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Abstract: Debate on the shift from a monocentric to polycentric urban structure has been extensive.
Polycentricity generally refers to the co-existence of several centers in a city. Existing studies regarding
China have mainly focused on the morphological characteristics of urban centers, but few recent
studies have focused on functional dimensions of urban centers. Emerging big data sources provide
new opportunities to explore the morphological and functional perspectives of urban spatial structure.
This study uses mobile phone signaling data and develops a new methodology to measure urban
centers’ functional centrality. The study area focuses on Shenzhen City, which has rapidly transformed
from a village into a metropolitan city in the past few decades. As the first economic special zone
in China, Shenzhen has adopted a polycentric urban plan since the beginning of the urbanization
process. This study explores the spatial employment structure of the city from the morphological
and function dimensions. Based on the findings, this study discusses the role of urban planning in
forming an urban spatial structure and provides implications for future planning.

Keywords: urban spatial structure; morphological centrality; functional centrality; urban planning;
mobile phone signaling data; Shenzhen; China

1. Introduction

Rapid urbanization has led to the transformation of urban spatial structures. Many
cities in the world have adopted polycentric urban planning as an important spatial
strategy toward sustainable development [1], in order to solve urban problems, such
as traffic congestion and excessive pressure on resources and the environment [2,3]. A
polycentric urban structure is considered a more compact urban form that is conducive
to more effective urban space organization [4]. Traditionally, urban spatial structure is
measured on the basis of morphological indicators, such as population distribution and
urban physical form attributes [5–7]. The theory of ‘space of flows’, proposed by Castell
(1996), provides a new perspective for measurement and emphasizes the importance of
urban networks and urban flows. Urban spatial units may be physically separated, but
they can be linked by commuting and resource flows [8]. Based on this pool of theoretical
literature, some empirical studies have been conducted to measure urban spatial structure
from the perspective of functional connections [9,10].

However, related concepts and measurement methods of urban spatial structures are
still vague [11,12]. Most of the existing studies on urban spatial structures have focused on
western cities, and the research on Chinese urban polycentric spatial structures is still in
the preliminary stage. Although many studies have measured the polycentric urban spatial
structure from the perspective of morphology, studies on functional connection between
centers in a city are limited [3,13]. Investigations on the relationship between morphological
and functional centrality are also lacking [14]. This study investigates the urban spatial
structure of Shenzhen, a large Chinese city, to fill these gaps. This study analyzes the
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morphological distribution and functional connections of the employment spatial structure.
The relations between the morphological and functional centrality of employment centers
are further analyzed. Since it became the first special economic zone in China in the
1980s, Shenzhen has implemented polycentric urban planning for its urbanization. Urban
planning and public policies have played important roles in the rapid development of
the city. However, the extent to which the polycentric spatial structure has developed is
unclear. A better understanding of the urban spatial structure of Shenzhen provides a
useful reference for the development of other Chinese cities and basis for the formulation
of future urban planning.

The collection of data that represents functional linkages, such as population move-
ments within cities, is a prerequisite for measuring spatial structure from functional per-
spective. The progress of information and communications technology and emergence
of big spatial data, such as bus smart card data, taxi GPS trajectories, and mobile phone
signaling data, have provided new possibilities for obtaining information about people’s
mobility activities [15–19]. Compared with traditional survey data, these new datasets
have a much higher accuracy to provide a better tool for measuring urban spatial structure.
Especially, mobile phone signaling data has wide coverage that can capture the travellers’
travel track information during a whole day and has a unique advantage in the study of
urban spatial structure [16,20].

The remainder of this paper is structured as follows. Section Two reviews the related
concepts and theories on urban spatial structure and existing methods for identifying and
analyzing urban centers. Section Three introduces the research methods and data sources.
Section Four analyzes the research results. Section Five discusses the role of urban planning,
based on a comparison analysis of the identified urban spatial structure and planned urban
spatial structure in the master urban planning of Shenzhen. The last section draws the
major conclusions of this paper.

2. Literature Review

2.1. Concept of the Spatial Structure

A considerable number of debates on urban spatial structure have been conducted.
Foley (1964) indicated that the spatial attributes of urban spatial structure included cultural
value, functional activities, and physical environment. Weber (1964) illustrated the form
and process of the city and pointed out that urban space can be divided into adapted space
(e.g., architecture) and channel space (e.g., traffic network). Bounre (1971) used system
theory to understand the urban system, which includes three elements, namely urban
form (the spatial layout mode of urban elements), urban internal interaction (the internal
formation), and urban spatial structure (the organization mechanism). To sum up, the
urban spatial structure can be summarized into two aspects: the various distributions
of urban elements and functional connection amongst them. According to the literature
review, the scale, influence, and spatial distribution of urban centers are the core contents
for defining the characteristics of urban spatial structure [11,21,22].

The research on urban centers can be traced back to the central place theory presented
by Christaller (1933), which lays the foundation for the definition of urban centers. Ac-
cording to central place theory, the central place refers to the location that provides goods
and services for the surrounding residents. However, the definition and measurement of
centrality are still vague. Some scholars argue that the essence of the center is a spatial unit
with significantly higher attribute value than its surrounding units [23,24]. According to the
method for measuring urban center, urban centers can be defined from morphological and
functional perspectives [9,11,25]. The indicators for measuring the morphological centrality
include regional area, population, density, and the construction of the centrality index.
Grounded in the case study in Los Angeles, Giuliano and Small (1991) defined employment
centers as having an employment density that is greater than 10 people/acre, as well as a
total employment number greater than 10,000 people. Based on the land use map and urban
construction data, Yue et al. (2019) identified the high-value areas of development intensity
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as morphological centers. According to the population and share of employment, Sun and
Lv (2020) defined the employment centers as the central clusters, where the employment
number met the minimum employment threshold and total amount of employment exceeds
20,000. Based on the literature review, this paper defines the morphological centers as
spatial units that have a higher number of employees than the surrounding areas, as well
as those that can have an impact on the surrounding areas.

On the one hand, the employment centers are identified to measure the morphological
centrality based on the employed population. On the other hand, it measures the centrality
of urban spatial units through the dynamic functional connections, such as the amount
and density of commuting. The most important urban center is not necessarily the most
populous place, but one that is located in the most critical position in the transportation
network [10,25,26]. Burger and Meijers (2012) argued that the functional connectivity of
urban spatial structure plays a key role in the urban system. They measured the intra-
urban centrality based on the shopping and commuting flows. Based on flows, Sarkar
et al. (2020) defined three indicators (e.g., trips, density, and accessibility) to measure
functional centrality. The larger the index value is, the stronger the centrality is. Wei
et al. (2020) measured the importance of each spatial unit by relative centrality, based on
check-in and -out taxi GPS data. The functional centrality of the center is defined as the
strong functional connections between the spatial unit and surrounding area, and it is in a
key position in the urban network.

At the beginning of an urbanization process, the urban core area is the main space
carrier that reflects a monocentric urban structure [27,28]. With the development of the
city, the city expands outward because of land scarcity, traffic congestion, and pollution in
the urban core area [29,30]. To adapt to the development of cities, western countries began
to formulate policies of polycentric spatial structure. For instance, the urban structure of
many western countries, such as Chicago [22], Finland [10], and England [2], have the
characteristics of polycentric urban spatial structures. Previous studies on polycentric
spatial structures focused on the geographical distribution characteristics of cities with
different scales from a morphological perspective [5,28,31]. However, recent studies have
emphasized that a better understanding of spatial structures would also include attention
paid to the functional connections amongst different nodes in the urban system [2,32].
Research in this area usually includes the measurement of flows between the centers of
a city. Each (sub) center is considered to be connected with other (sub) centers through
multidirectional flows [10,25].

Drawing on the experience of western countries, China has introduced the polycentric
development of urban planning [33] and issued different polycentric urban planning at
various urban scales, such as the regional [34] and city scales [5]. Many foreign studies have
measured centrality from the morphological and functional perspectives and explored the
relationship between them. Most foreign cities tend to be more functionally polycentric
than morphologically polycentric [10,25]. However, existing studies regarding China have
mainly focused on the morphological. Studies on the measurement of functional centrality
by functional connection within cities are few. Shenzhen, which is representative of Chinese
cities, has implemented polycentric urban planning since its establishment. Therefore, we
use the case study of Shenzhen to reflect on morphological and functional perspectives.

2.2. Network City Approach

Some scholars apply the theory of the ‘space of flows’ proposed by Castells (1996)
to analyze the urban spatial structure from the perspective of the network city [35,36].
According to Castells (1996), the spatial units may be separated based on their physical
forms, but they can be connected with each other through different kinds of flows. Based
on the theory of the space of flows and the concept of the network city, social network
analysis has been applied to measuring functional centrality [37]. Green (2007) proposed
the principle of functional polycentricity and defined the ratio of the total number of actual
connections and potential connections in the network as network density. Wang et al. (2020)
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used GPS taxi trajectory data to construct a commuter network and applied social network
analysis to measure the functional centrality with four indicators, namely, network density,
intermediate centrality, point centrality potential and center periphery index. The higher
these indexes are, the stronger their functional centrality will be. These studies reflect that
network density and centrality are two important indicators for social network analysis.

Other methods can also be used to measure the polycentricity of the urban spatial
structure. The evaluation of the relative balance between centers according to the ‘impor-
tance’ of centers are crucial by the number of centers, the ratio method and the rank-size
method. The number of centers can reflect the distribution of centers and the development
degree of polycentricity most intuitively through the number of centers. The more the
number of centers is, the higher the development degree of polycentricity will be [5,38].
The ratio method directly reflects the relationship between main centers and subcenters
by comparing their attribute values. The closer the ratio is to 1, the more balanced the
size distribution between main centers and subcenters is, and the higher the degree of
polycentricity will be [10]. In recent studies, the rank-size method is the most common
method for measuring polycentricity. This method reflects the relative status of each center
in the urban system. The flatter the slope of the fitting line is, the higher the degree of
polycentricity is [25,39].

3. Research Data and Methods

3.1. Study Area and Data Sources

Shenzhen is one of the most prosperous cities in China, and it is located south of
Guangdong Province. This research takes Shenzhen as the study area for the following
reasons. First, Shenzhen provides a good example for studying urban development in
China because it is the first special economic zone that has developed from a small fishing
village into one of the most prosperous cities in the past few decades. Second, since
the beginning of its urbanization process, Shenzhen has implemented polycentric urban
planning as an important spatial development strategy. However, systematic studies on
the spatial structure of the city are limited. Third, the Shenzhen government proposed a
polycentric urban spatial structure with two main urban centers, five subcenters, and eight
community-level centers in the ‘master plan of Shenzhen City (2010–2020)’ (hereinafter
referred to as the ‘2010 master plan’). The examination of the effect of this planning
guidance on the formation of urban spatial structures is helpful for formulating better
strategies to improve urban planning in the future. As of October 2019, Shenzhen has
10 administrative districts, with a total area of 1997.47 square kilometers, as well as a built-
up area of 927.96 square kilometers and population of 13.4388 million. The administrative
region of Shenzhen, excluding all areas within the ecological control line, is defined as the
study area.

This study collects the mobile phone signaling data (MPSD) of Shenzhen from China
Unicom (the largest telecommunication company in China) from 1 June to 30 June 2019. We
used the data of June 2019 in our study. June is a normal working month. No significant
change was found in the mobility behavior or distribution characteristics of citizens in
Shenzhen during this period. Thus, the data of June 2019 are appropriate to be used for
the identification of urban spatial structure in 2019 [40]. The MPSD is generated when the
mobile phone user is in the event of a call, SMS, or mobile location. The data include the
time and location information of a person. This information can be used to deduce the travel
path of users. As long as the user turns on the mobile phone, the travel information can be
captured. Our actual sampling consisted of 4,467,500 people. Considering the market share
of China Unicom, the age structure difference of mobile phone users, and other factors, this
paper expands the sample and excludes the situation of non-human number cards, as well
as one person with multiple cards, and obtains the expanded resident population. After
sample enlargement, we obtained 19.825 million samples. The number of users in different
districts in the MPSD has high similarity with that of the survey data in the Shenzhen
statistical yearbook. This finding suggests that MPSD is appropriate for analysis.
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The residence and employment locations are identified according to the time character-
istics of employment and residence. The locations of residence correspond to places where
mobile phone users stay in the same place for more than 4 h from 9:00 p.m. to 8:00 a.m.
the next day and were observed for more than 15 days in a month. The employment
locations correspond to places where mobile phone users stay in the same place for more
than 4 h from 9:00 a.m. to 5:00 p.m. and were observed for more than 15 days in a month.
Then, the population in employment and residence areas are defined as the employment
and residential populations, respectively. To ensure a more accurate analysis, this paper
allocates the mobile phone users into 250 m × 250 m grids.

The OD data are constructed by taking the place of residence as the original point and
place of employment as the destination; thus, the residence–employment functional flows
between spatial units are obtained. For example, mobile phone users live in place A and
work in place B; when they go to work and go home, the functional connections between A
and B are observed. After counting these functional connections, we can obtain the inflows
and outflows of each spatial unit. Each spatial unit is used as a node, and flows are used as
connections to build a direct urban network. The research area is divided into 18,226 grids,
as research units with 2,313,529 flows. This study excludes the grids without connections
with other grids and flows, whose starting and ending points are in the same grid. A total
of 16,761 grids and 2,152,384 flows are, finally, identified for analysis.

3.2. Identification of Employment Centers

The spatial auto-correlation analysis method is used to identify the spatial clustering,
which can reflect the spatial attributes of different areas [10,39]. This method divides
spatial agglomeration into four categories, namely high-high, high-low, low-low, and
low-high. The high-high agglomeration area is identified as a hot spot area, a high-value
aggregation area surrounded by other high values areas. In this study, employment centers
are identified on the basis of employed density. First, we use the ArcGIS 10.3 software to
carry out local spatial auto-correlation analysis on the employment density of spatial units,
select the significance of 0.01 for hot spot analysis, eliminate the insignificant areas, and
choose the high-high gathering areas as candidate centers. Then, a cut-off value is applied
to eliminate the small and practically insignificant spatial clusters. To make the cut-off
value sensitive to local variation in each area, the cut-off value is defined in relative terms,
where areas having an employment less than 0.5% of Shenzhen’s total employment are
excluded [1,5]. Considering that a center should have significant impact on the surrounding
areas, identified areas with more than 10 grids [11,41] are regarded as the final employment
centers. After that, according to the employment population of the identified centers,
combined with the natural discontinuity method, we divided the centers into three levels.

3.3. Measuring Functional Centrality

Social network analysis has been recently adopted to measure functional central-
ity [26,37]. Most existing studies have only considered a single factor in shaping the
centricity of key nodes, such as network density, the number of nodes, and commuter
traffic. Few studies have paid attention to the directions of functional connections be-
cause of data limitations. To overcome these limitations, this study not only considers
the commuting traffic of node connections but also uses the number of nodes connected
and directions of commuting traffic to measure functional centrality. We combine network
density [26] and degree centrality [41,42] as important measures to quantify the functional
connections amongst nodes and measuring functional centrality.

Theoretically, the functional connections of a node in the urban network may occur in
the following situations: (1) a node is connected with a plurality of nodes, but the connection
is weak (Figure 1a); (2) the connection between nodes is very strong, but the number of
connected nodes is few or the inflows and outflows are very different (Figure 1b); (3) nodes
are not only connected with multiple nodes but also have strong connection strength
(Figure 1c).
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Figure 1. Different relations amongst nodes in an urban network. (a) A node is connected with a
plurality of nodes, but the connection is not strong; (b) The connection between nodes is very strong,
but there are few connected nodes or the inflows and outflows are very different; (c) Nodes are not
only connected with multiple nodes, but also have strong connection strength.

This study uses the relative degree centrality of social network analysis to measure the
frequency between nodes (Equation (1)), where Nin

i is the number of all nodes connected
with node i as the ending point (indegree), and Nout

i is the number of all nodes connected
with node i as the starting point (outdegree). Then, we divide the relative degree centrality
of each node by the maximum value to normalize (Equation (2)).

Relative Degree (ADi) =
(

Nin
i + Nout

i

)
/(2n − 2), (1)

ADi
′ = ADi/ADimax. (2)

We divide the inflow/outflow population of node i by the number of nodes that flows
into/out of node i to indicate the connection strength between node i and other nodes; then,
we take the mean value (Equation (3)). Then, we divide the commuting density of each
node by the maximum value to normalize (Equation (4)).

Commuting Density (CDi) = [(POPin
i /Nin

i ) + (POPout
i /Nout

i )]/2 (3)

CDi
′ = CDi/CDimax. (4)

We assigned 50% weight to the relative degree centrality and commuting density of
each node to construct the FCI to measuring functional centrality (Equation (5)). The larger
the FCI value of the center is, the stronger the functional centrality is, which implies that
the center is in an important position in the urban network. After that, according to the FCI
value of the identified center, combined with the natural discontinuity method, we divided
the center into three levels.

FCi =
1
2

AD′
i +

1
2

CDi
′ (5)

4. Employment Spatial Structure of Shenzhen

4.1. Morphological Characteristics of Employment Centers

From a morphological perspective, we have identified eight employment centers
(Figure 2). Based on the employment population, the centers are graded by a natural
discontinuity method. Figure 2 shows the morphological levels of the identified centers,
among which, 1–8 is the area order of centers: 1 is Futian–Luohu center, 2 is Kejiyuan center,
3 is Chegongmiao center, 4 is Songhe center, 5 is Fuhai center, 6 is Aviation City center, 7 is
Longhua center, and 8 is Dengliang center. The results show that the eight employment
centers include one first-level morphological center (with an employment population of
2,001,404), one second-level morphological center (with an employment population of
1,072,720), and six third-level morphological centers (with an employment population
of less than 270,317). The employment centers are mainly distributed in the central and
western parts of Shenzhen. No center has been identified in the east, indicating that the
development of the employment centers in the east of Shenzhen are behind those of the
central and western regions. Four centers, namely Futian–Luohu, Kejiyuan, Chegongmiao,
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and Dengliang, are distributed inside the special economic zone (SEZ); the four remaining
centers (i.e., Songhe, Longhua, Fuhai, and Aviation City) are located outside SEZ. The first-
and second-level morphological centers are distributed in Futian–Luohu and Nanshan
within SEZ. The third-level center around the two centers suggests that the first- and
second-level centers play a leading role in the development of the surrounding areas. The
area of the employment centers outside the SEZ is smaller and more scattered than that
inside the SEZ.

Figure 2. Identified employment centers.

Overall, in the SEZ centers, the total number of employment is 3,018,169, with an
average employment density of 94,588 people/km2 and total area of 28.648 square kilo-
meters. In the non-SEZ centers, the total number of employees is 277,353, with an average
employment density of 65,568 people/km2 and total area of 4.251 square kilometers. The
number of employees, average employment density, and centers’ areas inside the SEZ are
much larger than those outside the SEZ. The Futian–Luohu center has the largest area of
17.008 square kilometers, accounting for 51.70% of the total area of all the centers, as well as
the largest number of employees, 1,820,679, accounting for 55.25% of the total employment
of the centers. The Kejiyuan center takes the second place, with an area of 8.640 square
kilometers, accounting for 26.26% of the total area of all the centers, with the number of
employed people at 931,073, accounting for 28.25% of the total number of employed people
of all the centers. Regarding the third-level centers, Chegongmiao has a higher number of
employees (222,837) and a higher area (2.375 km2) than other centers.

4.2. Functional Centrality of Employment Centers

Based on the FCI value, the identified employment centers are graded by the natural
discontinuity method (summary statistics for the variables shown in Table 1). Figure 3
shows the functional centrality levels of the identified centers. The results show that
the eight employment centers include two first-level functional centers (FCI values of
0.996 and 0.561), three second-level functional centers (FCI values of 0.177, 0.135, and
0.135), and three third-level functional centers (FCI values of 0.069, 0.066, and 0.077). From
the perspective of spatial distribution, the first-level functional centers are distributed
in Futian District and Nanshan District, whereas the second- and third-level functional
centers are scattered, showing that, as they are affected by the location advantages of
Nanshan District and Futian District, Futian–Luohu center, and Kejiyuan center, they
have a strong functional connection within the whole region and the greatest influence on
other areas. Furthermore, the functional centrality of the centers distributed inside and
outside the special zone is quite different, which means that the functional connection
of each employment center is unbalanced. In other words, the functional centrality in
the special zone is stronger than outside the special zone, and the employment centers
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distributed inside the special zone have a stronger functional influence. From the level of
each center, we can find differences in the morphological and functional levels of some
centers, such as the Kejiyuan, Chegongmiao, Songhe, and Aviation City centers. Specifically,
the morphological level of Kejiyuan center is the second, whereas the functional level
is the first. The morphological level of the Chegongmiao, Songhe, and Aviation City
centers are third, whereas the functional level is second, showing a mismatch between
the employment population aggregation and functional connections of these centers. The
distributed employment population can generate stronger commuter flows, which leads to
the functional level of these centers, being one level higher than the morphological level.

Table 1. Summary statistics for the variables to construct FCI.

Centers Nin Nout Ci Ci
′ POPin Din POPout Dout Di Di

′ FCI

Futian–Luohu 1571 1462 0.090 0.994 2,001,404 1,274.0 1,287,879 881.1 644,380 0.999 0.996
Kejiyuan 1293 1114 0.072 0.789 1,072,720 830.0 430,239 386.2 215,313 0.334 0.561

Chegongmiao 387 384 0.023 0.252 270,317 699.3 130,086 339.1 65,213 0.101 0.177
Songhe 301 327 0.019 0.206 134,312 446.9 82,431 252.4 41,342 0.064 0.135
Fuhai 278 338 0.018 0.202 117,751 423.1 86,600 256.2 43,428 0.067 0.135

Aviation City 148 161 0.009 0.101 73,415 495.4 46,555 288.9 23,422 0.036 0.069
Dengliang 142 147 0.009 0.095 68,006 479.3 47,538 323.3 23,931 0.037 0.066
Longhua 143 154 0.009 0.097 66,189 462.1 71,756 465.1 36,111 0.056 0.077

 

Figure 3. Functional centrality of the identified centers.

Based on the OD data, we further investigated the functional centrality of the first-
level functional centers, including Futian–Luohu center and Kejiyuan center. Residence-
employment connections whose starting and ending points are all distributed in Futian–
Luohu center and Kejiyuan center are excluded. Figures 4 and 5 show the influence area of
Futian–Luohu center and Kejiyuan center, respectively. According to the results, the Futian–
Luohu employment center has many functional connections to the whole city. Many people
lived in the midwest of Shenzhen and some people in the east worked in Futian–Luohu
employment center. The affected area is mainly located in four districts: Nanshan District,
Bao’an District, Longhua District and Longgang District. Nanshan District is the closest to
Futian–Luohu center in space, and has the advantage of a short commuting distance. Many
residential areas, such as urban villages, are found near the special zone line in Bao’an
District and Longhua District, showing that Futian–Luohu center provides many jobs for
the population lived in these areas. The influence area is mainly distributed along the
metro line in the westernmost part of Bao’an District and Longgang District.
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Figure 4. The influence area of Futian–Luohu center.

Figure 5. The influence area of Kejiyuan center.

According to Figure 5, although the functional centralities of the Kejiyuan and Futian–
Luohu centers are at the first level, the influence area of Kejiyuan center is much smaller than
that of Futian–Luohu center. The influence area of Kejiyuan center is mainly distributed
at the south of Kejiyuan center, the boundary area of the Futian and Luohu Districts,
as well as scattered in Longhua District and west of Bao’an District. According to the
results, Kejiyuan center has a strong connection to Futian–Luohu area, indicating a spatial
interaction between the Futian–Luohu and Kejiyuan centers. Many science parks and
high-tech zones are located in Kejiyuan center and have attracted many people residing in
Futian and Luohu to work in this employment center.
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4.3. Comparison of Morphological Centrality and Functional Centrality

We use R1 to measure the morphological centrality of each employment center, which
is the ratio of employment population of each center to the sum of the employment
population of all employment centers. We use R2 to measure the functional centrality of
each employment center, which is the ratio of the FCI value of each center to the sum of
the FCI value of all employment centers. Then, by comparing the ratio of R1/R2 and 1, we
can evaluate the strength of morphological and functional centrality of each employment
center. R1/R2 > 1 means that the morphological centrality of the center is stronger than its
functional centrality. R1/R2 < 1 means that the functional centrality of the center is stronger.

Figure 6 shows the results of comparing the morphological and functional centrality of
each employment center. The result shows that the ratio of R1/R2 of the Futian–Luohu and
Kejiyuan centers is greater than 1, meaning the morphological centrality is stronger than
the functional centrality. The remaining centers are morphological tertiary employment
centers, showing that the functional centrality is stronger than the morphological centrality.
Furthermore, influenced by the employment population gathering, the larger the center
is, the more employed people can be gathered, which leads to the morphology centrality
being stronger than the functional centrality.

Figure 6. Comparison of morphological centrality and functional centrality.

This study curve fit the employment population and FCI value of different employ-
ment centers to measure the distribution equilibrium degree of each employment center’s
morphological and functional centrality. The method is applied as follows. The logarithm
is taken as the horizontal axis for the ranking of each center. Then, the logarithm of the em-
ployment population and FCI values of each center are taken as the vertical axis for linear
fitting. Next, the logarithm is taken. According to Figure 7, the fitted curve is shaped like
an “L”, and the absolute value of the slope is greater than 1, which shows the unbalanced
morphological and functional centrality of the centers, as well as a monocentric employ-
ment spatial structure. In other words, Futian–Luohu center still concentrates most on the
employment population and is in the dominant position of the employment–residence
network in the city. We further compared the slope of the two fitting lines to understand the
distribution of the morphological and functional centrality of the identified employment
centers. The results show that the distribution of morphological centrality in employment
centers is even more concentrated than that of functional centrality. According to the results,
the employment spatial structure of Shenzhen is still monocentric in the morphological
and functional perspectives.
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Figure 7. Relationship between functional and morphological centrality.

5. The Role of Urban Planning in the Formation of Spatial Structure

China’s urban development is deeply affected by the intervention of urban planning
and relevant policies [43]. Since its establishment of a special economic zone, the Shenzhen
government has adopted polycentric development as an important spatial strategy. The
Shenzhen 2010 master plan proposed building a ‘2 + 5 + 8’ three-level polycentric urban
spatial structure system that includes two main centers, five subcenters, and eight cluster
centers (Figure 8). Our study shows that the master plan has played an important role in
the formation of the spatial structures of Shenzhen. Figure 9 shows the center, subcenters,
and cluster centers that were formed, or not formed, during the planning period. The
urban development of Shenzhen is generally in line with the planning. The identified
eight employment centers are all located within the planned urban centers. This finding
reflects Sorensen’s (2001) argument that the powerful structure plan contributed to the
trend of urban spatial structure development. Strong government intervention measures
and planning policies can promote the growth of employment centers in metropolitan areas,
in order to cope with urban sprawl [44]. For example, Futian–Luohu and Kejiyuan were
planned to become a R&D center that developed high-tech industries and became the hub
of industrial clusters in Shenzhen. As a consequence, a large number of enterprises have
been attracted to be located in Futian–Luohu and Kejiyuan, thereby promoting employment
and local economic development.

 

Figure 8. The Shenzhen master plan (2010–2020).
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Figure 9. Classification of centers compared to the planning.

However, the planned polycentric spatial structure has not yet formed. The previous
results have revealed that the spatial structure is still monocentric from the morphological
and functional perspectives. The planned centers have not yet been formed in many areas,
such as Yantian, Guangming, Pingshan, and Kuichong. These areas have a single industrial
structure and relatively backward economic development. For example, Yantian’s develop-
ment is restricted by the functional orientation of the city. It is expected to develop a port
logistics industry with few types of industries. In addition, a large part of these areas (e.g.,
Yantian and Kuichong) are located in the ecological control line, wherein development and
construction are not allowed. As such, economic and spatial development are constrained,
thereby hindering these areas from becoming centers. The public investment in service
infrastructure and large-scale urban projects has a direct impact on the positioning of
settlements and activities and is one of the driving factors for the formation and change in
spatial structure [45]. Therefore, in order to improve the implementation performance of
urban planning, strengthening infrastructure construction and land development in these
areas in the future is necessary to help form the planned urban centers.

6. Conclusions

This study uses mobile phone signaling data to explore Shenzhen’s employment
spatial structure from the morphological and functional dimensions. Eight employment
centers have been identified, all of which are located in the city’s central and western parts.
The analysis shows the differences between each center’s morphological and functional
centrality. It shows that the two biggest centers’ morphological centrality(Futian–Luohu
center and Kejiyuan center) are stronger than their functional centrality. Both of them are
located in the SEZ area. On the contrary, the other centers’ morphological centrality are
weaker than their functional centrality. Most of these centers are located in the non-SEZ
area. The findings suggest that, although Shenzhen has implemented polycentric urban
planning since its foundation, its employment spatial structure is still monocentric in the
morphological and functional terms. Further investigation shows that the distribution of
morphological centrality in employment centers is even more concentrated than that of
functional centrality.

Based on the results, this work discusses the role of urban planning in the forming of
spatial structures in Shenzhen and provides implications for future urban planning. We find
that the master plan has played an important role in the formation of the polycentric spatial
structures of Shenzhen. Globally, the shift of the urban structure from monocentric to
polycentric has been widely recognized in the literature. Several cities in Europe, America,
and Japan have formed polycentric urban spatial structures [7,46,47]. Recently, studies
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on the relationships between morphological and functional urban spatial structures have
been performed. These studies reflect that some western countries (e.g., Finland and
Netherlands) are more polycentric, in terms of the functional perspective, compared to the
morphological perspective [10,25].

Like western cities, many Chinese cities have adopted polycentric urban planning as an
important spatial strategy for sustainable development. However, the extent to which these
Chinese cities have been polycentric remains inadequately explored. This study explores
the polycentricity of Shenzhen from the morphological and functional perspectives. The
finding shows that, as influenced by the significant advantages of the Futian–Luohu center,
most employment population and employment–residence connections are still concentrated
in the Futian–Luohu center. Although eight employment centers have been identified, the
employment spatial structure of Shenzhen remains monocentric, from the morphological
and functional perspectives. Shenzhen’s polycentric urban planning has not yet guided the
city to form polycentric urban spatial structures.

Furthermore, this study contributes to the methodological approach. The method of
measuring centrality has been improved. Previous studies often use a single factor, such as
traffic density or the number of nodes, to measure functional centrality. Based on mobile
phone signaling data, the present study combines social network analysis with GIS for
analysis. The number of connected nodes, traffic density, and direction of population flow
have been considered, in order to construct the FCI to measure functional centrality, thus
providing a new perspective for analyzing the functional contact characteristics of the
centers. Moreover, this study shows that the mobile phone signaling data, which can reflect
the track of people in the city, is valuable for identifying the urban centers and reflecting
on the spatial structure. These findings contribute to the recent studies using new and big
datasets for urban analysis. Although the empirical analysis has focused on Shenzhen city,
the proposed approach can be used to identify other cities, as long as the relevant data
are available. The FCI index constructed in this study considers the number of connected
nodes, traffic density, and direction of population flow to measure the functional centrality
of the identified urban centers. Thus, the application of this research method requires
datasets covering the information about the studied population and origin-destination of
their commutes.

This study has some limitations that point to the directions for the future research.
First, this study only explores the urban spatial structure of Shenzhen in 2019. However,
investigating the evolution of the spatial structure during a certain period can help us
understand how the city has been developed step-by-step. By examining the evolution of
the spatial structure for many years, we can reveal whether the planning policy affects the
overall trend of urban development and provide a policy-based explanation for the spatial
evolution trajectory. Second, this research only explores the polycentric spatial structure of
Shenzhen City, but the performance and efficiency of the formed spatial structure are still
unknown. More research is required to understand the performance of polycentric spatial
structures for Chinese cities and whether it is conducive to sustainable development.
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Abstract: Polycentric planning strategies have often failed to achieve the expected effects. The ensu-
ing uncertainty associated with the desirability of polycentric strategies is also reflected in the early
literature which offers no clear conclusion about whether the polycentricity affects economic perfor-
mance and how. This paper aims at offering a clear conclusion about it, especially its dependence on
city size. Against this backdrop, we conceptualize polycentricity as a process of reclustering after
decentralization to reevaluate its impact on performance. To this end, we use the city proper level
Chinese Economic Census (2004, 2008, and 2013) and apply a fixed-effects panel model, the results
of which show that the dependence of the urban economy on spatial structure is contingent on city
size. More specifically, both decentralization and clustering (and therefore the polycentric structure)
facilitate economic performance only when cities reach a certain size. We use our findings as the basis
for outlining an emergent research agenda for urban polycentricity.

Keywords: polycentricity; city size; economic performance; optimal city size; China

1. Introduction

Suburbanization or decentralization, which is fueled by the expansion of city size,
has become one of the most important characteristics of urban spatial transformations
worldwide. Urban planners have been seeking spatial adjustment strategies to meet the
challenges caused by the agglomeration diseconomies associated with such expansion and
often advocate for polycentric spatial structures. Polycentricity, they argue, is supposed
to reduces the negative agglomeration effects that occur once employment is no longer
centralizes in the main city center, and it facilitates cities in regaining positive momentum
when employment reclusters in subcenters. However, polycentric planning practices have
long been met with skepticism because they usually fail to achieve the expected effects.

Therefore, the prevailing but usually ineffective practice of polycentric planning
strategy has brought about an urgent demand for research on the relationship between
polycentricity and economic performance. Unfortunately, a consensus on this issue has
not yet been reached (see the meta-analysis by Li et al., 2022) [1]. The reasons for this lack
of consensus may stem from the following three unsolved problems. First, is the effect
of spatial structure on economic performance contingent on city size, especially at the
metropolitan level? Although empirical results on the total effects of polycentricity on
the economy have been enriched in many countries, such as the USA [2], Korea [3], or
China [4,5], sufficient attention has not been paid to the moderating effects of city size.
Second, what is the underlying mechanism for the economic performance of polycentricity?
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The two theoretical paths, namely decentralization [6,7] and “borrowed size” [8–10] have
not been supported by empirical evidence. Third, how to deal with the effects of the
reverse causality of the economic performance on polycentricity? The results achieved by
cross-sectional or OLS models [2,4,11,12] are likely to be biased.

Our paper aims to expand our understanding of the effect of urban spatial structure on
economic performance. In particular, we delve into its linkages with city size and whether
size exerts a moderating effect on the relationship between economic performance and
spatial structure at the Chinese city proper level. To provide empirical evidence for two
theoretical paths of polycentricity (decentralization and “borrowed size”), this analysis
unfolds polycentricity in the process of reclustering after decentralization, a process that
has generally neglected in the previous empirical literature. Furthermore, we improve on
commonly used cross-sectional models and historical instrumental variables by adopting a
two-way fixed-effects panel model and more effective instrumental variables for a two-stage
least squares (TSLS) model.

2. Literature Review and Hypotheses

2.1. Concept of Urban Spatial Structure

The concept of urban spatial structure, despite its centrality in the urban economics
and regional science literature, remains ambiguous. In this paper, we focus mainly on
the morphological spatial structure rather than the functional structure, which involves
the networks between centers [13,14]. Moreover, we measure spatial structure with data
on the distribution of employment rather than with other human activity data such as
population [11], land use [15], or nighttime light [16,17]. The main reason for this choice is
that our research aims at addressing the spatial frictions associated with the labor market.

However, despite the multiplicity of morphological definitions, there is considerable
overlap between the key dimensions and the initial conceptualization that Anas et al. (1998)
synthesized in their work [18]. They proposed that urban spatial structure can be defined
along two dimensions, namely, the degree of centralization versus decentralization and the
degree of clustering versus dispersion. Anas et al. (1998) thus suggested two dimensions
to describe urban spatial structures, specifically, centralization and clustering [18]. Lee
(2007) elaborated on and clarified Anas et al.’s (1998) conceptualization and named these
dimensions centralization and concentration [19]. Centralization is the extent to which
employment is concentrated near a central business district (CBD). Concentration, similar
to the dimension “the degree of clustering versus dispersion,” measures the extent to which
employment is either clustered in a few nodes or dispersed. Thus, polycentricity is the
combined result of decentralization and clustering [18,19]. Accordingly, we illustrate this
process of polycentricity in Figure 1.

2.2. Relation between Economic Performance and Urban Spatial Structure

The distribution of urban employment determines the spatial organization of em-
ployment centers and how they are connected with each other. This structure, in turn,
may have serious implications for urban prosperity depending on whether it benefits
productivity. Polycentricity may contribute to economic performance via the following
two potential mechanisms: (1) decentralization reduces the agglomeration diseconomy of
the main centers [6,7]; and (2) clustering in subcenters recovers the positive externalities
through “borrowed size” [8–10]. However, decentralization has the potential to harm the
economy when it fails to compensate for the reduction in the agglomeration economies
of the main center. Therefore, we group the existing empirical studies that examine the
influence of spatial structure on economic performance into three classes: those that study
the spatial dimensions of polycentricity, those that study centralization, and those that
study clustering.

(1) The literature on the spatial dimensions of polycentricity tends to focus on the
direct relationship between polycentricity (as measured by the balance in the distribution
of city/center sizes) and urban economic performance. However, differences in oper-
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ationalization have led to inconsistent results. For example, some studies identified a
positive relationship between polycentricity and urban economic performance among US
metropolitan areas [2] or Korea [3], while Lee and Gordon (2007) found no significant rela-
tionship [12]. The results for Chinese cities are heterogeneous across different study scales.
Zhang, Sun, and Li (2017) found support for a positive association between polycentricity
and economic performance within a sample of city proper areas [4]. However, Sun and Li
(2016) and Li, Sun, and Zhang (2018) rebutted their argument and found contrary evidence
at the municipal administrative area level [16,20]. Furthermore, Wang, Derudder, and Liu
(2019) showed that intra-urban monocentricity and inter-urban polycentricity are linked
with higher levels of labor productivity [5].

(2) The relationship between centralization and urban economic performance ex-
hibits similar inconsistencies. Cervero (2001) and Veneri and Burgalassi (2011) assessed
the effects of centralization and reported a positive impact of centralization on labor
productivity [21,22]. However, Glaeser and Khan (2004) examined the influence of the
percentage of employees within 3 miles of the CBD on urban economic performance and
found that a 10% increase in decentralization led to, on average, 2.7% growth in GDP
per capita [23].

(3) The literature on the relationship between clustering and urban economic perfor-
mance is the only branch of the literature to provide seemingly consistent results. Fallah,
Partridge and Olfert (2011) found that urban sprawl is negatively related to average labor
productivity [24]. Qin and Liu (2015) obtained consistent results by using nighttime light
data from a Chinese prefecture-level city to calculate the same index as Fallah, Partridge,
and Olfert (2011) [24,25]. Furthermore, Liu, Chen, and Liu (2020) defined urban compact-
ness using Landsat data and found that it was negatively correlated with urban GDP [15].

Figure 1. Two dimensions of polycentricity (decentralization and clustering).
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2.3. Moderating Effect of City Size

Cities at different stages of development may have different optimal spatial structures.
Our main theoretical prediction is that as cities pass a certain size threshold and continue
to grow, the positive effects of polycentricity increase. This is because polycentricity tips
the balance of net economic gains away from centralization and toward clustering. In other
words, in large cities, as the cost of centralization increases with size and with the high
concentration of activities in one location, the net benefits of clustering outside the main
center overtake those of centralization.

Friedman (1966) proposed a theory of stages of spatial organization consistent with
this hypothesis [26]. He expounded on a sequential process for the interaction between
spatial structure and development. According to him, as economic development and city-
size growth occur, the spatial structure transitions from a low-level spatial equilibrium to a
monocentric structure and then shifts to a high-level spatial equilibrium with a polycentric
structure. His theoretical conjecture has been supported by both simulations [27] and
empirical studies [28].

A polycentric structure improves economic performance more in larger cities according
to the theoretical predictions outlined above. However, empirical analyses that have directly
examined the mediating effect of city size have not always supported these theoretical
conjectures. In the city proper or metropolitan scale on which our study focuses, neither
Zhang, Sun, and Li’s (2017) work nor Lee and Gordon’s (2007) study identified a significant
interaction effect of city size on the relationship between economic performance and
polycentricity [4,12]. However, Meijers and Burger (2010) found that the contribution
of polycentricity to productivity is greater in smaller metropolitan areas than in larger
metropolitan areas [2]. At the larger scale, Li and Liu (2018) as well as Sun and Li (2016)
found that the relation between economic performance and polycentricity varied with
different population sizes or densities at the prefecture city level [11,20], while Wang,
Sun, and Zhang (2020) found evidence that polycentricity also boosts positive economic
performance when regions have a larger population at the level of city cluster [29].

Otherwise, we also find some attempts to identify the moderating effect of city size
between other dimensions of urban spatial structure and economic performance. Lee and
Gordon (2007) revealed that more dispersion leads to higher growth rates as metropolitan
areas grow [12], while Meijers and Burger (2010) and Li and Liu (2018) did not find any
evidence of such an effect in the relationship between dispersion and economic performance
by using population or density as interaction factors [2,11].

2.4. Existing Gaps

First, unlike theoretical advancements, the heterogeneity in the economic efficiency of
polycentricity at the city proper or metropolitan level has not been strongly emphasized in
the empirical literature. In particular, evidence concerning the moderating effect of city size
on the relationship between urban spatial structure and economic performance is mixed
and needs more robust empirical testing [2,4,10,16,19,20].

Second, until recently, very few studies on economic performance and spatial structure
considered the full process of polycentric development along its two dimensions—the local
reclustering of employment or the population after decentralizing away from the main city
center. Studies have tended to borrow the framework of Meijers and Burger (2010) and
to consider polycentricity to be a dimension of the distribution of economic activity [2].
Such approaches are crude when we want to know which channel plays a significant
role in determining the economic effects of polycentricity. It is critical to distinguish
whether polycentricity leads to economic gains because it diminishes the externalities from
agglomeration through decentralization, because it diminishes agglomeration externalities
through the gains from the positive externalities associated with reclustering, or because of
both mechanisms. A complete exposition of polycentric evolution involves decentralization
away from the CBD and then reclustering in several high-density areas, which has not been
carefully tested.
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Third, the estimation methods that most researchers have relied on to identify the
causal association between spatial structure and economic performance have shortcomings.
Limited by data availability, the bulk of early research results comes from cross-sectional
models [2,4,10,12] and is likely biased because of omitted time-independent variables.
Furthermore, many studies have examined the spatial distribution of the population rather
than of employment [2,10,16]. The spatial distribution of the population has a less direct
logical connection with economic output (especially as measured by GDP) than that of
employment, given that spatial frictions mainly arise in the labor market.

We provide an integrated treatment of these gaps, and our starting point is to provide
rigorous evidence on the relationship between the spatial structure of employment and
economic performance, particularly at the level of the city proper in the Chinese context.
In addition, we endeavor to connect the empirical work more strongly with geographers’
and economists’ theory of the evolutionary stages of spatial structure by emphasizing
the moderating effect of city size. We extend the analysis to tests of different aspects of
the hypothesized polycentricity process by including the two dimensions of decentral-
ization and reclustering. We are aware of the endogeneity issues related to these tests
and therefore propose a two-way fixed-effects panel model and instrumental variables
for the TSLS models.

2.5. Our Hypotheses

We present a set of theoretical hypotheses to guide the empirical work and to estab-
lish clear expectations. Polycentricity is the result of a shift in the balance between the
centrifugal forces that cause decentralization and the centripetal forces that lead to reclus-
tering. We adopt the seminal framework established by Anas et al. (1998) and Lee (2007) to
capture this dynamic [18,19]. To reiterate, the two dimensions of the metropolitan-level
spatial structure are centralization versus decentralization and clustering versus dispersion
(Figure 2). We can classify urban spatial structures into the following four types based
on these two dimensions: monocentric (centralized and dispersed); sprawling (decen-
tralized and dispersed); polycentric (decentralized and clustered); and monocentric with
obvious subcenters (centralized and clustered). Using these four spatial structure types
instead of simple dichotomies makes the differentiation of the processes at work both
easier and clearer.

The relation between economic performance and the urban spatial structure is a
dynamic balance between the positive and negative externalities of agglomeration. Poly-
centricity can be understood as an effective way to reduce agglomeration costs because it
involves urban decentralization. In addition, economic productivity can be enhanced due
to the reclustering of the population or of employment in subcenters through the mecha-
nisms of sharing, matching, and learning [30]. On the other hand, polycentric structures
also have the potential to harm labor productivity, given that decentralization may damage
the agglomeration economies of the main center and lead to increasing transaction costs
between centers.

The trade-off between agglomeration economies and agglomeration diseconomies
is highly dependent on city size. We posit that which urban spatial structure is most
efficient varies with city size. As cities grow, the negative externalities from agglomeration
in the main center exceed the positive externalities. Decentralization can help reduce
these agglomeration diseconomies, and reclustering can lead to gains through the scale
effect among subcenters. Therefore, as long as cities are small enough that the benefits
of agglomeration economies arising from the high level of concentration in the main city
center exceed the corresponding costs, polycentricity likely undermines economic gains.
In other words, it may not be possible for a city to reach a sufficiently large scale that the
losses incurred from decentralization are outweighed by the positive agglomeration effects
generated by subcenters (i.e., the metropolitan economy may be too small to be divided,
and therefore, the sum of the parts is not greater than the centralized whole). Based on
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this theoretical argument, we predict that only when decentralization and reclustering are
combined in sufficiently large cities can polycentricity foster greater economic development.

Figure 2. Spatial structure dimensions.

3. Methods and Data

Our methodological framework is organized as follows (Figure 3). First, we collect
the multi-source data and determine the research scale in Section 3.1. Second, we clarify
the concept of urban spatial structure and expound its measurement for our research in
Section 3.2. Finally, we carry out the performance analysis by proceeding with the basic
model, robustness test, and discussions (the models are listed in Section 3.3, and the results
are shown in Section 4).
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Figure 3. Methodological framework.

3.1. Data Sources and Research Scale

The accessibility of the labor market plays an important role in the association between
urban spatial structure and economic performance because commuting creates friction
between economic activities and space. Therefore, the distribution of labor is a key variable
for economic productivity. We draw upon the Economic Censuses of 2004, 2008 and 2013
to calculate the urban spatial structure. The Economic Census is unique in China due
to its provision of microlevel enterprise data, it contains detailed information on legal
manufacturing and service entities in China, such as their postal code and the number of
employees at each firm. Using this information, we can obtain the number of employees in
each postal code zone for further calculation.

In addition to the availability of employment data with finer geographical scales,
China is a quite suitable case for this study. China has many cities of all sizes, which could
provide rich evidence for testing the effect of the heterogeneity of city size on the economic
performance of polycentricity. Further, a reliable academic examination is urgently needed
for the future development of ubiquitous polycentric planning practice in China.

As to the research scale, metropolitan areas are the preferred spatial unit for the
analysis of economic performance because they are economically integrated areas. As
a metropolitan area is not precisely defined in China, the concept of an administrative
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city (prefecture-level city) was more commonly used in the early literature. However,
prefecture-level cities not only include highly urbanized subunits (cities proper, named
Shixiaqu) but also contain a certain area of peripheral, semirural, and rural areas (county
area, named Xian). Thus, we choose the city proper in the prefecture-level city as our
second-best choice in terms of research scale as it is comparable to the metropolitan scale.
The administrative divisions of 2008 (the middle year of our study time span) are taken as
the standard and thus our full sample totals 287.

The choice of the analytical unit scale to be used for the spatial structure calculations
is also of great importance. A unit that is too large averages important differences in the
employment distribution within the area. To obtain sufficient precision with the available
data, we choose postal code zones as our unit of analysis and sum the number of jobs in
each unit to calculate our urban spatial structure indices.

3.2. Measurement of Urban Spatial Structure

We operationalize centralization and clustering by using the indices proposed in
existing studies (summarized in Table 1). Centralized cities can feature dispersion or
clustering outside the CBD, and clusters may be located near the CBD or away from the
CBD. Compared with using polycentricity directly [2,4,5], we split the polycentricity into
the dimension of decentralization and clustering. This approach gives up gaining the direct
results of the extent to which polycentricity improves economic performance. However, to
further investigate the mechanism and contribute to the early literature, we believe that it
is worth using two dimensions to describe polycentricity.

Figure 4 illustrates the calculation process and symbol interpretation of the centraliza-
tion and clustering indices.

All the indices are time-variant, as both the location of the CBD and the density of
employment in each postal code vary across years. Similar to Wheaton (2004) [31], we use
a virtual urban area boundary that contains 98 percent of all employment and excludes
mostly low-density areas in outlying locations.

The centralization–decentralization dimension contains location information: it mea-
sures the extent to which employment is centralized near the CBD. For the purpose of
creating our indices, the CBD is defined as the postal code with the highest employment
density. The modified Wheaton index (MWI) and modified weighted average distance
from the CBD (MADC) both measure how quickly the cumulative share of employment
increases from the CBD to the urban edge [31,32]. The larger these two indices are, the
more centralized the city is. A value of 1 indicates that all employment is concentrated
in the center. When calculating the MWI, all postal code zones should be sorted by their
distance to the CBD from nearest to farthest.

Table 1. Indices for the two dimensions of polycentricity.

Centralization indices

Modified Wheaton index [31] MWI = ∑n
i=1 Ei−1DCBDi−∑n

i=1 EiDCBDi−1
DCBD∗

Modified weighted average distance from the CBD [32] MADC = 1 − n
∑

i=1

ei
E ∗ DCBDi

DCBD∗

Clustering indices

Delta index [32,33] DELTA = 1
2

n
∑

i=1

∣∣ ei
E − ai

A

∣∣
Gini coefficient [34,35] GINI =

n
∑

i=1
EiAi−1 −

n
∑

i=1
Ei−1Ai

Notes: The zip code zone with the highest density of employment in each city is defined as the CBD. Symbols: ei:
number of employed persons in zone i; E: total metropolitan employment; ei/E: share of metropolitan employment
in zone i; Ei: cumulative share of employment in zone i; ai: land area of zone i; A: total metropolitan land area;
ai/A: share of metro land area in zone i; Ai: cumulative share of land area in zone i; DCBDi: distance between
zone i and the CBD; DCBD∗: distance between the outermost zone and the CBD (city proper radius); n: number
of zones (zip code zones).
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Figure 4. Calculation progress of centralization and clustering.

The clustering–dispersion dimension contains the information on the degree of ag-
glomeration in the urban spatial structure. It captures the extent to which metropolitan
employment is disproportionately located in areas with different densities and is measured
by the Gini coefficient and Delta index in our paper [32–35]. The postal code zones are
sorted by employment density in decreasing order.

3.3. Models

We rely on the Cobb–Douglas production function, which uses physical capital (mea-
sured as the physical capital stock per worker, K

L ) and human capital (measured as the
number of middle school students per 104 persons, H

L ) as the most important production
factors for economic growth. In addition to these production factors, economic produc-
tivity also influences economic performance by determining the efficiency with which
these production factors are used. Therefore, the degree of government intervention (G),
which is measured as the ratio of government consumption to GDP, is added to our model.
Agglomeration has also traditionally been considered a key determinant of economic pro-
ductivity. Population (POP) is a conventional aspect of agglomeration. We also add the
quadratic term for population to identify the “optimal city size” with decreasing returns.
Our main concern is the urban spatial structure variables (STU, including centralization
and clustering), which we consider to be the structure of agglomeration. The econometric
model is specified as follows:

ln
(

GDP
L

)
it
= π+ α ln

(
K
L

)
it
+ β ln

(
H
L

)
it
+ γGit + δ ln(POP)it + ε[ln(POP)it]

2 + ε ln(STU)it + θi + ϑt + μit (1)

where θi and ϑt are time and individual fixed effects, respectively. In Equation (1), STU
includes two dimensions, namely, centralization and clustering. The coefficient on cen-
tralization is expected to show whether decentralization reduces the negative externalities
of agglomeration and is thus helps improve labor productivity. The clustering term tests
whether clustering is associated with better economic performance. Descriptive statistics
for both the dependent and the independent variables are shown in Table 2.
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Table 2. Descriptive statistics of the variables.

Variable Name Description Mean S.D. Min Max

ln
(

GDP
L

)
GDP per worker in yuan (ln) 11.62 0.527 9.527 13.95

ln
(

K
L

)
Physical capital stock per worker in 104 yuan (ln) 2.516 0.579 0.469 4.787

ln
(

H
L

)
Number of middle school student per 104 persons 6.868 0.395 4.904 8.017

G Ratio of government consumption to GDP 100% 0.113 0.0720 0.0200
ln POP Population in 104 persons 4.558 0.774 2.654 7.499
lnMWI Centralization index 1 0.484 0.169 −0.69 0.688

lnMADC Centralization index 2 0.579 0.084 0.111 0.688
lnDELTA Clustering index 1 0.461 0.109 0.0250 0.646
lnGINI Clustering index 2 0.517 0.111 0.0250 0.666

Consistent with the theoretical assumptions proposed by geographers and economists,
the urban spatial structure becomes polycentric as the urban population grows. Therefore,
we consider the moderating effect of city size on the causal link between the urban spatial
structure and labor productivity by introducing interaction terms into Equation (1). The
interaction terms test whether and how the partial effect of the spatial structure on economic
performance depends on the size of the urban population, as shown in Equation (2). For
example, ρ > 0 implies that an increase in population yields a higher increase in labor
productivity for more centralized/clustered cities and vice versa.

ln
(GDP

L

)
it = π+ α ln

(K
L

)
it + β ln

(H
L

)
it + γGit + δ ln(POP)it + ε[ln(POP)it]

2 + ε ln(STU)it + ρ ln(STU)it × ln POP + θi + ϑt + μit

= π+ α ln
(K

L

)
it + β ln

(H
L

)
it + γGit + δ ln(POP)it + ε[ln(POP)it]

2 + ε ln(STU)it + [ε + ρ ln POP]× ln(STU)it + θi + ϑt + μit
(2)

4. Empirical Results

4.1. Basic Models

Table 3 shows the results of our baseline models, which use OLS regressions with
individual and time fixed effects. The results for Models 1 and 3 indicate that the spatial
dimensions of centralization/clustering do not appear to be directly associated with higher
economic productivity. In Models 2 and 4, we introduce interaction terms (lnPOP × lnMWI
and lnPOP × lnDELTA) to test the moderating effect of city size on the relation between
economic performance and the urban spatial structure. In Model 4, the positive and sig-
nificant coefficient on the interaction between lnPOP × lnDELTA confirms one of our
hypotheses: in large cities, having more clusters boosts economic development. In Model
5, we introduce both the centralization and clustering indices and the interaction terms
between spatial structure and city size. The interaction effect between population and
centralization is significant and negative. This indicates that decentralization can indeed
diminish negative agglomeration effects and improve urban productivity. The positive
and significant influence of the interaction term between lnPOP and lnDELTA implies that
population size increases the effect of clustering on urban productivity. More specifically,
decentralization and clustering (i.e., a polycentric spatial structure) appear to be more help-
ful for urban economic performance only when the city reaches a certain population size.
Another source of concern is that the effect of city population on economic performance
is an inverted U shape, which confirms the existence of an optimal city size. All other
significant control variables have the expected signs.
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Table 3. OLS regressions with time and city fixed effects.

(1) (2) (3) (4) (5)

Dependent Variable:
ln(GDP/L)

FE FE FE FE FE

ln(K/L) 0.5816 *** 0.5828 *** 0.5817 *** 0.5807 *** 0.5860 ***
(0.035) (0.035) (0.035) (0.035) (0.034)

ln(H/L) 0.0830 ** 0.0834 ** 0.0841 ** 0.0869 *** 0.0873 ***
(0.033) (0.034) (0.034) (0.033) (0.033)

G −0.7232 * −0.7189 * −0.7224 * −0.7120 * −0.6919 *
(0.375) (0.374) (0.375) (0.377) (0.374)

lnPOP 1.1806 *** 1.2396 *** 1.1816 *** 0.9285 ** 1.0014 ***
(0.317) (0.372) (0.316) (0.362) (0.355)

lnPOP × lnPOP −0.0993 *** −0.1027 *** −0.0993 *** −0.0883 *** −0.0961 ***
(0.030) (0.032) (0.029) (0.031) (0.032)

lnMWI −0.0283 0.2361 1.3465 *
(0.079) (0.619) (0.693)

lnPOP × lnMWI −0.0619 −0.3322 **
(0.139) (0.166)

lnDELTA −0.0248 −1.4951 * −2.7848 ***
(0.137) (0.858) (1.062)

lnPOP × lnDELTA 0.3338 * 0.6525 ***
(0.189) (0.246)

Time FE Y Y Y Y Y
City FE Y Y Y Y Y
Constant 6.5128 *** 6.3167 *** 6.4983 *** 7.3782 *** 7.1902 ***

(0.933) (1.127) (0.918) (1.085) (1.058)
Observations 734 734 734 734 734
R-squared 0.873 0.873 0.873 0.874 0.875
Number of cities 273 273 273 273 273
Hausman test Prob > chi2 0.000 0.000 0.000 0.000 0.000

Note: Robust standard errors are in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1. A total of 103 observations
(city × year) are missing due to the lack of zip code information in the economic census data, and another
24 observations are missing due to the lack of relevant control variables in the China Urban Statistical Yearbooks
(287 × 3 − 103 − 24 = 734). The Hausman test strongly indicates the rejection of the null hypothesis; therefore, a
fixed effects model should be adopted instead of a random effects model.

4.2. Robustness Tests

The endogeneity of polycentricity in relation to better economic performance or to the
omission of key variables are salient concerns and have the potential to significantly bias
the coefficients. First, urban spatial structure and labor productivity are potentially related
in two directions. The positive correlation between them may stem from the fact that
cities with higher productivity are more likely to be decentralized and clustered. Second,
although we included as many relevant control variables as possible and used a two-way
fixed-effects model to control for unobservable time and city effects, some relevant variables
may still be missing from the regressions.

Ordinary least squares (OLS) can suffer from the potential bias caused by reverse
causality and omitted variables. TSLS estimation is a common method for reducing this
potential bias. Therefore, we conduct a TSLS estimation by using an instrumental variable
that is correlated with the potentially endogenous urban spatial structure but not with
labor productivity.

Inspired by previous related research [36], topographic data could be a valid source
of instruments for urban spatial structure. Thus, we use the SRTM 90-m resolution DEM
elevation data gathered by the National Aeronautics and Space Administration (NASA)
and the National Imagery and Mapping Agency (NIMA) to obtain the average slope of
each postal code area in each Chinese city proper.

However, rather than directly adopting the average slope of terrain roughness, we
designed a group of more relevant instruments. Generally, firms prioritize building in areas
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where the slope is less steep. In contrast, areas with steep inclines have high construction
and usage costs; thus, they have a lower potential for becoming centers of employment
concentration. Therefore, a less steep postal code area, i.e., a postal code area with a
lower average slope, could probably attract more employment. We use (90◦—the average
slope of each postal code area) as a measure of potential employment to replace the actual
employment in the corresponding postal code area. Then, based on the formulas for the
urban spatial structure indices, we replace actual employment with each location’s potential
employment (90◦—average slope) and then use these new indices as instrumental variables
(IVs) for the urban spatial structure. A higher value for these IVs could be positively related
to a higher level of centralization or concentration. The IVs are also time-variant, as the
locations of the CBDs change over time.

Regarding the validity of the instruments, the slope of the surface is a natural fea-
ture and thus highly exogenous in relation to economic activities. Furthermore, we use
topographic data from 2000, which are very unlikely to have been influenced by economic
development after 2004; in addition, because of the height measurements taken by the
SRTM 90-m resolution DEM elevation instruments are precise to approximately 16 me-
ters (approximately the height of a five-story building), we can conclude that our slope
measurements are unlikely to be affected by the built environment.

In Table 4, the Cragg–Donald F statistic shows that our instruments are relevant in
most of our models. However, limited information maximum likelihood (LIML) estimation,
which is less sensitive to weak IVs, is used in Table 5 to reduce the negative impact of
weak IVs.

Table 4. The first stage of the IV regressions.

lnMWI lnMADC lnDELTA lnGINI

First-stage coefficients on the IVs 0.3014 ***
(0.0319)

2.7629 ***
(0.7746)

0.3525 ***
(0.0386)

1.1047 ***
(0.4376)

Shea partial R2 0.1645 0.0273 0.1559 0.0139
Anderson canon. corr. LM statistics 75.848 *** 12.591 *** 71.690 *** 6.396 **

Cragg–Donald Wald F statistics 89.209 12.720 83.419 6.374

Note: Robust standard errors are in parentheses. *** p < 0.01, ** p < 0.05.

Table 5 confirms the results that we obtained from the OLS model. As the spatial
structure variables are not shown to be endogenous by Durbin–Wu–Hausman tests, we
conclude that the OLS estimations are more efficient. However, we present the TSLS results
here as a robustness test.

Table 5. TSLS regression results.

(1) (2) (3) (4) (5)

Dependent Variable:
ln(GDP/L)

TSLS TSLS TSLS TSLS TSLS

lnPOP 1.1767 *** 1.9634 *** 1.1790 *** −1.1453 −1.4068
(0.345) (0.503) (0.354) (1.731) (1.791)

lnPOP × lnPOP −0.0991 *** −0.1448 *** −0.0993 *** 0.0017 0.0146
(0.033) (0.040) (0.034) (0.090) (0.101)

lnMWI −0.1272 3.4557 ** −0.6968
(0.215) (1.592) (2.874)

lnPOP × lnMWI −0.8217 ** 0.1124
(0.380) (0.642)
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Table 5. Cont.

(1) (2) (3) (4) (5)

Dependent Variable:
ln(GDP/L)

TSLS TSLS TSLS TSLS TSLS

lnDELTA −0.6979 −14.2572 −14.9520 **
(0.862) (9.214) (7.302)

lnPOP × lnDELTA 3.0653 3.2583 *
(2.144) (1.663)

Others Y Y Y Y Y
Time FE Y Y Y Y Y
City FE Y Y Y Y Y
Observations 714 714 714 714 714
R-squared 0.872 0.860 0.864 0.795 0.777
Number of cities 253 253 253 253 253
Hausman Prob > chi2 1.0000 0.7408 0.9990 0.9407 0.9708

Note: Robust standard errors are in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1. Twenty observations were
removed because of they were the only observation in their group.

In addition, we also find that the results are mostly robust to alternative urban spatial
structure indices (Table 6).

Table 6. Robustness to urban spatial structure indices.

(1) (2) (3)

Dependent Variable:
ln(GDP/L)

FE FE FE

lnPOP 1.1375 ** 0.9224 ** 1.1242 ***
(0.446) (0.361) (0.422)

lnPOP × lnPOP −0.0978 *** −0.0909 *** −0.0955 ***
(0.032) (0.031) (0.032)

lnMADC −0.3233 2.1723
(1.377) (1.813)

lnPOP × lnMADC 0.0495 −0.5319
(0.306) (0.426)

lnGINI −1.6431 * −2.7654 **
(0.864) (1.273)

lnPOP × lnGINI 0.3561 * 0.6315 **
(0.193) (0.301)

Others Y Y Y
Time FE Y Y Y
City FE Y Y Y
Constant 6.7249 *** 7.4470 *** 6.6762 ***

(1.486) (1.092) (1.377)
Observations 734 734 734
R-squared 0.873 0.874 0.875
Number of cities 273 273 273

Note: Robust standard errors are in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.

4.3. Discussion

The estimates suggest that the interactions between urban spatial structure and labor
productivity are heterogeneous with respect to population size. Most models support the
idea that in large cities, a decentralized and clustered structure performs better, which
confirms that the relation between economic performance and polycentricity depends
on the urban population size. Recalling our second hypothesis, there are two potential
mechanisms for the larger economic influence of polycentric structures: decentralization
diminishes the negative externalities of agglomeration, and reclustering in subcenters
re-establishes the positive externalities through “borrowed size”. Our results confirm
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both mechanisms. With the growth of the city population, whether employment is more
clustered or dispersed matters just as much to urban economic performance as whether
clustering occurs near the CBD.

To put our findings into context and enrich the academic and practical guidelines on
the evolution of urban spatial structure, we provide the following discussion.

4.3.1. Discussion 1: Comparing Our Results with Those of Previous Studies

To the best of our knowledge, this paper is the first to verify the theoretical predictions
at the city proper scale that polycentric structure improves economic performance more in
larger cities. Referring to the previous works on a comparable scale, some argue that the
effects of polycentricity on economic performance do not depend on city size [4,12], while
others raise conclusions opposite ours [2].

First, one of the reasons for the different results could be the methods used. Due to
data availability, we adopt panel data models instead of the cross-sectional models, as were
used in previous works. The cross-sectional models are not as reliable as panel models
because they are more likely to be biased.

Second, the different context of the study case could also affect the results. Our results
contrast with those obtained by Meijers and Burger (2010) [2], who argued and empirically
showed that polycentricity resulted in better economic performance in small metropolitan
areas than in large metropolitan areas. They explained that the functional connections
between urban subcenters in small metropolitan areas were denser than those in larger
areas. This inconsistency may originate from differences in the developmental stages of
the samples. Metropolitan areas in the United States are already mature; therefore, the
influence of agglomeration economies and diseconomies is more balanced. Since the 1970s,
American metropolitan areas have evolved toward polycentric spatial structures that are
functional rather than morphological. In contrast, China is in the midst of fast-paced
urbanization, and the share of the urban population has only recently surpassed that of
the rural population. At this stage, the urban morphological spatial structure is evolving
rapidly, and the surplus between agglomeration economies and diseconomies plays an
important role in labor productivity.

Nevertheless, our results are in line with some findings on larger scales [10,20,29].

4.3.2. Discussion 2: City Size Threshold for a Positive Influence from Polycentricity

We attempt to find the city size threshold at which the economic influence of poly-
centricity changes from negative to positive. We specify the interactions between the
urban spatial structure (centralization and clustering) and urban population size to cap-
ture potential heterogeneity (Model 5 in Table 3). We then calculate the marginal effect
of lnSTU’s contribution to economic performance as βlnSTU + βlnSTU×lnPOP × lnPOP.
As βlnSTU and βlnSTU×lnPOP are opposite in sign in all our models, the sign of lnSTU
(βlnSTU + βlnSTU×lnPOP × lnPOP) changes from negative to positive or from positive to
negative as the population grows (see Figure 5). Simply put, when we set the estimated
coefficient for lnSTU (i.e., βlnSTU + βlnSTU×lnpop × lnpop) equal to zero, we obtain the
critical point for this change. As Table 7 and Figure 5 show, centralization and dispersion
(monocentricity) better facilitate economic performance only in small cities with fewer than
approximately 600,000 residents. However, decentralization and clustering (polycentricity)
are better structures for cities with more than 700,000 residents. Furthermore, the city
size threshold for centralization is lower than that for clustering, which implies that for
better economic performance, decentralization should occur before clustering in the urban
structure evolutionary process.
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Figure 5. Marginal effects of the spatial structure (based on Model 5 in Table 3).

Table 7. Population threshold for the economic effects of the spatial structure.

Table 3 Model 5

β(lnMWI) 1.3465
β(lnpop × lnMWI) −0.3322
the threshold of city size for MWI 575,800

β(lnDELTA) −2.7848
β(lnpop × lnDELTA) 0.6525
the threshold of city size for DELTA 713,700

According to a study on “ghost towns” using nighttime light data, unsuccessful new
towns appear quite frequently around small-sized cities, such as Jiayuguan, Zhangye,
Jiuquan, and Fangchengang [37]. We find that the populations of these cities are usually
below 600,000 residents, which coincides with our findings. Thus, polycentricity strategies
are planned too far ahead for small cities. Instead, monocentricity (centralization and
clustering) could be better choice for these small cities.

4.3.3. Discussion 3: Optimal City Size Constrained by Different Spatial Structures

By adding the quadratic form of lnPOP and the interaction terms between lnPOP
and the urban spatial structure variables, we can calculate the peak population point
(P*, henceforth) that represents the optimal city size, as constrained by different spatial
structures. Maximizing GDP per worker and holding the other control variables constant
gives a peak size of

P∗ =
βlnPOP + βlnSTU×lnpop × lnSTU

2 × βlnPOP2

As the mediating effect of city size on centralization is negative and that on clustering
is positive, the peak size is larger for decentralized and clustered cities. Calculated on the
basis of the estimates from Model 5 in Table 3, the results presented in Table 8 and Figure 6
support our hypothesis and indicate the peak points where GDP per worker is maximized
for each quartile of the spatial structure indices in 2013. The peak population size increases
as cities become more decentralized and clustered. To simplify the comparison, we define
two hypothetical cities. The first is polycentric with a MWI value in Q1 and a DELTA value
in Q3 (decentralized and clustered). The second city is monocentric and has its MWI value
in Q3 and its DELTA value in Q1 (centralized and dispersed). The optimal population
size in the polycentric city, under the chosen specifications, is twice as large as that in the
monocentric city (584.13/253.86 ≈ 2.3).
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Table 8. Peak city population size (in 10,000) relative to GDP per worker (2013).

Peak Population Size
Dispersed Clustered

DELTA in Q1 DELTA in Q2 DELTA in Q3

Decentralized MWI in Q1 340.72 424.08 584.13
MWI in Q2 286.60 356.72 417.04

Centralized MWI in Q3 253.86 324.48 379.36
Note: Q1, Q2, and Q3 represent the lower quartile, median, and upper quartile, respectively.

