the United States, the joint efforts of two governmental agencies such as the
Agency for Health Research and Quality (AHRQ) and the CMS have led the ways in
formulating chronic care management guidelines. Second, the growth of community-based
care as an option or alternative to the institutionalization of the elderly facilitates the growth
of post-acute care and long-term care in numerous countries. For instance, Taiwan launched
a long-term care (LTC) alternative movement in 2007. To date, Taiwan has ventured into
an era of LTC 2.0. with strong financial support for the growth of community-based long
term care alternatives. Third, patient engagement is essential for success in performing
patient care outcomes assessment and evaluation. The use of logic models in program
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planning and evaluation has signified how the structure-process-performance-outcomes
framework of chronic care management could help optimize global collaboration in chronic
care management research. Fourth, assisted technology development has shaped how
care is managed and delivered. Furthermore, embracing new applications of information
technology and addressing the healthcare labor shortage are two important tasks for global
collaboration. It is anticipated that social robotics and other AI-based communication
applications may transfer the landscape of chronic care management from a low to a high
technology platform.

2.2. Critical Needs for Assessing Patient-Centered Care Interventions

Patient-centered care is characterized by several important principles: (1) problem
identification [14] before alleviating the problem, (2) targeting high-risk patients for care
management interventions [15], (3) designing and implementing patient-centered care
modalities [4,6], and (4) conducting a patient outcome-based evaluation guided by the
logic model [9,16]. It is important to note that patient-centered care is characterized by
important principles such as respect for a patient’s preference or choice, the provision
of coordinated and integrated care, encouragement in shared information and decision-
making, presence of personal comfort and emotional support, family involvement and
support groups, continuity of care, and equitable care provision.

2.3. Challenges and Solutions for Designing Chronic Care Modalities in Promoting Coordinated or
Guided Care

Challenge One. The Lack of Theoretical Guidance in Selecting Predictor Variables

Longitudinal patient-care datasets could be used to generate predictive models in
varying stages of chronic disease. This is an efficient approach for the investigation of the
progressive nature of chronic disease. However, a lack of theoretical guidance in selecting
predictor variables has seriously affected the predictability of empirical models.

Solutions: The retrospective approach could be replaced by the prospective study
approach, using a small set of predictor variables in the evaluation of progressive paths of
polychronic conditions. Two-level modeling of the determinants of health and healthcare
enables the examination of joint and interaction effects of personal/behavioral factors
at the micro-level analysis and ecological/contextual factors at the macro-level analysis.
In addition, the exploration of interaction effects of micro- and macro-level variables is
essential to the development of predictive models that can detect the influence of contextual
and cultural factors on personal and public health. For instance, here are four research
questions pertaining to the study for improving selfcare management of chronic conditions:
(1) What are the dominant human factors involved in selfcare? (2) What are the contextual
or ecological variables that may interact with personal or human factors in the design
of selfcare management strategies? (3) How are patient care outcomes specified and
measured? (4) What is the value-based appraisal and evaluation of an innovative chronic
care modality? The Patient-Centered Outcomes Research Institute (PCORI) [17] has played
a vital role in helping people make informed decisions and improving healthcare delivery
and outcomes by producing and promoting high-integrity, evidence-based information that
comes from research guided by patients, caregivers, and the broader healthcare community.

Challenge Two. Inadequate Validation of Multidisciplinary Care

The sensitivity and specificity of each predictive model derived from SVM have
not been systematically examined to determine the validity of multidisciplinary patient
care since stringent and pre-determined criteria, ranging from the proximal, intermediate,
and distal outcomes, and measured at the patient- and population-level, have yet to be
formulated in evaluation research. Furthermore, the development of “precision care” or
personal care modalities should consider both the quality and efficiency of care plans
simultaneously [17].

Solutions: The validation criteria of a predictive model should be decided and set
in advance so that the predictive power of selfcare management strategies can be deter-
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mined and enhanced. The prescriptive nature of patient-centered care strategies should
consider individual choices or self-efficacy, rather than simply based on the relative cost
of care options. The critical research question for validating the effectiveness of multidis-
ciplinary care for polychronic conditions should include the follow inquiry: What is the
dose-response relationship of the amount and type of innovative care services for patient
care outcomes?

Challenge Three. The Need for Conducting Prospective or Experimental Studies

Under the pay-for-performance and other incentive policies for promoting selfcare
management of polychronic conditions, only prospective studies have potential to gener-
ate useful information for designing, implementing, and evaluating chronic care models
supplemented by the clinical decision support system. However, limited theoretical specifi-
cations for formulating polychronic care management are available to guide the design of
interventions. Thus, the usefulness of patient-centered care components for the design of
care plans is yet to be ascertained and standardized in empirical research.

Solutions: Clarification is needed to differentiate multidisciplinary care and integrated
care in clinical practice. The use of a complex factorial design for outcomes evaluation
is an efficient and powerful analytical strategy to generate practical solutions for chronic
care problems. It is important to develop or select a theoretically guided framework, such
as the logic model, in conducting the implementation of care interventions [16]. When
multiple datasets are merged or pooled together for performing statistical analysis, it is
important to delineate important confounding factors such as the contextual and provider
variations in the establishment of predictive models. The study questions pertaining to the
implementation research should address the consistency and integrity of patient adherence
to the prescribed intervention. This refers to the identification of treatment integrity when
a randomized controlled trial is being conducted.

Challenge Four. The Rationale for Establishing an Integrated or Guided Care Model

A clear rationale for formalizing an integrated or guided care model at the early
stage of chronic disease is imperative and essential to the achievement of optimal health
outcomes for a target group of high-risk patients who are likely to experience polychronic
conditions later in life.

Solutions: Chronic disease progression or transition is an important concept for
studying the chronicity of the disease. It is also important to consider both time-varying
and time-constant predictors of the disease evolution or progression when predictive
analytics are being formulated. A multivariate modeling approach is preferred since
it could simultaneously investigate the main effects and interaction effects of personal,
organizational, ecological, and contextual variables in the analysis. Furthermore, the
temporal sequence of service utilization and outcome variables should be captured in the
design of a multi-wave longitudinal study. Thus, the sequential or causal effects of the
intervention on the proximal, intermediate, and distal outcomes could be delineated from
the analysis.

2.4. Opportunities for Collaborative and Transdisciplinary Research on Chronic Care Management

Figure 1 portrays a variety of discipline-free analytical methods that could be used
in the evaluation of the effectiveness of multilevel predictors of chronic care innovations
such as selfcare management strategies. For instance, the prediction of disease transitions
over time (e.g., the evolution of diabetes to cardiovascular disorders and chronic kidney
disease in varying severity stages) requires having a panel study design capturing the
longitudinal data observed from an early to advanced stage of the illness. Thus, the
treatments or interventions could be better monitored and followed up by collaborative
research teams. Furthermore, the longitudinal study design will require the collection of
multi-waves of patient care data for performing parametric and non-parametric statistical
modeling of predictors [17]. Moreover, the ultimate solution for developing disease-specific
detection, AI-based diagnostics and prevention strategies, relies on the standardization
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of measurements and metrics used in the design, implementation, and evaluation of
healthcare outcomes [18–20].
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The risk identification approach to constructing predictive equations has been ex-
tensively used by epidemiologists [19,21]. The development of predictive analytics for
enhancing the validity of clinical decision support tools is a logical step for improving
the disease management program for diabetes and related complications and critical care
events. However, this is not a breakthrough idea, but rather is just a practical step for opti-
mizing diabetes care. The stability of the predictive equations and modeling approaches
should be examined, using repeated measures of disease transition or progression. The
interplay or the reciprocal relationship between the micro- and macro-vascular changes for
diabetes should be determined if the causal links among multiple measures or events are
to be established and validated [22,23].

3. Transdisciplinary Science in Search for Theoretically Relevant Predictors of
Polychronic Conditions and Outcomes

The Society for Design and Process Science is leading the way to identify theoretically
sound frameworks to guide the design and implementation of clinical and administrative
decision support systems for promoting selfcare management of chronic conditions [1,21].
By employing advanced data science technologies, theory-based constructs, or domains
identified by collaborative scientists in the formulation of the data warehouse, practitioners
may facilitate the convergence and integration of personal and social determinants of
health into health services and management research. The simultaneity in considering
personal and societal (ecological and contextual) factors in explaining the variations in
healthcare outcomes enables the detection of interplays among multiple predictors such as
personal, behavioral, organizational, ecological, and information technological factors. This
reliance on theoretical guidance of care technology and management will foster changes in
the design, implementation, and evaluation of healthcare innovations. This theoretically
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guided approach enables researchers to establish a scientific core for the data system
containing useful constructs or domains to be used for formulating predictive analytics.
More specifically, as data science is maturing, AI technology, such as ChatGPT in healthcare,
will shape the direction of selfcare management strategies and policy developments for
promoting the physical and mental health of the population.

Three specific research agendas are suggested for furthering the scientific pursuit of
chronic care management. First, the field of predictive analytics should develop a socio-
biomedical evolutionary learning platform to predict the risk of polychronic conditions at
various stages. The trajectories of chronic disease should be clearly delineated or estimated
from transitional probabilities at the population level. The big-data approach to merging
the micro- and macro-data generated from public and private health insurance databases,
coupled with theoretical specifications of relevant predicators measured at both personal
and ecological levels, could effectively validate the disease patterns. Thus, the integrity of
care management designed for the high-risk patient population for polychronic conditions
could be adequately evaluated. Second, disease management strategies or toolboxes
should help maximize both efficiency and effectiveness in achieving the ultimate goals of
advancing quality and human dignity [24]. Third, scientific methods for protecting privacy
and confidentiality in the release of healthcare data should be employed, particularly in the
design of perturbations of personal data containing individual or geographic identifiers.

4. Conclusions

This commentary is unique and original in three ways. First, it identifies the major
gaps in care management research and articulates the important role of developing theoret-
ical frameworks coupled with rigorous multivariate modeling approaches for the causal
analysis of factors influencing the care process and outcomes of patients with polychronic
conditions. Second, we advocate the need to conduct rigorous care management research
that will improve the design, process, and patient care outcomes. Third, we also specify the
directions for future AI-based healthcare research that will overcome some challenges in
designing and performing high-quality and innovative research.

Chronic disease may evolve from a single disease state into polychronic conditions. For
example, Type 2 diabetes could evolve with both micro- and macro-vascular complications
and further develop into polychronic conditions such as heart failure and chronic kidney
disease. Thus, clinical researchers must make boundary spinning efforts to suggest viable
and effective interventions for multiple chronic conditions. This is why chronic care
management must provide not only specialty care but also comprehensive preventive
and maintenance care for treating each target patient as a whole person. In the realm
of multidisciplinary and comprehensive care, clinicians should establish clear criteria
or quantifiable metrics for assessing and achieving optimal healthcare outcomes. As
clinical researchers, it is imperative to design and execute intervention studies that will
capture both micro (personal) and macro (provider and ecological) variants or predictive
variables. Thus, clinically meaningful results or outcomes could be scientifically gathered
via predetermined criteria for clinical evaluation of the effectiveness and efficiency of
polychronic care. Commentary on trends, challenges, and solutions in conducting AI
healthcare research can improve understandings of disease-state transitions from diabetes to
other polychronic conditions. Hence, better predictive models could be further formulated
to expand from inductive (problem solving) to deductive (theory centering and hypothesis
testing) inquiries in care management research.

As digital health becomes more mature, the big-data-to-knowledge approach may be
supplemented by the advance of machine and deep learning methods and guided by a
theoretically meaningful framework for developing parsimonious models for maximizing
the power of predictive analytics for performing high-quality health services evaluation
and care management research [25]. One important development in population health
management is the need to identify high-risk and target groups for interventions and then
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formulating and implementing decision support systems coupled with visualizations of
changes in clinical and health outcomes of patients with polychronic conditions [13].

Finally, patient-centered care needs to be accentuated by an emphasis on patient
engagement [10,26]. When patients are more aware of the choices available to them,
selfcare management could further motivate them to take necessary and sufficient actions
for reducing the burden of chronic illness. For optimizing the predictive analytics, it is
imperative that an empirical approach, such as using neural network analysis and SVM,
should be supplemented by sound theoretical specifications of predictive variables that
could identify the causal sequala associated with unstable or declined health outcomes such
as the concomitant development of multiple conditions and complications [13], unplanned
hospitalization [27,28], and the transition from metabolic syndromes to cardiovascular
disorders [29–32], chronic kidney disease [33–36], and mortality [37–41].
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Abstract: Globally, over 17 million people annually die from cardiovascular diseases, with heart
disease being the leading cause of mortality in the United States. The ever-increasing volume of data
related to heart disease opens up possibilities for employing machine learning (ML) techniques in
diagnosing and predicting heart conditions. While applying ML demands a certain level of com-
puter science expertise—often a barrier for healthcare professionals—automated machine learning
(AutoML) tools significantly lower this barrier. They enable users to construct the most effective
ML models without in-depth technical knowledge. Despite their potential, there has been a lack of
research comparing the performance of different AutoML tools on heart disease data. Addressing this
gap, our study evaluates three AutoML tools—PyCaret, AutoGluon, and AutoKeras—against three
datasets (Cleveland, Hungarian, and a combined dataset). To evaluate the efficacy of AutoML against
conventional machine learning methodologies, we crafted ten machine learning models using the
standard practices of exploratory data analysis (EDA), data cleansing, feature engineering, and others,
utilizing the sklearn library. Our toolkit included an array of models—logistic regression, support
vector machines, decision trees, random forest, and various ensemble models. Employing 5-fold
cross-validation, these traditionally developed models demonstrated accuracy rates spanning from
55% to 60%. This performance is markedly inferior to that of AutoML tools, indicating the latter’s
superior capability in generating predictive models. Among AutoML tools, AutoGluon emerged as
the superior tool, consistently achieving accuracy rates between 78% and 86% across the datasets.
PyCaret’s performance varied, with accuracy rates from 65% to 83%, indicating a dependency on the
nature of the dataset. AutoKeras showed the most fluctuation in performance, with accuracies rang-
ing from 54% to 83%. Our findings suggest that AutoML tools can simplify the generation of robust
ML models that potentially surpass those crafted through traditional ML methodologies. However,
we must also consider the limitations of AutoML tools and explore strategies to overcome them. The
successful deployment of high-performance ML models designed via AutoML could revolutionize
the treatment and prevention of heart disease globally, significantly impacting patient care.

Keywords: AutoML; machine learning; cardiovascular disease; coronary artery disease; diagnosis;
heart disease; prediction; AutoGluon; AutoKeras; PyCaret

1. Introduction

The term “cardiovascular disease” (CVD) applies to any disorder affecting the car-
diovascular system (heart and blood vessels) [1]. Over 17 million people die from CVD
annually globally [2], and heart disease specifically is the leading cause of death in the
United States, killing almost 700,000 people in 2020 [3]. Atherosclerosis, or the buildup
of plaque within the arteries, leads to coronary artery disease (CAD), one of the most
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common types of heart disease [3]. Risk factors for CVD include obesity, hypertension,
hyperglycemia, and “high alcohol intake” [4]. Doctors usually diagnose CAD through a
combination of physical examination, family history, and diagnostic tests including an-
giography, a type of contrast X-ray that measures the extent of narrowing of the blood
vessels [5–7]. Other diagnostic tools include electrocardiography, sonography, and blood
testing [4]. The public health importance of addressing heart disease, along with the
abundant and continuously growing data, means that machine learning (ML) techniques
could be utilized to find meaningful patterns in clinical data and predict the presence of
heart disease. Numerous researchers have explored applying ML to medical diagnosis
using many different techniques and ensembles, as discussed in the Related Work section
below. However, to apply ML, a certain level of computer science knowledge is required,
which may be a barrier to widespread use by healthcare professionals [8]. Steps in a typical
machine learning project include framing the problem, obtaining the data, conducting ex-
ploratory data analysis, preparing the data, exploring the different models, and fine-tuning
the models. AutoML tools allow for the implementation of complex models, including
feature engineering and hyperparameter optimization, requiring fewer lines of code and
less technical knowledge than traditional ML methods. AutoML can automate the steps
of data preparation, model selection, and the fine-tuning of models. By utilizing AutoML
frameworks, it is possible to develop a cost-effective way to predict heart disease, providing
health professionals with a powerful tool for heart disease prediction and diagnosis [4].
AutoML frameworks are machine learning tools that automate many of the more complex
machine learning processes to allow non-experts access. This enables someone with less
technical knowledge and with fewer lines to use powerful machine learning algorithms.
AutoML tools provide access to a range of ML models that make implementing machine
learning applications using various datasets much easier. Most AutoML tools are capable
of data preprocessing, hyperparameter tuning, and model training automatically without
extensive code or data manipulation [9–11].

This study aims to assess the efficacy of automated machine learning (AutoML) tools
in the diagnosis of heart disease—a domain where, to our current knowledge, there is yet
to be a comprehensive comparative analysis of various AutoML frameworks. We have con-
ducted a thorough investigation of three widely used AutoML Python libraries—PyCaret,
AutoGluon, and AutoKeras—across three distinct datasets: Cleveland, Hungarian, and a
synthesized dataset amalgamating four separate databases.

Given the grave implications of cardiovascular diseases, and with heart disease at
the forefront as a major global health concern, the need for advanced, accurate diagnostic
methods is more pressing than ever. Our research delves into the potential of AutoML
tools to meet this need, scrutinizing their capabilities in contrast to traditional machine
learning techniques. For a robust comparison, we meticulously engineered ten machine
learning models using conventional processes, such as exploratory data analysis (EDA),
data cleansing, and feature engineering, applying the comprehensive tools provided by the
sklearn library.

The ambition of our work is to illuminate the strengths and possible applications of
AutoML in refining the diagnosis of heart disease, thereby contributing meaningfully to
both the healthcare sector and the field of machine learning. Through this exploration, we
intend to delineate the extent to which AutoML tools can not only streamline the diagnostic
process but also potentially increase its precision, offering a significant step forward in
combating this global health challenge.

In the following sections, we provide a synthesis of pertinent literature, laying the
groundwork for the context of our research. Subsequently, we elucidate the methodology
adopted in our study, detailing the selection and application of AutoML tools, as well as
the datasets chosen for evaluation. Within our methodological exposition, we articulate the
conventional techniques implemented to construct a high-performing model manually.

We then proceed to delineate the results obtained, paving the way for an in-depth
discussion that interprets the findings within the broader scope of current knowledge and
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practice. Finally, we encapsulate the study by highlighting its key contributions and the
significance of our findings, drawing attention to the implications of our work in the field
of heart disease diagnosis through advanced machine learning technologies.

2. Related Works

Medical data analysis and prediction is a critical research area, and dozens of research
groups have already applied non-automated ML techniques to heart disease specifically.
Hazra et al., Khan et al., and Marimuthi et al. have reviewed and summarized some
of the extant research and the accuracies achieved [12–14]. Applied techniques include
artificial neural networks (ANN), decision trees, K-nearest neighbor, naïve Bayes, logistic
regression, support vector machines (SVM), and association rules, with most researchers
obtaining high accuracies [12–14]. Decision trees, ANN, and SVM are three of the most
frequently used methods, and many groups had improved success using ensembles of
multiple methods [12–14]. Nagavelli et al. compared several different machine learning
algorithms in 2022 in their paper titled “Machine Learning Technology-Based Heart Disease
Detection Models.” The authors of the paper used SVM, the naïve Bayes weight approach,
and XGBoost algorithms. The Cleveland dataset and the Statlog dataset, which is a smaller
version of the Cleveland, were used for the machine learning algorithms. DBSCAN was
used to remove outlier data, and Python library XGBoost V0.81 was used to implement
the XGBoost portion of the algorithm. Their results showed that XGBoost had the highest
accuracy, with lower accuracy for the SVM and naïve Bayes approaches [15].

In another paper, titled “Heart Disease Diagnosis and Prediction Using Machine
Learning and Data Mining Techniques: A Review”, the authors reviewed a list of relevant
machine learning information [10]. The paper explained several different machine learning
algorithms that have been used in heart disease datasets, including decision trees, K-
means, SVM, naïve Bayes, artificial neural networks (ANN), Iterative Dichotomiser 3
(ID3), classification and regression trees (CART), random forest, a-priori, fuzzy logic, and
association rules. During this review, several tools and environments for data learning were
examined, including WEKA (Waikato Environment for Knowledge Learning), RapidMiner,
TANAGRA, Apache Mahout, MATLAB, Java, C, and Orange. These machine learning
algorithms and tools were extracted from a survey of 35 research papers and represent what
has been used in non-automated machine-learning research for heart disease [12]. Various
software systems (e.g., WEKA, RapidMiner, TANAGRA) and programming languages
(e.g., Java, MATLAB, Python) are available for the implementation of ML models. WEKA,
based on Java, was one of the more commonly referenced tools in the papers by Hazra
et al., Khan et al., and Marimuthi et al. [12–14]. Singh et al. used WEKA for predicting
heart disease, with a dataset of 303 records and a multilayer perceptron neural network
(MLPNN) with backpropagation [6,16–19].

It is important to note that new technologies are emerging for disease diagnosis
including heart disease diagnosis. For example, hyperspectral and multispectral imaging
systems are non-invasive diagnostic tools that capture and analyze a wide spectrum of light
to identify, assess, and map various biological materials. These systems are increasingly
being applied in the field of medical diagnosis, including for the detection and analysis
of diseases [16,17]. The data from these systems are also being utilized in machine/deep
learning models for improved diagnosis [18,19].

Pol et al. used Python and the AutoML tool PyCaret to predict the presence or absence
of heart disease [8]. Padmanabhan et al. used Python and Auto-Sklearn on the same Cleve-
land Heart Disease dataset as Pol et al. [20]. Valarmathi and Sheela used the AutoML tool
TPOT with the Cleveland dataset, but only when tuning the hyperparameters of their ran-
dom forest and XG boost classifier models [21]. With the growth of AutoML tools, there has
been a concern regarding if AutoML is comparable to previous machine learning methods.
A paper titled “Physician-Friendly Machine Learning: A Case Study with Cardiovascular
Disease Risk Prediction” compared the performance of the AutoML tool Auto-Sklearn
to that of more traditional manual machine learning techniques for accuracy [20]. In the
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paper, a graduate student who was experienced in creating machine learning models was
allowed one month to develop models using manual techniques using the scikit-learn
python library. Then, models were created using the Auto-Sklearn tool to automatically
create the model, which took around 30 min to complete and only required four lines of
Python code. The results showed comparable results of the models. The paper concluded
that their research strongly suggests that AutoML is a useful approach that allows less
experienced users to quickly create models that are competitive and comparable to models
created by experienced machine learning users [20]. Pol et al. used another popular Python
AutoML tool, PyCaret, in their paper titled “AutoML: Building A Classification Model with
PyCaret.” PyCaret was used with a heart disease dataset and trained on a 70/30 train/test
split with normalization turned on. PyCaret was then used to train the dataset with all
algorithms available in its library. The paper concluded the results were “favorable” for
classification with logistic regression for their heart disease dataset [8].

Romero et al. benchmarked the performance of the AutoML tools AutoSklearn, H2O,
and TPOT in disease prediction. They used medical claims data of more than 12 million
people to predict six different diseases. These did not include heart disease. While the
dataset used was large, the disease prevalence was very low, with the highest prevalence
being for chronic kidney disease at 0.63%. They found that the performance of the different
tools varied for different diseases, with prostate cancer prediction having some of the
highest accuracies and type 2 diabetes some of the lowest. Performance between the
tools themselves also varied. H2O produced some of the most accurate models across the
diseases examined, though Romero et al. noted that the variation between the tools was
not large [22].

In their 2021 paper, Ferreira et al. [9] compared the performance of eight open-source
AutoML tools. Like us, they used default settings for the different tools when possible.
Though they did not use the same datasets as we did, the tools they used included Auto-
Gluon and AutoKeras, two of the three used in this paper. AutoGluon was significantly
faster than the other tools. AutoKeras was one of the fastest deep learning/neural network
tools that they used. While it was the slowest tool used here, it was the only deep learning
tool used in this study. Ferreira et al. found that no single AutoML tool performed better
than the others across all datasets [9].

3. Methodology

In the following sections, available AutoML tools are introduced first, followed by
the ones included in this study and the inclusion criteria. Then, the existing datasets and
the details of the selected datasets are given, and the selected performance criteria are also
introduced in detail.

3.1. AutoML Tools

There are several open-source and proprietary AutoML tools available. The following
well-known AutoML tools (listed in alphabetical order) were considered for our study.
AutoGL is open source and was created at Tsinghua University for AutoML on graphs and
contains four modules, including auto feature engineering, model training, hyperparameter
optimization, and auto ensemble [23,24]. AutoGluon is an open-source tool created by
Amazon that can automate machine learning and deep learning algorithms for text, images,
and datasets [25–27]. AutoGluon evaluates and compares a variety of models and assists
in selecting the best model to utilize and fine-tune. It is developed to support very specific
problem types: regression and classification using tabular data, image classification, and
object detection. AutoGluon provides a user-friendly interface and tools that allow for
data to be trained effectively within a single line of code as it automatically balances
efficiency and performance, allowing for less headaches with hyperparameter editing [28].
AutoKeras is an AutoML system based on Keras and TensorFlow and was developed at
DATA Lab at the Texas AM campus [29–31]. AutoKeras allows for the building and training
of deep neural networks and automates the process of hyperparameter tuning and model
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selection with an easy-to-use interface [29]. Auto-Sklearn was built around scikit-learn and
automatically searches for the best machine learning algorithm for a dataset, along with
hyperparameter optimization [32,33]. Auto-Sklearn provides efficient processes to learn the
data and continue learning from similarly identified datasets through “meta-learning” and
a Bayesian optimizer, which learns from the preprocessed data, features, and classifier to
determine the best model approach [34]. While Auto-Sklearn can be an effective approach,
reliance on the data being large enough is a necessity [34,35]. MLBox is a library for Python
that offers powerful AutoML tools and predictive models for classification and regression.
It can use deep learning, stacking, and LightGBM and offers interpretations of prediction
models [36]. Neural Network Intelligence is an automated machine learning toolkit created
by Microsoft that searches for the best hyperparameters and neural architecture by running
trial jobs automatically [37]. PyCaret provides an ideal experience for productivity and low-
effort ML solutions and designs and launches quick prototypes [38,39]. PyCaret quickly
tests a variety of models, providing the data scientist with an effective understanding
of what models work efficiently and accurately between classification and regression
tasks [8]. TPOT (tree-based pipeline optimization tool) is another open-source automated
machine learning tool for Python, built on top of scikit-learn, that optimizes machine
learning pipelines [40]. TPOT is still in active development and can automate many
steps of the machine learning process, such as feature selection, feature preprocessing,
feature construction, model selection, and parameter optimization [40]. TPOT explores
thousands of possible pipelines using genetic algorithms and returns the best one for a
given dataset [40,41].

3.2. Details of the Selected AutoML Tools

Effective AutoML modeling choices for the various heart disease datasets were nar-
rowed down to AutoGluon, AutoKeras, and PyCaret. AutoGluon was chosen due to its
high performance and ease of use [38]. It evaluates several different machine learning
algorithms to find the best model for the data. These algorithms include ExtraTreeEntr,
RandomForestEntr, WeightedEnsemble-L2, ExtraTreesGini, RandomForestGini, XGBoost,
KneighborsUnif, and KNeighborsDist. Random forest is a machine learning algorithm that
uses multiple randomized decision trees (an algorithm based on splitting binary decision
nodes) to make predictions. The extra trees algorithm is similar to random forest except
that the split in the decision trees is randomly selected. The models with the Gini and Entr
suffixes indicate the measures used to determine how a decision tree node splits. These
measures are referred to as the Gini index and Entropy, which is a measure of the purity of
the split [42]. XGBoost is an extreme gradient-boosted tree with an ensemble algorithm,
with each tree boosting misclassified attributes of the previous tree [43]. K-nearest neighbor
is a machine learning algorithm that uses classification based on data points that are close
to each other. Weighted ensemble algorithms combine multiple model predictions, where
each model’s contribution is weighted based on how accurate the model is, creating a single
model based on the combination [44].

AutoKeras trains deep neural networks and performs model selection and hyper-
parameter tuning, with little user input required [29]. Some of the highest accuracies
achieved by previous research groups predicting heart disease using traditional methods
were obtained using neural networks [12,13]. Due to AutoKeras’s ease of use and other
researchers’ success using neural networks, AutoKeras was another tool that was selected.
AutoKeras offers classification and regression tools for image, text, and structured data.
It also offers a TimeSeriesForecaster and more advanced tools for multi-modal and multi-
task analyses and customized model development [29]. Default settings were used for
the AutoKeras StructuredDataClassifier, including max-trials = 100, epochs = 1000, and
validation-split = 0.2.

PyCaret, being built from the sklearn groundwork, allows for more adaptability and
model evaluation but relies more on the strength of the dataset and preprocessing prepa-
ration. PyCaret operates by applying multiple machine learning models and algorithms
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to either preprocessed or unprocessed data to determine which machine learning model
best applies to the data given and grants the most accurate model to utilize [39]. A variety
of models are used within PyCaret [45], which include logistic regression, quadratic dis-
criminate analysis (QDA), light gradient boosting machine, linear discriminant analysis
(LDA), SVM, naïve Bayes (NB), and several other classifiers. PyCaret functions with a user
setup that establishes what the target variable for prediction is amongst all models that
are given within the PyCaret utility. PyCaret has various performance metrics embedded
that allowed the authors to compare the various algorithms, including a confusion ma-
trix, class prediction error, and precision–recall curve [8]. Post-data preprocessing enables
significantly better results within the model evaluation step and leads to model tuning,
which further refines the best-selected model and prepares it for prediction analysis [46].
The prediction function best operates after the best-selected model undergoes tuning and
then proceeds to test the given model with the test data that split after data preprocessing.
PyCaret does not just focus on singularly labeled data but also works within multiclass data,
which expands the capacity that it can operate with and provides further data analysis [47].

The selection criteria prioritized open-source tools that were compatible with the latest
version of Python. Compatibility ensured that the selected tools were actively maintained
and could be seamlessly used in Google Colab, our chosen analysis environment. To
provide a diverse range of approaches, we aimed to include a variety of tools. Auto Gluon
is predominantly based on decision tree methods, while Pycaret incorporates other machine
learning algorithms such as QDA, LDA, SVM, and NB, along with ensembles. Given the
limited availability of deep learning approaches for small datasets, only one neural network
tool, AutoKeras, was included [9,35]. Although it is possible to use the tools collectively, in
this study, we evaluated each tool as an independent solution.

3.3. Dataset

Multiple resources are available for datasets, such as Google [48], IEEE [49], Mende-
ley [48–50], Kaggle [50], and the University of California, Irvine (UCI) [51]. However,
patient privacy is an important consideration when handling health data, with HIPAA
requiring “IRB waiver or patient authorization for research” use of protected health in-
formation [52–55]. Some datasets are freely accessible, while others require a research
request or an access fee. Two open-access heart disease datasets available from UCI are the
Cleveland Heart Disease [54] and the Statlog (Heart) datasets [56]. Most of the previous
studies utilizing ML to predict heart disease used the Cleveland Heart Disease dataset
when training and testing their models, including Marimuthu et al. [14], Pol et al. [8],
Valarmathi et al. [20], Padmanabhan et al. [20], six research groups reviewed by Hazra
et al. [9], and three different research groups surveyed by Khan et al. [12]. Researchers
Dangare et al. [5], El Bialy et al. [55], Nagavelli et al. [15], Sarra et al. [56], and Ahmed [57]
used both the Cleveland and Statlog datasets in their analyses.

3.4. Details of the Selected Datasets

The Cleveland and Statlog datasets were both considered for use in this research due to
them being easily accessible and having been used by other researchers, allowing for direct
comparisons of results. However, when performing preliminary exploratory analysis, we
observed very similar patterns in the histograms and attribute distributions. This suggested
the possibility that the Statlog dataset is a subset of the Cleveland dataset, despite other
researchers having used both datasets in their analyses. The source of the Statlog dataset is
not clear in its documentation, so we compared the datasets and confirmed that Statlog is a
subset of Cleveland, making it unsuitable and redundant for our use. The second dataset
chosen was the Hungarian Heart Disease dataset, which is available from the same UCI
repository location as Cleveland. The Cleveland and Hungarian datasets are of a similar
size, with 303 and 294 observations, respectively, but Cleveland is more complete, with
fewer missing values: 6 versus 781. Besides these two datasets, two additional datasets,
UCI: Switzerland (123 samples) and Long Beach, CA (V.A. Medical Center) (200 samples)
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were utilized to form a larger third dataset containing 920 total samples. All datasets use
the same 13 attributes and a label, as shown in Table 1. General statistics for the datasets
are in Tables 2 and 3. Distributions for the different attributes for the combined dataset are
shown in Figure 1, 2 and 3 and are separated by heart disease status: HD positive versus
HD negative.

Table 1. Attribute descriptions of datasets.

Attribute Description

Age Age in years
Sex Sex (1 = male; 0 = female)
Cp Chest pain type
Trestbps Resting blood pressure (in mm Hg on admission to hospital)
Chol Serum cholesterol in mg/dL
Fbs Fasting blood sugar > 120 mg/dL (1 = true; 0 = false)
Restecg Resting electrocardiographic results
Thalach Maximum heart rate achieved
Exang Exercise-induced angina (1 = yes; 0 = no)
Oldpeak ST depression induced by exercise relative to rest
Slope The slope of the peak exercise ST segment
Ca Number of major vessels (0–3) colored by fluoroscopy
Thal 3 = normal; 6 = fixed defect; 7 = reversible defect
Num Diagnosis of heart disease (angiographic disease status)

Table 2. Number of missing values per attribute by dataset.

Attribute Cleveland Hungarian Switzerland VA

Trestbps 0 1 2 56
Chol 0 23 0 7
Fbs 0 8 75 7

ReThalach 0 1 1 53
Exang 0 1 1 53

Oldpeak 0 0 6 53
Slope 0 190 17 102

Ca 4 290 118 198
Thal 2 266 52 166

Attributes not shown were complete.

Table 3. Attribute correlations with label.

Attribute Cleveland Hungarian Combined

Thalach −0.417167 −0.331074 −0.385972
Fbs 0.025264 0.162869 dropped

Chol 0.085164 0.202372 -0.234679
Trestbps 0.150825 0.139582 0.103828
Restecg 0.169202 −0.031988 0.062304

Age 0.223120 0.159315 0.282700
Sex 0.276816 0.272781 0.307284

Slope 0.339213 dropped dropped
Cp 0.414446 0.505864 0.471712

Oldpeak 0.424510 0.545700 0.373382
Exang 0.431894 0.584541 0.443433

Ca 0.460033 dropped dropped
Thal 0.522057 dropped dropped
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that patients with heart disease predominantly experience asymptomatic chest pain (4), 
while typical angina (1) was rarely seen in heart disease-negative cases. Compared with 
other individual features, the differences in “fbs” (fasting blood glucose) and “restecg” 
(resting electrocardiography results) between the two groups of patients were less pro-
nounced. “Exang” (exercise-induced angina) was rare in heart disease-negative patients 
but common in more than half of heart disease-positive cases. By understanding these 
complex patterns between different characteristics, changes in factors affecting the diag-
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Figure 1. Histograms of five continuous attributes from the combined dataset, filtered for heart
disease (+) positive and (−) negative patients.

Table 2 shows the number of missing values per attribute for each of the datasets used.
Age and sex are omitted from the table as they were complete in all datasets. The number of
missing values varied between datasets, with Cleveland being the most complete. Certain
attributes, like ca, thal, and slope, were excluded from analyses using the Hungarian,
Switzerland, or VA datasets due to very few observations being available. In addition to
the number of major vessels colored by fluoroscopy (ca), thalassemia, and slope, fasting
blood sugar (fbs) was also excluded from the combined dataset due to the large number of
missing values in the Switzerland dataset.

