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Basel • Beijing • Wuhan • Barcelona • Belgrade • Novi Sad • Cluj • Manchester



Editors

Wei-Shih Du

Department of Mathematics

National Kaohsiung Normal

University

Kaohsiung

Taiwan

Luigi Muglia

Department of Mathematics

and Computer Science
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Preface

This Special Issue of Axioms pays tribute to Professor Hong-Kun Xu’s significant contributions

and details important recent advances in the theory, methods, and applications of nonlinear analysis,

optimization theory, fixed point theory, and algorithms for nonlinear problems. It comprises original,

creative, and high-quality research papers that inspire advances in fixed point, coincidence point, and

best proximity point theory with applications, set-valued analysis, nonlinear and variational methods

for ODEs and PDEs, non-smooth analysis and optimization, inverse and ill-posed problems, convex

analysis, matrix theory, and their applications.

The Guest Editors have made every effort to ensure the success of this Special Issue and hope that

these efforts will be rewarded. The Guest Editors organized a comprehensive review process for each

submission based on the journal’s policy, instructions, and guidelines. We received 44 submissions

and, after a comprehensive peer-review process, only 16 high-quality articles were accepted for

publication (the acceptance rate is around 36%). The accepted papers can be divided according to

the following six schemes considering their main purposes:

(1) Fixed point theory and applications;

(2) Algorithms for nonlinear problems;

(3) Nonlinear methods for ODEs and PDEs with applications;

(4) Convex analysis and inequality theory;

(5) Optimization;

(6) Functional analysis.

We hope that interested researchers and practitioners will be inspired by this Special Issue and

find it valuable to their own research. This Special Issue highlighted important issues and raised

several new problems in these research areas. We would like to heartily thank the Editorial team

and the reviewers of Axioms, particularly the Editor-in-Chief, Professor Humberto Bustince, and the

Assistant Editor, Luna Shen, for their invaluable support and help throughout the editing process.

Wei-Shih Du, Luigi Muglia, and Adrian Petruşel

Editors
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Academy of Science of South Africa in 2005, and a fellow to the Academy of Sciences for
the Developing World (TWAS) in 2012. He was also selected at the “Thousand Talents
Program” of Zhejiang Province in 2014 and named as a Thomson Reuters/Clarivate Highly
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from 2019 to 2021. He has published approximately 250 research papers in journals and
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academic conferences. He is serving on the editorial boards for more than 20 international
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This Special Issue pays tribute to Professor Hong-Kun Xu’s significant contributions
to these fields and provides some important recent advances in theory, methods, and
applications. It comprises original and high-quality research papers that inspire advances in
nonlinear analysis, optimization, and their applications. For more information, please visit
the website: https://www.mdpi.com/journal/axioms/special_issues/hk_xu, accessed on
26 February 2021.

The Guest Editors have striven to ensure the success of this Special Issue, and we
believe our efforts have been successful. The Guest Editors organized a comprehensive
review process for each submission based on the journal’s policy and guidelines. We have
received 44 submissions and, after a comprehensive review process, 16 high-quality works
have been accepted for publication (with an acceptance rate of around 0.36). The accepted
papers can be divided according to the following scheme considering their main purposes:

• Fixed point theory and applications (see [1–5]);
• Algorithms for nonlinear problems (see [1,3]);
• Nonlinear methods for ODEs and PDEs with applications (see [6–9]);
• Convex analysis and inequality theory (see [10–13]);
• Optimization (see [1,3,9,12–14]);
• Functional analysis (see [5,6,8,15,16]).

We hope that interested researchers and practitioners will be inspired by this Special
Issue and find it valuable to their own research.

This Special Issue has highlighted important issues and raised several new problems
in this research area. We would like to express our hearty thanks to the editorial team
and the reviewers of Axioms, particularly the Editor-in-Chief Prof. Dr. Humberto Bustince
and the Assistant Editor Luna Shen, for their invaluable support throughout the editing
process.
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Abstract: The purpose of this paper is to investigate some qualitative properties of solutions of
nonlinear fractional retarded Volterra integro-differential equations (FrRIDEs) with Caputo fractional
derivatives. These properties include uniform stability, asymptotic stability, Mittag–Leffer stability
and boundedness. The presented results are proved by defining an appropriate Lyapunov function
and applying the Lyapunov–Razumikhin method (LRM). Hence, some results that are available in
the literature are improved for the FrRIDEs and obtained under weaker conditions via the advantage
of the LRM. In order to illustrate the results, two examples are provided.