Figure 6. The inverted U shape in the relationship between size and economic performance for cities
with different spatial structures.

As a validation of our results, we collect the estimated Chinese optimal city size raised
by early works (Table 9). These numbers are very close to our findings.

Table 9. Optimal city size in the early literature.

Authors (Year) Optimal City Size (in 10,000 Persons)

Wang and Xia (1999) [38] 100–400
Chen and Jiang (2002) [39] 100–400
Ma and Song (2003) [40] 100–200

Au and Henderson (2006) [41] 54.4–144
Liu (2007) [42] 270

Zhang and Xie (2017) [43] 200–500

4.3.4. Discussion 4: The Economic Significance of Urban Spatial Structure

Based on the results from Model 5 in Table 3, we aim to calculate the economic
significance of urban spatial structure transformation, namely, how much profit is accrued
when cities become more decentralized (a decrease in MWI) and more clustered (an increase
in DELTA). Thus, we choose the following five Chinese cities with different population
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sizes as our study cases: Jiayuguan (200,000), Suizhou (500,000), Weinan (1 million), Wuhan
(5 million), and Tianjin (8 million).

Table 10 confirms that the economic performance that results from the transformation
of the urban spatial structure varies based on the urban population size. In small cities such
as Jiayuguan (200,000), each 1% reduction in centralization results in a 1.1 thousand yuan
decrease in GDP per capita, and a 1% increase in clustering also results in a 2.6 thousand
yuan decrease in GDP per capita. In Suizhou (500,000), the loss values are 0.04 and 0.2
thousand yuan per capita, respectively, which are both smaller than those in Jiayuguan.
However, in larger cities, the decentralization and clustering processes create an increase
in economic benefits, and larger cities earn more. The effects of both the 1% decrease in
centralization and the 1% increase in clustering in Tianjin (8 million) are double those in
Wuhan (5 million). These values are all of economic significance and thus cannot be ignored.
These economically significant outcomes are also confirmed when we consider a change of
one standard deviation.

Table 10. Economic benefits of spatial structure in different sized cities.

City Jiayuguan Suizhou Weinan Wuhan Tianjin

Population (million persons) 0.2 0.5 1 5.1 8.2
GDP per capita (thousand yuan/person) 311 93.8 157.2 195.2 293.1
Change in GDP per capita with a 1% decrease
in centralization (thousand yuan/person) −1.1 −0.04 0.3 1.4 2.6

Change in GDP per capita with a 1% increase
in clustering (thousand yuan/person) −2.6 −0.2 0.3 2.5 4.7

Change in GDP per capita with a decrease of
one standard deviation in centralization
(thousand yuan/person)

−18.5 −0.7 0 0.2 43.7

Change in GDP per capita with a decrease of
one standard deviation in clustering (thousand
yuan/person)

−28.1 −2.4 3.7 27.4 50.9

5. Conclusions and Policy Implications

This paper provides a deeper understanding of and more robust evidence for the
link between spatial structure and economic performance in the Chinese city proper,
specifically in terms of the two dimensions of polycentricity, namely, centralization and
clustering. Based on the China Economic Census Database that covers 2004, 2008, and 2013,
we use a two-way fixed-effects panel model to examine the aforementioned causal link.
After controlling for the main characteristics of the cities that may influence both urban
spatial structure and labor productivity, we find that polycentricity contributes more to
economic performance in larger cities. In contrast, building strong CBDs is a more effective
way to promote urban economic development in small cities during the initial stages of
development. In addition, we find that the optimal population size increases when cities
transform from a monocentric structure to a polycentric structure.

This finding is particularly relevant in China, where a number of cities have focused on
shifting employment away from the main centers and developing subcenters. Our findings
suggest that polycentricity strategies are effective policy instruments for addressing the
limitations imposed by urban growth, such as congestion and pollution. At the same time,
decentralization and clustering constrain the population growth process and substantially
influence the optimal population size. Polycentricity is reasonable and even desirable for
large cities but not for small cities. Urban planners should be cognizant of the costs of
developing multicenter plans in small cities.

However, some things remain to be carried out for future research. First, as well
as economic performance, environmental and social performance are also worth paying
attention to. Second, individual behavior analysis on how employees choose between
possible locations and thus how the individual choice effects the economic performance
are promising with the popularization of big data.
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Abstract: Based on China’s “carbon neutrality” strategy, this study explores the relationship between
land-use/cover change and temporal and spatial changes of ecosystem carbon storage in urban
agglomerations. Using the Plus-InVEST model, the projected spatial patterns of land use in the
Chengdu-Chongqing urban agglomeration in 2030 under natural development and ecological protec-
tion scenarios were simulated and predicted, and the characteristics of carbon storage, together with
its spatio-temporal dynamics, were evaluated under two scenarios. Results show that: (1) From 2000
to 2020, forests, water areas, construction areas, and unused land continued to increase, while the area
of cropland and grassland decreased continuously. During the last 20 years, carbon storage in urban
agglomeration showed an increasing trend, with an overall increase of 24.490 × 106 t. (2) Compared
with the natural development scenario, forest land, grassland, and water area in 2030 under the
ecological protection scenario exhibits a substantial change; the area of construction land is limited;
and an ecological spatial effect is reflected. (3) Compared to 2020, carbon storage under natural
development and ecological protection scenarios decreased by 50.001 × 106 t and 49.753 × 106 t in
2030, respectively. The stability of carbon storage under the ecological conservation scenario was
significantly higher than that under the natural development scenario. Therefore, under the ecological
protection scenario, as a result of the coordinated land use of Chengdu-Chongqing, the functions of
various regions can be coordinated and carbon storage losses can be mitigated.

Keywords: carbon storage; PLUS model; InVEST model; land use; urban agglomeration

1. Introduction

During the last few decades, the global carbon cycle has received considerable attention
due to the storage of carbon in terrestrial eco-systems [1,2]. The primary driver behind
changes in carbon storage in ecological processes is variability in land-use type [3]. Carbon
sequestration capacity varies considerably out all over land-use types. Ecological processes
store carbon in plants and soils, which are influenced by changes in land use [4,5]. Currently,
industrial development are causing a massive development of urban land areas [6]. The
rise in developed land and resulting loss of natural vegetation have had a significant
impact on regional carbon storage, posing a serious threat to sustainability and the supply
of regional ecological processes [7]. Timely and effective assessments of regional carbon
storage affected by urban agglomeration construction and development are crucial to
maintain carbon storage services while enhancing other ecosystem services [8,9]. Thus,
the sustainable development of urban agglomerations can be improved by providing
information to enable the coordination of land use [9–11].

Land-use/cover change (LUCC) impacts carbon storage using field investigations and
modeling [12]. This is a complex process that has both spatial and temporal aspects [13].
Several models, including Conversion of Land Use and its Effects at Small Region Extent
(CLUE-S) [14] and the Land Use Scenario Dynamics (LUSD) model [15], are suitable for
assessing urban areas. Additionally, the Cellular Automata-Markov (CA-Markov) model
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has gained popularity for simulating LUCC in a variety of situations and produces accurate
results [16,17]. In one study, Liang et al. (2021) combined a CA-Markov model with an
InVEST model to assess the impact of land-use change on global key ecological carbon
stocks [18,19]. In addition, the Simulation of Future Land Use (FLUS) model has been
applied in scenario analyses to a certain extent due to its different operation mode relative
to the CA model [20]. A combination of FLUS and the InVEST model was used by Deng
et al. [21], Liu et al. [22], and Gao [23] to examine the relationship between future land
use and carbon storage in the future. However, utilizing the land expansion analysis
technique, a patch-generated land-use change simulation tool refers to a network data may
more accurately assess the reasons behind diverse land-use changes (LEAS). The model
PLUS includes a multiseed growth mechanism (CARS) that better simulates patch-level
changes across multiple land uses, enabling the appraisal of multiple land-use types [24].
Depending on the use of the LEAS and CARS modules [25], under several anticipated
future scenarios, the PLUS model can also provide an accurate assessment of how urban
expansion affects carbon storage in land ecosystems.

In the upper reaches of the Yangtze River, the Chengdu-Chongqing urban agglom-
eration is located in an ecological barrier area. In response to the rapid loss of cultivated
land resources due to the expansion of urban and rural construction land as well as oc-
cupying ecological land, this urban agglomeration faces severe challenges when it comes
to production, living, and ecological spaces [26,27]. It is thus very important to explore
evolution, simulation, and scenario prediction in this region. This paper examines the
potential impacts of future urban agglomeration development on regional carbon storage.
Our study examines land change from a territorial spatial evolution perspective taking
into account the impacts of natural, social, economic, and transportation factors. We
quantitatively simulated regional land-use change in urban agglomerations between 2020
and 2030 as well as determined whether different spatial regulation scenarios might have
a significant impact on regional carbon storage in Chengdu-Chongqing. The planning
space should be used for a variety of spatial regulation purposes. The objective of the
study is to explore urban agglomerations effectively and alleviate known contradictions
between urban development and environmental conservation by attempting to explore
urban agglomeration development and alleviate the known contradictions between urban
development and environmental protection.

2. Materials and Methods

2.1. Study Area

The Chengdu-Chongqing urban agglomeration, which has its centers in Chengdu and
Chongqing, is a crucial platform for the growth of the western area and a vital ally for the
Yangtze River Economic Belt and an important area for China to promote new-type urban-
ization. The agglomeration includes 15 cities in Sichuan province and 29 districts (counties)
in Chongqing. As shown in Figure 1, the permanent population in this area was 97,709,900
in 2021, accounting for 6.8% of the national population, and its economic aggregate in the
same year accounted for 6.5% of the national total. Chengdu and Chongqing influence the
surrounding areas by virtue of their relative economic strength. The inflow of Chongqing
population into Chengdu accounted for 4.32%, while the inflow of Chengdu population
into Chongqing accounted for 7.68%, demonstrating a “dual flow” development of both
cash flow and traffic flow.
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Figure 1. Map of the study area.

2.2. Data Acquisition and Processing

For the simulation of land use and carbon storage in this article, the following data used
here are briefly described, including the land use and carbon storage simulation data used
in this paper. Given the accessibility of remotely sensed data, Landsat pictures with a pixel
size of 30 m for the years 2000, 2010, and 2020 (containing Thematic Mapper, Enhanced
Thematic Mapper, and Operational Land Imager) were obtained from the Geographic
Information Cloud site (http://www.gscloud.cn, accessed on 6 June 2021) to categorize
land use and cover. Land-use types were divided into 6 categories and 25 subcategories [28].
Resource and Environment Science and Data Center (http://www.resdc.cn/, accessed on
12 June 2021) provided the digital elevation model (DEM), slope, gross domestic product
(GDP), and population data. DEM and slope data were processed at a spatial resolution
of 30 m, while GDP and population data were processed at a spatial resolution of 1 km.
Point of Interesting(POI), river, and night light data were also obtained from RESDC. Our
road network data was derived from OpenStreetMap (https://www.openstreetmap.org/,
accessed on 2 July 2021). With a spatial resolution of 100 m, annual mean temperatures and
annual mean precipitation data were collected from World Clim (https://www.worldclim.
org/, accessed on 16 August 2021) [29].

In ArcGIS 10.8 (ArcGIS 10 series created by Esri (Redlands, CA, USA)), a unified spatial
resolution of 100 m × 100 m was set for all of the above-mentioned spatial data, adopting
the Albers geographic coordinate system. Driving factors can be divided into the following
four categories (Figure 2): terrain, climate, location, and social and economic. Aspect, slope,
and elevation are topographic factors. Temperature and precipitation are examples of
climatic factors. Location factors include distance to rivers, roads at all levels, and schools.
Distances were calculated using the ArcGIS Euclidean distance tool. Socioeconomic factors
include GDP per capita, population density, and nighttime lighting conditions [30,31].
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Figure 2. Main drivers behind land usage in the urban agglomeration of Chengdu and Chongqing.

2.3. Research Methods
2.3.1. PLUS Model

A model of land-use change called PLUS is based on patches of grid data. The
modeling can replicate diverse changes in land use and properly characterize them at
the component level. Two modules make up the PLUS model: Based on several random
patch seeds, CARS is a CA model and LEAS a land extension analysis technique [24]. The
LEAS module may harvest and sampling land expansion between two periods of land-use
change, utilizing the random forest algorithm to mine and determine the likelihood that
different land uses will emerge as well as the percentage of driving variables that each land
use will contribute. The CARS module simulates autonomous plaque production under
the constraint of development probability by combining the mechanisms of random seed
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formation and cutoff decline. Based on the PLUS model, the LEAS module was used to
analyze land expansion from 2000 to 2020. Subsequently, the demand for land use by 2030
was estimated using the Markov chain algorithm. Under two distinct 2030 development
scenarios, the CARS module was used to simulate and predict land-use changes.

The development risk surfaces Pd=1
i,k for land use and overall likelihood OPd=1,t

i,k may
be calculated using the Monte Carlo method when Ωt

i,k is 0 [32], as follows:

OPd=1,t
i,k =

{
Pd=1

i,k × (r × μk)× Dt
k if Ωt

i,k = 0 and r < Pd=1
i,k

Pd=1
i,k × Ωt

i,k × Dt
k all others

(1)

where r varies between 0 and 1; the threshold for creating new land-use patchwork for
land-use type k is represented by μk, which the user chooses. Ωt

i,k is the percentage of
land-use k that makes up the area around cell i; and Dt

k denotes the gap between present
and future land-use demands at iteration t. τ is used to evaluate the nominated land use c,
which is selected by the roulette wheel, if land-use c is more common than land-use k:

If
N

∑
k=1

∣∣∣Gt−1
c

∣∣∣ N

∑
k=1

∣∣Gt
c
∣∣ < Step Then, l = 1 + 1 (2)

{
Change Pd=1

i,c > τ and TMk,c = 1
No change Pd=1

i,c ≤ τ or TMk,c = 0
τ = δl × r1 (3)

where Step refers to the step size needed by the PLUS model to roughly represent the land-
use requirement; as δ is the decay factor for τ, which ranges from 0 to 1, the decay factor
is set by the expert; l is the total number of decay steps, and r1 is a normal distributions
stochastic variable with a mean of 1 and a range of 0 to 2. The transition matrix, TMk,c,
determines whether land-use type k may change to type c [24,33].

The interaction between various land-use types and various land-use divisions within
the neighborhood is another neighborhood component [24], which can be said in the
following manner:

Ωt
p,k =

∑N×N con
(

Ct−1
p = k

)
N × N − 1

× wk (4)

where Ωt
p,k is the local effect factor for the cell p at time t and is the entire amount of cells

that land type k occupied in the Moore neighborhood window of N × N in the previous
iteration t − 1; and wk represents the neighborhood factor parameter of each land-use type.
The neighborhood factor parameter ranges from 0 to 1, with a value proportional to land
expansion capacity [34]. The land-use factor parameters in this paper are primarily based
on current situations and future development trends of land use in the study area (Table 1).

Table 1. Neighborhood factor parameters.

Land Use Type
Cultivated

Land
Forest Grassland Water

Construction
Land

Unused
Land

Natural development neighborhood factor 0.07 0.11 0.01 0.29 1 0.09
Ecological protection neighborhood factor 0.07 0.31 0.10 0.34 0.95 0.09

2.3.2. Validation of Model Accuracy

The applicability and reliability of the model for forecasting changes in land use and
cover were assessed using quantifiable correctness and the kappa coefficient. The overall
agreement between simulation findings and observation data is tested using the kappa
value. Kappa values greater than 0.75 signify good simulation accuracy. Taking 2010 as
the base period data, the paper uses the above methods to simulate 2020 land-use patterns,
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then cross-checks the simulation graph of 2020 and the current situation graph of 2020.
Calculating the kappa coefficients is as follows:

Kappa =
OAO − OAE

(1 − OAE)
, OAO =

(
n

∑
k=1

OAkk

)
/N (5)

where OAO is the classification’s overall accuracy and denotes the likelihood that each
random sample’s simulation outcome would match the data on land use. OAE is the
likelihood that the simulation’s findings match the data on current land use; the number
n represents the number of types of land use; N is the overall sample count; the quantity
of samples that were accurately identified for the k type of land use is called OAkk. The
range of values for the kappa coefficient is −1 to 1, with a higher number indicating a more
appropriate prediction.

2.3.3. Setting the Scene

Natural development scenario (NDS): In light of the land-use development trend
between 2000 and 2020, With the Markov chain, it was possible to determine the demand
for land usage in 2030 underneath the historical development trend (Table 2) [35,36].
According to historical changes, cultivated land has become grassland or construction land,
so we set it to 1. Since it is unlikely to turn to other ground classes, it is set to 0. A similar
situation exists for woodlands and arable lands. Despite its particularity, construction land
cannot be converted to other land classes, so it is set at 0. In the past, unused land has more
often migrated to OTHER land classes than to the rest of the land class.

Table 2. Natural development scenario cost matrix.

Land Use Type
Cultivated

Land
Forest Grassland Water

Construction
Land

Unused
Land

Cultivated land 1 1 0 0 1 0
Forest 1 1 0 0 1 0

Grassland 1 1 1 0 1 0
Water 1 1 0 1 1 0

Construction land 1 0 0 0 1 0
Unused land 1 1 1 1 1 1

Ecological protection scenario (EPS): The EPS’s goal is to improve the safeguards for
ecological regions including grasslands and forests. According to CP, the development of
Chengdu-Chongqing Urban Agglomeration Development Plan, the conversion of wetland
to built-up area, pasture, forest, and farming were all strictly regulated (2016–2020) (Table 3).
In comparison with natural development, conversion of woodlands and grasslands to the
rest of the land class represents the biggest difference. Aside from construction land, other
types of land are more easily converted to woodlands and grasslands, and conversion
between them is also easier. The probability of woodland and grassland being set to 1
increases as a result.

Table 3. Budget matrix for ecological conservation scenarios.

Type of Land
Usage

Cultivated
Land

Forest Grassland Water
Construction

Land
Unused

Land

Cultivated land 1 1 0 0 1 0
Forest 1 1 1 1 1 1

Grassland 1 1 1 1 1 1
Water 1 1 0 1 1 0

Construction land 1 0 0 0 1 0
Unused land 1 1 1 1 1 1
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2.3.4. InVEST Model

Using the InVEST model, a regional carbon storage evaluation was conducted. Further,
it was investigated if spatial management might successfully stop the loss of region carbon
storage [34]. In order to calculate the total carbon storage in a region, the following
calculations were made:

CT =
n

∑
i=1

Ci−T =
n

∑
i

Ai ×
(
Ci−above + Ci−below + Ci−dead + Ci−soil

)
(6)

where CT stands for region net carbon storage, Ci−T for i land-use type’s carbon storage, Ai
for i land-use type’s area, and Ci−above , Ci−below , and Ci−dead but instead Ci−soil for i land-
use type’s above-ground, below-ground, dead organic matter, and soil carbon densities,
respectively.

The carbon density of various land-use types is the fundamental element of the InVEST
model, and it is based on previous research findings that have been modified in accordance
with the characteristics of the Chengyu Cities Group (Table 4).

Table 4. Carbon density based on land-use/cover type included in the InVEST model (t/ha).

Land-Use Type
Aboveground

Carbon
Density

Underground
Carbon
Density

Density of
Soil

Carbon

Carbon
Density of

Dead
Organic

Materials

Sources

Cultivated land 38.70 80.70 92.90 1.00 [37–39]
Forest 55.56 144.87 206.45 3.50 [39–41]

Grassland 29.30 52.90 135.00 1.00 [37–40]
Water 21.40 73.10 113.00 1.00 [41,42]

Construction land 3.30 87.30 115.30 0 [42,43]
Unused land 22.60 136.90 171.80 0 [38,42]

3. Results

3.1. LUCC Dynamics during 2000–2020

From 2000 to 2020, land use in the Chengdu-Chongqing urban agglomeration was
dominated by cultivated land, accounting for more than 57% of the total land area of the
urban agglomeration. Woodland occupied more than 29% of the total land area; however,
the areas of grassland, water, construction land, and unused land were relatively small,
accounting for only 10% of the total area of urban agglomeration land (Table 5). During
the past 20 years, land use has changed in different ways, among which the largest change
reflects the area of construction land. Increases in unused land, water, building, and forests,
are in the increments of 1473, 495, 4393, and 96 km2, respectively. The largest percentage
increase occurred for construction land, with an increase of 58.82%. The areas of arable
land and grassland decreased by 3609 and 2848 km2, respectively. From 2000 to 2010,
under the influence of regional development orientation, continuous urbanization led
to the rapid expansion of urban and rural construction land, whereas cultivated land
gradually decreased. In addition, the policy of “returning farmland to forest” piloted in the
Chengdu-Chongqing region restored forestland area, which was another important reason
for the decreasing area of cultivated land. From 2010 to 2020, with further urbanization,
urban agglomerations become increasingly large, resulting in a further decrease in the
area of cultivated land. Additionally, the expansion of the “returning farmland to forest”
project encouraged the ongoing expansion of the forest, while the arable area continued
to decrease.
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Table 5. Area and percentage of the study area’s various land-use classifications through 2000 to
2020.

Land Use Type
2000 2010 2020 Area

Change
(km2)Area (km2)

Percentage
(%)

Area (km2)
Percentage

(%)
Area (km2)

Percentage
(%)

Cultivated land 122,591 58.84 121,014 58.08 118,982 57.10 −3609
Forest 60,696 29.13 61,812 29.66 62,169 29.84 1473

Grassland 18,944 9.09 17,021 8.17 16,096 7.73 −2848
Water 2839 1.36 3080 1.48 3334 1.60 495

Construction land 3076 1.48 5120 2.46 7469 3.58 4393
Unused land 211 0.10 310 0.15 307 0.15 96

3.2. Analysis of Prediction Results of Various Land Use Situations

In an urban agglomeration, agricultural area, forest areas, grass, water area, and
unoccupied land are all expected to shrink by 361, 599, 438, 488, and 20 km2 by 2030,
respectively, under the natural outcome measurement (NDS in Figure 3). Conversely,
construction land area has a projected increase of 25.52%. According to the direction
of land-use area transfer (Figure 3), arable land, grassland, and water area will mainly
be converted to construction land, whereas forest land and unused land will be evenly
transferred to other land types. Although the change range of construction land is the
largest, it seldom changes to other land types, and its increase mainly results from the
transfer of large areas of cultivated land.

Figure 3. Chord diagram of land-use transfer.

Compared with 2020, under the ecological protection scenario, woodland, grassland,
and construction land will continue to increase by 101, 345, and 1906, respectively (EPS
in Figure 3), While the amount of water, agricultural lands, and undeveloped land will
all fall by 2100, 232, and 20, respectively. According to Figure 3, most cultivated land is
converted to forest and construction land, most forest land is changed to farmland and
grasslands, most grassland is transformed to forestry land and water, and any unused
land is evenly distributed to various land types. Relative to the natural development
scenario, the change trend of cultivated land, forest land, grassland, and water area under
the ecological protection scenario undergoes great changes (Table 6). This primarily results
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from the use of land for construction to meet the ecological security patterns of urban
agglomeration in the near future. The proportion of forest land, grassland, and water area
in the total area of urban agglomeration increased significantly from −0.96%, −2.72%, and
−14.64% to 0.16%, 2.14%, and −6.96%, respectively.

Table 6. Area of each region in 2030 under the concept of environmental preservation and natural
development, and its ratio to 2020.

Land Use Type
2020

2030 Change from 2020 to 2030

NDS EPS NDS EPS

Area
(km2)

Proportion
(%)

Area
(km2)

Proportion
(%)

Area
(km2)

Proportion
(%)

Area
(km2)

Rate
(%)

Area
(km2)

Rate
(%)

Cultivated land 118,982 57.10 118,621 56.93 116,882 56.10 −361 −0.30 −2100 −1.77
Forest 62,169 29.84 61,570 29.55 62,270 29.89 −599 −0.96 101 0.16

Grassland 16,096 7.73 15,658 7.52 16,441 7.89 −438 −2.72 345 2.14
Water 3334 1.60 2846 1.37 3102 1.49 −488 −14.64 −232 −6.96

Construction
land 7469 3.58 9375 4.50 9375 4.50 1906 25.52 1906 25.52

Unused land 307 0.15 287 0.13 287 0.13 −20 −6.52 −20 −6.52

3.3. Accuracy Verification and Driving Factor Contribution Analysis

Land-use data from 2010 and 2020 were used as examples to simulate changes in land
use based on Markov’s predictions for every land-use level in 2020. The results were then
compared to the actual values for 2020 to assess the PLUS model’s simulation accuracy
(Figure 4). The method was employed to determine the reliability overall and the kappa
coefficient. Values and the kappa coefficient that are near 1 denote simulation accuracy that
is higher. The simulated performance of the model reaches a sufficient level in statistical
significance whenever the kappa coefficient is higher than 0.75 [44]. The accuracy of kappa
was confirmed to be 0.83.

 

Figure 4. Comparison of simulation for 2020 and predictions of two scenarios in 2030.

According to the historical development trend between 2000 and 2020, predictions
were made for the contribution ranking of the influencing factors of various land-use
probabilities over the next decade (Figure 5). It is obvious from the figure that DEM has the
greatest impact on cultivated land expansion, whereas the degree of contribution of other
factors is not significantly different. When it comes to the contribution of forest land, the
slope factor ranks highest among the fifteen selected driving factors. In addition, DEM has
a strong contribution to grassland and water area, indicating that natural environmental
factors play an important role. The degrees of contribution of various factors in construction
land showed a ladder type. Population factors and DEM factors had the least influence on
the unutilized land protrusion.
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3.4. Changes of Carbon Storage between 2000 and 2030

The InVEST model was used to calculate carbon storage in the Chengdu-Chongqing
urban agglomeration for 2000, 2010, and 2020. In order to simulate and forecast land
use outcomes in 2030 and to forecast carbon storage capacity within gradual progression
and ecological preservation scenarios, this was integrated with the PLUS model. In 2000,
2010, and 2020, the carbon storage of the Chengdu-Chongqing urban agglomeration was
5648.610 × 106 t, 5669.267 × 106 t, and 5673.100 × 106 t, respectively, showing a continuous
upward trend with an overall increase of 24.490 × 106 t and an average annual increase
of 1.225 × 106 t. From 2000 to 2010, carbon storage in the urban agglomeration increased
significantly, with an added value of 20.657 × 106 t, which is an increase of 0.37%. In
contrast, from 2010 to 2020, carbon storage in the urban agglomeration increased slightly,
with an increment of 3.833 × 106 t, which is an increase of 0.07%.

In the case of natural development, the carbon storage of the agglomeration in 2030
is predicted to be 5623.099 × 106 t, a decrease of 50.001 × 106 t compared with 2020 and
reflecting an average annual decrease of 5.0001 × 106 t. In contrast, under the ecological
protection scenario, the carbon storage of the agglomeration in 2030 is predicted to be
5623.347 × 106 t. The corresponding average annual decrease of 4.9753 × 106 t indicates
that the carbon storage deceleration is small. Under the ecological protection policy, which
improves the effectiveness of regional ecological protection and carbon sequestration effects
achieved in the Chengdu-Chongqing urban agglomeration. During 2020–2030, compared
with the two typical development scenarios, the carbon storage of urban agglomerations
under ecological protection measures that restrict the transfer of forest land and grassland
to other land types tends to be more stable, avoiding a rapid decline.

Regarding the spatial distribution and evolution of carbon storage (Figure 6), carbon
storage in the northwest region with Chengdu as the core of the urban agglomeration
decreased slightly between 2000 and 2020 by 0.095 × 106 t. On the contrary, the south-
east region, with Chongqing as the core, exhibits a large increase in carbon storage by
22.722 × 106 t. From 2020 to 2030, carbon storage of all cities in the Chengdu-Chongqing ur-
ban agglomeration decreased under the natural development scenario. Compared with the
previous two decades, the northwest region with Chengdu as the core is still the region with
the largest reduction in carbon storage, decreasing by 27.923 × 106 t, accounting for 55.84%
of the total reduction. Secondly, the carbon storage in the southeast region with Chongqing
as the core exhibited a smaller decreased 22.078 × 106 t, accounting for 44.16% of the total
reduction. Under the ecological protection scenario, the northwest region with Chengdu as
the core is still the city with the largest reduction of carbon storage at 27.840 × 106 t, which
corresponds to 99.70% of the natural development scenario, reflecting the effectiveness of
ecological protection. The carbon storage of the southeast region with Chongqing as the
core also decreased slightly, further reflecting the necessity of ecological protection.

3.5. Characteristics of Change in Carbon Storage Caused by Land Type Conversion

Due to area transfer and carbon density differences among different land types, the
corresponding effects of change and transformation on carbon storage are different. Due
to the change from a single land type to several land types between 2000 and 2020, the
Chengdu-Chongqing urban agglomeration lost 25.447 × 106 t of carbon storage. Quan-
titative conversion of cultivated land to construction land together with the conversion
of forest land and grassland to cultivated land and construction land leads to decreased
carbon storage in soil and vegetation. Because water area has a lower carbon density than
other land types, converting it to another type of land can help create a carbon sink, which
increases the amount of carbon that can be stored overall in the urban agglomeration.
During the past 20 years, the transfer of cultivated land to other land types resulted in a
reduction of carbon storage of 114.940 × 106 t, with cultivated land mainly being converted
into forest land, grassland, and construction land. Increasing conversion of forest land to
other land types also increased, and the corresponding added value was 148.844 × 106

t. The carbon storage of grassland correlated with the area change observed over the last
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20 years; i.e., with a decrease in area, its carbon storage also decreased, and the conversion
between different land types decreased by 57.241 × 106 t. Because the carbon density of
water areas is low and because its area does not change greatly, the carbon storage value of
water areas does not change significantly between land type conversions. Due to its strong
expansion, construction land increased continuously during the past 20 years and was
mainly converted to arable land, forest land, and grassland. The unused land showed an
overall trend of fluctuating growth, resulting in a small increase of carbon storage between
land conversion, with an added value of 0.360 × 106 t.

 

Figure 5. Cont.
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Figure 5. Ranking of various land-use probabilities and their driving factors.

 

Figure 6. Carbon storage and its changes over different periods.

Compared with 2020 (Table 7), the carbon storage of the Chengdu-Chongqing ur-
ban agglomeration decreased by 2.955 × 106 t under the natural scenario by 2030 and
significantly increased by 393.057 × 106 t under the ecological protection scenario. The
main reason for this is the different transfer probability of cultivated land, forest land,
grassland, and water area. In addition, guided by ecological protection, the conversion of
other land types is restricted, and the transfer area to construction land decreases, resulting
in increased carbon storage. Under the two tested scenarios, the carbon storage of forest
land is the most significant. Despite the fact that each scenario indicated an upward trend,
the carbon storage of forestland increased significantly under ecological protection scenario.
First, there is a decline in the transformation of forested areas to agricultural land. Second,
forestland controls the transfer of construction land and unused land, achieving the goal
of regional carbon stability and reflecting the effectiveness and necessity of ecological
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protection policies. The change of carbon storage in grassland and water area was not
obvious. The ability to store more carbon is significantly increased by converting water
areas, building sites, and unused land into agricultural land, forest areas, and grassland.
Overall, the conversion of various land types mainly results in increased construction
land, which will prevent the metropolitan agglomeration from growing its carbon store
in the foreseeable.

Table 7. Under scenarios of natural progression and ecological protection in 2020–2030, land type
conversion will influence the amount of carbon stored in the atmosphere.

Land Use Type Area (km2) Change in Carbon Stock (×106 t) Total (×106 t)

Converted
from

Converted to
NDS Natural
Development

Scenario

EPS
Ecological
Protection
Scenario

NDS Natural
Development

Scenario

EPS
Ecological
Protection
Scenario

NDS Natural
Development

Scenario

EPS
Ecological
Protection
Scenario

Cultivated
land

Forest 411.76 380.44 −8.115 −7.498

−6.970 −6.341
Grassland 32.08 26.89 −0.016 −0.013

water 22.48 12.75 0.011 0.006
Construction land 1557.73 1576.12 1.153 1.166

Unused land 0.23 0.24 −0.003 −0.003

Forest

Cultivated land 215.28 203.13 4.243 400.321

5.395 401.655
Grassland 50.17 59.49 0.964 1.143

water 1.16 1.09 0.023 0.022
Construction land 7.68 7.87 0.157 0.161

Unused land 1.00 1.01 0.008 0.008

Grassland

Cultivated land 42.01 28.14 0.021 0.014

−1.362 −2.230
Forest 88.56 119.67 −1.702 −2.300
water 270.12 0.70 0.262 0.001

Construction land 54.92 53.23 0.068 0.065
Unused land 0.92 0.87 −0.010 −0.010

Water

Cultivated land 23.16 21.05 −0.011 −0.010

0.071 0.067
Forest 1.49 1.49 −0.030 −0.030

Grassland 1.00 0.71 −0.001 −0.001
Construction land 458.90 442.21 0.119 0.115

Unused land 0.53 0.54 −0.006 −0.007

Construction
land

Cultivated land 72.96 72.88 −0.054 −0.054

−0.118 −0.121
Forest 3.02 3.16 −0.062 −0.065

Grassland 0.76 0.75 −0.001 −0.001
water 2.38 2.45 −0.001 −0.001

Unused land 0.06 0.04 −0.001 0.000

Unused
land

Cultivated land 0.19 0.21 0.002 0.002

0.030 0.026
Forest 1.81 2.08 −0.014 −0.016

Grassland 0.89 0.85 0.010 0.010
water 1.66 1.46 0.020 0.018

Construction land 0.89 0.99 0.011 0.012

Total (×106 t) −2.955 393.057

4. Discussion

4.1. PLUS Analysis of Model Uncertainty

Currently, the majority of research on LUCC-related alterations to ecosystem car-
bon cycles is based on model simulations. Due to its complexity, LUCC can affect the
energy flow in the ecosystem, but the existing models are hindered by uncertainties in
simulating changes in the ecosystem carbon cycle caused by LUCC [34,45]. The reliability
of prospective land-use change modeling scenarios largely determines the accuracy of
modeling findings.

The driving factors selected for the PLUS model simulation used in this paper are
terrain conditions, climate environment, social economy, and transportation accessibility,
including fifteen factors, such as DEM, slope, aspect, temperature, precipitation, GDP,
population, railway networks, and national road networks. These factors result in an
accurate simulation of various land types and have different contributions to different
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types of land (Figure 4). Nonetheless, the PLUS model still has some limitations. First, in
addition to natural factors, cultural factors feature many complex choices, such as cultural
concepts, industrial output value, and POI; however, because it is challenging to quantify
these elements inside the PLUS model, we do not incorporate them in our simulation
method. Secondly, national policy orientation plays an important role in LUCC. Policy
factors such as ecological protection red line, permanent basic farmland protection red line,
and urban development red line—which all play a very important role in China’s territorial
space change—are difficult to assign specific values in the simulation process due to their
complexity. Therefore, in order to better adapt to real scenarios of future land-use change,
it is necessary to consider introducing more influencing factors in subsequent studies.

4.2. InVEST Model Uncertainty Analysis

The InVEST model can intuitively determine the effects of different types of conversion
on carbon storage. Its results clearly reflect spatial and temporal variations of carbon
storage in urban agglomerations and highlight the relationships between different land
types, which can provide new ideas for regional development in terms of coordinating
economic and ecological aspects. Nonetheless, it is important to note that the InVEST
model makes more estimates for large-scale land changes based on established available
carbon density values. In the carbon module, the change of carbon storage value due to
vegetation growth and the internal structure of land use are ignored, resulting in errors in
the change of spatial patterns of carbon storage and leading to uncertainty in the results [27].
In addition, although the carbon density values obtained from existing studies are close to
those in the study area, these values may be influenced by human activities and changes
in the natural environment. Therefore, the carbon density value also has a certain degree
of uncertainty. Finally, while the carbon module considers differences in carbon density
between different land-use types, it ignores differences in carbon sinks related to land-use
types and the age organization of vegetation, which hinders the simulation of the estimation
of the spatial pattern of carbon storage services. Therefore, in the study of future urban
agglomeration, it is necessary to strengthen and verify the timeliness of data acquisition of
carbon density values, carry out localized calibration, conduct field measurements of core
indicators, and accurately estimate changes in regional carbon storage and based the on
scientific and reasonable assumptions in order to better maintain the carbon balance of the
regional ecosystem.

4.3. Advantages and Limitations of the Linkage Model

The Link PLUS and InVEST models have broad applications for guiding ecosystem
services. The PLUS model’s LEAS module extracts the growth of different types of property
between the two steps for land-use change, which collects samples from the growing
section. In order to investigate the variables of development probability related to each
land-use type and assess the impact of each factor driving on land-use type expansion, the
advancement and pushing factors of each land-use type are then paired using the random
forest method [46]. This allows land-use change simulations combined with the InVEST
model to be used as a means for studying future changes in regional carbon storage spatial
patterns within urban agglomerations.

Although linkage models can effectively simulate the effects of ecosystems on carbon
storage over short time scales, their application on longer time scales faces several limita-
tions. The regional climate of the Chengdu-Chongqing urban agglomeration is humid all
year, causing vegetation and soil carbon density to change constantly [47]. Consequently,
the consequences of climate change could be disregarded whenever relational models are
utilized for long-term projections. In addition, the original spatial resolution of LUCC data
used was 30 m × 30 m. To ensure consistency, all spatial data were resampled to a grid of
100 m × 100 m. In future studies, data accuracy could be further improved to ensure the
validity of simulation sampling and carbon storage measurements.
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4.4. Spatial Structure of Urban Agglomerations and Carbon Storage

Urban agglomeration is a highly integrated urban complex with compact spatial
organization and close economic ties formed by different levels of cities relying on trans-
portation and communication and other infrastructure networks in a specific geographical
area [48,49]. Agglomerations of urban space are dependent on land as a space carrier for
social, economic, and ecological activities [50]. The land is also one of the most essential spa-
tial attributes of urban development. Further, land-use type and its cover change represent
the concrete expression of land as well as the main manifestation of urban agglomeration
structure. Therefore, LUCC, which is crucial to the carbon cycle in terrestrial ecosystems, is
at the heart of the urban agglomeration-carbon storage relationship.

In this study, we analyze the changes in carbon reserves caused by LUCC in Chengdu-
Chongqing urban agglomerations, based on the relationship between urban spatial struc-
ture and carbon reserves. There was a significant change in cultivated land from 2000 to
2020. By converting this land type to another, the total area decreases, resulting in the
largest decrease in carbon reserves. By contrast, forest land increases its carbon reserves as
its transfer area increases. Other land types are similarly affected. In accordance with the
historical development, the relationship between the spatial structure and carbon reserves
of the natural scenario will remain the same in ten years. The total amount of carbon
stored also increases as forest land is converted to grassland in the ecological scenario.
There is no doubt that changes in land use will affect carbon reserves over time. There is
a direct correlation between urban agglomeration’s spatial structure and carbon storage.
This relationship is traceable. According to Nicodemus Nyamari [51] and Cai [7], carbon
reserves have changed in Kenya and China’s Yangtze River Delta due to LUCC. In general,
it can be observed that urban agglomerations and carbon reserves have a close relationship,
and any changes in one will inevitably affect the other.

4.5. Development Strategy for Urban Agglomeration and Carbon Storage

In recent years, with the continuous development of urban agglomerations, con-
tradictions of land use caused by urban expansion have become increasingly common.
Continuously changing the land-use type can have a negative impact on the carbon sink
of terrestrial ecosystems [52]. Consequently, China’s territorial space planning must ad-
vance in order to achieve regional economic development goals while ensuring ecological
protection in urban agglomerations. First, it is necessary to strictly abide by the “three red
lines for protection” guided by national policies and appropriately control the increase of
land used for construction. An example is Chengdu-Chongqing’s urban agglomeration.
Construction land in Chengdu and Chongqing as well as their surrounding large cities
should be developed at a reduced pace. It is anticipated that small- and medium-sized cities
will grow moderately because they are not occupying arable land. Further, the city needs
to renovate the new construction space in order to tap into the potential of low-efficiency
land and increase urban public and ecological space. Increasing construction land inten-
sity is crucial to achieving limited growth and spatial transfer incentives in small towns
and villages within urban agglomerations. Second, the ratio of forestland to grassland
area should be increased to strengthen the ecological protection of high carbon density
regions [53,54]. Therefore, it is imperative that the Chengdu-Chongqing urban agglomera-
tion not only increase forest cover through afforestation in large areas but also optimize the
urban vegetation structure. The objective is to guide the sustainable development of urban
forest land and grasslands and to realize a harmonious coexistence pattern of life ecology.
Enhance the total carbon storage capacity of the urban agglomeration and create an urban
ecosystem that is healthy and stable as well as a harmonious living environment. Finally,
it is imperative to focus on the complex function of land uses in order to complete the
transformation from single land type to a production-life-ecological complex function. It is
necessary to increase participation in ecological preservation, promote ideal land layouts,
minimize carbon dioxide emissions, and enhance ecological efficiency thru the utilization
of resources and large-scale land management. For urban agglomerations and metropolitan
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areas in other regions, this has certain reference value. Building an ecological security
pattern and promoting an effective carbon cycle are the meanings of national development
from the perspective of urban agglomeration.

4.6. Contribution to Research

Several contributions make this study different from others. On the one hand, this
article quotes the latest simulation prediction model, PLUS, which has characteristics
that the previous forecast model lacks. Various types of land can be better understood
through this method. In addition, it contains a new multi-type seed growth mechanism
that can simulate changes in plaque-level and land-level changes for a variety of land
types. Moreover, it is coupled with a variety of target algorithms, enabling better planning
decisions to be made. A FLUS model was used in previous research by Zuo et al. [55] to
simulate land-use changes in 2020 in Chongqing. Additionally, Zhang et al. [56] simulated
mainland China’s ecosystem value using the FLUS model. In their research, they only
needed to extract the first phase of the land in order to use the data for training, based on
the probability of emergence and land competition. There is a lack of time concepts in this
method as well as the ability to dig the changes in land use compared to the PLUS model.

On the other hand, Chengdu-Chongqing urban agglomeration is the largest urban
group in southwestern China. In national strategic development, the Chengdu-Chongqing
urban agglomeration plays a significant role due to their geographical location and histori-
cal significance. Carbon reserves in this area not only meet the needs of local ecological
development but also get closer to the national dual carbon strategic planning goals. Data
integration is also performed from a macro perspective, and different models can be used
to better position Chengdu-Chongqing urban development. For the remaining urban ag-
glomerations, this is of more guiding significance. Previous simulation prediction research
using the PLUS model focused mostly on middle and small regions, similar to cities or
specific places. In their analyses of the Hanzhong ecosystem and the southeast coastal
protective forest ecosystem, Yang [57] and Bao [58] used the PLUS models. Study area
is small and does not have universality for urban areas, urban agglomerations, or other
regions. The main contributions of this study are therefore the two aspects above. The
study presents multiple suggestions to improve the reference value of national strategic
planning and regional development based on the results of the scenario simulation.

5. Conclusions

This study made projections for the carbon storage of something like the Chengdu-
Chongqing metropolitan agglomeration in 2030 using the PLUS and InVEST models. These
are its conclusions:

(1) Land use in the Chengdu-Chongqing urban agglomeration has changed significantly
between 2000 and 2020, primarily due to a continuous increase of forest land area,
water area, construction land area, and unused land area, together with a decrease of
cropland and grassland areas. The driving force behind this change mainly comes
from urbanization and the implementation of the “returning farmland to forest” policy.
Carbon storage in the urban agglomeration has increased by 24.490 × 106 t in the past
20 years.

(2) In comparison, the accuracy of kappa is 0.83. According to the historical development
trends from 2000 to 2020, the contribution of the probability impact factors of regional
expansion have been calculated and ranked. The DEM exerts a significant influence,
but other factors also contribute differently in specific situations.

(3) From 2020 to 2030, the cultivated lands, forests, grasslands, water areas, and unused
lands in Chengdu-Chongqing will decline continuously under the natural develop-
ment scenario. The area of construction land will continue to grow. The urban agglom-
eration’s carbon storage will decrease from 5673.100 × 106 t in 2020 to 5623.099 × 106 t
in 2030, i.e., a total decrease of 50.001 × 106 t.

50



Land 2022, 11, 1617

(4) In the scenario of ecological preservation, crop land, water area, and unoccupied land
will all decrease, while woods, grassland, and building land would all continue to
grow. In this scenario, the urban agglomeration’s carbon storage in 2020 will decrease
from 5673.100 × 106 t to 5623.347 × 106 t in 2030, i.e., a total decrease of 49.753 × 106 t.

(5) Carbon storage under the ecological protection scenario can be reduced by 0.248 × 106 t
relative to the natural development model. This slower reduction rate is conducive
to the stabilization of carbon sinks. Under the ecological protection scenario, carbon
storage in northwest China with Chengdu as its core decreased by 27.840 × 106 t, i.e.,
99.70% of the natural development scenario. Carbon storage in southeast China, with
Chongqing as its core, also declined slightly.
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Abstract: Pricing of direct industrial real estate (DIRE) has long been under-researched due to the
paucity of analysable data. Compared to other types of real estate, DIRE has often been regarded
as more inefficient because of information asymmetry amongst market players stemming from a
lack of market transparency. Therefore, pricing of DIRE usually does not follow a random walk
and should be more predictable than other types of real estate. Along this line of reasoning, this
study empirically investigates the causal relationships between the price-to-rent ratio of DIRE and
macroeconomic attributes using cointegration and causality techniques. More specifically, we employ
data on the market of Hong Kong to investigate the lead-lag relationships between the price-to-rent
ratio of DIRE and a wide spectrum of macroeconomic and financial indicators, including inflation,
money supply, national income, exchange rates, performance of housing market and other economic
indicators specific to the industrial sector. The results of our statistical tests reveal significant evidence
that DIRE is generally moving in syncs with other segments of the economy over time in terms
of long-term cointegration. Further, DIRE tends to lag behind the overall macroeconomy in terms
of Granger causation with the price-to-rent ratio exhibiting varying lengths of time lag with the
macroeconomic determinants. The findings of the study carry important implications for informing
property valuation practices and industrial land policy, particularly in designing urban revitalization
programmes aimed at optimising industrial land use.

Keywords: price-to-rent; industrial real estate; macroeconomics; market efficiency; Granger causality;
Hong Kong

1. Introduction

Direct industrial real estate (DIRE) is often characterised by low liquidity and trans-
parency, and high physical heterogeneity and information asymmetry between market
participants. Undertaking the valuation of DIRE is therefore a decidedly challenging
exercise, not least when the market is sluggish with a paucity of transactions, or when
special-purpose properties of rare structural features and functionality are concerned.
Nonetheless, numerous studies have been conducted to explore the determinants of pricing
with respect to the price and rent of DIRE at the property level, with the majority of research
endeavours centred around how they can be explained by property attributes such as build-
ing age and structural design [1,2], proximity to labour market, accessibility or distance
to infrastructure and economic centres [3–5], and industrial agglomeration [1,3,6]. As far
as property valuation is concerned, the price-to-rent ratio has frequently been employed
by real estate practitioners, traders, and policy makers to assess whether a given property
market is overheated by, for instance, comparing the ratios cross-sectionally and contempo-
raneously with other similar markets, or temporally with the historical trends of the subject
market [7] In the context of residential real estate, a significant deviation of the price-to-rent
ratio from its long-term historical trends usually signals a decline in housing affordability
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or excessive speculative activity within the market, and a consequent mean reversion to
its equilibrium value would likely occur. For commercial real estate, including DIRE, the
price-to-rent ratio could indeed reveal useful information about the behaviours of market
players and the interaction between the property market and the macroeconomy, including
the legal and regulatory environment: a high price-to-rent ratio may imply market players
anticipating a shortage of new supply in the foreseeable future, whilst a low ratio value
may be indicative of a surging demand for rental properties resulting from, for example, a
stamp duty increase.

An extensive body of literature has been directed at examining the dynamics between
the ratio and the macroeconomy, with the majority of them focusing primarily on residen-
tial real estate and, to a lesser extent, the commercial office sector. Of particular societal
relevance and importance are the branches of studies that delve into topics in relation to
“buy versus rent” [8], generation rent [9,10], affordability [11,12] and the role of macroe-
conomics in the determination of price/rent of office real estate [13] However, relatively
few scholarly works have given a thorough empirical account of the price-to-rent ratio of
DIRE and its relationships with its underpinning macroeconomic determinants that shape
the property market landscape. A more integrative and nuanced conceptualization of the
dynamics between DIRE and the wider economy is of paramount importance in formu-
lating industrial policy and guiding economic transformation on one hand and informing
valuation practices of DIRE on the other. Against this backdrop, this study attempts to
explore and dissect the macroeconomic and financial determinants of the price-to-rent
ratio of DIRE using data from the Hong Kong market. More specifically, it is positioned to
examine the long-term cointegration and causal relationships between the ratio and a wide
spectrum of macroeconomic indicators, including attributes related to the general economic
conditions, forex market, manufacturing sector, and other external economic factors with a
purpose to enhance the empirical understanding of the market drivers of DIRE. Previous
studies [14–16] in residential and commercial real estate (including the retail and ware-
house subsectors) have illuminated that macroeconomic attributes can be used to explain
the pricing behaviours of traders within a property market with the price-rent dynamics
critically dependent on the liquidity, transparency, and/or efficiency of an economy. For
example, Duca and Ling [14] observe that the capitalisation rate behaves differentially
during periods of market boom and bust, with capital availability/liquidity being one
of the key factors affecting the pricing of the market across the real estate industries of
retail, industrial warehouse, apartment, and commercial office. Given the more inefficient
nature of DIRE relative to other property sectors, we contend that the price-to-rent dy-
namics should be more pronounced and hence more noticeable with respect to the general
macroeconomic conditions. In addition, since increasing the supply of DIRE is, in many
circumstances, a technically more cumbersome and time-consuming process in view of,
for example, town planning procedures, we therefore further posit that the price/rent
interaction of DIRE could be less instantaneously responsive to changes in the market
fundamentals of the economy.

Indeed, the primary motivation of the current study lies in the rather unique vicissitude
of the Hong Kong manufacturing market and its industrial property sector over the past
century, which makes the city an interesting subject upon which to conduct research.
Since the “Reform and Openness” initiatives of China, designed and launched by Deng
Xiaoping in 1979, the industrial sector of Hong Kong as a whole has witnessed a process of
gradual, but inevitable, de-industrialisation with a constant outflow of manufacturing jobs,
facilities, and investments to the mainland, particularly to the Pearl River Delta region,
due to the imbalances and disparity of land supplies, production costs, and supplies of
labour between the two places. The rapid and large-scale modernisation across China
has concomitantly marked the end of the era of “Made in Hong Kong” when the city was
once hailed as the Pearl of the Orient under the effective and efficacious governance and
forward-looking leadership of the British colonial government based on the principles
of laissez-faire capitalism and rule of law. During the colonial time, Hong Kong was,
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astoundingly, one of the world’s leading exporters in many industries such as clothing
and textile, plastics, toys, and electronics, despite the city’s relatively small population and
lack of natural resources. With the de-industrialisation of the city came the debilitation
of its industrial real estate sector. The significance of the sector has shrunk substantially
both in terms of output and labour force over the past four decades. Vacant, dilapidated,
under-utilised, and poorly maintained decades-old industrial buildings scatter across the
city, with some being converted—lawfully or unlawfully—to structures for residential
and/or non-industrial uses. In 2010, the government of Hong Kong launched a scheme
known as the “Revitalisation of Industrial Buildings”, with an objective to optimise land
use in order to meet the incessantly changing needs of the society. To facilitate the growth
and development of new industries such as testing and certification services, cultural and
creative industries, and environmental industries as promoted in the Policy Address in
2009–2010 (See: https://www.policyaddress.gov.hk/09-10/eng/index.html, accessed on
1 August 2022), the government introduced a number of measures to increase industrial
land supply by, for instance, putting forward a tailor-made lease modification system, which
provided favourable terms and conditions to land users/owners to redevelop their existing
properties or apply for a wholesale conversion of the buildings with a land premium
determined by their most suitable use. Hundreds of applications under the scheme have
been approved, with millions of square metres of industrialised land being revitalised
or created.

The remainder of the paper is organised as follows. Section 2 discusses the literature
on the relationships between the price-to-rent ratio and macroeconomic attributes, covering
not only the industrial property sector, but also the residential and commercial property
markets. Section 3 presents the research methods of the study, providing an in-depth
discussion on the Johansen cointegration test and the Granger causality model. Section 4
presents the key research findings, followed by an analysis of the results. The last section
concludes the study.

2. Literature Review

From the perspective of price discovery, the dynamics between property price and
rent as well as their cross-sectional and temporal associations with other macroeconomic
determinants can indeed be explained by the DiPasquale and Wheaton model (or the
DW model) [17]. Pertinently, property such as other asset classes can be viewed as an
investment, with its price equal to the summation of all future discounted incomes that can
be derived. The demand for real estate and the total housing stock jointly determines the
level of rent. When the demand increases due to an exogenous shock, for instance, rent
should increase as a result, given that the amount of housing stock remains largely the
same in the short term. The surging rent should, on average, translate into a higher price of
property through a process known as capitalisation. The rate of capitalisation, commonly
termed “investment yield”, indicates the opportunity cost that investors require to invest
in the assets. Four economic attributes are encapsulated in the DW model, which governs
the fashion in which the yield is determined, namely, long-term interest rate, expected
growth rate of rental income, the risk associated with the generation of rental income, and
government policy.

A large volume of research in the housing literature has been devoted to uncovering
and explaining the joint dynamics of real estate prices and rents by employing different
statistical methods and datasets. Pertinently, most of the attention within the literature
on the price-to-rent ratio has so far been drawn to the residential real estate sector given
its more transparent nature with relatively more readily available data for undertaking
empirical analysis. For example, Sommer et al. [18] explored the linkages between property
rents and prices for the US market using a dynamic equilibrium stochastic model of housing
tenure choice. The results indicated that during the period of 1995 and 2005, over half
of the growth in the price-to-rent ratio was a consequence of a higher per capita income,
more relaxed lending requirements, and low interest rates. In a subsequent study, Kishor

56



Land 2022, 11, 1675

and Morley [19] examined market fundamentals that could affect the price-to-rent ratios
of eighteen cities in the US. Their investigation was based upon Campbell and Shiller’s
analytical framework [20], which was, in turn, premised on the decomposition of the
price-to-rent ratio into two components: an unobserved component, which is determined
by the expected real estate return and the growth rate of real rental income, and a residual
component, which explains the non-stationary temporal deviation of the ratio from its
present value. The results discovered that large cities tend to have a present value compo-
nent greater than that implied by the statistical model. In other words, large cities generally
have a higher average price level relative to its rent counterpart.

Ayuso and Restoy [7] corroborated, using a general intertemporal asset pricing model,
that residential market prices tend to mean-reverse to their long-term equilibrium over
a long time horizon. Using data on the UK, US, and Spanish markets, their research
findings displayed that the past overvaluation of the property sectors as reflected by high
price-to-rent ratios are attributable to the slow adjustment of rents and inelasticity of
housing supply in the presence of demand shocks. From a global economic perspective,
Beltratti and Morana [21] revealed strong and persistent interlinkages between the housing
markets of the G7 nations with their price fluctuations governed by some common global
macroeconomic factors such as investment flows, productivity growth, global stock prices,
and oil prices. Importantly, bidirectional causal linkages are evident between house prices
and macroeconomic developments, with investment exhibiting a greater impact upon
house price shocks relative to consumption and output factors. In relation to the dynamics
between house price and rent, some existing empirical evidence in the housing literature
suggested that they react to macroeconomic attributes in a differential manner. For instance,
compared to rent, house price is more responsive to changes in short-term interest rates
and the general productivity of the economy. On the other hand, rent is a lagging indicator
of price and short-term interest rates [22].

In the context of the UK, Bracke [23], by evaluating the micro-spatial property price
structure of London, illuminated that residential neighbourhoods of higher economic
standing tend to be associated with higher price-to-rent ratios. Clark and Lomax [24]
also utilised the British housing market transaction and rental price data and established
a strong positive empirical relationship linking the degree of physical desirability of a
neighbourhood and the price-to-rent ratio. Further, the study showed that detached and
semi-detached houses, on average, display higher price-to-rent ratios relative to terraced
houses and apartments. More recently, McCord et al. [25] and Lo et al. [8] explored the
price-to-rent characteristics of the UK market for different property types, confirming that
the detached sector tends to Granger-cause other submarkets in terms of pricing. It is
further evident that the price-to-rent ratios of the detached sector are the largest as well as
the most volatile. In their subsequent studies [15,16], they empirically revealed that GDP,
money supply, foreign exchange markets, and the performance of the equity market are
important drivers of the price-to-rent ratio. Further, Lo et al. [26] demonstrated how real
estate pricing is intimately correlated with the efficiency of the market by examining the
spatial autocorrelation structure of house prices in the UK.

Despite the DIRE sector being relatively under-researched, some studies in the litera-
ture did attempt to provide evidence-based investigations that are empirically insightful,
dissecting the price–rent dynamics and the market fundamentals that underpin them. For
instance, Ambrose [27] investigated 57 industrial real estate listings in Georgia, USA, for the
period of 1986–1987 and observed that the industrial property market was indeed priced
fairly rationally by investors through valuations that were based on building-specific and
locational attributes. Further, industrial properties that were listed for sale were over 200%
as large and had smaller finished space for office than properties for lease. In other words,
traders in the market priced property attributes differently when they were buying than
when they were leasing.

Another strand of studies focused more exclusively on the efficiency of industrial
property. Atteberry and Rutherford [28] utilised the hedonic valuation model to examine
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over 700 industrial property sales in Dallas, USA. They detected a significant time lag
between past and current industrial real estate prices, seemingly suggesting that the
industrial markets under investigation were not informationally efficient, since the current
prices did not fully reflect the past price information. In a similar study, Chai [29] scrutinised
the pricing of the warehouse sector and revealed that the general market conditions comove
with income-generating industrial properties. More specifically, the demand for and supply
of warehouses jointly determine the levels of vacancy rates, rents, and net operating income
of the firms within the sector, which indeed echoed the propositions and assumptions of the
DW model. Mueller [30] also reported similar empirical findings in line with the DW model,
revealing that local demand and supply are key determinants affecting the rental growth
rates of industrial real estate. On a different note, Wang et al. [31] observed that the value
of an industrial property could be heavily influenced by the level of technology at both
industry and national levels. They conjectured that technological progress could optimise
production methods and, hence, improve energy efficiency at the property level, which
would translate into higher property values. Further, new technological breakthroughs
could stimulate more industrial development, creating even more demand for industrial
land that could result in higher land prices.

Some studies have shed empirical light on the relationships between the price/rent
performance of DIRE and macroeconomic attributes. Notably, Thompson and Tsolacos [32]
probed into the British industrial property data and established that industrial property
real rents or their growth rates are closely and positively related to the general productivity
of the economy proxied by GDP, which determines the demand for manufacturing goods.
Further, they found that real rents and construction costs collectively determine the supply.
A later investigation by Jones and Orr [33], also utilising British data, further revealed that
the supply attributes of industrial real estate are of higher elasticity than those of the retail
sector. In subsequent studies, Benjamin et al. [1] and Jackson and White [34] both averred
that price inflation and interest rates are two important determinants of real prices and
rents of industrial property. In particular, the two factors would generally lead to a decline
in the performance of industrial property in terms of price and rent, especially in times of
economic slowdown.

Appositely, the interrelationships between price, rent, return, and macroeconomic
determinants for income-generating property have been examined more rigorously within
the commercial office and retail real estate sectors. Using global real estate data on the
Asian, European, and American markets, de Wit and van Dijk [35] found that employment,
vacancy rates, GDP, general price level, and stock are significant drivers of the returns on
office space investments. A later study by Karakozova [36] further confirmed their results
using the Finnish property market data, with findings pointing to GDP and the territory
sector employment rates being significant drivers of direct commercial office returns, whilst
pointing out that factors affecting industrial real estate returns have received little attention
in the literature. In a similar vein, Lieser and Groth [37] explored demographic, social,
economic, and institutional attributes that could have an impact on commercial property
investment activity. The study is empirically insightful and comprehensive in that it
covered forty-seven countries over a nine-year investigation period, showing within a
panel data regression framework that economic factors (e.g., size of economy, GDP growth),
depth and sophistication of capital markets (proxied by factors such as market liquidity,
amount of initial public offering activity, and ease of accessibility to capital), political
stability, and sociocultural characteristics (such as general human development levels and
the control of bribery and corruption) all have a statistically significant impact on the
financial performance of commercial real estate. In the context of retail real estate, Ho and
Faishal bin Ibrahim [38] measured the degree of association between the sector and the
macroeconomic environment, providing evidence that pro-growth policy and GDP growth
tend to have a positive association with rents and returns.

Despite a plethora of quantitative investigations examining the dynamics between the
pricing of commercial real estate and the macroeconomy in the literature, to the best of our
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knowledge, so far there has been no empirical study exclusively directed at exploring the
relationships between the price-to-rent ratio of industrial real estate and sector-level and
macroeconomic attributes. From a practical standpoint, it is crucial to understand how the
interaction of industrial property price and rent responds to or influences different economic
fundamentals within the sector and the wider economy. A better conceptualisation of how
the pricing of DIRE with respect to key macroeconomic attributes is of significance, not
only in terms of formulating company-level investment strategies, but also steering the
direction of industrial real estate development within a city or nation at a macro policy
design level through, for instance, introducing more pro-DIRE measures and regulations,
encouraging more FDI and streamlining existing taxation policy to facilitate more efficient
and effective industrial land use and development.

3. Methodology

Based on the economic and methodological rationales of previous empirical studies in
the literature [14–16], we employ Johansen cointegration and Granger causality techniques
to explore potential cointegration and causal relationships between the price-to-rent ratio
of DIRE and an array of macroeconomic determinants deemed to display pricing dynamics
with the real estate market of Hong Kong. The investigation period spans from 2010
Q1 to 2019 Q4, which was selected with a purpose to model a relatively stable market
environment and investment climate, minimising noises caused by irrelevant exogeneous
factors such as the global financial crisis during 2007/2008 and the recent outbreak of
COVID-19 during 2019/2020.

We explore the short- and long-term relationships between the price-to-rent ratios of
the industrial real estate market, and a basket of its economic determinants, which can be
categorised into five groups of variables, as follows:

Group 1—General macroeconomic attributes

The first group of attributes comprises (i) inflation (I), (ii) employment rate (ER),
(iii) GDP growth (GDP), and (iv) stock market performance (HSI). We posit that the in-
dustrial real estate market should, to certain extent, perform in tandem with the general
economy. For example, industrial land price should possibly move in sync with the general
price level of goods and services, as reflected by the inflation rate; the general productivity
or overall strength of the economy as signalled by the employment rate, GDP growth, and
the performance of the stock market should have a positive association with the industrial
sector. However, their causal relationships, we surmise, might be statistically ambiguous,
which would require further empirical inquiry.

Group 2—Liquidity-related attributes

The four attributes encompassed in this group are (i) the exchange rate of RMB/HKD
(RMB), (ii) (inverse of) DXY (DXY), (iii) M3 money supply (M3), and (iv) foreign direct
investment (FDI). According to the Quantity Theory of Money, asset prices increase with
the amount of money or liquidity of capital being circulated within an economy, the holding
velocity of money, and the level of real output constant. Accordingly, we hypothesise that
(i) money supply, as represented by M3, should be positively associated with industrial
land price in the long run; (ii) when there is an increase in the exchange rate between
RMB and HKD, a higher volume of capital-chasing local assets will flow from China to
Hong Kong as HKD-denominated assets will become more financially appealing from the
perspective of Chinese investors, driving real estate asset prices up; (iii) along the same
line of thought, when DXY, which measures the strength of the USD, appreciates, the HKD,
through the linked exchange rate mechanism, should appreciate in the short term against
other international currencies. Hence, when the inverse of DXY increases, we should expect
a larger amount of international capital pouring into the Hong Kong economy, propelling
the prices of its assets, including those of industrial real estate assets; (iv) likewise, when
there is an increased amount of foreign direct investment within the economy, we should
also expect industrial property prices to surge.
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Group 3—Housing market attributes

We consider this category of attributes, consisting of (i) average residential property
price (RHP) and (ii) residential price-to-rent ratio (PtR_R), to detect any temporal linkages
between the housing market and the DIRE market in terms of pricing. Several studies
(e.g., [39,40]) in the literature have documented temporal co-movement between the two
sectors of real estate. The associations between them could be plausibly due to the underly-
ing market fundamentals they share in common, causing their price/rent characteristics to
trend in a similar fashion over time.

Group 4—Industrial sector-specific attributes

It is logical to assume that the price-to-rent ratio of the industrial property market
should be correlated to the performance and characteristics of the manufacturing sector
and the DIRE. Briefly, if the manufacturing sector is in expansion with growing return
and profitability, the demand for industrial space should plausibly increase, impacting
the pricing of industrial real estate. To account for the size, profitability, productivity, and
revenue of the manufacturing sector of Hong Kong, we incorporate the following attributes
specific to the manufacturing sector in our models: (i) value added (VA), (ii) number of
industrial establishments (IE), (iii) total workforce (W), (iv) operating expenses (OE), and
gross sales (S).

Group 5—External economic factors

Lastly, we posit that the steadfast growth of the manufacturing sector in mainland
China over the past decades, particularly in provinces geographically proximate to Hong
Kong such as Guangdong, should have a quantitative and spatial impact on the overall
development of the city’s industrial sector, consequentially shrinking its industrial real
estate. Therefore, we encompass the rate of change in the volume of manufacturing output
of Guangdong (GD) in our models to evaluate whether the Hong Kong industrial real
estate sector is affected by its neighbouring region in terms of pricing. An inverse operation
is performed on the variable given that it is expected to be inversely correlated to the DIRE
in Hong Kong.

The abovementioned variables are measured on a quarterly basis. In addition, the
price-to-rent time series are analysed for three administratively defined districts, namely,
Hong Kong Island (HKI), Kowloon (K), and the New Territories (NT), to determine whether
there is any spatial heterogeneity across the industrial real estate market with respect to the
macroeconomic attributes. Table 1 below provides detailed descriptions of the variables
examined in our analysis.

Empirical Models

We undertake stationarity tests on the time series prior to examining any potential
cointegration and causal relationships between two variables. Failure to detect and account
for the non-stationarity of a time series could produce spurious empirical results [41] In our
study, we employ the Augmented Dickey Fuller (ADF) unit root test to detect whether a
unit root is found within a given time series, with the general equation of the test given by:

ΔYt = α + βT +∅Yt−1 +
k

∑
i=1

∂ΔYt−i + εt (1)

where Yt denotes the level of the time series; α is an intercept term; T is a temporal trend;
k represents the number of time periods (i.e., the lag length) for achieving white noise
governed by the Schwarz Information Criterion (SIC); and εt is an error term, which is a
mean of zero and finite variances.

Cointegration Tests

We utilised the Johansen cointegration test to detect any long-term cointegration asso-
ciations between the price-to-rent time series and macroeconomic attributes. Statistically,
the components of a vector C ~CI (i, j) are said to be cointegrated of order i, j if Ct is
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stationary at the first difference, i.e., I(1), and we can observe a non-zero vector P such that
P′Ct follows I(i–j) with i ≥ j > 0.

Table 1. Descriptions of variables.

Variable Definition
Inverse

Operator
Unit Data Source

Price-to-rent ratios Average industrial land price divided by
average industrial land rent No Ratio Rating and Valuation

Department, Hong Kong

Inflation (I) The year-on-year growth rate of consumer
price index No Percentage Census and Statistics

Department, Hong Kong

Employment rate (ER)

The percentage of population aged 15 and
over who have been at work for pay or

profit during the 7 days before
enumeration or have had formal job

attachment

No Percentage Census and Statistics
Department, Hong Kong

GDP growth (GDP) The year-on-year GDP growth rate No Percentage Census and Statistics
Department, Hong Kong

Year-on-year stock
market return (HSI)

The year-on-year return on the Hang
Seng Index No Percentage Yahoo Finance

RMB/HKD (RMB) The exchange rate between the Chinese
Yuan and Hong Kong Dollar No Ratio Yahoo Finance

US Dollar Index (DXY)
The geometric weighted average of six

international currencies (EUR, JPY, GBP,
CAD, SEK, and CHF) against the USD

Yes Percentage Tradingview

Foreign direct
investment (FDI) The volume of direct foreign investment No HKD (M) Census and Statistics

Department, Hong Kong

M3 Money supply
growth (ME) Year-on-year growth of M3 money supply No HKD (M) Hong Kong Monetary

Authority

Residential house price
(RHP)

Average house prices of Class C 1

residential real estate in the respective
districts of Hong Kong Island, Kowloon,

and New Territories

No HKD Rating and Valuation
Department, Hong Kong

Residential
price-to-rent (PtR_R)

Price-to-rent ratios of Class C residential
real estate in the respective districts of
Hong Kong Island, Kowloon, and New

Territories

No Ratio Rating and Valuation
Department, Hong Kong

Industrial value added
(VA)

GDP attributable to the secondary (i.e.,
manufacturing) sector No HKD (M) Census and Statistics

Department, Hong Kong

Number of industrial
establishments (IE)

Number of industrial establishments in
the manufacturing sector No Number Census and Statistics

Department, Hong Kong

Industrial workforce
(W)

Number of persons engaged in the
manufacturing sector No Number Census and Statistics

Department, Hong Kong

Operating expense
(OE)

Total amount of expenses for purchases of
materials, supplies, and industrial work

and services
No HKD (M) Census and Statistics

Department, Hong Kong

Industrial sales (S) Total sales of goods, industrial work,
and services No HKD (M) Census and Statistics

Department, Hong Kong

Manufacturing output
of Guangdong

province (GD), China

Total amount of industrial output of
Guangdong province Yes RMB (100 M)

Bureau of Statistics,
Guangdong Province,

China
1 The Rating and Valuation Department of the Hong Kong Government provides data on average prices and rents
measured on a per m2 basis for five classes of private residential property, which are defined by unit size: Class A
(below 39.9 m2), Class B (40–69.9 m2), Class C (70–99.9 m2), Class D (100–159.9 m2), and Class E (over 160 m2).
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Mathematically, we can detect a cointegration relationship between two time series,
Xt and Yt, by conducting a regression of Yt on Xt as in Equation (2) below.