Histograms of the continuous attributes are shown in Figure 1, with heart disease-
positive patients on the right and negative on the left. The histograms clearly show the
differences between heart disease-positive and -negative patients. First of all, when the age
data were examined, it was seen that the age of positive patients was higher than that of
negative patients. This situation reflects that positive patients’ age distribution is skewed
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compared to negative patients. It was observed that trestbps (resting blood pressure) data
were generally reported in ten-unit increments. While it is noteworthy that the trestbps
values of negative patients were close to values such as 120, 130, and 140, an abnormal
outlier value of 0 was observed in positive patients. In Chol (serum cholesterol) data, there
were many outliers close to 0 in positive patients, while there were fewer outliers in negative
patients. These outliers were not specified in the dataset documentation, with missing data
denoted by “−9” or NaN. However, it is physically impossible for cholesterol or blood
pressure to be 0. Considering these outliers, the trestbps and cholesterol data appeared to
have similar skewness and kurtosis characteristics in positive patients compared to negative
patients, with higher mean values in positive patients. While Thalach (maximum heart
rate reached) data showed an approximately symmetrical distribution for positive patients,
the distribution was negatively skewed in negative patients and had a higher mean value.
Oldpeak (ST depression caused by exercise) data contained many 0 values. These 0 values
appeared to be actual observations and not missing values, given the magnitude of the
neighboring observations, but this was not noted in the data documentation or a quick
literature search. Additionally, approximately twice as many 0 values were observed in
positive patients than in negative patients. These data are presented in detail in Figure 1
and reveal significant differences in the datasets.

Figures 2 and 3 show the differences in different characteristics between heart disease-
positive and negative patients. Female patients (0) constituted a significant proportion
(about one-third) of the heart disease-negative group, while representing a smaller pro-
portion (about one-tenth) of heart disease-positive cases. The “cp” feature indicated that
patients with heart disease predominantly experience asymptomatic chest pain (4), while
typical angina (1) was rarely seen in heart disease-negative cases. Compared with other
individual features, the differences in “fbs” (fasting blood glucose) and “restecg” (resting
electrocardiography results) between the two groups of patients were less pronounced.
“Exang” (exercise-induced angina) was rare in heart disease-negative patients but common
in more than half of heart disease-positive cases. By understanding these complex patterns
between different characteristics, changes in factors affecting the diagnosis of heart disease
could be clearly observed, as shown in Figures 2 and 3.

Discrete attributes are shown in Figures 2 and 3. Women (0) were found to make
up less than a quarter of all patients but almost a third of heart disease-negative patients
and only about a tenth of heart disease (+) positive patients. In analysis, this makes sex
an important feature. Results obtained from analyses where data are not combined with
sex may be very different. Cp describes chest pain. Heart disease patients were found
to predominantly exhibit asymptomatic chest pain (4), while little typical angina (1) was
seen among negative patients. The differences in fasting blood sugar (fbs) and resting
electrocardiographic results (restecg) between heart disease (+) positive and (−) negative
patients were not as large as those for other discrete attributes. Very few heart disease (−)
negative patients were found to experience exercise-induced angina (exang), while more
than half of positive patients did.

The slope was flat (2) for most positive patients and rarely downsloping (3) for neg-
ative patients. The number of major vessels colored by fluoroscopy, ca, was seen to be
predominantly 0 for negative patients, but it is not known if this value is an observation
or only represents a missing observation. It was observed most heart disease (−) nega-
tive patients were normal for thalassemia, and most heart disease-positive patients had
a reversible defect. Num was the label, for which 0 indicated heart disease (−) negative
and 1 through 4 indicated heart disease-positive. All prior research we found using the
Cleveland dataset used a binary label. We chose to do the same for our analyses.
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Figure 2. Distributions of the first four of the eight discrete attributes from the combined dataset,
filtered for heart disease (+) positive and (−) negative patients, excluding the binary label.

Table 3 shows the correlations of the different attributes with the dependent variable,
num. The attributes chosen for analysis for each of the datasets are shown with unused
features marked as “dropped”. The number of major vessels colored by fluoroscopy (ca)
and thalassemia were both highly correlated with num in the Cleveland dataset, meaning
their exclusion in the Hungarian and combined datasets may have negatively impacted
prediction accuracy. Slope also had a correlation above 0.2 for the Cleveland dataset, though
not as high as for the number of major vessels colored by fluoroscopy (ca) or thalassemia.
The slope may be worthy of inclusion in future analyses with larger datasets, provided
there is an adequate number of observations available, as it has been found to be a useful
predictor in other applications [54]. The exclusion of fasting blood sugar (fbs) from the
combined dataset was supported by the relatively low correlations in the Cleveland and
Hungarian datasets.
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Figure 3. Distributions of the last four of the eight discrete attributes from the combined dataset,
filtered for heart disease (+) positive and (−) negative patients, excluding the binary label.

3.5. Performance Metrics Used

Accuracy and F1 score metrics were used to evaluate the performance of the AutoML
tools. Accuracy (ACC) is a measure of how well the model predicts the outcome. The
formula for accuracy is the number of correct predictions divided by the total number of
predictions (Equation (1)). This metric, however, can be biased due to data imbalances and
thus lead to skewed results.

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
(1)

One metric that takes this into account and is commonly used for machine learn-
ing is the F1 score. The F1 score is the harmonic mean between precision and recall
(2 times the product of precision and recall divided by the total sum of precision and
recall) (Equation (4)). Precision is defined as the number of true positives divided by the
sum of true positives and false positives (Equation (2)). The recall metric is the num-
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ber of true positives divided by the total number of true positives and false negatives
(Equation (3)) [58].

Precision =
TP

(TP + FP)
(2)

Recall =
(TP)

(TP + FN)
(3)

F1 score = 2
(precision× recall)
(precision + recall)

(4)

3.6. Applying Traditional Steps of Manually Generating the Well-Performing Model

To benchmark the performance of AutoML-generated models against those produced
by traditional manual techniques, we meticulously followed a series of steps to develop
a classification model using sklearn libraries for heart disease using the Cleveland Heart
Disease dataset:

(1). Data Cleaning: Rows with missing information in the “ca” and “thal” columns were
removed to ensure data integrity.

(2). Data Type Conversion: All fields were converted to numeric data types to facilitate
subsequent analysis and modeling.

(3). Correlation Analysis: The correlations between the fields and the target label were
analyzed. Four fields (“chol”, “fbs”, “trestbps”, “restecg”) with correlations below 0.2
were identified and subsequently dropped from the dataset.

(4). Data Scaling: The remaining data were scaled to normalize the feature values and
ensure comparability across different variables.

(5). Cross-validation: Cross-validation (k = 5) accuracy scores were calculated for 10 dif-
ferent machine learning algorithms. The algorithms used were stochastic gradient de-
scent (SGD), logistic regression, support vector machine with a linear kernel, support
vector machine with an RBF kernel, decision tree classifier, random forest classifier,
extra trees classifier, AdaBoost classifier, gradient boosting classifier, and XGBoost.

(6). Hyperparameter Tuning: The top-performing algorithms (AdaBoost, rando forest,
gradient boosting, XGBoost) were selected for further improvement through hy-
perparameter tuning. A grid search was performed using various combinations of
hyperparameters, including n-estimators (100, 200, 300, 400, 500), learning-rate (0.3,
0.1, 0.05), max-features (1, 0.7, 0.5, 0.4, 0.3), subsample (1, 0.5, 0.3), max-samples (1,
0.5, 0.3, 0.2), and bootstrap (True, False).

(7). Ensemble Voting Classifier: Based on the fine-tuned estimators (AdaBoost, random
forest, gradient boosting, XGBoost) and the other top-performing estimators (SVC,
SGD, logistic regression), an ensemble voting classifier was constructed. This ensem-
ble classifier combined the predictions of multiple models, leveraging their collective
knowledge to make a final classification decision.

By following these steps, we conducted a comprehensive analysis and model selection
process to generate the most effective machine learning model utilizing the machine-
learning algorithms listed above and forming an ensemble learning model for classifying
heart disease using the Cleveland Heart Disease dataset. The outcome of the above steps is
shared and compared in the Results section and the code is available on GitHub [58].

4. Results

The datasets were analyzed using PyCaret v3.0, AutoGluon v0.7.0, and AutoKeras
v1.1.0. Default settings were used for all AutoML tools. Missing values were imputed to
the respective attribute’s mode, if discrete, and mean, if continuous. Attributes ca, thal,
and slope were excluded from the Hungarian data analyses due to missing more than
half of each of these attributes. Data were split with 80% for training and 20% for testing,
using stratified sampling by sex. Stratified sampling was used due to the difference in
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representation by sex. This difference was less pronounced in the Cleveland and Hungarian
datasets, but it was more significant in the Switzerland and VA datasets. We verified that
the representation of heart disease-positive patients was approximately the same for both
the training and testing subsets of the Cleveland, Hungarian, and combined datasets: 46%,
36%, and 55%, respectively. We also verified that the data were successfully split using
stratified sampling. The testing and training datasets were both approximately 33%, 27%,
and 21% female for the Cleveland, Hungarian, and combined datasets, respectively.

As described in the previous Methodology section, we performed traditional steps
to develop a well-performing machine learning model using the sklearn libraries on the
Cleveland dataset to compare the manually generated models with the models generated by
the AutoML tools. The manual steps included cleaning the data, reducing the data based on
correlation analysis, exploring the performance of 10 machine learning algorithms, selecting
top-performing models and applying hyperparameter fine-tuning, and then ensembling
various top-performing models to form a well-performing model. The results of this
manual approach are in Table 4.

Table 4. ML model generation using traditional manual steps on the Cleveland dataset.

Machine Learning Algorithm Accuracy (Correlated) Accuracy (Unreduced)

Stochastic Gradient Descent (SGD) 0.59 0.58
Logistic Regression 0.59 0.59
Support Vector Machine (SVM)
(Linear Kernel) 0.55 0.57

Support Vector Machine (SVC)
(RBF Kernel) 0.57 0.56

Decision Tree 0.52 0.49
Random Forest 0.62 0.59
Extra Trees 0.57 0.57
AdaBoost 0.58 0.57
Gradient Boosting 0.60 0.59
XGBoost 0.55 0.56
Ensemble of the following:
AdaBoost, Random Forest,
Gradient Boosting, XGBoost,
SVM-Linear, SGD, Logistic
Regression

0.60 0.58

As shown in Table 4, the best-performing models were based on ensemble algorithms
such as random forest, gradient boosting, and our custom ensemble model that combined
seven models. When the dataset was processed by reduction based on correlated fields,
it tended to perform better, as can be noticed by comparing accuracy scores using the
correlated and unreduced datasets in Table 4. Results from analyses using the three different
AutoML tools on the three different datasets are in Tables 5 and 6. Data in the “correlated”
row are for the outcome performed on datasets using only features that correlated with
the label of at least 0.2. The “unreduced” data are for the outcome where all features were
used. The top three models from the leaderboard are listed for PyCaret and AutoGluon
in Tables 5–7. Results from a single analysis for AutoKeras for each dataset are shown.
Accuracies for repeat analyses using AutoKeras are shown in Table 8.

PyCaret accuracies were generally in the low eighties with slightly lower F1 scores.
AutoGluon accuracies were the highest of all three AutoML tools. Its accuracies for the
unreduced dataset were in the mid-to-high eighties and its F1 scores were the same or
higher. The correlated dataset results were slightly lower, in the mid-eighties, except for
the results achieved by the top model on the leaderboard, which were only around 78%.
The accuracy for the unreduced dataset, when analyzed using AutoKeras, was comparable,
about 80%, with a slightly higher F1 score. The AutoKeras accuracy for the Cleveland
correlated dataset was only 54%. The F1 score was still poor but substantially better at
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approximately 67%. Other analyses using the same data and input conditions produced
much higher accuracies (see Tables 5–7).

Table 5. Cleveland dataset analysis using PyCaret, AutoGluon, and AutoKeras.

Cleveland

Accuracy F1 Score Best Model

Unreduced:

PyCaret
0.8525
0.8215
0.8180

0.8037
0.7998
0.7939

1. Linear Discriminant Analysis
2. Ridge Classifier
3. Naïve Bayes

AutoGluon
0.8688
0.8688
0.8524

0.8709
0.8709
0.8524

1. WeightedEnsemble_L2
2. RandomForestGini
3. RandomForestEntr

AutoKeras 0.8033 0.8182 N/A

Correlated:

PyCaret
0.8137
0.8048
0.8008

0.8012
0.7814
0.7775

1. Logistic Regression
2. Linear Discriminant Analysis
3. Ridge Classifier

AutoGluon
0.7868
0.8524
0.8360

0.7796
0.8474
0.8333

1. WeightedEnsemble_L2
2. RandomForestGini
3. RandomForestEntr

AutoKeras 0.5410 0.6667 N/A

Table 6. Combined dataset analysis using PyCaret, AutoGluon, and AutoKeras.

Combined

Accuracy F1 Score Best Model

Unreduced:

PyCaret
0.6873
0.6833
0.6832

0.6678
0.6839
0.6484

1. Logistic Regression
2. Linear Discriminant Analysis
3. Ridge Classifier

AutoGluon
0.8478
0.8478
0.8423

0.8691
0.8691
0.8651

1. WeightedEnsemble_L2
2. RandomForestEntr
3. ExtraTreesGini

AutoKeras 0.8152 0.8365 N/A

Correlated:

PyCaret
0.7826
0.7459
0.7432

0.7311
0.7168
0.7260

1. Random Forest Classifier
2. Ridge Classifier
3. Logistic Regression

AutoGluon
0.8423
0.8423
0.8369

0.8638
0.8638
0.8369

1. WeightedEnsemble_L2
2. RandomForestEntr
3. RandomForestGini

AutoKeras 0.8315 0.8545 N/A

Table 7. Hungarian dataset analysis using PyCaret, AutoGluon, and AutoKeras.

Hungarian

Accuracy F1 Score Best Model

Unreduced:

PyCaret
0.6976
0.6806
0.6766

0.6465
0.6092
0.6334

1. Logistic Regression
2. Ridge Classifier
3. Linear Discriminant Analysis

AutoGluon
0.8475
0.8474
0.8305

0.7804
0.7804
0.7619

1.WeightedEnsemble_L2
2. RandomForestEntr
3. ExtraTreesEntr

AutoKeras 0.8305 0.7059 N/A
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Table 7. Cont.

Hungarian

Accuracy F1 Score Best Model

Correlated:

PyCaret
0.8304
0.8303
0.8263

0.7516
0.7506
0.7470

1. Ridge Classifier
2. Log. Regression
3. Linear Discriminant Analysis

AutoGluon
0.8983
0.8983
0.8644

0.8500
0.8500
0.8095

1. WeightedEnsemble_L2
2. RandomForestEntr
3. ExtraTreesGini

AutoKeras 0.8305 0.7059 N/A

Table 8. Run times and accuracies from repeat analyses using AutoKeras.

Run 1 Run 2 Run 3 Mean σ st. dev.

Accuracy Run Time Accuracy Run Time Accuracy Run Time

Cleveland Unreduced 0.8197 40 m 51 s 0.7705 6 m 5 s 0.8033 6 m 35 s 0.7978 σ 0.0251
Correlated 0.7541 18 m 47 s 0.8197 6 m 29 s 0.7705 11 m 10 s 0.7814 σ 0.0341

Hungarian Unreduced 0.8644 7 m 36 s 0.7966 10 m 29 s 0.6610 52 m 27 s 0.7740 σ 0.1035
Correlated 0.8136 5 m 34 s 0.8644 7 m 55 s 0.6610 7 m 23 s 0.7797 σ 0.1059

Combined Unreduced 0.8478 18 m 24 s 0.8207 15 m 57 s 0.8478 12 m 54 s 0.8388 σ 0.0156
Correlated 0.7989 35 m 51 s 0.8152 10 m 41 s 0.7880 24 m 02 s 0.8007 σ 0.0137

PyCaret’s performance on the unreduced Hungarian dataset was significantly worse
than that on the Cleveland dataset, with accuracies in the upper 60% and lower F1 scores.
Although PyCaret accuracies for the correlated dataset were back in the eighties, the F1
scores were much lower at only about 75%. Accuracies resulting from AutoGluon were
all in the mid-to-upper eighties, but its F1 scores were also lower than was seen when
using the Cleveland dataset. AutoKeras results were similar, with 83% accuracies and 71%
F1 scores.

When analyzing the combined dataset, PyCaret’s results were similar to those it
achieved when analyzing the Hungarian dataset and lower than those for the Cleveland.
Results were below seventy for the unreduced dataset and in the mid-to-low seventies for
the correlated.

AutoGluon performed well, with accuracies around 84% and most F1 scores around
86%. AutoKeras results for these runs were also greater than 80%. The code used to obtain
the above results is shared on the GitHub page [58]. The open-source code includes ex-
ploratory data analysis; AutoML implementation for AutoGluon, PyCaret, and AutoKeras;
as well as the code that performed model generation by following the traditional steps.

5. Discussion

The AutoML tools in question function by autonomously testing various embedded
algorithms and subsequently presenting the most effective model. As users, we lacked
the facility to specify a particular model for application; instead, the tools independently
determined the optimal choice. Our comparative analysis, therefore, did not stem from
a selection of models we wished to evaluate side by side. Rather, it arose from assessing
the peak-performing model provided by one AutoML tool against the counterpart from
another, essentially comparing the pinnacle of what each tool asserted to be its most
proficient solution.

Our analysis operated under the assumption that tool developers had carefully chosen
the best hyperparameters to enhance their tool’s performance. Respecting their expertise,
we did not modify these parameters, trusting that the default settings were optimized for
peak performance. We analyzed each tool in its default state, mirroring typical user experi-
ence without advanced machine learning knowledge. This approach provided valuable
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insights into the performance of each tool with minimal customization—important for
users unfamiliar with algorithm intricacies or specific tuning options. AutoML tools have
diverse adjustable settings, complicating any attempt to standardize them with identical
algorithms. For example, AutoKeras focuses on neural architecture search (NAS) to find
the most effective neural network configuration, but it does not inherently support tradi-
tional models like SVM, decision trees, or random forests. This makes a direct comparison
using the same algorithms and parameters across different tools both complex and often
impractical.

By following examples on the AutoKeras website, building and evaluating a basic
model was easy, requiring little to no data preprocessing. However, while model customiza-
tion and tuning are possible, the website resources could be more in-depth and accessible
to an inexperienced user. Performance inconsistency between runs was an issue during
the analysis. Repeat analyses took different run times and produced models with different
accuracies. Run times and accuracies, including means and standard deviations, obtained
from three sets of analyses are shown in Table 8.

The model produced from one of these runs (on the unreduced Cleveland dataset,
run 3) is shown in Table 9. The resulting model and number of parameters varied widely
for the various runs, sometimes having fewer than 1500 parameters and sometimes more
than 50,000. Models always consisted of some dense layers and sometimes also included
one or more normalization/batch-normalization layers and/or dropout layers. The number
of dense layers varied between models, but ReLU activation functions were always used
for the hidden layers. The official website documentation for AutoGluon was fairly easy
to follow and contained several tutorials on how to use the tool. However, in-depth
explanations of how to use and interpret results were lacking and would require the user
to have a prior understanding of machine learning. The user would need to look to other
resources for a better understanding of machine learning concepts. AutoGluon also tends
to default to the best model when displaying results; however, this can be changed with
input options. Models with the best validation scores also did not always provide the best
accuracy on the test data; however, with more test data, this may have changed and thus
more datasets would be needed for testing. Advanced custom metrics are also possible with
AutoGluon, but this requires an in-depth understanding of statistics and machine learning
that is likely beyond the basic user. A useful feature with AutoGluon is the leaderboard,
which displays models based on validation score by default with no inputs or by accuracy
if test data are inputted. An example leaderboard of the AutoGluon tool is presented in
Table 10.

Table 9. Example neural network produced by AutoKeras.

Layer (Type) Output Shape Param

Input1(InputLayer) [(None, 13)] 0
MultiCategoryEncoding (None, 13)

(MultiCategoryEncoding) 0 0
Normalization

(Normalization) (None, 13) 27

Dense (Dense) 0.150825 896
Relu(ReLU) 0.169202 0

Dense1(Dense) 0.223120 16,640
Relu1(ReLU) 0.276816 0

Dense2(Dense) 0.339213 32,896
Relu2(ReLU) 0.414446 0

Dense3(Dense) 0.424510 129
Classificationhead1 0.431894 0

(Activation) 0.460033
Total params: 50,588

Trainable params: 50,561
Non-trainable params: 27
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PyCaret documentation is well labeled and defined, making it quick to understand the
capacity of utility that it has available to offer, covering several machine learning techniques
(classification, regression, anomalies, clustering, and time series). Opening any one of the
tabs for the desired technique immediately gives insight into the higher workings and
functions of the chosen function, which makes it appear convoluted, but those familiar with
machine learning will be able to understand all that they provide and the freedom of its
utility for these AutoML tools. Functionally, when PyCaret runs with the chosen technique,
it provides a leaderboard like other AutoML tools, which displays the top-ranked models
by various scores (F1, accuracy, etc.) that best apply to the data that it was given. Across
the leaderboard, it usefully highlights the best scores in each given category; however,
the ranking will sometimes find better scores for different models as opposed to the best
model across the leaderboard. Testing the PyCaret AutoML tool with the Heart Disease
datasets was proven to have successful results in identifying efficient models that can be
utilized, especially after implementing data preprocessing and reducing the dataset to
focus on the parameters that matter more. In some circumstances, there have been less
promising results, giving lower accuracy, and this could be because of the differing size of
the data in some cases, as well as potentially not reducing the datasets to isolate the more
correlated features.

The impact of feature selection performed when reducing the datasets based on corre-
lation was not clear. When using AutoGluon, the accuracy, after reducing for correlation,
was worse for the Cleveland dataset, better for the Hungarian, and almost the same for
the combined. Results for the unreduced and correlated versions were similar for all three
datasets when AutoKeras was used. Interestingly, the accuracy obtained by AutoGluon for
the “correlated” Cleveland dataset is among the lowest in Table 4. This could be a case of
underfitting for this particular dataset and the model combination. Other than this result,
AutoGluon produced consistent results and some of the highest accuracies. The best model,
based on validation accuracies, for each analysis was WeightedEnsemble-L2.

Unlike PyCaret and AutoGluon, repeat analyses using AutoKeras produced different
models and different accuracies. In addition to the disadvantage of inconsistent results,
AutoKeras took the longest to run, with some of its shortest run times still longer than
those for the other two tools. The datasets used here were small. The time required by
AutoKeras could be a prohibitive problem for large datasets.

Traditional manual steps were applied to create ML models utilizing ten machine
learning algorithms and an ensemble model that merged seven well-performing models,
and the results are presented in Table 4. When these results are compared with the results
achieved using the AutoML tools, it can be noticed that the AutoML tools generated
ML models that could perform much better than manually created models. The top-
performing models created manually performed with around 60% accuracy, while the
top-performing AutoML-generated models performed with around 85% accuracy on the
same Cleveland dataset.

In addition to comparing results with those of conventional machine learning models
that were generated using sklearn libraries, deep learning models could be manually devel-
oped using libraries such as Tensorflow, Keras, or PyTorch to compare with them with the
AutoKeras AutoML tool’s models. This comparison could include a detailed explanation of
parameters and FLOPS used during the training. In the literature, researchers have claimed
to achieve up to 95% accuracy on heart disease datasets [12–22,59,60]. However, we did
not have a chance to repeat the results of these studies since the code and configurations
were not shared. To let other researchers compare their results with ours, we open-sourced
our code that utilized AutoML tools and applied traditional model generation steps on
GitHub [58]. Accuracies and F1 scores are the key metrics in Tables 5–7; however, accuracy
alone should not be considered a true metric as it may not provide a complete picture of
a model’s performance. It does not consider the nuances of different classes, class imbal-
ances, or the cost associated with misclassification. Relying solely on accuracy may lead to
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misleading conclusions, especially in scenarios where the dataset is imbalanced or the costs
of the false positives and false negatives differ significantly.

When utilizing a machine learning tool to aid in medical diagnosis, it is critical that
expert knowledge is employed in both judging the soundness of the medical results and
the relevance of a wide range of relevant model metrics. While accuracy measured the
overall correctness of the predictions, precision focused on the proportion of true positives
among all predicted positives, and recall focused on the proportion of true positives among
all actual positives. In scenarios where class imbalance exists, optimizing for high accuracy
may result in low precision or recall as the model may favor the majority class. Therefore,
a trade-off exists between accuracy and precision/recall, and the choice depends on the
specific requirements of the application. F1 scores combine precision and recall into a single
metric, providing a balance between the two. However, optimizing for F1 score may not be
suitable in all scenarios. In some cases, precision or recall may be more important, and a
trade-off exists between F1 score and precision/recall. We decided to utilize accuracy and
F1 score metrics since many of the comparable studies utilized these metrics. However,
sensitivity and specificity are also important metrics generally used in the medical domain.
Further studies should consider utilizing sensitivity and specificity as well. In the process
of optimizing a model, it is important to consider that as models become more complex
and accurate, they often require more computational resources and longer inference times.
There is a trade-off between achieving higher accuracy and the computational cost required
for inference. There is also the risk of overfitting. Overfitting occurs when a model performs
well on the training data but fails to generalize to unseen data, while underfitting occurs
when a model is too simple to capture underlying patterns in the data. These represent
opposite ends of a trade-off. Increasing model complexity may reduce underfitting but
increase the risk of overfitting, while reducing model complexity may reduce overfitting
but increase the risk of underfitting.

In addition to model evaluation metrics, essential to account for are the limitations of
the data, assumptions made, and constraints applied. We acknowledge and discuss/explain
these uncertainties to help readers gain a more nuanced understanding of the limitations
and potential sources of error associated with the evaluation metrics. We hope this will
promote transparency and help readers interpret the results more accurately. Dataset
limitations included size, quality, representativeness, and potential biases. The datasets
used in this paper were very small. Although they have been used in numerous other
studies, allowing for easier comparison of results, small size means the datasets are not
likely to be representative of large populations and may be more susceptible to selection
biases. There were also a large number of missing values in all but the Cleveland datasets.
A key assumption made during this analysis was that these datasets and tools can be used
to effectively predict heart disease. This is a huge assumption, and it should be noted that
employing machine learning, particularly black-box tools like AutoML, requires caution
and diligence. The data used here included both male and female patients. However, this
may have led to the importance of other features being suppressed. Different features
may have different levels of importance for male and female patients as well. This is
not accounted for in this paper, but female under-representation in medical research is a
well-known and persistent problem. Of the 41,622 participants in US government clinical
trials analyzed by Mayor et al., only about 27.5% of them were female. [54] Future research
should explore how sex impacts feature importance and model performance. Moreover,
larger datasets could be used to assess model performances, including accuracies, precision,
recall, and inference times.

Some features were excluded from our analyses using the combined dataset due to
missing data. The inclusion of these, as well as other previously unused variables, may
have had a significant impact on tool performance. The binary classification was used here;
however, all three AutoML tools have the ability to perform multilabel classification, and
their performances at this task could be compared in the future. Two previous examples we
referenced of AutoML tools being used to analyze heart disease data were from 2021 [8,15].
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New studies are needed to comprehensively test the performance of these and additional
AutoML tools as these tools continue to be developed and improved. Two AutoML tools
that were developed specifically for the medical field were found while working on this
project [61–63]. AutoPrognosis was first released in 2018 and uses Bayesian optimization to
create and optimize pipeline ensembles [60]. An updated version of the tool, AutoPrognosis
2.0, was released in 2022 [63–65]. Pharm-AutoML was developed by Genentech employees
Liu, Lu, and Lu in 2020 [65]. If using csv-formatted data, Pharm-AutoML can handle steps
from data preprocessing through model selection and evaluation for multiclassification
problems [61]. AutoPrognosis 2.0 and Pharm-AutoML are both open-source and have been
used to analyze heart disease datasets, though different from the data we used [62–66].

6. Conclusions

This study ventured into the effectiveness of automated machine learning (AutoML)
tools for heart disease diagnosis and discovered that AutoGluon consistently outperformed
its peers, with accuracy rates ranging from 78% to 86%. PyCaret’s performance was found
to vary depending on the dataset, with accuracy rates from 65% to 83%, suggesting a
nuanced relationship between tool efficacy and dataset characteristics. AutoKeras showed
the most variation in results, with accuracies between 54% and 83%, indicating the potential
for high performance but also a significant dependency on the dataset used.

Compared to traditional machine learning methods, which yielded accuracy rates of
55% to 60% via standard practices like exploratory data analysis (EDA), data cleaning, fea-
ture engineering, and various modeling algorithms from the sklearn library, the advantage
of AutoML tools is clear. This discrepancy illustrates the promising potential of AutoML
to revolutionize diagnostic accuracy and make sophisticated analyses more accessible to
healthcare practitioners.

The insights from this study suggest that AutoML tools, especially AutoGluon, have
the capacity to significantly refine and expedite the diagnostic process, with profound
implications for the treatment and prevention of heart disease internationally. Nevertheless,
this investigation serves as an initial step towards a broader and more detailed exploration
of AutoML’s capabilities, underscoring the necessity for future research that includes
larger and more varied datasets as well as a wider array of AutoML tools, potentially
revolutionizing patient care in the process.
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Abstract: Colorectal cancer is one of the most lethal cancers because of late diagnosis and challenges
in the selection of therapy options. The histopathological diagnosis of colon adenocarcinoma is hin-
dered by poor reproducibility and a lack of standard examination protocols required for appropriate
treatment decisions. In the current study, using state-of-the-art approaches on benchmark datasets,
we analyzed different architectures and ensembling strategies to develop the most efficient network
combinations to improve binary and ternary classification. We propose an innovative two-stage
pipeline approach to diagnose colon adenocarcinoma grading from histological images in a similar
manner to a pathologist. The glandular regions were first segmented by a transformer architec-
ture with subsequent classification using a convolutional neural network (CNN) ensemble, which
markedly improved the learning efficiency and shortened the learning time. Moreover, we prepared
and published a dataset for clinical validation of the developed artificial neural network, which
suggested the discovery of novel histological phenotypic alterations in adenocarcinoma sections that
could have prognostic value. Therefore, AI could markedly improve the reproducibility, efficiency,
and accuracy of colon cancer diagnosis, which are required for precision medicine to personalize the
treatment of cancer patients.

Keywords: colon cancer; histological diagnosis; artificial intelligence; deep learning; transformer
networks; dataset

1. Introduction

Colorectal carcinoma (CRC) is a well-characterized heterogeneous disease induced
by different tumorigenic modifications in colon cells [1]. CRC contains several stromal
and epithelial tissue types representing different differentiation stages, including benign
residual adenoma, that collectively support carcinogenesis and serve as diagnostic compo-
nents. Malignant transformation modifies the morphology of the intestinal crypt structure
in the mucosa, replacing it with irregular tissue composed of cells with an increased nu-
cleus/cytoplasm ratio, thereby disrupting the normal glandular structure of colon tissue [2].

Malignant transformation of immortalized cells in high-grade adenomas is the earliest
form of clinically relevant colorectal cancer, pT1, in which cancer cells have invaded the
submucosa but not the muscular layer. At stage pT2, the tumor has invaded through
muscularis propria, the muscle layer, but it has not migrated to nearby lymph nodes
or distant organs. Stage pT3 cancer has grown through the muscularis propria into the
subserosa, a thin layer of connective tissue covering the muscle layer, and often invades
into tissues surrounding the colon. At stage pT4, the tumor has grown through all layers
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of the colon, invaded the visceral peritoneum, and commonly metastasized to distant
organs. Metastatic colon cancer typically invades through the muscularis mucosa into
the submucosa and occasionally into the proximity of blood vessels. A second distinctive
histological feature indicating metastasis is a desmoplastic reaction in the tumor stroma,
and the third nominator of possible metastasis is the presence of necrotic debris in the
glandular lumina [3–5].

In addition to staging, colon cancer is classified based on grading, which is determined
by the stage of undifferentiation of the cells, i.e., the number of abnormalities in the cellular
phenotype. Colon cancer is usually divided into three grades: well-differentiated (low
grade, G1), moderately differentiated (intermediate grade, G2), and poorly differentiated
(high grade, G3) [6]. A well-differentiated (G1) adenocarcinoma has conserved more than
95% of the normal glandular formation, whereas in moderately differentiated colon cancer
(G2), the colon has 50–95% glandular formation, and poorly differentiated (G3) has less
than 50% glandular formation [6].

The current histologic diagnosis has several deficiencies, which may affect the ther-
apy decisions, consequent recovery, and survival of patients. Artificial intelligence (AI),
especially recently developed computer vision methodologies based on deep learning and
digital pathology, can recognize and mark pixels in the image, distinguish the pixels based
on their characteristics, and detect the differences and grade cancers [7]. The computer-
based analysis of colon digital histologic images involves different tasks [7,8], such as the
normalization of histologic staining, to match the staining colors with a given template
to eliminate the variability of histological sample staining [9]. Other tasks include the
segmentation of cells to identify cellular structures and organelles [10]; the division of
tissues into the tumor, stroma, and adipose tissue [11]; the detection of the parameters
indicating cancer progression, e.g., lymphocyte migration and cellular proliferation [12];
and the prediction of consequent survival by combining the information of patient’s age,
gender, medical status, and physical condition [13].

In the current work, we used subclasses of artificial neural networks that learn directly
from data: ResidualNet, DenseNet, EfficientNet, and Squeeze-and-ExcitationNet. Neural
networks are simplified artificial models of human brain physiology that can be used
for the analysis of histologic sections in the diagnosis of cancer. The CNNs used in this
work were combined as ensembles to improve the stability and predictivity of the final
output [14]. To further improve machine learning, we introduced transformer models to
adopt the mechanism of cognitive attention and classify the observed and unobserved data
by predicting the latter [15]. Lastly, we introduced an optimal network model to improve
network performance [16].

To train the algorithm, we used the CRC-Dataset [17], extended CRC dataset [1],
and GLA dataset [18] that contain 484 visual fields, which were then further divided into
subfigures. The trained algorithm was used to diagnose patients with low-grade (G1),
intermediate-grade (G2), and high-grade (G3) colon adenocarcinomas. The algorithm
demonstrated high accuracy in the diagnosis of colon cancer.

The innovation of this study is to propose a two-stage CNN model for glandular region
classification that mimics the work of a pathologist. In this new data flow, we characterized
which CNN model is most suited to extract information from glandular regions and how
different models could be combined to further improve cancer staging capabilities.

The main contributions of this study are as follows:

• This is an innovative two-stage pipeline approach, as opposed to previous approaches
that grade carcinoma initiating from patches containing glandular regions and other
indiscriminative areas (e.g., epithelium).

• This is among the first clinical approaches of this type of pipeline. This study provides
early evidence of its suitability for clinical practice and a systematic report of the
capabilities of the proposed model.

• In this new data flow, we attempted to understand which CNN model is most suited
to extract information from glandular regions and how different models could be
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combined to further improve cancer staging capabilities. The current work represents
a few attempts at applying machine learning strategies in actual clinical practice for
colon cancer grading.

• This is among the first attempts to concentrate classification only on glandular regions,
which shows a focus of attention similar to the diagnosis of a pathologist. This is one of
the most important contributions of the self-attention mechanism learning approach.

2. Related Work

Extracting information from small datasets of biased and tagged data is challenging
because of variation and similarities between or within classes that result from the continuum
created by the various grade levels. Shallow classifiers and manually created features were
the mainstays of early attempts to use AI in colon cancer grading [19]. Recently, deep
learning-based methods have proven to be superior in the grading of colon cancer because of
computational and memory constraints; CNNs are typically used for representation learning
from small image patches (e.g., 224 × 224) recovered from digital histological images [20].

