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Abstract: We investigate logarithmic price returns cross-correlations at different time horizons for a
set of 25 liquid cryptocurrencies traded on the FTX digital currency exchange. We study how the
structure of the Minimum Spanning Tree (MST) and the Triangulated Maximally Filtered Graph
(TMFG) evolve from high (15 s) to low (1 day) frequency time resolutions. For each horizon, we test
the stability, statistical significance and economic meaningfulness of the networks. Results give a deep
insight into the evolutionary process of the time dependent hierarchical organization of the system
under analysis. A decrease in correlation between pairs of cryptocurrencies is observed for finer time
sampling resolutions. A growing structure emerges for coarser ones, highlighting multiple changes
in the hierarchical reference role played by mainstream cryptocurrencies. This effect is studied both
in its pairwise realizations and intra-sector ones.

Keywords: complex systems; network science; econophysics; economics; financial markets;
cryptocurrencies

1. Introduction

Financial markets are complex systems [1]. The main source of complexity comes
from the intricate interaction of heterogeneous actors following various strategies designed
to impact at different time scales. They are highly stochastic environments with a low
signal to noise ratio, dominated by strong non-stationary dynamics and characterized by
feedback loops and non-linear effects [2–4]. Despite their complexity, financial systems
are governed by a rather stable and partially identified framework of rules [5]. This last
characteristic, jointly with the possibility to continuously monitor them across time, makes
financial systems well suited for statistical characterization [6] and a good playground for
the study of complex systems in general. In this paper, we analyse the behaviour of cryp-
tocurrency market. A cryptocurrency is defined as a digital instrument for value transfer
that exploits cryptography and distributed ledgers for security and decentralization [7].
As currencies, they have properties similar to fiat currencies [8]. The main differences being
the exclusion of financial institutions as intermediaries [9] and not being controlled and
regulated by any central authority [10]. Thanks to the above mentioned characteristics,
cryptocurrency market is available 24 h a day, 7 days a week, and transactions take place
between individuals with different physical locations across the globe [8]. Standard features
of financial systems joined with peculiarities listed above, make cryptocurrencies highly
volatile instruments. Finding assets with similar behaviours responding to endogenous
or exogenous events is, hence, a challenging, but extremely valuable, exercise both from
theoretical and applicative perspectives (e.g., risk management and investment). The ready
access availability of large volumes of market data ease research on these instruments
with respect to classical financial ones. Indeed, one of the main limits faced by research in
the field of financial applications is the lack of easy access and share of high-quality data.
In most cases they are sensible data, owned and managed by private financial institutions.

Entropy 2022, 24, 1548. https://doi.org/10.3390/e24111548 https://www.mdpi.com/journal/entropy1



Entropy 2022, 24, 1548

Cryptocurrencies are traded on digital currency exchanges (DCEs) which, differently from
traditional exchanges, allow to easily access both online and historical data. Exploiting this
and using instruments provided by network science, one can successfully build models
able to capture and describe individual and collective behaviours in cryptocurrency market.

A network (or graph) represents components of a system as nodes (or vertices) and
interactions among them as links (or edges). The number of nodes defines the size of the
network. The number of links defines the sparsity (or, conversely, density) of the network.
Reversible interactions between components are represented through undirected links,
while non-reversible interactions are represented as directed links. Networks have been
successfully used in many application domains. Some examples are social networks [11,12],
security [13], epidemiology [14,15], neuroscience [16], drug design [17], management [18],
and economic forecasting and modelling [6,19–25]. Many of the above cited works share
the peculiarity to study networks with a size varying as a function of time. In the current
research work, on the contrary, we focus on networks with a fixed size. Starting from a set of
25 liquid cryptocurrencies, we exploit the power of state-of-the-art network-based informa-
tion filtering approaches (i.e., MST [26] and TMFG [27]) to build robust models capturing
strong interactions among assets and pruning, at the same time, weakest ones. We hence
investigate dependency structures of the networks at 6 different time horizons spanning
from 15 s to 1 day. For each time horizon, we test the stability, statistical significance, and
economic meaningfulness of the graphs. Such a research effort is led by two main motiva-
tions. The first one is the will to describe core dependency structures of the cryptocurrency
market in a systematic way, providing a detailed characterization of the reference role
played both by mainstream cryptocurrencies and by peripheral ones. The second is related
to the possibility to do this at a wide range of time scales including intra-minute resolutions.
Such a characterization is relevant for many reasons. Cryptocurrency market is affected by
daily changes related to the introduction of new coins, collapse of existing ones, updates
on existing protocols, etc. Having a stable framework able to robustly handle this intrinsic
mutability, highly eases investment, and risk management decisions and provide a ductile
instrument for research purposes. Such a framework should be also able to handle dynam-
ics of cryptocurrencies showing similar characteristics and behaviours (i.e., belonging to
the same sector). Dependency structures are, hence, investigated, both at an intra-sector
and pairwise level. Unfortunately, there is no consensus on a unique mapping between
cryptocurrencies and sectors. We adopt the taxonomy proposed by Kraken [28] digital
currency exchange. Results give a deep insight into the evolutionary process of the time
dependent hierarchical organization of the chosen system of cryptocurrencies. As a further
step toward robustness, we compare our results with the ones achieved in the past 20 years
of similar research in the field of stock market, uncovering comparable behaviours between
the two systems. From an economic and financial perspective, the study of dependency
structures among cryptocurrencies at different time-scales is relevant both from a theoretical
and an applicative point of view. In the first case, comparing properties of time dependent
hierarchical organization of the cryptocurrency market (a relatively young market) with the
ones of the equity market (a consolidated market), (i) allows to measure its degree of matu-
rity (ii) keeping track, at the same time, of the main evolutionary phases. In the second case,
such an analysis is useful as a support instrument toward the achievement of different goals
spanning from portfolio construction tasks (e.g., diversification purposes) to development
of multi-assets trading strategies acting at different time-scales. Our contribution to the
existing literature is threefold: (i) we are the first to use TMFG as an information filtering
approach to model dependency structures among crypto-assets, (ii) we propose a rigorous
network-based study of cryptocurrency market allowing to compare emerging dynamics
to the ones observed on traditional financial markets (e.g., the “Epps effect”), and (iii) we
are the first to describe the evolution of dependency structures among cryptocurrencies at
time scales spanning from intra-minute to daily resolution.

The rest of the paper is organised as follows. In Section 2, we review the previous
research on applications of network science to financial systems modelling. In Section 3.1,
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we discuss the data acquisition and transformation pipeline. In Sections 3.3–3.5, we
characterise cross-correlation between cryptocurrencies as a measure of similarity and
dependency. We show how to obtain a dissimilarity measure based on cross-correlation and
we review the building process and properties of MSTs, PMFGs and TMFGs. In Section 4,
we present results obtained applying methods reported in Section 3. In Section 5, we conclude
by discussing the economic and financial interpretation of our findings.

2. Related Work

Networks have been extensively used in order to model economic and financial
systems. The work by [19] can be identified as a foundational one. It demonstrates
the possibility to find a hierarchical arrangement of stocks traded in a financial market
by investigating the daily time series of logarithmic price returns. A graph is obtained,
exploiting information contained in the correlation matrix computed between all pairs of
stocks of the portfolio by considering the synchronous time evolution of the logarithmic
returns. Building on the work by [19], the paper by [29] shows that sets of stock index
time series can be used to extract meaningful information about the links between different
economies across the world. This goal is successfully achieved provided that the effects
of the non-synchronous nature of the time series and of the different currencies used to
compute the indices are properly taken into account. The work by [22] further extends
the research by [19], studying modifications of the hierarchical organization of a set of
stocks switching from high- to low-frequency time scales. As a first step, authors report a
decrease in correlation between pairs of assets switching from coarser to finer time sampling
resolutions. Such a phenomenon is known as “Epps effect” [30]. This analysis is extended,
investigating both pairwise and intra-sector dynamics. They show the emergence of a more
complex network structure at coarser time sampling resolutions, highlighting multiple
changes in the hierarchical reference role played by sectors’ representative assets. The work
by [20] tests the robustness of the findings of the previously cited research works for longer
periods of investigation and demonstrates that networks describing the financial domain
cannot be reproduced by a random market model [31,32] and by the one-factor model [33].
Such results are also investigated in [21] which specifically shows how the topology of the
networks in financial systems can be used to validate or falsify simple, although widespread,
market models. This work also extends the previously cited ones introducing an analysis
of the networks built on the volatility of financial time series. More recently, the work
by [6] shows vulnerabilities of MST [26] in representing complex systems and proposes
the usage of a planar graph, the PMFG [34], as an alternative. This research work also
presents a set of methods to validate the statistical significance and robustness of achieved
empirical results. The centrality role of specific financial sectors is finally investigated and
the evolution of the Financial sector as a reference one is analysed over a period of 10 years.
Recently, some of the network-based information filtering approaches have been sparsely
applied to the cryptocurrency market. Results consistent with the ones described in our
paper have been recently described by [35], adopting a different methodology. In this
research, exploiting the index cohesive force [36], the author describes the changes in
the hierarchical order of the most influential cryptocurrencies over a period of five years.
He shows how Ethereum gradually becomes the most influential cryptocurrency at the
detriment of Bitcoin. It is also useful to mention the work by [37], where, for the first time,
the authors suggest a network-based approach to study the interdependencies between
log-returns of cryptocurrencies, with a special focus on Bitcoin. They use the MST method
in order to group assets into hierarchical clusters and they highlight the potential existence
of topological properties of the cryptocurrency market. This work is extended by [38],
where, the authors adopt the MST and the PMFG to study the change in cryptocurrency
market’s network structure before and after the COVID-19 outbreak. The last work to
be mentioned is the one by [39], where the author points out how most of the studies on
cryptocurrency market are focused only on daily data without considering other options.
Using a range of frequencies spanning from one minute to weekly data, he shows how it is
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possible to detect different profitable frequencies and underlines the relevance of analysing
frequencies different from daily ones.

3. Methods

3.1. Data

The vast majority of digital currency exchanges provide a free Rest API (or a Web-
socket) allowing users to access both historical OHLCV (open, high, low, close, volume)
data and online Limit Order Book- and trades-related data. In addition to this, there is a
growing number of services providing out of the box, unified APIs which support many
exchanges and merchant APIs. The work by [8] reports a comprehensive and detailed
overview of the services currently available for data retrieving. In the current work, we
use data from the FTX [40] digital currency exchange. They are entirely accessed through
the CCXT [41] Python package. We use OHLCV data for 25 cryptocurrencies (see Table 1)
sampled at time horizons Δt ∈ [15 s, 1 min, 15 min, 1 h, 4 h, 1 day]. For each time horizon,
a sample can be defined as a “time bin”. Opening and closing prices are, respectively,
the first and the last price of the time bin, high and low price are, respectively, the highest
and the lowest price of the time bin and can technically happen in any order, and the volume
is is defined as the sum of the volumes traded in the time bin. In the rest of the paper, we
will use a second-based definition of time horizons. This means that we will refer them as
Δt ∈ [15, 60, 900, 3600, 14,400, 86,400]. Qualitatively, we will often speak about finer and
coarser time horizons. In the first case, we want to indicate elements nearer to the lower
bound of the set of time sampling resolutions, while, in second case, we want to indicate
elements nearer to the upper bound of the set of time sampling resolutions.

Table 1. List of the 25 cryptocurrencies analysed in this paper. For each asset, the name, the symbol,
the market capitalization at 29 March 2022 and the corresponding sector according to the taxonomy
proposed by [42] is reported. There is no consensus on a unique mapping between cryptocurrencies
and sectors. The chosen taxonomy is the one adopted by one of the main DCEs: Kraken [28].
Looking at the market capitalization column, it is worth noting that the least capitalized asset is
Cream ($31.68M), while the most capitalized one is Bitcoin ($903B). Sectors’ grouping is balanced.
Cryptocurrencies being the only representative of a specific sector are grouped together in analyses
reported in Appendices A and B.

Cryptocurrency Symbol Capitalization Sector

Aave AAVE $2.47B Lending
Bitcoin Cash BCH $7.13B Currencies
Binance Coin BNB $72.17B Centralized Exchanges

Bitcoin BTC $903B Currencies
Cream CREAM $31.68M Lending

Ethereum ETH $412B Smart Contract Platforms
FTX Token FTT $7.11B Centralized Exchanges

Helium HNT $2.78B IoT
Huobi Token HT $1.46B Centralized Exchanges

Hxro HXRO $129M Centralized Exchanges
Litecoin LTC $9.11B Currencies
Polygon MATIC $13.21B Scaling
Maker MKR $2.10B Lending

OMG Network OMG $818M Scaling
PAX Gold PAXG $609M Stablecoins

THORChain RUNE $3.96B Decentralized Exchanges
Solana SOL $36.09B Smart Contract Platforms
Serum SRM $458M Decentralized Exchanges

SushiSwap SUSHI $521M Decentralized Exchanges
Swipe SXP $800M Payment Platforms
TRON TRX $7.24B Smart Contract Platforms

4
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Table 1. Cont.

Cryptocurrency Symbol Capitalization Sector

Tether USDT $81.37B Currencies
Waves WAVES $5.77B Smart Contract Platforms
XRP XRP $42.05B Currencies

yearn.finance YFI $836M Asset Management

All the considered cryptocurrencies are liquid with a medium-to-high market capi-
talization. An exception is Cream, which has a low capitalisation. The only constraint in
the selection process of cryptocurrencies is their historical availability on the FTX digital
currency exchange. Indeed, it is worth noting that each digital currency exchange allows to
access historical data only starting from the date a specific asset has been quoted on the
exchange itself. The period under analysis spans between 1 January 2021 to 28 February
2022. Despite the high-quality of data, rare missing values are detected at the finest time
sampling resolution (i.e., Δt = 15). In this case, they are filled using the nearest valid
observation. Logarithmic returns (named in the rest of the paper as log-returns) x of closing
prices p at time t for a given cryptocurrency c, are computed as follows:

xc(t) = log(pc(t))− log(pc(t − Δt)). (1)

The assumption of returns’ stationarity is validated for each xc(t) through the Aug-
mented Dickey Fuller (ADF) [43] test.

3.2. Correlation-Based Filtering

Understanding how variables evolve, influencing the collective behaviour, and how
the resulting system influences single variables is one of the most challenging problems
in complex systems. In order to extract such an information from the set of synchronous
time series discussed in Section 3.1, we proceed by determining their Pearson’s correlation
coefficient at each time horizon Δt. The Pearson’s estimator of the correlation coefficient,
for non-overlapping increments, between two synchronous data series with length TΔt is:

ρi,j(Δt) =
1
T ∑T

u=1(xi(uΔt)− μi)(xj(uΔt)− μj)

σiσj
(2)

where μi(j) and σi(j) are, respectively, the sample mean and the sample standard deviation
of the data series xi(j)(t). The Pearson’s correlation coefficient is a widespread measure
efficient at catching similarities between the evolution process of financial assets’ prices [6].
By definition, ρi,j(Δt) has values between −1 (meaning that the two synchronous time series
are completely, linearly anti-correlated) and +1 (meaning that the two synchronous time
series are completely, linearly correlated). When ρi,j(Δt) = 0, the two synchronous time
series are linearly uncorrelated. The correlation matrix C is n × n (where n is the number
of variables) symmetric, with elements on the diagonal equal to one (i.e., ρi,i(Δt) = 1).
For each time horizon Δt, n(n − 1)/2 correlation coefficients completely characterize the
correlation matrix. From a network science perspective, the correlation matrix can be
considered as a fully connected graph where each asset is represented by a node and each
pair of assets is joined by an undirected edge representing their correlation.

3.3. Minimum Spanning Tree (MST)

Based on the correlation matrix, we want to build an undirected graph whose topology
captures dependency structures among cryptocurrencies’ log-returns time series and that is
greatly reduced in the number of edges with respect to a complete graph. In such a network,
all the relevant relations must be represented. At the same time, the network should be
kept as simple as possible. The simplest connected graph is a spanning tree. Minimum
spanning trees (MSTs) [26] are largely used in multivariate analysis; they represent a class

5
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of networks that connect all the vertices without forming cycles (i.e., closed paths of at least
three nodes). MSTs are often computed with respect to a distance metric, so that minimizing
the metric corresponds to linking assets that are close to each other. As a product of their
building process, MSTs retain the maximum possible number of distances [19] minimizing,
at the same time, the total edge distance. In [19], MSTs are computed using the Euclidean
distance [44]:

di,j =
√

2(1 − ρi,j). (3)

This definition is however too restrictive disfavouring negatively correlated variables
that are equally important as the positive ones for the representation of the dependency
structure [45]. In order to mitigate this limitation, we use the power dissimilarity measure:

di,j = 1 − ρ2
i,j (4)

The work [46] provides a complete pedagogical exposition of the determination of
the MST in the context of synchronous financial time series. A general approach to the
construction of the MST is to connect the less dissimilar vertices while constraining the
graph to be a tree as follows:

1. Make an ordered list of edges i, j, ranking them by increasing dissimilarity (first
the edge expressing the highest similarity and last the edge expressing the highest
dissimilarity).

2. Pop the first element of the ordered list and add it to the spanning tree.
3. If the added edge creates a cycle then remove the edge, otherwise skip to step 4.
4. Iterate the process from step 2 until all pairs have been exhausted.

Such an algorithm for the construction of the MST is known as the Prim’s algo-
rithm [47]. The resulting network has n − 1 edges. Considering that the system of
cryptocurrencies analysed in the current paper is made of n = 25 assets (i.e., nodes),
the resulting MST contains 24 edges (the code used to compute MSTs can be retrieved at
https://github.com/shazzzm/topcorr; last access on 27 October 2022).

3.4. Planar Maximally Filtered Graph (PMFG)

The MST is a powerful method to capture meaningful relationships in a network
structure describing a complex system. However, this method presents some aspects
that can be unsatisfactory. The main constraint is that it has to be a tree (i.e., it cannot
contain cycles). This characteristic makes impossible to represent relationships among more
than two variables showing strongly correlated behaviours in their dynamics. In order to
maintain the same powerful filtering properties of the MST and adding, at the same time,
extra links, cycles, and cliques (i.e., complete subgraphs) in a controlled manner, it has
been proposed to use the Planar Maximally Filtered Graph (PMFG) [48–51]. PMFG can
be viewed as the first incremental step towards complexity after the MST. Indeed, instead
of being a tree, the algorithm impose planarity. A graph is said to be planar if it can be
embedded in a sphere without edges crossing. The foundational work by [6] provides
a comprehensive pedagogical exposition of the determination of the PMFG. A general
approach to the construction of the PMFG can be resumed as follows:

1. Make an ordered list of edges i, j, ranking them by increasing dissimilarity (first
the edge expressing the highest similarity and last the edge expressing the highest
dissimilarity).

2. Pop the first element of the ordered list and add it to the graph.
3. If the resulting graph is not planar, then remove the edge, otherwise skip to step 4.
4. Iterate the process from step 2 until all pairs have been exhausted.

It has been proved that the MST is always a sub-graph of the PMFG [48]. PMFG has
3 × (n − 2) edges and a number of 3-cliques larger or equal to 2n − 4. We remark that also
4-cliques can be present in this kind of graph.

6
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3.5. Triangulated Maximally Filtered Graph (TMFG)

The PMFG presents two main limits: it is computational costly and it is a non-chordal
graph. A graph is said to be chordal if all cycles made of four or more vertices have a
chord which reduces the cycle to a set of triangles. A chord is defined as an edge that is not
part of the cycle but connects two vertices of the cycle itself. In order to bypass these two
constraints, the Triangulated Maximally Filtered Graph (TMFG) [27] has been proposed.
A general approach to the construction of the TMFG can be resumed as follows:

1. Make an ordered list of edges i, j, ranking them by increasing dissimilarity (first
the edge expressing the highest similarity and last the edge expressing the highest
dissimilarity).

2. Find the 4 nodes with the lowest sum of edge weights with all other nodes in the
graph and connect them forming a tetrahedron with 4 triangular faces.

3. Identify and add the node that minimize the sum of its connections to a triangle face
already included in the graph, forming three new triangular faces.

4. If the graph reaches a number of edges equal to 3n − 6, then stop, otherwise go to
step 3.

Such an algorithm extracts a planar subgraph which optimises an objective function
quantifying the gain of adding a new vertex to the existing tetrahedron. Compared to the
PMFG, the TMFG is more efficient to be computed and is a chordal graph. The chordal
structural form allows to use the filtered graph for probabilistic modeling [52,53]. A TMFG
has 3 × (n − 2) edges (with n representing the number of nodes) and contains both 3-
cliques and 4-cliques. Considering that the system of cryptocurrencies analysed in the
current paper is made of n = 25 assets (i.e., nodes), the resulting TMFG contains 69 edges,
88 3-cliques, and 22 4-cliques (The code used to compute TMFGs can be retrieved at
https://github.com/shazzzm/topcorr; last access on 27 October 2022.).

4. Results

Figures 1a and 2a report the MST and the TMFG computed at horizon Δt = 15.
Figures 1b and 2b report the MST and the TMFG computed at horizon Δt = 86,400. Full
set of MSTs computed following the procedure described in Section 3.3 is reported in
Appendix A. Full set of TMFGs computed following the procedure described in Section 3.5
is reported in Appendix B.

(a) (b)

Figure 1. Minimum Spanning Tree representing log-returns time series’ dependency structure
computed at (a) 15 s and (b) 1 day. Only hub nodes are labelled. The adopted colour mapping scheme
follows the sectors’ taxonomy by [42] (see Appendix A).

7
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(a) (b)

Figure 2. Triangulated Maximally Filtered graphs representing log-returns time series’ dependency
structure computed at (a) 15 s and (b) 1 day. Only hub nodes are labelled. The adopted colour
mapping scheme follows the sectors’ taxonomy by [42] (see Appendix B).

As a preliminary step into the study of the information level carried by the two network-
based information filtering approaches, Figure 3 shows how pairwise (see Figure 3a) and the
intra-sector (see Figure 3b) average Pearson’s correlation coefficient 〈ρ〉 evolves as a function
of time horizon Δt. Figure 3a reports the mean Pearson’s correlation coefficient computed
averaging over the n(n − 1)/2 = 300 off-diagonal elements of the whole correlation
matrix C at different time horizons. In order to give a more comprehensive view of the
evolutionary dynamics of the mean pairwise correlation coefficient, we also report three
meaningful percentile intervals. We observe that the average correlation coefficient 〈ρ〉
increases with time horizon Δt from a value equals to 0.19 at Δt = 15 to a value equals to
0.47 at Δt = 86,400. The value at Δt = 15 corresponds to the minimum average correlation
coefficient across time horizons. On the other hand, the maximum average correlation
coefficient does not coincide with the one computed at the maximum time horizon. It is
instead detected at horizon Δt = 14,400, which corresponds to an intra-day resolution
(i.e., 4 h). On average, the most prominent pairwise correlation weakenings are observed
for most correlated pair of assets (i.e., those pairs of cryptocurrencies having a correlation
coefficient included into highest percentiles).
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Figure 3. Evolutionary dynamics of the average correlation coefficient as a function of the time
horizon Δt. (a) reports the horizon-related mean Pearson’s correlation coefficient and three meaning-
ful percentiles computed averaging over the n(n − 1)/2 = 300 off-diagonal elements of the whole
correlation matrix C. (b) reports the horizon related mean Pearson’s correlation coefficients computed
averaging over the ns(ns − 1)/2 correlation coefficients of the ns assets belonging to one of three of
the most relevant sectors defined by [42]: Currencies, Smart Contracts, Centralised Exchange sectors.
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Figure 3b reports mean Pearson’s correlation coefficient computed averaging over the
ns(ns − 1)/2 correlation coefficients of the ns assets belonging to one specific sector [42] at
different time horizons. Specifically, we report dynamics for Currencies, Smart Contracts,
and Centralized Exchanges sectors. This choice is completed considering the relevance of
the three sectors. The relevance of sectors is defined in relation to results discussed later
in this section. An intra-sector scenario shows trends comparable to the ones observed
in pairwise context. All the previously discussed dynamics are here more pronounced.
In both cases, we observe the “Epps effect”, i.e., a decrease in pair correlations at finer
time sampling resolutions. This effect has been extensively studied in equity markets
by [22,30]. Results reported in Figure 3 show how, also in the cryptocurrency market,
the intra-sector correlation increases faster than pairwise one. The “Epps effect” is, hence,
more pronounced within each sector than outside it. Going deeper, in Appendix C, we
compare the probability distribution of correlation coefficients in the empirical correlation
matrix C with the probability distribution of correlation coefficients filtered, respectively,
by the MST and by the TMFG at different time horizons. We also report the probability
distribution of correlation coefficients for surrogate multivariate time series obtained by
randomly shuffling log-returns time series of the 25 cryptocurrencies listed in Table 1.
This step is performed in order to evaluate the null hypothesis of uncorrelated returns for
the considered portfolio of cryptocurrencies. Results give us the possibility to asses the
statistical significance of average correlation coefficients chosen both by MST and by TMFG
networks. These findings are reported in a synthetic way in Table 2. The extended count
and the corresponding statistical meaning of links having a value higher than the minimum
and lower than the maximum correlation coefficient detected by shuffling log-returns time
series at different time horizons for the three scenarios are reported in Appendix D.

Table 2. Average absolute correlation coefficient 〈|ρ|〉 and quantiles (25–75%) computed on the
empirical correlation matrix C, on the links filtered by MST and on the ones filtered by TMFG at
different time horizons. Statistical significance of the average correlation coefficient is represented
though asterisks. p-values > 0.05 are not marked. p-values ≤ 0.05 are marked as ∗. p-values ≤ 0.01
are marked as ∗∗. p-values ≤ 0.001 are marked as ∗∗∗. The filtering power of the MST and TMFG is
evident considering that the related mean correlation coefficients are always greater than the ones
computed on the whole correlation coefficient matrix C. Results for both MST and TMFG are always
robust across time horizons.

Δt C MST TMFG

〈|ρ|〉 25% 75% 〈|ρ|〉 25% 75% 〈|ρ|〉 25% 75%

15 0.20 0.02 0.31 0.35 ∗∗∗ 0.26 0.49 0.31 ∗∗ 0.22 0.42
60 0.31 0.05 0.46 0.47 ∗∗∗ 0.42 0.63 0.44 ∗∗∗ 0.38 0.57
900 0.44 ∗∗ 0.22 0.62 0.60 ∗∗∗ 0.57 0.76 0.57 ∗∗∗ 0.55 0.69

3600 0.46 ∗∗ 0.28 0.63 0.62 ∗∗∗ 0.59 0.76 0.59 ∗∗∗ 0.56 0.70
14,400 0.49 ∗ 0.38 0.65 0.65 ∗∗∗ 0.64 0.77 0.62 ∗∗∗ 0.58 0.72
86,400 0.48 0.38 0.62 0.66 ∗∗ 0.64 0.77 0.61 ∗∗ 0.57 0.72

Average correlation coefficients for MSTs and TMFGs are always greater than the ones
computed on the empirical correlation matrix C. The difference between cross-horizons
mean of average correlation coefficients filtered by MSTs and cross-horizons mean of av-
erage correlation coefficients in C, is equal to 0.16. The difference between cross-horizons
mean of average correlation coefficients filtered by TMFGs and cross-horizons mean of
average correlation coefficients in C, is equal to 0.12. Correlation coefficients filtered by
TMFGs are always lower than the ones filtered by MSTs. This depends on the fact that,
as reported in Section 3.5, the TMFG contains, by construction, more information than the
MST. The mean difference between average correlation coefficients filtered by MSTs and the
ones filtered by TMFGs, is equal to 0.03. Results reported in Table 2 confirm that the two fil-
tering approaches prune weakest correlations among considered cryptocurrencies keeping
only the strongest ones. Differently from what happens for the empirical correlation matrix
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C, results for both MST and TMFG are always statistical significant across time horizons.
These results enforce the evidence that both MST and TMFG carry information about
strongest interactions observed in the system, disregarding most of the links consistent
with the null hypothesis of uncorrelated data. It is worth noting that such an analysis does
not tell much about the statistical robustness of links selected by the two network-based
information filtering approaches. In order to perform such an investigation, we adopt the
technique proposed by [54]. For each time horizon Δt, we sample 1000 bootstrap replicas
r = 1, . . . , 1000 of the empirical log-returns time series data. The length of empirical data
and the one of each replica is kept equal. We compute the MST*(r) and the TMFG*(r) for
each replica r. For each time sampling resolution, we map each link of the original MST
and TMFG to an integer number and we count the number of links present both in the
MST and TMFG and in each of the MST*(r) and TMFG*(r). Table 3 reports, for each time
sampling interval Δt, the number of links of the empirical MST and TMFG with a bootstrap
value larger than 95%.

Table 3. Percentage of links contained in empirical MST and TMFG at time horizon Δt with a
bootstrap value larger than 95%. In the case of the MST, it is possible to notice how the robustness
of the network structure decreases for coarser time sampling intervals. In the case of TMFG, on the
contrary, the robustness is maintained across time horizons with low oscillations.

Δt MST TMFG

15 62.5% 28.9%
60 58.3% 37.7%

900 54.2% 36.2%
3600 58.3% 36.2%

14,400 41.6% 40.6%
86,400 25.0% 27.5%

Results in Table 3 show how, in the case of the MST, the robustness of the underlying
network structure decreases for coarser time sampling resolutions. A consistent result has
been observed by [50] in equity markets. This finding can be explained in two different
ways. The first and most straightforward explanation is the statistical one and can be
resumed as follows: the higher number of samples at finer time sampling resolutions
implies higher statistical significance, while the lower number of samples at coarser time
sampling resolutions imply lower statistical significance. A second explanation can be given
looking at the structure of the networks reported in Appendix A. At finer time sampling
resolutions, we observe less structured networks where numerous small-degree nodes
(spokes) coexist with few anchor ones (hubs) characterised by an exceptionally high number
of links. At coarser time sampling resolutions we observe more structured networks with a
less imbalanced degree distribution. Such a topological change directly implies a loss in
the links’ statistical robustness. The case of TMFG is different. Statistical robustness of the
network is maintained across horizons without significant draw-downs. Indeed, during the
optimization phase of the objective function, TMFG tends to be marginally exposed to local
minima, being robust to dramatic topological changes.

These last findings can be formally characterised studying the evolution of the average
shortest path in MST and in TMFG as a function of time sampling resolution. Figure 4
reports the significant different behaviour in compactness’ evolutionary dynamics of the
two network-based information filtering approaches. In the case of MST, the minimum
length of the average shortest path is equal to 2.46 and is detected at Δt = 15, while the
maximum length is equal to 3.05 and is detected at Δt = 86,400. In the case of TMFG, we
observe a strong compactness across time horizons. The minimum length of the average
shortest path is equal to 1.83 and is detected at Δt = 3600, while the maximum length
is equal to 1.9 at Δt = 60. In the case of MST, at the finest time sampling resolution
(i.e., Δt = 15), we observe a structurally simple network with two cryptocurrencies (i.e.,
Ethereum and Bitcoin) acting as a hierarchical reference for the majority of other assets.
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This topological structure persists switching to time horizon Δt = 60. Several changes in
nodes’ reference roles can be observed for networks sampled at time horizons Δt = 900
and Δt = 3600.
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Figure 4. Average length of the shortest path in MST and TMFG as function of the time horizon at
which log-returns are computed. We observe a decreasing compactness of MST networks at coarser
time sampling resolutions. Instead, the compactness of the TMFG turns out to be stable across time
horizons with low oscillations.

In both cases Ethereum maintains its reference role even reducing its centrality. Bitcoin,
on the contrary, is gradually replaced in its role by Litecoin and FTX token (both part of
the Bitcoin’s cluster at time horizon Δt = 60). This structural transition is evident at
Δt = 14,400 and fully realised at Δt = 86,400.

In the case of TMFG representations, it is harder to graphically detect similar dynam-
ics. Figure 5 offers a comparative perspective between behaviours of the two network-
based information filtering approaches. It shows horizon dependent evolutionary dy-
namics of degree centrality (i.e., measurement of the number of connections owned by a
node) [55–57] for Ethereum, Bitcoin, Litecoin, and FTX Token both for MST and for TMFG.
Cross-assets similarities can be detected between the two types of graphs. In the case of
MSTs, degree centrality is less sensitive to minor changes in reference roles played by main-
stream cryptocurrencies across time horizons, amplifying only ‘extreme’ ones. In the case of
TMFGs, on the contrary, the same centrality measure is able to capture even small variations
in network structure. This observation can be easily explained considering the amount of
information the two representations are able to express. This study can be further extended
looking at sectors of cryptocurrencies instead of at singular assets. Figure 6 reports the
evolution of degree centrality for the three sectors Ethereum, Bitcoin, Litecoin, and FTX
Token belong to: the Currencies sector, the Smart Contracts sector, and the Centralized
Exchanges sector. We remark that there is no consensus on a unique mapping between
cryptocurrencies and sectors. The taxonomy adopted in the current paper is described
in [42] and corresponds to the one used by Kraken [28].

Figure 6a shows how, in the case of MST, the average degree centrality for the Smart
Contracts sector strongly decreases starting from time horizon Δt = 3600, following the
trend of its leading representative: Ethereum cryptocurrency. The Currencies sector, on the
other hand, does not experience a decreasing trend and tends to remain stable across time
horizons with low level of oscillations. In this case the loss of centrality of Bitcoin after time
horizon Δt = 900, is immediately compensated by Litecoin, which reaches a hierarchical
reference role at coarser time sampling resolutions. The case of Centralized Exchanges
sector is different. It is stable across time horizons, without experiencing any change
in intra-sector reference role dynamics and always following the behaviour of its main
representative, FTX token (see Figure 5a). This last finding can be explained considering
the source of the data used in the current research work. As explained in Section 3.1, we
fetch data from the FTX digital currency exchange. This can cause, on the one hand an
over-estimation of the role played by the exchange specific token, FTX Token, in the whole
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ecology of the system under investigation, and, on the other hand, can give a potentially
biased stability to the sector the asset belongs to.
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Figure 5. Degree centrality computed on MST (a) and on TMFG (b) as a function of time sam-
pling resolution. Results on the TMFG highlight the switch in the reference roles of mainstream
cryptocurrencies.
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Figure 6. Group degree centrality computed on MST (a) and on TMFG (b) for Currencies sector,
Smart Contracts sector, and Centralized Exchanges sector. Group degree centrality of a set of nodes
is defined as the fraction of non-group members connected to group members. Sectors are defined
following the taxonomy by [42].

5. Conclusions

We investigate how cryptocurrency market’s dependency structures evolve passing
from high to low frequency time sampling resolutions. Starting from the log-returns of
25 liquid cryptocurrencies traded on the FTX digital currency exchange at 6 different time
horizons spanning from 15 s to 1 day, we investigate pairwise correlations demonstrating
that cryptocurrency market has an “Epps effect” which is comparable to the one widely
studied in the equity market. Indeed, we show that the average correlation among assets
increases moving from high to low frequency time horizons and we demonstrate how this
dynamic is even more evident grouping cryptocurrencies into sectors. Using the concept
of power dissimilarity measure, we review the building process of two network-based
information filtering approaches: MST and TMFG. If, on the one hand, MST has been
historically used in the description of dependency structures of different financial markets,
on the other hand, this is the very first time TMFG is used to study interactions between
digital assets at different time scales. Studying topologies of MSTs at finer time sampling
resolutions, we observe structurally simpler networks characterised by an hub-and-spoke
configuration with statistically robust links. We observe an increase in the complexity
of the networks’ shape for coarser time sampling resolutions with a decrease in links’
statistical robustness. Such an horizon-dependent structural change is reflected by the
average path length of the networks, characterised by an increasing trend moving from
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high to low frequencies. TMFG offers a different perspective for the same problem. In this
case, we do not observe dramatic changes in networks’ topologies across time horizons.
Graphs are more compact and statistical robustness of links is maintained across time with
negligible oscillations. As a consequence of this, the average path length is lower and almost
constant across time horizons. Studying the relative position of assets in both MSTs and
TMFGs through the usage of degree centrality measure, we outline the presence of multiple
changes in the hierarchical reference role among the considered set of cryptocurrencies.
These changes strongly characterise singular cryptocurrencies. We find that Ethereum acts
as a hierarchical reference node for the majority of other assets and maintains this role
across time, gradually losing its centrality at coarser time horizons. There is not a clear
economic explanation for this result. We know that lots of other cryptocurrencies are based
on the Ethereum’s blockchain technology but we do not think this represents a sufficient
explanation to our finding. Other cryptocurrencies play a similar role with respect to smaller
clusters of assets at specific time horizons. We refer specifically to Bitcoin, Litecoin, and
FTX Token. Differently from Ethereum, their role does not emerge at finer time sampling
resolutions and should be considered as the result of a structured evolutionary process
across time horizons. We conclude stating that sectors’ dynamics captured by the chosen
network-based information filtering approaches are poorly affected by the ones of their
main representatives, efficiently absorbing horizon-dependent changes in cryptocurrencies
dynamics. This is true especially for TMFG. Indeed, looking at the evolution of the degree
centrality of the Smart Contracts and Currencies sectors, one can observe that dynamics
captured by MST are strongly influenced by the ones of Ethereum and Bitcoin. This does
not happen in the case of TMFG where sectors’ dynamics are typically detached from the
ones of specific cryptocurrencies.
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Appendix A

(a) (b)

(c) (d)

(e) (f)

Figure A1. Minimum Spanning Tree representing log-returns time series’ dependency structure
computed at (a) 15 s, (b) 1 min, (c) 15 min, (d) 1 h, (e) 4 h, and (f) 1 day. The adopted colour mapping
scheme follows the sectors’ taxonomy by [42]: red → currencies, green → smart contract platforms,
blue → stablecoins, pink → centralized exchanges, orange → scaling, turquoise → decentralized
exchanges, fuchsia → lending, and yellow → all the other sectors. Dashed, red edges represent
negatives linear correlations among pairs of cryptocurrencies. Only hub nodes are labelled.
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Appendix B

(a) (b)

(c) (d)

(e) (f)

Figure A2. Triangulated Maximally Filtered Graphs representing log-returns time series’ depen-
dency structure computed at (a) 15 s, (b) 1 min, (c) 15 min, (d) 1 h, (e) 4 h, and (f) 1 day. The adopted
colour mapping scheme follows the sectors’ taxonomy by [42]: red → currencies, green → smart
contract platforms, blue → stablecoins, pink → centralized exchanges, orange → scaling, turquoise

→ decentralized exchanges, fuchsia → lending, and yellow → all the other sectors. Dashed, red
edges represent negatives linear correlations among pairs of cryptocurrencies. Only hub nodes
are labelled.
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Appendix C
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Figure A3. Probability distribution of correlation coefficients for the empirical correlation matrix C,
MST, TMFG, and correlation matrix of shuffled log-returns time series computed at (a) 15 s, (b) 1 min,
(c) 15 min, (d) 1 h, (e) 4 h, and (f) 1 day.
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Appendix D

Table A1. Number of links of the empirical correlation matrix C, of the MST and of the TMFG having
a value higher than the minimum and lower than the maximum correlation coefficient detected by
shuffling log-returns time series at different time horizons. Shuffling operation is repeated 100 times.
Results can be interpreted as p-values of the average correlation coefficient computed for C, for the
MST and for the TMFG.

Δt C MST TMFG

15 36 0 1
60 28 0 0

900 2 0 0
3600 2 0 0

14,400 16 0 0
86,400 34 1 3
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Abstract: When forecasting financial time series, incorporating relevant sentiment analysis data into
the feature space is a common assumption to increase the capacities of the model. In addition, deep
learning architectures and state-of-the-art schemes are increasingly used due to their efficiency. This
work compares state-of-the-art methods in financial time series forecasting incorporating sentiment
analysis. Through an extensive experimental process, 67 different feature setups consisting of stock
closing prices and sentiment scores were tested on a variety of different datasets and metrics. In total,
30 state-of-the-art algorithmic schemes were used over two case studies: one comparing methods and
one comparing input feature setups. The aggregated results indicate, on the one hand, the prevalence
of a proposed method and, on the other, a conditional improvement in model efficiency after the
incorporation of sentiment setups in certain forecast time frames.

Keywords: time series forecasting; deep learning; financial time series; sentiment analysis; financial
BERT; multivariate; multi-step; regression; Twitter

1. Introduction

Somewhere in the course of history, the human species’ need for knowledge of possible
future outcomes of various events emerged. Associative norms were thus constructed
between decision-making and observed data that were influenced by theoretical biases
that had been inductively established on the basis of such observations. Protoscience was
formed. Or not?

Even if this hypothetical description of human initiation into scientific capacities is
naive or even unfounded, the bottom line is that the human species partly operates on the
basis of predictions. Observing time-evolving phenomena and questioning their structure
in the direction of an understanding that will derive predictions about their projected future
behavior constitutes an inherent part of post-primitive human history. In response to this
self-referential demand and assuming that the authors are post-primitive individuals, the
core of the present work is about predicting sequential and time-dependent phenomena.
This domain is called time series forecasting. Time series forecasting is, in broad terms,
the process of using a model to predict future values of variables that characterize a
phenomenon based on historical data. A time series is a set of time-dependent observations
sampled at specific points in time. The sampling rate depends on the nature of the problem.
Moreover, depending on the number of variables describing the sequentially recorded
observations, a distinction is made between univariate and multivariate time series. Since
there is a wide range of time-evolving problems, the field is quite relevant in modern times,
with an increasing demand for model accuracy and robustness.

In addition, there are phenomena, the mathematical formalism of which is represented
by time series with values which are also sub-determined by the given composition of a
society of individuals. This means that the attitudes of such individuals, as they nonetheless
form within the whole, are somewhat informative about aspects of the phenomenon in
question. It is natural, given human nature and the consequent conceptual treatment of
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the world as part of it, that these attitudes are articulated somewhere linguistically. There-
fore, a hypothesis on which mathematical quantifications of the attitudes of which such
linguistic representations that are signs are possible could, if valid, describe a framework
for improving the modeling of the phenomena in question. For example, specific economic
figures can be points in a context, the elements of which are partially shaped by what is
said about them. Accordingly, it can be argued that a line of research that would investigate
whether stock closing prices can be modeled in terms of their future fluctuations using
relevant linguistic data collected from social networks is valid.

Thus, in this work, the incorporation of sentiment analysis in stock market forecasting
is investigated. In particular, a large number of state-of-the-art methods are put under
an experimental framework that includes multiple configurations of input features that
incorporate quantified values of sentiment attitudes in the form of time series. These time
series consist of sentiment scores extracted from Twitter using three different sentiment
analysis methods. Regarding prediction methods, there are schemes that come from both
the field of statistics and machine learning. Within the machine learning domain, deep
learning and other state-of-the-art methods are currently in use, dominating research.
Here, a large number of such widely used state-of-the-art models were benchmarked in
terms of performance. Moreover, various sentiment setups of input features were tested.
Two distinct case studies were investigated. In the first case study, the evaluations were
organized according to methods. The subsequent comparisons followed the grouping.
In the second case study, the comparisons concerned the feature setups used as inputs.
Sentiment scores were tested in the context of improving the predictive capacities of the
various models used. All comparisons yielded results from an extended experimental
procedure that incorporated various steps. The whole setting involved a wide range of
multivariate setups, which included various sentiment time series. Multiple evaluation
metrics and three different time frames were used to derive multiple-view results. Below,
first, a brief presentation of related literature is given. Then, the experimental procedure
is thoroughly presented, which is followed by the results. Finally, Section 5 lists the
extracted conclusions.

2. Related Work

The continuous and ever-increasing demand for accurate forecasts across a wide range
of human activity has been a key causal factor contributing to the unabated research activity
occurring within the field of time series forecasting. Thus, the prediction of time series
constitutes a strong pole of interest for the scientific community. Consequently, in recent
decades, this interest has been reflected in a wealth of published work and important
results. In this section, a brief presentation of relevant literature is given. Due to space
constraints, this presentation is more indicative than exhaustive, and its purpose is just to
provide a starting point for a more thorough and in-depth review.

A trivial way to distinguish the problems associated with time series forecasting
would be to divide the task into two categories with respect to the type of final output.
The first category includes problems where the goal is to predict whether a future value
is expected to increase or decrease over a given time horizon. This task can essentially be
treated as a binary classification problem. The second category includes tasks where the
goal is to accurately predict the price of a time series in a specific time frame. Here, the
output can take any value within a continuous interval, and hence, the prediction process
can be treated as a regression problem. One can easily imagine that the difficulty of the
problems belonging to the second category is greater than that of the first and that their
treatment requires more complex and precise refinements. Apparently, interesting works
can be found in both categories, but the context of this paper dictates a focus on the latter.

A subclass of problems regarding focus on the direction in which a time series will
move features those involving the increase or decrease of closing price values of various
stocks. In particular, in [1], an ensemble technique based on tree classifiers—specifically
on random forests and gradient boosted decision trees—which predicts movement in various
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time frames is proposed. For the same purpose in [2], support vector machines (SVMs) are
used in combination with sentiment analysis performed on data drawn from two forums
considered to be the largest and most active mainstream communities in China. This
paper is an attempt to predict stock price direction using SVMs and taking into account
the so-called day-of-week effect. Adding sentiment variables results in up to 18% better
predictions. Similar results, which indicate the superiority of SVMs compared to other
classification algorithms, are also presented in [3], where well-known methods such as
linear discriminant analysis, quadratic discriminant analysis, and Elman backpropagation neural
networks are used for comparison. Encouraging results regarding the prediction of time
series movement direction have also been achieved using hybrid methods, where modern
schemes combining deep neural network architectures are applied to big data [4]—again—for
the daily-based prediction of stock market prices. Regarding the second category, where
the goal is to predict the specific future values of a time series and not merely its direction,
the literature appears richer. This seems as if it is a fact rather expected if one takes into
account the increased difficulty of the task and the high interest of the research community
in pursuing the production of improved results. In the past decades, traditional statistical
methods seemed to dominate the field of time series forecasting [5,6]. However, as expected,
according to their general effectiveness, machine learning methods began to gain ground
and dominate the field [7,8]. Traditional machine learning methods are incorporated in
various time series forecasting tasks, such as using SVMs for economic data predictions [9]
and short-term electric load forecasting [10], while architectures based on neural networks
are also particularly popular. Regarding the latter—as this is probably the largest part
of the literature regarding the use of machine learning in prediction problems—the use
of such methods has covered a wide range of applications. Some indicative examples
are the prediction of oil production [11] and traffic congestion [12] using deep LSTM
recurrent networks, while an aggregated version of LSTMs has additionally been used for
the short-term prediction of air pollution. Forecasting river water temperature using a
hybrid model based on wavelet-neural network architecture was presented in [13], while
recurrent neural networks (RNNs) have been deployed to forecast agricultural commodity
prices in China [14]. Since the list of examples where neural network-based techniques
show promise is long, the reader is urged to pursue additional personal research.

Furthermore, it is possibly worth mentioning the fact that in addition to increasingly
sophisticated methods, techniques based on the theory of ensembles are also gaining ground.
Roughly speaking, these are techniques in which the final result is derived through a
process of using different models, with the prediction being formed from the combination
of the individual ones. As an example, one can mention the ensemble scheme proposed
in [15] for the prediction of energy consumption: it combines support vector regression (SVR),
backpropagation neural network (BPNN), and linear regression (LR) learners. A similar en-
deavor is presented in [16], where an ensemble consisting of four learners, that is, long
short-term memory (LSTM), gate recurrent unit (GRU), autoencoder LSTM (Auto-LSTM), and
auto-GRU, is used for the prediction of solar energy production. A comparison involving
over 300 individual and ensemble predictive layouts over Greek energy load data is pre-
sented in [17]. There, in addition to the large number of ensembles tested, the comparison
also concerns both a number of forecast time frames as well as different modifications of
the input data in various multivariate arrangements. In [18], an ensemble scheme based on
linear regression (LR), support vector regression (SVR), and the M5P regression tree (M5PRT)
is proposed to predict cases and deaths attributed to the COVID-19 pandemic regarding
southern and central European countries.

With regard now to the context of this work, and given that its purpose—which is
an extension of the work in [19]—is twofold, aiming, on the one hand, to compare a large
number of methods and, on the other hand, to investigate the contribution of incorporating
sentiment analysis into the forecasting process, it follows that a simple presentation of
similarly targeted tasks seems quite essential. As for the first objective—that of comparing
methods—there are several interesting works that have been carried out in recent years.
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In [20], the comparison between the traditional ARIMA method and LSTMs using economic
data is investigated. A similar comparison between the two methods is implemented
in [21], now aiming to predict bitcoin values, while in [22], the gated recurrent unit (GRU)
scheme is also included in the comparison. Comparative works of the ARIMA method
with various schemes have also been carried out, such as with neural network auto-regressive
(NNAR) techniques [23], with the prophet method [24], with LSTMs and the XGBOOST
method [25], as well as with wavelet neural network (WNN) and support vector machines
(SVM) [26]. Although, in general, modern schemes tend to perform better than ARIMA,
any absolute statement would not be representative of reality. Indeed, research focused on
comprehensively reviewing the use of modern methods can provide a detailed overview of
the relevant work to date. Indicatively, in [27], an extensive review of the use of artificial
neural networks in time series forecasting is presented, covering studies published from
2006 onwards, over a decade. A similar survey covering the period from 2005 to 2019
and focusing on deep learning techniques with applications to financial data can be found
in [28]. Furthermore, regarding the experimental evaluation of modern machine learning
architectures, in [29], a thorough experimental comparison is presented, concerning seven
different deep learning architectures applied to 12 different forecasting problems, using
more than 50,000 time series. According to the implementation of more than 38000 models,
it is argued that the architectures of LSTMs and CNNs outperform all others. In [30],
the comparison of a number of methods—such as ARIMA, neural basis expansion analysis
(NBEATS), and probabilistic methods based on deep learning models—applied to time
series of financial data is presented. Additionally, in [31], a comparison between CNNs,
LSTMs, and a hybrid model of them is given, which was deployed on data concerning the
forecasting of the energy load coming from photovoltaics. There, the generated results, on
the one hand, indicate the dominance of the hybrid model—emphasizing the necessity to
create efficient combinatorial schemes—and, on the other, show that the models’ predictions
improve by using a larger amount of data in the training set.

In relation to the second objective—which concerns the investigation of whether
the use of information based on sentiment analysis regarding public opinion extracted
from social networks favors the predictions—the available literature seems comparatively
poorer but presents equally interesting results. The relationship between tweet board
literature and financial market instruments is examined in [32], with results revealing
a high correlation between stock prices and Twitter sentiments. In [33], using targeted
topics to extract sentiment from social media, a model to predict stock price movement
is presented. Moreover, the effectiveness of incorporating sentiment analysis into stock
forecasting is demonstrated. In addition, ref. [34] is an attempt to capture the various
relationships between news articles and stock trends using well-known machine learning
techniques such as random forest and support vector machines. In [35], after assembling a
financial-based sentiment analysis dictionary, a model incorporating the dictionary was
developed and tested on data from the pharmaceutical market, exhibiting encouraging
results. In [36], sentiment polarity is extracted by observing the logarithmic return of the
ratio between the average stock price one minute before and one minute after the relevant
stock’s news is published. Then, using RNNs and LSTMs, the direction of the stock is
successfully predicted. The exploitation of sentiment analysis techniques has also been
used to predict the stock market during health crises [37] such as H1N1 and, more recently,
COVID-19. Possible links between social media posts and closing stock prices at specific
time horizons were found. More specifically, for COVID-19, the polarity of the posts seemed
to affect the stock prices after a period of about six days.

Regarding the prediction of various stock market closing prices—which is also the
thematic center of this paper—in [38], data collected from Twitter are initially analyzed
in terms of their sentiment scores and are then used to predict the movement of stock
prices, using naive Bayes and multiclass SVM classifiers. A similar procedure was followed
in [39], where least squares support vector regression (LSSVR) and backpropagation neural
networks were deployed to predict the total monthly sales of vehicles in the USA, using
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additional sentiment information combined with historical sales data. Data collected from
the online editions of international newspapers were used in [40] to predict the closing
stock price values, incorporating both traditional methods, such as ARIMA, and newer
ones, such as the Facebook prophet algorithm and RNN architectures that use as input both
numerical values of the time series to be predicted as well as combinations of the polarity
of extracted sentiments.

In [41], both traditional and modern machine learning methods such as support vector
machines, linear regression, naive Bayes, and long short-term memory are used in combination
with the incorporation of opinion data, current news, and past stock prices. In [42], senti-
ment analysis and empirical model decomposition are used so that complex time series can be
broken down into simpler and easier to manage parts, together with an attention mecha-
nism that attributes weight to the information considered most useful for the task being
performed each time. A method based on the architecture of LSTMs that uses information
derived from sentiment analysis together with multiple data sources is presented in [43].
Initially, textual data related to the stock in question are collected, and using methods based
on convolutional neural network architectures, the polarity of investors’ sentiment is extracted.
This information is then combined with that of the stock’s past closing prices and other
technical indicators to produce the final forecast. In [44], a hybrid model that leverages
deep learning architectures, such as convolutional neural networks, to extract and categorize
investor sentiment as detected in financial forums is described. The extracted sentiments
are then combined with information derived from technical financial indicators to predict
future stock prices in real-world problems using LSTM architectures. SVM architectures
are used on Twitter data to extract polarity in [45]. The extracted polarities are used in
an incremental active learning scheme, where the continuous stream of content-changing
tweets is used to predict the closing stock price of the stock market.

Sentiment analysis has also been used to predict the price of bitcoin in real time,
using—and at the same time comparing—LSTM techniques and the classical ARIMA
method [46], where the exploitation of the information derived from sentiment analysis
has been beneficial. Similar research focused on predicting the price direction of the
cryptocurrencies Bitcoin and Ethereum using sentiment analysis from data drawn from
Twitter and Google Trends and given as input to a linear predictive model is presented
in [47]. Interestingly, the volume of tweets affects the prediction to a greater extent than
the polarity of the sentiment extracted from the tweets. Forecasting the price direction of
four popular cryptocurrencies—Bitcoin, Ethereum, Ripple, and Litecoin—using machine
learning techniques and data drawn from social networks is presented in [48]. Classical
methods such as neural networks (NN), support vector machines (SVM), and random forests
(RF) are compared. An interesting fact is that Twitter, roughly speaking, seems to favor the
prediction of specific cryptocurrencies rather than all of them. Using sentiment analysis has
also been beneficial in the field of cybersecurity. In [49], a methodology that exploits the
knowledge of hacker behavior for predicting malicious events in cyberspace by performing
sentiment analysis with different techniques (VADER, LIWC15, and SentiStrength) on data
collected from hacking forums, both on the dark web and on the surface web, is presented.

The—rather diverse—list of applications in which the use of sentiment analysis tech-
niques can improve the generated forecasts is proportional to the fields in which time
series forecasting is applied since, in general, the utilization of public opinion knowledge
appears to have a positive effect on the forecasting process. Some of them that have been
implemented in the last five years have already been mentioned in passing, and many
others can be added. Such would include predicting the course of epidemics, such as that of
the Zika virus in the USA in 2016 [50] or the COVID-19 pandemic, the outcome of electoral
contests [51], the prediction of the price of e-commerce products [52], and the list goes
on. Given human nature and the consequent conceptual coping of the world by human
subjects, sentiment analysis seems justifiably relevant in a multitude of applications. The
reader is therefore encouraged to conduct additional bibliographic research.
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3. Experimental Procedure

Information regarding the stages of the experimental procedure will now be presented.
This presentation will be as detailed as possible given the necessary space constraints and
content commitments in order not to disrupt the depictive nature of the paper.

It has already been mentioned that to some extent, the “core” of the present work
consists of an experimental procedure that aims, in its most abstract scope, to check the
efficiency, on the one hand, of a number of state-of-the-art algorithms and, on the other,
of incorporating sentiment analysis into predictive schemas. Thus, a total of 16 datasets
× 67 combinations × 30 algorithms × 3 time-shifts = 96,480 experiments were conducted. The
dataset consisted of time series containing the daily closing values of various stocks along
with a multitude of 67 different sentiment score setups. Specifically, 16 datasets of stocks
containing such closing price values were used over a three-year period, beginning on
2 January 2018 and ending on 24 December 2020. Generated sentiment scores from relevant
textual data extracted from the Twitter microblogging platform were used. Three different
sentiment analysis methods were deployed. The sentiment score time series and the
closing values were subjected to a 7-day and a 14-day rolling mean strategy, yielding a
total of 12 distinct features. Various combinations of the created features resulted in a total
of 67 distinct input setups per algorithm. The calculated sentiment scores along with the
closing values were then tested under both univariate and multivariate forecasting schemes.
Lastly, 30 state-of-the-art methods were investigated. Below, a more thorough presentation
of the aforementioned experimental setting follows.

3.1. Datasets

Starting with data, the process of collecting and creating the sets used will now
be addressed.

3.1.1. Overview

To begin with, Table 1 contains the names of the aforementioned datasets along with
their corresponding abbreviations. These initial data included time series containing closing
values for 16 well-known listed companies. All sets comprise three-year period data for
dates ranging from 2 January 2018 to 24 December 2020.

Table 1. Stock datasets.

No Dataset Stocks

1 AAL American Airlines Group
2 AMD Advanced Micro Devices
3 AUY Yamana Gold Inc.
4 BABA Alibaba Group
5 BAC Bank of America Corporation
6 ET Energy Transfer L.P.
7 FCEL FuelCell Energy Inc.
8 GE General Electric
9 GM General Motors
10 INTC Intel Corporation
11 MRO Marathon Oil Corporation
12 MSFT Microsoft Corporation
13 OXY Occidental Petroleum Corporation
14 RYCEY Rolls-Royce Holdings
15 SQ Square
16 VZ Verizon Communications

Essentially, the initial features were four: that is, the closing prices of each stock
and three additional time series containing relative sentiment scores for the given period.
Subsequently, and after applying 7- and 14-day rolling averages, a total of 14 features were
extracted. Thus, for each share, the final input settings were composed by introducing
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altered features derived from stock values and a sentiment analysis process applied to an
extended corpus of tweets. Figure 1 depicts a—rather abstractive—snapshot of the whole
process from data collection to the creation of the final input setups.

Figure 1. Feature setups: creation pipeline.
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3.1.2. Tweets and Preprocessing

A large part of the process involved deriving sentiment scores related to stocks. Using
the Twitter Intelligence Tool (TWINT) [53], a large number of stock-related posts written in
English were downloaded from Twitter and grouped by day. TWINT is an easy-to-use yet
sophisticated Python-based Twitter scraping tool. After a comprehensive search for stock-
related remarks that were either directly or indirectly linked to shares under consideration, a
sizable amount of text data containing daily attitudes toward stocks were created. Then, the
collected textual sets underwent the various preprocessing procedures necessary in order to
be passed on to the classification modules for extracting their respective sentiment scores.

Regarding preprocessing tweets, initially, irrelevant hyperlinks and URLs were re-
moved using the Re Python library [54]. Each tweet was then converted to lowercase and
split into words. Then, unwanted phrases from a manually produced list and various
numerical strings were also dismissed. After performing the necessary joins to restore
each text to its original structure, each tweet was tokenized in terms of its sentences using
the NLTK [55,56] library. Lastly, using the String [57] module, punctuation removal was
applied. The whole text-preprocessing step is schematically presented in Figure 2.

Figure 2. Preprocessing.

3.1.3. Sentiment Analysis

The subsequent process involved extracting sentiment scores from the gathered yet
cleaned tweets. To perform the sentiment quantification step, three different sentiment
analysis methods were utilized.

Specifically, the procedure included extracting sentiment scores from TextBlob [58],
using the Vader sentiment analysis tool [59], and incorporating FinBERT [60]. FinBERT
is a financial-based fine-tuning of the BERT [61] language representation model. Using
each of the above methods, daily sentiment scores were extracted for each stock. The daily
mean was then extracted, forming the final collection, which constituted the sentiment-
valued time series of every corresponding method. Then, 7- and 14-day moving averages
were applied to the previously extracted sentiment score time series. This resulted in
the extraction of nine sentiment time series, which, together with the application of the
aforementioned procedure to the closing price time series, led to the final number of
12 generated time series used as features. Various combinations of the above features,
along with the univariate case scenario, resulted in 67 different study cases. These data
constituted the distinct experimental procedures that run for every algorithm. The use of
three different methods of sentiment analysis has already been mentioned. Below, a rough
description of these methods is given. For further information, the reader is advised to
refer to the respective papers.

• TextBlob: The TextBlob module is a Python-based library for performing a wide range
of manipulations over text data. The specific TextBlob method used in this work is a
rule-based sentiment-analysis scheme. That is, it works by simply applying manually
created rules. This is how the value attributed to the corresponding sentiment score is
calculated. An exemplified snapshot of the process would be counting the number
of times a term of interest appears within a given section. This would modify the
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projected sentiment score values in line with the way the phrase is assessed. Here,
within this experimental setup and by exploiting TextBlob’s sentiment property, a
real number within the [−1, 1] interval representing the sentiment polarity score was
generated for each tweet. The algorithm’s numerical output was then averaged using
the individual scores of each tweet to obtain a single sentiment value representing the
users’ daily attitudes;

• Vader: Vader is also a straightforward rule-based approach for realizing general senti-
ment analysis. In the context of this work, the Vader sentiment analysis tool was used
in order to extract a compound score produced by a normalization of sentiment values
that the algorithm calculates. Specifically, given a string, the procedure outputs four
values: negative, neutral, and positive sentiment values, as well as the aforementioned
composite score used. A normalized average of all compound scores for each day was
generated the usual way. The resulting time series contained daily sentiment scores
that ranged within the [−1, 1] interval;

• FinBERT: Regarding FinBERT, in this work, the implementation contained in [62] was
utilized. Specifically, the model that was trained on PhraseBank presented in [63] was
used. Again, first, the daily scores regarding sentiment attitudes were extracted to
eventually form a daily average time series. Generally, the method is a pre-trained
natural-language-processing (NLP) model for sentiment analysis. It is produced by
simply fine-tuning the pre-trained BERT model over financial textual data. BERT,
meaning bidirectional encoder representations from transformers, is an implementation
of the transformers architecture used for natural language processing problems. The
technique is basically a pre-trained representational model based on transfer learn-
ing principles. Given textual data, multi-layer deep representations are trained with
a bidirectional attention strategy so that the various different contexts of each lin-
guistic token constitute the content of the token’s embedding. Regardless of data
references—here financial—the model can be fine-tuned in any domain by only using
a single additional layer that addresses the specific tasks.

3.2. Algorithms

In this section, the methods, algorithmic schemes, and architectures employed in the
experiments are listed. Additional details are given on the implementation framework and
the tools used.

Regarding the algorithms used, a total of 30 different state-of-the-art methods and
method variations were compared. The number of 30 methods used results from the
supplementation of the set of well-known core methods with their variations. Further
details can be found in the cited tsAI library [64], using which the implementation was
carried out. However, it is this multitude of methods that apparently makes a detailed
presentation practically impossible. Nevertheless, the reader is urged to track the cited
papers. Table 2 contains the main algorithms utilized during the experimental procedure
along with a corresponding citation. There, among others, one can notice that in addition
to a multitude of state-of-the-art methods, implementations involving combinations of the
individual architectures were also used. Note that in addition to the corresponding papers,
information regarding the variations of the basic algorithms employed can be searched,
inter alia, in notebook files taken from the library implementations.

In order to carry out the experiments, the Python library tsAI [64] was used. The
tsAI module is “an open-source deep learning package built on top of Pytorch and Fastai
focused on state-of-the-art techniques for time series tasks like classification, regression,
forecasting” [64], and others. Here, the forecasting procedure was essentially treated as a
predictive regression problem. In the experiments, the initial parameters of the respective
methods from the library were preserved with the implementation environment being kept
fixed for all algorithmic schemes. Thus, all algorithms compared were utilized in the most
basic configuration. That way, one can gain additional insight regarding implementing
high-level yet low-code programming and data analysis in real-world tasks. Of the data,
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20% were used as the test set. Regarding prediction time horizons, three forecast scenarios
were implemented: one single-step and two multi-step. In particular, with regard to multi-
step forecasts, and leaving aside the single-step predictions, estimates were provided for a
seven-day window on the one hand and a fourteen-day window on the other. The results
were evaluated according to the metrics presented in the following paragraph.

Table 2. Algorithms.

No. Abbreviation Algorithm 1

1 FCN Fully Convolutional Network [65]
2 FCNPlus Fully Convolutional Network Plus [66]
3 IT Inception Time [67]
4 ITPlus Inception Time Plus [68]
5 MLP Multilayer Perceptron[65]
6 RNN Recurrent Neural Network [69]
7 LSTM Long Short-Term Memory [70]
8 GRU Gated Recurrent Unit [71]
9 RNNPlus Recurrent Neural Network Plus [69]

10 LSTMPus Long Short-Term Memory Plus [69]
11 GRUPlus Gated Recurrent Unit Plus [69]
12 RNN_FCN Recurrent Neural—Fully Convolutional Network [72]
13 LSTM_FCN Long Short-Term Memory—Fully Convolutional Network [73]
14 GRU_FCN Gated Recurrent Unit—Fully Convolutional Network [74]
15 RNN_FCNPlus Recurrent Neural—Fully Convolutional Network Plus [75]
16 LSTM_FCNPlus Long Short-Term Memory—Fully Convolutional Network Plus [75]
17 GRU_FCNPlus Gated Recurrent Unit—Fully Convolutional Network Plus [75]
18 ResCNN Residual—Convolutional Neural Network [76]
19 ResNet Residual Network [65]
20 RestNetPlus Residual Network Plus [77]
21 TCN Temporal Convolutional Network [78]
22 TST Time Series Transformer [79]
23 TSTPlus Time Series Transformer Plus [80]
24 TSiTPlus Time Series Vision Transformer Plus [81]
25 Transformer Transformer Model [82]
26 XCM Explainable Convolutional Neural Network [83]
27 XCMPlus Explainable Convolutional Neural Network Plus [84]
28 XceptionTime Xception Time Model [85]
29 XceptionTimePlus Xception Time Plus [86]
30 OmniScaleCNN Omni-Scale 1D-Convolutional Neural Network [87]

1 Methods and method variations used.

3.3. Metrics

Regarding performance evaluation, six metrics were used. The use of the different
metrics serves the necessity of having not only a presentation of the conclusions of a large
comparison of methods and feature and sentiment setups but also a number of diverse
extractions in terms of evaluation aspects that can be used in future research. This is
exactly because each of the metrics exposes the results in different aspects, and therefore,
an investigation would be incomplete if it focused on just one of them. Thus, regarding
evaluating results, each one of the six performance indicators utilized has advantages and
disadvantages. The metrics used are:

• the Mean Absolute Error (MAE);
• the Mean Absolute Percentage Error (MAPE);
• the Mean Squared Error (MSE);
• the Root Mean Squared Error (RMSE);
• the Root Mean Squared Logarithmic Error (RMSLE);
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• the Coefficient of Determination R2.

In what follows, a rather detailed description of aspects of the aforementioned well-
known evaluation metrics is given. The presentation aspires to provide details and some
insight regarding the interpretation of the metrics. Below, the actual values are denoted by
yai and the forecasts are denoted by ypi .

3.3.1. MAE

First is MAE:
MAE =

1
n

n

∑
i=1

∣∣ypi − yai

∣∣ (1)

MAE stands for the arithmetic mean of the absolute errors, and it is a very straightforward
metric and easy to calculate. By default, in terms of the difference between the prediction
and the observation, the values share the same weights. The absence of exponents in the
analytic form ensures good behavior, which is displayed even when outliers are present.
The target variable’s unit of measurement is the one expressing the results. MAE is a
scale-dependent error metric; that is, the scale of the observation is crucial. This means that
it can only be used to compare methods in scenarios where every scheme incorporates the
same specific target variable rather than different ones.

3.3.2. MAPE

Next is MAPE:
MAPE =

1
n

n

∑
i=1

∣∣ypi − yai

∣∣
|yai |

(2)

MAPE is the mean absolute percentage error. It is a relative and not an absolute error
measure. MAPE is common when evaluating the accuracy of forecasts. It is the average of
the absolute differences between the prediction and the observations divided by the absolute
value of the observation. A multiplication by 100 can afterwards convert this output to a
percentage. This error cannot be calculated when the actual value is zero. Instead of being
a percentage, in practice, it can take values in [0, ∞). Specifically, when the predictions
contain values much larger than the observations, then the MAPE output can exceed 100%.
Conversely, in cases where both the prediction and the observation contain low values, the
output of the metric may deviate greatly from 100%. This, in turn, can lead to a misjudgment
of the model’s predictive capabilities, believing them to be limited when, in fact, the errors
may be low. MAPE attributes more weight to cases where the predicted value is higher than
the actual one. These cases produce larger errors. Hence, using this metric is best suitable
for methods with low prediction values. Lastly, MAPE, being not scale-dependent, can be
used to evaluate comparisons of a variety of different time series and variables.

3.3.3. MSE

The next metric is MSE:

MSE =
1
n

n

∑
i=1

(
ypi − yai

)2 (3)

MSE stands for mean squared error. It constitutes a common forecast evaluation metric.
The mean squared error is the average of the squares of the differences between the actual
and predicted values. Its unit of measurement is the square of the unit of the variable of
interest. Looking at the analytical form, first, the square of the differences ensures the non-
negativity of the error. At the same time, it makes information about minor errors usable.
It is obvious, at the same time, that larger deviations entail larger penalties, i.e., a higher
MSE. Thus, outliers have a big influence on the output of the error; that is, the existence of
such extreme values has a significant impact on the measurements and, consequently, the
evaluation. Furthermore, and in a sense the other way around, when differences are less
than 1, there is a risk of overestimating the predictive capabilities of the model. Given the
error’s differentiability, as one can observe, it can easily be optimized.

29



Entropy 2023, 25, 219

3.3.4. RMSE

Moving on to RMSE:

RMSE =

√
1
n

n

∑
i=1

(
ypi − yai

)2 (4)

RMSE stands for root mean squared error. It is a common metric for evaluating dif-
ferences between estimated values and observations. To compute it, apparently, one just
calculates the root of the mean squared error. From the numerical formulation, one can
think of the metric as an abstraction that captures the representation of something of an
average distance between the actual values and the predictions. That is, if one ignores
the denominator, then one can observe the formula as being the Euclidean distance. The
subsequent interpretation of the metric as a kind of normalized distance comes out of
the act of division by the number of observations. Here also, the existence of outliers
has a significant impact on the output. In terms of interpreting error values, the RMSE
is expressed in the same units as the target variable and not in its square, as in the MSE,
making its use straightforward. Finally, the metric is scale-dependent; hence, one can only
use it to evaluate various models or model variations given a particular fixed variable.

3.3.5. RMSLE

The next metric is also an error. The formula for RMSLE is as follows:

RMSLE =

√
1
n

n

∑
i=1

(
log(ypi + 1)− log(yai + 1)

)2 (5)

RMSLE stands for Root Mean Squared Logarithmic Error. The RMSLE metric seems as
if it is a modified version of the MSE. Using this modification is preferred when predictions
display significant deviations. RMSLE uses logarithms of both the observations and
predicted values while ensuring non-zero values in the logarithms through the appropriate
simple unit additions appearing in the formula. This modified version is resistant to the
existence of outliers and noise, and it smooths the penalty that the MSE imposes in cases
in which predictions deviate significantly from observations. The metric cannot be used
when there are negative values. RMSLE can be interpreted as a relative error between
observations and forecasts. This can be made evident by simply applying the following
property to the radicand term of the square root:

log(ypi + 1)− log(yai + 1) = log
(

ypi + 1
yai + 1

)
(6)

Since RMSLE gives more weight to cases where the predicted value is lower than the actual
value, it is quite a useful metric for types of predictions where similar conditions require
special care for the reliability of the application in real-world conditions, where lower
forecasts may lead to specific problems.

3.3.6. R2

The last metric is the coefficient of determination R2:

R2 = 1 − SSRES
SSTOT

= 1 − ∑n
i=1
(
ypi − yai

)2

∑n
i=1
(
ypi − y

)2 (7)

The coefficient of determination R2 is not an error evaluation metric. It is the ratio
depicted in the above equation. This metric is essentially not a measure of model reliability.
R2 is a measure of how good a fit is: a quantification of how well a model fits the data. Its
values typically range from 0 to 1. A rather simple interpretation would be this: the closer
to 1 the value of the metric is, the better the model fits the observations, i.e., the predictions
are closer, in terms of their values, to the observations. Thus, the value 0 corresponds to
cases where the explanatory variables do not explain the variance of the dependent variable
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at all. Conversely, the value 1 corresponds to cases where the explanatory variables fully
explain the dependent variable. However, this interval does not strictly constitute the
set of values of the metric. There are conditions in which R2 could take negative values.
Observing the formula, one can identify the above as permissible. In such cases, the model
performs worse in fitting the data than a simple horizontal line, essentially being unable
to follow the trend. Lastly, values outside the above range indicate either an inadequate
model or other flaws in its implementation.

4. Results

Returning to the dual objective of this work, the two case studies whose results will be
presented in this chapter were:

• On the one hand, the comparison of a large number of time series forecasting contem-
porary algorithms;

• On the other hand, the investigation of whether knowledge of public opinion, as
reflected in social networks and quantified using three different sentiment analysis
methods, can improve the derived predictions.

Accordingly, the presentation of the results of the experimental process is split into
two distinct parts. In what follows, both various statistical analysis and visualization
methods are incorporated. However, it should be noted that the number of comparisons
performed yielded a quite large volume of results. Specifically, as already pointed out,
in each case, the performance of the 30 predictive schemes and the 67 different feature
setups was investigated over three different time frames (1, 7, and 14 day shifts). Note that
these three time-shifting options have no—or at least no intended—financial consequences.
Here, the primary goal in designing the framework was to forecast the stock market over
short time frames, such as a few days. Then, an expansion was made to investigate the
performance of both methods and feature setups over longer periods of time. Each of
these schemas was evaluated with six different metrics, while the process was repeated
for each of the datasets. Consequently, it becomes clear that the complete tables with the
numerical results cannot contribute satisfactorily to the understanding of the conclusions
drawn. Below, following a necessary brief reminder of the process, results are presented.

As has already been mentioned, during the procedure, for each of the stocks, the
following strategy was followed: each of the thirty algorithms to be compared was “ran”
67 times, each time accepting as input one of the different feature setups. This was repeated
three times, once for each of the three forecast time frames. In each of the above runs, the
six metrics used in the evaluation of the results were calculated. The comparison of the
algorithms was performed by using Friedman’s statistical tests in terms of feature setups
for each of the time shifts. Thus, given setups and stocks, the ranking of the methods per
evaluation metric was extracted according to the use of the Friedman test [88]. Therefore,
regarding this case study, a total of 67 × 6 × 3 = 1206 statistical tests were executed. In
a similar way, the Friedman rankings of input feature setups were estimated in terms
of metrics and time shifts, given the various algorithms and stocks. Here, a total of
30 × 6 × 3 = 540 statistical tests were performed. An additional abstraction of the results
was derived as follows: For each of the 30 methods, the average rank achieved by each
method in terms of feature setups and shares was calculated. So, for each metric and each of
the three time frames, a more comprehensive display of the information was obtained based
on the average value of the different setups. In an identical way, in the case of checking the
effectiveness of features, the average value of the 30 algorithms for each of the 67 different
input setups was calculated in each case. In both cases, the ranking was calculated based on
the positions produced by the Friedman test, while at the same time, with the Nemenyi post
hoc test [89] that followed, every schema was checked pair-wise for significant differences.
The results of the Nemenyi post hoc tests are shown in the corresponding Critical Difference
diagrams (CD-diagrams), in which methods that are not significantly different are joined
by black horizontal lines. Two methods are considered not significantly different when the
difference between their mean ranks is less than the CD value.

31



Entropy 2023, 25, 219

Next, organized in both cases based on time frames, the results concerning the com-
parison of the forecast algorithms are presented, which are followed by those regarding the
feature setups.

4.1. Method Comparison

The presentation begins with results concerning the investigation of methods. The
results are presented per forecast time shift. In each case, the Friedman Ranking results
for all six metrics are listed. To save space, only methods that occupy the top ten positions
of the ranking are listed. Full tables are available at: shorturl.at/FTU06 (accessed on 15
January 2023). The CD diagrams follow. There, we can visually observe which of the
methods exhibit similar behavior and which differ significantly. Finally, box plots of results
per metric are presented, again for the best 10 methods. The box plots present in a graphical
and concise manner information concerning the distribution of the aforementioned data,
that is, in our case, the average values of the sentiment setups per algorithm for all stocks.
In particular, one can derive information about the maximum and minimum value of the
data, the median, as well as the 1st and 3rd quartile values isolated by 25% and 75% of the
observations, respectively.

4.1.1. Time Shift 1

With respect to the one-day forecasts, Table A1 lists the Friedman Ranking results for
the top 10 scoring methods per metric. Although there is no single method that dominates
all metrics and significant reorderings are also observed in the table positions, the TCN
method achieves the best ranking in three out of six metrics (MAPE, R2, and RMSLE) and
is always in the top four. Furthermore, from the box plots, it is evident that TCN has by far
the smallest range of values.

Apart from this, in all metrics, GRU_FCN is always in the top five. It is also observed
that LSTM_FCN and LSTMPlus behave equally well. The latter shows a drop in the MAPE
metric, but in all other cases, it is in the top three, while in two metricsm it ranks first. It
should also be noted that the LSTMPlus method ranks first in two metrics, namely MAE
and RMSE. In terms of R2 and RMSLE, it occupies the second position of the ranking, while
regarding MSE, LSTMPlus ranks third. However, at the same time, according to MAPE,
the method is not even in the top ten. Thus, as will be seen in the following, TCN is the
consistent choice.

The results produced by Friedman’s statistical test, in terms of the six metrics, are
presented in Table A1, while the corresponding CD diagrams and box plots are depicted in
Figures 3 and 4.

Figure 3. Box Plots: Methods—Shift 1.

32



Entropy 2023, 25, 219

Figure 4. CD Diagrams: Methods—Shift 1.

4.1.2. Time Shift 7

At the one-week forecast time frame, the algorithms that occupy the top positions in
the ranking produced by the statistical control appear to have stabilized. The corresponding
ranking produced by the Friedman statistical test regarding the ten best methods with
respect to the six metrics is presented in Table A2. In all metrics, the TCN method ranks first.
From the CD diagrams, it can be seen that in all metrics—except for R2—this superiority
is also validated by the fact that this method differs significantly from the others. Box
plots show the method also having the smallest range around the median. Figures 5 and 6
contain the relevant results in the form of box plots and CD-diagrams.

Figure 5. Box Plots: Methods—Shift 7.

Other methods that clearly show some dominance over the rest in terms of given
performance ratings are, on the one hand, TSTPlus, which ranks second in all metrics
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except MAPE, and, on the other hand, XCMPlus and XCM, which are mostly found in the
top five. In general, the same methods can be found in similar positions in all metrics, with
minor rank variations. In addition, the statistical correlations between the methods are
shown in the CD diagram plots.