Yt = α + βXt + ut (2)

The regression residuals ut are examined for stationarity by carrying out a unit root
test. Xt and Yt are said to be cointegrated if ut is a stationary time series. As pointed out
by Dickey et al., the above method based on Engle and Granger [42] could be sensitive to
the choice of dependent variable, potentially leading to statistical inconsistencies. Hence, a
modified modelling approach based on Johansen [43,44] is employed, which considers the
following equation:

ΔYt =  Yt−1 +
k

∑
i=1

iΔYt−i + BXt + εt (3)

where ΔYt is the change in Yt,  = ∑k
i=1 Ai − I, and i = −∑k

j=1+1 Ai. Yt denotes a k-vector
of I(1), which is non-stationary. Xt, on the other hand, represents a d-vector of deterministic
variables.  depicts the rank of the coefficient matrix, i.e., the number of cointegrating
vectors within the time series. The lag length is determined by the Schwarz Information
Criterion. Trace test statistics can be obtained by undertaking the likelihood ratio test
on the number of cointegrating vectors between the time series. If the two variables are
cointegrated, then they should be integrated to order one.

Granger Causality Test in Error Correction Models (ECMs)

If two time series are cointegrated, their long-term temporal relationship should be
determined within the framework of the error correction model (ECM) [45]. The equation
of an ECM-based causality equation can be formulated as follows:

ΔYt = λ +
u

∑
i=1

αiΔYt−i +
v

∑
j=1

β jΔXt−j + φzt−1 + εt (4)

where λ is an intercept term, and zt−1 is the error correction (EC) term of the equation with
a coefficient of φ. The ECM equation contains information about both short- and long-term
dynamics between the two time series, with u and v being the number of lags that are large
enough to produce an error term that is white noise. It is further noted that all terms are
I(0) in Equation (4). β js measure the short-term influence of Y to changes in X. In other
words, β js signal the short run elasticity of Y with respect to X. On the other hand, the
error correction term, zt−1, represents the long-term dynamic between the two variables.
Mathematically, zt−1 is given by:

zt−1 = Yt−1 − w0 − w1Xt−1 + w2t (5)

where w1 is the coefficient on the lagged independent variable Xt−1, which indicates the
degree of Y’s long-run elasticity with respect to X [46]. The speed of adjustment of short-
term disequilibria is captured by the coefficient of the EC term, φ. The EC term should have
a positive sign if changes in Y are greater than its long-term average value. In other words,
ΔYt should tend to decrease in value so as to follow the path of its long-term equilibrium.
On the contrary, the EC term should be negatively signed if ΔYt is below its average value,
which “pushes” Y upward over time. If there is a long-term lead–lag relationship between
the variables, the coefficient φ should be negative. Put differently, the null hypothesis of
long-term non-causality should be rejected if φ is negative at the conventional statistically
significant level.

Given that the coefficients of the lagged variables ΔXt−j measure the short-term
interaction between the time series, the Wald X2 test can be employed to determine the
short-term Granger causality by checking the coefficient restriction on the lagged first
difference terms. If the coefficients are statistically different from zero, the null hypothesis
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of short-term non-causality should be falsified. By examining the data on the DIRE of Hong
Kong using the cointegration and causality techniques, the study aims to explore whether
the pricing of the property market is causally linked with the macroeconomic attributes in
a Granger fashion in the long run.

4. Results and Discussion

4.1. Results of the ADF Test

We design the specification of each of the ADF equations based on an initial graphical
analysis proposed by [47]: If a time series graphically shows a time trend, stochastic or
deterministic, a linear trend and an intercept term should be encapsulated into the equation
to minimise omitted variable biases. The summary of the results of the ADF tests is reported
in Table 2 (see Appendix A for full results). The three price-to-rent ratio time series for
the residential markets of Hong Kong, as well as those for the employment rate and stock
market performance, are found to be stationary at level, implying that they tend not to
exhibit statistical properties that depend on the sample period of investigation. The rest
of the time series under investigation are non-stationary at level, but stationary at first
difference. Accordingly, we apply differencing on the time series and transform the two
sets of variables to I(0) and I(I) based on their stationarity [41].

Table 2. Summary of the results of the ADF tests.

Time Series Stationarity

PtR_R(HK), PtR_R(K), PtR_R(NT), ER and HSI Stationary at level

PtR(HK), PtR(K), PtR(NT), I, RMB, FDI, ME, DXY, GDP,
VA, IE, W, OE, IS, RHP(HK), RHP(K), RHP(NT) and GD Stationary at first difference

Note: The tests are conducted based on the 5% significance level. Full results are available upon request.

4.2. Results of the Cointegration and Granger Causality Tests

The results of the cointegration tests on the time series are depicted in Table 3. We
perform the tests on the price-to-rent ratio time series for the three districts of Hong Kong
with respect to each of the macroeconomic attributes. Trace statistics and eigenvalues
are utilised to detect whether a cointegration relationship exists between a given pair of
time series. It is evident that most pairs of time series are cointegrated in the long term
at the 5% statistical significance level, implying that they tend to move in tandem over
time. The only two pairs of time series that are not cointegrated are PtR(NT) vs. DXY
and PtR(NT) vs. VA. Procedurally, the findings of the cointegration analysis determine
the methodological approach that should be adopted to examine the lead–lag relationship
between a pair of time series: if they are found to be non-cointegrated, the correspond-
ing causality equation should be constructed within an ordinary vector autoregressive
regression framework. Otherwise, the causality should be examined by adopting an error
correction model approach. Table 4 presents the results of the Granger causality tests,
detailing the chi-square statistics of the Wald test and the t-statistics of the error correction
term in Equation (4). The R2; adjacent R2, The Akaike information criterion (AIC), Schwarz
criterion (SC), Durbin–Watson (DW) value, F-statistic, and the coefficient on the EC term of
each pair of the Granger models are also reported in the table.

Emanating from Table 4 are a number of noteworthy and interesting findings in
relation to the causal dynamics between the DIRE and the macroeconomic factors. First, the
general economic indicators, including inflation, employment, and stock market, appear to
Granger-cause the DIRE market in the long run, but not the other way around. The time
lags between the variables are typically two to three quarters. It is further noticeable that
GDP growth displays a bidirectional causal linkage with the price-to-rent variables across
the three districts. In other words, the growth of national income is both a cause and a
consequence of the price-to-rent ratio, in a Granger sense.
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Table 3. Results of cointegration tests.

Y = Price-to-Rent Ratio of Industrial Real Estate

Hong Kong Island Kowloon New Territories

X

None
Trace Stat. (Prob)

Eigenvalue
(Prob)

At most 1
Trace Stat. (Prob)

Eigenvalue
(Prob)

None
Trace Stat. (Prob)

Eigenvalue
(Prob)

At most 1
Trace Stat.

(Prob)
Eigenvalue

(Prob)

None
Trace Stat.

(Prob)
Eigenvalue

(Prob)

At most 1
Trace Stat.

(Prob)
Eigenvalue

(Prob)

G
ro

up
1

I

33.33664
(0.00) ***
0.491059
(0.00) ***

9.021425
(0.00) ***
0.221663
(0.00) ***

26.63423
(0.00) ***
0.402259
(0.03) **

8.108709
(0.00) ***
0.201677
(0.00) ***

44.26229
(0.00) ***
0.561689
(0.00) ***

14.56851
(0.00) ***
0.332810
(0.00) ***

ER

45.18061
(0.00) ***
0.564146
(0.00) ***

14.45404
(0.00) ***
0.323383
(0.00) ***

38.93924
(0.00) ***
0.480966
(0.00) ***

14.67519
(0.00) ***
0.327415
(0.00) ***

32.14486
(0.00) ***
0.409107
(0.02) **

12.67842
(0.00) ***
0.290121
(0.00) ***

GDP

43.89405
(0.00) ***
0.563733
(0.00) ***

13.20252
(0.00) ***
0.300105
(0.00) ***

37.07822
(0.00) ***
0.473791
(0.00) ***

13.32214
(0.00) ***
0.302364
(0.00) ***

29.48732
(0.00) ***
0.361579
(0.00) ***

12.88332
(0.05) **
0.294041
(0.00) ***

HSI

42.77438
(0.00) ***
0.587911
(0.01) ***

9.973314
(0.0016) ***

0.236276
(0.0016) ***

34.32131
(0.00) ***
0.484660
(0.00) ***

9.792978
(0.00) ***
0.232545
(0.00) ***

24.12839
(0.00) ***
0.337069
(0.09) *

8.918264
(0.00) ***
0.214185
(0.00) ***

G
ro

up
2

RMB

51.00004
(0.00) ***
20.11395
(0.00) ***

0.566021
(0.00) ***
0.419358
(0.00) ***

39.50740
(0.00) ***
0.505264
(0.00) ***

13.46932
(0.00) ***
0.305134
(0.00) ***

35.73811
(0.00) ***
0.457544
(0.00) ***

13.10710
(0.00) ***
0.298298
(0.00) ***

1/DXY

44.46733
(0.00) ***
0.563370
(0.00) ***

13.80661
(0.00) ***
0.311439
(0.00) ***

36.93921
(0.00) ***
0.467219
(0.00) ***

13.64235
(0.00) ***
0.308375
(0.00) ***

29.17684
(0.00) ***
0.339327
(0.00) ***

13.84045
(0.09)*

0.312069
(0.00) ***

FDI

44.28514
(0.00) ***
0.569169
(0.00) ***

13.12970
(0.00) ***
0.298726
(0.00) ***

34.51324
(0.00) ***
0.446863
(0.00) ***

12.60369
(0.00) ***
0.288685
(0.00) ***

30.38143
(0.00) ***
0.407928
(0.02) **

10.98872
(0.00) ***
0.256950
(0.00) ***

M3

45.98939
(0.00) ***
15.25011
(0.00) ***

0.564296
(0.00) ***
0.337785
(0.00) ***

33.33011
(0.00) ***
0.417475
(0.00) ***

13.33592
(0.00) ***
0.302624
(0.00) ***

30.78925
(0.00) ***
0.415742
(0.02)**

10.90501
(0.00) ***
0.255267
(0.00) ***

G
ro

up
3

RHP

38.70646
(0.00) ***
0.555853
(0.00) ***

8.677265
(0.00) ***
0.209050
(0.00) ***

40.04824
(0.00) ***
0.535338
(0.00) ***

11.68977
(0.00) ***
0.270897
(0.00) ***

31.59580
(0.00) ***
0.419772
(0.02) **

11.45546
(0.00) ***
0.266265
(0.00) ***

PtR_R

65.04982
(0.00) ***
0.711587
(0.00) ***

19.034549
(0.00) ***
0.402346
(0.00) ***

37.28334
(0.00) ***
0.504795
(0.00) ***

11.08849
(0.00) ***
0.258951
(0.00) ***

48.69358
(0.00) ***
0.606138
(0.00) ***

14.21862
(0.00) ***
0.319064
(0.00) ***

64



Land 2022, 11, 1675

Table 3. Cont.

Y = Price-to-Rent Ratio of Industrial Real Estate

Hong Kong Island Kowloon New Territories

G
ro

up
4

VA

47.06448
(0.00) ***
0.579933
(0.00) ***

15.84018
(0.00) ***
0.355967
(0.00) ***

38.28487
(0.00) ***
0.453507
(0.00) ***

16.53248
(0.00) ***
0.368234
(0.00) ***

30.53394
(0.00) ***
0.359872
(0.07) *

14.47482
(0.00) ***
0.331072
(0.00) ***

IE

45.03834
(0.00) ***
0.558500
(0.00) ***

15.60557
(0.00) ***
0.351756
(0.00) ***

38.46194
(0.00) ***
0.473172
(0.00) ***

15.39018
(0.00) ***
0.347866
(0.00) ***

33.03596
(0.00) ***
0.424461
(0.02) **

13.14782
(0.00) ***
0.305954
(0.00) ***

W

51.88273
(0.00) ***
0.645208
(0.00) ***

14.57871
(0.00) ***
0.332999
(0.00) ***

40.70381
(0.00) ***
0.484332
(0.00) ***

16.86130
(0.00) ***
0.373978
(0.00) ***

42.19879
(0.00) ***
0.522432
(0.00) ***

15.59302
(0.00) ***
0.351530
(0.00) ***

OE

48.60125
(0.00) ***
0.627156
(0.00) ***

13.08383
(0.00) ***
0.304719
(0.00) ***

39.70403
(0.00) ***
0.502303
(0.00) ***

14.58450
(0.00) ***
0.333107
(0.00) ***

32.11027
(0.00) ***
0.393540
(0.04) **

14.10606
(0.00) ***
0.324184
(0.00) ***

S

49.24067
(0.00) ***
0.633734
(0.00) ***

13.08244
(0.00) ***
0.304693
(0.00) ***

40.09045
(0.00) ***
0.504138
(0.00) ***

14.83795
(0.00) ***
0.337785
(0.00) ***

32.34709
(0.00) ***
0.395053
(0.04) **

14.25298
(0.00) ***
0.326937
(0.00) ***

G
ro

up
5

Inverse
GD

51.26316
(0.00) ***
0.613456
(0.00) ***

16.09428
(0.00) ***
0.352723
(0.00) ***

39.80090
(0.00) ***
0.445102
(0.00) ***

18.00900
(0.00) ***
0.385367
(0.00) ***

95.57611
(0.00) ***
0.886784
(0.00) ***

14.97301
(0.00) ***
0.332807
(0.00) ***

Note: *** denotes 1% statistical sig.; ** 5% sig.; * 10% sig. Full results are available upon request.

Table 4. Results of Granger causality tests.

Y = Price-
to-Rent

Hong Kong Island Kowloon New Territories

X

Short-
term

chi-sq
(Prob)

Long-term
t-statistic

(Prob)

R2, Adj R2

AIC; SC
DW; F

EC
Lag based

on SIC

Short-
term

chi-sq
(Prob)

Long-term
t-statistic

(Prob)

R2; Adj R2

AIC; SC
DW; F

EC
Lag based

on SIC

Short-term
chi-sq
(Prob)

Long-term
t-statistic

(Prob)

R2; Adj R2

AIC; SC
DW; F

EC
Lag based

on SIC

G
ro

up
1

I

X→Y 1.958261
(0.3756)

−4.937419
(0.0000) ***

0.739127;
0.683225
5.660394;
5.971464
1.933729;
13.22197
−2.133166

Lag = 2

6.664995
(0.0357) **

−3.941771
(0.0005) ***

0.503569;
0.397191
4.779536;
5.090606
2.064788;
4.733765
−0.967190

Lag = 2

9.719646
(0.0078) ***

−2.042917
(0.0506) **

0.482433;
0.371525
4.765590;
5.076660
2.172811;
4.349871
−0.338907

Lag = 2

Y→X 1.632070
(0.6521)

4.031771
(0.0005) ***

0.592373;
0.461932
0.524383;
0.928420
2.022130;
4.541320
0.000102
Lag = 3

2.054872
(0.5611)

4.291386
(0.0002) ***

0.680403;
0.578131
0.281092;
0.685129
2.010390;
6.652928
0.061624
Lag = 3

20.56348
(0.0045) ***

−3.064139
(0.0091) ***

0.822174;
0.603312
0.203525;
0.997537
2.224203;
3.756579
−0.124806

Lag = 7
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Table 4. Cont.

Y = Price-
to-Rent

Hong Kong Island Kowloon New Territories

G
ro

up
1

ER

X→Y 1.985117
(0.3706)

−4.612383
(0.0001) ***

0.707950;
0.647526
5.734648;
6.042554
1.977709;
11.71635
−2.034770

Lag = 2

3.574402
(0.1674)

−4.701829
(0.0001) ***

0.541435;
0.446559
4.668355;
4.976262
1.916656;
5.706784
−1.610318

Lag = 2

12.99918
(0.0430) **

−2.766420
(0.0132) **

0.811747;
0.656716
4.346942;
5.034005
1.932279;
5.236011
−2.138274

Lag = 6

Y→X
23.15500
(0.0003)

***

1.958936
(0.0642) *

0.639065;
0.422504
−3.281432;
−2.691898
2.207866;
2.950969
0.007809
Lag = 2

2.666108
(0.4460)

3.768261
(0.0009) ***

0.820853;
0.765731
−3.686986;
−3.287039
2.060798;
14.89154
0.008717
Lag = 3

1.069561
(0.5858)

3.861961
(0.0006) ***

0.840052;
0.806959
−3.760328;
−3.452421
2.086704;
25.38473
0.001029
Lag = 2

GDP

X→Y 3.413240
(0.1815)

−4.797933
(0.0000) ***

0.731594;
0.676061
5.650226;
5.958132
1.986572;
13.17418
−1.997423

Lag = 2

6.523643
(0.0383) **

−4.751474
(0.0001) ***

0.592315;
0.507966
4.550747;
4.858654
1.951795;
7.022226
−1.431508

Lag = 2

18.89957
(0.0003) ***

−2.863480
(0.0082) ***

0.594807;
0.470133
4.635098;
5.035045
2.210271;
4.770878
−0.747543

Lag = 3

Y→X
11.77424
(0.0082)

***

−3.213163
(0.0035) ***

0.479295;
0.319078
3.923093;
4.323040
1.957848;
2.991535
−0.389145

Lag = 3

8.278265
(0.0406) **

−3.677872
(0.0011) ***

0.502512;
0.349439
3.877480;
4.277426
1.879596;
3.282827
−0.512787

Lag = 3

10.31308
(0.0161) **

−4.332135
(0.0002) ***

0.580910;
0.451959
3.705996;
4.105943
1.828528;
4.504890
−0.710709

Lag = 3

HSI

X→Y 2.554783
(0.2788)

−5.642554
(0.0000) ***

0.769634;
0.721972
5.497393;
5.805299
1.957942;
16.14777
−2.374291

Lag = 2

5.441938
(0.0658) *

−5.572355
(0.0000) ***

0.630735;
0.554335
4.451768;
4.759674
1.833642;
8.255722
−1.743983

Lag = 2

7.561901
(0.0228) **

−2.962609
(0.0060) ***

0.543689;
0.449279
4.614976;
4.922882
1.947396;
5.758848
−0.841496

Lag = 2

Y→X 14.78769
(0.0634) *

0.671763
(0.5145)

0.807270;
0.534237
−1.681588;
−0.840869
1.504834;
2.956668
0.030857
Lag = 8

17.34044
(0.0153) **

3.685796
(0.0022) ***

0.769862;
0.539723
−1.704402;
−0.964279
1.916224;
3.345210
0.035582
Lag = 7

4.086430
(0.2523)

−4.200321
(0.0003) ***

0.468145;
0.304498
−1.305758;
−0.905811
1.927231;
2.860693
−0.044620

Lag = 3
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Table 4. Cont.

Y = Price-
to-Rent

Hong Kong Island Kowloon New Territories

G
ro

up
2

RMB

X→Y
42.70838
(0.0000)

***

−5.056897
(0.0001) ***

0.903347;
0.845354
5.110120;
5.699653
1.974470;
15.57707
−3.761158

Lag = 5

1.105385
(0.5754)

−4.250169
(0.0002) ***

0.606239;
0.524771
4.515997;
4.823904
1.897391;
7.441443
−1.183168

Lag = 2

37.82489
(0.0000) ***

−3.776939
(0.0010) ***

0.774242;
0.676087
4.211121;
4.704944
4.379529;
1.948474
−1.309565

Lag = 4

Y→X
35.37248
(0.0000)

***

3.099452
(0.0065) ***

0.829431;
0.688962
−4.685261;
−3.998198
1.847607;
5.904733
0.026114
Lag = 6

15.67224
(0.0004)

***

3.746013
(0.0008) ***

0.536986;
0.441190
−4.336964;
−4.029058
2.041578;
5.605523
0.012468
Lag = 2

6.505884
(0.0387) **

4.159254
(0.0003) ***

0.548309;
0.454856
−4.361723;
−4.053816
1.931055;
5.867199
0.009320
Lag = 2

M3

X→Y 1.086964
(0.5807)

−5.056468
(0.0000) ***

0.735879;
0.681233
5.634130;
5.942037
1.952700;
13.46637
−2.238344

Lag = 2

17.90539
(0.0001)

***

−4.973773
(0.0000) ***

0.613794;
0.533889
4.496623;
4.804530
2.029943;
7.681579
−1.406375

Lag = 2

10.38446
(0.0156) **

−3.868645
(0.0007) ***

0.585580;
0.458066
4.657617;
5.057563
2.039515;
4.592277
−1.340024

Lag = 3

Y→X 2.142361
(0.3426)

0.197897
(0.8445)

0.302903;
0.158676
24.22203;
24.52994
2.221385;
2.100185
952.4243
Lag = 2

0.656998
(0.7200)

−1.475277
(0.1509)

0.338300;
0.201396
24.16992;
24.47782
2.112508;
2.471084
−7803.518

Lag = 2

3.568198
(0.1679)

−1.705136
(0.0989) *

0.343396;
0.207547
24.16219;
24.47009
2.099994;
2.527773
−8115.359

Lag = 2

Inverse
DXY

X→Y 2.078931
(0.3536)

−4.874538
(0.0000) ***

0.725904;
0.669195
5.671200;
5.979107
2.083470;
12.80042
−2.065161

Lag = 2

4.330951
(0.1147)

−4.534927
(0.0001) ***

0.555297;
0.463290
4.637659;
4.945565
1.842611;
6.035346
−1.386748

Lag = 2

0.123896
(0.9399) NA

0.067120;
−0.0317451

4.649881;
4.867573
1.909190;
0.054042

Y→X 3.126074
(0.2095)

1.210780
(0.2358)

0.389267;
0.262908
−12.31526;
−12.00736
2.055909;
3.080652

6.37 × 10−5

Lag = 2

7.542668
(0.0230) **

1.948857
(0.0610) *

0.458534;
0.346507
−12.43564;
−12.12774
1.797401;
4.093056

6.00 × 10−5

Lag = 2

2.727393
(0.2557) NA

0.082326;
−0.032384
−12.72465;
−12.50696
2.094587;
0.717690
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Table 4. Cont.

Y = Price-
to-Rent

Hong Kong Island Kowloon New Territories

G
ro

up
2

FDI

X→Y
19.61473
(0.0001)

***

−6.131878
(0.0000) ***

0.781301;
0.736053
5.445418;
5.753324
1.836672;
17.26710
−2.22298
Lag = 2

3.528794
(0.1713)

−4.775521
(0.0000) ***

0.580850;
0.494130
4.578481;
4.886387
1.897027;
6.697946
−1.583678

Lag = 2

2.479107
(0.2895)

−2.820380
(0.0086) ***

0.461262;
0.349799
4.781030;
5.088936
1.923781;
4.138250
−0.890324

Lag = 2

Y→X 3.560104
(0.1686)

−1.933148
(0.0630) *

0.503902;
0.401261
26.59458;
26.90248
2.216759;
4.909359
−27276.01

Lag = 2

0.957831
(0.6195)

0.412721
(0.6828)

0.448994;
0.334993
26.69955;
27.00745
2.187116;
3.938505
8706.255
Lag = 2

1.277016
(0.5281)

1.931720
(0.0632) *

0.503010;
0.400184
26.59637;
26.90428
2.151742;
4.891873
33290.95
Lag = 2

G
ro

up
3

RHP

X→Y
9.867830
(0.0072)

***

−6.369505
(0.0000) ***

0.813884;
0.775377
5.284093;
5.592000
1.975044;
21.13615
−2.607543

Lag = 2

11.17467
(0.0037)

***

−6.425298
(0.0000) ***

0.674943;
0.607690
4.324252;
4.632159
1.697076;
10.03586
−1.963624

Lag = 2

9.339842
(0.0094) ***

−3.521734
(0.0014) ***

0.605306;
0.523645
4.469911;
4.777817
1.920124;
7.412441
−1.211647

Lag = 2

Y→X 1.728108
(0.4214)

1.540901
(0.1342)

0.187383;
0.019256
21.08895;
21.39686
2.078472;
1.114531
44.22952
Lag = 2

0.668911
(0.7157)

0.489285
(0.6283)

0.181072;
0.011638
20.82714;
21.13504
2.081673;
1.068691
573.1691
Lag = 2

1.422560
(0.4910)

1.138375
(0.2643)

0.319341;
0.178515
19.36244;
19.67035
1.772581;
2.267628
671.0844
Lag = 2

PTR_R

X→Y 3.723506
(0.1554)

−6.472288
(0.0000) ***

0.811471;
0.772465
5.296975;
5.604881
2.187910;
20.80376
−2.253099

Lag = 2

2.822869
(0.2438)

−4.968101
(0.0000) ***

0.577532;
0.490125
4.586366;
4.894273
1.820342;
6.607370
−1.708182

Lag = 2

3.727361
(0.2924)

−3.778072
(0.0008) ***

0.634194;
0.521638
4.532838;
4.932785
2.328615;
5.634494
−1.095677

Lag = 3

Y→X 1.383438
(0.5007)

1.431040
(0.1631)

0.204225;
0.039582
4.455241;
4.763148
2.069618;
1.240412
0.850319
Lag = 2

0.218645
(0.8964)

0.420556
(0.6772)

0.186884;
0.018653
5.215656;
5.523562
2.109472;
1.110877
0.1980069
Lag = 2

1.056220
(0.5897)

1.294459
(0.2057)

0.233955;
0.075463
3.367587;
3.675493
2.208741;
1.476133
0.222972
Lag = 2
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Table 4. Cont.

Y = Price-
to-Rent

Hong Kong Island Kowloon New Territories

G
ro

up
4

VA

X→Y 1.326520
(0.5152)

−5.309510
(0.0000) ***

0.746388;
0.693916
5.593529;
5.901436
1.969655;
14.22464
−2.021836

Lag = 2

2.067229
(0.3557)

−5.024951
(0.0000) ***

0.568995;
0.479821
4.606372;
4.914279
1.884626;
6.380763
−1.672703

Lag = 2

0.561103
(0.7554) NA

0.020047;
−0.102447
4.636363;
4.854055
1.963868;
0.163658

Y→X 1.975198
(0.5776)

0.372068
(0.7129)

0.715701;
0.628224
9.877112;
10.27706
1.855581;
8.181613
1.994489
Lag = 3

22.44526
(0.0021)

***

3.715394
(0.0023) ***

0.931559;
0.853341
9.154412;
9.940792
2.163976;
11.90972
47.56728
Lag = 7

1.671632
(0.4335) NA

0.971420;
0.967847
9.973481;
10.19117
2.247396;
271.9114

IE

X→Y 1.916654
(0.3835)

−5.286917
(0.0000) ***

0.745101;
0.692363
5.598590;
5.906497
1.996232;
14.12843
−2.131167

Lag = 2

3.124283
(0.2097)

−5.162852
(0.0000) ***

0.602126;
0.519807
4.526389;
4.834295
1.926339;
7.314551
−1.510751

Lag = 2

1.934065
(0.3802)

−3.923758
(0.0005) ***

0.552655;
0.460101
4.595130;
4.903037
2.035659;
5.971155
−0.855768

Lag = 2

Y→X 2.011355
(0.3658)

0.702251
(0.4881)

0.795408;
0.753079
8.151648;
8.459554
1.903162;
18.79097
1.434385
Lag = 2

3.970888
(0.1373)

1.557829
(0.1301)

0.806344;
0.766278
8.096713;
8.404620
2.019635;
20.12507
2.658745
Lag = 2

3.311911
(0.1909)

1.287965
(0.2079)

0.812432;
0.773625
8.064771;
8.372678
1.888818;
20.93516
5.286974
Lag = 2

W

X→Y 3.405656
(0.1822) *

−5.378885
(0.0000) ***

0.750835;
0.699283
5.575839;
5.883746
2.187224;
14.56478
−2.372866

Lag = 2

6.066062
(0.0482) **

−5.137415
(0.0000) ***

0.621716;
0.543450
4.475897;
4.783804
1.837567;
7.943667
−1.534625

Lag = 2

5.188325
(0.0747) *

−3.161005
(0.0037) ***

0.552116;
0.459450
4.596335;
4.904241
1.900366;
5.958146
−0.174312

Lag = 2

Y→X 1.863957
(0.3938)

1.357643
(0.1850)

0.750386;
0.698742
13.13369;
13.44160
2.022517;
14.52992
29.89178
Lag = 2

2.111863
(0.3479)

1.158494
(0.2561)

0.751795;
0.700442
13.12804;
13.43594
2.009519;
14.63982
33.89436
Lag = 2

2.581034
(0.2751)

2.632681
(0.0134) **

0.792251;
0.749269
12.95011;
13.25802
2.064789;
18.43198
98.47509
Lag = 2
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Table 4. Cont.

Y = Price-
to-Rent

Hong Kong Island Kowloon New Territories

G
ro

up
4

OE

X→Y 0.474635
(0.7887)

−5.694094
(0.0000) ***

0.763015;
0.713984
5.525719;
5.833625
2.038555;
15.56180
−2.306712

Lag = 2

0.928861
(0.6285)

−5.472595
(0.0000) ***

0.609229;
0.528380
4.508375;
4.816281
1.946536;
7.535369
−1.535889

Lag = 2

14.87873
(0.0050) ***

−6.234057
(0.0000) ***

0.764768;
0.662493
4.252232;
4.746054
1.888514;
7.477583
−3.376131

Lag = 4

Y→X
31.32345
(0.0001)

***

1.745425
(0.1087)

0.959275;
0.892633
14.30348;
15.19091
1.831260;
14.39452
163.5588
Lag = 8

22.19343
(0.0024)

***

3.367591
(0.0046) ***

0.925420;
0.840186
14.75712;
15.54350
2.086138;
10.85742
1099.633
Lag = 7

20.79339
(0.0077) **

2.851538
(0.0158) **

0.936674;
0.833050
14.74493;
15.63235
2.304097;
9.039124
161.2888
Lag = 8

S

X→Y 0.436888
(0.8038)

−5.696917
(0.0000) ***

0.763285;
0.714309
5.524582;
5.832489
2.044707;
15.58499
−2.317066

Lag = 2

0.948955
(0.6222)

−5.463812
(0.0000) ***

0.608442;
0.527430
4.510386;
4.818292
1.944401;
7.510521
−1.536109

Lag = 2

22.60465
(0.0002) ***

−6.082147
(0.0000) ***

0.757631;
0.652253
4.282121;
4.775943
1.871033;
7.189665
−3.352625

Lag = 4

Y→X
38.78412
(0.0000)

***

2.158196
(0.0539) *

0.962532;
0.901219
14.25850;
15.14592
1.856848;
15.69889
165.1394
Lag = 8

31.14026
(0.0001)

***

2.960016
(0.0130) **

0.947979;
0.862854
14.58664;
15.47407
2.217405;
11.13635
1083.299
Lag = 8

17.33499
(0.0154) **

3.373241
(0.0045) ***

0.914213;
0.816171
14.93146;
15.71784
2.626648;
9.324673
652.6142
Lag = 7

G
ro

up
5

Inverse
GD

X→Y 1.847946
(0.3969)

−4.079670
(0.0003) ***

0.792944;
0.750105
5.390711;
5.698618
1.966966;
18.50982
−1.867908

Lag = 2

0.931476
(0.6277)

−4.692798
(0.0001) ***

0.544498;
0.450256
4.661653;
4.969559
1.841403;
5.777667
−1.588144

Lag = 2

8.810966
(0.0660) *

−5.214551
(0.0000) ***

0.737014;
0.622672
4.363760;
4.857583
1.879728;
6.445714
−2.286376

Lag = 4

Y→X
8.347398
(0.0154)

**

−0.431743
(0.6691)

0.487439;
0.381392
0.381392;
−18.43094
2.090009;
4.596438

−1.14 × 10−6

Lag = 2

1.322985
(0.5161)

−0.615597
(0.5430)

0.336976;
0.199799
−18.48146;
−18.17355
2.169379;
2.456497

−1.96 × 10−6

Lag = 2

3.459276
(0.1773)

2.976093
(0.0058) ***

0.484575;
0.377935
−18.73328;
−18.42537
1.914375;
4.544041

5.88 × 10−6

Lag = 2

Note: *** denotes 1% statistical sig.; ** 5% sig.; * 10% sig. Full results are available upon request.

Second, the four liquidity-related variables, namely, RMB, M3, DXY, and his, are
long-term leading indicators for the price-to-rent ratio in a Granger fashion. They tend
to lead the DIRE market by two quarters, with an exemption of the exchange rate of
RMB/HKD being ahead of the Hong Kong Island and New Territories industrial real estate
market by five and four quarters, respectively. Third, it is statistically evident that the
residential market and the industrial real estate market are causally correlated with the
causal pathway running from the former to the latter across the three regions in Hong Kong.
The average house prices, as well as the price-to-rent ratios, Granger-cause the pricing of
the DIRE market.
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Fourth, the results seem to suggest that the industrial sector specific attributes, in-
cluding value-added, number of industrial establishments, size of workforce, operation
expense, and sales, are prone to leading the DIRE market in terms of property pricing over a
long time horizon, with these attributes showing unidirectional Granger causation with the
price-to-rent variables. Lastly, Table 4 further reveals that the rate of the industrialisation
process in China, proxied by the total amount of manufacturing output in the province of
Guangdong, has a statistically significant negative impact on the price-to-rent ratio of the
DIRE of Hong Kong. The inverse of GD Granger-causes the three price-to-rent variables in
the long run, statistically significant at the 5% level.

5. Discussion

The findings stemming from the above cointegration and causality analyses reveal sev-
eral empirically important observations pertaining to the market nature and fundamentals
of the DIRE of Hong Kong. First and foremost, the DIRE market is highly cointegrated with
other segments of the economy in terms of pricing, despite its shrinking economic signifi-
cance over the past decades. For example, the general price level, employment level, and
the year-on-year performance of the Hang Seng Index seem to be moving synchronously
with the price-to-rent ratios of the DIRE over time, as the results of the cointegration analy-
sis suggest. More crucially, the DIRE market appears to causally lag behind the general
economy by circa two quarters for most economic indicators. From the perspective of price
discovery, this could be attributed to the inefficient nature of the DIRE market, which is
highly heterogenous and informationally untransparent. In the context of Hong Kong,
there is no well-established industrial real estate agency that is specialised in collating and
centralising market data and information of the DIRE the same manner we can observe
for the residential property sector, which partially explains why the DIRE is not informa-
tionally transparent. In addition, the GDP variable showing a bidirectional Granger causal
connection with the DIRE may indicate that the industrial sector and the general economy
are inextricably linked. A growing economy could naturally, on one hand, result in a
swelling demand for industrial goods through the effect of wealth accumulation, which in
turn drives the prices of DIRE up. On the other hand, an expansion of the industrial sector
could induce more demand for other economic activities such as accounting, legal services,
and construction through a feedback loop, which explains the causality from DIRE to
GDP. Indeed, recent developments in Hong Kong seem to have proven themselves to be a
revelation of the observed bidirectional causal link between the industrial real estate sector
and the general economy. A decade of strong and persistent economic growth of the city
has induced more government-led high-end industrial property development programmes
focusing chiefly on scientific innovation and technological advancements, with hectares
of land such as Hong Kong Science Park designated for these specific land uses. The city
has also witnessed a rapid expansion in the sectors of computer cloud servicing and data
processing and storage, which has simultaneously fuelled demand for special-purpose
industrial properties for data centres and warehouses, for instance.

Second, the findings of our Granger causality analysis seem to confirm the Quantity
Theory of Money. The four liquidity variables, namely, M3, FDI, RMB, and 1/DXY, all ex-
hibit a unidirectional lead–lag relationship with the price-to-rent variables. When the RMB
appreciates against the HKD, or the DXY becomes weaker relative to other international
currencies, HKD-denominated assets, including DIRE, would become more financially
appealing to non-local buyers, causing the prices of DIRE to escalate. Along a similar line
of reasoning, when the money supply (M3) and FDI increase within the economy of Hong
Kong, prices of DIRE assets, which are denominated by HKD, would be buoyed by the
influx of new liquidity. Consequently, the price-to-rent ratios of DIRE should also increase.

Third, the housing market and the industrial real estate market of Hong Kong are
intertwined in terms of cointegration. Further, we observe a Granger causation running
from the two housing market variables to the DIRE price-to-rent ratios across the three
districts. One possible explanation for such a causal observation is that land supply for res-
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idential development is extremely limited in Hong Kong. The scarcity of developable land
more often than not drives residential property prices up to an exorbitant level, making the
remaining undeveloped land even more scarce and valuable. Therefore, some developers
in Hong Kong would turn to converting existing industrial or commercial properties into
residential housing units through the rezoning of land and/or lease modifications, resulting
in swelling the prices of DIRE. Upon closer examination of the data, the price-to-rent ratios
of industrial properties have increased by circa 460% in the New Territories over the sample
period, seemingly confirming the persistently strong demand for this category of real estate.

Another important revelation of our empirical results is that we can indeed use certain
information that is specific to the industrial/manufacturing sector to predict the movement
of the price-to-rent ratios of the DIRE. The five industry variables, namely, value-added,
number of industrial establishments, total industrial workforce, operating expenses, and
sales, are all causally correlated with the DIRE variables in a Granger fashion. In other
words, the growth of the industrial sector, which is, generally or by definition, accompanied
by a higher level of output, a more intense formation of establishments, larger numbers
of workers, and more capital expenditure for investment and revenue, could lead to an
elevation of the price-to-rent ratio, but not the other way around.

Last but not least, the Granger causality analysis on the variable GD unequivocally
confirms the commonly held view that the process of industrialisation in mainland China
has a long-lasting negative impact upon the pricing of industrial real estate in Hong Kong.
The larger the output of the manufacturing sector in Guangdong, the more the prices of
DIRE in Hong Kong are depressed relative to rents. As aforementioned, this could be
attributable to the great disparity of land and property prices between the two places,
resulting in a clear yet sophisticated division of labour in production between the two
places, with the mainland specialising in the actual hand-on manufacturing whilst Hong
Kong plays a managerial role by providing tertiary-level services along the production
line to support the industrial operations in China. Indeed, the average industrial land
prices of Guangdong have skyrocketed over the past ten to fifteen years. Take Shenzhen,
a neighbour city of Hong Kong, as an example: the average industrial land prices of the
special economic zone of China were circa RMB 500 at the beginning of the market cycle
in 2008, with prices topped out at circa RMB 4500 in 2019, posting an eight-fold increase
(Source: CEIC Data (see https://www.ceicdata.com/en/china/land-price-city-industrial/
cn-land-price-industrial-shenzhen, accessed on 1 August 2022), whilst the Hong Kong
industrial land market observed a comparatively more modest growth of circa 400% during
the same time period.

6. Conclusions

This study has made at least two contributions to the literature of industrial real
estate. First, it dissects the pricing of the industrial real estate market using the price-
to-rent ratio, which has not yet been thoroughly explored in the existing literature. The
affordability/overvaluation of real estate, which is commonly measured by the price-to-rent
ratio, is generally examined in the context of residential property, and to a lesser extent,
commercial office property. Relatively little is known about the dynamics between price
and rent in the field of DIRE. Second, it empirically examines the cointegration and lead–
lag relationships between the price-to-rent ratio and a large array of macroeconomic and
financial determinants in a holistic and systematic fashion using the property and economic
data of the Hong Kong property market. The results reveal that the industrial property
market in Hong Kong is generally informationally inefficient, which can, to a large degree,
be explained or predicted by sector-level and economy-wide fundamentals using Granger
causality techniques. Specifically, macroeconomic attributes such as employment rates,
money supply, FDI, inflation, equity market, and industrial sector-specific factors including
sales and value-added are observed to Granger-cause the price-to-rent movements of the
DIRE. Further, GDP and the pricing of the DIRE are interlinked by bidirectional Granger
causal links.
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The findings emanating from this study carry significant and potentially far-reaching
practical implications for investors and policy makers. For example, our causality anal-
ysis suggests that the price-to-rent ratio of DIRE is a lagging indicator of a number of
macroeconomic attributes including housing prices and the stock market index, providing
valuable insights to traders or investors keen to develop arbitrage investment strategies
to exploit the market. In addition, from a policy-making point of view, a more thorough
conceptualisation of the determinants of the industrial land market should help policy
makers design and formulate policies and regulations that are in the interest of the long-
term sustainable development of the industrial sector and its stakeholders. For instance,
our analysis demonstrates that the performance of DIRE is closely causally linked to the
amount of foreign direct investment. Policy makers intent on revitalising the industrial
real estate market in Hong Kong could perhaps consider introducing more pro-FDI policy
measures within the DIRE sector through offering tax incentives and/or providing a more
level playing field amongst local and foreign-market players. In addition, our findings
appear to suggest that the performance of the industrial sector is a leading indicator of the
DIRE, signalling that if the government is keen to reinvigorate the traditional industrial
land market, an indirect way would be to provide financial support to the industrialists
and/or facilitate the development of the manufacturing sector, whose expansion would, in
turn, reinforce the growth of the DIRE in the long run in terms of pricing.

Whilst the paper empirically reveals significant lead–lag relationships between the
pricing of DIRE and its macroeconomic attributes, shedding new light on issues around
appraisals and market forecast of industrial real estate, we believe future research efforts in
the area of research could be devoted to exploring the micro-spatial dynamics between a
given industrial market and its economic, social, and/or demographic determinants using
geo-referenced or spatially granular information. The classification of the three districts
in the current study is based on a set of politically-imposed geographical boundaries,
not on the actual underlying economic working or fundamentals of the markets. With
the use of GIS techniques, the effect of macroeconomic and other factors affecting the
DIRE could be identified and measured in a more spatially explicit manner. Lastly, the
cointegration and causal relationships examined in this study could be re-evaluated by
employing a multivariate modelling approach in future studies when data of a sufficiently
long time span are available. Given the relatively small sample size and the associated
statistical complications arising from issues such as degree of freedom, a bivariate analytical
framework is chosen in this study, which could potentially ignore indirect channels through
which cointegration linkages and causal associations amongst the variables could be formed
(we thank a reviewer of our article for highlighting the issue concerning the bi-variability
of our models) [48,49].
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Appendix A

Table A1. Full results of ADF tests.

Variable t-statistic (level)
Prob (level)
t-statistic (1st diff)
Prob (1st diff)

Variable t-statistics (level)
Prob (level)
t-statistic (1st diff)
Prob (1st diff)

Variable t-statistic (level)
Prob (level)
t-statistic (1st diff)
Prob (1st diff)

PR(HK) −2.756358
(0.0740) *
−8.830476
(0.0000) ***

1/DXY −1.189171
(0.6695)
−6.773987
(0.0000) ***

PtR_R(NT) −6.381109
(0.0000) ***
−8.379050
(0.0000) ***

PR(K) −2.776863
(0.0711) *
−5.448885
(0.0001) ***

FDI −2.636348
(0.0682) *
−6.559269
(0.0000) ***

VA −2.731652
(0.0781) *
−6.041304
(0.0000) ***

PR(NT) −2.375346
(0.1551)
−5.433777
(0.0001) ***

M3 −0.892727
(0.7800)
−4.934122
(0.0003) ***

IE −1.235322
(0.6490)
−6.047171
(0.0000) ***

I −1.210615
(0.6599)
−6.027234
(0.0000) ***

RHP(HK) −1.035658
(0.7309)
−5.990680
(0.0000) ***

W −1.163165
(0.6802)
−6.062103
(0.0000) ***

ER −3.024789
(0.0415) **
−5.027312
(0.0044) ***

PHP(K) −1.063254
(0.7202)
−1.063254
(0.7202)

OE −2.793364
(0.0687) *
−5.993349
(0.0000) ***

GDP −1.534898
(0.5057)
−7.305895
(0.0000) ***

PHP(NT) −0.730942
(0.8264)
−4.812043
(0.0004) ***

S −2.786345
(0.0697) *
−6.006693
(0.0000) ***

HSI −3.626772
(0.0100) ***
−7.468470
(0.0000) ***

PtR_R(HK) −7.176993
(0.0000) ***
−9.832806
(0.0000) ***

1/GD −1.986720
(0.2912)
−5.963282
(0.0000) ***

RMB −1.347538
(0.5976)
−5.334136
(0.0001) ***

PtR_R(K) −3.049188
(0.0391) **
−8.880541
(0.0000) ***

Note: *** denotes 1% statistical sig.; ** 5% sig.; * 10% sig. with lag length determined by SIC.
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Abstract: The preference for walking and the resulting pedestrian activities have been considered
key success factors for streets, neighborhoods, and cities alike. Although micro- and meso-scale
built environment factors that encourage walking have been investigated, the role of macroscopic
factors such as regional centrality in explaining street-level pedestrian volume is often neglected.
Against this backdrop, this study examines the relationship between built environments and street-
level pedestrian volume using Smart Card and pedestrian volume survey data from Seoul after
controlling for transport ridership as a proxy for regional centrality. As a preliminary study, we
analyzed 36 regression models applying different sets of transit ridership variables and found that
the combination of bus ridership within 400 m and subway ridership within 300 m best explained the
variation in pedestrian volume on a street. Then, the effects of the 3D variables (density, diversity, and
design) on pedestrian volume were compared before and after controlling for ridership within this
spatial range. The results demonstrated that, after taking transit ridership into account, the influence
of built environment variables is generally reduced, and the decrease is more pronounced among
walkshed-level 3D variables than street-level variables. Particularly, while the effect of “design”
(street connectivity) on pedestrian volume appeared to be negatively significant in the constrained
model, it was found to be insignificant in the unconstrained model which controlled for transit
ridership. This suggests that the degree of street connectivity is influenced by regional centrality, and
accordingly, the coefficient of the “design” variable in our constrained model might be biased. Thus,
to accurately understand the effect of the meso-scale 3D variables on pedestrian volume, both micro-
and macro-scale built environmental factors should be controlled.

Keywords: walking; pedestrian volume; built environment; land use; transit ridership; regional
centrality; Seoul

1. Introduction

Walking has received significant attention in urban and transportation planning as the
most traditional, universal, affordable, sustainable, inclusive, and even irreplaceable mode
of travel [1–3]. As the reckless spread of urban sprawl increases car dependencies and
human-made greenhouse gas emissions accelerate climate change, researchers have further
emphasized the importance of walking as a means of transportation [4–7]. Furthermore,
walking determines various outcomes for individuals and cities. It affects individual
health and social networks, and determines street safety and attractiveness, neighborhood
livability and vitality, and even the prosperity of regional and state economies [8–16].
Preference for walking and the resulting pedestrian volume in public spaces is undoubtedly
a crucial success factor for streets, neighborhoods, and cities [8,17].
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Accordingly, urban design and transportation researchers have actively examined
the physical conditions that encourage walking. For example, Jacobs [8] emphasized
the importance of sidewalks, parks, land use mix, small urban blocks, and old buildings
as prerequisites for walking and street vitalization. Ewing and Handy [18] suggested a
conceptual framework explaining the link between the built environment and how an
individual feels about the environment as a place to walk. From a more empirical point of
view, studies have analyzed the relationship between the built environment and street-level
pedestrian volume [19,20].

However, previous studies have seldom deliberated on the macroscopic mechanism
that determines the pedestrian volume at a specific street segment and have mainly focused
on the influences of the microscopic built environment alone. The pedestrian volume
measured on a particular street includes the number of people that happen to be just
passing by that point; the number is likely to be determined by the regional centrality and
resulting background floating population before the microscopic built environment of that
place. The effect of the built environment on the number of pedestrians may vary greatly
depending on whether such regional centrality is controlled for, but previous studies have
rarely considered this factor. This research gap has been derived from the absence of
appropriate methods to control for regional centrality or the resulting background floating
population. Here, the transit ridership data would be a reliable alternative to fill this gap in
a city such as Seoul, Korea, where public transportation serves a wide range of metropolitan
areas and almost everyone uses a Smart Card for payment on that service.

Against this backdrop, using Smart Card and pedestrian volume survey (PVS) data
from Seoul, this study aims to analyze the relationship between the built environment and
street-level pedestrian volume after controlling for transit ridership as a proxy for regional
centrality. Specifically, this study compares the effect of traditional 3D variables (density,
diversity, and design) on pedestrian volume between the constrained (excluding transit
ridership variables) and unconstrained models (including transit ridership variables). Since
the amount of walking on a street determines an individual’s perception of the street
environment as well as the outcomes of surrounding areas, the results of this study are
expected to contribute not only to more accurately estimating the pedestrian volume but
also to predicting the success of the street, neighborhood, and city.

2. Theoretical Background and Literature Review

2.1. Pathways from Built Environment to Street-Level Pedestrian Volume: A Conceptual Framework

Traditional travel behavior studies regarding mode choice and trip frequency have
focused on the role of the built environment in enhancing active transportation. In par-
ticular, Cervero and Kockelman [21] suggested the 3D variables: density, diversity, and
design. Following this, Ewing and Cervero [22] included two additional D variables:
destination accessibility and distance to public transit. Based on these variables, several
studies empirically investigated the effect of 3D to 5D variables after controlling for other
factors [21–29]. Studies have also examined the role of microscopic streetscape elements
such as architectural details and aesthetics, street furniture, pavement design, microclimate,
and safety [30–35].

However, the theoretical framework of pedestrian volume studies is distinct from
individual-level walking behavior studies. Contrary to urban design theorists‘ hopeful
belief that more people visit and stay in better places [33,36,37], the number of pedestrians
measured on a street (i.e., pedestrian volume) is determined by a wide variety of envi-
ronmental factors including the built form, weather conditions, and even socio-cultural
background [16,29,30,38]. From the viewpoint of transportation planning, to explain the
pedestrian volume on a specific street, it is necessary to understand all the factors influenc-
ing trip generation, mode choice, and even the route choice of people around that place.
Specifically, it is important to consider not only the impact of neighborhood-level walkabil-
ity and urban design quality but also the effect of regional accessibility and centrality [39].
According to Chung et al. [16], the built environment’s role appears differently depending
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on the activity type of pedestrians. Here, we expand this framework and examine the role
of the built environment as a determinant of each behavioral type by scale (Figure 1).

 

Figure 1. Pathways from built environment to street-level pedestrian volume: a conceptual framework.

Figure 1 illustrates a conceptual framework explaining the pathways from the built
environment to street-level pedestrian volume. The pathways in this diagram are not only
theoretically based, but also intuitively predictable. When studying pedestrian volume on
a street, urban researchers tend to focus more on people who visit or stay at a place for a
specific purpose [33,36,37,40]. However, when counting pedestrians on an actual street,
a significant number of pedestrians that happen to be just passing by the place are also
included regardless of the area’s quality. Even though the number of people staying on
the street is closely related to the quality of the place, many pedestrians may still pass by,
in which case the connection to the built environment is relatively small [33]. Therefore,
it is necessary to examine the determinants of walking in accordance with the type of
pedestrian activities.

First, the pedestrian activities are divided into “moving” and “staying.” For pedestri-
ans on the “move”, the activity can be classified broadly into two types: (1) the walking trip
whose origin or destination is this street, and (2) the walking trip that passes through this
street. Here, type (1) is classified again according to whether the purpose of the walking
activity is necessary (1-1) or optional (1-2), and the built environmental factors affecting the
activities also change accordingly. Necessary activities (1-1), such as commuting to work
or school, are not greatly affected by the quality of the place [33]. Hence, trip generation
of necessary activities is directly determined by land use intensity (i.e., employment size
or building floor area) rather than the microscopic street environment [41]. However, the
proportion of walking trips among the total necessary trips generated (mode choice) is
affected by the street’s design and condition and the urban design quality and walkability
of surrounding areas. On the other hand, optional activities occurring in a desired place are
more influenced by the built environment at the stage of trip generation (1-2) [33]. Land use
intensity is a key driver, but the street- and neighborhood-level environment also matters.
The factors determining the proportion of walking trips among the total generated trips are
the same as those of necessary activities.

The number of walking trips passing through a specific street segment, type (2),
is proportional to the amount of the floating population in the surrounding areas. We
therefore need to consider the amount of trips generated in its surrounding areas rather
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than just that street segment [42]. The floating population is influenced not only by land use
intensity and urban design quality, but also by more macroscopic physical aspects such as
regional centrality by determining the total number of potential activities [39]. Even if the
microscopic conditions of a specific area are the same, the number of trips generated in that
area may vary depending on its historical, cultural, and economic centrality and status. Of
course, how many of those trips are walking trips and how many of those walking trips will
pass through the street (i.e., the internal capture of trips) are influenced by the urban design
quality/walkability of surrounding areas and the design/condition of street segments [39].

The number of pedestrians performing “staying” activities (types 3 and 4), such as
sitting on a bench or waiting for someone, is undoubtedly proportional to the total number
of pedestrians moving in the area. Since only pedestrians on the move can stay, more
moving activities cause more staying activities. Therefore, all the built environmental
factors that generate moving activities indirectly generate staying activities at the same
time. In addition, Gehl [33] argued that when there is a desirable place to stay, people
who were passing by may also remain in that place; in a good built environment, these
individual activities can develop into social activities, such as conversations and group
activities. Thus, the conversion rate of moving activities to staying activities is closely
related to the overall quality of the place [37,43].

Despite the above mechanism, the pedestrian volume on the street is just a single value,
and the type of activity comprising that value cannot be known. Thereby, when explaining
the variance in pedestrian volume using an econometric approach, all built environments
ranging from the street (micro) to regional (macro) scales should be comprehensively
considered. The next sub-section reviews the empirical evidence on this issue.

2.2. Empirical Evidence on the Relationship between Built Environment and Pedestrian Volume

Studies have empirically analyzed the relationship between the built environment
and street-level pedestrian volume using data from diverse cities worldwide. Based on
the conceptual framework explained in Figure 1, key findings of previous studies are
summarized as follows.

Regarding the street-level built environment, Ewing et al. [25] examined the role
of streetscape features to explain pedestrian volume using pedestrian count data from
588 blocks in New York City. They revealed that the design and use of adjacent buildings
(i.e., proportion of first floor with windows, proportion of retail frontage, and proportion
of active-use buildings) and street furniture encouraged pedestrian activities. In terms of
specific street conditions, Rodríguez et al. [44] showed that sidewalk width was positively
associated with pedestrian count in 338 street segments in Bogota. Using PVS data from
Seoul, several studies also found that wider sidewalks and roadways, the existence of
street furniture and crosswalks, and the absence of slopes and parked vehicles were crucial
predictors of pedestrian volume [16,19,20,45–50].

The role of the 3D variables (density, diversity, and design) has also been the focus
of previous studies. To measure those variables, studies have applied 50 to 500 m buffers
from the survey spots, most frequently using 400 m (quarter mile). Although the specific
type of measure is different (population density, job density, commercial density, floor
area ratio, etc.), most studies confirmed that the higher the “density”, the greater the
pedestrian volume [25,26,44–46,50,51]. However, when two or more density variables were
included in the model at the same time, as in Kang [20], conflicting signs of coefficients
were also drawn. Here, when the spatial range for variable measurement is constant
(e.g., 500 m buffer), both density and size (both population and employment) variables
have the same meaning. Therefore, a couple of studies additionally controlled for the land
use intensity using the building floor area variable [48]. Next, Lee et al. [45], Lee et al. [48],
and Hajrasouliha and Yin [26] showed that a higher land use mix (“diversity”) generates
more walking activities. Lastly, studies also revealed a strong association between good
street connectivity (“design”) and pedestrian volume on the street by applying diverse
forms of measures: road density [44], intersection density [26], intersection type (number of

80



Land 2022, 11, 1749

ways) [47,51], and average street length [51]. By contrast, the proportion of major arterials
was found to be negatively associated with pedestrian volume [51].

In addition to the 3Ds, studies have also demonstrated that good public transit accessi-
bility could be a key explanatory factor of pedestrian volume. Because people may walk a
few blocks before boarding or alighting transport, pedestrian volume on the street is closely
related to public transportation facilities in the surrounding areas [42]. While most studies
have applied transit accessibility in the form of “existence/number of transit stops/stations
within certain areas” or “distance to the nearest stops/stations” [20,25,45,47–49,51,52],
Jang et al. [50] additionally considered the number of subway station entrances and sub-
way/bus lines, daily service frequencies, and the distance decay effect.

Compared to the street- or neighborhood-level built environment, regional centrality
has been rarely considered. Using PVS data from Seoul, Kang [20] investigated the effects
of land-use accessibility and centrality on pedestrian count. His series of multilevel models
showed that residential-, commercial-, and office-use accessibility and centrality, which
were measured in terms of betweenness, straightness, and a gravity index, were positively
associated with both weekday and Saturday pedestrian volume. However, regional central-
ity indicators using built environmental attributes are not a suitable variable to explain the
variance in pedestrian volume as measured at different times. This is because the former is
static, whereas the latter is day-dependent.

Thus, the surrounding area’s transit ridership corresponding to the day when the PVS
was taken has been considered as an alternative way to control for regional centrality. For
instance, Rodríguez et al. [44] used the bus rapid transit (BRT) ridership to control for the
BRT station demand itself in a model that explained the variation in pedestrian volume
around the BRT stops. Using Smart Card data from Seoul, Chung et al. [16] attempted to
control for the regional centrality of PVS spots by employing the bus and subway ridership
of the surrounding areas to explain pedestrian volume. In both studies, transit ridership
was identified as a robust estimator of walking activity. However, neither study tested
how much spatial range should be considered when measuring the variable. Despite their
different influences, Chung et al. [16] used a 400 m (1/4 mile) buffer for bus and subway en
bloc. Unlike this, the present study firstly identifies the size of the influential area of transit
stops/stations and then measures ridership within those identified areas as a proxy for
regional centrality and the resulting floating population. Afterward, the study compares
the effects of the traditional built environment factors (i.e., 3D variables) on pedestrian
volume before and after controlling for transit ridership.

3. Empirical Setting

3.1. Study Area

The study area covers Seoul, the capital of South Korea, with a population of approxi-
mately 10 million (approximately 19.4% of the national population) over an area of 605 km2

(0.6% of the national territory) as of 2019 [53]. As per the 2030 Seoul Master Plan [54], Seoul
pursues a polycentric spatial structure consisting of three central business districts (CBDs),
seven regional centers, and twelve local centers. However, most employment is concen-
trated in the triangle-shaped area connecting the three CBDs, as can be illustrated through
a regional job accessibility (RA) measure (Figure 2). (The RA measure was conceptually
proposed by Hansen [55]. Since the RA of a given Transportation Analysis Zone (TAZ)
is defined as the sum of jobs inversely weighted by their distance from the TAZ, TAZs
with higher RAs represent the employment centers of the region [56]. To measure the
RAs of 424 TAZs in Seoul, we used employment data from 1,138 TAZs not only in Seoul
but also in its surrounding areas (i.e., Incheon and Gyeonggi Province) in 2015. Term
RAi = ∑

j
Ej × e(βdij), where RAi is regional job accessibility in TAZ i; Ej is total employees

of TAZ j, β is the distance resistance coefficient = 0.280 [57], and dij is the distance between
TAZ i and j [56].)

81



Land 2022, 11, 1749

 

Figure 2. Map of Seoul: Location of central places suggested in the 2030 Seoul Master Plan [54],
regional job accessibility of 424 Dong (literally means a neighborhood in Korean, and it is the smallest
administrative unit in Seoul. This spatial unit, Dong, is used as the TAZ in Korea) in 2015, and location
of subway lines and stations in 2015.

Seoul’s sizable population density (17,013 people/km2) makes public transportation
feasible [15,54]. In 2019, Seoul had 10 subway lines supporting 329 stations and 354 bus
lines with 6254 stops [58–60] (Figure 2). The collective commuting modal share of public
transport, walking, and cycling was relatively high at 77.8% in 2019 [61]. Seoul also has a
very convenient and advanced payment system called “Smart Card” [48,62]. According to
Lee [63], as of 2014, 99.02% of transit users paid for their fares with a Smart Card. Thus,
transit ridership data collected through Smart Card usage information can be one of the
most suitable proxies for the floating population and regional centrality in Seoul.

In addition, from 2009 to 2015, the Seoul Metropolitan Government investigated and
provided quality data to the public for pedestrian volume studies. Since the data (i.e., PVS
data) contain quite large samples covering almost all built-up areas of Seoul, which is
one of the largest metropolitan cities, it has a variety of advantages over other research
data worldwide [16]. Accordingly, the data have been widely used for pedestrian volume
studies [16,19,20,45–50]. We believe that Seoul, which has a quality Smart Card system as
well as transit ridership and PVS data, is a most suitable study area for this study.

3.2. Data and Variables

To explore the relationship between the built environment and street-level pedestrian
volume, this study used the following data from Seoul, 2015: (1) PVS data, (2) transit
ridership data, and (3) various spatial data for measuring the built environments. Specific
measurements were selected based on the literature review previously provided (Section 2;
Figure 1). The following sub-sections describe the study’s data, measurements, and analysis
method and model specifications.

3.2.1. Pedestrian Volume (Dependent Variable)

To measure street-level pedestrian volume (the dependent variable), we used the 2015
PVS data from Seoul. The Seoul City Government and National Information Society Agency
had jointly launched this survey in 2009, and it was conducted annually until 2015. Namely,
the data used in this study were the most recent. The survey was conducted by trained
investigators who employed manual counting in the field. As Chung et al. [16] argued, this
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approach has various advantages over self-report surveys or automated counting using
GPS, sensors, and computer vision techniques.

In the 2015 survey, 1223 spots (street segments) were investigated. The spots were
officially selected from an initial 10,000 representative spots selected by the Seoul Metropoli-
tan Government in 2009, including (1) arterial roads, (2) streets in CBDs, regional centers,
and local centers, (3) streets in low-rise residential and mixed-use areas, and (4) roads
along the Han River [64]. Using cluster analysis, the 10,000 spots were clustered so that
5 to 20 spots were included in one cluster based on land use and location (longitude and
latitude coordinates) [65]. Then, in each annual survey, at least one survey spot candidate
was randomly selected from each cluster, and the spots were finalized after confirming both
the possibility of securing a view and the presence of a place to avoid sunlight through
a preliminary field survey [64,65]. As a result, the survey spots covered a considerable
portion of built-up urban areas in Seoul, as shown in Figure 3. Each street segment was
investigated three times a week (either Tuesday or Thursday; Friday; and Saturday) from
2–31 October 31. On each day, every pedestrian was counted from 07:30 to 19:30. Because
the survey was not conducted on a single day, it is necessary to consider factors that might
vary depending on the survey date in the model specification process.

 

Figure 3. Central places in 2014 [54], regional job accessibility in 2015 (authors’ calculation), and
2015 PVS spots and their results (2015 PVS data).

The data cleaning procedures followed those of Chung et al. [16]. First, we excluded the
data gathered on Thursdays as the survey was conducted on only two days (15–22 October)
as a supplementary survey for the Tuesday survey, and the number of spots included
was quite small (one and three spots, respectively). Second, we also excluded the data
surveyed from 28–31 October, which were not provided by the Seoul Open Data Plaza due
to data processing errors. Finally, to render the distribution closer to normality, we used
the log-transformed daily pedestrian volume of 2889 observations counted at 1162 survey
spots as a dependent variable. Since the data contained the exact X- and Y-coordinates and
various physical conditions of the survey spots, we were able to analyze the effect of the
specific built environment on street-level pedestrian volume.

3.2.2. Transit Ridership (Proxy for Regional Centrality)

As discussed in Section 2, using Smart Card data, we controlled for daily transit
ridership of the PVS days as a proxy for regional centrality. The transit ridership variable
is expected to contribute in two major ways to explaining the variation in street-level
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pedestrian volume. First, because people may walk before boarding and after getting off
a transit [42], transit riders of surrounding areas naturally/directly become pedestrians
on the street. Second, transit ridership can be a proxy variable representing the level of
centrality of that area. In other words, in Seoul, a large number of transit users in an
area means that there is a larger floating population in the surrounding areas. Either way,
transit ridership is inevitably closely related to the floating population, and as explained in
Figure 1, the floating population can potentially be connected to the amount of walking
trips that pass through a certain street, alongside the consequent staying activities.

Figure 4 shows that subway stations and their ridership are concentrated in the CBD
triangle area. Bus stops are relatively more distributed, but major stops with the highest
ridership are populated in major central places, particularly Gangnam CBD area (Figure 5).
These support our premise that transit ridership can be a useful proxy for regional centrality.
In addition, given the characteristic of the dependent variable being composed of non-single
survey days, transit ridership, which is a time-dependent variable, is more suitable for
controlling for regional centrality than other static variables such as regional job accessibility
and central place hierarchy, and thereby addresses the limitations of prior studies using
PVS data.

 

Figure 4. Central places in 2014 [54], regional job accessibility in 2015 (authors’ calculation), and total
subway ridership in October 2015 (2015 subway ridership data).

Specifically, the log-transformed daily total number of passengers boarding and alight-
ing at all bus stops and subway stations within certain areas of the survey spot on the
survey day was measured as an independent variable in the model. Here, it is important to
determine the transit stops’ influential area from the PVS spot. In contrast to the conven-
tionally used 400 m to 500 m walkshed in previous walkability studies when measuring
the built environment, there is little empirical guidance regarding the spatial extent of
transit ridership that best explains the pedestrian volume on a street. Accordingly, in
Section 4.1, we identify the size of the influential areas of bus stops and subway stations,
respectively, by successively applying 100 to 600 m buffers at 100 m intervals for measuring
each transit’s ridership, and finding the ridership set with the highest explanatory power
for a preliminary regression model among the 36 possible combinations.
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Figure 5. Central places in 2014 [54], regional job accessibility in 2015 (authors’ calculation), and total
bus ridership in October 2015 (2015 bus ridership data, only 12 PVS days included).

3.2.3. Walkshed-Level Built Environment (3D) Variables

As for walkshed-level built environment variables, we measured and employed the 3D
variables within 500 m of the survey spot. Unlike the size of the transit stations’ influential
areas, the size of the walkshed is generally agreed in previous studies to be approximately
a 400 m to 500 m buffer [20,66,67].

First, for the “density” measure, we controlled for both population and job density (the
number of residents and workers in the 500 m walkshed). Since the area of the walkshed
is constant, this measure has the same meaning as controlling a fixed population (i.e.,
population and employment size). As explained in Section 2, density variables are applied
in almost all previous studies (e.g., [15]). They are mainly expected to affect trip generation
and mode choice, thereby explaining the variation in pedestrian volume.

Second, for the “diversity” measure, while previous studies mostly applied the extent
of land use mix such as the entropy index [68], we employed the facility accessibility index,
borrowing the core concept of WalkScore™ [69]. This covers not only land use diversity
but also proximity to pedestrian-friendly facilities. As Frank et al. [70] revealed, the higher
the mixed land use, the closer the convenience facilities such as grocery stores, shops,
and restaurants, and the more walking activities occur in the specified areas. Lee and
Moudon [27] also argued that distance to routine daily destinations can be simple and
effective alternatives to a complicated land use mix index. Using data from the Ministry
of Security and Public Administration, Korea, this study categorized pedestrian-friendly
facilities into (a) restaurants and cafes, (b) shopping facilities, (c) cultural and leisure
facilities, (d) educational facilities, and (e) public transportation facilities (Table 1). We
then estimated the weight of each category using the analytic hierarchy process (AHP)
method developed by Saaty [71] by surveying 73 experts in the urban and transportation
fields via email. Of the 53 experts who responded (53/73 = 72.6%), only responses of 43
experts (43/53 = 81.1%) whose consistency index was less than 0.2 were used for analysis.
They averaged 13.6 years of professional experience, and 82% were either professors or
researchers with either a master’s or doctoral degree. Table 1 shows the result of AHP
analysis. Finally, we calculated each PVS spot’s facility accessibility index considering
whether each facility was located within walkable distance from the spot. Specifically, we
awarded 2 points if the facility was located within 250 m and 1 point for 500 m, similar to
those of WalkScore™. Then, we summed all the points after multiplying their weights.
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Table 1. Type and weight of pedestrian-friendly facilities.