To aggregate predictions and model the reality that not all patches will be discrimina-
tive, patch-level classification results must be aggregated [21]. Based on images of tumor
samples, the authors of [20] trained a deep network to forecast colorectal cancer outcomes
by combining convolutional and recurrent architectures. In a novel cell graph convolutional
neural network (CGC-Net), the increased accuracy of computational models was achieved
by integrating contextual information with feature sharing and learning dependencies
across and between scales using a long short-term memory (LSTM) unit [22].

In this model, large images are presented as a graph, where each node is represented
by a nucleus within the original image, and cellular interactions are indicated as edges
between these nodes based on node similarity. More recently, a proposed method for
learning histological images uses a local-aware region CNN (LR-CNN) to first train the
local representation and then a representation aggregation CNN (RA-CNN) to aggregate
contextual data [23].

However, because there is often an insufficient amount of data available for robust
knowledge generalization, a recent study [24] examined multiple CNN architectures and
demonstrated that classical network models created for image classification have higher
performance than those incorporating domain-specific solutions. Furthermore, it was
shown that the EfficientNet-B1 and EfficientNet-B2 architectures [25] perform better than
all previous state-of-the-art methods for CRC grading. Lastly, CNN has recently been sug-
gested to effectively assist in completing knowledge extraction tasks from large histological
images when an attention mechanism is applied in parallel to capture key features that aid
network categorization [26].

Most of the existing approaches have been tested on benchmark datasets [27,28], but
it is unclear whether there are enough data to support their implementation in current
evidence-based clinical practice [29]. Advanced studies reporting clinical trials have been
conducted only for colon tissue or nucleus segmentation [30].

3. Methods

The main aim of this paper was to introduce a two-stage colon adenocarcinoma
grading pipeline. The first stage aimed at segmenting glandular regions, whereas the second
step was devoted to grading regions retained after segmentation. The second contribution
was to merge the advantages of CNN and transformer architectures. Transformers were
exploited for the segmentation step to precisely determine glandular boundaries to be
supplied to the following multiclass grading problem, relying on the CNN to extract local
patterns of cells’ configurations.

3.1. Patients

Human adenocarcinoma sections were stained with hematoxylin–eosin (Sigma-Aldrich,
St. Louis, MO, USA) and prepared for microscopy and imaging (Leica DMI3000B micro-
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scope and Leica Application Suite X 1.1.0.12420 camera software, Leica, Wetzlar, Germany).
The ethical permissions for the study were approved by the Monaldi Hospital ethical com-
mittee, the University of Naples Federico II ethical committee, and the Clinica Mediterranea
ethical committee. Inform consent was asked from all patients.

3.2. Development of the Algorithm

In this study, a transformer-based model with an additional control mechanism in the
self-attention module was preliminarily exploited to understand discriminative regions in
large histological images.

The development of the deep learning diagnosis tool was performed a workstation
equipped with an Intel(R) Xeon(R) E5-1650 @ 3.20 GHz CPU, one GeForce GTX 1080 Ti with
11 GB of RAM GPU, and the Ubuntu 16.04 Linux operating system. In this study, we used
the most advanced architectures that have demonstrated significant performance in the
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [19] and in solving vanishing
gradient architectures caused by the analysis of several layers. In the selection process, we
used a generalization combined with a low memory footprint during the interference in the
related problems [31]: ResidualNet [32], DenseNet [33], Squeeze-and-ExcitationNet [34],
and EfficientNet [35]. All networks were modified to adapt to a 3-class inference problem.

Data augmentation was applied to the original data in terms of operations of horizontal
and vertical image flipping, rotation with a value of ±45◦ and ±90◦, and shearing between
−20◦ and 20◦. For the validation set, we used a stochastic gradient descent optimizer with
a learning rate of 0.001, momentum of 0.9, and weight decay of 0.001. For the training
process, we used an early stopping strategy of 22 epochs (the number of times a dataset
passes through an algorithm), with a maximum of 100 training epochs.

In this work, we used a RegNet architecture, a network design space needed for architec-
tures to function, integrating the Squeeze-and-ExcitationNet across a wide range of floating
point operations (FLOPs) per second regimes, i.e., the number of multiply–add operations
per processed image. For the identification of the generated models, the corresponding FLOP
regime was marked on the basis of its construction; e.g., RegNetY-400MF means that the
RegNet architecture built a 400 mega-FLOP model.

To extract information from both the entire image and local patches, where finer details
can be found, visual fields were fed as inputs to a transformer network that combines local
and global training [12]. They employ a deep local branch and a shallow global branch to
gather data for their local–global training strategy. The feature maps, which were extracted
from the first convolution block with three convolution layers each followed by batch
normalization and ReLU activation, were fed into both branches. The encoder bottleneck
was composed of two layers of multi-head attention layers, one operating along the width
axis and the other along the height axis, after normalization and a 1 × 1 convolution layer.

Each multi-head attention block consisted of an axial attention layer. To create the
output attention maps, the output from the multi-head attention blocks was concatenated,
run through an additional 1 × 1 convolution, and then added to the residual input maps.
The convolution layer, upsampling layer, and ReLU comprised the decoder block, consisting
of two encoding blocks and two decoding blocks in the global branch. In the local branch,
there were five encoding blocks and five decoding blocks.

In the grading of colon carcinomas, the transformer architecture aids in determining
which regions of the large-scale histology images can aid in the discrimination of different
grades of carcinomas by the subsequent CNN architectures, which enables higher perfor-
mance using less data. The transformer was trained to extract glandular structures from
the rest of the visual field content. These structures are currently considered to be one of
the key biomarkers for determining tumor grade [17].

In subsequent training, the structures can produce matching binary masks that identify
glandular regions on unseen visual fields. These masks can then be used to retain only the
relevant portion for further processing by CNN models. EfficientNet architectures [10],
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which uniformly scale the width, depth, and resolution of the network using a compound
coefficient, are most commonly used for CRC grading tasks.

3.3. Training of the Algorithm

For machine learning, we used three open-source datasets. Firstly, we used the
CRC-Dataset [17], which comprises 139 visual fields extracted from 38 hematoxylin–
eosin-stained whole-slide images with an average size of 4548 × 7520 pixels obtained
at 20×magnification. These visual fields were classified into three different classes; normal
tissue, low-grade cancer, and high-grade cancer, based on the histological structure of the
glands. Second, the extended CRC dataset, which has been extracted from 68 hematoxylin–
eosin-stained whole-slide images, consists of 300 visual fields with an average size of
5000 × 7300 pixels [1]. Third, the GLAs dataset [36] consists of 165 images derived from
16 hematoxylin–eosin-stained sections representing stage T3 or T4 colorectal adenocarci-
noma. Because the histological images originate from different sources, the datasets exhibit
high inter-subject variability in both stain distribution and tissue architecture. The digiti-
zation of these histological sections to whole-slide images was performed using a Zeiss
MIRAX MIDI Slide Scanner with a pixel resolution of 0.465 µm. The whole-slide images
were subsequently rescaled to a pixel resolution equivalent to 20×magnification. A total
of 52 visual fields from both malignant and benign areas across the entire set of whole-slide
images were selected to cover the tissue architectures. Manual annotation of glandular
regions as normal, low grade, and high grade was used as a “ground truth” for training
the transformer network (Table 1). Because of interobserver variation, G1 and G2 were
combined to a low grade, and G3 was considered a high grade.

Table 1. The number of images in CRC and in extended CRC datasets used in the design of the
“ground truth”.

Dataset Normal Low Grade High Grade Total

CRC 71 33 35 139
Extended CRC 120 120 60 300

3.4. Diagnosis of Patients

The developed algorithm was used to diagnose images covering the whole tissue section
(1824× 1368 pixels, 20×magnification) of 11 patients with different stages of colon adenocarci-
noma. From the images, we prepared a dataset consisting of 11,089 hematoxylin–eosin-stained
images that were divided into 11 directories, each representing one patient (Table 2).

Table 2. Classification and the number of the images used in the testing of the algorithm.

Directory ID Clinical Diagnosis Number of Images

Patient 1 Intermediate 202
Patient 2 High 192
Patient 3 Low 146
Patient 4 Low 240
Patient 5 Intermediate 242
Patient 6 Intermediate 156
Patient 7 High 270
Patient 8 High 180
Patient 9 High 189
Patient 10 Intermediate 328
Patient 11 High 110

Correspondingly to datasets used for machine learning, the diagnosis aimed to clas-
sify the adenocarcinomas as well-differentiated (low grade), moderately differentiated
(intermediate grade), and poorly differentiated (high grade). The selected patients rep-
resented advanced pT3 and pT4 stages of adenocarcinoma with neoplastic infiltration
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into neighboring tissues, excluding samples from patients 1 and 3. The sample from pa-
tient 1 was isolated from a liver metastasis, whereas patient 3 had a pathological stage
pT1 adenocarcinoma with no metastasis. The dataset of image directories is available at
https://dataset.isasi.cnr.it/2021/10/18/cnr-crc/ (accessed on 24 January 2024).

The main limitations of this study are as follows: (1) the number samples used for
real clinical experimentation and (2) the necessity to start large training sessions when
additional examples from different patients become available.

4. Results
4.1. Development of the Algorithm

Deep learning-based colon carcinoma grading is an emerging diagnostic method
that can improve the overall grading accuracy in tumors with several grading levels
and reduce person-related alterations in the diagnosis. To use artificial intelligence in
patch-based approaches of histological diagnosis, tissue sections are generally divided
into single patches, e.g., size 224 × 224 pixels, for the primary analysis, which are then
combined to cover the whole section for classification of the informative content of each
patch and for predictions to label the whole image. Deep CNNs have inherent inductive
biases without the ability to calculate long-range dependencies, whereas transformer-
based network architectures [37] developed for language tasks can be used for image
segmentation analysis [38].

In this paper, a transformer-based model equipped with an additional control mecha-
nism in the self-attention module was used to analyze discriminative regions in histological
images. During the training process, the transformer gained binary masks, which marked
the glandular regions used in the CNN model (Figure 1).
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Figure 1. A schematic representation of the proposed pipeline exploiting a transformer architecture
to initially segment glandular regions, which are then processed to determine the disease grade.

The algorithm comprised ResidualNet, DenseNet, Squeeze-and-ExcitationNet, and
EfficientNet [32–35] architectures that minimize the vanishing problem and have high
generalization capacity and a low memory footprint. ResidualNet addresses the vanishing
gradient and training degradation problems by introducing a deep residual learning
approach, in which each of the stacked layers of the entire network was analyzed using skip
connections. Once ResidualNet had created the infrastructure, the DenseNet architecture
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was used to connect each layer in a feed-forward fashion, collecting information from all
previous layers as input to all subsequent layers. Squeeze-and-ExcitationNet was used to
improve the interdependences of the convolutional channels to emphasize the informative
features and suppress irrelevant noise. EfficientNet was used to optimize and uniformly
scale the network width, depth, and resolution.

Next, to reduce the inaccuracy and bias created by single neural networks, we as-
sembled them as a Max-Voting ensemble and Argmax ensemble, which combine neural
networks that have been trained with different parameters [20]. The Max-Voting ensemble
combines the network predictions from each patch and assigns the most voted label to the
final result. The Argmax ensemble computes the total number of patches produced by the
combined networks and assigns to each patch a vector of labels equal to the number of
networks involved in the ensemble.

4.2. Training of the Algorithm

The training addressed two classifications: first, the binary problem to distinguish
normal tissue from tumor tissue in which intermediate and high grades have been put
together and considered as a unique class against the class including only examples of
lower-grade cancer, and second, the ternary three-class problem of grading tissues to normal
tissue, low-grade cancer, and high-grade cancer. Because all the previous approaches have
used cross-validation of the same split to avoid data leakage (i.e., the patches of each subject
were in the same fold without using the subject for training or testing), we used three-fold
cross-validation for a fair comparison of existing approaches.

To avoid overfitting, we split 92 visual fields for fold 1, 92 visual fields for fold 2,
and 89 visual fields for fold 3. From each visual field, we extracted 224 × 224-pixel non-
overlapping size-16 patches, which were labeled according to the label of the corresponding
visual field or the background. These were then used as inputs to the subsequent machine-
learning strategies with a batch size of 16. The patch distribution per fold and class extracted
from the extended CRC dataset are shown in Table 3. We excluded approximately 11% of
patches representing the crypts or lamina propria from further analysis because of their
irrelevant informative content. These background batches had an average radiometric
value higher than 235 in the three-color channels and appeared white in the images.

Table 3. Patch distribution per fold and class: no tumor, low grade, and high grade. Background
represents the excluded patches.

No Tumor Low Grade High Grade Background

Fold 1 20911 28298 13084 8799
Fold 2 22430 29042 12412 8768
Fold 3 22879 28388 13495 6302

The metrics used for the evaluation were average accuracy, which refers to the correct
classification percentage of the visual fields, and weighted accuracy, which is the sum of the
accuracies in each class weighted by the number of samples in that class. For each fold j in the
range [1, k] (k = 3 in the following experiments), the average accuracy was computed as follows:

accj=
∑c

i=1 TPi

∑c
i=1 Ni

(1)

Similarly, the weighted accuracy was computed as the average of

accj =
∑C

i=1
TPi
Ni

C
(2)

where C indicates the number of classes (2 or 3), Ni is the number of elements in class i,
and TPi is the number of true positives for class i. Once the patches were analyzed with
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ResidualNet, DenseNet, Squeeze-and-ExcitationNet, and EfficientNet architectures, we
combined them with the Max-Voting ensemble to improve the prediction result.

In the training process, we first analyzed the average and weighted classification of
the binary and ternary three-class problems, and then the variance of the folding scores on
the extended CRC dataset (Table 4).

Table 4. Average and weighted classification results on the extended CRC dataset using advanced
deep learning architectures. D121 = DenseNet121; EffB* = EfficientNet-B*; SER50 = Squeeze-and-
ExitationNet-ResidualNet50.

Model Average (%)
(Binary)

Weighted (%)
(Binary)

Average (%)
(3-Classes)

Weghted (%)
(3-Classes)

D121 94.98 ± 2.14 95.69 ± 1.99 87.24 ± 2.94 83.33 ± 2.04
EffB0 93.63 ± 0.94 93.80 ± 1.10 85.89 ± 3.64 83.55 ± 3.54
EffB1 95.64 ± 1.23 94.79 ± 1.15 85.89 ± 3.64 83.56 ± 3.39
EffB2 96.99 ± 2.94 96.65 ± 3.11 87.58 ± 3.36 85.54 ± 2.21
EffB3 96.65 ± 2.05 96.22 ± 2.22 86.57 ± 2.68 83.31 ± 1.82
EffB4 95.31 ± 1.24 94.36 ± 1.27 84.89 ± 2.91 82.44 ± 1.84
EffB5 95.98 ± 1.62 95.66 ± 1.72 87.57 ± 3.37 84.98 ± 3.80
EffB7 95.98 ± 1.62 95.36 ± 1.68 86.90 ± 3.01 84.41 ± 2.78
ResNet-50 94.96 ± 0.79 95.45 ± 1.20 86.57 ± 2.43 80.60 ± 1.73
Res152 95.64 ± 0.94 95.82 ± 1.01 84.22 ± 4.58 79.99 ± 4.13
SER50 93.30 ± 2.47 93.14 ± 2.54 84.89 ± 3.02 81.63 ± 2.08

ResNet50 was used as a PIVOT tool to verify the implementation of the data han-
dling process. EfficientNet-B2 and DenseNet121 models demonstrated the highest ac-
curacy scores for both the binary and ternary three-class problems. The training time
for EfficientNet-B2 was 477 min, for DenseNet121 746 min, for EfficientNet-B0 224 min,
for EfficientNet-B1 452 min, for EfficientNet-B3 481 min, EfficientNet-B4 518 min, for
EfficientNet-B5 677 min, for EfficientNet-B7 1188 min, for ResidualNet50 276 min, for
ResidualNet152 493 min, and for Squeese-and-ExitationNet-ResidualNet50 4496 min.

Next, we trained the classification and grading on the extended CRC dataset (Table 5).
When optimally designed network models, RegNetY-4.0GF and RegNetY-6.4GF, were used,
the training time demonstrated improved performance of 273 min and 337 min, respectively.

Table 5. Classification and grading of the extended CRC dataset using optimally designed network
models. The model refers to floating point operations per second (FLOPS).

Model Average (%)
(Binary)

Weighted (%)
(Binary)

Average (%)
(3-Classes)

Weighted (%)
(3-Classes)

200MF 92.97 ± 3.73 93.87 ± 2.92 83.90 ± 0.76 80.54 ± 1.03
400MF 93.97 ± 2.94 93.99 ± 3.11 84.23 ± 2.62 81.92 ± 1.74
800MF 93.65 ± 4.77 94.15 ± 4.17 84.24 ± 1.63 81.10 ± 1.41
4.0GF 95.64 ± 0.94 95.37 ± 1.52 84.55 ± 2.57 81.36 ± 1.43
6.4GF 94.31 ± 2.48 94.26 ± 2.15 86.57 ± 2.12 83.58 ± 2.21
8.0GF 91.95 ± 2.15 92.19 ± 2.40 82.55 ± 1.70 80.81 ± 2.06
12GF 93.97 ± 2.93 94.28 ± 2.93 84.22 ± 2.41 82.21 ± 3.09
16GF 94.97 ± 1.62 94.24 ± 2.08 85.22 ± 3.93 83.29 ± 3.45
32GF 94.64 ± 2.49 94.55 ± 2.79 84.56 ± 2.68 81.65 ± 2.39

To train the images and binary mask of the transformer network, we used GLA dataset
histological images. Subsequently, the learned configuration was used to extract a binary mask
for the extended CRC dataset. The patches corresponding to the predicted glandular regions
were then used as inputs to the subsequent CNN-based colon carcinoma grading (Figure 2).
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Figure 2. An example of how transformer networks accept only patches related to glandular regions
for subsequent classifiers used for colon carcinoma. The transformer network focuses on the regions
relevant for grading, discarding the patches that introduce noise in the learning process. (a) Original
visual field with superimposed ROI. (b–d) ROI in a histological image of intermediate-grade (grade 1)
colon carcinoma. (b) The extracted mask depicts the corresponding binary mask extracted by the
transformer network. The glandular regions are shown in white. (c) The segmented image was
obtained using the average and logical mask values. (d) Retained patches (squares) for subsequent
steps and discarded areas (no squares) in the CNN analysis of carcinoma grading.

The workstation used for the experiments had an Intel(R) Xeon(R) CPU E5-1650 @ 3.20 GHz,
a GeForce GTX 1080 Ti GPU, 11 GB of RAM-GPU, and SO Ubuntu 16.04 Linux. All the examined
CNNs were optimized by initiating from the pre-trained ImageNet models that come with the
reference implementations. Next, we employed data augmentation techniques to restrict the
number of visual fields. More specifically, horizontal and vertical flipping, as well as rotation
using a random value, was selected from the list (−90, −45, 45, 90), whereas random x-axis
shearing ranged from−20 to 20 degrees.

Lastly, we used learning rate = 0.001, momentum = 0.9, weight decay = 0.001, batch = 16
parameters, an early stopping strategy of 10 epochs on the validation set with a maximum
number of 100 training epochs, and the stochastic gradient descent (SGD) optimizer, fol-
lowed by the training configuration for the transformer architecture, which included an
Adam optimizer, a batch size of 4, and a learning rate of 0.001. The network was trained for
400 epochs.

To analyze and mark the background from the experimental batches, we analyzed
the per fold and class of the patch distribution, which were extracted from the visual
fields of the extended CRC database (Table 6). The analysis reduced approximately 46% of
(1) sporadic noise regions and (2) regions delineating the border of the experimental batches
in the initial study area. As a result, the workload of the CNN models was reduced from
89% to 40%. Importantly, the reduction affected only the number of patches contributing to
the final labeling, whereas the number (300) of visual fields classified in the extended CRC
dataset remained the same (Supplemental Table S1).
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Table 6. The ensembles strategies and network architectures. (a) Label refers to the labeling of the
network combinations, models refer to network models, and strategy refers to the type of ensemble
used. (b) Results of detection and grading using ensembles of deep learning architectures.

(a)

Label Models Strategy
E1 DenseNet121 EfficientNet-B7 RegNetY16GF Max-Voting
E2 DenseNet121 EfficientNet-B7 RegNetY16GF SE-ResNet50 Max-Voting

E3 DenseNet121 EfficientNet-B7 RegNetY16GF
RegNetY6.4GF Max-Voting

E4 DenseNet121 EfficientNet-B7 RegNetY6.4GF Max-Voting
E5 DenseNet121 EfficientNet-B2 RegNetY16GF Max-Voting
E6 DenseNet121 EfficientNet-B2 RegNetY16GF Max-Voting
E7 DenseNet121 EfficientNet-B2 Argmax
E8 DenseNet121 EfficientNet-B7 RegNetY16GF SE-ResNet50 Argmax
E9 EfficientNet-B7 RegNetY16GF SE-ResNet50 Argmax
E10 DenseNet121 EfficientNet-B2 RegNetY16GF Argmax
E11 DenseNet121 EfficientNet-B2 RegNetY16GF Argmax
E12 EfficientNet-B1 EfficientNet-B2 Argmax

(b)

Model Average (%)
(Binary)

Weighted (%)
(Binary)

Average (%)
(3-classes)

Weighted (%)
(3-classes)

E1 95.65 ± 1.87 95.52 ± 1.85 86.90 ± 4.16 84.15 ± 3.81
E2 95.31 ± 2.48 95.68 ± 2.41 87.24 ± 3.37 83.88 ± 3.08
E3 95.31 ± 1.68 95.40 ± 1.89 87.23 ± 4.18 84.15 ± 4.10
E4 94.98 ± 1.62 95.12 ± 1.88 87.23 ± 1.18 84.15 ± 4.10
E5 95.98 ± 2.45 95.81 ± 2.72 86.90 ± 4.39 84.15 ± 3.81
E6 95.31 ± 2.34 95.40 ± 2.37 86.23 ± 3.37 83.32 ± 2.74
E7 95.65 ± 2.05 95.82 ± 2.23 87.91 ± 3.33 84.72 ± 3.43
E8 95.98 ± 2.15 95.95 ± 2.26 87.57 ± 3.75 84.71 ± 3.44
E9 97.32 ± 1.26 97.33 ± 1.57 88.24 ± 4.26 85.53 ± 3.76
T + E5 99.00 ± 0.82 99.02 ± 0.71 89.24 ± 4.09 87.49 ± 3.61
T + E7 99.33 ± 0.94 99.44 ± 0.79 89.58 ± 3.83 87.22 ± 3.87
T + E10 98.33 ± 1.25 98.46 ± 1.10 88.24 ± 4.10 85.52 ± 3.88
T + E11 99.33 ± 0.94 99.44 ± 0.79 90.25 ± 3.74 88.06 ± 3.14
T + E12 99.00 ± 0.82 99.02 ± 0.71 89.92 ± 3.00 87.49 ± 2.36

The results obtained from patch distribution were confirmed by quantitative results
(Supplemental Table S2) that showed grading data using transformer networks to discard
discriminative regions.

The use of the transformer network corroborated the CNN classification for all models,
most prominently for EfficientNet, and improved the performance. The EfficientNet-
B1 model demonstrated the highest performance in binary classification, whereas the
EfficientNet-B2 model was the most efficient in solving the ternary three-class problem.
Furthermore, the use of the transformer network reduced the number of patches included
in the analysis, consequently shortening the training time. The training times of T +
EfficientNet-B1 and T + EfficientNet-B2 were 121 and 133 min, respectively, demonstrating
a marked 70% reduction compared with to training without the transformer network.
The ensembles built for testing the extended CRC dataset demonstrated robust perfor-
mance in analyzing the average and weighted accuracy of the ternary three-class problem
(Table 6a).

The preliminary application of the transformer network allowed the analysis chain
(Figure 1) to utilize the ensemble of networks to gain increased accuracy in colon carcinoma
grading in the extended CRC dataset. The ensembling markedly increased the scores com-
pared with the performance of single network architectures (Table 6b), most prominently
ensembling EfficientNet-B1, EfficientNet-B2, and RegNetY16GF E11 (Table 6a), which
resulted in the highest performance in both binary and ternary classification problems.
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Finally, we performed an ablation study to assess the contribution of transformer
architecture. In the same pipeline, a CNN-based segmentation model was used instead of a
transformer in the first stage of the pipeline. For this purpose, we used a faster region-based
convolutional neural network (fRCNN) architecture for segmentation with a ResNet-101
feature extraction backbone, as previously reported in [39]. The network was trained on the
GLAs dataset and validated on the extended CRC. The extracted patches were then split in
folds and given as inputs to the E11 ensemble (Table 6). The binary (average and weighted)
and ternary (average and weighted) classification outcomes were 97.21 ± 0.35, 96.32± 3.41,
88.95 ± 3.45, and 87.88 ± 2.45, respectively. The data suggested that by exploiting CNN-
based segmentation, the classification accuracy decreased in cases in which the proposed
transform was used for the segmentation of glandular regions.

4.3. Diagnosis of Patients

The neural networks graded cancer using images (20×magnification) divided into
patches. For each visual field, the proposed pipeline created a map in which colon grading
in each selected patch was highlighted by the transformer (green, blue, and red for grades
0, 1, and 2, respectively) (Figure 3).
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Pathological stage: pTx, pNx, pM1a.  
Observations: Residues of mild hepatic steatosis, surgical margins free of neoplasia, KRas mutation at exon 
2. 

Patient 2 

Poorly differentiated adenocarcinoma. 
Pathological stage: pT4a, pNx.  
Observations: Diffuse infiltration to omental tissue, positive immunohistochemical staining for cytokeratin 
20 and CDX2 but negative for cytokeratin 7, suggesting large intestine origin for the pathology. 

Patient 3 
Well-differentiated adenocarcinoma.  
Pathological stage: pT1, pNx.  
Observations: No metastasis, KRas mutation at exon 2. 

Patient 4 

Poorly differentiated adenocarcinoma.  
Pathological stage: pT3, pN0.  
Observations: Neoplastic infiltration to the muscular layer and to perivisceral fat, no lymphovascular 
infiltration, nine tumor buds observed suggesting an intermediate risk of vascular metastasis, lymph nodes 
free of neoplasia, omemtum free of neoplasia, surgical margins free of neoplasia. KRas mutation at exon 2. 

Patient 5 

Moderately differentiated colloid adenocarcinoma and tubulovillous adenoma with low-grade epithelial 
dysplasia.  
Pathological stage: pT3 pN0.  
Observations: Neoplastic infiltration to the perivisceral fat, 19 lymph nodes have metastasis, no 
lymphovascular infiltration, appendix free of neoplasia, surgical margins free of neoplasia. KRas mutation 
at exon 2. 

Patient 6 

Moderately differentiated adenocarcinoma.  
Pathological stage: pT3 pN1a. 
Observations: Neoplastic invasion to muscle layer and to visceral fat, one lymph node has metastasis 
suggesting low risk of vascular metastasis. 

Patient 7 
Poorly differentiated adenocarcinoma.  
Pathological stage: pT3, pN0.  
Observations: Neoplastic infiltration to muscle layer and to visceral fat, one tumor bud observed 

Figure 3. Visual representation of the path-based classification provided by the proposed model.
These intermediate outcomes clarify how the system functions and which portions of the visual field
are used for the final decision.

To quantitatively validate the deep learning procedure, the developed network was
tested using our colon adenocarcinoma patient dataset. A pathologist diagnosed the
patients based on their personal data (gender, age, medical history), surgical information,
microsatellite analysis, oncogene (EGFR, NRAS, KRAS, BRAS) mutation analysis, and
histological information, such as glandular structure, tumor budding, inflammatory cell
staining, local invasion and infiltration, lymph node/liver metastasis, mismatch protein
staining, and differentiation marker staining (Table 7).

Table 7. The histopathological diagnosis of patients.

Patient 1
Hepatic metastasis from moderately differentiated adenocarcinoma.
Pathological stage: pTx, pNx, pM1a.
Observations: Residues of mild hepatic steatosis, surgical margins free of neoplasia, KRas mutation at exon 2.

Patient 2

Poorly differentiated adenocarcinoma.
Pathological stage: pT4a, pNx.
Observations: Diffuse infiltration to omental tissue, positive immunohistochemical staining for cytokeratin 20
and CDX2 but negative for cytokeratin 7, suggesting large intestine origin for the pathology.

Patient 3
Well-differentiated adenocarcinoma.
Pathological stage: pT1, pNx.
Observations: No metastasis, KRas mutation at exon 2.
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Table 7. Cont.

Patient 4

Poorly differentiated adenocarcinoma.
Pathological stage: pT3, pN0.
Observations: Neoplastic infiltration to the muscular layer and to perivisceral fat, no lymphovascular
infiltration, nine tumor buds observed suggesting an intermediate risk of vascular metastasis, lymph nodes
free of neoplasia, omemtum free of neoplasia, surgical margins free of neoplasia. KRas mutation at exon 2.

Patient 5

Moderately differentiated colloid adenocarcinoma and tubulovillous adenoma with low-grade epithelial
dysplasia.
Pathological stage: pT3 pN0.
Observations: Neoplastic infiltration to the perivisceral fat, 19 lymph nodes have metastasis, no
lymphovascular infiltration, appendix free of neoplasia, surgical margins free of neoplasia. KRas mutation
at exon 2.

Patient 6

Moderately differentiated adenocarcinoma.
Pathological stage: pT3 pN1a.
Observations: Neoplastic invasion to muscle layer and to visceral fat, one lymph node has metastasis
suggesting low risk of vascular metastasis.

Patient 7

Poorly differentiated adenocarcinoma.
Pathological stage: pT3, pN0.
Observations: Neoplastic infiltration to muscle layer and to visceral fat, one tumor bud observed suggesting
low risk of vascular metastasis, lymph nodes free of metastasis, surgical margins free of neoplasia.

Patient 8

Poorly differentiated adenocarcinoma.
Pathological stage: pT4b pNx.
Observations: Neoplastic infiltration to ovary capsule and extrinsically to colon wall, fallopian tubes free of
infiltration, atrophic endometrium, chronic cervicitis. Positive immunohistochemical staining for CDX2 and
cytokeratin 20 but negative for PAX8, cytokeratin 7, WT1, and p53, suggesting large intestine origin for
the pathology.

Patient 9

Poorly differentiated adenocarcinoma.
Pathological stage: pT4b, pN1b.
Observations: The neoplasm infiltrates the muscular layer up to the perivisceral fat. Over ten tumor buds
observed suggesting a high risk of vascular metastasis, neoplastic infiltration at omentum, extrinsic neoplastic
infiltration on the serosa of the bowel, no lymphovascular infiltration, three lymph nodes have metastasis,
mucosa of the small intestine free of neoplasia, surgical margins free of neoplasia. KRas mutation at exon 2.

Patient 10

Moderately differentiated adenocarcinoma.
Pathological stage: pT3, pN0.
Observations: The neoplasm infiltrates the muscular layer up to the perivisceral fat. Over ten tumor buds
observed suggesting a high risk of vascular metastasis, a moderate peritumoral infiltration, no
lymphovascular infiltration, lymph nodes free of neoplasia, surgical margins free of neoplasia.

Patient 11

Poorly differentiated adenocarcinoma with hepatic metastasis.
Pathological stage: pT3 pN2p pM1a Observations: Neoplastic infiltration to muscle layer and to visceral fat,
chronic lithiasic cholecystitis, surgical margins free of neoplasia. KRas mutation at exon 2.
Observations: Neoplastic infiltration to muscle layer and to visceral fat, chronic lithiasic cholecystitis, surgical
margins free of neoplasia. KRas mutation at exon 2.

TNM staging system: T = size of the tumor (0–4), N = metastasis to lymph nodes, number of lymph nodes
metastasized, M = metastasis to other organs.

Table 8 shows a comparison of the grading performed by the pathologist and the
algorithm.

Patient 1′s sample was isolated from a hepatic metastasis derived from colon adenocar-
cinoma. Histopathological grading suggested a moderately differentiated tumor, whereas
AI predicted poorly differentiated grading. The discrepancy between the histopathological
diagnosis and algorithm-predicted grading of the patient 1 tumor may suggest that the
aggressive metastasized cancer had been able to maintain the moderately differentiated
glandular status even at a distant organ but had gained other phenotypic characteristics
of aggressive cancer. Patient 2 had pT4 stage adenocarcinoma that had infiltrated the
omental tissue. The pathological stage and histological grading, which were poorly differ-
entiated, supported the grading calculated by the ensemble transformer networks. Patient
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3, diagnosed with pT1 stage cancer without metastasis, demonstrated well-differentiated
adenocarcinoma by both the pathologist and the network. The data from patient 3 demon-
strated that the algorithm created in the current study can separate well-differentiated
cancers from advanced-stage tumors.

Table 8. Diagnosis of clinical grading and grading performed by the ensemble transformer network.
G1 (well differentiated) corresponds to low grade; G2 (moderately differentiated) corresponds to
intermediate grade; and G3 (poorly differentiated) corresponds to high grade.

Patient Clinical Diagnosis Algorithm
Well-Differentiated

Algorithm Moderately
Differentiated

Algorithm Poorly
Differentiated

Patient 1 Moderately differentiated 2% (4) 19% (38) 79% (160)
Patient 2 Poorly differentiated 4% (8) 14% (27) 82% (157)
Patient 3 Well differentiated 61% (89) 21% (30) 18% (27)
Patient 4 Poorly differentiated 5% (12) 22% (53) 73% (175)
Patient 5 Moderately differentiated 0% (0) 48% (115) 52% (126)
Patient 6 Moderately differentiated 0% (0) 52% (81) 48% (75)
Patient 7 Poorly differentiated 0% (0) 21% (57) 79% (213)
Patient 8 Poorly differentiated 0% (0) 3% (5) 97% (178)
Patient 9 Poorly differentiated 0% (0) 6% (11) 94% (178)
Patient 10 Moderately differentiated 0% (0) 38% (124) 62% (204)
Patient 11 Poorly differentiated 3% (3) 74% (81) 13% (26)

The grading diagnosis of patient 4, suggesting poorly differentiated stage pT3 ade-
nocarcinoma, was the same as that by the pathologist and algorithm. The patient had
intratumoral cancer cell migration that reached the muscular layer and perivisceral fat.
The histopathological diagnosis of patient 5 suggested moderately differentiated colon
adenocarcinoma, whereas the transformer network-predicted analysis suggested poorly
differentiated cancer. Interestingly, the predicted diagnosis was a borderline case in which
48% of the analyzed high-power fields suggested moderately differentiated and 52% sug-
gested poorly differentiated grading. The patient had 19 metastatic lymph nodes and
intratumoral infiltration of neoplastic cells into the perivisceral fat, indicating the pro-
gression of tumorigenesis toward a more aggressive phase. In addition, the diagnosis
suggested a rare colloid adenocarcinoma, which results in a lower 5-year survival (71%)
rate than the survival rate of a common form of adenocarcinoma (81%). Therefore, the
algorithm predicted differentiation grading, which may have identified morphological
features characteristic of high-risk cancer and decreased survival.

Similarly, for patient 5, the algorithm-predicted differentiation of patient 6 was di-
vided between moderately differentiated (52%) and poorly differentiated grades (48%).
The histopathological diagnosis of moderately differentiated adenocarcinoma was based
on the invasion of neoplastic cells into the muscle layer and visceral fat and metastasis in
one lymph node. Therefore, the algorithm-predicted diagnosis may suggest that the tumor
is transitioning from a moderately to poorly differentiated grade. Patients 7, 8, and 9 were
all diagnosed with poorly differentiated adenocarcinoma by both the histological analysis
and transformer network calculation.