Keywords: nonlinear fractional retarded integro-differential equations; uniform stability; asymptotic
stability; Mittag–Leffer stability; boundedness; Lyapunov–Razumikhin method

MSC: 34K20; 34K37; 45J05; 45M10

1. Introduction

In recent years, a large number of books [1–3] and papers [4–24] have been devoted
to the study of various qualitative properties of solutions of scalars and systems of linear
and nonlinear Volterra integro-differential equations (IDEs) both without and with delay,
and that of some other kinds of differential equations due to their important applications
in population growth models, mathematical models of biological species living together,
mathematical models in physics, control engineering and signal processing, mathematical
models of heat transfer and radiation, standard closed electric RLC circuits, and so on.

In the relevant literature three methods, which are called the second Lyapunov method,
Lyapunov–Krasovskiı̆ method and Lyapunov–Razumikhin method, come to the forefront
to investigate qualitative properties of solutions of linear and nonlinear integro-differential
equations both without and with retardation. Among these methods, the second Lyapunov
method and Lyapunov–Krasovskiı̆ method are extensively used to study various qualitative
behaviors of solutions of integro-differential equations of integer order (see, [4–20]). To the
best of our knowledge, the Lyapunov–Razumikhin method is less used during that kind
of investigation [23,25,26]. However, when it is used for the appropriate problems, it is
more effective than the other two methods mentioned, the second Lyapunov method and
Lyapunov–Krasovskiı̆ method. To the best of our knowledge from the relevant literature,
the disadvantages of the Lyapunov second method and Lyapunov–Krasovskiı̆ method
are that both of these methods require the construction or definition of suitable Lyapunov

Axioms 2021, 10, 58. https://doi.org/10.3390/axioms10020058 https://www.mdpi.com/journal/axioms4
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function(s) and Lyapunov–Krasovskiı̆ functional(s), which can include double integrals
and additional terms. The construction of suitable Lyapunov function(s) and Lyapunov–
Krasovskiı̆ functional(s) for nonlinear functional differential equations remains an open
problem in the literature at this time. This case is known as a disadvantage. In addition,
the time derivatives of double integrals leads to stronger conditions for the negative or
negative -semi definite of the time derivative(s) of function(s) or functional(s) used as basic
tool(s) in the proof(s).

From this point of view, we would like to present the related work of Du [27]. Indeed,
in 1995, the author investigated the uniformly asymptotic stability of trivial solutions of
the system of nonlinear RIDEs of the form:

ẋ(t) = − f (t, x(t)) + g(t, x(t− τ)) +
∫ t

t−τ
h(t, s, x(s))ds (1)

or its equivalent system

ẋi(t) = − fi(t, x(t)) + gi(t, x(t− τ)) +

t∫
t−τ

hi(t, s, x(s))ds, (i = 1, 2, ..., n).

In this paper, we consider the following initial value problem (IVP) for the system
of nonlinear fractional retarded Volterra integro-differential equations (FrRIDEs) with
Caputo derivative:

C
to Dq

t x(t) =− f (t, x(t)) + g(t, x(t), x(t− τ)) +

t∫
t−τ

h(t, s, x(s))ds

+

t∫
t−ρ

p(t, s, x(s))ds + q(t, x(t), x(t− τ), x(t− ρ)), 0 < q < 1, (2)

x(t0 + θ) =φ(θ), x(t0) = φ(0) = x0, θ ∈ [−τ, 0] ∪ [−ρ, 0], (3)

where x = (x1, ..., xn)
T ∈ Rn, t ∈ R, s ∈ [−τ, ∞) ∪ [−ρ, ∞), τ and ρ are positive constants,

i.e., they are constant retardations, f = ( f1, ..., fn)
T ∈ C(R × Rn,Rn),

fi(t, x(t)) = fi(t, x1(t), ..., xn(t)), g = (g1, ..., gn)
T ∈ C(R × Rn × CH ,Rn),

CH =
{

φ : φ ∈ C and ‖φ‖t0
≤ H < ∞

}
, gi(t, x(t), x(t− τ)) = gi(t, x1(t), ..., xn(t), x1(t−

τ), ..., xn(t − τ)), h ∈ C(R× [−τ, ∞) × CH ,Rn), p ∈ C(R× [−ρ, ∞) × CH ,Rn) and q ∈
C(R×Rn × CH × CH ,Rn). It is supposed that f (t, 0) = 0, g(t, 0, 0) = 0, p(t, s, 0) = 0, and
h(t, s, 0) = 0. Then, the system of Volterra FrRIDEs (2) with a Caputo derivative includes
the zero solution, when q(.) ≡ 0.