Figure 6. CD Diagrams: Methods—Shift 7.

4.1.3. Time Shift 14

In the forecast results with a two-week shift, a relative agreement can be seen in the
top-ranking algorithms with those of the one-week frames. The ranking produced by the
Friedman statistical test for the ten best methods with respect to the six metrics is presented
in Table A3.

Once more, TCN ranks first in all metrics. TSTPlus again ranks second in all metrics
except for R2, where it ranks third. In almost all cases, XCMPlus and RNNPlus appear
in the top five. Likewise, as in the previous time shift, there is a relative agreement in
the methods appearing in the corresponding positions regarding all metrics. Moreover,
according to the above, an argument regarding the general superiority of the TCN method
in this particular scenario is easily obtained. An obvious predominance of the TCN method
is established. The corresponding CD diagrams and box plots for the 10 best performing
algorithms are seen in Figures 7 and 8.

4.2. Feature Setup Comparison

Now, we are moving on to the findings of the second case study, which concern, on
the one hand, the investigation of whether the use of sentiment analysis contributes to
the improvement of the extracted predictions and, on the other hand, the identification of
specific feature setups whose use improves the model’s predictive ability.

Again, the results of the experimental procedure will be presented separately for
the three forecast time frames. Likewise, due to the volume of results, only the 10 most
promising feature setups will be listed. These were again derived based on the Friedman
classification of the averages calculated for each of them, taking into account the predictions
in the use of the 30 forecast methods used. The full rankings of all 67 setups can be found
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at shorturl.at/alqwx (accessed on 13 December 2022). For the presentation below, again,
the corresponding CD diagrams and box plots were used.

Figure 7. Box Plots: Methods—Shift 14.

Figure 8. CD Diagrams: Methods—Shift 14.

4.2.1. Time Shift 1

Starting with the results concerning one-day depth forecasting, one notices that the
univariate version, in which the forecasts are based only on the stock price of the previous
days, ranks first only in the case of the R2 metric. In fact, in three metrics, the univariate
version is not even in the top twenty of the ranking (See Figures 9 and 10).
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Figure 9. Box Plots: Features—Shift 1.

Figure 10. CD Diagrams: Features—Shift 1.

Another interesting observation would be that even though there are rerankings of
the sentiment setups in terms of their performance on the six metrics, the Blob_RM_7_Blob
setup—that is, the setup incorporating Blob and Rolling Mean 7 Blob along with the closing
values time series—although it does not score well in the ranking regarding R2, it is, on the
one hand, at the top ranking in four metrics, that is, MAE, MSE, RMSE, RMSLE, and, on
the other hand, second in MAPE. Moreover, from the results, it becomes evident that an
argument in favor of using sentiment analysis in multivariate time series layouts, even in
the case where the forecasts concern one-day depth, is, at least, relevant. At the same time,
using smoothed versions of both the sentiment time series and those containing the closing
stock price values appears to be beneficial in general.

4.2.2. Time Shift 7

Regarding the time frame of one week, one can notice that the use of the univariate
version is marginally ranked first in three metrics, namely, the R2, RMSE and RMSLE, while
in two metrics, the Vader sentiment setup appears to be superior, actually being, at the
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same time, in second place regarding the MAPE and RMSE metrics and fifth regarding the
RMSLE (Figures 11 and 12).

Figure 11. Box Plots: Features—Shift 7.

Figure 12. CD Diagrams: Features—Shift 7.

It is also notable that Blob_RM_7_Blob, which appeared to perform particularly well
during the one-day shift, remains in the top three rankings in five of the six metrics. More
generally, once again, one notices that there are rearrangements, especially in the central
positions of the table. However, given the small differences in performance between the
different setups, this should not be considered unreasonable. Overall, the picture still
points in favor of using multivariate inputs containing sentiment data.

4.2.3. Time Shift 14

Finally, regarding the two-week time frame, a first observation is that in relation to
the R2, a feature setup that does not contain sentiment data dominates. This pattern is also
present in the previous time shifts (See Figures 13 and 14).
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Figure 13. Box Plots: Features—Shift 14.

Figure 14. CD-Diagrams: Features—Shift 14.

In addition, although there are metrics in which the univariate version is in the top
ten, in these cases, the difference in its performance with those in the first positions is
quite significant. This is easily seen from the CD diagrams: there are no connections with
setups that appear in the top positions. At the seven-day time lag, it was observed that
the univariate version prevailed in three cases. However, as one examines the 14-day time
shift, one notices that the superiority of methods that use sentiment data is reinforced.

At the same time, combinations containing the closing price appear in the first positions
of the table more often than in the previous two setups. Furthermore, it is observed that the
setup that dominates four of the six metrics is RM_7_Close_Blob. These metrics are MAE,
MAPE, MSE, and RMSE. The RM_7_Close_Blob feature setup is the one that incorporates
both a smoothed version of the closing values as well as sentiment scores. Thus, the use
of weighted averages in the original time series along with the incorporation of sentiment
scores is mostly shown to be optimal regardless of the individual choice of a specific layout.
Methodologically, the utilization of both has an improving effect.
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5. Conclusions

Some general conclusions drawn from the whole experimental procedure will now be
addressed. The discussion will follow the binary separation of the preceding case studies.

5.1. Methods

The first case study of the paper consisted of a comparison of 30 methods for time
series forecasting. Within the above-discussed experimental context, the extracted results
are such as to safely allow a conclusion regarding the superiority of the TCN method over
the rest. This is the case because, in the vast majority of comparisons, it excels, being, for the
most part, at the top of the Friedman ranking. In particular, the only cases where it does not
outperform all the rest are found in the single-day time frame predictions. In fact, from the
CD diagrams, one can extract the additional fact that in many cases, the superiority of the
aforementioned method is marked by a significant difference. Furthermore, in addition to
the TCN method, other methods whose predictive capacities can be considered significant
were identified. TSTPlus is one of them, as it produces significant results, particularly over
longer time horizons. XCMPlus is another.

In Figure 15, one can see the relative rankings of these three methods per time shift.
The values in Figure 15 correspond to the values of Tables A1–A3. Regarding the one-day
forecast window, LSTMPlus is an additional option, as is the combination of GRU and FCN.
However, an additional point to note here is that the individual method differences are less
clear in their significance. On the contrary, there can also be conclusions regarding methods
whose behavior was not evaluated, on average, as satisfactory. In particular, specific
methods that are always ranked last in all scenarios were identified. Specifically, TSiTPlus
ranks last in all three scenarios across all metrics. In addition to this, there are methods,
such as Transformer Model, XceptionTime, and XceptionTimePlus, which are always at the
bottom of the table in the vast majority of cases. In conclusion, given the limitations and
further prerequisites developed throughout this paper, TCN can be easily recommended.

Figure 15. TCN, TSTPlus and XCMPlus relative rankings.
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5.2. Feature and Sentiment Setups

In relation to the second case study, the consideration of the results also points in
some important directions. Of these, the main conclusion drawn seems to be that the
use of information derived from both smoothed versions of the initial time series and
sentiment analysis shows, in most cases, to have a beneficial effect on the derived forecasts.
Not using sentiments in the feature setup of the inputs dominates the rest only in a small
number of cases, and, as confirmed by the CD diagrams, only in two of them is this
difference significant.

Moreover, the answer to whether the use of sentiment setups specifically leads to
the extraction of more accurate forecasts, as evidenced by the individual layouts of the
weighted results, seems to be that, in general, sentiment analysis improves forecasts. Of
course, it is also reasonable to investigate whether there is a specific sentiment setup that
outperforms the rest. This would also lead to an assessment of the performance of the
three sentiment analysis methods used. However, the answer to this question needs further
investigation. However, even with the possibility of further inquiries within the framework
of the experimental setup presented here, it is still not certain that firm conclusions will be
drawn. Here, while such setups can be found for each time horizon, there is not one that
dominates all three.

In order, however, to illustrate a relative ranking of the three sentiment analysis
methodologies used, regardless of the particular variation involved, an additional table
was created. All variations of each method were placed under a corresponding class.
The Friedman-aligned ranks [90] were then calculated. Hence, in order to draw a clearer
picture of the way the three employed approaches to sentiment analysis performed, three
sentiment classes were formed, one matching each of the previously described sentiment
analysis methods. The arithmetic mean of all the sentiment setups that solely contain
different variations of a particular sentiment analysis algorithm, that is, only one of the
three incorporated, is used to represent the corresponding class concerning each metric. In
other words, each class represents a sentiment analysis method, and each class corresponds
to six sentiment setups that contain variations exclusively of the technique in question.
Specifically, a representative value of a class, as it pertains to a particular method, is formed
by the following setups: method, RM7method, RM14method, method + RM7method, method
+ RM14method, and RM7method + RM14method. The sum is then divided by six, which is
apparently the number of setups, and this result is the output value to be depicted. This way,
setups produced either by combining the various sentiment analysis methods or by using
the target variable in variants containing rolling means are excluded in order to compare
only the relative performances of the three individual techniques and their variations.

Figure 16 illustrates these relative rankings of the three sentiment analysis methods
per time shift. One can observe the relative performances in terms of individual wins with
respect to each metric and time shift: the Blob and Vader classes top the ranking seven times
each, while the Finbert class only has four wins. Again, a conclusion in terms of an obvious
generality regarding a specific algorithm does not appear. Nevertheless, the identification of
groups of such setups, even at the level of a specific time frame, can be particularly useful,
with the methodology for the selection of individual setups needing more investigation.
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Figure 16. Sentiment rankings.
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Appendix A

Table A1. Friedman results: Algorithms—Shift 1.

MAE MAPE R2

Method Friedman Score Method Friedman Score Method Friedman Score

1st LSTMPlus 8.266667 RNN_FCN 10.4 TCN 22.4
2nd LSTM 8.533333 GRU_FCN 10.53333 LSTMPlus 21.13333
3rd TCN 9.466667 TCN 11 LSTM 20.6
4th GRU_FCN 10 LSTM_FCN 11.2 GRU_FCN 20.53333
5th LSTM_FCN 10.2 GRU_FCNPlus 11.6 LSTM_FCN 19.73333
6th RNN 10.73333 RNN_FCNPlus 11.73333 LSTM_FCNPlus 19.13333
7th RNN_FCN 11.13333 RNN 11.93333 GRU_FCNPlus 18.93333
8th GRU_FCNPlus 11.33333 ResCNN 12.13333 RNN_FCN 18.93333
9th XCM 11.33333 LSTM_FCNPlus 12.13333 RNN 18.93333

10th LSTM_FCNPlus 11.4 FCNPlus 12.46667 XCMPlus 18.66667
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Table A1. Cont.

MSE RMSE RMSLE

Method Friedman Score Method Friedman Score Method Friedman Score

1st TCN 9 LSTMPlus 9.066667 TCN 7.733333
2nd GRU_FCN 9.266667 LSTM 9.6 LSTMPlus 9.333333
3rd LSTMPlus 9.6 GRU_FCN 9.6 LSTM 9.8
4th LSTM_FCN 9.8 TCN 9.733333 GRU_FCN 10
5th LSTM 9.933333 LSTM_FCN 10.06667 LSTM_FCN 10.2
6th RNN_FCN 10.33333 RNN_FCN 10.93333 RNN 11.13333
7th LSTM_FCNPlus 10.46667 LSTM_FCNPlus 11.06667 GRU_FCNPlus 11.26667
8th GRU_FCNPlus 10.8 RNN 11.13333 RNN_FCN 11.26667
9th RNN_FCNPlus 11.33333 GRU_FCNPlus 11.2 LSTM_FCNPlus 11.26667
10th FCNPlus 11.46667 RNN_FCNPlus 11.86667 GRU 12

Table A2. Friedman results: Algorithms—Shift 7.

MAE MAPE R2

Method
Friedman

Score
Method

Friedman
Score

Method
Friedman

Score

1st TCN 3.733333 TCN 6.133333 TCN 25.86667
2nd TSTPlus 8.266667 XCMPlus 9.866667 TSTPlus 25.8
3rd XCMPlus 8.866667 RNNPlus 10.93333 XceptionTimePlus 19.7
4th XCM 10.53333 TSTPlus 11 XCMPlus 19.66667
5th RNN_FCNPlus 12.06667 RNN 11.06667 XceptionTime 19.53333
6th GRU_FCNPlus 12.13333 XCM 11.26667 XCM 18.53333
7th RNN_FCN 12.26667 LSTMPlus 13 RNN_FCN 16.9
8th GRU_FCN 13.2 GRU 13.66667 GRU_FCNPlus 16.66667
9th RNN 13.53333 ResCNN 13.86667 InceptionTime 16.5
10th LSTM_FCNPlus 13.53333 LSTM 14.06667 RNN_FCNPlus 16.16667

MSE RMSE RMSLE

Method
Friedman

Score
Method

Friedman
Score

Method
Friedman

Score

1st TCN 3.666666667 TCN 3.933333333 TCN 3.8
2nd TSTPlus 8.733333333 TSTPlus 8.066666667 TSTPlus 8.066666667
3rd XCMPlus 8.933333333 XCMPlus 9.066666667 XCMPlus 9.4
4th XCM 11.93333333 XCM 10.8 XCM 10.06666667
5th RNN_FCNPlus 12.06666667 RNN_FCN 12.26666667 RNN 12.13333333
6th RNN_FCN 12.2 RNNPlus 12.8 RNNPlus 12.46666667
7th GRU_FCNPlus 12.6 RNN_FCNPlus 12.86666667 RNN_FCN 12.66666667
8th LSTM_FCNPlus 13 GRU_FCNPlus 13 GRU_FCNPlus 12.86666667
9th RNN 13.26666667 RNN 13.06666667 RNN_FCNPlus 13.06666667
10th FCN 13.4 LSTMPlus 13.66666667 GRU_FCN 14.06666667
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Table A3. TFriedman results: Algorithms—Shift 14.

MAE MAPE R2

Method Friedman Score Method Friedman Score Method Friedman Score

1st TCN 6 TCN 8.2 TCN 25.33333333
2nd TSTPlus 8 TSTPlus 9.466666667 TST 21.6
3rd XCMPlus 10.4 RNN 9.533333333 TSTPlus 20.8
4th XCM 11.33333333 RNNPlus 9.666666667 XceptionTime 18.9
5th RNNPlus 11.86666667 XCMPlus 10.6 XCMPlus 17.96666667
6th LSTMPlus 11.93333333 LSTM 10.86666667 XceptionTimePlus 17.7
7th LSTM 12.13333333 XCM 11 RNNPlus 17.53333333
8th RNN 12.46666667 LSTMPlus 11.73333333 OmniScaleCNN 17.13333333
9th LSTM_FCNPlus 13.46666667 GRUPlus 13.13333333 LSTM 17.03333333

10th GRU_FCN 14.46666667 TST 13.8 RNN 16.93333333

MSE RMSE RMSLE

Method Friedman Score Method Friedman Score Method Friedman Score

1st TCN 7.8 TCN 7.133333333 TCN 4.133333333
2nd TSTPlus 7.8 TSTPlus 7.6 TSTPlus 7.466666667
3rd XCM 10.13333333 XCM 10.46666667 XCMPlus 10
4th XCMPlus 10.6 XCMPlus 10.86666667 XCM 10.2
5th RNNPlus 10.86666667 RNNPlus 10.86666667 RNNPlus 10.73333333
6th LSTM 11.6 LSTMPlus 11.93333333 RNN 11.73333333
7th LSTMPlus 11.86666667 LSTM 12.06666667 LSTM 13.26666667
8th RNN 12.53333333 RNN 12.4 LSTMPlus 13.33333333
9th LSTM_FCNPlus 13.53333333 LSTM_FCNPlus 13.46666667 LSTM_FCNPlus 13.8
10th FCN 14.93333333 TST 14.73333333 InceptionTime 14.13333333

Appendix B

Appendix B.1

Please use the abbreviation table below to read the corresponding results of the
Friedman Ranks.

Table A4. Feature Setups and Abbreviations.

No. Abbreviation Feature Setup

1 U Univariate
2 B Blob
3 V Vader
4 F Finbert
5 RM7C Rolling Mean 7 Closing Value
6 RM14C Rolling Mean 14 Closing Value
7 RM7B Rolling Mean 7 Blob
8 RM14B Rolling Mean 14 Blob
9 RM7V Rolling Mean 7 Vader
10 RM14V Rolling Mean 14 Vader
11 RM7F Rolling Mean 7 Finbert
12 RM14F Rolling Mean 14 Finbert
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Appendix B.2

Table A5. Friedman results: feature setups—Shift 1.

MAE MAPE R2

Feature Setup Friedman Score Feature Setup Friedman Score Feature Setup Friedman Score

1st B_RM7B 19.73333 V_F 19.2 U 54.93333
2nd RM7C_F 24.13333 B_RM7B 20.06667 RM7F 50.53333
3rd RM7F 24.53333 B_V 21.8 RM14C 47.8
4th V_F 25.33333 RM7F 24.8 RM7C_RM7F 47.73333
5th RM7C_B 26.8 RM7C_F 26.93333 RM7C 47.13333
6th B_V 27.26667 F_RM14V 27.2 RM14F 46.4
7th B 28.4 RM7B_RM14V 28.13333 RM7C_B 45.86667
8th RM7F_RM14F 28.4 RM7B_RM14F 28.2 RM7C_F 43.6
9th RM14F 30 RM7C_RM14B 28.26667 B 43.4
10th B_RM14V 30 B_RM14V 29.2 RM7C_RM14C 43.13333

MSE RMSE RMSLE

Feature Setup Friedman Score Feature Setup Friedman Score Feature Setup Friedman Score

1st B_RM7B 21 B_RM7B 20.6 B_RM7B 20.93333
2nd V_F 21.06667 RM7F 24.13333 RM7C_F 21.86667
3rd B_V 22.66667 RM7C_F 24.2 B 24.8
4th RM7C_F 24.6 RM7C_B 26.13333 V_F 25.66667
5th RM7F 25.4 V_F 26.26667 RM7C_B 26.26667
6th B_RM14V 27.13333 B_V 28.26667 RM7C_RM14B 26.4
7th F_RM14V 27.73333 B 28.6 U 26.4
8th RM7B_RM14V 28.2 RM7F_RM14F 28.86667 RM7F 26.8
9th B_RM7F 28.4 RM7C_RM7B 29.06667 RM7C 27.53333
10th V_RM7V 28.6 RM7C_RM14B 29.13333 B_V 29

Table A6. Friedman results: feature setups—Shift 7.

MAE MAPE R2

Feature Setup Friedman Score Feature Setup Friedman Score Feature Setup Friedman Score

1st B_RM7B 21.53333 V 22.33333 U 55.06667
2nd V 22.8 RM14F 24.8 RM14C 54.93333
3rd RM7B 24.46667 B_RM7B 25.2 RM7C 54
4th U 24.86667 V_RM7V 25.93333 RM7C_RM7V 49.33333
5th RM7V 25.33333 RM7B 26.33333 RM7C_RM14C 47.23333
6th RM14F 25.53333 RM7C_B 26.66667 RM14C_RM14F 45.46667
7th RM7C_B 25.86667 RM7C_RM14F 26.8 RM14C_B 45.33333
8th RM7C_RM7F 26.66667 RM7F_RM14F 27.53333 RM7C_RM14F 45.26667
9th RM7F 26.86667 U 27.73333 RM14F 45.13333

10th B 27.13333 V_RM14V 27.93333 RM14C_RM7V 44.93333

MSE RMSE RMSLE

Feature Setup Friedman Score Feature Setup Friedman Score Feature Setup Friedman Score

1st V 21.93333 U 22.73333 U 17.6
2nd B_RM7B 23.13333 V 23.13333 RM7C_RM14F 21.13333
3rd RM7V 24 B_RM7B 23.66667 B_RM7B 22.53333
4th V_RM7V 24.8 RM7B 24.46667 RM14F 22.73333
5th RM7B 25.53333 RM14F 24.93333 V 23.2
6th RM14F 26.73333 RM7V 25.4 RM7F 24.46667
7th U 27.2 RM7C_RM7F 25.8 RM7C_RM7F 25.73333
8th RM7C_RM7F 27.73333 RM7C_B 25.93333 RM7C_B 26.4
9th B 27.86667 RM7C_RM14F 26.6 RM14C_RM7B 26.73333
10th RM7C_B 27.93333 RM7F 27.2 B 26.86667
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Table A7. Friedman results: feature setups—Shift 14.

MAE MAPE R2

Feature Setup Friedman Score Feature Setup Friedman Score Feature Setup Friedman Score

1st RM7C_B 17.46667 RM7C_B 18.53333 RM14C 50.5
2nd RM7C_V 21.53333 RM14C_B 22.2 RM7C 48.9
3rd RM14C_B 22.26667 RM7C_V 22.93333 U 48.76667
4th RM7C 22.26667 RM7F_RM14F 23.73333 RM14C_RM7F 48.16667
5th U 23.73333 B_RM7V 24.2 RM14C_RM7B 46.83333
6th B_RM7V 23.8 V 25.6 RM7C_RM7B 46.06667
7th V 24.46667 RM7C_F 26.33333 RM7C_RM7F 45.76667
8th RM7C_F 24.86667 V_RM14F 27.4 RM7C_RM14C 45.56667
9th RM7B 25.86667 RM7C 27.66667 RM7F 43.83333
10th RM14B 27.33333 RM7B 28.13333 RM14C_F 43.36667

MSE RMSE RMSLE

Feature Setup Friedman Score Feature Setup Friedman Score Feature Setup Friedman Score

1st RM7C_B 18.26667 RM7C_B 15.86667 RM7C 13.8
2nd RM7C_V 21.26667 RM7C 20.33333 RM7C_B 16
3rd B_RM7V 21.6 RM14C_B 21.26667 RM14C_B 21.06667
4th RM14C_B 23.86667 RM7C_V 21.4 U 22.33333
5th V 25.06667 U 22.8 RM7C_F 24.13333
6th RM7B 25.86667 RM7C_F 24 RM14B 24.33333
7th RM7C 26.2 V 24.06667 B_RM7V 25.06667
8th RM7C_F 26.26667 B_RM7V 24.46667 RM7C_V 26.06667
9th RM7B_RM7F 26.33333 RM7B 26 V 26.26667

10th RM7B_RM7V 26.66667 RM7C_RM14C 26.2 RM7B 26.46667
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Abstract: We introduce a new non-black-box method of extracting multiple areas in a high-dimensional
big data space where data points that satisfy specific conditions are highly concentrated. First,
we extract one-dimensional areas where the data that satisfy specific conditions are mostly gathered
by using the Bayesian method. Second, we construct higher-dimensional areas where the densities of
focused data points are higher than the simple combination of the results for one dimension, and
then we verify the results through data validation. Third, we apply this method to estimate the
set of significant factors shared in successful firms with growth rates in sales at the top 1% level
using 156-dimensional data of corporate financial reports for 12 years containing about 320,000 firms.
We also categorize high-growth firms into 15 groups of different sets of factors.

Keywords: variable selection; feature selection; high-growth firms; Bayesian method; big data

1. Introduction

We consider the general problem of extracting areas in a high-dimensional data space
where points that satisfy specific conditions are concentrated. Generally, as factors as-
sociated with a specific condition are often unknown, we use the most available factors
and examine their relevance to a particular condition [1]. However, the majority of the
factors used are irrelevant or redundant, resulting in problems such as reduced accuracy
of the analysis and increased analysis time [1,2]. Therefore, we are reducing the number
of variables, a process called variable selection. Variable selection has various advantages,
such as accuracy increase, analysis time reduction, and overfitting avoidance [2–4]. Many
models have been proposed for this variable selection and used in various fields [4–6]. In
recent years, machine learning models have been used to improve the accuracy of variable
selection. For example, Genuer used random forests [7] to select significant variables in
high-dimensional classification problems [8]. Grandvalet proposed a model that automati-
cally performs relevance judgments and feature selection on support vector machines [9]
and showed its effectiveness in facial expression recognition tasks [10]. However, machine
learning models also have disadvantages; for example, generally their results are difficult
to understand logically due to the complexity of these models and their black-box struc-
ture [11,12]. In addition, to the best of our knowledge, a general method for exhaustively
extracting areas where the data that satisfy specific conditions are highly concentrated has
not been established in the study of big data.

In this paper, we propose a new method based on a non-black-box model to solve this
general problem. We use indicators calculated using the Bayesian method and Szymkiewicz-
Simpson coefficient as evaluation measures for variable selection and extraction of pairs of
variables, respectively. The Bayesian method is a data analysis method that uses existing
information [13,14]. This point differs from the likelihood method and gives the advantage
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of more flexible model assumptions and facilitating statistical inference even for complex
problems [15,16]. We use the Bayesian method, which is used in various fields, including
ecology and seismology [14,15,17–19], to construct the posterior distribution of a specific
indicator. Then we use the lower limit of the confidence interval as a new indicator for
the evaluation measure. As a basic tool of data analysis, we introduce the Szymkiewicz–
Simpson coefficient, which quantitatively evaluates the degree of overlap between two
sets [20].

In this study, we analyze the factors that contribute to a firm’s high growth as an
example of the application of this model. Firm growth is significant and attracts the
attention of investors and banks [21,22]. Demirgüç-Kunt clarified that a firm’s growth is
related to the financial and legal system [23]. Baum extracted venture growth factors with
structural equation modeling and data on 17 predictor variables [24]. We analyze the factors
of a firm’s growth using machine learning models in recent years. Van Witteloostuijn and
Kolkman analyzed the factors that contribute to a firm’s growth using random forests [25].
Among them, the phenomenon of high growth is heterogeneous, and Delmar showed that
it can be classified into seven groups via cluster analysis [26]. Coad forecasted high-growth
firms with Lasso [27], a machine learning model [28]. We identify high-growth patterns
using our model and verify them with Delmar’s and Coad’s results.

The remainder of this paper is organized as follows. Section 2 explains the dataset
and defines each firm’s growth rate in sales and high-growth firms. Section 3 describes the
mathematical basis used in this methodology and methods. We first determine the posterior
distribution of the probability that a firm will grow high within a particular area using
the Bayesian method and then define the existence probability of high-growth firms. We
also provide proof of the formulas used in Section 4 and the subsequent sections. Section 4
describes step-by-step the results of the method and classifies the high-growth firms into 15
groups based on different factors. In Section 5, we discuss the advantages, considerations,
concerns, comparison with previous studies, and indicators of analysis. Finally, Section 6
describes our results and the potential applications of our method.

2. Data

In this study, we use the corporate financial dataset provided by TEIKOKU DATA-
BANK, Ltd. (TDB). In Japan, companies often ask a third-party corporate credit research
organization to obtain information about a firm when they are looking for new business
partners to expand sales or to check the business condition of existing business partners.
TDB is one of the largest corporate credit research providers in Japan and has been provid-
ing corporate credit research for more than a century [29]. In this study, we use 12 years of
data from 2005 to 2016 with sales data existing for the next three years contained in this
corporate financial dataset. The data include about 320,000 firms with 1.7 million data
points. The first 10 years of the 12 years of data are used for the analysis, and the remaining
2 years are used for validation. Note that the dataset is not complete, and some financial
items are missing in some firms. In such cases, we simply neglect missing items in our
analysis. As a result, the number of firms in each financial item becomes equal to the total
number of firms minus the number of missing data for the item.

We focus on the rate of increase in sales for each firm, which is defined by the following
equation:

Growth rate in sales =
Current sales after 3 years

Current sales
(1)

In this paper, we define high-growth firms as ones whose growth rate is in the top 1%
of all firms in each analysis or verification data. Specifically, a high-growth firm has a
growth rate of 4.913 times or higher for the analysis data and 4.428 times or higher for
the validation data. We use our method to extract the conditions commonly satisfied by
these high-growth firms in financial items. We exclude financial items that have a very
strong correlation (correlation coefficient of higher than 0.95) with the current sales used in
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the definition of growth rate in sales to avoid false correlations. We consider 156 financial
items, such as the capital and current ratio in general.

To verify whether high-growth firms are dense not by coincidence, we randomly
shuffle the 10 years of data from 2005 to 2014 for comparison. Namely, we create five
sets of randomly shuffled data by using the command “shuffle” in Python for each of the
156 financial items with pseudorandom numbers generated by PCG64 [30].

We apply our method explained in the following Section 3 to the 10 years of real data
and the five sets of randomly shuffled data.

3. Method

In this section, we explain the definition of the existence probability of high-growth
firms used in the analysis and show how to calculate the existence probability of high-
growth firms when the conditions are independent (in Section 3.1). We describe the
analytical procedure of our method (in Section 3.2).

3.1. Mathematical Basis

Let q be the existence probability of high-growth firms in a specific area J, a be
the number of high-growth firms, and b be the number of non-high-growth firms. The
probability of occurrence conditioned by q, f (a, b|q), fulfills the following equation:

f (a, b|q) =
(

a + b
a

)
qa(1 − q)b (2)

Then, using Bayesian analysis with the prior distribution π(q), the posterior distribution
π(q|a, b) of q conditioned by a and b is given as follows:

π(q|a, b) =
π(q) f (a, b|q)∫ 1

0 π(q) f (a, b|q)dq
(3)

Here, we use the conjugate prior π(q) ∝ qα(1 − q)β, which is a beta distribution with
parameters α + 1 and β + 1, for the prior distribution of binomial distribution to re-
duce computational effort during the analysis. In addition, we condition that E[q|a = 0,
b = 0] = r and α + β = 0; that is the expectation of probability q in the case of no sample
data is equal to r = 0.01. Then, α = −β = 2r − 1, and π(q|a, b) is obtained as follows:

π(q|a, b) =
Γ(a + b + 2)

Γ(a + 2r)Γ(b − 2r + 2)
qa+2r−1(1 − q)b−2r+1 (4)

From this posterior distribution, we estimate the lower bound of the probability of the
existence of high-growth firms with a 99% confidence interval. That is, we regard the
existence probability in the area J with a and b by the value of y, which is determined by
solving the following equation, the inverse of the regularized incomplete beta function.

r =
Γ(a + b + 2)

Γ(a + 2r)Γ(b − 2r + 2)

∫ y

0
qa+2r−1(1 − q)b−2r+1dq (5)

We apply this 99% confidence value for the extraction of one to multi-dimensional areas.
Here, we prove the basic equation, which is used in the following sections for the

extraction of two- or higher-dimensional areas. We consider particular conditions 1 to n and
let A1 to An be flag variables that specify these conditions. For example, An = 1 implies
that condition n is fulfilled. In addition, let X be a flag variable that indicates whether
high growth has occurred. We assume that A1 to An are independent of each other and
also independent under the condition of X = 0, namely, for non-high growth cases. The
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probabilities of satisfying the conditions from 1 to n, P(A1 = 1, A2 = 1, . . . , An = 1), and
from 1 to n under X = 0, P(A1 = 1, A2 = 1, . . . , An = 1|X = 0), are given as follows:

P(A1 = 1, A2 = 1, . . . , An = 1) =
n

∏
i=1

P(Ai = 1) (6)

P(A1 = 1, A2 = 1, . . . , An = 1|X = 0) =
n

∏
i=1

P(Ai = 1|X = 0) (7)

Then, under the conditions from 1 to n fulfilled, the existence probability of high-growth
firms P(X = 1|A1 = 1, A2 = 1, . . . , An = 1) can be calculated using these equations with
Bayes’ formula as follows:

P(X = 1|A1 = 1, A2 = 1, . . . , An = 1) = 1 − ∏n
i=1 1 − P(X = 1|Ai = 1)
(1 − P(X = 1))n−1 (8)

3.2. Method

We consider the financial data as a distribution of points in a 156-dimensional space
with 156 financial items as variables and then search for areas with high concentra-
tions of points of high-growth firms. Figure 1 shows an image of this model if it were
two-dimensional.

Figure 1. Schematic of our method if it were two-dimensional. The red dots represent high-growth
firms, the blue dots represent non-high-growth firms, and the orange and green boxes are the areas to
be extracted as high density areas.

Our analysis involves five steps:

Step1 Extraction of one-dimensional areas for each financial item;
Step2 Reduction of areas containing similar data points;
Step3 Extraction of two-dimensional areas;
Step4 Extraction of higher-dimensional areas;
Step5 Grouping.

3.2.1. Step1. Extraction of One-Dimensional Areas for Each Financial Item

In Step1, we extract high-concentration areas of high-growth firms in one dimen-
sion. A schematic of this step is presented in Figure 2. First, we project the points in a
156-dimensional space onto a single coordinate axis. Second, we segment the data into
non-overlapping intervals, including at least 5% of the data. Third, in each separated area,
we calculate the existence probability of high-growth firms using Equation (5) with the
numbers of high-growing and non-high-growth firms. Subsequently, we extract areas
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where the existence probability is higher than 0.01 with the 99% confidence. It should
be noted that the proportion of high-growth firms in each financial item depends on the
number of missing data, and there are items whose whole proportions of high-growth
firms exceed 0.01. For such financial items, we set the threshold values of extraction by the
value of the whole proportion for each item instead of 0.01. The schematic of the procedure
up to this point is presented in Figure 2a. In this case, four areas are extracted: [a, b), [b, c),
[f, g), and [h, i).

When multiple areas are extracted in one dimension, we check the possibility of
combining the areas. The schematic of this procedure is presented in Figure 2b. For the
extracted areas that are adjacent to each other, they are combined, as schematically shown
by the interval [a, c) in Figure 2b. If there is an unselected area in between, as shown
by the interval [g, h) in Figure 2a, the existence probability of high-growth firms in the
connected area is calculated by using Equation (5). If it exceeds 0.01, these areas are merged,
as shown by the interval [f, i) in Figure 2b. This process is continued until no more areas
can be combined.

Figure 2. Schematic of Step1. (a) We divide the axis into non-overlapping segmented areas where
at least 5% of the data points are included. For each area, we calculate the existence probability
using Equation (5), and if it is higher than 0.01, the area is colored in red. In this case, four areas are
extracted: [a, b), [b, c), [f, g), and [h, i). (b) We merge neighboring areas into one area as shown for
[a, c), and [f, i) if the merged area’s existence probability is higher than 0.01.

3.2.2. Step2. Reduction of Areas Containing Similar Data Points

In Step2, we reduce overlapping areas, which are extracted in Step1 based on the
similarities defined below. Let us denote the set of firms in area A extracted from financial
item ã as Ã. Note that the whole space is 156-dimensional, and this area is defined by
the restricted range only for item ã; thus, all other items can take any value in this set. If
another item b̃ is similar to item ã, then firms B̃ in the extracted area B may overlap with
Ã. For a quantitative evaluation of such overlap, we introduce the Szymkiewicz–Simpson
coefficient defined as follows:

Szymkiewicz − Simpson coe f f icient =
|Ã ∩ B̃|

min(|Ã|, |B̃|) (9)

We calculate this indicator for all combinations of two areas chosen from the areas extracted
in Step1 and observe the cumulative distribution function of this indicator. From the shape
of the distribution, we introduce a threshold value of this indicator and delete these areas
with higher indicators than the threshold. Detailed processes are discussed in Section 4.2.

3.2.3. Step3. Extraction of Two-Dimensional Areas

In Step3, we extract the two-dimensional areas where the existence probability of
high-growth firms is higher. Subsequently, we calculate the existence probability of high-
growth firms for all two-dimensional areas characterized by the direct product of the two
conditions chosen from the areas after Step2. When the probability of a two-dimensional
area estimated by using Equation (5) is less than that calculated using Equation (8), which
assumes the independence of two financial items, then the two-dimensional area is aborted.
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3.2.4. Step4. Extraction of Higher-Dimensional Areas

In Step4, we extract high-dimensional areas where the existence probability of high-
growth firms is higher than the value of independent direct products estimated using
Equation (8). For the two-dimensional area chosen in Step3 with the highest existence
probability of high-growth firms, we add another one-dimensional condition that is chosen
from Step2 and not already used in two-dimensional conditions. For all conditions in
Step2, we calculate the existence probabilities of the combined three-dimensional areas
using Equation (5) and choose the case that provides the highest existence probability of
high-growth firms. If this probability is higher than the value estimated using Equation (8)
and the existence probability of high-growth firms before adding the condition, then we
assume that the new three-dimensional area’s density of high-growth firms is significantly
higher than the case of independent direct products. Thus, we adopt this three-dimensional
area. If this condition is not fulfilled, then the two-dimensional area condition is kept
two-dimensional. We proceed to the process for the 2nd candidate of the two-dimensional
area chosen in Step3 and repeat the same procedure, followed by the 3rd and 4th, etc.,
to all two-dimensional candidates. For the newly adopted three-dimensional area, we
add another one-dimensional condition chosen from Step2 as before and construct four-
dimensional areas. We find the case that provides the highest existence probability of
high-growth firms. Similarly, if the probability estimated using Equation (5) is higher
than the value of Equation (8), we adopt the four-dimensional area. These processes of
finding higher-dimensional areas are completed if there remains no combination of a higher-
dimensional area that satisfies a certain condition; that is the probability of high-growth
firms estimated using Equation (5) exceeds the value of Equation (8), and the existence
probability of high-growth firms is higher than before the condition is added.

For the areas obtained in these processes, we verify whether the existence probability
of high-growth firms is also increased in the data for validation. The procedure is used
to add conditions in the same order as the conditions for the areas obtained in these
processes until the existence probability of high-growth firms stops increasing. Using
this procedure, we examine the validity of the obtained higher-dimensional areas and
select high-dimensional areas that are non-local and have a high existence probability of
high-growth firms. For the selected areas, the following process is followed to determine
the areas of focus:

1. Remove high-dimensional areas that have the same set of conditions.
2. Remove similar high-dimensional areas where all firms in the area match, despite not

being under the same conditions.
3. If the inclusion relationship is established, remove the area with the smallest number

of firms.

3.2.5. Step5. Grouping

In Step5, we define groups of the high-dimensional areas selected in Step4 using
hierarchical clustering using the Ward method [31] with the measure of the dissimilarity
between areas given as follows:

dissimilarity = 1 − |À ∩ B̀|
min(|À|, |B̀|)

(10)

where À and B̀ are groups of high-growth firms belonging to areas A and B, respectively.
We set the dissimilarity threshold to a value where most high-dimensional areas in the
same group contain the same condition. The detailed process is discussed in Section 4.5.

4. Results

We define the abbreviated names for commonly used financial items, conditions, and
units in Table 1.
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Table 1. Abbreviated names of items, units, and indicators.

Abbreviated Name Item Name

OIR Ordinary income to revenue ratio
CLR Current liabilities to revenue ratio
OITC Ordinary income to total capital ratio

LR Liabilities to revenue ratio
NIR Net income to revenue ratio

CACL Current assets to current liabilities ratio
LACL Liquid assets to current liabilities ratio
CGSR Cost of goods sold to revenue ratio
GPE Gross profit per employee
TCR Total capital to revenue ratio
FAR Fixed assets to revenue ratio
FAFL Fixed assets to fixed liability ratio
NOLR Non-operating loss to revenue ratio

IR Inventories to revenue ratio
CAR Current assets to revenue ratio
APR Accounts payable to revenue ratio
ARR Accounts receivable to revenue ratio
PPER Property, plant and equipment to revenue ratio
NCLR Not current liabilities to revenue ratio

DR Depreciation to revenue ratio
CFS Compared to all firms in the same industry
IC Industry comparison
DT After discounting and transferring
DA In data for analysis
DV In data for verification

NAE-nD Number of areas extracted in n-D
NDEHA Number of dimensions of each high-dimensional areas

NC Number of conditions
NF Number of firms

NHF Number of high-growth firms
EPHF Existence probability of high-growth firms

M Months
T Thousands of yen

4.1. Extraction of One-Dimensional Areas for Each Financial Item

Step1 extracted 197 areas of 143 financial items. The top five areas with the highest
existence probability of high-growth firms are presented in Table 2.

Table 2. Top five areas in the 197 areas of 143 financial items extracted in Step1. The extracted areas are
from lower to upper limits. The lower and upper limits are denoted by percentage points within the
financial item. The existence probability of high-growth firms (EPHF) in an area is calculated using
the number of high-growth firms in the area, the number of all firms in the area, and Equation (5).
The abbreviated names used in this table are defined in Table 1.

Item Name Lower Limit Upper Limit NHF NF EPHF

OIR (CFS) 0.0% 6.7% 4219 96,108 0.042

OIR (IC) 0.0% 6.7% 4206 96,248 0.042

CLR (M) 91.9% 100.0% 4309 117,124 0.036

OITC (IC) 0.0% 6.6% 3509 95,920 0.035

LR (M) 90.8% 100.0% 4650 132,567 0.035

The areas with the first and second highest existence probability of high-growth firms
have a value of about 0.042. This implies that they are more than four times more densely
populated with high-growth firms than normal ones. Two areas were extracted for each of
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the 54 financial items. The distribution of the existence probability of high-growth firms
and details of the areas extracted for one example of those financial items are presented in
Figure 3 and Table 3.

Figure 3. Existence probability of high-growth firms in each of the segmented areas, projected on the
axis of the ratio of net income to sales (before amortization and after tax, %). The horizontal axis is
the quantile from the beginning to the end of the segmented area, and the vertical axis is the existence
probability of high-growth firms within the segmented area. The red dashed line represents 0.01,
the percentage of high-growth firms in the overall area. For this financial item, the orange and green
areas were extracted as the areas with densely populated high-growth firms, and the blue area was
not extracted because it was not densely populated with high-growth firms. For the orange area,
two areas were initially extracted: the 0–5.0% and 15.0–28.9% areas. These two areas and the areas
in between where the existence probability of high-growth firms is low were merged into one area,
as shown in Figure 2b.

Table 3. Two areas extracted in the ratio of net income to sales (before amortization and after tax, %),
orange and green, respectively, in Figure 3. The extracted areas are from lower to upper limits, which
are denoted by percentage points within the financial item. The existence probability of high-growth
firms of an area is calculated using the number of high-growth firms in the area, the number of all
firms in the area, and Equation (5). The abbreviated names used in this table are defined in Table 1.

Area Lower Limit Upper Limit NHF NF EPHF

orange 0.0% 28.9% 7203 417805 0.017

green 94.6% 100.0% 1439 77645 0.017

These orange and green areas are where high-growth firms are about 1.7 times more
dense than normal ones. These areas are the two edges of the financial items, and it is
thought that firms grow high due to different factors.

For validation, we performed the same one-dimensional extraction on five random
data. We extracted 11, 11, 12, 13, and 13 areas, respectively. No multiple areas were
extracted within a single financial item. The area with the highest existence of high-growth
firms in these areas was about 1.08 times more dense than normal ones. These areas are
used in Step2.

4.2. Reduction of Areas Containing Similar Data Points

Similar areas were deleted in Step2 for the 197 areas of 143 financial items extracted
in Step1. The result of calculating Equation (9) for all combinations of the 197 areas is
presented in Figure 4.
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Figure 4. Cumulative distribution function of the values calculated for all combinations by using
Equation (9). The horizontal axis is the value of the Szymkiewicz–Simpson coefficient, and the vertical
axis is the cumulative distribution. The red dashed line represents 0.825, where the shape of the
cumulative distribution function changes. This value was used as the threshold value.

Figure 4 shows that the cumulative distribution function changes its slope around
when the value of the Szymkiewicz–Simpson coefficient is 0.825. This value was used as the
threshold value. In the combination of areas where the value of the Szymkiewicz–Simpson
coefficient is greater than this value, the area with the smallest existence probability of
high-growth firms was deleted. For example, the combination of an area with a turnover
of current debt (months) of 7.44 or higher and an area with an increase/decrease in an
investment of less than 0 (thousands of yen) resulted in a Szymkiewicz–Simpson coefficient
value of 0.916. Therefore, we compared the existence probability of high-growth firms and
removed the area with an investment volume of less than 0 (thousands of yen), which was
a lower area. We finally extracted 67 areas of 51 financial items.

For the five random data, the highest Szymkiewicz–Simpson coefficient was about 0.24
in the combination obtained from the areas of financial items obtained in each. Considering
that this is smaller than the threshold value of 0.825 in the data for analysis and that no
similarity exists among the financial items and among the areas as the data were randomly
shuffled, none of the areas were removed. The 11, 11, 12, 13, and 13 areas obtained in Step1
were used in Step3–Step5.

4.3. Extraction of Two-Dimensional Areas

The 67 areas of 51 financial items extracted in Step2 were used to extract the two-
dimensional areas. We checked all possible combinations, and the top five two-dimensional
areas with the highest existence probability of high-growth firms are presented in Table 4.

In the two-dimensional area where the existence of high-growth firms is in the first
and second places, high-growth firms are about 20 times more dense than normal ones.
Table 4 displays how many times the existence of high-growth firms is compared to when
the two conditions are independent (Column Ratio), and these five areas are about five
times as high. Therefore, some synergy must exist in the combination of these conditions.
Figure 5 presents the extracted two-dimensional area of the first rank.
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Table 4. Top five two-dimensional areas in Step3. The existence probability of high-growth firms of
an area is calculated using the number of high-growth firms in the area, the number of all firms in the
area, and Equation (5). The ratio in this table is the existence probability of high-growth firms in two
dimensions divided by the existence probability of high-growth firms calculated given that the two
conditions are independent using Equation (8). The abbreviated names used in this table are defined
in Table 1.

Item Name EPHF(1D) Item Name EPHF(1D) EPHF(2D) Ratio

CLR (M) 0.036 CACL (%) 0.013 0.199 5.142

CLR (M) 0.036 LACL (%) 0.012 0.196 5.232

CSGR (%) 0.025 GPE (T) 0.020 0.177 5.147

TCR (M) 0.022 FAR (M) 0.019 0.174 5.647

FAFL (%) 0.024 FAR (M) 0.023 0.173 4.702

Figure 5. Extracted two-dimensional area of the first rank. The vertical and horizontal axes are
divided by the current liabilities to revenue ratio (months) and the current assets to current liabilities
ratio (%), respectively. The size of the circle represents the number of firms in the area, and the radius
is scaled in a logarithmic scale. The colors of the circles represent the proportion of high-growth firms
in the area. It is drawn in the order of yellow, orange, red, brown, and black, starting from the lowest
to the highest. The green box at the right top is the area extracted as the two-dimensional area with
the highest concentration of high-growth firms. The blue box at the left bottom is the area that was
not extracted because the existence probability of high-growth firms in this area is lower than that of
high-growth firms using Equation (8) if the two conditions are independent.

The green box area at the right top in Figure 5 is the area that satisfies the green areas
in the turnover of current debt and the current ratio in the one-dimensional axes. It is
20 times more densely populated with high-growth firms than normal ones. It was also
extracted as a two-dimensional area with the highest existence probability of high-growth
firms. Meanwhile, the blue box area in Figure 5 is the area that satisfies the orange areas
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in the turnover of the current debt and the current ratio in the one-dimensional axes.
The existence probability of high-growth firms in this area is 0.014. This value is lower than
that of high-growth firms when the two conditions are independent, as calculated using
Equation (8). Therefore, this area was not extracted as a two-dimensional area.

We obtain 2211 two-dimensional areas using the 67 conditions used for the 67 areas ex-
tracted in Step2. Among them, we extracted 1036 areas that are more densely concentrated
with high-growth firms than that when the conditions were independent.

For the five random data, we check whether high-growth firms are densely populated
in the two-dimensional areas using the conditions used for the areas extracted in Step2.
The number of areas extracted as areas where the existence probability of high-growth
firms is higher than that of high-growth firms calculated using Equation (8), under the
condition that the two conditions are independent were 3, 4, 6, 7, and 9. Even in the
area with the highest concentration of high-growing firms in any of the random data, the
concentration of highest-growing firms is about 1.7 times the normal concentration. It was
also about 1.5 times higher than when all conditions were independent, indicating no
strong synergistic effect. These two-dimensional areas extracted as densely populated with
high-growth firms in the random data are used in the analysis in step 4.

4.4. Extraction of Higher-Dimensional Areas

For the 1036 two-dimensional areas extracted in Step3, we extract 1036 high-dimensional
areas by repeatedly adding the 67 conditions used in the 67 areas extracted in Step2.
The top two high-dimensional areas that are extracted are presented in Tables 5 and 6.

Table 5. Eight-dimensional area with the first highest existence probability of high-growth firms
among the extracted high-dimensional areas. The ratio in this table is the existence probability of
high-growth firms in the n-dimensional area divided by that of high-growth firms calculated under
conditions where the n-conditions are independent using Equation (8); n is the number of conditions
in the row (Column NC). The abbreviated names used in this table are defined in Table 1.

NC Item Name (Threshold) NHF EPHF Ratio

1 NOLR (%) (≤0) 3715 0.031 1.000
2 IR (M) (≤0) 2447 0.066 1.276
3 CAR (M) (≥10.2) 664 0.161 2.182
4 OITC (IC) (≤2) 217 0.408 4.194
5 GPE (T) (≤2727) 112 0.530 4.984
6 FAR (M) (≥10.19) 40 0.673 5.699
7 APR (M) (≤0) 33 0.748 5.382
8 CLR (M) (≥7.44) 26 0.779 4.837
9 OIR (CFS) (≤2) 26 0.779 4.133

Table 6. Seven-dimensional area with the second highest existence probability of high-growth firms
among the extracted high-dimensional areas. The ratio in this table is the existence probability of
high-growth firms in the n-dimensional area divided by that of high-growth firms calculated under
conditions where the n-conditions are independent using Equation (8); n is the number of conditions
in the row (Column NC). The abbreviated names used in this table are defined in Table 1.

NC Item Name (Threshold) NHF EPHF Ratio

1 ARR (DT) (M) (≤0.25) 4336 0.028 1.000
2 Revenue to total capital ratio (IC) (≤3) 1790 0.058 1.604
3 OITC (IC) (≤2) 550 0.215 3.548
4 PPER (M) (≤0.16) 136 0.475 6.658
5 NCLR (M) (≤0) 92 0.606 7.117
6 Investment and financing returns (%) (≤0.02) 60 0.683 7.272
7 DR (%) (≤0) 37 0.771 7.322
8 OIR (CFS) (≤2) 36 0.765 5.690
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The existence probability of high-growth firms decreased when the 8th and 9th condi-
tions were added to the areas in Tables 5 and 6. Therefore, the areas with the 7th and 8th
dimensions in Tables 5 and 6 were extracted as areas with a high concentration of high-
growth firms. The existence probability of high-growth firms in these high-dimensional
areas is about 0.77. This implies that high-growth firms in these areas are about 77 times
more dense than normal ones. They are also about 5–7 times higher than that when
all conditions were independent. Therefore, we can assume that some synergistic ef-
fects occur in the combinations of these conditions. As shown in Tables 5 and 6, we
extract the high-dimensional areas from the 1036 two-dimensional areas obtained in Step3.
The distribution of the existence probability of high-growth firms in the high-dimensional
areas finally obtained is presented in Figure 6.

Figure 6. Distribution of the existence probability of high-growth firms in the high-dimensional areas.
The vertical axis and horizontal axes are the proportion of 1036 areas and the existence probability of
high-growth firms, respectively. The red line represents 0.01, the percentage of high-growth firms in
the overall area.

As shown in Figure 6, 90% of the 1036 high-dimensional areas were able to extract
areas where the high-growth firms are dense at 30 times or higher than the normal density.
We have also extracted four areas where the high-growth firms are dense at less than three
times the normal density, and all of these areas were two-dimensional ones. Subsequently,
areas with a small number of data are called local ones. These areas became localized
at the two-dimensional level, and no further high-dimensional areas could be extracted.
Our method searched the entire area exhaustively, and the extracted areas include the
local ones.

For the 1036 high-dimensional areas obtained in these processes, we verified whether
the existence probability of high-growth firms is also increased in the data for validation.
The verification procedure is to add conditions in the same order as the conditions for the
areas obtained in these processes until the existence probability of high-growth firms stops
to increase. As specific examples, the results of the verification in the areas of Tables 5 and 6
are presented in the Tables 7 and 8, respectively.

In the validation for both areas, the existence probability of high-growth firms de-
creased when the 5th condition was added. Thus, we confirmed the robustness of the
results up to the four-dimensional area in these areas. In this validation, the existence
probability of high-growth firms in the one-dimensional area in both validation results was
almost the same as that when the data for analysis were used. The existence probability
of high-growth firms in the four-dimensional area when the data for verification were
used was about 0.33 and 0.21 for Tables 7 and 8, respectively. Although these values are
lower than when using the data for analysis, we can assume that high-growth firms are
concentrated at a high density, which cannot be considered coincidental. The reason for
the lower existence probability of high-growth firms in the four-dimensional area, com-
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pared to that for analysis, and the failure of these areas to maintain robustness in the
five-dimensional area can be attributed to the fact that the data for verification are one-fifth
the number of data for analysis. That is the number of high-growth firms in the area at the
four-dimensional area is about 15.7% and 14.0% in Tables 7 and 8 for validation compared
to that for analysis. Thus, the number of high-growth firms in the area is reduced, and
the results are no longer stable and robust in high dimensions. The same verification was
conducted for the remaining 1034 high-dimensional areas. The distribution of the number
of dimensions for which the existence probability of high-growth firms was maximized in
the data for analysis and verification was checked (Figure 7).

Table 7. Validation result for the high-dimensional area of Table 5 with the highest existence prob-
ability of high-growth firms. We add conditions in the same order as in Table 5 until the existence
probability of high-growth firms stops to increase. The abbreviated names used in this table are
defined in Table 1.

NC Item Name Threshold NHF EPHF

1 NOLR (%) ≤0 551 0.031
2 IR (M) ≤0 379 0.064
3 CAR (M) ≥0.122 106 0.074
4 OITC (IC) ≤2 34 0.334
5 GPE (T) ≤2727 10 0.204

Table 8. Validation result for the high-dimensional area of Table 6 with the second-highest existence
probability of high-growth firms. We add conditions in the same order as in Table 6 until the existence
probability of high-growth firms stops to increase. The abbreviated names used in this table are
defined in Table 1.

NC Item Name Threshold NHF EPHF

1 ARR (DT) (M) ≤0.25 680 0.029
2 Revenue to total capital ratio (IC) ≤3 233 0.046
3 OITC (IC) ≤2 79 0.183
4 PPER (M) ≤0.16 19 0.208
5 NCLR (M) ≤0 11 0.207

Figure 7. Distribution of the number of dimensions for which the existence probability of high-growth
firms was maximized in the data for analysis and verification. The vertical and horizontal axes are
the number of dimensions in verification data and analysis data, respectively. The numbers represent
the number of areas with each dimension in the analysis and validation data. The colors indicate that
the darker the red color, the higher the value, i.e., the greater the number of areas.
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The numbers in Figure 7 represent the number of areas with each dimension in the
analysis and validation data. For example, 77 with a vertical axis of 4 and a horizontal axis
of 7 indicates that 77 areas have been extracted in seven-dimensional areas for analysis and
verified to four-dimensional areas. Specifically, the area in Table 5 is contained in 72 with
a vertical axis of 4 and a horizontal axis of 8, and that in Table 6 is contained in 77 with a
vertical axis of 4 and a horizontal axis of 7 in Figure 7. Figure 7 presents that many high-
dimensional areas of more than three dimensions are robust for verification. In addition,
we can observe a relationship whereby the areas with higher dimensionality for analysis
also maintain a higher dimensionality for validation. There was also a 10-dimensional area
for which robustness was confirmed up to nine dimensions for verification. The details of
this area are provided in Table 9.

Table 9. Ten-dimensional area for which robustness was confirmed in up to nine dimensions for
verification. The abbreviated names used in this table are defined in Table 1.

NC Item Name (Threshold) NHF (DA) EPHF (DA) NHF (DV) EPHF (DV)

1 Revenue (T) (≤108,917) 9577 0.032 1253 0.041
2 NOLR (%) (≤0) 3156 0.056 450 0.065
3 CAR (M) (≥10.2) 1046 0.134 143 0.123
4 OITC (IC) (≤2) 338 0.278 51 0.234
5 PPER (M) (≤0.16) 137 0.471 25 0.317
6 LR (M) (≥14.13) 78 0.562 17 0.358
7 NCLR (M) (≤0) 63 0.672 11 0.371
8 Revenue to total capital ratio (IC) (≤ 3) 59 0.691 11 0.404
9 IR (M) (≤0) 37 0.694 10 0.464
10 LACL (%)(≤41.45) 18 0.700 3 0.144
11 OIR (CFS) (≤2) 18 0.700

The area in Table 9 is the area where the high-growth firms are about 70 times more
densely populated than usual for the analysis. This area maintains robustness up to nine
dimensions. In the data for verification, the high-growth firms are about 46 times denser
than usual in this nine-dimensional area. We also extracted high-dimensional areas that
can retain such robustness.

There are 165 areas where the increase in the existence probability of high-growth
firms stops at one-dimensional areas for validation, despite that for analysis they are
high-dimensional areas with six or more dimensions. In addition, in about half of the
1036 high-dimensional areas, an increase in the existence probability of high-growth firms
stopped at three dimensions or less in the data for verification. Therefore, our method
exhaustively searches the entire range and extracts local areas.

In the following, we focus on somewhat larger areas wherein the number of high-
growth firms includes more than 1% (145 firms) of the total number of high-growth firms in
the four-dimensional area in the data for analysis. There were 160 such high-dimensional
areas. The areas in Tables 5 and 9 are included in these 160 areas, but the area in Table 6 is
not. The distributions of the number of dimensions with the maximum existence probability
of high-growth firms in the 1036 high-dimensional areas and the 160 non-local high-
dimensional areas for verification are presented in Figure 8a,b.
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Figure 8. Distribution of the number of dimensions with the maximum existence probability of high-
growth firms for verification. The vertical axis and horizontal axes are the proportion of 1036 areas
in (a) and 160 areas in (b) and the number of dimensions, respectively. (a) In the 1036 high-dimensional
areas. (b) In the 160 high-dimensional areas, which include more than 145 high-growth firms.

As shown in Figure 8, the distribution of the number of dimensions that maximizes
the existence probability of high-growth firms in the data for validation has changed
significantly by narrowing down from 1036 high-dimensional areas to 160 high-dimensional
areas, which include more than 145 high-growth firms. In most of the 160 areas, the number
of dimensions in which the existence probability of high-growth firms is maximized in
data for verification is four-dimensional or higher. Therefore, in these 160 areas, the
robustness can be assumed to be up to four-dimensional. Focusing on these 160 areas,
1–3 in Section 3.2.4 of the method are performed on these areas. The first corresponds to
40 areas, the second to zero areas, and the third to two areas. We finally focused on the
118 four-dimensional areas.

We extracted high-dimensional areas from each of the 29 two-dimensional areas extracted
by the five random data. Consequently, we extracted seven three-dimensional areas and
22 two-dimensional areas. The results using the random data are presented in Table 10.

Table 10. Results using random data. EPHF represents the value of the existence probability of
high-growth firms in the area where the existence probability of high-growth firms is the highest
among the extracted high-dimensional areas.

Data NAE-1D NAE-2D NDEHA EPHF

1 11 3 2, 2, 3 0.0140

2 11 7 2, 2, 2, 2, 2, 2, 3 0.0226

3 12 9 2, 2, 2, 2, 2, 2, 2, 3, 3 0.0161

4 13 4 2, 2, 2, 2 0.0167

5 13 6 2, 2, 2, 3, 3, 3 0.0152

Table 10 shows that we did not extract any high-dimensional areas in any random data.
The area with the highest existence probability of high-growth firms among all the random
data was the area where high-growth firms were 2.3 times more densely populated than
usual. A comparison of the results with the data for analysis indicates that the high-growth
firms are much more densely populated than in the random data. Considering that the
random data extracted a maximum of only nine areas, the data for analysis, which extracted
1036 high-dimensional areas, showed that the high-growth firms were densely concentrated
in many areas. Therefore, we can assume that strong relations exist between high-growing
factors of firms and financial items.
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4.5. Grouping

We define groups of the 118 four-dimensional areas selected in Step4 via hierarchical
clustering with the ward method, Step5. The result is presented in Figure 9.

Figure 9. Dendrogram of the result of hierarchical clustering for the 118 four-dimensional areas.
The vertical and horizontal axes are the dissimilarity defined using Equation (10) and the result
of grouping the 118 four-dimensional areas, respectively. We divided the 118 four-dimensional
areas into 15 groups (Groups 1© to 15©). Four-dimensional areas belonging to the same group have a
common color. For example, Group 1© has green. Groups 2© to 15© are cyclically painted in six colors.

We set the dissimilarity threshold used for grouping in Figure 9 to a value that has a
condition common to most of the grouped four-dimensional areas. Thus, the threshold was
set to 1, except for the one group on the left, which is grouped because 34 of the 36 four-
dimensional areas have the same condition. Finally, we divided the 118 four-dimensional
areas into 15 groups. The conditions common to each of the 15 groups are presented in
Table 11. We focused on Groups 1©, 2©, 12©, and 14©, which are characteristic among the
15 groups.

Here, 34 of the 36 four-dimensional areas in Group 1© have the common condition
of small gross profit per capita (less than 2727). The small value indicates that the firms
in these 34 areas have small sales and poor operating efficiency. The remaining two four-
dimensional areas have the condition that the total capital (compared to all firms in the
same industry) is small (smaller than three) and the turnover of total capital (month) is
large (larger than 17.79). The total capital (compared to all firms in the same industry) is
the value evaluated by TDB and takes the value 0–10. The small value indicates that the
total capital is very small compared to other firms in the same industry. The turnover of
total capital (month) is the value of total capital divided by sales. Specifically, a large value
of that indicates that sales are smaller than the total capital, given that the total capital is
very small. Therefore, these two areas extract firms with very small sales and low efficiency.
Therefore, the 36 four-dimensional areas in Group 1© extract firms with small sales and low
operating efficiency. These firms are considered to have improved their operations and
increased their sales significantly after three years.
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Table 11. Conditions common to each of the 15 groups. The abbreviated names used in this table
are defined in Table 1. If the variables common to a group include those with an alphabet in front
of the variable name, all four-dimensional areas in the group have in common that one or more of
them are satisfied. For example, all four-dimensional areas in Group 5© contain the condition of the
turnover of current assets and one or more of either (a) or (b). If the variables common to a group
include variables with an alphabet with tilde in front of the variable name, all four-dimensional areas
in the group have in common that two or more conditions are satisfied in them. For example, all
four-dimensional areas in Group 15© contain two or more of the conditions ã, b̃, or c̃.

Group Item name Threshold

1© GPE (T) ≤2727

2© ARR (DT) (M) ≥3.86

3©
PPER (M)

(a) Financial account to revenue ratio (%)
(b) DR (%)

≤0.00
≤0.00
≤0.00

4© Cash and deposits to revenue ratio (days)
OITC (IC)

≥130.33
≤2.00

5©
CAR (M)

(a) Interest coverage ratio (times)
(b) Capital to revenue ratio (M)

≥10.20
≤−8.49
≤−0.81

6©
OITC (IC)

(a) CACL (%)
(b) NCLR (M)

(c) Capital to revenue ratio (M)

≤2.00
≤78.68
≤0.00
≤−0.81

7© CAR (M)
Non-operating income to revenue ratio (%)

≥10.20
≥4.62

8© CAR (M)
DR (%)

≥10.20
≤0.00

9©
PPER (M)

(a) TCR (M)
(b) Revenue to total capital ratio (IC)

(c) OIR (CFS)

≤0.16
≥17.79
≤3.00
≤2.00

10© IR (M) ≤0.00

11©
CAR (M)

(ã) Non-operating income to revenue ratio (%)
(b̃) OITC (IC)
(c̃) APR (M)

≥10.2
≤0.00
≤2.00
≤0.00

12© ARR (DT) (M) ≤0.25

13©
CAR (M)

(a) Financial account to revenue ratio (%)
(b) Investment and financing returns (%)

≥10.20
≤0.03
≤0.02

14©
CAR (M)

IR (M)
Non-operating income to revenue ratio (%)

≥10.20
≤0.00
≤0.05

15©
(ã) Total capital (CFS)

(b̃) Investment and financing returns (%)
(c̃) Capital to revenue ratio (M)

≤3
≤0.02
≥8.53

Next, we focus on Group 2© and Group 12©. These two groups are characterized by
different areas of the single variable of the trade receivables (discounted and transferred)
turnover periods (months) as shown in Figure 10. Therefore, there is no firm that belongs
to both Group 2© and Group 12©.
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Figure 10. An example of the relation between the groups and a financial item. Group 2© is char-
acterized by the green area of the item, the accounts receivable to revenue ratio (discounted and
transferred) (months), on the other hand, Group 12© is characterized by the orange area.

We consider what type of firms each group is extracting. Group 2© has in common
the condition that the value of the trade receivables (discounted and transferred) turnover
periods (months) is large. This large value implies that the ratio of trade receivables to
sales is significant. That is, a firm takes a long time to convert its receivables into cash;
thus, firms with insufficient working capital are extracted. In addition, the conditions
that the ratio of ordinary income to total assets (industry comparison), turnover of total
capital (industry comparison), and ratio of ordinary income to net sales (compared to all
firms in the same industry) are bad are extracted together. Thus, we have extracted firms
in Group 2© that do not have enough working capital and whose profitability is worse.
These firms could have improved their operations to afford working capital, which would
have led to higher sales. Group 12© has in common the condition that the value of the
trade receivables (discounted and transferred) turnover periods (months) is small. This
small value indicates that, in contrast to Group 2©, firms in Group 12© can afford working
capital. In addition, the conditions that the ratio of ordinary income to total assets (industry
comparison) and the ratio of ordinary income to net sales (compared to all firms in the same
industry) are bad are extracted together. Therefore, firms in Group 12© with low profitability
were able to use their surplus working capital to increase sales after three years.

Finally, we focused on Group 14©. The shared conditions are presented in Table 11. That
is, these conditions include the absence of inventories, almost no non-operating income,
and very large current assets. In Japan, current assets generally comprise of the following
three elements [32]:

• Liquid assets: Short-term fixed deposits, securities, trade notes receivable, trade
accounts receivable;

• Inventories: Assets expected to sell on to earn revenue from sales of goods, prod-
ucts, etc.;

• Others: Short-term loans receivable.

Short-term fixed deposits are those with a maturity of one year or less from the closing
date. Securities are those with a maturity of one year or less or those held for the short term
for trading purposes. Trade notes receivable are promissory notes received as payment
for transactions with customers. Trade accounts receivable are accounts receivable from
customers for business transactions. Liquid assets are the collective category of these four
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assets. Inventories are assets that decrease in quantity in the short term that are sold to earn
revenue. Short-term loans receivable are loans with a maturity of one year or less from the
closing date. Current assets are collectively liquid assets, inventories, and short-term loans
receivable. Shared conditions indicate that Group 14© firms have large short-term fixed
deposits, trade notes receivable, trade accounts receivable, and short-term loans receivable.
Therefore, these firms have more assets that can be cashed in within a year. In addition,
the conditions of small revenues, small gross profit per employee, and small ordinary
income to revenue ratio are extracted together. Hence, we can assume that the firms in
Group 14© are financially robust and have increased their operating efficiency by making
capital investments, developing human resources, and increasing employment, resulting in
a significant increase in sales after three years.

5. Discussion

We discussed the advantages of using our method. In this study, we first extracted
one-dimensional areas, then deleted similar ones, and finally combined the conditions char-
acterizing those areas to extract higher-dimensional crowded data satisfying specific rules.
Our method has two advantages. The first is the possibility of extracting combinations of
synergistic conditions. In the one-dimensional area extracted in this study, high-growth
firms in the most densely populated area were about four times more densely populated
than usual, and the average was about 1.7 times more densely populated than usual.
However, by combining the conditions, our method can extract areas where the density
of high-growth firms is much higher than when the conditions were independent. For
example, the two-dimensional area with the highest existence probability of high-growth
firms in Table 4 is five times more densely populated with high-growth firms than that
when the conditions are independent. Further, the high-dimensional area with the second
highest existence probability of high-growth firms in Table 6 is seven times more densely
populated with high-growth firms than that when all conditions are independent. Thus,
our method can exhaustively extract combinations that seem to have synergistic effects.

Second, our method can also extract local areas and robust high-dimensional ones.
In this study, we focused on somewhat larger areas to analyze universal factors, but
we also extracted local areas. For example, we extracted the areas on the left side in
Figure 6 where the existence probability of high-growth firms is lower than other extracted
high-dimensional areas. We also extracted the high-dimensional areas at the bottom in
Figure 7 that can only validate up to low dimensions due to insufficient data for verification.
Contrary to this study, we can use our method if we want to focus on local and specific
cases, rather than universal ones. In addition, we can extract localized areas and areas with
robustness. For example, we extracted the high-dimensional area with strong robustness
(Table 9). We can use our method when we want to focus on something universal, as in
this study.

We discussed some of the considerations for this study. After the extraction of high-
dimensional areas, we selected four dimensions as the number of dimensions that could
withstand verification. First, we discussed regarding the extraction of high-dimension areas.
Meanwhile, we extracted the areas of seven or more dimensions, in the data for verification,
more than half of all extracted areas where the increase in the existence probability of
high-growth firms stopped at three dimensions (see Figure 8a). There are two reasons for
this. The first one is that there were cases where the number of firms was small in the
initially extracted areas because our method performed an exhaustive search that includes
local areas. The second one is that the increase in the existence probability of high-growth
firms tends to stop since the data for verification is one-fifth of the data for analysis in
terms of the number of data. Therefore, if it is not a local area, we can increase the number
of dimensions that allow verification by increasing the data for verification to about the
same number as that for analysis. Second, we discussed the number of dimensions that
we used. While increasing the number of dimensions that allow verification by increasing
the data for verification, considering that the area tends to be localized is necessary. In
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this study, to focus on areas where firms universally tend to high growth, we focused on
160 four-dimensional ones where more than 1% of the total number of high-growth firms
existed. Considering that we initially extracted 1036 high-dimensional areas, clearly that our
method can easily extract localized areas. Therefore, determining to what dimensionality
the results should be validated and used as universal results is necessary.

We also discussed some concerns when using our method. In this study, we first
extracted one-dimensional areas, then deleted similar ones, and finally combined the
conditions characterizing those areas to extract higher-dimensional crowded with data
satisfying specific rules. However, if the densification occurs in the way shown in the
following Figure 11a,b, we miss dense areas.

Figure 11. Examples of missing dense areas with this method. The colored areas are where data
that satisfy specific conditions are densely distributed. (a) Example of missing in two dimensions.
(b) Example of missing in three dimensions.

In Figure 11a,b, we divided each axis into three parts. Data satisfying specific con-
ditions were densely populated in the colored areas in these figures. In Figure 11a,
the case of the missing dense area is when the existence probability of data satisfying
specific conditions in areas (1)∼(3), (4)∼(6), and (7)∼(9) is equal. In this case, when
projected onto the Y-axis, we cannot extract the area on the Y-axis. Thus, we cannot
extract the two-dimensional areas (3), (5), and (7). We also consider the case where
(1)∼(3) > (4)∼(6) > (7)∼(9) in terms of the density of data satisfying specific conditions
between areas (1)∼(3), (4)∼(6) and (7) ∼(9). We consider areas (7)∼(9) as the areas where
data satisfying the specified conditions are not dense on the Y-axis, and we cannot extract
area (7). The possibility exists that a similar phenomenon may occur in the third dimension
and beyond. In the case of Figure 11b, as in the previous case, if the existence probability of
data satisfying specific conditions is equal in the three divisions in any of the X-, Y-, and
Z-axis directions, we cannot extract the colored areas in Figure 11b.

We can consider a possible method to address this concern to start focusing on two
or higher dimensions, rather than focusing on one dimension. In a pair that selects two
from all variables, we can address this by dividing the area, calculating the existence
probability of data satisfying specific conditions in each area, and extracting the areas with
a higher density of data satisfying certain conditions than normal ones. In Figure 11a, we
can extract areas (3), (5), and (7) by calculating the existence probability of data satisfying
specific conditions in each of areas (1)∼(9). In Figure 11b, we can extract the colored areas
by calculating the existence probability of data satisfying specific conditions in each of
the 27 areas. Meanwhile, since this method requires considering all variable partitions
and calculating the probability in each of them, we predicted a significant increase in
computational cost. Specifically, we considered the case where we divide each financial
item by 5% as in this study and searched in two dimensions, as shown in Figure 11a,
to avoid missing anything in dense areas. In this case, we divided each financial item
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by a maximum of 20 and considered the 12,090 combinations of selecting two from all
156 financial items. Therefore, it is necessary to calculate the existence probability of data
satisfying specific conditions in a maximum of 400 areas in each combination, totaling a
maximum of about 4.8 million areas. We also considered the case of focusing on three
dimensions, as shown in Figure 11b. We considered the 620,620 combinations of selecting
three from all 156 financial items. Therefore, it is necessary to calculate the existence
probability of data satisfying specific conditions in a maximum of 8000 areas in each
combination, totaling a maximum of about 3 billion areas. Thus, the computational cost
increases exponentially as we increase the number of dimensions that we begin to focus
on. Therefore, we consider this method of addressing this problem when only a few
variables exist. However, even if we searched exhaustively for a specific dimension,
the same problem can occur above that dimension and beyond. Specifically, Figure 11b
shows an example where a miss occurs in some three-dimensional areas, regardless of
whether one starts looking at a one-dimensional or two-dimensional area. Therefore, we
must discuss which dimension to examine exhaustively and which dimension and beyond
to ignore invisible relationships.

We compared some popular existing methods with our method for comparison. In
high-dimensional areas, when data satisfying specific conditions are concentrated in mul-
tiple areas, we call the problem of extracting all areas the multimodality problem. In the
special case that there is only one highly concentrated area in the whole space, we call
it a unimodality problem. For unimodality problems, we can extract the dense area by
using popular methods such as multiple regression analysis or support vector machines.
However, these methods are not suitable for the analysis of high-growth firms in this study,
as we showed in Section 4, there are at least 15 dense areas in the 156-dimensional space.
In addition, other popular methods, neural networks [33], are black-box methods, making
it impossible to interpret the results in terms of important financial items. Random forests
are also popular in big data analysis; however, they are unsuitable for the present problem
of extracting important factors in the form of sets of variables. Our method can extract
the sets of important factors for multimodality problems and is suitable for the analysis of
high-growth firms.

We also compared the factors extracted in this study to Coad’s previous study [28].
In that study, they used cluster analysis, which is strong for multimodality problems, to
analyze the important factors of high-growth firms. Although the high-growth firms in the
previous study are about 2% of the total data, we note that the definitions of high-growth
firms and the variables used are very different. The previous study found that firms with
low inventories, higher previous employment growth, and higher short-term liabilities are
more likely considered high-growth firms. As previous employment growth is excluded
from the financial item of this study, we analyzed other results. We identified the factor of
low inventory as a universal factor in Group 10© and Group 14© of this study (see Figure 9 and
Table 11). We extracted the factor of higher short-term liabilities in the high-dimensional
area of Table 9. Therefore, we can assume that we have extracted the same results as in the
previous studies.

We also compared the factors extracted in this study to that of Delemar’s previous
study [26]. In that study, they used Lasso, which is strong for unimodality problems, to
analyze the important factors involved in forecasting high-growth firms. We note that the
definition of high-growth firms differs from the previous study and the variables used are
also very different. After comparing the results with this assumption, we extracted similar
results to the previous study for increasing employment. In the previous study, increasing
employment was part of the factors for the seven clusters of high-growth firms. The firms
in Group 14© in this study are financially robust and have increased their operating efficiency
by making capital investments, developing human resources, and increasing employment.
Therefore, we believe that the result extracted in this study is similar to the previous one.
The previous study focused on revenue growth. However, in this study, we extracted the
areas that focused on this as localized areas, with the number of high-growth firms being
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less than 100 in any two-dimensional ones. The study was different from previous studies
that extracted revenue growth as universal.

Finally, we analyzed the indicators used in our method. For the 15 groups extracted
using our method, we found the poor operating efficiency for most groups. The possible
reason is that we used the top 1% of all firms in sales growth rate as the definition of
high-growth firms. Firms with approximately four times or higher sales after three years
often have either a pattern; that is, firms with poor operating efficiency have succeeded
in improving their sales or sales are small from the start. Thus, we may need to change
the definition of high-growth firms. In addition, we measured firm growth in this study
using the absolute one in sales over three years. As sales are not a perfect indicator [26],
some studies used the number of employees [21,34] and both the number of employees
and sales [35]. Therefore, discussing which items we should use as a measure of growth
and what should be the definition of a high-growing firm is necessary.

6. Conclusions

We introduced a new non-black-box method of extracting multiple areas in a high-
dimensional big data space where data points that satisfy specific conditions are highly
concentrated. We analyzed high-growth firms in all industries as an example of the
applications in this study. We categorized the high-growth firms into 15 groups of different
sets of factors. Conducting factor analysis of high-growth firms in specific industries or
firms that have gone bankrupt by using this method is feasible. In addition, this method is
not limited to corporate data and can be applied to various fields of analysis, including the
use of medical data for predicting diseases based on genetic changes.
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Abstract: Anticipating and understanding fluctuations in the agri-food market is very important
in order to implement policies that can assure fair prices and food availability. In this paper, we
contribute to the understanding of this market by exploring its efficiency and whether the local Hurst
exponent can help to anticipate its trend or not. We have analyzed the time series of the price for
different agri-commodities and classified each day into persistent, anti-persistent, or white-noise.
Next, we have studied the probability and speed to mean reversion for several rolling windows. We
found that in general mean reversion is more probable and occurs faster during anti-persistent periods.
In contrast, for most of the rolling windows we could not find a significant effect of persistence in
mean reversion. Hence, we conclude that the Hurst exponent can help to anticipate the future trend
and range of the expected prices in this market.

Keywords: efficient market; time series; agri-food; Hurst; market; prices; agriculture

1. Introduction

Financial markets are extremely complex systems with a large number of interacting
units, and anticipating their evolution is far from straightforward. Thus, their study has
attracted the attention of researchers over the past decades.

An active and relevant topic of discussion among researchers is whether or not the
financial market prices display long memory properties. The importance of this question
lies in its consequences for market theories and its predictability. The fact that a market
presents a long time memory implies that prices do not follow a random walk, as there
is autocorrelation, and they are therefore predictable. On the other hand, if there is no
memory, the Efficient Market Hypothesis (EMH) [1,2] cannot be rejected. The EMH was
introduced by Fama in 1970 and states that new information is immediately reflected in
the asset prices and therefore show martingale behavior. According to this theory, price
changes are not related to the historical behavior of price volatility, but represent a response
to new information, and since this arrives randomly, the evolution of prices is unpredictable.
In the current literature there are papers supporting both hypotheses. Several authors have
shown evidence of markets that present long time memory [3–9] whereas other authors
have found evidence supporting the EMH [10–12].

In nature we find several examples of physical systems that do present long time
memory properties, such as radiation or rainfall. Thus, researchers from econophysics,
inspired by the idea that the financial system may share the same properties, have also
attempted to detect trends and patterns in financial time series that can help to anticipate
its trend. This discipline is known as Technical Analysis [13,14].