The grading of adenocarcinoma in patient 10 was diagnosed as moderately differen-
tiated by histopathological analysis. However, the neoplastic region had more than ten
tumor buds, and the transformed cells had filtrated to the muscular layer and visceral fat,
thereby suggesting a high risk of vascular metastasis, although no lymphovascular infiltra-
tion was observed. The algorithm predicted grading and a poor differentiation level, thus
challenging the histological diagnosis, which may suggest the presence of morphological
characteristics other than changes in gland formation. According to histological grading
analysis, patient 11 had a poorly differentiated adenocarcinoma that had metastasized
to two nearby lymph nodes and the liver, demonstrating a highly aggressive advanced
disease stage. Histological analysis detected neoplastic infiltration into the muscle layer
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and visceral fat. However, nearly all images, 74%, diagnosed by AI suggested a moderately
differentiated grading for the tumor (Table 8).

5. Discussion

Most colon adenocarcinomas have residual adenoma regions, illustrating a high
degree of intratumoral heterogeneity of CRCs that complicates histological diagnosis.
The conventional diagnosis of colon cancer is based on endoscopic, radiological, and
histopathological images [40]. Histological sample isolation by endoscopic biopsy or
polypectomy for the initial diagnosis of colon adenocarcinoma may result in compromises
caused by superficial or poorly oriented tissue collection. In addition, grading based on
glandular differentiation is sensitive to artifacts caused by the subjective definition of
poorly differentiated CRC, the inability to apply grading of CRC histotypes other than
adenocarcinoma not otherwise specified (adenocarcinoma NOS), the dependence of grading
analysis on microsatellite instability, and inter- and intra-observer variability, especially
between G1 and G2 grading [41,42].

While colon cancer grading refers to the aggressiveness of the cancer, tumor staging
indicates the size and spread of the tumor. Although tumor staging has its weaknesses,
particularly in pT3 and pT4 cancers, it remains the most significant prognostic method in
deciding the clinical treatment of a patient [6,43]. However, this is hampered by peritoneal
involvement, which causes marked diagnostic variation even within the same tumor
stage [44]. Based on peritoneal penetration, stage pT4 colon adenocarcinoma is divided into
pT4a, penetration to the visceral peritoneum, and pT4b, penetration to adjacent organs, both
of which have a high probability of developing into peritoneal metastasis. The probability
of pT4 stage cancer developing peritoneal metastasis has significant variability, from 8% to
50%, because of the heterogeneity of pT4 adenocarcinomas [45]. Therefore, tumor staging is
fortified by lymph node metastasis staging to support the prognostic value of the diagnosis,
which is commonly subjective, poorly reducible, and often affected by cancer cell clusters
in the pericolic fat disconnected from the primary tumor (tumor deposits), which can be
satellite tumor nodules or lymph node metastases [45].

Tumor budding (cancer cell aggregates in the invasive part of tumor stroma) has signif-
icant prognostic value in predicting lymph node metastasis, local recurrence, and vascular
invasion [45]. The cells in the aggregates have been demonstrated to have reduced epithe-
lial marker cytokeratin staining and increased mesenchymal vimentin positivity, suggesting
epithelial–mesenchymal transition with subsequently acquired increased invasive potential,
cancer stem cell characteristics, and resistance to cancer drugs [46]. Vascular invasion ob-
served at tumor buds identifies an increased risk of poor survival but has high interobserver
variability, especially when the diagnosis relies only on hematoxylin–eosin staining of the
histological sections without using CD31 or CD34 endothelial cell antibodies [18]. Another
important prognostic marker suggesting aggressive features and poor prognosis is the per-
ineural invasion of cancer cells around nerve fibers and nerve sheaths. It does not correlate
with the pT staging classification, although it can correlate with vascular invasion and lymph
node metastasis [47].

Histological diagnosis can be strengthened with molecular pathology to identify
microsatellite instability, chromosomal instability, CpG island methylation phenotype, and
mutations in EGFR, KRAS, NRAS, and BRAF oncogenes. Molecular pathology is important
in the support of histological diagnosis, the identification of hereditary forms of colon
tumorigenesis, and treatment decisions [48].

Although the current diagnosis of colon cancer relies on several different techniques,
there is a need for further development of an examination methodology to create more
reliable prognostic and predictive diagnoses to support the therapy options. In our study,
the diagnosis of histological patient samples (Table 7) using the developed network architec-
tures corroborates previous observations that the current grading of colon adenocarcinoma
based on glandular differentiation is not adequately accurate [49]. The discrepancy between
the histopathological diagnosis and algorithm-predicted grading of the tumors of patients
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1, 5, 10, and 11 suggests that during the deep learning process, the network architectures
omitted additional criteria from the morphology of hematoxylin–eosin-stained tissue sec-
tions that characterize aggressive cancer type. The data demonstrate that CNNs equipped
with transformers can perform the diagnosis with similar accuracy to a pathologist using
only images of hematoxylin–eosin-stained tissue sections. Therefore, histopathological
digital image patch processing by computer vision deep learning could provide healthcare
professionals with a reproducible and reliable automatic diagnosis of colon carcinoma.

Although CNNs have been used for image segmentation, they originally learned only
short-range spatial dependencies [50]. The segmentation approach based on transformers,
which relies on self-attention mechanisms and pre-training between neighboring image
patches without any convolution operations, has been demonstrated to be more efficient
than CNNs [51]. Other advantages include the ability of transformers to introduce a
loss of feature resolution that is absent in CNN-based analysis and an additional control
mechanism in the self-attention module that improves the image segmentation in medical
applications [52]. However, transformer-based models function adequately only when they
are trained on large-scale datasets or when a set of pre-learned weights is available.

The solution proposed demonstrated a higher potential for two- and three-class clas-
sification tasks than previously published solutions. The data demonstrated higher per-
formance in achieving classification scores for the transformer networks EfficientNet-B1,
EfficientNet-B2, and RegNetY16GF. The accuracy scores showed a significant increase of
2% for the average two classes, 2.08% for the weighted two classes, 3.58% for the average
three classes, and 3.89% for the weighted three classes (Table 9).

Table 9. Comparisons of current ensemble CNN to previous literature.

Model Average (%)
(Binary)

Weight (%)
(Binary)

Average (%)
(3-Classes)

Weight (%)
(3-Classes)

Proposed Solutions

EffB2 96.99 ± 2.94 96.65 ± 3.11 87.58 ± 3.36 85.54 ± 2.21
4.0GF 95.64 ± 0.94 95.37 ± 1.52 84.55 ± 2.57 81.36 ± 1.43
6.4GF 94.31 ± 2.48 94.26 ± 2.15 86.57 ± 2.12 83.58 ± 2.21
T + EffB1 99.67 ± 0.47 99.72 ± 0.39 89.58 ± 4.17 87.50 ± 3.54
T + EffB2 98.66 ± 0.95 98.74 ± 0.91 89.92 ± 2.50 87.22 ± 2.08
T + E11 99.33 ± 0.94 99.44 ± 0.79 90.25 ± 3.74 88.06 ± 3.14

Previous Work

ResNet50 [24] 95.67 ± 2.05 95.69 ± 1.53 86.33 ± 0.94 80.56 ± 1.04
LR+LA-CNN [24] 97.67 ± 0.94 97.64 ± 0.79 86.67 ± 1.70 84.17 ± 2.36
CNN-LSTM [26] 95.33 ± 2.87 94.17 ± 3.58 82.33 ± 2.62 83.89 ± 2.08
CNN-SVM [20] 96.00 ± 0.82 96.39 ± 1.37 82.00 ± 1.63 76.67 ± 2.97
CNN-LR [20] 96.33 ± 1.70 96.39 ± 1.37 86.67 ± 1.25 82.50 ± 0.68

In conclusion, in this study, we developed a novel AI-based colon cancer diagnostic
method. For this purpose, we used manually and automatically designed convolutional ar-
chitectures in classification tasks in the deep learning of colon adenocarcinoma grading from
histological images. Transformer architectures further introduced an attention mechanism
to highlight the most discriminative areas. Finally, we tested the developed ensembling
of networks using patient material. The data demonstrated a substantial improvement
in the learning time and quality of the final diagnosis. The introduced machine learning
strategies could provide healthcare professionals with a computational tool to objectively
evaluate carcinoma, thereby avoiding a bias introduced by different circumstances.

The current data create a foundation for improved cancer diagnosis. Future research
directions will address a larger recruitment of patients to allow for a better assessment of
the proposed methodology. New end-to-end strategies will be studied, including few-shot
and incremental learning strategies, to increase the amount of extracted knowledge in
the process to avoid the need to restart training. Furthermore, knowledge and model
distillation processes will be used to improve the transfer of knowledge from a large model
to a smaller one, which could also be implemented in mobile and low-power devices,
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thereby enabling remote diagnoses for medical professionals. For the future improvement
of visual convolutional networks, we will evaluate the proposed model in the diagnosis
and prognosis of other pathologies, such as neuronal degeneration.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ai5010016/s1, Supplemental Table S1. Patch distribution per fold
and class in the transformer network. Supplemental Table S2. Results for the extended CRC dataset
while integrating the transformer networks.
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Abstract: Neuroimaging experts in biotech industries can benefit from using cutting-edge artificial
intelligence techniques for Alzheimer’s disease (AD)- and dementia-stage prediction, even though it
is difficult to anticipate the precise stage of dementia and AD. Therefore, we propose a cutting-edge,
computer-assisted method based on an advanced deep learning algorithm to differentiate between
people with varying degrees of dementia, including healthy, very mild dementia, mild dementia,
and moderate dementia classes. In this paper, four separate models were developed for classifying
different dementia stages: convolutional neural networks (CNNs) built from scratch, pre-trained
VGG16 with additional convolutional layers, graph convolutional networks (GCNs), and CNN-GCN
models. The CNNs were implemented, and then the flattened layer output was fed to the GCN
classifier, resulting in the proposed CNN-GCN architecture. A total of 6400 whole-brain magnetic
resonance imaging scans were obtained from the Alzheimer’s Disease Neuroimaging Initiative
database to train and evaluate the proposed methods. We applied the 5-fold cross-validation (CV)
technique for all the models. We presented the results from the best fold out of the five folds in
assessing the performance of the models developed in this study. Hence, for the best fold of the
5-fold CV, the above-mentioned models achieved an overall accuracy of 43.83%, 71.17%, 99.06%,
and 100%, respectively. The CNN-GCN model, in particular, demonstrates excellent performance
in classifying different stages of dementia. Understanding the stages of dementia can assist biotech
industry researchers in uncovering molecular markers and pathways connected with each stage.

Keywords: Alzheimer’s disease; image classification; transfer learning; convolutional neural
networks; graph convolutional networks

1. Introduction

Dementia is a complex and debilitating condition that is not a single disease but a
common term encompassing a range of specified medical conditions, characterized by
abnormal brain changes. The cognitive abilities of a person experiencing dementia decline
significantly, which is substantial enough to impair a person’s daily life and ability to
perform self-sustaining tasks. In addition to affecting cognitive abilities, dementia can
significantly impact a person’s behavior, feelings, and relationships. It can cause changes in
a person’s personality and emotional state and impact their ability to form and maintain
social connections. The loss of cognitive functioning that is associated with dementia
can manifest in a variety of ways, including difficulties with memory, language, problem-
solving, and attention. As the condition progresses, these difficulties can become more
pronounced and interfere with a person’s ability to perform daily activities. Some people
with dementia may also experience changes in their behavior, such as increased agitation
or aggression, and struggle to control their emotions [1].
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Dementia refers to numerous cognitive problems that all involve a loss in cognitive
function. The levels of dementia vary and can include a healthy brain (no dementia), mild
dementia, and severe dementia [2]. Because dementia is a progressive condition and its
severity can range from very mild to severe, it is imperative to have models that can classify
disease status and automate the process for classification for both treatment purposes and
drug development. Early on in the condition’s development, a person may only experience
minor difficulties with cognitive functioning and may still be able to carry out many of
their daily activities independently. However, as the condition progresses, these difficulties
become more pronounced, and a person may require more assistance with tasks such as
dressing, bathing, and feeding themselves. When dementia has advanced to later stages,
people may become completely dependent on others for their basic needs and require
round-the-clock care to maintain their health and well-being. Clinical medical professionals
are not easily able to identify disease progression based on behavior and other outward
manifestations of the disease. Hence, a tool for disease classification can advance early
diagnoses and assist in drug development.

One pathway for developing models for assisting in dementia classification is to use
image analysis of brain cells. This is a reasonable approach since dementia manifests
due to harm caused to brain cells, leading to disruption in communication between them.
As a result, this disruption can negatively impact an individual’s behavior, emotions,
and thought processes. Dementia is a prevalent condition that primarily affects older
individuals, with a higher incidence rate among those over the age of 85 [3]. However, it is
not considered a natural aspect of the aging process since many people can live well into
their 90s without experiencing dementia symptoms. Alzheimer’s disease (AD) is the most
frequent type of dementia, though there are many other types [4].

A medical disorder, mild cognitive impairment (MCI) manifests as mild impairments
in cognitive functioning such as memory or thinking. Although the symptoms are more
severe than those typically expected for a healthy individual of the same age, they are
not severe enough to impede daily life and, thus, are not classified as dementia. MCI is
estimated to affect between 5% and 20% of individuals over the age of 65 [5]. While it is
not a form of dementia, it may increase the likelihood of developing dementia in the future.
MCI is a term for a condition that affects the brain. It does not have as severe symptoms
as AD or dementia, and individuals with MCI can still perform their everyday tasks. It is
considered to be in between regular age-related changes and dementia.

Symptoms of MCI include forgetfulness, trouble remembering appointments or events,
difficulty finding words, and, in some cases, problems with movement and sense of smell.
These symptoms do not significantly interfere with daily life but may indicate an increased
risk of developing dementia. MCI does not have a singular cause, and the likelihood of
developing it rises with age. Certain conditions like depression, diabetes, and stroke may
also raise the risk of developing MCI [6].

A neurological disorder, AD progressively impairs memory and cognitive abilities,
ultimately hindering an individual’s ability to perform even basic tasks. Most people with
Alzheimer’s are diagnosed with the late-onset type, which typically manifests in their
mid-60s. Beginning-onset AD, which is much less common, occurs between the ages of 30
and the mid-60s. Among older adults, the most common kind of dementia is caused by AD.
Dr. Alois Alzheimer, for whom the illness is named, discovered changes in the brain tissue
of a patient who died in 1906 from an uncommon mental ailment. She exhibited symptoms
such as language problems, memory loss, and unpredictable behavior. After she passed
away, Dr. Alzheimer investigated her brain and discovered numerous unusual clumps,
now known as amyloid plaques, and tangled bundles of fibers known as tau tangles, which
are still considered among the main features of AD [7].

Some of the main signs of AD that are still known today are the buildup of amyloid
plaque and neurofibrillary tangles in the brain. Along with this, the disease also involves a
decrease in the connections between neurons, which are responsible for sending signals
between different parts of the brain and between the brain and other parts of the body.
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Additionally, it is believed that various other intricate changes in the brain also contribute
to the development and progression of Alzheimer’s. Damage to certain kinds of brain cells
in particular regions of the brain is linked to AD. Abnormally high levels of certain proteins
inside and outside brain cells hinder the health of brain cells and disrupt communication
between them. Memory loss is one of the early signs of AD because the hippocampus,
which is responsible for learning and memory, is frequently the first area of the brain to
experience damage. In the United States, AD is presently the seventh primary cause of
death and the leading cause of dementia in elderly people [7].

Convolutional filters identify the image characteristics of a complex AD image. These
characteristics are the edges, corners, or textures of an image. Each filter detects a feature
and learns its values during training. CNNs detect numerous features concurrently using
multiple convolutional filters. Each filter focuses on a unique element, helping the network
learn hierarchical features from basic edges to complex patterns. Adding pooling layers
after convolutional layers reduces the size of activation maps in space while keeping
important data. After numerous layers, convolutional filters might identify attributes of the
images for the classification of dementia stages [8]. Since convolution and pooling layers
can learn the feature maps accurately, we will use a CNN for feature selection from the
different types of dementia magnetic resonance imaging (MRI) scans.

The initial symptoms of AD differ among individuals. Scientists are investigating
biomarkers, such as biological indicators of disease found in brain scans, cerebrospinal fluid,
and blood, to identify changes in the brain at an earlier stage in those who suffer from MCI
and those without cognitive impairment who may be at increased risk for AD. This study
contributes to providing a mechanism for detecting changes in the brain consistent with
dementia as a diagnostic and clinical tool. With this objective in mind, we developed CNNs,
pre-trained VGG16 with additional convolutional layers, GCNs, and a fusion network
of CNNs with GCNs for classifying different stages of dementia and AD. Knowing the
stages of dementia helps healthcare professionals deliver the best treatments and medicines,
since each stage of the disease has unique symptoms and patterns of progression. Hence,
this paper introduces a CNN-GCN technique, which is a deep learning methodology, to
predict various stages of dementia. The method combines a CNN for feature mapping and
GCN layers for the final classification tasks. The deep learning approach we present may
effectively integrate resilient feature selection and achieve accurate classification of various
stages of dementia. The performance of the model is evaluated using a variety of criteria,
including accuracy, precision, recall, and F1 score, on the test set when training is complete.
With these measures, we can determine how well the CNN- and GCN-based methods
can classify the distinct stages of dementia. We hope that by bringing CNN-GCN to the
problem of dementia-stage classification, we will help improve the medical community’s
ability to diagnose the condition early and help practitioners provide better care for those
who suffer from it.

2. Literature Review

Lim et al. [9] presented a prediction model based on deep learning to predict the
progressive MCI to AD using structural MRI scans. The methodology of the paper involved
training a 3D CNN model on MRI scans of patients with MCI, which aimed to predict
whether a patient will progress to AD within a certain period. The authors evaluated the
proposed model on a dataset of 352 patients with MCI and compared its performance
with several baseline models. The results showed that the proposed deep learning model
achieved a high accuracy of 89.5% in predicting the conversion from MCI to AD, outper-
forming several baseline models. However, one of the main drawbacks of the paper is
the limited sample size of the dataset used for evaluation. Additionally, the study was
conducted retrospectively, and the model was not validated on an external dataset, which
could limit the generalizability of the results. Therefore, further studies with larger and
more diverse datasets are needed to validate the effectiveness of their proposed model.
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A deep-learning-based model was proposed by Basaia et al. for the automated clas-
sification of AD and MCI from a single MRI dataset [10]. The methodology of the paper
involved training a deep neural network model on a dataset of MRI scans from patients
with AD, MCI, and healthy controls. However, one of the main drawbacks of the paper is
that the dataset used for evaluation was relatively small and homogeneous, which could
limit the generalizability of the results to other populations. Additionally, the authors did
not explore the interpretability of the model, which could be an important consideration
for clinical applications. Therefore, further studies are needed to validate the effectiveness
and interpretability of a deep learning model on larger and more diverse datasets.

Jiang et al. [11] presented a deep-learning-based approach for the diagnosis of MCI
using structural MRI images. The methodology of the paper involved training a CNN
model on a dataset of MRI scans from patients with MCI and healthy controls. The authors
evaluated the proposed model on a separate dataset and compared its performance with
several state-of-the-art methods for MCI diagnosis. Overall, 120 participants were tested
using the publicly accessible Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset.
Using a relatively small dataset for model training and validation, they classified MCI
versus healthy controls with 89.4% accuracy. Hence, there is a possibility to obtain higher
accuracy by utilizing a comparatively larger dataset on an advanced graph-based deep
learning model.

Aderghal et al. [12] presented a deep-learning-based approach for the categorization
of different stages of AD using different MRI modalities. The methodology of the paper
involved using transfer learning and fine-tuning a pre-trained CNN model on a dataset
of MRI scans from patients with AD at different stages. The authors evaluated the pro-
posed model on a dataset and compared its performance with several state-of-the-art deep
learning methods for AD stage categorization.

In a related study, Basheera et al. [13] proposed a deep-learning-based approach for
the classification of AD using a hybrid enhanced independent component analysis (ICA) on
the segmented gray matter of MRI. The methodology of the paper involved using a CNN
model trained on a dataset of MRI scans from patients with AD and healthy controls. The
authors preprocessed the MRI images using a hybrid enhanced ICA method to segment
the gray matter regions of interest.

Acharya et al. proposed a system that uses automated techniques to detect AD through
brain MRI images [14]. The study emphasized the importance of the early detection of AD
to improve treatment and patient care. Features were extracted from test images, and the
dominant features were identified using the Student’s t-test (ST). A KNN classifier was used
to classify the test images based on their features. The ST + KNN technique provided better
classification performance measures and outperformed the SVM (polynomial), RF, and
Adaboost classifier methods. Hence, feature extraction plays a vital role in obtaining higher
accuracy for classifying AD stages. So, we applied several feature selection techniques to
our dataset before applying the proposed models.

Nagarathna et al. [15] proposed a method known as a multilayer feedforward neural
network (MFNN) to categorize the stages of AD. The study used a dataset of MRI images
obtained from the ADNI database. The images were preprocessed to remove noise and
artifacts, and features were extracted. The extracted features were used to train and test
the MFNN classifier. The feature extraction model consisted of five sets of convolutional
blocks, and the classifier model used a multilayer feedforward network with three layers,
including a hidden layer and an output layer. The results showed that the proposed model
performed well on this dataset, even though the study had some limitations, such as a
small dataset size and a lack of comparison with other classification techniques. In our
study, we developed the CNN model for feature extraction, consisting of five blocks of
convolutional layers.

Using medical imaging data, Kapadnis et al. [16] proposed an approach that explored
the use of deep learning techniques for the detection of AD. The authors used CNNs for
feature extraction and a support vector machine (SVM) for classification. The study first
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preprocessed the images and then extracted features using CNNs. The SVM was trained
on these features to classify the images as either healthy or AD. The study highlights the
potential of deep learning techniques for detecting AD, which can aid in early diagnosis and
treatment. AI systems’ capacity to learn intricate details through nonlinear transformations
could produce promising results for the identification of AD. The study concludes by
emphasizing the need for further research to improve the accuracy and efficiency of AD
detection using AI techniques.

To distinguish between patients with MCI and AD by incorporating information about
the thickness and geometry of the cortex, Wee et al. [17] proposed a method in which a
neural network called a spectral graph CNN can be used. The suggested method used a
spectral graph CNN framework to find the difference between AD and MCI and predict
when MCI will turn into AD. The spectral graph CNN outperformed voxel-based CNN
models and achieved balanced prediction for imbalanced sample sizes. The framework was
also effective in predicting MCI-to-AD conversion. The authors suggested that the model
could be applied to other brain imaging data and be integrated with other classification
approaches on multi-modal brain image data for further improvement.

Guo et al. [18] described a way to use hierarchical GCNs on positron emission tomog-
raphy (PET) imaging data to predict AD. They called it PETNet and used PET images from
the ADNI 2 dataset for validation and evaluation. The ResNet-50 network was used for
training the model with pre-trained weights. PETNet achieved similar performance to the
pre-trained ResNet-50 for binary classification (MCI/NC) but outperformed ResNet-50
for MCI staging (EMCI/LMCI/NC). The limitations, including graph construction and
inference, are still inconclusive issues in the fields of neuroimaging and medical image
analysis. Additionally, there are difficulties in choosing the appropriate metrics and weight
among different graph inference methods and in applying manifold learning.

Park et al. [19] used PET scans to create CNN-LSTM and 3D CNN models that can
predict the difference between people with MCI and AD and those who do not have
cognitive impairment (CU). The features were extracted using CNN layers, and then the
flattened layer was passed as input into the LSTM. The area under the curve (AUC) for
the classification of AD from the CU method was 0.964 using the CNN-LSTM. Since their
proposed CNN-LSTM performed very well, we propose the CNN-GCN architecture to
obtain higher accuracy for classifying different dementia stages.

Tajammal et al. [20] constructed a deep-learning-based ensembling technique that
aimed to effectively extract features from input data and attain optimal performance. The
experimental findings indicated that their method achieved an overall average accuracy
of 98.8% for the classification task, including AD, MCI, and CN. They applied binary
classification techniques for different classes. In our study, we performed multi-class
classification for different dementia stages.

Liu et al. [21] came up with a new way to use a 3D deep CNN to predict the difference
between people with mild Alzheimer’s dementia, MCI, and CN by analyzing structural
MRIs. The deep learning model demonstrated a high level of accuracy, achieving an AUC
of 85.12 when differentiating between CN people and patients with either MCI or mild
Alzheimer’s dementia. Even though much research has been developed based on the CNN
model for predicting AD dementia, there is active research ongoing to develop a more
accurate prediction model by improving the CNN model. So, in our study, we developed
an advanced CNN-GCN model for accurate dementia-stage prediction.

Building off the aforementioned work, our proposed method contributes to the lit-
erature in the following ways. First, Adeghal et al. [12] and Basheeraa et al. [13] used
CNN-based approaches for their studies, but each study’s purposes and methods differed.
Adeghal et al. aimed to improve the categorization of AD stages through transfer learn-
ing using MRI data, while Basheeraa et al. focused on classifying AD using a hybrid
enhanced ICA segmentation of gray matter in MRI images. In contrast, our study uses
cutting-edge preprocessing methods and presents the pre-trained VGG16 model based on
transfer learning with additional convolution layers to better identify the different stages of
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dementia. Moreover, we implement this advanced deep learning method on a more diverse
multi-class dataset than in these previous studies. In a manner similar to [16,19], we utilize
a CNN model for feature selection and GCNs for classifying the different AD stages, but
anticipate that our proposed (CNN-GCN) method has higher accuracy in detecting AD
compared to the CNNs-only model. Additionally, we work with a multi-class imbalanced
dataset, as in [17], so GCNs could be a better classification technique for predicting different
dementia stages. Finally, building upon [18], we use a highly accurate GCN model with
appropriate graph construction techniques, metrics, and weights in this study to improve
their proposed GCN model for dementia-stage classification.

3. Methodology
3.1. CNNs

CNNs are popular for image classification tasks due to their ability to automatically
learn and extract features from images. CNNs have attained state-of-the-art performance
in image classification tasks, often outperforming traditional machine learning algorithms.
This is because CNNs can learn to identify complex features in images, such as edges,
corners, and textures, without the need for explicit feature engineering. CNNs are designed
to mimic the visual cortex of the brain and consist of several layers, including convolutional
layers, pooling layers, and fully connected layers. Generally, convolutional layers apply
a set of filters to the input image, which results in feature maps highlighting different
aspects of the image. Pooling layers reduce the spatial dimensionality of the feature maps
by selecting the most important features. Finally, the fully connected layers use the features
to classify the image into different categories.

We applied a 5-fold cross-validation technique (a grid search on the validation set)
to find the optimal layer size and network hyperparameters (learning rate, regulariza-
tion, etc.). The original training set was divided into a new training set and a validation
set with proportions of 80% and 20%, respectively. We used cross-validation to tune the
hyperparameters and layer sizes on the following grid: 1× 10−k for k = 1, . . . , 5 and 2i

for i = 4, . . . , 10, respectively. Additionally, we tried different hyperparameters using the
KerasTuner. This eliminates the difficulties associated with the hyperparameter search with
its user-friendly and extensible optimization framework [22]. We utilized various search
methods to discover the optimal values for our model’s hyperparameters after configuring
the search space using a define-by-run syntax.

The proposed CNN architecture consists of five convolutional layers, followed by
ReLU activation, batch normalization (BN), and max pooling. The first two convolutional
layers have 32 and 64 filters of size 4 × 4, respectively. The third convolutional layer has
128 filters of size 1 × 1. The fourth convolutional layer has 256 filters of size 1 × 1. The fifth
convolutional layer has four filters of size 1 × 1, corresponding to the dataset’s number of
classes. The output of the fifth convolutional layer is flattened and passed to the final layer,
which is a softmax layer that outputs the class probabilities. The L2 regularization loss of
the weights is used to prevent overfitting.

3.2. VGG16 with Additional Convolutional Layers

A pre-trained neural network architecture for image classification is utilized in our
work to develop a more advanced CNN model. The network architecture is made by
following VGGNet, a popular neural network architecture for image classification.

VGGNet [23] is a CNN architecture that was introduced in 2014. VGGNet is known for
its straightforward architecture, which consists of 16–19 convolutional layers and three fully
connected layers. The convolutional layers are designed to extract features from the input
image, while the fully connected layers are responsible for the classification task. VGGNet
has been used in various computer vision applications, such as image classification, object
detection, and semantic segmentation. One of the main benefits of VGGNet is its simplicity,
which makes it easy to understand and implement. The uniform architecture of VGGNet
also allows for easy experimentation with different layer configurations, which can be
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useful for fine-tuning the performance of the network. Additionally, VGGNet has achieved
state-of-the-art results on several image classification benchmarks, such as the ImageNet
Large Scale Visual Recognition Challenge. However, VGGNet’s simplicity can also be a
disadvantage in some cases. The large number of parameters in the network can make it
difficult to train, especially with limited computational resources. VGGNet is also relatively
slow compared to some other convolutional neural network architectures due to its large
number of parameters and layers.

To further improve the performance of the pre-trained VGG16 architecture, we added
five additional convolutional layers, a max pooling layer, a BN layer, and a ReLU activation
layer. The number of layers, the sizes of the layers, and several other hyperparameters
were modified in accordance with the cross-validation methods described earlier.

3.3. GCNs

In this part, we provide a comprehensive analysis of GCNs from distinct viewpoints.
Additionally, we designed an upgrade to the current system by integrating CNNs with
GCNs. This modification makes existing GCNs more suitable for the dementia and AD
image classification problem.

At first, we cover some fundamentals of GCNs, such as the definitions and notation,
as well as the formation of graphs. One-to-many relationships in non-Euclidean spaces
can be explained through the use of graphs, which are highly nonlinear data structures.
Here, an undirected graph is represented by G = (V, E), where V and E stand for the sets
of vertices and edges. The AD images serve as the vertex set, while the similarities between
any pair of vertices (Vi and Vj) constitute the edge set. The connections between vertices are
specified by the adjacency matrix, A. In our case, when two images are from the same class,
we use the label 1, otherwise, we use the label 0 to generate the adjacency matrix. After
obtaining A, the appropriate graph Laplacian matrix L is computed using the following
equation: L = D− A and the degrees of A are represented by the diagonal matrix D, where
Di,i = ∑j Ai,j.

The symmetric normalized Laplacian matrix (Lsym) can be utilized to improve the
graph’s generalization, capitalizing on the decomposition Lsym = D−1/2LD−1/2. For
example, the propagation rule for GCNs is

Hl+1 = h(D−1/2LD−1/2HlW l + bl)

The output of the lth layer is denoted by H(l), and the activation function ReLU is
denoted by h(•), where W(l) and b(l) are the weights and biases of the layers that must
be learned.

GCNs Architecture

The GCNs architecture is used to classify data represented as graphs, with each node
representing a feature and each edge representing a relationship between nodes. The
input layer receives the feature matrix of the graph as input. GCN layers use the graph’s
Laplacian matrix and learnable weights to perform a graph convolution operation on the
input. Finally, the output layer produces the final classification output.

The GCNs architecture defines several helper functions for creating placeholders,
initializing parameters, performing GCN operations, and optimizing the network. It
also defines a function for training the network and returning it’s accuracy. The training
function takes in training and validation data, as well as the Laplacian matrix of the graph.
It initializes the network’s parameters, creates the placeholders for the input data, and
defines the loss and optimization functions. We utilized the Xavier uniform initializer, then
trained the network and returned the accuracy on the test set. We utilized the Proximal
Adagrad Optimizer as an optimization function, although we tried other optimizers to
determine the best performer. With K = 5, we used a KNN-based graph to calculate
the adjacency matrix A. Before providing the features into the softmax layer, the GCNs
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implement a 128-unit graph convolutional hidden layer, similar to the CNN architecture
described above.

3.4. CNN-GCN Architecture

Hong et al. [24] proposed the FuNet architectures that use a range of models and/or
features to make it easier to predict the difference between features by training CNNs
and GCNs at the same time to classify hyperspectral images. Additive (A), elementwise
multiplicative (M), and concatenation (C) were the three fusion procedures by combining
miniGCNs with the CNN model that were taken into consideration for their study. In
this study, we proposed a novel fusion network by integrating CNNs with GCNs and
considering the resulting features from CNNs before the final classifications of all the classes
by GCNs. The proposed fusion network architecture (CNN-GCN) is an implementation
of our previously mentioned CNN model for feature extraction and the GCN model to
classify the graph nodes. So, in short, the features extracted from the CNN model are fed
into the GCN classifier model to obtain the four nodes representing the class probabilities.

In Figure 1, the first convolution block to the fourth block consist of the convolution
layer, BN layer, 2D max pooling layer, and the ReLU layer. We utilize three-dimensional
input images with a height of 224 and a width of 224, and the number of channels is 3.
Furthermore, it is worth noting that the receptive fields throughout the spatial and spec-
tral domains for every single convolutional layer are expressed as follows: 4 × 4 × 32,
4 × 4 × 64, 1 × 1 × 128, and 1 × 1 × 256, respectively. We kept the number of filters in the
early levels relatively low, and then, progressively increased the number as we moved
deeper into the layers. The final block consists only of the convolution before flattening the
features. Hence, we obtained the future maps by utilizing these five convolution blocks.
After obtaining the feature maps by training the CNNs, we determined the adjacency
matrix, training, validation, and test data to classify the four dementia stages. In GCNs,
V represents vertexes, W indicates hidden features in the GCN layer, R denotes hidden
features through the ReLU layer, Z represents hidden features in the softmax layer, and Y
represents outcomes, respectively. The model has a single hidden layer with 128 nodes, and
the output layer has 4 nodes representing the class probabilities. The input data consists
of two parts: a feature vector and an adjacency matrix representing the graph structure.
The feature vector is passed through a GCN layer to produce the hidden representation.
The hidden layer is concatenated with a convolutional layer to process the feature vector
representation of the graph and pass it through graph convolutional layers before being
flattened to a vector. The final output is obtained by passing the flattened vector through a
fully connected layer with four nodes. We trained the CNN-GCN model twice since, at
first, the CNNs layers were trained to obtain robust feature maps and GCN layers were
trained to classify the dementia stages.

Figure 1. The architecture of the proposed CNN-GCN model.

Gradient-weighted class activation mapping (Grad-CAM) [25] is a technique used
to precisely determine the specific features of input images that a model must capture.
It achieves this by analyzing the gradients of a target concept which flow into the final
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convolutional layer. Grad-CAM then generates a coarse localization map that highlights
the significant regions in the image that are crucial for improving the prediction accuracy.
In Figure 2, we visualized how the Grad-CAM method makes the CNN-GCN model’s
outputs clearer for the input images so that the proposed CNN-GCN model can predict the
stages of dementia perfectly. Hence, Grad-CAM uses targeted processing and captures the
key image features to maintain the CNN-GCN model’s accuracy and robustness.

(a) Original image (b) Grad-CAM image

Figure 2. Moderate dementia image: (a) original and (b) Grad-CAM image.

4. Results

There are several performance indicators that we assess, such as overall accuracy, F1
score, recall, and precision, for determining the model’s performance in classifying different
dementia stages. The F1 score is a metric that calculates the weighted average of recall and
precision, whereas accuracy measures the proportion of properly classified individuals.
Following the development of the models, several metrics were utilized in order to adjust
parameters. The 5-fold cross-validation method is utilized to determine the performance
of each model. Performance assessments are conducted using a multi-class approach and
are represented by the confusion matrix. In the results section, we display the figures of
loss, accuracy, confusion matrix, and the table of classification scores based on the best
fold outputs from the 5-fold cross-validation for all models. Instead of displaying the
loss, accuracy, and confusion matrix obtained from all folds of the 5-fold cross-validation,
displaying the best fold outputs is better since it is not messy for following the outputs of
this study. Moreover, AD- and dementia-stage prediction is crucial, since having knowledge
about the stage enables physicians to have a more comprehensive understanding of the
impact of the disease on the patient.