In this article, motivated by the system of nonlinear RIDEs at Equation (1), i.e., the
result of Du [27] (Theorem 4), and those in the bibliography of this paper, we consider the
system of nonlinear FrRIDEs at Equation (2) with a Caputo derivative. As indicated above,
we plan to investigate the uniformly stability, asymptotic stability, and Mittag–Leffler
stability of the zero solution of Equation (2) with q ≡ 0, and the boundedness of all solutions
of Equation (2) with q �= 0, by using the Razumikhin method (see [25,26,28–30]). It should
be noted that the Caputo derivative is applicable to continuously differentiable quadratic
Lyapunov functions to study qualitative properties of solutions of fractional differential
equations and fractional delay differential equations, etc. (see, for example, [25,26,31–37]).

It is known that the presence of the fractional derivatives in the system requires that
we use appropriately defined fractional derivatives of Lyapunov functions. In the literature,
four types of fractional derivatives are commonly applied to calculate the derivatives of
Lyapunov functions; these are the Caputo fractional derivative, the Caputo fractional
Dini derivative, the Riemann–Liouville fractional derivative, and the Grünwald–Letnikov
fractional derivative [32,36]. Not all of these will be employed here. The results pre-
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sented below are new contributions to the literature on delay fractional integro-differential
equations with Caputo derivatives.

2. Preliminaries

We begin by considering a system of fractional retarded differential equations (FrRDEs)
with a Caputo derivative of order q ∈ (0, 1) :

C
to Dq

t x(t) = F(t, xt), t ∈ J, J = [t0 − τ, T), T ≤ +∞, 0 ≤ t0 ≤ t, (4)

where x ∈ Rn, F(t, φ) ∈ J × C([−r, 0],Rn), F(t, 0) = 0, x(t0 + s) = φ(s) for s ∈ [−r, 0],
x(t+0 ) = φ(0), φ ∈ C([−r, 0],Rn), r > 0 is the constant retardation. For φ ∈ C([−r, 0],Rn),
we use the usual Euclidean norms ‖ . ‖ and ‖ . ‖t0

defined by

‖xt‖ = sup
−r≤s≤0

|x(t + s)| and ‖φ‖t0
= sup

t0−r≤s≤t0

‖φ(s)‖,

respectively.
Since the function F is continuous, for any initial data (t0, φ) ∈ R+ × C([−r, 0],Rn),

the initial value problem for the system of FrRDEs in Equation (4) has at the least one
solution x(t) = x(t, t0, φ) ∈ C1([t0, ∞),Rn). If the function F satisfies a Lipschitz condition
in x, then the solution is unique.

The following lemmas and other concepts are needed in the remainder of this paper.
Firstly, we give Lemma 1, which is a consequence of (Theorem 2) [31].

Lemma 1. Assume that for any initial data x(t0, φ0) ∈ R+ × C([−τ, 0],Rn), the system of
FrRIDEs in Equation (2) has a solution. If there exists a Lyapunov function V and strictly
increasing u, v ∈ C(R+,R+) with u(0) = v(0) = 0 and

u(‖x‖) ≤ V(t, x) ≤ v(‖x‖) for all t ≥ t0 − τ and all x ∈ Rn

and such that for any initial data (t0, φ0) ∈ R+ × C([−τ, 0],Rn) and any point s > t0 with

V(s + ξ, x(s + ξ)) < V(s, x(s)) for all ξ ∈ [−τ, 0),

the inequality
C
t0

Dq
t V(t, x(t)) ≤ 0 for all t ∈ (t0, s]

holds, then the zero function of Equation (2) with a zero initial condition is uniformly stable.

Lemma 2 ([31]). The zero solution of the FrRDEs in Equation (4) is asymptotically stable if there
exist a continuous function V(t, x), continuous increasing and positive definite functions u, v, ω
and a continuous non-decreasing function p(s) > s for s > 0 such that the following conditions
hold for all t ∈ J:

V(t, 0) ≡ 0, u(|x|) ≤ V(t, x) ≤ v(|x|) for all t ∈ J and all x ∈ Rn;
C
to Dq

t V(t, x(t)) ≤ −ω(|x(t)|) for all t ∈ (t0, s];

and
V(t + s, x(t + s)) < pV(t, x(t)) for all s ∈ [−τ, 0].