Due to the high importance of long time memory for the predictability of time series,
there is a clear need for a method that identifies the existence or not of this memory.

Entropy 2023, 25, 579. https://doi.org/10.3390/e25040579 https://www.mdpi.com/journal/entropy72



Entropy 2023, 25, 579

Currently, the Hurst exponent (H) is the most widely used and accepted test to measure
long-term memory properties [10,15]. H is a measure for long term memory and fractality
of a time series that quantifies the degree of persistence of similar change patterns. This
analysis was originally introduced by Hurst in 1951 to study the storage capacity of
reservoirs in the Nile River, taking into account the cyclical trends of the flow, drought
periods, and floods. This work was popularized and extended to other disciplines in the
1960s by Benoit Mandelbrot [16–18], who claimed that this methodology was superior
to the autocorrelation, the variance analysis, and to the spectral analysis. Since then,
several other methods of Hurst calculation have been developed. The best known ones are
Rescaled Range [15], Detrended Fluctuation Analysis [19,20], wavelet transforms [21], and
Generalized Hurst Exponent [22].

H ranges between 0 and 1, and provides information on whether the series presents
long-term or not. If H = 0.5, then each step is independent of the past values of the series.
Thus, there is no memory and the series is equivalent to white noise. Under this setting,
the time series is unpredictable and the EMH is fulfilled. When H ≤ 0.5, the series is
anti-persistent. In this scenario, the series is expected to display ‘mean-reversion’. This
fact implies that increments are generally followed by a decrease, while drops are followed
by an increment. Finally, when H ≥ 0.5, the series is persistent. In a persistent regimen,
the series is more likely to maintain the trend in a broader range than what is expected by
pure random walk. Thus, a rise in the previous step will most likely be followed by another
rise, while a fall will be followed by another fall.

Long-term memory is an important feature of market dynamics with implications
for its predictability. As a consequence, the Hurst exponent has been widely applied
to study the stock, currencies markets, and, more recently, to cryptocurrencies [23,24].
For instance, Di Matteo et al. [12] show how H serves as an index to classify mature and
emergent markets. In the same line of research, Bianchi et al. [25], used the Hurst–Hölder
exponents to detect periods of efficiency and inefficiency in stock markets [26]. Other
researchers have analyzed how to use H to find the most profitable trading pairs [27],
concluding that H performs better when compared with the classical methods. Despite
the wide use of H in the stock market, there is still limited research on its applicability to
the agri-commodities market [28–30]. In this paper we will study the agri-commodities
market, and more particularly the evolution of prices for four horticultural products.
Understanding this market is becoming increasingly important to make the agri-food
industry sustainable [31,32], as price crises result in a waste of food.

The stock market and the agri-commodities market have some similarities, but at the
same time also have some important differences. On the one hand, both of them represent
a market that is driven by demand. Matia et al. [33,34] showed that the two markets share
several properties, although they also found some differences. The cumulative distribution
of returns can be adjusted to a power law for both markets. In addition, the returns for the
stocks and commodities market exhibit a multifractal behavior. On the other hand, there
are differences in the nature of these two markets. In contrast with the stock market, in agri-
commodities markets, commodities represent a physical product that has to be stored
and transported, and in some cases it is even a fresh and perishable product. Moreover,
for agri-commodities we can expect slower changes and response to the demand, since the
market is very conditioned by the supply of each product.

In this paper, we will explore the applicability of H to the agri-food market in order to
anticipate the trend and range of the future price. In particular, we focus on fresh vegetables
because price crises have a big impact on them, since they are perishable products that
can not be stored. Thus, when co-ops fail to anticipate the price and can not market their
production, it results in tons of wasted food. The effect of the long memory properties
on the agri-commodities markets has still attracted little attention from researchers. Thus,
there is a gap in the current scientific literature, which misses to fully understand the
behavior of such markets. In Ref. [35] the authors analyze the auto-correlations and cross-
correlations of the volatility time series for the Brazilian stock and commodity markets.

73



Entropy 2023, 25, 579

They found auto-correlations in the commodity market, which in fact are stronger than
that observed for the stock market. In another study—see Ref. [30]—the authors computed
the Hurst exponent for several commodity price series, and found that most commodity
prices are consistent with the underlying assumption of a geometric Brownian motion. We
will contribute to understanding the dynamics and properties of the market by analyzing
the evolution of H over time, and evaluating whether the value of H can provide useful
information to anticipate the future trend of the price. In addition, we will compare the
results obtained when computing H for different time windows.

The present paper is organized as follows. In Section 2, we will explain the methodol-
ogy followed to compute the local Hurst exponent of the series and the mean reversion.
Next, in Section 2.3, we describe our data. In Section 3, we expose our results. Finally, in
Section 4, we present our conclusions and discuss the importance of our results.

2. Materials and Methods

2.1. Hurst Exponent

The Hurst exponent (H) is used in time series analysis and fractal analysis as a measure
of the long-term memory of a time series. In other words, H measures how chaotic or
unpredictable a time series is. In the literature, we can find several methods to calculate H,
such as re-scaled Range (RS) [15], Detrended Fluctuation Analysis (DFA) [19,20], wavelet
transforms [21], and Generalized Hurst Exponent (GHE) [22].

In this work, we use the GHE algorithm in order to measure the long-term memory
of the price time series of different agri-commodities. This method is based on the scaling
behavior of the statistic:

Kq(τ) =
〈|X(t + τ)− X(t)|q〉

〈|(X(t))q|〉 , (1)

which is given by
Kq(τ) ∝ τqH , (2)

where τ is the time scale and can vary between 1 and τmax, H is the Hurst exponent, < · >
denotes the sample average on time t, and q represents the order of the moment considered.

H is then calculated by taking logarithms in relation (2) for different values of τ. In this
paper, we work with τ = 2n (n = 0, 1, . . . , log2(N)− 2), and q = 1, as H1 is the closest
estimation to the classical Hurst exponent [12].

H ranges between 0 and 1, where H = 0.5 means that there is no memory and the
series is equivalent to white noise. When H ≤ 0.5, the series is considered anti-persistent
and is expected to display ‘mean-reversion’. Finally, when H ≥ 0.5, the series is considered
persistent and is more likely to maintain the trend in a broader range than what is expected
by a pure random walk.

In order to prevent H from using future values of the time series, we calculate a local
Hurst exponent with reference to a rolling window of 4, 8, 16, 32, and 52 weeks that ends
the day of measurement. This method ensures that we use only past data to determine H.

Note that in order to compute H, we have coded the described method using Python.

2.2. Days to Mean Reversion

Mean reversion (MR), or reversion to the mean, is a theory used in finance that suggests
that a measure of interest such as the price of a commodity or asset eventually reverts to its
long-term average levels. Thus, this theory assumes that a variable that deviates far from
its long-term trend will return, reverting to its average value. This concept has been used
to define many investment strategies that seek to purchase or sell financial products whose
recent market price differs greatly from their historical average [36].

In this work we are going to test whether this reversion is more likely to occur during
anti-persistent periods rather than during persistent periods in the price time series. Thus,
for each day i, we compute the number of days (d) that the price (p) of an agri-commodity
lasts to revert to its average value (m) as
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d = j∗ − i

where j∗ is the minimum j that satisfies{
pj ≤ mi + ε, if pi ≥ mi

pi ≥ mi − ε, if pi < mi

with j ≥ i.
The average value (m) of each price time series have been calculated with reference to

a rolling window of 4, 8, 16, 32, and 52 weeks, thus ensuring that we use only past values
of the series to determine m.

2.3. Dataset

In this work, we analyze the price time series of four agri-commodities (aubergine,
zucchini, green pepper, and cucumber) in the South region of Spain. We have focused on
these four products because they are representative of the European vegetables market,
as they represent a significant percentage of the total imports and exports.

The units of the prices are measured in EUR per kilogram. Each time series consists
of daily prices collected over five years, and we must note that a typical week consists of
six observations, since the market is closed on Sundays.

Figure 1 shows the evolution of the price of each commodity during the period
2015–2019. As it can be seen, all products present high volatility and despite showing a
seasonal component, the noise component is still very important. In addition, we have
included in the figure the moving averages for different rolling windows.

In Table 1, the Hurst exponent, average price, and standard deviation of each time
series are shown. All of the products present a global Hurst below 0.45, i.e., antipersistent.
Green pepper is the most antipersistent time series (H = 0.18), and also the commodity
with the highest and least volatile price.

Figure 1. The figure shows the evolution of the price and its corresponding moving average for
different rolling windows RW for (a) aubergine, (b) zucchini, (c) pepper, and (d) cucumber.
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Table 1. Total Hurst, H, and mean and standard deviation of price for the four time series shown in
Figure 1.

Aubergine Zucchini Green Pepper Cucumber

H 0.36 0.40 0.18 0.32

p̄ ± σp 0.70 ± 0.53 0.75 ± 0.63 0.85 ± 0.22 0.64 ± 0.33

pmax − pmin 3.99 3.89 1.45 2.08

3. Results

The main goal of our paper is to analyze if H can help to anticipate the future trend
of the price of four different agri-commodities, and discuss the difference in performance
when considering different rolling windows (RW). To this end, we will analyze whether
the probability of MR in the short term is more likely during anti-persistent days than on
persistent days or not.

3.1. Evolution of the Hurst Exponent

To achieve this goal we begin by computing H as described in the methods section,
over our time series for different values of RW (4, 8, 16, 32, and 52 weeks). Thus, for each day
of our series we have computed the value of H for the mentioned windows. The evolution
of H, for aubergine over time and its distribution, can be found in Figure 2. Panel B of the
figure shows the distribution of H, which approximately follows a normal distribution.
The mean value of H depends on the commodity and RW, but for most cases (except
for green pepper) is close to 0.5. The exact values for each combination can be found in
Tables 2 and 3.

We found that for the four products, H varies over time, alternating periods of per-
sistence, anti-persistency, and neutral regimens. Changes over days tend to be relatively
smooth, and when the series enters one of the three regimens it keeps for a while. This
effect is illustrated in panel B of Figure 2, which shows the case of aubergine.

3.2. Mean Reversion

In the second step, we compute for each day and RW the days to MR—this is the
number of days left before the price will return or cross the mean. The days to MR follow
a heterogeneous distribution, where for all the RWs over 50% of the observations revert
to the mean in less than 20 days, while a small fraction take over 100 days. This can be
observed in Figure 3a), which shows the probability mass functions (PMF) of each RW
for aubergine.

Figure 2. (a) The evolution of the local Hurst exponent for aubergine and different rolling windows.
(b) Histogram of aubergine local Hurst exponent values. In both panels the dashed lines reflect the
selected thresholds of 0.45 and 0.55.
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Table 2. This table shows the median of days to MR and mean local Hurst (H̄) for the studied rolling
windows RW = 4, 8, 15, 32, 52 weeks for aubergine and zucchini. The global value of H of each
product is also shown in the top row.

Aubergine (H = 0.36) Zucchini (H = 0.40)

RW Days to MR H̄ ± σH Days to MR H̄ ± σH

4 10 0.57 ± 0.18 10 0.57 ± 0.20

8 11 0.56 ± 0.14 12 0.57 ± 0.15

16 15 0.54 ± 0.12 22 0.55 ± 0.12

32 20 0.58 ± 0.08 24 0.52 ± 0.10

52 14 0.46 ± 0.06 17 0.49 ± 0.07

Table 3. This table shows the median of days to MR and mean local Hurst (H̄) for the studied rolling
windows RW = 4, 8, 16, 32, 52 weeks for green pepper and cucumber. The global Hurst of each
product is also shown in the top row.

Green Pepper (H = 0.18) Cucumber (H = 0.32)

RW Days to MR H̄ ± σH Days to MR H̄ ± σH

4 3 0.32 ± 0.16 11 0.52 ± 0.19

8 4 0.28 ± 0.10 11 0.53 ± 0.12

16 5 0.26 ± 0.07 14 0.50 ± 0.07

32 5 0.25 ± 0.05 15 0.46 ± 0.05

52 4 0.22 ± 0.04 14 0.41 ± 0.06

Figure 3. (a) Probability mass distribution of days to MR for the aubergine time series and for various
RW. (b) The corresponding cumulative probability distributions.

When exploring the relation between H and days to MR, we find that the product
(pepper) with a significantly smaller value of H, and in an anti-persistent regime (0.22–0.32),
generally reverts to the mean more rapidly. For example, when conducting the analysis
with RW = 16 weeks, the price of pepper returns to the mean in an average of 5 days, while
for the other products this value ranges between 11 and 22 days.

Next, we analyze if the probabilities that the price will revert to the mean are signifi-
cantly different for persistent and anti-persistent periods for each of the rolling windows.
To this end, we classify each observation of the time series into persistent (H ≥ 0.55),
neutral (0.45 < H < 0.55), and anti-persistent (h ≤ 0.45). Thus, we classify each day into
one of the three different groups. We calculate the cumulative probability distribution of
the days to MR for the persistent group, the anti-persistent group, and the total population
and compare them for all the RWs. Figure 4 shows these distributions for aubergine.
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We find that for all the RWs, except for 52 weeks, the cumulative distribution of days
to MR significantly differs for the two regimens, the probability of MR being higher for anti-
persistent days. In agreement, with this observation, the curve for the total population lies
in-between both. Thus, anti-persistent days revert to the mean more quickly than persistent
ones, which at the same time revert with lower probability than the global population.
For the mentioned RW of 52 weeks (1 year), we observe the contrary effect, where the
probability of MR in d or less days is always smaller for the anti-persistent regimen, the
persistent group and the total population exhibiting a very similar behavior.

Figure 4. Cumulative probability of days to MR for the price time series of aubergine for different
rolling windows RW. The blue curve represents the antipersistent regime, while the green curve
represents the persistent regime. The horizontal line shows the 50% of probability, and the vertical
one marks 6 days. The figure also shows the 95% level of confidence for the 500 random sub-samples.

To test whether the observed behavior for the persistent and antipersistent groups
could be random, we take random samples of the total population and compare their
behavior to both groups. We do so, because the persistent and antipersistent groups are
subsamples of the total population. Thus, there is a chance that by choosing a random
subsample of similar size we find a similar effect. In such cases the effect we have observed
would not be significant. Thus, we have randomly selected 500 subsamples and computed
the cumulative distribution of days to MR for each one of them. In Figure 4, we have
included the 2.5% and 97.5% percentiles so that they can be compared with the curves of the
two groups. We find that for all the RWs, except 32 weeks, the effect of the persistent group
is not likely to be significant as the curves lie in-between the two percentiles. However,
for RW = 32 weeks the probability of MR in 10 or less days for persistent days is below
30% and for 20 days it is below 40%. This means that we are around 70% confident that the
price will stay at the current side of the border of the mean during the following 10 days,
and 60% that it will also stay in the next 20 days. Hence, when computed with a RW of
32 weeks, H ≥ 0.55 seems to be a good and informative indicator to anticipate the range in
which the price will move in the medium-long term.

On the other hand, the anti-persistent group differs from the total population and the
random samples for RWs of 4, 8, and 32 weeks, but not for 16 weeks. When analyzing
our data, we can see that the most informative RWs are the shorter ones: 4 and 8, as the
gap between the antipersistent group and the total population is the largest. This effect is
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especially relevant in the case of 8 weeks, where the probability of MR in one week is 58%,
while the value for the total population is under 40%. Thus, an indicator detecting points
where H ≤ 0.45 would be informative for movements in the short term, as we will have
58% of probabilities that the price will return to its average. Hence, if the actual price is
below the average we can anticipate an uptrend, and if the price is below we can expect a
drop in the prices for the following week.

3.3. Paired t-Test

To further test the effect of persistence and anti-persistence in the expected days to
MR, we adopt a quasi-experimental design, through which we can compare persistent
and antipersistent observations against a control group. To this end, we perform two
dependent t-tests for paired samples. The first one is to measure the effect of persistence
and the second one is to measure the effect of anti-persistence. We use a dependent paired
t-test, because our observations are extracted from a time series of prices, and thus can
not be considered independent. In particular, we control for the commodity and the
week, since the time series of prices have a marked seasonal component. Thus, for the
persistence experiment we match the number of days to MR of each persistent observation
to the number of days to MR on a randomly selected observation of the same week and
commodity in the control group (all non antiperspirant observations). The anti-persistence
experiment is designed analogously.

The results of both tests for the RWs of 4, 8, 16, and 32 weeks are summarized in
Figure 5. As it can be seen for all the RWs except for RW = 16, the MR occurs significantly
faster for antipersistent observations. The most informative RW is the one of 8 weeks, where
for antipersistent days we can expect MR to happen on average 12 days faster. In contrast,
the effect of persistence is not so evident in our data, and we only find a significant effect
for RW = 16, where in persistent periods MR takes on average 12 days longer. Note that we
have not included the RW = 52 case, as there were not enough paired observations for the
results to be reliable.

Figure 5. Results of the paired t-test for the persistence (H ≥ 0.55) and antipersistence (H ≤ 0.45)
experiments. The figure shows the t-statistic, measured in days, for both experiments and the
different RWs (RW = 4, 8, 16, 32 weeks). The significant differences have been marked with a red
cross (p-value < 0.01).

4. Discussion

In this paper we contribute to understand the agri-food market by exploring whether
the market presents long term memory properties or not for several agri-commodities.
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To this end, we have computed the local Hurst exponent for several values of RW and
measured the relation between its evolution and the probability that the price will revert
to the mean. We found that in general for antipersistent days MR is more probable in the
short term and occurs faster than for persistent and neutral days. The only value of RW for
which we could not find a significant effect was RW = 16, while the most informative one
was RW = 8.

The fact that MR is more probable and happens faster during antipersistent periods
means that H can be a good indicator to anticipate the future motion and help actors
operating in this market, such as co-ops or supermarkets. More particularly, it is important
to discuss its implications to anticipate the price and operate in this market in the short-term.
For RW = 8 weeks we found that for antipersistent days almost 60% of the times MR will
happen in one week or less, a magnitude significantly larger than what is expected for the
full population, where the chances of MR in one week are below 45%. This fact, shows
that H can be helpful to operate in such a market as it provides information to anticipate
the future trend of the price. If the price is below the average, the operator will know that
there is a high chance that the price will go up, while when the price is above the average a
downtrend is very probable. We focus on the one week resolution, because anticipating MR
in the long term is not so useful in this market. For example, knowing that MR will happen
during the following two months, but not knowing when, means that the operator has to
trade daily tons of fresh products with a high uncertainty on when the price movement
will happen.

On the other hand, market indicators related to persistence can be related to the fact
that MR is not very probable or will happen slowly. Thus, this kind of indicator is more
useful to operate in the market in the long term. The fact that there is a low probability of
MR for the following days is not too informative, as price time series present autocorrelation
and the price from one day to another usually does not present big differences. In contrast,
knowing that MR is not probable in the long term will help to anticipate the range in
which the price will oscillate in the following months. When the price is above the average,
knowing MR is not probable, and it is useful to know the lower barrier that the price will
not cross in the following weeks and months. Likewise, when the price is below the average
we have an upper frontier that the price is unlikely to cross. Thus, this information helps
the actors of the market to negotiate long term contracts, which is very common between
supermarkets and co-ops, where the second commits to provide a minimum quantity of
tons during the following months to the second one for a fixed price.

A relevant research topic that we plan to explore in future work is the development of
a methodology to find the optimal rolling window to use when computing the local Hurst
exponent for each price time series. Thus, we aim to analyze a wider variety of products
that follow different dynamics, and find their corresponding best rolling window.
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Abstract: Exploring the risk spillover between Chinese and mature stock markets is a promising
topic. In this study, we propose a Markov-switching mixed-Clayton (Ms-M-Clayton) copula model
that combines a state transition mechanism with a weighted mixed-Clayton copula. It is applied to
investigate the dynamic risk dependence between Chinese and mature stock markets in the Americas,
Europe, and Asia–Oceania regions. Additionally, the conditional value at risk (CoVaR) is applied to
analyze the risk spillovers between these markets. The empirical results demonstrate that there is
mainly a time-varying but stable positive risk dependence structure between Chinese and mature
stock markets, where the upside and downside risk correlations are asymmetric. Moreover, the risk
contagion primarily spills over from mature stock markets to the Chinese stock market, and the
downside effect is stronger. Finally, the risk contagion from Asia–Oceania to China is weaker than
that from Europe and the Americas. The study provides insights into the risk association between
emerging markets, represented by China, and mature stock markets in major regions. It is significant
for investors and risk managers, enabling them to avoid investment risks and prevent risk contagion.

Keywords: risk contagion; Chinese stock market; mature stock markets; Markov-switching;
Clayton copula

1. Introduction

As global stock markets become increasingly interconnected, the risk of contagion
is becoming more prominent [1,2]. Measuring this contagion effectively is crucial for
China and other emerging economies, which may be more vulnerable to international risk
contagion, to improve their risk supervision [3,4]. Numerous scholars have studied the
risk contagion between markets [5–7]. With the rapid development of the Chinese stock
market, the largest emerging market in the world, there is growing interest in investigating
the risk contagion between it and more mature markets, and several models have been
developed for empirical analysis [8,9]. Traditional models have limitations in depicting
the dynamic and asymmetric structures and are constrained by their ability to only show
linear correlations. Consequently, scholars have turned to copula-based models to enrich
research in this field, and the advantages of copula-based models over traditional models
have been confirmed [10–13].

The motivation behind this work is twofold. Firstly, most existing copula-based
models that evaluate risk contagion tend to focus on measuring individual tail correlations
or positive dependence, which limits the analysis of the contagion mechanism from a
comprehensive perspective [14,15]. While it is important to examine positive dependence,
which occurs when two stock markets rise or fall in tandem, it is also crucial to consider
negative dependence structures, where one market rises while the other falls, which may
offer opportunities for hedging investment risks or realizing arbitrage. Overemphasizing
risk contagion under one dimension may lead to a distorted perception of international
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markets. Therefore, it is necessary to develop a tool that provides a more comprehensive
assessment of the dependence structure between markets. Secondly, the Chinese stock
market has a unique profile with its late start, rapid development, and high volatility, and
most existing conclusions and guidelines drawn from mature markets may not provide
reliable references for its development. As emerging countries are often in a passive position
in international risk contagion, investigating the risk contagion mechanism between the
Chinese market and different mature markets has important reference significance [16–18].

Thus, to comprehensively investigate the risk contagion between Chinese and mature
markets in three representative regions on a global scale (Asia–Oceania, Europe, and the
Americas [19]), we attempt to construct a novel Markov-switching mixed-Clayton (Ms-M-
Clayton) copula model. This model considers four types of tail correlations simultaneously
and calculates the conditional value-at-risk (CoVaR) in different routes [20,21].

We start with a Clayton copula model that describes the upside correlation of two
random variables under a positive dependence structure. We first rotate it by 90◦, 180◦, and
270◦ and weight the four individual models as a mixed-Clayton (M-Clayton) copula. The
M-Clayton model can capture both upside and downside correlations between two markets
under both positive and negative dependence structures. Then, to capture correlations in a
time-varying manner, we introduce a two-state switching mechanism following the Markov
chain. Using the estimated results of the Ms-M-Clayton copula model, we calculate the
CoVaRs under the four dimensions to measure the markets’ risk spillover. The empirical
results indicate that there is dynamic and generally stable positive dependence between the
Chinese and mature markets, with the downside risk correlation being stronger than the
upside correlation in most cases. Additionally, the risk contagion is primarily manifested
in a spillover from mature markets to the Chinese market. Furthermore, the risk spillover
from Asia-Oceania to China is weaker than that from Europe and the Americas, implying
that Japanese and Australian markets may be potential choices for Chinese market investors
to diversify investment risks. Overall, this study reveals the risk contagion effects between
emerging markets, represented by China, and major mature markets. Our findings have
practical and policy implications for investors and supervisors to mitigate the adverse
effects of risk contagion.

This study makes several contributions to the literature on risk contagion between
Chinese and mature markets. Firstly, a novel Ms-M-Clayton copula model is formulated
and applied to dynamically measure the asymmetrical dependence structure between
Chinese and mature markets in three global risk regions, providing a more comprehensive
perspective on the risk contagion patterns between economies. Secondly, by calculating
the CoVaR in four relevant scenarios based on the results of the Ms-M-Clayton copula, we
quantify and compare the risk dependence and contagion between Chinese and different
mature markets, respectively. Thirdly, we provide detailed explanations for the time-
varying risk dependence structure and contagion. Based on the empirical results, we
provide targeted insights for both emerging and mature economies on how they can defuse
risk contagion and stay safe by monitoring objects with high-risk dependence.

The remainder of this paper is arranged as follows: Section 2 sorts out the existing
research on the risk contagion and the related measurement methods. Section 3 intro-
duces the construction of marginal distribution model and Ms-M-Clayton copula model.
Section 4 summarizes the datasets. Section 5 reports the empirical experiments and results.
Finally, this work is concluded in Section 6.

2. Literature Review

Despite numerous studies exploring risk contagion, the definition is still controver-
sial [22,23]. It is commonly believed that the risk contagion is driven by heterogeneous
factors such as the investors’ behaviors and expectations [24], the information bias [25], the
market supervision [26], and the completeness of financial system [27].

As one of the most representative emerging economies, the Chinese market is grad-
ually becoming international, especially since its accession to the WTO. Thus, based on
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different but not mutually independent definitions of risk contagion, plenty of scholars
have discussed the risk contagion between Chinese and various markets by using the
traditional econometric methods, such as the granger causality, generalized autoregressive
conditional heteroskedasticity (GARCH), vector autoregressive model, etc. [28–30], but
most of the methods fail to depict nonlinear dependence and capture the asymmetric
relationships dynamically. Moreover, they have poor ability to measure the tail correlation
reflecting the extreme risk contagion.

To overcome these shortcomings, various copula-based methods [31] are proposed to
capture the dynamic and asymmetric dependencies between series. Chang [32] constructed
a mixed copula of Gumbel and Clayton copula to investigate the asymmetry between the
upside and downside risk correlations of crude oil spot and futures. Huang et al. [33]
proposed the rotated Gumbel and Clayton copulas, which provide a flexible perspective
to measure the asymmetric risk correlation. Hussain and Li [34] found that the Chinese
market has stronger dependence with Asia and Europe than the US by employing stochastic
copulas. Luo et al. [35] measured the multiscale financial risk association among nine stock
markets by introducing empirical mode decomposition into copulas, revealing that the
high-frequency fluctuation is the major contributor of contagion. Although scholars have
extended copula models on the measurement of asymmetric tail correlations, most of them
are still time-invariant and only suitable for depicting static relationships.

More recently, time-varying mechanisms, such as parameter autocorrelation equations
and state transition probabilities, are introduced to the invariant copulas, allowing dynamic
and periodic dependence analyses [32,36–38]. Huang et al. [39] verified the superiority of
the time-varying parameter (TVP) copulas compared to traditional methods in constructing
the minimum-risk portfolios from G7 countries’ markets. Chang [32] documented the
non-fixed dependence between inflation rate and REIT return by constructing a Markov-
switching GRG copula, while Wang et al. [40] highlighted that the negative dependence
reflects the reversal effect, which is crucial to revisit the dependence structure between
markets. Thus, they constructed a dependence-switching copula based on multiple Clay-
ton copulas to examine the risk relevance between stock and foreign exchange markets.
Ji et al. [41] identified the conditional dependence between energy and agricultural com-
modity markets and confirmed the significance of negative dependence. However, on
one hand, most of the dynamic dependence-switching copulas methods are still limited to
capture the positive dependence; on the other hand, the literature utilizing TVP copulas to
investigate the risk contagion between Chinese and mature markets remains to be enriched.

Several studies further quantify the degree of directional risk contagion by calculating
VaR and CoVaR based on the risk association captured by copula-based models, proving
the function of copula-CoVaR paradigm in measuring risk contagion. Reboredo and
Ugolini [42] used the CoVaR-copula method to investigate the systemic risk contagion
level in European sovereign debt markets as well as the asymmetric downside and upside
spillover between precious metals [43]. Xiao [44] developed a MSGARCH-EVT-copula
model and computed the CoVaR to investigate the risk spillovers of Chinese market to
major East Asian markets, reporting that the downside and upside spillovers are generally
different between the turbulent and calm periods. Jiang et al. [19] constructed a vine-copula-
GARCH-MIDAS model and computed the CoVaR to estimate the risk spillovers among
multiple stock markets. Sun et al. [45] verified that the GARCH-Copula-CoVaR method is
suitable for evaluating the risk contagion of international commodity markets. Therefore, it
is essential to assess the risk spillovers in different routes, which can help to understand
the risk contagion mechanism between markets.

In summary, although copula models provide a more flexible perspective for depict-
ing the non-linear risk dependence between markets, most of them focus on single tail
correlation or in the positive dependence structure. Positive and negative risk dependency
structures provide novel insights into financial risk contagion [40,41]. In particular, tail
correlations in negative dependency structures are helpful to identify risk-hedging oppor-
tunities, so it is essential to enrich research in this field. As one of the most representative

85



Entropy 2023, 25, 619

emerging markets that are vulnerable in global risk contagion, the risk contagion between
Chinese and global mature markets is still controversial [44]. Therefore, we formulate a
Ms-M-Clayton copula model and compute the CoVaR to analyze the risk spillovers, which
not only enriches the application of dependence-switching copula models but also helps to
revisit the risk contagion between Chinese and mature markets around the world.

3. Methodology

3.1. Marginal Distribution Modeling

Prior to the Copula modeling that is used to capture risk dependence between markets,
a marginal distribution modeling is necessary to be applied to the original financial return
time series, i.e., extracting the components that can be described by econometric models
and treating the residuals as risks that cannot be depicted by models. Then, the residuals
are used as the input of copula model to describe the risk dependence between markets.
Considering the autocorrelation, volatility clustering and leptokurtosis of financial return
series, the AR-GARCH is one of the most commonly used models to describe the financial
time series [46]. Moreover, compared with the normal distribution, the generalized error
distribution (GED) fits the financial time series better as it captures the thick-tailed prop-
erties well. Therefore, the AR(m)-GARCH(p,q) model with GED process is employed for
marginal distribution modeling, which is written as:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

rt = φ0 +
m
∑

i=1
φirt−i + εt

εt = σtet, εt|It−1 ∼ GED
(
0, σ2

t , v
)

σ2
t = ω +

p
∑

h=1
αhe2

t−h +
q
∑

k=1
βkσ2

t−k

(1)

where φ0 is the unconditional mean of the return series, and φi is and autoregressive
parameter, m denotes the lag order, and error item εt follows the GED process with freedom
v and conditional variance σ2

t . σ2
t is expressed by the GARCH model, in which e2

t−h
denotes the ARCH component, and σ2

t−k denotes the GARCH component. The following
restrictions: (1) ω > 0, αh ≥ 0, βh ≥ 0 and (2) ∑

p
h=1 αh + ∑

q
k=1 βk < 1 need to be met

to ensure a stationary GARCH process. Following the GED, the conditional probability
density function of εt is given as:

f (x, v) =
ve−

1
2 | x

λ |
v

2−
2
v λΓ
(

1
v

) (2)

in which λ is the tail-thickness parameter defined as:

λ =

[
2−

2
v Γ
(

1
v

)
Γ
(

3
v

)] 1
2

(3)

where Γ(·) is the Gamma function. The freedom parameter v > 2 when GED follows a
thick-tailed distribution; the v > 2 when GED follows a thin-tailed distribution; and v = 2
when GED follows a normal distribution. In general, the volatility clustering in financial
returns series can be effectively described by the GARCH family models with the lag order
of 1 [47].

3.2. Markov-Switching Mixed-Clayton Copula Function

The copula model is a connecting function for multivariate marginal distributions
defined in [0, 1]n. For example, a bivariate joint distribution function with the marginal
distributions of FX(x) and FY(y) can be defined as:

FXY(x, y) = C(FX(x), FY(y)) (4)
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If the marginal distributions FX(x) and FY(y) are continuous and their joint distribution
function is given, the corresponding copula model C(u, v) with u = FX(x) and v = FY(y)
is uniquely determined as:

C(u, v) = H
(

F−1(u), F−1(v)
)

(5)

Moreover, the joint density function can be obtained by

fXY(x, y) = c(u, v) fX(x) fY(y) (6)

where c(u, v) = ∂2C(u,v)
∂u∂v is the copula density function, and fX(x) and fY(y) are the marginal

densities of variables x and y. Therefore, a distribution function with N variables is
composed of N univariate marginal distributions and a copula function capturing the
dependence structure between the distributions.

The copula theory and method provide a flexible perspective to measure the tail
dependence. To further analyze the asymmetric risk correlations, we build a mixed-Clayton
(M-Clayton) copula by combining four basic Clayton copulas with 0◦, 90◦, 180◦, and
270◦ rotation, respectively, under non-fixed weights. Among the rotated Clayton copulas,
the Clayton copula and 180◦ rotated Clayton copula are used to measure the positive
dependence reflected by the lower–lower tail and higher–higher tail correlation, while
the 90◦ and 270◦ rotated Clayton copulas are used to measure the negative dependence
reflected by the lower–upper tail and upper–lower tail correlation. The two copulas are
defined as:

C1(u, v, α1, α3) = 0.5Cc0(u, v; α1) + 0.5Cc180(u, v; α3) (7)

C2(u, v; α2, α4) = 0.5Cc90(u, v; α2) + 0.5Cc270(u, v; α4) (8)

where ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Cc0(u, v; α1) = (u−α1 + v−α1 − 1)−
1

α1

Cc90(u, v; α2) = u −
[
u−α2 + (1 − v)−α2 − 1

]− 1
α2

Cc180(u, v; α3) = u + v − 1 +
[
(1 − u)−α3 + (1 − v)−α3 − 1

]− 1
α3

Cc270(u, v; α4) = v −
[
(1 − u)−α4 + v−α4 − 1

]− 1
α4

(9)

Thus, a M-Clayton copula can be obtained by weighting C1 and C2 copulas as:

CM(u, v, θ) = ωC1(u, v; α1, α3) + (1 − ω)C2(u, v; α2, α4) (10)

where the θ = (α1, α2, α3, α4) ∈ (0,+∞), denoting the parameters of the four separate
copulas, the greater the α1, α2, α3, α4, the stronger the correlation. ω ∈ [0, 1] is used to
determine the weights of the C1 and C2.

Affected by time-varying fundamental information, the correlation and possible struc-
tural changes between financial markets is usually not static. Therefore, a state-switching
mechanism assumed to be subject to Markov chain is introduced to further capture the
dynamic correlation and potential dependence structural changes. We assume that there
are two dependence states between financial markets [48], and the Ms-M-Clayton copula
can be expressed as:

CMs−M
(
u, v; θSt

)
= ωSt C1

(
u, v; αSt

1 , αSt
3
)
+
(
1 − ωSt

)
C2
(
u, v; αSt

2 , αSt
4
)

(11)
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where St denotes the state variable and is assumed as the following Markov transition
probability [48]: ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

P11 = P(St = 1|St−1 = 1) = exp(π1)
1+exp(π1)

P12 = P(St = 2|St−1 = 1) = 1
1+exp(π1)

P21 = P(St = 1|St−1 = 2) = 1
1+exp(π2)

P22 = P(St = 2|St−1 = 2) = exp(π2)
1+exp(π2)

(12)

3.3. Markov-Switching Mixed-Clayton Copula Function

In the Ms-M-Clayton copula, the correlations of lower–lower tail, lower–higher tail,
higher–higher tail, and higher–lower tail are provided as follows [49]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

λLL
MS−M = lim

α→0
P(V ≤ α|U ≤ α) = 0.5ωst 2−

1
α1

λLU
MS−M = lim

α→0
P(V ≥ 1 − α|U ≤ α) = 0.5(1 − ωst)2−

1
α2

λUU
MS−M = lim

α→1
P(V ≥ α|U ≥ α) = 0.5ωst 2−

1
α3

λUL
MS−M = lim

α→1
P(V ≤ 1 − α|U ≥ α) = 0.5(1 − ωst)2−

1
α4

(13)

3.4. Parameter Estimation Method

We employ the maximum-likelihood (ML) function [50] as the basis for estimating
parameters. Given that there are 12 parameters to be estimated, and a traditional approach,
such as the interior-point method, easily falls into local optimum, we apply the genetic
algorithm (GA) that performs well in global optimization of high-dimensional parameters
to exact the solution of the model [51].

Referring to Equation (6), the joint probability density function of the Ms-M-Clayton
copula model with variables x and y is given as:

fXY(x, y) =
2

∑
St=1

fX(x) fY(y)c
(
u, v, θSt

)
P(St) (14)

where P(St) is the prediction probability of St at time t − 1. P(St = 1) and P(St = 2) are
defined as [52]:

P(St = 1) = P11 ∗
[

c1
t−1P(St−1 = 1)

c1
t−1P(St−1 = 1) + c2

t−1P(St−1 = 2)

]
+ P21 ∗

[
c2

t−1P(St−1 = 2)
c1

t−1P(St−1 = 1) + c2
t−1P(St−1 = 2)

]
(15)

P(St = 2) = 1 − P(St = 1) (16)

where c1
t−1 and c2

t−1 represent the conditional probability density functions of the copula
function in state 1 and state 2, respectively, at time t − 1. Then the logarithmic likelihood
function of the copula model is expressed as:

lnL = ∑T
t=1 lnc

(
u, v; θSt

)
P(St) + ∑T

t=1 ln fX(x) + ∑T
t=1 ln fY(y) (17)

3.5. VaR and CoVaR

This work employs the value-at-risk (VaR) to measure the downside and upside risks,
which indicates the maximum loss that an investor may suffer within a certain time horizon
and significant level by holding a long or a short position. For return series rt, we calculate
the VaR based on its marginal distribution. With a given tail probability α, the VaRα,t

D
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and VaRα,t
U at time t is calculated by P

(
rt ≤ VaRα,t

D

)
= α and P

(
rt ≥ VaRα,t

U

)
= 1 − α

respectively, which is formulated as:

{
VaRα,t

D = μt + σt · F−1
v (α)

VaRα,t
U = μt + σt · F−1

v (1 − α)
(18)

where μt and σt represent the conditional mean and standard deviation determined by the
marginal distribution model, and F−1

v (α) is the α-quantile of GED.
The conditional VaR (CoVaR) is used to capture the risk spillover between markets [42].

The CoVaR is calculated based on the measurement of copula model, reflecting the VaR
of a market conditional on the extreme volatility in another market. Let ri

t and rj
t denote

the return series of market i and j, and the CoVaR in four different market statuses can be
expressed as follows: ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

P
(

ri
t ≤ CoVaRβ,t

iD|jD

∣∣∣rj
t ≤ VaRα,t

jD

)
= β

P
(

ri
t ≥ CoVaRβ,t

iU|jD

∣∣∣rj
t ≤ VaRα,t

jD

)
= β

P
(

ri
t ≤ CoVaRβ,t

iD|jU

∣∣∣rj
t ≥ VaRα,t

jU

)
= β

P
(

ri
t ≥ CoVaRβ,t

iU|jU

∣∣∣rj
t ≥ VaRα,t

jU

)
= β

(19)

where CoVaRβ,t
iD|jD and CoVaRβ,t

iU|jD represent the downside and upside VaRs of market i
conditional on the extreme downside movement of market j given a confidence level β,
while CoVaRβ,t

iD|jU and CoVaRβ,t
iU|jU , respectively, represent downside and upside VaR of

market i conditional on the extreme upside movement of market j given a confidence level
β.

For example, the first row in Equation (19) can be written as:

F
ri

tr
j
t

(
CoVaRβ,t

iD|jD, VaRα,t
jD

)
F

rj
t

(
VaRα,t

jD

) = β (20)

Therefore, the CoVaR requires the joint distribution function of ri
t and rj

t, and it can be
represented by a copula function as Equation (4). Thus, Equation (19) can be written as:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩
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)
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(21)

Hence, the value of Fri
t

(
CoVaRβ,t

iD|jD

)
can be inferred by inverting the copula function

for given values of α and β, which is denoted as F̂ri
t

(
CoVaRβ,t

iD|jD

)
, and the value of CoVaR

can be inferred by inverting the marginal distribution function of ri
t as CoVaRβ,t

iD|jD =

F−1
ri

t

(
F̂ri

t

(
CoVaRβ,t

iD|jD

))
. Similarly, the other three types of CoVaR can be obtained. To

validate the significance of the risk contagion, the Kolmogorov–Smirnov (K-S) test [20] is
employed to implement the significance test.

4. Data and Descriptive Statistics

This work adopts the China Securities Index 300 (CSI300), an important financial index
jointly released by the Shanghai and Shenzhen Stock Exchanges on 8 April 2005 to represent
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the Chinese stock market. It consists of 300 stocks, accounting for approximately 70% of
the total market capitalization of the Shanghai and Shenzhen stock markets. Compared
with other stock indexes in China, the issuers of the constituent stocks in CSI300 are mostly
mature companies that have the characteristics of strong resistance to manipulation, lower
volatility, and strong liquidity. Therefore, it comprehensively reflects the performance of
the Chinese stock market. According to [19], three risk areas, including Asia–Oceania,
Europe, and the Americas, can be identified in risk contagion. Therefore, the S&P500 and
GSPTSE indexes are selected to represent the Americas market, the DAX30 and FTSE100
indexes are selected to represent the European market, and the Nikkei225 and ASX200
indexes are selected to represent the Asia–Oceania market. The monthly price time series
collected from Wind database are used for empirical analyses because: (1) it covers less
noises than the daily and weekly prices and is widely employed in copula modeling, and
(2) it contains more trend information than the yearly prices but does not suffer from
manipulation [14,20,48]. The period is from July 2005, when CSI300 is officially released, to
December 2020, with 186 data points containing multiple economic cycles and economic
events. The logarithmic returns series rt reflecting the level of price changes are calculated
as: rt = (lnPt − lnPt−1)× 100%, where Pt denotes the price at the end of month t.

Figure 1 reports the prices and returns of the selected stock indexes. First, the stock
market volatility in the same region is relatively similar, but those in different regions are
quite different. Second, due to the global emergencies during the sample period, such
as the global financial crisis, the European debt crisis, and the COVID-19 epidemic, the
markets experienced several large fluctuations simultaneously, implying the potential risk
contagion between Chinese and mature markets. Third, the volatility of Chinese market is
significantly higher than mature markets, which may be caused by the large gap between
Chinese and mature stock markets in terms of the completeness of risk supervision and the
professionalism of market participants.

Figure 1. Monthly prices and returns of the selected indexes.

Table 1 reports the descriptive statistics of the return series, in which their average
values are all positive. The CSI300 has the highest monthly average return with 0.0096,
followed by the S&P500 and the DAX30, while the FTSE100 has the lowest monthly
average return. The CSI300 has the highest volatility, with the standard deviation of
0.0858, followed by the Nikkei225. The lowest standard deviation 0.0402 is observed in the
FTSE100. Moreover, the skewness statistics are all less than 0, suggesting that all the return
series are featured as a long tail to the left, and there are more extreme negative returns.
The skewness values of the Nikkei225 and the ASX200 are larger than others, and that
of the CSI300 is closer to 0. Meanwhile, the Nikkei225 and the ASX200 have the highest
kurtosis, implying the leptokurtosis feature in Asia–Oceania market is more prominent.
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The Jarque-Bera (J-B) test confirms that all return series are not normally distributed but
featured as leptokurtosis. The Pearson correlation coefficients between CSI300 and other
indexes proves a weak but positive correlation between Chinese and mature markets,
and the correlations between Chinese market and the Americas, Asia–Oceania, and the
European markets decreases in turn.

Table 1. Descriptive statistics of monthly returns.

CSI300 S&P500 GSPTSE DAX30 FTSE100 Nikkei225 ASX200

Mean 0.0096 0.0062 0.0030 0.0059 0.0013 0.0046 0.0023
Max. 0.2463 0.1194 0.0997 0.1550 0.1155 0.1401 0.0949
Min. −0.2991 −0.1856 −0.2168 −0.2131 −0.1413 −0.2722 −0.2380
Std. 0.0858 0.0436 0.0404 0.0543 0.0402 0.0570 0.0428

Skew. −0.524 −0.888 −1.649 −0.809 −0.668 −0.896 −1.470
Kurt. 4.691 5.245 9.930 5.010 4.236 5.347 7.963
J-B. 30.685 a 63.540 a 456.478 a 51.620 a 25.654 a 67.595 a 257.900 a

Pearson. 1.000 0.402 a 0.403 a 0.374 a 0.307 a 0.361 a 0.380 a

Note: superscript a represent the significant levels at 1%.

5. Empirical Results

This study uses Eviews 9 to perform a marginal distribution estimation and output
the residual series and MATLAB 2018 to fit copula models.

5.1. Marginal Distribution Estimation

A diagnostic test on stationarity, autocorrelation, and heteroscedasticity needs to be
conducted before marginal distribution modeling. The results are reported in Table A1
(seen in Appendix A), showing that all the return series are stationary by ADF, PP, and
KPSS tests. According to the Ljung–Box test, only the CSI300 have autocorrelation. The
Q2(P) and ARCH(P) statistics ensure the presence of ARCH effects in all series except the
DAX30. Thus, AR-GARCH is suitable to fit the marginal distribution.

Considering the significance of parameters and the results of diagnostic test, the
results of marginal distribution are provided in Panel A of Table A2 (see Appendix A).
Most coefficients are significant at 5% level. Panel B of Table A2 reports the diagnostic
results for the residuals, in which the autocorrelation and conditional heteroscedasticity
are effectively overcome. Then, the standard residues are employed to conduct the risk
dependence analyses with copula models.

5.2. Dynamic and Asymmetric Dependence Measured by MS-M-Clayton Copula

The M-Clayton copula model is first employed to measure both positive and negative
dependence structures (Wang et al., 2013; Ji et al., 2018), and Table 2 reports the results,
in which all parameters are significant at the 1% level. It is worth noting that the weight
parameter ω across different pairwise returns is various, indicating that the existence
of negative dependence between Chinese and mature stock markets. Therefore, how
to recognize the occurrence of different risk dependence structures and correlations has
become an urgent problem to be clarified.

Table 3 further reports the estimated results of the MS-M-Clayton copula model,
where the model outperforms the invariant M-Clayton copula in terms of the logarithmic
likelihood values. Most of the estimated parameters are significant at the 10% level,
meaning that there are not only both positive and negative dependence structures but
also dependence-switching between Chinese and mature stock markets. Overall, the risk
dependence structures and correlations are different in each dependence state. Taking the
CSI300-S&P500 as an example, the P22 of 0.864 is significant and higher than P11, meaning
that state 2 is the dominant dependence structure. Similarly, for the CSI300-GSPTSE,
CSI300-FTSE100, and CSI300-Nikkei225 pairs, state 2 plays a dominant role, while state 1 is
dominant in CSI300-DAX30 and CSI300-ASX200 pairs.
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Table 2. M-Clayton copula estimates of CSI300 with mature stock indexes.

CSI300-S&P500 CSI300-GSPTSE CSI300-DAX30 CSI300-FTSE100
CSI300-

Nikkei225
CSI300-ASX200

α1 0.682 a 2.194 a 0.889 a 0.892 a 0.488 a 0.969 a

α2 2.68 × 10−7 a 8.67 × 10−8 a 1.69 × 10−7 a 3.24 × 10−8 a 49.415 a 5.23 × 10−7 a

α3 0.674 a 0.513 a 2.587 a 7.08 × 10−9 a 0.506 a 4.705 a

α4 3.0967 a 5.58 × 10−8 a 1.18 × 10−7 a 9.049 a 5.946 a 2.45 × 10−7 a

ω 0.924 a 0.594 a 0.571 a 0.923 a 0.947 a 0.443 a

Log-L −13.473 −8.808 −10.369 −10.453 −10.075 −9.776

Note: superscript a represent the significant levels at 1%.

Table 3. MS-M-Clayton copula estimates of CSI300 with mature stock indexes.

Copula
CSI300-
S&P500

CSI300-GSPTSE CSI300-DAX30 CSI300-FTSE100
CSI300-

Nikkei225
CSI300-ASX200

αS1
1 3.176 0.262 a 0.652 a 1.622 0.527 a 0.243 a

αS1
2 1.82 × 10−10 a 9.12 × 10−8 a 25.801 a 4.11 × 10−9 a 54.908 a 2.68 × 10−8 a

αS1
3 0.601 c 5.594 a 0.998 a 3.278 a 2.66 × 10−9 a 0.141

αS1
4 3.043 8.28 × 10−8 a 3.95 × 10−9 a 1.70 × 10−9 a 3.62 × 10−9 a 1.770

αS2
1 0.584 a 1.637 a 0.275 0.653 a 0.461 a 1.627

αS2
2 1.95 × 10−10 a 3.23 × 10−8 a 1.11 × 10−10 a 3.28 × 10−9 a 3.24 × 10−10 a 0.094

αS2
3 0.616 a 1.39 × 10−7 a 20.078 a 1.93 × 10−10 a 0.776 a 5.363 a

αS2
4 3.077 8.03 × 10−9 a 5.89 × 10−10 a 6.832 a 6.844 a 1.37 × 10−8 a

ωS1 0.656 b 0.984 a 0.978 a 0.827 a 0.676 a 1.000 a

ωS2 0.999 a 0.676 a 0.415 c 0.817 a 0.971 a 0.932 c

P11 0.517 0.943 a 0.846 a 0.941 a 0.943 a 0.881 a

P22 0.864 a 0.974 a 0.710 a 0.971 a 0.993 a 0.727 a

Log-L −13.626 −11.276 −12.487 −12.369 −11.522 −11.777

Note: superscript a, b, and c represent the significant levels at 1%, 5%, and 10%, respectively.

Table 4 reports the tail correlation coefficients based on the constructed copula. Specifi-
cally, the values of λUU are larger than that of λLL between CSI300 and S&P500, DAX30, and
Nikkei225, meaning that the upside risk correlation triggered by positive factors is stronger
than the downside risk correlation triggered by negative factors, while the opposite rela-
tionship occurs between CSI300 and GSPTSE, FTSE100, and ASX200. Moreover, compared
with the Americas and European mature markets, the downside risk correlation between
Chinese and Asia–Oceania markets manifesting in synchronized decline is the lowest,
which is usually paid special attention in practice. Although the negative dependence is
not in dominant in the dominant state, it is still asymmetric. Specifically, the upper–lower
tail correlation between CSI300 and S&P500, FTSE100, and Nikkei225 is stronger than the
lower–upper tail correlation, indicating the probability of extreme rises in Chinese market
when extreme declines occur in the three mature markets. The opposite situation can be
found between CSI300 and DAX30. As for the main dependence state between CSI300
and GSPTSE and ASX200 returns, the negative dependence correlation is not observed.
Therefore, during the period of smooth economic operation denoted by the main state,
except for monitoring the positive risk spillover, Chinese investors and managers should
pay close attention to investment opportunities in the declines of S&P500, FTSE100, and
Nikkei225 while managing exposure carefully in the rises of DAX30.
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Table 4. Tail correlation coefficients between CSI300 and mature stock indexes.

State 1 State 2

λLL λLU λUU λUL λLL λLU λUU λUL

CSI300-S&P500 0.264 0.000 0.103 0.137 0.152 0.000 0.162 0.001
CSI300-GSPTSE 0.035 0.000 0.435 0.000 0.221 0.000 0.000 0.000
CSI300-DAX30 0.169 0.011 0.244 0.000 0.017 0.000 0.200 0.000

CSI300-FTSE100 0.270 0.000 0.334 0.000 0.141 0.000 0.000 0.083
CSI300-Nikkei225 0.091 0.160 0.000 0.000 0.108 0.000 0.199 0.013

CSI300-ASX200 0.029 0.000 0.004 0.000 0.304 0.000 0.410 0.000

Figure 2 provides the trajectories of PS1 and PS2 , in which the state transitions
are observed in the risk dependence between Chinese and most mature markets. For
CSI300-S&P500, there is no state-switching, and state 2 is dominant during the entire sam-
ple period, implying the stable dependence and risk correlation between the two markets.
For CSI300-GSPTSE, the state transitions occur concentrated in the periods from 2013 to
2015, corresponding to cyclical financial market bubbles and the post-COVID-19 [3], in
which the secondary state should be paid more attention because more investment opportu-
nities appear with a stronger upside tail correlation and a downside tail correlation close to
0. The state transitions of CSI300-DAX30 appear periodically around 2009 (may be affected
by European debt crisis) with weak persistence [53]. In the secondary state, the upside tail
correlation is significant, while the downside correlation decreases to near 0, increasing the
investment motivation. For CSI300-FTSE100, state 2 with apparent downside risk correla-
tion is dominant in most of the period. However, state 1 with both upside and downside
risk correlations switches to be the main dependence structure temporarily around 2009
(European debt crisis) and since the COVID-19 epidemic [53]. For CSI300-Nikkei225, state
1 with reversal correlation was the main state before 2009 and in 2012, corresponding to
the global financial crisis and the Asian financial turmoil led by the exchange rate system,
respectively [54]. However, state 2 with positive dependence structure plays a dominant
role in most of the period, especially in recent years. For CSI300-ASX200, state 1 with a
relatively low tail correlation is dominant. The state-switching process occurs around 2012
and 2015 temporarily, which is accompanied by an increase in positive risk correlation caused
by regional financial turmoil [54]. Moreover, in the comparison between markets in different
regions, the Asia–Oceania markets have the relatively low risk association, especially the
downside risk correlation that is paid much attention in practice, with the Chinese market.

Figure 2. State transition probabilities between Chinese and mature markets (The blue line represents
state 1, and the orange line represents state 2).
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5.3. Comparative Analysis
5.3.1. Static Dependence Measured by Invariant Copula Models

To explain the similarity and differences between our findings and previous research,
we first employ seven commonly used invariant copulas, including the Gaussian, Student’s
t, Gumbel, 180◦ rotated Gumbel, Clayton, 180◦ rotated Clayton, and SJC copulas [53] to
measure the risk dependence between Chinese and mature markets. The estimated results
of invariant copulas are reported in Table 5.

Table 5. Invariant copula estimates of the CSI300 with mature stock indexes.

Copula
CSI300-
SP500

CSI300-
GSPTSE

CSI300-
DAX30

CSI300-
FTSE100

CSI300-
Nikkei225

CSI300-
ASX200

Gaussian
ρ 0.372 a 0.348 a 0.361 a 0.266 a 0.314 a 0.349 a

Log-L −12.496 −10.781 −11.660 −6.077 −8.637 −10.853
Student’s t

ρ 0.372 a 0.347 a 0.375 a 0.285 a 0.314 a 0.356 a

v 99.899 a 99.983 a 7.966 a 7.527 a 99.320 a 8.910 a

Log-L −12.474 −10.596 −12.438 −7.069 −8.634 −11.710
Gumbel

δ 1.223 a 1.183 a 1.260 a 1.141 a 1.183 a 1.228 a

Log-L −6.541 −4.251 −8.307 −2.477 −4.729 −6.603
180◦ rotated Gumbel

δ 1.326 a 1.281 a 1.329 a 1.259 a 1.256 a 1.316 a

Log-L −15.498 −11.794 −14.612 −10.533 −10.484 −14.249
Clayton

ρ 0.630 a 0.543 a 0.594 a 0.523 b 0.505 a 0.593 a

Log-L −16.645 −13.235 −14.419 −12.023 −12.126 −14.634
180◦ rotated Clayton

ρ 0.307 c 0.263 0.355 c 0.130 0.237 0.310 c

Log-L −4.233 −3.046 −5.244 −0.671 −2.478 −4.320
SJC
λU 2.83 × 10−7 4.77 × 10−7 5.57 × 10−8 1.85 × 10−7 4.21 × 10−7 4.96 × 10−7

λL 0.380 0.404 0.366 a 0.346 0.320 0.354
Log-L −16.508 −11.868 −14.474 −12.044 −11.464 −14.735

Note: superscript a, b, and c represent the significant levels at 1%, 5%, and 10%, respectively.

According to the logarithmic likelihood values, it is found that the Clayton copula
performs the best with significant estimated parameters, followed by the 180◦ rotated Gum-
bel copula, the Student’s t copula, and the Gaussian copula, successively, and the Gumbel
copula and 180◦ rotated Clayton copula perform the worst. In the SJC copula measuring
asymmetric positive dependence, the lower tail correlations are larger than the upper ones,
but most parameters are not significant. The results suggest a positive but asymmetric
risk dependence between Chinese and mature markets, and the downside correlation is
stronger than the upside correlation. Overall, the results are generally consistent with
the findings drawn from M-Clayton and MS-M-Clayton copulas but fail to capture the
negative dependence structure and the upside correlations between CSI300 and S&P500,
DAX30, and Nikkei225 effectively. Moreover, the static copulas are unable to capture the
time-varying or dependence-switching characteristics of the correlations.

5.3.2. Dynamic Dependence Measured by Time-Varying Parameter Copula

To assess the dynamic risk dependence correlation between Chinese and mature
markets, Table 6 further reports the estimated results of four TVP copulas, in which most of
the estimated parameters are significant at the 10% level. It can be found that TVP copulas
perform better than the corresponding invariant copulas. Specifically, the TVP-180◦ rotated
Gumbel copula describing the lower–lower tail correlation effectively captures the risk
dependence between Chinese and mature markets, and the TVP-SJC copula also proves

94



Entropy 2023, 25, 619

that the lower–lower correlation is more significant. The results confirm the positive risk
dependence structure and the prominent downside risk correlation between Chinese and
mature markets. The effectiveness of time-varying mechanism in depicting the dynamic risk
correlation is also verified. Although TVP copulas provide an analytical view on dynamic risk
correlation, a significant difference between them and the proposed MS-M-Clayton copula is
that the potential negative dependence structure is not effectively depicted.

Table 6. TVP copula estimates of the CSI300 with mature stock indexes.

Copula CSI300-S&P500 CSI300-GSPTSE CSI300-DAX30 CSI300-FTSE100
CSI300-

Nikkei225
CSI300-ASX200

TVP-Gaussian
ψ0 0.255 a 1.162 a 0.091 a 0.711 a 0.321 a 1.601 a

ψ1 0.270 a 0.258 a −0.169 a 0.023 a −0.049 a −0.739 a

ψ2 1.227 a −1.423 a 2.042 a −0.635 a 1.117 a −1.762 a

Log-L −13.283 −10.836 −13.771 −6.078 −8.661 −11.657
TVP-180◦ Rotated Gumbel

ωL 2.435 a 1.144 a 2.800 a 1.557 a 0.993 a −0.429 a

αL −0.815 a −0.311 a −0.768 a −0.557 a −0.324 a 0.683 a

βL −2.851 a −0.766 a −5.030 a −1.291 a −0.263 a 0.340 a

Log-L −18.779 −11.955 −17.436 −10.738 −10.512 −14.862
TVP-Gumbel

ωU 2.338 a 2.903 a 3.366 a 3.106 a −0.654 a −0.608 a

αU −0.916 a −0.744 a −1.018 a −1.363 a 0.942 a 0.620 a

βU −2.541 a −6.164 a −6.821 a −4.265 a −0.110 a 1.100 a

Log-L −9.867 −9.881 −15.758 −7.732 −5.015 −8.784
TVP-SJC

ωU −14.830 a −14.363 a −15.343 a −15.242 a −14.593 a −14.490 a

αU −0.012 a −0.002 b −8.391 × 10−4 c −0.002 a −0.002 a −5.799 × 10−4 b

βU −0.003 a 7.327 × 10−5 4.025 × 10−6 −1.465 × 10−6 −1.469 × 10−5 −1.642 × 10−4

ωL 2.792 a 0.459 a 5.150 a 4.447 a −0.181 a −2.235 a

αL −5.960 a −2.988 a −18.110 a −15.809 a −1.477 a 1.071 a

βL −4.505 a −1.209 a −4.230 a −4.203 a −0.858 a 3.771 a

Log-L −19.595 −12.379 −17.450 −12.804 −11.371 −14.976

Note: superscript a, b, and c represent the significant levels at 1%, 5%, and 10%, respectively.

5.4. Asymmetric Risk Spillover Measurement by VaR, CoVaR and Nomalized CoVaR

To provide implications for risk supervision and portfolio risk management, we
studied the extreme risk spillovers between Chinese and mature stock markets in different
routes by VaR and CoVaR based on the information from marginal distribution and Ms-
M-Clayton copula model. We set α and β equal to 0.05 for downside CoVaR and 0.95 for
the upside CoVaR calculation. Table 7 reports the summary statistics of the VaR and the
CoVaR, and Figure 3 shows the dynamic trajectories for intuitive observation.

For stock index pairs except CSI300-FTSE100, the absolute values of upside VaR
and CoVaR are larger than those of the downside, respectively, meaning that the upside
risk is larger than the downside risk in Chinese market. Moreover, the VaR and CoVaR
show phased extreme fluctuations, which may be related to the macroeconomic uncer-
tainties, such as the periods around 2008, 2013, and 2015. For the positive risk contagion
(3 and 6 rows in Table 7), the absolute values of CoVaR are all greater than that of VaR
when measuring either upside or downside risks, indicating the synergistic risk spillover
from mature markets to the Chinese market. In the measurement of negative risk contagion
(4–5 rows in Table 7), the absolute values of CoVaR are generally smaller than that of VaR,
implying the weak existence of reverse risk spillovers. Overall, the positive risk contagion
from mature markets to the Chinese market are more significant than the negative conta-
gion. It is noteworthy that the downside risk contagion between Chinese and Asia–Oceania
markets is relatively weak, suggesting that the Asia–Oceania market can be considered as a
potential choice for investors in the Chinese market to diversify their investment portfolios.
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Table 8 further reports the hypothesis testing results by K-S test, and the statistics are
generally significant at 10% level, rejecting the null hypothesis that VaR is equal to CoVaR.

Table 7. Summary statistics of the VaR and the CoVaR (The CoVaRβ,t
CSI300(D)|Other(D)

and

CoVaRβ,t
CSI300(U)|Other(D)

denote the downside and upside VaRs of the CSI300 conditional

on the extreme declines of mature markets, respectively; the CoVaRβ,t
CSI300(D)|Other(U)

and

CoVaRβ,t
CSI300(U)|Other(U)

denote the downside and upside VaRs of the CSI300 conditional on the
extreme rises of mature markets, respectively).

CSI300-
S&P500

CSI300-
GSPTSE

CSI300-
DAX30

CSI300-
FTSE100

CSI300-
Nikkei225

CSI300-
ASX200

VaRα,t
CSI300,D −12.258 (4.483)

VaRα,t
CSI300,U 14.720 (4.227)

CoVaRβ,t
CSI300(D)|Other(D)

−19.060
(6.337)

−18.840
(6.335)

−18.791
(6.271)

−19.021
(6.228)

−18.275
(6.143)

−18.369
(6.126)

CoVaRβ,t
CSI300(D)|Other(U)

−7.773 (3.309) −12.474
(5.122) −8.736 (3.646) −11.459

(4.664)
−10.170
(4.875) −9.026 (3.706)

CoVaRβ,t
CSI300(U)|Other(D)

13.260 (3.827) 14.060 (5.324) 10.639 (3.344) 16.491 (5.574) 12.942 (5.057) 11.247 (3.468)

CoVaRβ,t
CSI300(U)|Other(U)

21.470 (6.056) 19.090 (4.497) 21.704 (6.116) 18.901 (4.802) 21.119 (5.988) 20.147 (5.650)

Note: this table reports the means and the standard errors (in parentheses) of VaR and CoVaR.

Figure 3. The dynamic trajectories of the VaR and the CoVaR.
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Table 8. The hypothesis testing for equalities of CoVaR and VaR.

Null Hypotheses
CSI300-
S&P500

CSI300-
GSPTSE

CSI300-
DAX30

CSI300-
FTSE100

CSI300-
Nikkei225

CSI300-
ASX200

CoVaRβ,t
CSI300(D)|Other(D)

=

VaRα,t
CSI300,D

0.593 a (0.000) 0.577 a (0.000) 0.577 a (0.000) 0.582 a (0.000) 0.550 a (0.000) 0.550 a (0.000)

CoVaRβ,t
CSI300(D)|Other(U)

=

VaRα,t
CSI300,D

0.582 a (0.000) 0.077 (0.637) 0.456 a (0.000) 0.159 b (0.017) 0.330 a (0.000) 0.445 a (0.000)

CoVaRβ,t
CSI300(U)|Other(D)

=

VaRα,t
CSI300,U

0.181 a (0.004) 0.220 a (0.000) 0.478 a (0.000) 0.132 (0.077) 0.324 b (0.047) 0.412 a (0.000)

CoVaRβ,t
CSI300(U)|Other(U)

=

VaRα,t
CSI300,U

0.533 a (0.000) 0.456 a (0.000) 0.544 a (0.000) 0.418 a (0.000) 0.517 a (0.000) 0.473 a (0.000)

Note: superscript a and b represent the significant levels at 1% and 5% respectively.

To further evaluate the intensity of risk spillovers in different routes and analyze
its asymmetry, Table 9 reports the summary statistics of the CoVaR normalized by VaR

(CoVaR/VaR). It can be observed that the mean values of
CoVaRβ,t

CSI300(D)|Other(D)

VaRα,t
CSI300,D

are greater

than those of
CoVaRβ,t

CSI300(D)|Other(U)

VaRα,t
CSI300,D

, and the mean values of
CoVaRβ,t

CSI300(U)|Other(U)

VaRα,t
CSI300,U

are greater

than those of
CoVaRβ,t

CSI300(U)|Other(D)

VaRα,t
CSI300,U

, indicating that the positive and negative risk contagion

effects are asymmetric, and the positive effect is stronger than the negative effect. Mean-

while, the mean values of
CoVaRβ,t

CSI300(D)|Other(D)

VaRα,t
CSI300,D

are greater than those of
CoVaRβ,t

CSI300(U)|Other(U)

VaRα,t
CSI300,U

,

and the mean values of
CoVaRβ,t

CSI300(U)|Other(D)

VaRα,t
CSI300,U

are greater than those of
CoVaRβ,t

CSI300(D)|Other(U)

VaRα,t
CSI300,D

except in CSI300-GSPTSE pairwise returns, implying the asymmetry between upside and
downside risk contagion effects, and the downside effect is generally stronger, while the
opposite effect is in negative contagion. The analyses are statistically supported by K-S tests
(see in Tables A3 and A4 of Appendix A).

Table 9. Summary statistics of the CoVaR/VaR.

CSI300-
SP500

CSI300-
GSPTSE

CSI300-
DAX30

CSI300-
FTSE100

CSI300-
Nikkei225

CSI300-
ASX200

CoVaRβ,t
CSI300(D)|Other(D)

VaRα,t
CSI300,D

1.571 (0.082) 1.551 (0.082) 1.548 (0.079) 1.569 (0.080) 1.504 (0.069) 1.513 (0.080)

CoVaRβ,t
CSI300(D)|Other(U)

VaRα,t
CSI300,D

0.625 (0.056) 1.014 (0.161) 0.707 (0.101) 0.926 (0.094) 0.828 (0.264) 0.729 (0.054)

CoVaRβ,t
CSI300(U)|Other(D)

VaRα,t
CSI300,U

0.903 (0.056) 0.943 (0.162) 0.721 (0.063) 1.110 (0.113) 0.871 (0.185) 0.762 (0.051)

CoVaRβ,t
CSI300(U)|Other(U)

VaRα,t
CSI300,U

1.461 (0.055) 1.317 (0.110) 1.478 (0.059) 1.299 (0.118) 1.441 (0.111) 1.372 (0.061)

Note: this table presents the means and the standard errors (in parentheses) of the CoVaR/VaR.

6. Conclusions

The risk contagion between Chinese and mature markets has attracted more and more
attention from both scholars and market participants. In this work, we construct a novel Ms-
M-Clayton copula model to identify both positive and negative dependences and revisit the
risk contagion between Chinese market and six mature markets in the Americas, Europe,
and Asia–Oceania. Four basic Clayton copulas with various rotations are weighted to
capture different tail correlations, and a two-state transition mechanism following Markov
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chain is introduced to allow the copula depicting dynamic risk correlations. Based on the
estimated results, we calculate the CoVaR to measure the risk contagion between markets.
The major conclusions are as follows:

Firstly, the financial risk dependence structures are asymmetric, and the correlations
are heterogeneous. Overall, the positive dependence is dominant between Chinese and
mature markets. Meanwhile, the downside risk correlation is stronger than the upside one
between Chinese and American, German, and Japanese markets, while the opposite relevance
is observed for Chinese and Canadian, British, and Australian markets. It is noted that
compared to the Americas and European markets, the risk correlation between Chinese and
Asia–Oceania markets is relatively weak. Moreover, the negative dependence should not be
ignored as it may emerge in a volatile market environment and provide market participants
with signals to manage their exposure. Then, the financial risk contagion is also asymmetric,
which manifests in both positive and negative contagion effects, as well as in both upside and
downside contagion effects. Overall, the positive effect is stronger than the negative effect, and
the downside effect is stronger than the upside effect in positive structure. Compared with
mature markets in Europe and the Americas, the risk spillover from Asia–Oceania markets is
relatively weak, indicating that the Japanese and Australian markets can be considered as a
potential choice for the investors in the Chinese market to diversify their portfolios.

This work enriches the understanding of financial risk contagion mechanism of Chi-
nese and mature markets, which provides both practical and policy implications for investor
and supervisors. With respect to practical aspects, before constructing an international
portfolio, it is necessary for investors to use such quantitative models to identify and
filter out markets with stronger downside risk correlation in order to better diversify
their investment risks. In this study, the Chinese stock market generally has weaker risk
relationship and contagion effects with mature markets in Asia–Oceania compared to
the Americas and Europe thus, the Japanese and Australian markets can be regarded as
feasible choices for Chinese market investors to diversify investment risks. In addition,
since the Ms-M-Clayton has the capability to detect negative risk dependence structures,
it is possible for investors to leverage it to discover the unusual opportunities to hedge
investment risk by constructing cross-market portfolios. In the policy-making perspective,
for the emerging markets at a disadvantage in risk contagion, it is essential to improve their
financial system and decrease the pressure of capital outflows under extreme conditions.
Specifically, according to the findings of this work, the dependence structures between
markets are generally stable, which creates the possibility for supervisors to predict future
risk scenarios and formulate guiding or regulatory policies using the Ms-M-Clayton copula.
Moreover, as the model is sensitive to the transition probability in risk dependence states,
and the supervisors are able to perceptively monitor the potential risk changes and imple-
ment risk prevention measures on previous experience. Furthermore, the Ms-M-Clayton
copula model is also applicable for the series analyses of various engineering fields.

To mention, we focus only on the risk contagion between Chinese and mature stock
markets in this work. Several fast-growing economies, such as Brazil, Russia, India,
and South Africa, constituting the BRICS group with China, represent over 18% of the
population and approximately 8% of the GDP around the world. A comparative analysis
of their stock markets may be a promising topic in future research.
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Appendix A

Table A1. Diagnostic tests of stationarity, autocorrelation, and heteroscedasticity.

CSI300 S&P500 GSPTSE DAX30 FTSE100 Nikkei225 ASX200

ADF −11.633 *** −12.099 *** −11.859 *** −12.234 *** −13.419 *** −11.760 *** −12.253 ***
PP −12.293 *** −12.145 *** −11.920 *** −12.181 *** −13.418 *** −11.763 *** −12.248 ***

KPSS 0.104 0.179 0.033 0.045 0.059 0.135 0.048
Q (5) 21.335 *** 6.294 7.096 7.109 3.385 4.423 3.236
Q (10) 25.902 *** 15.362 14.193 15.727 9.440 8.564 6.966
Q2(5) 28.419 *** 48.390 *** 16.423 *** 5.253 17.739 *** 5.174 11.914 **
Q2(10) 58.267 *** 52.676 *** 18.408 ** 12.539 39.787 *** 10.733 14.600

ARCH (1) 0.704 26.472 *** 15.538 *** 2.126 15.553 *** 3.634 * 11.383 ***
ARCH (5) 14.973 *** 40.282 *** 17.452 *** 4.533 17.119 *** 7.610 11.441 **

Note: ***, **, and * represent the significant levels at 1%, 5%, and 10%, respectively.

Table A2. Parameter estimation results of the marginal distribution models and diagnostic tests.

Parameters CSI300 S&P500 GSPTSE DAX30 FTSE100 Nikkei225 ASX200

Panel A. φ0
1.348 **
(0.668)

1.092 ***
(0.240)

0.282 ***
(0.100)

0.589
(0.398)

0.447
(0.280)

0.659
(0.494)

0.760 ***
(0.286)

AR-GARCH
model

φ1
0.092 *
(0.071)

φ4
0.189 ***
(0.062)

α0
4.201

(4.241)
1.137

(0.937)
0.642 ***
(0.211)

1.106
(1.058)

4.700
(3.963)

11.320 ***
(2.144)

α1
0.153

(0.116)
0.248 ***
(0.102)

0.535 ***
(0.103)

0.132 **
(0.062)

0.128 **
(0.053)

0.356 ***
(0.130)

β1
0.797 ***
(0.135)

0.723 ***
(0.105)

0.342 ***
(0.097)

0.809 ***
(0.102)

0.730 ***
(0.149)

GED. 1.193 ***
(0.135)

1.286 ***
(0.213)

1.652 ***
(0.262)

1.494 ***
(0.242)

Panel B. Log-L −627.552 −510.743 −343.105 −578.161 −511.389 −579.028 −517.528

Diagnostic
tests

AIC 6.973 5.546 3.732 6.228 5.553 6.314 5.608
Q (5) 3.820 1.698 3.799 7.109 0.712 0.474 1.594

Q (10) 6.385 6.374 7.398 15.727 4.119 3.896 5.102
Q2 (5) 2.549 3.639 3.505 5.971 5.056 2.588 1.393

Q2 (10) 9.202 9.977 9.374 12.817 15.250 7.690 9.668
ARCH (1) 0.278 1.998 2.009 2.124 2.289 0.796 0.590
ARCH (5) 2.491 3.607 3.678 4.533 4.583 3.340 1.273

Note: ***, **, and * represent the significant levels at 1%, 5%, and 10%, respectively.

Table A3. The K-S test for CoVaR/VaR between positive and negative risk spillovers.

Hypotheses
CSI300-
S&P500

CSI300-
GSPTSE

CSI300-
DAX30

CSI300-
FTSE100

CSI300-
Nikkei225

CSI300-
ASX200

H0 :
CoVaRβ,t

CSI300(D)|Other(D)

VaRα,t
CSI300,D

=
CoVaRβ,t

CSI300(D)|Other(U)

VaRα,t
CSI300,D

;

H1 :
CoVaRβ,t

CSI300(D)|Other(D)

VaRα,t
CSI300,D


= CoVaRβ,t
CSI300(D)|Other(U)

VaRα,t
CSI300,D

.

1.000 ***
(0.000)

1.000 ***
(0.000)

1.000 ***
(0.000)

1.000 ***
(0.000)

0.945 ***
(0.000)

0.550 ***
(0.000)

H0 :
CoVaRβ,t

CSI300(U)|Other(U)

VaRα,t
CSI300,U

=
CoVaRβ,t

CSI300(U)|Other(D)

VaRα,t
CSI300,U

;

H1 :
CoVaRβ,t

CSI300(U)|Other(U)

VaRα,t
CSI300,U


= CoVaRβ,t
CSI300(U)|Other(D)

VaRα,t
CSI300,U

.

1.000 ***
(0.000)

0.824 ***
(0.000)

1.000 ***
(0.000)

0.577 ***
(0.000)

0.896 ***
(0.000)

0.445 ***
(0.000)

Note: this table summarize the results of the Kolmogorov–Smirnov (KS) tests; *** represent the significant levels
at 1%, and the p-values for the KS statistics are reported in parentheses.
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Table A4. The K-S test for CoVaRs/VaRs between upside and downside risk spillovers.

Hypotheses
CSI300-
S&P500

CSI300-
GSPTSE

CSI300-
DAX30

CSI300-
FTSE100

CSI300-
Nikkei225

CSI300-
ASX200

H0 :
CoVaRβ,t

CSI300(D)|Other(D)

VaRα,t
CSI300,D

=
CoVaRβ,t

CSI300(U)|Other(U)

VaRα,t
CSI300,U

;

H1 :
CoVaRβ,t

CSI300(D)|Other(D)

VaRα,t
CSI300,D


= CoVaRβ,t
CSI300(U)|Other(U)

VaRα,t
CSI300,U

.

0.615 ***
(0.000)

0.797 ***
(0.000)

0.440 ***
(0.000)

0.830 ***
(0.000)

0.247 ***
(0.000)

0.412 ***
(0.000)

H0 :
CoVaRβ,t

CSI300(D)|Other(U)

VaRα,t
CSI300,D

=
CoVaRβ,t

CSI300(U)|Other(D)

VaRα,t
CSI300,U

;

H1 :
CoVaRβ,t

CSI300(D)|Other(U)

VaRα,t
CSI300,D


= CoVaRβ,t
CSI300(U)|Other(D)

VaRα,t
CSI300,U

.

0.989 ***
(0.000)

0.346 ***
(0.000)

0.253
(0.217)

0.703 ***
(0.000)

0.484 ***
(0.000)

0.473 ***
(0.000)

Note: this table summarize the results of the Kolmogorov–Smirnov (KS) tests; *** represent the significant levels
at 1%, and the p-values for the KS statistics are reported in parentheses.
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Abstract: Decisions made by international aid donors regarding the allocation of their aid budgets to
recipients can be mathematically modelled using network theory. The many countries and multi-
lateral organisations providing developmental aid, mostly to developing countries, have numerous
competing or conflicting interests, biases and motivations, often obscured by a lack of transparency
and confused messaging. Using network theory, combined with other mathematical methods, these
inter-connecting and inter-dependent variables are identified, revealing the complicated properties
and dynamics of the international aid system. Statistical techniques are applied to the vast amount of
available, open data to first understand the complexities and then identify the key variables, focusing
principally on bilateral aid flows. These results are used to create a weighted network model which
is subsequently adapted for use by a hypothetical aid recipient. By incorporating modern portfolio
theory into this weighted network model and taking advantage of a donor’s reasons for allocating
their aid budgets to that recipient, a simulation is carried out treating the problem as an optimal
investment portfolio of aid determinant ‘assets’ which illustrates how a recipient can maximise
their aid receipts. Suggestions are also made for further uses and adaptations of this weighted
network model.

Keywords: international aid; foreign aid; complex systems; network science; network theory;
econometrics; financial mathematics; portfolio theory

1. Introduction

US$162bn of foreign aid was donated by developed countries (‘donors’) to developing
countries (‘recipients’) in 2020 [1]. Democratic governments of donor countries are faced
with decisions regarding how and where to allocate their foreign aid budgets, not solely for
poverty alleviation but also to achieve a diverse set of specific goals and unique strategies.