4.1. Data Description

The ADNI dataset is the most widely used structural and functional brain imaging
scan in AD research to accelerate understanding and treatment development. We collected
6400 raw images from the ADNI database. There are four different categories, including
healthy people, very mild, mild, and moderate dementia patients.

In Figure 3, we can see that we have 3200 healthy cases, 2240 very mild cases, 896 mild
cases, and 64 moderate cases for training and testing the models.
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Figure 3. Total number of images by each category.

4.2. Preprocessing

The dataset used for dementia and AD analysis primarily consisted of MRI image data;
however, the available data were imbalanced. So, there is an overwhelming dominance of
samples from a single class over those from any other class. Data preprocessing techniques
were employed to augment the dataset to address this issue. Two distinct augmentation
methods, namely, Gaussian noise addition and rotation, were applied. The purpose of
data augmentation was to increase the quantity of data in the dataset, thereby preventing
overfitting of the model. The Gaussian noise addition process involves adding noise to a set
of input images to augment the dataset by introducing variations to the images. Gaussian
noise, with a specified standard deviation, is generated randomly and added to each image.
This process creates noisy versions of the original images, allowing for a larger and more
diverse dataset and, ultimately, more accurate predictions. By increasing the amount of data
and introducing randomness, the model trained on this augmented dataset is less likely to
overfit the available data, leading to potentially improved performance and generalization.
Rotation is another way image augmentation is performed by applying random rotations
to the image dataset. A random rotation angle within the specified range is generated, and
the image is rotated accordingly. Random rotation of each image creates variations in their
orientation. This process ensures that the augmented images are saved in a structured
manner, replicating the directory structure of the original dataset. The implementation
applies image augmentation to a collection of images. This process enhances the dataset by
generating diverse versions of the images, which can be beneficial for subsequent analysis
or training purposes.

4.3. Network Implementation

The TensorFlow platform is utilized to build the CNN and GCN networks, and the
Adagrad optimizer [26] is employed to optimize the networks. The “exponential” learning
rate strategy allows for the dynamic updating of the current learning rate by multiplying a
base learning rate (such as 0.001) by every epoch. The maximum number of epochs allowed
during network training is 100. The 0.8 momenta are used with BN [27], and the training
phase’s batch size is 32. Additionally, the weights are subject to a 2-norm regularization
with a 0.001 setting to stabilize network training and minimize overfitting.
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4.4. Evaluation Metrics

For each class of the dataset that was provided per model, we calculated the F1
score (4), precision (2), recall (3), and accuracy (1) to evaluate the performance of the
proposed techniques. True positive (TP) is the number of images that are correctly classified
as being in a particular class. False positive (FP) is the number of images that should belong
to another class but are mistakenly assigned to that class. False negative (FN) is the number
of images that are part of a class but are mistakenly assigned to another class. The number
of images that are accurately classified as belonging to a different class are considered to be
true negatives (TNs).

accuracy =
TP + TN

TP + FP + FN + TN
× 100 (1)

precision =
TP

TP + FP
(2)

recall =
TP

TP + FN
(3)

F1-score = 2× precision× recall
precision + recall

(4)

In Figure 4, the value of the loss function is plotted against the number of completed
iterations. Both the training and testing losses decreased for the first fifty iterations, even
though the testing losses became stable. So, there is a deviation between the training and
testing phases after approximately 50 iterations because of the complexity of the model.
The CNN model has a high capacity to fit enough parameters of the training data that
obstructs the model’s capacity to generalize on testing data.

Figure 4. Epoch versus cost for the CNN model.

The accuracy vs. iterations curve provides us with the information we need to validate
the performance of the CNN model. In Figure 5, we can see that both the training and
testing accuracy are increasing. This indicates that the learning progress of this model is
rising to the point of 100 iterations, beyond which point it stays constant when we run it for
a greater number of iterations. So, in the case of accuracy, there was not a huge deviation
between the training and testing phases.
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Figure 5. Epoch versus accuracy for the CNN model.

The confusion matrix that was produced for the CNN model is shown in Figure 6 for
the classification of the healthy, very mild, mild, and moderate classes. Even though there is
no correct prediction of the moderate class, the number of correctly predicted healthy class
cases is 445; the number of correctly predicted very mild class cases is 100; and the number
of correctly predicted mild class cases is 16. Due to the fact that there are only 64 images of
the moderate class, it is difficult to make a precise prediction of the moderate class.

Figure 6. Confusion matrix for the CNN model.

The F1 score, precision, and recall of each of the classes that comprise the CNN model
are detailed in Table 1. The overall accuracy of this model is calculated to be 43.83%. The
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F1 score for the healthy, very mild, mild, and moderate classes are 0.59, 0.30, 0.10, and 0.
The CNN algorithm properly predicted 561 out of 1280 test images. According to Table 1,
the category that was predicted with the greatest degree of precision was healthy, while the
category that was predicted with the least degree of precision was moderate dementia.

Table 1. Classification scores for the CNN model.

Class n (Classified) n (Truth) F1 Score Recall Precision
Healthy 853 645 0.59 0.69 0.52

Very Mild 223 452 0.30 0.22 0.45

Mild 152 173 0.10 0.09 0.11
Moderate 52 10 0 0 0

In Figure 7, the value of the loss function is plotted against the number of completed
iterations. Initially, the loss was high due to random parameters, but it started decreasing
when the number of iterations increased. After iteration 40, both the training and testing
losses were stable for the VGG16 with additional convolution layers.

Figure 7. Epoch vs. cost for the VGG16 with additional convolutional layers model.

We can verify the VGG16 with additional convolutional layers model’s performance
from the accuracy versus iteration curve. In Figure 8, we can see that the training and
testing accuracy is around 80% which shows that the learning progress of this model is
increasing until 40 iterations and remains fixed after that.

In Figure 9, the confusion matrix for the VGG16 with additional convolutional layers
model for the classes healthy, very mild, mild, and moderate is shown. The number of
correctly predicted healthy classes is 505, the very mild class is 383, and the mild class is 23,
even though there is no correct prediction of the moderate class out of 13 moderate class
test images. Since there are only 64 moderate class images, there is very little chance for a
correct prediction of the moderate class.
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Figure 8. Epoch vs. accuracy for the VGG16 with additional convolutional layers model.

Figure 9. Confusion matrix for the VGG16 with additional convolutional layers model.

Table 2 describes the F1 score, precision, and recall of all the classes for the VGG16
with additional convolutional layers. The overall accuracy is 71.17% for this model. The
F1 scores for the healthy, very mild, mild, and moderate classes are 0.83, 0.68, 0.23, and 0.
Out of 1280 test images, our model correctly predicts 911. Table 2 shows that the class
most accurately predicted is healthy, while the class least accurately predicted is moderate
dementia. Since there are a very small number of moderate class images, the model
performance for this class is very low.

120



AI 2024, 5

Table 2. Classification scores for the VGG16 with additional convolutional layers model.

Class n (Classified) n (Truth) F1 Score Recall Precision
Healthy 553 667 0.83 0.76 0.91

Very Mild 701 429 0.68 0.87 0.55

Mild 26 171 0.23 0.13 0.88
Moderate 0 13 0 0 0

The loss function’s value versus the number of iterations is shown in Figure 10. The
GCN model’s loss decreased for the training and testing images, even though the loss was
very high initially. After iteration 18, the cost was fixed at around zero for both the training
and testing images.

Figure 10. Epoch versus cost for the GCN model.

The accuracy versus iteration curve gives us the evidence we need to verify the GCN
model’s efficacy. Figure 11 shows a rise in accuracy throughout both training and testing
until it becomes fixed close to 1. This shows that the model’s learning rate increases up to
about 20 iterations, after which it levels off and remains constant.

For the categorization of healthy, very mild, mild, and moderate, the GCN model’s
resulting confusion matrices are shown in Figure 12. The total number of correctly predicted
healthy cases is 640; for very mild cases, this is 448; and for mild class cases, this is 180,
although no moderate cases were identified in any of the 12 test images. Even though the
GCN model was able to predict all of the other category images accurately, it was unable to
predict the moderate dementia cases.

Table 3 shows the F1 score, precision, and recall of the GCN model for each class. This
model is estimated to have a global accuracy of 99.06 percent. The F1 scores for the healthy,
very mild, mild, and moderate classes are 1, 0.99, 1, and 0. Out of a total of 1280 test images,
the GCN algorithm successfully predicted 1268. The most accurate prediction was made
for the healthy and mild categories, while the least accurate prediction was made for the
moderate dementia category.
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Figure 11. Epoch versus accuracy for the GCN model.

Figure 12. Confusion matrix for the GCN model.

Table 3. Classification scores for the GCN model.

Class n (Classified) n (Truth) F1 Score Recall Precision
Healthy 640 640 1 1 1

Very Mild 460 448 0.99 1 0.97

Mild 180 180 1 1 1
Moderate 0 12 0 0 0
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Figure 13 depicts the loss function’s value versus the number of iterations. Even
though the loss was initially quite high for the test images, the CNN-GCN model’s loss
decreased abruptly for the test images. After the first couple of iterations, the cost for both
training and testing images became fixed at approximately zero.

Figure 13. Epoch versus cost for the CNN-GCN model.

The accuracy versus iteration curve provides the evidence necessary to confirm the
efficacy of the CNN-GCN model. Figure 14 depicts a rise in accuracy during both training
and testing until it approaches 1 and stabilizes. This demonstrates that the model’s learning
rate increases after a couple of iterations before leveling off and remaining constant.

Figure 14. Epoch versus accuracy for the CNN-GCN model.
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Figure 15 displays the confusion matrices produced by the CNN-GCN model for
the categorization of the healthy, very mild, mild, and moderate classes. The number of
correctly predicted healthy cases is 641, the number of very mild cases is 448, the number
of mild cases is 179, and the number of moderate cases is 12. All category images are
predicted correctly using the CNN-GCN model.

Figure 15. Confusion matrix for the CNN-GCN model.

Table 4 shows the F1 score, precision, and recall of the CNN-GCN model for each
class. We obtained an overall accuracy of 100% from the CNN-GCN model. The F1 scores
for the healthy, very mild, mild, and moderate classes are 1, 1, 1, and 1, respectively. The
CNN-GCN algorithm successfully predicts all of the 1280 images.

Table 4. Classification scores for the CNN-GCN model.

Class n (Classified) n (Truth) F1 Score Precision Recall
Healthy 641 641 1 1 1

Very Mild 448 448 1 1 1

Mild 179 179 1 1 1
Moderate 12 12 1 1 1

Our proposed CNN-GCN model achieves 100% accuracy on both the training and test
data and may overfit the training data by capturing even irrelevant and abnormal patterns,
such as noise and outliers. Consequently, the model may exhibit sub-par performance
when presented with novel, unfamiliar data. The high accuracy may indicate a lack of
generalizability of the model to novel contexts or datasets. This is particularly crucial when
dealing with health-related data since it might exhibit significant variability. Hence, it is
important to verify the accuracy of the CNN-GCN model by using distinct test datasets
and ensuring its efficacy in real-world scenarios rather than just relying on controlled
experimental settings. So, we collected a separate dataset for implementing our proposed
CNN-GCN model. Neeraj [28] provided a dataset to Kaggle, which consists of 2D images
collected from the ADNI baseline dataset that were originally Nifti images. The dataset
has three distinct classes: AD, MCI, and CN. After implementing our proposed CNN-GCN
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model, we presented the confusion matrix in Figure 16 to categorize the AD, MCI, and CN
classes. There are 8 accurately predicted instances of AD, 21 cases of MCI, and 15 cases of
CN. The CNN-GCN model accurately predicted all of the category images. This illustrates
the potential for its use with novel and unfamiliar data.

Figure 16. Confusion matrix for the CNN-GCN model for classifying AD, MCI, and CN.

5. Discussion

Dementia includes the very mild, mild, and moderate cognitive impairment phases
that may or may not evolve into AD. The most common kind of dementia is AD. AD and
other cognitive impairments fall under the general category of dementia. Because the
cognitive impairment stages are the time during which AD may or may not develop, it
is of the utmost importance to appropriately identify individuals during this stage [29].
Identifying and diagnosing the illness at its various phases helps doctors come up with
more effective therapy and management solutions.

So, in this study, we developed a CNN model, a transfer-learning-based CNN model,
a GCN model, and the proposed fusion network model (CNN-GCN) for identifying AD
and dementia stages.

In Table 5, HC, CN, MCI, EMCI, and AD represent healthy control, normal control,
mild cognitive impairment, early mild cognitive impairment, and Alzheimer’s disease,
respectively. We can see that the above works are based on different datasets and different
methods. Some authors considered multi-class classification, and others considered binary
classification. Since our approach, CNN-GCN, is a new approach for classifying the healthy,
very mild dementia, mild dementia, and moderate dementia classes, no one has utilized
this technique for classification tasks. We present each method’s accuracy, which is defined
as the percentage of accurate predictions on the test set.

In Table 6, we presented the GPU times in seconds for the four methods. We can
see that the CNN, pre-trained VGG16 with additional convolutional layers, GCN, and
CNN-GCN models took 411, 2364, 64, and 95 seconds, respectively, by using the NVIDIA
T4 Tensor Core GPU for completing 100 epochs. The CNN-based methods are more
computationally expensive compared to the GCN model. Our proposed CNN-GCN model
is less computationally expensive and provides better accuracy.
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Table 5. Review of selected existing works for the classification of AD and MCI.

Paper No. of Classes CNNs Pre-Trained
VGG GCNs CNN-GCN ResNet-50 VGG16-SVM

Our work Multi-class (4 way) 43.83% 71.17% 99.06% 100% 59.69%

Lim et al. [9] Multi-class (3 way: CN vs. MCI
vs. AD) 72.70% 78.57% 75.71%

Jiang et al. [11] Binary (EMCI vs. NC) 89.4%

Payan et al. [30] Binary (AD vs. HC, MCI vs. HC,
AD vs. MCI)

95.39%, 92.13%,
86.84%

Khvostikov et al. [31] Binary (AD vs. HC, MCI vs. HC,
AD vs. MCI)

93.3%, 73.3%,
86.7%

Valliani et al. [32] Multi-class (3 way: AD vs. MCI
vs. CN) 49.2% 50.8%

Helaly et al. [33] Multi-class (4 way: AD vs. EMCI
vs. LMCI vs. NC) 93%

Table 6. Numerical comparison of the GPU times for all the models.

Model CNNs VGG16 with Additional Convolutional Layers GCNs CNN-GCN
GPU time (s) 411 2364 64 95

The performance of the models differed significantly. The performance of the CNN
model was very poor compared to other models. By performing hyperparameter tuning,
we found Adagrad to be the best optimizer. Additionally, we tried several optimizers,
like gradient descent, Adam, RMSprop, and the proximal Adagrad optimizer. Since the
AD MRI dataset is imbalanced, the performance of the CNN model was not sufficiently
accurate in all cases.

We incorporated the VGG16 transfer learning model with the five additional convolu-
tional layers to improve the performance of the CNN model. By utilizing the VGG16 model
with additional convolutional layers, we obtained better accuracy compared to our devel-
oped CNN model. To determine the best transfer learning model, we also implemented the
DenseNet, MobileNet, InceptionNet, and ResNet transfer learning models and received an
overall accuracy of 70.70%, 70.37%, 65%, and 59.69%, respectively. We found that VGG16 is
the best transfer learning model in our case. Although the VGG16 with additional convolu-
tional layers model’s performance seems to be behind that of competing approaches, our
findings are on par with other CNN models developed so far for biomedical imaging.

Even though CNN-based models are very popular for analyzing image datasets, we
developed the GCN model for AD- and dementia-stage prediction. This is due to the
fact that GCNs give a strong and flexible representation of the connections between the
many components in a complex AD image. Often, the AD MRI images include complicated
structures, patterns, and interactions, all of which are amenable to being comprehended and
examined to a greater degree by using graph-based methods. The graph-based methods
were helpful in the prediction since they take into account the global context and linkages,
which assists in mitigating the impacts of class imbalance. For the GCN and CNN-GCN
models, we applied hyperparameter tuning and the above-mentioned optimizers. We
received almost perfect accuracy in each case. The GCN model’s overall accuracy was
99.06% and correctly predicted healthy, very mild, and mild dementia classes, but could
not correctly predict any of the moderate dementia class test images. We then utilized
our proposed CNN-GCN fusion network to classify the AD and dementia stages. We
developed the same GCN model but utilized the features from the CNN model as input
data for the CNN-GCN model. So, we obtained an overall accuracy of 100% by using the
CNN-GCN model, which is supplied with features that have been extracted from CNNs.
Only the CNN-GCN model was able to predict the moderate class test images accurately,
whereas all the other previously mentioned models could not predict them correctly. This
study provides evidence that a CNN-GCN modeling approach can work well and obtain
high accuracy for applications involving imbalanced data.
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6. Conclusions

To sum up, we created four models for identifying healthy, very mild, mild, and
moderate dementia patients by utilizing both CNN- and GCN-based algorithms. When
compared to the CNN model, the performance of the pre-trained VGG16 with additional
convolutional layers model is superior. Moreover, when measured against different works
in the literature, its performance is regarded as satisfactory. Even though we achieved an
overall accuracy of 99.06% by utilizing the GCN model, it could not accurately predict
any of the 12 test images from the moderate stage of dementia. The CNN-GCN model
demonstrated the highest F1 score, precision, and recall, as well as an overall accuracy
of 100%, out of all the algorithms that we examined. The CNN-GCN model was able to
predict all the classes accurately, including the 12 test images from the moderate class. The
major limitation of this project is the imbalanced dataset. Although it is common to have
low accuracy for an imbalanced dataset in the field of biomedical imaging, our proposed
GCNs and CNN-GCN models worked excellently with the imbalanced dataset. This
model’s performance may not be helpful for clinical diagnosis, but it marks a significant
development in the classification of AD and different stages of dementia.
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Abstract: In the age of artificial intelligence (AI), technological progress is changing established
workflows and enabling some basic routines to be updated. In dentistry, the patient’s face is a crucial
part of treatment planning, although it has always been difficult to grasp in an analytical way. This
review highlights the current digital advances that, thanks to AI tools, allow us to implement facial
features beyond symmetry and proportionality and incorporate facial analysis into diagnosis and
treatment planning in orthodontics. A Scopus literature search was conducted to identify the topics
with the greatest research potential within digital orthodontics over the last five years. The most
researched and cited topic was artificial intelligence and its applications in orthodontics. Apart
from automated 2D or 3D cephalometric analysis, AI finds its application in facial analysis, decision-
making algorithms as well as in the evaluation of treatment progress and retention. Together with AI,
other digital advances are shaping the face of today’s orthodontics. Without any doubts, the era of
“old” orthodontics is at its end, and modern, face-driven orthodontics is on the way to becoming a
reality in modern orthodontic practices.

Keywords: artificial intelligence; 3D printing; face scan; CBCT; facial analysis; treatment evaluation;
treatment planning

1. Introduction

Modern orthodontics (orthodontics of the 21st century) has been shifting from “occlusion-
driven” to “face-driven”. The term “soft tissues paradigm” emerged at the end of the 20th
century and stressed the importance to approach each patient requiring any kind of or-
thodontic treatment as an individual with a specific appearance, a unique facial composition
and, last, but not least, their own expectations, while putting the aesthetics in focus [1]. In
contrast, the Angle paradigm considered the ideal dental occlusion as paramount. In so
doing, the role of soft tissues was completely disregarded or, at best, understated. With
ever-evolving digital technologies and artificial intelligence, as well as established aesthetic
rules and guidelines based on the assessment of anatomy, physiognomy and natural aes-
thetic parameters, the advent of advanced diagnostic methods as well as novel treatment
modalities is underway [2].

Traditionally, an orthodontic treatment plan was based purely on hard tissue relation-
ships as diagnosed using dental cast models and 2D cephalometric X-ray analyses [3]. At
the end of the 20th century, the cone-beam CT (CBCT), consisting of a cone-shaped beam
of X-rays and a reciprocating detector rotating around the patient, was introduced, which
enabled obtaining 3D images with lower radiation doses compared to conventional CT
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scans [4]. With the increasing availability of cameras (especially digital cameras), taking
intraoral and extraoral pictures before and after treatment has become a part of orthodontic
documentation to help assess the impact of treatment on patients’ dental arches and—to
some extent—on their facial appearance. However, there are some limitations to the two-
dimensional “reality”. Three- and four-dimensional imaging methods have been developed
to compensate for the missing depth in standard pictures. Active stereophotogrammetry is
based on the analysis of a detected image that is projected on the scanned object. Passive
stereophotogrammetry merges multiple pictures from different angles and computes one
3D object [5]. Adding the element of time to diagnostics allows for more detailed analyses,
e.g., in cases of patients suffering from a cleft lip and/or palate or with facial asymmetries,
while age is also an important diagnostic factor [6,7].

Intraoral scanning, laser scanning, cone-beam CT (CBCT), stereophotogrammetry and
3D images form a crucial part of modern orthodontics. Despite the fact that these technolo-
gies have their limitations and drawbacks, 3D technologies are taking the lead, especially
in more complex cases [8]. They provide detailed and realistic input data to diagnostic
and treatment-planning software [9–11]. Data from intraoral and/or facial scanners can
combine with CBCT scans in order to allow for a better understanding of underlying clinical
conditions [12,13]. Artificial intelligence allows for automatic cephalometric tracing that
is both precise and accurate, thus making treatment planning more time-efficient [14,15].
The analysis of 3D images obtained from facial 3D scanners can be automatised using
curvature maps and sagittal profile analyses [16]. Furthermore, intraoral scanners feed
data into specific software that allows for planning changes in teeth positions, the shape of
dental arches and interdental relations. Linking such software to various manufacturers of
dental aligners completes the circle of a fully digital workflow in orthodontic treatment
planning [17,18]. Modern protocols using pre- and post-treatment intraoral scans and an
initial pretreatment CBCT scan can accurately predict the final post-treatment position of
roots, thus eliminating the need of repeated X-ray exposure [12]. Even though the radiation
dose of modern CBCT scanners is lower nowadays compared to the use of cephalostat in
the past, following the ALARA (as low as reasonably achievable) principle, each CBCT scan
acquisition should be well justified, even more so in treating growing patients [12,19,20].
As an alternative, MRI scans can be used in some patients (e.g., with craniofacial disorders);
however, these remain inferior for orthodontic cephalometric analysis [21]. In a similar
manner, digital photography alone can be used, to some extent, for landmark identification
and facial analysis to alleviate the need of more invasive investigations [22,23].

Information technology has been applied in orthodontics for many decades. Extracting
distances and angles from standardised cephalography and/or taking measurements on
dental plaster models leads to the quantification of data. These can be further processed,
which allows for the objective diagnosis of malocclusions based on various indices and
standards [24]. Artificial intelligence (AI) has received much attention over the last few
years. The term refers to such intelligent behaviour of computers that mimics the perfor-
mance of humans in tasks related to cognition [25]. AI can be divided into two categories
when it comes to its application in medicine: virtual AI, which includes electronic health
record systems or systems assisting in treatment decisions, including surgical interventions,
and predictive models in the disease state; on the other hand, physical AI concerns various
“smart” prostheses, smart biomedical implants for health monitoring or robot-assisted
surgeries [17,26–29]. Regarding AI-assisted decision making, it is necessary to empha-
sise that, whereas evidence-based dentistry drives dental professionals’ daily decisions,
machine-learning models learn from human expertise, and thus AI can serve as a good
advisor that absorbs all relevant information available [30]. This might be of added value
for less-experienced clinicians; however, some authors stress the need for an individualised
approach granted by the human factor [31,32].

It has become clear that AI algorithms and the future of evidence-based orthodontics
are inextricably interwoven. With the huge amount of digital data available, AI is expected
to be a key player in yielding novel findings, which will ultimately lead to a treatment
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planning and diagnosis revolution in the future [33]. The aim of this paper is to identify
the most-cited articles on digital advances within the field of orthodontics as ranked by
the field-weighted citation impact ratio provided by Scopus, and to discuss the most-cited
technologies in the context of modern orthodontics and dentistry.

2. Materials and Methods

This scoping review investigates the scope of current research on the use of digital
technologies in facially driven orthodontic treatment. A literature search was conducted
using the Scopus search engine to identify existing relevant studies: articles, reviews,
conference papers and short surveys. The search was limited to papers written in English
and published in years 2018–2023. The keywords used for the search were “orthodontics”,
“digital technologies”, “facial analysis”, “treatment planning”, “stereophotogrammetry”,
“CBCT”, “3D”, “4D”, “intraoral scan”, “facial scan”, “soft tissue analysis”, “artificial
intelligence” and “AI”. The search query was as follows:

((orthodontics) AND (digital AND technologies) AND (facial AND analysis) AND
((treatment) AND ((planning) OR (plan)))) AND ((stereophotogrammetry) OR (cbct) OR (3d)
OR (4d) OR (intraoral AND scan) OR (facial AND scan) OR (soft AND tissue AND analysis)
OR (artificial AND intelligence) OR (ai)) AND PUBYEAR > 2017 AND PUBYEAR < 2024 AND
TITLE-ABS-KEY (orthodontics)

Since the objective of this scoping review was to assess the trends of using modern
technologies in facially driven orthodontic diagnosis and treatment planning, the goal
was to identify the most-cited research in the relevant field and to assess the technologies
studied therein. The field-weighted citation impact (FWCI) ratio within the Scopus search
engine was used to identify the most-cited articles within the field. Because the aim of
this review was to identify novel digital methods, the search was modified to identify
articles written from 2018 to 2023. To ensure the searched articles were directly linked
to orthodontics, the term “Orthodontics” needed to be included within the title, abstract
or keywords.

The titles and abstracts of the searched articles were screened and relevant articles
were checked for their FWCI value to identify the top twenty articles. Based on the content
of these articles, focus areas to be discussed were identified.

3. Results

The search was carried out on 31 October 2023 at 1:47 pm. The search query yielded
147 results. After selecting only articles, reviews, conference papers and short surveys writ-
ten in English, the number of papers dropped to 133. Their distributions with regard to the
year of publication, subject area and document type are depicted in Figures 1–3, respectively.
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The greatest number of searched articles (n = 36) was published in 2022, whereas the
smallest number (n = 8) was published in 2018. More than a quarter of all documents
(25.5%) were published with a primary focus on dentistry, followed by medicine (18.8%),
biochemistry, genetics and molecular biology (9.6%), engineering and chemical engineering
(8.4% and 6.7%, respectively) and computer science (6.7%). The subject matter of the
remaining fifty-eight documents varied from social sciences to material science. The largest
proportion of searched documents (64.7%, n = 86) were articles, followed by reviews
(31.6%, n = 42).

Based on the titles and abstracts, papers that were not relevant to the studied topic
were excluded, which downsized the number from 133 to 101. Only sixty-nine articles had
their FWCI value calculated. Table 1 lists twenty articles with the highest FWCI values.

Table 1. Top twenty most-cited articles relevant to the search query.

# Title Authors Year Main
Focus FWCI

1

A comparison between
stereophotogrammetry and
smartphone structured light

technology for three-dimensional
face scanning [34]

D’Ettorre, Giorgio; Farronato, Marco;
Candida, Ettore; Quinzi, Vincenzo;

Grippaudo, Cristina
2022 Face

scanning 15.68

2

Deep convolutional neural
network-based automated

segmentation and classification of
teeth with orthodontic brackets on

cone-beam computed-Tomographic
images: A validation study [35]

Ayidh Alqahtani, Khalid; Jacobs,
Reinhilde; Smolders, Andreas; Van
Gerven, Adriaan; Willems, Holger;

Shujaat, Sohaib; Shaheen, Eman

2023 AI 13.2

3 Artificial intelligence in
dentistry—A review [30]

Ding, Hao; Wu, Jiamin; Zhao,
Wuyuan; Matinlinna, Jukka P.;

Burrow, Michael F.; Tsoi, James K. H.
2023 AI 10.92

4 Artificial Intelligence: Applications in
orthognathic surgery [36]

Bouletreau P.; Makaremi M.; Ibrahim
B.; Louvrier A.; Sigaux N. 2019 AI 10.67

5
Where Is the Artificial Intelligence
Applied in Dentistry? Systematic

Review and Literature Analysis [37]

Thurzo, Andrej; Urbanová, Wanda;
Novák, B.; Czako, Ladislav; Siebert,
Tomáš; Stano; Mareková, Simona;
Fountoulaki, Georgia; Kosnáčová,

Helena; Varga, Ivan

2022 AI 5.83

6 Current concepts
in orthognathic surgery [38]

Naran, Sanjay; Steinbacher, Derek M.;
Taylor, Jesse A. 2018 Digital

planning 5.62

7

Current state of the art in the use of
augmented reality in dentistry: A

systematic review
of the literature [39]

Farronato, Marco; Maspero, Cinzia;
Lanteri, Valentina; Fama, Andrea;

Ferrati, Francesco; Pettenuzzo,
Alessandro; Farronato, Davide

2019 Augmented
reality 5.26

8

Machine learning in orthodontics:
Automated facial analysis of vertical

dimension for increased precision
and efficiency [40]

Rousseau, Maxime;
Retrouvey, Jean-Marc 2022 AI 5.22

9

Artificial Intelligence Systems
Assisting in the Assessment of the

Course and Retention
of Orthodontic Treatment [41]

Strunga, Martin; Urban, Renáta;
Surovková, Jana; Thurzo, Andrej 2023 AI 4.97

10
A Review of 3D Printing in Dentistry:
Technologies, Affecting Factors, and

Applications [42]

Tian, Yueyi; Chen, ChunXu; Xu,
Xiaotong; Wang, Jiayin; Hou, Xingyu;

Li, Kelun; Lu, Xinyue; Shi, HaoYu;
Lee, Eui-Seok; Jiang, Heng Bo

2021 3D printing 4.51
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Table 1. Cont.

# Title Authors Year Main
Focus FWCI

11

Scope and performance of artificial
intelligence technology in

orthodontic diagnosis, treatment
planning, and clinical

decision-making—A systematic
review [43]

Khanagar, Sanjeev B.; Al-Ehaideb, Ali;
Vishwanathaiah, Satish; Maganur,

Prabhadevi C.; Patil, Shankargouda;
Naik, Sachin; Baeshen, Hosam A.;

Sarode, Sachin S.

2021 AI 4.47

12
Machine learning and orthodontics,

current trends and the future
opportunities: A scoping review [44]

Mohammad-Rahimi, Hossein;
Nadimi, Mohadeseh; Rohban,

Mohammad Hossein; Shamsoddin,
Erfan; Lee, Victor Y.; Motamedian,

Saeed Reza

2021 AI 4.02

13
The last decade in orthodontics: A

scoping review of the hits, misses and
the near misses! [45]

Gandedkar, Narayan H.; Vaid,
Nikhilesh R.; Darendeliler, M. Ali;

Premjani, Pratik; Ferguson, Donald J.
2019 3D printing 3.82

14

Advancements in Dentistry with
Artificial Intelligence: Current

Clinical Applications
and Future Perspectives [46]

Fatima, Anum; Shafi, Imran; Afzal,
Hammad; Díez, Isabel De La Torre;
Lourdes, Del Rio-Solá M.; Breñosa,

Jose; Espinosa, Julio César Martínez;
Ashraf, Imran

2022 AI 3.59

15

Three-dimensional prediction of roots
position through cone-beam

computed tomography scans-digital
model superimposition:

A novel method [12]

Staderini, Edoardo,; Guglielmi,
Federica; Cornelis, Marie A.;

Cattaneo, Paolo M.
2019

CBCT,
intraoral
scanning

3.46

16 Augmented reality in dentistry:
a current perspective [47]

Kwon, Ho-Beom; Park, Young-Seok;
Han, Jung-Suk 2018 Augmented

reality 2.83

17
Decoding Deep Learning
applications for diagnosis

and treatment planning [48]

Retrouvey, Jean-Marc; Conley,
Richard Scott 2022 AI 2.35

18
Smartphone-Based Facial Scanning as

a Viable Tool for Facially
Driven Orthodontics? [49]

Thurzo, Andrej; Strunga, Martin;
Havlínová, Romana; Reháková,

Katarína; Urban, Renata; Surovková,
Jana; Kurilová, Veronika

2022 Face scan 2.19

19

Effectiveness of a Novel 3D-Printed
Nasoalveolar Molding Appliance

(D-NAM) on Improving the Maxillary
Arch Dimensions in Unilateral Cleft

Lip and Palate Infants: A
Randomized Controlled Trial [50]

Abd El-Ghafour, Mohamed;
Aboulhassan, Mamdouh A.; Fayed,

Mona M. Salah; El-Beialy, Amr Ragab;
Eid, Faten Hussein Kamel; Hegab,
Seif El-Din; El-Gendi, Mahmoud;

Emara, Dawlat

2020 3D printing 2.18

20 Radiomics and Machine Learning in
Oral Healthcare [51]

Leite, André Ferreira; Vasconcelos,
Karla de Faria; Willems, Holger;

Jacobs, Reinhilde
2020 AI 2.05

Figure 4 depicts the proportion of the primary areas of interest of the top twenty
articles ranked by FWCI values. More than half (n = 11) of the selected articles focused
on artificial intelligence, while three articles studied or reviewed 3D printing and its
application in orthodontics, two articles researched facial scanning, two articles were
devoted to augmented reality, one article focused on digital planning in orthodontics and
one article was about merging CBCT with intraoral scans.
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The results of this scoping review of the recent literature (2018–2023) on the application
of digital technologies in orthodontics identified the most relevant articles based on the
field-weighted citation impact (FWCI) metric.

The top three digital technologies with the highest research potential were identified
as: artificial intelligence (AI), 3D printing and facial scanning. AI has been used in a variety
of applications in orthodontics, including cephalometric analysis, facial analysis, treatment
planning and patient monitoring. Three-dimensional printing has been used to fabricate
orthodontic appliances, surgical guides and aligners. Facial scanning has been used to
collect the 3D data of patients’ faces, which can be used for diagnosis, treatment planning
and aesthetic evaluation.

4. Discussion

Artificial intelligence, 3D printing and facial scanning are the three digital technologies
with the greatest research potential, as shown by the FWCI values of the researched articles.
In the sections below, their use in orthodontics, as well as the limitations of this scoping
review, are discussed.

4.1. Artificial Intelligence Tools and Datasets

Based on the literature search, it seems that radiology is the medical specialty that
benefits the most from AI technologies now. A substantial amount of studies focused
either on assessing the quality of obtained images or even on identifying CT, MRI scans
and X-rays that showed no pathologies [52,53]. On the other hand, AI techniques can also
detect pathological processes, e.g., dental caries on radiographs, with an increasing level of
accuracy [54].

AI and machine learning—a part of AI that enables machines to expand their capabili-
ties by self-adapting algorithms—find application in various fields within orthodontics [55].
Orthodontists, residents as well as general dentists could use artificial intelligence in di-
agnosis, decision making, treatment planning as well as patient monitoring. There is
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an AI functionality that determines the quality of 2D cephalometric X-rays, which could
eliminate lower-quality X-rays from being further evaluated due to a possible distortion of
the analysis [56]. On top of that, machine learning has found use in both lateral and 3D
cephalogram analysis to provide ever-improving quality in landmark localisation [57,58].

Current studies on combining radiomics- and AI-based analysis with a radiologist’s
input in the field of dentomaxillofacial imaging seem very promising, and it seems that the
paradigm shift will have a prominent impact on daily clinical practice as well as curricula
in dental schools [51]. What is more, recent research showed that healthcare professionals
would prefer if AI algorithms completely replaced manual and semiautomatic approaches
in cephalometry—not only because it allows professionals to be more time-efficient, but
also because it could increase the accuracy of obtained analysis results [59].