Category Specific Type of Facility Weight

(a) Restaurants and cafés General restaurant, café 0.164

(b) Shopping facilities Market, department store, shopping center, outlet, mall, general store 0.161

(c) Cultural and leisure facilities Theater, exhibition hall, museum, auditorium, concert hall, zoo, botanical
garden, gym, swimming pool 0.141

(c) Educational facilities Library, kindergarten, elementary/middle/high school, university 0.177

(e) Public transportation facilities Bus stop, bus terminal, subway station, train station 0.357

Third, regarding the “design” measure, we applied the connectivity index (i.e., link/node
ratio), which is a widely used indicator in previous studies and urban design guidelines [72–74].
As Jacobs [8] emphasized the importance of small blocks, the more connected the pedestrian
path, the more walking activities people complete. The link/node ratio reflects at least three
characteristics of street networks: whether the block size is small, whether the pedestrian
path is properly connected, and whether the networks provide shorter and more varied
routes. We measured the ratio using the pedestrian path network map in Seoul provided
by the National Geographic Information Institute in Korea and following Steiner and
Butler’s [72] guideline. Along with the pedestrian volume and transit ridership variables,
the 3D variables explained so far were also log-transformed to convert their distribution
closer to normality. Resultantly, we could interpret the coefficients of key built environment
variables as the elasticity of pedestrian volume.

3.2.4. Street-Level Built Environment Variables

We also controlled for street-level built environment variables including adjacent
land use, street type, and specific street conditions of the survey spot. Because the in-
formation was included in the PVS data, most previous papers have also controlled for
them [16,19,20,49]. As Gehl [33] suggested, the quality of the microscopic urban spaces can
also affect the number of people on a street.

First, to control for land use of the surrounding area, two land use dummy variables—
commercial and residential—were used, with other uses as the reference group. In general,
we can expect that people would be more likely to walk and stay in commercial streets with
higher diversity and vitality [33,37,50]. Second, we employed the street type of the survey
spot. This was defined as dummy variables for “street with a sidewalk” and “street without
a sidewalk (i.e., shared street)”, where “street with a sidewalk, but shared with bicycles”
functioned as the reference group. Third, regarding specific street conditions, we controlled
for the sidewalk width, number of traffic lanes, and various dummy variables assessing
the presences of road centerlines, sloping road segments, pedestrian protection fences,
nearby crosswalks, and obstacles to walking. Here, note that these dummy variables were
measured based on their presence within 50 m from the survey spot, and the presence of a
sloping road segment was entirely determined by the trained investigator’s perception [16].
Definitions and descriptive statistics of all variables explained so far are provided in Table 2.
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Table 2. Definitions and descriptive statistics.

Variables Definition (Unit) Mean S.D. Min. Max.

Dependent variable
Pedestrian volume Total daily pedestrian counts 7121 9615 57 103,437

Ln (pedestrian volume) 8.247 1.164 4.043 11.547
Transit ridership (proxy for regional centrality): macro-scale variables
Bus ridership Daily bus ridership within 400 m buffer 23,494 21,326 0 127,236

Ln (bus ridership + 1) 9.696 0.953 0.000 11.750
Subway ridership Daily subway ridership within 300 m buffer 27,020 43,941 0 247,209

Ln (subway ridership + 1) 4.512 5.350 0.000 12.420
Walkshed-level variables (within 500 m buffer): meso-scale variables

Density (population) Population density of census tracks within
500 m (capita/m2) 0.016 0.010 >0.001 0.041

Ln (population density) −4.467 0.936 −9.520 −3.190

Density (job) Job density of census tracks within 500 m
(capita/m2) 0.019 0.022 >0.001 0.124

Ln (job density) −4.570 1.133 −9.440 −2.090
Diversity Facility accessibility index (see Section 3.2.3) 0.406 0.118 0.050 0.710

Ln (facility accessibility index) 0.277 0.170 −0.528 0.837
Design Connectivity index (link/node ratio) 1.338 0.221 0.590 2.310

Ln (connectivity index) −0.951 0.334 −2.996 −0.342
Street-level variables (mostly within 50 m buffer): micro-scale variables
Land use
Residential Residential use (yes = 1) 0.694 0.461
Commercial Commercial use (yes = 1) 0.222 0.415
Other land use (ref.) Other land use (yes = 1) 0.085 0.218
Street type
With sidewalk Street with a sidewalk (yes = 1) 0.711 0.454

Without sidewalk Street without a sidewalk shared with
pedestrians and vehicles (yes = 1) 0.084 0.278

With shared sidewalk (ref.) Sidewalk is shared with pedestrian and
bicycle (yes = 1) 0.205 0.404

Street condition

Sidewalk width Width of sidewalk or fringe of the road for
pedestrian passage (m) 4.198 2.221 1.000 24.000

# of traffic lanes Number of traffic lanes (count) 4.182 2.731 1.000 18.000
Presence of centerline Dummy (yes = 1, within 50 m buffer) 0.730 0.444
Presence of sloping road Dummy (yes = 1, within 50 m buffer) 0.213 0.409
Presence of fence Dummy (yes = 1, within 50 m buffer) 0.225 0.417
Presence of crosswalk Dummy (yes = 1, within 50 m buffer) 0.616 0.486
Presence of obstacle Dummy (yes = 1, within 50 m buffer) 0.917 0.276

Number of observations = 2889.

3.3. Analysis Method and Model Specification

We employed a multiple regression approach to test the effects of the built environment
variables explained above. Although we conceptually categorized them into three levels
(street-, walkshed-, and regional-level), the variables had no actual hierarchical structure in
the data, so there was no need to apply multi-level analysis. However, we applied spatial
regression analysis methods to consider a potential spatial autocorrelation issue.

The analysis consisted of two steps. As a preliminary analysis, we identified the size
of the influential areas of bus stops and subway stations that best explain the variation
in pedestrian volume. We first ran 36 ordinary least squares (OLS) regression models by
applying different sets of bus and subway transit riderships that were measured based on
different sizes of influential areas (100 m to 600 m at 100 m intervals). Then, we conducted
a spatial regression analysis including the transit riderships within the specific influential
areas identified above and identified a more suitable model between the spatial lag and
spatial error models. Lastly, we ran 36 spatial lag or spatial error models again by applying
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different sets of transit riderships and identified the final size of the bus stops’ and subway
stations’ influential areas.

In the second step, we conducted two spatial regression analyses: constrained and un-
constrained models. While the constrained model excluded the transit ridership variables,
the unconstrained model included transit ridership measured within the specific influential
areas identified in the first step. Then, we compared the results of the two differentiated
models depending on whether or not transit ridership was controlled for. Except transit
ridership, the same set of independent variables were applied in all regression models
explained so far.

4. Results of Analysis

4.1. Preliminary Analysis: Determing the Size of the Transit Stops’ Influential Area

Through the process described in Section 3.3., we found that the spatial error model
had a better goodness of fit than the OLS and spatial lag models (see Appendices A and B).
Then, we ran 36 spatial error models applying different sets of bus and subway transit
riderships and found that the ridership variables in all 36 models had statistically and
positively significant associations with street-level pedestrian volume at the 1% probability
level (Table 3). Therefore, we determined the size of the transit stops’ influential areas that
best explain the variation in pedestrian volume based on the model fit measures. Table 3
illustrates that the model applying a bus ridership within 400 m and a subway ridership
within 300 m shows the highest explanatory power (Pseudo R2 = 0.5232). Log-likelihood
statistics also show exactly the same pattern (see Appendix C).

Table 3. The explanatory power (Pseudo-R2) of the spatial error models by the transit stop/station’s
influential area size.

Subway Ridership Within
100 m 200 m 300 m 400 m 500 m 600 m

Bus
ridership

within

100 m 0.492 0.509 0.518 0.513 0.511 0.495
200 m 0.493 0.509 0.516 0.511 0.510 0.497
300 m 0.504 0.518 0.5227 0.516 0.516 0.506
400 m 0.504 0.519 0.5232 0.514 0.512 0.503
500 m 0.496 0.515 0.519 0.509 0.504 0.494
600 m 0.480 0.500 0.508 0.500 0.496 0.481

Note: All models’ bus and subway riderships had statistically positive associations with street-level pedestrian
volume at p = 0.01. Other built environmental factors suggested in Table 2 were applied as control variables in all
regression models.

These spatial ranges are not substantially different from other similar empirical
studies ([75], light-rail station 326 m; [66], BART (Bay Area Rapid Transit) station 548
m; [76], transit stops 494 m) or the general walking distance (400 m to 500 m) convention-
ally adopted in previous studies [16,20,66,67]. This reflects the general tendency that people
are willing to walk before boarding or after alighting from transit [42]. This result also
supports the persisting claim that values the link between walking and public transporta-
tion [76–78]. Reflecting this result, we applied both the 400 m buffer bus and 300 m buffer
subway transit riderships in the unconstrained model as a proxy for regional centrality.

4.2. Impact of Built Environment on Pedestrian Volume: Transit Ridership Controlled vs.
Not Controlled

Appendix A (constrained models) and Appendix B (unconstrained models) present
the results of OLS, spatial lag, and spatial error models of the log-transformed street-level
pedestrian volume. In all models, the variance inflation factor (VIF) values were quite small;
accordingly, no multicollinearity was found. Moran’s I, Rho (ρ), and Lambda (λ) values in
the models were statistically significant, indicating the presence of spatial autocorrelation.
The results of the Lagrange Multiplier (LM) lag and error test demonstrated that the spatial
error model had better goodness of fit than the spatial lag model. The improvement of fit
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measured by Log likelihood, Akaike Info Criterion (AIC), and Schwarz Criterion (SC) was
also greater in the spatial error model than in the spatial lag model.

Table 4 summarizes the results of both the constrained (not controlled for transit rider-
ship) and unconstrained (controlled for transit ridership) spatial error models. As expected,
due to the strong significance of both ridership variables (coefficient: 0.267, 0.043; Z: 10.760,
11.775), the unconstrained model showed higher explanatory power (Pseudo-R2: 0.523)
than the constrained model (Pseudo-R2: 0.475) and those of previous studies using the
same dataset [19,20,45–50,79], although R2 and Pseudo-R2 are not statistically comparable.
This implies that the area-wide floating population captured by transit ridership, which
represents regional centrality, can explain street-level pedestrian volume well. Conversely,
it would mean that, as previously explained, it is difficult to accurately grasp the impact of
the built environments on street-level pedestrian volume when the macroscopic centrality
and resulting floating population are not controlled for. The unconstrained model produces
less biased coefficients than the constrained model. Thus, we interpret the following re-
sults by focusing on how the coefficients of the built environment variables change after
controlling for transit ridership.

Table 4. Spatial regression (spatial error) models of log-transformed street-level pedestrian volume.

Variables
Constrained Model Unconstrained Model

Coef. z Coef. z

Lambda (λ) 0.744 *** 32.652 0.706 *** 28.370
Constant 8.409 *** 35.374 4.860 *** 13.465
Transit ridership (proxy for regional centrality)

log_bus ridership (400 m buff.) 0.267 *** 10.760
log_subway ridership (300 m buff.) 0.043 *** 11.775

Walkshed-level 3D variables
Density (log_population density) −0.025 −0.682 −0.069 ** −2.074
Density (log_job density) 0.191 *** 5.623 0.126 *** 4.028
Diversity (log_facility accessibility index) 0.495 *** 7.292 0.200 *** 3.009
Design (log_connectivity index) −0.343 *** −2.783 −0.144 −1.229

Street-level variables
Land use

Residential 0.376 *** 4.464 0.296 *** 3.702
Commercial 0.665 *** 7.208 0.433 *** 4.889
Other land use (ref.)

Street type
Street with a sidewalk 0.663 *** 10.936 0.647 *** 11.199
Street without a sidewalk 0.550 *** 6.896 0.558 *** 7.342
Street with a shared sidewalk (ref.)

Street condition
Sidewalk width 0.080 *** 9.562 0.065 *** 8.180
Number of traffic lanes 0.022 ** 2.414 0.016 1.836
Presence of centerline −0.242 *** −3.986 −0.169 *** −2.910
Presence of sloping road −0.369 *** −8.584 −0.317 *** −7.734
Presence of fence 0.127 *** 3.078 0.144 *** 3.647
Presence of crosswalk 0.185 *** 4.599 0.192 *** 5.025
Presence of obstacle −0.026 −0.427 0.024 0.414

Summary Statistics
N 2,889 2,889
Pseudo-R2 0.475 0.523
Moran‘s I 41.182 *** 36.238 ***
Robust LM (error) 388.289 *** 398.931 ***

** p < 0.05, *** p < 0.01.

First, with regard to walkshed-level 3D variables, the coefficient size and significance
level showed quite substantial differences between both models. Of the two density
variables, only job density was significant in the constrained model, while the unconstrained
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model showed significant but conflicting signs of coefficients for both variables (coefficient:
−0.069, 0.126; Z: −2.074, 4.028). Although this appears to be a somewhat contradictory
result, a reasonable interpretation is possible if both density variables are considered at
the same time. As Chung et al. [16] asserted, areas with high job density would represent
an inner-city area in Seoul, and more people walk in those areas than in the populated,
outlying residential areas. Kang [20], who demonstrated the same results as our study,
argued that previous studies showing a positive coefficient for the population density
variable did not include job density in the model.

Next, the results demonstrated that “diversity” (facility accessibility index) was pos-
itively associated with pedestrian volume in both models. However, the coefficient size
was dramatically reduced after controlling for transit ridership (coefficient: 0.495 to 0.200;
Z: 7.292 to 3.009). This implies that the coefficient of “diversity” in the constrained model
may be a combination of the direct influence of the variable on street-level pedestrian vol-
ume and the indirect influence via the generation of a floating population (transit ridership)
in the surrounding area, as explained in Figure 1.

The results regarding “design” were distinctive between the two models. While the
“design” variable (connectivity index) was significantly and negatively associated with
street-level pedestrian volume in the constrained model (coefficient: −0.343; Z: −2.783),
the relationship was not statistically significant in the unconstrained model (coefficient:
−0.144; Z: −1.229). This suggests that there may be an unobserved relationship between
regional centrality and street network design. In Section 5.1, we discuss this possibility
through comparison with other empirical studies.

Lastly, the coefficient size and significance level of street-level built environment
variables also tended to decrease after taking transit ridership into account. However, the
tendency was not noticeable compared to the walkshed-level variables. This is considered to
be so because the street-level environment has a weaker association with regional centrality
than the neighborhood-level environment. In other words, microscopic street elements
can affect walking independently of macroscopic factors. In the unconstrained model,
significant variables generally showed the same results as previous studies [19,20,49,50,79]
as well as the constrained model. The only variable whose results have changed is the
number of traffic lanes. While this was positively associated with pedestrian volume
in the constrained model (coefficient: 0.022; Z: 2.414), it appeared insignificant in the
unconstrained model (coefficient: 0.016; Z: 1.836). This seems to be derived from the
intervention of the regional centrality (transit ridership) variable in the “design” (street
connectivity) variable. In fact, it is more likely that roads with more lanes are formed in
places with greater regional centrality (where there are many transit users) [45].

5. Discussion

In Section 4, the analysis results were interpreted and discussed focusing on the effects
of the 3D variables. Section 5 extends our discussion, focusing on the following two
derivative issues.

5.1. Does “Design” Matter?

The constrained model demonstrated that the street connectivity (“design”) variable
had a negative and significant effect on pedestrian volume, in contrast to general urban
design theory [72]. This relationship was also identified in Kang‘s study [20] using the
same data set as our study. In the study, he revealed that street intersection density,
which is another representative variable measuring “design,” had a negative relationship
with pedestrian volume [20]. This result may be interpreted as follows: in the case of
Seoul, where old and complex urban fabric and street network pattern extensively remains
throughout the city, the higher the street connectivity, the smaller the pedestrian volume,
unlike in Western cities.

However, this conclusion is still arguable. Although the specific measurements and
study areas were different from the above studies, some studies have shown contradic-
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tory results. Using path analysis, Hajrasouliha and Yin [26] demonstrated that street
network connectivity (intersection density variable) not only had a direct positive effect
but also an indirect positive effect via the job density variable on pedestrian volume.
Miranda-Moreno et al. [51] and Lee et al. [46] also showed that the number of roads at an
intersection was positively associated with pedestrian volume.

Moreover, the relationship was insignificant in the unconstrained model, which con-
trolled for regional centrality. This tendency also appeared in other studies. In Lee and
Koo’s [45] analysis model that controlled for regional centrality by employing street-level
integration measured with space syntax, the association between the block-level street
network density (street length/block area) and pedestrian volume was insignificant. What
both studies had in common was that they controlled for regional centrality in any form.
This suggests that regional centrality and the street network design variables are strongly
associated. Hajrasouliha and Yin [26] also argued that street connectivity might have an
indirect impact on pedestrian volume by influencing other built environment characteris-
tics. In addition, in reality, a higher street network connectivity can be expected in urban
areas with higher centrality than in peripheral areas. Therefore, we can interpret that, in
the models where the required built environment variables (such as regional centrality) are
not controlled for, street-connectivity-related variables function as proxy variables, having
no conclusive effect on pedestrian volume.

This offers two more implications. First, in a model that does not control for regional
centrality, the effect (coefficient value) of the street connectivity variable on pedestrian vol-
ume may not actually be a net effect of “design.” Second, to reveal the net effect of “design”
(whether “design” matters), regional centrality needs to be controlled for in the model as in
the present study. In conclusion, after examining our results alone, unlike previous studies,
“design” may not directly matter in terms of street-level pedestrian volume.

5.2. Which Is a Better Explanatory Variable, Accessibility to Transit or Transit Ridership?

Walking and public transportation usage are complementary activities [76–78]. Ac-
cordingly, studies that analyzed the determinants of pedestrian volume reflected the factors
indicating the degree of public transit use in their econometric models. Here, the methods
fall into two main approaches. While the first approach measures and reflects “accessibility
to public transit” using variables such as the distance to the stop/station, the existence
of the stop/station, or stop/station density [20,49,50,52], the second approach reflects it
more directly through utilizing “transit ridership” itself [16,44]. Although both approaches
empirically revealed that the variables were significantly associated with pedestrian vol-
ume [16,20,25,47,49], the meaning of the results was different.

Studies that used accessibility to transit stop/station generally intended to test hy-
potheses that suggest: (1) more pedestrian traffic may occur in places with more transit
stops/stations that generally have good accessibility to various urban services; and (2) if
there is a transit stop/station nearby, some of the transit users flowing out may flow into
the PVS point. Most studies used the accessibility variables to test the first hypothesis.
However, rather than simple accessibility variables (distance to stop/station or density),
“how many people actually use public transportation” can more accurately indicate the
centrality of an area. This is because transit ridership is determined by regional centrality
rather than the micro-scale built environment. At the same time, without controlling for
regional centrality or the floating population, it is difficult to ascertain the net effect of the
micro-level transit accessibility variable on pedestrian volume. Moreover, when testing the
second hypothesis, the transit accessibility variable was only a proxy. It is reasonable to use
a more straightforward variable, the number of transit users, which directly explains the
variation of pedestrian volume.

Thus, researchers can choose from either form of variables according to the purpose of
the analysis. If the goal of modeling is to better reflect the determinants of pedestrian vol-
ume, it is desirable to directly control for the transit ridership as in the present study. If the
goal is to derive policy implications for public transportation infrastructure (e.g., optimal
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transit stop density or interval), applying accessibility-type variables is more desirable. In
addition, the desired form of a variable may vary depending on the type or availability of
research data. When using cross-sectional data, it is desirable to employ an accessibility
variable to represent the static built environment, and when using time series data, it is
desirable to apply a day-dependent ridership variable. However, at this point, whether
reliable transit ridership data are well established, as in Seoul, can also be an important
consideration. In the case of Seoul, where almost all citizens use a Smart Card [63], transit
ridership can be a good proxy for regional centrality and the resultant floating population.
This is highly accurate and easily obtainable data, which greatly improves the explanatory
power of the model for predicting pedestrian volume on a specific street, while street
vitality and commercial performance can be determined accordingly. Being an obvious
benefit of smart technology, it can be a more accurate method than the previous approach
that utilized the distance from or existence of transit stops/stations.

6. Conclusions

This study examined the relationship between the built environment and street-level
pedestrian volume after controlling for regional centrality (transit ridership) using 2015 PVS
and Smart Card data from Seoul. As a preliminary study, we analyzed 36 spatial regression
models by applying different sets of bus and subway transit riderships and found that
the combination of a bus ridership within 400 m and a subway ridership within 300 m
best explained the variation in street-level pedestrian volume. These are not substantially
different from other empirical studies [66,75,76] or a general walking distance of 400 m to
500 m conventionally adopted in previous studies [16,20,66,67].

After controlling for both ridership variables as a proxy for regional centrality, we
examined the effect of the 3D variables on street-level pedestrian volume and compared
this with the result of the model that did not control for ridership. Key findings are as
follows. First, both transit ridership variables explained the variance in pedestrian volume
well, greatly improving the explanatory power of the models. Specifically, we found that if
daily ridership at bus stops (subway stations) located within 400 m (300 m) from a specific
street point increased by 1%, the daily pedestrian volume at that street point increased by
0.267% (0.043%). Second, after taking transit ridership into account, the influence of built
environment variables was generally reduced, and the decrease was more pronounced
in the walkshed-level variables (i.e., 3D variables) than in the street-level variables. In
particular, the influence of the “design” variable (street connectivity index) was found to be
insignificant in the unconstrained model. This means that the degree of street connectivity
is influenced by regional centrality, and accordingly, the coefficient of the “design” variable
in our constrained model (or even in other previous studies’ pedestrian volume estimation
models) might be biased. Thus, to accurately understand the effect of the meso-scale 3D
variables on pedestrian volume, both micro- and macro-scale built environmental factors
must be controlled.

As explained throughout, this study provided more precise empirical evidence on
the effects of traditional 3D variables on pedestrian volume by controlling for regional
centrality. This analytical framework and these analysis results can be transferred to many
metropolitan cities around the world. Since a large number of pedestrians on the streets
contribute to the attractiveness of public spaces and vitality of the urban economy in most
cities around the world, with the exception of some cities with poor security [80], many
urban researchers have been and will continue to examine the determinants of pedestrian
volume. Thus, a more accurate analysis method as to which built environment attributes
may encourage pedestrian activities would be meaningful not only in Seoul but also for all
cities on earth.

In addition, even though this study focused on the theoretical and analytical frame-
works to identify the physical factors influencing street-level pedestrian volume more
accurately, it also suggested implications for planning policies and practices. Although
3D variables have been accepted as normative theories of urban planning and design in
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North American cities [21–29], the effects of these variables may vary depending on the
urban context. The present study confirmed once again that high job density and facility
accessibility (i.e., “density” and “diversity”) at the walkshed level were values that planners
and policymakers should pursue. However, as explained above, in predicting the increase
in pedestrian volume due to the physical environment and the consequent socioeconomic
outcomes, it is necessary to sufficiently control for the centrality of the area and the resultant
floating population. Furthermore, planners and policymakers must consider the negative
externalities of agglomeration such as congestion, air pollution, and even the excessive
complexity of landscape. As many studies have shown, compact development has more
losses than benefits in high-density Asian cities [81–83].

In terms of “design”, more thoughtful policies and plans are required. In contrast to
previous studies, our analysis demonstrated that street connectivity (i.e., “design”) was
not directly associated with street-level pedestrian volume after controlling for regional
centrality. This is derived from the distinctive urban context of Seoul, where few cul-de-sacs
and loop-like street patterns exist. Thus, the practice of uncritically accepting Western
theories centered on North American cities (e.g., planning principles of New Urbanism), as
in Korea, is by no means desirable, which is a lesson to be kept in mind in other rapidly
growing Asian metropolitan cities.

The city governments should identify the determinants of pedestrian volume and the
corresponding urban design principles suitable for their urban context. In this process,
to control for regional centrality, they can employ transit ridership data from the highly
utilized Smart Card system of the city. Since public transportation in a particular city serves
not only the city but also the metropolitan area surrounding the city, transit ridership can
be reliable and easily obtainable data to represent regional centrality. Our approach will
therefore also be applicable in other cities with similar systems and urban contexts.

Despite these contributions, this study has several limitations. First, as explained in
Figure 1, the relationship between the built environment and pedestrian volume may vary
depending on the purpose for walking. However, because it is difficult to determine in
large-scale PVSs, we could not ascertain how the built environment specifically affects
walking activities by purpose. Future studies can address this limitation by securing
research data that incorporate a post hoc survey on the counted pedestrians. Alternatively,
it would be possible to perform similar analyses using data on the transit ridership and
pedestrian volume by time, which narrows the time zone and corresponding travel purpose
(e.g., commuting travel during peak hours). Second, we need to consider the endogeneity
issue between key variables. That is, pedestrians observed on the street may also be transit
riders in the surrounding area. Therefore, in future research, it is necessary to apply a
multivariate analysis, such as path analysis, considering the two-way causal relationship.
Third, when measuring the built environment variables, the airline distance buffer was
used instead of the network distance buffer. Since the streets in Seoul are very dense,
the difference between the two buffers is not expected to be relatively large, but this may
cause bias in the analysis results. In addition, unlike the transit ridership variables, when
measuring the 3D variable, the conventionally used 500 m buffer was uncritically used
without testing the appropriate buffer size, which may also be a limitation of our study.
The last shortcoming is that the analysis is yet only a single case study. Even though
relatively large PVS data from a major metropolitan area were used, their generalizability
is still limited due to the distinctive context of the single study area. Thus, key findings
in this study would need to be reconfirmed through further research focusing on more
diverse cities.
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Appendix A

Regression models of log-transformed street-level pedestrian volume (constrained
model).

Constrained Model

Variables
OLS Spatial Lag Spatial Error

Coef. t VIF Coef. z Coef. z

Rho (ρ) 0.678 *** 30.416
Lambda (λ) 0.744 *** 32.652
Constant 8.602 *** 47.084 2.657 *** 10.621 8.409 *** 35.374
Walkshed-level 3D variables

Density (log_population density) 0.003 0.125 1.269 0.052 *** 2.725 −0.025 −0.682
Density (log_job density) 0.216 *** 10.885 1.527 0.071 *** 3.943 0.191 *** 5.623
Diversity (log_facility accessibility

index) 0.563 *** 9.029 1.314 0.371 *** 6.694 0.495 *** 7.292

Design (log_connectivity index) −0.232 ** −2.022 1.148 −0.277 *** −2.756 −0.343 *** −2.783
Street-level variables
Land use
Residential 0.355 *** 5.069 3.146 0.281 *** 4.572 0.376 *** 4.464

Commercial 0.763 *** 9.753 3.191 0.489 *** 7.014 0.665 *** 7.208
Other land use (ref.)

Street type
Street with a sidewalk 0.699 *** 10.745 2.627 0.575 *** 10.045 0.663 *** 10.936

Street without a sidewalk 0.514 *** 6.073 1.666 0.435 *** 5.860 0.550 *** 6.896
Street with a shared sidewalk (ref.)

Street condition
Sidewalk width 0.099 *** 10.867 1.235 0.077 *** 9.589 0.080 *** 9.562

Number of traffic lanes 0.021 ** 2.291 1.974 0.018 ** 2.237 0.022 ** 2.414
Presence of centerline −0.342 *** −5.196 2.577 −0.234 *** −4.059 −0.242 *** −3.986
Presence of sloping road −0.337 *** −7.485 1.026 −0.304 *** −7.662 −0.369 *** −8.584
Presence of fence 0.123 *** 2.690 1.096 0.135 *** 3.390 0.127 *** 3.078
Presence of crosswalk 0.127 *** 2.914 1.353 0.147 *** 3.871 0.185 *** 4.599
Presence of obstacle −0.000 −0.003 1.017 −0.036 −0.621 −0.026 −0.427

Model Summary
N 2889 2889 2889
R2 0.298
Adjusted R2 0.294
Pseudo-R2 0.460 0.475
Log likelihood −4026 −3707 −3681
Akaike Info Criterion (AIC) 8085 7448 7394
Schwarz Criterion (SC) 8180 7549 7490
Statistics
Moran’s I 41.182 ***
Robust LM (lag) 10.278 ***
Robust LM (error) 388.289 ***

** p < 0.05, *** p < 0.01.

Appendix B

Regression models of log-transformed street-level pedestrian volume by the transit
ridership (unconstrained model).
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Unconstrained Model

Variables
OLS Spatial Lag Spatial Error

Coef. t VIF Coef. z Coef. z

Rho (ρ) 0.599 *** 25.151
Lambda (λ) 0.706 *** 28.370
Constant 4.313 *** 14.441 0.466 1.528 4.860 *** 13.465
Transit ridership (proxy for regional
centrality)

log_bus ridership (400 m buff.) 0.331 *** 15.129 1.524 0.214 *** 10.492 0.267 *** 10.760
log_subway ridership (300 m buff.) 0.045 *** 12.769 1.259 0.039 *** 12.085 0.043 *** 11.775

Walkshed-level 3D variables
Density (log_population density) −0.061 *** −2.955 1.306 0.003 0.151 −0.069 ** −2.074
Density (log_job density) 0.144 *** 7.643 1.597 0.039 ** 2.250 0.126 *** 4.028
Diversity (log_facility accessibility

index) 0.172 *** 2.829 1.451 0.097 1.760 0.200 *** 3.009

Design (log_connectivity index) −0.107 −1.001 1.151 −0.179 −1.857 −0.144 −1.229
Street-level variables
Land use

Residential 0.201 *** 3.039 3.244 0.193 *** 3.245 0.296 *** 3.702
Commercial 0.360 *** 4.745 3.471 0.243 *** 3.527 0.433 *** 4.889
Other land use (ref.)

Street type
Street with a sidewalk 0.690 *** 11.412 2.631 0.579 *** 10.569 0.647 *** 11.199
Street without a sidewalk 0.603 *** 7.659 1.675 0.503 *** 7.065 0.558 *** 7.342
Street with a shared sidewalk (ref.)

Street condition
Sidewalk width 0.082 *** 9.634 1.246 0.067 *** 8.697 0.065 *** 8.180
Number of traffic lanes 0.007 0.795 1.990 0.009 1.103 0.016 1.836
Presence of centerline −0.223 *** −3.627 2.599 −0.159 *** −2.865 −0.169 *** −2.910
Presence of sloping road −0.278 *** −6.626 1.032 −0.267 *** −7.044 −0.317 *** −7.734
Presence of fence 0.155 *** 3.650 1.098 0.159 *** 4.151 0.144 *** 3.647
Presence of crosswalk 0.143 *** 3.525 1.356 0.161 *** 4.402 0.192 *** 5.025
Presence of obstacle 0.070 1.128 1.020 0.019 0.333 0.024 0.414

Model Summary
N 2889 2889 2889
R2 0.394
Adjusted R2 0.391
Pseudo-R2 0.505 0.523
Log likelihood −3812 −3565 −3532
Akaike Info Criterion (AIC) 7661 7168 7101
Schwarz Criterion (SC) 7768 7282 7208
Statistics
Moran’s I 36.238 ***
Robust LM (lag) 14.415 ***
Robust LM (error) 398.931 ***

** p < 0.05, *** p < 0.01.

Appendix C

The log likelihood of the spatial error models by the transit stop/station’s influential
area size.

Subway Ridership Within
100 m 200 m 300 m 400 m 500 m 600 m

Bus ridership
within

100 m −3631.534 −3582.570 −3554.960 −3566.286 −3574.785 −3619.577
200 m −3624.403 −3578.292 −3555.164 −3567.127 −3572.268 −3609.902
300 m −3590.634 −3552.466 −3535.724 −3553.718 −3557.134 −3582.928
400 m −3590.328 −3545.743 −3532.321 −3557.138 −3566.522 −3592.585
500 m −3614.468 −3558.104 −3542.730 −3572.256 −3589.259 −3619.456
600 m −3665.148 −3608.897 −3581.035 −3604.125 −3617.418 −3659.830

Note: All models’ bus and subway riderships had statistically positive associations with street-level pedestrian
volume at p = 0.01. Other built environmental factors suggested in Table 2 were applied as control variables in all
regression models.

References

1. Lee, C.; Moudon, A.V. Physical activity and environment research in the health field: Implications for urban and transportation
planning practice and research. J. Plan. Lit. 2016, 19, 147–181. [CrossRef]

2. Kim, H.; Yang, S. Neighborhood walking and social capital: The correlation between walking experience and individual
perception of social capital. Sustainability 2017, 9, 680. [CrossRef]

95



Land 2022, 11, 1749

3. Loukaitou-Sideris, A. Special issue on walking. Transp. Rev. 2020, 40, 131–134. [CrossRef]
4. Kahn, M.E.; Morris, E.A. Walking the walk: The association between community environmentalism and green travel behavior.

J. Am. Plan. Assoc. 2009, 75, 389–405. [CrossRef]
5. Ogilvie, D.; Bull, F.; Cooper, A.; Rutter, H.; Adams, E.; Brand, C.; Ghali, K.; Jones, T.; Mutrie, N.; Powell, J.; et al. Evaluating the

travel, physical activity and carbon impacts of a ‘natural experiment’ in the provision of new walking and cycling infrastructure:
Methods for the core module of the iConnect study. BMJ Open 2012, 2, e000694. [CrossRef] [PubMed]

6. Sung, H.; Lee, S.; Jung, S. Identifying the relationship between the objectively measured built environment and walking activity
in the high-density and transit-oriented city, Seoul, Korea. Environ. Plan. B Plann. Design 2014, 41, 637–660. [CrossRef]

7. Buehler, R.; Pucher, J.; Gerike, R.; Götschi, T. Reducing car dependence in the heart of Europe: Lessons from Germany, Austria,
and Switzerland. Transp. Rev. 2016, 37, 4–28. [CrossRef]

8. Jacobs, J. The Death and Life of Great American Cities; Modern Library Editions & Random House Inc.: New York, NY, USA, 1961.
9. Appleyard, D. Livable Streets; University of California Press: Berkley, CA, USA, 1981.
10. Putnam, R. Bowling Alone, The Collapse and Revival of American Community; Simon and Schuster: New York, NY, USA, 2000.
11. Handy, S.L.; Boarnet, M.G.; Ewing, R.; Killingsworth, R.E. How the built environment affects physical activity: Views from urban

planning. Am. J. Prev. Med. 2002, 23, 64–73. [CrossRef]
12. Litman, T.A. Economic value of walkability. Trans. Res. Rec. 2003, 1828, 3–11. [CrossRef]
13. Frumkin, H.; Frank, L.D.; Jackson, R. Urban Sprawl and Public Health: Designing, Planning, and Building for Healthy Communities;

Island Press: Washington, DC, USA, 2004.
14. Montgomery, C. Happy City: Transforming Our Lives Through Urban Design, 1st ed.; Farrar, Straus and Giroux: New York, NY,

USA, 2013.
15. Kang, C.D. Spatial access to pedestrians and retail sales in Seoul, Korea. Habitat Int. 2016, 57, 110–120. [CrossRef]
16. Chung, J.; Kim, S.N.; Kim, H. The impact of PM10 levels on pedestrian volume: Findings from streets in Seoul, South Korea. Int. J.

Environ. Res. Public Health 2019, 16, 4833. [CrossRef] [PubMed]
17. Jacobs, A.B. Great streets. Access Mag. 1993, 1, 23–27.
18. Ewing, R.; Handy, S. Measuring the unmeasurable: Urban design qualities related to walkability. J. Urban Des. 2009, 14, 65–84.

[CrossRef]
19. Sung, H.G.; Go, D.H.; Choi, C.G. Evidence of Jacobs’s street life in the great Seoul city: Identifying the association of physical

environment with walking activity on streets. Cities 2013, 35, 164–173. [CrossRef]
20. Kang, C.D. The effects of spatial accessibility and centrality to land use on walking in Seoul, Korea. Cities 2015, 46, 94–103.

[CrossRef]
21. Cervero, R.; Kockelman, K. Travel demand and the 3Ds: Density, diversity, and design. Transp. Res. Part D Transp. Environ. 1997,

2, 199–219. [CrossRef]
22. Ewing, R.; Cervero, R. Travel and the built environment: A synthesis. Transp. Res. Rec. 2001, 1780, 87–114. [CrossRef]
23. Kim, T.; Shin, Y.; Sung, H. The relationship of distance-based TOD planning elements to public transit ridership in Seoul subway

station areas. J. Korea Plan. Assoc. 2013, 48, 51–64.
24. Min, B.; Lee, G.; Kim, S. The effects of land-use characteristics on trip patterns by trip modes and purposes: Focused on Seoul

Metropolitan Administrative Division. JAIK Plan. Des. 2016, 32, 77–87.
25. Ewing, R.; Hajrasouliha, A.; Neckerman, K.M.; Purciel-Hill, M.; Greene, W. Streetscape features related to pedestrian activity.

J. Plan. Educ. Res. 2015, 36, 5–15. [CrossRef]
26. Hajrasouliha, A.; Yin, L. The impact of street network connectivity on pedestrian volume. Urban Stud. 2015, 52, 2483–2497.

[CrossRef]
27. Lee, C.; Moudon, A.V. The 3Ds + R, quantifying land use and urban form correlates of walking. Transp. Res. Part D Transp.

Environ. 2006, 11, 204–215. [CrossRef]
28. Peiravian, F.; Derrible, S.; Ijaz, F. Development and application of the Pedestrian Environment Index (PEI). J. Transp. Geogr. 2014,

39, 73–84. [CrossRef]
29. Learnihan, V.; Van Niel, K.P.; Giles-Corti, B.; Knuiman, M. Effect of scale on the links between walking and urban design. Geogr.

Res. 2011, 49, 183–191. [CrossRef]
30. Cao, X.; Handy, S.L.; Mokhtarian, P.L. The influences of the built environment and residential self-selection on pedestrian

behavior: Evidence from Austin, TX. Transportation 2006, 33, 1–20. [CrossRef]
31. Vojnovic, I. Building communities to promote physical activity: A multi-scale geographic analysis. Geogr. Ann. Series B Hum.

Geogr. 2006, 88, 67–90. [CrossRef]
32. Salingaros, N.A. Urban space and its information field. J. Urban Des. 2007, 4, 29–49. [CrossRef]
33. Gehl, J. Life between Buildings: Using Public Space, 5th ed.; Arkitektens Forlag: Copenhagen, Denmark, 2001.
34. Lee, H.; Kim, S. Shared space and pedestrian safety: Empirical evidence from pedestrian priority street projects in Seoul, Korea.

Sustainability 2019, 11, 4645. [CrossRef]
35. Lee, H.; Kim, S.N. Perceived safety and pedestrian performance in pedestrian priority streets (PPSs) in Seoul, Korea: A virtual

reality experiment and trace mapping. Int. J. Environ. Res. Public Health 2021, 18, 2501. [CrossRef]
36. Gehl, J.; Svarre, B. How to Study Public Life; Island Press: Washington, DC, USA, 2013.
37. Mehta, V. The Street: A Quintessential Social Public Space; Routledge: New York, NY, USA, 2013.

96



Land 2022, 11, 1749

38. Talen, E.; Koschinsky, J. The walkable neighborhood: A literature review. Int. J. Sustain. Land Use Urban Plan. 2013, 1, 42–63.
[CrossRef]

39. Zegras, P. Sustainable Urban Mobility: Exploring the Role of the Built Environment. Ph.D. Thesis, Massachusetts Institute of
Technology, Cambridge, MA, USA, 2005.

40. Zacharias, J. Pedestrian behavior and perception in urban walking environments. J. Plan. Lit. 2001, 16, 3–18. [CrossRef]
41. Kim, N.S.; Susilo, Y.O. Comparison of pedestrian trip generation models. J. Adv. Transp. 2013, 47, 399–412. [CrossRef]
42. Erhardt, G.D.; Mucci, R.A.; Cooper, D.; Sana, B.; Chen, M.; Castiglione, J. Do transportation network companies increase or

decrease transit ridership? Empirical evidence from San Francisco. Transportation 2021, 49, 313–342. [CrossRef]
43. Carmona, M.; Heath, T.; Tiesdell, S.; Oc, T. Public Places—Urban spaces; Architectural Press: Oxford, UK, 2003.
44. Rodríguez, D.A.; Brisson, E.M.; Estupiñán, N. The relationship between segment-level built environment attributes and pedestrian

activity around Bogota’s BRT stations. Transp. Res. Part D Transp. Environ. 2009, 14, 470–478. [CrossRef]
45. Lee, J.; Koo, J. The effect of physical environment of street on pedestrian volume: Focused on central business district (CBD, GBD,

YBD) of Seoul. J. Korea Plan. Assoc. 2013, 48, 269–286.
46. Lee, H.S.; Kim, J.Y.; Choo, S.H. Analyzing pedestrian characteristics using the Seoul floating population survey: Focusing on

5 urban communities in Seoul. J. Korean Soc. Transp. 2014, 32, 315–326. [CrossRef]
47. Lee, J.; Lee, H.; Koo, J. The study on factors influencing pedestrian volume based on physical environment of street. J. Korea Plan.

Assoc. 2014, 49, 145–163. [CrossRef]
48. Lee, J.; Kim, H.; Jun, C. Analysis of physical environmental factors that affect pedestrian volumes by street type. J. Urban Des. Inst.

Korea 2015, 6, 123–140.
49. Sung, H.; Go, D.; Choi, C.G.; Cheon, S.; Park, S. Effects of street-level physical environment and zoning on walking activity in

Seoul, Korea. Land Use Policy 2015, 49, 152–160. [CrossRef]
50. Jang, J.Y.; Choi, S.T.; Lee, H.S.; Kim, S.J.; Choo, S.H. A comparison analysis of factors to affect pedestrian volumes by land-use

type using Seoul Pedestrian Survey data. J. Korean Inst. Intell. Transp. Syst. 2015, 14, 39–53. [CrossRef]
51. Miranda-Moreno, L.F.; Morency, P.; El-Geneidy, A.M. The link between built environment, pedestrian activity and pedestrian–

vehicle collision occurrence at signalized intersections. Accid. Anal. Prev. 2011, 43, 1624–1634. [CrossRef] [PubMed]
52. Kim, S.; Park, S.; Lee, J.S. Meso- or micro-scale? Environmental factors influencing pedestrian satisfaction. Transp. Res. Part D

Transp. Environ. 2014, 30, 10–20. [CrossRef]
53. KOSIS (Korean Statistical Information Service). Available online: https://kosis.kr/ (accessed on 10 September 2019).
54. Seoul Metropolitan Government. 2030 Seoul Master Plan. 2014. Available online: https://www.seoulsolution.kr/en/content/20

30-seoul-plan (accessed on 10 August 2021).
55. Hansen, W.G. How accessibility shapes land use. J. Am. Plan. Assoc. 1959, 25, 73–76. [CrossRef]
56. Kim, S.; Mokhtarian, P.; Ahn, K. The Seoul of Alonso: New perspectives on telecommuting and residential location from South

Korea. Urban Geogr. 2012, 33, 1163–1191. [CrossRef]
57. Kim, H. The Effects of Compact City Planning Elements on Travel Behavior of Different Income Levels. Unpublished. Master’s

Thesis, Department of Civil and Environmental Engineering, Seoul National University, Seoul, Korea, 2009.
58. Seoul Open Data Platform. Stat. City Buses Seoul. Available online: https://data.seoul.go.kr/dataList/248/S/2/datasetView.do

(accessed on 19 August 2021).
59. Seoul Open Data Platform. Statistics on the Subway Operation Status of Seoul. Available online: https://data.seoul.go.kr/

dataList/247/S/2/datasetView.do (accessed on 19 August 2021).
60. Seoul Open Data Platform. Statistics on the Status of Bus Stops in Seoul. Available online: https://data.seoul.go.kr/dataList/24

9/S/2/datasetView.do (accessed on 19 August 2021).
61. Seoul Open Data Platform. Commuting Modal Share in Seoul. Available online: https://data.seoul.go.kr/dataList/10283/S/2/

datasetView.do (accessed on 19 August 2021).
62. Kim, H.M.; Han, S.S. Seoul. Cities 2012, 29, 142–154. [CrossRef]
63. Lee, M. Travel pattern analysis using public transportation card data in Seoul metropolitan area. KRIHS Policy Brief. 2015, 536,

1–6.
64. Seoul Metropolitan Government. A White Paper on Pedestrian Volume Survey; Seoul Metropolitan Government: Seoul, Korea, 2009.
65. National Information Society Agency; Seoul Metropolitan Government. A Report on 2015 Pedestrian Volume Survey; Seoul

Metropolitan Government: Seoul, Korea, 2015.
66. Kim, H. Walking distance, route choice, and activities while walking: A record of following pedestrians from transit stations in

the San Francisco Bay area. Urban Des. Int. 2015, 20, 144–157. [CrossRef]
67. Zhao, J.; Sun, G.; Webster, C. Walkability scoring: Why and how does a three–dimensional pedestrian network matter? Environ.

Plan. B: Urban Anal. City Sci. 2020, 48, 2418–2435. [CrossRef]
68. Crane, R. The influence of urban form on travel: An interpretive review. J. Plan. Lit. 2000, 15, 3–23. [CrossRef]
69. Kocher, J.; Lerner, M. Walk Score. Available online: https://www.walkscore.com/ (accessed on 5 January 2022).
70. Frank, L.D.; Engelke, P. Multiple impacts of the built environment on public health, walkable places and the exposure to air

pollution. Int. Reg. Sci. Rev. 2005, 28, 193–216. [CrossRef]
71. Saaty, T. The Analytic Hierarchy Process; McGraw-Hill: New York, NY, USA, 1980.
72. Steiner, F.; Butler, K. Planning and Urban Design Standard, Student Edition; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007.

97



Land 2022, 11, 1749

73. Knight, P.L.; Marshall, W.E. The metrics of street network connectivity: Their inconsistencies. J. Urban. Int. Res. Placemaking Urban
Sust. 2014, 8, 241–259. [CrossRef]

74. Kim, H.; Kim, S.N. Shaping suburbia: A comparison of state-led and market-led suburbs in Seoul Metropolitan Area, South
Korea. Urban Des. Int. 2016, 21, 131–150. [CrossRef]

75. O’Sullivan, S.; Morrall, J. Walking distances to and from light–rail transit stations, Transportation research record. J. Transp. Res.
Board. 1996, 1538, 19–26. [CrossRef]

76. Wang, J.; Cao, X. Exploring built environment correlates of walking distance of transit egress in the Twin Cities. J. Transp. Geogr.
2017, 64, 132–138. [CrossRef]

77. Besser, L.M.; Dannenberg, A.L. Walking to public transit: Steps to help meet physical activity recommendations. Am. J. Prev. Med.
2005, 29, 273–280. [CrossRef] [PubMed]

78. Park, S. Defining, Measuring, and Evaluating Path Walkability, and Testing its Impacts on Transit Users’ Mode Choice and
Walking Distance to the Station. Ph.D. Thesis, University of California, Berkeley, CA, USA, 2008.

79. Yun, N.; Choi, C. Relationship between pedestrian volume and pedestrian environmental factors on the commercial streets in
Seoul. J. Korea Plan. Assoc. 2013, 48, 135–150.

80. Tchinda, P.E.; Kim, S.-N. The Paradox of “Eyes on the Street”: Pedestrian Density and Fear of Crime in Yaoundé, Cameroon.
Sustainability 2020, 12, 5300. [CrossRef]

81. Zhang, X.Q. High-rise and high-density compact urban form: The development of Hong Kong. In Compact Cities; Routledge:
London, UK, 2000.

82. Burges, R.; Jenks, M. Compact Cities Sustainable Urban Forms for Developing Countries; Spon Press: London, UK, 2000.
83. Kim, S.N.; Lee, K.H.; Ahn, K.H. The effects of compact city characteristics on transportation energy consumption and air quality.

J. Korea Plan. Assoc. 2009, 44, 231–246.

98



Citation: Bond, C.; Li, H.; Rate, A.W.

Land Use Pattern Affects

Microplastic Concentrations in

Stormwater Drains in Urban

Catchments in Perth, Western

Australia. Land 2022, 11, 1815.

https:// doi.org/10.3390/

land11101815

Academic Editors: Bindong Sun,

Tinglin Zhang, Wan Li, Chun Yin and

Honghuan Gu

Received: 14 September 2022

Accepted: 12 October 2022

Published: 17 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

land

Article

Land Use Pattern Affects Microplastic Concentrations in
Stormwater Drains in Urban Catchments in Perth,
Western Australia

Cassandra Bond 1, Hua Li 2 and Andrew W. Rate 1,*

1 School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway,
Perth, WA 6009, Australia

2 Centre for Microscopy, Characterization, and Analysis, The University of Western Australia, 35 Stirling
Highway, Perth, WA 6009, Australia

* Correspondence: andrew.rate@uwa.edu.au

Abstract: Stormwater drains act as important vectors for microplastics, enabling the transportation of
microplastic polymers from terrestrial systems where they are produced and consumed to aquatic and
marine ecosystems. In this study, microplastic concentrations and their size fractions were measured
in six stormwater catchments in the Perth and Peel region of Western Australia. Stormwater drains
with contrasting land uses and catchment characteristics were selected and two sites along each
drain were sampled. Water samples were filtered in situ with a purpose-built fractionation device.
Catchment boundaries and contributing drainage areas were derived from a hydrologically enforced
digital elevation model. Microplastic concentrations within the sites varied from 8.8 to 25.1 mi-
croplastics/L (mean 14.2 microplastics/L). Fibrous microplastics were the most common morphology,
followed by fragments. Polymer types identified using Raman spectroscopy included polypropylene
(64.6% of samples), polyethylene (64.7%), polytetrafluoroethylene (5.9%) and polyvinylidene fluoride
(5.9%). There was no statistically significant variation in microplastic concentrations across or within
stormwater catchments. A linear mixed-effect model showed that several components of the land
use pattern: catchment area, catchment population, and the proportion of industrial land, natural
land and public open space, were positively related to microplastic concentrations. The proportion
of residential land was negatively related to microplastic concentrations. The lack of significant
variation in microplastic concentration observed both across and within the catchments points to
their ubiquitous presence in stormwater systems in the region. This study is the first to examine
microplastic contamination in the water of stormwater drainage systems in Perth, Western Australia.
These stormwater systems contain considerable concentrations of microplastics, confirming their
importance as transport mechanisms for plastics into aquatic and marine ecosystems.

Keywords: microplastics; stormwater; drainage

1. Introduction

The mass production of plastic products began in the 1940s and over 7800 million
tons of plastics have been produced since the year 1950 [1]. Less than 5% of these plastic
products have been recovered, resulting in accumulation in various environments including
marine, freshwater, urban, remote, agricultural, and industrial systems [2,3].

Microplastics are plastic particles with a diameter of less than 5 mm and have been
widely identified as contaminants of concern [3,4]. Microplastics are important pollutants
due to their small particle size, resistance to biodegradation and ability to move through
various environmental media. Importantly, microplastics have a significant capacity to be
readily absorbed and ingested by organisms [5]. As such, microplastic polymers represent a
substantial risk to wildlife as the small particles may be mistaken as food and ingested; they
are also small enough to be ingested by filter feeders and planktonic organisms giving a high
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potential for bioaccumulation of plastics themselves and co-contaminants [6,7]. The high
surface area and hydrophobicity of microplastics allows the sorption of co-contaminants
such as polycyclic aromatic hydrocarbons and heavy metals [8,9].

Microplastics can be classified by shape (fibres, fragments, film, microbeads) [10].
As well as shape, microplastics can also be categorised as either primary (intentionally
manufactured as small particles, e.g., cosmetic microbeads) or secondary (derived from
degradation and fragmentation of larger plastics).

Microplastic research was initially focused on marine environments, while terrestrial
systems received far less attention [11]. Terrestrial microplastic contamination is 4–23
times greater than in marine environments, and land-based inputs are important sources
preceding the transport of microplastics to the ocean [12].

Stormwater was first indirectly identified as a source of microplastics to urban lakes,
and marine locations near urbanisation, based on mass balance rather than direct measure-
ment [13,14] Stormwater runoff has since been widely identified as an important transport
mechanism for microplastic pollution on land to the marine environment [12,15]. Urban
stormwater seldom receives treatment which could remove microplastic particles, allowing
direct fluxes to riverine and marine systems [16]. Microplastics enter stormwater systems
through a combination of atmospheric deposition and overland flow [17,18] following
which they may be removed by entanglement with organic materials, biofouling, or sedi-
mentation [17,19,20]. Whether microplastics flow through stormwater systems or settle in
sediment is determined by the size, shape and density of the particles [19].

Microplastics found in stormwater are comprised of a wide range of polymers with
some of the most common being polyethylene, polypropylene, polyvinyl chloride, polyethy-
lene terephthalate, and polystyrene [17]. The absolute abundance of microplastics, and the
relative abundance of polymer types, will to some extent reflect the land use and human
activities in the catchment [12]. There is no widespread consensus that land use intensity
and population density can adequately account for microplastic concentrations in all areas
of the globe [20]. Instead, other factors such as weather, specifically the timing of rainfall
before sampling, affect measured microplastic concentrations, but these effects are also
inconsistent [21,22].

This study is the first to examine the concentration, polymer type and shape of
microplastics found in the water of stormwater drainage in Western Australia. The study
aimed to answer the following research questions:

1. What is the concentration of microplastics in selected stormwater drains across the
Perth and Peel region?

2. What plastic shapes, sizes, colours and polymer types are identified in the drainage
systems?

3. Is there a significant difference in microplastic concentrations within or between any
of the drainage systems?

4. Does the land use pattern, as defined by catchment area, catchment population, pre-
sampling rainfall, and the proportions of residential, industrial, commercial, agricul-
tural, natural land, and public open spaces, affect stormwater plastic concentrations?

2. Materials and Methods

2.1. Sample Sites

Six stormwater drainage systems were selected for sampling (Figure 1), based on their
accessibility, broad distribution across the Perth area, and pattern of surrounding land
uses, based on a shapefile of Water Corporation stormwater drains [23]. Two sites were
sampled along each of the Bayswater Main Drain, Claisebrook Main Drain, Kitchener St
Drain, Osborne Park Branch Drain, South Belmont Main Drain and South Coolup Main
Drain (Figure 1). Details of samples are presented in Table 1. The region sampled has a
winter-wet subtropical climate (Köppen Csa), with mean annual rainfall (1993–2021) of
737 mm, with 77% of rainfall occurring May–September.
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Figure 1. The drainage systems sampled, showing sample locations, catchment boundaries and land
use categories.

Table 1. Sampling location details and the volume of water taken at each site. Two sites were selected
at each drain system, denoted Site Number 1 and 2. All samples 3 repeats, 250 mL rinse.

Sample Catchment Site
Number

Site
Code

Coordinates (Decimal Degrees, WGS84)
Sample Size

Longitude Latitude

Bayswater Main Drain 1 B1 115.92135 −31.92585 10 L
Bayswater Main Drain 2 B2 115.92186 −31.92730 10 L

Claisebrook Main Drain 1 C1 115.85102 −31.93210 10 L
Claisebrook Main Drain 2 C2 115.87702 −31.95256 10 L

Osborne Park Branch Drain 1 O1 115.79987 −31.91233 5 L
Osborne Park Branch Drain 2 O2 115.80029 −31.91306 5 L

Kitchener St Drain 1 K1 115.94133 −31.91799 10 L
Kitchener St Drain 2 K2 115.94171 −31.91855 10 L

South Belmont Main Drain 1 SB1 115.93236 −31.97443 10 L
South Belmont Main Drain 2 SB2 115.93233 −31.97202 5L
South Coolup Main Drain 1 SC1 115.85390 −32.74431 5 L
South Coolup Main Drain 2 SC2 115.83038 −32.75319 5 L

2.2. Sampling Protocol

The design of the sampler used (Figure 2) was adapted from Ziajahromi et al. [24]. Each
sampler used 10 cm diameter stainless steel disks (All-round Mesh, Victoria, Australia),
with one of each of the aperture sizes (530 μm, 190 μm, 100 μm, and 25 μm), stacked
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between five 5 cm long PVC pipe joiners of 10 cm diameter, so each size class had a lower
bound corresponding to the aperture size of the filter. The PVC joiners were then fastened
together to form one 25 cm pipe with the filtration disks at 5 cm intervals.

Figure 2. Stacked filter design and schematic of microplastic separation and counting procedures.
Sampled water is passed through the filter stack so that microplastics are sorted according to size clas-
sification. The filtered water is discarded. Particles on each mesh filter are transferred quantitatively
onto glass fibre filters for microscopic identification and counting.

Samples of either 5 L or 10 L were taken from the top 10–15 cm of the water body
using a bucket. Where suspended solid content was high, and filtering the full 10 L
was not feasible, 5 L samples were taken. The samples were then decanted through the
stacked filtration device, leaving only suspended particles including any microplastics in
the samples on the mesh disks. 250 mL of clean water was then added to rinse any potential
microplastics stuck to the sides and poured through the sampling device. Each mesh disk
was wrapped in aluminium foil for transport and storage. Sampling was conducted during
winter. The timing of sampling was not related to the timing of rainfall.

2.3. Sample Processing

The solids on mesh sample filters and Al-foil wrappers were rinsed onto glass fibre
filters (Whatman GF/A) for vacuum filtration. A scalpel was used to remove gently any
remaining contents onto the filter. The glass filters were then removed carefully from the
filter funnel/manifold and placed in clean Petri dishes in prior to microscopic analysis.

2.4. Sample Analysis

Microplastics were initially identified using a Nikon TE-PSE30 microscope at 4.5×
magnification, according to the criteria identified by Hidalgo-Ruz et al. [25]; in addition,
there should be no visible cellular or other organic structures, except for possible biofouling,
and a positive reaction to the hot needle test [20,25]. Suspected microplastics on each filter
were counted and categorised according to shape and colour. The shape categories included
beads (spherical particles), films (thin coatings), fragments (diameter > thickness) or fibres
(length > diameter) [10]. Colour categories included clear, white, grey, black, brown, blue,
green, yellow, orange, red and pink.
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2.5. Blanks

Potential background contamination in the laboratory and filtration processes were
accounted for by assessing blank samples. Uniformity across the controls and samples
themselves was ensured by processing both samples and blanks simultaneously in the
laboratory. Five blank samples of 10 mL deionised (DI) water were passed through the glass
fibre filters and analysed to determine background contamination from the equipment and
DI water [20]. These filters were left uncovered for half an hour to replicate the exposure to
atmospheric deposition experienced by the samples during the processing and counting of
suspected microplastics on the samples.

2.6. Microplastic Identification and Characterisation

A randomly selected subset of visually identified microplastics were analysed using
Raman microscopy (WITEC Alpha 300 RA+ Confocal Raman microscope). This representa-
tive subsample consisted of 6 fragments and 32 fibres, approximating the proportions of
these particle morphologies in the samples. Microplastic particles were adhered to a clean
glass slide with a droplet of silicone oil having a known Raman spectrum with minimal
interfering bands.

Raman spectroscopy was conducted on a WITec Alpha 300 RA+ system with an
Andor iDUS 401 CCD maintained at −60 ◦C, and a 20× objective. Infrared (785 nm) and
red (633 nm) lasers were used with a 600 mm−1 grating. Spectra were collected using
ProjectFIVE software and cross-referenced manually using reference materials from the
Spectral Database Index from the Infrared & Raman Users Group [26]. A false positive
frequency was then calculated from the results of this Raman subsample verification and
used to correct raw microplastic counts. Raman analysis was selected over ATR-FTIR
spectroscopy due to its ability to analyse smaller particle sizes [27].

2.7. Data Analysis

Catchment modelling was conducted for each of the drainage systems. Geosciences
Australia’s Digital Elevation Model (DEM) for the Perth and Peel region was used to
delineate areas of low-lying land [28]. Water Corporation and Department of Water and
Environmental Regulation drainage channel datasets were compiled, along with the DEM,
in ArcGIS 2.6.0 [29]. Watersheds for the entire drainage system were then calculated
by mapping the flow direction of overland runoff. These watersheds estimate the total
contributing drainage area for the system from the point of discharge. These watershed
polygons were then manually altered to match the extent of drainage flow at each specific
sampling location. The manual alterations were determined by interpreting the flow
accumulation layer and approximating where the flow would funnel into the sample
location. This created a more accurate representation of the actual catchment area flowing
into each individual sampling location. These site-specific catchments were then converted
to polygons, and the internal area of each was calculated, giving the area of land that
each of the sample sites serviced. The watersheds calculated for the Claisebrook Main
Drain and Osborne Park Branch Drain catchments were originally miscalculated from
this catchment modelling process, as the digital elevation model did not account for
anthropogenic alterations to the drainage systems in this area. As such, the catchment for
these two drainage channels was manually entered into ArcGIS using reference materials
on the actual catchment extent from DWER (2014) and Kobryn (2001).

The land use classification layers imported into ArcGIS were adapted from the Aus-
tralian Land Use Management categories [30] used in the Department of Primary Industries
and Regional Development land use dataset [31]. To simplify analysis, land use clas-
sifications were regrouped into six categories: residential (urban and rural); industrial;
services; agriculture (including horticulture); natural (including water bodies); and pub-
lic open space. Any misclassifications (e.g., natural land classed as production forestry)
were corrected.
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The population for each catchment was then determined by multiplying the population
density of each suburb within the catchment by the area of the catchment it occupies. The
population estimates from the fractions of suburbs within the overall catchment were
then summed to give a catchment-wide population. Rainfall amounts were calculated
as the cumulative rainfall for the 7 days prior to sampling. Rainfall data were obtained
from the Australian Bureau of Meteorology records at the nearest weather station to each
location [32].

All data curation and analyses were performed in R [33]. Prior to statistical analysis,
microplastic count data were corrected to account for both background contamination
from blank measurements, and the false positive rates identified with Raman spectroscopy.
Corrections involved random sampling from vectors of experimental blank and false
positive count measurements, rather than using mean blank or false positive values.

The differences in mean microplastic concentrations between catchments and sites
were assessed using Type-II ANOVA based on linear mixed-effect (LME) models with
Tukey pairwise contrasts, cross-checked with non-parametric Kruskal–Wallis tests. LME
models were implemented in the R package ‘nlme’ [34], with contrasts calculated using
the R package ‘multcomp’ [35]. The effects of relevant covariates (catchment population;
catchment area; prior rainfall; proportions of the land use categories residential, industrial,
services, agricultural, and public open space) on microplastic concentrations were assessed
using linear mixed-effect models with sampling site as random effects and each covariate
separately as fixed effects. Nested alternatives for each model were (1) using constant
variance structure independent of catchment or sampling site; (2) including a variance
function with different standard deviations for each catchment, and (3) including a variance
function with different standard deviations for each sampling site. The model alternative
selected for each covariate was the one giving the lowest Aikake Information Criterion
value, if an analysis of variance showed a significant improvement over the next most
complex model.

3. Results

3.1. Catchment Modelling

The catchment modelling output defined the area, estimated population, rainfall total
for the week leading up to the date of sampling, and land use proportions expressed as
percentages (Table 2).

Table 2. Summary of drain and catchment characteristics derived from catchment modelling.

B1 B2 C1 C2 K1 K2 O1 O2 SB1 SB2 SC1 SC2

Catchment Characteristics
Area (ha) 1089 1105 1459 990 20 21 2227 2324 223 238 899 631

Population 21039 21372 34370 24548 298 319 45963 49291 3221 3387 91 64
Rainfall
(mm) 1 31.2 31.2 56.8 11.4 31.8 31.8 44.6 6.8 31.8 5.4 14.8 14.8

Land Use Proportion (%)
Public open 8.5 9.2 16.6 17.9 0.00 0.00 9.6 9.3 8.7 8.1 0.00 0.00
Industrial 31.4 30.9 1.4 0.00 0.00 0.00 13.0 16.0 17.4 16.3 0.47 0.50

Residential 58.0 58.0 76.8 77.7 84.2 84.2 68.5 65.9 64.6 67.0 1.9 2.7
Services 2.2 2.1 3.9 3.0 15.8 15.8 6.7 6.4 5.1 4.8 0.00 0.00
Natural 0.00 0.10 1.4 1.5 0.00 0.00 2.2 2.4 4.1 3.8 2.7 2.5

Agricultural 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 94.9 94.3

1 In the 7 days prior to sampling.

3.2. Background Contamination and Raman Spectroscopy

Background concentrations (blanks) showed 0, 1, 1, 1 and 2 black suspected microplas-
tic fibres. A value drawn randomly from the vector [0,1,1,1,2] was then subtracted, only
from fibre counts, before scaling to concentrations based on sample volumes. Raman spec-
troscopy indicated that 18 of the 38 suspected microplastics initially counted after visual
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analysis were correctly identified. The false positive rate of the analysis was therefore 52.6%.
This proportion of false positive microplastic identifications is consistent with the findings
of other studies, in which between 20 and 70% of polymers have been misidentified [20].
Correctly identified polymers were matched as Polypropylene (PP) (64.7%), Polyethylene
(PE) (23.5%), Polytetrafluoroethylene (PTFE) (5.9%), and Polyvinylidene fluoride (PVDF)
(5.9%). Natural polymers misidentified as microplastics under visual inspection included
cotton and wool fibres and various organic materials derived from plant and animal matter.
Raman spectra of the plastics identified, as well as wool and cotton fibres, are presented in
Figure 3.

Figure 3. Raman spectra (intensity vs. relative wavenumbers, cm−1) used to classify polymer
materials identified from the microplastic subsamples which were identified visually. The main peaks
for each spectrum are labelled with their positions in relative wavenumbers.

3.3. Statistical Analyses of Factors Affecting Microplastic Concentrations

(a) Microplastic concentrations across and within drainage catchments.

The mean concentration of microplastics across the drainage catchments ranged from
9.22 (Kitchener Road) to 20.1 MP/L (Osborne Park). The catchments with the two highest
microplastic concentrations (Osborne Park and South Coolup) also had the greatest intra-
catchment variation (relative standard deviations of 58% at Osborne Park and 59% at South
Coolup). Table 3 summarises the microplastic concentrations by catchment, and Table 4
summarises the microplastic concentrations by sampling site.
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Table 3. Mean microplastic concentration (MP/L) and standard deviation at a catchment level.

Bayswater Claisebrook Kitchener Osborne S. Belmont S. Coolup

Mean (MP/L) 12.6 12.8 9.2 20 12.8 18
Standard
deviation

3.6 4.7 2.1 12 4.2 10

Table 4. Mean microplastic concentration (MP/L) and standard deviation at a site-specific level.

B1 B2 C1 C2 K1 K2 O1 O2 SB1 SB2 SC1 SC2

Mean (MP/L) 13.9 11.2 14.7 11.0 9.7 8.8 25 15.2 12.9 12.7 25 10.3
Standard
deviation

3.6 3.8 5.4 4.0 2.2 2.4 16 2.6 1.5 6.5 10 2.2

Within-catchment variation in mean microplastic concentrations was minimal, with
no significant difference between the mean microplastic concentrations of site pairs in each
catchment (Welch’s t-test: 0.09 < p < 0.995). Boxplots of the microplastic concentrations at
each drainage catchment and each sampling site are shown in Figure 4.

Figure 4. Comparison of microplastic concentrations (a) in each catchment and (b) at each site. The
bar colours are simply to provide a visual match between catchments and sites in each catchment.

Neither site nor catchment explain the variation in microplastic concentrations, based
on Type-II ANOVA analysis; 3% of the variance was explained by catchment, 23% by site
(unrelated to the drainage catchment), and the residual variance was 73%. The Tukey
pairwise contrasts, treating catchment as a factor, suggested that none of the catchment
pairings had significantly different means from one another (0.14 < p <1).

(b) Analysis of Covariates

Summaries of the LME models for each covariate are listed in Table 5. Catchment area,
catchment population, industrial, natural, and public open space land use proportions had
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significant positive effects on microplastic concentrations. Conversely, the proportion of
residential and services land uses had significant negative effects on microplastic concen-
trations. Preceding rainfall, and the proportion of agricultural land had no significant effect
on microplastic concentrations.

Table 5. Summaries of linear mixed-effects models predicting microplastic concentrations from each
of the covariates reflecting the pattern of land use in each catchment. Coefficients and P-values for
covariates with significant effects are in bold type.

Covariate Model Specifications
Covariate

Coefficient
p-Value

Catchment population ÷ 1000 Heteroskedastic,
variation at site level 0.1041 0.005

Catchment area Heteroskedastic,
variation at site level 0.0025 0.0037

Rainfall Heteroskedastic,
variation at site level −0.0109 0.86

Residential proportion Heteroskedastic,
variation at catchment level −0.1168 0.0169

Agricultural proportion Heteroskedastic,
variation at site level −0.0120 0.60

Industrial proportion Heteroskedastic,
variation at site level 0.1352 0.0107

Natural proportion Heteroskedastic,
variation at site level 0.7090 0.0248

Services proportion Heteroskedastic,
variation at site level −0.2761 0.0093

Public Open Space proportion Heteroskedastic,
variation at site level 0.3193 0.0051

Some features of the data require further exploration. Notably, SC1 had high mi-
croplastic concentrations, despite a small catchment population (91 people) and a moderate
catchment size (899 ha). Additionally, the negative effect of the proportion of services and
residential land uses on microplastic concentrations appears to be influenced by the results
at the South Coolup site. Here, the residential and services proportions were low (1.9% and
0%, respectively), yet mean concentrations were high. The trend of increasing microplastic
concentration with the increasing proportion of industrial land also had an exception at site
SC1, which had the second highest microplastic concentrations but only 0.5% industrial
land use. Some covariates were significantly collinear (e.g., catchment area and population,
Pearson’s r = 0.94; residential-agricultural r = −0.95; etc.), so the individual effects may
represent a combination of land use or demographic variables.