Significant drivers of how donors allocate their foreign aid budgets are based upon
achieving certain political and strategic objectives, both domestic and global. Global objec-
tives include the projection of soft power, control over foreign resources, biases towards
allies or ex-colonies and gaining global influence. These motivations, behaviours and deter-
minants are complicated and difficult to capture in a mathematical model. Nevertheless, in
democratic societies at least, justifications for aid allocation decisions and transparency are
often demanded, and mathematical methods and models can help provide these, even if
they are not used to determine forward action.

Foreign aid dynamics and interactions are particularly complicated, as detailed in Ben
Ramalingam’s book, Aid on the Edge of Chaos [2], with the complexity of the determinants of
aid flows well documented by [3]. There are many interacting variables and dynamics of
foreign aid networks, and the relative importance which donors place on their specific and
numerous aid determinants is often not known. This causes difficulties when analysing
and concluding on many aspects of overseas aid, which further makes it problematic to
design and create a useful mathematical model that can capture the dynamics of foreign
aid networks and successfully incorporate the interacting and inter-dependent variables.

To attempt this, the many variables and determinants which create the complicated
foreign aid dynamics firstly need to be identified and understood. By studying other
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research conducted on this topic, and sourcing and analysing additional data using sta-
tistical techniques, the results from this article will inform the adaptation and use of a
weighted network model, first proposed by [4], that captures the properties, interactions
and dynamics of the international aid system.

Much of the literature and research into foreign aid dynamics focuses on the donor.
Econometric techniques, primarily regression and ordinary least squares ([5–7]), are com-
monly employed in an attempt to reveal the relative importance of donor motivations
and potential biases behind their aid allocation decisions. More recently, there has been
research conducted on the growing field of network theory and the utilisation of related
mathematical methods to model the allocation of aid that goes beyond regression ([4,8]).

However, it is rarer to find research and analysis focusing on aid recipients. By
understanding donor motivations and biases, aid recipients could exploit these ‘assets’ and
potentially increase their aid receipts if they are viewed as a portfolio of investments.

By identifying and quantifying significant donor motivations for allocating their aid
budgets, inputting these variables into a general weighted network model [4] and then
adapting it using financial mathematics (modern portfolio theory), aid recipients could
use the model to optimise their aid income portfolio, treating donor variables similarly to
assets in an investment portfolio. This is illustrated in this article using a simulation.

The principal aim, then, of this article is to illustrate the power of network science
and mathematical modelling when applied to the complex and dynamical system of
international aid. The potential impact is an increase in transparency of the often-opaque
motivations and biases of aid donors, which subsequently could be employed by recipients
to increase their aid income.

2. Methods

2.1. Data and Data Analysis

The first step to evaluating, and then adapting, the general weighted network model [4]
is to identify the significant motivations and preferences shown by selected donors re-
garding the allocation of their aid budgets. These will be used as the model’s variables.
Subsequently, the accuracy of the model’s mechanics and outputs can be tested against
actual historical data for selected donors and recipients.

Data from the OECD and World Bank were sourced and analysed using various
statistical techniques to identify and understand the inter-connecting and inter-dependent
variables that drive the data. The pertinent results are summarised here.

2.1.1. Economic and Foreign Aid Data

To compare the economic fortunes of one country versus another, gross national
income (GNI), a key measure of economic well-being and a superior metric for assessing
the overall economic condition of a country, especially for countries that have large foreign
receivables or outlays, will be used for identifying the level of need of an aid recipient
(‘recipient need’). Furthermore, to assist with country comparisons, GNI per capita will be
used rather than absolute GNI.

Table 1 lists the top 10 aid recipients in 2019 by net official development assistance
(ODA) receipts, classified as total net ODA flows from Development Assistance Committee
(DAC) countries, multilateral organisations and non-DAC countries.

When identifying the top donor countries, rather than looking at absolute aid donated,
the affordability of a donor country to provide aid is assessed using aid donated as a
percentage of country GNI. This is summarised in Figure 1, which lists the members of the
DAC, a development committee of the OECD.
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Table 1. Top 10 ODA recipients, including significant regional aid donations, and figures for all
developing counties for comparison [9]. All figures in US$m unless otherwise stated.

Net ODA Receipts GNI/CAP (US$) GNI ODA/GNI (%)
Country/Region 2015 2016 2017 2018 2019 2019 2019 2019

Syrian Arab Republic 4920 8900 10,428 9997 10,252 - - -
Ethiopia 3239 4084 4125 4941 4810 850 95,641 5.03
Bangladesh 2593 2533 3782 3045 4518 1940 316,907 1.43
Yemen 1778 2301 3234 7985 4397 - - -
Afghanistan 4274 4069 3812 3792 4285 540 19,402 22.08
Nigeria 2432 2498 3359 3305 3531 2030 433,449 0.81
Kenya 2464 2188 2480 2491 3251 1750 93,578 3.47
Democratic Republic of the Congo 2599 2102 2293 2514 3026 520 45,879 6.59
Jordan 2141 2728 2980 2526 2797 4300 43,429 6.44
India 3174 2679 3198 2462 2611 2130 2,843,902 0.09
Regional (not specific to any country)
South of Sahara 2435 2635 2759 3137 3410
Africa region 2184 2777 3017 3241 3201
All developing countries 146,742 158,811 165,090 166,540 168,588 511,750 292,854,611 0.58

Figure 1. ODA grant equivalent as percentage of GNI in 2020 for DAC donors in the OECD. The grey
bars identify those countries that contribute less than the United Nations (UN) target of 0.7%, the
blue bar shows total of the DAC countries as a percentage of their GNI and the green bars highlight
those countries who contribute over the UN target of 0.7%.

Figure 1 is sourced from the OECD website [10] and arranged in descending order
based on the percentage of DAC-country GNI donated in 2020, with Sweden donating the
highest percentage of its GNI at 1.15%.

Donor affordability is epitomised by the 0.7% target agreed by the United Nations (UN)
in 1970 for aid contributions by DAC countries to developing countries. It is reasonable
then to assume that since the UN members agreed to 0.7%, they can therefore afford to

105



Entropy 2023, 25, 641

donate 0.7% of their GNI. However, as shown in Figure 1, this target is not being met by
most UN countries, including the USA.

Bilateral aid flows—aid given directly from a country donor to a recipient donor—
comprised circa. 67% of total ODA donated in 2019, with the remaining third being flows
from multilateral institutions and international financial institutions (for example, the
World Bank). However, the proportion of bilateral aid reduced significantly in 2020 by 36%
on 2019 levels to 42% of the total aid donated, with multilateral institutions taking up the
slack, due mainly to the impact of COVID [11].

2.1.2. Aid Flows from Donors to Former Colonies

There are robust conclusions in the research performed by [3,5,6], among many others,
that a strong motivation behind aid allocation decisions by donors lies in whether the
recipient is an ex-colony or not. Former colonies receive proportionately more aid from
their former colonial masters than other recipients.

Indeed, according to [5], between 1970 and 1994, France gave 57% of its total bilateral
aid to its former colonies, the UK gave 78% and Portugal 99.6%. Moreover, according to
the OECD [12], in 2009, the largest recipient of UK aid was India and, by 2019, this was
Pakistan, both former UK colonies. Thus, colonial history is positively correlated with aid,
as identified by [5] and confirmed by own analysis performed.

2.1.3. Trade Activity

Before correlation techniques were applied to detect any interdependencies between
trade activity and aid donations, the raw data were analysed. Trade data are sourced
from the World Integrated Trade Solution (WITS) website, a sister site of the World Bank
specifically focused on trade [13], for the period 1993 to 2019. By charting this trade data
with aid data sourced from the World Bank [9], a pattern of aid versus trade can be viewed
over time. This suggested a positive correlation, confirmed by calculating correlations
between the two data sets over many periods. This result is also backed by research
performed by [5,6,14].

2.1.4. Recipient Need

The literature is mixed regarding the relative importance of recipient need as a variable
in a donor’s aid allocation decisions. In [5], the authors are clear on donor motivations
being based mainly on self-interest and political and strategic considerations over aid
recipient needs. However, later studies, such as [14], dispute this conclusion stating that
self-interest, while still a significant input into aid allocation decisions, is not as important
as recipient need. Moreover, [6] conclude that the USA behaves very differently from all
other aid donors, except Japan, by putting much less emphasis on recipient need and much
more emphasis on donor self-interest.

2.1.5. The Herding Phenomenon (the Bandwagon Effect)

Another variable to consider for inclusion in a mathematical model of foreign aid is
herding behaviour often exhibited by donors, also termed the ‘bandwagon effect’. This
refers to the actions and impulses of a group of agents, countries, politicians, or financial
traders to follow the actions of the ‘crowd’ rather than trust their own individual judgment.
The phenomenon has similar attributes to ‘groupthink’. It is an emergent behaviour of a
dynamical system due to the many interactions taking place within that system.

Herding is commonly associated with financial market behaviour, for example asset
bubbles [15]. Grounded in behavioural finance, herd mentality refers to investors’ bias to
follow what other investors are doing, being largely influenced by emotion and intuition,
rather than by their own evaluations of potential investments.

In terms of aid allocation, the bandwagon effect manifests itself when a recipient
receives more aid from one donor, leading to an increase in aid from many more donors. In
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other words, the more aid a recipient receives, the more it attracts. It likely depends on the
relative influence of the lead donor rather than characteristics of the recipient.

Research conducted by [6] attempted to measure the effect using regression and
incorporating aid from other sources, not only ODA. They find that there is some support
for the herding argument, but it is far from conclusive. Ref. [16] gives the phenomenon a
more thorough review, concluding that there is around an 11% impact on aid donations
through donor herding, which is relatively significant.

2.2. A Network Model for Foreign Aid

The principal outcome of the research conducted, using data analysis and statistical
techniques, is the identification of the following significant aid determinants:

• Past colonial relationships;
• Trade activity and commercial interests;
• Poverty alleviation (recipient need); and
• Bandwagon impacts (‘herding’).

These variables will now be incorporated into a weighted network model to demon-
strate how such a model can be modified and used by an aid recipient to treat their various
donor-sourced aid receipts as an investment portfolio and maximise their aid income using
modern portfolio theory.

The weighted network model introduced allows for additional variables to be incor-
porated and, indeed, further variables were considered for inclusion. Variables such as
the occurrence of war, migration and recipient corruption could be reflected in the model;
however, the focus here is on long-term and relatively stable determinants of aid. Fur-
thermore, the bandwagon impact may partially and indirectly incorporate these variables;
for example, the war in Afghanistan in the early 2000s led to significant amounts of aid
donated by the USA to Afghanistan, swiftly followed by aid donated by other donors.

2.2.1. The General Weighted Network Model

The general model proposed by [4] follows a weighted network model approach
utilising donor-specific preference functions to measure donor motivations and biases
when deciding aid allocations. The preference functions quantify the relative contributions
of aid determinants used in aid allocation input decisions, such as poverty, trade activity,
past colonial relationships and bandwagon impacts (‘herding’), into ‘weights’ which are
applied to a network model, revealing donor behaviours and the relative importance placed
on these aid determinants.

Figure 2 is an archetypal bipartite network model which has nation donors on the
left representing the set of nodes D and the recipients on the right representing the set of
nodes R. D and R are disjoint sets of nodes in which links can exist only between the two
sets and not within each set, thus illustrating the flow of aid which is directed only from
elements of D to elements of R. In total, there are six nodes split into two disjoint sets of
three donors, di ∈ D, and three recipients, rj ∈ R, where i, j = 1, 2, 3 represent donors and
recipients, respectively.

The n-vector node-specific information uk
β represents the n quantities (or vector ele-

ments) associated with each country, k = i, j, in the network, where β = 1, . . . , n is used
to denote the numbered element of the vector uk. For example, recipient Ethiopia’s node
in Figure 2 is labelled r3. In the case that this node’s specific information contains poverty
levels, u3

1, colonial history, u3
2, and trade activity, u3

3, then the vector u3 has 3 elements n = 3,
denoted as u3

β, where β = 1, 2, 3.

Further, the links between each set holds m-vector link weights lij
α , representing the m

relationships between donors i and recipients j, where α = 1, . . . , m denotes the numbered
element of the vector lij. For example, the vector representing trade activity and colonial
history between the UK, d2, and Bangladesh, r1, are denoted as l21

1 and l21
2 , respectively,

where m = 2 in this example, and is denoted as l21
α , where α = 1, 2.
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Figure 2. A complete bipartite graph of a weighted network containing notation which underpins
the model.

The node and link vector information, as defined, can be quantified into weights
and input into a preference Function (1), supplemented by input Functions (2) and (3),
outputting a percentage of aid allocated by a donor, di, to a recipient, rj.

Pij
(

lij, uj
)

:= ∏
α

f i
α
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α
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uj

β, u•
β

)
(1)

The superscript • in preference Function (1) denotes all recipients in the set of nodes R, and
its role is seen in the denominators of (2) and (3). The input functions, f i

α and gi
β, quantify

donor preferences towards specific determinants of aid, such as trade activity and recipient
need, into proportioned weights before input into (1):

f i
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lij
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α

)
=
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α
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α
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⎤
⎦
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where the exponent parameters, μi
α and ηi

β, hold only non-negative real values. These are
referred to as ‘power’ parameters.

The terms in the square brackets in (2) and (3) are functional inputs holding informa-
tion on chosen aid determinants positively correlated with aid allocation and expressed as
a proportion. The greater the proportion, the higher the value generated by the function
and therefore the greater the weight due to a particular aid determinant for input into (1).

There is a difference in usage between the input Functions (2) and (3). The func-
tion f i

α

(
lij
α , li•

α

)
in (2) is used for link-specific weights, lij

α , and quantifies behaviours and
relationships that exist between a donor di and a recipient rj, for example the levels of

trade activity. The function gi
β

(
uj

β, u•
β

)
in (3) is used for node-specific weights, uj

β, and
quantifies a specific recipient metric, such as the poverty ratio among recipients, which
is a determinant of aid that bears no direct relationship to a particular donor. Note uj

β in
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(3) is specific to a recipient rj; however, it can also be specific to a donor, ui
β, to quantify

determinants specific to a donor, di, such as donor affordability.
The form of (2) and (3) assumes that a positive correlation exists between the determi-

nant in question and aid allocated. For negative correlations, these terms are modified by
subtracting the functions from (1), resulting in a recipient with a lesser proportion receiving
a higher weight of preference and therefore aid allocated relative to the other recipients in
the model.

As an example, assume ‘recipient need’ was chosen to be an aid determinant by a
particular donor. This variable can be measured in several ways. First, say it is measured by
poverty levels per capita. This measure is assumed positively correlated with aid: the more
people in poverty, then the more aid the recipient should attract, resulting in a relatively
higher proportional output by Equation (3)—the recipient-specific weight—assuming the
power parameter ηi

β is unity. The output from (3) is then an input into the preference
Function (1), resulting in a higher percentage of aid to that recipient. On the other hand, if
recipient need was instead measured using recipient GNI, the output of Function (3) would
need to be subtracted from (1) because recipient GNI is assumed negatively correlated
with aid received. The result of these two approaches in terms of the output by preference
Function (1) should be roughly equal.

To allow for biases when allocating aid to certain recipients based on aid determinants,
the power parameters μi

α and ηi
β on Functions (2) and (3), respectively, allow for a choice

to be made by a donor with regards to the relative contribution and, thus, importance
of particular determinants on the final aid allocations output by (1), which is in the form
of percentages of the total aid budget. Donors can dial up or dial down the level of
influence that their selected determinants have on the outcome by changing the values of
the power parameters.

For example, if a donor wanted to allocate more aid to recipients with which it
experiences large amounts of trade activity over those recipients with higher poverty levels,
then the donor will choose a higher value for the power parameter applicable to the relevant
functional equation that is quantifying trade activity. These parameters then, also provide
a means for deducing historical donor behaviours and biases in simulations.

If a mathematical model is to be used by politicians, countries and organisations, then
it needs to be simple, effective and able to be communicated. An important feature of this
weighted network model is indeed its simplicity and transparency with the inputs into
Equations (2) and (3) and, in turn, into preference Function (1), determined by verifiable,
properly sourced, factual data.

The weighted network model’s initial purpose was to reflect the decisions made by
donors with regards to their motivations towards aid allocation based on certain factors,
such as trade and recipient poverty. Donors can decide how much emphasis these factors
have on the final allocation of their aid budgets. With historical data, sourced from the
World Bank and OECD, input into Functions (2) and (3), and with the historical aid
allocation figures which are the outputs from preference Function (1) also known, this
leaves the power parameter values as the only unknowns. These values can be determined
by playing the role of balancing figures and, from these estimated values, donor motivations
and the relative importance placed on certain aid determinants can be studied.

2.2.2. Adaptation of the General Model

Before adaptation of the general weighted network model for use by an aid recipient,
the model Functions (1)–(3) need to first reflect the analysis conducted in Section 2.1 and the
network model in Figure 2. Therefore, three donors, three recipients and the four identified
significant aid determinants are to be incorporated into the general model.

The set of donors, D, are Germany, the UK and the USA, respectively; d1, d2, d3 ∈ D,
each having its own preference function. The set, R, contains the three recipients: Bangladesh,
Afghanistan and Ethiopia, respectively; r1, r2, r3 ∈ R.
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From analysis performed, trade relationships were found to be positively correlated
with aid and bilateral trade activity was identified as one of the four significant aid deter-
minants that a donor considers when allocating their aid budgets. For incorporation into
the general model, trade activity is to be represented by the variable tij. For example, the
superscript i = 1 identifies the donor as Germany, d1, and superscript j = 1 represents the
recipient Bangladesh, r1. The trade ratio between a donor and its aid recipients, measured
in terms of exports to the recipient in US$, was calculated from [13]. For example, for
Germany, t11 : t12 : t13 ≡ 13:1:5 for the year 2019.

Recipient poverty was another significant aid determinant identified and is to be
represented in the adapted model by pj, which denotes the poverty levels in recipient rj. The
ratio of poverty levels is determined by using GNI per capita to quantify recipient need [9].
Correlation analysis indicated that this metric is negatively correlated with aid; therefore,
there will be a subtraction from 1 in the poverty-specific functional input equation.

Another of the significant aid determinants identified was colonial relationships,
represented by the variable cij between donor di and recipient rj. This variable will be
quantified using a binary zero-one integer programming variable defined as

cij = 1 +
{

1, colonial relationship existed between di and rj
0, no colonial relationship

(4)

The only colonial relationships of relevance to the simulation are Afghanistan and Bangladesh,
both ex-UK colonies and protectorates, and thus c21 = 2 and c22 = 2; with cij = 1 for all
other combinations of i and j, where i, j = 1, 2, 3.

The final significant aid determinant identified was the bandwagon effect, or herding,
discussed in Section 2.1.5. Simply, it refers to the tendency of aid donors to follow other
donors in allocating aid to certain recipients, who then gain ‘star’ status in the network.
This can reveal itself when a recipient attracts a larger proportion of the total aid donated
for no discernible reason, controlling for other factors; see [16]. The weighted network
model framework can quantify the bandwagon effect, to be denoted bj, by capturing the
phenomenon using aid received by a recipient, rj, in the previous period as a proportion of
total aid donated by all donors in the entire network. This captures the herding effect by
measuring recipients’ previous success in receiving aid relative to other recipients, thus
becoming a ‘star’ node in the model network.

The four determinants have now been allocated specific variables and associated data
to be input into an adapted model. The aid allocated by the three donors to the three
recipients in Figure 2 is to be used as the output values of the adapted model’s preference
function, sourced from [9]. Thus, the only remaining unknowns are the values of the
four power parameters in the four input equations, each representing one of the four aid
determinants. These parameter values can be estimated by running the model using the
known inputs (the aid determinants) and known outputs (actual historical data) to provide
important insights into donors’ individual and relative motivations and behaviours with
regards to allocating their aid budgets. The higher the power parameter value, the more
bias has been baked into the aid allocation output from that aid determinant.

To use the model over multiple consecutive time periods, it needs to be made temporal.
Starting at time t = 1, the weighted network model can be iterated forward in time with
the outputs of the equations changing at each t due to the recipients’ economic response to
aid receipts, which feed back into donors’ decisions on the allocation of aid at t + 1, acting
as a feedback mechanism. For example, assume aid donated at time t led to a reduction
in poverty in a recipient. By rolling the model forward to the next time-period, t + 1, this
reduced level of poverty will be fed into the model at t + 1, producing a different aid
allocation output percentage for the donor at t + 1 compared to t.

By denoting recipient poverty as pj
t, trade relationships as tij

t , and the bandwagon
effect as bj

t where the subscript t represents the time-period, the model becomes dynamic
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with respect to time. Note that colonial history, cij, quantified in (4) is a static measure: it
does not change with time and, consequently, has no subscript.

After the alterations discussed, the preference Function (1) and input Functions (2) and (3)
in the general model have been adapted to create Equations (5)–(9), with the four determi-
nant functions in the preference Function (5) and four input Equations (6)–(9).

Pij
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cij, tij
t , pj

t, bj
t

)
:= f i
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(9)

where Amj
t−1 in (9) is the amount of aid donated by donor m to recipient j in the previous

period t − 1, and the denominator of (9) quantifies the total aid donated within the network
at period t − 1.

The model is iterated forward starting from t = 1 (year 2015) to t = 5 (year 2019).
Note that t − 1 is the year 2014, for which actual aid data is input into Function (9). By
iterating forward, the power parameters can be backward calculated for each year from
2015 to 2019. The values are shown in Table 2. Entries marked N/A for not applicable are
included where the relationship was not relevant for the year in question.

Table 2. Power parameters required by the model to recreate the actual aid allocation results for each
year 2015 to 2019 for donors Germany, UK and USA and recipients Afghanistan, Bangladesh and
Ethiopia. Data that is not relevant is labelled N/A for not applicable.

Donor Aid Determinant 2015 2016 2017 2018 2019

Germany

Colonial history N/A N/A N/A N/A N/A
Trade relationship 1.5 1.4 2.0 0.8 -
Poverty 1.1 1.6 1.1 2.0 1.0
Bandwagon 4.0 6.0 9.0 5.0 2.2

UK

Colonial history - - 0.5 - -
Trade relationship 0.4 0.4 0.4 0.1 -
Poverty - - 0.6 0.2 0.1
Bandwagon 1.0 1.0 0.6 0.3 0.1

USA

Colonial history N/A N/A N/A N/A N/A
Trade relationship - - - 1.1 -
Poverty 1.4 1.6 1.5 1.6 0.5
Bandwagon 1.0 0.6 0.4 0.3 0.9
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The values in Table 2 can be put into matrix form. For each year the model was iterated,
the matrix of power parameter values was input into (6)–(9) and fed into (5) to create the
next period’s aid allocations. For example, for the year 2015, the matrix was the following:

Φi
α =

⎛
⎜⎝

μ1
1 μ1

2 η1
1 η1

2

μ2
1 μ2

2 η2
1 η2

2

μ3
1 μ3

2 η3
1 η3

2

⎞
⎟⎠ =

⎛
⎜⎝

0.0 1.5 1.1 4.0

0.0 0.4 0.0 1.0

0.0 0.0 0.4 1.0

⎞
⎟⎠ (10)

The general weighted network model represented by Equations (1) to (3) has been
tested, modified to Equations (5) to (9), and the relevant power parameters now calculated.
All significant inputs and outputs for the years 2015 to 2019 are now known. Next, the model
is adapted for use by an aid recipient by incorporating modern portfolio theory before
performing a simulation to illustrate how that recipient could optimise their aid receipts.

2.2.3. An Aid Recipient’s Investment Strategy Using Network Theory

If a recipient invests in increasing its trade activity with donors, then that recipient
should expect an increase in aid receipts from those donors who place a relatively high
value on commercial trade in their aid allocation decisions. This increase would then be
compounded by the herding effect, leading to additional receipts that can be re-invested
back into trade activity or other similar investment ‘assets’, creating a virtuous cycle of
investment and increasing returns.

Paradoxically, recipients may not have an incentive to reduce poverty since it may
lead to a fall in aid receipts. Instead, if recipients focus primarily on increasing trade
activities, then their GNI should naturally increase and poverty should be reduced. This
argument is limited however as it depends on other limiting factors such as the quality of
governance and institutions in the recipient country. The fruits of increased trade activity
may also fuel corruption rather than being devoted to alleviating poverty. Often, increased
trade activity is performed by state-owned companies with the recipient’s President as the
main shareholder. Donors may wish to accommodate this in their aid decisions, which the
weighted network model can do.

Despite these complications, the main interest here is regarding the ability of the
weighted network model, illustrated by Figure 2 and Equations (5)–(9), to be used by a
recipient as an investment tool to maximise their aid receipts.

By creating a foreign aid network model, a recipient would initially discover how
influential it is in the network using centrality measures, the links it holds with donors
and those that it does not. Specific weights can be added to links and nodes containing
proportions of aid received, trade activity and other recipient–donor dyad information.
This network model could also indicate if the recipient should seek out new donors, invest
in current donors or a combination of the two.

Recipients can treat their aid network model much like a company seeking to attract
funding. They could view the aid determinants used by donors as an ‘asset portfolio’,
safeguarding and maximising the value of those assets by treating them as investments.
Recipients can invest their aid income into the asset portfolio, for example by investing in
trade relationships with donors. The recipient may also need to invest in other sub-activities
such as governance quality and public relations activities, which the network model and
portfolio can identify.

An investment plan for a typical aid recipient is outlined as follows:
Step (1): Create a weighted network model, providing insights into links, level of

influence and current donors in the recipient’s foreign aid network. Analyse each donor’s
aid determinant preferences, motivations and biases.

Step (2): Produce an asset portfolio representing the donor preferences identified,
e.g., trade activity and poverty alleviation, with the USA being highlighted as a highly
influential donor.
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Step (3): Identify those assets in the portfolio that provide the highest returns, then
invest in these. For example, the recipient could invest to increase trade activity with the
USA, and in the related governance quality and infrastructure.

Step (4): The investment should lead to higher returns in the form of increased aid
income, which is re-invested into the asset investment portfolio; e.g., increased trade
activity with the USA should lead to further aid receipts donated by the USA, which then
feeds back into the donor’s aid allocation model for the following years. The herding
phenomenon then compounds the effect.

Treating aid determinants like assets in a portfolio implies the existence of an optimal
mix of such variables which provides maximum return for minimal risk. There are in fact
two main models that can be used for asset portfolio analysis: Modern Portfolio Theory
(MPT) and the Capital Asset Pricing Model (CAPM). The CAPM model is more robust with
fewer inputs; whereas the MPT model, though elegant, loses some practicality from the
attempt to find asset returns, volatilities and correlations.

Unfortunately, the CAPM model’s principal purpose is for modelling and pricing
equity market assets and their equivalents, where risk and returns are measured against
some trade index such as the FTSE100. There is no equivalent transparently priced market
for aid determinants and, therefore, the CAPM model cannot be used here. Instead, MPT is
used to illustrate the concept using a simulation.

Let us assume that the portfolio for aid recipient rj contains two controllable assets,

N = 2, ‘owned’ by the recipient: trade activity, tj
t, and poverty, pj

t, at time subscript t,
denoted in a set by

Pj
t =

{
tj
t , pj

t

}
(11)

These assets are ‘investable’ with varying risk-reward ratios and could be correlated or
uncorrelated since increasing trade volumes do not always translate into reducing poverty,
dependent on the recipient country and its regime as discussed earlier. For simplicity in
this simulation, it is assumed that the assets are uncorrelated (ρ = 0); however, equations
can be adapted for the case when the assets are correlated and the correlation coefficient
ρ 
= 0, discussed in Section 3.1.

The mean and variance of the two-asset portfolio (11) can be written as

μ
Pj

t
= Wμtj + (1 − W)μpj (12)

σ2
Pj

t
= W2σ2

tj + 2W(1 − W)ρ
tj
t ,p

j
t
σtj σpj + (1 − W)2σ2

pj (13)

with the correlation between the assets subject to the constraint −1≤ ρ
tj
t ,p

j
t
≤ 1.

In (12) and (13), W∈ [0,1] is a parameter that determines the proportion of aid receipts
invested in trade activity, i.e., W is the weight of the trade activity ‘asset’, tj

t, in the portfolio.
The weight on the poverty alleviation ‘asset’, pj

t, must be 1 − W, because

N

∑
i=1

Wi = 1 (14)

Further, if the two assets are uncorrelated, then ρ
tj
t ,p

j
t
= 0 and the variance (13) becomes

σ2
Pj

t
= W2σ2

tj + (1 − W)2σ2
pj (15)

The value of parameter W is important since the mean and standard deviation of returns of
each asset should technically be known. As W is varied, the risk and reward dynamics of
the portfolio change in response.
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The minimum variance of the portfolio (‘risk-minimising portfolio’) is calculated by
setting the first derivative of (15) to zero:

∂σ2
Pj

t

∂W
= 2Wσ2

tj + 2(1 − 2W)ρ
tj
t ,p

j
t
σtj σpj − 2(1 − W)σ2

pj := 0 (16)

from which the value of W at the minimum can be found by (17):

W =
σ2

pj − ρ
tj
t ,p

j
t
σtj σpj

σ2
tj + σ2

pj − 2ρ
tj
t ,p

j
t
σtj σpj

(17)

For uncorrelated assets, (17) can be simplified to

W =
σ2

pj

σ2
tj + σ2

pj

(18)

3. Results

Let us start with an initial amount to invest; for simplicity, assume recipient rj invests
90% of total aid it receives with the remaining 10% lost to errors, corruption and aid spillage.
Then, investment of these aid receipts in portfolio Pj is defined by 0.9W in asset tj and
0.1(1 − W) in asset pj.

It is assumed that recipient rj is a rational investor and aims to maximise portfolio
returns for the minimum risk (variance). It is further assumed that investment in its
trade activity asset results in an increase in trade levels with donors, and an investment
in its poverty alleviation asset at least maintains the current poverty level due to rising
populations. Additionally, an investment in trade is assumed to be a risky investment, since
money may be lost in the process, and poverty alleviation is deemed relatively risk-free
since if it does not work, aid receipts should continue at the current level.

The values of the means, μ, and standard deviations, σ, for both portfolio assets to be
input into the MPT Equations (12)–(18) can be calculated from the asset returns for each
period, t. Returns on assets are usually calculated by taking the difference between the
current asset value and the previous period’s asset value, the periodic asset income, and
dividing by the previous period’s asset value, i.e., for the trade activity asset:

R
tj
t
=

tj
t − tj

t−1

tj
t−1

(19)

Such returns can be calculated for each time-period, t, starting at t = 1. The mean and
standard deviations of these returns can then be calculated.

However, using (19) is too simplistic for this simulation since trade volumes and
poverty levels change substantially each period for many reasons, not solely due to any
‘return’ on an investment in these assets. The return arising purely from investment in these
assets needs to be isolated from any additional ‘noise’ which may be causing their values
to change. A recipient could isolate this ‘pure’ return using knowledge of the dynamics of
their trade activity and poverty levels, controlling for the impact from any other variables.
For the purposes of this simulation, it is assumed that this has been done by the chosen
recipient, Ethiopia, resulting in the figures in Table 3.

Table 3. Parameters relating to Ethiopia’s investment in its portfolio of assets.

μtj : Return on Trade σtj : Risk of Trade μpj : Return on Poverty σpj : Risk on Poverty

2.0 0.5 1.0 0.2
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In the MPT model Formulas (11)–(18), set recipient rj to be Ethiopia, j = E. It is also to
be assumed that the portfolio asset returns in (11) are uncorrelated, ρtE

t ,pE
t
= 0, and therefore

Equations (12), (15) and (18) are applicable to this simulation. Inputting the values from
Table 3 into these equations creates a line in risk-return space, parameterised by W, which
can be plotted, thus sketching out a hyperbola as W is varied. See Figure 3.
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Figure 3. Ethiopia’s investment portfolio risk and return profile for two uncorrelated assets. A
hyperbola is created from varying the relative weights of the portfolio assets resulting in different risk
and reward profiles. The top of the hairpin, PQR, is the efficient market frontier containing optimised
portfolio asset weights. The point O represents the portfolio with the lowest return.

PQR of the concave function in Figure 3 is termed the efficient frontier. Choosing
a portfolio mix that fits this line results in an optimum portfolio from a risk vs. reward
perspective. Ethiopia could choose a portfolio mix anywhere in the risk-reward space in
Figure 3. The efficient frontier identifies the possible portfolios that have the highest return
for the least possible risk for that return in this risk-reward space.

In general terms, the efficient frontier contains portfolios which mathematically can be
defined as solving

σP = min

√√√√ N

∑
i=1

N

∑
j=1

WiWjρijσiσj (20)

subject to the constraints

μP =
N

∑
i=1

Wiμi (21)

N

∑
i=1

Wi = 1 (22)

Ethiopia’s risk preferences will dictate where it wants to be on the curve in Figure 3.
Clearly, Q is a better portfolio mix than O since they share similar levels of risk, for which
Q offers the higher reward. A rational investor will always choose portfolio Q over O.

The values in Table 3 imply that investing in trade activity is higher risk, but provides
a higher return, than poverty. If Ethiopia wanted to maximise return, it would choose
portfolio R; or to minimise risk, portfolio P would be the best option. It depends on the
recipient’s preferences and risk appetite.

If Ethiopia wanted to minimise risk, the minimum variance portfolio (MVP) should be
targeted, which is calculated using Equation (18) as W = 13.8%. This means that Ethiopia,
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with the risk and return characteristics in Table 3, should invest 13.8% of its 90% aid income
into trade activities, with the remaining invested in poverty alleviation, producing an
expected portfolio return of μ

Pj
t
= 1.14% and a portfolio risk of σ

Pj
t
= 0.19%,

Or, Ethiopia can choose portfolio R, maximizing both return and risk, for which it
would invest all its available aid receipts into trade activity and nothing into poverty
alleviation. There is no correct answer as to which portfolio mix Ethiopia should invest in,
except that it should be one lying on the efficient frontier, PQR, in Figure 3.

For the purposes of simulating this model, assume Ethiopia decides to invest 50:50, so
W = 0.5. This means the portfolio chosen is one to the right of portfolio Q in Figure 3 on
the efficient frontier. This portfolio has a return of 1.5%, with 1% originating from the invest-
ment in trade activity, Wμtj = 0.5×2 and 0.5% from poverty reduction (1 − W)μpj = 0.5 × 1,
leading to an overall portfolio risk of 0.27%.

Next, the weighted network model (Equations (5)–(9)) is adapted to incorporate the
described investment portfolio, with the year 2015 being t = 1, and assuming the aid
receipts for Ethiopia in 2014 were invested in trade and poverty assets for the year 2015 in
accordance with the optimal portfolio mix. Then, using the inputs and data as described,
including the values of the power parameters from Table 2, the model is iterated forward.

Throughout the simulation, the amount of aid in US$ donated in the years 2015 to
2019 by the three donors was fixed, as were the data fed into the functional input equations
relating to Bangladesh and Afghanistan. Simply, the simulation adapts the model by using
the MPT approach applied to Ethiopia only, which will result in different aid allocation
percentages for all recipients for each period, compared to actual historical receipts. These
updated allocations are fed back into the model at each annual iteration. By keeping all
else fixed, the impact of an investment portfolio approach by Ethiopia, which will affect all
recipients’ aid receipts, can be isolated.

Results of the simulation are presented in Figure 4, demonstrating the impact of
Ethiopia investing its aid donations into trade activity and poverty alleviation in an opti-
mum portfolio.
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Figure 4. Aid allocations from 2015 (t = 1) to 2019 (t = 5), modelled by simulating the adapted
model using Equations (5)–(9), adjusted for MPT, and comparing to actual aid donated. The model
results incorporate Ethiopia’s aid investments in an optimum portfolio.

Figure 4 demonstrates that if Ethiopia had taken the MPT approach in 2015, as detailed
above, then its aid receipts over the period 2015 to 2019 would be 48% higher than they were
as a result of increasing trade activity further compounded by the bandwagon effect. This
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would come at the loss of aid receipts experienced by Bangladesh of 28% and Afghanistan
of 24%.

Figure 5 shows the aid donated by each donor to each recipient in 2019 (t = 5),
including the total, demonstrating that Ethiopia is the ‘winner’ in terms of aid donations
from all donors, although the UK allocations have not altered much because its parameters
in Table 2 for 2019 indicate close to a uniform allocation per aid determinant, i.e., low biases
for these aid determinants were shown by the UK in 2019 bordering on ambivalence.
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Figure 5. Aid allocations modelled vs. actual in 2019 (t = 5) by donor to each recipient.

Figure 6 below shows the total share of aid allocations from 2015 (t = 1) to 2019
(t = 5) using pie charts set side by side, with modelled aid donations (ODA) on the left
and actual donations on the right. Ethiopia’s share would have increased from 34% actual
to 50% as modelled, if it had invested in trade activity and poverty alleviation in 2015
using MPT, creating an optimum portfolio of these assets, further magnified by the herding
phenomenon captured by the model.

 

Figure 6. Pie charts of the total aid allocation percentages modelled and actual for the period from
2015 (t = 1) to 2019 (t = 5) per aid recipient.

This simulation has clearly demonstrated how the weighted network model can be
adapted and incorporate MPT to be used as an investment tool by recipients to maximise
their aid income.
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3.1. Correlated Portfolio Assets

In the MPT simulation, it was assumed for simplicity of demonstration that the assets
in Ethiopia’s portfolio were uncorrelated. However, what if they were in fact correlated?
Assuming high governance quality and no corruption, increasing trade activity experienced
by Ethiopia would be expected to reduce its poverty levels. Hence the returns from two
assets, trade and poverty, assumed in the simulation should be negatively correlated.

Using MPT, the creation of an optimum portfolio follows the same process as de-
tailed earlier, except now with a value for the correlation function, ρ, included in the
Equations (12), (13) and (17). Assuming ρtE ,pE = −0.8, defining strong negative correlation
between the trade and poverty assets in the portfolio, and using the variables as defined in
Table 3, the same process performed in the simulation should be followed.

The presence of correlation produces a different efficient frontier curve than when
there is no correlation, as shown in Figure 7 and compared to Figure 3. The shape of the
curve has a large influence on the optimal portfolio.
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Figure 7. Ethiopia investment portfolio risk and return. Compared to Figure 3, the presence
of asset correlation produces a different risk and reward profile, providing different optimum
portfolio combinations.

The portfolio at point P, in Figure 7, is the minimal variance portfolio (MVP) for which
the weight W is calculated using Equation (17), with values from Table 3 and ρtE ,pE = −0.8:

W =
σ2

pE − ρtE ,pE σtE σpE

σ2
tE + σ2

pE − 2ρtE ,pE σtE σpE
= 27% (23)

Using W = 27%, the MVP has an expected return of 1.27% and portfolio risk of 0.09%.
The effect of correlation on portfolio volatility (which can be measured either by the

standard deviation of portfolio returns, as here, or the variance) for this asset portfolio can
be seen in Figure 8 showing a monotonic increasing function with an upper and lower
bound of volatility when the asset correlation is 1 and −1, respectively. The function plotted
is (24) using the inputs from Table 3, Equation (23), and ρtE ,pE = −0.8 (c.f. Equation (13)).

σPE =

√
W2σ2

tE + 2W(1 − W)ρtE ,pE σtE σpE + (1 − W)2σ2
pE (24)
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Figure 8. Volatility of the portfolio against correlation of the assets in the portfolio.

4. Conclusions and Discussion

This paper explores the ability and effectiveness of a mathematical model, grounded
in network theory, to capture the properties, dynamics and inter-dependencies inherent
in foreign aid networks, and replicate a variety of donor and recipient behaviours. By
doing so, this progresses the narrative around the analysis of foreign aid, illustrating how
mathematics can be used to reveal useful features and intricate properties of real-world
foreign aid networks.

Until now, regression analysis has been the dominant method used to analyse donor
behaviour ([5–7]). However, here, data analysis of real-world foreign aid donations identi-
fies the key parties involved and reveals their complex interactions. The network model
developed can then also be used to investigate historical donor behaviour, akin to regression
analysis, informing on the relative values of aid determinants used and their contribution
to the donor’s final aid allocation decision. Nation donors do not publicise many of the
determinants used in their allocation decisions; hence the data analysis described and per-
formed was vital to identify the relevant variables and their interdependencies to provide
input into this model. Furthermore, the parameter values μi

α and ηi
β contain information

that reflect past motives and biases of a donor, and the relative importance the donor places
on certain aid determinants.

The model was demonstrated to be flexible and adaptable enough to be used by aid
recipients and donors. As an example of the model’s use, it was shown how Ethiopia
could create a portfolio of assets based on this recipient’s determinants and apply modern
portfolio theory to maximise aid income.

The approach can potentially be used by donors to replicate the properties of their
foreign aid network and apply weights which control the allocation of their aid budget
according to their own motivations and biases. Significantly, the weights that a donor
would use is then explainable to the public, providing a transparent means of commu-
nication for politicians to justify their motivations behind their aid allocation decisions,
and the model can also be iterated forward in time enabling a feedback mechanism to
occur, in which donors (and recipients) can see the impact of their decisions on future aid
allocations. Moreover, a donor could also treat the model like an investment tool, requiring
a certain level of ‘return’ on their aid donations that can be quantified. To do so, donors
would first create their specific foreign aid network model using the network science tools
described earlier. The next step would be to adapt the model Equations (1)–(3) to include
chosen determinants and their parameter values which reflect their motivations and the
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investments they want to make. An obvious one is trade activity: donors can use the model
to ensure that more aid is allocated to countries that provide higher levels of trade activity
with the donor, such as that seen between Germany and China [17].

Finally, by providing a framework to explore the properties of foreign aid networks
and the impact that decision variables will have on those properties, including the final aid
allocations, the weighted network model can help donors and recipients, and potentially
multilateral organisations, with one of the issues associated with foreign aid: aid spillage,
by reducing the costs arising from inappropriate use of foreign aid budgets.

In conclusion, the weighted network model, underpinned by network theory, has been
demonstrated to successfully model the international aid system and is able to shed new
light on the complexity and interactions inherent in foreign aid networks.
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Abstract: In this paper, we discuss the use of multi-criteria analysis for investment alternatives as
a rational, transparent, and systematic approach that reveals the decision-making process during
a study of influences and relationships in complex organizational systems. It is shown that this
approach considers not only quantitative but also qualitative influences, statistical and individual
properties of the object, and expert objective evaluation. We define the criteria for evaluating startup
investment prerogatives, which are organized in thematic clusters (types of potential). To compare
the investment alternatives, Saaty’s hierarchy method is used. As an example, the analysis of three
startups is carried out based on the phase mechanism and Saaty’s analytic hierarchy process to
identify investment appeal of startups according to their specific features. As a result, it is possible
to diversify the risks of an investor through the allocation of resources between several projects, in
accordance with the received vector of global priorities.

Keywords: multi-criteria analysis; criteria composition; investment; startup; Saaty’s method; global
priority vector; choosing alternatives

1. Introduction

The positive tendencies towards economic development require updated business
entities according to the current market conditions and the emergence of new structural
units, all of which form a competitive economic system. The active development of any
economy is not possible without the constant emergence of new economic enterprises.
This process stimulates the formation of the market environment with healthy competition
and ensures scientific and reproducible functioning. Currently, we observe the positive
tendency towards building potential for realizing business ideas through the creation of
startups, whose business concepts have been dictated by the needs of the modern society
and industries. A startup is a strategic economic unit with innovative concepts with the
potential to enter the market. First, we outline the essential features of startups:

(1) the innovation of an idea;
(2) the necessity of capital investment;
(3) reproducibility (possibility to sell the inventive solution multiple times);
(4) business expansion;
(5) the existence of a detailed and structured business plan;
(6) generally, a startup is a project in initial stages of implementation;
(7) the possibility of significant growth of the project;
(8) often, startups propose new technologies;
(9) uniqueness;
(10) the potential team of professionals;
(11) the riskiness of the investments;
(12) the concentration of management decisions by the startup founders;
(13) the flexibility as well as quick and efficient adaptation to changes in the environment;
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(14) the possibility to individualize the products, according to the demands of consumers;
(15) the dependence on credit resources;
(16) the close relations between the founder and the employees, etc.

Currently, one of the biggest problems is finding investors for startups, the qualified
and objective evaluation of the concepts in terms of costs and benefits for future investment,
and the successful presentation of the project to investors. Often, this work is entrusted
to consulting agencies that professionally evaluate innovative ideas. For the investor, it
is important to have a final estimation containing not only a list of factors justifying the
appropriateness of investments in the suggested startups but also the method used for com-
paring several investment alternatives. For an objective and comprehensive assessment of
a startup, a large number of criteria should be taken into account; however, this complicates
the evaluation process and prolongs its execution. To assess investment alternatives, many
methods, mechanisms, techniques, and tools enable the investigation of investments from
different points of view. Research has been concentrated in several directions: the economic
basis of startups, the mechanisms of their initiation, and the behaviors of investors. The
most substantiated and successful in practice are mathematical models that predict the
best investment alternatives. Based on the startup founder’s viewpoint, a comprehensive
analysis of investment alternatives should involve the requirements from the idea to launch,
from the gathering and successful use of information to the potential of the startup’s inno-
vation in a functioning market. This step-by-step mechanism for building a business was
precisely outlined in [1].

The behaviors of investors (especially, business “angels”) towards newly created en-
terprises in the early stages of their development, the ways of evaluating those enterprises,
and the interactions of investors and entrepreneurs were described in [2,3]. The basics
of practical venture capital management and the details of the cooperation of venture
capitalists and entrepreneurs were presented in [4]. Practical advice and the confirmation
of the importance of a correct, accurate assessment of the business opportunities of star-
tups were given in [5]. An analysis of venture capital from the viewpoint of current and
future investing in an uncertain environment and the high level of competition confirms
complexity of the investment choice [6].

An important step towards identifying the most attractive startup for investment
involves not only formulating the list of criteria but also establishing their importance
(weights). Today, many consulting companies use expert assignment methods to identify
the weights of the criteria, but sometimes, the methods are too subjective and dependent
on the composition of the expert team, the expert engagement, and lobbying interests. In
this area, special attention is paid to the decision-making theory and the Saaty hierarchy
method. The multi-criteria decision-making analysis, known as the analytic hierarchy
process, was elaborated by Saaty [7–13]. This approach has been applied to many areas,
such as economics, management, engineering, mathematics, information systems, cyber-
netics, mechanics, design, chemistry, health service, etc. The literature on this subject is
considerable, including the following books [14–19] and review articles [20–33], where
additional references can be found.

The choice and the comparison of the criteria are important parts of decision-making.
As the criteria and their weights can significantly influence decision-making, several
approaches to solve this problem have been elaborated. In the analytic hierarchy process
(AHP), several prioritization methods have been used for deriving weights, such as the
eigenvalue (EV) method [8,10,34,35], the logarithmic least squares (LLS) method [36,37],
the weighted least squares (WLS) method [38,39], the fuzzy preference programming (FPP)
method [40–43], and the cosine maximization method (CMM) developed in [44]. A good
description of several of the most-used methods was given by Srdjevic [45]. The main
feature of the step-wise weight assessment ratio analysis (SWARA) [46,47] is the possibility
to estimate the opinions of experts and interested groups according to the significance
ratio of the criteria in the process of their weight determination. In the best–worst method
(BMW) [48–50], two vectors of pair-wise comparison were used to determine the weights
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of the criteria. The full consistency method (FUCOM) [51–53] is based on the pairwise
comparison of the criteria and the satisfaction of the mathematical transitivity conditions.
The level based weight assessment (LBWA) model [54,55] is suitable for use in complex
multi-criteria models with a large number of criteria, and it allows for the additional
corrections of the values of the weight coefficients, depending on the preferences of the
decision-makers.

The main purpose of this article is to provide a comparison of several startups from
the investor viewpoint. In this paper, we discuss the use of a multi-criteria analysis for
investment alternatives as a rational, transparent, and systematic approach that reveals the
decision-making process during the study of influences and relationships in complex orga-
nizational systems. The proposed methods can be useful for consulting agencies, investors,
and also for startups founders, who can then assess their competitive position against
offers from other competitors in the selected economic branch or industrial sector. The
procedure of the startup assessment, especially during the initial stages of implementation
(development, operation, execution phases, etc.) is often subjective and challenging, as
it requires the determination and account of many indexes as well as extended expert
consultation, the formation of criteria, and so on. We propose new criteria and a new
criteria composition for evaluating the investment appeal of startups. As an example, we
consider three alternative investments in startups: the production of LED traffic lights,
the manufacture of information–reference electronic terminals, and the manufacture of
rotor-reactive turbo-rotational heaters of liquids. The analysis of the three startups is carried
out based on the phase mechanisms and Saaty’s analytic hierarchy process to identify the
investment appeal of the startups accounting for their specific features. The consistency
index, the consistency ratio, and the global priority vector are calculated. As a result, it
is possible to diversify the risks of an investor through the allocation of resources among
several projects, in accordance with the calculated vector of global priorities.

2. Criteria Composition for Evaluating Investment Attractiveness of Startups

Based upon the review of the literature, the study of the practice of founding and
launching startups, successful experiences of investing in startup enterprises, and the
results of our previous research, we suggest the following criteria composition, which
are consolidated into 12 blocks (Table 1). Similar grouping of sub-criteria into blocks was
considered, for example, in [41]. We used several of the block-criteria discussed in [56–59],
and then we supplemented and extended these according to our own criteria.

This criteria could be adjusted according to the economic branch or industrial sector,
according to the special features of the business plans presented to the investor. The criteria
allow us to analyze the characteristics of startups in a variety of ways, and grouping the
proposed criteria could enable potential investors to predetermine the priority groups of
the criteria and use the proposed “sketch” of the influential factors to focus attention on the
current trends. This criteria-composition model aims to draw the attention of the researcher
(investor, consultant) not only on the “classical” list of basic investment indicators (such
as payback period and the value of investments) but also to the governmental support of
the industry, the innovation and autonomy of startups, time, and resources, as well as the
social, scientific, technical, informational, and environmental characteristics.
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Table 1. Criteria composition for evaluating investment appeal of a startup.

No Type of Potential Criteria

1. Value of investment
2. Payback period (PBP)
3. Expected profitability

1. Financial strength 4. Risk level
5. Full or partial investor control of the startup
6. Possibility of reverse repurchase (RRP)
7. Possibility of tranche-funding, depending on the stage of the project

2. Product/service 8. Availability of samples or models of the product
potential

9. Startup position in the market
10. Forecasted level of demand for the product/service
11. Level of competition in the economic branch or industrial sector

3. Marketing potential 12. Evaluation of startup competitiveness
13. Significant target audience
14. Availability of marketing strategy
15. Requirements to attract and interact with customers within the startup

initial stage

4. Organizational 16. Availability of organizational plan
potential

17. Innovation of idea
5. Scientific and 18. Innovation of technology

technical potential 19. Availability of project plan for technical realization
20. Availability of intellectual property rights

6. Staff potential 21. Availability of potential specialists
22. Uniqueness of specialists

Potential of the governmental, 23. The level of development of economic branch or sector in which the startup
7. international, economic, will operate

and political situation 24. The level of governmental support of industry branch

25. Period of project completion
8. Time potential 26. Stage of project development

27. Duration of product introductory period/start of retail service

9. Autonomy 28. Dependence of the startup on other economic branches
potential or industrial sectors

29. Dependence of the startup on other similar projects

10. Ecological potential 30. Level of negative impact on the environment

11. Social potential 31. Accessibility of project’s social utility

12. Information potential 32. Availability, reliability, and quality of information in economic branch
or industrial sector in which the startup will operate

Figure 1 presents the structure of the Saaty method as the operational algorithm,
indicating the priority of investments in startups.
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Creation of criteria composition and category groups (k – number of criteria; m – number of 
alternatives). 

Selection and appointment of an expert council from potential investors. 

Construction of a decision-making graph of the investment priority as a model of the dominant 
hierarchy.  

Formation of a matrice of pairwise comparisons ܤ = ൫ܾ௜௝൯(௞×௞) for establishing weights of criteria, 

using Saaty’s scale («scale 1-9») on the basis of consistency which provides that ܾ௜௜ = 1,   ௝ܾ௜ = ଵ௕೔ೕ ,    ݅, ݆ = 1, ݇തതതതത,  as  well  as  k  matrices  of  pairwise  comparisons   ܥ(௣) = ቀܿ௥௦(௣)ቁ௠×௠   for   

m  alternatives on the consistency basis  ܿ௥௥(௣) = 1,  ܿ௦௥(௣) = ଵ௖ೝೞ(೛) , ,ݎ ݏ = 1, ݉; ݌ = 1, ݇. 

5 

Determination of priority vectors (normalized vectors of geometric means) in each row of the 
matrix of criteria weights and in each row of matrices of alternatives by the following formulas:  ߤ௜ = ට∏ ௕೔ೕೖೕసభೖ

∑ ට∏ ௕೔ೕೖೕసభೖೖ೔సభ ,   ݅ = 1,݇, ௥(௣)ߥ = ට∏ ௖ೝೕ(೛)೘ೕసభ೘
∑ ට∏ ௖ೝೕ(೛)೘ೕసభ೘೘ೝసభ ݌   , = 1, k, ݎ = 1, ݉. 

6 

Determination of the consistency index (CI) in the weight matrix. The following steps should be 
performed:  
- multiplication of the matrix

 

ܤ = ൫ܾ௜௝൯(௞×௞)  on the right by the vector ߤ௝ ; ݅, ݆ = 1, ݇; 
- calculation of the maximal eigenvalue ߣ୫ୟ୶ of the matrix ܤ;  
- determination of the consistency index CI = ୫ୟ୶ߣ) − ݇)/(݇ − 1).  

7 

Determination of the consistency index (CI)(௣)) of matrices of alternatives. The following steps 
should be performed:  

- multiplication of the matrix

 

(௣)ܥ = ቀܿ௥௦(௣)ቁ௠×௠  on the right by the vector ߥ௦(௣); ݎ, ݏ = 1, ݉; 
- calculation of the maximal eigenvalues  ߣ୫ୟ୶(௣)   of the matrices ܥ(௣);  
- determination of the consistency index (CI)(௣) = ୫ୟ୶(௣)ߣ) − ݉)/(݉ − ݌ ,(1 = 1, ݇. 

8 
Calculation of the consistency ratio (CR) as a ratio of the consistency index (CI) and the random 
consistency index (RI): CR = CI/RI; (CR)(௣) = (CI)(௣)/(RI)(௣).  It is considered as optimal when the 
consistency ratio does not exceed 0.1; when it is more than 0.2, the opinions of experts should be 
reviewed and, if necessary, experts should be changed. 

9 Calculation of vector of global priorities: ߙ௥ = ∑ ௣௞௣ୀଵߤ ,௥(௣)ߥ ݎ = 1, ݉. 

Figure 1. Saaty’s analytic hierarchy process for the identification of the investment appeal of startups
based on their specific features.

3. Implementation of the Saaty Method for Identified Criteria Composition

To illustrate practically the Saaty method, we analyze three investment alternatives of
startups: the production of LED traffic lights, the manufacture of information–reference
electronic terminals, and the manufacture of rotor-reactive turbo-rotational heaters of
liquids. The structure of the method is first presented as the dominant hierarchy model in
an oriented graph (Figure 2).

After considering the business plans of three investment alternatives and establishing
the criteria for assessing the prerogatives of investing in the compared startups, we identi-
fied the investment priorities. First, we determined the weights of the criteria according
to the sequence of the algorithm; this was the fourth step of the hierarchical procedure, as
shown in Figure 1. Table 2 presents the results of the criteria comparison for evaluating
the startups using Saaty’s scale (“scale 1–9”) [60,61]. Therefore, we obtained the matrix
of pairwise comparisons for establishing the weights of the criteria. The numbers 1–12 in

125



Entropy 2023, 25, 723

the top row and the first column correspond to the name of the criteria in Table 1. The
priority vector (μi) is calculated as the normalized geometric means in accordance with
step 5 (see Figure 1). The column RM presents the results of the multiplication of the paired
comparison matrix Bij on the right by the vector μj. The column DV is obtained by dividing
the component of the vector in the column RM by the corresponding component of the
vector μj. The approximation of the maximal eigenvalue is calculated as the arithmetic
mean of the components of the vector in the column DV and equals λmax = 12.72. The
consistency index CI = (12.72− 12)/11 = 0.06545. According to [7], for k = 12, the random
consistency index RI = 1.48; therefore, the consistency ratio is CR = CI/RI = 0.06545 and
does not exceed 0.1.
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Figure 2. The dominant hierarchical representation of the problem of choosing investment alternatives
in startups.

Table 2. The matrix of pairwise comparisons to determine the validity of 12 groups of criteria.

Groups
of 1 2 3 4 5 6 7 8 9 10 11 12 μi RM DV
Criteria

1 1 3 3 4 2 1 2 2 4 5 4 3 0.1893 2.3312 12.31
2 1/3 1 1/2 1 1/2 1/2 1 1/2 3 3 3 4 0.0800 1.1099 13.87
3 1/3 2 1 2 1 1/2 1 1 2 2 2 2 0.0911 1.1345 12.45
4 1/4 1 1/2 1 1/2 1/5 1 1/2 1 1 1 1 0.0490 0.6099 12.45
5 1/2 2 1 2 1 1 2 1 2 2 2 2 0.1058 1.2968 12.26
6 1 2 2 5 1 1 1 2 2 2 2 2 0.1282 1.6571 12.93
7 1/2 1 1 1 1/2 1 1 1 1 1 1 1 0.0666 0.8525 12.80
8 1/2 2 1 2 1 1/2 1 1 2 2 2 2 0.0942 1.1661 12.38
9 1/4 1/3 1/2 1 1/2 1/2 1 1/2 1 1 1 1 0.0483 0.5950 12.32
10 1/5 1/3 1/2 1 1/2 1/2 1 1/2 1 1 1/2 1/2 0.0422 0.5329 12.63
11 1/4 1/3 1/2 1 1/2 1 1 1/2 1 2 1 1/2 0.0511 0.6742 13.19
12 1/3 1/4 1/2 1 1/2 1/2 1 1/2 1 2 2 1 0.0542 0.6975 12.87

A similar analysis was performed for the 12 matrices with 3 alternatives. The results
for the group of criteria “Financial strength” are shown in Table 3. In this case, we obtain
λ
(1)
max = 3.0183. The consistency index (CI)(1) = (3.0183 − 3)/2 = 0.0092. The random

consistency index (RI)(1) = 0.52 for m = 3 [7]. The consistency ratio (CR)(1) = 0.0158 and
does not exceed 0.1. Taking into account the 12 criteria groups, the final results are shown
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in Table 4. The conducted research allows us to assert that the startup for manufacturing
information–reference electronic terminals is most attractive for investment, as its global
priority of 0.3855 is the highest among the analyzed investment proposals. At the same
time, the values of the global priorities for the startups producing LED traffic lights and
manufacturing rotor-reactive turbo-rotational heaters of liquids are equal to 0.2547 and
0.3599, respectively.

Table 3. The matrix of pairwise comparisons for the group of criteria “Financial strength”.

Production Manufacture of Manufacture of Priority Vector
of LED Information– Rotor-Reactive (The Normalized

Startup Traffic Reference Turbo-Rotational Vector of Geometric RM DV
Lights Electronic Heaters Means)

Terminals of Liquids ν
(1)
r

Production of
LED traffic lights 1 1/3 1 0.20984 0.63337 3.01835

Manufacture of
information–reference 3 1 2 0.54994 1.65990 3.01833

electronic terminals

Manufacture of
rotor-reactive 1 1/2 1 0.24021 0.72503 3.01832

turbo-rotational
heaters of liquids

Table 4. The optimal choice of startups according to the investment alternatives, based on the groups
of criteria.

Manufacture of Manufacture of
Production of LED Information– Rotor-Reactive Turbo-

Investing Alternatives in Startups Traffic Lights Reference Electronic Rotational Heaters
Terminals of Liquids

No Groups of Criteria Priority Vectors

1. Financial strength 0.2098 0.5499 0.2402

2. Product/service potential 0.2000 0.4000 0.4000

3. Marketing potential 0.2000 0.4000 0.4000

4. Organizational potential 0.2500 0.5000 0.2500

5. Scientific and technical potential 0.1634 0.5396 0.2970

6. Staff potential 0.1958 0.3108 0.4934

7. Potential of governmental, international,
economic, and political situation 0.2500 0.2500 0.5000

8. Time potential 0.5936 0.1571 0.2493

9. Autonomy potential 0.1634 0.2970 0.5396

10. Ecological potential 0.2500 0.5000 0.2500

11. Social potential 0.3333 0.3333 0.3333

12. Information potential 0.3325 0.1396 0.5278

13. Vector of global priorities 0.2547 0.3855 0.3599

4. Concluding Remarks

New criteria and new criteria composition for the comparison of investment alter-
natives were proposed. Considering the sub-criteria could aid establishing weights of
groups of criteria. The criteria and alternatives are mutually independent. A multi-criteria
approach based on the analytic hierarchy method was used providing a gradual, clear,
and logically structured assessment of the parameters of the given alternatives to ensure
a successful solution. The proposed approach also has some limitations. For a large number
of criteria and alternatives, Saaty’s scale 1–9 could not be enough. The decision-making
process could also be time consuming for a large number of criteria and alternatives. For
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example, in the case of 32 sub-criteria, there appears a large matrix of pairwise compar-
isons, and for k > 15 in the literature there is no value of the random index (RI) and only
an approximate estimation of the consistency ratio (CR) can be obtained. Therefore, we
grouped the 32 new sub-criteria proposed in this study into 12 blocks (potentials). Despite
these limitations, the AHP approach is one of the most popular and objective methods
for multi-criteria decision-making. The proposed use of the Saaty method for optimal
decision-making has a number of advantages, as well. It does not require the unification of
the units of measurement for different criteria. It ensures the accuracy of the evaluation
by increasing the possibility of intra-matching within the selected criteria. In addition, the
presence of a numeric scale allows the relations between the factors to be clearly identified.
Finally, this method is adaptable, enabling the criteria composition to be modified by
adding or eliminating factors. We compared the maximal eigenvalues λmax obtained as
the arithmetic mean of the vector in column DV and the value of λmax obtained using the
available mathematical package. With a precision of four digits, the results were the same.
It should be emphasized that the consistency ratio (CR) of the pairwise comparison of the
12 groups of criteria, as well as all the 12 consistency ratios CR(p), p = 1, 2, . . . , 12, did not
exceed 0.1; therefore, the evaluation was consistent.

In the future, we are planning to extend our research to compare our results with results
obtained by other techniques, in particular, using the Bellman–Zadeh fuzzy set approach.
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Abstract: The movement of employees within an organization is a research area of great relevance in
a variety of fields such as economics, management science, and operations research, among others. In
econophysics, however, only a few initial incursions have been made into this problem. In this paper,
based on an approach inspired by the concept of labor flow networks which capture the movement
of workers among firms of entire national economies, we construct empirically calibrated high-
resolution networks of internal labor markets with nodes and links defined on the basis of different
descriptions of job positions, such as operating units or occupational codes. The model is constructed
and tested for a dataset from a large U.S. government organization. Using two versions of Markov
processes, one without and another with limited memory, we show that our network descriptions of
internal labor markets have strong predictive power. Among the most relevant findings, we observe
that the organizational labor flow networks created by our method based on operational units possess
a power law feature consistent with the distribution of firm sizes in an economy. This signals the
surprising and important result that this regularity is pervasive across the landscape of economic
entities. We expect our work to provide a novel approach to study careers and help connect the
different disciplines that currently study them.

Keywords: labor flow networks; firm-size distribution; career studies; career sequences; manpower
analysis

1. Introduction

The study of job change is of great practical and academic relevance, as it is one
of the fundamental components of the employment process of any economic system.
Several disciplines study versions of this problem, including economics [1,2], management
science [3], and operations research [4–6]. Although a great deal of progress has been made
in elucidating this critical process, numerous questions remain outstanding. In particular,
there is yet to be an integrated interdisciplinary picture that explains both the micro and
macro aspects of the problem while maintaining the true system heterogeneity.

In recent years, a new way to approach the problem of job change has started to
develop based on the observation that once a person makes a job transition between two
firms (i.e., two employers), the probability to observe other subsequent job transitions
between the same two firms is significantly larger than what would be expected by random
chance [7]. This result has provided empirical support for the development of a new class
of large-scale, high-resolution job change, Labor Flow Networks (LFNs) [8–10], which
conceptualize the system as a set of nodes representing firms and links representing pairs
of nodes between which a job transition is relatively likely to occur (in economics terms,
such job changes have low friction). Based on data from two different countries, Finland
and Mexico [8–10], the first examples of LFNs were created, encoding large cross-sections
of the employers and employees in the workforce in their respective countries (for Finland,
the data are comprehensive for about a decade). From the physical standpoint, LFN models
are constituted by complex random environments that harbor non-equilibrium transport
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processes operating near equilibrium and, as such, can be understood from many of the
rules of non-equilibrium statistical mechanics [11]. A number of important observations
have emerged from the LFNs literature. First, it has been realized that firms contribute
in heterogeneous ways to unemployment [9,10] with some firms being responsible for
more unemployed people. Second, the firm-size distribution in an economy [12,13] is
related to both network and temporal features displayed by the LFNs [10]. Third, that
socio-economic status and race play important roles in occupational mobility [14]. Fourth,
that the relationship between vacancies and jobs in an economy (the so-called Beveridge
curve) cycles in a counter-clockwise manner [15] tracing a hysteretic curve that does not
retrace its steps as it returns to a previous state through a business cycle. This continues to
be an active area of research, with new directions being explored [16].

As an empirical model, the key ingredients of LFNs are (i) data that relate employers
and employees and (ii) a statistical test that confirms that job changes among those employ-
ers are not random. This provides a flexible, data-driven framework that makes it possible
to model a multitude of systems with considerable accuracy, especially if the dynamics of
the system are sufficiently slow. This opens the possibility to study a related, and yet-to-be
explored context of employment, internal labor markets. The study of such job markets has
the potential to bring about greater conceptual understanding of the job change process
because, when information about organizations is available, it can offer greater depth than
national level data (organizations usually record personnel details such as academic accom-
plishments, years of work experience, job responsibilities, etc.). Because the system sizes
of organizations are limited and thus cannot achieve the regularity of the thermodynamic
limit, and because people’s careers inside organizations are not long enough for the phase
space to be effectively explored, the dynamics of careers in organizations lives in the space
between mesoscopic and macroscopic systems.

In this article, aided by the availability of data from a large US governmental organiza-
tion, we apply the network approach for the study of so-called internal labor markets, that
is, the jobs internal to an organization among which individual workers transition while
pursuing an organizational career. Internal labor markets are not just smaller versions
of large economic systems, but instead have different operating rules and are organized
differently than a national economy and thus cannot be assumed to display the same
regularities as national employment landscapes. For example, there are no independent
firms inside an organization that can be viewed as the employers (nodes) of the network.
Another distinction is that job changes inside an organization can occur from mechanisms
different than job search (such as organizational reorganization or promotions based on
seniority).

Here, to test the application of LFNs to internal labor markets, we first study ways
to identify the relevant network nodes based on one of several possible job descriptors
that we refer to as “location”. We work with three different descriptors, operating units,
occupational codes, and geographic locations. Thus, when the network is constructed
of, say, operating units, job transitions by individuals connect the operating units that
individuals exit and join immediately after. We show that the different networks produced
by using these different choices of nodes all display predictive power (i.e., their links are
better predictors of future job changes than random chance), although some networks
perform much better. Another important finding is that the choice of network node leads
to networks that may have interesting topological properties. Most notably, we find a
reproduction of the Zipf-law of firm-size distribution when nodes correspond to operating
units of the organization [10,12,13,17]. Furthermore, because the approach microscopically
tracks the movements of each person, forecasting of individual work trajectories (that is,
so-called organizational careers) inside internal labor markets becomes possible. Careers
can be forecast with memoryless Markov chains [10], the most similar model to a physical
system, or with memory of prior jobs by using the method in [18]. We evaluate the quality
of the predictions through a variety of methods including Jensen-Shannon divergence [19]
and Jaccard indices, and find strong agreement between observation and prediction with
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both methods, although the use of memory leads to even stronger agreement with empiri-
cal observation.

The ability to track so-called organizational careers through the labor flow network
method should not be understated. While the study of labor markets at national levels
can yield limited information about careers, in general the data sources are not capable of
providing enough information to perform accurate studies. Some data lose visibility of
individuals, others only track workers for limited periods of time, and there is almost no
information about the nature of the jobs undertaken by individuals (no concrete data on
job responsibilities or tasks). In contrast, within an organizational setting, where personnel
data are available, the ability to use LFNs to understand the job landscape within the
organization becomes a tool that clarifies employment dynamics at both the individual
and organizational levels over time. This means that the network approach is able to
bring together concepts of operations research, management science (specifically career
studies), and economics of job search for the first time in such a concrete way, providing
an opportunity to develop an integrated view of internal labor markets that is currently
missing.

The remainder of the paper is organized as follows. Section 2 discusses the data for
the Army Acquisition workforce, defines the methods of analysis, the logic behind those
methods, and the relevant notation. Then, in Section 3 we present the results of our analysis.
Of particular interest, Section 3.2 addresses the similarity between the organization we
analyze and the firm-size distribution. Finally, we discuss our findings and their relevance
to the study of oganizations and careers in Section 4.

2. Materials and Methods

2.1. Data

The data we study are for the Army Acquisition Workforce (AAW). This is a civilian
organization that is part of the United States Army whose function is to provide logistical
support to the military component of the Army by purchasing equipment, training, and a
number of other logistical needs. The AAW has both uniformed military and civilian
components. Job changes within the civilian component (which are the only ones we
study here) are not based on military orders, but function as a typical job market, where
employees apply for jobs as openings emerge. Thus, the organization has freedom of career
mobility based on qualifications and individuals can join or leave as with any other job in
the private sector. Information of the AAW is public, and can be found online [20]. The
data have two parts, one associated with individuals and the other with the structure of
the AAW. The datasets cover the period between 2012 and 2020. All employee records are
anonymized by associating to each individual a hashed key. Each employee record contains
the position occupied each month the employee is part of the AAW. This information
includes the individual’s operational unit as well as his/her occupational series [21], a code
assigned by the US government to positions that imply certain responsibilities and other
requirements. Over the period, the AAW has ranged in size from under 35,000 to close to
42,000 individuals. There are around 1000 operational units in the AAW, and employees
span close to 100 occupational codes.

2.2. Methods
2.2.1. Basic Network Elements

To describe the job landscape inside an organization, we distinguish between two
types of entities, employed individuals (α, β, . . . ) and the “location” of the employment
(i, j, . . . ) (the term location is not ideal, but other choices such as class, used in the manpower
literature [22] are also problematic and thus we choose location because it better fits our
analysis). Our data identify individuals as well as several possible choices of locations
such as operating units within an organization, geographic locations (such as US States)
where some part of the organization operates, or types of occupations that the organization
requires (say, data analysts or accountants, recorded with a standardized code system [21]).

133



Entropy 2023, 25, 784

Here, we use the term location as a descriptor to indicate where the individual can be found
within the organization. For example, if we are interested in knowing the movements of
the workforce by geography, i would represent a particular US state where some of the
organization has facilities. On the other hand, if we want to know the distribution of the
workforce by occupation, i would be an occupational code.

Our characterization of the system is based on the structure of labor markets, which
are studied by looking at the interrelated dynamics of individuals employed or looking
for employment and the jobs those individuals occupy or the vacancies they may aspire to
fill. In previous studies of LFNs, the choice of location was not discussed in itself, perhaps
determined by the data available (e.g., in [8,10] only firms and employees are recorded,
making locations represent firms). However, in our case, not only does the data provide an
opportunity to explore several possibilities, but there is a genuine question about which
choice of location to use in terms of better accuracy of the models, something we address
below and return to in Section 4.

Given a choice for i, an Organizational Labor Flow Network (OLFN) is generated
in the following way. Consider a set of individuals E = {α, β, . . . } and job locations
N = {i, j, . . . , }. We denote the sizes of the sets as e = |E | and n = |N |. The work histories
of individuals, usually called sequences in career studies, are typically recorded at discrete
and uniformly distributed time points to, to + 1, . . . , to + T, where to is the initial time of
observation, T the number of time units of observation (equal to the duration of the data)
and, in our case, the units are in months. Thus, we define the employment sequence of agent
α by

cα(t) = i [i ∈ E , t ∈ {tα,o, tα,o + 1, . . . , tα,o + τα}], (1)

where i is a job location, tα,o the first time α is observed to be in the organization, and τα is
the so-called job tenure (the number of time units an employee spends in the organization).
Note that to ≤ tα,o ≤ to + T and 0 ≤ τα ≤ T − (tα,o − to) and that information about
individual starting and ending times is necessary to know given that many employees join
and/or leave over a period of time.

The nodes of an OLFN are constituted by the job locations E . A link (i, j) between
two nodes in the OLFN is possible only if there are job transitions from i to j, but this
may not guarantee a link. Instead, (i, j) would be included as a link in the OLFN if
statistically significant job transitions are observed between the nodes [10]. The statistical
test is explained in Section 2.2.2.

2.2.2. Statistical Significance of Organizational Labor Flow Networks

An OLFN can be defined in several ways beyond the choice of locations, just as long
as it leads to reliable networks in terms of forecasting future job change. This means that,
to construct an OLFN, we must check that information gathered at some period of time
can be used to forecast a subsequent time period. This requires that we statistically test the
reliability of past information in terms of providing information about the future. But, how
to design this test?

In this system, job changes past or future appear as job transitions. Thus, we must
find a way to take information about transitions and convert this to links in a network.
In other words, links may only be introduced between pairs of locations (nodes) that have
had job transitions between them, although the final decision can depend on additional
criteria (see below). Following on, we must further consider whether linking a node pair
should be done independently or related to linking other node pairs. We can quickly
realize that to choose links between node pairs independently of each other runs the risk
of ignoring correlations. For example, some locations are characterized by many people
(large operating units or popular occupation codes), while others by a few. For the case of
a large location, it is likely that it sends and receives many workers, an effect that is felt
across many of the node pairs that involve that node. This acts as a correlation between the
large node and the transitions involving other nodes, effectively coupling its possible links.
Therefore, it is generally more appropriate to decide on adding links by taking into account
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their correlated structure. The simplest way to do this would be to correlate links that
connect to the same node, independent of other nodes. This approach, however, is likely to
ignore higher order correlations that trickle through from node to node. Therefore, an even
better strategy would be to decide on links on the basis of the whole network structure.

We must also choose a time frame with job transitions that help us predict future
transitions. In this case, we pick a simple strategy that works well in that it provides proof
of principle. Thus, we divide the data into two equal-size time periods, to, . . . , to + �T/2�
and to + �T/2�, . . . , to + T, that we refer to respectively as T< and T>. The first time
period acts as the baseline, whereas the second corresponds to the forecasting (or test)
period. From the baseline period, we take transitions and consider them as candidates for
links. The testing period is then used to determine whether our choices of links have been
appropriate in terms of making our OLFN useful for prediction.

Having established time windows, we must decide how to introduce links. While an
approach that would explore the entire space of possible combinations of linking in some
designated period of time could be imagined, in practice this is very challenging due to
the combinatorial explosion of possibilities. Instead, we take an approach related to [7]
but also addresses the fact that their method ignores the link correlations we identified
above. In [7], each pair of firms in the city of Stockholm is considered independently and a
single transition between firms is used to gauge subsequent likelihood of transitions. Here,
as in [7], we adopt the notion that observing a transition between a node pair suggests
they should be linked, but introduce a numerical threshold W representing the minimum
number of transitions (in either direction) between two locations i and j in order to make
that pair of nodes a candidate to have a link . This generates a candidate network where node
pairs have tentative links if they satisfy the threshold.

The final step of the statistical test is to check if the candidate network is indeed
predictive. To do this, we construct possible random future networks (meant to be in
time period T>) and compare them with information from the candidate network in the
past (from time period T<). Two pieces of information have been used in [10] for this
purpose. First, let us define κin

i (T>) and κout
i (T>) as, respectively, the number distinct

nodes from which workers transition into node i and the number distinct nodes to which
workers transition to from i, both within time period T>. Similarly, we define σ

(in)
i (T>)

as the number of workers that transition from other nodes into i over the period T>,
and σ

(out)
i (T>) the number of workers that transition from i to other nodes in the same

period. These quantities are versions of the concepts of node degree and node strength [23].
It was found in [10] that the most demanding version of test was the one that preserved

σ
(in)
i (T>) and σ

(out)
i (T>) because the statistic that measures the amount of deviation from

random transitions produced the smallest (yet highly significant) results. To perform this
test, we generate a large number of distinct realizations of random networks using Monte
Carlo. Each such network is created by randomly assigning transitions between nodes
in the period T> while requiring that σ

(in)
i (T>) and σ

(out)
i (T>) remain true in each and

every realization for all nodes. To generate a statistic, the random model lets us estimate an
expectation value for how many transitions can randomly occur between a pair of nodes
that is a candidate link, based on a given threshold W , from period T<. Introducing the
notation C< for the set of candidate links during T< and C(s)

> for set of stochastic transitions
predicted by each realization of one of the random models during T>, all the null models
generate an expected density of overlaps

℘(s)(W) =
〈|C< ∩ C(s)

> |〉
|C<|

(2)

which measures the expected fraction of candidate links from T< that would also have a
transition during T> simply by random chance. In this expression, the customary notation
of size of a set | | and expectation 〈 〉 have been used. Clearly, the choice of stochastic model
alters the resulting set C(s)

> .
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From the standpoint of observation, we want to know among the C<, what fraction of
them were observed to have transitions during T>. Labeling the observed transitions as
C(o)
>T , the fraction of transitions matching candidate links is given by

℘(o) =
|C< ∩ C(o)

> |
|C<|

(3)

The statistic of interest is finally defined as the ratio between the two quantities, which
we call the excess probability xW , given by

xW =
℘(o)

℘(s)
. (4)

If xW is above 1 with a large degree of certainty (has a very small p-value), we conclude
that the threshold W leads to an OLFN that is useful for prediction. To provide intuition for
this statement, note that xW measures the network averaged increase in probability with
respect to the random model that a transition during T> occurs along a pair of nodes with
W or more transitions during T<. To illustrate, if xW is 2, the transitions actually observed
during T> are twice as likely to occur along pairs of nodes that had W transitions during
T< than what would be expected from the random model. Therefore, a value of xW > 1
(and the greater the better) means that transitions during T> are predictable on the basis of
transitions during T< because they prefer to occur along candidate links by a factor of xW
than along random node pairs. Finally, as a technical point, the p-values can be determined
semi-analytically (or analytically in the case of the uncorrelated random model, where only
the total number of system transitions is preserved) by using the methodology in [10].