Nowadays, the question is not whether CBCT scans are accurate, but how automated
processes can aid professionals in landmark detection, skeletal classification, scan analysis
and CBCT data management [57,58,60,61]. Based on current research, it has been concluded
that AI can be of great use in assessing mandibular shape asymmetry as well as in the
screening of upper airways to measure multiple parameters [62,63].

Artificial intelligence has become an extensively researched field in the past decade [37].
Apart from CBCT analysis and automated teeth segmentation, AI aids professionals in
treatment planning, including decisions on teeth extractions [35,43,44]. Even though
recent research shows that the AI technology in the abovementioned areas, as well as in
determining the degree of cervical vertebra maturation and the prediction of postoperative
facial attractiveness, performs exceptionally well, and in its precision and accuracy is
comparable to trained professionals, more studies are expected to elucidate and further
discuss all the advantages and disadvantages of this novel technology [43,64,65]. It is highly
probable that, in a few years, the advantages of AI applications (not only) in orthodontics
will be indisputable. The professional opinion shifts depending on the data, experience
and evidence. After all, it was only a few years ago that some authors claimed that a
lateral cephalogram is more precise and accurate than a 3D CBCT scan [66]. Nobody argues
for that now. One of the means of making AI more believable could be demystifying
the AI algorithms (“the black box”) and making them comprehensible to humans, which
may become quite challenging—especially with the ever-increasing complexity of used
algorithms [67]. Another way of ensuring trust towards an AI algorithm is its robustness,
i.e., good practice in plentiful varied subject populations [68].

AI finds its application at all levels of decision-making processes in orthodontics and
medicine (e.g., in such specialties as radiotherapy): data collection, storage, management,
processing in-depth analysis, communication and education [69,70]. In-depth analysis also
includes automated facial analysis and the use of AI in spotting craniofacial deformities and
syndromes on facial scans, and even predicting diseases [27,36,40,48]. There has been some
research on scoring facial attractiveness in relation to facial proportions and profiles [71,72].
It is likely that AI will soon enough enable automated aesthetic evaluation, smile design
and treatment planning [2]. Based on machine-learning algorithms, given pretreatment
variables, AI can successfully predict the duration of an orthodontic treatment [73]. Apart
from that, dental monitoring software that uses AI has proven effective during the treatment
phase to track progress, as well as during the retention phase to detect relapse and assess
the stability of treatment outcomes, with the benefit of assessing the compliance of patients
even without regular in-office visits [41]. After all, the goal of modern technologies is to
make dental care high-quality, smooth, time-efficient and cost-effective, with improved
treatment planning as well as risk management, and AI certainly adds up to that [46,74,75].

AI has found application in human genome sequencing and in analysing large volumes
of data that provide priceless information on various biological processes. Information
regarding genes that scientists are still gathering and figuring out will play a crucial role
in the transition towards a truly personalised medicine. These so-called omics records
will likely become an integral part of orthodontic medical records that will be routinely
used in diagnosis and treatment planning. It is, therefore, crucial to update orthodontic
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residency programs, for one needs to adapt and evolve to provide orthodontic care of the
highest quality [76].

AI algorithms are currently used for automatic landmark identification, cephalomet-
ric analysis, the staging of skeletal maturation, facial recognition and the detection of
syndromes, the automatic segmentation of CBCT scans and predicting the need for orthog-
nathic surgery or extractions, and more. The diapason of recent research demonstrates that
the accuracy of the discussed technologies is clinically acceptable, rendering them extremely
useful in orthodontic practice [77–86]. Recent developments in the area of automated 3D
landmarking has led to accuracy improvements [87]. Despite that, some authors emphasise
that human intervention is still needed to minimise errors in automatic cephalometric
analysis [88]. To eliminate that, more research is needed to increase both the precision
and accuracy of AI algorithms. Furthermore, demystifying and explaining how AI works
would very much add to its believability.

The rapid advancement of AI has led to the development of numerous AI tools,
each with its unique capabilities and applications in orthodontics. These tools can be
broadly classified into three categories: supervised learning, unsupervised learning and
reinforcement learning.

Supervised learning algorithms are trained on labelled data, where the correct output
for each input is known. This type of learning is well-suited for tasks such as cephalometric
analysis, where the goal is to identify landmarks and measure facial dimensions. Popular
supervised learning algorithms in orthodontics include support vector machines, random
forests and neural networks.

Unsupervised learning algorithms are trained on unlabelled data, where the goal is to
uncover patterns or structure in the data without the guidance of labelled examples. This
type of learning is useful for tasks such as facial recognition and the detection of syndromes,
where the focus is on identifying patterns that distinguish between different facial features.
Common unsupervised learning algorithms in orthodontics include k-means clustering,
principal component analysis and autoencoders.

Reinforcement learning algorithms interact with an environment to maximise a reward
signal. This type of learning is well-suited for tasks such as treatment planning, where the
goal is to optimise the outcome of orthodontic treatment. Popular reinforcement learning
algorithms in orthodontics include deep Q-learning and policy gradient methods.

The choice of AI tool depends on the specific task at hand and the available data. For
instance, supervised learning algorithms are typically used for tasks where there is a large
amount of labelled data, while unsupervised learning algorithms are more suitable for
tasks where there is less labelled data or where the goal is to uncover patterns rather than
make predictions. Reinforcement learning algorithms are particularly well-suited for tasks
that involve sequential decision making, such as treatment planning.

The quality and quantity of data used to train AI algorithms play a crucial role in the
accuracy and performance of those algorithms. In orthodontics, datasets can be obtained
from various sources, including cephalometric X-rays, 3D CBCT scans, facial photographs
and clinical records.

The evaluation of AI algorithms in orthodontics typically involves measuring their
accuracy and precision on a held-out test dataset. Accuracy measures the proportion of
predictions that are correct, while precision measures the proportion of positive predictions
that are correct. Additional metrics that are often used to evaluate AI algorithms in
orthodontics include:

F1-score: A weighted harmonic mean of the accuracy and precision.
ROC–AUC: The area under the receiver operating characteristic curve, which measures

the ability of an algorithm to distinguish between positive and negative examples.
Sensitivity: The proportion of true positives that are correctly identified.
Specificity: The proportion of true negatives that are correctly identified.
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By carefully selecting AI tools, training them on high-quality datasets and evaluating
their performance on rigorous benchmarks, orthodontists can harness the power of AI to
revolutionise the field of orthodontics.

A persisting issue when it comes to AI is data protection and safety.

4.2. Three-Dimensional Printing

In contrast to subtractive manufacturing (also called milling processes) that give
rise to objects by removing excesses from a chunk of material, additive manufacturing
(three-dimensional printing) is a process that creates objects by adding material layer-by-
layer. In dentistry, 3D printing finds its application in maxillofacial surgery, implantology,
prosthodontics and orthodontics. Metals (e.g., titanium), ceramics (e.g., zirconia), polymers
(e.g., polylactic acid—PLA, polyetheretherketone—PEEK) and hydrogels (e.g., gelatine
methacryloyl-based hydrogel, hyaluronic acid) are used for 3D-printing purposes. More
recently, (bio)printing that uses cells, matrices and growth factors to produce tissues, such
as tooth, jawbone and periodontal tissues, has achieved more and more attention. Various
methods are used in 3D printing: stereolithography, laser-based techniques, electron
beam melting, fused deposition modelling, laminated object manufacturing and inkjet
printing [89]. Just like everything else, 3D-printing technologies have both advantages
and disadvantages. The disadvantages include a high cost and rather time-demanding
postprocessing. Undoubtedly, the advantages include the high yield of materials used,
the possibility to fabricate complex structures and the high precision and accuracy of
3D-printed objects [42,90].

Orthodontics and orthognathic surgery have been transformed by 3D-printing meth-
ods. Additive manufacturing is used to fabricate study models, clear aligners (direct
printing or using 3D-printed models), surgical guides of any kind (including guides for
mini-implant insertions), components for fixed or removable appliances and occlusal
splints [18]. It seems that having highly individualised lingual appliances have the added
value of excellent outcomes [32,91]. In the same manner, there have been attempts to
promote in-office custom-made brackets for vestibular appliances [92]. In patients with
unilateral complete cleft lip and palate, a 3D-printed nasoalveolar moulding appliance was
used prior to surgery to achieve better treatment results [50].

Considering all aspects of additive manufacturing, it seems reasonable to state that it
will be used increasingly in individualised orthodontics, regenerative dentistry, implan-
tology and maxillofacial surgery. Therefore, both the knowledge and skills necessary for
mastering digital workflow in daily practice need to be cultivated in pre- and postgraduate
students, residents as well as specialists. In order to provide patients with quality care,
dental curricula and elective courses must respond to technological advances without
any delay [93,94].

4.3. Facial Scanning

One of the most popular topics in the current research on digital technologies used
in orthodontics is facial scanning. As with other novel diagnostic or therapeutic methods,
one needs to first step out of their comfort zone to start considering them, then study the
evidence behind them and decide to move on with current trends and technological devel-
opments in clinical settings. Proper theoretical background and some practical experience
prior to approaching patients are essential to eliminate possible errors due to a total lack of
expertise. This is where modernised formal education, lectures, study groups and various
practical courses play an indispensable role [93].

The key prerequisite for digital transformation is the purpose of the change. It was
noted that progress for the sake of progress is not wise. Reliability, accuracy and time-
efficiency are some of the measures that might drive the change. Facial scans obtained
using the 3D light scanner Artec Eva were compared to direct craniofacial measurements
using a calliper. The study showed the excellent accuracy of the digital workflow. However,
the digital method required twice as much time compared to the direct method [95].
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Multiple studies have evaluated less-pricey devices in terms of the accuracy and
reliability. Stereophotogrammetry seems to have great potential as an alternative to laser
scanning in medical practice [96]. Based on a meta-analysis, professional 3D scanning
systems are more precise than current facial scanning software in smart portable devices [8].
However, the differences seem to be clinically acceptable [97]. Kinect devices offer a low-
cost 3D imaging technique that can be used in orthodontics and/or surgical planning [98].
The Bellus3D and Capture applications seem promising when compared to the method of
stereophotogrammetry carried out by a 3dMD system; however, they require much more
patience on the patient’s side, as both the capturing and processing times are considerably
greater [34]. Another study compared Bellus3D captures and facial surfaces segmented
from CBCT scans. The authors concluded that there is some clinical applicability of
Bellus3D in orthodontics; however, current technologies have their limitations when it
comes to accuracy [49]. More studies are needed to showcase to what extent the differences
between various face-scanning systems influence clinical outcomes and how they correlate
with pre- and post-treatment CBCT scans. One such study did not show that acquisition
technologies play a major role in measurement variations [99].

A question remains: Can we reconstruct faces using already-taken pictures? The
process of creating 3D faces from 2D pictures is validated, as the acquired measurements
are clinically acceptable. Nonetheless, this process is time- and labour-demanding [100].

With no doubts, the advantage of this radiation-free diagnostic tool needs to be em-
phasised, especially for growing subjects. Research shows that facial scans and subsequent
soft tissue analyses can be used for the evaluation of extraction or orthognathic surgery
outcomes with both sufficient reproducibility and reliability [101,102].

This paper highlighted the potential of AI to revolutionise the domains to which it is
applied. The analysis demonstrates the versatility and adaptability of this technology. For
example, in the case of bioelectronics, AI is helping to overcome the challenges associated
with material development, fabrication processes and system integration. Similarly, in or-
thodontics, AI is enabling facial analysis to go beyond mere symmetry and proportionality,
providing a more comprehensive understanding of facial structure and its impact on dental
alignment. AI empowers the tailoring of treatment strategies to individual patient needs.
AI can personalise device design and selection based on patient-specific characteristics in
bioelectronics. In orthodontics, AI-driven facial analysis can identify unique facial features
and optimise treatment plans accordingly. Data-driven decision making is fundamental for
guiding AI-based decision-making processes. In bioelectronics, AI algorithms analyse vast
amounts of data to identify patterns and optimise device performance. Similarly, facial
analysis tools in orthodontics rely on patient data, such as 2D or 3D scans, to generate
insights for treatment planning [103].

4.4. Limitations of the Paper

For this scoping review, only one search engine was used. Scopus was chosen because
of the quality metrics it provides. The field-weighted citation impact (FWCI) of a paper
is calculated as a ratio between received citations in a 3-year window after its publication
and the expected average of paper citations in the subject field. Unfortunately, papers that
may receive a high FWCI score in the coming months and/or years did not rank high
in our search because their FWCI has not been calculated yet or was lower compared to
older papers, only because of the time factor. To eliminate this, only articles older than 3
years could have been considered. However, had the search been carried out that way, the
majority of articles would have been eliminated and our results would not have been valid,
only because the point of finding the most researchable digital technologies in orthodontics
would have been missed. There was a steep incline in the number of published articles
corresponding to our search query from the year 2020 onwards, and so this trend should
not be disregarded.

Despite the endeavour to propose the most suitable search query based on the current
literature, it is possible that some novel digital technologies and applications of AI in
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orthodontics were not mentioned at all. As a consequence, some high-quality papers may
have been potentially missed.

While reading the abstracts and titles of all searched articles, a human error needs to
be accounted for. This is why there were two reviewers, each performing the literature
search twice—one week apart.

Some searched papers, albeit interesting and seemingly relevant, did not have any
relation to orthodontics and thus were excluded from the final list. In a similar manner, it
might be possible that some relevant papers were not listed by the search engine in the
original search and thus were not found.

Only papers written in English were studied. Papers written in other languages
(n = 10) were additionally screened and some of them were considered as relevant and
intriguing; however, none would have qualified for the top twenty FWCI articles, even if
they had been included in the search.

In conclusion, this scoping review acknowledges the limitations of its scope and selec-
tion criteria. While the use of Scopus and the FWCI metric provided a valuable framework,
the review’s focus on English-language publications and the possibility of overlooking
novel technologies and applications underscore the need for continued exploration and
refinement. As AI continues to evolve in orthodontics, it is imperative to address the
challenges and limitations identified in this study to ensure the responsible and effective
integration of AI-powered tools into clinical practice. And while AI holds immense po-
tential to revolutionise orthodontics, it is crucial to acknowledge the limitations, current
challenges, and potential risks associated with its integration into clinical practice [37].

The current limitations are:
Data dependency: AI algorithms require vast amounts of high-quality data to train and

develop their predictive capabilities. In orthodontics, acquiring comprehensive datasets
with standardised measurements and clinical outcomes can be challenging due to ethical
considerations and the variability of patient presentations.

Interpretability and explainability: The inner workings of complex AI algorithms
can be opaque, making it difficult for clinicians to understand the rationale behind their
recommendations. This lack of transparency can hinder the development of trust and
acceptance among practitioners.

Bias and discrimination: AI algorithms can inherit biases from the data they are trained
on. If the training data inadvertently reflect societal or systemic prejudices, these biases can
be perpetuated in AI-generated predictions, leading to unfair treatment or misdiagnosis.

Human oversight and decision making: AI should not replace the expertise and
judgment of qualified orthodontists. AI tools should serve as assistants, providing data-
driven insights and recommendations that complement, not replace, human clinical
decision making.

The current problems are:
Limited clinical validation: Many AI-powered orthodontic tools are still in their early

stages of development and lack extensive clinical validation. Their effectiveness in real-
world settings and their ability to translate into improved patient outcomes require rigorous
testing and evaluation.

Interoperability and integration: Integrating AI tools into existing orthodontic work-
flows and software systems can be challenging. Compatibility issues and the lack of
standardised data formats can hinder the seamless integration of AI into clinical practice.

Standardisation and regulatory oversight: Establishing standardised protocols for the
development, validation and deployment of AI tools in orthodontics is essential to ensure
their safety, efficacy and ethical use. Regulatory oversight and guidelines are needed to
ensure compliance with professional standards and patient protection.

The potential risks are:
Overreliance on AI: Overconfidence in AI-generated predictions can lead to compla-

cency and a decreased emphasis on clinical judgment and experience. Practitioners must
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maintain a critical approach, carefully evaluating AI suggestions and ensuring they align
with patient-specific needs and clinical aspects.

Automation of decision making: While AI can assist in decision making, it should not
entirely automate the process. Orthodontic treatment planning requires a comprehensive
understanding of patient factors, clinical considerations and the nuances of treatment
options. Overreliance on AI could diminish the patient-centred aspect of care and reduce
the opportunity for shared decision making.

Privacy and data security: AI-powered orthodontic tools often handle sensitive patient
data, including images, dental records and personal information. Ensuring the security
and privacy of these data is paramount to protect patient confidentiality and prevent
unauthorised access or misuse.

AI offers a transformative approach to orthodontics, providing greater accuracy, per-
sonalisation and efficiency. While AI should complement and augment human expertise,
its integration holds the promise of revolutionising orthodontics and delivering the high-
est quality care for patients [41]. A comparison of the possibilities of AI with current
orthodontic treatment concepts is shown in Table 2.

Table 2. Comparison of the possibilities of AI with current orthodontic treatment concepts.

Feature Current Orthodontic
Treatment Concepts AI-Powered Orthodontics

Approach Subjective interpretation and limited data analysis Objective and data-driven
Diagnosis Manual assessment of patient records and imaging AI algorithms analysing digital scans and images
Treatment
Planning Generalised approaches Personalised treatment plans tailored

to individual patients

Monitoring Periodic checkups Real-time insights and the prediction
of potential issues

Efficiency Manual tasks and time-consuming assessments Automation and streamlining of workflows

Outcomes Potential for misdiagnoses and treatment errors Improved patient outcomes, increased treatment
efficiency and reduced diagnostic errors

Engagement Limited patient involvement Enhanced patient understanding and engagement

4.5. Attention-Based Models

Attention-based models and hybrid solutions are increasingly being employed in
orthodontics to enhance diagnostic accuracy, treatment planning and patient management.
These models leverage the power of deep learning to extract meaningful insights from
complex dental data, including images, measurements and patient records.

Attention-based models, in particular, excel at capturing long-range dependencies
and contextual relationships within these datasets. This ability is crucial for orthodontic
applications, where the intricate relationships between various dental structures and their
overall alignment play a critical role in diagnosis and treatment planning [104–108].

Here are some specific examples of how attention-based models and hybrid solutions
are being used in orthodontics:

1. Dental image segmentation: Attention-based models can be used to accurately seg-
ment and identify specific dental structures in images, such as teeth, alveolar bones
and soft tissues. This information can then be used for various purposes, such as
measuring tooth positions, assessing periodontal health and predicting orthodontic
treatment outcomes.

2. Predicting orthodontic treatment outcomes: Attention-based models can be trained
on large datasets of patient records and treatment outcomes to identify patterns and
correlations that predict the success of orthodontic treatment. This information can be
used to personalise treatment plans and make informed decisions about the treatment
duration and complexity.

3. Automated tooth segmentation: Attention-based models can be used to automate the
segmentation of teeth in dental images, removing the need for manual segmentation
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by orthodontists. This can save time and improve the efficiency of patient diagnosis
and treatment planning.

4. Real-time patient monitoring: Attention-based models can be used to analyse real-
time data from intraoral cameras or sensors to monitor patient progress and provide
feedback to orthodontists. This can help ensure timely interventions and optimise
treatment outcomes.

5. Virtual orthodontic simulations: Attention-based models can generate virtual sim-
ulations of orthodontic treatment outcomes, allowing orthodontists and patients
to visualise the expected changes in tooth positions and facial aesthetics. This can
enhance patient understanding and engagement in the treatment process.

The use of attention-based models and hybrid solutions in orthodontics is still in its
early stages, but they hold immense promise for improving the accuracy, efficiency and
personalisation of orthodontic care. As these technologies continue to evolve, they are
expected to play an increasingly important role in the future of dentistry [104–108].

4.6. Current Trends and Future Directions

The digital transformation of orthodontics is rapidly progressing, with AI, 3D printing
and facial scanning leading the way. These technologies are not only improving the accuracy
and efficiency of diagnostics, treatment planning and patient monitoring, but they are also
paving the way for personalised and patient-centric orthodontic care.

Current Trends
AI-powered cephalometry: AI algorithms are being developed to automate the anal-

ysis of cephalometric X-rays, 3D CBCT scans and facial photographs. This reduces the
time and effort required for manual analysis, leading to more efficient diagnoses and
treatment planning.

Real-time patient monitoring: AI-powered dental monitoring software is being used
to track patient progress during treatment and detect the early signs of relapse. This is
enabling orthodontists to intervene quickly and prevent the treatment from failing.

Three-dimensionally printed orthodontic appliances: Three-dimensional printing is
being used to fabricate custom-made orthodontic appliances, such as aligners, retainers and
surgical guides. This improves the fit and comfort of appliances, reducing the treatment
time and reducing the need for adjustments.

Facial scanning for aesthetic evaluation: AI-powered facial-scanning software is being
used to assess facial symmetry, proportion and attractiveness. This is helping orthodontists
to create more aesthetically pleasing treatment plans.

Future Directions
AI-powered treatment optimisation: AI algorithms will be used to optimise the timing,

sequencing and intensity of orthodontic treatment. This will result in more efficient and
effective treatments.

Personalised orthodontic care: AI will be used to create personalised orthodontic
treatment plans based on each patient’s individual needs and goals. This will create a more
patient-centric approach to orthodontic care.

Virtual reality and augmented reality: Virtual reality and augmented reality will be
used to provide patients with a more immersive and interactive orthodontic experience.
This will help patients to better understand their treatment and participate more actively in
the decision-making process.

Data-driven orthodontic research: AI will be used to analyse large datasets of patient
data to identify new insights and develop new treatment protocols. This will lead to a
better understanding of the causes of malocclusions and more effective treatment methods.
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5. Conclusions

The integration of AI, 3D printing and facial scanning into orthodontics is leading to
a paradigm shift in the field. These technologies are transforming the way orthodontics
is practiced, making it more accurate, efficient and patient-centred. As these technologies
continue to develop, they will have an even greater impact on the future of orthodontics.

The integration of AI into orthodontics has opened a new world of possibilities and
promises to revolutionise the field and transform patient care. While AI is still at an early
stage of development, its potential to improve diagnosis, treatment planning and patient
outcomes is undeniable. As AI continues to advance, it is imperative for orthodontists
and dental students to keep up-to-date with the latest advancements and develop a solid
foundation in digital technologies. This will ensure that orthodontics embraces the power
of AI and paves the way for a new era of personalised data-driven care.

This scoping review shows that face-guided (facially driven) orthodontics is on the rise
and is part of a complex AI revolution in the field, leading to an unprecedented paradigm
shift. AI will make it possible to handle even difficult tasks, such as analysing complex
facial features and simulations. We are currently at the beginning of incorporating AI into
daily orthodontic practice.
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Abstract: Binaural beats are a low-frequency form of acoustic stimulation that may be heard between
200 and 900 Hz and can help reduce anxiety as well as alter other psychological situations and states
by affecting mood and cognitive function. However, prior research has only looked at the impact of
binaural beats on state and trait anxiety using the STA-I scale; the level of anxiety has not yet been
evaluated, and for the removal of artifacts the improper selection of wavelet parameters reduced the
original signal energy. Hence, in this research, the level of anxiety when hearing binaural beats has
been analyzed using a novel optimized wavelet transform in which optimized wavelet parameters are
extracted from the EEG signal using the flower pollination algorithm, whereby artifacts are removed
effectively from the EEG signal. Thus, EEG signals have five types of brainwaves in the existing
models, which have not been analyzed optimally for brainwaves other than delta waves nor has the
level of anxiety yet been analyzed using binaural beats. To overcome this, deep convolutional neural
network (CNN)-based signal processing has been proposed. In this, deep features are extracted from
optimized EEG signal parameters, which are precisely selected and adjusted to their most efficient
values using the flower pollination algorithm, ensuring minimal signal energy reduction and artifact
removal to maintain the integrity of the original EEG signal during analysis. These features provide
the accurate classification of various levels of anxiety, which provides more accurate results for the
effects of binaural beats on anxiety from brainwaves. Finally, the proposed model is implemented
in the Python platform, and the obtained results demonstrate its efficacy. The proposed optimized
wavelet transform using deep CNN-based signal processing outperforms existing techniques such
as KNN, SVM, LDA, and Narrow-ANN, with a high accuracy of 0.99%, precision of 0.99%, recall of
0.99%, F1-score of 0.99%, specificity of 0.999%, and error rate of 0.01%. Thus, the optimized wavelet
transform with a deep CNN can perform an effective decomposition of EEG data and extract deep
features related to anxiety to analyze the effect of binaural beats on anxiety levels.

Keywords: binaural beats; EEG signals; wavelet transform; flower pollination optimization algorithm;
deep convolutional neural network

1. Introduction

Anxiety has progressively grown in incidence over the last 24 years, particularly
among adolescents and young adults [1]. Individuals in the United States were three times
more likely to screen positive for anxiety disorders in April/May 2020 than in April/May
2019, due to the COVID-19 pandemic lockdowns [2]. Brainwave entrainment, also known
as brainwave synchronization [3,4], is a technique for reducing anxiety and stress. It is
said to improve moods, aid in deep sleep, boost the immune system (delta frequency:
1–4 Hz) [5], improve memory, aid in deep relaxation, and meditation (theta frequency:
4–8 Hz), improve positive thinking (alpha frequency: 8–13 Hz), and improved alertness
(beta frequency: 14–24 Hz).
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A binaural beat is a form of acoustic stimulation that has been shown to help with
anxiety reduction and the attenuation or augmentation of various psychological conditions
and states [6,7]. The binaural beat is the brain impression of a low-frequency sound that
occurs when a person is exposed to two slightly distinct wave frequencies, both between
200 and 900 Hz [8,9]. Recent studies seem to back up the idea that binaural beats can
change the operational connectivity between brain regions [10–12] and cortical network
connectivity [13–15].

Several experiments have concentrated on the measurement of the effect of binaural
beats on anxiety reduction. However, researchers only focused on state anxiety and trait
anxiety using the state-trait anxiety inventory (STA-I) [16–18]. Moreover, anxiety has
been classified into four categories, minimal anxiety, mild anxiety, moderate anxiety, and
severe anxiety, which have not yet been analyzed with binaural beats. To do this, the Beck
Anxiety Inventory (BAI) can be utilized, which has a score of 0–63, where BAI scores < 7
represent minimal anxiety, 8–15 represent mild anxiety, 16–25 represent moderate anxiety,
and 26–63 represent severe anxiety. Similar to the self-reported analysis through anxiety
inventories, the effect of binaural beats is analyzed using electroencephalography (EEG)
signals [19].

In the processing of EEG signals, artifact removal is one of the most important stages
due to their contamination with other signals. Unwanted signals, called artifacts, are
caused by noise in the environment, experimental errors, and physiological abnormalities.
Extrinsic artifacts include environmental artifacts and experiment errors, which are caused
by external causes, whereas intrinsic artifacts include physiological artifacts caused by the
body itself (e.g., eye blink, muscle activity, heartbeat) [20,21]. Significant artifacts in EEG
recordings are caused by ocular artifacts, recorded as electrooculogram (EOG) signals [22].
Eye movement and blinks cause ocular aberrations, which can spread over the scalp and
be detected as EEG activity. The contamination of EEG data by muscle activity is a well-
known and difficult challenge since it manifests as electromyogram (EMG) signals from
various muscle groups [23,24]. When electrodes are put on or near a blood vessel [25],
cardiac artifacts such as electrocardiogram (ECG) signals can be created, causing the heart
to expand and contract. Thus, the objective of this work is to examine the effect of binaural
beats on four levels of anxiety and their signal processing. However, the improper selection
of the mother wavelet parameter will result in it performing poorlyin artifact removal in
EEG signals, which can reduce the original energy of the EEG signal. For feature extraction
and classification, MLP was not optimal for brainwaves other than delta waves, which led
to a reduction in the accuracy analysis of the binaural beats’ effects. However, there is a
need to improve this for effective and promising results for the effect of binaural beats on
the level of anxiety experienced. The major contributions provided by this paper are as
follows:

• In EEG signals, the improper selection of the wavelet parameter reduces the original
signal energy, hence an optimized wavelet transform has been introduced using the
flower pollination optimization algorithm to remove artifacts from the EEG signal.

• Consequently, the impact of the binaural beats on brainwaves is analyzed via deep-
based signal processing which has the capability of extracting all the deep features
belonging to anxiety from EEG signals while classifying various anxiety levels.

This paper is presented as follows: some articles related to binaural beats’ effect on
EEG signals are surveyed in Section 2. The mathematical derivations and the experimental
analysis of the optimized wavelet transform with deep CNN-based signal processing are
stated in Sections 3 and 4. Lastly, the conclusion to this paper is given in Section 5.

2. Literature Review

Yusim, et al. [26] found that a binaural beat meditation technique reduced self-reported
anxiety measurements in psychiatric outpatients and non-patients. Gkolias, et al. [27] found
that binaural beats at 5 Hz reduced pain intensity, anxiety, and analgesic usage in chronic
pain sufferers compared to sham stimulation. Sekirin et al. [28] found that binaural beating
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techniques reduced reactive and personal anxiety in individuals scheduled to have hip joint
endoprosthesis. Menziletoglu et al. [29] found that both binaural beats and music reduced
preoperative dental anxiety, but did not assess which treatment was more successful. Mallik
et al. [30] found that a combination of quiet music and theta auditory beat stimulation
reduced anxiety measurements in people prescribed anxiolytics. Da Silva Junior et al. [31]
found significant changes in high alpha and beta, as well as theta, brainwaves in participants
who listened to a 5 Hz binaural beat for 20 min. Amarasinghe et al. [32] used self-organizing
maps (SOM) to detect thinking patterns and identify two patterns in five users. El Houda
et al. [33] investigated the effects of marijuana binaural beats on EEG signals but found no
significant results. Pluck et al. [34] conducted a double-blind study and found no effect
of theta-frequency binaural beats on cognitive fluency but found a significant induction
of dread in the binaural beat condition compared to control. Lee et al. [35] proposed a
combination of 6 Hz binaural beats and ASMR triggers to promote theta brainwaves and
psychological stability for sleep induction.

Da Silva Junior et al. [31] examined the effects of binaural beats on brainwaves and
found significant changes in higher alpha, high beta, and theta brainwaves using multi-layer
perceptron (MLP) and LORETA methods. Chouhan et al. [31,36] used an entropy-based
approach to assess a person’s degree of attentiveness using EEG signals recorded from
an Emotiv EPOC headset. Lee et al. [35] investigated the effects of different binaural beat
frequencies on EEG signals and found that a combination of binaural beats and ASMR
triggers induced sleep. Jayasinghe et al. [37,38] presented software that uses feedback
from the Apple Health Kit and Google Fit to identify and minimize stress using machine
learning classifiers, including k-nearest neighbors and Naive Bayes. Amarasinghe et al. [32]
proposed an approach based on self-organizing maps (SOM) for detecting thinking patterns
using EEG signals and a feed-forward ANN. That et al. [39,40] investigated the use of an
ANN classifier to classify EEG data from stressed and non-stressed females women using
energy spectral density (ESD) characteristics. Advanced et al. [41] presented a CRNN for
simultaneous sound event detection. Cheah et al. [42] found that a CNN can categorize EEG
signals without the need for manual features. Andrian et al. [43] used brainwave stimulators
to enhance alpha brainwaves and alleviate stress, while El Houda et al. [33] examined the
impact of marijuana binaural beats on the brain. Zaini et al. [44,45] monitored EEG data
and evaluated the correlations between binaural beats’ characteristics and mental states
using a Bayesian Networks Processor. Jirakittayakorn et al. [46] investigated the impact of
a 3 Hz binaural beat on snooze phases using EEG data and event-related potential analysis.

In addition, Loong et al. [47] conducted a prospective, randomized controlled study
to examine the analgesic and anxiolytic benefits of binaural beat audio in cataract surgery
patients. Abu-Taieh et al. [48] used an expanded TAM model to investigate the effect of
parents’ anxiety and depression on children’s anxiety and depression when SNs were
used. Lee et al. [49] investigated the brainwave entrainment impact of binaural beats as an
adjunct treatment for insomnia symptoms. Yi et al. [50] studied the effects of audible and
inaudible binaural beat stimuli on alpha brainwave elicitation, whereas Ignatius et al. [51]
investigated the use of audiometric EEGs for identifying certain binaural hearing properties.
These studies add to our understanding of the numerous applications and consequences of
binaural beats in different neurological situations.

However, some studies did not consider artifacts due to eye blinking and muscle
movements, while others used techniques that could reduce the original energy of the EEG
signal. Thus, there is a need to improve the performance of these studies to provide an
accurate analysis of binaural beats.

3. Optimized Wavelet Transform with Deep CNN-Based EEG Signal Processing

Binaural beats are produced when sine waves are transmitted to each ear separately
and are near one another, which reduces anxiety by affecting mood and cognitive functions.
The binaural beat is the brain perception of a low-frequency sound that occurs when a
person is exposed to two wave frequencies that are very slightly different from one another
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(by a maximum of 30 Hz), both of which have frequencies between 200 and 900 Hz. To
investigate the possible impacts of binaural beats on EEG signals, various transformation
techniques have been used previously, but the selection of an incorrect mother wavelet
reduces the system’s accuracy and overlaps with the original signal, which can lower
the EEG signal’s initial energy. Hence, a novel resource-constrained model named the
optimized wavelet transform has been proposed, in which optimized wavelet parameters
are extracted from the EEG signal by integrating the flower pollination optimization
algorithm with the wavelet transform for the selection of wavelet parameters. Thus, the
proper wavelet parameters are selected to lessenthe reduction of the original signal’s
energy. Thus, an optimization that is based on the multi-objective function of a lower mean
square error (MSE) and higher signal-to-noise ratio (SNR) removes the artifacts from the
EEG signal to keep the valuable information, thus removing the artifact from the EEG is
important to secure the quality of the EEG signal.

EEG signals have five types of brainwaves, which are delta, theta, alpha, beta, and
gamma, but the existing models for binaural beats are not optimal for brainwaves other
than delta waves. Furthermore, in this study, the level of anxiety has been categorized
into minimal, mild, moderate, and severe anxiety, which has not yet been analyzed about
binaural beats. Hence, novel, deep CNN-based signal processing has been integrated into
EEG signal processing to analyze the effect of binaural beats on anxiety. The deep CNN
model extracts all the deep features related to anxiety from EEG signals, which leads to
more precise results for binaural beats’ impacts on anxiety in terms of brainwaves, thereby
achieving an effective and feasible result for the effect of binaural beats on minimal, mild,
moderate, and severe of anxiety and accuracy for the analysis of binaural beats’ effects.

Figure 1 shows a block diagram for proposed EEG signal processing based on a deep
CNN with optimized wavelet transform, in which a raw EEG signal is transformed into a
wavelet parameter and is analyzed in time–frequency space. Then, by integrating the flower
pollination algorithm, the optimized wavelet parameters are obtained without artifacts in
EEG signals, and the deep CNN is then used to extract features and classify the various
levels of anxiety in the extracted signal.

3.1. BAI with Alpha Binaural Beats

The level of anxiety was determined by examining the effect of binaural beatsusing
the Beck Anxiety Inventory (BAI), which meant in terms of determining the severity of the
physical and cognitive symptoms of anxiety throughout the previous week, a four-point
scale was considered that included more self-reported items. To accomplish this, some
physically healthier subjects were selected and they filled in the BAI inventory. Based on
their BAI scores, the subjects were divided into five groups, the minimal, mild, moderate,
and severe anxiety groups, as well as a control group. The typical cut-offs are as follows:
0–9, minimal depression; 10–18, mild depression; 19–29, moderate depression; 30–63, severe
depression. Multiple statements with the same score were noticed for some BAI items. For
these statements, the four groups of subjects were listening to alpha binaural beats for a
particular period, with ranges in a frequency of 7–13 Hz which may encourage relaxation.
Although not quite meditation, alpha waves are connected to profound physical and mental
calm. The consequences of stress are countered by the slight euphoria/excitement and
tranquility brought on by alpha waves, which also lower cortisol levels and improve the
immune system. Melatonin production is also increased by alpha waves, which significantly
enhances the quality of sleep. The control group subjects, however, were not subjected to
any music therapy. After the stimulation, all the subjects filled out the BAI inventory as a
self-reported analysis of the effect of binaural beats on anxiety.