Lemma 3 ([38] Lemma 1). Let x(t) ∈ Rn be a vector of differentiable functions. Then for
any t ≥ t0,

1
2

C
to Dq

t (xTx) ≤ xT(t)C
to Dq

t x(t) for all q ∈ (0, 1],

6
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Lemma 4 ([38] Lemma 4). Let x(t) ∈ Rn be a vector of differentiable functions. Then, for
any t ≥ t0,

1
2

C
to Dq

t (xT Px) ≤ xT(t)PC
to Dq

t x(t) for all q ∈ (0, 1],

where P ∈ Rn×n is a constant, symmetric and positive definite matrix.

Definition 1 ([35] Definiton 3.1). The trivial solution of the system of FrRIDEs in Equation (2)
is said to be Mittag–Leffler stable provided the solution x(., φ) of (2) satisfies

‖x(t, φ)‖ ≤ [m(‖φ‖∞)Eq(−λ(t− t0)
q)]

b,

where q ∈ (0, 1), λ ≥ 0, b > 0,

‖φ‖∞ = max
θ∈[−τ,0]

‖φ(θ)‖,

m(0) = 0, m is a locally Lipschitz function and is non-negative, and

Eq(z) =
∞

∑
k=0

zk

Γ(qk + 1)

is the one-parameter Mittag–Leffler function, and Γ denotes the Gamma function.

Lemma 5 ([35] Lemma 2.1). Let x ∈ Rnbe a vector of differentiable functions. If a continuous
function V : [t0, ∞)×Rn → R+ satisfies

C
to Dq

t V(t, x(t)) ≤ −αV(t, x(t)),

then
V(t, x(t)) ≤ V(t0, x(t0))Eq(−α(t− t0)

q),

where α > 0 and 0 < q < 1.

Lemma 6 ([33] Property 1).

C
to Dq

t (ax(t) + by(t)) = aC
to Dq

t x(t) + bC
to Dq

t y(t),

where q ∈ (0, 1].

The contents of the next lemma are well known.

Lemma 7. Let x ∈ Rn, n ∈ N, n ≥ 1, and M ∈ Rn×n be a positive definite symmetric n× n-
matrix such that

λM ≥ λi(M) ≥ λm, (i = 1, 2, ..., n),

where λi(M) denotes the eigenvalues of M. Then

λM‖x‖2 ≥ 〈Mx, x〉 ≥ λm‖x‖2,

where λM and λm are the greatest and least eigenvalues of the matrix M, respectively.

We know that λM and λm are real and positive since M is a positive definite symmet-
ric matrix.

3. Razumikhin Analyses of Solutions

In the system of Volterra FrRIDEs in Equation (2), let q ≡ 0, i.e., we consider the
system in Equation (2) with Equation (3) replaced by

7
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C
to Dq

t x(t) =− f (t, x(t)) + g(t, x(t), x(t− τ)) +

t∫
t−τ

h(t, s, x(s))ds

+

t∫
t−ρ

p(t, s, x(s))ds. (5)

We will use the following hypotheses in our main results.

Hypothesis 1.

f (t, 0) = g(s, 0, 0) = h(t, s, 0) ≡ 0,

xi fi(t, x) > 0 as xi �= 0, for t ∈ R+, all x ∈ Rn;

Hypothesis 2. The functions H and P satisfy the local Lipschitz condition in x, with

H(t, s, x) ≡
t∫

t−τ

‖h(t, s, x(s))‖ds, h(t, s, 0) = 0, ‖h(t, s, x(s))‖ ≤ h0‖x‖ for s ≤ t

and

P(t, s, x) ≡
t∫

t−ρ

‖p(t, s, x(s))‖ds, p(t, s, 0) = 0, ‖p(t, s, x(s))‖ ≤ p0‖x‖ for s ≤ t,

where h0 > 0, p0 > 0, h0, p0 ∈ R;

Hypothesis 3.

‖ f (t, x)‖ − ‖g(t, x, x(t− τ))‖ − (τh0 + ρp0)‖x‖ ≥ 0 for t ∈ R+

and all x ∈ Rn, x(t− τ) ∈ CH ;

Hypothesis 4.

‖ f (t, x)‖ − ‖g(t, x, x(t− τ))‖ − (τh0 + ρp0)‖x‖ ≥ ρ1‖x‖ for t ∈ R+

and all x ∈ Rn, x(t− τ) ∈ CH , where ρ1 > 0, ρ1 ∈ R;

Hypothesis 5. There exists q0 ∈ C(R+,R) such that

‖q(t, x, x(t− τ), x(t− ρ))‖ ≤ |q0(t)| ‖x‖ for all t ≥ t0, x ∈ Rn, x(t− τ),

x(t− ρ) ∈ CH ,

and
‖ f (t, x)‖ − ‖g(t, x, x(t− τ))‖ − (q0(t) + τh0 + ρp0)‖x‖ ≥ 0 for t ∈ R+

and all x ∈ Rn, x(t− τ) ∈ CH .