2.2.3. Career Sequences and Their Probability Distributions

To study careers, we are interested in the non-degenerate version of the sequences
encoded in Equation (1). To illustrate what this means, consider an employment sequence
cα in which α spends from t to t + Δt working at location i, or cα(t) = · · · = cα(t + Δt) = i
but cα(t − 1) 
= cα(t) and cα(t + Δt) 
= cα(t + Δt + 1). We will refer to such a time period
of uninterrupted work at a given location as a spell.

Since our primary interest is in the locations (or career steps) individuals take, we
create a non-degenerate version of cα called uα such that only the location of a spell is
recorded but not the number of time steps spent in a location. Thus, for example, if α’s career
is spent only in two locations, i and j and cα = {i, i, i, . . . , i, j, j, . . . , j}, the corresponding
career sequence is uα = {i, j}. We should note that uα preserves temporal ordering so that
if α first worked in location i and then in j, these appear in that same order in uα. Our
sequences also possess the feature that if an individual were to return to a previous location,
this would be captured in the sequence. Thus, an individual with an employment sequence
of the form {i, i, j, j, i, i} would have career sequence {i, j, i}.

The frequencies with which career sequences occur is very useful information because
they offer insights on the sorts of choices individuals make under the constraints of the
opportunities that become available within the organization (an individual cannot change
into a job that is not offered, an important observation from the perspective of modeling
made by the seminal work of White [24]). In order to understand how common or rare
specific career sequences are, we define the distribution of observed sequences φ̂(u), where
u is the random variable of career sequences. For a given time period of observation,

φ̂(u = u) = ∑α δuα ,u

∑α uα
(5)

where uα corresponds to the career sequence of α, δuα ,u is the Kronecker delta equal to 1
when α’s career matches the desired sequence u and 0 otherwise, and the denominator is
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the total number of distinct careers observed. Described intuitively, Equation (5) precisely
defines how we count careers to determine their probability of occurring.

Because careers can be sensitive to the initial location, we further specialize our
analysis to distinguish careers on the basis of their initial location. Let us label the first
location of career u as uo (or uα,o when the career refers to that of individual α). Then, we
are interested in the set of conditional distributions

φ̂(u = u|uo = i) =
∑α δuα ,uδuα,o ,i

∑α δuα,o ,i
. (6)

2.2.4. Temporal Statistics: Length of Service

Research on manpower identified early on some important features about the study
of workforces inside organizations. When the emphasis is not on specific individuals,
manpower studies are very similar to population studies with one critical difference: in
the latter, survival times of segments of the population can be known quite well and vary
slowly over time (the number of people of a certain ethnicity of a given age) whereas in the
former the population of employees is much more changeable [22]. Thus, the concept of
the completed length of service emerged [6,25].

The key conceptual point still carries over in terms of career forecasting: as an in-
dividual enters an organization, it is important to anticipate how long that individual
is likely to stay in the organization. For simplicity, we approach this question here in a
similar way to the manpower literature. In fact, we hinted at this point already in our
definition of employment sequences (Equation (1)), where we introduced the quantity τα

to represent α’s job tenure in the organization. This quantity corresponds to the length of
service random variable τ. Given the e individuals in the data, to determine the length of
service distribution ψ(τ) we exclude from E all those employment sequences for which the
last location recorded occurs in the last time unit in the data. This is because at this point,
we are not capable to tell if any of those individuals exit the organization in that very last
time unit, or if they continue in the organization.

Due to the sensitive nature of the data, we do not report the specific distribution of
length of service of individuals in the organization, but use it in order to model careers in
the ways we explain next (Section 2.2.5).

2.2.5. Markov Models of Career Sequences

To test the usefulness of OLFNs in modeling the movement of personnel across an
organization, we construct two Markov chains, one which relies solely on the network
structure (based on [9,10]) and another that uses the network structure plus memory
(when applicable) about the prior transition [18]. At the most basic level, Markov chains
require that one defines states of the system and probabilities to go between states. Our
method based solely on network structure uses as states the current job (node) held by an
employee, and the probability to transition between jobs is estimated on the basis of the
transitions made by all workers over some selected period of time of the data (for example,
the first half of the years in the data). On the other hand, our method to include memory
generally defines as a state the tuple made of the current and previous job a worker has
held (with exceptions needed to handle the first job of the worker), and the transition
probabilities are estimated from other workers and the last two jobs they held. We now
describe these details.

Let us start by clarifying that both models simply lead to the creation of simulated
employment sequences and their associated career sequences. Since we mostly focus
on career sequences, we introduce r(o) and r(1) to represent random career sequences
respectively created from the Markov network model or the Markov model with one-step
memory. These random variables are characterized by the distributions φ(o)(r(o)) and
φ(1)(r(1)). These distributions are created from a large number of model realizations. There
are two kinds of such realizations. On the one hand, a single random walker can only
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generate a single career, not enough to generate useful distributions φ(o)(r(o)) or φ(1)(r(1)).
Therefore, to generate these distributions, we use Mw walkers which correspondingly
generate Mw careers from which to create the distributions. A second way to introduce
multiple realizations is to generate Md distributions φ(o)(r(o)) and φ(1)(r(1)) so that no one
single realization of Mw walkers dominates the results. Our ultimate goal is to determine
the quality of the models, which we do by defining below a set of metrics that compare
each of these distributions to φ̂(u).

A common feature to both models is the fact that individuals can begin to work at the
organization at any time in any one of its locations. For the purposes of modelling their
career sequences, one could ignore the specific point in time unless there were reasons to
assume that temporal interactions play an important role. The initial location, on the other
hand, is always relevant in terms of the number of either employment of career sequences
generated. Thus, we should keep in mind that all the distributions we study are in reference
to careers that start at each specific location (node) in the network.

One last feature shared by both models is that the number of time steps an individual
travels is drawn from the length of service distribution ψ(τ). The effect is that each
individual has a randomly drawn, fixed lifetime in the organization so that after time τ,
the individual’s career sequence (either r(o) or r(1)) is completed and counted toward the
appropriate distribution.

The model based on [10] makes use of the network structure but, deviating from that
article, also includes weights to construct the transition rates between nodes. In the model,
a simulated individual located at i at time step t has a probability pij to choose j as their
next location, and this probability is constant in time. To determine pij, we make use of all
the employment sequences in Equation (1). Such sequences can be used from the entire
data (all the time points) or limited to parts of the time (e.g., T< which would require some
small adjustments like redefining work spells). Assuming we are using the entire data, we
first count the number of moves fij from node i to j on the basis of the number of sequences
(and the number of times in that sequence) where a transition occurs from i to j. Concretely,

fij = ∑
α

tα,o+τα−1

∑
t=tα,o

δi,cα(t)δj,cα(t+1). (7)

This equation states that fij is given by the number of times any individual makes a
transition from i to j. For the Markov process, the probability of the transition i to j is then
given by the proportion of all transition out of i that go to j with respect to all transitions
out of i, or

pij =
fij

∑j fij
[i, j ∈ N ]. (8)

Note that the definitions of fij and pij include diagonal terms. Thus, the diagonal of
the transition matrix of the Markov chain accounts for the very frequent occurrence of
individuals remaining in their locations.

In contrast to the pure network model, the model that keeps track of the previous step
(if the career has visited at least one other node) makes use of a slightly more complicated
transition matrix. Note that when an individual enters the network at a node and has not
yet made transitions to other nodes, the model is applied as if it was the pure network
model described above; only after one transition can memory begin to play a role. To make
use of memory, let us focus on a node j. The probability that an individual transitions from
j to h given that it had previously transitioned from i to j is based on the number of careers
that have previously made the same sequence of moves. Therefore, if f(i,j),(j,h) is given by

f(i,j),(j,h) = ∑
α

tα,o+τα−2

∑
t=tα,o

δi,cα(t)δj,cα(t+1)δh,cα(t+2), (9)
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the probability for an individual to go from j to h given that they came from i is given by

p(i,j),(j,h) =
f(i,j),(j,h)

∑h f(i,j),(j,h)
[i, j, h ∈ N ]. (10)

In both types of models, it is possible that the probabilities are 0 for an individual to
move beyond their current location. If that is the case, the individual merely remains in
the node until either the simulation finishes or the number of time units τ assigned to the
individual are complete. We should note that a single realization for a walker can last up to
the length of time we choose to model.

2.2.6. Evaluating Predicted Career Sequences

Next, we describe the metrics we use to assess the quality of the models. Essentially,
we are interested in knowing whether the models tend to produce with high probability
the careers actually observed, along with their observed frequencies. Symbolically, this is
equivalent to testing for the similarity of the numerical values between φ̂(u = u|uo = i)
and φ(m)(r(m) = r|ro = i) when u = r over the space of possibilities of u (the sample
space), where m = 0, 1 for the memoryless Markov model or the one-step memory model,
respectively. As a practical matter, we note that because all careers are distinguished by
their initial location i, all the quantities we define are computed according to their initial
location. Stated in plain English, the data show certain career paths and the models try
to imitate these. Therefore, evaluating the models is done by checking how “similar” the
imitation created by the models is to the observed careers.

In an ideal scenario, two distributions are similar if their sample spaces are similar and
the probabilities of events (the elements of the sample space) are also similar. To be precise
about what similar means, we now proceed to introduce several different quantitative
measures of that similarity and highlight how each focuses on a particular aspect of
that similarity.

Let us first concentrate on the similarity between probabilities φ̂(u = u|uo = i) and
φ(m)(r(m) = r|ro = i). In this case, similarity means that the observed and modeled
probabilities of the same career u starting at node i have similar values, i.e., φ(m)(r(m) =
u|ro = i) ≈ φ̂(u = u|uo = i). But this comparison has to be done carefully because for any
given initial node i, u is not independent of other careers starting from i. Let us denote
all the observed careers starting from i as U (i) = {uα}α∈E ;uo=i. Then, they are related
by the fact that ∑u∈U (i) φ̂(u = u|uo = i) = 1 which is the normalization condition for φ̂.
Modeled careers also satisfy a similar relation; calling the set of these careers R(m)(i) =
{r(m)

θ }{θ};ro=i for model m, they satisfy ∑u∈R(m)(i) φ(m)(r(m) = u|ro = i) = 1. Note that

U (i) = {uα}α∈E ;uo=i and R(m)(i) = {r(m)
θ }{θ};ro=i are, respectively, the sample spaces of

the observed and modeled careers starting at i. The relation between the probabilities of all
careers starting at a single node means that it is not enough to know that one particular
career u is such that φ(m)(r(m) = u|ro = i) ≈ φ̂(u = u|uo = i). Instead, we need to know
that the entire collection of careers starting from i have approximately equal values of
probability between observation and model. An effective way to study this is through
information theoretic methods. Here we apply the Jensen-Shannon divergence (JSD) for
this purpose [19]. This quantity measures information divergence between distributions in
such a way that, unlike the Kullback-Liebler divergence, is efficient in handling possible
mismatches in the sample spaces of the distributions. Defining the entropy of a random
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variable X with distribution P(X) as H(P) = −∑X P(X) log P(X), the JSD applied to
φ̂(u = u|uo = i) and φ(m)(r(m) = r|ro = i) takes the form

JSD(m)(i) = H
[

1
2

φ̂(u|uo = i) +
1
2

φ(m)(r(m)|ro = i)
]

− 1
2

[
H(φ̂(u|uo = i)) + H(φ(m)(r(m)|ro = i))

]
. (11)

Intuitively, the Jensen-Shannon divergence measures how much information two distribu-
tions share, with a value of 0 if they share all information (the distributions are identical),
and a maximum possible value of log(2) when one distribution has no information about
the other.

Since the distributions φ(m)(r(m) = r|ro = i) are generally different between different
Monte Carlo realizations, we generate one JSD(m)(i) for each of the Md realizations. To per-
form a complete test in terms of JSD, we create two versions of it, one that computes the
JSD between pairs of distributions φ(m)(r(m) = r|ro = i) emerging from the Monte Carlo
realizations (providing Md(Md − 1)/2 distinct values of JSD) and another comparing the
real distribution φ̂(u|uo = i) of careers against the simulated distributions (providing Md
values of JSD).

To explain this strategy further (using Md realizations), note that the random dis-
tribution φ(m)(r(m) = r|ro = i) and φ̂(u|uo = i) are both sample distributions. First,
the modeled distribution φ(m)(r(m) = r|ro = i) emerges from generating Mw walks that
begin at i and generate a set of walks R(m)(i). Second, the distribution φ̂(u|uo = i) is
formed by all the observed careers beginning at i. Because both distributions emerge
from a finite number of samples, even if either of the models m = 0 or 1 was perfectly
correct, one cannot expect the two distributions to overlap perfectly. Thus, a more realis-
tic evaluation of their similarity comes from observing how much φ̂(u|uo = i) typically
differs from φ(m)(r(m) = r|ro = i). This leads us to the need for creating Md versions of
φ(m)(r(m) = r|ro = i) to compare against φ̂(u|uo = i). When needed, we label each such
realization by the index q = 1, . . . , Md. Finally, note that the comparison between simu-
lated career distributions allows us to develop a baseline for how well the observed career
distribution is expected to match simulations. As a practical matter regarding numerical
estimation of entropy, our situation is dominated by careers out of virtually all starting
nodes where the most common career is to stay at that node; this means that we are able to
estimate entropy via simple naive methods as in our case these are not particularly affected
by problems such as those highlighted in the literature on entropy estimation [26–28].

Shifting to sample space testing, we introduce the Jaccard index which determines
how similar two sets are by checking for the proportion of elements that are common
between the sets; when both sets have the same elements the Jaccard index is 1, and when
they share no elements it is 0. Thus, for a given location i, we define the Jaccard index
J(m)(i) of node i due to model m as

J(m)(i) =
|U (i) ∩R(m)(i)|
|U (i) ∪R(m)(i)|

(12)

which quantifies how much the sets U (i) and R(m)(i) resemble each other. Since R(m)(i) is
a product of simulations, one does not expect J(m)(i) to be the same for every realization.
One simple approach (that we adopt here) to deal with this is to create a union of the
simulated careers, ∏Md

q ∪R(m)
q (i) and compare this set with U (i). Note that the choice to

check against the union over R(m)
q (i) is well justified on the basis that we are not after a

test of probability, only sample space.
As a final check, we introduce a ratio test for careers. This check is useful for several

purposes. For one, it can identify particular career sequences that are especially rare
compared to random expectation. Another advantage is that it can be put to use in
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generating career profiles for each starting node that provide a sense for how well the
collection of modeled careers match the collection of observed careers. A final use comes as
an alternative to the measurements from JSD and can be readily applied to obtaining full
descriptions of a model over the entire network. All these depend on the definition

d(m)(u, i) = log
[

φ̂(u = u|uo = i)
φ(m)(r(m) = u|ro = i)

]
, (13)

which compares the observed probability of career u with initial location i against its simu-
lated probability. The quantity approaches 0 as the simulated and observed probabilities of
a career become more similar (i.e., φ(m)(r(m) = u|ro = i) ≈ φ̂(u = u|uo = i)). On the other
hand, if a model overestimates the frequency of u, d(m)(u, i) > 0; if it is underestimated,
d(m)(u, i) < 0.

Using d(m)(u, i) over all observed careers beginning at i provides another way to test
the models. This can be done, for a given node, by measuring the average d(m)(u, i) over
observed career paths, or

〈d(m)(i)〉 = ∑u∈U (i) d(m)(u, i)
|U (i)| . (14)

As indicated, this quantity can also serve as a measure of the quality of a model at the level
of each individual starting point for careers. A related quantity that can be derived is the
variance of d(m)(u, i), defined as

var(d(m)(i)) =
∑u∈U (i)

[
d(m)(u, i)− 〈d(m)(i)〉

]2

|U (i)| (15)

which provides a measure of how well models capture the totality of the careers predicted
to start at i.

A final use for d(m)(u, i) is introduce is the creation of a profile for the effectiveness
of each model to recover individual observed careers. Let us create a rank-ordered list of
careers u ∈ U (i) so that u0 is the most probable career departing i (that is φ̂(u = u0|uo = i)
> φ̂(u = u|uo = i) for u 
= u0). Similarly, u1 is the second most probable career from i,
which means that φ̂(u = u0|uo = i) > φ̂(u = u1|uo = i) > φ̂(u = u|uo = i) for u 
= u0, u1.
After ordering all careers, we can construct the curve π

(m)
i (c) = (c, 10d(m)(uc ,i)) where

c = 0, 1, . . . , |U (i)| − 1. This profile for node i shows in decreasing order of importance how
closely model m is able to reproduce careers in i. A perfect model will tend to produce a
flat curve of the form (c, 1). On the other hand, if some careers deviate strongly, there will
be noticeable jumps.

3. Results

3.1. The Validity of Organizational Labor Flow Networks

To verify that OLFNs are in fact informative, we apply the method in Section 2.2.2
where the time steps are monthly periods and the T< and T< are quarterly periods
(3 months). To test that the information of previous transitions is strong enough, we
simply impose W = 1 and measure the time series of x1 over the years of data we possess.

Given our ability to choose the definition of locations, we explore the three versions
mentioned above, operating units, occupational series code, and geographic location (in
this case, at the state level). The results are shown in Figure 1. The model used corresponds
to fixed strength of nodes based on candidate links, the most demanding test based on
results from [10]. For all choices of the definition of location, the excess probabilities xW
are considerably above 1 which means that defining and OLFN on the basis of any of these
locations produces networks on which a walker (representing an employee) can travel
along careers that are likely to be found in the real data. However, the value of xW is larger
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for units than other definitions of location (solid blue line). This result in interesting in
that it reinforces the value of work done in [8–10] where nodes are defined on the basis of
firms in the economy. The similarity is that, just like firms, operating units are the actual
administrative units within which people work.

Figure 1. Quarterly excess probabilities xW over the time frame of the data. We make the measure-
ments with three different definitions of locations, operating units (dotted line), occupational series
codes (circle), and US state where the employee is located (dashed line). The model corresponds to
fixed strength of nodes based on candidate links, the most demanding test based on results from [10].
Even in this case, it is clear that xW is markedly above 1.

Given the effectiveness of using operating units for predicting job change, we further
explore this definition of network. In Figure 2, we study the effect of the threshold W on
the excess probability xW . The temporal tracking is the same as in Figure 1. In this case,
we see that increasing W leads to modest gains in predictive ability of the network, yet
remaining within the same order of magnitude as W = 1.

Figure 2. Quarterly excess probabilities xW and the values of ℘(o) and ℘(r) across the time frame of
the data for units in the AAW, tested across increasing W . The dotted lines correspond to W = 1,
the circles to W = 2, and dashed lines to W = 3. The bundle of curves in the middle of the plot
correspond to ℘(o). The lower bundle of curves represent ℘(s)(W) due to random models. Finally,
the excess probabilities xW are represented by the upper bundle of curves.
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Based on this analysis, we conclude that even a single observed transition (W = 1)
between a node pair has considerable predictive power regarding future transitions and
therefore, in the absence of some pre-established tolerance level, we adopt even a single job
transition to be an acceptable link in an OLFN. Clearly, our result confirms that the idea of
OLFNs is not just theoretical, but one that actually captures real employment affinity and
can help predict future job changes. The results of this analysis also dictate how we define
the probabilities of transitions in our Markov models (see Section 2.2.5).

3.2. Structure of Organizational Labor Flow Networks

Once networks are generated, we check their general topological characteristics. As in-
dicated above, three possible definitions of nodes can be used, operational unit, occu-
pational series code, or geography. However, given that geographic location appears to
provide the smallest values of xW above 1, we concentrate on the topological features of
the OLFNs generated with locations defined as operational units and occupational series.

In Figure 3, we present the degree distributions Pr(k) of the OLFNs defined with
W = 1, where k represented the degree of a node. Given the small number of nodes present
in the network built on occupational codes, the degree distribution (left) does not seem
to provide a clear structure. The effect of the number of nodes on this lack of structure
is another reason why our expectations for obtaining systematic results based on state
locations as nodes are low, further justifying our obviating this analysis (while there are
about 100 distinct occupations, there are only 50 states in the US; this small number of
nodes is unlikely to show much connectivity structure).

Figure 3. Degree distributions for OLFNs defined by occupational series (left) or operational units
(right). The plots are shown in log-log scale. For units, we add a reference solid line that decays as
k−1.2.

On the other hand, when the network is defined in terms of operational units, much
more topological information can be seen. First, the right panel of Figure 3 exhibits a long
tail distribution of degree, with close to two decades of steady, near-linear decay in double
logarithmic scale which is consistent with a power-law. Assuming this shape of the degree
distribution (a power-law), we find by inspection a decaying slope of a value of ≈−1.2,
or Pr(k)∼k−1.2. This slope is close to the value observed in much on the literature on the
firm-size distribution, known to show exponents in a range near −1 but with considerable
variation that includes the value −1.2 (see [29,30]). Although here we are reporting the
probability of a node to have degree k, the degree is a consequence of job transitions
which are proportional to the size of units. Consequently, the exponent we measure can be
directly compared to that of the firm size distribution. In addition, no prior empirical work
has addressed the internal structure of firms, and the simulation studies that have been
performed [31] have predicted that the distribution of unit sizes inside a firm should grow,
which is the opposite prediction to our observations.

The agreement between the exponent value found here and exponents in the literature
on the firm-size distribution suggests that large organizations, even if they have highly
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controlled structures, somehow organize themselves in a way that mimics the organization
of entire economies. After the seminal paper by Simon and Bonani recognizing this
phenomenon [12], and given the abundant literature on this topic (see e.g. [13,17]), we do
not attempt to explain this phenomenon here. However, we do note the importance of
this finding in the context of this debate because it suggest that the phenomenon is a truly
emergent feature of the functioning of economic entities.

3.3. Jensen-Shannon Divergence

Moving beyond the macro-structure of the system, we now focus on the probabilistic
structure of careers. For this purpose, we apply the JSD explained in Section 2.2.6. Given
the limited value shown in defining careers in terms of geographic locations, we narrow
our focus to operating units and occupational series only.

Evaluating the numerical values of JSD requires establishing a baseline, as explained
above, that compares careers among the random distributions versus the comparison of
careers between a random and the observed distribution. In Figure 4, we illustrate the
nature of the results of our analysis. The left panel contains JSD distributions for one
illustrative occupational series code. The model without memory is represented by the red
and green distributions. The red distribution corresponds to Md distinct values of the JSD
between the distribution of observed careers φ̂ commencing in the occupational code of
interest and the Md modeled distributions φ(o) of careers starting at the same occupation
code. In contrast, the green distribution is constructed from the Md(Md − 1)/2 distinct JSD
values that emerge from comparing all the pairs of distributions Md distributions φ(o) with
each other. From the figure, we see that the green distribution among the random career
realizations is characterized by lower values of JSD. This should be expected from the fact
that the careers generated by the model are fundamentally similar to each other. The red
distribution, in contrast, has larger values of JSD because observed and random careers
need not be as similar. It is notable, however, that the JSD values are small indicating that
both random models perform well.

Figure 4. Distributions of values of JSD when comparing careers generated by random modeling
and observed careers. Locations defined by operating unit on panel (A) and by occupational series
are shown on panel (B). The model without memory can be seen on both panels, with the green
distributions showing the pairwise comparisons between the random distributions of careers and
the red showing the comparisons between the observed distribution against each of the random
distributions. Similarly, the one-step memory model can also be seen on both panels (in blue),
with the distributions showing the pairwise comparisons between the random distributions of careers
and the orange showing the comparisons between the observed distribution against each of the
random distributions.

When memory is introduced, generating random career distributions φ(1), the orange
and blue JSD distributions emerge. Once again, the JSD values that emerge from comparing
Md(Md − 1)/2 random distributions in pairs are lower (blue) than the Md distinct JSD

144



Entropy 2023, 25, 784

values that compare φ̂ with φ(1). We can also observe that memory lowers the JSD values
of these distributions in comparison to the ones from the model without memory.

Similar results can be gleaned when locations are redefined to operating units (Figure 4,
right panel). While the examples presented in Figure 4 correspond to a particular unit and
occupational code, the qualitative characteristics observed are consistent for the remaining
nodes and definitions of locations.

3.4. Jaccard Index

Having tested the similarity of the distributions, we are now in a position to determine
if the structure of careers predicted by the models is similar to real observed careers.
As explained above in Section 2.2.6, the Jaccard index eliminates the advantage that comes
to popular careers when evaluated through the JSD. Instead, all careers are compared on
equal footing, providing much more clarity about the difference between the models and
the real-world.

Although it would be perfectly informative to generate distributions of values of the
Jaccard index, it is very useful to compare the two models we use directly on the basis of
their ability to achieve large values of Jaccard index approaching 1. Each point in Figure 5
corresponds to a starting career location i (left are occupational series, right are units) where
the horizontal coordinate represents the Jaccard index of U (i) ∩

[
∏Md ∪R(1)(i)

]
and the

vertical coordinate to the Jaccard index of U (i) ∩
[
∏Md ∪R(0)(i)

]
.

Figure 5. Comparison of Jaccard indices calculated from models with memory and without memory
for units (B) and occupational codes (A) for locations in the OLFN . Each point is an initial node for
careers. The horizontal coordinate captures the Jaccard index of the collected Md careers created in
the one-step memory model, and the vertical the Jaccard index of the collected Md careers created
with the memoryless model. The solid line highlights the diagonal of the plot.

The results clearly illustrate the situation. The memoryless model is hardly ever able
to approach the value 1, generating values that are almost exclusively confined in the range
between 0 and 0.1 (with some exceptions). On the other hand, the model with one-step
memory is partially successful at achieving Jaccard indices of 1, as well as generating
other less optimal, yet better performing values between 0 and 1 in comparison to the
memoryless model.

3.5. Career Profiles and Overall Evaluation of Career Forecasts

In order to develop better intuition about the ability of our models to replicate obser-
vation, we also study the career profiles generated.

In Figure 6 we present the profiles π
(m)
i (c) for the same operating unit and occupa-

tional code as those in Figure 4 with both the memoryless and one-step memory models.
In both panels, it is clear that generally the one-step memory model performs better than the
memoryless model. Deviations tend to be more attenuated. In both examples, the quality
of the forecast of the most likely careers starting from each of the nodes (the points to the
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left of the plot representing u0, u1, . . . ) is high, represented by the fact that the symbols can
be located near the reference line at height 1.

Figure 6. Career profiles π
(m)
i (c) starting from location i. The left panel uses the same unit that is

displayed in the left panel of Figure 4; the right panel uses the same occupation as in the right panel of
Figure 4. The memoryless model career profiles are shown in blue and the one-step memory models
in red. Since the most important careers from the standpoint of probability distribution are found on
the left of the plot (smallest values of c), it is clear that the models perform well. However, one-step
memory is more effective. In addition, forecasting on the basis of occupations proves to be less
reliable than using units, as can be seen from the larger number of large fluctuations in the profiles.

To assess the models globally in terms of their performances, we show the distribution
of Equations (13) measured across starting career nodes (units and occupations) and models.
For d(m)(u, i), we present Figure 7 covering units and occupations with memoryless and one-
step memory models. From the figures, we see that the majority of careers are forecasted
correctly (with appropriate values of probability), seen by the concentration of the peaks
around 0. Note, however, that the efficiency of the OLFN based on units is superior.

Figure 7. Histograms of d(m)(u, i) for the memoryless (left column) and one-step memory (right

column) models for OLFNs of units (top row) and occupations (bottom row) across all starting nodes
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i and all observed careers. Despite the tails on the left of the histograms, the large frequencies are
highly concentrated around 0, indicating the general effectiveness of the models in reproducing
real careers. Memory indeed helps arrive at better predictions of careers, as can be seen from the
reduction of the amount of the mass of the histograms for negative values of d(m)(u, i). The plots
have different numbers of bins because OLFNs based on units (top row) have many more nodes than
those based on occupations (bottom row); see Section 2.1.

As a final assessment, we present in Figure 8 histograms of the values of var(d(m)(i))
from Equation (15), for OLFNs generated from units and occupations. In this case, we see
once again the that models perform well given the large frequency of 0. In addition, OLFNs
with unit-defined nodes continue to perform best.

Figure 8. Histograms of the values of var(d(m)(i)) over all starting nodes for units (left) and oc-
cupations (right). The memoryless model is captured by the orange histogram and the one-step
memory by the blue histogram. The variances are concentrated around 0 and the tails of the distribu-
tions decay very fast, with units generally displaying smaller values of variance and hence better
forecasting capabilities.

4. Some Final Discussions and Conclusions

The results we have obtained in the manuscript show that the LFN network approach
can be successfully applied to internal labor markets, leading to OLFNs. Further, we find
that even a single transition is effective at providing evidence that two nodes in a labor
network should be connected, a result that is in agreement with the finding in [7–10].
With this in mind, we are able to generated OLFNs that provide the substrate on which
to model careers (either for memoryless or one-step memory models) that allows us to
forecasts the workforce job changes at a microscopic level, i.e., for any career sequence.

The finding that OLFNs of units behave in the same way as the firm-size distribution
is new and of critical importance. The lack of availability of data such as the one presented
here has made the reporting of this regularity impossible. However, the relevance of this
observation is that it opens a new window into our understanding of this interesting yet
not-fully explained phenomenon. In particular, given the supervised nature of the structure
of a single organization such as this one, it suggests that the firm-size distribution may
be a consequence of an optimization process that seeks to make the functioning of the
interacting units as efficient as possible.

Another advancement of our paper is the introduction of a notion of career sequences
occurring on a network of operational units, new in the study of careers. We expect that,
as we focus more on its details, numerous relevant features of the system will start to
emerge such as the value of work or friendship ties in people’s careers.

We find that the introduction of memory in the modeling of careers is an essential
component that has been missing from the approaches that have so far been deployed for
this problem. A variety of techniques have been used in order to understand movements
of individuals across an organization, including pattern clustering of sequences [32,33],
Markov modeling performed at several levels of sophistication [6,24,34], and manpower
analysis [4]. However, the use of memory has so far been neglected as an effective approach
to model careers.
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A limitation of our current methodology is that it is calibrated against observed job
transitions rather than possible job transitions. This is an important issue because the
finite nature of the system does not provide enough observation of rare transitions to be
extracted from the data. In order to overcome this, study of the characteristics of each job
(say, occupational series, location, career field) offers a new direction to pursue in order
create a more flexible model that may be able to predict what could happen even if it has
never been observed.

We believe that the analysis performed here, including the application of new ideas
and techniques, will spark interest in pushing this topic forward, and attempting to bring to-
gether the related but generally non-intersecting approaches that have so far been deployed
in career studies.
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Abstract: The concept of entropy is not uniquely relevant to the statistical mechanics but, among
others, it can play pivotal role in the analysis of a time series, particularly the stock market data.
In this area, sudden events are especially interesting as they describe abrupt data changes with
potentially long-lasting effects. Here, we investigate the impact of such events on the entropy of
financial time series. As a case study, we assume data of the Polish stock market, in the context
of its main cumulative index, and discuss it for the finite time periods before and after outbreak
of the 2022 Russian invasion of Ukraine. This analysis allows us to validate the entropy-based
methodology in assessing changes in the market volatility, as driven by the extreme external factors.
We show that some qualitative features of such market variations can be well captured in terms of
the entropy. In particular, the discussed measure appears to highlight differences between data of the
two considered timeframes in agreement with the character of their empirical distributions, which
is not always the case in terms of the conventional standard deviation. Moreover, the entropy of
cumulative index averages, qualitatively, the entropies of composing assets, suggesting capability
for describing interdependencies between them. The entropy is also found to exhibit signatures of
the upcoming extreme events. To this end, the role of recent war in shaping the current economic
situation is briefly discussed.

Keywords: entropy; volatility; information theory; econophysics; sudden events; war; time series;
data science

1. Introduction

In general, sudden or extreme events translate to the atypical patterns and deviations
from the expected observations. As such, the ability to detect and address accordingly
aforesaid anomalies is of great importance in various areas of science, technology, or even
social studies [1–5]. This is to say, timing and occurrence of sudden events is essential
when considering reliability of a system under extreme external conditions. A special
attention to these aspects is given in the field of economy, where sudden events correspond
to a notable incline/decline in economic activity or may even mark a breakdown of some
economic models, e.g., by exposing their limitations in terms of efficiency and rationality of
the market [6]. In what follows, it is crucial to account for such events during economic
modeling when considering processes such as the forecasting, decision making, or anomaly
detection [7]. This is conventionally carried out on the grounds of the time series analysis,
a vital part of data science [8]. The main reason for that is related to character of the time
series itself, which are derived from the financial data and intrinsically encode information
about economic events [9]. Thus, to allow discussion of the extreme changes in economy,
appropriate tools in the time series domain are required.
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In the context of the above, entropy appears as an intriguing analytical concept,
which spans beyond its original field of thermodynamics. While in terms of the statistical
mechanics, this property relates to the discrete probabilities of microstates, in the area
of time series entropy, it is considered as an extension of the information theory [10–13],
in accordance with the groundbreaking works by Shannon and Kolmogorov [14,15]. In
particular, entropy can quantify the uncertainty, disorder, or simply randomness of the time
series, without adding constraints on the corresponding probability distribution [13,16–18].
Hence, it constitutes an attractive alternative to the standard deviation for measuring
market volatility [19,20]. However, entropy allows for discussing not only the magnitude
of such fluctuations but also their distributions and patterns [21,22]. It can account for the
nonlinearities and correlations in the datasets, simultaneously capturing interdependence
between assets [23–25]. Moreover, since volatility relates to the degree of an asset movement
over time, the corresponding entropy should be inherently sensitive to the sudden events or
the economic shocks of interest. As a result, entropy constitutes potentially highly relevant
framework for discussing impact of sudden events on the market and a pivotal tool in
econophysics [10,12,13,18,26].

So far, the studies on the economic sudden events in terms of entropy have been
limited mainly to a few instances, such as the investigations related to the 2008 economic
crisis [27] or to the outbreak of the COVID-19 pandemic [11]. However, recent Russian
invasion of Ukraine resulted in a yet another prominent economic shock, which is well
defined in terms of the timeframes, and influences multiple market branches [28]. The
economic consequences of this event constitute not only a perfect platform to investigate
the impact of the shock of war on the modern economy but also to validate the entropic
methodology in assessing market changes due to the extreme external factors. These
arguments, along with the aforementioned general characteristics of entropy in the field
of econophysics, constitute intriguing motivation to analyze this new measure in terms of
the market volatility description and the resulting potential for the detection of sudden
events. Herein, we provide our contribution to this still not fully explored area. In detail,
we concentrate our study on the behavior of the main cumulative index of the Polish stock
market (WIG20) and conduct our calculations with respect to the conventional Shannon
entropy. The WIG20 index was chosen due to the direct proximity of the corresponding
market to the theater of war as well as the relatively high development of the Polish
economy. For convenience, the obtained results are compared with the predictions of the
standard deviation. This analysis allows us to verify efficiency and predictive capabilities
of the entropy-based formalism and to outline pertinent perspectives for the future research.
It also provides the possibility to give preliminary insights into the other factors potentially
influencing the WIG20 index, besides the pivotal shock of war.

2. Methodology

The present analysis is conducted for the time series of the daily log-returns, as
calculated based on the financial data of interest. In particular, the daily log-returns (Ri) are
derived by following the relation:

Ri = ln
Pi

Pi−1
≈ Pi − Pi−1

Pi−1
, (1)

where Pi (Pi−1) is the closing price of an asset on day i (i − 1). In this manner, we obtain
convenient time series data which are additive and symmetric in accordance with the scope
of the present analysis. While the former property simply means that the log-returns are
additive over time, the second one is much less self-explanatory. In brief, the symmetry of
log-returns relates to the fact that positive and negative log-returns of equal magnitude are
equidistant from zero on the logarithmic scale, yielding no net change when compared.
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The volatility of the above time series is explored based on the two measures, namely,
the standard deviation and the entropy. The former parameter is given by:

S =

√√√√ 1
N − 1

N

∑
i=1

(Ri − μ)2, (2)

for the N data points and μ being the arithmetic mean of all the returns. On the other hand,
the latter measure is calculated based on the Shannon entropy [14]:

H = −
M

∑
i=1

pi ln pi. (3)

In Equation (3), M stands for the number of bins (known also as the intervals or
classes [29]) in the discrete probability density function of the returns and pi is the probability
related to a given bin. Herein, pi is calculated by employing the Riemann approximation
as follows:

pi = (xi+1 − xi) f (xi+1), (4)

where xi(xi+1) is the left (right) width endpoint of a bin and f (xi+1) denotes the corre-
sponding height. Note that, in Equation (3), when the logarithm base is e, the entropy is
measured in nats. One can also use base equal to 2 or 10, resulting in the units of shannons
or hartleys, respectively. Obviously, the change of units does not influence the qualitative
behavior of entropy.

In the present study, the above theoretical model is fed with the financial data of
the WIG20 cumulative index and its composing stocks, as divided into two one-year-
long datasets. The first set corresponds to the one-year timeframe before the invasion
(24 February 2021–23 February 2022), whereas the second considers a similar period but
after the beginning of the invasion (24 February 2022–23 February 2023). In the following,
we arrive with the total of N = 251 data points for each set, providing sufficient economic
perspective for our calculations. Note that the WIG20 index serves here as a pivotal
parameter for comparison between the two approaches in modeling volatility. However,
due to its cumulative character, this index measures only the total fluctuations, and to gain
better insight into the underlying correlations of the market, the composing stocks are
discussed. All of these stocks, including the WIG20 index, are listed in Table A1 along with
their full names, market symbols, and the basic summary statistics in Appendix A. This list
is valid for the assumed-here time period but it is obviously subject to changes in the future.
For the sake of completeness, it is also crucial to note that the component company Pepco
was introduced to the stock market on 26 May 2021, i.e., the corresponding records do not
cover the entire one-year period before the invasion. In addition, the composition of the
WIG20 index changed four times over the analyzed timeframe of two years. In detail, on
18 March 2022, the already-mentioned Pepco and other company named mBank replaced
previously indexed stocks of Tauron and Mercator, respectively. Similarly, on 16 September
2022, the company Kȩty replaced Lotos, and on 16 December 2022, Kurk switched with
the PGING. All the described changes are appropriately marked in the Section 3 and in
Appendix A.

To this end, for the purpose of the present study, both the datasets of interest are
divided into the finite number of bins, which compose the discrete probability density
function of the returns. There is no general and valid rule that determines the number and
character of such bins [29]. The final choice is always strongly related to the population of
data points and their variability. In general, one should never stay with the empty bins or
decrease their number to the point that resolution of the probability distribution is too low.
In reference to the multiple models for the bin number, we observe that M = 20 is optimal
for our case. In the first place, the chosen M value provides relatively high resolution of
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the probability distribution on equal footing across all considered time series, allowing us
to not hinder information about the tails in some of the instances. Secondly, the assumed
number of bins does not simultaneously exceed the upper theoretical limits for N ∼ 250, as
set by the Velleman formula [29].

3. Results

In Figure 1, we depict standard deviation as calculated for the WIG20 index and its
composing stocks. According to the initial assumptions, the results are presented here for
the one-year timeframe before (orange) and after (blue) the beginning of the invasion. Note
that Figure 1 is divided into three panels: the first for the constant component companies,
whereas the second (third) panel corresponds to the stocks, which at some point were
introduced to (removed from) the WIG20 index. For convenience, the corresponding
numerical results and the percentage difference between estimates obtained for the two
considered timeframes are given in Table A2 in Appendix A.

Figure 1. The standard deviation for the WIG20 index and its composing stocks. The first panel is
for the constant component companies and the second (third) for the stocks introduced to (removed
from) the index at some point. The results are given for the one-year time period before the beginning
of the Russian invasion of Ukraine (blue) and after this event (orange). The solid lines correspond to
the WIG20 index, whereas closed symbols represent estimates for the component stocks. Dashed
lines are the guide for an eye.

Upon the analysis of Figure 1, the total standard deviation appears to be higher
after the beginning of the invasion than for the time period before it. This means that
the volatility of the market visibly increases for the former dataset. In other words, this
indicates higher degree of stock price variations in the second considered period, which can
be caused by not only the decline but also incline of the asset value. Similar behavior can
be observed for most of the composing stocks. In detail, one can notice that only companies
such as Kruk (debt management and purchase), Mercator (medical devices), and CD Projekt
(video game developer and publisher) do not comply with this trend. The first company
shows practically indistinguishable values for the two considered datasets, while the two
latter ones present inverse behavior in comparison to the total standard deviation. The
observed standard deviation for the first two companies is potentially related to the fact
that their stocks were not included in the WIG20 index for the entire time, meaning their
impact on the total index was limited. Moreover, Mercator capitalization, as a producer of
medical gloves, was heavily reduced by the end of the COVID-19 pandemic. Finally, the
value of CD Projekt was subject to turbulence due to the mixed reviews of their flagship
video game product Cyberpunk 2077. Thus, the standard deviation for each of the three
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companies is the results of not only the wartime market changes but also other, external
factors. Despite these deviations, it can be stated that most of the composing assets as well
as the cumulative results highlight the impact of the shock of war.

Nonetheless, the results for the individual stocks still allow us to observe that the
largest volatility increase is present for the bank sector, with other notable examples
in petroleum and telecommunication sectors (see Table A2 in Appendix A for details).
Interestingly, by comparing the component estimates with the results for the cumulative
index, we can note that the total standard deviation measure does not average values
obtained for the individual stocks. In fact, this measure is always lower than any of the
corresponding component values. This is true for both considered sets of data and can
originate from the way that the cumulative index is calculated or potentially from the
shortcomings of the standard deviation approach.

To investigate more in detail the already observed trends, in Figures 2 and 3 we
present the discrete probability density function of the returns for the total index and
its composing stocks, respectively. Note that these are the empirical distributions of the
pooled returns. All the distributions are given for the time period before and after the
beginning of the invasion, with the same color scheme as before. Based on Figure 2, it
can be observed that the probability distributions for the WIG20 index resemble normal
distribution. However, the wartime dataset is characterized by the fatter tails and lower
central maxima than the distribution corresponding to the index values before the conflict
outbreak. This observation is in qualitative agreement with the results obtained within
the standard deviation approach, which suggest higher volatility of the market after the
beginning of the invasion. The situation is once again similar when inspecting return
distributions for the component stocks, i.e., volatility for most of the stocks is higher after
the beginning of the Russian invasion. Still, there is some visible exception from this trend
in terms of Pepco data. This is potentially due to the fact that, as mentioned earlier, data
for Pepco do not cover the entire year before the invasion because of its relatively late
introduction to the market on 26 May 2021.

Figure 2. The discrete probability density function for the WIG20 index, for the one-year period
before (blue) and after (orange) the beginning of the Russian invasion of Ukraine.
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Figure 3. The discrete probability density function for the component stocks of the WIG20 index. The
first four rows are for the constant component companies, and the fifth (sixth) row is for the stocks
introduced to (removed from) the index at some point. The results are presented for the one-year time
period before the beginning of the Russian invasion of Ukraine (blue) and after this event (orange).

It is next instructive to compare all the above results with the predictions of the
entropic model. These are presented in Figure 4, in the form of the entropy estimates for the
WIG20 index and its component stocks, based on the two types of the datasets of interest.
In general, the total entropy, as well as the relative behavior, between composing entropies
is similar to the standard deviation predictions. However, closer inspection of the results
allows us to observe that, contrary to the previous case, here, all the component stocks
exhibit higher entropy after the war outbreak. The only exception is Mercator, relatively
late in the WIG20 index and experiencing the COVID-19-related problems during the entire
analyzed period, as described before. Moreover, this time, the results for the total index
qualitatively average results for the component companies. The mentioned observation
is particularly visible for the data corresponding to the timeframe after the beginning of
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the invasion. The results allow us also to note that the percentage difference between the
results before and after invasion is smaller for each of the calculated entropies than in the
case of the standard deviation results (see Table A2 in Appendix A for details). Finally,
the obtained entropies appear to follow the character of the discrete probability density
function in Figures 2 and 3, in terms of the differences between results obtained for the two
considered timeframes.

Figure 4. The Shannon entropy for the WIG20 index and its composing stocks. The first panel is
for the constant component companies and the second (third) for the stocks introduced to (removed
from) the index at some point. The results are given for the one-year time period before the beginning
of the Russian invasion of Ukraine (blue) and after this event (orange). The solid lines correspond to
the WIG20 index, whereas closed symbols represent estimates for the component stocks. Dashed
lines are the guide for an eye.

To supplement our analysis, we additionally plot the entropic index of WIG20 index
for various time periods within the here-assumed timeframes. In Figure 5, we present the
obtained results for the datasets before (left panel) and after (right panel) the beginning of
the considered conflict. Both panels depict different behavior, namely, before the invasion,
the entropic index clearly increases when the assumed time distance from the invasion date
becomes smaller. On the other hand, the entropy is relatively stable throughout the entire
period after the invasion data, independent of the number of considered days.

Figure 5. The Shannon entropy for the WIG20 index as calculated for different periods of time before
(blue) and after (orange) the beginning of the Russian invasion of Ukraine. Dashed lines are the guide
for an eye.
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4. Conclusions

In the present study, we validated the entropy-based theoretical framework in describ-
ing behavior of financial time series under the influence of sudden and extreme external
events. This was carried out in the context of the WIG20 main cumulative index of the
Polish stock market for a one-year-long data samples before and after the Russian invasion
of Ukraine, respectively. In particular, it was shown that entropy reproduces some of the
features of the standard deviation when describing the effects of the shock of war. The
obtained results confirmed that entropy can indeed be used as an alternative measure of
volatility. These findings not only agree with the previous studies on applications of entropy
in finances [10,11,18,24,27], but also supplement them by considering the wartime-driven
changes in the stock market. For convenience, all the numerical results are summarized in
Table A2 in Appendix A.

In addition to the above, the present study reveled several noteworthy differences
between entropy and standard deviation measures. First, the entropy was found to capture
the character of empirical data in qualitative agreement with the discrete probability distri-
bution function, which was not always the case when considering the standard deviation
measure. As a result, it is concluded that the entropy was better in highlighting differences
between results obtained for the two timeframes of interest. This was particularly visible in
the case of CD Projekt data, where standard deviation predicted inverse behavior to the
probability distribution function and entropy. Finally, it was also revealed that the entropy
of cumulative index qualitatively averages entropies of the composing stocks, again in
contrast to the standard deviation estimates. This finding is particularly interesting since it
shows that entropy holds potential in encompassing interdependencies between assets.

The last part of the analysis revealed that the entropy measure can be used to quantify
anomalies in time series toward their better detection. In particular, entropy exhibits
different functional character when considering it for various time periods, before and
after the beginning of the invasion. In other words, it can be argued that entropy shows
signatures of the upcoming economic shock. That means that the impact of a potential
sudden event can be visible in the entropy behavior when the time range is sufficiently
small and the context data are available for a long time range. In the future, entropy may
constitute a building block for future tools aimed at sudden (extreme) event prediction.
Interestingly, these results also clearly indicate that the shock of war has a long-lasting
effect of increased volatility of the market, at least within the one-year time perspective.
To further verify the presented observations, we note that the analysis can be extended
toward other more complex or larger datasets and be conducted via more sophisticated
entropic models based not only on the Shannon entropy but also on other formulations,
e.g., by Rényi [30] or Tsallis [31].

To this end, all the obtained results allow us to make some preliminary statements on
the role of invasion in shaping the current economic situation in Poland. The calculated
standard deviation and entropy measures clearly point out that the volatility of the Polish
market is higher after the crisis outbreak than before. That is to say, the presented study
allows us to conclude that the shock of war visibly impacts the Polish economy, according to
the fact that the entire analysis was conducted with respect to this well-defined point in time.
However, it is difficult to judge how big this impact is in comparison to other factors, such
as the still-persisting effects of the COVID-19 pandemic or the internal economic decisions
of the Polish government and related financial institutions e.g., in terms of changes in the
interest rates of the National Bank of Poland [32]. To address the impact of an additional
factors, besides the considered shock of war, extended investigations spanning beyond the
scope of the present analysis are required. This can be carried out by identifying the aspects
of influence and then by analyzing them separately, but on the same footing, within the
economic model of choice. However, due to the potential complexity of the problem, it is
argued here that the proposed analysis should incorporate a more sophisticated approach
based, for example, on the network and behavioral modeling, in agreement with the recent
insights from the field of complex systems [33]. Since similar observations can be made at
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the level of the European or even global market, it is expected that our entropic approach
may provide interesting results with the dependence on the proximity to the conflict zone
or the bond strength with the Ukrainian or Russian market. Still, such analysis will be
limited in terms of influencing factors, and the above complex approach is expected to be
also valuable for such large-scale simulations. In summary, the shock of war appears to be
an important factor of recent economic turmoil, but its magnitude in the context of other
factors is yet to be determined.
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Appendix A. Summary Statistics

The current Appendix section contains supplementary data to the discussion presented
in the main text.

In Figure A1, the daily log-returns for the WIG20 cumulative index are depicted. The
left panel presents data before the conflict outbreak (blue), whereas the right panel depicts
data after the beginning of the invasion (orange). The inset presents a more detailed view
in the vicinity of the initial invasion day. Qualitatively similar behavior can be observed for
each of the WIG20 composing assets.

Figure A1. The daily log-returns for the WIG20 cumulative index before (blue) and after (orange)
the beginning of the 2022 Russian invasion of Ukraine. For convenience, the inset presents data in the
vicinity of the initial invasion day.

In Table A1, the basic summary statistics of the daily log-returns are given for the
WIG20 cumulative index and its composing assets. The data are provided for two con-
sidered timeframes, i.e., one year before the invasion day and one year after this date.
In Table A2, the numerical values of the calculated standard deviation and entropy, as
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obtained within the presented analysis, are collected. The data are given in a similar fashion
as in Table A1.

Table A1. The summary statistics of the daily log-returns before (outside the brackets) and after (inside
the brackets) the outbreak of the 2022 Russian invasion of Ukraine. The cumulative index data are fol-
lowed by the first group for the constant component companies and then by the second (third) group for
the stocks introduced to (removed from) the index at some point. The dates of the introduction/removal
of the composing companies are given next to the name of the corresponding company.

Name Symbol Mean Minimum Maximum Skewness Kurtosis

Cumulative Index WIG20 0.00027 (0.00017) −0.0455 (−0.0452) 0.0299 (0.0844) −0.2908 (0.5006) 1.1820 (1.3099)

Asseco ACP 0.00074 (0.00056) −0.0595 (−0.0488) 0.0608 (0.0765) −0.0201 (0.4742) 1.7600 (1.3305)
Allegro ALE −0.0026 (0.0010) −0.1123 (−0.1027) 0.1067 (0.1578) 0.1747 (0.5547) 1.1735 (1.9310)

CCC CCC −0.00196 (−0.00050) −0.0851 (−0.068) 0.1327 (0.1490) 0.4102 (0.7795) 3.4547 (1.5699)
CD Projekt CDR −0.00118 (−0.00022) −0.1257 (−0.1024) 0.1307 (0.1347) 0.1356 (0.0001) 2.3658 (1.6826)

Cyfrowy Polsat CPS 0.00029 (−0.00150) −0.0395 (−0.0847) 0.0729 (0.0782) 0.5066 (0.0800) 2.2896 (0.8452)
Dino DNP 0.00076 (0.00157) −0.0670 (−0.0673) 0.0659 (0.0909) 0.1096 (0.2339) 0.9815 (1.3584)
JSW JSW 0.00144 (0.00251) −0.1117 (−0.1345) 0.1170 (0.3130) −0.0557 (1.5369) 0.5071 (9.5325)

KGHM KGH −0.00088 (0.00011) −0.0673 (−0.1178) 0.0853 (0.1168) 0.0967 (0.2907) 0.6175 (1.2485)
LPP LPP 0.00241 (0.00052) −0.1393 (−0.1090) 0.1468 (0.1581) 0.3934 (0.3732) 4.5029 (2.1642)

Orange OPL 0.00128 (−0.00021) −0.0653 (−0.0870) 0.0578 (0.0572) 0.2096 (−0.3807) 1.3278 (0.6936)
Bank Pekao PEO 0.00256 (−0.00016) −0.0711 (−0.1221) 0.0625 (0.1714) −0.3068 (0.7317) 1.5768 (5.6249)

PGE PGE 0.00076 (0.00062) −0.0721 (−0.0691) 0.1358 (0.1567) 0.6716 (0.9674) 2.6880 (3.5208)
Orlen PKN 0.00070 (0.00042) −0.0640 (−0.0620) 0.0457 (0.1096) −0.0736 (0.2118) 0.2344 (0.6775)

Bank PKO PKO 0.00167 (−0.00029) −0.0718 (−0.0717) 0.0017 (0.1327) −0.2323 (0.8032) 1.0216 (2.7165)
PZU PZU 0.00053 (0.00084) −0.0644 (−0.0660) 0.0523 (0.0784) −0.3524 (0.2138) 1.7112 (1.4921)

Santander Bank SPL 0.00190 (0.00035) −0.0536 (−0.0867) 0.0823 (0.1143) 0.4418 (0.3425) 1.3168 (1.7196)

Pepco
(18 March 2022) PCO −0.00050 (0.00074) −0.0470 (−0.0523) 0.0558 (0.1143) 0.1075 (0.6496) 0.4942 (3.1461)

mBank
(18 March 2022) MBK 0.00275 (0) −0.1002 (−0.0851) 0.0943 (0.1264) −0.0907 (0.4069) 0.9970 (0.7190)

Kȩty
(16 September 2022) KTY 0.00084 (−0.00001) −0.0684 (−0.1017) 0.0744 (0.0757) 0.3034 (−0.1884) 1.8525 (1.2969)

Kruk
(16 December 2022) KRU 0.00219 (0.00136) −0.0622 (−0.0584) 0.1313 (0.1220) 0.9346 (0.9295) 2.7356 (2.2608)

Tauron
(18 March 2022) TPE −0.00014 (0.00053) −0.0617 (−0.0796) 0.0853 (0.1301) 0.4780 (0.5036) 0.6674 (2.1356)

Mercator
(18 March 2022) MRC −0.00614 (0.00050) −0.2348 (−0.0980) 0.2080 (0.2571) 0.0931 (1.9378) 5.0186 (7.6932)

LOTOS
(16 September 2022) LTS 0.00113 (0.00481) −0.0826 (−0.0611) 0.0614 (0.0740) −0.5117 (0.3371) 1.8753 (0.0411)

PGNiG
(16 December 2022) PGN −0.00016 (0.00044) −0.0603 (−0.0644) 0.0568 (0.1793) −0.1985 (1.4098) 1.3151 (5.8434)

Table A2. The numerical values of the standard deviation and entropy, as calculated for the WIG20
index and its composing stocks. Similarly to Table A1, the cumulative index data are followed by
the first group for the constant component companies and then by the second (third) group for the
stocks introduced to (removed from) the index at some point. The dates of the introduction/removal
of the composing companies are given next to the name of the corresponding company. The results
are presented for the one-year time period before the beginning of the Russian invasion of Ukraine
and after this event. For convenience, the percentage difference between estimates obtained for the
two timeframes of interest is given for the standard deviation and entropy.

Name Symbol
Standard
Deviation

Before

Standard
Deviation

After

Percentage
Difference

Entropy
Before Entropy After

Percentage
Difference

Cumulative Index WIG20 0.012 0.018 40% 1.956 2.336 17.71%

Asseco ACP 0.016 0.019 17.63% 2.224 2.426 8.68%
Allegro ALE 0.029 0.036 21.54% 2.131 2.336 9.18%

CCC CCC 0.027 0.034 22.95% 2.151 2.405 11.15%
CD Projekt CDR 0.032 0.031 3.180% 2.223 2.226 0.14%

Cyfrowy Polsat CPS 0.015 0.023 42.11% 2.387 1.967 19.29%
Dino DNP 0.019 0.023 19.05% 2.256 2.456 8.49%
JSW JSW 0.038 0.045 16.87% 1.936 1.998 3.15%

KGHM KGH 0.025 0.032 24.56% 2.143 2.378 10.39%
LPP LPP 0.030 0.034 12.50% 2.008 2.170 7.76%

Orange OPL 0.017 0.021 21.05% 2.201 2.449 10.66%
Bank Pekao PEO 0.019 0.030 44.90% 1.671 2.016 18.71%

PGE PGE 0.026 0.032 20.69% 2.173 2.353 7.95%
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Table A2. Cont.

Name Symbol
Standard
Deviation

Before

Standard
Deviation

After

Percentage
Difference

Entropy
Before Entropy After

Percentage
Difference

Orlen PKN 0.019 0.026 31.11% 2.180 2.460 12.07%
Bank PKO PKO 0.019 0.027 34.78% 2.010 2.302 13.54%

PZU PZU 0.016 0.021 27.03% 2.130 2.393 11.63%
Santander Bank SPL 0.020 0.025 22.22% 2.085 2.274 8.67%

Pepco
(18 March 2022) PCO 0.017 0.022 25.64% 2.121 2.267 6.66%

mBank
(18 March 2022) MBK 0.028 0.033 16.39% 2.262 2.473 8.912%

Kȩty
(16 September 2022) KTY 0.018 0.025 32.56% 2.080 2.390 13.87%

Kruk
(16 December 2022) KRU 0.026 0.028 3.640% 2.353 2.371 0.76%

Tauron
(18 March 2022) TPE 0.024 0.029 18.87% 2.216 2.352 5.95%

Mercator
(18 March 2022) MRC 0.047 0.043 8.89% 1.894 1.785 5.93%

LOTOS
(16 September 2022) LTS 0.020 0.028 33.33% 2.310 2.558 10.19%

PGNiG
(16 December 2022) PGN 0.017 0.033 64% 1.747 2.269 26%

References

1. He, C.; Wen, Z.; Huang, K.; Ji, X. Sudden shock and stock market network structure characteristics: A comparison of past crisis
events. Technol. Forecast. Soc. Chang. 2022, 180, 121732. [CrossRef]

2. Weinberg, D.H.; Andrews, B.H.; Freudenburg, J. Equilibrium and sudden events in chemical evolution. Astrophys. J. 2017,
837, 183. [CrossRef]

3. Aminikhanghahi, S.; Cook, D. A survey of methods for time series change point detection. Knowl. Inf. Syst. 2017, 51, 339–367.
[CrossRef] [PubMed]

4. Suriani, N.S.; Hussain, A.; Zulkifley, M.A. Sudden event recognition: A survey. Sensors 2013, 13, 9966–9998. [CrossRef] [PubMed]
5. Ramage, C. Sudden events. Futures 1980, 12, 268–274. [CrossRef]
6. Evangelos, V. Efficient markets hypothesis in the time of COVID-19. Rev. Econ. Anal. 2021, 13, 45–62.
7. Musmeci, N.; Aste, T.; Matteo, T.D. Interplay between past market correlation structure changes and future volatility outbursts.

Sci. Rep. 2016, 6, 36320. [CrossRef]
8. Montgomery, D.; Jennings, C.; Kulahci, M. Introduction to Time Series Analysis and Forecasting; Wiley: Hoboken, NJ, USA, 2015.
9. Plerou, V.; Gopikrishnan, P.; Rosenow, B.; Amaral, L.A.; Stanley, H.E. Econophysics: Financial time series from a statistical physics

point of view. Phys. A Stat. Mech. Its Appl. 2000, 279, 443–456. [CrossRef]
10. Rodriguez-Rodriguez, N.; Miramontes, O. Shannon Entropy: An econophysical approach to cryptocurrency portfolios. Entropy

2022, 24, 1583. [CrossRef]
11. Sheraz, M.; Nasir, I. Information-theoretic measures and modeling stock market Volatility: A Comparative Approach. Risks 2021,

9, 89. [CrossRef]
12. Velichko, A.; Heidari, H. A method for estimating the entropy of time series using artificial neural networks. Entropy 2021,

23, 1432. [CrossRef] [PubMed]
13. Yin, Y.; Shang, P. Weighted permutation entropy based on different symbolic approaches for financial time series. Phys. A Stat.

Mech. Its Appl. 2016, 443, 137–148. [CrossRef]
14. Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 623–656. [CrossRef]
15. Kolmogorov, A. On tables of random numbers. Theor. Comput. Sci. 1998, 207, 2. [CrossRef]
16. Tenreiro Machado, J.A. Entropy analysis of integer and fractional dynamical systems. Nonlinear Dyn. 2010, 62, 371–378. [CrossRef]
17. Shi, W.; Shang, P. Cross-sample entropy statistic as a measure of synchronism and cross-correlation of stock markets. Nonlinear

Dyn. 2013, 71, 539–554. [CrossRef]
18. Dionisio, A.; Menezes, R.; Mendes, D. An econophysics approach to analyse uncertainty in financial markets: An application to

the Portuguese stock market. Eur. Phys. J. Condens. Matter Complex Syst. 2006, 50, 161–164. [CrossRef]
19. Bentes, S.R.; Menezes, R.; Mendes, D.A. Long memory and volatility clustering: Is the empirical evidence consistent across stock

markets? Phys. A Stat. Mech. Its Appl. 2008, 387, 3826–3830. [CrossRef]
20. Bentes, S.R.; Menezes, R. Entropy: A new measure of stock market volatility? J. Phys. Conf. Ser. 2012, 394, 012033. [CrossRef]
21. Delgado-Bonal, A. Quantifying the randomness of the stock markets. Sci. Rep. 2019, 9, 12761. [CrossRef]
22. Sheraz, M.; Dedu, S.; Preda, V. Entropy measures for assessing volatile markets. Procedia Econ. Financ. 2015, 22, 655–662.

[CrossRef]
23. Darbellay, G.A.; Wuertz, D. The entropy as a tool for analysing statistical dependences in financial time series. Phys. A Stat. Mech.

Its Appl. 2000, 287, 429–439. [CrossRef]

160



Entropy 2023, 25, 823

24. Almog, A.; Shmueli, E. Structural entropy: Monitoring correlation-based networks over Time with Application to Financial
Markets. Sci. Rep. 2019, 9, 10832. [CrossRef] [PubMed]

25. Lahmiri, S.; Bekiros, S. Randomness, informational Entropy, and volatility interdependencies among the major world markets:
The role of the COVID-19 pandemic. Entropy 2020, 22, 833. [CrossRef]

26. Jakimowicz, A. The role of entropy in the development of economics. Entropy 2020, 22, 452. [CrossRef]
27. Bose, R.; Hamacher, K. Alternate entropy measure for assessing volatility in financial markets. Phys. Rev. E 2012, 86, 056112.

[CrossRef]
28. Fiszeder, P.; Małecka, M. Forecasting volatility during the outbreak of Russian invasion of Ukraine: Application to commodities,

stock indices, currencies, and cryptocurrencies. Equilib. Q. J. Econ. Econ. Policy 2022, 17, 939–967. [CrossRef]
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Abstract: Multilayer networks represent multiple types of connections between the same set of nodes.
Clearly, a multilayer description of a system adds value only if the multiplex does not merely consist
of independent layers. In real-world multiplexes, it is expected that the observed inter-layer overlap
may result partly from spurious correlations arising from the heterogeneity of nodes, and partly from
true inter-layer dependencies. It is therefore important to consider rigorous ways to disentangle these
two effects. In this paper, we introduce an unbiased maximum entropy model of multiplexes with
controllable intra-layer node degrees and controllable inter-layer overlap. The model can be mapped
to a generalized Ising model, where the combination of node heterogeneity and inter-layer coupling
leads to the possibility of local phase transitions. In particular, we find that node heterogeneity
favors the splitting of critical points characterizing different pairs of nodes, leading to link-specific
phase transitions that may, in turn, increase the overlap. By quantifying how the overlap can be
increased by increasing either the intra-layer node heterogeneity (spurious correlation) or the strength
of the inter-layer coupling (true correlation), the model allows us to disentangle the two effects.
As an application, we show that the empirical overlap observed in the International Trade Multiplex
genuinely requires a nonzero inter-layer coupling in its modeling, as it is not merely a spurious result
of the correlation between node degrees across different layers.

Keywords: multiplex networks; maximum entropy models; World Trade Multiplex; mean-field
Ising model

1. Introduction

The wide variety of different phenomena that occur around us are often the result of
systems that emerge and (self-)organize dynamically. These systems consist of a multitude
of basic constituents interacting with each other in complicated ways and forming com-
plex patterns. Many of these systems can be represented as networks sustaining various
processes. Examples of such systems include social networks, transportation networks,
biological networks, financial networks, and technological networks. In particular, social,
financial, and economic networks are an important class of systems that, in the wake of
recent global crises (such as the 2007–2008 financial crisis, the COVID-19 pandemic, and
the ongoing Ukraine crisis), have been attracting attention given the possibility of studying
the propagation of shocks among their constituents. Generally, individuals, banks, firms,
or countries can be represented as nodes, and the relationships among them can be rep-
resented as links [1–3]. Other types of economic and financial networks are obtained as
some form of projection from time series data [3–7]. The study of these networks may
increase our understanding of a variety of processes that take place through them, such
as the spreading of diseases, the diffusion of (mis)information, the stability of financial
markets, and the resilience of the economy.

The simplest approach is to map each constituent within a system onto a single node
and to map each interaction between pairs of constituents onto a link of a single type,
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regardless of the nature of the interaction. In this approach, all the links in a network are
treated on an equal footing, making it a single-layer network representation, which might,
however, lead to an oversimplification that fails to capture the details of a multirelational
system. For instance, production and trade networks are the result of the functioning
of global supply chains, involving the exchange of multiple products between firms and
countries, which determines nontrivial dependencies between product-specific layers of
the network. In order to realistically follow the propagation of shocks in the economy,
knowledge of the nature of the links is essential. The inability to properly represent
multirelational systems using single-layer networks has lead to the introduction of so-
called multilayer networks [8–12]. Multilayer networks allow us to describe multirelational
systems by representing each type of relationship in a separate layer of the network, where
each node is present in all layers, and the different types of connections are reported
in the corresponding layers. Returning to the example of social networks, the different
types of relationships between people, such as kinship, friendship, coworkership, etc.,
would each be represented by links in a different layer [13], and could be analyzed in their
mutual dependencies.

However, in order to assess true dependencies across layers, one should use proper
null models. In recent years, there has been an increase in attention towards null models of
networks constructed as random graph ensembles [14–20]. A class of such models is the so-
called Exponential Random Graph Models (ERGMs) [17–27]. ERGMs are used commonly
within the social network analysis community, and have been more recently re-derived
within a statistical physics maximum entropy framework [19,20,27]. This has allowed
researchers to utilize techniques that are common in statistical physics. In the ERGM
framework, one chooses the probability distribution on graphs such that it maximizes the
entropy. This maximization is performed while the expected values of certain chosen graph
properties are constrained to be equal to desired values.

Real-world multilayer networks have been compared against null ERGMs with in-
dependent layers [28,29]. This comparison has highlighted various properties of real
multilayer networks that result from the interdependence of layers. Two such properties
are the overlap and the multiplexity [9,28]. The overlap and the multiplexity essentially
contain similar information and capture the correlation of a node’s connectivity across
two or more layers. For example, in a social network, people may communicate with
their friends through multiple means of communication, such as talking on the phone,
sending emails, or sending instant text messages. In this example, the layer that represents
communication through email has a significant overlap with the layer of communication
through text messages. A more specific example is a study of the so-called World Trade
Multiplex (representing international trade in different commodities among countries [30]),
which showed that, despite the fact that each layer of the multiplex is separately well
described by a maximum entropy model with given node degrees [31–33], the observed
trade overlap across different commodity-specific layers is significantly different from the
overlap predicted by a null model with independent layers [28]. This result is not unex-
pected, since one can imagine that the trade of a certain product between two countries
may increase/decrease the possibility of the trade of a different product between the same
two countries. Other examples of networks displaying a significant overlap are airport
networks, on-line social games, collaboration networks, and citation networks [34–36].

An important conclusion that has been reached after comparing real-world multiplexes
against null models with independent layers is that a significant part of the observed
overlap in many real networks could actually be spuriously created by the correlations
among node degrees across different layers, even if the latter are conditionally independent
of each other, instead of resulting from genuine inter-layer dependencies [28,29]. Indeed,
if node degrees are correlated among layers, then there will be an increased probability
of a link between two nodes being present in multiple layers, while the probability of a
link occurring in one layer will not necessarily influence the presence of a link occurring in
another layer. The measured overlap of the network therefore consists of a part resulting
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from ‘spurious’ coupling between the layers and of a part resulting from genuine coupling
between the layers. This spurious coupling increases as the density and/or heterogeneity
of the degrees of the network increases. Real-world networks are often dense and have
strongly heterogeneous degrees; therefore, the assessment of inter-layer coupling in these
real-world networks will be severely affected.

The focus of this paper is the introduction of interdependencies between the layers
of a multilayer network in the ERGM through the explicit inclusion of the overlap as an
extra constraint. This inclusion of the overlap in the ERGM will aid us in understanding
which (higher-order) properties of the network structure may be (highly) dependent on
the overlap. Additionally, it will help us distinguish between the overlap in the network
due to the correlation of single-node properties across layers and the overlap due to a
genuine coupling between the layers. Finally, it will allow us to generate null models
with the desired amount of spurious overlap and genuine overlap. It turns out that
this problem is mathematically identical to solving the Ising model on a complete graph
(which is also known as the mean-field Curie–Weiss model) and leads to a phase transition
between a ‘multiplexed’ (magnetized) and a ‘non-multiplexed’ (non-magnetized) phase.
However, the problem is more general because the locality of the constraints on the degrees
of nodes will imply different parameter values, and hence different properties for the
phase transitions relative to different pairs of nodes. For instance, it will, in general, not be
possible to enforce a ‘zero-field’ spontaneous symmetry breaking condition for all pairs of
nodes simultaneously. Therefore, for a given specification of the constraints, different pairs
of nodes may realize different symmetry-broken values of their contribution to the overall
inter-layer overlap. Crucially, this property arises only from the simultaneous presence
of the two constraints (on the global overlap and on the heterogeneous local degrees),
and would not be realized in the absence of one of them.

The rest of the paper is organized as follows: In Section 2, we mathematically define
quantities and models that are relevant to this paper. This includes the derivation of a
benchmark model, where the layers of the multiplex network are independent. In Section 3,
we introduce, and solve analytically, our new model, where the layers of the multiplex
are interdependent due to the inclusion of the overlap. Section 4 contains a discussion
regarding the possible local phase transitions of the model. In Section 5, we explore our
model by using various numerical methods. In Section 6, we briefly analyze the World
Trade Multiplex, and show that the empirical overlap in this real-world network is not
merely the result of the heterogeneity of the network, but requires a nonzero coupling
between the layers in its modeling. Finally, we provide some concluding remarks in
Section 7, and some technical details in Appendices A and B.

2. Background Theory

This section contains some background notions, definitions, and models.

2.1. Single-Layer Network Definitions

We will limit our discussion to the case of binary and undirected networks. A binary
undirected network can be defined as a graph that is an ordered pair G = (V, E), where
V = {v1, v2, ..., vN} is a set of N vertices or nodes, and E is a set of unordered pairs of different
vertices called edges or links. Note that the definition of E depends on the relevant class
of relations between the constituents of the system. The vertex vi ∈ V will be referred to
simply as i throughout the rest of the paper. If (i, j) ∈ E, the vertices i and j are said to be
connected, and may be referred to as neighbors of each other. The number of links L of the
graph is given by the cardinality of E: L = |E|.
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Matrix Representation

A graph G is represented by its adjacency matrix G = {gij}. This is an N × N matrix
where

gij =

{
1 if (i, j) ∈ E,
0 otherwise.

(1)

We define E as containing pairs of distinct vertices, which means that a vertex cannot
have a connection to itself (self-loop). It is then natural to define the diagonal elements as
gii ≡ 0. Since we limit our discussion to undirected graphs, the adjacency matrix is always
symmetric, gij = gji, and it therefore contains N(N − 1)/2 independent elements that fully
specify the matrix and ultimately the graph.

Degrees and Degree Distribution

One of the main topics in the analysis of complex networks is the identification of
the different roles that nodes play [37]. For instance, there are a variety of measures that
characterize the structural importance of a node in a network. The degree ki(G) of the
graph G is defined as the number of connections node i has to other nodes in the network.

ki(G) =
N

∑
j=1

gij (2)

The list {ki(G)}N
i=1 of degrees is called the degree sequence of the graph G. The degree

distribution P(k) is defined as the fraction of nodes in the network with degree k. Real-
world networks systematically show a degree distribution with heavy tails, where the
degrees vary over a broad range, often spanning several orders of magnitude [38,39].
The majority of the vertices of these real-world networks have a small number of links to
other vertices, while a few vertices have a relatively high number of links to other vertices,
which are also referred to as ‘hubs’. An example is the World Wide Web, where some pages
are incredibly popular and are pointed to by thousands of other pages, while generally, most
pages are almost unknown. The heavy tails of real-world degree distributions can often
be, but not necessarily, approximated by power laws of the form P(k) ∼ k−γ. In any case,
vertices with a degree much larger than the average degree 〈k〉 occur with a non-negligible
probability. This is a signature of a high level of statistical heterogeneity in real-world
networks. Encoding this heterogeneity will be a crucial ingredient of our models.

2.2. Multiplex Network Definitions

A binary undirected multiplex network can be defined in terms of the previously
defined single-layer networks. A multiplex network is a set �G = {Gα}M

α=1 of M undirected
binary graphs Gα = (V, Eα) that share the same set of N nodes. In the context of multilayer
networks, Gα is called a layer of M, and will be referred to simply as α throughout the rest
of the paper. Note that a multiplex network is a type of multilayer network that does not
allow inter-layer connections between two layers α and β where α 
= β.

Matrix Representation

The layer Gα and its intra-layer links can then be represented by the adjacency matrix
Gα = {gα

ij}. This is an N × N matrix where

gα
ij =

{
1 if (i, j) ∈ Eα,
0 otherwise.

(3)
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Multilinks in Multiplex Networks

In order to capture the information regarding the presence of the links between the
pair of nodes (i, j) in any of the M layers, we define the object

mij ≡ (g1
ij, g2

ij, . . . , gM
ij ) (4)

which is also known as the multilink of (i, j). Additionally, we define the set Mij as the set
that contains all the 2M possible configurations of mij.

Multidegrees

The multidegree of a node i ∈ V of a multiplex network �G is the object

�ki(�G) ≡
(

k1
i (�G), k2

i (�G), . . . , kM
i (�G)

)
(5)

where

kα
i (�G) =

N

∑
j 
=i

gα
ij (6)

is the degree of the node i in the layer α [9,40]. From the vector definition of the multidegree,
one can obtain a scalar quantity defined as the layer-averaged degree:

ki(�G) =
1
M

M

∑
α=1

kα
i (�G), (7)

which is the degree of node i averaged over all the M layers. Note that, in each layer α, the
total layer-specific degree of all nodes equals twice the number of links in that layer, which
we denote as Lα:

N

∑
i=1

kα
i (�G) = ∑

i<j
gα

ij = 2Lα(�G). (8)

Summing the above relationship for the M layers, we get

M
N

∑
i=1

ki(�G) =
M

∑
α=1

∑
i<j

gα
ij = 2

M

∑
α=1

Lα(�G) = 2L(�G), (9)

where L(�G) denotes the total number of links over the entire multiplex:

L(�G) =
M

∑
α=1

∑
i<j

gα
ij. (10)

Overlap

There are many properties that encode the interdependence between the layers of a
multilayer network, but we will limit our discussion to one such property: the overlap. The
overlap Oαβ(�G) between two layers α and β of the multiplex �G is defined as the number of
links that appear in both layers α and β [34,41]:

Oαβ(�G) = ∑
i<j

gα
ijg

β
ij (11)

where, throughout the paper, using ∑a<b and ∏a<b, we denote a double sum and a double
product for all possible (unrepeated) pairs of values of the two indices, a and b (with a 
= b),
respectively. The global overlap O(�G) is defined as the sum of Oαβ(�G) for all pairs of layers:

O(�G) = ∑
α<β

∑
i<j

gα
ijg

β
ij. (12)
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As the names of these properties suggest, they are a measure of how overlapping the layers
of the multiplex network are.

2.3. Exponential Random Graph Models for Multiplexes

ERGMs are ensemble models, which means that they are defined as probability distri-
butions over many possible (multiplex) networks. Given the observed (or desired) value
C∗

i ≡ Ci(�G∗) for K graph properties {Ci(�G)}K
i=1 defined on each possible multiplex �G

(where �G∗ represents a particular, e.g., real-world, multiplex of interest), an ERGM gener-
ates a probability distribution P(�G) over multiplex networks that maximizes the entropy,
under the constraint that the expected value of Ci(�G) equals C∗

i , for all i = 1, K. This
method provides us with a general framework for modeling maximally random (maximum
entropy) multiplex networks, to be used as null models that can be compared against the
empirical multiplex �G∗ to detect higher-order patterns that are irreducible to the K enforced
constraints. Maximizing the entropy subject to a set of constraints is also widely used in
problems with incomplete information [42,43].

Let GM
N be the set of (binary undirected) multiplex networks consisting of N ver-

tices and M layers (note that this set includes single-layer networks for M = 1), let
�G = {G1, G2, ..., GM} ∈ GM

N be a multiplex network in that set, and let P(�G) be the sought-
for probability of �G within the ensemble. We want P(�G) to be such that the expectation
value of each graph observable Ci(�G) (in the chosen set of K observables) is equal to the
corresponding observed or desired value C∗

i . This type of probability distribution is also re-
ferred to as a canonical ensemble. The ideal probability distribution is the one that maximizes
the Gibbs–Shannon entropy

S = − ∑
�G∈GM

N

P(�G) ln P(�G) (13)

under the normalization condition

∑
�G∈GM

N

P(�G) = 1 (14)

and the other K constraints

C∗
i = 〈Ci〉, i = 1, . . . , K, (15)

where
〈Ci〉 ≡ ∑

�G∈GM
N

P(�G)Ci(�G). (16)

The maximization of the entropy is achieved by introducing a global Lagrange multiplier η
for the normalization condition and a specific multiplier θi for each constraint 〈Ci〉 = C∗

i ,
i = 1, . . . , K. This leads to the parametric solution

P(�G,�θ) =
e−H(�G,�θ)

Z(�θ)
(17)

where H(�G,�θ) is the graph Hamiltonian

H(�G,�θ) ≡
K

∑
i=1

θiCi(�G) = �θ · �C(�G) (18)
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and Z(�θ) is the partition function determined by the normalization condition

Z(�θ) ≡ eη+1 = ∑
�G∈GM

N

e−H(�G,�θ). (19)

The parametric form of P(�G,�θ), if inserted back into Equation (13), leads to the explicit
expression for the entropy:

S(�θ) = − ∑
�G∈GM

N

P(�G,�θ) ln P(�G,�θ) = �θ · 〈�C〉+ ln Z(�θ). (20)

2.4. Maximum Likelihood Parameter Estimation

Equations (17)–(19) fully define the ERGM, apart from the specification of the parame-
ters�θ. In principle, by treating these Lagrange multipliers as free parameters, one can study
the effects that the specification of certain graph observables {Ci} has on other aspects
of network structure [27,44–47]. This approach, however, does not allow one to consider
ERGMs as null models of a particular real network [17,19]. In the latter case, maximum
likelihood parameter estimation leads to the unique (given the choice of constraints) ERGM
representing a null model for a particular real (multiplex) network �G∗, and hence, enforc-
ing Equation (15) exactly, as we briefly recall below. This null model can then be used
to detect statistically significant deviations of empirical structural properties of �G∗ from
the ensemble.