3.4. Microplastic Characteristics

Morphology. The microplastics observed included fibres, fragments, films and beads.
Fibres were the most common, accounting for between 86% and 99% of synthetic polymers
identified (Figure 5a). Fragments comprised between 1% and 13% of microplastics in the
catchments. Films were only identified at the South Belmont Drain catchment, where they
contributed 1% of the microplastic count. Claisebrook was the only drainage catchment
where microplastic beads were observed but, at 0.01% of the count, microbeads were
uncommon.
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Figure 5. Proportions of microplastics in each catchment, classified by (a) shape (morphology),
(b) size, and (c) colour.

Size. Microplastics in the 190–530 μm size category were the most abundant (33%),
followed by 100–190 μm (28%), ≥530 μm (27%) and 25–100 μm (12%). Kitchener and South
Belmont were the only drainage catchments having the ≥ 530 μm size category as the most
populous size fraction, comprising 32% (K) and 30% (SB) of plastics identified. Kitchener
and South Belmont catchments also featured the greatest proportion of 25–100 μm polymers,
at 18% (K) and 14% (SB).

Colour. The majority of microplastics identified were black (55%), followed by red
(18%), blue (12%) and green (7%) (Figure 5c). Pink, orange, brown, clear, white and
grey microplastics each represented less than 5% of the total microplastic count. The
proportions of microplastics of different morphologies are shown in Figure 5a, different
sizes in Figure 5b, and different colours in Figure 5c. Additionally, a subsample of the
microplastics identified are presented in Figure 6.
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Figure 6. Optical micrographs of selected microplastics analysed by Raman spectroscopy: (a) clear
fibre, (b) clear fibre, (c) clear fragment, and (d) black fibre.

4. Discussion

4.1. Catchment and Site Variation in Microplastic Concentrations

The lack of variation in microplastic concentrations across drainage catchments or sites,
or within drainage catchment site pairs, reflects the ubiquitous occurrence of microplastics
in the Perth region. Similarly, Mora-Teddy and Matthaei [36] found no significant difference
between mean microplastic concentrations in drainage catchments in New Zealand. In
contrast, Lutz et al. [20] observed substantial variation in microplastic concentrations in
stormwater drain sediment in Perth, both within and between catchments. This difference
may reflect the more dynamic nature of water, compared with sediments which provide a
more stable, longer-term sink for microplastics [20].

4.2. Factors Affecting Microplastic Concentrations

Both catchment area and population were predictive, with positive effects, of stormwa-
ter microplastic concentrations in this study. This result is in contrast with microplastic
concentrations in stormwater sediments in Perth and Melbourne, which were not related to
catchment size or population [20,37].

The ability of the proportion of industrial land use to predict microplastic concen-
trations has been widely reported, consistent with the significant positive effect shown
in this study (Table 5). Piñon-Colin et al. [21], Liu et al. [38] and Townsend et al. [37]
found that catchments with higher industrial land use proportions had greater microplastic
concentrations than catchments dominated by residential land.
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The significant positive effect of the proportions of public open space and natural
land on microplastic concentrations is somewhat unexpected. In contrast, Townsend
et al. [37] found a negative correlation between public open space and microplastics,
instead noting that higher concentrations were detected with increasing proportions of
urbanisation. Similarly, Lutz et al. [20] measured lower microplastic concentrations in
stormwater sediment in areas with greater proportions of public open space and natural
land. Some studies conducted in relatively untouched environments, however, have
detected high microplastic concentrations in regions with little to no urban development.
This indicates that while land use intensity and population can be predictors for microplastic
concentrations in some areas, these results cannot be generalised across different studies,
regions, or stormwater drainage catchments [20,39,40]. Additionally, the detection of high
microplastic concentrations in areas with greater natural land and public open space may be
influenced by the inclusion of wetlands and lakes in these land use categories. Wetlands act
as sinks for microplastics [38], and areas with greater proportions of natural land and public
open spaces included wetland and lake environments and surrounding parks. Therefore,
the influence of these wetland sinks may contribute to the significant positive effects of the
proportion of natural land and public open space on microplastic concentrations.

Our finding that the agricultural land use fraction is not correlated with microplastic
concentrations is unsurprising, given that only one catchment (South Coolup) had any
agricultural land. It would usually be expected, however, that agricultural areas that do
not use biosolids applications would have lower microplastic concentrations [20].

Rainfall in the preceding 7 days was not predictive of microplastic concentrations in
this study. Conversely, Piñon-Colin et al. [21] found the greatest MP concentrations during
rainfall events, but their approach differed in that sites were sampled at the beginning
of the rainfall event and 10 and 30 min into the event for seven separate weather events.
Similarly, Yonkos et al. [40] found that microplastic concentrations were higher after rainfall
or other extreme weather conditions such as hurricanes. Different trends may be observed
for different microplastic particle morphologies, with fragments increasing during rainfall
events but not fibres [22]. This may explain the lack of a rainfall effect in our study, given
the predominance of fibres over other microplastic types.

4.3. Microplastic Concentrations

The microplastic concentrations measured in the stormwater drains had means varying
from 20.1 MP/L at Osborne Park Branch Drain to 9.2 MP/L at Kitchener St Drain. These
concentrations match the ranges observed in recent literature, which vary between 15.4
and 30.9 MP/L [22,41,42]. Our microplastic concentrations are lower than those reported
by Piñon-Colin et al. [21] for stormwater runoff in semi-arid Tijuana, Mexico with median
microplastic concentrations between 66 and 191 MP/L. There may be significant variations
in reported concentrations stemming from differing sampling and analytical techniques,
and variations in the types of water body sampled. For instance, Liu et al. [38] assessed
urban and highway retention ponds receiving stormwater runoff flows from various land
uses in Denmark and found microplastic concentrations between 490 and 22,894 MP/L.
However, this study included plastics between 10 and 2000 μm, an upper classification twice
the size of the approximate 1000 μm upper limit in this study. Similarly, Mora-Teddy and
Matthaei [36] assessed stormwater systems in New Zealand and discovered microplastic
concentrations in the range of <1000–44,000 MP/L, with an upper size limit of 5,000 μm
and without spectroscopic verification of polymer composition or false-positive correction.

As observed in other studies of microplastics in stormwater systems [16,20,43], the
dominant microplastic shapes found were fibres. The high proportion of fibres relative to
other morphologies relates to the ease of transport by water, since their sedimentation rates
are slower than for other particle shapes [20].
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4.4. Polymer Types

The dominance of polypropylene and polyethylene in this study is consistent with
other studies of microplastic in freshwater. Piñon-Colin et al. [21] found that PE and
polystyrene (PS) accounted for the greatest proportion of plastics in stormwater, while
Liu et al. [38] detected PVE, PS, PP and PE, with PP being the most common polymer.
Interestingly, Lutz et al. [20] detected polyethylene terephthalate (PET), nylon polyamide
(PA), polyacrylonitrile (PAN) and a synthetic and natural polymer blend, as well as PP
and PE in stormwater sediment across Perth. The dominance of PP and PE in our samples
can be explained by their densities relative to other plastic polymers. Since PP and PE
have lower densities than fresh water, they would float downstream through the drains,
rather than settling into the sediments (Lutz et al. 2021). Conversely, more dense polymers
such as PA, PVC, polyurethane (PU) and PET, which were not identified in this study,
are more likely to become embedded in sediments [44]. Several studies have found that
higher-density polymers such as PET, PVC, PA, polyester, and PU were more prevalent
in sediment than in water samples [38,42,45]. The dominance of PE and PP in this study
indicates some potential sources of microplastics, including single-use plastic bags (PE), and
food containers, fabrics, textiles, packaging materials and reusable products (PP) [44,46].

5. Conclusions

Our understanding of the fate and transportation of microplastics in terrestrial environ-
ments is still limited, and this first study to report stormwater microplastic concentrations in
Western Australia provides useful information on the role of stormwater. The study focused
on the four research questions stated in the Introduction. First, stormwater drains in Perth,
Western Australia, contain concentrations of microplastics similar to other stormwater
drainage catchments worldwide. Second, the predominance of fibres and low-density
polymers suggests an active role of stormwater drains in microplastic transport. In the case
of Perth, stormwater discharge is to the Swan–Canning Estuary, with a direct connection to
the Indian Ocean. Third, the consistency of concentrations between different drains, and
between sampling sites on the same drain, is consistent with widely occurring microplastic
contamination in this region. Finally, the significant effects of catchment population and
area and urban land use proportions (residential, industrial, commercial, and public open
space) on microplastic concentrations in stormwater are consistent with expectations. The
unexpected positive effect of the proportion of natural land on stormwater microplastic
concentrations suggests that further research is required to test hypotheses about the role
of wetlands or other mechanisms for microplastic transport and retention. Stormwater
drains in this urban area, and others worldwide, have a direct connection with estuar-
ine and marine environments. This suggests that connections between stormwater and
natural waters need to be interrupted using engineered solutions to limit the transport
of microplastic to sensitive ecosystems. This is already widely implemented for macro-
scopic solids in stormwater, but the small size of plastic particles is an additional threat to
urban sustainability.

Future investigations should also sample additional locations, before and after rainfall
events and over an extended timeframe, with the timing of sampling designed to under-
stand the effect of weather and seasonality on microplastic concentrations. The possible
relationship between sediment microplastic concentrations and stormwater concentrations
is also worthy of investigation. The predominance of microplastic fibres in our study
also implies that aeolian transport may be important, a further potentially fruitful avenue
for research.
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Abstract: Metropolitan areas in China are not only the core spatial carriers of urbanization develop-
ment but also the main generators of land use carbon emission (LUCE). However, existing research
lacks comparative studies on the differential patterns and impact factors of LUCE in different stages
of metropolitan areas. Therefore, this paper deeply analyzes the spatial characteristics of LUCE and
the coupling coordination degree (CCD) of the economy contributive coefficient (ECC) and ecological
support coefficient (ESC) in three different stages of metropolitan areas in the Yangtze River Economic
Belt (YREB), China. Moreover, quantitative modelling of the impact factors of LUCE in these different
stages of metropolitan areas is furtherly revealed. Results show that: (1) The more mature stage
of the metropolitan area, the higher the amount of LUCE, and the more districts or counties with
high carbon emissions levels are clustered. (2) At the metropolitan area scale, the more mature the
metropolitan area is and the lower the CCD between ECC and ESC is, while at the finer scale, more
developed counties have lower CCD. (3) Resident population, per capita GDP, and urbanization
rate have good explanatory effects on carbon emissions in these three metropolitan areas; however,
except for the urbanization rate, which has a negative effect on LUCE in Nanchang metropolitan
area (NMA), the other two factors have positive effects on LUCE in these three metropolitan areas.
This study has important implications for different stages of metropolitan areas to formulate targeted
LUCE reduction policies.

Keywords: land use carbon emissions; metropolitan areas; coupling coordination degree; STIRPAT
model; driving factors

1. Introduction

Climate change brings enormous challenges to the natural environment and human
society. Studies have reported that carbon dioxide is one of the dominant contributors to
climate change [1], which has become the main area of concern at home and overseas. Since
the industrial revolution, land use carbon emissions (LUCE) have contributed around 30%
of human carbon emissions (CE) [2,3]. At present, research on LUCE is relatively rich in
mainly two parts. Firstly, in terms of research content, the spatio-temporal characteristics
of LUCE and the influencing factors [4,5], the relationships of LUCE [6], the network
relationship and spillover effects [7], the efficiency [8], the economy contributive coefficient
(ECC) and ecological support coefficient (ESC) of LUCE [9,10] are the research concerns
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of most studies. However, these studies do not focus as much on the CCD (coupling
coordination degree) between ECC and ESC of LUCE and are unable to offer specific
improvements to this relationship. Secondly, in terms of spatial scales, studies have been
carried out on the urban agglomeration [11], provincial or state [12], municipal [13], and
watershed scales [14], while few studies have been conducted in metropolitan area scale.
However, as the main form of urbanization [15], the land use of metropolitan areas is not
only the spatial projection of the main economic activities of human society but also the
main generator of carbon emissions [16,17]. Therefore, it is of great urgency to scientifically
identify the CCD between ECC and ESC and the impact factors of carbon emissions in
metropolitan areas, which is helpful for formulating targeted low-carbon development
measures in this kind of important area.

Studies have reported that different regions and areas had different network synergis-
tic capabilities and driving power [18]. Similarly, the LUCE characteristics of metropolitan
areas at different development stages may also differ significantly. When Fujii et al. stud-
ied the relationship between economic development and CO2 emissions in 276 global
metropolitan areas, they assumed that the urban CO2 emissions per capita in the same
sector would show differences in different urban economic development stages [19]. How-
ever, verifications of the above assumptions have not been conducted. In addition, the
current studies on CO2 emissions in urban areas of China are usually focused on a single
evolution type of study area [20,21]. The same problem also exists for the Yangtze River
Economic Belt (YREB), which is leading China’s high-quality economic development. For
instance, much attention has been paid to the environmental and economic development
of the YREB, which is crucial to both regional ecological security and sustainable develop-
ment in China [22]. The existing studies mainly concern the patterns [23], the influencing
factors [24,25], and the efficiency of LUCE [26] in the YREB. For example, spatial autocor-
relation [27], social network analysis (SNA) [7], and information entropy model [28] are
often introduced to analyze the spatio-temporal patterns of LUCE in the YREB. The grey
relational analysis model [29], regression models regarding spatial lag model, spatial error
model [30], or LMDI [31] are used to model the impact factors; DEA, SBM-DEA [32], and
SBM-UN model [33] are often used to measure efficiency under the constraint of LUCE. In
addition, over 95% population lives in the 34 metropolitan areas in China, but few studies
have compared the LUCE characteristics of metropolitan areas in different development
stages. Therefore, a systematic study on the spatial differentiation of LUCE in metropolitan
areas at different development stages is needed.

In summary, existing studies have made some achievements in regional LUCE in the
YREB. However, there is still a lack of comparative investigations in metropolitan areas
with different development stages. Simultaneously, the CCD between ECC and ESC of
LUCE and impact factors are rarely analyzed. Therefore, the purpose of this study is to
conduct a comparative study on the spatial patterns of LUCE in metropolitan areas at
various development stages in the YREB and to explore the CCD between ECC and ESC,
and the impact factors of LUCE in each metropolitan area. Contributions of this paper
are two-fold: Firstly, the spatial differentiation characteristics and the spatial patterns of
LUCE in cultivating, developmental and mature metropolitan areas are identified, which is
conducive to the determination of sub-regional and differentiated low-carbon sustainable
development goals for each metropolitan area. Secondly, differential analysis of the impact
factors of LUCE from metropolitan areas is conducive to the targeted formulation of
carbon reduction measures for each metropolitan area. The findings of this study can
serve implications for the low-carbon development of metropolitan areas at different
development stages.

2. Materials and Methods

2.1. Study Area

The Yangtze River Economic Belt (YREB) is an important strategic area for China’s
economic development [34,35]. YREB is divided into three parts (namely, the upper,
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middle, and lower reaches). Chongqing, Sichuan, Guizhou, and Yunnan provinces are in
the upper reach. Hubei, Jiangxi, and Hunan provinces are in the middle of reach. Anhui,
Zhejiang, Jiangsu, and Shanghai provinces are in the lower reach. The lower reach is the
most developed, which has the famous Yangtze River Delta (YRD), while the economic
levels of the other two reaches are relatively low [36]. The Chengdu, Nanchang, and
Hangzhou metropolitan areas are located in the upper, middle, and lower reaches of
the YREB, respectively. According to the China Metropolitan Area Development Report
2021 [37] announced by the China Institute of New Urbanization of Tsinghua University,
the Chengdu, Nanchang, and Hangzhou metropolitan areas belong to the developmental
type, cultivating type, and mature type respectively. Thus, these three different stages of
metropolitan areas are the study cases of this research (as shown in Figure 1).

 
 

(a) (b) 

 
(c) (d) 

Figure 1. Study areas. (a) Locations of the study areas in China. (b–d) land use of the Hangzhou,
Chengdu, and Nanchang metropolitan areas, respectively.

Chengdu Metropolitan Area (CMA) is in the upper reach of the YREB and the eco-
nomic centers of southwestern China. According to the CMA Development Plan, the
CMA is centered in Chengdu City and consists of 30 districts or counties with an area
of 2.70 × 104 km2; the resident population of the CMA in 2020 is 27.61 million, and the
economic output accounts for 2.11% of China’s Gross Domestic Product (GDP).
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Nanchang Metropolitan Area (NMA) is in the middle reach of YREB. According to
NMA Plan (2015–2030), the NMA consists of 18 districts or counties with a total area of
2.45 × 104 km2; the resident population of NMA reaches 11.58 million in 2020, and its total
GDP accounts for 0.71% of China.

Hangzhou Metropolitan Area (HMA) is located downstream of the YREB. According to
the HMA Development Plan (2020–2035), the HMA includes 6 cities, including Hangzhou,
Jiaxing, Huzhou, Shaoxing, Quzhou, and Huangshan, with a total of 44 districts or counties
and a total area of about 5.48 × 104 km2; by 2020, the population of HMA was 27.46 million,
and its GDP accounted for 3.11% of the country.

2.2. Data Sources and Pre-Processing

Land use classification results are 30-meter spatial resolution GlobeLand30 images
of year 2020 (http://www.globallandcover.com/) (accessed on 10 May 2022), which has
become quite popular for many scholars to conduct related research [38,39]. Social and
economic data are respectively derived from the 2020 Statistical Yearbooks of each province
and China City Statistical Yearbook involved in the study areas. The resident population
data are mainly from the 7th National Census bulletin and the statistical yearbooks and
bulletins of the corresponding districts or counties. The energy consumption per unit of
GDP was calculated from the total energy consumption and total GDP in the statistical
yearbooks of each region.

2.3. Methods

In this study, the total LUCE of each metropolitan area is obtained by measuring
the number of sources and sinks of LUCE in the three stages of metropolitan areas. The
relationship between the ECC and ESC of each district and county in the metropolitan
areas is studied by the CCD model, and the STIRPAT model is introduced to investigate the
dominant factors affecting LUCE in the three types of metropolitan areas. Figure 2 shows
the analysis clue of this study.

 

Figure 2. Research framework.

2.3.1. Measurement of LUCE

The total amount of LUCE is equal to the sum of carbon sources and sinks [40], as
shown in Equation (1):

CE = CO2 sources + CO2 sinks (1)

where CE is the total amount of LUCE; CO2 sources represents the number of carbon sources
of LUCE; and CO2 sinks represents the number of carbon sinks of LUCE.

(1) Calculation of the number of carbon sources
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The number of land use carbon sources for each district and county in the metropolitan
areas is calculated from the cultivated and construction land. The number of LUCE from
cultivated land use is the area of this kind of land use multiplied by its carbon emission
factor, which is taken as 0.0422 according to Sun [41] and Zhang [42]. The number of LUCE
from construction land use is usually measured indirectly based on the energy consumption
of the city (such as coal, oil, natural gas, electricity, etc.). However, energy consumption
data for each district and county in the metropolitan areas is difficult to obtain. According
to relevant studies [43,44], since the value of secondary and tertiary industries is mainly
contributed by construction land, the number of carbon emissions from construction land
in each district and county can be approximated from the total GDP of secondary and
tertiary industries. The calculation formula of carbon sources amount is as follows:

CO2 sources = Ac × δc + Pi × Mi × θi (2)

where CO2 sources is the total land use carbon sources; Ac represents the area of cultivated
land use; δc represents the coefficient of cultivated land; Pi represents the energy consump-
tion per unit of GDP; Mi represents the total GDP of secondary and tertiary industries in
each district and county; and θi is the coefficient of standard coal.

(2) Calculation of the number of carbon sinks

Land with carbon sink function and its corresponding carbon sink coefficient [45] are
involved in calculating the carbon sinks of each district and county in the metropolitan areas.
The land with carbon sink function includes green lands (such as grassland, woodland, and
shrubland), water (such as wetland, water, and sea), unutilized land, permanent snow and
ice, and so on. According to relevant research, woodland and shrubland [42] and water
and sea were combined [46]. Referring to existing studies, the corresponding carbon sink
coefficients δi for different land use types are shown in Table 1. Since the percentage of
permanent snow and ice in these study areas is only 0.0017%, this study uses the LUCE
coefficient of water to replace its coefficient. The carbon sinks are calculated as follows:

CO2 sinks = ∑ ei = ∑ Ai × δi (3)

where CO2 sinks is the total amount of carbon sink; ei represents the amount of carbon sink
generated by land use type i; Ai and δi represent the spatial area; and sink coefficient of
land use type, respectively.

Table 1. CE coefficient of different land use types (kg·m−2·a−1).

Land Use Coefficient References

Woodland/Shrubland −0.0644 Zhang et al., [42]; Fang et al., [47]

Grassland −0.0021 Sun et al., [41]; Zhang et al., [42]

Wetland −0.0001 Zhang et al., [42]

Water/Sea −0.0253 Yang et al., [48]

Unutilized −0.0005 Yang et al., [48]

2.3.2. Global Moran’s I

Global Moran’s I is used to analyze the overall correlation degree of LUCE spatial
distribution of each metropolitan area [49], and the calculation formula is as follows:

Moran′s I =
n ∑n

i=1 ∑n
j=1 Wij(xi − x)

(
xj − x

)
(

∑n
i=1 ∑n

j=1 Wij

)
∑n

i=1(xi − x)2
(4)

where n is the number of districts and counties in the metropolitan area; xi and xj are the
LUCE of district or county i and j, respectively; Wij is the spatial weight matrix of district
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or county i and j; and x is the average value. The values of Moran’s I range from [−1, 1];
Moran’s I > 0, Moran’s I < 0, and Moran’s I = 0 represent positive correlation, negative
correlation, and no spatial correlation, respectively.

2.3.3. Measurement of CCD

The CCD model is introduced to measure the relationship between the ECC and ESC
of CE for each district and county in the metropolitan areas. The calculation formula of
CCD [50] is as follows:

C =

√√√√ U1U2(
U1+U2

2

)2 =
2
√

U1U2

U1 + U2
(5)

T = a1U1 + a2U2 (6)

CCD =
√

C × T (7)

where CCD is between 0 and 1; C and T are the coupling degree and integrated coordination
index between ECC and ESC, respectively; U1 and U2 are the values of ECC and ESC
respectively; a1 and a2 are the weights of indicators ECC and ESC, in this study, ECC and
ESC are considered equally important, so the weights of both indicators a1 and a2 are taken
as 0.5, then T = 0.5U1 + 0.5U2.

According to the CCD grading method [51,52], the CCD was classified into five classes
as shown in Table 2:

Table 2. Levels of CCD.

Development Category Level Balanced or Not Degree

Coordinated 0.8 < CCD ≤ 1.0 Balanced Highly
Transformation 0.6 < CCD ≤ 0.8 Balanced Moderately

Uncoordinated
0.4 < CCD ≤ 0.6 Balanced Basically
0.2 < CCD ≤ 0.4 Unbalanced Moderately
0 < CCD ≤ 0.2 Unbalanced Seriously

(1) Calculating ECC

ECC is introduced to estimate the equity of economic contribution of CE among
districts or counties within a metropolitan area [53] and can reflect the socio-economic
benefits that accompany the process of generating carbon emissions. ECC is calculated as:

ECC =
Gi
G

/
Ci
C

(8)

where Gi and G are the GDP of each district and county and the whole metropolitan area,
respectively; and Ci and C are the carbon emissions of each district and county and the
whole metropolitan area, respectively. When the economic contribution of a district or
county is greater than its share of carbon emissions (ECC > 1), it indicates that the district
or county has a high level of economic efficiency and green development. When ECC is
less than 1, the economic contribution of the district is smaller than its carbon emissions
contribution, and its economic efficiency of carbon emission is relatively low.

(2) Calculating ESC

ESC is introduced to estimate the equity of contribution of carbon ecological capacity
among districts or counties in the metropolitan area [54], which could reflect the carbon
sink capacity of each district and county [55] as a reflection of ecological benefits. ESC
is calculated by the ratio of the carbon sink of each city to the carbon sink of all cities,
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divided by the ratio of carbon emissions of each city to the carbon emissions of all cities.
The calculation formula of ESC is:

ESC =
CAi
CA

/
Ci
C

(9)

where CAi and CA are the carbon sinks of each district or county and the whole metropoli-
tan area, respectively. Districts with carbon sinks contribution greater than their share
of carbon emissions (ESC > 1), indicate positive impacts on the absorption of CE in the
whole metropolitan area and generate positive externalities that help other districts or
counties, while districts with ESC less than 1 indicate negative externality to other districts
or counties.

(3) Data normalization

Since the distribution range of ECC and ESC values are different, the coupling co-
ordination degree between the two cannot be calculated directly, so they must be nor-
malized. According to existing research [56,57], the formulas of positive and negative
standardization are:

Yi =
Xi − min(Xi)

max(Xi)− min(Xi)
(10)

Yi =
max(Xi)− Xi

max(Xi)− min(Xi)
(11)

where Yi represents the standardized value of Xi; Xi represents the actual value of indicator
i; max(Xi), min(Xi) are the maximum and minimum values of Xi, respectively.

2.3.4. Impact Factor Measurement Model

STIRPAT is a commonly used model to investigate the impact of population, affluence,
and technology on the environment in the field of carbon emissions [58], which is expressed
as follows:

I = aPb AcTde (12)

where a is a constant variable; b, c, and d represent the coefficients of population, affluence,
and technology, respectively; and e is an error variable.

Equation (11) transforms to Equation (12) by logarithms method:

ln I = a + b ln P + c ln A + d ln T + e (13)

where I is the LUCE of each district and county in each metropolitan area; P, A, and T are
the residential population, per capita GDP and urbanization rate of each district or county,
respectively; a is a constant variable; b, c, and d represent the coefficients of P, A, and T,
respectively; e is an error variable.

3. Results

3.1. Spatial Characteristics of LUCE
3.1.1. Structures of LUCE in Metropolitan Areas

Overall, the total amount of LUCE in the metropolitan area is consistent with its devel-
opment stage. The total LUCE in HMA (the mature metropolitan area) of 7802.7285 × 104 t
is the highest, which is much higher than the total carbon emissions in CMA (the develop-
mental metropolitan area) of 4678.7527 × 104 t, and in NMA (the cultivating metropolitan
area) of 1421.2675 × 104 t. Construction land use types are the main contributor of LUCE
in these three metropolitan areas, accounting for 99.18%, 96.71%, and 98.34%, respectively,
while the proportion of LUCE from cultivated land use types is much lower. Regarding the
composition structure of carbon sequestration, the carbon sinks of the three metropolitan
areas are also very similar, with woodland accounting for the largest proportion of carbon
sequestration, 95.29%, 84.93%, and 95.84% of the carbon sinks in HMA, NMA, and CMA,
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respectively, while wetland and unutilized land are both weaker due to their smaller carbon
sink coefficients and weaker carbon sink capacities, as shown in Table 3.

Table 3. Land use carbon emissions/sinks of three metropolitan areas (×104 t/a).

Cultivated
Land

Construction
Land Woodland Grassland Wetland Water Unutilized

Land
Total

Nanchang
Metropolitan Area 48.4964 1424.5591 −43.9845 −0.2845 −0.0006 −7.5160 −0.0024 1421.2675

Chengdu
Metropolitan Area 77.9751 4631.6161 −29.5562 −0.2083 −0.0003 −1.0737 0.0000 4678.7527

Hangzhou
Metropolitan Area 65.6841 7936.4449 −190.0182 −0.2788 −0.0006 −9.1028 −0.0001 7802.7285

3.1.2. Spatial Differentiation of LUCE in Metropolitan Areas

The spatial distribution characteristics of LUCE in NMA, CMA, and HMA metropoli-
tan areas are weak core cluster type, strong core cluster type, and flat extension respectively.
Based on the natural breakpoint method, the sources and sinks of LUCE of the three
metropolitan areas were reclassified, as shown in Figures 3 and 4. The areas with high
carbon emissions (more than 74.62 × 104 tons) in NMA are mainly concentrated in the
southwest, probably due to the higher development level of the economy in its southwest,
such as the “Feng-Zhang-Gao” (Fengcheng-Zhangshu-Gaoan) industrial development area.
The areas with high carbon sinks (more than 4.49 × 104 tons) were mainly concentrated in
two parts (the northwestern and southeastern parts) of the region. However, the LUCE of
districts or counties in the CMA shows an obvious “core-edge” spatial distribution pattern,
with carbon emissions decreasing from the middle to the periphery of the metropolitan
area. Areas with large carbon absorption are in the northwest of the CMA. The cause of
this spatial distribution may be due to the concentration of construction land being mainly
distributed in the central CMA, and the fact that the non-agricultural industries are also
most developed in the central part of the area and the central city of the metropolitan
area is more attractive. The spatial distribution of LUCE in the HMA shows a “flattened”
extension. Areas with large carbon emissions (more than 74.62 × 104 tons) are distributed
in the northeast of the metropolitan area. Areas with large carbon absorption (more than
4.49 × 104 tons) are concentrated in the southwest of this metropolitan area. From the west
to the east, the carbon emissions of districts or counties gradually increased.

   
(a) Nanchang Metropolitan Area (b) Chengdu Metropolitan Area (c) Hangzhou Metropolitan Area 

Figure 3. County-level distribution of LUCE in Nanchang, Chengdu, and Hangzhou metropolitan areas.
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(a) Nanchang Metropolitan Area (b) Chengdu Metropolitan Area (c) Hangzhou Metropolitan Area 

Figure 4. County-level distribution of LUCE sinks in Nanchang, Chengdu, and Hangzhou metropolitan
areas.

3.1.3. Spatial Clustering Characteristics of LUCE in Metropolitan Areas

Except for NMA (the cultivating metropolitan area), which showed no significant
positive spatial correlation, the carbon sources in CMA (the developmental metropolitan
area) and HMA (the mature metropolitan area) showed significant positive correlation
results. The Moran’s I value is 0.7957 in the Hangzhou metropolitan area, which is larger
than that of 0.7425 in CMA (Table 4). In addition, the carbon sequestration of all three
metropolitan areas shows a significant positive correlation result (Table 5). The specific
Moran’s I value of NMA is 0.8501, which is much higher than 0.4795 of HMA, and 0.4561
of CMA, due to the contiguous distribution of carbon sink spaces, such as woodland and
water, within the metropolitan area.

Table 4. Global Moran’s I of LUCE sources.

Moran’s I z-Score p-Value

Nanchang Metropolitan Area 0.0266 0.5065 0.6125
Chengdu Metropolitan Area 0.7425 9.0600 0.0000

Hangzhou Metropolitan Area 0.7957 7.8238 0.0000

Table 5. Global Moran’s I of LUCE sinks.

Moran’s I z-Score p-Value

Nanchang Metropolitan Area 0.8501 5.3412 0.0000
Chengdu Metropolitan Area 0.4561 5.4008 0.0000

Hangzhou Metropolitan Area 0.4795 4.6800 0.0000

Overall, the more mature the development stage of the metropolitan area, the more
clustered districts or counties with high LUCE levels. The districts or counties with
high LUCE levels are more distributed in the core circles of the CMA compared to the
NMA, while the districts or counties with high carbon emission levels in the HMA are
more widely clustered in contiguous areas. This is related to the high concentration of
construction land, industry, population, and other elements in and around the core area of
the metropolitan area.

3.2. Coupling Coordination Degree Analysis of LUCE
3.2.1. ECC of LUCE in Metropolitan Areas

Districts or counties with high economic contribution coefficient (ECC) of LUCE are
generally concentrated in the central part or the periphery and edge part of the metropolitan
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area (Figure 5). The average values of ECC of carbon emissions of districts or counties in
NMA, CMA, and HMA are 1.07, 1.04, and 1.13, respectively. The districts or counties with
high ECC in Nanchang metropolitan area (cultivating metropolitan area), i.e., districts or
counties with ECC higher than 1.23, are mainly located in the periphery of its central city.
Nanchang, as the central city, accounts for 22.22% of the number of districts or counties
in NMA, indicating that the economic efficiency of LUCE in the periphery of the central
city is higher. The counties with higher ECC, i.e., those with ECC higher than 1.11, are
mainly located in the periphery of the CMA, accounting for 20.00% of the total number of
counties in the CMA, indicating that the contribution of the counties in the periphery to
the economy of the entire metropolitan area is greater than the contribution of their LUCE
to the LUCE of the entire metropolitan area. The ECC of HMA (mature metropolitan area)
gradually decreases from west to east. The districts or counties with high ECC, i.e., districts
or counties with ECC higher than 1.23, are concentrated in the western edge of the HMA,
accounting for 15.91% of the total number of districts or counties in the HMA. The districts
or counties in this area have higher economic efficiency than LUCE.

(a) Nanchang Metropolitan Area (b) Chengdu Metropolitan Area (c) Hangzhou Metropolitan Area 

Figure 5. Economic contribution coefficients of three metropolitan areas.

3.2.2. ESC of Carbon Emission in Metropolitan Areas

The districts or counties with high ecological support coefficients (ESC) in the three
metropolitan areas are all located in the peripheral regions of each metropolitan area (as
shown in Figure 6), indicating that the carbon sinks capacity in the peripheral regions
contributes more than their carbon emissions contribute to the carbon emissions of each
metropolitan area. The mean values of ESC of NMA, CMA, and HMA are 2.31, 2.18, and
5.61, respectively. In addition, the number of districts or counties with higher ESC value
in HMA and CMA, i.e., ESC higher than 3.58 is 29.55% and 26.67% respectively, which
are much higher than the corresponding number of districts or counties in NMA, which
is 11.11%. The results show that HMA and CMA are not only ahead of NMA in terms of
the economic development stage, but also, the proportion of districts or counties with high
contribution of carbon sink capacity is higher than the proportion of districts or counties at
the corresponding level in NMA.

3.2.3. CCD of LUCE in Metropolitan Areas

The CCD (coupling coordination degree) between the ECC and ESC of each metropoli-
tan area is closely bound up to the development stage of the metropolitan area. On the
one hand, the more developed the metropolitan area, the lower the CCD. On the other
hand, the more developed the economic districts or counties within the metropolitan area,
the lower the CCD. The average CCD of NMA, CMA, and HMA is 0.27, 0.34, and 0.18
respectively. The more mature the development stage of the metropolitan area, the more un-
balanced the economy contributive coefficient of LUCE and the ESC. Regarding the spatial
distribution, there is an extreme imbalance between the ECC and ESC of carbon emissions
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of districts or counties in the core circles of CMA and NMA. The number of districts or
counties with extreme imbalance accounts for 40.00% and 44.44% in each metropolitan
area, respectively. The spatial distribution characteristics of the CCD of ECC and ESC of
the developmental metropolitan area (CMA) and cultivating metropolitan area (NMA)
show similarity, except that the number of seriously unbalanced districts or counties in
the developmental metropolitan area accounts for a larger proportion. The eastern part of
HMA is seriously unbalanced and the western part is more balanced overall. The amount
of seriously unbalanced districts or counties account for 65.91% of the total amount of
districts or counties in HMA (as shown in Figure 7).

   
(a) Nanchang Metropolitan Area (b) Chengdu Metropolitan Area (c) Hangzhou Metropolitan Area 

Figure 6. Ecological support coefficients of three metropolitan areas.

   
(a) Nanchang Metropolitan Area (b) Chengdu Metropolitan Area (c) Hangzhou Metropolitan Area 

Figure 7. CCD between ECC and ESC in three metropolitan areas.

3.3. Driving Factors of LUCE in Different Stages of Metropolitan Areas

The LUCE of each district and county in the metropolitan areas are taken as the
dependent variables, while the resident population, per capita GDP, and urbanization
rate are the independent variables, and the carbon emissions of the three metropolitan
areas are analyzed by the STIRPAT model. Regression results are shown in Table 6. The
R-Square of all three models is close to 1, and the influencing factors of the model have
good explanatory power. The lowest value of R-Square is 0.926 in NMA, indicating that
the influencing factors in the model can explain carbon emissions to a degree of 92.60%,
and the remaining 7.40% is not explained by the influencing factors selected by the model.
The highest value of R-square is 0.998 in the CMA, and the influencing factors of its model
can explain the carbon emissions of its districts or counties to 99.80%.
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Table 6. Models Summary Table of Three Metropolitan Areas.

Model R R-Square Adjusted R-Square
Standard Error in

Estimation
Durbin-Watson

Nanchang Metropolitan
Area (NMA) 0.962 0.926 0.910 0.230 1.604

Chengdu Metropolitan
Area (CMA) 0.999 0.998 0.998 0.034 1.865

Hangzhou Metropolitan
Area (HMA) 0.991 0.982 0.981 0.155 2.619

The results of NMA are shown in Table 7. The order of influence of carbon emission
influencing factors is per capita GDP (A) > resident population (P) > urbanization rate
(T). Meanwhile, the influence of resident population and per capita GDP on the LUCE of
the NMA is positive, and the significance test value is 0.000 < 0.050, which both pass the
significance test. However, the influence of the urbanization rate on the LUCE of districts
or counties is negative, and the significance test value is 0.183 > 0.050, which does not pass
the significance test. Therefore, for the NMA (the cultivating metropolitan area), increasing
the urbanization rate of its districts or counties will be a good strategy to reduce LUCE in
the region.

Table 7. Model test results of Nanchang metropolitan area.

Variables

Non-Standardized
Coefficient

Standardized
Coefficient

Colinearity Statistics

B Std. Error Beta t Significance Tolerance VIF

CONSTANT −2.847 0.655 −4.343 0.001
Resident population 1.084 0.092 0.916 11.795 0.000 0.876 1.141

Per capita GDP 1.376 0.186 0.758 7.393 0.000 0.503 1.988
Urbanization rate −0.390 0.279 −0.138 −1.401 0.183 0.541 1.847

The regression results for CMA are shown in Table 8. The order of influence of
carbon emission factors is resident population (P) > per capita GDP (A) > urbanization
rate (T). The influence of all three factors on carbon emission in the CMA is positive. The
significance test values of influencing factors are all 0.000, and all pass the significance
test. Therefore, there exists a significant positive correlation between resident population,
per capita GDP, urbanization rate, and carbon emissions for the CMA. In the process of
continuous concentration of population, industry, and other factors, the carbon emissions
of this area should be reduced by other strategies such as improving the carbon emission
efficiency and optimizing the energy structure of districts or counties.

Table 8. Model test results of Chengdu metropolitan area.

Variables

Non-Standardized
Coefficient

Standardized
Coefficient

Colinearity Statistics

B Std. Error Beta t Significance Tolerance VIF

CONSTANT −1.308 0.134 −9.760 0.000
Resident population 0.984 0.015 0.748 66.841 0.000 0.501 1.996

Per capita GDP 0.966 0.033 0.455 28.921 0.000 0.254 3.936
Urbanization rate 0.242 0.050 0.088 4.812 0.000 0.187 5.345

The results for the HMA are shown in Table 9. Similar to CMA, the order of influence
of the factors affecting carbon emissions in the districts or counties of the HMA is resident
population (P) > per capita GDP (A) > urbanization rate (T); besides, the impact of all three
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factors on LUCE in HMA is positive, except for the significance test value of urbanization
rate on carbon emissions which is 0.054 > 0.050, which does not pass the significance test.
The significance of resident population and per capita GDP all passed the test. Therefore,
for the HMA (the mature metropolitan area), the influence degree of the resident population
on LUCE of districts or counties is the strongest among the three metropolitan areas, and
its urbanization rate has already reached a relatively high level. While in the process of
continuous concentration of population and industries, the LUCE efficiency of districts or
counties should be improved by other ways to reduce carbon emissions in the region.

Table 9. Model test results of Hangzhou metropolitan area.

Variables

Non-Standardized
Coefficient

Standardized
Coefficient

Colinearity Statistics

B Std. Error Beta t Significance Tolerance VIF

CONSTANT −2.117 0.256 −8.266 0.000
Resident population 1.142 0.041 0.700 28.129 0.000 0.717 1.394

Per capita GDP 1.078 0.066 0.438 16.314 0.000 0.614 1.627
Urbanization rate 0.265 0.134 0.059 1.984 0.054 0.509 1.966

4. Discussion

4.1. Factors Influencing the LUCE of Different Stages Metropolitan Area

Previous studies on the spatial patterns and impact modeling of LUCE have mainly
concentrated on a single aspect of the research object [59–61], such as analyzing the spatial
evolution characteristics [62] or the influencing factors of carbon emissions [63–65]. Few
studies have focused on research objects at different development stages at the same time,
thus failing to identify the spatial differentiation patterns and influencing factors of LUCE
among different types of research objects. Different from previous studies, this study
quantifies the LUCE of three different development stages of metropolitan areas in the
lower, middle, and upper reaches of the YREB and measures the CCD and influencing
factors of LUCE in each metropolitan area. The findings of this study show that the
urbanization rate only had a negative impact on the LUCE of the cultivating metropolitan
area (such as NMA), while the resident population and per capita GDP had a positive
impact on the LUCE of the three stages of metropolitan areas. Similarly, Chel et al. found
that population and per capita GDP are also positively related to LUCE after studying
103 metropolitan statistical areas (MSAs) in the United States [66]. The possible reason
is that the level of social and economic development and urbanization of the cultivating
metropolitan area (such as NMA) are lower than those of developmental and mature
metropolitan areas (such as CMA and HMA respectively). Besides, the distribution of
urban and rural populations, industry, land use, and other factors are not intensive and
efficient enough. Therefore, it is necessary to formulate corresponding strategies to reduce
LUCE for different types of metropolitan areas.

4.2. Policy Implications

For cultivating metropolitan areas, large numbers of the rural population will be con-
tinuously promoted to gather into central cities in the future to increase the urbanization
rate. Meanwhile, changing spatial planning from incremental to stock will be accompanied
by the development trend of more intensive urban and rural land use and more concen-
trated industries, etc. The above changes may make the carbon emissions from construction
land in cultivating metropolitan area decrease to a certain extent.

For mature and developmental metropolitan areas, it may be possible to learn from
the research of Yang et al. on metropolitan areas in the United States, that is, to increase the
number of high-density areas (urban centers) in the metropolitan area to reduce commuting
time and distance [67], thereby reducing traffic carbon emissions in the metropolitan area.
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4.3. Limitations

However, there are some limitations and potential uncertainties in this study:

(1) Due to the tiny percentage of permanent snow and ice in the research area, we
substituted the permanent snow and ice emission coefficient with the water emission
coefficient. However, if it occurs in other research regions where there is a sizable
amount of permanent snow and ice or sea, it might lead to unreasonable results.
Therefore, future studies should further explore the coefficient of permanent snow
and ice and sea.

(2) This study is only based on the STIRPAT model, which examines the effects on LUCE
in metropolitan areas at each development stage regarding population (P), affluence
(A), and technology (T), without selecting control variables, which may result in an
incomplete analysis of the influencing factors.

(3) Related studies show that regional climate and carbon cycle changes affect CO2 emis-
sion pathways [68]. In addition, some studies have reported that the CO2 emission
level of metropolitan areas with a high level of sprawl is generally high [69]. How-
ever, climate change, urban form, and other aspects of the metropolitan area are
not considered in this research. Therefore, further relevant studies are needed in
the future.

5. Conclusions

Based on the GlobeLand30 land use type data of 2020 with 30-meter spatial resolution,
this study calculated the total LUCE, analyzed the spatial characteristics, and revealed
the relationship between the ECC and ESC of LUCE in each district and county of three
metropolitan areas at different development stages, namely NMA, CMA and HMA in
YREB. The STIRPAT model was further introduced to explore the impacts of various socio-
economic factors on land use carbon emissions in these three metropolitan areas. The main
conclusions of this work are drawn as follows.

(1) The more mature the stage of the metropolitan area, the higher the amount of LUCE
is. Meanwhile, the spatial distribution patterns of LUCE of Nanchang, Chengdu, and
Hangzhou metropolitan areas show weak core grouping, strong core clustering, and
flattening extension patterns respectively. In general, the more mature the develop-
ment stage of the metropolitan area, the more concentrated the districts or counties
with high carbon emission levels.

(2) The districts or counties with a higher economy contributive coefficient (ECC) are gen-
erally concentrated in the central cities or on the periphery or edge of the metropolitan
areas. The districts or counties with higher ecological support coefficient (ESC) in
the three metropolitan areas are in the peripheral areas of each metropolitan area.
Meanwhile, the more developed the metropolitan area, the lower the CCD between
ECC and ESC. The more economically developed districts or counties are within the
metropolitan area, the lower CCD is.

(3) Based on the STIRPAT model, the resident population, per capita GDP, and urbaniza-
tion rate have good explanatory effects on the carbon emissions of the three metropoli-
tan areas. All these three factors have positive effects on carbon emissions, except for
the urbanization rate, which contributes to a negative effect on the LUCE of NMA.

Our empirical study revealed the spatial patterns and CCD between the ECC and
ESC of LUCE, and verified the effects of the resident population, per capita GDP, and
urbanization rate on LUCE in each metropolitan area by applying the STIRPAT model.
Both the characteristics of LUCE in metropolitan areas and the influencing factors show
specific correlations with the development stage of metropolitan areas. Findings can
help to identify sustainable development strategies [70] and formulate corresponding
carbon reduction measures for metropolitan areas at different stages of development and
different regions within the metropolitan areas. In future studies, we will conduct further
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comparative analysis on the spatio-temporal evolution patterns of LUCE and other drivers
in metropolitan areas at different development stages.
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Abstract: High land use efficiency is the key to improving total factor productivity, and also an
important force behind achieving sustained economic growth. Existing studies have mainly focused
on the land use efficiency of the industry sector. Yet, the issue of land use efficiency of the service
sector (SLUE) has been largely overlooked. This study examines regional differences and efficiency
decomposition by using a slack based model (SBM) of undesirable output, and the Malmquist
productivity index (MPI) under a data envelopment analysis framework. The results reveal that:
(1) In China, the land use efficiency of the service sector is unbalanced, showing an inverted growth
law of “low in developed areas and high in backward areas”. (2) The land use efficiency of the service
sector can be decomposed into technical progress, pure technical efficiency, and scale efficiency. From
the decomposition results, the growth rate of pure technical efficiency presents a trend of “low in
the east and high in the west”; the scale efficiency also falls into the situation of weak group growth.
Technological progress has maintained steady improvement. (3) The coordinated improvement
of land use efficiency of the service sector needs to focus on resolving the “beggar-thy-neighbor”
issue caused by existing large regional differences. In this article, the puzzle of land use efficiency
differences in the service industry is well solved, and thus provides valuable enlightenment for the
benign growth of service industries in countries and regions around the world.

Keywords: service industry; land use efficiency; regional differences; efficiency decomposition

1. Introduction

Land use efficiency (LUE) refers to economic benefits of each unit of land, which is an
important indicator to determine the efficiency of land allocation. With the acceleration
of urbanization, LUE plays a crucial role in urban operation efficiency and sustainable
development [1–3]. Sustainable development, first proposed in 1972, is an economic growth
model that focuses on long-term development. It refers to the development that not only
meets the needs of contemporary people, but also does not harm future generations to meet
their needs. It is one of the basic requirements of the Scientific Outlook on Development.
As an important type of urban land, land for the service section plays an important role
in the process of sustainable and high-quality urban development, carrying important
functions, such as improving urban management level, enhancing the overall function of
the city, improving the living environment, and promoting the optimization, integration,
and rational allocation of land resources [4–6]. As an indicator reflecting the degree of
scientific utilization of land for the service section, land use efficiency of the service sector
(SLUE) should be paid attention to and researched. SLUE, namely the land use efficiency of
the service industry, is an indicator that should be used effectively in the current resource
utilization. SLUE is an important issue that the service sector pays close attention to.

With the rapid development of urbanization, the high frequency exchange and drastic
transformation of urban land function attributes become a land use law of urbaniza-
tion [7–9]. Economic development oriented towards the service industry plays a unique

Land 2022, 11, 1911. https://doi.org/10.3390/land11111911 https://www.mdpi.com/journal/land132



Land 2022, 11, 1911

role in the adjustment of urban land use structure and the transformation of urban land-
scape in China [10,11]. This leads to the large-scale expansion of land for the service
section. According to the China Urban Construction Statistical Yearbook, the area of service
industry construction land increased by 36% from 19,902.4 km2 in 2011 to 27,092.5 km2

in 2017. Two intuitive facts are: (1) Urban sprawl is intensifying, urban boundaries are
extending, and a large amount of agricultural land is being converted into urban land [12],
especially land for the service section. (2) Industrial land in cities is gradually giving way
to land for the service section; more and more factories are moving out of cities. These facts
have much to do with the government’s regulation and control of land. On the one hand,
facing the incentive of economic performance assessment, local governments have a high
dependence on land finance. The government tends to seek more land transfer benefits by
arranging urban planning space and land planning indicators, which are important means
for the government to obtain financial revenue [11]. On the other hand, compared with
the manufacturing industry, the service industry is environmentally friendly and has a
high degree of land intensification. The supply of land for the service industry is more in
line with the demand under the dual pressure of land resource scarcity and environmental
pollution [13]. However, the transformation of land structure caused by the acceleration
of urbanization may lead to inefficient land use status, such as disordered land use and
fragmented land use [14–17]. In this context, it is urgent to study the spatial cooperative
improvement of SLUE.

At present, the research on SLUE is relatively scarce, but the research on LUE of other
land types can provide certain reference for us to measure SLUE. In terms of efficiency
evaluation methods, the Data Envelopment Analysis (DEA) and the Stochastic Frontier
Analysis are commonly used [12,18]. Among them, the DEA is a widely used method
in LUE evaluation because it does not need to set the form of production function and
can consider multiple inputs and outputs simultaneously [19]. With people’s increasing
attention to environmental issues, it has become a trend for LUE evaluation to include
undesirable output factors in the efficiency measurement [19,20]. Since the development of
China’s service industry still has the extensive characteristics of high emissions [21], the
measurement of SLUE should also consider environmental pollution and other undesirable
outputs. Compared with the defects of the traditional DEA model, the slack based model
(SBM) proposed by Tone [22] can not only handle the undesirable outputs, but also solve
the input-output slack issue in efficiency evaluation [19]. This model can measure efficiency
more accurately [23]. On this basis, the Malmquist productivity index (MPI) can describe
the change trend and evolution characteristics of efficiency [24]. Thus, the combination of
the SBM model of undesirable output and the Malmquist productivity index can accurately
measure SLUE and its dynamic trend under environmental constraints.

In terms of the measurement of regional differences, quantitative analysis methods
for the degree of regional differences mostly involve the Theil index [25], the Gini coef-
ficient [26], the kernel density estimation [27] and spatial autocorrelation [28]. The Theil
index, proposed by Theil [29], was first used to describe income differences among coun-
tries. Since it could measure the contribution of different types of differences to total
differences, it was later widely used to describe individual differences. From the perspec-
tive of research, many scholars discussed the regional differences of land use from the
perspectives of urban agglomeration [30], basin [31], and specific provinces [32,33]. In
reality, there is a significant regional difference in the economic output of land for the
service section. For example, the unit output value of land for the service section in Beijing
was nearly four times that of Xinjiang in 2017. Therefore, it is necessary to measure the
regional difference of SLUE. The division of four traditional regions in China provides us
with a research perspective.

In addition, in the selection of research objectives, existing research mainly focuses on
the measurement of the overall urban construction land efficiency [34], industrial LUE [35],
and agricultural LUE [36]. However, few studies have measured LUE from the perspective
of the service industry. As the service industry has the highest proportion of added value
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in GDP in China, it is necessary to measure SLUE and its regional differences. This raises
two challenges. First, can the distribution pattern and regional differences of LUE in
different provinces and four major regions of China be analyzed from the perspective of
the service industry? Second, what effective strategies can be used to improve both SLUE
and synergistic development in these regions? If these two problems cannot be solved in
time, the benign growth in terms of services will be hard to achieve.

The main objectives of this study are as follows: First, this article measures the SLUE
of 30 provinces in China and compares the differences between the provinces. Second, the
Malmquist productivity index method is used to decompose the SLUE and find the source
of the driving force that affects the spatial differences of the SLUE. Third, the Theil index
method is used to quantitatively analyze regional differences in SLUE and investigate the
size and source of regional differences in SLUE. Finally, this article proposes a differentiated
regional governance strategy to narrow the spatial differences of SLUE and reduce the
deadweight efficiency loss. The research of this article is expected to form and identify the
reasons behind the spatial differences in SLUE and the path to achieve spatial coordinated
promotion. Furthermore, theoretical support is provided for countries and regions at
different development stages that will help these areas to improve their SLUE. Therefore,
our efforts are beneficial in terms of filling the gaps in academic differences in related fields.

The remaining sections of this article are arranged as follows: Section 2 introduces
the model and data used in this paper. Section 3 analyzes the regional differences and the
dynamic trend and efficiency decomposition of SLUE. Section 4 provides a discussion of
the findings. Section 5 presents the research contributions and implications, and Section 6
presents the study’s conclusions and policy suggestions.

2. Methods and Data

2.1. Efficiency Assessment Model
2.1.1. The Global SBM-Undesirable Model

The DEA method, first proposed by Charnes et al. [37] in the United States, is a
commonly used model for measuring efficiency. The advantage of DEA is that there is no
requirement to set the specific form of function, and it can objectively evaluate the actual
production process of multiple inputs and multiple outputs [38]. Traditional DEA models,
such as the CCR (Charnes, Cooper, and Rhodes) [37] and the BCC (Banker, Charnes, and
Cooper) [39], do not consider the input-output slack improvements in angle and radial
selection, and they cannot accurately measure the efficiency with undesirable outputs.
However, within the background of resource and environment constraints, SLUE evaluation
should emphasize the coordination among the economy, resources, and the environment.
In addition to the single economic benefit indicators, the DEA’s evaluation indicator system
should also include ecological benefit indicators, such as the waste discharged in the
land use process of a service industry, and other undesirable outputs. With regard to
considering undesirable outputs, we hope to obtain as many desirable outputs as possible
while minimizing the number of undesirable outputs.

Compared with the defects of the traditional DEA model, the undesirable output SBM
model proposed by Tone [22] can not only solve the slack issue of variable in angle and
radial selection, but also accurately measure the efficiency with undesirable output. This
provides a new idea for the measurement of efficiency under environmental constraints [23].
In addition, due to the differences in production frontiers in different periods, the efficiency
measured based on the best production frontiers in different periods does not have in-
tertemporal comparability and circularity. The global DEA method proposed by Pastor
and Lovell [40] effectively solves this problem by constructing frontiers of production
technology based on global reference.
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Taking provinces as decision making units (DMUs), we assume that there are K DMUs.
Each DMU uses M inputs xm to produce N desirable outputs yn and L undesirable outputs
bl . The global SBM-undesirable model is constructed as follows:

ρ = min
sx ,sy ,sb ,λ

1− 1
M
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∑
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where sx
m ≥ 0, sy

n ≥ 0, sb
l ≥ 0, λp ≥ 0. ρ is the efficiency of the unit being evaluated and

0 < ρ ≤ 1; (xkm, ykn, bkl) represents the mth input, nth desirable output and lth undesirable
output in the kth DMU, respectively. Also,

(
sx

m, sy
n, sb

l

)
represents the slack variables of

input, desirable output and undesirable output, respectively, and λk represents the weight.

2.1.2. Malmquist Productivity Index (MPI)

This research further constructs the DEA-Malmquist productivity model to investigate
the efficiency evolution of land use in China’s service industry, based on a static analysis of
the global SBM-undesirable model. The Malmquist index between two periods t and t + 1
can be formulated as follows:

M
(
xt+1, yt+1, xt, yt

)
=

√(
Dt(xt+1, yt+1)

Dt(xt, yt)

)
·
(

Dt+1(xt+1, yt+1)

Dt+1(xt, yt)

)
(2)

where y represents the output vector, and x is the input vector; D is the distance function,
M refers to the Malmquist productivity index. The MPI is calculated as the relationships
between the distances of DMUs from technological frontiers. Also, MPI > 1 represents
improvements in SLUE, and vice versa. In order to identify the different components
that contribute to improvements in productivity, MPI can be decomposed into efficiency
change (EC) and technical change (TC) [41]. That is:

M
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(3)

where the first term denotes the efficiency changes between the period t and the period
t + 1. This factor is called EC. Here, EC > 1 means that technical efficiency improves,
and vice versa. The second term denotes the technology changes between two periods.
This factor is called TC. In this case, TC > 1 means the technology has advanced, or
otherwise degenerated. According to the CRS and VRS decomposition of the traditional
Malmquist productivity index, we can further decompose efficiency change (EC) into
scale efficiency change (SE) and pure technical efficiency change (PTE) [39]. That is:
MPI = SE × PTE × TC. Details are as follows:

SE =

[
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TC =
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The SE component evaluates the effect of the change in scale of DMUs on their
productivity. The PTE component measures whether the DMU under evaluation is closer
to (or further away from) the frontiers of production technology. The TC component
indicates whether the frontiers of production technology have shifted over time. If the
value of any of the components is less than 1, it means regress; a value greater than
1 denotes progress, while a value of 1 implies a constant situation.

2.2. Regional Difference Analysis

This paper uses the Theil index to measure regional differences in SLUE. Then, the
additivity of the Theil index is used to decompose the overall differences into intra-regional
differences and inter-regional differences. The smaller the Theil index is, the smaller
are the regional differences, and vice versa. Here, China is divided into east, central,
west, and northeast regions. According to Theil [29], Bourguignon [42], Cowell [43] and
Shorrocks [44], the Chinese SLUE Theil index construction and decomposition formulas
are defined as follows:
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where T represents the overall Theil index, Tw is the intra-regional Theil index, Tb is the
inter-regional Theil index, and T = Tb + Tw. Suppose n provinces are divided into m groups;
nk represents the number of provinces in the k region (k = 1, 2, . . . . . . , m); yi represents
the SLUE of i province, and yk and y represent the average value of SLUE in the k region
and the whole region, respectively. Next, Tk is the overall Theil index in the k region. In
addition, the intra-regional contribution is the rate of the intra-regional and the overall
Theil index. That is: Tw/T; the inter-regional contribution is the rate of inter-regional and
overall Theil index. That is: Tb/T.

2.3. Dataset and Variables
2.3.1. Dataset

The SLUE of 30 provinces in China, from 2011 to 2017, was evaluated. Tibet, Hong
Kong, Macao, and Taiwan were excluded from the study sample due to a lack of data.
According to the traditional area partition method, China can be divided into the eastern
area, the central area, the western area, and the northeastern area [45]. Table 1 shows the
division according to the classification method of the National Bureau of Statistics of China.
Then, Figure 1 shows the visual distribution of the four regions in the research area. The
data in this paper are from the China Urban Construction Statistical Yearbook, provincial
statistical yearbooks, the National Bureau of Statistics, economic databases, and the Carbon
Emission Accounts & Datasets (CEADs). Among them, CO2 data are directly from CEADs.

Table 1. Regional division in China.

Region Provinces, Municipalities, and Autonomous Regions

Eastern Beijing, Tianjin, Shanghai, Hebei, Shandong, Jiangsu, Zhejiang,
Fujian, Guangdong, Hainan

Central Henan, Shanxi, Anhui, Hubei, Hunan, Jiangxi

Western Gansu, Guizhou, Ningxia, Qinghai, Shaanxi, Yunnan, Xinjiang,
Sichuan, Chongqing, Inner Mongolia, Guangxi, Tibet

Northeastern Liaoning, Heilongjiang, Jilin
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Figure 1. Visual distribution map of four regions in China.

2.3.2. Input and Output Variables

Indicators should be selected to fully reflect the economic, social, and environmental
aspects of urbanization [46]. Therefore, according to land use characteristics and existing
research results [47], this article constructs a SLUE evaluation index system with three
inputs and three outputs. Specifically, the input index must fully reflect the three factors of
land, capital, and labor, while the output index starts from the three aspects of economic
benefit, social benefit, and negative environmental effect.

The inputs include the area of built districts in the service industry, fixed capital stock
in the service industry, and the number of people in employment in the service industry.
Areas of built districts in a service industry include the following six types of land use:
(1) commercial and business facilities; (2) logistics and warehouse; (3) road, street and
transportation; (4) administration and public services; (5) municipal utilities; (6) green
space and square. The fixed capital stock of a service industry is calculated by using the
perpetual inventory method.

The outputs include value-added of tertiary industry, the average wage of employed
persons, and the amount of CO2 emissions in the service industry. The value-added
of tertiary industry reflects the direct economic performance of land use in the service
sector. The average wage of employed persons reflects the social benefits obtained by the
service industry in the process of urbanization. Considering the availability of data, the
undesirable outputs mainly involve the CO2 emissions from the land use processes of the
service industry. Table 2 shows the indicator system that has been constructed for this
article to measure SLUE.

Table 2. Indicator system for evaluating SLUE.

Category Indicator Specific Indicator Unit

Inputs
Land input Area of built districts Square kilometers

Capital input Fixed capital stock 100 million yuan
Workforce input Employment 10 thousand persons

Desirable outputs Economic output Value-added of tertiary industry 100 million yuan
Social output Average wage of employed persons Yuan

Undesirable outputs Environmental output CO2 emissions Million tons
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3. Results

3.1. Temporal and Spatial Pattern of Regional Differences in SLUE

According to the results shown in Table 3, from 2011 to 2017, the SLUE showed an
upward trend in China, with a national average increase of 27.21%. Also, the SLUE of the
four major regions showed different degrees of growth. However, the overall SLUE in
China is still at a low level, at an average of 0.4258. The average SLUE values of the eastern,
western, central, and northeastern regions are 0.5554, 0.4556, 0.2500, and 0.2357, respectively.
Regardless of any year, the efficiency ratings in the eastern and western regions are much
higher than those of the central and northeastern regions. This finding indicates that there
is still a long way to go in terms of improving the SLUE in the central and northeastern
regions. In terms of regional differences, obvious regional differences do exist, and only
a few provinces have achieved high levels of efficiency. Among the 30 provinces, only
seven had SLUE values above the national average level. Of those seven provinces, five are
located in the eastern region, namely Shanghai, Beijing, Tianjin, Jiangsu, and Hainan. The
other two provinces are located in the western region, namely Qinghai and Ningxia. The
remaining 23 regions that do not exceed the national average level are mainly concentrated
in nine western provinces, six central provinces, and five eastern provinces. In particular,
the average efficiency ratings of provinces in the central and northeastern regions are lower
than the national average. These results intuitively show that large differences exist in
SLUE among China’s different regions. Moreover, one can clearly see that, whether looking
at the four major regions or just within the eastern and western regions in Figure 2, the
SLUE has obvious unbalanced distribution characteristics.

Table 3. SLUE in 30 Chinese provinces from 2011 to 2017.

Region Province 2011 2012 2013 2014 2015 2016 2017 Average

Eastern Shanghai 1.0000 1.0000 1.0000 0.9441 1.0000 1.0000 1.0000 0.9920
Beijing 0.7977 0.8166 0.8633 0.8823 0.9216 0.9428 1.0000 0.8892
Tianjin 0.6708 0.7204 0.8884 0.9019 0.9176 0.9413 1.0000 0.8629
Jiangsu 0.5164 0.5213 0.5616 0.5788 0.6548 0.8484 1.0000 0.6688
Hainan 0.5722 0.6034 0.6049 0.6586 0.5871 0.6829 0.7244 0.6334
Zhejiang 0.3381 0.3524 0.3768 0.4013 0.4328 0.4892 0.5666 0.4224
Fujian 0.3142 0.3397 0.3947 0.4081 0.4229 0.4481 0.4717 0.3999
Guangdong 0.2476 0.2592 0.2759 0.2653 0.2512 0.2456 0.2589 0.2577
Hebei 0.1907 0.2071 0.2221 0.2520 0.2731 0.2722 0.3168 0.2477
Shandong 0.0941 0.0964 0.1843 0.1987 0.2164 0.2368 0.2320 0.1798
Average 0.4742 0.4916 0.5372 0.5491 0.5678 0.6107 0.6570 0.5554

Central Jiangxi 0.3546 0.3602 0.3378 0.3492 0.3354 0.3565 0.3617 0.3508
Shanxi 0.2765 0.2811 0.2925 0.2992 0.2926 0.2878 0.3060 0.2908
Anhui 0.2704 0.2355 0.2344 0.2366 0.2455 0.2617 0.2709 0.2507
Hunan 0.2126 0.2494 0.2244 0.2295 0.2338 0.2451 0.2609 0.2365
Henan 0.1905 0.1907 0.1789 0.1836 0.1836 0.1978 0.2153 0.1915
Hubei 0.1471 0.1570 0.1812 0.1795 0.1996 0.1940 0.1983 0.1795
Average 0.2419 0.2457 0.2415 0.2463 0.2484 0.2572 0.2688 0.2500

Western Qinghai 0.8159 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9737
Ningxia 0.8185 0.8933 1.0000 1.0000 0.9929 0.9795 1.0000 0.9549
Gansu 0.4457 0.4560 0.4119 0.4087 0.4154 0.4167 0.4191 0.4248
Yunnan 0.3239 0.3370 0.3999 0.4051 0.4514 0.4812 0.5343 0.4190
Xinjiang 0.4196 0.4246 0.3918 0.3877 0.3658 0.3555 0.3473 0.3846
Chongqing 0.3324 0.3426 0.3540 0.3970 0.3893 0.4047 0.4218 0.3774
Guizhou 0.3557 0.3628 0.3582 0.3644 0.3639 0.3636 0.3643 0.3619
Shaanxi 0.2556 0.3156 0.3641 0.3502 0.3482 0.3881 0.3974 0.3456
Inner Mongolia 0.2722 0.2866 0.2866 0.2716 0.3035 0.3541 0.4128 0.3125
Guangxi 0.2341 0.2327 0.2971 0.2789 0.2840 0.2897 0.2966 0.2733
Sichuan 0.1704 0.1790 0.1782 0.1904 0.2025 0.1826 0.1856 0.1841
Average 0.4040 0.4391 0.4584 0.4594 0.4652 0.4741 0.4890 0.4556

Northeastern Jilin 0.2874 0.2974 0.3220 0.3523 0.3262 0.3398 0.3699 0.3279
Heilongjiang 0.2131 0.1995 0.1987 0.1998 0.1980 0.2003 0.2184 0.2040
Liaoning 0.1496 0.1544 0.1712 0.1682 0.1825 0.1917 0.2104 0.1754
Average 0.2167 0.2171 0.2306 0.2401 0.2356 0.2439 0.2662 0.2357

Nationwide Average 0.3763 0.3957 0.4185 0.4248 0.4331 0.4533 0.4787 0.4258
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Figure 2. Spatial and temporal distribution and evolution trend of SLUE in China.

Furthermore, Figure 3 plots the dynamic density distribution variations of the SLUE
index for the whole country and the four regions in 2011, 2014, and 2017. This is used to
track the changes in SLUE over time. Nationally, SLUE values were mainly concentrated
between 0.2 and 0.4. In addition, the density function curve has the characteristics of
moving to the right, with the left peak falling and the right peak moving upward. This
indicates that the average value of national SLUE trended upward from 2011 to 2017. At
the same time, SLUE in the four regions showed a trend of improvement. There are also
great development differences, both between regions and within regions. The analysis
results are consistent with the above.
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Figure 3. Distribution of SLUE density by region.

3.2. The “Beggar-Thy-Neighbor” Situation in the SLUE Regional Differences

According to the above analysis, SLUE in China has obvious characteristics of un-
balanced regional development. In order to further explore the sources of this unbalance,
the Theil index is used to measure the regional differences of SLUE in China, as shown
in Figure 4. The results show that the overall regional differences in Chinese SLUE have
narrowed; the intra-regional differences are the main source of the overall regional differ-
ences, and the intra-regional differences in the eastern and western regions have made an
important contribution to the intra-regional differences.

First, as shown in Figure 4a, the SLUE’s Thiel index fell from 0.1627 in 2011 to 0.1601 in
2017, with regional differences rising in 2012 and then slowly declining. Second, with regard
to the sources of regional differences, as shown in Figure 4b, the overall regional differences
of SLUE in China mainly come from intra-regional differences, with the contribution rate
remaining at between 65.00% and 78.00%. Both the overall regional differences and the
intra-regional differences of SLUE show the same decreasing trend of fluctuation, while
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the inter-regional differences show an increasing trend. The contribution rate of intra-
regional differences to the overall regional differences of SLUE is always greater than
that of inter-regional differences. This result indicates that it is difficult for inter-regional
differences to become the decisive force affecting the overall regional differences of SLUE
in a short time. Therefore, narrowing the intra-regional differences is the main path to
further realizing the coordinated development of regional SLUE. However, attention must
still be paid to changes in inter-regional differences. Finally, the regional contribution of
intra-regional differences is further analyzed through the decomposition of the sources
of intra-regional differences. As shown in Figure 4c, the intra-regional differences are
relatively large. The intra-regional differences in the eastern and central regions show an
unstable state over time, while the intra-regional differences in the central and northeastern
regions are relatively stable. In general, the eastern and western regions contribute the
most to the intra-regional differences, while the central and northeastern regions contribute
less to the intra-regional differences.

 
(a) 

   (b)                                        (c) 

Figure 4. Spatial differences and contribution rates in SLUE in China. (a) Variation trend in the Theil
index in China; (b) Contribution rates of Tw and Tb; (c) Contribution rates of regional differences.