Theorem 1. The zero solution of the system of FrRIDEs in Equation (5) with Caputo derivative is
uniformly stable if the conditions of Hypotheses 1–3 hold.

Proof. We define a Lyapunov function W := W(t, x) = W(t, x(t)) by

W(t, x) := ‖x‖ =
n

∑
i=1
|xi| = |x1|+ ... + |xn|. (6)

8
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For arbitrary initial data (t0, φ) ∈ R+ × C([−τ, 0] ∪ [−ρ, 0],Rn) and a point t > t0, it
follows that W(t, x) satisfies the Razumikhin condition (see [28–30])

W(t, x(t)) > W(t + s, x(t + s))

on the initial set [−τ, 0] ∪ [−ρ, 0], i.e.,

‖x(t)‖ > ‖x(t + s)‖ for all s ∈ [−τ, 0] ∪ [−ρ, 0].

Let x(t) = x(t, t0, φ) denote the solution of the IVP of Equation (5) such that x(t+0 + s) =
φ(s) for s ∈ [−τ, 0] ∪ [−ρ, 0]. From this point, it is clear that W(t, x) in Equation (6)
satisfies the relations

W(t, 0) = 0,
1
2
|x1|+ ... +

1
2
|xn| =

1
2
‖x‖ ≤ W(t, x),

and
W(t, x) ≤ 5

4
|x1|+ ... +

5
4
|xn| =

5
4
‖x‖.

Taking the Caputo fractional derivative of the Lyapunov function W(t, x) in Equation (6)
along the system of FrRIDEs in Equation (5), making use the conditions of Hypotheses 1 and 2
and some elementary calculations, we obtain

C
to Dq

t W(t, x(t)) =C
to Dq

t (|x1(t)|+ |x2(t)|+ ... + |xn(t)|)
=C

to Dq
t |x1(t)|+ C

to Dq
t |x2(t)|+ ... + C

to Dq
t |xn(t)|

=(signx1(t))C
to Dq

t x1(t) + (signx2(t))C
to Dq

t x2(t) + ... + (signxn(t))C
to Dq

t xn(t)

=
n

∑
i=1

xi(t)C
to Dq

t xi(t)

=
n

∑
i=1

xi(t)[− fi(t, x(t)) + gi(t, x(t), x(t− τ))]

+
n

∑
i=1

xi(t)[
t∫

t−τ

hi(t, s, x(s))ds +
t∫

t−ρ

pi(t, s, x(s))ds]

≤
n

∑
i=1

[−| fi(t, x(t))|+ |gi(t, x(t), x(t− τ))|]

+
n

∑
i=1

[

t∫
t−τ

|hi(t, s, x(s))|ds +
t∫

t−ρ

|pi(t, s, x(s))|ds]

=− ‖ f (t, x(t))‖+ ‖g(t, x(t), x(t− τ))‖+
t∫

t−τ

‖h(t, s, x(s))‖ds

+

t∫
t−ρ

‖p(t, s, x(s))‖ds

≤− ‖ f (t, x(t))‖+ ‖g(t, x(t), x(t− τ))‖

+ h0

t∫
t−τ

‖x(s)‖ds + p0

t∫
t−ρ

‖x(s)‖ds. (7)

9
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Consider the integral terms such that

h0

t∫
t−τ

‖x(s)‖ds + p0

t∫
t−ρ

‖x(s)‖ds,

which are included in the inequality of Equation (7).
Letting s− t = ξ gives ds = dξ. Hence, for s = t− τ and s = t, it follows that ξ = −τ

and ξ = 0, respectively. Similarly, by the same transformation and way, for s = t − ρ
and s = t, we have ξ = −ρ and ξ = 0, respectively. In view of these estimates, using the
Razumikhin condition on the set s ∈ [−τ, 0] ∪ [−ρ, 0], we get

h0

t∫
t−τ

‖x(s)‖ds+p0

t∫
t−ρ

‖x(s)‖ds = h0

0∫
−τ

‖x(t + ξ)‖dξ + p0

0∫
−ρ

‖x(t + ξ)‖dξ

< h0

0∫
−τ

‖x(t)‖dξ + p0

0∫
−ρ

‖x(t)‖dξ

= h0‖x(t)‖
0∫

−τ

dξ + p0‖x(t)‖
0∫

−ρ

dξ

= h0τ‖x(t)‖+ p0ρ‖x(t)‖. (8)

Then, from Equations (7) and (8), it follows that

C
to Dq

t W(t, x(t)) ≤ −[‖ f (t, x(t))‖ − ‖g(t, x(t), x(t− τ))‖ − (τh0 + ρp0)‖x(t)‖] ≤ 0, (9)

that is, using the condition (H3), we have

C
to Dq

t W(t, x(t)) ≤ 0. (10)

Thus, from Lemma 1, the zero solution of the system of FrRIDEs in Equation (5) is uni-
formly stable.