The log-likelihood of the particular multiplex �G∗ is

L(�G∗,�θ) = ln P(�G∗,�θ) = −
K

∑
i=1

θiC∗
i − ln Z(�θ). (21)

This function has the following properties [19]:

∂L(�G∗,�θ)
∂θi

= 〈Ci〉 − C∗
i (22)

∂2L(�G∗,�θ)
∂θi ∂θj

= −〈CiCj〉+ 〈Ci〉〈Cj〉. (23)

Equation (22) means that the stationary points �θ = �θ∗ of L are precisely those that
satisfy the constraints (15), i.e.,

〈Ci〉�θ∗ = ∑
�G∈GM

N

Ci(�G)P(�G,�θ∗) = ∑
�G∈GM

N

Ci(�G)
e−∑K

j=1 θ∗j Cj(�G)

Z(�θ)
= Ci(�G∗), i = 1, . . . , K (24)

where 〈Ci〉�θ∗ indicates that the ensemble average is evaluated at the values�θ∗. Equation (23)
indicates that L is concave, since the matrix with entries ∂2L/∂θi ∂θj has the form of a nega-
tive covariance matrix, and must therefore be non-positive definite [48]. The solutions�θ∗ of
the coupled equations 〈Ci〉�θ∗ = C∗

i in Equation (15) can therefore be found by maximizing
the log-likelihood L. If ∂2L/∂θi ∂θj is negative definite, which will be true if the functions
Ci(�G) are linearly independent [48] (i.e., the chosen constraints are non-redundant), then
there will be, at most, one solution, and it will be the unique maximum of L. Maximizing a
concave function is generally easier than solving the system of coupled nonlinear equations
in Equation (24). Once the solution�θ = �θ∗ is found, it can be used to generate a null model
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of �G∗. Moreover, inserting the value θ∗ back into Equation (21) and using Equation (20),
we obtain the important relation

L(�G∗,�θ∗) = ln P(�G∗,�θ∗)

= −
K

∑
i=1

θ∗i C∗
i − ln Z(�θ∗)

= −
K

∑
i=1

θ∗i 〈Ci〉�θ∗ − ln Z(�θ∗)

= −S(�θ∗), (25)

i.e., the maximized log-likelihood equals minus the entropy for the particular value �θ∗,
which in turn represents the ‘entropy of the data’ given the chosen constraints. This result
allows one to easily calculate the entropy of the data S(�θ∗) = −L(�G∗,�θ∗) automatically as
part of the likelihood maximization procedure, rather than as a much more complicated
formal sum of all configurations, as in the general definition (13).

2.5. Benchmark: Independent Layers Model

As anticipated in the Introduction, our goal is that of considering how the empirical
overlap between links in different layers of a multiplex is jointly determined by both a
‘genuine’ coupling between the M layers and a ‘spurious’ correlation resulting from the
heterogeneous (and correlated across layers) degrees of the N nodes. As a null benchmark
before inserting both components in an ERGM of a multiplex, we first consider only the
layer-averaged degrees of all vertices as constraints, as defined in Equation (7). We can
therefore create a null model of a real multiplex �G∗ using the ERGM in combination with
the maximum likelihood method. This model will be referred to as the Average Configuration
Model (ACM), and will allow us to study the sole effects of correlated heterogeneous degrees
on the inter-layer overlap. The Hamiltonian of this model, denoted as H0, since it represents
a benchmark for a more complicated model to be defined later, is

H0(�G,�θ) = M
N

∑
i=1

θiki(�G) =
M

∑
α=1

∑
i<j

(θi + θj)gα
ij (26)

where we have reparametrized by exposing M for convenience. The partition function is

Z0(�θ) = ∑
�G∈GM

N

e−∑M
α=1 ∑i<j(θi+θj)gα

ij

= ∑
�G∈GM

N

M

∏
α=1

∏
i<j

e−(θi+θj)gα
ij

=
M

∏
α=1

∏
i<j

1

∑
gα

ij=0
e−(θi+θj)gα

ij

=
M

∏
α=1

∏
i<j

[
1 + e−(θi+θj)

]

= ∏
i<j

[
1 + e−(θi+θj)

]M
.

(27)

The probability distribution over the ensemble is then given by

P0(�G,�θ) =
M

∏
α=1

∏
i<j

e−(θi+θj)gα
ij

1 + e−(θi+θj)
, (28)

169



Entropy 2023, 25, 828

from which we see that pairs of nodes and pairs of layers are all independent of each other,
each entry gα

ij being an independent Bernoulli random variable with success probability

pα
ij(
�θ) and expected value 〈gα

ij〉�θ given by

pα
ij(
�θ) = 〈gα

ij〉�θ =
e−(θi+θj)

1 + e−(θi+θj)
≡ pij(�θ). (29)

Clearly, pα
ij(
�θ) = pij(�θ) is the probability that a link occurs between node i and j in layer

α, which turns out to be independent of α given our choice of the layer-averaged (not
layer-specific) degree as a constraint.

The log-likelihood of the multiplex �G∗ is

L0(�G∗,�θ) = −M
N

∑
i=1

θik
∗
i − M ∑

i<j
ln
[
1 + e−(θi+θj)

]
, (30)

where k
∗
i = ki(�G∗). The parameter value θ∗m maximizing the log-likelihood must satisfy

∂L0(�G∗,�θ)
∂θm

∣∣∣∣∣
�θ=�θ∗

= −Mk
∗
m + M ∑

j 
=m

e−(θ∗m+θ∗j )

1 + e−(θ∗m+θ∗j )
= 0 ∀m (31)

or equivalently,

k
∗
i = ∑

j 
=i

e−(θ∗i +θ∗j )

1 + e−(θ∗i +θ∗j )
∀i. (32)

The above results show that, as expected from the general result reported in Equation (24),
according to the maximum likelihood principle, the empirical layer-averaged degree
k
∗
i = ki(�G∗) of the real multiplex �G∗ is equal to the ensemble average 〈ki〉�θ∗ :

k
∗
i = ∑

j 
=i
pij(�θ

∗)

=
1
M

M

∑
α=1

∑
j 
=i

pα
ij(
�θ∗)

=
1
M

M

∑
α=1

∑
j 
=i

〈gα
ij〉�θ∗

= 〈ki〉�θ∗ .

(33)

The probability distribution P0(�G,�θ∗) can then be written as a product of the layers:

P0(�G,�θ∗) =
M

∏
α=1

Pα
0 (G

α,�θ∗) (34)

where Pα
0 is the probability distribution over a single layer, i.e.,

Pα
0 (G

α,�θ∗) = ∏
i<j

[pij(�θ
∗)]g

α
ij [1 − pij(�θ

∗)]1−gα
ij . (35)

This means that each layer α can be generated by using the link probability pij(�θ
∗) that

is equal throughout the layers. This is again a consequence of exclusively constraining
properties defined as the overall averages of the layers. This null model can be used as
a benchmark to determine the expected value of the inter-layer overlap O(�G) defined in
Equation (12), which is due solely to the correlation between the degree of the same node i
across the M layers, and not to any genuine inter-layer dependency. This expected value is
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〈O〉�θ∗ = ∑
α<β

∑
i<j

〈gα
ijg

β
ij〉�θ∗ = ∑

α<β
∑
i<j

〈gα
ij〉�θ∗ 〈gβ

ij〉�θ∗ = ∑
α<β

∑
i<j

p2
ij(
�θ∗), (36)

where we have used the independence 〈gα
ijg

β
ij〉�θ∗ = 〈gα

ij〉�θ∗ 〈gβ
ij〉 between layers α 
= β.

Deliberately, we have chosen the layer-averaged degree as the only constraint so that the
expected degree of a node is the same across all layers, thereby creating a strong correlation
between degrees in different layers, while keeping the layers themselves independent.
Using Equations (25) and (30), we can calculate the entropy of the data, given the model, as

S0(�θ
∗) = −L0(�θ

∗) = − ln P0(�G∗,�θ∗) = M
N

∑
i=1

θ∗i k
∗
i + M ∑

i<j
ln
[
1 + e−(θ∗i +θ∗j )

]
, (37)

which only requires the knowledge of�θ∗ and of the layer-averaged degrees ki(�G∗), i = 1, N.

3. The Overlapping Average Configuration Model

Having illustrated all the ingredients that are necessary to define and model basic
properties of multiplex networks within a maximum entropy framework, in this section,
we introduce a model of multiplex networks with genuinely interdependent layers. To this
end, we incorporate the overlap as an extra constraint in the ERGM, and study the model
in combination with the maximum likelihood method. This model is a generalization of
the previous ACM benchmark, and will therefore be referred to as the Overlapping Average
Configuration Model (OACM), as it includes not only the intra-layer degrees, but also the
inter-layer coupling, as building blocks.

3.1. Constructing the Hamiltonian

We want to define a model of a multiplex with M layers, N vertices, and given
expected layer-averaged degrees (as defined in Equation (7)) and global inter-layer overlap
(as defined in Equation (12)). The Hamiltonian of our ERGM is, in this case,

H(�G,�θ, J) = M
N

∑
i=1

θiki(�G)− 4J
M

O(�G) = ∑
i<j

M

∑
α=1

(θi + θj)gα
ij −

4J
M ∑

i<j
∑

α<β

gα
ijg

β
ij (38)

where (�θ, J) are the Lagrange multipliers coupled to the N + 1 constraints. We have
defined the Lagrange multiplier for the overlap as −4J/M for later convenience. Clearly,
H(�G,�θ, J) = H0(�G,�θ) where H0 is the benchmark Hamiltonian of the ACM without overlap
defined in Equation (26). Using the multilink mij defined in Equation (4) and defining

θij ≡ θi + θj, (39)

the Hamiltonian in Equation (38), this can be written as a sum of the pairs of vertices:

H(�G,�θ, J) = ∑
i<j

hij(mij, θij, J) (40)

where

hij(mij, θij, J) ≡ (θi + θj)
M

∑
α=1

gα
ij −

4J
M ∑

α<β

gα
ijg

β
ij (41)

will be referred to as the pair Hamiltonian. As we shall see in a moment, the pair Hamiltonian
can be mapped exactly to a mean-field Ising model coupling the M layers homogeneously.
To arrive at this mapping, we transform the Boolean variables gα

ij ∈ {0, 1} to new ‘spin’
variables σα

ij ∈ {−1, 1}, as follows:

gα
ij =

1
2
(σα

ij + 1). (42)
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From now on, we assume that M is large (multiplex with several layers) and expand
expressions accordingly. By defining

sij ≡ {σ1
ij, σ2

ij, . . . , σM
ij } (43)

as the multilink for the node pair (i, j) in terms of the σα
ij = ±1 variables, we see that

Equation (42) can be used to transform Equation (41) into

hij(sij, θij, J) =
(

θij

2
− J
) M

∑
α=1

σα
ij −

J
M ∑

α<β

σα
ijσ

β
ij −

JM
2

+
Mθij

2
. (44)

If we define

Bij ≡ J −
θij

2
, (45)

vij ≡ −MBij +
JM
2

, (46)

then the pair Hamiltonian finally reduces to

hij(sij, Bij, J) = −Bij

M

∑
α=1

σα
ij −

J
M ∑

α<β

σα
ijσ

β
ij + vij. (47)

From the above expression, we see that, for every specific pair of nodes (i, j), the variables
σα

ij can be thought of as Ising spins residing in the M nodes of a fully connected graph,
where every Ising spin interacts with every other M − 1 spins and is coupled to a ‘field’
Bij. In terms of the multiplex networks being modeled, this means that for every specific
pair of nodes (i, j), the edges connecting i and j throughout the M layers are all coupled
to a common ‘external’ field Bij, and are also coupled to each other with a homogeneous
interaction strength J/M. A positive coupling J > 0 favors more overlap (i.e., more
alignment between links in different layers), while J < 0 disfavors the overlap. The term vij
is an inessential overall shift in energy independent of the spin configuration. This model
is identical to the mean-field Ising or Curie–Weiss model. This exact mapping is what we
use in Appendix in order to solve the model analytically, and in particular, to show the
existence, for each pair of nodes, of a phase transition separating a ‘magnetized’ phase
and a ‘non-magnetized’ phase, which here represent a ‘multiplexed’ phase (where links in
different layers tend to ‘align’ to each other) and a ‘non-multiplexed’ phase, respectively.

The full Hamiltonian (40) is a summation of the Hamiltonians of non-interacting Ising
systems, each for a distinct pairs of nodes. Note, however, that despite the independence
of different pairs of nodes, the pair Hamiltonians hij(sij, Bij, J) share some parameters: J is
common to all such Hamiltonians, and hij(sij, Bij, J) and (say) hik(sik, Bik, J) also share the
parameter θi, because the latter appears in both Bij and Bik. This is the result of the original
constraint on the degree of each node, which results in the same Lagrange multiplier θi
appearing in all pair Hamiltonians involving the same node i. These common parameters
imply that, even if all pairs of nodes are independent, the control parameters of all pair
Hamiltonians cannot be chosen independently, resulting in a correlated phenomenology
for the various pairs of nodes. In particular, as we shall see, each pair of nodes can undergo
locally the typical phase transition of the mean-field Ising model, but the features of these
pair-specific phase transitions are all nontrivially related to each other.

We also note, from Equations (44) and (47), that if J = θij/2 (or equivalently, Bij = 0),
then the pair Hamiltonian (hence the graph probability) becomes invariant upon a global
‘spin flip’ (σα

ij → −σα
ij ∀α), which here corresponds to the replacement of each existing

link with a missing link (gα
ij = 1 → gα

ij = 0 ∀α) and, vice versa, of each missing link
with an existing link (gα

ij = 0 → gα
ij = 1 ∀α). This is due to the vanishing of the ‘external

field’ Bij that, when present, selects a preferred ‘spin direction’ (up versus down), which
here means a preferred density (high versus low). We expect that with the parameter
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choice J = θij/2, the pair of nodes (i, j) gains an expected 1/2 density of links across
the M layers, i.e., an expected number of links equal to M/2, corresponding to half the
maximum number of links for that node pair. Additionally, if J is smaller than the critical
value, this expected number of links is also the typical value, and basically, the model is
not fundamentally different from a model without constraints, where the intermediate
density is produced as a result of a completely uniform probability distribution for the
multilink. However, if J exceeds the critical value, the intermediate average density is
no longer the typical one realized by individual graphs sampled from the model: rather,
it is the ensemble average of two typical (high and low) values of the realized density,
just like in the equivalent spin system, below the Curie temperature, and without an
external field one would typically observe, with the same probability, overall positive
and negative magnetization with a zero ensemble average. The numerical simulations
access the typical realized values, while the equations still govern the expected value. This
situation corresponds to a ‘symmetry-broken’ phase, where the typical realizations are less
symmetric than the Hamiltonian that generates them. However, here, the heterogeneity of
the degrees implies different values of the external field Bij = J − θij/2, which means that
the zero-field spontaneous symmetry breaking condition cannot, in general, be realized for
all pairs of nodes simultaneously, leading to a phenomenology governed by the interplay
between the values of J and {θi}N

i=1, and ultimately between the values of the inter-layer
overlap and the node degrees.

3.2. Calculating the Partition Function

The partition function defined in (19) can be written as the product

Z(�θ, J) = ∑
�G∈GM

N

e−H(�G,�θ,J) = ∑
�G∈GM

N

∏
i<j

e−hij(sij ,θij ,J) = ∏
i<j

zij(θij, J), (48)

where zij(θij, J) is the pair partition function, which is a sum of the set Sij of all 2M possible
multilinks for (i, j):

zij(θij, J) ≡ ∑
sij∈Sij

e−hij(sij ,θij ,J). (49)

The multiplex probability can be written in terms of the multilink probabilities Pij(sij, θij, J):

P(�G,�θ, J) = ∏
i<j

Pij(sij, θij, J) (50)

where

Pij(sij, θij, J) ≡ e−hij(sij ,θij ,J)

zij(θij, J)
. (51)

The complete partition function and multiplex probability can therefore be obtained as
products of pair-specific quantities, where each multilink can be regarded as a configuration
of a Curie–Weiss system. To obtain an explicit expression for zij(θij, J), we use a Hubbard–
Stratonovich transformation and the Laplace theorem [49] in the limit M → ∞. The details
are provided in Appendix A and are a generalization of the approach used in [50]. The
final result is

zij(θij, J) = 2Me−
M
2 θij−2JMuij(uij−1) coshM

(
2Juij −

θij

2

)
, (52)

where uij is the solution to the equation

uij =
1
2
+

1
2

tanh
(

2Juij −
θij

2

)
. (53)

The solutions to the above equation will be discussed in the next section.
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Now, given a particular real multiplex network �G∗, the log-likelihood, as defined, in
general, in Equation (21), is

L(�θ, J) = ln P(�G∗,�θ, J) = ∑
i<j

[
−hij(s∗ij, θij, J)− ln zij(θij, J)

]
. (54)

At a stationary point of L, the derivatives of L with respect to every Lagrange multiplier
must equal zero. As we show in Appendix B, this leads to the maximum likelihood equations

N

∑
j 
=i

M

∑
α=1

g∗ij
α = M

N

∑
j 
=i

u∗
ij ∀i (55)

4
M ∑

i<j
∑

α<β

g∗ij
αg∗ij

β = 2M ∑
i<j

(
u∗

ij

)2
(56)

where u∗
ij, being the solution to Equation (53) with (�θ, J) replaced by (�θ∗, J∗), is implicitly

related to the maximum likelihood parameters (�θ∗, J∗). Note that the quantities on the LHS
of Equations (55) and (56) are precisely the quantities that we constrained from the start,
namely, Mk

∗
i and 4O∗/M, respectively. According to the maximum likelihood principle,

these empirical quantities must equal their respective ensemble averages, M〈ki〉θ∗ ,J∗ and
4〈O〉θ∗ ,J∗/M, which appear on the RHS. The quantity u∗

ij can therefore be considered as an
average probability of a link occurring between the nodes i and j, which is equal throughout
the M layers and is, therefore, a measure of the density of links in the multilink mij. This is
similar to how we identified pij to be the connection probability in the ACM, which was
based solely on the constraints ki. In support of this idea, we see that, in the case J∗ = 0,
the Lagrange multipliers�θ∗ reduce it to the value�θ0 ≡ �θ∗|J∗=0, such that

u∗
ij

∣∣∣
J∗=0

=
1
2

[
1 + tanh

(
−

θ0
i + θ0

j

2

)]
=

e−(θ0
i +θ0

j )

1 + e−(θ0
i +θ0

j )
= pij(�θ

0) (57)

which is identical to the expression in Equation (29), providing the link probability pij
obtained in Section 2.5 in the absence of the constraint for the overlap. The quantity u∗

ij can
therefore possibly be interpreted as a mean-field quantity that globally incorporates the layer
interdependence that was introduced through the overlap O∗, but locally treats the layers
as if they were independent. A characteristic of mean-field theories is that the effects of all
elements of a system on a given element are approximated by a single, average effect.

Formally, we can calculate the entropy of the data, given the model, as the maximized
likelihood using Equations (25) and (54):

S(�θ∗, J∗) = −L(�θ∗, J∗)

= − ln P(�G∗,�θ∗, J∗)

= H(�G∗,�θ∗, J∗) + ∑
i<j

ln zij(θ
∗
ij, J∗)

= M
N

∑
i=1

θ∗i k
∗
i −

4J∗

M
O∗ + ∑

i<j
ln zij(θ

∗
ij, J∗), (58)

which requires the knowledge of the parameters�θ∗ and J∗ (which are, however, defined
only implicitly through u∗

ij). Comparing the above expression with Equation (37), we see

that S(�θ0, 0) = S0(�θ
0), as expected, i.e., the model with J∗ = 0 has the same entropy as the

equivalent ACM with no overlap, for the same value of �θ0. Similarly, L(�θ0, 0) = L0(�θ
0)

for the maximized likelihood in the two models. In order to understand the relationship
between the entropies of the two models when J∗ 
= 0, let us first note that a positive (resp.
negative) coupling strength J∗ means that the empirical overlap O∗ is larger (resp. smaller)
than the expected overlap under the null model with J∗ = 0, i.e.,
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O∗ ≶ 〈O〉�θ0 ⇔ J∗ ≶ 0 (59)

where we have used the notation in Equation (36). However, one should not naively
conclude from the combination of Equations (58) and (59) that the entropy of the model
with J∗ < 0 is larger than the entropy of the model with J∗ = 0, because the two partition
functions are different, and also because the two entropies are calculated for different
Lagrange multipliers, i.e., �θ∗ 
= �θ0 when J∗ 
= 0. In fact, we can actually show that the
entropy of the model with J∗ 
= 0 is always smaller than the one for the model with J∗ = 0.
To see this, we introduce the relative entropy (or Kullback–Leibler divergence) between the
two models, as follows:

R(�θ0,�θ∗, J∗) ≡ ∑
�G∈GM

N

P(�G,�θ∗, J∗) ln
P(�G,�θ∗, J∗)

P0(�G,�θ0)
≥ 0, (60)

where the last inequality is a well-known property of the relative entropy, and the equality
is realized if, and only if, P0(�G,�θ0) and P(�G,�θ∗, J∗) are identical, which, in turn, requires
J∗ = 0, yielding�θ0 = �θ∗ and R(�θ0,�θ0, 0) = 0. For J∗ 
= 0, we can write

R(�θ0,�θ∗, J∗) = ∑
�G∈GM

N

P(�G,�θ∗, J∗) ln P(�G,�θ∗, J∗)− ∑
�G∈GM

N

P(�G,�θ∗, J∗) ln P0(�G,�θ0)

= −S(�θ∗, J∗) + ∑
�G∈GM

N

P(�G,�θ∗, J∗)
[

H0(�G,�θ0) + ln Z0(�θ
0)
]

= −S(�θ∗, J∗) + ∑
�G∈GM

N

P0(�G,�θ0)
[

H0(�G,�θ0) + ln Z0(�θ
0)
]

(61)

= −S(�θ∗, J∗) + ∑
�G∈GM

N

P0(�G,�θ0) ln P0(�G,�θ0)

= −S(�θ∗, J∗) + S0(�θ
0),

where we have used the fact that H0(�G,�θ0) = M ∑N
i=1 θ0

i ki(�G) has the same expectation
value, equal to M ∑N

i=1 θ0
i ki(�G∗), under both P(�G,�θ∗, J∗) and P0(�G,�θ0):

∑
�G∈GM

N

P(�G,�θ∗, J∗)H0(�G,�θ0) = M
N

∑
i=1

θ0
i

⎡
⎣ ∑
�G∈GM

N

P(�G,�θ∗, J∗)ki(�G)

⎤
⎦

= M
N

∑
i=1

θ0
i ki(�G∗) (62)

= M
N

∑
i=1

θ0
i

⎡
⎣ ∑
�G∈GM

N

P0(�G,�θ0)ki(�G)

⎤
⎦

= ∑
�G∈GM

N

P0(�G,�θ0)H0(�G,�θ0).

Now, applying the inequality R(�θ0,�θ∗, J∗) ≥ 0 in Equation (60) to Equation (62), we get

0 ≤ S(�θ∗, J∗) ≤ S0(�θ
0), (63)

confirming that the entropy of the model with J∗ 
= 0 is always smaller than the one for
the model with J∗ = 0, consistent with the fact that the former is more constrained than
the latter.

4. Local Phase Transitions in the Model

The number of solutions of Equation (53) depends on the values of the parameters
θij = θi + θj and J. We illustrate this fact in Figure 1, where both the LHS and the RHS of
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Equation (53) are plotted as a function of uij for various values of θij and J. The appearance
of multiple solutions signals the existence of phase transitions in the limit when the number
M of layers diverges, which determine abrupt changes in the value of uij and, therefore,
also in the properties of the multilink mij and the structure of the multiplex as a whole. The
configurations for mij that are separated by a phase transition are the phases of the multilink.
The point where multiple solutions appear or vanish is the bifurcation point.

Figure 1. A graphical illustration of the solution(s) of Equation (53). The solid lines show the RHS
of Equation (53) as a function of uij for the different parameters θij ∈ {−12,−8,−4,−2, 0, 2, 4, 8, 12},
while the dashed line shows the LHS, which equals uij itself. For a given parameter value, the
solutions of Equation (53) are the intersection between the dashed and the corresponding solid line.
Each panel corresponds to a different value of J (in the rest of the paper, we will consider only J ≥ 0).

Figure 1 shows that, at the interval 0 ≤ uij ≤ 1, there can be either one, two, or three
solutions, and that for θij → +∞ or θij → −∞ there is always one solution, namely, uij = 0
or uij = 1, respectively. The number of solutions depends on whether the slope (derivative)
of the RHS (which depends on the parameters) exceeds the slope of the LHS (which is
always equal to 1) of Equation (53) at their intersection. From now on, we will consider
only the case J ≥ 0, which corresponds to a tendency to create an increased inter-layer
overlap compared with the model with J = 0. The case J < 0 corresponds to the opposite
case where the overlap is suppressed, which we do not discuss here. New solutions appear
or vanish at the point where Equation (53) is satisfied and the derivatives of the LHS and
RHS of Equation (53) are equal:

1 = J
[

1 − tanh2
(

2Juij −
θij

2

)]
. (64)

Equation (64) cannot be satisfied if 0 ≤ J ≤ 1, since 0 ≤ tanh2(x) < 1 for x ∈ R, and,
therefore, if J ≤ 1, a phase transition is impossible, and there is a unique solution for uij.
When J > 1, Equation (64) gives us two potential solution branches, u±

ij = 1
2 ± 1

2
√

1 − 1/J,
where we have used 2uij − 1 = tanh

(
2Juij − θij/2

)
. Equation (53) can be written as

θij = 4Juij − ln
[
uij/(1 − uij)

]
using the identity tanh−1 x = 1

2 ln [(1 + x)/(1 − x)]. By then
substituting u±

ij into this expression for θij, we obtain the equations for the two curves in
the (J, θij) plane that mark the points where additional solutions appear or vanish:

θ+ij (J) =
2
√

J√
J −√

J − 1
− ln

(√
J +

√
J − 1√

J −√
J − 1

)
, (65)

θ−ij (J) =
2
√

J√
J +

√
J − 1

− ln
(√

J −√
J − 1√

J +
√

J − 1

)
, (66)

as shown in Figure 2. In the region between the two curves, there are three solutions to
Equation (53). Note that the ‘zero-field’ condition θij = 2J is always in that region when
J > 1. This means that the condition J > 1 is sufficient to ensure that the system is in the
magnetized (symmetry-broken) phase when in the absence of the external field. However,
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when θij 
= 2J, the condition J > 1 is necessary but not sufficient. In particular, generally, it
may happen that, for a given value of J > 1, different pairs of nodes will be in different
(magnetized or non-magnetized) phases depending on the value of θij. This shows that
the system can undergo a multitude of separate phase transitions if the parameters {θij}
remain fixed and J is varied.

Figure 2. The upper (blue) and lower (red) curves correspond to Equations (65) and (66), respectively,
which delimit the region of phase space (yellow area), for which Equation (53) has three solutions.
Note that the ‘zero-field’ condition θij = 2J is always in the yellow area when J > 1, so the condition
J > 1 is sufficient to ensure that the system in zero field is in the magnetized (symmetry-broken) phase.

In the magnetized phase, the phenomenon of symmetry breaking will occur: the typical
realized values of the ‘magnetization’ will not coincide with the corresponding ensemble
average. In the zero-field case (θij = 2J), the symmetry breaking is ‘spontaneous’, i.e.,
not induced by any field pointing in a preferred direction, while in the nonzero-field case,
the symmetry is broken by the field itself. This well-known property of the Ising model
has specific implications for our problem here. Indeed, while certain values of θij, J may
solve the maximum likelihood Equations (55) and (56), the corresponding solutions to
Equation (53) may not necessarily maximize the likelihood, and are therefore not ‘valid’ (or
stable). Once the values θ∗ij and J∗ that solve the maximum likelihood equations are found,
the graph probability corresponding to this set of values can be written as a function of
the configuration of the graph (or the collection of configurations of the multilinks mij),
and one can check which typical configurations (those minimizing the Hamiltonian) arise.
As Figure 1 suggests, in the regime where there are three solutions, uij, one value will be
relatively high (which corresponds to a relatively high density of links in mij), another value
will be relatively low (which corresponds to a relatively low density of links in mij), and the
third value will be between the other two, corresponding to an intermediate density of links
in mij. By inspecting the (pair) Hamiltonian in Equation (47) in terms of the σα

ij = 2gα
ij − 1

variable, it becomes clear which of the three solutions u∗
ij are viable (stable). In the case

where Bij = 0, or equivalently, when θij = 2J, the (pair) Hamiltonian is symmetric with
respect to a change in sign, σα

ij → −σα
ij, which means that the high- and low-density solu-

tions are equal. This is the symmetry-broken situation we have discussed in Section 3.1. In
this case, the intermediate-density solution will result in a lower value for the Hamiltonian
than the high- and low-density solutions. The viable (stable) solutions are therefore the
high- and low-density ones. In the case where Bij 
= 0, it is clear that the high-density
solution minimizes the Hamiltonian when Bij > 0 and maximizes it when Bij < 0. The
low-density solution minimizes the Hamiltonian when Bij < 0 and maximizes it when
Bij > 0. The intermediate solution will, however, never minimize the Hamiltonian when
B 
= 0, and is therefore never viable (stable). From these considerations, it becomes clear
that a phase transition, corresponding to a sudden change in uij, may only happen when
we cross from a negative (positive) Bij to a positive (negative) Bij (when J > 1). Figure 3
shows the symmetric stable solutions uij in the case where Bij = 0, with the bifurcation
occurring at J = 1. In case of the positive field Bij = +1, it shows a single stable solution
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curve, which is the high-density solution (in the case where Bij = −1, this image would be
flipped with respect to the u∗

ij = 1/2 axis). The right panel in Figure 3 shows that the value
of the stable solution uij jumps when Bij crosses from positive to negative, as expected.

Figure 3. Solutions for uij as a function of θij for different parameter values. The blue and red
segments of the curve(s) correspond to the stable and unstable solutions of Equation (53), respectively.
Left panel: Bij = 0 (with J varying accordingly). Middle panel: Bij = 1 (with J varying accordingly).
Right panel: constant value of J = 1.5, which translates to a non-constant Bij.

Combining the above considerations for all multilinks simultaneously, and adding the
other constraint on the layer-averaged degrees, the multiplex will undergo a sequence of
phase transitions, determining a hierarchy of increasingly ordered (magnetized, or rather
‘multiplexed’ in this case) phases where, for an increasing number of pairs of nodes,
the links in different layers will tend to ‘align’ to each other (for J > 1). The separations
between these phase transitions will depend on the values of the enforced layer-averaged
degrees, which determine �θ∗. The fully ordered phase, where all pairs of nodes are mul-
tiplexed, is the one where all the M layers of the multiplex are perfectly aligned, and are,
therefore, basically an identical copy of each other. We might say that, in this case, the
effective number of independent layers is Meff ≈ 1, and the expected overlap is max-
imal and proportional to the expected number 〈L〉�θ∗ ,J∗ = ∑M

α=1 ∑i<j u∗
ij of links in the

entire multiplex:
〈O〉�θ∗ ,J∗ ≈ ∑

α<β
∑
i<j

u∗
ij = (M/2)〈L〉�θ∗ ,J∗ , (67)

since 〈gα
ijg

β
ij〉�θ∗ ,J∗ ≈ 〈gα

ij〉�θ∗ ,J∗ = u∗
ij for most pairs, i.e., α, β, of layers. In the opposite extreme,

we have a fully disordered phase where no pair of nodes is multiplexed (for instance, if
J < 1), so the effective number of independent layers is maximal (Meff ≈ M), and the
expected overlap is basically of the order of that given by Equation (36) for the model with
J∗ = 0, i.e.,

〈O〉�θ∗ ,J∗ ≈ ∑
α<β

∑
i<j

(u∗
ij)

2, (68)

since 〈gα
ijg

β
ij〉�θ∗ ,J∗ ≈ 〈gα

ij〉�θ∗ ,J∗ 〈gβ
ij〉�θ∗ ,J∗ = (u∗

ij)
2 for most pairs of layers. The relationship

between 〈O〉�θ∗ ,J∗ and 〈L〉�θ∗ ,J∗ will depend on the specific values of {u∗
ij}i<j, so ultimately, on

the enforced degree sequence. Between these two extremes, if the phases are well separated
(which here means that the enforced degrees of different nodes have very different values),
there will be intermediate regimes where 〈O〉�θ∗ ,J∗ and 〈L〉�θ∗ ,J∗ scale in a way that is between
the two limiting scalings. All these general considerations will be confirmed in the next
sections with numerical, analytical, and empirical analyses.

5. Numerical Analysis

Equations (53), (55), and (56) are the key equations of our OACM model. These
equations are generally, however, very difficult to solve. Therefore, before creating a null
model for a real-world network by solving the maximum likelihood equations to find the
Lagrange multipliers, we shall first treat the Lagrange multipliers as free parameters in
order to explore and analyze the properties of the model as a function of these parameters.
This analysis shall be performed by utilizing the Metropolis–Hastings algorithm [51].
This algorithm can be used to sample the exponential probability distribution defined by
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the Hamiltonian of the model. By sampling the distribution, we numerically obtain various
properties of the graph ensemble, which may then be compared to our analytical results in
order to test the validity of the latter. Note that the sampling of the exponential distribution
defined by a specific Hamiltonian may also be regarded as the simulation of a multiplex
that corresponds to that Hamiltonian.

5.1. Exploring the Parameter Space

In order to explore the space of parameters, we are primarily interested in the difference
between statistically homogeneous networks and statistically heterogeneous ones. To this end,
we will explore the parameter space (θ1, . . . , θN , J) of the model by specifying a value for J
and sampling certain transformed parameters x1, . . . , xN from a distribution for each class,
where xi ≡ e−θi . The quantity xi will be referred to as the ‘fitness’, or ‘hidden variable’,
of node i. The broader the distribution of the fitness, the more heterogeneous the resulting
network structure.

5.1.1. Homogeneous Fitness: Erdős–Rényi Graphs with Overlap

The simplest distribution from which we can sample x1, . . . , xN is the delta distribution
centered at x, such that x1 = x2 = . . . = xN ≡ x and, therefore, θ1 = θ2 = . . . = θN ≡ θ =
− ln x, resulting in statistically homogeneous networks. With this choice of parameters, our
model is an extension of the Erdős–Rényi model, which is a random graph model that can
be derived within the ERGM by solely constraining the total number of links in the network,
and where all links occur with the same probability. As we shall see, the extension derives
from the fact that the extra constraint on the overlap can lead to a symmetry-breaking
phase transition, although the broken symmetry might not manifest at first sight. Indeed,
since the parameters are the same for all pairs of nodes, the condition for the existence
of multiple solutions is also the same, and, therefore, there is a unique phase transition
where, depending on the values of θ and J, pairs of nodes are either all ‘magnetized’
or all ‘non-magnetized’. Similarly, since here θij = θi + θj = 2θ ∀i, j, the spontaneous
symmetry-breaking condition discussed in Section 3.1 for the vanishing of the external
field is the same for all pairs of nodes, and given by J = θ. In the symmetry-broken
(magnetized) phase, for all pairs of nodes, the expected value of ∑M

α=1 gα
ij (or equivalently,

of the ‘magnetization’ ∑M
α=1 σα

ij) is the same, and is always between the two typical (high-
density and low-density) realized values. However, since all pairs are independent, the
actual realized values of ∑M

α=1 gα
ij are also independent across pairs, so on average, over

the entire network, the magnetization will realize both the low-density and high-density
values, with equal probability. In other words, different pairs of nodes are i.i.d. realizations
of the same system. This is a peculiar situation where the realized values of L and O (which
represent sums of all pairs of nodes) will still coincide with their expected values as if no
symmetry breaking was present, even if different pairs of nodes actually realize different
symmetry-broken values that are individually different from the expected value. The net
result is an expected number of links 〈L〉 = MN(N − 1)/4) equal to half the maximum
one, or equivalently, an average zero magnetization in the associated spin system. Similar
considerations apply to the case J 
= θ, with the difference that, in that case, the symmetry
is not broken spontaneously, but by the direction of the external field (value of θ), which
implies that the two typical realized values of the magnetization for a given pair of nodes
are no longer symmetric around the expected value. Still, both typical values will be
realized, independently and with their probabilities, across the entire network, because
different pairs of nodes are still independent. So, irrespective of the value of J and θ, we
expect to observe realized values of L and O that correspond again to what one would
observe without symmetry breaking, using the ensemble averages for each pair, irrespective
of the phase of the system. All these considerations are confirmed below.

By looking at Equation (38), we can see that a uniform θ essentially means that instead
of constraining the average layer degrees ki, we constrain the total number of links L in the
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multiplex network. In this case, the combined maximum entropy and maximum likelihood
equations become

u =
1
2
+

1
2

tanh (2J∗u − θ∗) (69)

N

∑
i<j

M

∑
α=1

g∗ij
α =

MN(N − 1)
2

u∗ = 〈L〉θ∗ ,J∗ (70)

4
M ∑

i<j
∑

α<β

g∗ij
αg∗ij

β = MN(N − 1)(u∗)2 =
4
M

〈O〉θ∗ ,J∗ (71)

where u∗ = u(θ∗, J∗) is the solution to Equation (69). Note that we now have a single
equation for u, confirming the existence of a single global phase transition across the
multiplex network, rather than separate local phase transitions for every multilink mij.
Additionally, we note that if u∗ can be considered as the density (and the link probability)
of the network, then the value of u∗ is exactly the same as the value of the density p in the
Erdős–Rényi model [14,27], which solely constrains the number of links in the network. The
difference between our model and the Erdős–Rényi model is that our model contains the
possibility of a phase transition. However, since the number of links 〈L〉 also determines
the overlap 〈O〉, the two quantities cannot be tuned independently of each other.

By using the Metropolis–Hastings algorithm, we have sampled our ERGM for mul-
tiplexes with M = 100 layers and N = 100 nodes for various values of θ and/or J. If we
repeat the simulations for J = 1.5 and θ = 1.4, θ = 1.5, and θ = 1.6, the system must
undergo a phase transition as per Figure 3. We expect an abrupt change in the value of u∗,
and according to Equations (70) and (71), we therefore expect an abrupt change in the equi-
librium value of both L and O. Figure 4 shows simulations for θ ∈ {1.4, 1.5, 1.6} confirming
the transition from a relatively high to a low density as the value of the field B = J − θ
changes sign. These simulations have been repeated for different combinations of values
for J and θ around the point where B changes sign, confirming the results shown here.
Note that the middle plot in Figure 4 shows that the algorithm converges to multiplexes
with a density of 1/2, confirming that, when B = 0, L is approximately half of the total
amount of possible links in the multiplex, as we expected above.

In Figure 5 we test the prediction, given by Equations (70) and (71), of the quadratic
relationship 〈O〉 = 〈L〉2/N2. Note that this quadratic trend is predicted irrespective
of the value of J > 0, and even coincides with what Equation (68) predicts in the case
J = 0 for a homogeneous multiplex with constant θ, as considered here. So, in this case,
the expected relationship between 〈O〉 and 〈L〉 is not informative regarding the phase
transition, although the specific values picked up by the system along the curve are. Indeed,
we again simulate multiplexes with M = 100 layers, N = 100 nodes, and a variety of
values for θ and J. Each simulation results in a value for 〈L〉 and a value for 〈O〉, which we
plot against each other. These points are then compared to the theoretical points predicted
by Equations (69)–(71) for the chosen parameter values, and added to Figure 5. We see
that the relationship between simulated quantities is in agreement with the one predicted
by the model. As we had anticipated, this is the result of the fact that different pairs of
nodes are i.i.d. realizations of the same system, so that the ensemble average is realized as
a sample average of the pairs of nodes across the network, even if in the symmetry-broken
phase, the ensemble average of ∑M

α=1 gα
ij is not representative of any of the values realized

locally for individual pairs of nodes. Therefore, the only scaling we observe coincides
with the one given in Equation (68) for the ‘non-magnetized’ regime in the case where
θ is the same for all nodes. The only, although very important, signature of the phase
transition we see in Figure 5 is the fact that, for J > 1 and θ 
= J, both the simulated data
and the corresponding theoretical predictions ‘drift away’ from the intermediate values of
〈L〉 (which are still obtained for θ = J) towards either low (θ > J) or high (θ < J) values of
〈L〉. This is because the realized multiplex networks are either low-density or high-density,
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which is an indication of a phase transition occurring when increasing the value of J, exactly
as predicted by Figure 3.

Figure 4. Total number of links L (top panels) and inter-layer overlap O (bottom panels) as a function
of simulation time using the Metropolis–Hastings algorithm for J = 1.5, N = 100, M = 100. Left

panels: θ = 1.4. Middle panels: θ = 1.5 = J (symmetry-broken case). Right panels: θ = 1.6. For
fixed J, varying θ determines a phase transition from a high-density phase to a low-density phase.

We conclude our discussion of the homogeneous case by noting that, given an em-
pirical multiplex �G∗ of interest, the entropy of the data given, in general, by Equation (58)
reduces, in this case, to

S(θ∗, J∗) = Mθ∗
N

∑
i=1

k
∗
i −

4J∗

M
O∗ + ∑

i<j
ln zij(2θ∗, J∗)

= 2θ∗L∗ − 4J∗

M
O∗ +

N(N − 1)
2

ln z(2θ∗, J∗), (72)

where we have used Equation (9) (denoting, via L∗ = L(�G∗), the total number of links
in the multiplex, which also equals the expected value 〈L〉θ∗ ,J∗ ) and the fact that the pair
partition function zij, given by Equation (52), has the same value z(2θ∗, J∗) ≡ zij(2θ∗, J∗)
for all the N(N − 1)/2 pairs of nodes. From Equation (72), we see that the entropy is
determined, as expected, by both L∗ and O∗. At the same time, we know that O∗ depends
uniquely and quadratically on L∗ in this homogeneous model. The values achieved by
the entropy are, therefore, bound by the relationship between L∗ and O∗, which here is
the same irrespective of the value of J∗, including when J∗ = 0. In any case, the entropy
also depends on the specific values of (θ∗, J∗), and Equation (63) guarantees that an upper
bound for S(θ∗, J∗) is given by the entropy S0(θ

0) of the ACM model with J∗ = 0 and
θ∗ = θ0 (clearly, the homogeneity implies that θ0

i = θ0 for all i = 1, N in the ACM model
as well).
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Figure 5. Relationship between the expected inter-layer overlap 〈O〉 and the total number of links
〈L〉 in homogeneous multiplexes with N = 100, M = 100, and θi = θ for all i = 1, N. The
blue points correspond to simulations obtained via the Metropolis–Hastings algorithm for J ∈
{0.0, 0.3, 0.6, 0.9, 1.2, 1.5} and θ ∈ [0.05, 2.00] in steps of Δθ = 0.05. The open red circles are the
corresponding theoretically predicted points. The solid curve corresponds to the quadratic trend
〈O〉 = 〈L〉2/N2 predicted for all J ≥ 0. Multiple solutions for u∗

ij first appear when J > 1, but the
system keeps following the quadratic trend, albeit drifting away from the central point obtained for
the zero-field case θ = J (corresponding to a spontaneously broken symmetry).

5.1.2. Power-Law-Distributed Fitness: Scale-Free Networks with Overlap

We now move away from the homogeneous case and consider a situation where
the fitness values {xi}N

i=1 are drawn from a heavy-tailed distribution, in particular, a
power law. This choice will produce a high degree of heterogeneity. In the ACM (see
Section 2.5), the expected degree distribution is determined by the Lagrange multipliers θi,
or equivalently, the transformed hidden variables xi = e−θi . If x is distributed according to
a power law, the expected degree distribution shall be distributed according to a power
law as well, with the modulo as an upper cut-off. Since our OACM is an extension of the
ACM, we will still sample xi from a power law distribution P(x) ∼ x−γ for various values
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of γ, even though the expected degree distribution is not solely determined by the hidden
variables {xi}, but depends on J as well. In any case, a higher level of heterogeneity in the
hidden variables xi will lead to a higher level of heterogeneity in the degrees. Since the
parameter space is rather large (N + 1-dimensional), we define

xi = zx0,i (73)

where z is a scaling factor. We sample x0,i only once from every chosen distribution.
The value of xi is varied by varying the scaling factor z. The parameter space to be explored
will then be (z, J), which is 2-dimensional. We deduce that

θi = − ln (zx0,i) (74)

which shows that an increasing z leads to a decreasing θi. In the ACM, we have shown that
the link probability is equal to pij = xixj/(1 + xixj), which means that larger values of xi
lead to a larger expected degree, so that increasing all the fitness values will increase the
density in the network. This qualitative relationship still holds with the addition of the
constraint on the expected overlap (for fixed J).

The complexity of Equations (53), (55), and (56) does not allow us to easily derive
the expected relationship between the overlap and the number of links in the network,
as was the case when θi was constant. It is, however, possible to visualize the relationship
between the overlap and the number of links by using the Metropolis–Hastings algorithm.
Figure 6 shows this relationship, where xi is sampled from power law distributions with
various values of γ, alongside the expected quadratic term previously observed to occur
for homogeneous values of the fitness xi (delta distribution). We see that the overlap
for a given number of links is higher in the cases where x is drawn from a power law
distribution than when x is drawn from a delta distribution, even though the coupling
parameter J is kept constant. The cause of this difference lies in the level of heterogeneity
of the fitness distribution: unlike the homogeneous case, now different pairs of nodes
have very different values of θij = θi + θj, and, therefore, the condition J = θij/2 for the
vanishing of the ‘external field’ Bij (spontaneous symmetry-breaking condition) cannot be
realized simultaneously by all pairs. The figure also shows the effect of different exponents
of the power law distributions of the fitness. A smaller value of γ leads to a higher overlap
for a given number of links. By increasing the value of γ, the power law distribution
becomes more sharply peaked, and will therefore lead to more homogeneous networks.
Note, however, that increasing the value of the coupling parameter J itself also leads to an
increase in the overlap for a given number of links for the same distribution.

Importantly, the phase transition now occurs for different pairs of nodes as J is varied.
Some pairs of nodes will be in the non-magnetized phase, while others will be in the
magnetized phase. The effective number Meff of independent layers will, in general,
depend on the choice of parameters. Among the magnetized pairs, the realized values
of the overlap are no longer those corresponding to the ensemble average (as in the
homogeneous case), but typically to the symmetry-broken solution with lower energy
(hence dictated by the value of θij), because no other pair of nodes will, in general, exist
with the same parameters and such that the two symmetry-broken values are averaged by
the resulting value of the realized overlap. In particular, while for 0 < J < 1 all node pairs
are in the non-magnetized phase, as J increases from 1 towards larger values, the pairs
of nodes that first undergo the phase transition are the ones with values θi + θj that fall
between the limits set by Equations (65) and (66). As those equations and Figure 2 show,
there are more and more combinations θi + θj entering the magnetized phase as J increases.
When J is sufficiently large, all pairs will be magnetized. Clearly, for any two pairs of
nodes, (i, j) and (i, k), that share the same node, i, the values of θi + θj and θi + θk will be
correlated, as they share the same term θi. This means that the pairs of nodes entering the
magnetized phase typically have nodes in common, even if it would be incorrect to say that
individual nodes enter the magnetized phase ‘one by one’, while this is certainly correct for
individual node pairs, if the sum θi + θj is different across all of them.
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Figure 6. Relationship between the expected inter-layer overlap 〈O〉 and the total number of links
〈L〉 in heterogeneous multiplexes with N = 100, M = 100, and x0,i sampled from a power law
distribution with different values for γ. The colored points correspond to simulations obtained via
the Metropolis–Hastings algorithm for J ∈ {0.0, 0.3, 0.6, 0.9, 1.2, 1.5} and z ∈ [0.05, 2.00] in steps of
Δz = 0.05. The straight line corresponds to the upper limit 〈O〉 = M〈L〉/2 calculated in Equation (67).
The solid curve corresponds to the quadratic trend 〈O〉 = 〈L〉2/N2 (achieved by homogeneous
multiplexes with constant xi), which here turns out to mark a lower bound. For increasing values
of J, and especially as J > 1, the system moves closer to the upper bound. For J = 1.5, we see
that the points are concentrating towards high-density and low-density (symmetry-broken) regimes,
drifting away from the intermediate values, like in the homogeneous case. However, this is now
the combined result of the behavior of statistically different pairs of nodes, each having a different
zero-field condition θi + θj = 2J, so the spontaneous symmetry breaking cannot be realized for all
node pairs simultaneously.
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Figure 6 indeed shows the effect of the changing number of magnetized node pairs as
J increases above 1. We note that, for larger and larger J, the relationship between 〈O〉 and
〈L〉 tends towards the ‘maximally multiplexed’ linear extreme (shown as a straight line)
given in Equation (67). At the same time, we see that the ‘non-multiplexed’ case (J < 1)
described by Equation (68) now realizes values of the overlap that are very different from
the quadratic trend achieved by the homogeneous model (also shown as a solid curve in
Figure 6), which now turns out to represent a lower bound. We can ‘zoom in’ to better
see this difference by looking at Figure 7, where, by using Equations (53), (55), and (56),
we additionally calculate the theoretically predicted values of 〈O〉 and 〈L〉 and compare
them to the simulation data, where x0,i is sampled from a power law distribution with
γ = 1 (the results for γ ∈ {2, 3, 4} are qualitatively similar and are therefore not shown
here). The figure confirms a strong deviation from the curve for the homogeneous model,
even when J = 0 (signaling a much higher but spurious overlap, arising only from the
rising correlation among node degrees across different layers), and a close agreement with
the maximally overlapping value in Equation (67) already for J = 1.5 (corresponding to a
further increase in overlap, arising from an additional, genuine coupling between layers).

Figure 7. Relationship between the expected inter-layer overlap 〈O〉 and the total number of links
〈L〉 in heterogeneous multiplexes with N = 100, M = 100, and x0,i sampled from a power law
distribution with γ = 1. The blue points correspond to simulations obtained via the Metropolis–
Hastings algorithm for z ∈ [0.05, 2.00] in steps of Δz = 0.05 with J = 0 (left panel) and J = 1.5
(right panel). The red open circles are the theoretically predicted values corresponding to the same
parameters used in the simulations. The straight line corresponds to the upper limit 〈O〉 = M〈L〉/2
calculated in Equation (67). The solid curve corresponds to the quadratic trend 〈O〉 = 〈L〉2/N2

(achieved by homogeneous multiplexes with constant xi), which here turns out to mark a lower
bound. We see that, compared with the homogeneous lower bound, the heterogeneity of nodes
increases the overlap dramatically, even in the absence of true coupling (J = 0). When coupling is
present, the overlap is additionally increased and already approaches the upper bound for J = 1.5.

5.1.3. Log-Normally Distributed Fitness

The delta and power law distributions we have considered so far represent examples of
completely homogeneous and extremely heterogeneous (especially for γ = 1) distributions,
respectively. We now consider the log-normal distribution as a third example between these
two extremes. This analysis will indeed lead to results that are in some sense intermediate
between what we have observed so far, and useful for interpreting the real-world case that
we will present later on. A log-normal distribution is the distribution of a random variable
whose logarithm is normally distributed (i.e., if the random variable x is log-normally
distributed, then y = ln x follows a normal distribution). The probability density for a
log-normal distribution is

P(x) =
1

xσ
√

2π
e−(ln x−μ)2/(2σ), (75)
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where μ and σ correspond to the mean and the standard deviation of the normal distribution
of ln x. We will vary the value of xi by again introducing a scaling factor that can be changed
such that xi = zx0,i and θi = − ln (zx0,i), where we sample x0,i once from the log-normal
distribution for a variety of values for μ and σ.

The log-normal distribution allows us to inspect the transition in the relationship
between the overlap and the number of links from the quadratic lower limit to the linear
upper limit by varying the value of σ. Indeed, when 0 < σ � 1, the normal distribution
of ln x0,i is sharply peaked. By decreasing the value of σ towards 0, ln x0,i (and, therefore,
x0,i as well) shall approach a delta distribution. This is the distribution that led us to
the quadratic lower limit for the relationship between the overlap and the number of
links in the network. Conversely, when σ � 1, the log-normal distribution approaches a
distribution with a power law tail with γ = 1. This distribution led us to the linear upper
limit between the overlap and the number of links in the network (when J was sufficiently
large). By increasing the value of σ from 0 to a sufficiently large value (e.g., σ = 10), we
can therefore increase the heterogeneity of the network from a completely homogeneous
network achieving the quadratic lower limit to an extremely heterogeneous network close
to the linear upper limit relationship in the simulation data.

Figure 8 shows the relationship between the average overlap and the number of links
in the network with simulation data that were obtained by using the Metropolis–Hastings
algorithm for a variety of values for J and σ. Again, the linear upper limit is illustrated as a
straight line and the quadratic lower limit as a solid curve. The figure confirms that in the
case where J = 0, the data points that correspond to x0,i being sampled from a log-normal
distribution with a relatively low value for σ are either on or close to the quadratic lower limit
curve. On the other hand, the case where σ = 10 results in data points where the overlap
in the network for a given number of links is almost maximal, and therefore approaches the
linear upper limit. This first set of results confirms the strong role of node heterogeneity in
determining increased correlations between the degrees of the same node across different
layers, which, in turn, increase the inter-layer overlap even without any explicit coupling
(J = 0), and hence, in a ‘spurious’ manner. On the other hand, when we increase the value of
J, the data points corresponding to relatively low values of σ (e.g., σ = 10−5 and σ = 10−3)
stay on or close to the quadratic lower limit, a finding similar to the results in Section 5.1.1,
showing that the symmetry-broken values realized by different pairs of nodes, when averaged
across the network, restore the ensemble average because the node pairs are all independent
and (almost) identically distributed. Remarkably this means that, in a certain sense, node
homogeneity ‘suppresses’ the effects of the true inter-layer coupling (J > 0) on the realized
overlap. For the intermediate value σ = 1.0, the data are distributed close to the quadratic
lower limit curve only for low values of J, while increasing the value of J leads to a more linear
trend, eventually approaching the linear upper limit. In this case, the coupling is effective
in producing a higher realized overlap. In the case where σ = 10, the linear trend is instead
achieved already for J = 0.0 (although the points are aligned below it); hence, increasing the
value of J barely influences the value of the overlap for a given number of links.

Therefore the effect of increasing J in networks with a moderate heterogeneity is a
transition from multiplex configurations with densities of all levels towards multiplex config-
urations with either low or high density, which is a result of the phase transition. It also shows
that a very high level of heterogeneity leads to an overlap in the network that is already close
to maximal for a given number of links, irrespective of the phase transition and the value of
J. However, in the case where we have an intermediate level of heterogeneity (σ = 1.0), we
observe that the effect of the coupling can be relatively strong, and we can therefore construct
networks with a combination of the overlap and number of links falling between the extreme
linear upper limit and the quadratic lower limit in a controlled, systematic manner. Note that
Figure 8 also shows that, as J increases above 1, the (symmetry-broken) realized data start to
‘drift away’ from the intermediate densities, in a way similar to what we observed in Figure 5,
but in a more pronounced manner. This is due to the fact that, as J increases, a larger number
of multilinks shall be either in the low-density or high-density phase.
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Figure 8. Relationship between the expected inter-layer overlap 〈O〉 and the total number of links
〈L〉 in heterogeneous multiplexes with N = 100, M = 100, and x0,i sampled from a log-normal
distribution with different values for σ. The colored points correspond to simulations obtained
via the Metropolis–Hastings algorithm for J ∈ {0.0, 0.3, 0.6, 0.9, 1.2, 1.5} and z ∈ [0.05, 2.00] in
steps of Δz = 0.05. The straight line corresponds to the upper limit 〈O〉 = M〈L〉/2 calculated
in Equation (67). The solid curve corresponds to the quadratic trend 〈O〉 = 〈L〉2/N2 (achieved
by homogeneous multiplexes with constant xi), which here marks a lower bound achieved when
σ → 0+. For increasing values of J (genuine coupling) and σ (spurious coupling), the system moves
closer to the upper bound. For J > 1, we see that, starting from the multiplexes with smaller values
of σ, the points are concentrating towards high-density and low-density (symmetry-broken) regimes,
drifting away from the intermediate values, like in the homogeneous and power law cases. To realize
this separation for larger values of σ, a larger value of J is required.
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Again, in Figure 9 (which is the counterpart of Figure 7), we ‘zoom in’, and, using
Equations (53), (55), and (56), we show the theoretically predicted values of 〈O〉 and
〈L〉 and compare them to the simulation data, where x0,i is sampled from a log-normal
distribution with σ = 1, for J = 0 and J = 1.5. The results for σ ∈ {10−5, 10−3, 10−1, 101} are
not shown here since relatively low and high values for σ lead to results similar to those we
have shown in Sections 5.1.1 and 5.1.2, respectively. Figure 9 confirms that the theoretical
predictions are in good agreement with the simulation data, apart from the expected
‘drifting away’ of symmetry-broken values from the corresponding ensemble average.

Figure 9. Relationship between the expected inter-layer overlap 〈O〉 and the total number of links
〈L〉 in heterogeneous multiplexes with N = 100, M = 100, and x0,i sampled from a log-normal
distribution with σ = 1. The blue points correspond to simulations obtained via the Metropolis–
Hastings algorithm for z ∈ [0.05, 2.00] in steps of Δz = 0.05 with J = 0 (left panel) and J = 1.5
(right panel). The red open circles are the theoretically predicted values corresponding to the same
parameters used in the simulations.

6. Analysis of the World Trade Multiplex

In this section, we finally consider an application of the model to a real-world eco-
nomic network. Since our models lead to multiplex networks with independent pairs
of nodes (i.e., independent multilinks) even when links are correlated across layers, it is
important that the real-world network is consistent with this assumption. For instance,
networks constructed from time series data [3–5] are not viable, because the known (and
strong) correlations between the time series corresponding to different vertices generate
dependencies between pairs of nodes (and higher-order patterns) through the triangular
inequality [6,7]. For this reason, we select the World Trade Multiplex as an ideal case study
for the present analysis, because each separate layer of that network has been successfully
modeled in the past via maximum entropy models of networks with given degrees [31–33].
At the same time, it has been shown that certain structural properties of commodity-specific
layers are very similar across the different layers of the multiplex [30], and that this similar-
ity (in particular, the correlation among the degrees of the same node in different layers)
generates a large spurious component of the inter-layer overlap [28,29], which is not nec-
essarily due to a genuine coupling. In this sense, our analysis here will add a natural
novel aspect to the modeling of the network, namely, the explicit comparison with a model
with nontrivial coupling among layers, which has not been considered so far. We use
the UN-COMTRADE dataset that represents the multiplex network of international trade
(https://comtradeplus.un.org, accessed on 2 September 2019). The different layers of this
multiplex network represent different commodities. The vertices in this network represent
different countries, and a link exists between two countries in a given layer if there is
trade between them in that commodity. The data include N = 206 countries and M = 96
commodities. Some examples of traded commodities are meat, fish, dairy products, coffee,
and tobacco [30,33].
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Using the international trade data, we wish to identify a possibly nontrivial overlap
by creating (L, O) plots similar to the ones depicted in Figures 6 and 7 or 8. We therefore
repeatedly filter the network such that each layer α has the same number of links Lα ≡ L0

(where α = 1, . . . , M), and calculate the corresponding overlap O for the specified value of
L0 (note that this means that the total number of links in the entire multiplex is L = ML0).
The criterion we follow is choosing the L0 strongest (highest weight) links in every layer
to obtain data with comparable degrees across layers, as in our models. Note that, by
using this filtering method, the highest possible density we can achieve is limited by the
density of the sparsest layer in the unfiltered network. The results are shown in Figure 10,
which indicates that the overlap for a given number of links appears to be around halfway
between the quadratic lower limit curve and the linear upper limit curve. This suggests
that the degree of heterogeneity of the network is intermediate, similar to that realized by
log-normally distributed fitness values, as in our example considered above.

As anticipated, we are currently unable to solve the maximum likelihood equations in
order to obtain the joint values of all the Lagrange multipliers in the full OACM model with
J 
= 0. However, after filtering the original empirical network such that every layer has L0

links, we can use the values of the hidden variables x∗i for the null model corresponding
to the absence of inter-layer coupling, i.e., to J∗ = 0. As we have shown in Equations (57),
this assumption reduces our model to the ACM discussed in Section 2.5. The maximum
likelihood equations in this case are much easier to solve, and can be found using one of
the numerical algorithms available at https://meh.imtlucca.it (accessed on 1 May 2023).
This procedure is repeated for a range of values for L0. The cumulative distribution of the
hidden variables x∗i are plotted in Figure 10 for various values of L0. The figure qualitatively
shows that the shape of the cumulative distribution of x is fat-tailed and indeed similar to
the one for a log-normal distribution. Moreover, it does not vary with L0, apart from an
overall change of scale.

The null model with J∗ = 0, when compared to the data for the same choice of L0,
allows us to detect the presence of nontrivial coupling among the layers, when present.
Indeed, from Figure 10, we see that the filtered networks have a relatively high overlap,
the data points being distributed along a similar trend as the one corresponding to a
nonzero J in our previous heterogeneous examples. By using the values of the hidden
variables for the model with J∗ = 0, we can calculate the corresponding expected number
of links and the expected overlap under the null hypothesis of no coupling between the
layers, but the same average degree sequence in the real network. The results are shown
in Figure 10, alongside the curve corresponding to the empirical data. We see that the
assumption J = 0 leads to an insufficiently overlapping multiplex, demonstrating the
necessity of a model that introduces dependencies between the layers of a network. The
difference between the two curves can be quantified by fitting both to the curve

O = ALα (76)

where A is a proportionality factor and α is an exponent (not to be confused with the label of
a layer of the multiplex). For the empirical data, we find a steeper increase characterized by
an exponent αempirical = 1.19, while for the predictions from the ACM, we find αCM = 1.06
(see Figure 10). The difference between the two values implies that the difference between
the realized and expected overlap increases as L increases, confirming that the observed
overlap in the WTM is not only the spurious result of the correlated heterogeneity of the
degrees of countries, but reflects genuine (J∗ > 0) inter-layer dependencies.
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Figure 10. Comparison of the empirical World Trade Multiplex (WTM) with the zero-coupling
(J∗ = 0) benchmark provided by the Average Configuration Model (ACM). The WTM consists of
N = 206 nodes, each representing a country, and M = 96 layers, each representing a commodity
group. The filtered data were obtained by retaining the same number L0 of strongest links in each
layer (hence L = ML0 links in the entire multiplex), and varying L0. Top left: relationship between
the expected inter-layer overlap 〈O〉 and the total number of links 〈L〉 in the WTM (blue), compared
with the upper limit 〈O〉 = M〈L〉/2 calculated in Equation (67) (purple straight line) and the
quadratic trend 〈O〉 = 〈L〉2/N2 achieved by homogeneous multiplexes (black solid curve). Top right:
zoomed-in version of the top left panel, showing that the empirical data follow an intermediate
scaling between the two extremes. Center left: cumulative distributions reporting the number F(x) of
nodes with hidden variable larger than x in the ACM, obtained for different values of L0 (see legend).
Center right: same as the top right panel with the addition of the relationship produced by the ACM
benchmark, showing that the empirical WTM (blue) has a higher overlap than the corresponding
null model having zero inter-layer coupling but the same degree heterogeneity (orange). Bottom left:
log–log plot of the relationship between the overlap and the number of links in the empirical WTM,
along with a power law fit of the form O = ALα, where the fitted exponent is α = 1.19. Bottom right:
log–log plot of the same relationship in the ACM benchmark with no coupling, along with a power
law fit of the form O = ALα, where the fitted exponent is α = 1.06.

We conclude with a discussion about the entropy in the heterogeneous case, analogous
to the one we made in Section 5.1.1 in the homogeneous case. Here we note that, given a
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multiplex �G∗ of interest, the entropy S(�θ∗, J∗) of the data, given the OACM model, is the
one given by Equation (58), which in the heterogeneous case cannot be, in general, reduced
to a simpler formula. However, if we define the minimum and maximum values of the
hidden variables as

θ∗min ≡ min
i=1,N

{θ∗i }, θ∗max ≡ max
i=1,N

{θ∗i }, (77)

respectively, we can bound the entropy as follows:

Smin(�θ
∗, J∗) ≤ S(�θ∗, J∗) ≤ Smax(�θ

∗, J∗) (78)

where we have defined

Smin(�θ
∗, J∗) ≡ 2θ∗minL∗ − 4J∗

M
O∗ + ∑

i<j
ln zij(θ

∗
i + θ∗j , J∗), (79)

Smax(�θ
∗, J∗) ≡ 2θ∗maxL∗ − 4J∗

M
O∗ + ∑

i<j
ln zij(θ

∗
i + θ∗j , J∗). (80)

The bounds in Equation (78) are alternative to the general ones in Equation (63), and ar-
guably more useful to characterize how the entropy is effectively constrained by, once again,
the relationship between L∗ and O∗. The latter, unlike the homogeneous case, is not neces-
sarily quadratic, and can follow the diverse trends we have shown in Figures 6, 8 and 10.
In particular, the power law relationship captured by Equation (76) for the empirical WTM
provides a convenient way of bounding S(�θ∗, J∗) via Equations (78)–(80).

7. Conclusions

In this paper we have introduced a maximum entropy model, or ERGM, of multiplex
networks with given degrees and inter-layer overlap. The model allowed us to separately
control the effects of the correlations between node degrees across different layers (which
lead to a spurious overlap) and that of a genuine inter-layer coupling. The nature of the
enforced constraints is such that different pairs of nodes are statistically independent, even
if the parameters governing them are correlated via those of the nodes they share.

For each pair of nodes, the model can be mapped exactly to a mean-field Ising model
featuring a magnetization-like phase transition, which includes the possibility of (spon-
taneous) symmetry breaking. Given the difficulty of solving the maximum likelihood
equations to obtain the values of the Lagrange multipliers corresponding to a particular
real network, we first treated the Lagrange multipliers as free parameters in order to explore
and analyze the properties of multiplex systems as a function of these parameters using
numerical methods. Additionally, the numerical results were compared to our analytical
results in order to test the validity of the latter. We have shown that the analytical equations
are highly accurate. The combined result, at the level of the entire multiplex, of the proper-
ties of all node pairs is nontrivial and crucially depends on the values of the node-specific
parameters, which ultimately depend on the enforced degrees.

In the fully homogeneous case, the phase transition occurs at the same critical point for
all node pairs simultaneously, because the parameters are identical for all nodes. However,
the independence of different node pairs implies that, even in the magnetized phase,
the realized values of the inter-layer overlap and total number of links coincide with
the ensemble average. This happens because different node pairs realize all the possible
symmetry-broken values independently, so that an average of the realized values for a large
number of independent node pairs asymptotically equals the ensemble average. The value
of J has little effect on the relationship connecting the overlap to the number of links, which
remains similar to what we observed for the case J = 0, showing that node homogeneity
suppresses the effects of a genuine inter-layer coupling.

In the heterogeneous case, the phenomenology is very different since, despite the
fact that node pairs are still independent, they are now governed by different parameters,
and the ensemble average for a given pair can no longer be realized as an average of the
realized values of pairs with the same parameters. This implies that the observed overlap
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and number of links will depend on the realized symmetry-broken values, whose typical
value does not coincide in general with the ensemble average, and is determined by the
node-specific parameters (hence, ultimately by the degrees). Moreover different pairs of
nodes are, in general, found in different phases, so the multiplex displays, as a function of
the parameters, a hierarchy of phase transitions. We have found that increasing the value of
the coupling parameter J generally increases the (genuine) overlap for a given number of
links, if there is enough node heterogeneity. However, we have also shown that increasing
the heterogeneity of the network increases the (spurious) overlap for a given number of
links as well. This is a consequence of the presence of large hubs that appear in a correlated
manner across layers, due to the increased heterogeneity of the network. Additionally,
every multilink that is connected to these hubs has a relatively low critical threshold for
the coupling parameter J. Therefore, these multilinks have a higher probability to be in
the high density phase, which leads to a higher overlap as well, which corresponds to
increasing the amount of genuine correlation. In general, the overlap for a given number of
links can be increased by increasing either the heterogeneity of the network or the value of
the coupling parameter, with a subtle interplay between the two. In principle, this can be
used in order to create multiplexes with a specific degree of overlap for a given of number
of links, provided their combination is within the theoretical limits discussed in Section 5.

Finally, by using a dataset that represents the empirical multiplex network of interna-
tional trade in several commodity-specific layers, we have used the model to disentangle
the spurious overlap arising from the documented strong correlation of node degrees across
layers [28,29] from the genuine overlap arising from actual inter-layer coupling. We have
found that the assumption that there is no coupling between the layers (J = 0), which
reduces our model to the ACM, results in a multiplex with insufficient inter-layer overlap.
This means that the empirical overlap is not merely the spurious result of the correlated
heterogeneity of the network, but requires a true nonzero coupling between layers.

Our results demonstrate the subtleties of the interplay between node heterogeneity
and inter-layer dependencies in multiplex networks, highlighting the need for null models
that can control these factors separately. In this paper, we have introduced perhaps the
simplest, although already very rich, model of this type. Our model can be seen as a
minimal one, to be further generalized in the future.
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Appendix A. Hubbard–Stratonovich Transform

The pair Hamiltonian of our OACM in Equation (47) can be rewritten as

hij(sij, Bij, J) = −Bij

M

∑
α=1

σα
ij −

J
2M

(
M

∑
α=1

σα
ij

)2

+
J
2
+ vij. (A1)

We want to obtain an expression for the pair partition function:

zij(Bij, J) = ∑
sij∈Sij

e−hij(sij ,Bij ,J)

= ∑
sij∈Sij

exp

[
J

2M

(
M

∑
α=1

σα
ij

)2

+ Bij

M

∑
α=1

σα
ij −

J
2
− vij

]

= e−J/2e−vij ∑
sij∈Sij

exp

⎡
⎣(√ J

2M

M

∑
α=1

σα
ij

)2

+ Bij

M

∑
α=1

σα
ij

⎤
⎦.

(A2)

The argument of the exponent in the above expression can be linearized by using the
Gaussian integral

ea2
=

1√
2π

∫ ∞

−∞
dξije

−ξ2
ij/2+

√
2aξij . (A3)

In our case, by choosing a =
√

J/(2M)∑M
α=1 σα

ij the partition function factorizes with
respect to the individual summations of σα

ij:

zij(Bij, J) =
e−J/2−vij

√
2π

∑
sij∈Sij

∫ ∞

−∞
dξije

−ξ2
ij/2 exp

[
M

∑
α=1

σα
ij

(√
J

M
ξij + Bij

)]

=
e−J/2−vij

√
2π

∫ ∞

−∞
dξije

−ξ2
ij/2 ∑

σ1
ij∈{−1,1}

· · · ∑
σM

ij ∈{−1,1}

M

∏
α=1

exp

[
σα

ij

(√
J

M
ξij + Bij

)]

=
e−J/2−vij 2M

√
2π

∫ ∞

−∞
dξije

−ξ2
ij/2

[
cosh

(√
J

M
ξij + Bij

)]M

. (A4)

Performing the change of variable
√

J/Mξij = Jyij we obtain

zij(Bij, J) = 2M
√

JM
2π

e−J/2e−vij

∫ ∞

−∞
dξij

[
ΦJ,Bij(yij)

]M
(A5)

where
ΦJ,Bij ≡ e−Jy2

ij/2 cosh
(

Jyij + Bij
)
. (A6)

We are interested in the large M limit. To proceed in the calculation of zij(Bij, J), it is useful
to define the quantity

fij(Bij, J) ≡ − lim
M→∞

1
M

ln zij(Bij, J) = − lim
M→∞

ln z1/M
ij (Bij, J) (A7)

which is the free energy per layer. By inserting the result (A5) into (A7), we obtain

fij(Bij, J) = − ln 2 − lim
M→∞

1
M

[
ln

(
e−J/2

√
JM
2π

)
− vij + ln

(∫ ∞

−∞
dyij

[
ΦJ,Bij (y)

]M
)]

= − ln 2 +
J
2
− Bij − ln

[
lim

M→∞

(∫ ∞

−∞
dyij

[
ΦJ,Bij (y)

]M
)1/M

]
. (A8)
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In order to obtain a more explicit form of the function fij(Bij ,J), we use the Laplace
theorem [49]. Let φ(y) and ψ(y) be continuous and positive functions within a range
c ≤ y ≤ d, then

lim
M→∞

[∫ d

c
ψ(y)(φ(y))M

]1/M

= max
c≤y≤d

φ(y). (A9)

For ψ(y) = 1 and φ(y) = ΦJ,Bij(y), this results in

fij(Bij, J) = − ln 2 +
J
2
− Bij − ln

[
max

−∞≤yij≤∞
ΦJ,Bij(yij)

]
. (A10)

The derivative of ΦJ,Bij(yij) with respect to yij is zero at its maximum:

dΦJ,Bij(yij)

dyij
= Je−Jy2

ij/2 sinh
(

Jyij + Bij
)
− Jyije

−Jy2
ij/2 cosh

(
Jyij + Bij

)
= 0. (A11)

The variable yij therefore obeys the equation

yij = tanh
(

Jyij + Bij
)
. (A12)

Note that this equation is identical to the one obtained for the magnetization in the Ising
Model, and, depending on the values of J and Bij, there are either one or three solutions
that satisfy Equation (A12). The free energy fij can now be written as a function of J and Bij:

fij(Bij, J) = − ln 2 +
J
2
− Bij +

J
2
(
yij
)2 − ln

[
cosh

(
Jyij + Bij

)]
. (A13)

We then finally arrive at the pair partition function

zij(Bij, J) = e−M fij

= 2Me−vij e−JM(yij)
2
/2 coshM (Jyij + Bij

)
(A14)

which, returning to the variables θij, coincides with Equation (52) in the main text, where
uij is the solution to Equation (53).

Appendix B. Maximum Likelihood

To determine the parameters (�θ∗, J∗) that maximize the log-likelihood of the OACM
given in Equation (54), we first calculate the derivatives

−∂L(�θ, J)
∂θk

= ∑
i<j

∂hij(m∗
ij, θij, J)

∂θk
+ ∑

i<j

∂ ln zij(θij, J)
∂θk

, k = 1, . . . , N (A15)

−∂L(�θ, J)
∂J

= ∑
i<j

∂hij(m∗
ij, θij, J)

∂J
+ ∑

i<j

∂ ln zij(θij, J)
∂J

. (A16)

We then set the derivatives with respect to θk to zero:

− ∂L(�θ, J)
∂θk

∣∣∣∣∣
�θ∗ ,J∗

=
M

∑
α=1

∑
j 
=k

g∗jk
α − M ∑

j 
=k
u∗

jk = 0 (A17)

where we utilize the fact that gα
ij and uij are symmetric with respect to the indices i, j, i.e.,

∑
i<j

gα
ijδ

k
i =

N

∑
j=k+1

gα
jk, ∑

i<j
gα

ijδ
k
j =

k−1

∑
j=1

gα
jk. (A18)
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Similarly, we set the derivative with respect to J to zero:

− ∂L(�θ, J)
∂J

∣∣∣∣∣
�θ∗ ,J∗

= ∑
i<j

(
− 4

M ∑
α<β

g∗ij
αg∗ij

β + 2M
(

u∗
ij

)2
)

= 0. (A19)

Taken together, the above calculations lead to the maximum likelihood Equations (55)
and (56) in the main text.
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Abstract: An important challenge in the study of complex systems is to identify appropriate effective
variables at different times. In this paper, we explain why structures that are persistent with respect
to changes in length and time scales are proper effective variables, and illustrate how persistent
structures can be identified from the spectra and Fiedler vector of the graph Laplacian at different
stages of the topological data analysis (TDA) filtration process for twelve toy models. We then
investigated four market crashes, three of which were related to the COVID-19 pandemic. In all four
crashes, a persistent gap opens up in the Laplacian spectra when we go from a normal phase to a crash
phase. In the crash phase, the persistent structure associated with the gap remains distinguishable up
to a characteristic length scale ε∗ where the first non-zero Laplacian eigenvalue changes most rapidly.
Before ε∗, the distribution of components in the Fiedler vector is predominantly bi-modal, and this
distribution becomes uni-modal after ε∗. Our findings hint at the possibility of understanding market
crashs in terms of both continuous and discontinuous changes. Beyond the graph Laplacian, we can
also employ Hodge Laplacians of higher order for future research.

Keywords: graph laplacian; stock market; complex systems; persistent structure; Fiedler vector

1. Introduction

Unlike simple systems, where we can easily identify the few relevant variables and
deduce the mathematical equations that they must obey (conservation laws, equations of
state, equations of motion), or for thermodynamic systems, where we identify extensive and
intensive variables that are statistical sums and averages of the microscopic variables, for
complex systems it is difficult to identify a set of simplified (coarse-grained) variables [1,2].
This is especially challenging, since we know that self-organization and emergence is a
hallmark of complex systems, implying that the effective variables might change from time
to time [3]. One of the directions explored by complex systems scientists is to embed the
N variables onto a low-dimensional manifold, using information contained in their time
series Xi=1,...,N(t) [4,5]. Recently, D’Addese et al. [6] and Villani et al. [7] used information-
theoretic methods to identify the relevant sets of variables in random Boolean networks,
gene-regulatory networks, MAPK signaling pathways in eukaryotes, and other systems,
and the manifold they evolve on. Others have turned instead to topological data analysis
(TDA) and persistent homology to achieve the same goal [8,9]. Still others have combined
information-theoretic methods and simplicial complexes arising from TDA to identify
effective variables, and their interactions in the form of higher-order networks [10].

To be useful for describing a complex system, effective variables must change slowly
with time, so that we do not need to switch between different sets of effective variables
frequently. Of the N � 1 microscopic variables, we find some combinations that change
dramatically over short time scales, as well as other combinations that evolve slowly.
We call the former fast variables, and the latter slow variables [11,12]. Frequently, the slow
variables do not evolve independently, but form groups that co-evolve. These are then
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persistent structures that are consistent with self-organization (in that their equations of
motion are not built into the microscopic dynamics) and emergence (the groups themselves
can vary over long times) in the complex system. The first step towards understanding
how we should write down the effective variables would be to identify the persistent
structures. We attempted to do this in our two previous papers on TDA and Ricci curvature
analysis (RCA). In our first paper [8], we applied TDA to identify persistent structures in
financial correlation networks during market crashes. This attempt is an extension of our
exploration into financial market dynamics using more traditional econophysics methods
such as the minimal spanning tree (MST) [13–19], and the planar maximally filtered graph
(PMFG) [20–24]. We were attracted to TDA because it can give us more information than
graph filtering methods, as illustrated by how the Betti numbers change in toy models
where two shells merge through the formation of a bottleneck, or when a shell changes
into a torus through intermediate spindle torus and horn torus stages. However, the
computation of persistent Betti numbers is tedious and time-consuming, and generally not
feasible at large length scales. At smaller length scales, the number of persistent structures
is large, making it impossible to identify all of them automatically.