3.3. Dynamic Trend and Efficiency Decomposition of SLUE in China

The above analysis is only a static comparative study of SLUE. In order to further
explore the trends and sources of SLUE changes in different periods in China, we calculated
the MPI of land use in the service sector and its decomposition index to observe whether
a positive catch-up effect of land use in the service sector exists in different provinces
concerning technology and scale. The results are as shown in Table 4 and Figure 5.
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Table 4. Annual growth rate of MPI, TC, PTE, SE in 30 provinces of China.

Province MPI TC PTE SE Province MPI TC PTE SE

Guangxi 14.3 3.8 9.9 0.2 Sichuan 1.5 2.8 0.5 −1.7
Jilin 12.6 3.3 10.1 −0.9 Chongqing 0.6 4.2 −2.1 −1.4
Hunan 11.7 3.7 7.4 0.2 Henan 0.5 2.7 2.0 −4.0
Shanxi 10.6 4.4 3.8 2.1 Shandong 0.1 3.8 −4.8 1.3
Gansu 9.3 5.1 6.0 −1.8 Anhui 0.0 2.3 −3.5 1.2
Liaoning 8.7 3.4 4.0 1.0 Inner Mongolia 0.0 3.1 0.9 −3.9
Jiangxi 8.2 3.1 4.8 0.2 Hainan −0.4 3.4 −5.4 1.8
Zhejiang 6.4 4.7 1.5 0.1 Heilongjiang −0.5 4.0 −0.2 −4.1
Ningxia 4.0 4.0 0.0 0.0 Xinjiang −0.6 3.9 −2.4 −1.9
Guizhou 3.8 2.6 0.1 1.1 Shaanxi −0.7 3.9 −3.8 −0.7
Tianjin 3.1 3.1 0.0 0.0 Jiangsu −1.4 1.5 −1.6 −1.2
Qinghai 3.1 3.1 0.0 0.0 Shanghai −2.1 2.9 −3.5 −1.4
Hubei 2.6 3.3 5.2 −5.6 Hebei −2.1 2.2 −4.1 −0.2
Yunnan 2.0 3.1 0.2 −1.3 Beijing −3.5 5.0 −8.0 −0.1
Fujian 1.9 3.2 −1.9 0.6 Guangdong −8.5 2.7 −9.5 −1.5
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Figure 5. Drivers of SLUE growth by region.

Table 4 shows that the overall allocation of land use related resources in the service
sector is reasonable, but it is unbalanced in terms of regional growth. Low-efficiency regions
are shown to have a positive catch-up effect, while some high-efficiency regions fall into
negative growth. From 2011 to 2017, the national SLUE growth rate trended upward, with
an average annual growth rate of 2.70%. Except for the negative growth in the eastern
region, the other three regions showed positive growth. Among them, northeastern China
ranked first in growth, with an annual growth rate of 6.93%, followed by the central,
western, and eastern regions, with annual growth rates of 5.60%, 3.39%, and −0.65%,
respectively. Specifically, the SLUE of most provinces in China showed positive growth.
Provinces with low efficiency, such as Hunan, Liaoning, and Hubei, are shown to have
a positive catch-up effect. In addition, nine provinces also fell into negative growth; the
average efficiency of four of the nine provinces, namely Beijing, Shanghai, Jiangsu, and
Hainan, was greater than the national average. From the perspective of spatial distribution,
six of the nine provinces are from the eastern region, showing that SLUE in the eastern
region is in a state of weak growth. In short, China’s SLUE trended upward while remaining
at a low level. At the same time, SLUE in China has experienced unbalanced regional
development, showing an inverted growth law of “low in developed areas and high in
backward areas”.
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The structural composition of SLUE shows that, during the study period, all provinces
had positive growth in technological progress, while most regions are in the double
dilemma of pure technical efficiency and scale efficiency deterioration. With regard to
technological progress, the average annual growth rate of China and the four main regions
all maintained steady improvement. The growth rate of pure technical efficiency presents a
trend of “low in the east and high in the west”. With the exception of the negative growth
experienced in the eastern region, the other three regions had a positive growth trend. Ev-
ery region faces the severe situation of weak growth of scale efficiency, and is deteriorating
to different degrees. Among them, the northeastern region deteriorated the most. As can
be observed in Beijing, Shanghai, Guangdong, Chongqing, and other developed regions
where the service industry is widely concentrated, scale efficiency showed a downward
trend. In addition, one can find that the fluctuation of scale efficiency is weak. One possible
reason for this finding is policy stability.

4. Discussion

4.1. Spatio-Temporal Distribution of SLUE

In this study, the undesirable output SBM model was used to measure the SLUE of
each province and the four major regions in China. As shown in Table 3 and Figure 2,
SLUE in China presents unbalanced distribution characteristics. Most of the efficient
provinces are located in the developed eastern regions and a few western regions. Among
them, Shanghai, Beijing, Tianjin, Qinghai, and Ningxia are relatively stable in high-value
regions. The allocation of capital, labor, and land in the service industry in these provinces
is relatively reasonable. Therefore, the SLUE in these provinces has always been in the
forefront of the region. Among them, due to the developed service industry, high level of
industrial agglomeration, and dense population, the intensive degree of land for the service
section in the eastern region is relatively high. It is worth noting that, although Qinghai and
Ningxia are located in the western regions with relatively backward economic development,
the SLUE of these regions is relatively high. The possible reasons for this finding are that
although the speed of economic development in these regions is relatively slow, the land
for service section is better able to meet the needs of economic development. Therefore,
the development speed of the urban service industry is relatively synchronized with the
region’s economic development speed. Most of the inefficient provinces are located in the
central and northeastern regions, such as Liaoning, Hubei, and Henan, and the potential
for the intensive use of land resources in the service sector needs to be further explored.
The land supply of the service industry in these areas is sufficient, but the vitality of the
stock land is not enough, and the incremental land use is decentralized, leading to the low
SLUE. However, as one of the four major municipalities, Chongqing is relatively poor in
terms of land use in the service sector. One reason is that Chongqing has a high proportion
of secondary industry and lacks innovation power [48].

4.2. Regional Differences of SLUE

This paper uses the Theil index to further explore the regional differences in SLUE
and their sources. As is shown in Figure 4, intra-regional differences are the main source of
regional differences. The large intra-regional differences in SLUE lead to significant regional
differences, which can be further explained from the “beggar-thy-neighbor” perspective of
land use in the service sector. Similar to Gao et al. [49], we believe that advanced service
regions or developed regions may siphon off superior resources in adjacent regions. Such
actions intensify the vicious competition between adjoining regions, and lead to a decline
of LUE in these regions. However, the vicious competition for service resources in adjacent
areas will aggravate the differences between regions. Therefore, resolving the “beggar-thy-
neighbor” problem of SLUE is the key to realizing the coordinated improvement of spatial
utility. The “beggar-thy-neighbor” issue of SLUE refers to the fact that the performance
of regional SLUE is often subject to the region’s adjacent central cities; the crowding out
effect is also formed to transfer inferior resources to adjacent regions. For example, the
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IT service sector in India is concentrated in first-tier cities, such as Bangalore and New
Delhi. The industry attracts superior resources to the metropolises and further aggravates
resource differences [50]. In fact, the reverse situation can be explained by the siphon effect.
The siphon effect refers to the ability of a city to attract superior resources from adjacent
small cities [51], thereby crowding out inferior resources. The siphon effect results in the
centralization of land for service section supply due to the regional aggregation capacity of
urban resources. Meanwhile, the land for service section in the adjacent area tends to be
relatively scattered and less intensive. That combination of factors leads to low LUE, thus
exacerbating the imbalance of SLUE in the region.

4.3. Dynamic Trend of SLUE

The results of MPI and its decomposition index show the variation trend and source
of SLUE. As is shown in Table 4 and Figure 5, it was found that the growth rate of pure
technical efficiency shows a trend of “low in the east and high in the west”, and scale
efficiency also belongs to the situation of weak group growth. As is well known, the eastern
region is most developed in China, while the western region is relatively backward [52].
However, the pure technical efficiency and scale efficiency of land use in the service sector
in the eastern region trended downward during the study period, while the pure technical
efficiency in the western region increased slowly. This finding seems to be contrary to the
level of economic development. This phenomenon is worth pondering. One reason for this
finding may be that, as a large number of service factors are concentrated in the eastern
region, the negative utility generated by the unreasonable management and utilization
of land for the service section offsets the positive effect brought by high quality technical
bases and factors. In recent years, with the transfer of many industries from eastern China
to western China, the western region can promote economic growth and attract the inflow
of high-end technologies by taking in these industries [53]. This same approach could also
promote the improvement of SLUE.

In addition, the scale efficiency of land use in China’s service sector generally shows
a downward trend. This article further analyzes this phenomenon from the perspective
of the excessive agglomeration of the service industry. Some scholars [54] believe that
the factor behind the decline of scale efficiency in the service industry is the insufficient
agglomeration of factors. However, this view does not apply to developed regions, where
the service industry is highly developed and agglomerated. For example, the high degree
of agglomeration of the service industries in Beijing, Tokyo [55], and Silicon Valley [56] has
produced adverse reactions. The high agglomeration of the service industry in developed
regions is currently an issue that needs to be addressed. Excessive agglomeration of a
service industry means that, with the acceleration of urbanization, the service industry
is highly concentrated in several regions, and presents an efficiency loss mode of a high
attrition rate, fast rotation rate, and short periodicity. Those conditions will make it difficult
for the service industry to play the role of scale economy in the process of land use. The
strong economic foundation of developed regions attracts a large-scale inflow of population
and resources, and industries are more likely to show the characteristics of agglomeration
development. However, the people flowing to these regions need the support of the service
industry. Yet, due to rapid population growth, the service industry’s supply speed can
easily lead to a situation of excessive growth under the pressure of enormous demand. This,
in turn, results in a series of negative situations, such as the excessive agglomeration of the
service industry. At present, Beijing, Shanghai, Guangdong, and other developed regions
in China have fallen into the dilemma of scale efficiency deterioration. This conclusion
can provide a warning for Silicon Valley in the United States, Tokyo in Japan, and other
high-agglomeration regions of service industry in the world. For backward regions, the
scale of service industry agglomeration is still not high. Owing to the resource endowment,
rapid urbanization expansion, and the orientation of government policies, it is difficult to
form a reasonable layout of factors and achieve the orderly development of the service
industry in these regions. For example, in order to pursue urban expansion, Ethiopia
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transferred some farmland to urban commercial, residential, and other land use in the
service sector. However, this type of land for the service section is not fully utilized [57,58].
Therefore, these regions have large growth space in scale efficiency.

In fact, the continuous reduction of scale efficiency may be related to the regional
differentiated land supply policy. Land supply policies favoring the central and western
regions lead to spatial misallocation of land resources [59], which hinders the improvement
of scale efficiency. The same is true of SLUE. From 2011 to 2017, compared with the average
value of the central and western regions, the average annual growth rate of land area
of the service industry in the eastern region was nearly 0.5 times that of the central and
western regions (China Urban Construction Statistics Yearbook). For backward areas, the
rapid expansion of land for the service industry aggravates the situation of disordered
and fragmented land use. Because this decentralized land use mode difficultly exerts
the agglomeration effect on the service industry, the loss of scale efficiency is inevitable.
Especially in areas with population outflow, such as northeast China, the redundancy
of land for the service industry makes it difficult to form economies of scale in land use,
leading to inefficient use of land for service industry. Moreover, the disordered land use will
also result in an invalid matching between the supply of land resources and the production
efficiency [59]. The aggravation of land resource mismatch will further lead to excess land
supply or overcapacity [5], which will inhibit the improvement of SLUE. In fact, the large
supply of land will also lead to the repeated construction of homogeneous industries [60],
which will form a dependent path for inefficient land use in the service industry. For
the eastern region, although there is a high degree of intensive land use for the service
industry, the excessive agglomeration of the service industry hinders the scale effect due to
insufficient land supply.

5. Research Implications and Research Contributions

5.1. Research Implications

The evaluation of SLUE in this paper has rich practical significance for the optimization
of land management systems and related policies, the layout planning of the service
industry, cross-regional coordination and interaction, and the equalization of services.

We thus examine the promotion of the optimization and improvement of land man-
agement systems and related policies. Through accurate evaluation of the SLUE in
30 provinces, this paper captures the real situation of the SLUE of each region, and dis-
covers the unreasonable situation of the land resource distribution of the service industry
in China. The above analysis provides valuable data reference for further improvement
of the land management system and related policies. The improvement of land systems
and related policies is conducive to reducing idle land waste, revitalizing the stock of land
resources, and thus improving SLUE.

We also examine the promotion of the scientific layout of the service industry devel-
opment plan. Based on the analysis of SLUE in 30 provinces, this paper further discusses
the dynamic evolution trend and efficiency decomposition of SLUE in each region, and
fully explores the regional characteristics of the service industry. The above analysis pro-
vides scientific reference for the government in the inter-regional and the intra-regional
development norms of the service industry, and then puts forward targeted development
planning suggestions for the service industry. Urban development in developed areas
should formulate a set of long-term service industry layout plans. A pattern of multiple
agglomeration regions should be formed instead of multiple scattered points. In this way,
the development of the service industry can avoid falling into a situation of having too
high a local agglomeration level. The inefficiency of service industry land caused by too
many scattered points could also be avoided. The promotion of SLUE in backward areas
should focus on solving the medium- and long-term spatial layout problem so as to form an
intensive and efficient mode of service industry agglomeration. Moreover, the development
quality of the service industry cannot be measured only by superficial indicators, such as
the increase of the proportion of the service industry and the expansion of service industry
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scale. Finally, an effective plan will avoid the occurrence of low-level circular lock and the
excessive agglomeration of the service industry.

We also examine the promotion of the establishment of services across the regional
coordination and interaction mechanism. In this paper, the source of regional disparity in
SLUE is deeply discussed, and the results show that the intra-regional disparity in SLUE
is quite serious. The above analysis provides directional guidance and policy reference
for the establishment of an institutional coordination mechanism for the service industry,
and helps to ensure the effective implementation of a scientific development plan for the
service industry. At the same time, this paper puts forward some practical suggestions
for the establishment of cross-regional coordination and interaction mechanism within the
service industry. In the process of service industry development, the layout of the regional
industrial structure should be optimized, and the integrated development between regions
should be strengthened according to regional resource endowments and geographical
location. Through the industrial division of labor and cooperation, the complementary and
dislocation linkage development of interregional industries can be promoted. Also, inferior
repeated construction and homogeneous competition of service industries must be avoided
so as to weaken the negative impact of the siphon effect and to improve SLUE.

We also examine the promotion of the service industry development policy of “bal-
ance”. To realize the sustainable improvement of SLUE, it is necessary to actively cultivate
labor force with advanced technology and management experience. Taking into account
the differences between developed and backward regions, a “balanced” development
policy needs to be fully considered. For example, a relative equalization of urban capital
and technology support policies will further encourage the transfer and agglomeration of
superior production factor resources, such as knowledge, technology, and innovation, to
relatively backward regions [61]. This would be conducive to the intensive development of
land use in the service industry, and would thus narrow the regional differences in SLUE.

We also examine the promotion of the service industry growth pole to nurture and
develop competitive advantage. This paper focuses on the low-efficiency areas of land
use in the service sector, compares and analyzes the high-efficiency areas, and seeks the
catch-up path for the low-efficiency areas according to their own factors. Low-efficiency
regions need to focus on building their own service industry levels and characteristics,
attracting and retaining more and superior production factors with their own advantages,
and accelerating the agglomeration of production factors. By constantly absorbing the
superior resources of adjacent high-efficiency regions, they can catch up with those high-
efficiency regions and form the advantage of backwardness.

5.2. Research Contributions

This study is an early literature on the land use efficiency gap in the service industry.
The imbalance of regional development in China provides a good model for the study
of the spatial land use efficiency gap in the service industry. We innovatively evaluate
the SLUE of 30 provinces and four regions in China, which makes for a very rich sample.
In addition, we have adopted a good measurement method, combining the SBM model
of undesirable output with the Malmquist productivity index. This combined method
can better overcome the incomplete problem of index construction and the research of
spatial-temporal dimensions.

This article provides some valuable implications for the SLUE improvement problem,
particularly given the increasing shortage of industrial land all around the world. First,
developed countries and regions should pay more attention to the low efficiency of land
use caused by the excessive agglomeration of service industries. Meanwhile, developing
countries and regions should focus more on the transformation of technology application
and the spatial optimization of service industry layout so as to avoid some unnecessary
efficiency loss. Second, for the coordinated improvement of SLUE, countries need to pay
attention to the “beggar-thy-neighbor” problem caused by the large differences within a
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region. These practical contributions will provide important enlightenments for a new
pattern of service industry development in the future.

6. Conclusions and Limitations

This article evaluates the SLUE of 30 provinces from 2011 to 2017 in China using the
SBM model of undesirable output and the Malmquist productivity index. Then, the regional
differences are further investigated, and suggestions are made for the regional collaborative
improvement of SLUE. The main conclusions are as follows: (1) The SLUE in China presents
obvious unbalanced distribution characteristics; the SLUE in the eastern and western region is
also much higher than that in the central and northeastern regions. Further analysis shows
that obvious regional differences exist in Chinese SLUE, and the intra-regional differences are
the main source of overall regional differences. (2) From 2011 to 2017, China’s SLUE generally
achieved positive growth, with an average annual growth rate of 2.70%. The SLUE of the
four regions shows an inverted growth law of “low in developed areas and high in backward
areas”. (3) The SLUE is decomposed into technological progress, pure technical efficiency,
and scale efficiency. From the decomposition results, technological progress is shown to have
maintained steady improvement. The growth rate of pure technical efficiency presents a
trend of “low in the east and high in the west”, while the scale efficiency shows a downward
trend in the four regions. (4) Finally, the study discusses the path of SLUE, with a view to
achieving collaborative improvement. The coordinated improvement of SLUE needs to focus
on resolving the issues in large differences within regions and also on reduced scale efficiency.

However, some research limitations remain. First, evaluating SLUE at the provincial
level is relatively macro. Future studies could add some micro-evidence at the enterprise
level. In particular, what kind of internal structure exists in the loss of land use efficiency
within service enterprises? This question should be thoroughly investigated and answered.
Second, this study only calculates the LUE of the overall service industry during the
period from 2011 to 2017. Future studies could be expanded to sub-sectors of the service
industry, as well as a longer time horizon. In addition, as the trend of industrial integration
intensifies, the interaction between service and manufacturing industries will become
increasingly stronger. There will be some linkage laws between SLUE and the efficiency of
manufacturing land, which is another research direction for the future.
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Abstract: China has achieved success in implementing the rural revitalization strategy and promot-
ing the development of new urbanization. However, there are still many problems in the research
and implementation on urban–rural integration development, such as insufficient research at the
township level, unclear recognition of development patterns, and disconnection from land-use plan-
ning. Therefore, taking Hanchuan city in the Wuhan metropolitan area as a case study, this research
constructs a comprehensive evaluation system of urban–rural integration development based on
both on the current and potential level of development, and identifies the spatial characteristics
and patterns in the study area. This study found that: (1) The comprehensive evaluation result of
urban–rural integration development in Hanchuan City shows that a high level of development units
are mainly distributed in the northeast and southwest, and gradually decreases from the northeast
and southwest, indicating that towns in the central area are relatively weakly driven by the radiation
of the surrounding growth poles. (2) Xiannvshan Street, Makou Town, Chenhu Town, and Xinyan
Town with the highest comprehensive evaluation values were selected as the centers of urban–rural
integration development in four directions. (3) Four typical patterns of urban–rural integration devel-
opment, which are town gathering, agro-tourism interaction, industry-trade driven, and agricultural
service, are derived by the gravity model and classification assignment method according to their
respective centers. (4) According to the urban–rural integration development patterns, land-use
strategies such as centralization for promoting linkage level of towns, differentiation for arranging
various resources and infrastructures, and demonstration for optimization of experience to the whole
area are proposed in a targeted manner. This study has important implications for the preparation and
implementation of urban–rural integration development and provides effective planning guidance
for promoting social equity and accessibility of facilities in the metropolitan area.

Keywords: urban–rural integration development; evaluation system; gravity model; spatial pattern;
land-use planning implications

1. Introduction

Urban–rural integration is considered to be the ideal state of development between
urban and rural areas [1], which means that elements freely penetrate and interact with
each other, and make the urban and rural develop together [2]. To overcome the negative
impact of the long-term urban–rural dual system, the European Commission formulated
the integration principle from the perspective of European spatial development in 1999 [3].
Nowadays, urban–rural integration has become an important trend in social and economic
development for both the developed and developing countries [4,5].
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Since 1949, China has implemented the urban–rural development concept of “sup-
porting the industry with agriculture and nurturing cities with the countryside” [6], and
gradually formed the situation of urban–rural dual division, leading to the problem of
unbalanced urban–rural development over the past five decades. In the new era, China
has paid great attention to the integrated development of urban and rural areas, such as
continuously increasing the support for the rural areas and formulating a series of policies
and systems to promote rural revitalization and urban–rural development. In general,
China’s urban–rural relationship has gone through a process from dual segmentation to
overall planning and integration [7]. However, in 2020, the urban–rural income ratio in
developed countries such as the UK and Canada was close to 1, and the urban–rural in-
come ratio in low-income countries in Africa such as Uganda was only about 2.3, while
the urban–rural income ratio gap in China was as high as 2.56 [8]. The unbalanced and
insufficient development between urban and rural areas is still an important feature of the
current urban–rural relationship in China.

Theories regarding the interactive relationships between urban and rural mainly in-
clude Utopian socialism, Marx and Engels’ urban–rural relationship theory, “Garden city”,
“Organic evacuation” theory and “Desakota” model [9–12]. They emphasize balanced
development and deny excessive bias towards urban and rural areas. From the perspective
of urban–rural integration development, current research mainly focuses on measuring the
level of urban–rural integration [13], evolving characteristics [14], influencing factors [15,16],
classification of villages in the context of urban–rural integration [17], and summarizing
excellent case experiences [18,19]. In addition, related studies have concluded that there are
flows of people, goods, capital, information, and technology [20] between urban and rural
areas. Mayer et al. focused on rural entrepreneurs who established links between urban
and rural areas and investigated the role of their entrepreneurial activities in improving
economic relations between urban and rural areas [21]. However, existing studies have
paid less attention to the planning responses to the integrated urban–rural development,
especially on how to scientifically delineate the scope of integrated urban–rural develop-
ment zones and how to propose targeted optimization strategies for different development
patterns. In particular, the problems of insufficient research at the county implementation
level, unclear guidance and strategy of development patterns, and disconnect from spatial
planning are particularly prominent.

To fill these gaps, this research selects Hanchuan City, located within the Wuhan
metropolitan area, as the study area. Then, the comprehensive evaluation system which
combines the current and potential level of urban–rural integration development together
is constructed. The centers of urban–rural integration development are selected according
to the comprehensive level of urban–rural integration development at township level, and
the urban–rural integration development zones are delineated by using the gravity model.
Finally, different types of urban–rural integration development patterns are identified, and
corresponding strategies for urban–rural integration development planning guidance are
proposed. The innovation points of this research include the following two main aspects.
Firstly, this study constructs a comprehensive evaluation system which is made up of
socio-economic and land-use-related indicators, to quantitatively assess the urban–rural
integration development at township level. By using the gravity model, the scope of
urban–rural integration development zones are delineated. Secondly, different leading
patterns of urban–rural integration development zones delineated. Furthermore, urban–
rural land-use strategies, such as centralization, differentiation and demonstration, are
proposed according to the recognized patterns. This research could provide a direct basis
for the preparation and implementation of urban–rural integration development, thus
leading to better social equity and accessibility to facilities in the metropolitan area.
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2. Materials and Methods

2.1. Study Area

Hanchuan City is located in the Wuhan metropolitan area in the middle reaches of
the Yangtze River, with flat and low-lying terrain, low terrain complexity, and a strong
agricultural foundation. Hanchuan City is a key county-level city for comprehensive
agricultural development in the Jianghan Plain. Hanchuan City consists of two township-
level subdistricts and 24 towns, with a total area of 1659.91 km2. The urban land area
accounts for about 1.89% and the rural settlement area accounts for about 9.21%. In 2020,
the GDP of Hanchuan City was 64.566 billion Yuan, the resident population was about
0.9 million, and the urbanization rate was about 60.66 %. Figure 1c shows the administrative
division and land use of Hanchuan City.

Figure 1. Study area. (a) Locations of the study area in China. (b) Locations of the study area in the
Wuhan metropolitan area. (c) Land use of the study area.

2.2. Data Sources

The data used in this study mainly include socio-economic statistics, land-use data, and
built environment data. Among these data, socio-economic statistics are mainly from the
Xiaogan Statistical Yearbook 2020, and the China County Statistical Yearbook. The land-use
data of Hanchuan is the LUCC data of 2020, provided by the Data Center for Resources and
Environmental Sciences, Chinese Academy of Sciences (http://www.resdc.cn, accessed on
16 September 2022), which is now one of the most commonly used data sets for conducting
related studies [22]. Spatial data of the built environment, such as road networks and
transportation hubs, were obtained from the Hanchuan Planning Bureau.
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2.3. Methods

In this study, the comprehensive evaluation of urban–rural integration development
was a weighted combination of the current and potential levels of integration. The eval-
uation of current integration development level was carried out from five dimensions,
including urban–rural demographic, spatial, economic, social and ecological integration.
The evaluation of the potential integration development level was carried out from five
dimensions, including location and transportation, town scale, economic level, facility
construction, and characteristic resources. Based on the comprehensive evaluation results,
towns with the highest integration level were selected as the centers of the urban–rural
integration development zones in each direction within the municipal area. The gravity
model was used to delineate the scope of the urban–rural integration development zones
and identify the urban–rural integration development patterns. Finally, the corresponding
planning and guiding strategies for urban–rural integration development were proposed
in a targeted manner (Figure 2).

 

Figure 2. Research framework of this research.

2.3.1. Evaluation Model of the Current Integration Development Level

The level of current urban–rural integration development measures the degree of
interconnectedness of natural, spatial, economic, and social elements between urban and
rural areas [23]. In this study, the linear weighted sum method was used to calculate the
current urban–rural integration development level score of each town [24]. The calculation
formula is as follows:

Li = ∑n
j=1 WjXij (1)

where Li is the score of the level of current urban–rural integration development of the ith
town; Wi and Xij are the weights and standardized values of the jth indicator of the ith
town, respectively; and n is the number of towns.
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(1) Construction of the Indicator System

This study fully considers the calculability of indicators, the accessibility of data, and
combines the current situation and demands of urban–rural development to construct
the evaluation system of urban–rural integration development. As shown in Table 1, one
target is the level of urban–rural integration development, and five criteria are urban–rural
population integration, spatial integration, economic integration, social integration and
ecological integration. The 18 indicators are introduced to conduct the measurements and
calculation (Table 1).

Table 1. Evaluation system of the current urban–rural integration development level.

Target Criterions Indicators Unit Method of Calculation
Index

Attribute

Evaluation of the
current

Urban–rural
Integration

Development (A)

Urban–rural
population
integration
(A1) [25]

Level of population
urbanization (A01) % (Number of urban population/

Total population) × 100% Positive

Rate of urban and rural
population going out (A02) % (Number of outworkers/

Total population) × 100% Negative

Proportion of agricultural
labor (A03) %

Number of labor force in
(primary industry/

Total labor force) × 100%
Negative

Urban–rural
spatial

integration
(A2) [26]

Urban–rural road
network density (A04) km/km2 (Road length/Total land

area) × 100% Positive

Urban–rural public service
facilities density ratio (A05) %

(Density of rural public service
facilities/Density of urban

public service facilities) × 100%
Positive

Level of land
urbanization (A06) % (Area of built-up area/Total

land area) × 100% Positive

Urban–rural
economic

integration
(A3) [27]

Ratio of non-agricultural
output value to agricultural

output value (A07)
%

(Non-agricultural output
value/Agricultural output

value) × 100%
Positive

Per capita GDP (A08) Yuan GDP/Total population Positive
Rural per capita
net income (A09) Yuan - Positive

Output value of industrial
enterprises above

designated size (A10)

Billion
yuan - Positive

Urban–rural
social

integration
(A4) [28]

Every ten thousand people
have the number of primary

school teachers (A11)
People Number of elementary school

teachers/10,000 people Positive

Number of students
in urban–rural

primary schools (A12)
People - Positive

Number of health technicians
per thousand population in

urban–rural areas (A13)
People Number of health technicians/

Thousands of people Positive

Number of medical beds per
thousand population (A14)

Beds/1000
people

Number of beds in urban–rural
medical institutions/
Thousands of people

Positive

Urban–rural
ecological
integration
(A5) [29]

Urban–rural garbage
harmless disposal rate (A15) %

(Amount of harmless garbage
disposal/Amount of
urban–rural garbage
generation) × 100%

Positive

(2) Data Normalizations

The units and attributes among indicators in the evaluation system are different
and cannot be directly weighted and superimposed, it is necessary to standardize the
evaluation indicators into a uniform manner. In this study, all data are processed by using
the standardized method of extreme differences [30], which is calculated as follows:

Positive indicators:

Zij =
Xij − minXij

maxXij − minXij
(2)
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Negative indicators:

Zij =
maxXij − Xij

maxXij − minXij
(3)

where Zij is the standardized value of the jth indicator in the ith sample; Xij is the jth
indicator value in the ith sample; maxXij is the maximum value of the jth indicator in the
ith sample; and minXij is the minimum value of the jth indicator in the ith sample.

(3) Weight Calculation

The standardized indicator value of each town is passed for KMO and Bartlett’s
sphericity test [31]. The linear combination coefficients and the coefficients in the composite
score model is calculated based on the principal component matrix. The weights of each
indicator are distributed from 0 to 1, resulting in the final weight of each indicator.

2.3.2. Evaluation Model of Potential Urban–Rural Integration Development Level

Based on the standardization of data and calculation of weights, the potential de-
velopment level of each town is weighted and summed, i.e., the weighted sum of the
standardized values of each indicator multiplied by its weight is calculated [32]. The
calculation formula is:

Si = ∑n
j=1 wjPij(j = 1, 2, 3, ···n) (4)

where Si is the potential development score of the ith town, Pij is the standardized indicator
of the ith town, wj is the weight of indicator j, and n is the number of indicators in the
evaluation system.

(1) Construction of the Indicator System

The hierarchical model of the analytic hierarchy process (AHP) is used to construct
the evaluation system of potential urban–rural integration development into a structure
of “1 + 5 + 18”, which consists of 1 target, 5 criteria and 18 indicators. The target is the
potential level of urban–rural integration development of each town. The criteria include
five aspects: location and transportation, town scale, economic level, facility construction,
and characteristic resources. The 18 indicators include specific indicators such as population
size, township construction scale, industrial output value, and per capita net income of
farmers (Table 2).

Table 2. Evaluation system of the potential level of urban–rural integration development.

Target Criterions Indicators Scoring Standard

Urban–rural
integration

development
potential (B)

Location and
Transportation

(B1) [33]

Is the town located
around economically
developed areas (B01)

5 points for proximity to large cities, 3 points for the
periphery of the central city, 2 points for being located in the

development axis, and 1 point for other areas
Distance of the town
from transportation

hubs and roads (B02)

High-speed railway station, high-speed exit,
rail transit station, national highway, provincial highway,

other roads are assigned 5, 4, 4, 3, 2, 1

Town scale
(B2) [34]

Whether the township is a key
development township (B03)

National key town assignment points 5, provincial
model towns, central town assignment points 3,

general town assignment points 1
Population size (B04) Total resident population size

Township construction
scale (B05) Township built-up area land size

Economic level
(B3) [35]

Industrial output (B06) The output value of industrial enterprises above the scale
Number of Industrial

Parks (B07) Current and planned number of industrial parks

Per capita net income
of farmers (B08) -

Agricultural production (B09) Average grain land yield
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Table 2. Cont.

Target Criterions Indicators Scoring Standard

Facility
Construction

(B4) [36]

Educational Facilities (B10) Number of primary and secondary schools
Medical Facilities (B11) Number of medical beds per 1000 population
Garbage disposal (B12) Township waste disposal rate

Characteristic
resources
(B5) [37]

Natural Waters (B13) Lakes, rivers, wetlands, assigned 5, 3, 2, respectively

Geographical system (B14) Forest land, water area, arable land, and town are
assigned 5, 3, 2, and 1 point, respectively.

Brand Resources (B15) National well-known trademarks and provincial famous
trademarks are assigned 5 and 3 points, respectively

Tourism Resources (B16) National and provincial scenic spots are
assigned 5 and 3 points, respectively

Tangible Cultural
Heritage (B17)

According to the heritage level, the national level is
assigned 5 points, the provincial level is assigned 3 points,

the municipal level is assigned 1 point

Intangible Cultural
Heritage (B18)

According to the level of intangible cultural heritage, the
national level is assigned 5 points, the provincial level is

assigned 3 points, and the municipal level is assigned 1 point.

(2) Weight Calculation

The data for calculating the indicators are normalized using the forward processing
method in Section 2.3.1. Hierarchical analysis and the Delphi method are used to deter-
mine the weights of each evaluation indicator [38]. The hierarchical structure model is
established by using Yaahp software, and the weights of each indicator are finally calcu-
lated by establishing the relative importance comparison matrix of indicators after the
consistency test.

2.3.3. The Comprehensive Evaluation System of Urban–rural Integration Development

The evaluation results of the current and potential urban–rural integration develop-
ment levels are weighted and summed, and the weights are calculated specifically using
the expert scoring method. The revised scores of the current and potential development,
and the final comprehensive evaluation results are obtained by adopting the combined
opinions of several experts [39]. The specific formula is as follows:

T = a1Li + a2Si (5)

where T is the comprehensive evaluation result of urban–rural integration development;
Li and Si are the evaluation results of the current and potential urban–rural integration
development level, respectively; and a1 and a2 are the weights of the current and potential
urban–rural integration development level, respectively.

2.3.4. The Division of Urban–rural Integration Development Zones

Towns with the highest overall score are selected as the centers of the urban–rural
integration development zones. The gravity model is used to calculate the gravity value
between each center and the surrounding towns [40]. The higher the gravity value, the
closer to the centers. In the gravity model formulation, the mass parameter and the distance
parameter are key factors that affect the model’s results. The specific formula is as follows:

Iij =
Mi Mj

D2
ij

(6)

where Iij is the gravity between center i and town j; Mi and Mj denote the comprehensive
evaluation results of center i and town j; and Dij denotes the road distance between i and j.
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3. Results

3.1. Comprehensive Evaluation of Urban–Rural Integration Development
3.1.1. The Current Level of Urban–Rural Integration Development

The current level of most towns in Hanchuan City is lower than the average. The towns
with high levels form an axis in the direction from northeast to southwest. The indicator
weights of each township in Hanchuan are derived by principal component analysis, and
the current level of urban–rural integration development of each town is finally calculated.
The development level of urban–rural integration in Hanchuan is 0.35, which can be judged
that Hanchuan as a whole is in the primary stage of urban–rural integration. Among them,
7 out of all the 26 towns, such as Xiannvshan Street and Xinhe Town, have a higher value
than the average value of Hanchuan City, accounting for 26.92%. While the other 19 towns,
such as Miaotou Town and Dongzhong Town, are lower than the overall average value,
accounting for 73.08%. Therefore, Hanchuan City still needs to continue to promote the
development of urban–rural integration.

The natural breakpoint method was used to classify the current urban–rural integration
development value of 26 towns of Hanchuan City into four levels. The first category is
the towns with the highest level of urban–rural integration development, accounting for
3.84% of the total towns, such as Xiannvshan Street, which is the central urban area of
Hanchuan City, with a current level of urban–rural integration development far ahead of
other towns. The second category is the towns with a higher level of urban–rural integration
development, including Makou Town, Chenghuang Town, Fenshui Town, Chenhu Town,
Xinhe Town, and Diaodong Street, accounting for 23.08% of the total. The third category
is towns with a lower current level of urban–rural integration development, including
eight towns, such as Maiwang Town, Tianerhe Town, and Huilong Town, accounting for
30.77% of the total towns. The fourth category is towns with the lowest current level
of urban–rural integration development, including 11 townships such as Xinyan Town,
Dongzhong Town, and Mahe Town, accounting for 42.31% of the total. From the viewpoint
of spatial distribution, the first and second categories of towns form a spatial axis in the
direction of “northeast–southwest”, which may provide strong support for determining
the spatial development pattern of Hanchuan City (Figure 3).

Figure 3. Spatial distribution of current urban–rural integration development level of each town in
Hanchuan City.
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3.1.2. Potential Level of Urban–Rural Integration Development

In order to specifically display the potential urban–rural integration development of
each town, this study standardized the calculation results and uniformly set the highest
value of potential urban–rural integration development of towns up to 100. According
to the described method, the standardized scores of the potential urban–rural integration
development of 26 towns were calculated, and the natural breakpoint method in ArcGIS
software 10.0.2 was applied to classify the potential level of towns into three categories,
which were high, medium and low development towns, respectively. Among them, the high
development towns have comprehensive scores between 66.51–100, with a strong potential
development level. The comprehensive scores of towns with medium development are
between 34.68–66.51, which shows outstanding potential development in a certain way.
The comprehensive scores of towns with low development are below 34.68, indicating
weak development potentials.

The potential urban–rural integration development level of towns in Hanchuan City
has a pyramidal structure from high to low. The townships with high, medium, and low
development potentials account for 15.39%, 26.92%, and 57.69% of the total number of
towns, respectively, and the overall balance is at a low level. The spatial distribution of
towns with high development potential is concentrated in the eastern part of Hanchuan City
adjacent to Wuhan City, with more obvious location advantages. The spatial distribution
of towns with medium development potentials is more fragmented, either relying on the
advantage of close contacts with urban areas or the rich characteristic resources. The low
development towns are mainly located in the central and western parts of Hanchuan City.
These towns are mostly traditional agricultural towns, which lack service cores to drive the
overall development, and have no characteristic advantageous resources to use. They are
not strongly connected with the urban areas (Figure 4).

Figure 4. Spatial distribution of potential urban–rural integration development in each town of
Hanchuan City.

3.1.3. The Comprehensive Evaluation of Urban–Rural Integration Development

The results of current and potential urban–rural integration development levels are
weighted and summed to calculate the comprehensive evaluation results. The weights of
the current and potential urban–rural integration development levels were determined to
be 0.4 and 0.6, respectively, resulting in the revised current and potential scores (Table 3).
The natural breakpoint method was used to classify the comprehensive evaluation results
into four categories (Figure 5).
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Table 3. Ranking of the comprehensive evaluation results of urban–rural integration development.

Town
Urban–Rural Integration Level

Evaluation Revision Score
Urban–Rural Integration Potential

Evaluation Revision Score
Overall Score Ranking

Xiannvshan Street 0.380 0.418 0.798 1
Makou Town 0.213 0.410 0.624 2
Xinhe Town 0.216 0.354 0.570 3

Chenhu Town 0.165 0.278 0.443 4
Ma’an Town 0.104 0.304 0.408 5

Chenghuang Town 0.153 0.220 0.373 6
Fenshui Town 0.154 0.199 0.353 7

Diaodong Street 0.162 0.174 0.336 8
Nanhe Town 0.081 0.243 0.324 9

Tianerhe Town 0.097 0.216 0.313 10
Miaotou Town 0.128 0.107 0.235 11
Maiwang Town 0.118 0.107 0.225 12

Xinyan Town 0.073 0.145 0.218 13
Mahe Town 0.075 0.141 0.216 14

Dongzhong Town 0.083 0.128 0.210 15
Liujiage Town 0.093 0.116 0.210 16
Huilong Town 0.104 0.101 0.205 17

Diaochahu Farm 0.062 0.138 0.200 18
Huayan Farm 0.109 0.081 0.190 19
Xijiang Town 0.068 0.122 0.190 20

Yanglingou Town 0.080 0.089 0.169 21
Sanxingyuan Rice Farm 0.102 0.061 0.163 22

Wantan Town 0.081 0.069 0.150 23
Hanji Town 0.054 0.090 0.144 24

Zhongzhou Farm 0.060 0.079 0.139 25
Litan Town 0.053 0.060 0.113 26

Figure 5. Spatial distribution of the comprehensive evaluation results of urban–rural integra-
tion development.

The spatial patterns of the comprehensive evaluation results of urban–rural integration
development in Hanchuan city gradually decrease from the northeast and southwest to
the central area. The eastern part of Hanchuan is adjacent to Wuhan, which is the core
city of the Wuhan metropolitan area. The urban area of Hanchuan is also located in the
northeastern part of the county, which is influenced by the radiation of Wuhan city and
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the central urban area of Hanchuan, thus the overall level of the central urban area and
its surrounding townships is high and gradually decreases from the central urban area
outward. Although some of the towns in southwestern Hanchuan are far away from
Wuhan and Hanchuan’s central urban area, such as Chenhu Town, they have the advantage
of being close to the central urban area of Xiantao City, thus leading to a strong industrial
base and a high level of integrated urban–rural development. In contrast, the towns in the
central region are relatively weakly driven by the radiation of the surrounding growth poles
(such as the central urban area of Hanchuan and Wuhan City adjacent to the eastern part of
Hanchuan, and the central urban area of Xiantao City adjacent to the southwestern part).

3.2. Divisons of Urban–Rural Integration Development Zones
3.2.1. The Centers of Urban–Rural Integration Development Zones

According to the central place theory [41], regional network structure theory [42], and
the territorial spatial master planning, the 26 towns in the whole area of Hanchuan city
are roughly divided into four regions: northeast, southeast, southwest, and northwest.
Towns with the highest combined scores of the current and potential development levels
were selected as urban–rural integration development centers in each of the four regions.
Therefore, Xiannvshan Street, Makou Town, Chenhu Town and Xinyan Town were selected
as the centers of the northeast, southeast, southwest and northwest of Hanchuan City,
respectively. These four centers drive the hinterland of surrounding towns to integrate
development (Figure 6).

Figure 6. Spatial distribution of urban–rural integration development centers.

3.2.2. Zones of Urban–Rural Integration Development

The gravity model was used to calculate the gravity value between the centers and sur-
rounding towns. A larger gravity value means that the town is more closely connected to the
selected center. In terms of the setting of quality parameters, the comprehensive evaluation
score of each town was taken as the quality, which reflects the strength of a town’s urban–
rural integration development more comprehensively. In terms of the setting of the distance
parameter, the road distance between the center and each town was taken as the distance
parameter because Hanchuan is mainly road traffic. The gravity values between the other
22 townships and the four centers were obtained (as shown in Table 4 and Figure 6), and
the spatial extent of the four urban–rural integration development zones were divided
according to the principles of similarity and consistency of town development and their
environment (Figure 7).
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Table 4. Gravity values between 22 towns and four centers.

Town Xiannvshan Street Makou Town Chenhu Town Xinyan Town

Xinhe Town 60.09 8.79 1.82 1.07
Ma’an Town 18.77 49.3 1.08 0.6

Chenghuang Town 104.19 19.2 2.5 0.83
Fenshui Town 7.13 4.6 7.84 1.04

Diaodong Street 93.73 8.74 1.43 0.87
Nanhe Town 9.66 37.49 0.86 0.37

Tianerhe Town 1.85 1.09 23.13 1.91
Miaotou Town 38.96 66.21 1.05 0.44
Maiwang Town 2.79 1.46 25.74 0.5

Mahe Town 3.66 1.33 0.4 0.25
Dongzhong Town 1.18 0.63 0.79 3.78

Liujiage Town 14.63 3.04 0.66 0.39
Huilong Town 1.59 0.9 93.73 0.82

Diaochahu Farm 20.38 4.49 1.05 1.34
Huayan Farm 12.35 4.23 2.34 1.01
Xijiang Town 2.47 2.65 0.91 0.15

Yanglingou Town 3.26 3.27 0.75 0.16
Sanxingyuan Rice Farm 2.84 1.33 3.2 3.62

Wantan Town 5.05 5.09 1.81 0.18
Hanji Town 3.23 1.26 1.62 4.54

Zhongzhou Farm 1.37 0.66 1.7 5.6
Litan Town 1.19 0.7 4.67 1.04

Figure 7. Spatial distribution of the urban–rural integration development pattern.

3.3. Recongnition of Urban–Rural Integration Development Pattern

According to the evaluation of the potential development, the multifunctional evalu-
ation of each town within different zones is conducted based on five elements: location
and transportation, town scale, agricultural production, non-farm economy, characteristic
resources, and so on [43,44]. Using the categorical assignment method, the scores of each
element were assigned to seven grade intervals, with a maximum value of eight and the
minimum value of two. The scores of the towns within the four development zones were
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calculated by horizontally comparing the maximum value of each town’s score, compre-
hensively considering the leading industries of each town and the leading functions of
each development zone. The urban–rural integration pattern of Hanchuan City was finally
classified into four types: town gathering, agro-tourism interaction, industry-trade driven,
and agricultural service (Figure 7).

3.3.1. The Pattern of the Town Gathering Type

The town gathering type has more comprehensive industrial advantages. Xiannvshan
Street and Xinhe Town focus on secondary and tertiary industries with strong economic
strength; Chenghuang Town and Liujiage Town have developing manufacturing and
modern service industries while stabilizing agriculture of the traditional agricultural towns,
such as Diaodong Street, Mahe Town and Huayan Farm. From the spatial distribution of
the pattern, these eight towns are located in the dense area of the eastern part in Hanchuan
City, among which Xiannvshan Street, Diaodong Street and Xinhe Town are partly located
within the central urban area. Thus, this type was summarized as the town gathering type
pattern by combining the industrial base and spatial distribution.

3.3.2. The Pattern of the Agro-Tourism Interaction Type

The leading functions of the towns within the agro-tourism interaction type are char-
acteristic resources and agricultural production. Through sorting the resource endowment,
it was found that Nanhe Town, Yanglingou Town, Ma’an Town, and other towns have
good agricultural landscapes or planting bases to develop rural tourism. From the spatial
distribution, it can be seen that this type of integration development zone is located to
the south of the Hanjiang River and close to the Caidian District of Wuhan City, leading
to good tourism location advantages, and can link Huanglong Lake of Ma’an Township,
Tianyu Lake of Makou Town, Nanhe Ancient Ferry in Nanhe Town and other scenic spots
to form the Hanan agricultural tourism leisure resort area.

3.3.3. The Pattern of the Industry-Trade Driven Type

Most of the towns’ leading industries within the industry-trade driven type are sec-
ondary industries, and the urban functions are mainly a non-agricultural economy. In
particular, Chenhu Town and Fenshui Town are, respectively famous for their metal prod-
ucts and pharmaceutical packaging, with strong industrial foundations. The surrounding
Huilong Town, Maiwang Town, and Chenhu Town have both industrial divisions and
cooperation, which is good for forming industrial clusters. While Tianerhe Town can be
used as a product trading distribution center by its geographical advantages at the junction
of the two cities. Though Litan Town is a traditional agricultural town, it can provide raw
materials and labor for industrial development. Therefore, this pattern was summarized as
the industry-trade driven type.

3.3.4. The Pattern of the Agricultural Service Type

Towns within the agricultural service type are located in the vicinity of the Jianghan
Plain, and their leading function is agricultural production. The traditional agricultural
town of Xinyan is the unit center. The leading industries are high-quality rice cultivation,
special aquaculture and fine processing industry of agricultural products. Among them,
Xinyan Town and Hanji Town have the foundation of developing new modern agriculture;
Dongzhong Town relies on a planting foundation to develop melon fruit and a flower
industry; Zhongzhou Farm has the largest area of hybrid cotton base in Hanchuan. The
last round of master planning also positioned the area as a grain production base, a special
aquaculture base and an important fruit and vegetable production base of Hanchuan city.
Thus, this pattern was summarized as the agricultural service type.

163



Land 2023, 12, 14

4. Implications for Urban–Rural Integration Development Planning

4.1. Centralization

Building a five-level hierarchy of “central urban area—subcentral town—key town—
general town—new rural community” is needed to strengthen the agglomeration effect
of the central urban area, sub-central town, and key town, to thus guide the orderly and
efficient development of urban and rural areas and drive the construction of industries
and facilities in general towns and central villages. Among them, the subcenter towns
are supported by expanding the scale of construction, actively accepting the overflow of
manufacturing functions from urban areas and neighboring cities in the region, developing
employment- and technology-oriented labor-intensive industries, and improving public
service facilities. As linkages between the central urban area, subcenter towns, general
towns and key towns are important nodes and must act as the backbone of urban–rural
integration in Hanchuan City by using favorable conditions such as transportation and
natural resources to develop tourism, agricultural and sideline product processing indus-
tries to build a service center that radiates to the surrounding rural areas. Combining the
analysis of the village distribution planning of each town and the territorial spatial master
planning of the development conditions and development potential of villages, priority
will be given to select settlements with good development conditions and build new rural
communities in combination with resettlement.

4.2. Differentiation

Due to the great difference between the east and west directions of Hanchuan City,
different guidance should be taken to promote the integrated development of urban and
rural areas. The development paths and management of towns and villages in different
zones should be planned in a focused and targeted manner. According to the differences in
resource endowments and industrial development of each town, four different urban–rural
integration development patterns are proposed, namely, town gathering type, agro-tourism
interaction type, industry-trade driven type, and agricultural service type. Town gathering
type pattern applies to the central urban areas of Hanchuan. Agro-tourism interaction
type pattern applies to the areas with rich tourism resources. Industry-trade driven type
pattern applies to the areas around key towns. Agricultural service type pattern applies
to the areas with traditional agricultural production and poor industrial foundation and
lack of infrastructure. Through the above classification, the development gap between the
east and the west of Hanchuan city could be narrowed, leading to balanced development
and striving to make up for the backwardness of the development of western villages
and towns.

4.3. Demonstration

It is of great importance to build some demonstration areas, such as the central urban
area of Hanchuan and Makou Town, to provide development guidance for other towns.
The central urban area of Hanchuan has a good economic foundation and comprehensive
functions. These areas focus on integrating the complex resource elements in the region to
form an urban–rural ecosystem with a two-way flow of elements. Makou Town, relying on
its strong industrial foundation and tourism resources, can serve as a dual demonstration
area of agro-tourism interaction and industry-trade driven integration development pattern.
It could build a modern rural community and give priority to the transformation from
agriculture and rural areas to industry-trade towns. To narrow the gap between urban–
rural development, these urban–rural integration demonstration zones could promote the
two-way free flow of urban–rural production and the rational allocation of public resources.
The demonstration zones should break the institutional drawbacks, complement the policy
weaknesses to establish the urban–rural integration development system and policy system
to provide a replicable typical experience for Hanchuan City.
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5. Discussion

5.1. The Mechanism for Forming Urban–Rural Integration Development Patterns

Previous studies on urban–rural integration mainly focused on the evaluation of the
development level of urban–rural integration [32], while less attention has been paid to
what should be carried out after the evaluation. Therefore, the evaluation results cannot
be well integrated with the subsequent planning implementation. In addition, in terms of
evaluation contents, previous studies have often focused on measuring the current level
of development, while less attention has been paid to the future development potential of
urban–rural integration. Unlike previous studies, this study argues that the current and
potential levels, patterns, and strategies of urban–rural integration development all differ
within a city from the perspective of spatial heterogeneity [45].

At present, the county level urban–rural integration development is still in the stage
of continuous exploration. Cultivating urban–rural integration development zone is an
efficient way from the perspective of clusters. Based on the evaluation results of the
current and potential level of urban–rural integration development, the gravity model was
used to divide the study area into different urban–rural integration development zones
with different development patterns. The formation of the four urban–rural integration
development patterns is mainly the combinations of two forces, the internal and external of
the city. For the internal forces, urban–rural integration development patterns are closely
related to the spatial distribution of natural and human resources in the county, as well as
the overall territorial spatial plan. For the external forces, the Wuhan metropolitan area,
cannot be ignored as a driving force for its integrated urban–rural development. Hanchuan
is adjacent to Wuhan, which is the core city of the Wuhan metropolitan area. According
to the growth pole theory, Wuhan city is the first growth pole of the Wuhan metropolitan
area and has a strong attraction effect on the population, economy and other factors in
the surrounding areas [46]. Therefore, the integrated urban–rural development and the
formation of specific patterns in Hanchuan are also subject to a larger role of the core city.

However, the specific role of the core cities in the metropolitan area in the urban–rural
integration of the surrounding cities needs to be further discussed. For instance, when the
core cities promote the development of urban and rural areas, and whether they promote
the continuous reduction or expansion of the relative gap between urban and rural areas
in the surrounding counties. The formation mechanism of their urban–rural integration
development patterns may vary from cities outside the metropolitan area. There are likely
to be some differences even in their internal urban–rural integration development patterns,
except that the specific types of patterns are exactly the same as Hanchuan’s urban–rural
integration development patterns.

5.2. Limitations

China is actively promoting the development of new-type urbanization and urban–
rural integration. To continually direct the efficient circulation of urban–rural elements
and strengthen the urban–rural governance system, it should completely combine the
resource advantages and potentials within each county and plan differentiated urban–rural
integration development patterns. The results of this study can provide direct support
for the preparation and implementation of township-level territorial spatial planning, and
the layout planning of rural settlements in the county and the allocation of urban and
rural infrastructure and public service facilities. This study builds an index system for
evaluating urban–rural integration development level which is made up of socio-economic
and land-use-related indexes; however, two main shortcomings exist. First, due to data
limitations, this study was not based on a dynamic assessment [47] and did not consider the
trends in the evolving level of urban–rural integration development over the study years.
Secondly, due to some constraints, such as time and finance, a comprehensive survey on
the degree of happiness of residents, or satisfaction with the current status of urban–rural
integration development, or other subjective feelings were not considered. In the future, the
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evaluation model of urban–rural integration development level should be further improved
by combining it with survey data and so on.

6. Conclusions

This study constructed a comprehensive evaluation system of urban–rural integration
development based on the current and potential level of development, taking Hanchuan City,
located in the Wuhan metropolitan area, as the case study area at the county level. After
evaluating the comprehensive level of urban–rural integration development, the gravity
model was used to scientifically delineate the scope of the urban–rural integration de-
velopment zones. Four different types of urban–rural integration development patterns
were identified: town gathering, agro-tourism interaction, industry-trade driven, and agri-
cultural service. Finally, the corresponding optimization strategies were targeted. The
comprehensive evaluation results and recognized patterns of urban–rural integration devel-
opment were effectively connected with county-level and township-level territorial spatial
planning, which could provide direct guidance for the determination of the county–town
system and the development direction of each zone within the county. In addition, the
methodological evaluation system of urban–rural integration development and pattern
recognition established in this study is not only applicable to Hanchuan City within the
Wuhan metropolitan area, but may also be of reference value to other counties or cities
within or outside the metropolitan area.
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Abstract: As the net effect of agglomeration on entrepreneurship depends on the trade-off between
positive and negative effects, urban agglomeration can either promote or discourage entrepreneurial
activity in theory. However, there is an unexpected shortage of empirical confirmations on this
potential cause-and-effect relationship. Our study strives to fill this empirical gap by providing
credible evidence whether agglomeration, measured by the urban density or population, increases
the probability of individuals being self-employed. Based on the China Labor-Force Dynamic Survey
of 2012, 2014, and 2016, we find that big cities fail to facilitate individuals to start or run their own
businesses. Further analyses illustrate that the entrepreneurs in large cities can be easily tempted by
a wider range of salaried opportunities and are generally exposed to high fixed costs and intense
competition. In contrast, entrepreneurship in large cities is of high reward. These results serve as
direct evidence of the co-existence of agglomeration diseconomies and economies. This also suggests
the direction of government policy in large cities, which is to alleviate, as much as possible, the
negative impact on entrepreneurs.

Keywords: agglomeration economies; agglomeration diseconomies; entrepreneurship; self-employment;
agglomeration cost

1. Introduction

Entrepreneurship, the essence of which is creative destruction [1], does not only
create employment and promote productivity, but also fundamentally affects cities’ future
evolution. A prominent phenomenon in China’s entrepreneurial boom is the uneven
geographical distribution of entrepreneurial activity. Beijing, Shanghai, Shenzhen, or
other densely populated cities are often considered “pioneer cities of innovation and
entrepreneurship in China” or “best cities of entrepreneurship in China”. This is widely
supported by the “China City Entrepreneurship Index” released by Renmin University of
China (https://news.ruc.edu.cn/archives/126019, accessed on 14 December 2022) and the
“Best Startup Cities in China” list issued by China’s leading startup community (CYZONE)
(https://www.cyzone.cn/article/132069.html, accessed on 14 December 2022). Given the
highly spatial concentration of entrepreneurial activities, agglomeration economies are
commonly considered as a starting point to understanding the generation and development
of entrepreneurship [2–4]. Traditionally, cities with a large population or a high density have
been regarded as “incubators” or “nurseries” for entrepreneurs [5,6]. Glaeser et al. (2010)
also affirm that entrepreneurs in densely populated urban regions have the advantages of
ready access to agglomerated local inputs, skills, ideas, and markets, among others.
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However, there is a surprising lack of rigorous empirical evidence to test this assumed
cause–effect relationship between urban agglomeration and entrepreneurship. There
are a limited number of studies [7,8] that both used urban population size or density
as their main variable of concern in the estimation of the effect of agglomeration on
entrepreneurship and addressed endogeneity concerns. We consider that this absence of
empirical verifications is due to the following issues. First, most researchers rarely question
the positive effect of urban agglomeration. In previous empirical studies on the sources
of entrepreneurship, while agglomeration has been covered, it has often been treated as a
control variable [9–11]. Second, although these studies confirm that big/dense cities are
friendlier to entrepreneurs, the causal relationship between these two variables remains
questionable. The endogeneity problem has no easy treatment [12], as the main sources of
endogeneity are sorting and potential omitting variables. We discuss these issues in more
detail in the literature review section.

This paper, therefore, aims to provide a quantitative assessment on whether agglomer-
ation, measured by urban density or population, increases the probability of individuals
becoming entrepreneurs. With regard to entrepreneurship, there is no agreed measure-
ment. We take respondents who claim they are self-employed as entrepreneurs, which
is believed to be the most commonly used measurement of entrepreneurship [10]. Our
study contributes to the literature in two important ways. First, it is one of the first quan-
titative attempts to establish the causal relationship between urban agglomeration and
entrepreneurship. We use agglomeration, measured by urban density or population, as our
focal variable and tackle the potential endogeneity problem by using a restricted subsample
and two-stage least squares (TSLS) regressions. Our findings support the existence of ag-
glomeration diseconomies and even suggest that the cost of agglomeration has surpassed
its benefit in terms of entrepreneurship in China. Second, this paper identifies the source
of our counter-intuitive finding, that is, why large cities fail to boost the possibility of
being self-employed. Although previous studies have begun questioning the long-held
positive effect of urban population size or density on entrepreneurship, there is still a short-
age of evidence-based explorations in this area [7,13]. For an emerging market economy
like China, which is in the process of institutional transformation and rapid urbanization,
how to build and optimize urban entrepreneurial ecosystems is undoubtedly an issue
worthy of attention in current research. The purpose of this paper is to explore the above-
mentioned uneven geographical distribution of entrepreneurial activities from a relatively
new perspective of urban agglomeration [14–16].

The paper is organized as follows. Section 2 lays out the theoretical background and
progress on relevant empirical evidence. Section 3 describes the data and empirical strategy.
Section 4 presents the econometric results and the final section concludes the paper.

2. Literature Review and Research Proposition

This section reviews the theoretical and empirical research on the relationship between
urban agglomeration and entrepreneurship. Since it is a core topic in economic geography,
there is a rich body of literature dedicated to agglomeration economies [3,5,12,14,17]. While
it has long been established that the spatial concentration of firms and workers increases
productivity, theoretically, the benefits of agglomeration accumulate faster initially, but
eventually, costs prevail as population and density increase in cities [18,19]. Therefore,
we next theoretically approach the effects of agglomeration on entrepreneurship from the
benefit-cost perspective.

First proposed by Duranton and Puga (2004), agglomeration economies, or the benefits
of agglomeration, are wildly widely recognized to stem from three sources: sharing, learn-
ing, and matching. Sharing means that the increased local outcomes of spatial concentration
lie primarily in sharing indivisible facilities, input suppliers, industrial specialization, and
risks, while learning suggests that the improvements in the local productivity of spatial
agglomeration come largely from the generation, diffusion, and accumulation of knowl-
edge. These two sources of agglomeration also motivate entrepreneurship, as the sharing
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and learning effects in large cities are accelerators for entrepreneurs [20–22]. However,
the matching mechanism of agglomeration economies may not serve the same function
when it comes to entrepreneurship. Specifically, the boost in local performance from ur-
ban agglomeration mainly lies in the improvement of either the quality or quantity of
the matches between firms and workers. On one hand, this helps entrepreneurs find
employees and partners easily and efficiently, thus encouraging entrepreneurial activity;
on the other hand, a higher matching effect in large cities also implies it is easier to find a
satisfactory job, meaning individuals tend to become salaried-job employees rather than
risk-taking employers.

In addition to this matching effect, there are other often mentioned costs of agglom-
eration, such as high land/house prices or intense competition, which are expected to
negatively affect entrepreneurship [23]. The high land/house price costs are commonly
believed to have a direct negative impact on entrepreneurship. Induced by agglomer-
ation, high land/house prices suggest office or store rent required is likely higher for
entrepreneurs in larger cities. Moreover, high land/house prices also mean entrepreneurs
need to offer high salaries to enable their employees to afford rent. As for the intense compe-
tition, while some scholars argue that it makes entrepreneurship more efficient [7,14], others
believe that excessive competition can discourage entrepreneurs [7]. Other costs, such as
congestion, pollution, and crime, do not directly affect the profits or costs of entrepreneurial
activity, and are thus not further discussed in this paper.

Apart from the theoretical uncertainty, empirical studies on the impact of urban ag-
glomeration on entrepreneurship are lacking. There are limited empirical papers devoted
to this specific topic [7,8] and their findings are inconsistent. Specifically, considering
Italian college graduates’ work possibilities as entrepreneurs after graduation, Di Addario
and Vuri (2010) found that young college graduates were discouraged from starting their
entrepreneurial activity in the most densely populated provinces. However, Sato et al.
(2012) found that a U-shaped relationship existed between population density and ob-
served entrepreneurship in Japanese prefectures, and the impact of population density
on observed entrepreneurship was positive in both small and large cities, while the im-
pact was smaller (or even negative) in medium-sized cities. While there are empirical
studies on entrepreneurship that include urban agglomeration as control variables, these
studies do not generally discuss the endogeneity of agglomeration and arrive at varied
findings [10,11,24]. Similarly, there are empirical-based studies that focus on the industrial
structure within agglomerations to explore the impact of specialization and diversification
on entrepreneurship [25,26]. We do not further discuss these two branches of literature
here because their topic is beyond the scope of this paper.

There are, in fact, two critical challenges in empirically answering the question of
whether urban agglomeration increases the probability of an individual becoming an
entrepreneur. They are also the main endogeneity sources. The first challenge refers to
addressing the sorting or self-selection effect [7,14,27,28]. Specifically, both risk-taking
entrepreneurs and risk-averse employees prefer to relocate to large cities because of the
greater availability of both entrepreneurial and employment opportunities there. This
re-location influences both the population size and level of entrepreneurship of a city, thus
leading to biased estimates of the impact of agglomeration on entrepreneurship. Moreover,
it is difficult to determine whether this is an overestimate or underestimate. However, this
self-selection or sorting effect may not introduce a heavy bias. According to Michelacci and
Silva (2007) [29], entrepreneurship can be regarded as a local factor, given that entrepreneurs
tend to start their business in the regions they were born.

The second challenge regards missing variables [7,30,31]. To some degree, it is impos-
sible for any study to rule out the possibility of missing variables. Attributes such as the
cultural atmosphere of entrepreneurship are likely to influence both the urban population
and its entrepreneurship level but are difficult to fully capture. This can lead to biased and
inconsistent estimates of urban agglomeration, and ultimately to the failure to establish
the causal link between agglomeration and entrepreneurship. It is also worth noting that,
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while both studies deal with endogeneity using instrumental variables, neither pays special
attention to the issue of self-selection.

Taken together, we make our research proposition as follows. It is difficult to conclude
whether urban agglomeration promotes or discourages entrepreneurship, as the net effect of
agglomeration on entrepreneurship depends on the trade-off between positive and negative
influences. Notably, there is a good chance that agglomeration poses a disadvantage for
entrepreneurship, with the potential disadvantages or agglomeration diseconomies being
mainly embodied in alternative salaried opportunities, high land/house prices, and intense
competition. Therefore, there is an urgent need for more empirical evidence to test this
potential cause-and-effect relationship, while paying attention to endogeneity issues.

3. Data and Estimation Strategies

3.1. Data

Our main data source is the China Labor-Force Dynamic Survey (CLDS), which is
a nation-wide database updated by Sun Yat-sen University every two years. The CLDS
provides a representative image of China’s workforce population and we focus on its
2012, 2014, and 2016 waves. Our sample consists of 11,551 working individuals (self-
employer and employees), with a self-employment rate of about 17.98% (Table 1). The
self-employment rate indicates that our data source is reliable, as it is consistent with the
results of a sample survey of 1% of China’s population. According to Wu et al. (2014) [32],
which is based on the 2005 China’s population sample survey (1/5 of a random subsample),
the self-employment rate of the urban population was 13.1% in 2005. Generally, the self-
employment rate is expected to remain stable and the rapid growth in 2014 mirrors the
initiation of a policy on “mass entrepreneurship and innovation”.

Table 1. Distribution of the sample between the self-employed and employees.

Year
Self-Employer Employee

Number Percentage (%) Number Percentage (%)

2012 474 16.68 2368 83.32
2014 811 17.08 3938 82.92
2016 799 20.18 3161 79.82

Although there is no agreed measurement of entrepreneurship, self-employment is
considered the most natural individual measure of entrepreneurship [10,33,34]. Hence, we
start constructing the core explained variable Entrep, which is a dummy variable taking
the value of 1 if the respondents state they are self-employed. Moreover, as a robust check,
we also employ Active_Entrep, which is also a dummy variable taking the value of 1 if
the respondents state that he or she was motivated to start a business based on taking
advantage of a good business opportunity. The individuals who are self-employed as
nannies or in odd jobs are dropped from the sample, as they are not really engaged in
entrepreneurial activities. For further analysis, we also collect other information at the
individual level (see Table 2).

Our core explanatory variable—urban agglomeration—is a proxy of urban density
or population. The three CLDS waves considered in this study cover a total of 78 cities,
providing a good national representation. A piece of supporting evidence is that the density
and population distribution in our sample of 78 cities is similar to that of the national cities
(Figure 1a,b). To be specific, the cities in our sample not only share a similar trend of
density with all cities, but also have a wide population range, from 0.32 million (Yunfu) to
22.30 million (Shanghai). Moreover, these population-related data are all gathered from the
2010 Population Census of the People’s Republic of China to ensure that the permanent
population is considered. We also collect other city-level data from the China City Statistical
Yearbook for the following analysis (Table 2).
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Table 2. Variable definitions and summary statistics.

Variable Definition Obs. Mean Std. Dev.

Entrep Self-employed or not (1 = yes; 0 = no) 9883 0.170 0.375
Age Age of the respondent (years) 9883 40.475 10.492
Male Gender (1 = male; 0 = female) 9883 0.554 0.497

Edu_year Years of schooling (years) 9883 12.129 3.465
Married Marital status (1 = married; 0 = single) 9883 0.821 0.384

Income (ln) Total income over the past year (Yuan, ln) 9883 10.395 0.731
Local_hukou Possess a local hukou or not (1 = yes; 0 = no) 9883 0.774 0.418

Party Being party member or not (1 = yes; 0 = no) 9883 0.170 0.375
Density (ln) Population density (ln) 78 9.602 0.487

Population (ln) Number of permanent population (ln) 78 14.375 1.046
Land area (ln) Area of construction land (ln) 78 4.772 1.063
GDP_pop (ln) GDP per capita (ln) 78 10.329 0.534
Coll_pop (ln) Percentage of the total population with university education (ln) 78 −2.437 0.588

Gov_gdp (ln) Share of government expenditure (subtract expenditure on
education and technology) in GDP (ln) 78 7.249 0.418

Ter_gdp (ln) Share of tertiary sector output to GDP (ln) 78 3.76 0.25
Internet_pop (ln) Number of international internet users per capita (ln) 78 −1.755 0.605

(ln) refers to the log-transformation of the data.

3.2. Estimation

To investigate whether urban agglomeration increases the probability of individuals
being self-employed, we run the following logit regression:

Entrep = α + β ln(Density or Population) + ∑ riindi + ∑ δjcityj + ε, (1)

where, as previously discussed, Entrep is a dummy variable indicating whether the respon-
dent works as a self-employed entrepreneur, Density and Population are two continuous
proxies for urban agglomeration, and indi and cityj are vectors of control variables at
individual and city levels (i signifies different individuals, and j stands for different cities),
respectively. Specifically, indi includes respondents’ age (Age), gender (Male), years of
schooling (Edu_year), marital status (Married), income (Income), possessing a local hukou
or not (Local_hukou), and being a party member or not (Party), while cityj includes the
area of constructed land (Land_area), GDP per capita (GDP_pop), city’s average level
of education (Coll_pop), share of government expenditure in GDP (Gov_gdp), share of
tertiary sector output to GDP (Ter_gdp), and number of internet users per capita (Inter-
net_pop). These control variables were primarily sourced from entrepreneurship and urban
agglomeration studies [7,8,10,12,35,36]. We also include industry, province, and year fixed
effects in the specification.