Our next result deals with the asymptotic stability of the system in Equation (5).

Theorem 2. The zero solution of the system of FrRIDEs in Equation (5) is asymptotically stable if
the conditions of Hypotheses 1, 2 and 4 hold.

Proof. With W(t, x) defined as in Equation (6), from the conditions (H1), (H2), and (H4)
we easily conclude that

1
2
‖x‖ ≤ W(t, x) ≤ 5

4
‖x‖

and
C
to Dq

t W(t, x(t)) ≤ −ρ1‖x(t)‖.

Hence, the zero solution of the system of FrRIDEs in Equation (5) is asymptotically stable
by Lemma 2.

The following theorem shows the Mittag–Leffler stability of the system FrRIDEs in
Equation (5).

Theorem 3. The zero solution of the system of FrRIDEs in Equation (5) is Mittag–Leffler stable if
the conditions of Hypotheses 1, 2 and 4 hold

10
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Proof. Again with the Lyapunov function W(t, x) defined as in Equation (6), from the
conditions of Hypotheses 1, 2 and 4, it is clear that

C
to Dq

t W(t, x(t)) ≤ −ρ1‖x(t)‖ = −ρ1W(t, x(t))

holds.
Using Lemma 5, we obtain

‖x(t)‖ = W(t, x(t)) ≤ W(t0, x(t0))Eq(−ρ1(t− t0)
q)

= ‖x(t0)‖Eq(−ρ1(t− t0)
q)

=
[
m(x(t0))Eq(−ρ1(t− t0)

q)
]

≤
[
m(‖φ‖∞)Eq(−ρ1(t− t0)

q)
]

with m(x) = ‖x(t)‖, which is locally Lipschitz. Thus, the proof of Theorem 3 is completed
by using Definition 1.

4. Boundedness of Solutions of System in Equation (2)

We now turn our attention to the perturbed system in Equation (2).

Theorem 4. The solutions of the system of FrRIDEs in Equation (2) are bounded if the conditions
of Hypotheses 1, 2 and 5 hold.

Proof. We again consider the Lyapunov function defined in Equation (6). Calculating
the time derivative of the Lyapunov function W(t, x) along the system of FrRIDEs in
Equation (2) and using the conditions in Hypotheses 1, 2 and 5, we obtain

C
to Dq

t W(t, x(t)) ≤− [‖ f (t, x(t))‖ − ‖g(t, x(t), x(t− τ))‖ − (τh0 + ρp0)]‖x‖
+ ‖q(t, x, x(t− τ), x(t− ρ))‖

≤− ‖ f (t, x(t))‖+ ‖g(t, x(t), x(t− τ))‖+ (q(t) + τh0 + ρp0)‖x‖ ≤ 0.

Hence, we have
W(t, x(t)) ≤ W(t0, φ(t0)).

As a result of this inequality, it follows that

W(t, x(t)) = ‖x(t)‖ = |x1(t)|+ ... + |xn(t)|
≤ ‖x(t0)‖ = |x1(t0)|+ ... + |xn(t0)| = W(t0, φ(t0)).

Let
K0 = ‖x(t0)‖ = |x1(t0)|+ ... + |xn(t0)|.

Hence, we obtain

‖x(t)‖ = |x1(t)|+ ... + |xn(t)| ≤ K0 for t ∈ R+.

Hence, it is clear that if t → ∞, then ‖x(t)‖ ≤ K0. This inequality completes the proof of
Theorem 4.

Remark 1. Here, if q = 1, the boundedness of solutions as t → ∞ was proved without using the
Gronwall inequality, see Theorem 4. By this fact, we have removed some unnecessary conditions, and
we can obtain some boundedness results in the literature under less restrictive conditions (see, for
example, [12,13] and the bibliography therein). Here, we will not state the details of the discussions.

We now give the following example and solve the given system using MATLAB
software. In fact, the problem was solved using the 4th order Runge–Kutta method in

11



Axioms 2021, 10, 58

MATLAB. Here, the graphs of Figures 1–4 show the behaviors of paths of the solutions of
Example 1 for different values of fractional order q.