More importantly, in TDA two persistent structures are assumed to have become one,
the moment they become connected by a neck. As illustrated in Figure 1, we believe that
persistent structures remain distinguishable beyond this first connection, so long as we can
tell them apart from the neck region connecting them. Therefore, in our second paper [9],
we introduced tools from Ricci curvature to help identify persistent structures with positive
Ricci curvatures nearly everywhere, and neck regions with negative Ricci curvatures. By
following the evolution of a particular neck over a market crash, we visualized how it was
formed (down to the exact component stocks) and destroyed. Nevertheless, challenges
remain. First, RCA is not easy to implement and automate. Second, small curvature
changes are hard to detect because they involve collective movements of many nodes. To
this end, new perspectives and approaches are necessary for the elucidation of the overall
dynamical picture.

Drawing upon our experience in studying undergraduate physics, we can solve prob-
lems more easily by changing our approach or rephrasing our questions from a different
perspective. In solid state physics, we find concepts such as the Brillouin zone, band
structure, Fermi level, and band gap emerging naturally when we choose to work in
momentum space. Additionally, owing to the band theory of solids so obtained we can
predict such emergent phases as conductors, semi-conductors, half-metals, and insulators.
In our two TDA papers, we investigated financial correlations in real space by examin-
ing simplicial complexes obtained through the filtration process. Here, we make a first
attempt at characterizing such correlations in “momentum space”. Before we dive into the
spectral analysis of financial correlations, we first explain what persistent structures are
and how to think of their continuous and discontinuous changes in Section 2, by using
a raindrop analogy. Thereafter, in Section 3, we briefly review the filtration procedure in
TDA, before arguing for the theoretical connection between symmetries and block-diagonal
matrices. In particular, in solid state physics, the symmetries are in real space while the
block-diagonal matrices appear in momentum space, whereas for networks or simplicial
complexes, diagonal blocks associated with community structure appears in real space,
and thus we expect the symmetries to be in momentum space. Communities in networks
or simplicial complexes are normally discovered from adjacency matrices Aij, but they
can also be discovered from the graph Laplacians Lij, which has interpretations closer
to the Hamiltonian matrix Hij in quantum mechanics, and their spectral properties are
better understood. In the remainder of Section 3, we illustrate using various toy models of
community structures that the existence of persistent clusters separated in space show up
as a persistent gap in the spectra of Lij. From the Fiedler eigenvector, associated with the
first non-zero eigenvalue λ1 of Lij, we can identify the neck, in addition to the persistent
clusters. We also realize from these studies that the persistent clusters remain distinct even
after they become linked, up till the point where λ1 changes most rapidly with change in
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length scale. In Section 4, we apply these insights to analyze the correlations in real-world
stock markets, by sliding six-month time windows across four market crashes on three
stock exchanges, to see how the topology and geometry of such correlations change with
time. We found the existence of two distinct phases in stock markets. In the normal phase,
the spectrum of Laplacian eigenvalues has no gaps (consistent with the market being a
single giant cluster), whereas in the crash phase, we find a gap emerging at large length
scales (consistent with the market breaking into two or more clusters). Finally, we conclude
in Section 5.

 

Figure 1. Three pairs of clusters at three increasing filtration parameters ε1 (no necks, communities
shown in blue), ε2 (necks shown in orange), and ε3 (necks shown in yellow). For each pair of clusters,
we also show the standard TDA barcode (blue bars, from ε = 0 to the value of ε when the clusters
become connected), and an extended barcode shown in orange where the original clusters remain
distinguishable. In (a), the two small clusters remain distinguishable over a large range of filtration
parameters. This is to be contrasted against (b), where the two clusters are the same sizes as those in
(a), but are closer to each other. They are therefore distinguishable only over a small range of filtration
parameters. Finally, in (c), we have two large clusters whose separation is the same as that in (b).
However, because of their sizes, the two large clusters are distinguishable over a much larger range
of filtration parameters.

2. Intuition on Persistent Structures

Before we formally define persistent structures in Section 3, let us first develop an
intuition on these based on a familiar physical phenomenon. In an atmosphere saturated
with water vapor, water droplets can nucleate around impurities. When a water droplet
first forms, it is small and light, and can be suspended by warm air rising from the earth’s
surface. The water droplet can then lose mass through evaporation, or it can absorb more
water vapor from the atmosphere to become larger and heavier. Eventually, it becomes
too heavy to be suspended by the rising warm air and begins to fall toward the earth’s
surface as a raindrop. As the raindrop falls, it rubs against the air and deforms into the
characteristic teardrop shape (Figure 2a). Even though the raindrop now consists of a
large number of water molecules (Figure 2b), it continues to lose water molecules through
evaporation (Figure 2c), or gain water molecules through absorption (Figure 2d). More
importantly, as the raindrop gains speed falling through air, its surface becomes unstable.
The trailing end of the raindrop may then breakup into smaller droplets (Figure 2e).
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Figure 2. (a) A macroscopic raindrop with its characteristic teardrop shape falling through air. (b)
The raindrop consists of a large number of microscopic water molecules whose relative positions
are always changing. (c) Every now and then, a water molecule will escape from the surface of the
raindrop (shown as dashed line). (d) Sometimes, the raindrop (whose surface is shown as a dashed
line) can also absorb a water molecule from the air around it. (e) If the raindrop falls too fast, its
surface will become unstable, and the trailing end of the raindrop may breakup into smaller droplets.

Instead of microscopic water molecules, we prefer to describe the phenomenon in
terms of raindrops. This is because many raindrops retain their identities as they descend
to the earth’s surface. Indeed, if we perform instantaneous hierarchical clustering on the
collection of water molecules coming down as rain, each raindrop is a robust cluster at a
convenient length scale. However, unlike robust clusters with constant compositions, the
compositions of raindrops change across length scale and time. It is thus better to think of
a raindrop as a persistent homological structure, from the TDA point of view. Persistent
homological structures need not have fixed compositions with respect to changes in length
scale and time. They just need to have the same set of defining topological characteristics.
For example, when a “sphere” comprising 20 particles grows over time to become one
having 1000 particles, we can continue to refer to the structure as a “sphere” (β0 = 1),
provided it has no holes (β1 = 0) and no voids (β2 = 0).

Indeed, in this analogy, the raindrop 10 km above ground has a composition different
from the raindrop that reaches the ground. Nevertheless, we think of the two as the same
raindrop at different times, because it can be tracked continuously from an altitude of
10 km down to the ground. On the other hand, if an old raindrop completely evaporates
at a height h1, and thereafter a new raindrop suddenly forms at height h2 < h1, we do
not consider the new raindrop to be the same persistent structure as the old raindrop.
Therefore, a change in composition is admissible for a persistent structure, provided this
change is always slow.

Treating the raindrop as a persistent structure and ignoring its compositional changes,

we can then describe the time evolution of the raindrop in terms of the position
→
R(t) of its

centre of mass, and its volume V(t). The former is the mean

→
R(t) =

1
N

N

∑
i=1

→
r i(t) (1)

of the N � 1 water molecules making up the raindrop, while the latter is related to the
covariances
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⎥⎥⎥⎥⎥⎥⎦

, (2)

where (X, Y, Z) =
→
R. Of course, the shape of the raindrop can also change with time. This

is determined by the higher-order statistical moments of {(xi(t), yi(t), zi(t))}N
i=1. However,

we can only adopt this hierarchical description in terms of position, size, shape, . . . provided
the topological characteristics of the raindrop remains unchanged. If the raindrop breaks
up into two raindrops, or if an air bubble forms within the raindrop, our description of the
first raindrop would have to change discontinuously.

Through this analogy, we hope to convince our readers that persistent structures are
the most convenient variables to develop physical theories around. A persistent structure
is a collection of microscopic variables that is long-lived (temporal persistence), insensitive
to changes in length scales (spatial persistence), and whose statistical moments change
continuously with time. The last requirement is guaranteed by topological persistence, i.e.,
the Betti numbers β0, β1, . . . remaining constant.

3. Formal Spectral Definition of Persistent Structures

3.1. TDA Definition of Persistence

In Section 2, we saw that a raindrop remains well-defined as a persistent structure
over the time it takes to fall to the ground. Therefore, within this time, we can write down
equations that govern the continuous changes in its position, velocity, size, and shape. This
description is useful because the raindrops are well separated in space. In contrast, the
description of a swimming pool in terms of water droplets is not useful, first because there
is no natural size to use for such water “droplets”, and second because slight “movements”
of these “droplets” would make them overlap with each other (and lose their distinctive
identities). A discontinuous change occurs when two “droplets” merge, and therefore the
structures before and after merging cannot be treated as the same. The structure before
does not persist past the merger, while the structure after does not exist until the merger.

It is this spatial persistence that the filtration procedure in TDA identifies. As shown in
Figure 3, we draw a link between two data points at filtration parameter ε, if their pairwise
distance is less than or equal to ε. We then write the network obtained in terms of a simpli-
cial complex, which is a set consisting of 0-simplices (nodes), along with 1-simplices (links),
2-simplices (triangles), along with higher-order k-simplices, which are complete graphs
with (k + 1) nodes. We can also define a face of a k-simplex to be a (k − 1)-simplex making
up the k-simplex, and the set of all faces of a k-simplex its boundary. In terms of these
constructs, a simplicial complex Σ can be precisely defined as a set of simplices satisfying
two conditions: (1) any face of a simplex in Σ is also in Σ; and (2) the intersection of any
two simplices σ1 and σ2 in Σ is either the empty set ∅, or a face of both σ1 and σ2. As ε is
increased, we find more connected components in Σ. For example, at t1 and ε1 in Figure 3,
the simplicial complex obtained is Σ1 = {〈1, 9〉, 〈5, 8〉, 〈1〉, . . . , 〈9〉}, which has only two
1-simplices (〈1, 9〉 and 〈5, 8〉) and no 2-simplices, whereas at t1 and ε2 > ε1, the simplicial
complex Σ2 = {〈1, 7, 4〉, 〈1, 6, 7〉, . . . , 〈2, 10, 5〉, 〈1, 4〉, 〈1, 6〉, . . . , 〈5, 8〉, 〈1〉, . . . , 〈9〉} obtained
has six 2-simplices (〈1, 7, 4〉, 〈1, 6, 7〉, . . . , 〈2, 10, 5〉) and 14 1-simplices. At t1 and ε3, the simpli-
cial complex obtained is Σ3 = {〈1, 3, 6, 7〉, 〈2, 3, 5, 10〉, 〈2, 5, 8, 10〉, 〈1, 7, 4〉 . . . , 〈5, 10, 8〉, 〈1, 4〉, . . . ,
〈5, 8〉, 〈1〉, . . . , 〈9〉}. In this example, 〈i〉 is a 0-simplex, 〈i, j〉 a 1-simplex, 〈i, j, k〉 a 2-simplex,
and 〈i, j, k, l〉 a 3-simplex.
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Figure 3. The simplicial complexes obtained by the TDA filtration process for a set of ten data points
at three different scales ε1 < ε2 < ε3 (the sizes of the green disks), at three different times t1 < t2 < t3.

In this figure, two data points
→
r i and

→
r j are connected, if

∣∣∣→r i −
→
r j

∣∣∣ ≤ ε.

To follow the dynamics, we start at the smallest scale ε1, to find 6 isolated nodes
(0-simplices) and 2 links each connecting 2 nodes (1-simplices) at t1. At this same scale, we
have 7 isolated 0-simplices, 1 1-simplex consisting of 2 links connecting 3 nodes at t2, as well
as 3 0-simplices and 3 1-simplices (2 of them consisting of 1 link connecting 2 nodes, and
1 of them consisting of 2 links connecting 3 nodes) and t3. In contrast, at the intermediate
scale ε2, we find a connected simplicial complex with 10 0-simplices, 14 1-simplices, and
6 2-simplices at time t1. At the scale ε2, and time t2, the simplicial complex has two
connected components. The first consists of 5 0-simplices and 4 1-simplices. The second
consists of 5 0-simplices, 7 1-simplices, and 3 2-simplices. Finally, at t3, the connected
simplicial complex at scale ε2 has 10 0-simplices, 14 1-simplices, and 5 2-simplices.

Not all connected components identified through the filtration process are persistent,
because they remain topologically distinct over very small ranges of ε. When TDA was first
invented, it was applied onto data sets obtained at one point in time or averaged over time.
Therefore, the range (εb, εd) between the scale εb a topologically distinct component first
appears (also called the birth of the component) and the scale εd it disappears (also called
the death of the component) is referred to as its lifetime. In TDA, the lifetimes of components
are typically shown in the form of a barcode or a persistence diagram. In a barcode (see
Figure 4a), each bar shows the birth (component first appears) and the death (component
disappears) of a component in the simplicial complex as ε is varied. In a persistence
diagram (see Figure 4b), a component is represented as a point whose x coordinate is the
birth time, and whose y coordinate is the death time. Persistent components must have
long lifetimes, and we can identify these by looking in the barcode in Figure 4a for bars
that are significantly longer than the previous ones (the last two bars), or large deviations
from the diagonal in the persistence diagram. In the example shown in Figure 4b, there
are two 0-dimensional components with lifetimes greater than ε = 1.0. These two merged
into one at εd = 1.58, compared to the most recent death at ε � 0.5, and can therefore be
thought of as persistent components. In contrast, none of the 1-dimensional components
shown in Figure 4b are persistent.
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Figure 4. (a) The barcodes of the 0-dimensional homology group H0 and 1-dimensional homol-
ogy group H1 for an artificial data set with 50 data points (the same one as in the 1st Figure in
Section 3.3.2) undergoing the filtration process. (b) The persistence diagrams of the 0-dimensional
and 1-dimensional components emerging from the filtration process.

In the example shown in Figure 4, the data set contains two persistent clusters by con-
struction. When there are more persistent structures at different length scales, identifying
them from barcodes and persistence diagrams will become challenging. In the rest of this
section, we will show that it is easier, and more systematic, to identify persistent structures
in spectral space. In fact, this was first demonstrated by Donath and Hoffmann [25], as
well as Fiedler [26], who identified communities based on the eigenvectors of the adjacency
matrix and the Laplacian matrix respectively. We refer readers to the survey Spielman and
Teng [27], and the tutorial on spectral clustering by von Luxburg [28]. To understand why
spectral clustering works so well, let us start with what we know about block-diagonal
matrices in quantum mechanics.

3.2. Block-Diagonal Matrices in Quantum Mechanics

The barcodes and persistence diagrams described in Section 3.1 are visualizations in
real space. It turns out that we can also identify persistent structures in spectral space.
To do this, we start from the adjacency matrix representation of the simplicial complex.
As we show in Section 3.3.1, there are no persistent structures for a single cluster of data
points. Thus, the simplest example that can help us understand how persistent structures
are identified would be two well-separated clusters of data points in Section 3.3.2. The
adjacency matrix thus has a well-defined community structure, with one diagonal block for
the first cluster, and a second diagonal block for the second cluster.

In quantum mechanics, we were first introduced to block-diagonal matrices when we
explore the implications of symmetries. For example, we know that the angular momen-
tum operator L2 and Lz (the z-component of the angular momentum) have the same
eigenvectors |l m〉, with eigenvalues L2

∣∣ l m〉 = l(l + 1)�2
∣∣l m
〉

and Lz| l m〉 = m�|l m〉.
Since m = −l,−l + 1, . . . , 0, . . . , l − 1, l, the matrix representation of L2 is organized into
(2l + 1)× (2l + 1) diagonal blocks (see Figure 5a). We were taught that this is the conse-
quence of a symmetry, embodied by the commutation relation

[
L2, Lz

]
= 0, with the diago-

nal blocks being irreducible representations of this symmetry. In this angular momentum ex-
ample, the diagonal blocks do not have the same sizes. In contrast, in solid state physics, the
diagonal blocks have the same sizes. To see this, consider a crystal made up of N = N1N2N3
repeating unit cells. At the boundary of this crystal, we apply the Born-von Karman bound-
ary conditions, to write the wave function as ψ

(→
r
)

= ψ
(→

r + N1
→
a 1 + N2

→
a 2 + N3

→
a 3

)
,

where
→
a 1,

→
a 2,

→
a 3 are the primitive lattice vectors. Furthermore, the periodic crystal has

translational symmetry, and thus ψ(
→
r +

→
R) = ei

→
k ·

→
R ψ
(→

r
)

. Therefore, when we Fourier
transform the Hamiltonian matrix in real space, we obtain a Hamiltonian matrix in momen-
tum space that is block-diagonal (see Figure 5b). Each N × N diagonal block is associated

with a distinct wave vector
→
k . Diagonalizing the block for

→
k , we would obtain widely

separated energy eigenvalues E1(
→
k ), E2(

→
k ), . . . , En(

→
k ), . . .. Similarly, from the diagonal
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blocks of
→
k
′

and
→
k

′′
, we obtain the energy eigenvalues

{
En
(→

k
′)}

and
{

En
(→

k
′′ )}

. As

shown in Figure 5c, En
(→

k
)
, En
(→

k
′)

, and En
(→

k
′′ )

have comparable values, and thus when

we combine En(
→
k ) for all values of

→
k , we obtain the nth energy band of the crystal. Be-

tween the nth energy band and the (n + 1)th energy band of the crystal, we find the nth
band gap for the band structure of the crystal.

 

Figure 5. (a) The matrix representation of the angular momentum operator L2 is block-diagonal when
it is written in the basis of eigenstates of Lz. Within a diagonal block, all states |l m〉 have eigenvalue
l(l + 1)�2 for L2, and eigenvalue m�, m = −l, . . . , 0, . . . , l for Lz. (b) For the Hamiltonian matrix

of a crystal in momentum space, we find one diagonal block associated with each wave vector
→
k .

(c) When we diagonalize the block-diagonal matrix shown in (b), we find the eigenvalues organized

into bands En(
→
k ) separated by band gaps (gray). (d) For a network with community structure, the

adjacency matrix A or the Laplacian matrix L is also block diagonal, with each block associated with
a different community with community index c.

For a network with adjacency matrix A, we have Aij = 1 if node i is linked to node j,
or Aij = 0 otherwise. In general, nodes in the network need not have the same degree k, i.e.,
ki 
= kj for nodes i 
= j. These node degrees can be computed from A, as ki = ∑N

j=1 Aij, and
thereafter organized into a degree matrix K = diag(k1, . . . , kN). In terms of A and K, the
graph Laplacian can be defined as L = K − A. In Figure 5d, we show the adjacency matrix A
(or equivalently the Laplacian matrix L) of a network with well-defined communities (no
overlaps between communities). For such a network, A or L would also be block diagonal.
The diagonal block associated with community c would be N(c)× N(c), where N(c) is
the number of nodes in community c. Treating the Laplacian L as the Hamiltonian of the
network, this block-diagonal structure tells us that there is an observable C that commutes
with L, i.e., [L, C] = 0, and thus the community structure represents some sort of symmetry.
More importantly, given the block-diagonal structure of L, its eigenvalues would also be
organized into bands separated by band gaps. One of the first to observe these bands of
Laplacian eigenvalues separated by a gap was Arenas [29].

3.3. Analysis of Spectral Sequence, Overlapping Communities, Persistent Structures

In the filtration process of a given data set, we vary ε to obtain networks with different
link densities. When ε is small, we expect isolated data points and small clusters of data
points. The network is largely unconnected, and therefore we obtain a distribution of eigen-
values for small clusters. As ε increases, larger clusters start to form, looking initially like
star networks, but eventually becoming complete networks. From spectral graph theory,
which is the study of the properties of a network in terms of its characteristic polynomial,
eigenvalues {λi}, and eigenvectors

{→
u i
}

of L [30,31], we know that any connected compo-
nent will have one eigenvector with λ = 0. If a network of N nodes consists of M connected
components, then each of the components would contribute one zero eigenvector, i.e.,
λ = 0 would be M-fold degenerate. Over and above the zero eigenvalue, special networks
such as a star network with N nodes has N − 2 unit eigenvalues λ = 1, and one eigenvalue
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λ = N, whereas a complete network with N nodes has instead N − 1 eigenvalues λ = N.
For real networks with intermediate link densities, we then expect the unit eigenvalues
λ = 1 to shift progressively to λ = N as the link density increases. This tells us that as
link density increases, the distribution of eigenvalues becomes more concentrated at larger
eigenvalues. This is illustrated in Figure 6.

 

Figure 6. A set of eight data points going through the filtration process, and the resulting Laplacian
spectra (blue horizontal lines) for filtration parameters (a) ε = 40, (b) ε = 65, (c) λ = 90, and
(d) λ = 115. Thin blue lines tell us that the eigenvalues are nondegenerate, whereas thick blue lines
indicate that the eigenvalue is degenerate. We use red lines to connect λn(ε) to λn(ε′), for successive
filtration parameters ε′ > ε.

When ε = 40 in Figure 6a, only the two data points closest to each other are linked,
whereas the rest of the data points remain isolated. Here, we find the Laplacian eigenvalue
λ = 0 being seven-fold degenerate, and the eigenvalue λ = 2 for the cluster with two nodes.
When the filtration parameter is increased to ε = 65 in Figure 6b, the eight data points
become a fully connected network. However, the connectivity is not uniform across the
network, and part of it looks like a less-densely linked star, while the other more-densely
linked part consists of connected 2-simplices. For this oddly shaped network, and also the
one shown in Figure 6c when ε = 90, the nonzero eigenvalues are distributed between λmin
and λmax. Finally, when the filtration parameter reaches λ = 115 in Figure 6d, three nodes
attain the maximum degree of kmax = 7. This is why the maximum eigenvalue λmax = 8 is
three-fold degenerate. We call the spectral space visualization {λn(ε)} shown in Figure 6
as ε is varied in the filtration process a spectral sequence. In the following subsections, we
show the spectral sequences of different simple configurations of data points, to identify
the relevant features characterizing these configurations. We also show how these features
change with separation between clusters, during a fusion process, and in the presence of
noise of different strengths.

3.3.1. One Cluster

As a benchmark, let us examine the spectral sequence of a single cluster of data points
sampled from a two-dimensional Gaussian distribution. As we can see from Figure 7, there
is no prominent band gap in the spectral sequence. We use spectral graph theory to explain
this in two limits. First, in the limit of small ε, the simplicial complex consists of multiple
connected components of different sizes ni. Furthermore, if these connected components
are networks intermediate between star and complete networks, their eigenvalues would
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be distributed between λ = 0 and λ = ni. When we superimpose these spectra, we find a
“continuous” distribution of eigenvalues between λ = 0 and λ = max

i
ni. Second, in the

limit of large ε, the simplicial complex consists of a single connected component interme-
diate between star and complete networks of size N. Therefore, the nonzero Laplacian
eigenvalues of such a simplicial complex would also be “continuously” distributed between
λmin > 1 and λmax < N.

Figure 7. (left) A cluster of 50 data points sampled from a two-dimensional normal distribution

p(x1, x2) =
1

2π|Σ| exp
[
− 1

2

(→
x −→

μ
)T

Σ−1
(→

x −→
μ
)]

, where
→
μ = (μ1, μ2) = (0, 0) and Σ is a diagonal

covariance matrix with diagonal matrix elements σ2
11 = 1 and σ2

22 = 1. (right) The spectral sequence
(i.e., the distribution of eigenvalues {λn(ε)} of the Laplacian matrix L at different filtration parameter
ε) of this cluster. In this figure, the numbers of zero eigenvalues for different ε are indicated below
λ = 0.

3.3.2. Two Clusters

The simplest example of a data set with community structure would be one with two
clusters, as shown in Figure 8. The barcode of this data set was shown in Figure 4, where
we saw that this two-cluster structure is persistent with respect to changes in length scale.
From Figure 8, we see that there are two zero eigenvalues from ε ≈ 0.7 to ε ≈ 1.8. This
range of filtration parameter is comparable to the one found from the barcode in Figure 4.
However, the spectral signature (Δλ = max

i
{λi+1 − λi}, shaded yellow in Figure 8) for

this persistent structure is far more prominent, suggesting that the two clusters remain
distinguishable even after links start to form between them (overlapping communities). In
particular, when ε = 2.8653 and λ1 = 12.9498, there are 261 links between the two clusters,
but Δλ remains larger than level spacings elsewhere in the spectrum.

Starting at ε = 1.9254, the two clusters become linked, and there is only one zero
eigenvalue λ0 = 0. At this filtration parameter, the first nonzero eigenvalue is λ1 = 0.6055.
For a smooth manifold M, Jeff Cheeger first proved that λ1 ≥ h2(M)/4, where λ1 is the
first nonzero eigenvalue of the Laplace–Beltrami differential operator on M, while the
Cheeger constant h(M) is the smallest area of a hypersurface that cuts M into two [32].
This result carries over to discrete networks. Suppose λ1 is the first nonzero eigenvalue of
the Laplacian of network G, which can be split into two networks A (with NA nodes) and
B (with NB nodes) by cutting the smallest number of links nAB, then λ1 ≥ h2(G)/4, where
h(G) = nAB/max(NA, NB) [33–35]. This tells us that λ1 increases with the size of the neck
linking networks A and B.
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Figure 8. (top right) The spectral sequence for two clusters, one with 30 red data points, the other
with 20 blue data points. In this figure, the persistent spectral gap that corresponds to this spatially
persistent two-cluster structure is shaded yellow. (top left) The simplicial complex of the two clusters
at ε = 0.9855, which consists of the two nearly complete networks that are not connected. (bottom

left) The simplicial complex of the two clusters at ε = 1.9254, showing how the red cluster is
connected to the blue cluster by 9 links, between 5 red nodes and 5 blue nodes. (bottom right)
The simplicial complex of the two clusters at ε = 2.8653. At this length scale, the two clusters are
connected by 261 links. In these figures, intra-cluster links are black, while inter-cluster links are red.

3.4. Analysis of Eigenvectors, and Identification of the Neck from the Fiedler Vector

The Fiedler vector
→
u 1 associated with λ1 also allows us to identify nodes that are part

of the neck [26,36]. In this subsection, we show how this can be done, by first showing
the results from toy networks before we analyze the Fiedler vector and other low-lying
eigenvectors in the spectral sequence examples shown in Section 3.3 and Supplementary
Information Section B.

3.4.1. Toy Networks

In Table 1, we show a sequence of toy networks in which two distinguishable subnet-
works are connected by necks of various natures. In the first two networks, the clusters
share an edge or a corner, and thus the neck consists of the nodes making up the edge or
the corner. In the next two networks, the clusters are bridged by a single node or an edge,
and thus the neck consists of the bridging node(s). Nodes in the neck can be identified as
zero components in the Fiedler vector. We can also distinguish the two clusters, because
the components in one of them is positive, while the other is negative. In the last network,
the two clusters are not balanced, with one consisting of four nodes, and the other three
nodes. In its Fiedler vector, the weight of the neck (node 5) is not zero, but still significantly
smaller than the weights of the other nodes. Through these examples, we realized that the
neck consists of nodes with weights close to zero, or significantly smaller than the clustered
nodes in the Fiedler vector.
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Table 1. The neck (nodes colored in red) between clusters in simple networks, and how they can
be identified from the Fiedler vector, which is the eigenvector

→
u 1 associated with the first non-zero

eigenvalue λ1 of the graph Laplacian L.
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3.4.2. Filtration Sequence for Two Clusters

In Section 3.3 and Supplementary Information Section A, we analyzed spectral se-
quences resulting from the filtration of different data sets, to identify tell-tale signatures
for different numbers of clusters. For the spectral sequence shown in Figure 3 for two
clusters of data points, let us focus on the Fiedler vectors for ε = 1.9254 (λ1 = 0.6055) and
ε = 3.3353 (λ1 = 29.704). At ε = 1.9254, the two clusters are connected by 9 links, between
5 nodes from cluster 1, and 5 nodes from cluster 2. These 10 nodes, identified from their
smaller absolute weights, form the neck between clusters 1 and 2. For ε = 3.3353, there are
21 nodes with zero weights. All 21 nodes have the maximum degree ki = 49 in a network
of 50 nodes and are members of a bloated neck.

Just to be careful, we also look at the node in cluster 2 with the minimum degree
ki = 33. This node has the largest absolute weight in

→
u 1, and is linked to all cluster-2 nodes,

but only to 14 cluster-1 nodes. Out of these 14 cluster-1 nodes, 13 of them belong to the
neck. In addition, we find that set of 10 neck nodes when ε = 1.9254 is a subset of the set of
21 neck nodes when ε = 3.3353. This tells us that in the filtration process, instead of a simple
fusion A + B → C, TDA suggests the process A + B → A + n + B → a + N + b → N = C.
In other words, the fusion between clusters A and B begin with the creation of a small neck
n. This neck continues to absorb members of A and B to become the bigger neck N (at the
expenses of clusters A → a and B → b shrinking), until all original members of clusters A
and B become absorbed into N , which we can now call cluster C.

In this example, we examine the filtration process involving two clusters. However,
we expect the picture to hold even for the filtration processes at different times for two
clusters merging into one, since the neck should be present until the two clusters completely
fuse together. However, the smaller neck at an earlier time may not be embedded within
the larger neck later. This is because even necks can lose or gain nodes, and all processes
described in the raindrop analogy apply.

3.4.3. Quasi-Degeneracies and Multiple Necks

Finally, we consider the situation where the data points are connected by more than
one neck at some stage in the filtration process. The simplest situation where this occurs is
when we have three clusters along a straight line, as shown in Figure 9a. In Figure 9b, we see
that when ε = 0.668, the three clusters are not linked, and we find three zero eigenvalues.
When the filtration parameter is increased to ε = 1.328, the three clusters forms a single
cluster, with one neck connecting the green cluster to the blue, and another neck connecting
the blue cluster to the red. When this occurs, λ1 = 1.067 and λ2 = 2.776 become non-zero,
but remain close to each other. In Figure 9c,d, we show that the eigenvectors associated
with λ1 and λ2 are the antisymmetric and symmetric combinations of the green and red
clusters respectively.

In the symmetric combination
→
u 2, components of the green and red clusters have the

same sign, thus forcing components of the middle blue cluster to have the opposite sign.
Components of these three clusters can only have the same sign in

→
u 0, the eigenvector

associated with λ0 = 0. In the antisymmetric combination
→
u 1, components of the green

and red clusters have opposite signs, and thus components of the middle blue cluster must
be close to zero. In this sense, although a cluster in its own right, in the antisymmetric
combination

→
u 1 the blue cluster plays the role of a neck. Because of this dual role, we call

the blue cluster a bridging cluster. Because of these differences in signs and magnitudes,
if we divide the component u1,i by u2,i, this ratio would be close to zero if i is a member
of the blue cluster (the bridging cluster, 0 ≤ i < 40), or has an absolute value close to
one if i is a member of the green cluster (40 ≤ i < 70) or the red cluster (70 ≤ i < 100).
Indeed, this is what we see in Figure 9e. In Figure 9e, we also see four absolute ratios that
are exceptionally large. This can only happen if u2,i is close to zero, but u1,i is not. From
Figure 9d, we see that these four are true members of the two necks connecting the three
clusters. Indeed, when we go to ε = 1.987 in Figure 9f, where λ1 = 10.645 and λ2 = 23.791
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are very different, ri ≈ 0 continues to help us identify the bridging cluster, while |ri| � 1
helps us identify the neck, which is thicker at this filtration parameter.

  

  

Figure 9. (a) Three clusters of data points arranged in a straight line. The blue cluster contains 40 data
points, while the red and green clusters each contain 30 data points. (b) The spectral sequence of the
three clusters of data points. Note the sudden change from a three-cluster description at ε = 0.668
to a one-cluster description at ε = 1.328. Note also the pair of small, closely spaced eigenvalues
λ1 = 1.067 and λ2 = 2.776 at ε = 1.328. (c) The data points are colored according to their components
in

→
u 1, the eigenvector associated with λ1. A similar example was shown by Servedio et al. in

Refs. [37,38]. (d) The data points are colored according to their components in
→
u 2, the eigenvector

associated with λ2. (e) Ratio of components in
→
u 1 to components in

→
u 2 when ε = 1.328. (f) Ratio of

components in
→
u 1 to components in

→
u 2 when ε = 1.987.
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3.5. Spectral Definition of Persistent Structure

Summarizing our findings from Sections 3.3 and 3.4 and Supplementary Information
Section B, we realized that persistent structures are accompanied by persistent gaps
Δλ = max

i
(λi+1 − λi) in the spectral sequence. These persistent gaps should not be

confused with non-persistent ones that appear when the persistent structures have a dis-
crete spectrum of sizes. From Figure 8, we see that this persistent gap arises because λ2
increases more rapidly than λ1 (which can remain zero) when ε was first increased, before
λ1 increases rapidly after ε exceeded the characteristic gap between the most persistent
clusters. In particular, when λ1 starts rising, the persistent structures are already connected
by necks, but they remain distinguishable, i.e., we can talk about A + n + B (a thin neck n
connecting two large clusters A and B) or a + N + b (a thick neck N connecting two small
clusters a and b). We think of the persistent structures A and B as having vanished only
after they are completely absorbed by the neck N , at which time we can identify it as a
new persistent structure C where all nodes from A and B have become a complete network.
This picture is confirmed by our analysis of the Fiedler eigenvector

→
u 1 (corresponding to

λ1 > 0). From the eigenvector perspective, the persistent structures remain distinguishable
from the neck since nodes in the neck have zero or smaller absolute weights in the Fiedler
vector compared to nodes in the clusters.

Through Sections 3.3 and 3.4 and Supplementary Information Section B, we now
have a deeper appreciation of the raindrop analogy described in Section 2. Clearly, when
two persistent structures A and B are not connected, their individual descriptions are
continuous in time. Such descriptions would involve an equation for the rate of change of
the mass of A, another for the rate of change of the center of mass (CM) of A, one more for
the rate of change of the CM velocity of A, and a last one governing how the shape of A
changes. We also find a similar set of equations for B. Once they become connected, we
need a single description that is continuous in time, but we do not completely discard the
earlier descriptions of A and B. Instead, we think of the single description of A + n + B
as being obtained by introducing one more set of equations for the neck n (which will
eventually become the persistent structure C) and impose constraints on these equations.
For example, mA + mB + mn must now be approximately conserved, and similarly for
the momentum. In this merging stage, it is actually inconvenient to use only one set of
equations for C = A + B, because too many things are changing simultaneously. It is
convenient to use one set of equations for C only after A and B are completely absorbed by
the neck.

4. Results and Discussion

4.1. Data

The daily prices of 671 Taiwan Stock Exchange (TWSE) stocks from 1 April 2018 to
30 September 2020 (Figure 10b), 530 Singapore Exchange (SGX) stocks from 31 August
2019 to 30 April 2021 (Figure 10a), and 504 component stocks of the S&P 500 from 1 June
2019 to 31 December 2020 (Figure 10c) were downloaded from Yahoo! Finance using
Python’s pandas_datareader module. We then post-processed the financial time series
as follows. First, “NaNs” were replaced with “0s”. Moreover, if the time series contains
more than 50% “0s”, we remove this ticker symbol from the list. For the remaining stocks,
we applied standardization, and also computed their returns. For SGX, some delisted
stocks were downloaded manually from the investing.com website. Similarly, a few S&P
500 component stocks changed during the period of study, and so we downloaded both
new and old component stocks from the investing.com website.
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(a) 

(b) 

(c) 

Figure 10. Monthly values of (a) the Straits Times Index (STI) of the SGX, (b) the Taiwan Capitalization
Weighted Stock Index (TAIEX) of the TWSE, and (c) the Standard & Poor’s 500 (S&P 500) between
1 January 2019 to 31 August 2021, 1 January 2018 to 31 December 2020, and 1 June 2019 to 31 December
2020 respectively. We are specifically interested in two market crashes (Sep 2018 and March 2020) on
the TWSE, one market crash (Mar 2020) on the SGX, and one market crash (Mar 2020) for the S&P
500. In these figures, these are shown as red vertical lines.

4.2. Methods

First, we identified four periods, each with a market crash (on TWSE, SGX, or S&P
500) in the middle, as shown in Table 2. We then computed the Pearson cross correlations

Cij =
∑N

t=1(ri,t − ri)
(
rj,t − rj

)
√

∑N
t=1(ri,t − ri)

2
√

∑N
t=1
(
rj,t − rj

)2
(3)

of the daily returns ri,t and rj,t within a six-month time window with N + 1 trading days,
which we advanced one week at a time. Here, ri and rj are the average returns of stocks i
and j within each six-month time window. For each time window, we further convert the

pairwise cross correlations Cij into pairwise ultrametric distances 0 ≤ dij =
√

2
(
1 − Cij

)
≤ 2.
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Table 2. The start and end dates of the four periods used to study the September 2018 mini-crash and
March 2020 crash on the TWSE, the March 2020 crash on the SGX, and the February 2020 crash of the
S&P 500.

Crash Start Date End Date

Sep 2018 TWSE mini-crash 1 April 2018 30 April 2019

Mar 2020 TWSE crash 1 August 2019 30 September 2020

Mar 2020 SGX crash 1 August 2019 30 April 2021

Mar 2020 S&P 500 crash 1 June 2019 31 December 2020

Next, for a given market crash and each of its distance matrices, we perform the TDA
filtration process by varying the filtration parameter ε. Two stocks, i and j, are linked if
dij ≤ ε. Therefore, for a given time window at filtration parameter ε, we constructed an
adjacency matrix Aij whose matrix elements are Aij = 1 if dij ≤ ε, and Aij = 0 otherwise.
Using the adjacency matrix, we then computed the degree matrix whose diagonal elements
are

Kii = ki = ∑
j 
=i

Aij, (4)

and whose off-diagonal elements are Kij = 0. Finally, we constructed the graph Laplacian
L(ε) = K − A to obtain its eigenvalues and eigenvectors. Over a judicious choice of
filtration parameters, ε = 0.5, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, we then visualize the spectral
sequence {λi(ε)} for each time window, but analyzed the spectral sequences and Fiedler
vectors for the selected time windows.

4.3. March 2020 TWSE Crash

We start by analyzing the spectral sequences for the March 2020 TWSE crash, which
was said to be caused by the start of the COVID-19 pandemic [39,40]. The complete series
of spectral sequences can be found in Supplementary Figure C1 in the Supplementary
Information. Here, we show in Figure 11 the spectral sequences for only four time windows:
(1) 1 August 2019–31 January 2020, (2) 22 September 2019–22 March 2020, (3) 15 October
2019–15 April 2020, and (4) 1 April 2020–30 September 2020. The first time window is
before the March 2020 TWSE crash, while the fourth time window is after the March 2020
TWSE crash. The March 2020 TWSE crash occurred at the end of the second time window,
and in the middle of the third time window.

From Supplementary Figure C1 in the Supplementary Information, we see that the
spectral sequences changed very rapidly from the 15 September 2019–15 March 2020 time
window (that just missed the March 2020 TWSE crash) to the 22 September 2019–22 March
2020 time window (that first that included the March 2020 TWSE crash). For the first seven
time windows that do not include the March 2020 TWSE crash, their spectral sequences
resemble that of the 1 August 2019–31 January 2020 time window shown in Figure 11a,
which in turn resembles that of a single cluster of points shown in Figure 7 of Section 3.3.1.
For the 21 time windows overlapping the March 2020 TWSE crash, their spectral sequences
are similar to those of the 22 September 2019–22 March 2020 (Figure 11b) and 15 October
2019–15 April 2020 (Figure 11c) time windows. These spectral sequences bear similarities
to those shown in Figure 8 of Section 3.3.2, Supplementary Figures A1 and A2 and Sup-
plementary Information Sections A1 and A2, where we find prominent persistent gaps
near the ends of the spectral sequences. Finally, the last four time windows shown in
Supplementary Figure C1 have spectral sequences similar to the first seven time windows,
as well as Figure 11d, suggesting that the TWSE had recovered from the March 2020 crash.
These observations are consistent with the suspicion by econophysicists that a market crash
is a critical transition. They also suggest that the March 2020 TWSE crash was short, lasting
only for the first two weeks of March 2020 (indeed this is the time to go from the TAIEX
high of 11,321 on 1 March 2020 to the low of 9234 on 15 March 2020), and seen as the
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“V”-shape feature in Figure 10b. They also agree with the picture of a market crash being
the result of the fragmentation of a giant cluster.

 

 

Figure 11. The spectral sequences of the TWSE for ε = 0.5, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0 over the
six-month time windows: (a) 1 August 2019–31 January 2020 (671 stocks), (b) 22 September 2019–22
March 2020 (671 stocks), (c) 15 October 2019–15 April 2020 (655 stocks), and (d) 1 April 2020–30
September 2020 (654 stocks). During the March 2020 TWSE crash, the TAIEX fell from a high of 11,321
on 1 March 2020 to a low of 9234 on 15 March 2020.

For the first seven time windows and the last four time windows, we find a narrow
band of eigenvalues (0 ≤ λ < 10) for the smallest filtration parameter ε = 0.5. This tells us
that at this scale, most of the clusters are small, and therefore the total number of clusters is
comparable to the total number of stocks on the TWSE. The narrow bandwidth at ε = 0.5 is
consistent with only localized random walks on small, disconnected components. On the
other hand, for the 21 time windows whose spectral sequences show prominent gaps, there
is a broad band of eigenvalues (0 ≤ λ < 300) for ε = 0.5. This suggests that at this scale,
there is a broad distribution of cluster sizes, including a few strongly correlated ones with
up to 300 stocks during the market crash. For these time windows, the broad bandwidth
at ε = 0.5 is consistent with the delocalization of random walkers on larger connected
components.

Moreover, before and after the March 2020 TWSE crash, λ1 rose rapidly at ε ≈ 1.3,
whereas during the market crash, λ1’s rapid rise only began at ε ≈ 1.7. This delay in the
rapid rise of λ1 suggests that during the market crash, the gap in correlations between
clusters is 30–40% larger than the standard deviation in the continuous distribution of
correlations within the giant cluster prior to its fragmentation. Indeed, the persistent gap
is most pronounced at ε = 1.6, although in some time windows, this persistent gap can
also be observed at ε = 1.4 or ε = 1.8. Finally, as we elucidate the picture of March 2020
TWSE crash as a strongly correlated giant cluster fragmenting into a few strongly correlated
clusters, let us clarify that this need not involve all stocks. Unaffected stocks then form a

214



Entropy 2023, 25, 846

noisy background, whose effect is to obfuscate the persistent gap. Based on our analysis in
Supplementary Information Section A.5, the persistent gap can nevertheless be identified
from the late rise in λ1. This is indeed what we observed.

From Section 3.4, we understand that when two clusters become first connected by a
thin neck, components of the two clusters have opposite signs in

→
u 1, while components of

the neck have significantly smaller or zero weights. However, as the neck becomes thicker
with increasing ε, components become distributed about zero, and few members of the two
clusters remain distinguishable. With these in mind, let us start our eigenvector analyses
with the time window 1 August 2019–31 January 2020, which was before the March 2020
COVID-19 crash. From Supplementary Figure C2(a), we see that λ0 = 0 is non-degenerate
for 1.2 ≤ ε ≤ 2.0, and λ1 changes most sharply between ε = 1.4 and ε = 1.6. Let us
therefore examine the Fiedler vector

→
u 1 for 1.2 ≤ ε ≤ 1.8. For ε = 1.2, λ1 = 19.538, most of

the Fiedler components have an absolute value of around 10−3, except for one component
whose value is 0.991. To check for non-overlapping distributions that represent Fiedler
components from the two clusters, we therefore limit ourselves to bins between −0.005
and +0.005 to plot high-resolution histograms in Figure 12. The distributions of Fiedler
components at different filtration parameters for this time window are indeed consistent
with there being just one giant cluster in the market before the crash.

    

    

    

Figure 12. Distribution of Fiedler components at different filtration parameters: (first row) (a) ε = 1.2,
(b) ε = 1.4, (c) ε = 1.6, and (d) ε = 1.8 for the 1 August 2019–31 January 2020 time window; (second
row) (e) ε = 1.2, (f) ε = 1.4, (g) ε = 1.6, and (h) ε = 1.8 for the 22 September 2019–22 March 2020
time window; (third row) (i) ε = 1.2, (j) ε = 1.4, (k) ε = 1.6, and (l) ε = 1.8 for the 15 October 2019–15
April 2020 time window, and (fourth row) (m) ε = 1.2, (n) ε = 1.4, (o) ε = 1.6, and (p) ε = 1.8 for the
1 April 2020–30 September 2020 time window.
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While the picture for ε = 1.2 is not clear in Figure 12a, for ε = 1.4 it is clear from
Figure 12b that most of the stocks (with negative components) were organized into a giant
cluster, while most of the rest (with positive components) were organized into a minor
cluster (shown in Supplementary Table G1). As expected, when ε ≥ 1.6 (Figure 12c,d), the
distribution of Fiedler components become unimodal, and centered around zero. Neverthe-
less, in Figure 12d we see that remnants of the two clusters are still visible at ε = 1.8, with
76 components larger than 0.001, and 79 components less than −0.001. The cluster with
79 components is shown in Supplementary Table G1 in the Supplementary Information.

Moving on to the 22 September 2019–22 March 2020 time window (Supplementary
Figure B2(b), which includes the first week of the crash), λ0 = 0 is again non-degenerate
for 1.2 ≤ ε ≤ 2.0, and λ1 now changes most sharply between ε = 1.6 and ε = 1.8. At
ε = 1.2 and ε = 1.4, there is a noticeable gap in the distribution of Fiedler components,
between those that are negative, and those that are positive. The smaller of these groups
are shown in Supplementary Table G1. However, we must be careful interpreting all of
these components as part of the minor cluster, as we can see from Figure 12e,f that some
of these components are close to zero, and might be part of the neck instead. Since λ1
changes most rapidly between ε = 1.6 and ε = 1.8, we therefore expect the distribution of
Fiedler components at ε = 1.6 to be similar to those at ε = 1.4. Indeed, two clusters can be
identified, but there is now a larger neck with close-to-zero components. Based on the small
gap at around −0.001 (Figure 12g), we identified members of the minor cluster, as shown
in Supplementary Table G1. Finally, at ε = 1.8, most of the components have become zero,
suggesting that the neck (566 stocks) has grown to dominate the two clusters. Roughly
100 stocks of the major cluster and 5 stocks of the minor cluster remain distinguishable, as
we can see from Figure 12h. As we can see from Supplementary Table G1, a smaller minor
cluster identified at a given ε is almost perfectly embedded in the larger minor cluster
identified at the preceding or succeeding ε. This self-consistency at different length scales
helps us to reliably identify the two clusters within a given time window.

Moreover, from the spectral sequence of this time window, we see that there is a
pair of nearly degenerate eigenvalues λ1 = 38.693 and λ2 = 46.046 at ε = 1.4. This pair
of eigenvalues came from a larger group of nearly degenerate eigenvalues at ε = 1.2.
Unlike the situation shown in Figure 9, where two smaller clusters merge first before
merging later with a third cluster, having two small eigenvalues suggests the formation
of two thin necks, as shown in Figure 9. When we examine the ratio ri = u1,i/u2,i at
ε = 1.4 (Figure 13(left)), we find a group of 622 components that can be distinguished from
the remaining 49 components. These 622 components contain the major cluster, whose
components have ratios around ri = 1.4. Of the 49 components that do not belong to the
major cluster, 14 has −0.5 < ri < 0.5, and are the most likely candidate for the bridging
cluster shown in Section 3.4.3. From Section 3.4.3, we also understood that components
with very large absolute ratios ri = u1,i/u2,i are members of the necks. Specifically, those
with ri < −2 have been identified alongside the minor cluster at ε = 1.4 and ε = 1.6 in
Supplementary Table G1. The rest are likely members of the neck that link the major cluster
to the bridging cluster, as shown schematically in Figure 14.
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Figure 13. Bar plot of the ratio u1,i/u2,i of components of the eigenvectors
→
u 1 and

→
u 2 associated with

the smallest non-trivial eigenvalues λ1 and λ2 of the graph Laplacian obtained at filtration parameter
ε = 1.4, in (left) the 22 September 2019–22 March 2020 time window, and (right) the 15 October
2019–15 April 2020 time window. In this figure, components between the two red dashed lines are
likely to be members of a bridging cluster.

 

Figure 14. Schematic figure showing the major cluster (blue, 622 components) being linked to
the minor cluster (red, 23 components) through a bridging cluster (green, 14 components) in the
22 September 2019–22 March 2020 time window. In the cyan neck between the blue and green clusters,
there are 25 components. In the yellow neck between the green and red clusters, there are three
components.

Next, let us move on to the 15 October 2019–15 April 2020 time window (Supplemen-
tary Figure B2(c)), which covers both weeks of the crash. In this time window, λ0 = 0 is
non-degenerate over 1.2 ≤ ε ≤ 2.0, while λ1 changes most rapidly between ε = 1.6 and
ε = 1.8. At ε = 1.2, λ1 = 2.979, 651 of the stocks are in the major cluster, while the minor
cluster contains the 4 stocks shown in Supplementary Table G1. At this filtration parameter,
there are no components close to zero. When we go to ε = 1.4, λ1 = 25.758, we find
three sub-distributions of components. The first sub-distribution, containing 625 compo-
nents, represents the major cluster. The second sub-distribution, containing 18 components
close to zero, represents either the neck, or a bridging cluster. The third sub-distribution,
containing the 12 components shown in Supplementary Table G1, represents the minor
cluster. At ε = 1.6, λ1 = 106.97, the sub-distribution centered about zero becomes well
defined. Nevertheless, there are 5 components remaining in the minor cluster, as shown
in Supplementary Table G1. Here, we see that the minor cluster for ε = 1.6 is completely
embedded in the minor cluster for ε = 1.4. Finally, when ε = 1.8, λ1 = 563, nearly all
components are close to zero, but remnants of the major cluster (136 components) and
minor cluster (6 components) can still be seen.
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Just like the 22 September 2019–22 March 2020 time window, in this time window
there is also a pair of nearly degenerate eigenvalues λ1 and λ2. Unlike for the 22 September
2019–22 March 2020 time window, where the near degeneracy occurs only at ε = 1.4, in the
15 October 2019–15 April 2020 time window this near degeneracy can be seen for 1.4 ≤ ε ≤ 1.8.
At ε = 1.4, λ1 = 25.758, λ2 = 34.013, we see from Figure 13(right) 621 narrowly distributed
components associated with the major cluster in ri = u1,i/u2,i. Of the remaining ratios,
11 have absolute values close to zero, and may be associated with the bridging cluster,
while if we set the threshold to ri > 1.0, we find 18 neck components. λ1 and λ2 are also
quasi-degenerate at ε = 1.6 and ε = 1.8, but the bridge and neck components identified
from these two filtration parameters are different from those identified at ε = 1.4.

Finally, let us analyze Fiedler vectors in the 1 April 2020–30 September 2020 time
window, which has no overlap with the March 2020 TWSE crash. As we can see from
Figure 11d, λ0 = 0 is non-degenerate for 1.2 ≤ ε ≤ 2.0, while λ1 changes most rapidly
between ε = 1.4 and ε = 1.6. At ε = 1.2, λ1 = 4.882, we see in Figure 12m that there
is a single distribution of Fiedler components. When ε = 1.4, λ1 = 110.37, we see from
Figure 12n that there are now two sub-distributions of Fiedler components. The first
represents a major cluster, while the second (shown in Supplementary Table G1), extending
from zero to 0.005, probably includes both the neck and the minor cluster. When ε = 1.6,
the larger sub-distribution of Fiedler components is the one about zero (Figure 12o), even
though the remnant sub-distribution associated with the major cluster is still sizeable. The
sub-distribution of the minor cluster (shown in Supplementary Table G1) overlaps with
that of the neck, making it difficult to isolate. Finally, at ε = 1.8, we find a narrow sub-
distribution of Fiedler components about zero (Figure 12p), and two weak sub-distributions
away from zero. The latter represent remnants of the major and minor clusters.

4.4. September 2018 TWSE Mini-Crash

After the detailed analyses shown in Section 4.4, the natural question that comes to
mind is how much of what we have found there is universal, i.e., applies to all market
crashes, and how much of these are peculiar to the March 2020 TWSE crash. To answer
this question, we repeated our spectral sequence and Fiedler vector analyses for two other
market crashes. The first such crash is the September 2018 TWSE mini-crash in this section,
so that we can ascertain universal features of market crashes over at least two crashes on
the TWSE. The second such crash is the March 2020 SGX COVID-19 crash in Section 4.6,
and also Section 4.6 so that we can confirm universal features of the same market crash
(COVID-19 crash) at least across three different markets.

To do this, let us start with the gross features seen in the spectral sequences in Figure 15.
From Supplementary Figure D1 in the Supplementary Information, we see that the spectral
sequences of the first three time windows and the last four time windows resemble that
from a single cluster of data points, whose spectral sequence is characterized by the absence
of persistent gaps. These suggest that the TWSE was in a gapless normal phase prior to the
September 2018 mini-crash, and returned to the normal phase after the mini-crash. For
time windows overlapping the mini-crash, the spectral sequences are characterized by
persistent gaps at ε = 1.4 and/or ε = 1.6. The persistent gaps (appearing over a broad
range of ε) for this mini-crash appear to be weaker than the ones seen for the COVID-19
crash, but they are qualitatively similar. Therefore, a gapped spectral sequence appears
to be a universal feature associated with a gapped market crash phase, even though the
strength of the gap may vary from crash to crash. A closely related (dilation) universal
feature that we can identify from the spectral sequences of the two TWSE crashes is the
filtration parameter value ε at which λ1 changes most rapidly. For both crashes, λ1 rises
sharply between ε = 1.2 and ε = 1.4 in the normal phase, but is delayed till to between
ε = 1.6 and ε = 1.8 in the crash phase. Moreover, during the mini-crash, which lasted
about four months according to the number of spectral sequences with persistent gaps
(agreeing with the “U”-shaped feature seen in Figure 10b), the most pronounced change
occurred when we go from the 1 October 2018–28 February 2019 time window to the
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8 October 2018–8 March 2019 time window, where the clear gap at ε = 1.6 seen in the
former completely disappeared in the latter. Therefore, unlike the COVID-19 crash, where
the transition into the crash phase is sharp but not the transition out of the crash, the
September 2018 TWSE mini-crash shows the opposite behavior, whereby the transition into
the crash phase is not sharp, but the transition out of the crash is.

 

Figure 15. The spectral sequences of the TWSE for ε = 0.5, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0 over the
six-month time windows: (a) 8 April 2018–8 October 2018, (b) 22 August 2018–22 February 2019,
(c) 1 October 2018–15 April 2019, and (d) 1 November 2018–30 April 2019. During the September
2018 TWSE mini-crash, the TAIEX fell from a high of 11,006 on 16 September 2018 to a low of 9489
on 21 October 2018. The TAIEX remained low, reaching 9382 on 30 December 2018, before it started
rising again.

We also analyzed the Fiedler components at different ε over the four selected time
windows associated with the September 2018 TWSE mini-crash. Their histograms are
shown in Figure 16. As in Figure 13, we find the same evolution from bi-modal to unimodal
distributions of Fiedler components as we increase ε. Just as for the March 2020 TWSE
COVID-19 crash, the Fiedler vector points to the existence of a major cluster, comprising
nearly all the stocks in the TWSE, and a minor cluster. The sub-distribution of Fiedler
components associated with this minor cluster is weak in the time windows before and
after the crash, and strong in the time windows overlapping the crash. However, unlike
in the March 2020 COVID-19 crash, where λ1 and λ2 are quasi-degenerate at ε = 1.4,
suggesting the presence of two necks and necessitating the use of the ratio ri = u1,i/u2,i
to identify a bridging cluster between the major and minor clusters, for the September
2018 mini-crash λ1 and λ2 are clearly different in the two time windows containing the
crash, at ε = 1.4. There is also a tri-modal feature in the distribution of Fiedler components
at ε = 1.6 (Figure 16o) in the time window right after the September 2018 mini-crash.
We do not understand the meaning behind this feature, which is also absent from other
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time windows of the September 2018 mini-crash, and all time windows of the March 2020
COVID-19 crash.

   

   

   

   

Figure 16. Distribution of Fiedler components at different filtration parameters: (first row) (a) ε = 1.2,
(b) ε = 1.4, (c) ε = 1.6, and (d) ε = 1.8 for the 8 April 2018–8 October 2018 time window; (second
row) (e) ε = 1.2, (f) ε = 1.4, (g) ε = 1.6, and (h) ε = 1.8 for the 22 August 2018–22 February 2019 time
window; (third row) (i) ε = 1.2, (j) ε = 1.4, (k) ε = 1.6, and (l) ε = 1.8 for the 1 October 2018–1 March
2019 time window; and (fourth row) (m) ε = 1.2, (n) ε = 1.4, (o) ε = 1.6, and (p) ε = 1.8 for the
1 November 2018–1 April 2019 time window.

4.5. March 2020 SGX Crash

For the SGX, we computed spectral sequences for 69 time windows in total, and show
these as Supplementary Figure E1 in the Supplementary Information. We included this
many time windows for the SGX, because the COVID-19 crash on this market has a long
“U”-shape (see Figure 10a), unlike the short “V”-shaped COVID-19 crash on the TWSE (see
Figure 10b). This difference is due to the different COVID-19 pandemic trajectories in the
two regions: where Taiwan managed to keep COVID-19 at bay over nearly the whole of
2020 (hence the “V”-shaped crash), Singapore succumbed to the pandemic and had to enact
strict population health measures starting April 2020 (hence the “U”-shaped crash). To
avoid missing the actual recovery from the crash, we made sure that our spectral sequences
cover the whole “U”-shaped period. Out of these time windows, the first six and the last
39 spectral sequences are reminiscent of the spectral sequence of a single cluster. This
finding on the SGX further supports our universality hypothesis that the gapless normal
phase of a stock market consists of a single undifferentiated cluster, based on our findings
on the TWSE in Section 4.4 and Section 4.5. The remaining 24 spectral sequences were
found to be gapped, suggesting that these 24 time windows overlapped with the March
2020 SGX COVID-19 crash. Based on the Straits Times Index (STI), the SGX reached a high
on 9 February 2020, but according to the spectral sequences the crash only started on or
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after 8 March 2020, and surprisingly returned to normal on or after 15 March 2020. This
tells us that the spectral sequence method is sensitive to the difference between the normal
and crash phases of a stock market, and can therefore be used to time the start and end of
crashes, instead of using the index value.

The dilation feature seen during the September 2018 and March 2020 TWSE crashes is
even more pronounced during the March 2020 SGX crash. This supports our hypothesis
that this dilation feature, which is closely associated with the opening of the spectral gap,
is universal across markets. Just as for the TWSE, λ1 changes most sharply between ε = 1.4
and ε = 1.6 in the normal phase, but between ε = 1.6 and ε = 1.8 in the crash phase of the
SGX. In fact, in Figure 17c, λ1 changes most sharply between ε = 1.8 and ε = 2.0. During
the SGX COVID-19 crash, we found non-persistent gaps appearing at ε = 1.4, 1.6, and 1.8,
which suggest that the size distribution of large persistent clusters is discrete, just like it
was for TWSE. The main difference between the TWSE and the SGX, is the SGX having
between 3 and 6 zero eigenvalues at ε = 1.2.

 

 

 

Figure 17. The spectral sequences of the TWSE for ε = 0.5, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0 over the
six-month time windows: (a) 1 August 2019–31 December 2019, (b) 8 October 2019–8 March 2020,
(c) 8 November 2019–8 April 2020, and (d) 22 February 2020–22 August 2020, and (e) 8 March 2020–8
September 2020, and (f) 8 April 2020–8 October 2020. During the March 2020 STI crash, the STI fell
from a high of 3220 on 9 February 2020 to a low of 2410 on 15 March 2020.
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Moving on, we showed the histograms of Fiedler components over the March 2020
SGX COVID-19 crash in Figure 18. For the (first row) 1 August 2019–31 December 2019
and (last row) 8 April 2020–8 October 2020 time windows, the distributions of Fiedler
components are mostly unimodal, except for ε = 1.6. This agrees with our observation for
both crashes on the TWSE. For the (second row) 8 October 2019–8 March 2020, (third row)
8 November 2019–8 April 2020, (fourth) 22 February 2020–22 August 2020, and (fifth row)
8 March 2020–8 September 2020 time windows, the distributions of Fiedler components are
bimodal, even up to ε = 1.8. Again, this agrees with our observation for both crashes on
the TWSE.

  

  

  

  

  

  

Figure 18. Distribution of Fiedler components at different filtration parameters: (first row) (a) ε = 1.2,
(b) ε = 1.4, (c) ε = 1.6, and (d) ε = 1.8 for the 1 August 2019–1 January 2020 time window; (second
row) (e) ε = 1.2, (f) ε = 1.4, (g) ε = 1.6, and (h) ε = 1.8 for the 8 October 2019–8 April 2020 time
window; (third row) (i) ε = 1.2, (j) ε = 1.4, (k) ε = 1.6, and (l) ε = 1.8 for the 8 November 2019–8
May 2020 time window; (fourth row) (m) ε = 1.2, (n) ε = 1.4, (o) ε = 1.6, and (p) ε = 1.8 for the
22 February 2020–22 August 2020 time window; (fifth row) (q) ε = 1.2, (r) ε = 1.4, (s) ε = 1.6, and
(t) ε = 1.8 for the 8 March 2020–8 September 2020 time window; and (sixth row) (u) ε = 1.2,
(v) ε = 1.4, (w) ε = 1.6, and (y) ε = 1.8 for the 8 April 2020–8 October 2020 time window.
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4.6. March 2020 S&P500 Crash

In addition to emerging markets such as TWSE and SGX, we also investigated the
component stocks of S&P 500 from 1 June 2019 to 31 December 2020. Our target is again the
COVID-19 crash, which occurred between 1 and 8 March 2020 in the S&P 500 according to
the spectral sequences shown in Supplementary Figure F1, compared to 1–15 March 2020
in TWSE and 8–15 March 2020 in SGX. Compared to the March 2020 TWSE crash (whose
beginning was sharp, but whose ending was not) and the March 2020 SGX crash (whose
beginning and ending were both sharp), the beginning and end of the March 2020 S&P
500 crash were both not sharp. In fact, according to conventional indicators, the S&P 500
attained a high of 3380 on 14 February 2020, and a low of 2304 on 20 March 2020.

As expected, the spectral sequence of the S&P 500 stocks is gapless in the normal phase,
and gapped in the crash phase. This suggests strongly that the existence of a persistent
spectral gap distinguishes the crash phase from the normal phase, whether or not the stock
market is emerging or mature. The difference between the S&P 500 (measuring the mature
US markets) and the TWSE/SGX is the extent of the persistent spectral gap (going into
smaller length scales) in the spectral sequences of the S&P 500, compared to those in TWSE
and SGX. For the S&P 500, there is also a persistent description in terms of two clusters. We
suspect this is because of the significant fraction of S&P 500 component stocks are traded
on National Association of Securities Dealers Automated Quotations (NASDAQ), while
the remainder are traded on the New York Stock Exchange (NYSE).

Next, we show the histograms of Fiedler components over the February 2020 S&P 500
COVID-19 crash in Figure 19. In agreement with what we found in the SGX and TWSE, the
distributions of Fiedler components go from bimodal to unimodal as we increase ε. This
transition coincides with λ1 changing most rapidly with ε.

   

   

   

   

Figure 19. Distribution of Fiedler components at different filtration parameters: (first row) (a) ε = 1.2,
(b) ε = 1.4, (c) ε = 1.6, and (d) ε = 1.8 for the 1 June 2019–30 November 2019 time window; (second
row) (e) ε = 1.2, (f) ε = 1.4, (g) ε = 1.6, and (h) ε = 1.8 for the 08 September 2019–08 March 2020 time
window; (third row) (i) ε = 1.2, (j) ε = 1.4, (k) ε = 1.6, and (l) ε = 1.8 for the 15 February 2020–15
August 2020 time window; and (fourth row) (m) ε = 1.2, (n) ε = 1.4, (o) ε = 1.6, and (p) ε = 1.8 for
the 22 June 2020–22 December 2020 time window.
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5. Conclusions

In summary, we explained using a simple raindrop analogy the concept of persistent
structures, and why they are useful as mesoscopic variables for describing the dynamics of
complex systems (for example, market crashes) in terms of continuous and discontinuous
changes. We then drew inspiration from the connection between (1) the symmetries
[A, H] = 0 of a quantum system, and (2) the block-diagonal structure of the Hamiltonian,
leading ultimately to (3) the organization of energy eigenvalues into bands separated by
band gaps, to approach the problem of overlapping communities obtained during the
filtration process in TDA. Instead of trying to identify such communities in real space, we
should therefore look for signatures of community structure in spectral space. For this
work, the graph Laplacian L = K − A (A being the adjacency matrix, and K being the
(diagonal) degree matrix) plays the role of the Hamiltonian.

To check its feasibility, we tested the spectral approach on a series of toy models,
from a single cluster of data points to two or more well-defined clusters of data points,
characterized by gaps of different length scales, in the absence or presence of a noisy
background. We then introduced the spectral sequence as a novel tool to visualize how the
Laplacian spectra of different ε change over increasing filtration parameter ε. For a single
cluster of data points, the spectral sequence is gapless, whereas for multiple well-defined
clusters the spectral sequence contain gaps that persist over a wide range of ε. Connecting
the real-space TDA and the analysis of Laplacian spectra, we proposed for these persistent
gaps to be used as signatures of persistent structures in the data. Spectral gaps that are
persistent with respect to changes in length scale tend to be persistent with respect to
changes in time, and are robust with respect to background noise. We also analyzed the
Fiedler vector

→
u 1 associated with the first non-zero Laplacian eigenvalue λ1 > 0, which

is well-known to contain information on community structure in the data. In the case of
two merging clusters, we confirmed earlier studies that their components have different
signs in

→
u 1, but within each cluster, components have roughly the same value. We also

developed a new understanding that components with significantly smaller (or even zero)
absolute magnitudes are members of the neck, a structure that must be considered as
distinct from the clusters it connects. We also understood for the first time how there can be
near degeneracy between λ1 > 0 and λ2 ≈ λ1, when three clusters are arranged in a linear
configuration, with two necks forming roughly around the same length scales. Members of
the bridging cluster can be distinguished from members of the two necks by examining the
ratios of their components in

→
u 1 and

→
u 2.

Finally, we tested this spectral approach to unravel persistent structures on the daily
prices of 671 stocks of the TWSE, 530 stocks of the SGX, and 504 component stocks of
the S&P 500. Based on the toy model studies, we realized that this approach is ideal
for analyzing topological and geometrical changes in stock markets when they crash
(fragmentation), and also when they recover (agglomeration). Therefore, we identified
two time windows (1 April 2018 to 30 April 2019, and 1 August 2019 to 30 September
2020) associated with two crashes on the TWSE, one time window (1 August 2019 to
30 April 2021) associated with the crash on the SGX, and one time window (1 June 2019 to
31 December 2020) associated with the crash on the S&P 500. We then computed the
Pearson cross correlations Cij between stocks in six-month windows, converted Cij into
pairwise distances Dij for the TDA filtration process, before sliding the time window one
week at a time. We found universally across market crashes and stock markets that (1)
the spectral sequence is gapless (absence of persistent or non-persistent gaps) when the
time window is entirely within the normal phase, (2) the spectral sequence is gapped
(presence of persistent gaps at large length scales) when the time window overlaps with the
market crash phase, (3) the most rapid change in λ1 is delayed in the crash phase relative
to the normal phase, (4) in the normal phase, the distribution of Fiedler components is
predominantly uni-modal, (5) in the crash phase, the distribution of Fiedler components
change from bi-modal to uni-modal at the filtration parameter where λ1 changes most
rapidly. These are all results not previously known.
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Together, our spectral analyses of toy models and real-world stock market data sug-
gests that two clusters A and B do not become a single cluster AB the moment they are
linked by a neck, but continue to retain their distinct identities until their members are
completely absorbed by the growing neck. This can be summarized by the fusion process
A + B → A + n + B → a + N + b → N (= C). Within this new perspective, n → N → N
represents the thickening of the neck, while A → a and B → b represent the absorption
of A and B by the neck. This ternary fusion picture is useful regardless of whether the
fusion is a result of increasing the length scale during the filtration process, or a result
of interactions that bring the two clusters closer to each other over time. In terms of this
ternary fusion process, we can explain many mysteries observed in real-world data that
cannot be explained using only binary fusion processes.

Finally, we explored only the graph Laplacian, its spectrum, and its eigenvectors in this
paper. However, we know that the graph Laplacian is the simplest member of a hierarchy
of Hodge Laplacians, which we plan to explore in our future works.
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Abstract: The global economy cannot be understood without the interaction of smaller-scale economies.
We addressed this issue by considering a simplified economic model that still preserves the basic
features, and analyzed the interaction of a set of such economies and the collective emerging dynamic.
The topological structure of the economies’ network appears to correlate with the collective properties
observed. In particular, the strength of the coupling between the different networks as well as the
specific connectivity of each node happen to play a crucial role in the determination of the final state.

Keywords: econophysics; nonlinear interactions; dynamical systems; complex networks

1. Introduction

Much attention has been devoted to the synergetic behaviors of sets of coupled dynam-
ical systems and their nonlinear interactions. Examples are widely observed, ranging from
biology [1–4], chemistry [5–10], social systems [11,12], and, of course, economy [13–15]. In
all these cases, the collective phenomena observed are more than just the addition of the
individuals, and new collective dynamics emerge.

The structure of the network of connections has shown to be determinant in the
collective phenomena observed. With this manuscript, we plan to show the role played by
the network topology on the synergetic properties observed in the economic models. For
that, we considered a set of simple economic models coupled.

Although there are many models that describe different aspects of an economy, such
as the Harrod–Domar model [16,17], the Solow–Swan model [18], and the Philips curve
model [19], one of the most known models in economics is the Goodwin model [20], which
focuses on predicting salary and employment. This model is based on the very-well-known
Lotka–Volterra model, used to predict the relation between prey and predators [21] in
population dynamic studies. In the Goodwin model, salary plays the role of the predator
whereas employment is the prey, exhibiting periodic behaviors. This model combines
many of the properties of some of the previous models [22] and its equations exhibit a
relatively simple dynamic so that the outcome of coupling several such economies becomes
more apparent.

This simple model has been extended in many different contributions (a summary of
these can be found in [23–25]) aiming to expand its applicability by considering different
scenarios. In these extensions, different dynamics were included and even empirical data
seem to be described. With this manuscript, we stuck to the original version of the model
and only included a minor modification that prevents the appearance of non-physical
divergent solutions. Thus, the long-term divergent behaviors (exponential growths) were
erased in order to analyze the global dynamics in a medium-to-long-term temporal scale.
This guarantees that all the variables do not diverge and also adds more possible solutions
and behaviors to the economies predicted. In this way, the focus of this contribution is
on the collective phenomena arising as several economies interact together, exchanging
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resources in a network. Note that this is particularly relevant nowadays as globalization has
forced economies to interact with each other, but we are not yet in a global world with one
single macroeconomy and thus the network structure and strength play a significant role.

The paper is organized as follows. The methods section presents the Goodwin model
with the modifications introduced and a description of the dynamical behaviors that can be
observed. The second part of the methods section presents the different network topologies
that we considered. The results and discussions of our study are presented in the next
section and the manuscript is ended with some conclusions.

2. Materials and Methods

2.1. Goodwin Model and Corrections

The original Goodwin model is an attempt to describe the behavior of salary and
employment [20,22]. With that purpose, it is necessary to define the following variables:

• c(t) is the capital invested in the production of a good.
• q(t) is the quality of the final product. A linear relation with the capital invested is

assumed, so we can write c(t) = κ·q(t).
• n(t) is the population involved in the production of a good.
• p(t) is the productivity of employees.
• w(t) is the salary that a single subject receives when working in the production of a

good, called unit wage in the following.
• l(t) ≡ q(t)/p(t) is the ratio of quality and productivity. It relates both variables and

provides information about the effectiveness of the jobs from the point of view of the
producers, which we will name employment level.

• u(t) ≡ w(t)/p(t) is the ratio between salary and productivity. We will refer to it as
the salary directly.

• v(t) ≡ l(t)/n(t) is the ratio between the level of employment and the number of
employees, or the employment rate.

The set of Equation (1) describes the original model first introduced by Richard Goodwin [20]:

dp
dt = α p

dw
dt = w(ρ v − γ)

dn
dt = δ n

dc
dt = q(1 − u)

dq
dt = q

(
1−u

κ

)
dl
dt = l

(
1−u

κ − α
)

dv
dt = v

(
1−u

κ − α − δ
)

du
dt = u(ρ v − γ − α)

(1)

As we can see in Equation (1), Richard Goodwin’s original model considers that
population and productivity exponentially grow with time and thus most of the model
variables also tend to infinite for sufficiently long times.

In this set of equations, the variables are those described above, and the parameters
introduced are ρ, γ, κ, α, and δ. Note that ρ and γ already introduce some limitations to the
salary values as they tend to prevent the exponential growth (this is not fully achieved as
the productivity might exponentially grow and thus force the whole system to diverge).
The parameters δ and α will determine how fast productivity and population grow, as they
control the exponential growth in the equations. On the other hand, ρ and γ are parameters
that characterize the time evolution of the unitary salary w and thus the salary u. Finally, ρ
and γ quantify the dependence of the employment on the evolution of the salary, playing
a similar role to that in the previously mentioned Philips curve [19]. Finally, κ is the
relation between capital and quality mentioned above. All these parameters are defined
as positive. Some examples of the dynamical behaviors observed are presented in the
Supplementary Materials.

To avoid the exponential growths observed in the original Goodwin model, we intro-
duced a second-order correction term in the sense of the logistic equation, i.e., when the
values of the variables start to significantly grow, the added terms prevent divergencies by

229



Entropy 2023, 25, 894

assuming a limited number of resources. The new set of equations, which will be used in
this manuscript, is given by

dn
dt = 0

dp
dt = α p

(
1 − p

σ

)
dw
dt = (w − βu)(ρ v − γ)
dc
dt = (q − βv)(1 − λ u)

(2)

where the parameters α and σ control the logistic growth, σ determines the value of the
productivity compatible with the considered economy, and α is the productivity growth
rate. We also introduced the parameters βu and βv, which are related to some physical
constraints in the salary and employment variables that we will discuss in more details
below. λ is another parameter introduced to control the evolution of the capital and avoid
divergencies. Finally, ρ and γ take the same role as in the original model. In addition, as
in the previous model, all the parameters introduced by us were constrained to positive
values. Note that this approach to limiting the exponential growth of the system is the
simplest that can be considered, and it just limits the resources at our disposal.

Supposing that the relation between capital and quality is linear (c(t) = κ·q(t)), the
other variables in the model are then given by the following Equation (3):

dq
dt = (q − βv)

1−λu
κ

dl
dt =

(
l − βv

p

)
1−λu

κ − αl
(
1 − p

σ

)
dv
dt =

(
v − βv

np

)
1−λu

κ − αv
(
1 − p

σ

)
du
dt =

(
u − βu

p

)
(ρv − γ)− αu

(
1 − p

σ

)
(3)

Figure 1 presents numerical simulations of the original Goodwin model (Figure 1a)
and the modified model (Figure 1b), both obtained using an explicit 4th-order Runge–Kutta
integration scheme [26]. It is possible to observe that the oscillatory behavior remains stable
even for long periods of time whereas the original model steadily diverges. Note that the
original Goodwin model in Figure 1a presents an exponential growth of the variables as
time evolves (this is clearly seen in the orange curve, employment). On the other hand,
once the modification is included, the exponential growth is avoided and the oscillatory
behavior can be observed for very long periods of time (notice the orange curve in Figure 1b
that saturates as expected from Equation (3)).

 
(a) (b) 

Figure 1. Comparison between the predictions of the original model and our modification (given by
Equations (2) and (3)). (a) Solution to the equations of the original Goodwin model. Note that the
exponential growth of the productivity (the orange curve), makes the oscillations amplitude of the
other variables diverge. (b) Solution of the modified model. Note that the oscillations remain stable
in time due to the logistic behavior of the productivity variable (in color orange).
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Note that the oscillatory behavior observed is the same as that predicted in the original
Goodwin model; however, in our case, the productivity variable does not diverge and,
consequently, the oscillations remain stable, with time allowing for long-time observations
and thus interactions between different economies.

From now on, we will focus on the behaviors of the variables describing wages (u)
and employment (v) in a case where the productivity is constant with value p = σ for
simplicity, i.e., the productivity for the time considered remains almost constant. Note that
the modified set of equations presents a stable point at p = σ; thus, we assume that the
productivity has reached the expected stationary value and we consider modifications from
this moment. Thus, our set of equations becomes

du
dt = f (u, v) =

(
u − βu

σ

)
(ρv − γ)

dv
dt = h(u, v) =

(
v − βv

nσ

)
1−λu

κ

(4)

2.2. Linear Stability Analysis and Phase Diagrams

In this section and using linear stability analysis [27], we studied the different behav-
iors that the set of Equation (4) exhibit. The system presents two fixed points:(

u1
0 = ρ/γ, v1

0 = 1/λ
)

;
(

u2
0 = βu/σ, v2

0 = βv/nσ
)

(5)

In Equation (5), we recover the fixed point
(
u1

0, v1
0
)

that was already present in the
original Goodwin model, while

(
u2

0, v2
0
)

depends on the new parameters introduced (βu and
βv) and that were not present in the original model. Analyzing the sign of the eigenvalues
ei of the Jacobian matrix for our system, we can classify the different behaviors of the
system. The Jacobian matrix is given by,

∣∣∣J (→x)− eI
∣∣∣ =
∣∣∣∣∣

∂ f (u,v)
∂u − e ∂ f (u,v)

∂u
∂h(u,v)

∂u
∂h(u,v)

∂v − e

∣∣∣∣∣
(u0,v0)

(6)

Thus, the eigenvalues for each fixed point are given by the expressions

(
u1

0, v1
0
)
→ e1

1,2 = ±i
√

ρλ
κ

(
1
λ − βu

σ

)(
γ
ρ − βv

nσ

)
(
u2

0, v2
0
)
→ e2

1 = ρβv
nσ − γ; e2

2 = σ−λβu
σκ

(7)

Analyzing the results of Equation (7), we notice that βu and βv determine the sign of
both eigenvalues for each fixed point, resulting in four different behaviors. Note that the
sign of the eigenvalues determines the stability of each fixed point and thus the dynamics
of the solutions around it. To visualize the different dynamics observed depending on the
value of the parameters βu and βv, we present Figure 2. Here, for the different values of βu
and βv, we present the flow diagrams for the salary (u) and the employment (v). Note that
there are some critical values for the parameters βu = σ/λ and βv = σγn/ρ that signal
a change in the dynamical behavior and thus a bifurcation point. These values mark the
frontier between the different states of our economies.