3.2. Optimized Wavelet Transform

The EEG signals acquired from all the subjects before and after stimulation are pro-
cessed to technically analyze the effects of the binaural beats. Optimized wavelet transform
(OWT) is applied to obtain information from non-stationary signals like EEGs in both the
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temporal and frequency domains. The contributions of the OWT towards extracting features
from the source signal rely on the precise choice of wavelet parameters. Despite this, there
is not a clear cutoff formula for choosing a wavelet basis function to effectively use this
optimized wavelet, transform, in which artifacts are removed from the EEG signal using the
concept of flower pollination optimization, which is integrated with the wavelet transform
for the optimal selection of wavelet parameters to select the optimal parameter. A lower
mean square error (MSE) and higher signal-to-noise ratio (SNR) are considered objective
functions for solving optimization problems. The efficiency of noise reduction and unique
feature extraction relies on the selection of optimized wavelet parameters. The optimized
wavelet denoising process has two phases: first, the wavelet parameters are selected based
on the decomposition level of the EEG signal, and second, the selection of appreciating
parameters based on the flower pollination algorithm produces the denoised EEG signal.
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Figure 1. The architecture of the proposed EEG signal processing is based on a deep CNN with
optimized wavelet transform.

The original (mother) wavelet hm,k(t) is often the source of the set of wavelet functions
in the EEG signal. It is dilated by a value of a = 2m, translated by the constant b = k 2m, and
normalized so that it is given by Equation (1), as follows:

hm,k(t) = 1
√

ah( t− b a ) = 1
√

2mh(2−m t− k) (1)

According to the given integer values of m, k, and the initial wavelet, which is either
determined analytically or by solving a dilation equation which is given in Equation (2) below.
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x(n) = a0 + ∑s−1
m=0 ∑2s−m−1

k=0 a2s−m−1+k − h
(
2−mn− k

)
(2)

The x(n), the dilation equation, is transformed to xt+1
i due to the wavelet parameter

initialization of the constant value, which is the global pollination operator, to determine
the best suitable wavelet parameter. Thus, the modified form of the dilation equation is
given by Equation (3).

xt+1
i = xt

i + L
(
Xt

i − g∗
)

(3)

The levy distribution (L) is given in Equation (4), as follows:

L ∼ λΓ (λ) sin(πλ/2)
π

1
s1+λ

(s � s0 > 0) (4)

where λ is the wavelength parameter and s is the step vector, which is in the threshold limit of
the transformed EEG signal for the distribution. Similarly, for local pollination, Equation (5) is
used to update the xi with the local parameter, k, of the decision factor, and ε is the switching
probability. The local pollination operator xk+1

i in the updation of the wavelet parameter is
given by,

xk+1
i = xk

i + ε
(

xk
i − xk

t

)
(5)

The proposed optimized wavelet transforms, via the flower pollination optimization
algorithm, have two objective functions: min (MSE) and max (SNR) which are given in
Equation (6), as thus the fitness function of the proposed system is given in Equation (6):

f = Min(Max(1− SSIM(X N)) (6)

The two objective functions, which are the mean squared error (MSE) and signal-to-
noise ratio (SNR), are formulated in Equation (6). The fitness formulation makes use of the
(1-SSIM), also known as the dissimilarity index, which is generated for each picture in the
iteration and tends to further minimize its maximum value. Thus, the fitness function of
the system is given by the minimum mean square error and the maximum signal-to-noise
ratio in the optimized wave transform. The process takes place in an optimized wavelet
transform using the flower pollination algorithm.

Figure 2 illustrates the conceptual diagram of an optimized wavelet transform using
the flower pollination algorithm, in which the contaminated EEG signal is expanded using
an optimized wavelet transform to obtain optimized wavelet coefficients, and then the
wavelet transform is integrated with the flower pollination optimization algorithm to select
the best wavelet parameters that remove the most artifacts from the EEG signal.
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The Algorithm 1 for the flower pollination optimization of the optimized wavelet
parameter has been explained as follows:

Algorithm 1: Flower pollination optimization of the optimized wavelet parameter

Input: Wavelet parameter
Output: Best wavelet parameter without noise
Initialize: n parameters with random solution
Define a switch probability p ∈ [0, 1]
Calculate all f for n solutions
t = 0
while (i ≥ N) do

for i = 1, . . . , N do
if rnd ≤ p then

Draw a (d-dimensional) step vector in the L which obeys a Levy distribution
Perform xt+1

i = xt
i + L

(
Xt

i − g∗
)

else if

Perform xk+1
i = xk

i + ε
(

xk
i − xk

t

)

Select xt+1
i (t)← 1;

Else
Draw from a uniform distribution ∈ [0,1]
Select xk+1

i ← 0;
end if
Calculate f ′(x)/* f ′ is the fitness function calculated at random distribution */
if f ′(x∗) ≤ f (x) then x∗ = x
end if

end for
Find the current best solution g * among all xk

i
t = t + 1

end while

The flower pollination algorithm with optimized wavelet parameters shows the ini-
tialization of the n parameters with a random solution. The input is the wavelet transform
parameter and the output obtained from the optimized wavelet parameter with the flower
pollination algorithm is given as the best wavelet parameter with the solution to the input,
thus, the uniform distribution of the parameters is taken into account to obtain the best
solution g among all xk

i of the probability switching function of the wavelet transform. The
switching function determines the difference due to the high probability of the wavelet
transform being in the best wavelet selection. It also generates a random function for
the flower pollination optimization algorithm and the wavelet transform to obtain the
step vector s from the levy distribution that provides the performance of global and local
pollination, thus, the best solution is obtained by calculating the decision factors xk

i of the
current solution via the top solution discovered globally in a global pollination operator xt

i .
The improvement loop must be exchanged either locally or globally by the switch operator
i, therefore, up until a point of stagnation, this procedure is repeated.

Figure 3 depicts the flow diagram of an optimal wavelet transform, which begins with
the signal’s initialization pattern for data collection. The input signal data is read first,
then an efficient wavelet transform is performed for each signal to choose the best wavelet
parameters. A greater signal-to-noise ratio (SNR) and a lower mean square error (MSE) are
considered to be the objective functions for addressing optimization problems that remove
artifacts from the EEG signal.

154



AI 2024, 5

AI 2024, 5, FOR PEER REVIEW 8 
 

  end if  

 end for 

 Find the current best solution g ∗ among all 𝑥𝑖
𝑘 

 t = t + 1 

end while 

The flower pollination algorithm with optimized wavelet parameters shows the ini-

tialization of the n parameters with a random solution. The input is the wavelet transform 

parameter and the output obtained from the optimized wavelet parameter with the flower 

pollination algorithm is given as the best wavelet parameter with the solution to the input, 

thus, the uniform distribution of the parameters is taken into account to obtain the best 

solution 𝑔 among all 𝑥𝑖
𝑘 of the probability switching function of the wavelet transform. 

The switching function determines the difference due to the high probability of the wave-

let transform being in the best wavelet selection. It also generates a random function for 

the flower pollination optimization algorithm and the wavelet transform to obtain the step 

vector 𝑠 from the levy distribution that provides the performance of global and local pol-

lination, thus, the best solution is obtained by calculating the decision factors 𝑥𝑖
𝑘 of the 

current solution via the top solution discovered globally in a global pollination operator 

𝑥𝑖
𝑡. The improvement loop must be exchanged either locally or globally by the switch op-

erator 𝑖, therefore, up until a point of stagnation, this procedure is repeated. 

Figure 3 depicts the flow diagram of an optimal wavelet transform, which begins 

with the signal’s initialization pattern for data collection. The input signal data is read 

first, then an efficient wavelet transform is performed for each signal to choose the best 

wavelet parameters. A greater signal-to-noise ratio (SNR) and a lower mean square error 

(MSE) are considered to be the objective functions for addressing optimization problems 

that remove artifacts from the EEG signal. 

 

Figure 3. Flow chart of optimized wavelet transform. 

  

Figure 3. Flow chart of optimized wavelet transform.

3.3. Deep CNN-Based Signal Processing

Deep CNN-based signal processing extracts features and combines various classifi-
cation elements, it also offers a good path for the precise detection of various brain states.
Thus, several features were recovered from the denoised EEG signal to extract features such
as the alpha, beta, theta, delta, and gamma brainwaves and both their time and frequency
domains, including the mean, standard deviation, entropy, and energy, four widely used
measurements of the signal. The electroencephalogram, with its mean value, provided
the iteration varies from 1 to L, has a standard deviation with a different set of signal
processing, thus, the energy of the system is given by the delta frequency domain, thus, the
entropy of the electroencephalogram is also given by the DCNN-based signal processing.
Therefore, to extract usable features from the EEG signal of each participant, the DCNN
is trained individually. Each participant’s number of channels that recorded high-quality
data varied during the pre-processing stage, it was discovered. The EEG signal of each
participant was left with a variable number of channels and some channels were eliminated
based on the signal-to-noise ratio and low mean square error, therefore classification was
accomplished via DCNN to extract useful features such as delta, theta, alpha, betta, and
gamma brainwaves from the optimized wavelet coefficients. The DCNN predicts the
associated class to which an independent variable belongs using a variety of independent
variable values’ features as input. For instance, for a specific feature x of a class y, the
classifier is a function f that predicts the class y = f (x). The DCNN’s architecture has
interconnected nodes that store and process data through connections formed between its
nodes as a result of a learning process that recognizes patterns in the training data.

The input layer function based on time-frequency analysis is formalized as Equation (7):

It = ϕ(gi ∗ .(ht−1, xt+1
i )+xi (7)

The hidden layer function based on time-frequency analysis is formalized as Equation (8):

ht = ϕ(g f ∗ . (ht−1, xt+1
i )+x f (8)
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The output layer function based on time-frequency analysis is formalized as Equation (9):

Ot = ϕ(go ∗ . (ht−1, xt+1
i )+xo (9)

The output with the activation function of the deep CNN is formalized as Equation (10):

a = ϕ[∑j g ∗ xk+1
i + x] (10)

where xk+1
i are the unit inputs, b is the bias, ϕ is the nonlinear activation function, and

a is the activation unit. As a result, a separate set of cases is used to test the classifier’s
performance, which gives the accurate classification of the anxiety level as mild, moderate,
minimal, or severe. Thus the g∗ is the output from the optimized wave parameters. Here,
xi is the unit of the input layer of the DCNN, x f is the unit of the hidden layer function
of the DCNN, and xo is the unit of the output activation function of the DCNN. Thus, the
activation unit of the deep convolution neural network is given by the summation of the
EEG signal with the product of the best solution obtained from the wavelet parameter,
thus, the activation unit stimulates the deep convolution neural network to classify the
performance as a different level of anxiety. The architecture of the deep CNN-based signal
processing’s feature extraction and classification is shown in Figure 4.
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Figure 4 shows the deep CNN-based signal processing’s feature extraction and classi-
fication, in which five features were extracted from the artifacts-free EEG signal, which was
the alpha, beta, theta, delta, and gamma time and frequency domains in brainwaves. There-
fore, this model predicts the anxiety level of each feature by using a non-linear activation
function in its classification.

Overall, the optimized wavelet transform removes artifacts from the EEG signal using
the concept of flower pollination optimization, which is integrated with the wavelet trans-
form for the optimal selection of wavelet parameters. Deep CNN-based signal processing
has been integrated into the EEG signal’s processing to analyze the effect of binaural beats
on anxiety by extracting all the features belonging to anxiety from the EEG signal, providing
more accurate results for the binaural beats’ effects on anxiety in terms of brainwaves. The
next section explains the results obtained from the proposed model in detail.
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4. Results and Discussion

This section provides a detailed description of the implementation results as well
as the performance of the proposed system and a comparison section to ensure that the
proposed system works effectively.

4.1. Simulation Setup

This work has been implemented in the working platform of Python with the following
system specifications, and its simulation results are discussed below.

• Platform: Python;
• OS: Windows;
• Processor: 64-bit Intel;
• RAM: 8 GB.

4.2. Dataset Description

The dataset used in this research was the EEG Brainwave Dataset: Feeling Emotions,
in which data were gathered from two individuals, namely a man and a woman, for
three minutes in each of the three states, namely positive, neutral, and negative. It also
usedMuse EEG headgear to capture the EEG locations at TP9, AF7, AF8, and TP10 using
dry electrodes. The stimuli used to create the emotions were collected for six minutes
along with the neutral data. The parameters used in the flower pollination algorithm are
described in Table 1.

Table 1. Parameters of flower pollination algorithm.

Parameters Value

Maximum generation 1000

Switch probability 0.8

Population size 25

Upper boundary −10

Lower boundary 10

Model order 3

Number of parameters 6

4.3. Simulated Output of Proposed System

The simulated output of the proposed system in the analyses of anxiety levels after
hearing alpha binaural beats is explained in this subsection.

Figure 5 shows the channel frequency by varying the time before the applying wavelet
transform. The channel frequency ranges from −2000 to 2000 in the time range of 0.1 to
80,000 ns. From these channel frequencies, it is difficult to obtain the important parameters
of the signal. Hence the wavelet transform has been applied to extract the signal parameters.

Figure 6 shows the channel frequency obtained by varying the time after applying the
wavelet transform. The channel frequency ranges from −2000 to 2000 in the time range
of 0.1 to 90,000 ns. The channel frequencies are optimized by selecting the best wavelet
parameters by incorporating the flower pollination algorithm, and the level of anxiety is
then analyzed via the DCNN based on the frequency range of the signal.

Figure 7 shows the classification results of the proposed system for the level of anxiety.
The classification results show a mild level of anxiety in 20 cases, moderate anxiety in
30, minimal anxiety in40, and severe anxiety in 10, based on the EEG signal processing
of brainwaves.
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4.4. Performance Metrics of the Proposed System

The performance of the proposed approach and the achieved outcomes are explained
in detail in this section.

Figure 8 shows the accuracy of the proposed system with varying numbers of epochs.
The accuracy attains a minimum value of 0.65 at the initial stage and attains a maximum
value of 0.98 at 27 epochs. Thus, it was noticed that the accuracy increased with the
increase in epochs. The accuracy of the proposed system was increased using deep CNN-

158



AI 2024, 5

based signal processing, which extracted all the features associated with anxiety from the
brainwaves in the EEG signals.
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Figure 8. Accuracy of the proposed system with varying epochs.

Figure 9 shows the loss of the proposed system with varying numbers of epochs. The
loss has a minimum value of 0.5 at one epoch. The loss of the proposed system has a
maximum value of 2.5 at the initial stage. The loss of the proposed system is decreased
byusing deep CNN-based signal processing to extract all the characteristics linked to the
anxiety of brainwaves in an EEG signal-optimized wavelet transform, in which artifacts are
removed from the EEG signal, which does not reduce the original energy of the EEG signal.
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Figure 10 shows the precision of the proposed system with varying numbers of epochs.
The precision has a minimum value of 20 at one epoch and attains a maximum value of 100
at five epochs. The precision of the proposed system is increased using deep CNN-based
signal processing, which extracts all the features belonging to anxiety from brainwaves in
EEG signal, and classification is conducted after extracting all these features.

Figure 11 shows the recall of the proposed system with varying the numbers of epochs.
The recall has a minimum value of 19.5 at one epoch and a maximum value of 99 at five
epochs. The recall of the proposed system is increased using deep CNN-based signal
processing, which extracts all features associated with anxiety from the brainwaves in an
EEG signal.
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Figure 11. Recall the proposed system with varying epochs.

Figure 12 shows the F1-score of the proposed system with varying numbers of epochs.
The F1 score has a minimum value of 17.5 at one epoch and a maximum value of 99.5 at five
epochs. The F1-score of the proposed system is increased using deep CNN-based signal
processing, which removes artifacts and extracts all the deep features belonging to anxiety
from the brainwaves in the EEG signal.

Figure 13 shows the sensitivity of the proposed system with varying numbers of
epochs. The sensitivity has a minimum value of 80 in epoch 25 and a maximum value of
99.8 in epoch 200. The sensitivity of the proposed system is increased using the optimized
wavelet transform, which provides the process for artifact removal and examines the
sensitivity of the brainwave EEG signal.

Figure 14 depicts the specificity of the proposed system with varying numbers of
epochs. The specificity has a minimum value of about 85 in epoch 23 and a maximum value
of about 98 at the specificity of about 200 epochs. The specificity of the proposed system is
determined using the flower pollination optimization algorithm.

Figure 15 shows the sensitivity of the proposed system by varying the numbers of
data counts. The sensitivity has a minimum value of about 94% with a data count of about
1000 and a maximum value of 98% in the realm of 6000 data counts. Thus, the sensitivity
of the proposed system is increased using the optimized wavelet transform, in which the
artifacts are removed and thus the sensitivity of the proposed system increases with the
increasing data count.
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Figure 16 shows the specificity of the proposed system with varying data counts. The
specificity has a minimum value of about 96.75% at 2000 data counts and a maximum
value of 99% at 6000 data counts. The specificity of the proposed system initially decreases
suddenly with the increasing number of data counts and then it starts increasing with
further increases in the number of data counts. Thus the specificity of the proposed system
isat a maximum at the highest data counts due to the use the optimized wavelet transform.
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Figure 17 shows the accuracy of the proposed system with varying data counts. The
accuracy has a minimum value of 96.3% at 1000 data counts and a maximum value of
98.0% at 6000 data counts. The accuracy of the proposed system is increased using the
optimized wavelet transform of the EEG signal to remove artifacts via the concept of flower
pollination optimization, which is integrated with the wavelet transform for choosing the
best wavelet parameters to then choose the optimal parameter.

AI 2024, 5, FOR PEER REVIEW 17 
 

 

Figure 16. Specificity of the proposed system with varying data counts. 

 

Figure 17. Accuracy of the proposed system with varying data counts. 

 

Figure 18. Recall the proposed system for varying data counts. 

Figure 19 shows the F1-score of the proposed system with varying data counts. The 

F1-score has a minimum value of 94.2% at 1000 data counts and a maximum value of 95% 

at 6000 data counts. The recall of the proposed system is increased using the optimized 

wavelet transform of the EEG signal, in which the main objective of this WT approach is 

to identify an effective decomposition of the input EEG data that produces distinctive fea-

tures from each sub-band using the flower pollination optimization algorithm, which is 

used to select optimal wavelet parameters to remove artifacts from EEG signals. 

Figure 17. Accuracy of the proposed system with varying data counts.

162



AI 2024, 5

Figure 18 shows the recall of the proposed system with varying data counts. The
recall has a minimum value of 93.1% at 1000 data counts and a maximum value of 95.0% at
6000 data counts. The recall of the proposed system is increased via the optimized wavelet
transform of the EEG signal, which removes artifacts using the flower pollination algorithm
for choosing the best wavelet parameters to then choose the optimal parameter.
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Figure 19 shows the F1-score of the proposed system with varying data counts. The
F1-score has a minimum value of 94.2% at 1000 data counts and a maximum value of 95%
at 6000 data counts. The recall of the proposed system is increased using the optimized
wavelet transform of the EEG signal, in which the main objective of this WT approach is to
identify an effective decomposition of the input EEG data that produces distinctive features
from each sub-band using the flower pollination optimization algorithm, which is used to
select optimal wavelet parameters to remove artifacts from EEG signals.
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Figure 19. F1-score of the proposed system with varying aata counts.

Figure 20 shows the precision of the proposed system with varying data counts. The
precision has a minimum value of 92.14% at 1000 data counts and a maximum value of
95% at 6000 data counts. The precision of the proposed system is increased by selecting
the optimum wavelet parameters using the optimized wavelet transform of an EEG signal
with a flower pollination algorithm.
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4.5. Comparison of the Results of the Proposed Method

This section highlights the proposed system performance by comparing it to the
outcomes of existing approaches and showing their results based on various metrics.

Below, Table 2 shows the comparison of the proposed model with the existing models
such as KNN, SVM, LDA, and Narrow-ANN [38–42]. Compared with the existing models,
the proposed deep CNN achieves a high accuracy of 0.99%, a precision value of 0.99%,
and a specificity of 0.999%. The F1-score and recall of the proposed system have the
maximum values of 0.99% and 0.99%, whereas the existing models KNN, SVM, LDA, and
Narrow-ANN, have F1-scores of 0.90%, 0.98%, 0.921%, and 0.983%, respectively, and recalls
of 0.90%, 0.98%, 0.92%, and 0.985%, respectively. Also, the proposed model attains a low
error of 0.01. This shows that the proposed model achieved a better performance than the
existing models.

Table 2. Comparison table.

Specification KNN SVM LDA Narrow-ANN Proposed

Accuracy (%) 0.90 0.98 0.92 0.985 0.99

Recall (%) 0.90 0.98 0.92 0.985 0.99

Precision
(%) 0.90 0.98 0.93 0.985 0.99

F1-Score (%) 0.90 0.98 0.921 0.983 0.99

Specificity (%) 0.975 0.995 0.980 0.9951 0.999

Error (%) 0.01 0.02 0.08 0.01 0.01

Table 3 depicts the cumulative survey on binaural beats processing and, from this
table, it is understood that the accuracy can be further improved. The existing research
that uses machine learning techniques such as KNN, MLP, and SVM, has accuracy values
in the range of 60 to 75%, whereas the existing techniques that use some advanced deep
learning techniques such as CNNs and ANNs have accuracy values in the range of 80
to 97%. However, these existing techniques have error and generalization issues while
achieving high accuracy. Hence, the proposed model used an optimization algorithm along
with a deep learning model to achieve a high accuracy of 99% without any error.
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Table 3. Cumulative survey on binaural beats processing.

Ref. Technique Used Benefits Limitations Result Obtained

[31] e-LORETA Visual depiction of the impact of
binaural beats

MLP shows better
performance only on delta

waves
Accuracy: 64.77%

[36] Modified sample
entropy feature

The interface system takes only 3 sec
to determine the effect of stimuli

Attention-related
movements can reduce

accuracy

Takes only 3 seconds to
determine the effect of

audio and visual
stimuli.

[35] ASMR
Can lessen the annoyance of

binaural beats while improving
brainwave entrainment

N/A
CS could cause 6 Hz
activity for inducing
NREM sleep stage 1

[38] Artificial neural
network

Can identify and eliminate stress
based on user preferences and

treatment records

K-nearest neighbor shows
better performance on
some brainwaves only

Accuracy: 90%

[32] DFT-SOM-ANN Mental pattern recognition with
high accuracy

Artifacts introduced in
older adults cannot be

removed via DFT
Accuracy: 98.68%

[40] ESD-ANN
Excellent accuracy in

identifyingwoman with and without
stress, using the entire brain

Optimal channel selection
difficult with ANN Accuracy: 89.19%

[41] C3RNN
Better performance than baseline

CRNN with the same weights and
high training speed

The error can be generated
due to backpropagation Accuracy: 84.1%

[42] CNN

Accurately distinguishes EEGs of
individuals listening to music from
those of subjects without auditory

input

May not consider the
generalization issue Accuracy: 97.68%

[43] Brainwave
stimulator

Promotes the production of alpha
brainwaves to decrease stress

Artifacts due to eye
blinking and muscle
movements are not

considered

A significant increase
in the number of alpha

brainwave PSD
observed

[33] Bi-spectral analysis
Extracts features providing

information about the distribution
and dispersion of signals

The usage of discrete
Fourier transform for

filtering could reduce the
original energy of the EEG

signal

The degree of
synchronization ranged

from 52.1% to 83.4%

[45]
Semantic-based

Bayesian network
engine

Records and analyzes correlations
between binaural beats, EEG, and

perceived mental states

Implementation outcomes
are not provided in a

detailed manner
Performance: 72.25%

[46] Fast Fourier
transform

Shows entrainments after the
perception of binaural beats based

on an associated EEG rhythm

The technique should be
time-fixed for assessing the

brain’s reaction to quick
shifts in auditory intensity

Absolute power value
ranges between 5 and

15 µV2

Proposed
model

Deep CNN-based
signal processing

Extraction of deep features from
EEG signals, enabling precise

identification of the impacts of
binaural beats on various types of

brainwaves and anxiety levels. This
provides more accurate and detailed
insights into the effects of binaural
beats on different levels of anxiety,

leading to a more effective and
feasible outcome.

N/A Accuracy: 99%
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Overall, the optimized wavelet transform using deep CNN-based signal processing
outperforms existing techniques such as KNN, SVM, LDA, and Narrow-ANN (andvarious
forms of ANNs with a high accuracy of 0.99%, precision of 0.99%, recall of 0.99%, F1-
score of 0.99%, specificity of 0.999%, and error rate of 0.01% in identifying an effective
decomposition of the input EEG data and extracting all deep features belonging to anxiety
and analyzing the effect of binaural beats on the level of anxiety.

5. Conclusions

An optimized wavelet transform with the flower pollination optimization algorithm
has been proposed to remove artifacts from EEG signals without reducing the original
signal’s energy, in which the flower pollination optimization algorithm is integrated with
the wavelet transform for the optimal selection of wavelet parameters, the result of which
are that the artifacts are removed from the EEG signal with aminimum loss value of 0.4 and
a high accuracy of 99%. Then, EEG signals have five types of brainwaves, delta, theta, beta,
alpha, and gamma, which are optimally analyzed via deep CNN-based signal processing
that is integrated into EEG signal processing and helps with analyzing the effect of binaural
beats on the four levels of anxiety (minimal, mild, moderate, and severe). This model can
extract all the deep features belonging to anxiety from EEG signals, which provide more
accurate results for establishing binaural beats’ effects on anxiety via brainwaves. Thus, the
results obtained from the proposed method outperform existing techniques with a high
accuracy of 99%, precision of 96%, recall of 97%, and F1-score of 96%. As a result, the
novel methodology provides effective and promising results for determining the effect of
binaural beats on four levels of anxiety.

While the deep CNN model extracts deep features from EEG signals, the complexity
of interpreting brainwave patterns, especially in the context of anxiety, can pose challenges.
There may be inherent difficulties in accurately quantifying the relationship between
binaural beats and specific brainwave activities related to anxiety. Future studies might
concentrate on developing real-time monitoring systems that use the proposed methodolo-
gies to offer instant feedback on the efficacy of binaural beats in controlling anxiety levels,
allowing for immediate treatment.
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Abstract: Artificial Intelligence (AI) describes computer systems able to perform tasks that normally
require human intelligence, such as visual perception, speech recognition, decision-making, and language
translation. Examples of AI techniques are machine learning, neural networks, and deep learning. AI
can be applied in many different areas, such as econometrics, biometry, e-commerce, and the automotive
industry. In recent years, AI has found its way into healthcare as well, helping doctors make better
decisions (“clinical decision support”), localizing tumors in magnetic resonance images, reading and
analyzing reports written by radiologists and pathologists, and much more. However, AI has one big
risk: it can be perceived as a “black box”, limiting trust in its reliability, which is a very big issue in an
area in which a decision can mean life or death. As a result, the term Explainable Artificial Intelligence
(XAI) has been gaining momentum. XAI tries to ensure that AI algorithms (and the resulting decisions)
can be understood by humans. In this narrative review, we will have a look at some central concepts
in XAI, describe several challenges around XAI in healthcare, and discuss whether it can really help
healthcare to advance, for example, by increasing understanding and trust. Finally, alternatives to
increase trust in AI are discussed, as well as future research possibilities in the area of XAI.

Keywords: XAI; AI; artificial intelligence; explainable; explainability; machine learning; deep learning;
data science; big data; healthcare; medicine

1. Introduction

Artificial Intelligence (AI) is “the theory and development of computer systems able to
perform tasks that normally require human intelligence, such as visual perception, speech
recognition, decision-making, and translation between languages” [1]. Examples of AI tech-
niques are machine learning (ML), neural networks (NN), and deep learning (DL). AI can be
applied to many different areas, such as econometrics (stock market predictions), biometry
(facial recognition), e-commerce (recommendation systems), and the automotive industry
(self-driving cars). In recent years, AI has found its way into the domain of biomedicine [2]
and healthcare [3] as well. It is used to help researchers analyze big data to enable precision
medicine [4] and to help clinicians to improve patient outcomes [5]. AI algorithms can help
doctors to make better decisions (“clinical decision support”, CDS), localize tumors in magnetic
resonance (MR) images, read and analyze reports written by radiologists and pathologists,
and much more. In the near future, generative AI and natural language processing (NLP)
technology, such as Chat Generative Pre-trained Transformer (ChatGPT), could also help to
create human-readable reports [6].

However, there are some barriers to the effective use of AI in healthcare. The first one is
“small” data, resulting in bias [7]. When studies are carried out on a patient cohort with limited
diversity in race, ethnicity, gender, age, etc., the results from these studies might be difficult to
be applied to patients with different characteristics. An obvious solution for this bias is to create
datasets using larger, more diverse patient cohorts and to keep bias in mind when designing
experiments. A second barrier exists in privacy and security issues. Strict regulations (such
as the European GDPR, the American HIPAA, and the Chinese PIPL) exist, limiting the use
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of personal data and imposing large fines for the leakage of such data. These issues can be
solved in different ways, for example, by using federated or distributed learning. In this way,
the algorithm travels to the data and sends results back to a central repository. The data do
not need to be transferred to another party, avoiding privacy and security issues as much as
possible [8]. Another solution is the use of synthetic data, artificial data, which might either be
generated from scratch or based on real data, usually generated using AI algorithms such as
Generative Adversarial Networks (GANs) [9]. A third barrier is the limited trust that clinicians
and patients might have in AI algorithms. They can be perceived as a “black box”: something
goes in, and something comes out, with no understanding of what happens inside. This distrust
in AI algorithms, their accuracy, and reliability is a very big issue in an area in which a decision
could mean the life or death of the patient. As a result of this distrust, the term Explainable
Artificial Intelligence (XAI) [10] has been gaining momentum as a possible solution. XAI tries to
make sure that algorithms (and the resulting decisions) can be understood by humans.

XAI is being mentioned more and more in scientific publications, as can be seen in Figure 1.
Its first mention in a PubMed title, abstract, or keywords was in 2018, in a paper about machine
learning in neuroscience [11]. Since then, it has been mentioned a total of 488 times, of which
more than 63% (311) in papers from 2022 or from the first months of 2023. The results for
the Embase database show a similar trend. A full list of the publications can be found in
Supplementary Tables S1 (PubMed) and S2 (Embase). This trend shows the growing importance
of XAI in (bio)medicine and healthcare. Taking this growth into consideration, the number
of manuscripts that discuss the concepts and challenges of XAI in the context of healthcare
remains small. In this narrative review, we will have a look at several concepts around XAI
and what their importance might be for the implementation and acceptance of AI in healthcare.
This review will also provide some future directions. It will not attempt to give a full overview
of the current literature on this topic or explain in detail which methods exist to explain AI
algorithms, as several excellent reviews on this topic already exist [12–15]. First, we will go
through some central concepts of XAI. We will explain the terminologies “black box” and
“glass box”. Then, we will look at two approaches to explainability, transparency, and post-hoc
explanations, followed by a discussion on the collaboration between humans (e.g., clinicians) and
AI. The subsequent two sections introduce scientific XAI and discuss the explanation methods
of granular computing and fuzzy modeling. Second, we will discuss some challenges of XAI
in healthcare. The first section is about legal and regulatory compliance, which is of particular
importance in healthcare, dealing with sensitive personal data. The next sections discuss the
effects of XAI on privacy and security and the question of whether the explanations always raise
trust. Another section discusses the balance between explainability and accuracy/performance,
followed by an overview of methods to measure explainability and a contemplation on the
future increasing complexity of AI algorithms. The penultimate section shows some examples of
XAI applied in a healthcare setting. Finally, the discussion puts everything in a broader context
and mentions some future research possibilities of XAI in healthcare.
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2. Central Concepts of XAI
2.1. From “Black Box” to “(Translucent) Glass Box”

With explainable AI, we try to progress from a “black box” to a transparent “glass
box” [16] (sometimes also referred to as a “white box” [17]). In a glass box model (such
as a decision tree or linear regression model), all parameters are known, and we know
exactly how the model comes to its conclusion, giving full transparency. In the ideal
situation, the model is fully transparent, but in many situations (e.g., deep learning models),
the model might be explainable only to a certain degree, which could be described as a
“translucent glass box” with an opacity level somewhere between 0% and 100%. A low
opacity of the translucent glass box (or high transparency of the model) can lead to a
better understanding of the model, which, in turn, could increase trust. This trust can
exist on two levels, trust in the model versus trust in the prediction, as explained by
Ribeiro et al. [18]. In healthcare, there are many different stakeholders who have different
explanation needs [19]. For example, data scientists are usually mostly interested in the
model itself, whereas users (often clinicians, but sometimes patients) are mostly interested
in the predictions based on that model. Therefore, trust for data scientists generally means
trust in the model itself, while trust for clinicians and patients means trust in its predictions.
The “trusting a prediction” problem can be solved by providing explanations for individual
predictions, whereas the “trusting the model” problem can be solved by selecting multiple
such predictions (and explanations) [18]. Future research could determine in which context
either of these two approaches should be applied.

2.2. Explainability: Transparent or Post-Hoc

Arrieta et al. [20] classified studies on XAI into two approaches—some works focus
on creating transparent models, while most works wrap black-box models with a layer
of explainability, the so-called post-hoc models (Figure 2). The transparent models are
based on linear or logistic regression, decision trees, k-nearest neighbors, rule-based learn-
ing, general additive models, and Bayesian models. These models are considered to be
transparent because they are understandable by themselves. The post-hoc models (such
as neural networks, random forest, and deep learning) need to be explained by resorting
to diverse means to enhance their interpretability, such as text explanations, visual expla-
nations, local explanations, explanations by example, explanations by simplification, and
feature relevance explanations techniques. Phillips et al. [21] define four principles for
explainable AI systems: (1) explanation: explainable AI systems deliver accompanying
evidence or reasons for outcomes and processes; (2) meaningful: provide explanations that
are understandable to individual users; (3) explanation accuracy: provide explanations that
correctly reflect the system’s process for generating the output; and (4) knowledge limits:
a system only operates under conditions for which it was designed and when it reaches
sufficient confidence in its output. Vale et al. [22] state that machine learning post-hoc
explanation methods cannot guarantee the insights they generate, which means that they
cannot be relied upon as the only mechanism to guarantee the fairness of model outcomes
in high-stake decision-making, such as in healthcare.
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2.3. Collaboration between Humans and AI

It is important for clinicians (but also patients, researchers, etc.) to realize that humans
can and should not be replaced by an AI algorithm [23]. An AI algorithm could outscore
humans in specific tasks, but humans (at this moment in time) still have added value with
their domain expertise, broad experience, and creative thinking skills. It might be the case
that when the accuracy of an AI algorithm on a specific task is compared to the accuracy of
the clinician, the AI gets better results. However, the AI model should not be compared to
the human alone but to the combination of the AI model and a human because, in clinical
practice, they will almost always work together. In most cases, the combination (also
known as “AI-assisted decision making”) will obtain the best results [24]. The combination
of an AI model with human expertise also makes the decision more explainable: the
clinician can combine the explainable AI with his/her own domain knowledge. In CDS,
explainability allows developers to identify shortcomings in a system and allows clinicians
to be confident in the decisions they make with the support of AI. [25]. Amann et al. state
that if we would move in the opposite direction toward opaque algorithms in CDSS, this
may inadvertently lead to patients being passive spectators in the medical decision-making
process [26]. Figure 3 shows what qualities a human and an AI model can offer in clinical
decision-making, with the combination offering the best results. In the future, there might
be a shift to the right side of the figure, but the specific qualities of humans will likely
ensure that combined decision-making will still be the best option for years to come.
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2.4. Scientific Explainable Artificial Intelligence (sXAI)

Durán (2021) [27] differentiates scientific XAI (sXAI) from other forms of XAI. He states
that the current approach for XAI is a bottom-up model: it consists of structuring all forms
of XAI, attending to the current technology and available computational methodologies,
which could lead to confounding classifications (or “how-explanations”) with explanations.
Instead, he proposes a bona fide scientific explanation in medical AI. This explanation
addresses three core components: (1) the structure of sXAI, consisting of the “explanans”
(the unit that carries out an explanation), the “explanandum” (the unit that will be ex-
plained), and the “explanatory relation” (the objective relation of dependency that links the
explanans and the explanandum); (2) the role of human agents and non-epistemic beliefs
in sXAI; and (3) how human agents can meaningfully assess the merits of an explanation.
This concludes by proposing a shift from standard XAI to sXAI, together with substantial
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changes in the way medical XAI is constructed and interpreted. Cabitza et al. [28] discuss
this approach and conclude that existing XAI methods fail to be bona fide explanations,
which is why their framework cannot be applied to current XAI work. For sXAI to work,
it needs to be integrated into future medical AI algorithms in a top–down manner. This
means that algorithms should not be explained by simply describing “how” a decision
has been reached, but we should also look at what other scientific disciplines, such as
philosophy of science, epistemology, and cognitive science, can add to the discussion [27].
For each medical AI algorithm, the explanans, explanandum, and explanatory relation
should be defined.