Although we focus on the three waves of the CLDS survey, we still employ a (pooled)
cross-sectional strategy rather than panel regression. The main reason lies in the fact that a
panel-based identification requires variation in the entrepreneurial status of individuals
between 2012 and 2016 for weighing the impact of agglomeration on entrepreneurship.
However, the entrepreneurs who have entered and exited the market are only around 200
during the study period (2012–2014). Therefore, our individual-level variables, including
the core explained variables, cover three years (2012, 2014, and 2016), while all city-level
variables and the core explaining variables are only for 2010. The definition and statistical
information for all variables are outlined in Table 2.

To address the two empirical challenges mentioned above, we adopt two approaches.
Our solution for the self-selection issue is to identify a subsample of only respondents that
have not moved across counties since the age of 14. In this way, we rule out the risk-taking
entrepreneurs and risk-averse employees who prefer to relocate among cities to some
extent. Regarding potential missing variables, apart from adding region and year dummy
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variables, we use a TSLS regression with an historical instrumental variable, that is, density
or population in 1953, the data coming from the first census conducted in China.

 
(a) 

 
(b) 

Figure 1. Kernel density estimate of urban density (a) and population (b).

Since the groundbreaking work of Ciccone and Hall (1996) [37], historical instrumental
variables have become common practice in the study of agglomeration economies. This
instrument can satisfy both the relevance and exogenous requirements. As for relevance,
the population in 1953 shaped today’s population. As shown in Table 3, the Kleibergen-
Paap rk Wald F (KP F) statistic confirms the relevance of our instrument. As for exogeneity,
the spatial pattern of China’s population has changed dramatically in response to various
broadly population-oriented projects, such as the well-known Shangshan Hsia-hsiang and
The Third Front programs [38,39]. At the same time, entrepreneurship has also been deeply
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transformed by three decades of planned economy. Hence, the 1953 population should
have no direct effect on current entrepreneurship.

Table 3. Baseline identifications under different approaches.

Y: Entrep (1) (2) (3) (4) (5) (6)
MLE Sorting IV MLE Sorting IV

Density (ln) 0.567 *** 0.583 *** 0.517 **
(0.094) (0.097) (0.132)

Population (ln) 0.567 *** 0.583 *** 0.517 **
(0.094) (0.097) (0.132)

Age 1.070 ** 1.033 1.024 1.070 ** 1.033 1.001
(0.030) (0.043) (0.023) (0.030) (0.043) (0.002)

Age2 0.999 * 1.000 1.000 0.999 * 1.000 1.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Male 1.465 *** 1.810 *** 1.388 *** 1.465 *** 1.810 *** 1.008
(0.115) (0.232) (0.107) (0.115) (0.232) (0.005)

Edu_year 0.895 *** 0.874 *** 0.922 *** 0.895 *** 0.874 *** 0.922 ***
(0.013) (0.022) (0.015) (0.013) (0.022) (0.015)

Married 1.588 *** 1.781 *** 1.288 ** 1.588 *** 1.781 *** 0.987
(0.208) (0.368) (0.154) (0.208) (0.368) (0.154)

Local_hukou 0.628 *** 0.639 *** 0.775 ** 0.628 *** 0.639 *** 0.775 **
(0.089) (0.105) (0.080) (0.089) (0.105) (0.015)

Income (ln) 1.806 *** 1.691 *** 1.341 *** 1.806 *** 1.691 *** 1.341 ***
(0.188) (0.194) (0.091) (0.188) (0.194) (0.091)

Party 0.391 *** 0.375 *** 0.620 *** 0.391 *** 0.375 *** 1.002
(0.063) (0.062) (0.062) (0.063) (0.062) (0.006)

Land area (ln) 0.696 *** 0.731 ** 0.673 ** 1.228 1.254 * 1.322 **
(0.091) (0.094) (0.114) (0.153) (0.155) (0.212)

GDP_pop (ln) 0.498 ** 0.760 1.125 0.498 ** 0.760 1.646 **
(0.158) (0.238) (0.296) (0.158) (0.238) (0.296)

Coll_pop (ln) 0.962 0.710 0.704 0.962 0.710 0.704
(0.240) (0.194) (0.189) (0.240) (0.194) (0.189)

Gov_gdp (ln) 0.588 ** 1.098 0.867 0.588 ** 1.098 0.867
(0.152) (0.336) (0.214) (0.152) (0.336) (0.214)

Ter_gdp (ln) 1.948 0.877 1.448 1.948 0.877 3.317 ***
(0.954) (0.424) (0.823) (0.954) (0.424) (0.823)

Internet_pop (ln) 0.974 1.223 1.011 0.974 1.223 0.923
(0.237) (0.299) (0.206) (0.237) (0.299) (0.206)

Industry FE YES YES YES YES YES YES
Province FE YES YES YES YES YES YES

Year FE YES YES YES YES YES YES

KP F stat - - 9.961 - - 9.961
Observations 9883 4266 3485 9883 4266 3485

LL −3163 −1425 510.7 −3163 −1425 510.7
Pseudo R2 0.297 0.293 / 0.297 0.293 /

Odds ratio (OR) coefficients above 1 indicate an increased occurrence of the event and vice versa. Standard errors
adjusted for clustering at city level are between parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.

4. Empirical Evidence

4.1. Baseline Results of Urban Agglomeration on Entrepreneurship

Table 3 reports the logit specification results of urban agglomeration on entrepreneur-
ship for different proxy variables and econometric approaches. Columns (1)–(3) use the
proxy variable Density, while columns (4)–(6) use Population as a proxy. Each column
group uses the maximum likelihood estimate (MLE), sorting, and instrumental variable
(IV) strategies, respectively. MLE is the most commonly used estimation strategy in logistic
regression. Sorting refers to our adoption of subsamples that have not moved across coun-
ties since the age of 14 to tackle the potential sorting problem. IV implies estimation using
TSLS with the 1953 density or population as IVs to address the missing variable concern.
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Moreover, in the IV specification, the KP F statistic of columns (3) and (6) is close to 10,
which is above the 15% maximal IV size (8.96) in the Stock–Yogo weak instrument test.
This confirms the relevance of our instrumental variables.

Turning to our focal variable, the odds ratios for both Density and Population are
below 1; that is, all else being equal, the higher the population density or the larger the
population, the less chance individuals have of becoming self-employed. This finding is
robust to three different strategies and the odds ratios are of roughly the same magnitude.
In other words, big cities fail to incentivize individuals to start or run their own business,
and our concerns about self-selection and omitted variables do not make a significant
difference. The magnitude and significance of Density and Population are the same. As this
is an inevitable result when considering Land area as a control variable, we only employ
Density as the proxy for urban agglomeration in the following.

The results of the other controls are in line with expectations. At the individual level,
male, married, and higher income individuals are more likely to be entrepreneurs, while
individuals with high education, who hold a local residence, and are party members
are less likely to engage in an entrepreneurial venture. This is consistent with Cejudo
García et al. (2020) [40]. At the city level, the roles of these variables are rather mixed. In
general, government intervention is harmful to individual entrepreneurship, while the
average education level in the city does not affect whether an individual chooses to be
self-employed.

Someone may argue that self-employment is not an appropriate measure for en-
trepreneurship, for many people are pushed into self-employment. In order to tackle this
potential issue, we select the self-employed entrepreneur who claims that their motiva-
tion is to take advantage of a good business opportunity, as explained variables (Table 4).
According to Table 4, all else being equal, the odds ratios for Density or Population are
again below 1. In other words, for active self-employed entrepreneurs, big cities still play a
negative role.

Table 4. Robust check with active entrepreneur.

Y: Active_Entrep (1) (2) (3)
MLE Sorting IV

Density (ln) 0.423 *** 0.332 *** 0.517 **
(0.131) (0.106) (0.132)

Individual-level control variables YES YES YES
City-level control variables YES YES YES

Industry FE YES YES YES
Province FE YES YES YES

Year FE YES YES YES

KP F stat - - 9.961
Observations 5818 3640 3485

LL −1023 −585.5 510.7
Pseudo R2 0.285 0.300 /

Odds ratio (OR) coefficients above 1 indicate an increased occurrence of the event and vice versa. Standard errors
adjusted for clustering at city level are between parentheses. ** p < 0.05, *** p < 0.01. The individual-level control
variables and city-level control variables in columns (1) and (2) are the same as in Table 3.

4.2. Potential Explanations for the Negative Impact of Agglomeration

As shown above, the probability of becoming an entrepreneur decreases as urban
density increases. This result is robust for controlling for a wide range of individual- and
city-level features and after correcting for the two potential endogenous sources of agglom-
eration. Here, we explore the potential explanations for our counter-intuitive finding from
three aspects. Additionally, as the endogeneity problem is largely insensitive according to
the benchmark regressions, in the follow-up specifications, we do not specifically target
endogeneity to avoid MLE non-convergence. This is always the case, especially when the
sample size is small. The sample size is reduced in many of the specifications in this section.
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4.2.1. Matching Effect

It is believed that an increase in density or population can increase the probability of
finding a match and improves the quality of matches. This translates into easier access to
a satisfying job in dense or large cities; as a result, individuals tend to be wage-earning
employees rather than risk-taking employers.

To verify this reasoning, we first divide our sample into high and low groups based
on the availability of employment opportunities to check whether the magnitude and
significance of Density differ. Next, we replace the explained variables with the job satisfac-
tion to examine differences in match quality. Particularly, the availability of employment
opportunities is measured by the total number of workers in the 2008 Industrial Census,
while job satisfaction (ranging from 1 to 5 for strongly dissatisfied to strongly satisfied,
respectively) is derived from the CLDS questionnaire.

We find that the coefficient on Density is significantly lower than 1 in column (1) but
insignificant in column (2) of Table 5. This implies that the negative effect of agglomeration
is stronger in cities with a higher availability of employment opportunities. Meanwhile,
according to column (3), higher urban density is indeed associated with higher job satis-
faction among employees. However, the increase in density has no significant effect on
employer job satisfaction, based on column (4). This reflects the high quality of matches in
large cities, where employees are more likely to find desirable jobs. In short, the negative
effect of density can be explained by the fact that the densest markets are better at matching
quantity with quality, thus creating a trade-off for entrepreneurship.

Table 5. Agglomeration economies and entrepreneurship: testing matching effect.

(1) (2) (3) (4)

Y: Entrep Y: Job Satisfaction
High Low Employee Employer

Density (ln) 0.207 *** 1.199 1.188 ** 1.003
(0.116) (0.619) (0.087) (0.078)

Individual-level control variables YES YES YES YES
City-level control variables YES YES YES YES

Industry FE YES YES YES YES
Province FE YES YES YES YES

Year FE YES YES YES YES

Observations 6753 2725 8135 1645
LL −2071 −989.6 −8393 −1779

Pseudo R2 0.276 0.337 0.0360 0.0434
High signifies that the availability of jobs in this subsample is higher than the 50th percentile for the sample
cities, while Low indicates it is below the 50th percentile. The individual-level control variables in columns (1)–(4)
are the same as in Table 3. The city-level control variables in columns (1) and (2) are the same as in Table 3, but
columns (3) and (4) include only GDP_pop and Land Area. OR coefficients are shown. Standard errors adjusted
for clustering at the city level are between parentheses. ** p < 0.05, *** p < 0.01.

4.2.2. High House Price

As a non-tradable resource, land and housing prices are bound to increase with
density, which can impose a high fixed cost on entrepreneurs and raise entrepreneurship
entry barriers. Hence, it is generally agreed that high land/housing costs are a strong
discouragement to entrepreneurship. Additionally, a side-effect of the high land/prices is
that entrepreneurs typically have to pay high salaries to make house rent affordable for
their employees. This may make the cost of labor additionally hinder entrepreneurship.

To explore whether this is the case, we split the sample into two high-low groups based
on average house prices and salary in the city (Table 6). The coefficient on Density with
high house prices is significantly below 1 but does not show significance for the subsample
of low house prices. This empirically confirms the discouraging effect of house prices on
entrepreneurship. In terms of salary, although the coefficient on Density with low labor cost
is greater than 1, it is insignificant. In fact, none of the coefficients on density are significant
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when grouped by salary (columns (3) and (4)). In other words, the dampening effect of
labor costs is not verified. Overall, high housing prices in big cities tend to discourage
individuals from entrepreneurship.

Table 6. Agglomeration and entrepreneurship: testing the effect of house price and salary.

Y: Entrep
(1) (2) (3) (4)

House Prices Salaries
High Low High Low

Density (ln) 0.644 * 0.686 0.605 1.235
(0.166) (0.373) (0.232) (0.364)

Other control variables YES YES YES YES
Industry FE YES YES YES YES
Province FE YES YES YES YES

Year FE YES YES YES YES

Observations 6442 3082 6471 3066
LL −1977 −1125 −1986 −1115

Pseudo R2 0.292 0.303 0.275 0.325
High signifies that the house price or salary in this subsample is higher than the 50th percentile for the sample
cities, while Low indicates it is below the 50th percentile. The other control variables in columns (1)–(4) are the
same as in Table 3. OR coefficients are shown. Standard errors adjusted for clustering at the city level are between
parentheses. * p < 0.1.

4.2.3. Intense Competition

As for competition, it is widely accepted that there exists higher competition in larger
markets. This is also confirmed by our empirical examination in column (1) of Table 7.
Taking the employer’s personal perception of intense business competition in the past
year (Fierce, ranges 1 to 5 for free of competition to fierce competition, respectively) as the
explanatory variable, an ordered logistic regression shows that the higher the density, the
more intense perceived competition is.

Table 7. Agglomeration economies and entrepreneurship: testing the effect of competition.

(1) (2) (3)

Y: Fierce Competition Y: Entrep
High Low

Density (ln) 2.006 *** 0.734 * 0.562
(0.511) (0.118) (0.346)

Other control variables YES YES YES
Industry FE YES YES YES
Province FE YES YES YES

Year FE YES YES YES

Observations 999 3117 6476
LL −1159 −1137 −1967

Pseudo R2 0.059 0.296 0.299
High signifies that the density of firms in this subsample is higher than the 50th percentile for the sample cities,
while Low indicates it is below the 50th percentile. The other control variables in columns (1)–(3) are the same
as in Table 3. OR coefficients are shown. Standard errors adjusted for clustering at the city level are between
parentheses. * p < 0.1, *** p < 0.01.

More importantly, fierce competition may invariably increase the difficulty of starting
a business, which in turn discourages over-thinking entrepreneurs. Hence, we measure the
degree of competition using the density of firms from the 2008 Industrial Census and divide
the sample into high and low competition groups. As shown in Table 7, the subsample
with a high competition degree has a regression coefficient on density significantly below 1
(column (2)), while the coefficient is insignificant for a low competition degree (column (3)).
Therefore, the fierce competition in big cities does, as expected, drive individuals away
from becoming employers.
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4.3. Reward for Entrepreneurs in Large Cities

Based on Sections 4.1 and 4.2, we can conclude that large cities fail to encourage
individuals to start or run their own businesses because entrepreneurs in large cities can
easily be tempted by a wider range of salaried opportunities and face high fixed costs
and intense competition. However, these findings can easily be translated into misleading
policy, that is, limiting or restricting individuals from engaging in entrepreneurship in
large cities. In fact, if a firm or entrepreneur can survive high housing prices and fierce
competition in large cities, they can expect to reap significant rewards. In this sense, it is
worth encouraging entrepreneurship in big cities.

To find out whether this is true, we respectively take the gross profit of firms, number
of employees, and operational income of entrepreneurs as dependent variables and observe
the coefficients on density. Table 8 confirms that, as urban density increases, firms and
entrepreneurs indeed perform better. This can serve as a friendly reminder that the firms
and entrepreneurs surviving in large cities are productive and do receive rewards.

Table 8. Rewards for entrepreneurs in large cities.

(1) (2) (3)

Y: Gross Profit of
the Firm

(Million RMB)

Y: Number of
Employees

Y: Operational
Income of

Entrepreneurs

Density (ln) 0.006 * 0.340 * 0.500 ***
(0.003) (0.184) (0.125)

Other control variables YES YES YES
Industry FE YES YES YES
Province FE YES YES YES

Year FE YES YES YES

Observations 1082 253 457
R2 0.161 0.356 0.299

Other control variables in columns (1)–(3) are the same as in Table 3. Standard errors adjusted for clustering at the
city level are between parentheses. * p < 0.1, *** p < 0.01.

5. Discussion

Theoretically, it is difficult to draw conclusions on whether urban agglomeration
promotes or hinders entrepreneurship. Based on our empirical examination, we find that,
all else being equal, the higher the population density or the larger the population, the
less chance individuals have of becoming self-employed. This baseline result is in line
with Di Addario and Vuri (2010), who found that young Italian university graduates were
reluctant to start their entrepreneurial activities in the most densely populated provinces. A
U-shaped relationship was found in Japanese prefectures [8], but it could not be confirmed
in our study (the square items of population and density are not statistically significant).

As for the reasons why large cities fail to encourage individuals to start their own
businesses, we empirically find that entrepreneurs in large cities can easily be tempted by
a wider range of salaried opportunities. This is against the suggestion of van Oort and
Bosma (2013), who argue that the matching effect in large cities can help entrepreneurs
find employees and partners easily and efficiently, thus encouraging the development of
startups. Our findings lend more support to the idea that this matching effect makes it
easier for individuals to find a satisfying job, which makes individuals tend to be employees
with salaried jobs rather than risk-taking employers. Moreover, we find that entrepreneurs
in large cities face intense competition. This is consistent with the Di Addario and Vuri
(2010) argument about excessive competition.

Moreover, incredible rewards can be expected if a firm or entrepreneur can survive
high housing prices and fierce competition in large cities. We do find firms in large cities
are more likely to make better profits and hire more employees, and entrepreneurs can earn
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higher incomes. This may explain why big cities have traditionally been seen as pioneering
cities for entrepreneurship [41–43].

6. Conclusions

Cities with large or dense populations have traditionally been treated as entrepreneurial
“incubators” or “nurseries” [44,45]. However, there is a surprising lack of rigorous em-
pirical evidence to test this assumed cause–effect relationship between agglomeration
economies and entrepreneurship. Based on the 2012, 2014, and 2016 CLDS waves, this
paper tries to fill this empirical gap using credible specifications. We find that large cities
fail to boost individuals to start or run their own businesses, and this primary finding is
robust in correcting the two potential endogeneity sources of agglomeration. Further analy-
ses illustrate that entrepreneurs in large cities can be easily tempted by a wider range of
salaried opportunities and are largely exposed to high fixed costs and intense competition.
Additional examinations find that firms in larger cities yield better profits and hire more
employees, and entrepreneurs are more likely to have higher incomes.

These findings lead to critical implications for boosting entrepreneurship. First, our
baseline finding is a timely reminder that the cost of agglomeration has even outweighed
its benefit in terms of entrepreneurship in China. It can be further deduced that China’s
cities may be experiencing deviations from their optimal sizes. The most prominent
agglomeration diseconomy is excessive housing prices, which pose a serious obstacle
to entrepreneurship.

Second, our findings should not simply be reduced to the idea that we should limit
or restrict individuals from engaging in entrepreneurship in large cities. Although a
high density is a strong discouragement for individuals becoming entrepreneurs, the
survivors in large cities can always expect significant rewards. According to our empirical
examination, firms in large cities are more likely to make better profits and hire more
employees, and entrepreneurs can earn higher incomes. The key message we aim to deliver
is that entrepreneurs in large cities suffer from many disadvantages and mitigating these
vulnerabilities is a top priority.

Third, targeted government policies to mitigate agglomeration diseconomies can
focus on the following aspects. As entrepreneurs in large cities can be easily tempted
by a wider range of salaried opportunities and are largely exposed to high fixed costs
and intense competition, policymakers in large cities could at least nurture the culture of
self-employment, reduce taxes for entrepreneurs, and encourage legitimate competition.
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Abstract: This paper develops an optimization modeling framework to select strategies of land
development and population and employment densities for a growing metropolitan area. The
modeling core involves a non-linear commuting model, which accounts for spatial structure variables
and is empirically estimated by Tobit regression. This commuting model is then embedded into a non-
linear optimization model that allocates increments in the population and employment (activities)
to available land, while minimizing the total future commuting costs under various combinations
of land expansion boundaries and population and employment densities. The resulting minimum
cost surface is approximated via polynomial regression and combined with land development
and congestion cost functions to derive the overall optimal strategy. These models are estimated
and calibrated with data from the Census Transportation Planning Package (CTPP) and Auditor’s
property database, and are applied to the Fredericksburg metropolitan area, Virginia. The results
demonstrate that the optimal development densities are very sensitive to the congestion cost function.
A land development strategy that allows for limited sprawl might be a smart policy to reduce both
regional vehicle mile travel (VMT) and related congestion and pollution.

Keywords: population location and density; employment location and density; commuting spatial
interactions; urban boundary; land availability; cost minimization

1. Introduction

1.1. Historical Overview of Urban Modeling

Accurately predicting the spatial pattern of population and economic activity is nec-
essary for developing successful regional plans and policies. Computer-based urban
simulation models originated in the U.S. in the 1950s’ metropolitan transportation studies
and used geographic accessibility concepts. However, the attempts to build large-scale
urban models failed over the next 15 years. After Lowry [1] introduced a comprehensive
spatial interaction model called “The Lowry Model” to simulate location patterns of residen-
tial and commercial/service activities for a given pattern of basic (export manufacturing)
employment locations, while accounting for accessibility, a renaissance in urban modeling
took place, based on spatial interaction modeling (SIM), with initial formulations using
the gravity model. During the 1960~1970s, the focus of SIM was primarily on population
and activities. The 1980~1990s witnessed efforts at integrating land-use and transportation
modeling. More recently, comprehensive models have involved environmental modeling,
and the advent of the digital era, advances in computer technology, sophisticated spatial
analysis methods, and the availability of big data, combined with geographic information
systems (GIS), have generated new urban models.

In order to provide an appropriate background for this research, we critically review
the literature on SIM, the relationship between SIM and planning optimization models,
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and the costs of urban sprawl and congestion. We then summarize the shortcomings of
past research and outline the goals of this research.

1.2. Spatial Interaction Modeling: Structure and Variables

Spatial interaction modeling (SIM) represents various models that explain and predict
spatial flows, including residence–workplace commuting, shopping travel, inter-city travel,
migration, tourism, commodity flows, financial transactions, and various telecommuni-
cation forms. SIM ranges from the standard gravity model (GM), reflecting Newtonian
physics, to entropy models to discrete spatial choice models. The basic GM is formulated
as follows:

Tij = kRiWj/Dij
α (1)

In this equation, Tij is the flow from origin i to destination j, Ri and Wj are the measures
of the sizes of the origin i and destination j, respectively, Dij is the distance between them,
and α is a positive parameter that represents the distance friction. The Ri and Wj variables
are proxies for the abilities of the origin to generate flows and of the destination to attract
them. Generalized versions of Equation (1) include several variables that characterize
both the origin and destination, and several friction factors. This model has been termed
as unconstrained SIM. The estimation of (1), subject to the given total outflows for all
the origins and given total inflows for all the destinations, is termed as constrained or
entropy SIM. The focus here is on the unconstrained case. These models consider aggregate
flow data (e.g., the number of commuters between the origins and destinations). Another
interpretation of SIM is related to discrete choice models (e.g., multi-nomial logit models),
using disaggregate data at the level of the individual decision maker. Anas [2] argues that
the gravity and discrete choice models are two equivalent views of the same problem. For
reviews of the theory and applications of SIM, one can refer to the work of Sen and Smith [3],
who discuss the theoretical foundations and practical applications of gravity models to
commuting, and Nijkamp and Ratajczak [4], who review the relevance of gravitational
principles in regional science and spatial economics, and address their application to trade
flow analysis.

The above SIM approach suffers from the problem of independence from irrelevant
alternatives. SIM models have been improved by incorporating variables that represent the
effects of the spatial structure, thus eliminating the estimation bias of the friction parame-
ters. Fotheringham [5] introduced a competing destination (CD) factor that measures the
accessibility of any destination j to all (or a subset of) the other destinations. If the effect
of CD is negative, competition to attract flows can be detected among the destinations;
the closer destination j is to the other destinations, the smaller the flow terminating at j. If
the effect of CD is positive, agglomeration effects can be observed among the neighboring
destinations (e.g., a set of different brand stores within a shopping mall). Another approach
to accounting for the spatial structure involves the intervening opportunities (IO) factor [6],
which measures the accessibility of an origin to destinations located between the origin and
the destination. IO measures the absorbing effects on the originating flow. Gitlesen and
Thorsen [7] present an application of the CD concept to commuting modeling in Norway,
while accounting for discontinuities in the road network.

Sirmans [8] is among the first to highlight the importance of incorporating various
socio-economic determinants into SIM models, including cost, gender, race, income, age,
and education and outlines the following points: (1) cost variables are expected to have a
negative influence on commuting flows; (2) age variables are expected to have a negative
influence on commuting flows, due to increased costs; (3) the higher the education level, the
higher the commuting flows; (4) income variables are expected to have a positive influence
on commuting flows; (5) race variables (percentages of minorities) are expected to have a
negative influence on commuting flows. The results also point out that the determinants of
commuting vary across gender.

Sandow [9] shows that women commute shorter distances than men. Sermons and
Koppelman [10] also show that the presence of children, the occupation of the male worker
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in a household, and the last change in the female worker’s workplace are important de-
terminants of gender differences in commuting behavior. Prashker et al. [11] investigated
various factors that influence an individual’s choice of residence location, using a logit
model, and showed the importance of area characteristics and commuting distance in select-
ing a residential location, with significant differences between genders. They also showed
that commuting distance becomes less important with increasing income, education, and
car ownership. O’Kelly et al. [12], using Irish data, show that commuting trip length varies
by occupation and gender. Lin et al. [13] reviewed the impacts of socio-economic factors on
commuting.

Another SIM research stream is the relationship between housing prices/locations,
employment centers’ locations, and commuting. Kim et al. [14] developed an empirical
model to show how housing prices, wages, and commuting times affect joint residential
and workplace location choice. They show that residents trade lower housing costs for
lower wages, and higher housing costs for higher wages. Wu [15] analyzed the impacts
of employment and housing development on commuting in the Silicon Valley region and
indicated that housing affordability and land-use patterns are important determinants of
residential location choices and commuting flows, and that accessibility, local government
expenditures, land availability, and ethnic background are important determinants of the
spatial distribution of employment. Glenn et al. [16] show that commuting flows result
not only from wage differentials and distances, but also from a spatial mismatch between
the types of jobs and the categories of workers. Ahrens and Lyons [17], using a gravity
model with Irish data, show that rising housing rents lead to longer commutes. Sohn [18]
examined how commuting patterns reveal urban structures (where jobs and housings are
located), by including locational variables (distance from the city center) for the origins and
destinations of commuting flows in a modified gravity model.

1.3. Planning Optimization Models and Spatial Interaction Modeling

There have been various research efforts to design normative models for delineating
more efficient urban patterns, including convex programming models that embed spatial
interaction models within activity-allocation frameworks [19]. Kim [20] further expands
this approach by adding alternative transportation systems. Some important works in this
line of research include [21–25]. Prastacos’ POLIS model maximizes total locational surplus
and combines the allocation of employment and a multi-modal transportation system. It
is a programming formulation of the Lowry model and incorporates the location of basic
employment with data from the San Francisco region.

Barber [26] uses the Lowry model reformulated in matrix form by Garin [27] to develop
a linear goal programming model, which determines the basic employment distribution
that minimizes deviations from target zonal populations. Using the newly distributed pop-
ulation, the model then estimates zone-specific service and retail employment. Barber [28]
develops a linear programming model to allocate the future growth in basic employment
to minimize total travel time. Basic employment, and hence basic land-use requirements,
is the control variable, whereas service employment and population and their land-use
requirements are not. The objective function reflects total travel time for all work- and
home-based service trips.

More recent land-use allocation and transportation simulation models include those
proposed by Ma et al. [29] and Samani et al. [30]. These models include gravity-based
components of the ITLUP (integrated transportation and land-use planning) model, ini-
tially developed by Putnam [31]. Some recent studies focus on the relationship between
accessibility and the spatial structure of economic activities. Wu et al. [32] evaluate the
relationship between the spatial structure of medical resources and the accessibility of
medical facilities in different traffic analysis zones and shed light on the potential optimal
solutions for the spatial allocation and efficient utilization of medical services. Zhang
et al. [33] scrutinize the relationship between the spatial pattern of roadway networks
and the quality of business environments. Finally, one should mention the recent stream
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of multi-objective land-use optimization models, exemplified by [34,35]. However, these
models do not incorporate the transportation system or transportation interactions (e.g.,
commuting), and built-up areas are not differentiated in terms of internal land use. The
focus of these models is on sustainability and ecological protection.

1.4. Sprawl versus Compact City: Cost Assessment

The effect of urban sprawl on commuting patterns seems to be controversial. Some
argue that sprawl has negative consequences for commuting, with longer commutes and
congestion [36]. Ewing et al. [37] find no relationship between sprawl and commuting time.
Weber and Sultana [38], using 1990 and 2000 Census Transportation Planning Package
(CTPP) data for Birmingham, Alabama, differentiate workplace sprawl from residential
sprawl, and examine the impact of employment sprawl on the commuting of White and
Black workers. Their results show that workplace sprawl reduces commuting distances
for those who commute to the sprawling areas and suggest that workers may be able
to reduce their commutes as more workplaces relocate to suburban areas. However,
workplace sprawl may increase commutes for those who may not be able to adjust their
residential location. Variables found to influence commuting length include race, income,
mode of transportation, location, population and household density, employment density,
homeownership, and time leaving home for work [39].

Dunphy and Fisher [40] report that increasing density decreases the number of daily
trips per person, but also assert that high density causes more congestion and pollution.
Levinson and Kumar [41] test the influence of residential density on commuting patterns,
and conclude that density is an important explanatory variable, with noticeable negative
effects on the speed and distance of trips. They use 1980/1990 U.S. Census data and
1990/1991 Nationwide Personal Transportation Survey (NPTS) data. Auto travel time is
negatively related to density below a density threshold (10,000 persons per square mile) and
positively so above this threshold. O’Toole [42] indicates that there is no consensus about
how much compact development reduces total driving and he suggests that the benefits
of compact development are often likely to be overstated and its costs understated. The
costs of compact development include loss of property rights, reduced geographic mobility,
higher housing costs and lower home-ownership rates, higher taxes or reduced urban
services to subsidize compact development, increased traffic congestion, and reduced eco-
nomic mobility. Cambridge Systematics, Inc. [43] reports that congestion would be clearly
a major result of a compact development plan and estimates that doubling densities from
an average of 3000 people per square mile to an average of 7000 people would reduce per
capita driving by less than 15 percent, but would still lead to a 100 percent increase in total
vehicle travel miles. Without new road/highway expansion to accommodate this increased
demand, there would be a large increase in regional congestion. Stevens [44] conducted a
meta-regression analysis of the results of 46 studies to derive a clearer understanding of
the influence of compact development on driving, and found a generally small, although
significant, reduction in driving.

Air pollution has also been analyzed in the context of the sprawl/compactness de-
bate. Emrath and Liu [45] show that the vehicle miles travelled (VMT) declines as the
compactness of subdivisions increases, but with less efficient speeds. However, on balance,
CO2 emissions still tend to be lower in more compact developments. Stone [46], using
data on 45 large U.S. metropolitan areas, shows that sprawling areas are associated with
more ozone exceedances than more spatially compact metropolitan regions. Schindler
and Caruso [47] develop a theoretical monocentric urban model to analyze the trade-off
between traffic-based pollutant emissions and pollution exposure. Solving the model with
parameters drawn from the literature, they find that emissions increase with sprawl and
exposure increases with compactness, underscoring the difficulty in assessing compactness
net benefits. Finally, Zhang et al. [48] show that there is a significant correlation between
urban development patterns and PM2.5 concentrations.

186



Land 2023, 12, 433

1.5. Summary and Research Goals

Although spatial interaction modeling of commuting has been the subjects of much
urban research, there have not been many planning/optimization applications to resi-
dential and employment allocations that incorporate SIM. Both Barber’s and Prastacos’
models are essentially programming formulations of the Lowry model, where only basic
employment is a control variable, with residential allocations automatically derived. In
addition, few commuting models have incorporated SIMs and spatial structure factors. It is
clear that improved SIMs should incorporate spatial structure effects in order to avoid the
misspecification of conventional gravity models and that planning/optimization models
should also consider land development costs and congestion/pollution costs, in addition
to commuting costs.

Given the above shortcomings, the goals of this research are as follows:

1. Develop a new SIM for commuting trip distribution, based on Tobit regression estima-
tion [49] and including spatial structure variables measured by competing destinations
(CD) [5] and intervening opportunity (IO) [6] factors. It is expected that incorporating
these factors will better represent commuting behavior and commuting costs.

2. Using the Tobit commuting SIM, develop a new commuting cost minimization model
that simultaneously allocates target increments in the population and employment
to geographical units across a city or metropolitan area under various scenarios of
(a) population and employment densities (land consumption per resident and per
employee) and (b) land availability in each geographical unit, as determined by
the growth boundaries and environmental constraints. The results of this optimiza-
tion include a minimum commuting cost surface, which is then to be estimated by
polynomial regression, with the densities as independent variables.

3. Combining the polynomial commuting cost model with estimated land development
cost models and synthetic congestion cost models, develop a total cost minimization
model to determine the optimal densities under various growth boundary scenarios
and various parametric assumptions for the congestion cost functions.

4. Use data on a specific U.S. metropolitan area to test the feasibility of the above-
methodological goals. This would be a proof-of-concept goal, but is not intended to
provide an actual plan for the local authorities of this metropolitan area.

2. Data and Methods

2.1. Overview of the Study Area

The Fredericksburg Area Metropolitan Planning Organization (FAMPO) was estab-
lished in 1992, in accordance with Federal regulations, stating that “a metropolitan planning
organization (MPO) shall be designated for each urbanized area with a population of more
than 50,000 individuals.” To be classified as an urbanized area, a central place and any
contiguous areas must have a density of at least 1000 persons per square mile. Based on
the 1990 Census, an urbanized area consisting of the city of Fredericksburg and portions of
Spotsylvania and Stafford counties met this threshold. FAMPO chose to expand its bound-
aries to include the three jurisdictions in their entirety. The Planning District 16 (George
Washington Regional Commission—GWRC) in Virginia deals with FAMPO jurisdictions
of two additional rural counties, King George and Caroline. For convenience, the terms
“FAMPO region” and “George Washington Region” are used interchangeably in this paper.
The location of FAMPO within Virginia is indicated in Figure 1.

The FAMPO region, because of its proximity to the rapidly growing suburbs of the
Washington, D.C., metropolitan area (to the north) and the Richmond-Petersburg metropoli-
tan area (to the south), is the fastest growing region in Virginia, with a 2006 population of
310,000 persons, nearly a third more than in 2000. The projections suggest that an additional
250,000 people will be living in FAMPO by 2035. As a result, the region is experiencing the
growing pains related to sprawl, traffic safety and congestion. FAMPO’s central location
and proximity to expanding employment opportunities has encouraged the significant
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migration of new residents, both to fill local jobs and to seek affordable housing and rural
and lower density suburban lifestyles.

 

Figure 1. State of Virginia and Location of Study Area (FAMPO) (green lines).

2.2. Data Sources
2.2.1. CTPP 2000

Most of the data are drawn from the 2000 Census Transportation Planning Package
(CTPP), a set of special tabulations prepared for transportation planners, based on data
from the decennial census. CTPP data are downloadable from the following website: CTPP
Data—Transportation.org. It is the only Census product that summarizes data by place of
work and provides information on travel flows between homes and workplaces. It provides
summary tabulations for traffic analysis zones (TAZs) and other small geographic areas.
The CTPP is divided into the following three parts: Part 1 includes residence-based data,
summarizing worker and household characteristics; Part 2 includes place-of-work data;
and Part 3 data includes data on commuting flows from residences to workplaces. The
geographical unit of analysis in this research is the TAZ, and there are 188 TAZs in FAMPO.
The year 2000 was the last year when the CTPP was produced by the Bureau of the Census,
in collaboration with the Bureau of Transportation Statistics, using data from the Long
Form survey (16% sampling). This decennial survey was cancelled by the U.S. Congress
and replaced by the Annual Community Survey (ACS), with a sampling rate of 3%. Data
derived from the ACS are more uncertain, hence the choice of the CTPP 2000 data. It is,
however, important to emphasize that the goal of this paper is to present a new planning
methodology and to use data to demonstrate its feasibility, and not to produce a plan to be
used by FAMPO.

The 2000 population and employment distributions are mapped in Figures 2 and 3.
The highest population concentrations are located in the north of Stafford County (A); south
of Route 3 and west of the I-95 interstate highway (B); and around the city of Fredericksburg,
the center of the region (C). There are three employment clusters, which are as follows:
the CBD of Fredericksburg (D); the Quantico military base located in the north of Stafford
County (E); and Dahlgren, the site of a U.S. naval base located at the eastern corner of King
George County (F).

Population and employment distribution across the FAMPO region are summarized
by jurisdiction in Table 1. Two urban counties, Spotsylvania (37.5%) and Stafford (38.4%),
function as major residential areas and also, together with the city of Fredericksburg,
provide most of the regional employment (31.1% Spotsylvania; 31.8% Stafford; and 23.2%
Fredericksburg).
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Figure 2. FAMPO Population in 2000.

 

Figure 3. FAMPO Employment in 2000.

Zone-to-zone and jurisdiction-to-jurisdiction flows for 2000 are summarized in Table 2.
Fredericksburg displays high interactions with the other jurisdictions (18.91%), while
Spotsylvania has the highest level of internal flows (23.62%). A high share of the people
living in Stafford work there (17.08%).
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Table 1. FAMPO Region Population and Employment in 2000.

Jurisdiction Population % Employment %

Caroline 22,120 9.2% 1945 2.3%
Fredericksburg 19,275 8.0% 19,760 23.2%

King George 16,805 7.0% 9912 11.6%
Spotsylvania 90,405 37.5% 26,521 31.1%

Stafford 92,460 38.4% 27,059 31.8%
Total 241,065 100.0% 85,197 100.0%

Table 2. Commuting Flows (Number of Commuters) in 2000.

Flow %

FAMPO
Internal 7125 10.61

TAZ-to-TAZ 60,023 89.39

Jurisdiction

Caroline
Internal 1261 1.88

Jurisdiction-to-Jurisdiction 203 0.30

Fredericksburg Internal 4056 6.04
Jurisdiction-to-Jurisdiction 12,699 18.91

King George Internal 4314 6.42
Jurisdiction-to-Jurisdiction 3173 4.73

Spotsylvania Internal 15,863 23.62
Jurisdiction-to-Jurisdiction 6377 9.50

Stafford
Internal 11,469 17.08

Jurisdiction-to-Jurisdiction 7733 11.52
Total Flow 67,148 100%

2.2.2. Property Data

Real estate data have been collected from the planning departments of local govern-
ments and combined into a regional data set to maintain consistency and comparability.
The collected assessment data all apply to 2006. The following variables are available for
each record that characterizes a parcel: parcel I.D.; land use; total land value; total building
value; total property value; size (acre); jurisdiction; TAZ I.D. Average values per parcel for
size, land value, building value, and property value by jurisdiction are provided in Table 3.
These data can be obtained from the following Tax Assessor Offices:

Real Estate Taxes|Fredericksburg, VA—Official Website (fredericksburgva.gov);
Stafford County, VA (staffordcountyva.gov);
Assessment Office, Spotsylvania County, VA; Real Estate, Caroline County, VA;
Real Estate, King George County, VA (kinggeorgecountyva.gov).

Table 3. Average Parcel Data in 2006.

Residential Property Workplace Property

Jurisdiction
Average

Size (Acre)

Average
Property

Value
(USD)

Average
Land
Value
(USD)

Average
Building

Value
(USD)

Average
Size (Acre)

Average
Property

Value
(USD)

Average
Land
Value
(USD)

Average
Building

Value
(USD)

Caroline 2.3658 220,462 47,598 162,618 5.3395 576,642 144,972 304,321
Fredericksburg 0.3525 260,831 53,914 178,740 1.2749 945,372 388,820 506,586

King
George 3.2624 245,225 72,054 167,082 4.5400 517,810 196,227 271,619

Spotsylvania 1.3127 147,640 65,580 82,059 14.0769 3,717,248 3,330,981 386,267
Stafford 1.1375 372,153 102,621 269,531 3.3182 1,241,485 479,788 761,687
FAMPO 1.4254 247,782 77,390 167,696 8.3923 2,309,510 1,809,006 481,376

190



Land 2023, 12, 433

2.3. Variables
2.3.1. Dependent Variable

The TAZ-to-TAZ flow table from CTPP 2000 Part 3 includes a large number of zero
values. The number of potential commuting connections (all records) is 35,344 (188 × 188),
including 188 intra zonal flows. Among these connections, 90.2% (31,875) have zero flow
values. Tables 4 and 5 present the descriptive statistics for these flows. Records with zero
flows embody useful information, and therefore cannot be discarded in statistical analyses.

Table 4. Descriptive Statistics for Non-Zero Flows in 2000.

Variable N Mean Standard Deviation Minimum Maximum

F: flow 3469 19.35 34.17 4.00 990.00
P: population 3469 2332.27 2659.69 15.00 15,730.00
E: employees 3469 1683.79 1687.31 4.00 6415.00
D: distance 3469 10.51 6.97 0.42 41.07

Table 5. Descriptive Statistics for Zero Flows in 2000.

Variable N Mean Standard Deviation Minimum Maximum

F: flow 31875 0 0 0 0
P: population 31875 1167.99 1765.41 0 15,730.00
E: employees 31875 319.25 734.31 0 6415.00
D: distance 31875 18.76 9.25 0.70 50.53

2.3.2. Independent Variables

The potential independent variables have been directly drawn from CTPP Parts 1 and
2 or are derived from these primary variables. These variables can be grouped as follows:
Group A: residence-based variables (CTPP 2000 Part 1); Group B: workplace-based variables
(CTPP 2000 Part 2); Group C: impedance variable; Group D: spatial structure variables.

Group A

The larger the population of a residential TAZ (P), the larger the commuting flow
expected to originate from it. Gender differences have been shown to affect human behavior;
therefore, the share of the male population (P_M_RES) is selected. Unemployment rates
are also likely to have negative impacts on flows; therefore, the total (P_UNEMP_RES) and
male (P_MUNEMP_RES) unemployment rates are selected. A high percentage of people
driving alone to work implies more cars on the roads, and therefore larger commuting
flows. High car-pooling rates can be expected to reduce flows; therefore, the following
variables are selected:

- Percentage of workers driving alone from their residence (P_DA_RES);
- Percentage of workers carpooling from their residence (P_CP_RES);
- Percentage of male workers driving alone from their residence (P_MDA_RES);
- Percentage of male workers carpooling from their residence (P_MCP_RES).

Age variables, such as the percentages of residents aged 25 to 64 (P_AGE25_64) and
of residents aged 65 + (P_AGE65PLUS), are likely to have positive and negative impacts
on commuting flows, respectively. Employment occupation may have an effect on flows,
although the direction of the effect is a priori unclear. The following variables are selected:

- Percentage of residents in sales or service occupations (P_OCC1_RES);
- Percentage of residents in clerical or administrative support occupations (P_OCC2_RES);
- Percentage of residents in manufacturing, construction, or maintenance occupations

(P_OCC3_RES);
- Percentage of residents in professional, managerial, or technical occupations (P_OCC4_RES);
- Percentage of male residents in sales or service occupations (P_MOCC1_RES);
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- Percentage of male residents in clerical or administrative support occupations (P_
MOCC2_RES);

- Percentage of male residents in manufacturing, construction, or maintenance occupa-
tions (P_MOCC3_RES);

- Percentage of male residents in professional, managerial, or technical occupations
(P_MOCC4_RES).

It has been argued that low-income minorities experience poor employment opportu-
nities due to underprivileged accessibility. In order to test such effects, and particularly
race impacts on travel patterns, the following variables are selected:

- Percentage of Hispanic or Latino residents (P_HIS_RES);
- Percentage of White residents (P_WHT_RES);
- Percentage of Black or African American residents (P_BLK_RES).

A higher share of White residents within a population, probably associated in part
with higher income, is likely to produce larger commuting flows. The share of disabled
people (P_DIS_RES) is likely to have a negative relationship with flows. Income and
earnings are likely to have a positive effect on flows. To test these hypotheses, the following
variables are selected:

- Percentage of resident households with an income of USD 75,000 or more in 1999
(P_HINC_RES);

- Median resident household income (MHI_RES);
- Percentage of resident workers with high earnings (USD 50,000+) in 1999 (P_HERN_RES);
- Percentage of resident workers below the poverty level in 1999 (P_POV_RES);

Home ownership is measured by the following variables:

- Percentage of households with self-owned housing (P_OWNSELF_
RES);

- Percentage of households with owned housing with and without a mortgage (P_OWN_
RES).

High vehicle availability is measured by the percentage of households with 3 or more
vehicles (P_3VEH_RES). High housing occupancy rates are measured by the percentage
of occupied housing units (P_OCCU_RES). Higher education rates are measured by the
percentage of residents with a bachelor’s degree or higher (HEDU_RES). These variables
are also likely to have positive effects on commuting flows. Descriptive statistics for Group
A variables across the 188 TAZs of FAMPO are presented in Table 6.

Group B

The level of employment (EMP) at the workplace (destination) is likely to have a
positive impact on attracted flows. It is also likely that higher rates of full-time workers
lead to higher flows. This is measured by the percentage of people who worked 40+ hours
per week in 1999 at their workplace (P_Full_EMP). Vehicle availability is also likely to
increase commuting flows, and it is measured by the percentage of people with 2 or more
vehicles at their workplace (P_Veh2plus_EMP). Variables that are likely to have a negative
relationship with flows include the following:

- Percentage of employees below the poverty level (P_BlwPov_EMP);
- Mean travel time (MTT_EMP);
- Percentage of workers with low earnings (P_LERN_EMP);
- Percentage of workers that carpool (P_CarPool_EMP).

The percentages of workers with high earnings (P_HEARN_EMP), driving alone
(P_DA_EMP), and arriving at the morning peak period (P_AM7_10_EMP) are likely to
have positive effects on commuting flows. Type-of-industry variables are likely to have
mixed impacts and include the following:

- Percentage of workers in manufacturing (P_Mfg_EMP);
- Percentage of workers in wholesale trade (P_WhlTrd_EMP);
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- Percentage of workers in retail trade (P_RetTrd_EMP);
- Percentage of workers in service industries (P_serv_EMP);
- Percentage of workers in public administration (P_Pub_EMP).

Table 6. Descriptive Statistics for Group A Variables.

Variable N Mean Median
Standard
Deviation

Minimum Maximum

P 188 1282.26 625.00 1903.91 0.0 15,730.0
P_DA_RES 188 0.7601 0.7782 0.1498 0.0 1.000
P_BLK_RES 188 0.1525 0.1165 0.1421 0.0 0.674

P_OCC1_RES 188 0.1618 0.1627 0.0844 0.0 0.600
P_OCC2_RES 188 0.1858 0.1920 0.0914 0.0 0.455
P_OCC3_RES 188 0.2150 0.2000 0.1140 0.0 0.580
P_OCC4_RES 188 0.1769 0.1700 0.1002 0.0 0.495

P_M_RES 188 0.4981 0.4912 0.0918 0.0 0.984
P_UNEMP_RES 188 0.0214 0.0165 0.0256 0.0 0.150

P_MUNEMP_RES 188 0.0189 0.0000 0.0305 0.0 0.200
P_CP_RES 188 0.1480 0.1334 0.1031 0.0 0.700

P_MDA_RES 188 0.7538 0.7802 0.1866 0.0 1.000
P_MCP_RES 188 0.1517 0.1303 0.1305 0.0 1.000

P_MOCC1_RES 188 0.1232 0.1172 0.1031 0.0 0.667
P_MOCC2_RES 188 0.0837 0.0817 0.0696 0.0 0.400
P_MOCC3_RES 188 0.3279 0.3094 0.1731 0.0 1.000
P_MOCC4_RES 188 0.2047 0.2000 0.1375 0.0 0.695

P_HIS_RES 188 0.0185 0.0000 0.0309 0.0 0.192
P_WHT_RES 188 0.7876 0.8220 0.1699 0.0 1.000
P_DIS_RES 188 0.1429 0.1250 0.1028 0.0 0.600

P_HINC_RES 188 0.4013 0.4006 0.2163 0.0 1.000
MHI_RES 188 54,720.88 52,675.00 18,921 0 109,770

P_HERN_RES 188 0.2071 0.2032 0.1140 0.0 0.5052
P_POV_RES 188 0.0218 0.0112 0.0331 0.0 0.250

P_OWNSELF_RES 188 0.1881 0.1667 0.1385 0.0 1.000
P_OWN_RES 188 0.7895 0.8546 0.2137 0.0 1.125
P_3VEH_RES 188 0.3406 0.3354 0.1614 0.0 0.769
P_OCCU_RES 188 0.9131 0.9486 0.1428 0.0 1.000

HEDU_RES 188 0.0384 0.0341 0.0381 0.0 0.388

Descriptive statistics for these variables are presented in Table 7.

Table 7. Descriptive Statistics for Group B Variables.

Variable N Mean Median
Standard
Deviation

Minimum Maximum

EMP 188 453.1755 75.0000 964.605 0.0000 6415.0
P_Full_EMP 188 0.3321 0.3099 0.2435 0.0000 1.0000

P_Veh2Plus_EMP 188 0.7334 0.8265 0.2895 0.0000 1.0000
P_BlwPov_EMP 188 0.0364 0.0108 0.0698 0.0000 0.6667

MTT_EMP 188 24.712 25.000 15.369 0.0000 102.3
P_LERN_EMP 188 0.3681 0.3631 0.2498 0.0000 1.0000

P_CarPool_EMP 188 0.0883 0.0809 0.0923 0.0000 0.4000
P_Mfg_EMP 188 0.0379 0.0000 0.0948 0.0000 0.7500

P_WhlTrd_EMP 188 0.0192 0.0000 0.0480 0.0000 0.4000
P_RetTrd_EMP 188 0.0864 0.0106 0.1413 0.0000 1.0000

P_serv_EMP 188 0.3687 0.3637 0.3014 0.0000 1.0000
P_Pub_EMP 188 0.0327 0.0000 0.0777 0.0000 0.4427

P_Finan_EMP 188 0.0561 0.0000 0.1341 0.0000 1.0000
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Group C

Distances have been computed as Euclidian distances (miles) between the zone cen-
troids. Table 8 provides descriptive statistics for the inter-TAZ distances (D).

Table 8. Descriptive Statistics for Inter-TAZ Distances.

Variable N Mean Median Standard Deviation Minimum Maximum

D 35,344 17.947 17.380 9.379 0.420 50.530

Group D

The intervening opportunity (IO) and the competing destinations (CD) factors are
based on employment. The CD factor measures the accessibility of destination j to other
destinations in the neighborhood of j, while the IO factor measures the accessibility of
origin i to other origins in the neighborhood of i. The following three different types of IO
factors have been proposed by Guldmann [50]: the IO circle, IO sector, and IO corridor.
In this research, the IO circle, as originally used by [6], is retained. The neighborhoods
for the IO and CD factors of a given TAZ are circles of a 10-mile radius centered on the
centroid of the TAZ. A higher IO factor is expected to reduce outgoing commuting flows
(negative relationship), while the CD factor could have either negative or positive effects
on commuting flows. A positive effect suggests the presence of agglomeration forces at the
destination, and a negative one suggests the presence of competition forces. The IO and
CD factors are defined mathematically as follows:

IO = ∑
k

Ekdγ
ik, → k 
= i and k ∈ Neighborhood of TAZ i (2)

CD = ∑
l

Eldε
jl , → l 
= j and l ∈ Neighborhood of TAZ j (3)

In order to illustrate the computation of the IO and CD factors, one must consider
Figure 4, with the origin TAZ 5 and destination TAZ 17. The neighborhood TAZs for TAZ
5, within a 10-mile radius, are {2,6,7,8}. Similarly, the neighborhood TAZs for TAZ 17 are
{6,15,18}. The factors are computed as follows:

IO5,17 = ∑
k 
= 5
k ∈ {2, 6, 7, 8}

Ekdγ
5,k (4)

CD5,17 = ∑
l 
= 17
l ∈ {6, 15, 18}

Eldε
17,l (5)

2.4. Statistical and Optimization Methodology

Spatial interaction models (SIMs) of commuting flows are estimated with, as explana-
tory variables, the population Pi at the origin i, the employment Ej at the destination j,
several socio-economic variables characterizing either i or j (X . . . , Y . . . ), the distance
dij, and competing destinations (CDj) and intervening opportunity (IOi) variables that
characterize the spatial structure. If Fij is the commuting flow between i and j, a general
SIM can be calculated as follows:

Fij = f (Pi, Ej, dij, X, . . . , Y, . . . , CDj, IOi) (6)

Tobin [49] analyzed household expenditures on durable goods, while taking into
account the fact that expenditures cannot be negative. He proposed a regression method
applied to data with censored values, which became known as the Tobit model. The
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basic dependent variable in this research, commuting flow, cannot be negative, and any
examination of an actual flow matrix shows that many flows are equal to zero. The Tobit
model is a reasonable approach to deal with this problem.

 

Figure 4. IO and CD Neighborhoods for TAZs 5 and 17.

The conceptual basis for using the Tobit model is based on resident worker (RW)
utility maximization. One must assume that the RW has a choice among multiple origin–
destination (O–D) trips (by virtue of residential and employment location decisions), and
that only one O–D trip turns out to be positive, with all the others turning out to be
negative at the utility maximum. These negative values are not observed and become zero
values in terms of actual trips. The observed flows can then be viewed as the sums of
these individual commuting decisions, and the zero flow values represent the censored
unobserved negative values. Therefore, the latent variable of the Tobit model captures both
positive and negative sums of commuting flows. With standard regression approaches with
only positive observed values, the information embodied in zero flow observations is lost.
Ordinary least squares (OLS) estimation applied to a truncated sample will be biased and
inconsistent. The Tobit model allows the explicit inclusion of zero commuting observations.
This is particularly important if there are large volumes of zero observations.

The latent variable In the Tobit is specified as follows:

F̂ij = βxij + ε (7)

The actual flow Fij is defined as

Fij =

{
F̂ij = βxij + ε if F̂ij > 0
0 if F̂ij ≤ 0

ε ∼ N(0, σ2)

(8)

F̂ij is the latent variable that represents the “desired” commuting flows, which can be
negative. A Tobit linear commuting flow SIM can be formulated as follows:

Fij = a0 + ∑
i

aiXi + ∑
j

bjXj + ∑
i,j

cijZij (9)
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where ai, bj, and cij are the parameters, Xi and Xj are the variables that characterize the
origin i and destination j, Zij represents the impedance variables (e.g., distance, time and
price) and Fij is the commuting flow.

P0
i and E0

j represent the existing (base year) population and employment in zones
i and j, respectively. The population and employment allocation problem involves the
optimal allocation of total population and employment increments, ΔPT and ΔET , to all
zones where land is available for a certain target year. xi and zj are the population and
employment increments allocated to zones i and j, and Z and X are the corresponding
vectors. In addition, ULP is the population density (land area per new resident), ULE is
the employment density (land area per new employee), and LANDi is the land available
in zone i for new residents and new employees. The parameters ULP and ULE uniformly
apply to all the geographical units. However, the model could be easily modified to test for
spatially varying density scenarios. If Cij is the fixed unit commuting cost between i and j,
a general total commuting cost minimization model can be as follows:

Minimize Z = ∑
i,j

CijFij (10)

This is subject to
∑ xi = ΔPT (11)

∑ zj = ΔET (12)

Fij ≥ F̂ij(P0
i + xi, E0

j + zj, dij, X . . . Y . . . , CDj(Z), IOi(X)) (13)

ULP.xi + ULE.zi ≤ LANDi (14)

Fij ≥ 0 xi ≥ 0 zj ≥ 0 (15)

The objective (10) is to find the minimum total commuting cost. Constraint (11)
guarantees that the sum of all increments in the population equals the total population
increment, and constraint (12) ensures the same for employment. The Tobit constraint
(13) defines the commuting flow between i and j, and constraint (15) guarantees that
Fij = 0 when the right-hand side of constraint (13) is negative. ULP and ULE are the given
parameters in the optimization model, but can be varied in the context of scenario analyses.
Constraint (14) simply states that the land to be used for new residents and employees in
zone I cannot exceed the land available. In the specific case of the FAMPO region with
188 zones (TAZs), this model has 36,097 variables and 35,911 constraints.

However, minimizing the total commuting costs cannot be the sole objective of the
model. Other costs need to be considered. For instance, compact development is assumed
to reduce pollution emissions by reducing driving and housing a higher percentage of
people in multi-family and mixed-use developments at more central locations, reducing
utility costs and utilizing more transit and fewer highways. Land development costs would
be smaller in such developments. However, some argue that compact developments can
be more costly than often estimated [42], because compact cities may increase emissions
by increasing roadway congestion. These costs are often neglected. In addition, compact
development may entail higher housing costs and lower homeownership rates, reduced
geographic and economic mobility, higher taxes, reduced urban services, higher consumer
costs, etc. A more general cost function can then be stated as follows:

TOTALCOST = commutingcost(TCOM)
+landdevelopmentcost(LDC)
+congestioncost(TCON)

(16)

All the costs in (16) were formulated in terms of both residential and employment
densities, or, alternatively, in terms of unit land consumption per resident (ULP) and per
employee (ULE). The higher the ULP and ULE, the lower the corresponding densities.
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Commuting costs and land development costs increase, and congestion costs decrease
with ULP and ULE. These cost curves, and the total cost curve are illustrated in Figure 5.
The LDC would include all annualized land/building costs for both employment and the
population. The TCOM represents the annual commuting cost. The TCON represents the
congestion costs for both the population and employment. Within the given ranges of
ULP and ULE, the total cost function (TCD) will point to the optimal ULP and ULE that
minimize the total cost.

Figure 5. Commuting Cost, Land Development Cost, Congestion Cost, and Optimal Density.

3. Results

3.1. Tobit Regression

The estimation of the final Tobit model with SASTM procedure QLIM (qualitative and
limited dependent variable models) is the outcome of a multi-step exploratory process.
The first estimated model (Model 1) involved only three independent variables that appear
in most gravity models, which are as follows: population (P), employment (EMP) and
distance (D). All the coefficients turned out to be highly significant (p < 0.0001), with the
expected positive sign for P and EMP, and the expected negative sign for D, and with
R2 = 0.297 and Pseudo-R2 = 0.042. The Pseudo-R2 is defined as follows:

R2
MF =

LRT
LRT∗ =

(lM − l0)
(lMAX − l0)

= 1 − lM
l0

, (17)

where LRT is the likelihood ratio statistic; lM is the log-likelihood value of the model; l0 is
the log-likelihood value if the non-intercept coefficients are restricted to zero; lMAX is the
maximum possible likelihood. One can refer to [51] for a discussion on the Pseudo-R2 for
limited dependent variable models.

The second step was to add the spatial structure variables IO and CD to Model 1. Since
the IO and CD factors involve additional parameters (exponents of distance) that need to
be estimated, a grid sensitivity analysis was conducted to search for the optimal parameter
set. For both γ (IO factor) and ε (CD factor), the range (−2.0, 0) was selected, as typical
in the literature, with a 0.1 increment. Hence, 400 combinations of γ and ε values were
evaluated in this sensitivity analysis. The combination of γ = −0.1 and ε = −0.3 yielded the
highest log-likelihood, as well as the highest Pseudo-R2. All the five variables of this model
(Model 2) turned out to be very significant (p < 0.0001), with a negative sign for IO (as
expected) and a positive sign for CD, pointing to agglomeration effects at the destination.

The third step was to add socio-economic variables, as listed in Groups A and B, to
Model 2. The following variables improved in Model 2 (significance and sign; overall
performance) and were retained in Model 3: P_DA_RES, P_BLK_RES, P_OCC1_RES,
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P_OCC2_RES, P_OCC3_RES, P_OCC4_RES, P_Mfg_EMP, P_WhlTrd_EMP, P_RetTrd_EMP,
P_Finan_EMP, P_serv_EMP, and P_Pub_EMP. However, none of the INCOME, GENDER
and AGE-related variables turned out to be significant. For Model 3, R2 = 0.355, and
Pseudo-R2 = 0.121.

The final model (Model 4) expands on Model 3 by introducing quadratic terms. The
following significant quadratic terms were selected:

E2 = EMP * EMP (18)

P2 = P * P (19)

POPEMP = P * EMP (20)

EMPCD = EMP * CD (21)

Table 9 represents the parameter estimates of Model 4, with R2 = 0.466, and Pseudo-
R2 = 0.239. Model 4 has stronger performance criteria than Model 3, pointing to the non-
linear relationship between commuting flows and the variables P, EMP, D, and CD. The
more workers that drive alone to their workplace (P_DA_RES), the higher the flow. The
magnitude of this variable coefficient is relatively high (33.11). The share of Black citizens
within a population (P_BLK_RES) also has a positive impact on flows. The Black pop-
ulation in the region is a highly educated and affluent middle-class community, hence
its mobility and likely positive impact on flows. The occupation and industry variables
display the expected signs. The more residents with sales or service (P_OCC1_RES) or
clerical or administration (P_OCC2_RES) occupations, the larger the commuting flows.
These occupations have stronger impacts than the other two occupations. The percentages
of workers in manufacturing, wholesale trade, retail trade, fire, service, and public ad-
ministration occupations all have positive impacts on commuting flows. Wholesale trade
(P_WhlTrd_EMP) and public administration (P_Pub_EMP) have the largest coefficients,
90.08 and 89.72, respectively, followed by manufacturing (55.57), retail trade (45.22), finance
industries (36.17), and service occupations (22.13). This result is consistent with the exis-
tence of large regional distribution centers, such as CVS and UPS, as well as government
and military workers.

3.2. Minimizing Commuting Costs in the Allocation of Population and Employment
3.2.1. Scenarios

The control totals for population and employment for the horizon year 2035 were
obtained from the Virginia Employment Commission (VEC) and the GWRC. The model
allocates the total regional increments in the population and employment to the 188 TAZs
of FAMPO, while assuming that the existing population and employment levels remain
at their current locations. The existing and target population and employment levels are
presented in Table 10.

Vacant land is made available for any future housing and employment develop-
ment, except in physically, environmentally, and historically sensitive lands. Devel-
oped/developable land is delineated using a geographical information system (GIS) and
is classified into the following five categories: existing residential developed land, exist-
ing commercial developed land, existing industrial developed land, undevelopable land,
and vacant developable land. Vacant developable land is selected for possible further
development expansion.

Each jurisdiction in FAMPO has primary settlement/growth area boundaries in its
comprehensive long-range plan. These boundaries are not exactly the same as the urban
growth boundaries (UGB) that control urban expansion into farm and forest lands in Port-
land, Oregon. One can also refer to [52] for information on rigid vs. flexible boundaries in
the context of urban growth/development boundaries and an application for delineation.
They are not used to control growth, but rather to define long-term city boundaries. How-
ever, this land-use control tool functions rather well in managing urban growth in the
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region. It has been observed that new housing developments built since 2000 have taken
place around and within these boundaries. The following five land development scenar-
ios were initially considered: L1—within UGB (35,535 acres); L2—within UGB + 1.0 mile
(171,241 acres); L3—within UGB + 2.0 mile (252,508 acres); L4—within UGB + 3.0 mile
(305,921 acres); L5: all developable land (503,412 acres). These scenarios are illustrated in
Figure 6. After initial exploratory modeling, the scenarios L1 and L5 were discarded as too
restrictive and too unconstrained, respectively. The Scenarios L2 and L4 were then retained
as sufficiently contrasted scenarios to provide insights into the impact of land availability.

Table 9. Tobit Parameter Estimation of Model 4.

Parameter Estimate Standard Error t-Value Approx Pr > |t|

Intercept −80.267754 4.532873 −17.71 <0.0001
P 0.011133 0.000426 26.13 <0.0001

EMP 0.027680 0.001218 22.73 <0.0001
D −3.966485 0.158067 −25.09 <0.0001

IO_E −0.000324 0.000024329 −13.33 <0.0001
CD_E 0.000160 0.000035343 4.53 <0.0001

P_DA_RES 28.859800 3.679491 7.84 <0.0001
P_BLK_RES 9.602796 3.023634 3.18 0.0015

P_OCC1_RES 23.840650 6.515631 3.66 0.0003
P_OCC2_RES 12.881209 5.595655 2.30 0.0213
P_OCC3_RES 16.725051 4.991596 3.35 0.0008
P_OCC4_RES 17.346662 5.671378 3.06 0.0022
P_Mfg_EMP 36.628397 4.083194 8.97 <0.0001

P_WhlTrd_EMP 53.338335 7.888539 6.76 <0.0001
P_RetTrd_EMP 22.840645 3.075172 7.43 <0.0001

P_Pub_EMP 43.681025 5.569463 7.84 <0.0001
P_Serv_EMP 19.602157 1.794940 10.92 <0.0001

P_Finan_EMP 21.147896 2.754040 7.68 <0.0001
P2 −0.000000662 3.1856992 × 10−8 −20.78 <0.0001
E2 −0.000002661 0.000000158 −16.87 <0.0001
D2 0.048005 0.004843 9.91 <0.0001

POPEMP 0.000002331 0.000000113 20.68 <0.0001
EMPCD −0.000000109 1.807805 × 10−8 −6.03 <0.0001
R-square 0.4657

Pseudo-R2 0.2394
Log-likelihood −20,466

Table 10. Target Population and Employment.

Jurisdiction
2035

Employment Population

Caroline County 14,216 47,007
Fredericksburg 43,679 29,852

King George County 17,821 40,744
Spotsylvania County 62,551 236,885

Stafford County 69,574 238,208
Total GWRC (PD 16) 207,841 592,696

2000 (Existing) Increments
Employment Population ΔE ΔP

85,197 241,065 122,644 351,631
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Figure 6. Land Development Scenarios with Buffers around UGBs.

While rural areas have higher average land consumption per resident (ULP) and
employee (ULE), in the range of (2~3) acres, urban areas are characterized by denser
developments in the range of (0.1~0.2) acres. All the areas of the FAMPO parcels of land
currently occupied by the population and employment have been summed up at the TAZ
level. Using the existing (2000) TAZ population and employment data, the following
region-wide average densities have been derived: ULP = 0.429 acres and ULE = 0.223 acres.
Using the increments ΔP and ΔE for population and employment, and the above density
values, the total amount of land required by 2035 would be 178,199 acres. It is assumed
that, in the future (target year 2035), the average ULP and ULE values will be smaller than
the current values, and the following 9 × 9 grid of values is considered:

ULP: (0.10–0.50) by 0.05 increments
ULE: (0.05–0.25) by 0.025 increments

Except for the variables POP and EMP, which are endogenous to the optimization
model, all the other variables of the Tobit model are also assumed to remain constant over
time. It is also assumed that the share variables (P_DA_RES, P_BLK_RES, P_OCC1_RES,
P_OCC2_RES, P_OCC3_RES, P_OCC4_RES, P_Mfg_EMP, P_WhlTrd_EMP, P_RetTrd_EMP,
P_Pub_EMP, P_Serv_EMP, and P_Finan_EMP) remain constant and equal to their current
values.

3.2.2. Model Formulation

The optimization model presented in Section 2.4 (Equations (10)–(15)) is adjusted as
follows. First, the commuting travel costs are proxied by the total vehicle miles traveled
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(VMT). If Dij is the distance between TAZs i and j, the objective function to be minimized is
as follows:

Z = ∑
i

∑
j

DijFij (22)

Second, Equation (13) is reformulated as Equation (23) by using the Tobit parameters
presented in Table 9, in which P0

i is the existing 2000 population in TAZ i, E0
j is the existing

2000 employment level in TAZ j, (P0
i + xi)

2 is the square of the final population (existing

plus increment) in TAZ i; (E0
j + zj)

2 is the square of the final employment level (existing
plus increment) in TAZ j.

The model is a non-linear program because of the squares and products of the decision
variables. The optimization is implemented with the general algebraic modeling system
(GAMS) and with the non-linear solver CONOPT.

However, because of its non-linearity and non-convexity, this model only provides
local optima, and a global optimum search is infeasible, due to the model size (36,097
variables and 35,911 constraints). In other words, the optimal solution obtained for any
set of values for ULP and ULE may vary depending on the initial starting point of the
optimization algorithm. Thus, the only way to deal with this problem is to repeatedly solve
the model with the CONOPT solver, and to select the solution with the smallest objective
function (OF) value. The results presented below are the outcomes of this process.