Figure 3 shows a summary of all the behaviors observed with the modified Goodwin
model, integrating the model equations with some initial conditions, where the parameters
of the model are equal to 1 except for the beta parameters βu and βv. In this case, it is trivial
to see that the bifurcation is located on βu = 1 and βv = 1.

Figure 3a is the temporal evolution of the u and v variables for the model parameters
βu = 0.5 and βv = 1.5. This is an unstable situation and, after some transient, the values of
the variables diverge; thus, it represents a non-realistic situation without equivalent within
the economic context.
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Figure 2. Phase diagram for the modified Goodwin model depending on the parameters (βu and βv).
The black spot in each phase diagram marks the position of the first fixed point

(
u1

0, v1
0
)

(always in
(1, 1)) whereas the red spot marks the second fixed point

(
u2

0, v2
0
)
. Shaded regions correspond to

negative values for u and/or v and thus do not provide solutions with a physical meaning. All the
parameters of the model (including population) are set as equal to 1. The color of the arrows in the
diagram reflects the magnitude of the flow vector in the phase diagram (the colder the color, the
smaller its magnitude, as indicated in the color bar).

Increasing βu above the bifurcation point (at βu = 1) produces a completely different
dynamic that is plotted in the right upper corner in Figure 2 (βu = 1.5 and βv = 1.5).
A counterclockwise center in the flow diagram that translates into a periodic oscillatory
behavior is shown in Figure 3b. This situation corresponds to some cyclic dynamic in
the economy considered. In economic terms, these are solutions with the same economic
meaning as the equivalent predicted by Goodwin in the original model, but with the
variables’ roles swapped, i.e., in Goodwin model, the salary is the predator and employment
the prey, thinking in the analogue of a Lotka–Volterra model, whereas, in the situation
described by Figure 3b, it is the opposite: salary is the prey and employment is the predator,
which is something totally different from the previous ideas held in this type of economic
theory [22], but with economic meaning. Another important detail is that these oscillations
may pass through negative values if the centers are far from the fixed point. However, in
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these situations, the variations in salary and employment would be enormous in small
fractions of time, so these situations are non-realistic. Note that the model proposed is just
an approximation of reality within a certain range of validity. In this case, large values of
the salaries or employment produce non-realistic solutions and thus we should include
additional higher-order terms in the equations if we were to control it. In summary, near
the fixed point, the results describe physically and economically sound situations (within
the range of validity of the model) that will be analyzed in the coming sections.

 
(a) (b) 

 
(c) (d) 

Figure 3. Temporal evolution of the model variables (the salary u and the employment v) for the
four different configurations plotted in Figure 1. (a) Unstable point with βu = 0.5 and βv = 1.5 (note
that the scale in the vertical axis is much larger than those in the others to stress the exponential
behavior of this solution). (b) Counterclockwise (CCW) periodic center with βu = 1.5 and βv = 1.5.
(c) Clockwise (CW) center with βu = 0.5 and βv = 0.5, corresponding to the original solution to the
Goodwin model. (d) Stable point with βu = 1.5 and βv = 0.5. The remaining parameters are set as
equal to 1.

Crossing the bifurcation line below βv = 1, different dynamics are observed. In the
bottom left corner of Figure 2 (βu = 0.5 and βv = 0.5.), a clockwise center is observed that
represents a periodic behavior of the model variables but with completely different period
and geometry, analogous to those oscillations predicted by Goodwin in the original model,
as shown in Figure 3c. In addition, notice that, with this configuration, the other unstable
fixed point prevents these oscillations from crossing into negative values for the variables.

Finally, the bottom right corner of Figure 2 shows the dynamic for βu = 1.5 and
βv = 0.5. Here, the system exhibits a stable fixed point, represented in Figure 3d. The
economic interpretation is straightforward: the economy will tend to stability and, once it
is reached, it remains there without any further dynamic.

From the observation of the phase diagrams in Figure 2, we notice that some other
unstable dynamics can be expected, but we will not focus on them as they correspond to
unrealistic non-physical situations.
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Although the parameters βu and βv were introduced for mathematical reasons, their
meaning in economic terms can be understood based on the dynamics observed. In the
Goodwin model solutions (Figures 2 and 3c), they are directly related to minimum values
for the two variables: wages (u) and employment (v). This is related to economies where
neither the employment nor the salaries can drop to zero. It does not seem a very strong
restriction but, nevertheless, it significantly enriches the range of behaviors observed.

2.3. Network Topologies

In the following, we considered N economies that are interconnected following a given
network structure. We can describe this system using a complex network [28–30] where the
nodes are each of the N economies considered and the links connecting two nodes describe
the existence of an influence relationship between both.

The structure of the interaction network between the different economies considered
is fully encoded in the adjacency matrix [28–30], where aij = 1 if there exists an interaction
between economy i and economy j, and 0 otherwise. Since the interaction between two
economies is mutual, the adjacency matrix must be symmetric; thus, aij = aji. We recovered
the activity of each node by summing up its interactions in what is called the connectivity
degree, or simply degree, ki, for each node.

In this manuscript, we considered different types of networks [28–30] corresponding
to different patterns of influence among the economies:

• A scale-free network (commonly known as Barabasi–Albert). The BA graph mixes
network growth and preferential attachment to generate a power-law connectivity
distribution. In this case, a few of the nodes are connected with many economies
whereas the majority have a significantly reduced number of connections, and a
few of the economies are widely connected whereas most of them only have a few
connections, mostly with those dominating economies.

• A Watts–Strogatz network. The WS graph is built from an initial chain with k nearest
neighbors from which connections are then rewired randomly with a given probability,
creating shortcuts along the network. In this case, economies are just connected with
neighboring ones with an additional probability to connect to far-away economies.
In this configuration, all the economies are connected with the same degree. Most of
the connections are local except for a few long-range connections that still describe a
proximity economy with some attempts to become global.

• Mean field network. All nodes interact with an imaginary node that is just the average
of all the nodes in the network. The specific relationship between all the economies
involved is not clear; nevertheless, they all interact through this imaginary node with
the mean value. This is a global situation where economies are so interconnected that,
finally, they just feel the average among all of them.

The adjacency matrices for all the cases considered were generated using the graph gen-
erators of the Python library networkx (specifically the functions nx.watts_strogatz_graph()
and nx.barabasi_albert_graph()). It is important to mention that we simulated random
networks using a Watts–Strogatz network with p = 1 due to the fact that, in a random
network, the connectivity for each node is also random, which is something we do not
desire. In addition, in this work, we considered that the Watts–Strogatz network has a
value of p equal to 0.05, unless stated otherwise. Examples of the networks used and some
details are shown in the Supplementary Materials (Section S2).

2.4. Economies Connected via a Network

In this section, we present the modifications that were introduced in the model to
account for the influence of the other economies. We considered a set of N economies, each
of them described by the modified Goodwin model presented in Equation (4). Now, the
evolution of the variables for each economy will depend on the internal dynamic but also
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on the values of the variables of the economies directly connected. This is represented by
the following set of equations:

dui
dt =

(
ui − βui

σi

)
(ρivi − γi) + g

N

∑
j=1

aij
(
uj − ui

)

dvi
dt =

(
vi − βvi

niσi

)
1−λiui

κi
+ g

N

∑
j=1

aij
(
vj − vi

) (8)

where i = 1 . . . N denotes each of the N economies considered.
The first term of Equation (8) is given by the internal dynamic of each economy that is

described in Equation (4). However, the second term carries the information of the network.
aij is an element of the adjacency matrix as described in the previous section that equals 1
when the economies i and j are connected and equals 0 when there is no such connection.
The specific shape of the network term is directly derived from Fick’s law, which describes
the tendency to displace the excess from one node to a connected deficitary one. Within the
economic context of the present model, this means that economies with higher wages or
employment rates will influence their connected nodes by raising their equivalent variables.
This, as a first approximation, seems reasonable as the well-being of economies tends to
positively influence those economies connected (and vice versa). If the employment rates
are high in one economy, this will most likely result in an increase in the employability
in the connected economies, as well as the salaries. The simplest way to include this in
the equations is through the term uj − ui, meaning that if the variable uj in the j-node

has a higher value, the variable ui will increase (as the derivative dui
dt > 0). On the other

hand, considering the j-node, the situation is the opposite and
duj
dt < 0; thus, the variable

uj will be reduced. This is also reasonable as large salaries in an economy surrounded
by economies with lower salaries will tend to lower to compensate for the possibility of
moving the economy to those neighboring economies. At the same time, the salaries in
those neighboring economies will tend to rise until some equilibrium is reached.

The parameter g controls the weight of the neighboring economies (the smaller this
term is, the less relevant the network interaction will be). The limiting case with g = 0
corresponds to a set of independent economies that do not interfere with each other. Note
that those nodes connected with a larger number of nodes will experience a stronger
network influence as the number of terms from the summation that are non-null will be
larger. This is also reasonable as those economies that interact with a large number of other
economies (nodes) will also experience a larger influence from them.

The mathematical description of the network presented is the simplest that can be
considered. More complicated interdependencies can be introduced even considering
asymmetric relationships between the economies involved [31,32] but this configuration is
the simplest that still produces some meaningful results. Note that each node receives a
different contribution from the network term as its connectivity might be different.

When a mean field interaction between the economies is considered, the set of equa-
tions presented in Equation (8) becomes

u′
i =
(

ui − βui
σi

)
(ρivi − γi) + g(〈u〉 − ui)

v′i =
(

vi − βvi
niσi

)
1−λiui

κi
+ g(〈v〉 − vi)

(9)

where 〈u〉 and 〈v〉 are the average value over all the considered economies of the u and v
variables, respectively. Note that these equations describe the interaction of each node with
an imaginary node endowed with the average properties of all the nodes described above.

The set of Equation (8) or (9) with N = 50 was solved using an explicit 4th-order
Runge–Kutta scheme [13], properly adding the network term. We used this number of
nodes because the Goodwin model is a macroeconomic model and, in the real world, there
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are not thousands of macroeconomies interacting between them, so a small network is
closer to the types of economies that we are trying to characterize.

3. Results and Discussion

The mathematical model and the main parameters were introduced in the previous
section. In particular, the intrinsic dynamics for each economy are controlled by the values
of βu and βv. On the other hand, we have several parameters controlling the type of
interaction between the different economies. g controls the weight of the network on each
economy and the type of network considered (BA, WS, random, or mean field). These are
the parameters that we analyze below.

3.1. Phase Diagram for a Complex Network Model

Figure 4 summarizes all the behaviors observed for this model. Each panel in the
figure corresponds to a phase diagram where the weight of the network term g and the
connectivity k of the network are varied (with the exception of the BA, where the parameter
is m, which is the number of connections that a node must have when the network is being
created out of a random network; see the Supplementary Materials for details). Sixteen
of such diagrams are presented, each corresponding to a different type of network (WS,
random, BA, and mean field) as we move along the horizontal direction, whereas, when
moving along the vertical direction, we explore different values of the parameters βu and
βv that control the internal dynamic of each economy.

For these parameters, we considered the three dynamical behaviors described in
Figures 2 and 3 that present non-divergent behaviors, namely CW-oscillations or clockwise
oscillations (βu = 0.5 and βv = 0.5), where all the economies exhibit this behavior in
the absence of the network influence; stable point (βu = 1.5 and βv = 0.5), where all
economies are in a fixed steady point in the absence of a network; CCW-oscillations or
counterclockwise oscillations (βu = 1.5 and βv = 1.5), where all economies oscillate in
the absence of a network. The last configuration considered and named as mixed state in
Figure 4 corresponds to a situation where each individual economy has a different value of
βu and βv randomly chosen from the three configurations described above.

The collective behaviors observed are color-coded in Figure 4. Regions in blue denote
those parameter values that result in non-physical configurations (divergent trajectories
mostly). The rest of the collective behaviors are classified depending on the collective behav-
ior of the system variables. For some parameter values (marked in orange), we observe that
all variables converge to a common fixed steady state. Under some other circumstances,
each economy or node in our network converges with time to a different steady state
(marked in green). Two other states are observed involving some transient oscillations in
the process of reaching a stationary state. In red, we mark those parameter values that
produce a solution where all the economies oscillatory synchronize and collectively tend to
a single fixed point (spiral stable state). In addition, those parameter values that induce
several spiral states, different for each node, are marked in purple. Finally, marked in
brown are those parameter values that result in a complicated behavior where each node
follows the dynamics of a fixed point or a stable spiral. For those cases where we obtained
a non-physical solution, we repeated the simulations to discard numerical instabilities.

Note that the effect of the network connectivity is almost negligible for all the cases
considered. The network weight, given by parameter g, on the other hand, determines the
dynamic of the solution.

Four different network topologies were considered, and the results are independent of
them. Only the mean field case (described by (Equation (9)) exhibits a different behavior.
For the three other networks (described by Equation (8)), the salary always goes to the fixed
point predicted by the linear approximation; on the other hand, and for the main field case
(Equation (9)), we observe multiple fixed points different for each node. As we will discuss
later, the fixed point reached by the economies can be related to the specific connectivity
degree of each node.
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Figure 4. Multiple phase diagrams for the relevant variables in our model. Color-coded are marked
the final configurations after the transient for the different values of the relevant parameters consid-
ered. (All other parameters are set equal to 1 as in previous results). Note that for each point in the
phase diagrams multiple simulations were performed in order to assure the result as the specific
network considered depends on the simulation (between 5 and 10 simulations were typically run).

The small number of economies considered (N = 50) might be the reason behind this
lack of sensitivity toward the selected network. A larger number of involved economies
are expected to be more sensitive to the network configuration although, for the present
study, we stuck to smaller numbers that better describe the interaction of a limited number
of macroeconomies.

The internal dynamic of each economy turned out to be determinant in the selec-
tion of the final configuration. It is interesting to note that economies endowed with a
counterclockwise initial condition evolve into a steady state due to the network influence.
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In Figure 5, we present an example for each of the dynamical behaviors represented in
Figure 4. Going from left to right and up to down in Figure 5, the first row presents the
dynamics observed for the two model variables when a mixed state is considered as the
initial condition, many stable spirals (Figure 5a), and a stable point and a spiral (Figure 5b).
In this last case, the fixed point is always (u = 1.5, v = 0.5), and the stable spiral node
is (u = 1, v = 1). In both cases, the final state is a fixed point that is reached via some
temporal non-coherent damped oscillations. Note that even those economies that were
initially already in a steady state experience some oscillations before reaching the stability.

  
(a) (b) 

 
(c) (d) 

  
(e) (f) 

Figure 5. Evolution of the model variables for the different configurations described in Figure 4. The
temporal evolution of the two model variables is plotted when the initial configuration of the nodes
is (a) many stable spirals, (b) a stable point and a spiral, (c) one stable spiral, (d) many stable points,
(e) one stable point and (f) corresponds with a non-physical result. Note that, in (f), the scale in the
vertical axis is significantly larger than in the rest of the figures.

Figure 5c shows the dynamic of the system when all economies converge to a fixed
point after several damped oscillations when the initial state is CW-oscillations. Note
that the cycles (or centers) of the Goodwin model disappear due to the network influence
stabilizing a fixed point. In Figure 5d, all economies steadily move to a fixed point that
changes depending on the particular node (this case will be analyzed in more detail below).

In Figure 5e, all economies exhibit a single fixed point after some transient that does
not involve damped oscillations. Note that this configuration is observed for large values
of g, i.e., when the weight of the connected economies is important. From an economic
point of view, all the economies are so interconnected that the final solution is common to
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all of them; they describe a common global economy. Finally, Figure 5f is an example of
a non-physical solution where all economies diverge to infinity due to the high coupling
with the network. This non-physical solution is observed when the parameter quantifying
the weight of the network (g) is significantly large.

Note that the system becomes more sensitive to the initial conditions for each econ-
omy and the network topology when the network coupling is very strong (cases where
log10 g ≤ −1). When the economies are less coupled, the structure of the network becomes
less relevant. In addition, the oscillatory behavior observed in our solutions is the natural
approach for reaching the stationary solution in our model and it seems a plausible solution
in a more realistic context. However, it is interesting to note that the direct relaxation to the
stationary solution is also a solution in the model (Figure 5d).

In the following sections, we analyze the main collective phenomena observed in the
network of connected economies, specifically the synchronized oscillations of the solutions
in Figure 5c and the relation of the fixed points in employment with the connectivity in the
solutions of Figure 5d.

3.2. Synchronization of the Spiral Solutions

Figures 4 and 5 show that, for some parameter values, all economies may lead to a fixed
value but, during the transient, they may experience synchronized damped oscillations.
We analyze this behavior in this section. Figure 6 shows a summary of the results observed.
Figure 6a shows the evolution of the variable u (salary) for all the economies considered
and the evolution of the variable v (employment) is shown in Figure 6b. Note that, although
the initial values for the simulations are randomly chosen, all the economies synchronize
almost immediately and coherently oscillate. The lower row in Figure 6 (Figure 6c–f)
shows the histograms of the delays between the different economies and model variables
shortly after the beginning of the simulation and at some later stage. Note that, in both
instances, the histogram has a narrow bell-shaped distribution, although the distribution
becomes narrower as time passes and the different economies interact for longer periods
(Figure 6e,f). Figure 6g,h show the evolution of variables u and v when the network
weight is one order of magnitude smaller. In this case, the synchronization is not evident,
and the histograms presented in the following row (Figure 6i–l) show a much broader
distribution (that becomes even broader as time evolves), reflecting the non-coherent state
of synchronization between the economies considered.

(a) (b) 

Figure 6. Cont.
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(c) (d) (e) (f) 

(g) (h) 

(i) (j) (k) (l) 

Figure 6. Synchronization in spiral dynamics. (a,b) Evolution of our economic network variables
for a large network weight (log10 g = −2). The shaded areas are the regions where we will analyze
the local maxima and study the difference in phases between economies. The histograms with the
time delay between all economies are shown in (c) for the u variable in the first shadowed region and
(d) for the v variable in the first shadowed region. The histograms at the end of the simulation are
shown in (e) for the u variable and (f) for the v variable. Evolutions of (g) the employment variable
(u) and (h) the salary variable (v) are shown for a low value of the network weight (log10 g = −3).
The behavior of all the economies is less synchronized as shown in the histograms in the lowest row.
The histograms with the time delays between the economies whose dynamics are plotted in figures
(g,h) are shown in (i) for the u variable in the first shadowed region and (j) for the v variable in the
first shadowed region. The histograms at the end of the simulation are shown in (k) for the u variable
and (l) for the v variable. The network used for this simulation is a WS with k = 15 and p = 0.05.

A narrow distribution reflects that the economies oscillate in synchrony whereas a
wider-spread histogram corresponds to a set of unsynchronized economies. An interesting
parameter for characterizing this is the standard deviation from the mean value, σ. We
analyzed the variation in σ (that, in our context, gives an inverse measurement of the
synchronization degree) as we varied the weight of the network on the dynamics, g.
These results are shown in Figure 7. Note that, as expected, as the weight of the network
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becomes more important, the degree of synchronization among the economies becomes
higher (and thus σ becomes smaller). Figure 7a shows that the variation in g produces
unsynchronous oscillations.

 
(a) (b) 

Figure 7. Dispersion of the economies’ variables as a function of the network weight g. (a) Standard
deviation at the beginning of each simulation. (b) Same magnitude calculated at the end of the
simulation. Error bars show the dispersion of this parameter over 100 runs of the same simulation.

Our results also show some dependence on the average degree of the connectivity for each
type of network considered, but the results are not conclusive. Nevertheless, as they might
help to illustrate the global behavior, we include them in the Supplementary Information.

Different network topologies produce similar results to those in Figure 7 (not shown
in the text).

3.3. Dispersion of the Steady States

Another interesting phenomenon observed in Figures 4 and 5 (specifically, in Figure 5d)
is observed when the economies tend toward a steady value but each economy (node in
the network) reaches a significantly different steady state. This is observed in Figure 8. In
Figure 8a, we can notice that, as the variable salary reaches the same value in all nodes,
the other variable, employment, differs depending on the node (Figure 8b). In order to
enlighten the origin of this deviation, we measured the connectivity of each node (economy)
and plotted the corresponding value of the employment variable at the steady state. The
results are plotted in Figure 8b,c. There is a clear linear dependence between both variables
and thus we conclude that the final value of the variables linearly depends on the node
connectivity. This means that those economies more connected to others will benefit from
larger levels of employment while the salaries will remain unchanged but equal to all
economies in the network.

As in the previous section, when we reduce the value of g, the interaction with
the network becomes weaker, which implies that the steady states merge together and
the distance between them becomes negligible. Note that the results presented in this
section correspond to a random network, but equivalent results are observed with the
other types of networks considered (see the results in the Supplementary Materials). This
lack of sensitivity to the network structure was already expected from Figure 4, where
the effect of the type of network on the type of behavior observed is demonstrated to
be almost null. Note that, from an economic point of view, our results indicate that
increasing the connectivity of each node (economy) results in a rise in the employment
variable as well, meaning that very global economies are more prone to rising salaries in all
economies involved.
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(a) (b) 

 
(c) (d) 

Figure 8. Relationship between connectivity and the stable point. Evolution of (a) variable u, salary,
and (b) variable v, employment, for all the economies in the network. In (b), there is a zoom on
the squared section to better appreciate the distance between the stable points. Dependence of
the employment final state with the node connectivity for (c) a large value of the network weight
(log10 g = −2) and for (d) a smaller value of the network weight (log10 g = −3). All simulations used
a random network with k = 15. The size of the vertical axis is different for each figure to improve
visibility of the results.

4. Conclusions

The modified Goodwin model, which introduces some limiting values for the salary
and employment variables, results in an adequate mathematical description for a simpli-
fied economy and long-time observations. In particular, it prevents divergent solutions.
The analysis of a reduced number of different economies coupled via some network of
connections showed interesting collective properties. The different parameters relevant for
this study were analyzed and the importance of the neighboring economies was stressed.
The specific topology of the network considered appears to be less relevant than expected,
probably due to the small number of economies considered. Nevertheless, the connectivity
of the nodes plays an important role in determining the levels of employment and salary
achieved. The strength of the network coupling also proves to be determinant in controlling
the dynamics. Two phenomena are described in more detail: the synchronous oscillatory
behavior that strongly depends on the strength of the interactions between the nodes of the
network and the dispersion of the final steady states that is determined by the connectivity
degree of each node. The economic descriptors of each economy are strongly influenced
by the other economies connected. It is interesting to note the case of strongly coupled
economies that result in a global improvement of the model variables.

It is important to note that, although the model describing each economy is a simple
one that lacks the complexity of the real economies, the aim of this contribution focuses on
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the synergetic behavior of a collection of economies interconnected. In fact, the existence of
a network topology reflects the fact that we are not in a global fully interconnected economy
and allows us to examine the role of the different parts of the structure on the variables
describing each economy. Within the structure described here, it is possible to imagine
modifications of the present model for a more realistic description of the reality. In any
case, the basic consequences derived from our contribution remain valid, i.e., the network
structure formed by the different economies strongly influence the dynamic of the whole
economic system.

In summary, we can conclude that the interactions between economies, rather than
being negligible, may become the source of the dynamic for the entire system, and that the
structure of the network also plays a significant role in the collective behavior.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/e25060894/s1.
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Abstract: Market uncertainty has a significant impact on market performance. Previous studies
have dedicated much effort towards investigations into market uncertainty related to information
asymmetry and risk. However, they have neglected the uncertainty inherent in market transactions,
which is also an important aspect of market performance, besides the quantity of transactions
and market efficiency. In this paper, we put forward a concept of transaction entropy to measure
market uncertainty and see how it changes with price. Transaction entropy is defined as the ratio
of the total information entropy of all traders to the quantity of transactions, reflecting the level of
uncertainty in making successful transactions. Based on the computational and simulated results,
our main finding is that transaction entropy is the lowest at equilibrium, it will decrease in a shortage
market, and increase in a surplus market. Additionally, we make a comparison of the total entropy
of the centralized market with that of the decentralized market, revealing that the price-filtering
mechanism could effectively reduce market uncertainty. Overall, the introduction of transaction
entropy enriches our understanding of market uncertainty and facilitates a more comprehensive
assessment of market performance.

Keywords: market uncertainty; transaction entropy; market performance; price filtering mechanism;
willingness price

1. Introduction

The concept of the market holds great significance in economics and serves as a
fundamental basis for research of economics [1]. Understanding the mechanisms by which
markets function has profound implications for decision making, policy formulation, and
economic development. The research on market primary functioning has long been focused
on two key aspects: price formation and market efficiency.

In the context of market price, this is determined by the interaction between sellers and
buyers. In a perfect competitive market, the market price is deemed to be at the cross point
of the supply and demand curves. Therefore, the factors that influence these curves, such
as the willingness of the market participants and information dissemination, have impacts
on the level of the market price. Regarding market efficiency, market surplus is usually
used to measure it. Market surplus represents the total welfare generated by transactions
between sellers and buyers. An increase in market surplus signifies an improved efficiency
in market transactions and a more optimal allocation of resources.

However, most analyses of price formation and market efficiency are typically con-
ducted under the assumption of ideal conditions, without accounting for the uncertain-
ties faced by the participants in a market. Several studies have verified the existence of
uncertainties in market transactions [2,3]. During an actual transaction process, each par-
ticipant has limited access to information and cannot obtain complete knowledge about
the counterparty’s information or the overall market situation. This inherent imperfection
in information significantly influences the decision making and behavior of both parties
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involved, thereby increasing transactional uncertainty, which subsequently impacts market
prices and market surplus. Therefore, understanding the mechanism of price formation
and improving market efficiency have become the cornerstones of economic analyses,
and we contend that incorporating uncertainty into a market can not only provide a
more accurate description of market performance, but also enrich our understanding of
market functioning.

Financial markets serve as the primary focus of market uncertainty analyses. In
financial markets, the market participants make investment decisions based on expectations,
which inherently carry a certain level of uncertainty. Therefore, uncertainty is a common
and essential aspect of financial markets. These uncertainties, in turn, exert negative
effects on market information efficiency [4]. To enhance market efficiency, it is crucial to
understand and measure financial market uncertainty [5]. Information entropy is commonly
used to measure such a kind of uncertainty, which is developed from information theory [6].
As the amount of available information increases, the uncertainty decreases, resulting in a
decrease in entropy. Conversely, when there is less information and a higher uncertainty,
this entropy increases [7].

Firstly, as Eugene Fama argued, when uncertainty arises in financial markets, it is
challenging for participants to assess and respond to information accurately, resulting in
price volatility [8,9]. The uncertainty arising from market volatility is closely related to
fluctuations in unpredictable asset prices, highlighting the dynamic and uncertain nature
of price movements, which can significantly impact investment decisions and the overall
market sentiment. To measure the market uncertainty related to price volatility, various
variants of entropy have been proposed based on information entropy. Claudiu Vinte
introduced the approach of cross-sectional intrinsic entropy to estimate the uncertainty in
stock markets [10]. This approach takes into account the trading volume and price move-
ments of various assets, allowing for a more holistic understanding of market dynamics.
As the understanding of market volatility gets deeper, some researchers have recognized
its transmission effect, which can give rise to various forms of market uncertainty within
the same classification. Thomas Dimpfl employed transfer entropy to quantitatively assess
the transmission of volatility between different financial markets [11]. Understanding this
transmission of volatility can be crucial for investors and policymakers in making informed
decisions and conducting effective risk management.

Furthermore, uncertainty in portfolio selection is related to investors’ asset allocation.
Investors aim to achieve objectives through the rational allocation of different types of
assets. However, there are randomness and fuzziness factors in markets that prevent
investors from fully predicting the returns and values of assets, which leads to uncertainty
in portfolio selection [12,13]. Philippatos and Wilson were among the first to apply the
concept of entropy to portfolio selection [14]. They proposed a mean entropy approach
to measure the uncertainty in the asset allocation process. Their pioneering research shed
light on the importance of considering uncertainty in portfolio management, leading to a
paradigm shift in how investors make decisions about asset allocation. Building upon their
work, more generalized forms of entropy, such as incremental entropy, were formulated.
Compared to the traditional portfolio selection theory, the theory based on incremental
entropy emphasizes that there is an optimal portfolio for a given probability of return [15].
Xu et al. introduced the concept of hybrid entropy and utilized it to measure the asset risk
caused by both randomness and fuzziness [16]. Using information entropy to measure the
level of uncertainty in portfolio selection can effectively assist investors in evaluating and
optimizing their asset allocation strategies.

Finally, uncertainty in the option-pricing process is related to the impact of uncertain
factors such as underlying asset price volatility and interest rates. Options are financial
instruments whose value and returns depend on the price movements of the underlying
assets and other factors. Les Gulko introduced the entropy pricing theory (EPT), which can
provide valuation results similar to the Sharpe–Lintner capital asset-pricing model and the
Black–Scholes formula [17]. His research was also extended to stock option pricing [18]
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and bond option pricing [19], using the EPT to measure collective market uncertainty. The
EPT model demonstrates simplicity and user-friendliness, aligning with the principles of
the Efficient Market Hypothesis [5]. Based on the previous analysis, it is evident that infor-
mation entropy is a comprehensive tool for measuring the uncertainty in financial markets.
In comparison to traditional tools, it provides a better reflection of these uncertainties that
exist in financial markets.

Although much attention has been paid to the uncertainty in financial markets, it is
worth noting that there are other forms of uncertainties that exist across various markets.
Information asymmetry is an important factor that leads to quality uncertainty [20,21],
which may lead to issues such as adverse selection [22,23]. Additionally, there is economic
policy uncertainty (EPU) present in the market, referring to the impact of exogenous
shocks related to economic policies that introduce unpredictability and uncertainty into
the market [24]. Lots of empirical studies have shown that EPU shocks can lead to stock
market turbulence [25,26]. These uncertainties are not limited to financial markets, and
they can actually occur in all kinds of markets.

All the uncertainties mentioned above are important and have indeed been extensively
studied in the literature. However, it should be noted that there is another significant
type of uncertainty that has not received sufficient attention. This particular form of
uncertainty stems from the mismatch between the quantities of desired exchanges in
market transactions. In a market where buyers and sellers engage in trading activities,
an equilibrium is achieved when the quantity supplied equals the quantity demanded.
However, in reality, markets often operate in a disequilibrium state, where the quantities
supplied and demanded are not equal with each other. This condition implies that traders
may face uncertainty in their transactions. In this paper, we focus on this specific type of
uncertainty and aim to put forward a metric to measure and analyze it.

Based on the foregoing analyses, the current applications of entropy in measuring the
uncertainty caused by incomplete information, as well as its utilization in characterizing
asset portfolios and risk assessment in financial markets, does not provide a comprehensive
understanding of the mechanisms of market operation. In particular, there is no equivalent
concept of entropy to express the uncertainty of participants’ trading in the market. Thus,
we come up with the concept of transaction entropy to represent the uncertainty of market
trade. We investigate how this transaction entropy changes with price. The results show
that the equilibrium market has the lowest entropy. Additionally, we also compare the
total entropy between centralized and decentralized markets, where the key distinction lies
in the presence of a price-filtering mechanism. The result shows that the total entropy is
lower in a centralized market than that in a decentralized market. This finding highlights
the effectiveness of price filtering in reducing market uncertainty and emphasizes the
importance of integrating a price-filtering mechanism in the trading process to ensure
market transaction stability.

The contributions of this paper can be summarized as follows: (1) the proposal of
a concept of “transaction entropy” to measure the level of uncertainty in the process of
transactions. By introducing this concept, we are able to better understand and quantify
market uncertainty, providing a new perspective for in-depth analyses of the mechanism of
market function; (2) the addition of an alternative metric for market performance based on
the existing framework of market function analyses. Through investigating the variation in
transaction entropy with respect to price changes, we find that the state of market equilib-
rium not only corresponds to the highest volume of transaction and the maximum market
surplus, but also the lowest entropy; (3) a comparison of the levels of total entropy between
centralized and decentralized markets, revealing that the presence of a price-filtering mech-
anism enhances successful transactions and reduces market uncertainty; (4) a comparison
of computational and simulation results in terms of various aspects, including the quantity
of transactions, market surplus, transaction entropy, and the total entropy in centralized
and decentralized markets, to verify the theoretical analysis; and (5) a clarification of the
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limitations of traditional market equilibrium analyses, while emphasizing the importance
of transaction uncertainty.

The remaining sections of this paper are organized as follows. Section 2 formulates
the functions of supply and demand based on the concept of willingness price. In Section 3,
we analyze market performance, including transaction quantity, market surplus, and trans-
action entropy, using the rationing rate. Additionally, we compare the total entropy in
centralized and decentralized markets and discuss policy implications based on the com-
parison results. Section 4 presents the simulation settings and results, demonstrating the
generating process of each variable that characterizes market performance. In Section 5, we
discuss the importance of market transaction uncertainty by highlighting the shortcomings
of the Walrasian general equilibrium and Marshall partial equilibrium approaches. We
also discuss the plausible applications of transaction uncertainty analyses in real-world
scenarios. Section 6 draws the conclusions.

2. The Expression of Demand and Supply with Willingness Price

A partial equilibrium analysis (PEA) is a widely used tool for understanding market
performance. It argues that supply and demand collectively represent two sides of traders
in a market, making it simple to analyze the consequence of their interaction by tracing
the equilibrium point and social welfare implications [27]. However, the PEA also needs
to be improved, since it fails to clearly identify how sellers and buyers constitute supply
and demand curves correspondingly. To solve this problem, Wang and Stanley introduced
the concept of willingness price and formulated supply and demand functions to restate
the PEA in a goods market [28]. The major advantage of this approach is that the laws of
supply and demand can be derived directly, and the efficiency of market equilibrium can
be strictly proved.

In this paper, we follow their approach to describe the supply and demand in a goods
market. We assume that each trader is willing to make a trade of one unit of goods and has
a willingness price before participating in the trade. For one seller, their willingness price is
defined as the minimum price that they are willing to sell one unit of goods. On the other
side, the willingness price of a buyer is defined as the maximum price that they are willing
to spend for one unit of goods. Supposing that a seller with a willingness price vs meets a
buyer with a willingness price vb, their deal can be made only if vb ≥ vs is valid. Although
we cannot identify all traders’ willingness prices in real markets, we know that they exist
there and govern whether a deal can be made or not.

As all participants’ willingness prices are exogenously given, the willingness prices of
sellers and buyers must have a distribution correspondingly. It is reasonable to assume that
willingness prices spread over the domain of (0, +∞). This spread can be characterized by
probability density functions, fs(v) and fB(v) for sellers and buyers, respectively. Suppos-
ing that the numbers of the sellers and buyers are given exogenously, denoted as NS and NB,
respectively, then we can use Fs(v) = Ns × fs(v) and FB(v) = NB × fB(v) to characterize
such distributions. From the normalization condition, we have the integrals of Fs(v) and
FB(v) over the whole region of willingness prices, which are Ns and NB, respectively,

∫ ∞

0
Fs(v)dv = Ns, (1)

∫ ∞

0
FB(v)dv = NB. (2)

For any one seller, given a market price of p, they will make their choice by comparing the
willingness price and market price, that is to say, the necessary condition for the seller to
sell one unit of goods can be expressed as

p ≥ vS. (3)

Otherwise, the seller will withdraw their offer.
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Equation (3) implies that only the sellers whose willingness price is not greater than
the actual market price are willing to sell their goods. Combining (1) and (3), we can obtain
the supply function with a given market price QS(p), which can be written as

QS(p) =
∫ p

0
Fs(v)dv. (4)

The above rationale can also be applied to derive the demand function. For a buyer, only if
his willingness price vB is higher than or equal to the market price p, will he buy one unit
of goods in a market, i.e.,

p≤ vB. (5)

Otherwise, he will give up on his purchase. Combining (2) and (5), we can obtain the
demand function with a given market price QD(p) of the market, which is given by,

QD(p) =
∫ ∞

p
FB(v)dv. (6)

As is well known, there are many factors that can affect the supply and demand in a
market. From the expressions of supply and demand given by Equations (4) and (6), the
implicit governing factor of supply and/or demand is the willingness prices of the market
participants. Thus, we can infer that most relevant factors take their effects through the
willingness prices of sellers and buyers. As a result, any change in any variable that impacts
these willingness prices will have an impact on the supply and demand of the goods. In
addition, the extent of a market determines the total quantities of the goods demanded and
supplied, which also has an impact on the supply and demand functions.

Another important inference of supply and demand functions is that we can prove the
laws of supply and demand by taking a derivative of these two formulas. The first deriva-
tives of the supply and demand functions can be expressed, respectively, as the following,

dQS
dp

= Fs(p) > 0, (7)

dQD
dp

= −FB(p) < 0. (8)

The results show that the relationship between the quantity supplied and the market price
is positive. In other words, the higher market price, the more goods supplied in the market.
On the contrary, the relationship between the quantity demanded and the market price is
negative. Fewer goods are demanded as the price rises.

The interaction between supply and demand determines the equilibrium price level
and quantity of transactions. Combining Equations (4) and (6), we can obtain the equilib-
rium price p = p∗.The equilibrium transaction quantity T∗ can be derived directly, which
can be expressed as,

T∗ =
∫ p∗

0
Fs(v) dv =

∫ ∞

p∗
FB(v)dv. (9)

Figure 1 illustrates the supply and demand curves in a commodity market. The supply
curve is upward sloping, and the demand curve is downward sloping. The cross-point of
these two curves specifies the market equilibrium, which corresponds to the equilibrium
quantity and market-clearing price of the market.
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Figure 1. A simplified diagram of supply and demand curves in a market. The shortage region is
marked in yellow color, while the surplus region is in green color.

3. The Market Performance with Formulated Supply and Demand Functions

In this section, our primary focus is on evaluating various aspects of market perfor-
mance using the newly formulated supply and demand functions. Specifically, we analyze
three key dimensions: transaction quantity, market surplus, and market uncertainty caused
by a quantity mismatch of the supply and demand in a disequilibrium market. To quantify
this uncertainty, we propose the concept of transaction entropy, which is derived from
information entropy.

3.1. The Quantity of Transactions

Supply and demand represent two parties of a goods market, and their interaction
determines not only the market price, but also the quantity of transactions. In this section,
we set the market price as being given exogenously, and investigate how transaction
quantity is determined by supply and demand as the price varies.

The state of a market depends on the level of given price. The market is in equilibrium
when the price makes the market clear. Otherwise, the market is in disequilibrium. This
disequilibrium can be divided into two cases, one is shortage and the other is surplus.
When the price is lower than the equilibrium level, it corresponds to a state of shortage,
where there is more quantity demanded than the quantity supplied in the market. When
the price is higher than the equilibrium level, it corresponds to a state of surplus, where
there is more quantity supplied than the quantity demanded in the market. As shown
in Figure 1, the regions of shortage and surplus are marked in yellow color and green
color, respectively.

According to the short-side principle, the realized quantity of transactions is deter-
mined by the short side. The short side refers to the trading party with fewer willing
exchanges, and those with more are at the long side. At equilibrium, the quantity supplied
is equal to the quantity demanded. In this case, the quantity of realized transactions T∗

given by Equation (9) is equal to the quantity supplied and demanded.
In a shortage market, the quantity demanded exceeds the quantity supplied. Therefore,

the quantity of realized transactions is determined by the quantity supplied. The expression
of the realized quantity of transactions in a shortage market TST(p) can be expressed as,

TST(p) =
∫ p

0
Fs(v)dv p < p∗. (10)

For a surplus market, the quantity demanded is less than the quantity supplied. In contrast,
the quantity of realized transactions in a surplus market TSP(p) can be written as follows,

TSP(p) =
∫ ∞

p
FB(v)dv p > p∗. (11)
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Based on the preceding analyses, the transaction quantity in the various states of a market
can be given by,

T(p) =

⎧⎪⎨
⎪⎩

∫ p
0 Fs(v)dv p < p∗,∫ p∗

0 Fs(v)dv =
∫ ∞

p∗ FB(v)dv p = p∗∫ ∞
p FB(v)dv p > p∗.

, (12)

Figure 2 shows the computational results of the relationship between transaction quantity
and market price based on Expression (12), represented by the blue line. Obviously, the
quantity of transactions increases with an increase in market price when p < p∗, and
decreases when p > p∗. The quantity of transactions reaches its maximum when the
market price attains its equilibrium level.

 

Figure 2. The relationship between transaction quantity and market price. The blue line represents
the computational results, while red dots denote the simulation results. The participants’ willingness
prices and market prices are in the range of [2,18], and the market reaches equilibrium at a price of
p∗ = 10. For further details about the simulation settings, see the section of Simulation Results.

3.2. Market Surplus
3.2.1. The Rationing Rates

According to the short-side principle, we know that all the participants at the long
side are willing to make transactions, nevertheless, some of them cannot achieve their
desired outcome. Thus, we define the rationing rate as the ratio of the quantity of actual
transactions to the quantity of desired exchanges. The sellers’ and buyers’ rationing rates
can be used in the following analysis of market surplus and transaction entropy. Their
expressions (Gs and GB) are given as follows, respectively,

Gs =
T

QS
, (13)

GB =
T

QD
. (14)

It is obvious that Gs and GB are in the range of [0, 1]. The quantities supplied and
demanded will change with a variation in the market price. Therefore, the level of rationing
rate will be altered as the market price varies. When the market price equals the equilibrium
one, the rationing rates of either sellers or buyers equal one. Thus, we obtain,

Gs(p∗) = GB(p∗) = 1. (15)

In the shortage region, i.e., p < p∗, all sellers can fulfill their willing exchanges, where
only a portion of buyers can successfully match with the sellers and achieve their desired
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transactions. As a result, the sellers’ rationing rate is one, while the buyers’ rationing rate
would be less than 1. Thus, we obtain,

Gs(p) = 1, (16)

GB(p) < 1. (17)

Meanwhile, with an increasing market price, there are more commodities supplied and less
demanded. The rationing rate of sellers remains constant with the increase in price, while
the rationing rate of buyers increases. We then obtain,

dGs(p)
dp

= 0, (18)

dGB(p)
dp

> 0. (19)

In contrast, the above rationale can also be applied to the surplus region, where p > p∗.
The rationing rate of sellers is lower than 1, and the buyers’ rationing rate is one. Then,
we obtain,

GS(p) < 1, (20)

GB(p) = 1. (21)

The relationship between the rationing rate and market price in a surplus market can also
be derived. In this case, as the market price increases, sellers are less likely to obtain their
rations, because the quantity supplied increases while the quantity demanded decreases.
Meanwhile, the rationing rate of the buyers will not change. The derivatives of the rationing
rates of sellers and buyers have the following properties,

dGs(p)
dp

< 0, (22)

dGB(p)
dp

= 0. (23)

Figure 3 depicts the dependence of these rationing rates on market price. As shown in
this figure, when a market is in a shortage, the rationing rate of buyers is less than one,
whereas the rationing rate of sellers is equal to one. In contrast, the rationing rate of sellers
is smaller than 1, while the buyers’ rationing rate equals one when a market is in surplus.
When a market is in equilibrium, the rationing rates of either the sellers or buyers are 1.

3.2.2. The Formulation of Market Surplus

Market surplus, used to measure market efficiency, is another essential component of
traditional market performance analyses. The surplus of one seller (buyer) can be defined
as the difference between the actual (willingness) price and the willingness (actual) price.
In the transactions of a goods market, only a portion of participants will be able to realize
their willing exchanges, and a surplus will be generated. Therefore, it is reasonable to take
rationing rates into account when formulizing the surplus of a market.

For sellers, given a market price p, the total realized surplus of these sellers (Z sr) in
the market could be calculated as follows,

Zsr(p) =
∫ p

0
Fs(v)(p − v)Gs(p)dv. (24)
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On the other side, given a market price p, the total realized surplus of the buyers (Z Br) in
the market could be given by,

ZBr(p) =
∫ ∞

p
FB(v)(v − p)GB(p)dv. (25)

The total realized market surplus for a price Zr(p) is the sum of them, i.e.,

Zr(p) =
∫ p

0
Fs(v)(p − v)Gs(p)dv +

∫ ∞

p
FB(v)(v − p)GB(p)dv. (26)

Taking the first derivatives of Equation (26), the expression of the relationship between the
derivation of surplus and market price can be expressed as,

∂Zr(p)
∂p =

∫ p
0 Fs(v)Gs(p)dv −

∫ ∞
p FB(v)GB(p)dv

+
∫ p

0 Fs(v)(p − v) ∂Gs(p)
∂p dv +

∫ ∞
p FB(v)(v − p) ∂GB(p)

∂p dv.
(27)

Combining Equations (4)–(6), (13) and (14), Equation (27) can be rewritten as,

∂Zr(p)
∂p

=
∫ p

0
Fs(v)(p − v)

∂Gs(p)
∂p

dv +
∫ ∞

p
FB(v)(v − p)

∂GB(p)
∂p

dv. (28)

When the market is in a shortage, we can obtain the following expression by combining
Equations (18), (19) and (28),

∂Zr(p)
∂p

> 0. (29)

When the market is in surplus, we can obtain the following expression by combining
Equations (22), (23) and (28),

∂Zr(p)
∂p

< 0. (30)

Figure 4 depicts the relationship between market surplus and market price. From this
figure, we can find that the market surplus increases when p < p∗ and decreases when
p > p∗. When the market is at equilibrium, the market surplus attains its maximum.

 

Figure 3. The relationship between rationing rates and market price. The green line and red dots
represent the computational and simulation results of Gs(p), respectively, while the orange line and
blue dots are computational and simulation results of GB(p), respectively. For details about the
simulation settings, see the section of Simulation Results.
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Figure 4. The relationship between market surplus and market price. The blue line represents the
computational results, while red dots are the simulation results.

3.3. Market Uncertainty

Except for traditional market performance, which focuses on transaction quantity
and market surplus, we also consider market uncertainty as an additional dimension of
market performance.

3.3.1. Transaction Entropy

Information entropy is a commonly used tool for measuring the level of disorder
and uncertainty, and its extension has been widely applied in the fields of economics and
finance [5,29,30]. In this section, we introduce a new kind of information entropy, named
transaction entropy, to characterize market uncertainty and investigate how transaction
entropy changes as market price varies.

To figure out the information entropy of one participant, we need to identify the
transaction procedure, which is shown in Figure 5. At first, the participant has to make
sure whether they satisfy the price-filtering mechanism given by Equations (3) and (5). At
this stage, there are only two filtering results for the participants: remain in or exit the
market. The exiting participants refer to ones whose willingness prices does not satisfy
the condition of trade in the market, while the remaining participants refer to those who
satisfy the trading conditions. It is worth noting that it is possible to fail in the trade for the
remaining participants. Only the traders in the short side can make a deal.

 
Figure 5. The flow chart of the transaction process for one participant’s trade in a market.

In one word, the possibility of the participant making a deal is uncertain. Therefore,
we can use the information entropy proposed by Shannon to present the uncertainty of the
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trader’s transaction in the market [4]. The definition of information entropy for individual
traders H(E) can be written as,

H(E) = −[E ∗ lnE + (1 − E) ∗ ln(1 − E)], (31)

where E is the possibility of a successful trade. It should be noted that the possibility of
a successful trade in this case is the rationing rate, referred to in the former subsection.
Therefore, the respective information entropy of one seller Hs and one buyer HB can be
given by, respectively,

Hs(p) = −[Gs(p) ∗ lnGs(p) + (1 − Gs(p)) ∗ ln(1 − Gs(p))], (32)

HB(p) = −[GB(p) ∗ lnGB(p) + (1 − GB(p)) ∗ ln(1 − GB(p))] (33)

We assume that a trader is willing to make an exchange with one unit of goods,
so Equations (32) and (33) can also present the information entropy of their willingness
exchange quantity. The willingness exchange quantities of the remaining sellers and
buyers are denoted as QS and QD. Combining the supply and demand functions given by
Equations (4) and (6), we obtain the total information entropy TS as follows,

TS =
∫ p

0
Fs(v)Hs(p)dv +

∫ ∞

p
FB(p)HB(p)dv. (34)

From Equations (16) and (17), we find that the rationing rate of sellers Gs(p) = 1 and
rationing rate of buyers GB(p) < 1 when p < p∗. As a result, we can derive that Hs(p) = 0
and HB(p) 
= 0 directly from Equations (32) and (33). The total information entropy of
the market equals the information entropy of buyers. When p > p∗, the rationing rate of
sellers Gs(p) < 1 and the rationing rate of buyers GB(p) = 1 is based on Equations (20)
and (21), so HB(p) = 0, Hs(p) 
= 0. In this case, the total information entropy of the whole
market equals the information entropy of the sellers, which can be obtained from Equation
(34). The rationing rates of the sellers and buyers are equal to one when p = p∗, given by
Equation (15), and the information entropy of the sellers and buyers is equal to zero. Thus,
Equation (34) can be rewritten as,

TS =

⎧⎪⎨
⎪⎩
∫ ∞

p FB(v)HB(p)dv p < p∗

0 p = p∗∫ p
0 Fs(v)Hs(p)dv p > p∗.

(35)

The expression indicates that the resulting information entropy contains the contri-
butions of all the actual transactions. To eliminate the effect of the market scale on the
information entropy, we define the transaction entropy generated by one transaction to
measure the market performance. Then, the transaction entropy takes the following form,

S =
TS
T

=

⎧⎪⎪⎨
⎪⎪⎩

HB(p)
Gs(p) p < p∗

0 p = p∗
Hs(p)
GB(p) p > p∗.

(36)

For the sake of simplicity, we denote that G(p) = min{Gs, GB}. When the market price
is lower than the equilibrium price, the minimum rationing rate between the sellers and
buyers is that of the sellers. When the market price is higher than the equilibrium level, the
minimum rationing rate is that of the buyers. Then, Equation (36) can be transformed into
the following form,

S = − [G(p) ∗ lnG(p) + (1 − G(p)) ∗ ln(1 − G(p))]
G(p)

. (37)
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It is obvious that the level of transaction entropy S is non-negative. According to L’Hospital’s
rule, the entropy tends to be positive infinity when the market price tends to positive infinity
or zero. That is to say,

lim
p→0

S = lim
p→0

ln(
1

G(p)
− 1) = +∞, (38)

lim
p→+∞

S = lim
p→+∞

ln(
1

G(p)
− 1) = +∞. (39)

Taking the first derivation of Equation (37), we can obtain,

∂S
∂p

=
G′(p)
G2(p)

∗ ln(1 − G(p)). (40)

When the market price is lower than the equilibrium one, the relationship between the
transaction entropy and market price is negative, which can be expressed as,

∂S
∂p

< 0. (41)

When the market price is greater than the equilibrium one, the transaction entropy and
market price have a positive relation, which can be presented as,

∂S
∂p

> 0. (42)

Figure 6 presents the results of the relationship between the transaction entropy and market
price. From the figure, we can see that the slope is downward when p < p∗, while it
is upward in the case of p > p∗. Moreover, the single equilibrium transaction entropy
corresponds to zero when p = p∗.

 

Figure 6. The dependence of transaction entropy on market price. The blue line represents the
computational results, while the red dots represent the simulation results. When the market is in
equilibrium, the transaction entropy is zero, indicating the absence of transaction uncertainty in
the market.

3.3.2. Total Entropy in Centralized and Decentralized Markets

In this section, we redirect our focus from analyzing the entropy generated by one
transaction (S) to examining the total entropy (TS) within two distinct market structures: a
centralized market and a decentralized market. The difference between these two markets
is the presence of price filtering or not. A centralized market can be regarded as having
transactions with price filtering, while a decentralized market has transactions without
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price filtering. By comparing the entropy in these two market types, we can reveal the role
of price filtering in mitigating market uncertainty.

Firstly, we examine the total entropy in a centralized market. The centralized market
is characterized by the presence of a central authority or intermediary that sets one order
book to collect the bid–ask prices of traders, thereby facilitating all trading activities within
the market [31,32]. It is worth noting that, in our previous analysis of transaction entropy,
we assumed that a given market price serves as the reference condition for transactions,
which is consistent with the key assumption of the centralized market. Therefore, we can
conduct an analysis of the total entropy in a centralized market based on the existing results
from the previous sections.

For the sake of simplicity, we make the following assumptions: (1) the number of sellers
is equal to that of buyers, denoted as N; (2) the willingness prices of the sellers and buyers
are in the range of [a, b], and both a and b are positive; and (3) the supply and demand
functions are linear. With these assumptions, we can easily obtain FS(v) = FB(v) = k, where
k is a constant variable. As for the total entropy, considering the foregoing assumptions,
we can rewrite Equation (35) as follows,

TS =

⎧⎪⎨
⎪⎩
∫ b

p FB(v)HB(p)dv a < p < p∗;
0 p = p∗;∫ p

a Fs(v)Hs(p)dv p∗ < p < b.
(43)

Additionally, we can express the supply and demand functions in the centralized market,
denoted as QSC(p) and QDC(p), respectively, as follows:

QSC(p) =
∫ p

a
FS(v)dv = k(p − a), (44)

QDC(p) =
∫ b

p
FB(v)dv = k(b − p). (45)

Taking the first derivations of (44) and (45), we obtain the following results,

Q′
SC(p) = Fs(p) = k, (46)

Q′
DC(p) = −FB(p) = −k. (47)

By substituting Equations (13), (14), (32) and (33) into Equation (43), the expression of the
total entropy can be rewritten as,

TS =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−
[

QSC(p)lnQSC(p) + (QDC(p)− QSC(p))ln(QDC(p)− QSC(p))
−QDC(p)lnQDC(p)

]
a < p < p∗;

0 p = p∗;

−
[

QDC(p)lnQDC(p) + (QSC(p)− QDC(p))ln(QSC(p)− QDC(p))
−QSC(p)lnQSC(p)

]
p∗ < p < b.

(48)

To clarify the concavity of the total entropy, we can differentiate Equation (48) based
on Equations (46) and (47). The results show that lim

p→a
TS′ = +∞, lim

p→p∗−
TS′ = −∞,

and lim
p→p∗+

TS′ = +∞, lim
p→b

TS′ = −∞, where TS′ is the derivative of TS. Moreover, it can be

observed that the second derivative of TS is negative, which is presented in Appendix A,
indicating a concave shape. There are three price levels corresponding to the total entropy
being down to zero, that is, p = a, p = b,and p = p∗.

Then, we turn our attention to an exploration of the total entropy in a decentralized
market. The decentralized market operates without a centralized authority or intermediary,
enabling participants to engage in direct transactions with one another [33]. The key
characteristic of a decentralized market is the random matching of sellers and buyers for
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one period at a time, along with anonymous pairwise meetings involving bargaining [34,35].
The transaction process in the decentralized market is illustrated in Figure 7.

Figure 7. The random matching between sellers and buyers in a decentralized market. The orange
circles represent sellers, and the blue circles represent buyers, each having his willingness price.

In this decentralized and random trading environment, every trader has an opportu-
nity to engage in trading with one of the counterparty. A transaction will only be made if
the buyer’s willingness price surpasses the seller’s willingness price; otherwise, the trade
will not take place.

In order to make a comparison between the levels of total entropy in different markets,
we keep the core assumptions presented in the centralized market. We suppose that the
traders in the market only trade once at a time with one unit of goods in a random way. The
probability of a successful transaction for a buyer with a willingness price of v′ is the ratio
of the number of sellers with a willingness price lower than v′ to the total number of sellers.
Similarly, the probability of a successful transaction for a seller with a willingness price of
v′ is the ratio of the number of buyers with a price higher than v′ to the total number of
buyers. Therefore, the respective expressions for the probability of a successful transaction
for a seller (E s) and a buyer (EB) with a willingness price of v′ are as follows,

Es =

∫ b
v′ FB(v)ν∫ b
a FB(v)ν

, (49)

EB =

∫ v′
a Fs(v)ν∫ b
a Fs(v)ν

. (50)

At this time, the total entropy in the decentralized market with random matching TSde is
the sum of the buyers’ entropy and sellers’ entropy, which can be expressed as,

TSde =
∫ b

a FS(v)dv ∗ HS(ES) +
∫ b

a FB(v)dv ∗ HB(EB)

=
∫ b

a FS(v) ∗ HS(v)dv +
∫ b

a FB(v) ∗ HB(v)dv
(51)

The result shows that the total entropy in the decentralized market with random matching
is a constant variable, and the detailed calculations can be found in Appendix B. This
constant entropy can be expressed as,

TSde = k(b − a). (52)

This result indicates that the total entropy is closely related to the market scale in this market,
with the willingness prices of sellers and buyers not changing due to the assumption of
traders only trading once at a time.
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3.3.3. Comparison of Total Entropy in Centralized and Decentralized Markets

By investigating the characteristics of centralized and decentralized markets, it is
obvious that the most prominent difference between these two market structures lies in
the role of price in market transactions. In a centralized market, the difference between
the willingness price and market price acts as a criterion for sellers and buyers to enter the
market. Conversely, in a decentralized market, there is no market price to guide the market
participants, and they trade by random matching. Therefore, the decentralized market can
be seen as operating without price filtering.

By comparing the different levels of total entropy in centralized (TSce) and decen-
tralized markets (TSde), we can shed light on the role of price filtering in the transaction
uncertainty of a market. As discussed earlier in the analysis of the centralized market, the
total entropy exhibits a symmetrical, double-humped, downward profile. Therefore, there
exists two price levels at which the total entropy reaches its maximum. These price levels
can be derived by solving the equation for the derivative of the total entropy with respect
to price, i.e., TS′(p) = 0. The expressions for the resulting prices corresponding to the
maximum entropy are as follows, and the detailed derivation can be found in Appendix C,

p1 =

(
5 −

√
5
)

b +
(

5 +
√

5
)

a

10
, p2 =

(
5 +

√
5
)

b +
(

5 −
√

5
)

a

10
, (53)

By substituting Equation (53) into Equation (48), we can obtain the maximum total entropy
in the centralized market (TS ce

max
)

as follows,

TSce
max =

k ∗ (b − a)
2

∗ ln

(
5 +

√
5
)

(
5 −

√
5
) . (54)

Comparing Equations (52) and (54), we can find that the total entropy of the decentralized
market surpasses that of the centralized market for all prices. This result indicates that
there is a higher uncertainty in transactions within a random-matching market compared
to transactions with price filtering. Thus, it is evident that the filtering mechanism plays an
effective role in reducing the transaction uncertainty and ensuring successful trading in the
centralized market. Figure 8 illustrates the computational results of the total entropy in
the centralized and decentralized markets. The double-humped curve is the total entropy
in the centralized market, and the horizontal line on the top is the total entropy in the
decentralized market.

Based on the computational and simulation results of the total entropy in centralized
and decentralized markets, we can conclude that the price-filtering mechanism plays an
effective role in reducing market uncertainty. This yields a direct suggestion for policymak-
ers to mitigate market uncertainty, that is, to make the market price public information
during the process of transactions between buyers and sellers.

However, how to form a proper market price is a key challenge for policymakers.
If the willingness prices of the market participants are available, as commonly occurs
in stock markets, a bid–ask mechanism can generate market prices continuously. When
the willingness prices are private information, governments could set a market price
to regulate markets. However, the possibility that the exogenously set market price is
exactly equal to the equilibrium one is so low that market disequilibria are inevitable. As a
result, transaction uncertainty during the trading process will present, i.e., the transaction
entropy comes out. In this case, the traders on the “long side,” have to face transaction
uncertainty in the market. As a response, they will adjust their bargaining prices during
the transaction process to fulfill their willingness to trade until the market price converges
to the equilibrium, where the transaction uncertainty is minimized.
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Figure 8. The comparison of the total entropy between centralized and decentralized markets. The
green and black lines represent the computational results of centralized and decentralized markets,
respectively, while the blue dots and red dash line indicate the simulation results of total entropy
in centralized and decentralized markets, respectively. It is observed that the total entropy of the
decentralized market is much higher than that of the centralized market at any market price.

In summary, in order to form a public market price when the willingness prices of
participants are available, a bid–ask mechanism can work out. Oppositely, when these
willingness prices are private, the market participants should be allowed to collectively
form a market price by a competitive bargaining process. This self-organized process
enables the market price to converge towards the equilibrium one. Although the resulting
market price fluctuates over time, transaction uncertainty could be mitigated effectively by
this way.

4. Simulation Results

Based on the computational results and theoretical analyses presented above, we
develop an agent-based model in this section to simulate the interactions between buyers
and sellers in a market and their exchange outcomes. This market system comprises N
buyers and N sellers. By enabling them to make transactions, we can observe how some key
variables in this market, including the transaction quantity, market surplus, and transaction
entropy, change with market price.

At the beginning, we set N = 200, and each trader is endowed with a willingness
price before trading in the market. The willingness prices of these buyers and sellers are
randomly generated within the range of [2,18], following a uniform distribution. To make
the simulations meaningful, we set the market price in the model to vary within the range
of [2,18]; otherwise, no transactions will occur. By following the change in market price, we
can observe the trading behavior of all the traders and the overall market dynamics.

We first perform simulations of a centralized market. The price was set to increase
gradually with an increment of 0.5 every step for the simulations, resulting in a total
of 33 simulation results corresponding to market prices in the range of [2,18]. With a
given market price, buyers and sellers can compare this with their own willingness prices
and decide whether they participate in the potential trade or not. Following the rules
given by Equations (3) and (5), only the screened participants have a chance to make
transactions. According to the short-side principle, some participants may not be able to
make a successful deal. The actual quantity of transactions is determined by the short side.
Given the initial setup, the simulation results for how the quantity of transactions depends
on the market price are plotted as red dots in Figure 2.
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To estimate the possibility of successful trades for participants, we conducted 100 ran-
dom transactions between screened buyers and sellers during the simulation process.
Hence, the probability of successful trades for each participant could be computed as a ratio
of the number of successful trades to 100 times. Subsequently, by calculating the average
ratio of the successful transactions of all the screened buyers, we could obtain the buyers’
rationing rate with the given market price. Similarly, by calculating the average ratio of
the successful transactions of all the screened sellers, we obtained the sellers’ rationing
rate corresponding to the given market price. In Figure 3, the red and blue dots represent
the simulation results of the rationing rates of the sellers and buyers, respectively. By
comparing the rationing rate of the buyers with that of the sellers for each market price, we
could further obtain the minimum rationing rates for all given market prices.

Moreover, each successful transaction in the trading process contributes to the market
surplus from all the screened participants in once matching. To enhance the reliability
of the estimation of the total market surplus, we repeated the random matching of the
screened buyers and sellers 20,000 times and took the average as the value of the market
surplus for each market price. All the simulation results are represented by the red dots in
Figure 4.

Furthermore, for each participant who entered the market through price filtering, we
obtained the probability of successful transactions for 100 times of random matching. Based
on the calculations of probability for all participants, we could obtain the total entropy for
the market. We then performed 200 repetitions of such a calculation of the total entropy and
obtained its average value. The simulation results of the total entropy for all market prices
are plotted as the blue dots in Figure 8. Then, we could obtain the transaction entropy by
dividing the total entropy by the quantity of market transactions. The simulation results of
the transaction entropy for all market prices are represented by the red dots in Figure 6.

For the simulation of the entropy in a decentralized market, we followed a similar
process as that for obtaining the simulation results of the total entropy in a centralized
market. In this kind of market, there is no price-filtering mechanism, so sellers and buyers
are directly matched randomly. We first computed the possibility of successful transactions
in the market for each participant and then obtained each agent’s information entropy
accordingly. By summing up all the agents’ information entropy, we could obtain the total
entropy in the market. We took an average of the total entropy by performing 200 simula-
tions, which is plotted as a dash line in Figure 8. From all the figures mentioned above, we
can see that the simulation results are in a high accordance with the computational ones,
showing that the theoretical analyses are verified by such an alternative way.

5. Discussion

Market equilibrium is a fundamental concept in economic analyses, and its research
involves two primary theories: the Walrasian general equilibrium theory and Marshallian
partial equilibrium theory. The Walrasian general equilibrium theory assumes that there
is an auctioneer who acts as an information center during the trading process. Prices
are gradually adjusted in response to changes in supply and demand until equilibrium is
achieved across all markets. However, the existence of the fictional Walrasian auctioneer has
been criticized for its inconsistency with reality [36,37]. In contrast, the Marshallian partial
equilibrium theory has been widely accepted by economists in market analyses with supply
and demand curves. It focuses on individual markets and takes producers and consumers
as the market participants, who are matched in a reverse rank during transactions [38,39].
This reverse rank matching refers to willingness bids to buy being typically arranged from
high to low in the order book, and willingness asks to sell being arranged from low to high.
This way of matching implies that the information of traders’ willingness prices is public,
leading to transparent transactions and the absence of uncertainty in these transactions. As
a result, the concept of transaction entropy is not applicable in this case. However, except
for certain call auction markets, the willingness prices of traders are private information in
most markets. Therefore, the partial equilibrium theory has limited applications.
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In this paper, we argued that traders’ willingness prices are private information, and
the transaction process can be depicted as a random matching of the market participants
in the market. Specifically, in a centralized market, the price maker can just know who
has entered the market after setting the market price, but is not aware of the willingness
prices of the existing traders. Likewise, in a decentralized market, the willingness prices of
traders, which guide them to make decisions, are not known by each other, whether they
have successfully made a deal or not. Therefore, we can see that inherent uncertainty exists
in actual transactions due to the unavailability of traders’ willingness prices. It is necessary
to introduce the concept of transaction entropy to characterize this market uncertainty
when willingness prices are private information.

Although our work is primarily a theoretical analysis, our findings can be extended to
practical applications in various scenarios. Such applications involve many real markets,
with stock markets serving as a prime example. In a stock market, the bid–ask mechanism
dominates the trading and the market equilibrium can be obtained from the bid–ask prices
posed by the market participants, without any transaction uncertainty.

However, stock markets often encounter situations of market disequilibrium, espe-
cially when they attain their upper limit or lower limit, leading to transaction uncertainty.
The traders would have their responses to this uncertainty, which, in turn, exert significant
effects on the market. In normal conditions, when market participants become aware of
the presence of uncertainty, they actively adjust their bargaining prices during the bidding
process to achieve market-clearing prices. Therefore, transaction uncertainty can enhance
traders’ sensitivity to market conditions, facilitating more astute investment strategies and
accelerating the convergence to an efficient market.

In contrast, in an extreme situation, transaction uncertainty can trigger intense re-
sponses and impose negative effects on the market. On one hand, the transaction uncer-
tainty caused by a shortage may engender false prosperity and asset bubbles in the market.
Investors, driven by dramatic uncertainty, may engage in excessive speculation, artificially
inflating stock prices. However, such a prosperity bubble is unsustainable and could even-
tually burst, resulting in severe market downturns and financial losses for investors. On the
other hand, the transaction uncertainty resulting from a market surplus can lead to market
downturns and even cause market panic and crashes. The stock market circuit breakers
witnessed during the COVID-19 pandemic are a spirited instance of this. When the market
experiences substantial declines and its trading activities exceed the predefined thresholds,
a trading halt is automatically executed, with the intention of preventing further market
collapse. However, this circuit breaker can exacerbate short-term market panic, intensifying
investors’ concerns about market instability and risks.

In conclusion, in order to maintain market stability and ensure the positive develop-
ment of the financial system, we should consider the impacts of transaction uncertainty on
markets when formulating risk mitigation measures.

6. Conclusions

Following the statistical approach from Wang and Stanley [28], in which the concept
of willingness price was introduced to formulate supply and demand functions, as well
as market surplus in a goods market, we expanded the metrics of market performance by
introducing a new kind of information entropy to measure the transaction uncertainty in a
disequilibrium market.

The first metric of market performance is the realized quantity of transactions. Given a
market price in the centralized market, the realized quantity of transactions can be derived
from the supply and demand functions. According to the short-side principle, the quantity
of transactions is governed by the quantity supplied when the market is in a shortage,
while when the market is in a surplus, the realized quantity is governed by the quantity
demanded. When the market is at equilibrium, the quantity of transactions is determined by
the cross-point of the supply and demand curves. We find that the quantity of transactions
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reaches its maximum at equilibrium, and it will decrease when the market price departs
from the market-clearing point to a shortage or surplus.

The second metric is market surplus, which is a traditional index of market efficiency.
In the calculation of realized market surplus, the rationing rate is indispensable, which is
defined as the ratio of the actual transaction quantity to the desired one. Sellers and buyers
have their rationing rates, which are dependent on the market status. It can be proved
that the realized market surplus is at its highest when the market is at equilibrium, since it
increases in a shortage and decreases in a surplus.

We argue that transaction uncertainty is a new dimension of market performance. To
measure this kind of uncertainty, we first introduced transaction entropy to reflect the level
of uncertainty in individual transactions. When a market is at equilibrium, the transaction
entropy is zero. Otherwise, we will have positive transaction entropy when a market is
in disequilibrium. It has a decreasing trend in a shortage, but an increasing trend in a
surplus. The results indicated that there is no transaction uncertainty at equilibrium, and
disequilibrium leads to a higher transaction uncertainty. We then made a comparison
of the total entropy in centralized and decentralized markets and found that it is lower
in a centralized market than a decentralized market. This means that the price-filtering
mechanism plays a key role in reducing market uncertainty.

Finally, we argue that market uncertainty is necessary in analyzing market perfor-
mance, since willingness prices are private information. Traditional approaches to market
equilibrium assume that information of the willingness prices of traders is available, and
traders engage in reverse rank matching when they make transactions. However, these
assumptions are unrealistic, and the willingness prices of traders can only guide them to
choose whether to enter market or not. Once they have entered a market, they are randomly
matched to trade with each other, which must incur uncertainty in transactions.
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Appendix A. The Derivation of Concavity of Total Entropy in the Centralized Market

As shown in Equation (49), the total entropy when a < p < p∗ can be expressed as:

TS = −
[

QSC(p)lnQSC(p) + (QDC(p)− QSC(p))ln(QDC(p)− QSC(p))
−QDC(p)lnQDC(p)

]
.

Taking the first derivation of Equation (49), which can be expressed as:

TS′ = −
[
Q′

SC(p)(lnQSC(p)− ln(QDC(p)− QSC(p)))
+Q′

DC(p)(ln(QDC(p)− QSC(p))
−lnQDC(p))]

= Q′
SC(p)(ln(QDC(p)− QSC(p))− lnQSC(p))

−Q′
DC(p)(ln(QDC(p)− QSC(p))

−lnQDC(p))
= FSC(p)(ln(QDC(p)− QSC(p))− lnQSC(p))

+FBC(p)(ln(QDC(p)− QSC(p))
−lnQDC(p))

= 2k ∗ ln(QDC(p)− QSC(p))− k ∗ lnQSC(p)− k ∗ lnQDC(p).

(A1)
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Then, we can identify the concavity of the TS function by taking the second derivative
as follows,

TS′′ = − (2k)2

QDC(p)−QSC(p) −
k2

QSC(p) +
k2

QDC(p)

= − 1
(QDC(p)−QSC(p)) ∗ QSC(p)∗QDC(p) ∗ [(2k)2

∗QSC(p) ∗ QDC(p) + k2 ∗ QDC(p)
∗(QDC(p)− QSC(p))− k2 ∗ QSC(p)
∗(QDC(p)− QSC(p))]

= − k2

(QDC(p)−QSC(p))∗QSC(p)∗QDC(p)

∗(QSC(p) + QDC(p))2 < 0.

(A2)

Therefore, TS is a concave function when a < p < p∗. With the similar derivation process,
we can deduce that there are two concave curves symmetric about p = p∗ within the
interval [a, b].

Appendix B. The Total Entrpy in the Decentralized Market

To facilitate obtaining an integral expression of Equation (51), we split it into two
components, that is, the sellers’ total entropy TSde

S =
∫ b

a FS(v)HS(v)dv and the buyers’

total entropy TSde
B =

∫ b
a FB(v)HB(v)dv. Combining this with Equation (31), we derive the

buyers’ market entropy first, which can be expressed as,

TSde
B =

∫ b
a FB(v)(−1)[EBlnEB + (1 − EB)ln(1 − EB)]ν

= −k
∫ b

a ( v−a
b−a ln v−a

b−a +
b−v
b−a ln b−v

b−a )ν

= − k
b−a

∫ b
a (v − a)ln(v − a) + (b − v)ln(b − v)

−(b − a)ln(b − a)ν
= − k

b−a

∫ b
a (v − a)ln(v − a) + (b − v)ln(b − v)dv + k(b − a)ln(b − a).

(A3)

Supposing x = v − a, t = b − v , Equation (A3) can be rewritten as:

TSde
B =

(
− k

b−a

)
[
∫ b−a

0 xlnxdx +
∫ b−a

0 tlntdt]
+k(b − a)ln(b − a)

= 2
(
− k

b−a

)∫ b−a
0 xlnxdx + k(b − a)ln(b − a).

(A4)

where 2
∫ b−a

0 xlnxdx = (b − a)2ln(b − a)− 1
2 (b − a)2. Therefore, the final total entropy of

the buyers in the market with random matching can be derived as:

TSde
B =

(
− k

b−a

)[
(b − a)2ln(b − a)− 1

2 (b − a)2
]

+k(b − a)ln(b − a)
= 1

2 k(b − a).
(A5)

Then, we can derive the final total entropy of the sellers’ total entropy through a similar
derivation process, given by:

TSde
S =

1
2

k(b − a) (A6)

Summing up Equations (A5) and (A6), we obtain the final expression of the total entropy
in the decreolization market, as shown in Equation (52).

Appendix C. The Prices Which Correspond the Maximum Total Entropy in the

Centralized Market

According to Appendix A, we can know that the condition of the maximum total
entropy in the centralized market is TS′ = 0. According to Equation (A2), we obtain:

(QDC(p)− QSC (p))2 = QDC(p) ∗ QSC(p). (A7)
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Combining (A7) with Equations (45) and (46), we can obtain the price when the total
entropy is maximized, which is:

p1 =
(5 −

√
5)b + (5 +

√
5)a

10
, a < p < p∗. (A8)

With the similar derivation process, we obtain:

p2 =
(5 +

√
5)b + (5 −

√
5)a

10
, p∗ < p < b. (A9)

References

1. Buzzell, R.D. Market Functions and Market Evolution. J. Mark. 1999, 63, 61–63. [CrossRef]
2. Jurado, K.; Ludvigson, S.C.; Ng, S. Measuring Uncertainty. Am. Econ. Rev. 2015, 105, 1177–1216. [CrossRef]
3. Sniazhko, S. Uncertainty in Decision-Making: A Review of the International Business Literature. Cogent Bus. Manag. 2019,

6, 1650692. [CrossRef]
4. Bouattour, M.; Martinez, I. Efficient Market Hypothesis: An Experimental Study with Uncertainty and Asymmetric Information.

Financ. Contrôle Strat. 2019, 22, 4. [CrossRef]
5. Zhou, R.; Cai, R.; Tong, G. Applications of Entropy in Finance: A Review. Entropy 2013, 15, 4909–4931. [CrossRef]
6. Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [CrossRef]
7. Gulko, L. The Entropic Market Hypothesis. Int. J. Theor. Appl. Financ. 1999, 2, 293–329. [CrossRef]
8. Fama, E.F. Efficient Capital Markets: A Review of Theory and Empirical Work. J. Financ. 1970, 25, 383–417. [CrossRef]
9. Fama, E.F. Efficient Capital Markets: II. J. Financ. 1991, 46, 1575–1617. [CrossRef]
10. Vint,e, C.; Ausloos, M. The Cross-Sectional Intrinsic Entropy—A Comprehensive Stock Market Volatility Estimator. Entropy 2022,

24, 623. [CrossRef]
11. Dimpfl, T.; Peter, F.J. Analyzing Volatility Transmission Using Group Transfer Entropy. Energy Econ. 2018, 75, 368–376. [CrossRef]
12. Huang, X. A Review of Uncertain Portfolio Selection. J. Intell. Fuzzy Syst. 2017, 32, 4453–4465. [CrossRef]
13. Huang, X. Portfolio Analysis: From Probabilistic to Credibilistic and Uncertain Approaches. In Portfolio Analysis: From Probabilistic

to Credibilistic and Uncertain Approaches; Springer: Berlin, Germany, 2010; pp. 117–156.
14. Philippatos, G.C.; Wilson, C.J. Entropy, market risk, and the selection of efficient portfolios. Appl. Econ. 1972, 4, 209–220.

[CrossRef]
15. Ou, J. Theory of portfolio and risk based on incremental entropy. J. Risk Financ. 2005, 6, 31–39. [CrossRef]
16. Xu, J.P.; Zhou, X.Y.; Wu, D.D. Portfolio Selection Using λ Mean and Hybrid Entropy. Ann. Oper. Res. 2011, 185, 213–229. [CrossRef]
17. Gulko, L. Dart Boards and Asset Prices: Introducing the Entropy Pricing Theory. Adv. Econom. 1997, 12, 237–276.
18. Gulko, L. The entropy theory of stock option pricing. Int. J. Theor. Appl. Financ. 1999, 2, 331–355. [CrossRef]
19. Gulko, L. The entropy theory of bond option pricing. Int. J. Theor. Appl. Financ. 2002, 5, 355–383. [CrossRef]
20. Akerlof, G.A. The Market for “Lemons”: Quality Uncertainty and the Market Mechanism. Q. J. Econ. 1970, 84, 488–500. [CrossRef]
21. Stiglitz, J.E. Information and the Change in the Paradigm in Economics. Am. Econ. Rev. 2002, 92, 460–501. [CrossRef]
22. Wankhade, L.; Dabade, B.M. Analysis of Quality Uncertainty Due to Information Asymmetry. Int. J. Qual. Reliab. Manag. 2006, 23.

[CrossRef]
23. Wankhade, L.; Dabade, B. Quality Uncertainty Due to Information Asymmetry. In Quality Uncertainty and Perception. Contri-butions

to Management Science; Physica: Heidelberg, Germany, 2010; pp. 13–25.
24. Baker, S.R.; Bloom, N.; Davis, S.J. Measuring Economic Policy Uncertainty. Q. J. Econ. 2016, 131, 1593–1636. [CrossRef]
25. Kang, W.; Ratti, R.A. Oil Shocks, Policy Uncertainty and Stock-Market Returns. J. Int. Financ. Mark. Inst. Money 2014, 26, 305–318.

[CrossRef]
26. Arouri, M.; Estay, C.; Rault, C.; Roubaud, D. Economic Policy Uncertainty and Stock Markets: Long-Run Evidence from US.

Financ. Res. Lett. 2016, 18, 136–141. [CrossRef]
27. Wigle, R. Partial Equilibrium Analysis: A Primer; Wilfrid Laurier University: Waterloo, ON, Canada, 2004.
28. Yougui, Wang; H. E. Stanley. Statistical approach to partial equilibrium analysis. Phys. A Stat. Mech. Appl. 2009, 388, 1173–1180.

[CrossRef]
29. Carruthers, B.G. From uncertainty toward risk: The case of credit ratings. Socio-Econ. Rev. 2013, 11, 525–551. [CrossRef]
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