Example 1. Consider the system of nonlinear Volterra IFrRDEs with Caputo derivative of or-
der q ∈ (0, 1):

(
C
to

Dq
t x1(t)

C
to

Dq
t x2(t)

)
=

⎡⎣ 12x1(t) +
x1(t)

1+t2+x2
1(t)

12x2(t) +
x2(t)

1+t2+x2
2(t)

⎤⎦+

⎡⎣ x1(t)
1+t2+x2

1(t− 1
10 )

x2(t)
1+t2+x2

2(t− 1
10 )

⎤⎦
+

t∫
t− 1

10

⎡⎣ sin x1(s)
1+t2+s2+x2

1(s)
sin x2(s)

1+t2+s2+x2
2(s)

⎤⎦ds +
t∫

t− 1
5

⎡⎣ x1(s)
1+t2+s2+x2

1(s)
x2(s)

1+t2+s2+x2
2(s)

⎤⎦ds, (11)

where t ≥ 1
10 , τ = 1

10 and ρ = 1
5 are the constant retardations and x(t) = x ∈ R2.

Comparing the system of IFrRDEs with Caputo derivative in Equation (11) with that
given by Equation (5), we have the following formulas:

f (t, x) = f (t, x1, x2) =

[
12x1 +

x1
1+t2+x2

1
12x2 +

x2
1+t2+x2

2

]
,

f (t, 0) = f (t, 0, 0) = 0,

f1(t, x1, x2) = 12x1 +
x1

1 + t2 + x2
1

,

x1 f1(t, x1, x2) = 12x2
1 +

x2
1

1 + t2 + x2
1
> 0,

x1 �= 0,

f2(t, x1, x2) = 12x2 +
x2

1 + t2 + x2
2

,

x2 f2(t, x1, x2) = 12x2
2 +

x2
2

1 + t2 + x2
2
> 0,

x2 �= 0,

−x1(t + 0) f1(t, x1, x2)− x2(t + 0) f2(t, x1, x2)

= −12x1sgnx1(t + 0)− x1sgnx1(t + 0)
1 + t2 + x2

1

−12x2sgnx2(t + 0)− x2sgnx2(t + 0)
1 + t2 + x2

2

≤ −11|x1| − 11|x2| = −11‖x‖ ≤ −‖ f (t, x)‖,

g(t, x, x(t− τ)) = g(t, x1, x2, x1(t−
1

10
), x2(t−

1
10

)) =

⎡⎣ x1
1+t2+x2

1(t− 1
10 )x2

1+t2+x2
2(t− 1

10 )

⎤⎦,

‖g(t, x, x(t− τ))‖ =
∥∥∥∥g(t, x1, x2, x1(t−

1
10

), x2(t−
1

10
))

∥∥∥∥ =

∥∥∥∥∥∥
⎡⎣ x1

1+t2+x2
1(t− 1

10 )x2
1+t2+x2

2(t− 1
10 )

⎤⎦ ∥∥∥∥∥∥
≤ |x1|

1 + t2 + x2
1(t− 1

10 )
+

|x2|
1 + t2 + x2

2(t− 1
10 )

12
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≤ |x1|+ |x2| = ‖x‖,

h(t, s, x) = h(t, s, x1, x2) =

⎡⎣ sin x1
1+t2+s2+x2

1
sin x2

1+t2+s2+x2
2

⎤⎦,

h(t, s, 0) = h(t, s, 0, 0) = 0,

‖h(t, s, x)‖ = ‖h(t, s, x1, x2)‖ =

∥∥∥∥∥∥
⎡⎣ sin x1

1+t2+s2+x2
1

sin x2
1+t2+s2+x2

2

⎤⎦ ∥∥∥∥∥∥
=

|sin x1|
1 + t2 + s2 + x2

1
+

|sin x2|
1 + t2 + s2 + x2

2

≤ |sin x1|+ |sin x2| ≤ |x1|+ |x2| = ‖x‖,

where h0 = 1,

H(t, s, x) ≡
t∫

t−τ

‖h(t, s, x(s))‖ds =
t∫

t− 1
10

∥∥∥∥∥∥
⎡⎣ sin x1(s)

1+t2+s2+x2
1(s)

sin x2(s)
1+t2+s2+x2

2(s)

⎤⎦ ∥∥∥∥∥∥ds

=

t∫
t− 1

10

|sin x1(s)|
1 + t2 + s2 + x2

1(s)
ds

+

t∫
t− 1

10

|sin x2(s)|
1 + t2 + s2 + x2

2(s)
ds

≤
t∫

t− 1
10

|sin x1(s)|ds +
t∫

t− 1
10

|sin x2(s)|ds

≤
t∫

t− 1
10

|x1(s)|ds +
t∫

t− 1
10

|x2(s)|ds =
t∫

t− 1
10

‖x(s)‖ds.