Fij ≥ −80.267754 + 0.011133 · (P0
i + xi) + 0.027680 · (E0

j + zj)− 3.966485Dij

−0.000324 ·

⎛
⎜⎜⎜⎜⎜⎜⎝

∑
k 
= i

k ∈ Neighborhood_o f _i

(
E0

k + zk
)

D−0.3
ik

⎞
⎟⎟⎟⎟⎟⎟⎠

+ 0.000160 ·

⎛
⎜⎜⎜⎜⎜⎜⎝

∑
l 
= j

l ∈ Neighborhood_o f _j

(
E0

l + zl
)

D−0.1
jl

⎞
⎟⎟⎟⎟⎟⎟⎠

+28.859800 · (P_DA_RES)i + 9.602796 · (P_BLK_RES)i

+ 23.840650 · (P_OCC1_RES)i + 12.881209 · (P_OCC2_RES)i

+16.725051 · (P_OCC3_RES)i + 17.346662 · (P_OCC4_RES)i

+ 36.628397 · (P_MFG_EMP)j + 53.338335 · (P_WhlTrd_EMP)j

+ 22.840645 · (P_RetTrd_EMP)j + 43.681025 · (P_Pub_EMP)j

+ 19.602157 · (P_Serv_EMP)j + 21.147896 · (P_Finan_EMP)j

−0.000000662 · (P0
i + xi)

2 − 0.000002661 · (E0
j + zj)

2
+ 0.048005D2

ij

+ 0.000002331 · (P0
i + xi) · (E0

j + zj)− 0.000000109 · (E0
j + zj) ·

⎛
⎜⎜⎜⎜⎜⎜⎝

∑
l 
= j

l ∈ Neighborhood_o f _j

(
E0

l + zl
)

D−0.1
jl

⎞
⎟⎟⎟⎟⎟⎟⎠

(23)

3.2.3. Optimization Results

In order to contrast the VMT minimization results between high- and low-density sce-
narios, two sets of ULP and ULE pairs, including (1) high density: ULP = 0.10; ULE = 0.050
and (2) low density: ULP = 0.40; ULE = 0.200, were selected among the 9 × 9 grid of values
and combined with the L2 and L4 land development scenarios.

The optimal TAZ-to-TAZ flows have been summarized into jurisdiction-to-jurisdiction
flows, as presented in Table 11. The optimal values of the OF, total flows and average
commuting distance are summarized in Table 12. The OF and the total flow decrease
with more land available and a higher density, which indicates that a land-use policy
that confines new developments within UGBs would significantly increase regional VMT.
This large flow increase leads to increased congestion and air pollution costs, which are
addressed in Section 3.3.4.
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Table 11. Optimal Commuting Flows by Jurisdiction.

Scenario L2 To
ULP = 0.400 ULE = 0.200 CR FR KG SF SP

From

CR 1000 3830 4849 7395 4223
FR 0 961 33 528 802
KG 9 2205 5531 2891 2369
SF 0 4481 1575 10,991 3796
SP 40 5855 1545 6215 10,695

Scenario L2 To
ULP = 0.100 ULE = 0.050 CR FR KG SF SP

From

CR 29 1582 382 967 1463
FR 0 812 0 341 562
KG 0 350 92 20 282
SF 0 2016 0 3251 1322
SP 0 2848 0 1417 3936

Scenario L4 To
ULP = 0.400 ULE = 0.200 CR FR KG SF SP

From

CR 136 288 1349 2304 1415
FR 0 780 48 472 592
KG 0 813 1057 1405 919
SF 0 3836 1146 9045 2751
SP 0 4886 1544 5245 8266

Scenario L4 To
ULP = 0.100 ULE = 0.050 CR FR KG SF SP

From

CR 2 7 0 0 23
FR 0 763 0 357 549
KG 0 0 17 0 0
SF 0 1787 0 4030 1170
SP 16 4038 0 2075 3837

CR: Caroline; FR: Fredericksburg; KG: King George; SF: Stafford; SP: Spotsylvania.

Table 12. Optimal Objective Function, Total Flow, and Average Commuting Distance.

Land Scenario

Density Scenario
ULP = 0.400 ULP = 0.100
ULE = 0.200 ULE = 0.050

L2
Objective function 838,777 113,647

Total flows 81,819 21,671
Average commuting distance 10.25 5.24

L4
Objective function 473,283 106,347

Total flows 48,294 18,671
Average commuting distance 9.80 5.70

Figure 7 displays the optimal TAZ-to-TAZ flows, while Figures 8 and 9 present the
optimal allocations of the incremental population and employment, respectively. As
more land becomes available, the incremental population and employment tend to move
away towards rural areas. In addition, as density increases, more people and jobs are
located closer to the urban cores. An interesting observation is that, for a given density
scenario, when less land is available (e.g., L2 rather than L4), this requires higher levels of
commuting flows. The L2 UGB requirement leads to more spatial separation of population
and employment than under less restrictive land-use controls (L4). Thus, a tight UGB
strategy does not appear to be the best way to reduce VMT, and the resulting congestion
and air pollution. Another interesting observation is that moving from low to high density
and from L2 to L4 leads to the southern TAZs being more and more disconnected in terms
of flows, with most of the inter-TAZ and inter-jurisdictional flows concentrated in the
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northern TAZs. Compact development scenarios evidently result in the highest volumes
of commuting flows. This could be a justification for further transit development and
use. Most of the observed commuting flows involve private car transportation, and other
modes of transportation are not explicitly considered, because their shares are currently
very small.

Figure 7. Optimal Zone–to–Zone Flows.
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Figure 8. Optimal Allocation of Incremental Population.
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Figure 9. Optimal Allocation of Incremental Employment.

3.3. Minimizing All Costs in the Allocation of Population and Employment
3.3.1. Overview of Costs

The previous VMT-minimizing results demonstrate that density constraints are criti-
cal in determining the distribution of populations and employment, and therefore must
be carefully considered. For any given land development strategy, the highest possible
densities allow for minimizing commuting costs. However, commuting costs do not
represent all urban and regional costs, which also include land development costs and
congestion/pollution costs. The purpose of this section is to develop and optimize such an
expanded cost function (TDC), taken as the sum of the commuting costs (TCOM), the total
land development costs (LDC), and the total congestion costs (TCON).
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3.3.2. Estimation of the Commuting Cost Surface

In Section 3.2.3, the total commuting cost (TCOM) was minimized under two den-
sity scenarios. However, it is now necessary to consider the variations in TCOM over a
wider range of density values. A 9 × 9 grid analysis (ULP = 0.10~0.50 by 0.05 increments;
ULE = 0.050~0.250 by 0.025 increments) of density scenarios is used to build up the re-
lationship between the commuting cost and ULP and ULE. The general approach is to
solve the VMT minimization model over these 81 density parameters (ULP, ULE) for land
development strategies L2 and L4, and then to approximate the resulting cost surfaces
through polynomial regression analysis. The normalized minimum VMT values for each
pair of ULP and ULE are presented in Table 13. Normalized values provide a clearer
picture of the variations in the minimum VMT. For Scenario L2, the maximum value (100)
represents VMT = 930,741; for Scenario L4, the corresponding value is VMT = 560,790.
VMT values under L2 are larger than those under L4. This is reasonable because L4 is less
constraining (provides more location opportunities), which should lead to a lower VMT for
any given set of (ULP, ULE) values.

Table 13. Minimum Commuting Costs for a 9 × 9 grid of ULP and ULE values.

Normalized

Land Scenario L2
ULE

0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250

ULP

0.10 12.21 15.05 17.09 17.17 17.23 19.56 20.26 21.67 22.12
0.15 15.06 16.24 17.56 18.32 20.61 22.26 22.99 23.18 23.44
0.20 26.31 27.15 28.03 28.16 28.42 28.92 29.06 29.15 29.55
0.25 33.14 39.99 40.34 41.25 41.32 42.06 44.21 45.06 45.30
0.30 40.62 46.95 53.61 57.55 59.47 61.18 62.55 64.59 66.17
0.35 48.17 60.51 66.65 71.39 79.09 81.80 85.00 87.99 91.40
0.40 53.13 64.22 70.87 78.52 80.79 85.27 90.12 100.00
0.45 63.43 76.50 80.40
0.50

Normalized

Land Scenario L4
ULE

0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250

ULP

0.10 18.96 20.82 21.69 25.55 26.88 27.71 28.01 28.72 29.08
0.15 23.10 23.41 26.63 29.99 32.82 36.03 36.15 36.26 36.39
0.20 31.63 35.46 38.57 39.61 39.90 40.13 40.33 40.50 40.73
0.25 39.40 40.17 41.09 41.72 42.26 42.71 43.14 43.56 43.97
0.30 44.12 46.64 51.31 53.13 53.93 54.71 55.55 56.36 57.20
0.35 48.18 51.69 56.12 65.54 69.32 71.19 71.22 72.31 73.40
0.40 49.13 56.64 64.89 71.43 80.24 83.10 84.40 85.64 87.05
0.45 51.15 59.24 65.18 74.43 81.43 83.41 85.23 86.67 88.28
0.50 55.52 63.55 72.26 80.09 88.76 92.80 95.45 97.63 100.00

Note: Red cells correspond to unfeasible solutions.

The normalized commuting cost surfaces are illustrated in Figure 10. The surface for
L2 displays sudden drops at certain values of ULP and ULE, due to infeasibility. The VMT
values increase as the ULP and ULE increase. As expected, the VMT is minimized when
the ULP and ULE are the smallest. The surfaces suggest that the VMT is more sensitive
to the ULP than to ULE. The relationship between VMT and ULP and ULE for each land
development strategy is estimated using a third-order cubic polynomial regression analysis
and the results are presented in Table 14.

As the models minimize the total commuter mile flows (Equation (22)), it is necessary
to convert this quantity into the corresponding annual commuting cost, with the following
equation:

TCOM = CPM × ND × ∑
i

∑
j

dijFij (24)
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where CPM is the average commuting cost per person mile, and ND is the number of
commuting days per year. CPM is estimated at USD 0.202 by dividing the 2005 purchases
of cars and trucks and the spending on gas and oil (USD 988.2 billions), by the 2005 number
of person travel miles (4884.557 billions of vehicle miles). In order to annualize the total
commuting cost, the average number of workdays per year (ND) is calculated by assuming
2 weeks of vacation (10 days) and 10 days of federal holidays. Hence, ND = 240 days
(50 weeks × 5 days–10 days).

L2 

 
L4 

 

Figure 10. Commuting Cost Surface.
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Table 14. Results of 3rd Order Regression of TCOM over ULP and ULE.

Variables
Land Development Strategy

L2 L4

Intercept 188,109 (1.71) * 100,497 (2.16) *
ULP −3,410,307 (−3.34) ** −377,350 (−1.07)
ULE 2,816,147 (1.89) * 117,457 (0.17)

ULP × ULP 19,994,468 (5.65) ** 3,921,962 (3.54) **
ULE × ULE −14,772,237 (−1.68) * 2,136,213 (0.48)
ULP × ULE −4,477,808 (−0.93) 878,521 (0.52)

ULP × ULP × ULP −26,345,984 (−6.61) ** −5,919,163 (−5.02) **
ULE × ULE × ULE 31,053,141 (1.72) * −3,265,161 (−0.35)
ULP × ULP × ULE 24,799,246 (3.94) ** 9,630,043 (4.90) **
ULP × ULE × ULE −6,222,188 (−0.62) −13,204,059 (−3.36) *

R2 0.987 0.983
( ) t-statistics; * significant at 90% level, two-tailed test; ** significant at 99% level, two-tailed test.

3.3.3. Estimation of Land Development Costs

In order to develop land development cost functions for residence and workplace loca-
tions, with the ULP and ULE as determinants, parcel-level property values and developed
acres data are drawn from the 2006 (4th quarter) Real Estate database that is used by local
governments for tax assessment (Section 2.2.2). These data are aggregated at the TAZ level
in order to match them with population and employment data. Land development cost
functions, which involve acreage, population, and employees, are constructed as follows:

Total property value (land + building) = f (residential acreage; population) (25)

Total property value (land + building) = g (commercial + industrial + retail + office
acreage; employees)

(26)

The following three functional forms have been considered: (1) linear–linear; (2) log–
log; and (3) log–linear. The log–log specification resulted in the highest R2. However,
because the ULP and ULE are the basic variables in the commuting flow function TCOM,
the land development cost functions were re-estimated, in log–log form, with ULP and
ULE as determinants, together with population P_2006 and employment E_2006. As the
densities involve the ratios of acreages to population or employment, the same information
is embodied in the new formulations. Furthermore, the exponents of P_2006 and E_2006
must be equal to 1 to avoid scale effects with regard to these variables. This homogeneity
allows the estimated functions to be applied to any increment in the population and
employment. The new regression results are presented in Table 15.

Table 15. Regression Results for Land Development Cost Functions.

Land Development Cost (Residential) Land Development Cost (Employment)

Intercept 11.218 262.90
(<0.0001)

R2 0.85

Intercept 10.810 93.39
(<0.0001)

R2 0.78LN(P_2006) 1.000 Infty
(<0.0001) LN(E_2006) 1.000 Infty

(<0.0001)

LN(ULP) 0.014 0.34 (0.7311) LN(ULE) 0.502 10.40
(<0.0001)

RESTRICT 16.899 2.37 (0.0173) RESTRICT 98.442 5.01 (<0.0001)

Therefore, the total cost of development for the increments ΔP and ΔE are as follows:

Population : LDCP = e11.218 · ΔP · ULP0.014 (27)

Employment : LDCE = e10.810 · ΔE · ULE0.502 (28)

208



Land 2023, 12, 433

In order to annualize these costs, the equivalent annual cost (EAC) formula obtained
from the Board of Governors of the Federal Reserve System is used, with the following
equation:

EAC = (Asset Price × IR)/(1 − (1 + IR)ˆ(−N)) (29)

IR = average mortgage interest rate over 1997~2006 = 6.71% = 0.0671
N = number of periods = 30 years (normal mortgage payment period)

The annualized functions (27) and (28) are adjusted with the multiplier 0.078.

3.3.4. Congestion Cost Synthetic Functions

High-density, compact cities can entail traffic congestion costs, reduced urban services,
air pollution and noise costs, etc. These costs can be assumed to decrease as density
decreases. However, they are not easily statistically estimated due to the lack of necessary
data. Here, these costs are assumed to be related to population, employment, and land
consumptions, with the following synthetic functional forms:

TCONP = K1*ΔP*(ULP** − b) (30)

TCONE = K2*ΔE*(ULE** − d) (31)

where b, d, K1 and K2 are positive parameters.
Consistent with the theories, these costs decline with increasing ULP and ULE values

(decreasing densities). The parameters K1 and K2 impact the height of the cost curves,
whereas b and d impact their steepness.

3.3.5. Total Development Cost Minimization

Therefore, the annualized total development cost, TDC, is as follows:

TDC = TCOM + LDCP + LDCE + TCONP + TCONE (32)

The allocated population and employment increments, ΔP and ΔE, are fixed. They
are implicit in the commuting cost function, and explicit in the other functions, where they
serve as given parameters. Hence, each of the cost components is only a function of the
inverse densities ULP and ULE. Therefore,

TDC = TDC (ULP, ULE) (33)

For instance, TDC with land strategy L2 is as follows:

TDC = 0.202 × 240 × (188109 − 3410307 × ULP + 2816147 × ULE
+19994468 × ULP2 − 14772237 × ULE2 − 4477808 × ULP × ULE
−26345984 × ULP3 + 31053141 × ULE3 + 24799246 × ULP2 × ULE − 6222188 × ULP × ULE2)

+ (e11.218×ΔP×ULP0.014×0.0671)
(1−(1+0.0671)−30)

+ (e10.810×ΔE×ULE0.502×0.0671)
(1−(1+0.0671)−30)

+K1 × ΔP × ULP−b + K2 × ΔE × ULE−d

(34)

A similar function for land strategy L4 is also easily formulated, but is not presented
here. The optimal values ULP* and ULE* that minimize TDC depend upon the values of
the congestion cost function parameters K1, K2, b, and d. The optimal ULP* and ULE* are
obtained over the following grid of values for K1, K2, b, and d:

K1 = 0.1, 0.3, 0.5;
K2 = 0.1, 0.3, 0.5;
b = 1.0, 3.0, 5.0;
d = 1.0, 3.0, 5.0.

The optimal values of the development densities (ULP and ULE) are obtained by
solving a simple two-variable optimization problem over a grid of 81 combinations of
values for K1, K2, b, and d. In addition, the upper and lower bounds of the ULP and ULE
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are included in the model to be consistent with the bounds used in estimating the TCOM
functions. The model is as follows:

Minimize TDC (ULP, ULE) (35)

s.t.
0.100 ≤ ULP ≤ 0.500 (36)

0.050 ≤ ULE ≤ 0.250 (37)

For a given set of K1, K2, b, and d values, the optimal ULP and ULE values that
minimize the total cost TDC are presented in Tables 16 and 17 with the land availability
strategy L2 (UGB + 1-mile buffer) and L4 (UGB + 3-mile buffer), respectively. The results
show that the optimal ULP and ULE vary, depending on the form of the congestion cost
functions, which depend on the parameters K1, K2, b, and d. The ULP and ULE values
marked with L and U represent the lower and upper bounds, respectively. The lower
bound characterizes the highest density, and the upper bound demonstrates the lowest
density.

Table 16. Grid Analysis for Optimal ULP and ULE—L2 Case.

K1
0.1 0.3 0.5

K2 b d ULP ULE ULP ULE ULP ULE

0.1

1.0
1.0 0.1000 L 0.0500 L 0.1000 L 0.0500 L 0.1000 L 0.0500 L
3.0 0.1000 L 0.0805 0.1000 L 0.0805 0.1000 L 0.0805
5.0 0.1000 L 0.2211 0.1000 L 0.2211 0.1000 L 0.2211

3.0
1.0 0.1447 0.0500 L 0.1930 0.0500 L 0.2206 0.0500 L
3.0 0.1443 0.0805 0.1917 0.0803 0.2186 0.0801
5.0 0.1435 0.2213 0.1876 0.2212 0.2121 0.2209

5.0
1.0 0.3135 0.0500 L 0.5000 U 0.0500 L 0.5000 U 0.0500 L
3.0 0.3089 0.0793 0.5000 U 0.0763 0.5000 U 0.0763
5.0 0.2952 0.2194 0.3594 0.2174 0.3989 0.2160

0.3

1.0
1.0 0.1000 L 0.0500 L 0.1000 L 0.0500 L 0.1000 L 0.0500 L
3.0 0.1000 L 0.1108 0.1000 L 0.1108 0.1000 L 0.1108
5.0 0.1000 L 0.2500 U 0.1000 L 0.2500 U 0.1000 L 0.2500 U

3.0
1.0 0.1447 0.0500 L 0.1930 0.0500 L 0.2206 0.0500 L
3.0 0.1439 0.1108 0.1905 0.1105 0.2168 0.1103
5.0 0.1435 0.2500 U 0.1872 0.2500 U 0.2113 0.2500 U

5.0
1.0 0.3135 0.0500 L 0.5000 U 0.0500 L 0.5000 U 0.0500 L
3.0 0.3051 0.1090 0.5000 U 0.1042 0.5000 U 0.1042
5.0 0.2932 0.2500 U 0.3551 0.2500 U 0.3917 0.2500 U

0.5

1.0
1.0 0.1000 L 0.0500 L 0.1000 L 0.0500 L 0.1000 L 0.0500 L
3.0 0.1000 L 0.1285 0.1000 L 0.1285 0.1000 L 0.1285
5.0 0.1000 L 0.2500 U 0.1000 L 0.2500 U 0.1000 L 0.2500 U

3.0
1.0 0.1447 0.0500 L 0.1930 0.0500 L 0.2206 0.0500 L
3.0 0.1438 0.1285 0.1899 0.1283 0.2158 0.1280
5.0 0.1435 0.2500 U 0.1872 0.2500 U 0.2113 0.2500 U

5.0
1.0 0.3135 0.0500 L 0.5000 U 0.0500 L 0.5000 U 0.0500 L
3.0 0.3031 0.1265 0.5000 U 0.1205 0.5000 U 0.1205
5.0 0.2932 0.2500 U 0.3551 0.2500 U 0.3917 0.2500 U

L: Lower bound; U: upper bound.

For example, if K1 = 0.1, K2 = 0.1, b = 1.0, and d = 1.0 in the L2 case, then the optimal
ULP and ULE values that minimize the total cost TDC are the lower bounds (ULP: 0.1000;
ULE: 0.0500), which means that, for these congestion cost functions, the highest density
strategy (compact development) for both residences and workplaces is optimal. However,
if the congestion function is characterized by the parameters K1 = 0.1, K2 = 0.1, b = 5.0,
and d = 5.0, then the optimal ULP and ULE values (ULP: 0.2952; ULE: 0.2194) demonstrate
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a lower density. Under this scenario, allowing sprawl to some extent may be the most
appropriate strategy. It is also interesting to note that the optimal value of ULE hits its
upper bound (ULE: 0.2500) in many cases, especially when d = 5.0 (steep function) and K2
≥ 0.3 (higher intercept), representing a high congestion cost for workplace locations, which
suggests that the suburbanization of workplaces can help to minimize TDC. When b = 1.0
(low steepness) for the congestion cost function for residential locations, ULP hits its lower
bound (0.1000), irrespective of the values of the other parameters. Similarly, when d = 1.0
(low steepness) for the congestion cost function for workplace locations, ULE hits its lower
bound (0.0500). These lower bounds point to the advisability of compact development
for residences and workplaces. The results demonstrate that the form of the congestion
function plays an important role in determining the optimal values of ULP and ULE.

Table 17. Grid Analysis for Optimal ULP and ULE—L4 Case.

K1
0.1 0.3 0.5

K2 b d ULP ULE ULP ULE ULP ULE

0.1

1.0
1.0 0.1000 L 0.0500 L 0.1000 L 0.0500 L 0.1000 L 0.0500 L
3.0 0.1000 L 0.0810 0.1000 L 0.0810 0.1000 L 0.0810
5.0 0.1000 L 0.2218 0.1000 L 0.2218 0.1000 L 0.2218

3.0
1.0 0.1476 0.0500 L 0.2064 0.0500 L 0.2412 0.0500 L
3.0 0.1470 0.0809 0.2048 0.0807 0.2387 0.0806
5.0 0.1474 0.2223 0.2030 0.2227 0.2346 0.2228

5.0
1.0 0.3399 0.0500 L 0.4456 0.0500 L 0.5000 U 0.0500 L
3.0 0.3351 0.0801 0.4273 0.0794 0.5000 U 0.0787
5.0 0.3248 0.2226 0.3991 0.2220 0.4423 0.2215

0.3

1.0
1.0 0.1000 L 0.0500 L 0.1000 L 0.0500 L 0.1000 L 0.0500 L
3.0 0.1000 L 0.1108 0.1000 L 0.1108 0.1000 L 0.1108
5.0 0.1000 L 0.2500 U 0.1000 L 0.2500 U 0.1000 L 0.2500 U

3.0
1.0 0.1476 0.0500 L 0.2064 0.0500 L 0.2412 0.0500 L
3.0 0.1466 0.1107 0.2037 0.1106 0.2368 0.1104
5.0 0.1480 0.2500 U 0.2036 0.2500 U 0.2351 0.2500 U

5.0
1.0 0.3399 0.0500 L 0.4456 0.0500 L 0.5000 U 0.0500 L
3.0 0.3316 0.1097 0.4170 0.1089 0.4783 0.1081
5.0 0.3243 0.2500 U 0.3973 0.2500 U 0.4391 0.2500 U

0.5

1.0
1.0 0.1000 L 0.0500 L 0.1000 L 0.0500 L 0.1000 L 0.0500 L
3.0 0.1000 L 0.1281 0.1000 L 0.1281 0.1000 L 0.1281
5.0 0.1000 L 0.2500 U 0.1000 L 0.2500 U 0.1000 L 0.2500 U

3.0
1.0 0.1476 0.0500 L 0.2064 0.0500 L 0.2412 0.0500 L
3.0 0.1465 0.1281 0.2032 0.1280 0.2360 0.1279
5.0 0.1480 0.2500 U 0.2036 0.2500 U 0.2351 0.2500 U

5.0
1.0 0.3399 0.0500 L 0.4456 0.0500 L 0.5000 U 0.0500 L
3.0 0.3299 0.1272 0.4126 0.1262 0.4676 0.1254
5.0 0.3243 0.2500 U 0.3973 0.2500 U 0.4391 0.2500 U

L: Lower bound; U: upper bound

4. Conclusions and Discussion

Using a Tobit commuting model that was empirically estimated with data for the
FAMP region, Virginia, a normative planning model has been developed, incorporating
alternative land development and density scenarios. Various growth management policy
scenarios have been tested and compared. The results, expressed in terms of population
and employment spatial patterns and expected commuting flows, demonstrate that tighter
growth control policies increase system-wide commuting costs and flows, and do not neces-
sarily reduce the average trip distances. The density constraints are critical in determining
the distribution of populations and employment and must be carefully considered. The
results also show that spatial structure variables are indeed important in estimating the
Tobit model. The commuting cost minimization model has been expanded to include land
development costs and congestion costs. The results demonstrate that the optimal develop-
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ment densities are very sensitive to the form of the congestion cost function and the land
availability scenarios (growth boundaries). When the congestion function is not steep, a
compact development strategy for residences and workplaces is advisable. However, with
increasing steepness and level of the congestion functions, a land development strategy
that allows for some sprawl minimizes the total urban development costs. The proposed
optimization approach could be used for policy analysis. Since government policies, such
as land-use controls and the provision of transportation infrastructure, play a major role in
shaping cities, this approach could contribute to a better understanding of the dynamics
of urban economies and allows planners to show the implications of policy scenarios to
decision makers.

What are the contributions of this research to the literature on land-use pattern studies
and policies? In the following section, we discuss three contribution areas, including
spatial interaction modeling (SIM), land-use optimization, and the debate on sprawl versus
compact development. First, the literature review in Section 1.2 shows that commuting
SIMs that use data on commuting flows and land uses have a long history in both statistical
estimation and policy simulation. However, we believe that the use of the Tobit model,
which accounts for the information embodied in zero flows, the large number of potential
residential and employment variables, and the spatial structure variables, all contribute to
the innovative nature of this SIM. Second, the optimization framework that accounts for
the commuting, land development, and congestion/pollution costs is, we believe, unique
in the land-use optimization literature, as discussed in Section 1.3. We are not aware of
similar research; therefore, it is not possible to compare the numerical results obtained here
with those of similar research, as would be possible with alternative statistical regression
models. While the literature presents many land-use simulation models, they are predictive
but not normative, and recent land-use optimization models are ecologically oriented, and
do not account for commuting interactions and costs. Third, this study sheds light on the
complexity of the debate between urban sprawl and compact city development. While the
costs of sprawl and congestion have been studied separately and in a discrete fashion (see
Section 1.4), they have not been integrated into a comprehensive framework, as was the
case in this study. This issue is further discussed below.

Contemporary American planning tends to support compact development strate-
gies in general, because they align with some key planning principles, such as reduced
transportation costs, improved public health, provision of affordable housing, reduced
urban sprawl, conservation of land, and protection of the natural environment. Therefore,
planners often tend to focus on the promotion of condensed development, along with
extensive mixed-use development and extensive public transportation systems, as they
are often found in European and Asian cities. This study questions the general notion of
preferrable compact development strategies when setting up public policy directions and
decision-making processes that incorporate all possible contexts and costs. The main argu-
ments against compact development are the deterioration of and stress on infrastructure,
lack of open space, negative impact on quality of life, higher housing costs, increased road
congestion, increased noise and increased air and water pollution. Compact development
can lead to higher land costs because of the limited land available, and it can be more costly
to secure land to prepare it for compact development because it often involves building in
already developed areas. On the other hand, compact development could lead to lower
development costs because it allows for more efficient land use and infrastructure and
takes advantage of the existing infrastructure. As for congestion costs, compact devel-
opment could lead to higher congestion costs when the increased traffic congestion is
caused by high population densities. However, compact development could also lead to
lower congestion costs when it promotes the use of public and active transportation, which
could eventually help to reduce traffic congestion. We believe that this study provides an
innovative approach to optimal urban growth boundaries or urban capacity strategies, con-
sidering not only commuting costs, but also various other costs, such as land development
costs and congestion costs, by applying empirical, analytical, or mathematical modeling
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approaches. We argue that a full spectrum of cost mechanisms should be examined in
developing growth control policies and compact development strategies.

In the following section, we discuss the possible research extensions. First, population
and employment could be disaggregated in terms of different industries, income level,
ethnic background, gender, etc. Disaggregated model specifications might help us to better
understand the spatial structure effects. Second, the model could be extended to include
different types of trips, in addition to commuting trips. Shopping trips are prominently
included in the Lowry model, but such data are more difficult to obtain. Third, the devel-
opment cost functions could be extended to include utility, roadways, and other costs that
are not reflected in property values. Fourth, congestion cost functions could be empiri-
cally estimated, if appropriate data become available. Fifth, the model could incorporate
other transportation modes (e.g., transit), which might alter the conclusions reached in
this research. Sixth, population and employment densities could vary across spatial units
(TAZs), and could be made endogenous to the model, that is, becoming decision variables.
This would increase the non-linearity of the optimization model and the complexity of
its resolution. Seventh, the SIM could be used to determine the factors underlying the
changes in commuting patterns, for instance before, during, and after a pandemic. Finally,
the optimization methodology could be expanded to more comprehensively account for
environmental factors. In the present approach, environmentally sensitive areas are simply
excluded as candidates for development. Ecological indices, based on remote sensing and
other data, could be developed, as proposed by Li et al. [53], and could act as constraints in
the optimization process. In addition, explicit air quality constraints, as proposed in [54],
could be set up to account for the pollution emissions from commuting traffic and eco-
nomic activities. Such extensions, possibly formulated in a multi-objective optimization
framework, could help us to analyze the trade-offs between economic and environmental
factors.
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Abstract: This study aimed to examine the association between housing prices and green space
characteristics with a special focus on exploring the effects of the shape pattern index. The research
was based on a hedonic price model across two main distance buffers from residential properties to
urban green spaces. Green spaces were characterized by size and shape measured by a landscape
shape index (LSI). This study was based on 16,222 housing transaction data obtained from the website
of real estate agencies during December 2019 in the Metropolitan Area of Beijing. Linear regression
and semi-log regression analysis were used to examine the associations between independent housing
and neighborhood characteristic variables and housing prices. The results suggested that a one-unit
increase in the natural logarithm of the landscape shape index (LSI) can increase housing prices by
4% (5543 CNY ≈ 826 USD). Such marginal effects were more pronounced for residences located close
to urban green spaces and tended to decay as the distance from residences to green spaces increased.
Additional analysis captured the marginal effects of the natural logarithm of the landscape shape
index (LSI > 1.3) on achieving the maximum monetary evaluation of the property. The findings of
this study suggest that the effects of specific green space characteristics on housing prices should be
taken into account in landscape and urban design.

Keywords: green space; shape pattern index; landscape shape index (LSI); hedonic price model;
housing price; distance decay effect

1. Introduction

The value of urban green space is well established not only in moderating urban
heat island effects [1,2], improving air quality [3,4], promoting people’s mental health and
self-rated health [5–7], wellbeing [8–10], and also in contributing to housing prices [11,12].
The influence of parks on house prices has long been recognized. In the 1850s, the New
York City Council argued that the creation of Central Park would increase nearby property
prices [13]. More recent empirical studies have pointed out that residential proximity to
green spaces as well as parks has positive impacts on housing prices across the world. In
the UK for example, residents have the willingness to pay an extra premium to live close to
urban parks [14]. Similar results have been found in Finland, where residents were found
to be willing to pay 4.9 percent more to reside adjacent to natural greenness [15]. Studies
in China have reported equivalent results to western countries: in Guangzhou, Jim and
Chen [11] found that residential proximity to water bodies and the visibility of green spaces
had positive influences on housing prices.
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Later studies have focused on how the characteristics of a green space can influence
house prices. Clearly, the nature of the green space is a factor in the desirability of a
neighborhood. There are all sorts of green spaces, including parks that are open to the
public, private golf courses, gardens, and recreational facilities. Not all of these have an
equivalent positive influence on house prices. Large, flat, open spaces which are used
primarily for sports activities are much less preferred than natural areas that encompass
water features [16]. Some green spaces will be of such poor quality, for example, in terms
of standard of upkeep, that they may create negative impacts on local house prices [13].
The size and shape of the green space are also likely to impact nearby house prices. While
the role of size is arguably straightforward, the influence of shape is less obviously defined.
An irregular shape could be seen as contributing to a more distinctive neighborhood, and
hence to higher house prices.

Evidence on the role of the shape and size of green spaces on the housing market
is limited and mixed. One underlying mechanism is that landscape shape and size are
correlated with land use types and patterns that have significant changes, along with the
urbanization processes of the metropolitan area in China [17,18]. The continuous changes
in land use patterns play a substantial role in influencing the housing price [19]. Several
studies have found that the size of a green space had a positive influence on housing
prices [20–22]. However, one study found no significant association between park size and
housing price, and indicated that smaller parks distributed equally across the urban area
might contribute better to housing prices compared to larger parks [12]. This issue of the
macro-pattern of green spaces within cities has also been considered by other studies. Xiao,
et al. [23] evaluated the effects of different types of green spaces on housing prices. They
found that a one-unit increase in a residential development’s ratio of green to the total area
would lead to an increase of 8.7 percent in housing prices in Shanghai. Similarly, Jiao and
Liu [24] quantified that city-level parks had significant influences on amenity values, while
district-level parks did not.

In addition to the general effect of residential proximity on the housing premium,
some studies have applied more complex measures of accessibility than simple Euclidean
distance. Park, et al. [25] undertook a study of the impact of a park in Seoul, taking into
account the shortest walking distance while considering crossroads and park entrances.
Property values more generally were found to incrementally increase with residential
proximity to urban green spaces at specific distance intervals. Crompton [13] reviewed
studies of the effects of residential proximity to parks and open spaces on housing value
and found that they contribute to housing prices differentially through distance buffers.
Specifically, these studies found that the effects on house price of adjacency to a park
and open space tend to decay at different rates within and beyond a 500-foot distance
buffer. In another recent study exploring the effects of urban green space on housing values
in Germany [26], researchers found that the influence of urban parks on housing prices
increased with closeness through buffers. For instance, a one unit increase in the residential
distance to parks would lead to a 0.1 percent increase in housing price within a 500 m buffer
zone, compared to a 0.19 percent increase in housing price within a 1000 m buffer zone.

Many studies have therefore indicated that accessibility to green space, as discussed
above, has played an essential role in affecting housing values. Yet, limited studies have
focused on exploring the direct relationship between the size and especially the shape
configuration characteristics of urban spaces and housing prices. This paper addressed
this vacuum by assessing the role of the size and shape of green spaces on housing prices
in urban Beijing. In particular, its premise was that irregular large green spaces have a
positive impact on house prices. To assess this influence, the paper adopted the use of a
shape index developed by ecological studies. Such studies have applied a shape index
to green spaces to examine the relationship between fragmentation characteristics and
species richness [27,28].

To address this task, the paper applied a hedonic price model. The hedonic price
approach has been the conventional method for exploring the association between housing
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characteristics and value, which can be directly estimated as the marginal willingness
to pay for an additional attribute of each property [29,30]. Hedonic models enable the
impact of housing structural characteristics, locational/accessibility relationships, and
neighborhood and environmental features on housing prices to be quantified [11,23]. The
associations between different characteristics and housing prices can be complex and
diverse. For housing structural characteristics, traditional studies have found a significant
association between housing age, size, storey, number of bedrooms and bathrooms, window
orientation, elevators, and housing prices [11,31–33]. Neighborhood characteristics can
encompass the accessibility to the nearest social amenities (e.g., schools), train stations,
central business districts, and natural landscapes (e.g., parks, forests, urban green space).

Building on the above, we therefore applied a hedonic housing price model that
encompassed housing attributes and neighborhood characteristics including green space
features. This study provides new insights into examining the impact of specific landscape
patterns on the housing market, which reflects the potential correlations between changing
land use patterns attributed to urbanization processes and housing prices. This study
assessed the effects of specific green space configurations (size and landscape shape index)
on housing prices in selected districts of the city of Beijing. The specific aims of this study
were to: (1) explore the overall relationship between housing attributes, neighborhood
characteristics and green space characteristics and housing price; (2) examine residents’
willingness to pay for green space characteristics, notably in terms of its size, proximity level,
and its green space shape (using a landscape shape index); abd (3) assess whether residents’
willingness to pay for green space characteristics vary incrementally with distance buffers.

The remainder of this paper is organized as follows: Section 2 outlines the materials
and methodology. Results are outlined in Section 3. Sections 4 and 5 report the discussions
and conclusion.

2. Materials and Methods

2.1. Study Area

The scope of this study was primarily focused on selected urban districts of Beijing,
namely Xicheng, Dongcheng, Haidian, Chaoyang, Fengtai and Shijingshan. The distri-
bution of green spaces and the boundary of selected districts are illustrated in Figure 1.
It is worth noting that the municipal government of Beijing has massively invested in
urban greenness infrastructure in order to provide a better quality of life and potential
economic benefits for residents. In total, 31 parks and 13 urban forests were added in 2019,
contributing to an 83% coverage rate of parks within a radius of 500 m from residences
according to the Beijing Gardening and Greening Bureau (Xinhua, 2019). The 13th Five-Year
Plan (Bureau, 2020) expects the coverage rate of green space and parks within 500-m of
residences to reach 48.5% and 85%, respectively. A total of 700 hectares of new urban
green space, 41 new leisure parks, 13 urban forests and 50 pocket parks are planned to be
built in 2020. These policies that continue to expand urban greenness provide a potential
underlying pathway for raising the nearby housing premium.

2.2. Housing Data Acquisition

The housing data used in this study were captured from the website of a real es-
tate agency (https://bj.lianjia.com (accessed on 28 December 2019)). Real estate agencies
provide access to accurate housing prices at the household level [34]. We captured a
list of housing sales prices and structural variables through December 2019 from Lian-
jia.com by conducting the web-crawling Python program. The original data on resi-
dential properties were first accessed by the request methods in the Beautifulsoup li-
brary which refers to a Python library for extracting data out of HTML and XML files
(https://beautiful-soup-4.readthedocs.io/en/latest (accessed on 2 January 2020)). The
data were extracted by selecting a useful keyword stored within the DataFrame format of
the Pandas library. Housing price was captured in CNY per square meter per dwelling.
Lianjia is one of the largest real estate agents in urban China, with a 50 percent market
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share in Beijing, providing relatively precise housing information [35]. Housing variables
related to structural characteristics were captured, including housing age, housing asking
price, the age of the properties, number of bedrooms, number of bathrooms, size of the
property, whether the properties have an elevator, the number of storeys in the properties,
and window orientation. These are equivalent to previous studies [36].

Figure 1. Displays the distribution of boundary of selected districts, green spaces, and urban blocks
in Beijing.

Additionally, we captured the coordinates of the latitude and longitude of each prop-
erty in Baidu Map API (Baidu Developer: https://lbsyun.baidu.com (accessed on 2 January
2020)) and transformed them into WGS-84 coordinates in GIS. To ensure the consistency
of housing structures in the study, we excluded properties that were not normal commod-
ity housing, such as villas, loft apartments and Soho apartments. After these exclusions,
16,222 asking price transaction records were included in this study.

2.3. Data on Green Space and Neighbourhood Characteristics

The green space data were obtained from Beijing City Lab (http://www.beijingcitylab.
com (accessed on 2 January 2020)), which shared information on 16,721 urban green lands
in 287 Chinese cities in 2017 [37]. We narrowed down the scope of the data and selected
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1542 green space polygons within the Beijing administrative boundary (see Figure 1). The
data included the size of the green spaces while a ‘landscape shape index’ (hereafter LSI)
was calculated for each polygon based on the approach [38,39]. The concept of shape index
was first proposed as a diversity index by [39] to quantify habitat edges for wildlife species.
LSI has been frequently undertaken to identify the divergence of the shape of a landscape
patch from the ideal circle [39,40].

The use of this index is the key contribution of this paper towards understanding the
spatial pattern of house prices. In this study, we applied the LSI as a landscape metric to
examine the effect of shape configuration characteristics of green space patches on any
housing premium. The LSI quantifies the shape of the green space by taking the total
length of the green space divided by the total area and adjusting by a constant for a square
standard. The equation of LSI can be written as follows:

LSI =
P

2
√

π×A
(1)

where P refers to the perimeter of the patches. A refers to the total landscape area (m2). If
the landscape shape refers to a square, then the LSI equals 1. The larger the LSI, the greater
the complexity of the landscape shape. While LSI values are not associated with definitive
shapes, higher values suggest more attractive intricate landscapes. Figure 2 displays the
shape series with increasing LSI values. All shapes are derived from the green spaces’
polygon database.

Figure 2. Landscape shapes with increasing LSI value.

To examine whether the marginal effects of LSI on housing prices would decay as the
distance from residences to green spaces increased, we defined two key buffer variables.
Accessibility to green space from residences was considered in terms of intervals, within
300 m and from 300 m up to 1000 m, as studies have found that these are walkable thresh-
olds for residents’ access to natural greenness [41]. We calculated the distance buffers based
on residents’ home addresses. Two main buffers were therefore generated for access to the
nearest green spaces. The definition of the intervals is illustrated in Figure 3.

Regarding the neighborhood characteristics, we used the spatial ‘Near’ tool in ArcGIS
to calculate the direct distance from each property to the nearest green space. We also
measured the direct distance to the nearest central business district (CBD) and the nearest
subway station that may potentially contribute to the housing premium.

2.4. Construction of the Hedonic Pricing Model

Two functional forms of the hedonic pricing model were employed to assess the associ-
ations between housing price per square meter and the accessibility of the green space and
its size and shape (LSI), namely, the linear regression [42] and semi-log regression [43,44].
Accordingly, it is not only feasible to interpret the implicit property value [45] but also
to identify the percentage of change in the property value. Semi-logarithmic forms have
been frequently formulated in hedonic models [46]. In this study, when the association was
assumed linear, the equation can be written as Equation (2):

P = α0 + Hβ + Gμ + Nχ + ε (2)
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where P denotes the asking price at the residential unit level. H denotes the matrix of
housing structure characteristics. G denotes green space characteristics including our main
interest landscape shape index that it is measured in the Natural logarithm form. N denotes
the neighborhood characteristics. α, β, μ, χ are associated parameter vectors. ε is a vector of
random error terms. When the association was assumed semi-log, the model was specified
by a natural log transformation of the housing price and the equation can be presented as
Equation (3):

LnP = α0 + Hβ + Gμ + Nχ + ε (3)

In accordance with the study [47], we separated our model into two main categories.
One set of the model included direct distance and the other one included the distance buffer.
Both the distance metric and distance buffer were treated as proxies for the accessibility
of green space [48]. The rationale behind this was that if the residence is located at a close
distance to a specific green space, it might also be located within a closed-distance buffer of
a green space [49].

 

Figure 3. The definition of distance buffers with green spaces around the residences.
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3. Results

3.1. Descriptive Analysis

Table 1 presents the descriptive characteristics of the sample (n = 16,222). The average
mean of the housing asking price is 80,249.6 CNY (≈11,957.2 USD) per square meter.
Generally, the housing price decays with the distance from the central business district.
The housing prices of Dongcheng and Xicheng districts, which are closest to the city center,
have the highest average prices among the districts, with 113,592.9 CNY (≈16,925.3 USD)
and 97,468.2 CNY (≈14,522.8 USD) per square meter, respectively. These are followed by
Haidian and Chaoyang districts, with 84,605.3 CNY (≈12,606.2 USD) and 66,710.4 CNY
(≈9939.8 USD) per square meter, respectively.

Table 1. Statistical description.

Variables Description n Mean SD

Dependent variable

Price Selling price per square meter in CNY 16,222 80,249.60 28,219.83

Ln price Logarithmic form of the selling price in 10,000 CNY (Chinese currency,
US $1 = 6.9 CNY) 16,222 11.23 0.35

Price in districts

Price in Shijingshan district Selling price per square meters in CNY 1862 52,854.39 11,997.59

Price in Fengtai district Selling price per square meters in CNY 2985 57,166.82 11,324.8

Price in Chaoyang district Selling price per square meters in CNY 2912 66,710.38 16,588.28

Price in Haidian district Selling price per square meters in CNY 2672 84,605.26 19,498.39

Price in Xicheng district Selling price per square meters in CNY 2815 97,468.18 18,376.97

Price in Dongcheng district Selling price per square meters in CNY 2976 113,592.9 24,492.97

Housing characteristics

Housing age 2019 minus the construction date of the properties 16,222 26.52 38.04

Bedroom Number of bedrooms 16,222 2.24 0.82

Bathroom Number of bathrooms 16,222 1.28 0.55

Housing size The average size of the property (m2) 16,222 92.25 47.26

Elevator Dummy variable, 1 if the property has an elevator 16,222 0.63 0.48

Storey

Category variable:
0 equals to basement

1 equals to the bottom storey (below the 3rd floor)
2 equals to the low storey (between the 4th and 6th floor)

3 equals to the middle storey (between the 7th and 10th floor)
4 equals to the high storey (between the 10th and 17th floor)

5 equals to the top storey (higher than the 18th floor)

16,222 3.05 1.19

Window orientation Dummy variable, 1 if the residence has north-south facing windows 16,222 0.38 0.49

District

Category variable:
1 represents the Shijingshan district

2 represents the Fengtai district
3 represents the Chaoyang district
4 represents the Haidian district

5 represents the Dongcheng district
6 represents the Xicheng district

16,222 3.65 1.65

Neighbourhood characteristics

Distance to the nearest green
space Road distance to nearest green space (m) 16,222 564.58 425.19

Distance to subway Road distance to the nearest subway station (m) 16,222 5302.78 3015.51

Distance to CBD Road distance to the central business district (m) 16,222 12,217.69 7829.55

Green space characteristics

Natural logarithm of landscape
shape index

The total length of the green space divided by the total area, adjusted
by a constant for a square standard 16,222 0.7 0.16
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Table 1. Cont.

Variables Description n Mean SD

Green spaces’ size (ha) The size of the green space (ha) 16,222 17.51 55.21

Residence buffer (300 m) Dummy variable, 1 if housing is within 300 m buffers from the nearest
green space. 16,222 0.26 0.44

Residence buffer (300–1000 m) Dummy variable, 1 if housing is within 300–1000 m buffers from the
nearest green space. 16,222 0.61 0.49

Regarding the housing characteristics, the average housing age is 27 years, and the
average housing size is 92 square meters. Most of the housing comprises two bedrooms
and one bathroom. Approximately 63% of the houses have elevators and most of the
residences are in the middle storey of buildings, with 38% of residences having north-south
facing windows.

In addition, the average size of green spaces and the average distance to the nearest
green space are 17.51 ha and 564.58 m, respectively, which is in line with the policy
requirement of the Classification Standard of Urban Green Space established by the Minister
of Construction. This policy has required that the service ring buffer of green space around
residences should be at least 1000 m if the size of green space is between 2 ha and 20 ha.
The average natural logarithm of LSI is 0.7, which refers to a raw LSI of 2.0. While 26%
of housing is within 300 m of the green space, 61% of homes in the sample lie within a
300–1000 m distance from the green space.

To detect whether there is potential multicollinearity between dependent variables,
we applied the variation inflation factor (VIF) diagnostics in Stata version 14 for Windows.
The results suggested that all the VIFs were lower than 4.3, confirming that there were no
serious collinearity issues in the ordinary least squares regression model [50].

3.2. Baseline Results

In accordance with our aims, Table 2 presents the baseline results by exploring the
effects of green space characteristics on housing prices while controlling for housing
attributes and neighborhood characteristics in four columns. Results of the estimation
for the linear regression model are presented in Column 1 and 2, whereas results of the
estimation for the semi-log model are presented in Column 3 and 4. Two measures of
direct distance and distance buffers are, respectively, applied in Columns 1 and 3 and
Columns 2 and 4.

Before looking at the relationship between green space and house price it is useful to
examine the wider housing and neighborhood characteristic coefficients. They indicate that
the numbers of bedrooms and bathrooms, the residence’s elevator and window orientation
are significantly, and as expected, positively associated with housing price. Specifically, in
terms of the results from column 2, an additional elevator provided by the housing would
lead to an increase in housing price by 5.5% on an average 3249 CNY (≈484 USD). Every
additional bedroom and bathroom in a housing unit will lead to a 1% (550 CNY ≈ 82 USD)
and 9% (6691 CNY ≈ 997 USD) increase in the housing price. Interestingly, we find that the
size and storey of the housing unit have negative effects on housing price. One possible
explanation might be that we used the unit price of each housing unit, which is consistent
with one study conducted in Korea where cities in Korea have similar highly mixed land
uses and densities [51]. Additionally, we find that housing in different districts plays a
significant role in influencing housing prices.

Locations in Haidian, Xicheng and Dongcheng districts were positively associated
with housing price compared to residents living in Haidian and Fengtai districts. This
is logical, since those districts with higher asking prices are located at a relatively close
distance to CBD, which potentially promotes the properties’ values. Second, we found that
residents are willing to pay for better access to green space and CBD, although the implicit
price stays at a low level, accounting for 5.0 CNY (≈0.7 USD) and 1.4 CNY (≈0.2 USD),
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respectively. In addition, we found a negative effect of proximity to the nearest subway
station on housing prices.

Table 2. Hedonic price model incorporating green space characteristics.

(1) (2) (3) (4)

Price Price Lnprice Lnprice

Age 5.521 5.105 0.000 0.000
(3.556) (3.560) (0.000) (0.000)

Bedroom 497.053 ** 550.176 ** 0.006 ** 0.007 **
(241.492) (241.627) (0.003) (0.003)

Bathroom 6649.785 *** 6691.339 *** 0.086 *** 0.087 ***
(419.859) (420.137) (0.005) (0.005)

Housing size −64.680 *** −65.344 *** −0.001 *** −0.001 ***
(6.016) (6.025) (0.000) (0.000)

Elevator 3285.481 *** 3249.162 *** 0.056 *** 0.055 ***
(328.368) (328.635) (0.004) (0.004)

Storey −369.724 *** −373.778 *** −0.005 *** −0.005 ***
(111.162) (111.239) (0.001) (0.001)

Window orientation 3792.511 *** 3783.455 *** 0.047 *** 0.046 ***
(304.740) (304.974) (0.004) (0.004)

Shijingshan district Reference Reference Reference Reference
Fengtai district −8755.901 *** −9198.544 *** −0.109 *** −0.116 ***

(611.329) (611.727) (0.007) (0.007)
Chaoyang district −12,938.66 *** −13,733.41 *** −0.156 *** −0.167 ***

(825.808) (824.292) (0.010) (0.010)
Hadian district 22,216.37 *** 21,572.51 *** 0.327 *** 0.318 ***

(565.583) (565.449) (0.007) (0.007)
Dongcheng district 13,629.11 *** 12,507.49 *** 0.171 *** 0.156 ***

(914.015) (913.559) (0.011) (0.011)
Xicheng district 41,865.95 *** 41,302.11 *** 0.487 *** 0.479 ***

(710.261) (708.980) (0.008) (0.008)
Distance to green spaces −5.004 *** −0.000 ***

(0.315) (0.000)
Distance to subway 1.111 *** 1.115 *** 0.000 *** 0.000 ***

(0.057) (0.057) (0.000) (0.000)
Distance to CBD −1.351 *** −1.396 *** −0.000 *** −0.000 ***

(0.034) (0.034) (0.000) (0.000)
Natural logarithm of landscape
shape index 5439.223 *** 5543.887 *** 0.040 *** 0.041 ***

(829.323) (830.391) (0.010) (0.010)
Green spaces’ size 18.411 *** 17.363 *** 0.000 *** 0.000 ***

(2.443) (2.443) (0.000) (0.000)
Distance buffer (0–300 m) 7052.248 *** 0.088 ***

(462.638) (0.005)
Distance buffer (300–1000 m) 5068.837 *** 0.062 ***

(416.700) (0.005)
_cons 73,614.84 *** 66,869.96 *** 11.193 *** 11.109 ***

(1172.639) (1247.787) (0.014) (0.015)

N 16,222 16,222 16,222 16,222
AIC 361,486.8 361,508 −6927.924 −6870.389
BIC 361,625.3 361,654.2 −6789.429 −6724.201

Notes: Standard errors in parentheses ** p < 0.05, *** p < 0.01. AIC: Akaike information criterion; BIC: Bayesian
information criterion.

Third, as expected, all green space characteristics were statistically significant at the
1% level and the direction of the impact was consistent with our expectations. Among
these variables, every one-unit increase in the natural logarithm of LSI can increase house
value by 4% 5544 CNY (≈826 USD) on average, which indicates that an improvement in
LSI can significantly increase the nearby housing price. When the size of the green space
increased by 1 ha, the relative housing price increased by 17 CNY (≈2.5 USD). Two distance
buffers from the residence to the green space were positively associated with housing
prices. In particular, a one percent increase of green space in 300 m and a 300–1000 m
buffer would lead to an increase in housing prices of 9% (3217 CNY ≈ 479 USD) and 6%
(2589 CNY ≈ 386 USD)m respectively. This finding is largely aligned with one case study

224



Land 2023, 12, 496

conducted in Beijing suggesting that a 0.5% to 14.1% increase would be observed with
respect to housing located 850–1604 m away from green spaces [52].

3.3. Comparison between Two Key Distance Buffers from Residential Property to Green Spaces

In the baseline model, housing price decays with the increasing distance from green
spaces. In this subsection, we therefore further explored whether the effects of green space
characteristics on housing prices will vary depending on different distance buffers from
green spaces. The results from Table 3 are presented in four columns. Columns 1 and 2
present the results by conducting the linear regression model. Columns 3 and 4 report the
results by using the semi-log regression model. Notably, Column 1 and Column 3 examine
the associations between housing characteristics, green space characteristics, neighborhood
characteristics and housing prices within 300 m distance buffers from residential property to
green spaces whereas Column 2 and Column 4 explore such associations within 300–1000 m
distance buffers from residential property to green spaces.

Table 3. Hedonic price model with different distance intervals from residence to green spaces.

(1) (2) (3) (4)

<300 M 300–1000 M <300 M 300–1000 M

Age 91.027 *** 2.306 0.001 *** 0.000
(24.954) (3.609) (0.000) (0.000)

Bedroom −1433.49 *** 1568.546 *** −0.015 *** 0.019 ***
(438.593) (319.400) (0.005) (0.004)

Bathroom 5982.370 *** 7186.522 *** 0.074 *** 0.094 ***
(778.738) (542.004) (0.009) (0.006)

Housing size −23.694 ** −94.286 *** −0.000 *** −0.001 ***
(10.273) (8.157) (0.000) (0.000)

Elevator 4956.562 *** 3153.681 *** 0.067 *** 0.056 ***
(644.594) (425.682) (0.008) (0.005)

Storey −418.954 ** −388.525 *** −0.005 ** −0.006 ***
(209.835) (141.001) (0.002) (0.002)

Window direction 4152.365 *** 3667.148 *** 0.046 *** 0.047 ***
(564.949) (390.587) (0.007) (0.005)

Shijingshan district Reference Reference Reference Reference
Fengtai district −2059.774 * −9764.051 *** −0.016 −0.132 ***

(1167.804) (803.446) (0.014) (0.009)
Chaoyang district −963.475 −15,001.25 *** 0.020 −0.200 ***

(1544.736) (1054.562) (0.018) (0.012)
Haidian district 29,679.8 *** 21,084.81 *** 0.425 *** 0.303 ***

(1080.593) (729.712) (0.013) (0.009)
Dongcheng district 25,177.31 *** 11,403.26 *** 0.335 *** 0.124 ***

(1698.578) (1195.870) (0.020) (0.014)
Xicheng district 53,808.15 *** 42,290.27 *** 0.625 *** 0.474 ***

(1418.500) (923.819) (0.017) (0.011)
Distance to green spaces −8.365 *** −3.762 *** −0.000 *** −0.000 ***

(3.017) (0.893) (0.000) (0.000)
Distance to subway 0.642 *** 1.359 *** 0.000 *** 0.000 ***

(0.111) (0.070) (0.000) (0.000)
Distance to CBD −0.952 *** −1.384 *** −0.000 *** −0.000 ***

(0.068) (0.046) (0.000) (0.000)
Natural logarithm of landscape
shape index 7130.456 *** 5418.881 *** 0.061 *** 0.044 ***

(1485.018) (1063.307) (0.017) (0.012)
Green spaces’ size (ha) −8.799 ** 28.652 *** −0.000 *** 0.000 ***

(4.411) (3.184) (0.000) (0.000)
_cons 60,703.68 *** 72,922.49 *** 11.031 *** 11.200 ***

(2412.823) (1637.938) (0.028) (0.019)

N 4288.000 9928.000 4288.000 9928.000
AIC 95,320.89 221,208.8 −2062.173 −4322.276
BIC 95,435.43 221,338.5 −1947.629 −4192.62

Notes: Standard errors in parentheses * p < 0.10, ** p < 0.05, *** p < 0.01. AIC: Akaike information criterion;
BIC: Bayesian information criterion.
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Regarding the housing characteristics, we found that housing price decreases by 1.1%
(1803 CNY ≈ 267 USD) and 0.1% (485 CNY ≈ 72 USD), respectively, with regard to the
elevator and window orientation variables if residents are living within distance buffers
changing from 300 m to 300–1000 m. Similarly, we found that housing price decreases
by 71 CNY (≈11 USD) in terms of housing size variables within the same distance buffer,
though the estimated effects are relatively small. Conversely, housing price increases by
3.4% (2969 CNY ≈ 442 USD) and 2% (1204 CNY ≈ 179 USD), respectively, with respect to
the number of bedrooms and bathrooms when residents are living within a distance buffer
change from 300 m to 300–1000 m.

The results indicate a mixed pattern in terms of neighborhood characteristics. Consis-
tent with the results from the baseline model, there was a positive effect of residential prox-
imity to green spaces on housing prices within a 300 m distance buffer from green spaces.
Such effects became less pronounced in terms of residents living within a 300–1000 m
distance buffer from green spaces. Similarly, a positive association between residential
proximity to CBD and housing prices was found with regards to residents living within
a 300 m distance buffer from a residential property to green spaces. A slight decrease
in housing prices was found in terms of residents living within a 300–1000 m distance
buffer from a residential property to green spaces. Conversely, residential proximity to the
subway station negatively influenced the housing price in terms of residents living within
a 300 m distance buffer from a residential property to green spaces. Regarding the green
space characteristics, housing price decreased by 1.7% (1711 CNY ≈ 255 USD) in relation to
the natural logarithm of LSI if residents were living within a distance buffer ranging from
300 m to 300–1000 m. Additionally, housing price increased by 37 CNY (≈6 USD) with
respect to the size of the green spaces when residents were living within the distance buffer
ranging from 300 m to 1000 m.

3.4. Further Analysis

It is noteworthy that the results from prior analyses do not take into consideration
neighborhood heterogeneity and are only based on the mean impact of the whole sample.
Consequently, this section studied the heterogeneity between the natural logarithm of LSI
and three variables: distance buffers (0–300 m), distance buffer (300–1000 m), and green
spaces’ size dummy.

Findings from the first three rows of the first column of Table 4 show that the cross-term
coefficient between the natural logarithm of LSI and distance buffer variables is considered
positive when the natural logarithm of the LSI value is greater than 1.3, indicating that,
in comparison to residences located outside 300 m, the natural logarithm of LSI is more
beneficial in promoting residents’ housing prices. Such effects become more pronounced
when the value of the natural logarithm of LSI increases. Nonetheless, the cross-term
coefficient between the natural logarithm of LSI and distance buffer variables is still positive
in terms of the value if the natural logarithm of LSI is greater than 1.3, and the marginal
effects of the interaction term on housing prices decreased when the buffer range expanded
from 300 m to 300–1000 m.

Table 4. Interaction term between distance buffers’ dummy, green spaces’ size dummy and LSI dummy.

(1) (2)

Variables

Natural logarithm of LSI (LSI ≤ 1.3) × Distance buffer
(0–300 m) −2151.502

(2039.206)
Natural logarithm of LSI (1.3 < LSI ≤ 2.0) × Distance buffer
(0–300 m) 1921.477 **

(808.856)
Natural logarithm of LSI (2.0 < LSI ≤ 2.7) × Distance buffer
(0–300 m) 4316.784 ***

(803.343)
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Table 4. Cont.

(1) (2)

Natural logarithm of LSI (LSI ≤ 1.3) × Distance buffer
(300–1000 m) −3381.739 *

(1996.460)
Natural logarithm of LSI (1.3 < LSI ≤ 2.0) × Distance buffer
(300–1000 m) 1417.924 **

(602.240)
Natural logarithm of LSI (2.0 < LSI ≤ 2.7) × Distance buffer
(300–1000 m) 3526.776 ***

(593.236)
Natural logarithm of LSI (LSI ≤ 1.3) × Green spaces’
size dummy −1872.362

(1940.355)
Natural logarithm of LSI (1.3 < LSI ≤ 2.0) × Green spaces’
size dummy 1256.991 **

(501.544)
Natural logarithm of LSI (2.0 < LSI ≤ 2.7) × Green spaces’
size dummy 1335.093 **

(577.166)
_cons 74,392.93 *** 77,146.92 ***

(1241.136) (1241.136)

Control Yes Yes

N 16,222 16,222
Aic 361,447 361,523
Bic 361,623.9 361,676.8

Notes: Column 1 refers to explore the interaction term between the distance buffers’ dummy and LSI dummy.
Column 2 refers to explore the interaction term between green spaces’ size dummy and LSI dummy. Controls refer
to adjustments for housing structure characteristics, green space characteristics and neighbourhood characteristics.
Standard errors in parentheses * p < 0.10, ** p < 0.05, *** p < 0.01.

The second column focuses on the interaction influences between the natural logarithm
of LSI and green spaces’ size buffer. The results indicate that the natural logarithm of LSI is
more beneficial to promote residents’ housing prices if residential proximity to a larger size
of green space compared to those living adjacent to a smaller size of green space. Similarly,
the impact becomes more obvious with the increase of the natural logarithm of LSI.

3.5. Robustness Check

The results of the robustness check are reported in Table 5. In accordance with the
general distance decay theory [53], we conducted a different scale of distance buffers to
examine whether the influence of natural logarithm of LSI on housing prices is robust. We
found that the natural logarithm of LSI is positively associated with the nearby housing
price across different distance buffers, which is consistent with the findings from our
baseline model. The findings are trustworthy as the positive association between the
natural logarithm of LSI and housing price is still statistically robust after changing the
distance buffers. In addition, four distance buffers from the residence to the green space
are statistically significant at the 1% level, and the direction of the impact is consistent with
our baseline model.

Table 5. Results of robustness check.

(1) (2) (3) (4)

Price Lnprice Price Lnprice

Natural logarithm of
Landscape shape index 5620.815 *** 0.043 *** 5271.238 *** 0.038 ***

(832.312) (0.010) (830.445) (0.010)

Distance buffer (0–500 m) 7008.434 *** 0.106 ***

(974.587) (0.011)
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Table 5. Cont.

(1) (2) (3) (4)

Distance buffer (500–1000 m) 2948.139 *** 0.053 ***

(1003.952) (0.012)

Distance buffer (0–800 m) 6201.011 *** 0.076 ***

(425.316) (0.005)

Distance buffer (800–1500 m) 4882.665 *** 0.061 ***

6201.011 *** 0.076 ***

Control Yes Yes Yes Yes

N 16,222 16,222 16,222 16,222

AIC 361,554.9 −6854.140 361,528.1 −6840.925

BIC 361,701.1 −6707.952 361,674.3 −6694.737
Notes: Controls refer to adjustments for housing structure characteristics and neighborhood characteristics.
Standard errors in parentheses *** p < 0.01. AIC: Akaike information criterion; BIC: Bayesian information criterion.

4. Discussion

This paper explored the association between housing prices and green space charac-
teristics by standardizing for housing/neighborhood characteristics. It also compared the
difference in housing prices between distance buffers from residential property to green
spaces. The evidence highlights the fact that the impact of the shape of green space (LSI)
on housing prices varied across distance buffers and the size of the green spaces. The
maximum impact on property value occurred when residential properties are located at a
close distance to nearby large green spaces with a higher value for LSI.

4.1. The Effect of Green Space Characteristics on Housing Price

As expected, we found that the size of a green space has a positive impact on housing
prices, which aligns with results found in previously in the literature [54]. Moreover, we
found a positive effect for residential property prices within a 300 m distance interval
from green spaces. The results further indicate that the housing price then decays with the
distance from green spaces, which is in line with other findings [26]. The landscape shape
index (LSI), which is our key variable, is positively associated with housing prices, at the
statistically significant 1% level. Additionally, our finding provides substantial evidence
supporting the view that LSI as an independent shape configuration of a green space
patch influences residential value. It is clear that a higher LSI would contribute to higher
housing prices nearby, and a curved greenness value contributes more than a square one.
One possible explanation might be that irregularly shaped boundaries of patches play
an important role in creating sustainable and ecologically sound landscape conditions
which contribute to housing premiums [55], while beautiful ecological landscapes bring
developers great benefits and willingness for ecological protection, thus promoting the
rise of housing prices [56]. On the other hand, the services individuals perceived from the
green spaces may be split into those that can be identified as direct-use values and those
that can be identified as indirect use values. Direct-use values denote benefits individuals
can directly obtain from the green space. For example, amenities provided by that green
space can attract more people to access green spaces, thereby prompting people to purchase
houses nearby [57]. Indirect-use values refer to values provided by green space that sustain
ecological landscape conditions through services such as the maintenance of water quality
and indigenous biodiversity. Such a potential non-use value might contribute to housing
premiums in the long term, which should not be overlooked. Another way to look at this
relationship is that, given that plant species richness is associated with a high LSI score [28],
so home buyers are willing to pay more for residential units with this experience.
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4.2. Further Analysis and Robustness Check

Findings from this analysis demonstrate that different interaction terms between
buffers and size and LSI quantify the evidence that the larger the size of the green spaces,
the closer properties are to green spaces, the higher a value the property can achieve,
whereas our study suggests that the value of the natural logarithm of LSI greater than
1.3 might provide benefits to promote the housing premium. This finding sheds new light
on the underlying mechanism that configuration shape index should be taken into account
in making policy decisions related to green space preservation and allocation. Planners
and designers should comprehensively consider this index when conducting site selections
of urban greenness, rather than simply calculating the size of green spaces, or measuring
the direct distance to green spaces. In addition, more commercial housing should be
encouraged to build in the suburban area instead of the city center, since limited urban
green spaces are located in the urban area whereas a large-scale vegetation-dominated
landscape is located in the rural area [58]. Results from the robustness check indicate
that the positive association between the natural logarithm of LSI and housing price is
statistically robust after changing the distance buffers. Specifically, we found that the
LSI-housing price association decays as the distance buffer increases. Such a distance-decay
effect is largely aligned with one study suggesting that different types of open spaces have
implicit marginal price functions that decrease as the distance from the home address to
the open space rises [59].

4.3. Contributions and Limitations

Our findings provide empirical evidence of the capitalization of green space shape
configuration characteristics in housing prices. This study broadens the horizon of the
urban designer and planner and recommends that more attention be paid to the shape and
size of green spaces. It also promotes developers’ awareness of achieving the potential
property-implicit value by providing technical support for the construction of landscape
diversity. Based on the big data sample in urban Beijing, this study provides evidence that
landscape shape index (LSI) can be used as an independent reference index for landscape
and urban planning and can also be applied as a shaped patch in the evaluation of a
housing premium. This study will helps urban designers and planners realize that they
should focus more on reconsidering the shape configuration of an environmental feature
and not just its size, for example, in cities where green spaces are dominated by small
patches [60]. Additionally, it is worth noting that the LSI can serve as the reference for
megacities with respect to the design standard and distribution of green space resources.

In addition to these contributions, the limitations of this study are threefold. First, it has
been suggested that environmental and visual contacts with green space play an essential
role in contributing to housing prices [61]. For example, environmental quality [62], air
quality [63,64] as well as the noise level of the neighborhood [65] can positively influence the
housing price. However, we have not controlled for housing price effects of environmental
quality and visual amenities in the potential price function due to data limitations. Second,
empirical studies have suggested different types of natural greenness may have different
impacts on housing prices [20,66]. However, we do not have the layout of the types of green
spaces in our dataset due to data restrictions. These issues warrant further study. Lastly, the
spillover effects of the landscape pattern index on housing prices might be overestimated, as
we used the offer price instead of the transaction price. Evidence regarding the relationship
between the landscape pattern index and transaction prices should be quantified if the
transaction data are available. Future studies should shed new light on matching spatial
POI data with environmental quality to provide potential information on the economic
value of urban green spaces for stockholders.
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5. Conclusions

To the best of our knowledge, this is the first study to evaluate the influence of green
space shape configuration characteristics on housing prices within the metropolitan area.
The overall findings from this study indicate that housing characteristics, neighborhood
characteristics and green space characteristics are positively associated with housing prices.
These effects are more pronounced for residents living close to urban green spaces and
tend to decay as the distance from residences to green spaces increases. The landscape
shape index plays a significant role in influencing the spatial pattern of housing prices
where a one-unit increase in the natural logarithm of the LSI can increase housing prices by
4% (5543 CNY ≈ 826 USD). The LSI tends to be more sensitive to supporting a housing
premium within relatively close distance margins of urban green spaces. These results
highlight the importance of considering the direct effect of green space shape configuration
on housing prices. It provides potential evidence for stakeholders to consider specific green
space characteristics in urban planning and design.
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