2.5. Explanation Methods: Granular Computing (GrC) and Fuzzy Modeling (FM)

Many methods exist to explain AI algorithms, as described in detail by Holzinger
et al. [29]. There is one technique that is particularly useful in XAI because it is motivated
by the need to approach AI through human-centric information processing [30], Granular
Computing (GrC), which was introduced by Zadeh in 1979 [31]. GrC is an “emerging
paradigm in computing and applied mathematics to process data and information, where
the data or information are divided into so-called information granules that come about
through the process of granulation” [32]. GrC can help make models more interpretable and
explainable by bridging the gap between abstract concepts and concrete data through these
granules. Another useful technique related to GrC is Fuzzy Modeling (FM), a methodology
oriented toward the design of explanatory and predictive models. FM is a technique
through which a linguistic description can be transformed into an algorithm whose result
is an action [33]. Fuzzy modeling can help explain the reasoning behind the output of an
AI system by representing the decision-making process in a way that is more intuitive and
interpretable. Although FM was originally conceived to provide easily understandable
models to users, this property cannot be taken for granted, but it requires careful design
choices [34]. Much research in this area is still ongoing. Zhang et al. [35] discuss the
multi-granularity three-way decisions paradigm [36] and how this acts as a part of granular
computing models, playing a significant role in explainable decision-making. Zhang
et al. [37] adopt a GrC framework named “multigranulation probabilistic models” to enrich
semantic interpretations for GrC-based multi-attribute group decision-making (MAGDM)
approaches.

In healthcare, GrC could, for example, help break down a CDS algorithm into smaller
components, such as the symptoms, patient history, test results, and treatment options. This
can help the clinician understand how the algorithm arrived at its diagnosis and determine
if it is reliable and accurate. FM could, for example, be used in a CDS system to represent
the uncertainty and imprecision in the input data, such as patient symptoms, and the
decision-making process, such as the rules that are used to arrive at a diagnosis. This can
help to provide a more transparent and understandable explanation of how the algorithm
arrived at its output. Recent examples of the application of GrC and FM in healthcare are in
the disease areas of Parkinson’s disease [38], COVID-19 [39], and Alzheimer’s disease [40].

3. Challenges of XAI in Healthcare
3.1. Legal and Regulatory Compliance

Another advantage of XAI is that it can help organizations comply with laws and
regulations that require transparency and explainability in AI systems. Within the General
Data Protection Regulation (GDPR) of the European Union, transparency is a fundamental
principle for data processing [41]. However, transparency is difficult to adhere to because
of the complexity of AI. Felzmann et al. [42] propose that transparency, as required by the
GDPR in itself, may be insufficient to achieve an increase in trust or any other positive
goal associated with transparency. Instead, they recommend a relational understanding of
transparency, in which the provision of information is viewed as a sort of interaction be-
tween users and technology providers, and the value of transparency messages is mediated
by trustworthiness assessments based on the context. Schneeberger et al. [43] discussed
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the European framework regulating medical AI based on White Paper on AI from 2020
by the European Commission [44] and concluded that this framework, by endorsing a
human-centric approach, will fundamentally influence how medical AI and AI, in general,
will be used in Europe in the future. The EU is currently working on the Artificial Intel-
ligence Act [45], which will make a distinction between non-high-risk and high-risk AI
systems. On non-high-risk systems, only limited transparency obligations are imposed,
while for high-risk systems, many restrictions are imposed on quality, documentation,
traceability, transparency, human oversight, accuracy, and robustness. Bell et al. [46] state
that transparency is left to the technologists to achieve and propose a stakeholder-first
approach that assists technologists in designing transparent, regulatory-compliant systems,
which is a useful initiative. Besides GDPR, there are other privacy laws for which XAI
might be an interesting development. In the USA, there is the Health Insurance Portability
and Accountability Act (HIPAA) privacy rule [47], which is related to the Openness and
Transparency Principle in the Privacy and Security Framework. This Openness and Trans-
parency Principle stresses that it is “important for people to understand what individually
identifiable health information exists about them, how that information is collected, used,
and disclosed, and how reasonable choices can be exercised with respect to that informa-
tion” [48]. The transparency of the usage of health information might point to a need for
explainability of algorithms. In China, article 7 of the Personal Information Protective Law
(PIPL) prescribes that “the principles of openness and transparency shall be observed in
the handling of personal information, disclosing the rules for handling personal informa-
tion and clearly indicating the purpose, method, and scope of handling” [49], which also
points to a need for transparency in data handling and AI algorithms. Since new, more
AI-specific privacy laws are being introduced around the world, regulatory compliance
with AI algorithms is gaining relevance and will be an important area for research in the
future.

3.2. Privacy and Security: A Mixed Bag

On the one hand, XAI can help to improve the safety and security of AI systems by
making it easier to detect and prevent errors and malicious behavior [50]. On the other
hand, XAI can also raise privacy and security concerns, as providing explanations for AI
decisions may reveal sensitive information or show how to manipulate the system, for
example, by reverse engineering [51]. A fully transparent model can make a hacker feel
as if they have endless possibilities. Therefore, it is important to carefully consider the
privacy and security implications of XAI and to take appropriate risk mitigation measures,
certainly in healthcare, where the protection of sensitive personal data is an important
issue. Combining the explainability of algorithms with privacy-preserving methods such
as federated learning [52] might help. Saifullah et al. [53] argue that XAI and privacy-
preserving machine learning (PPML) are both crucial research fields, but no attention
has yet been paid to their interaction. They investigated the impact of private learning
techniques on generated explanations for deep learning-based models and concluded
that federated learning should be considered before differential privacy. If an application
requires both privacy and explainability, they recommend differential private federated
learning [54] as well as perturbation-based XAI methods [55]. The importance of privacy
in relation to medical XAI is shown in Figure 4 of Albahri et al. [56], with keywords such
as “ethics”, “privacy”, “security”, and “trust” being the most often-occurring keywords
in papers around XAI in healthcare. Some research on security in combination with XAI
has been carried out as well. Viganò and Magazzeni [57] propose the term “Explainable
Security” (XSec) as an extension of XAI to the security domain. According to the authors,
XSec has unique and complex characteristics: it involves several different stakeholders
and is multi-faceted by nature. Kuppa and Le-Khac [58] designed a novel black box
attack for analyzing the security properties (consistency, correctness, and confidence)
of gradient-based XAI methods, which could help in designing secure and robust XAI
methods. Kiener [59] looked specifically at security in healthcare and identified three
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types of security risks related to AI: cyber-attacks; systematic bias; and mismatches, all of
which can have serious consequences for medical systems. Explainability can be part of
the solution for all of these risks. The author specifically mentions input attacks as a type
of cyber-attack that is of high risk to AI systems. Input attacks manipulate the input data
(e.g., make some small changes to an MR image) so that the AI algorithm will deliver an
incorrect result [60]. In an explainable model, the clinician can look at the reasoning behind
the incorrect result and possibly, detect the manipulation. Systematic bias can be brought
to light as well by explaining the workings of the AI algorithm. For example, it can become
clearly visible that an algorithm was only trained on data from people from one ethnic
background. Mismatches can occur when the AI algorithm recommends courses of action
that do not match the background situation of the individual patient. The algorithm can
mistake correlation for causation and suggest, for example, an incorrect treatment. In a
black-box AI, such a mismatch might be undetectable, but in a transparent, explainable AI,
it might be much easier to detect or at least indicate the risk of such a mismatch.

3.3. Do Explanations Always Raise Trust?

The goal of explainability to end users of AI models is ultimately to increase trust in
the model. However, even with a good understanding of an AI model, end users may not
necessarily trust the model. Druce et al. [61] show that a statistically significant increase in
user trust and acceptance of an AI model can be reached by using a three-fold explanation:
(1) a graphical depiction of the model’s generalization and performance in the current
game state; (2) how well the agent would play in semantically similar environments; and
(3) a narrative explanation of what the graphical information implies. Le Merrer and
Trédan [62] argue that explainability might be promising in a local context but that it cannot
simply be transposed to a different (remote) context, where a model trained by a service
provider is only accessible to a user through a network and its application programming
interface (API). They show that providing explanations cannot prevent a remote service
from lying about the true reasons leading to its decisions (similar to what humans could do),
undermining the very concept of remote explainability in general. Within healthcare, trust
is a fundamental issue because important decisions might be taken based on the output of
the AI algorithm. Mistrust might result in humans discarding accurate predictions, while
overtrust could lead to over-reliance on possibly inaccurate predictions. Therefore, it would
be good to take all necessary actions described here to reach the correct level of trust in AI
algorithms in healthcare. One of the key actions here is to create open and honest education
to end users on the strengths and weaknesses of AI algorithms. For example, people should
be trained to understand the difference between local context and remote context.

3.4. “Glass Box” vs. “Crystal Ball”: Balance between Explainability and Accuracy/Performance

In some cases, the need for explainability can come at the cost of reduced performance
of the model. For example, in order to make a model fully explainable (a “glass box”), it
might need to be simplified. A very accurate prediction model (a “crystal ball”) might
lose part of its accuracy because of this simplification. Or it needs to introduce some extra,
more simple steps to make it more transparent, causing a reduction in performance. Linear
models and rule-based models are very transparent but usually have lower performance
than deep learning algorithms (Figure 5 [63]). Therefore, in a real-world situation, it might
not be possible to achieve full explainability because accuracy and performance are usually
considered to be more important. A balance needs to be maintained between the two,
as shown in Figure 4. In healthcare, this balance might shift more to the “crystal ball”
as accuracy might be considered more important than transparency and explainability.
Van der Veer et al. [64] concluded that citizens might indeed value the explainability of
AI systems in healthcare less than in non-healthcare domains, especially when weighed
against system accuracy. When developing policy on the explainability of (medical) AI,
citizens should be actively consulted, as they might have a different opinion than assumed
by healthcare professionals. This trade-off between accuracy and transparency could be
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different for each context, however, depending on the implications of a wrong decision
based on the AI algorithm. Future research could be carried out on the context-specific
need for explainability.

AI 2023, 4, FOR PEER REVIEW 9 
 

 
Figure 4. Increasing transparency of a (prediction) model might cause a decrease in accuracy, going 
from a “crystal ball” to a “glass box” and vice versa. 

3.5. How to Measure Explainability? 
Accuracy and performance can be measured easily by metrics such as specificity, se-

lectivity, and area under the Receiver Operating Characteristic (ROC) curve (AUC). Ex-
plainability is much more difficult to be measured because the quality of an explanation 
is somewhat subjective. Multiple researchers have tried to come up with an assessment of 
explainability. Table 1 shows an overview of the most widely used explainability metrics 
from the recent literature. The four publications that introduced these metrics all look at 
explainability from a different angle. Sokol and Flach [65], for example, have created “ex-
plainability fact sheets” to assess explainable approaches along five dimensions: func-
tional; operational; usability; safety; and validation. This is quite an extensive approach. 
Most researchers measure explainability simply by evaluating how well an explanation is 
understood by the end user. Lipton [66] identifies three measures: (1) simulatability: can 
the user recreate or repeat (simulate) the computational process based on provided expla-
nations of a system; (2) decomposability: can the user comprehend individual parts (and 
their functionality) of a predictive model; (3) algorithmic transparency: can the user fully 
understand the predictive algorithm? Hoffman et al. [67] use “mental models”, represen-
tations or expressions of how a person understands some sort of event, process, or system 
[68], as a user�s understanding of the AI system. This mental model can be evaluated on 
criteria such as correctness, comprehensiveness, coherence, and usefulness. Fauvel et al. 
[69] present a framework that assesses and benchmarks machine learning methods on 
both performance and explainability. Performance is measured compared to the state-of-
the-art, best, similar, or below. For measuring explainability, they look at model compre-
hensibility, explanation granularity, information type, faithfulness, and user category. For 
model comprehensibility, only two categories are defined, “black-box” and “white-box” 
models, suggesting that these components could be further elaborated in future work. For 
the granularity of the explanation, they use three categories: “global”; “local”; and “global 
and local” explainability. They propose a generic assessment of the information type in 
three categories from the least to the most informative: (1) importance: the explanations 
reveal the relative importance of each dataset variable on predictions; (2) patterns: the 

accuracy

transparency

Figure 4. Increasing transparency of a (prediction) model might cause a decrease in accuracy, going
from a “crystal ball” to a “glass box” and vice versa.

3.5. How to Measure Explainability?

Accuracy and performance can be measured easily by metrics such as specificity,
selectivity, and area under the Receiver Operating Characteristic (ROC) curve (AUC). Ex-
plainability is much more difficult to be measured because the quality of an explanation is
somewhat subjective. Multiple researchers have tried to come up with an assessment of
explainability. Table 1 shows an overview of the most widely used explainability metrics
from the recent literature. The four publications that introduced these metrics all look at
explainability from a different angle. Sokol and Flach [65], for example, have created “ex-
plainability fact sheets” to assess explainable approaches along five dimensions: functional;
operational; usability; safety; and validation. This is quite an extensive approach. Most
researchers measure explainability simply by evaluating how well an explanation is under-
stood by the end user. Lipton [66] identifies three measures: (1) simulatability: can the user
recreate or repeat (simulate) the computational process based on provided explanations
of a system; (2) decomposability: can the user comprehend individual parts (and their
functionality) of a predictive model; (3) algorithmic transparency: can the user fully under-
stand the predictive algorithm? Hoffman et al. [67] use “mental models”, representations
or expressions of how a person understands some sort of event, process, or system [68], as a
user’s understanding of the AI system. This mental model can be evaluated on criteria such
as correctness, comprehensiveness, coherence, and usefulness. Fauvel et al. [69] present a
framework that assesses and benchmarks machine learning methods on both performance
and explainability. Performance is measured compared to the state-of-the-art, best, similar,
or below. For measuring explainability, they look at model comprehensibility, explanation
granularity, information type, faithfulness, and user category. For model comprehensibility,
only two categories are defined, “black-box” and “white-box” models, suggesting that
these components could be further elaborated in future work. For the granularity of the
explanation, they use three categories: “global”; “local”; and “global and local” explain-
ability. They propose a generic assessment of the information type in three categories
from the least to the most informative: (1) importance: the explanations reveal the relative
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importance of each dataset variable on predictions; (2) patterns: the explanations provide
the small conjunctions of symbols with a predefined semantic (patterns) associated with
the predictions; (3) causal: the most informative category corresponds to explanations
under the form of causal rules. The faithfulness of the explanation shows if the user can
trust the explanation, with the two categories, “imperfect” and “perfect”. Finally, the
user category shows the target user at which the explanation is aimed: “machine learning
expert”, “domain expert”, and “broad audience”. This user category is important because
it defines the level of background knowledge they have. As suggested by the authors, all
these metrics and categories can be defined in more detail in future XAI research.

Table 1. Methods for assessing explainability.

Manuscript Measures

Sokol and Flach (2020) [65]

- Functional
- Operational
- Usability
- Safety
- Validation

Lipton (2018) [66]
- Simulatability
- Decomposability
- Algorithmic transparency

Hoffman et al. (2018) [67]

- Correctness
- Comprehensiveness
- Coherence
- Usefulness

Fauvel et al. (2020) [69]

- Performance:

o Best
o Similar
o Below

- Explainability:

o Model comprehensibility:
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3.6. Increasing Complexity in the Future

The first neural networks (using a single layer) were relatively easy to understand.
With the advent of deep learning (using multiple layers) and new types of algorithms such
as Deep Belief Networks (DBNs) [70] and Generative Adversarial Networks (GANs) [71],
made possible by the increasing computer power, artificial intelligence algorithms are
gaining complexity. In the future, this trend will likely continue, with Moore’s law still
continuing to proceed. With algorithms becoming more complex, it might also be more
difficult to make them explainable. Ongoing research in the field of XAI might make
it possible that new techniques will be developed that make it easier to explain and
understand complex AI models. For example, Explainability-by-Design [72] takes proactive
measures to include explanation capability in the design of decision-making systems so
that no post-hoc explanations are needed. However, there is also the possibility that
the complexity of AI models will overtake our ability to understand and explain them.
Sarkar [73] even talks about an “explainability crisis”, which will be defined by the point
at which our desire for explanations of machine intelligence will eclipse our ability to
obtain them, and uses the “five stages of grief” (denial, anger, bargaining, depression, and
acceptance) to describe the several phases of this crisis. The author’s conclusion is that
XAI is probably in a race against model complexity, but also that this may not be such a
big issue as it seems, as there are several ways to either improve explanations or reduce
AI complexity. Ultimately, it all will depend on the trajectory of AI development and the
progress made in the field of XAI.

4. Application Examples

XAI has been applied to healthcare in medicine in a number of ways already. AI
has been very successful in improving medical image analysis, and recently, researchers
have also been trying to combine this success (through high accuracy) with an increased
explainability and interpretability of the models created. Van der Velden et al. [74] identified
over 200 papers using XAI in deep learning-based medical image analysis and concluded
that most papers in this area used a visual explanation (mostly through saliency maps [75])
as opposed to textual explanations and example-based explanations. These saliency maps
highlight the most important features which can distinguish between diseased and non-
diseased tissue [76]. Manresa-Yee et al. [77] describe explanation interfaces that are being
used in healthcare, mostly by clinicians. They identified three main application areas for
these interfaces: prediction tasks; diagnosis tasks; and automated tasks. One example of
a clinician-facing explanation interface is the dashboard presented by Khodabandehloo
et al. [78], which uses data from sensorized smart homes to detect a decline in the cognitive
functions of the elderly in order to promptly alert practitioners.

Joyce et al. [79] studied the use of XAI in psychiatry and mental health, where the
need for explainability and understandability is higher than in other areas because of the
probabilistic relationships between the data describing the syndromes, outcomes, disorders,
and signs/symptoms. They introduced the TIFU (Transparency and Interpretability For
Understandability) framework, which focuses on how a model can be made understandable
(to a user) as a function of transparency and interpretability. They conclude that the main
applications of XAI in mental health are prediction and discovery, that XAI in mental health
requires understandability because clinical applications are high-stakes, and that AI tools
should assist clinicians and not introduce further complexity.

5. Discussion

Current privacy laws such as GDPR, HIPAA, and PIPL include clauses that state that
the handling of healthcare data should be transparent, which means that AI algorithms
that work with these data should be transparent and explainable as well. Future privacy
laws will likely be even more strict on AI explainability. However, making AI explainable
is a difficult task, and it will be even more difficult when the complexity of AI algorithms
continues to increase. This increasing complexity might make it almost impossible for end
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users in healthcare (clinicians as well as patients) to understand and trust the algorithms.
Therefore, perhaps we should not aim to explain AI to the end users but to the researchers
and developers deploying them, as they are mostly interested in the model itself. End users,
especially patients, mostly want to be sure that the predictions made by the algorithm
are accurate, which can be proven by showing them correct predictions from the past.
Another important issue is the balance between explainability and accuracy or performance.
Especially in healthcare, accuracy (and, to a lesser extent, performance) is crucial as it
could be a matter of life and death. Therefore, explainability might be considered of less
importance in healthcare compared to accuracy. If an algorithm’s accuracy is lowered
because of post-hoc explanations, it would be good to consider other methods to increase
trust. For example, trust in algorithms could also be raised by ensuring robustness and
by encouraging fairness [80]. Robustness of an algorithm in healthcare can be proven by
presenting good results based on long-term use in different patient populations. When a
model is robust, its explanation will not change much when minor changes are made to
the model [81]. The fairness of an AI algorithm is concurrent with bias minimization. A
bias could be introduced by having a training dataset with low diversity or by subjective
responses of clinicians to a questionnaire. XAI can help find these biases as well as mitigate
them [82]. These biases can be addressed during the validation and verification of the
algorithm. Finally, algorithms (scripts, but also underlying data) should be made available
for reuse when possible [83] so that the results can be reproduced, increasing trust in the
algorithm. GrC and FM can help increase trust as well by making models more interpretable
and explainable. Another solution to the explainability–accuracy trade-off might lie in
the adoption of sXAI, in which explainability is integrated into a top–down manner into
future medical AI algorithms, and Explainability-by-Design, which includes explanation
capability in the design of decision-making systems. GrC, FM, sXAI, and Explainability-
by-Design could be combined with ongoing research in privacy and security in AI (such
as XSec) to create future-proof explainable artificial intelligence for healthcare. In any
case, explainability should be considered as important as other metrics, such as accuracy
and robustness, as they all raise trust in AI. Future endeavors to make AI explainable
should be personalized, as different end users need different levels of explanations. The
explanations should be communicated to the end user in an understandable manner, for
example, through an easy-to-use user interface. Explainability should also not compromise
the privacy rights of the patients [84]. For XAI in healthcare to fully reach its potential, it
should be embedded in clinical workflows, and explainability should be included in AI
development from the start instead of adding post-hoc explanations as an afterthought.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ai4030034/s1, Table S1: PubMed publications with the search term
“explainable artificial intelligence”; Table S2: Embase publications with the search term “explainable
artificial intelligence”.
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API Application Programming Interface
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CDS Clinical Decision Support
ChatGPT Chat Generative Pre-trained Transformer
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DBN Deep Belief Network
DL Deep Learning
FM Fuzzy Modeling
GAN Generative Adversarial Network
GDPR General Data Protection Regulation
GrC Granular Computing
HIPAA Health Insurance Portability and Accountability Act
MAGDM Multi-Attribute Group Decision Making
ML Machine Learning
MR Magnetic Resonance
NLP Natural Language Processing
NN Neural Networks
PIPL Personal Information Protective Law
PPML Privacy-Preserving Machine Learning
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sXAI Scientific Explainable Artificial Intelligence
XAI Explainable Artificial Intelligence
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33. Novák, V.; Perfilieva, I.; Dvořák, A. What is fuzzy modeling. In Insight into Fuzzy Modeling; John Wiley & Sons: Hoboken, NJ,
USA, 2016; pp. 3–10.

34. Mencar, C.; Alonso, J.M. Paving the way to explainable artificial intelligence with fuzzy modeling: Tutorial. In Proceedings
of the Fuzzy Logic and Applications: 12th International Workshop (WILF 2018), Genoa, Italy, 6–7 September 2018; Springer
International Publishing: Cham, Switzerland, 2019; pp. 215–227.

35. Zhang, C.; Li, D.; Liang, J. Multi-granularity three-way decisions with adjustable hesitant fuzzy linguistic multigranulation
decision-theoretic rough sets over two universes. Inf. Sci. 2020, 507, 665–683. [CrossRef]

36. Zadeh, L.A. Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets
Syst. 1997, 90, 111–127. [CrossRef]

37. Zhang, C.; Li, D.; Liang, J.; Wang, B. MAGDM-oriented dual hesitant fuzzy multigranulation probabilistic models based on
MULTIMOORA. Int. J. Mach. Learn. Cybern. 2021, 12, 1219–1241. [CrossRef]

38. Zhang, C.; Ding, J.; Zhan, J.; Sangaiah, A.K.; Li, D. Fuzzy Intelligence Learning Based on Bounded Rationality in IoMT Systems:
A Case Study in Parkinson’s Disease. IEEE Trans. Comput. Soc. Syst. 2022, 10, 1607–1621. [CrossRef]

39. Solayman, S.; Aumi, S.A.; Mery, C.S.; Mubassir, M.; Khan, R. Automatic COVID-19 prediction using explainable machine learning
techniques. Int. J. Cogn. Comput. Eng. 2023, 4, 36–46. [CrossRef]

40. Gao, S.; Lima, D. A review of the application of deep learning in the detection of Alzheimer's disease. Int. J. Cogn. Comput. Eng.
2022, 3, 1–8. [CrossRef]

41. Intersoft Consulting. Recital 58—The Principle of Transparency. Available online: https://gdpr-info.eu/recitals/no-58/ (accessed
on 26 March 2023).

42. Felzmann, H.; Villaronga, E.F.; Lutz, C.; Tamò-Larrieux, A. Transparency you can trust: Transparency requirements for artificial
intelligence between legal norms and contextual concerns. Big Data Soc. 2019, 6, 2053951719860542. [CrossRef]

43. Schneeberger, D.; Stöger, K.; Holzinger, A. The European legal framework for medical AI. In Proceedings of the International
Cross-Domain Conference for Machine Learning and Knowledge Extraction, Dublin, Ireland, 25–28 August 2020; Springer: Cham,
Switzerland, 2020; pp. 209–226.

44. European Commission. On Artificial Intelligence—A European Approach to Excellence and Trust; European Commission: Brussels,
Belgium, 2020.

45. European Commission. Proposal for a Regulation of the European Parliament and of the Council Laying Down Harmonised
Rules on Artificial Intelligence (Artificial Intelligence Act) and Amending Certain Union Legislative Acts. Available online:
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A52021PC0206 (accessed on 26 March 2023).

181



AI 2023, 4

46. Bell, A.; Nov, O.; Stoyanovich, J. Think about the Stakeholders First! Towards an Algorithmic Transparency Playbook for
Regulatory Compliance. arXiv 2022, arXiv:2207.01482. [CrossRef]

47. HHS Office for Civil Rights. Standards for privacy of individually identifiable health information—Final rule. Fed. Regist. 2002,
67, 53181–53273.

48. HHS Office for Civil Rights. The HIPAA Privacy Rule and Electronic Health Information Exchange in a Networked Environment—
Openness and Transparency. Available online: https://www.hhs.gov/sites/default/files/ocr/privacy/hipaa/understanding/
special/healthit/opennesstransparency.pdf (accessed on 26 March 2023).

49. Creemers, R.; Webster, G. Translation: Personal Information Protection Law of the People’s Republic of China—Effective 1
November 2021. Available online: https://digichina.stanford.edu/work/translation-personal-information-protection-law-of-
the-peoples-republic-of-china-effective-nov-1-2021/ (accessed on 26 March 2023).

50. Charmet, F.; Tanuwidjaja, H.C.; Ayoubi, S.; Gimenez, P.-F.; Han, Y.; Jmila, H.; Blanc, G.; Takahashi, T.; Zhang, Z. Explainable
artificial intelligence for cybersecurity: A literature survey. Ann. Telecommun. 2022, 77, 789–812. [CrossRef]

51. Tramèr, F.; Zhang, F.; Juels, A.; Reiter, M.K.; Ristenpart, T. Stealing machine learning models via prediction APIs. In Proceedings
of the USENIX Security Symposium, Austin, TX, USA, 10–12 August 2016; pp. 601–618.

52. Kaissis, G.A.; Makowski, M.R.; Rückert, D.; Braren, R.F. Secure, privacy-preserving and federated machine learning in medical
imaging. Nat. Mach. Intell. 2020, 2, 305–311. [CrossRef]

53. Saifullah, S.; Mercier, D.; Lucieri, A.; Dengel, A.; Ahmed, S. Privacy Meets Explainability: A Comprehensive Impact Benchmark.
arXiv 2022, arXiv:2211.04110.

54. Geyer, R.C.; Klein, T.; Nabi, M. Differentially private federated learning: A client level perspective. arXiv 2017, arXiv:1712.07557.
55. Ivanovs, M.; Kadikis, R.; Ozols, K. Perturbation-based methods for explaining deep neural networks: A survey. Pattern Recognit.

Lett. 2021, 150, 228–234. [CrossRef]
56. Albahri, A.S.; Duhaim, A.M.; Fadhel, M.A.; Alnoor, A.; Baqer, N.S.; Alzubaidi, L.; Albahri, O.S.; Alamoodi, A.H.; Bai, J.; Salhi, A.;

et al. A systematic review of trustworthy and explainable artificial intelligence in healthcare: Assessment of quality, bias risk, and
data fusion. Inf. Fusion 2023, 96, 156–191. [CrossRef]

57. Viganò, L.; Magazzeni, D. Explainable security. In Proceedings of the 2020 IEEE European Symposium on Security and Privacy
Workshops (EuroS&PW), Genoa, Italy, 7–11 September 2020; pp. 293–300.

58. Kuppa, A.; Le-Khac, N.A. Black Box Attacks on Explainable Artificial Intelligence(XAI) methods in Cyber Security. In Proceedings
of the 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020; pp. 1–8.

59. Kiener, M. Artificial intelligence in medicine and the disclosure of risks. AI Soc. 2021, 36, 705–713. [CrossRef]
60. Comiter, M. Attacking Artificial Intelligence AI’s Security Vulnerability and What Policymakers Can Do about It; Belfer Center for

Science and International Affairs: Cambridge, MA, USA, 2019.
61. Druce, J.; Harradon, M.; Tittle, J. Explainable artificial intelligence (XAI) for increasing user trust in deep reinforcement learning

driven autonomous systems. arXiv 2021, arXiv:2106.03775.
62. Le Merrer, E.; Trédan, G. Remote explainability faces the bouncer problem. Nat. Mach. Intell. 2020, 2, 529–539. [CrossRef]
63. Guang, Y.; Qinghao, Y.; Jun, X. Unbox the black-box for the medical explainable AI via multi-modal and multi-centre data fusion:

A mini-review, two showcases and beyond. Inf. Fusion 2022, 77, 29–52. [CrossRef]
64. van der Veer, S.N.; Riste, L.; Cheraghi-Sohi, S.; Phipps, D.L.; Tully, M.P.; Bozentko, K.; Atwood, S.; Hubbard, A.; Wiper, C.; Oswald,

M.; et al. Trading off accuracy and explainability in AI decision-making: Findings from 2 citizens’ juries. J. Am. Med. Inform.
Assoc. 2021, 28, 2128–2138. [CrossRef]

65. Sokol, K.; Flach, P. Explainability fact sheets: A framework for systematic assessment of explainable approaches. In Proceedings
of the 2020 Conference on Fairness, Accountability, and Transparency, Barcelona, Spain, 27–30 January 2020; pp. 56–67.

66. Lipton, Z.C. The Mythos of Model Interpretability: In Machine Learning, the Concept of Interpretability is Both Important and
Slippery. Queue 2018, 16, 31–57. [CrossRef]

67. Hoffman, R.R.; Mueller, S.T.; Klein, G.; Litman, J. Metrics for explainable AI: Challenges and prospects. arXiv 2018,
arXiv:1812.04608.

68. Klein, G.; Hoffman, R.R. Macrocognition, mental models, and cognitive task analysis methodology. In Naturalistic Decision Making
and Macrocognition; Ashgate Publishing: Farnham, UK, 2008; pp. 57–80.

69. Fauvel, K.; Masson, V.; Fromont, E. A performance-explainability framework to benchmark machine learning methods: Applica-
tion to multivariate time series classifiers. arXiv 2020, arXiv:2005.14501.

70. Larochelle, H.; Erhan, D.; Courville, A.; Bergstra, J.; Bengio, Y. An empirical evaluation of deep architectures on problems with
many factors of variation. In Proceedings of the International Conference on Machine Learning (ICML ‘07), Corvallis, OR, USA,
20–24 June 2007; pp. 473–480. [CrossRef]

71. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial
networks. Commun. ACM 2020, 63, 139–144. [CrossRef]

72. Huynh, T.D.; Tsakalakis, N.; Helal, A.; Stalla-Bourdillon, S.; Moreau, L. Explainability-by-Design: A Methodology to Support
Explanations in Decision-Making Systems. arXiv 2022, arXiv:2206.06251.

73. Sarkar, A. Is explainable AI a race against model complexity? arXiv 2022, arXiv:2205.10119.
74. van der Velden, B.H.M.; Kuijf, H.J.; Gilhuijs, K.G.A.; Viergever, M.A. Explainable artificial intelligence (XAI) in deep learning-

based medical image analysis. Med. Image Anal. 2022, 79, 102470. [CrossRef] [PubMed]

182



AI 2023, 4

75. Simonyan, K.; Vedaldi, A.; Zisserman, A. Deep inside convolutional networks: Visualising image classification models and
saliency maps. arXiv 2013, arXiv:1312.6034.

76. Chaddad, A.; Peng, J.; Xu, J.; Bouridane, A. Survey of Explainable AI Techniques in Healthcare. Sensors 2023, 23, 634. [CrossRef]
[PubMed]

77. Manresa-Yee, C.; Roig-Maimó, M.F.; Ramis, S.; Mas-Sansó, R. Advances in XAI: Explanation Interfaces in Healthcare. In Handbook
of Artificial Intelligence in Healthcare: Practicalities and Prospects; Lim, C.-P., Chen, Y.-W., Vaidya, A., Mahorkar, C., Jain, L.C., Eds.;
Springer International Publishing: Cham, Switzerland, 2022; Volume 2, pp. 357–369.

78. Khodabandehloo, E.; Riboni, D.; Alimohammadi, A. HealthXAI: Collaborative and explainable AI for supporting early diagnosis
of cognitive decline. Future Gener. Comput. Syst. 2021, 116, 168–189. [CrossRef]

79. Joyce, D.W.; Kormilitzin, A.; Smith, K.A.; Cipriani, A. Explainable artificial intelligence for mental health through transparency
and interpretability for understandability. NPJ Digit. Med. 2023, 6, 6. [CrossRef] [PubMed]

80. Asan, O.; Bayrak, A.E.; Choudhury, A. Artificial Intelligence and Human Trust in Healthcare: Focus on Clinicians. J. Med. Internet
Res. 2020, 22, e15154. [CrossRef] [PubMed]

81. Marcus, G. The next decade in AI: Four steps towards robust artificial intelligence. arXiv 2020, arXiv:2002.06177.
82. Das, A.; Rad, P. Opportunities and challenges in explainable artificial intelligence (xai): A survey. arXiv 2020, arXiv:2006.11371.
83. Hulsen, T. The ten commandments of translational research informatics. Data Sci. 2019, 2, 341–352. [CrossRef]
84. Harder, F.; Bauer, M.; Park, M. Interpretable and differentially private predictions. In Proceedings of the AAAI Conference on

Artificial Intelligence, New York, NY, USA, 7–12 February 2020; pp. 4083–4090.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

183





MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

www.mdpi.com

AI Editorial Office
E-mail: ai@mdpi.com

www.mdpi.com/journal/ai

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are

solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s).

MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from

any ideas, methods, instructions or products referred to in the content.





Academic Open 
Access Publishing

mdpi.com ISBN 978-3-7258-1083-3