Let s− t = ξ, which implies ds = dξ. Then, for s = t− 1
10 , we derive ξ = − 1

10 , and
similarly for s = t, we have ξ = 0.

In view of these findings, using the given Razumikhin condition [28–30] on the initial
segment [− 1

10 , 0], it follows that

t∫
t− 1

10

‖x(s)‖ds =
0∫

− 1
10

‖x(t + ξ)‖dξ <

0∫
− 1

10

‖x(t)‖dξ =
1
10
‖x‖.

For this step, we consider the term:

P(t, s, x) ≡
t∫

t−ρ

‖p(t, s, x(s))‖ds

13
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with

p(t, s, x) = p(t, s, x1, x2) =

[ x1
1+t2+s2+x2

1x2
1+t2+s2+x2

2

]
, ρ =

1
5

.

In that case, we derive
p(t, s, 0, 0) = 0

and

‖p(t, s, x)‖ = ‖p(t, s, x1, x2)‖ =
∥∥∥∥∥
[ x1

1+t2+s2+x2
1x2

1+t2+s2+x2
2

] ∥∥∥∥∥
=

|x1|
1 + t2 + s2 + x2

1
+

|x2|
1 + t2 + s2 + x2

2

≤ |x1|+ |x2| = ‖x‖, where p0 = 1.

For the next step, it follows that

P(t, s, x) ≡
t∫

t−ρ

‖p(t, s, x(s))‖ds =
t∫

t− 1
5

∥∥∥∥∥∥
⎡⎣ x1(s)

1+t2+s2+x2
1(s)

x2(s)
1+t2+s2+x2

2(s)

⎤⎦ ∥∥∥∥∥∥ds

≤
t∫

t− 1
5

|x1(s)|ds +
t∫

t− 1
5

|x2(s)|ds =
t∫

t− 1
5

‖x(s)‖ds.

Let s− t = ξ, which implies ds = dξ. Then, for s = t− 1
5 , we derive ξ = − 1

5 . Similarly,
for s = t, we have ξ = 0. Then,

t∫
t− 1

5

‖x(s)‖ds =
0∫

− 1
5

‖x(t + ξ)‖dξ <

0∫
− 1

5

‖x(t)‖dξ =
1
5
‖x‖.

Hence, bringing together the above results, we derive

‖ f (t, x)‖ − ‖g(t, x, x(t− τ))‖ − (τh0 + ρp0)‖x‖

≥ ‖ f (t, x)‖ −
∥∥∥∥g(t, x, x(t− 1

2
))

∥∥∥∥− (
1
10

+
1
5
)‖x‖

≥ 11‖x‖ − ‖x‖ − 3
10
‖x‖ = (9.7)‖x‖, where ρ1 =

97
10

. (12)

In the light of the above discussion, the conditions of Hypotheses 1–3 of Theorem 1,
and the conditions of Hypotheses 1, 2 and 4 of Theorems 2 and 3 hold. For this reason, the
zero solution of the system of FrRIDEs in Equation (11) with Caputo derivative is uniformly
stable, asymptotically stable and Mittag–Leffler stable.

In Figures 1–4, the system of FrRIDEs (11) was solved and the orbits of the solutions
x1(t), x2(t) were drawn for τ = 1

10 , ρ = 1
5 and different initial values when t ≥ 1

10 .
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Figure 1. The behaviors of uniformly, asymptotically and Mittag–Leffler stable solution x1(t) of the
system of of fractional retarded Volterra integro-differential equations (FrRIDEs) in Equation (11) for
q = 0.5, τ = 1

10 , ρ = 1
5 and different initial values when t ≥ 1

10 .

Figure 2. The behaviors of uniformly, asymptotically and Mittag–Leffler stable solution x2(t) of the
system of of FrRIDEs in Equation (11) for q = 0.5, τ = 1

10 , ρ = 1
5 and different initial values when

t ≥ 1
10 .
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Figure 3. The behaviors of uniformly, asymptotically and Mittag–Leffler stable solution x1(t) of the
system of of FrRIDEs in Equation (11) for q = 0.9, τ = 1

10 , ρ = 1
5 and different initial values when

t ≥ 1
10 .

Figure 4. The behaviors of uniformly, asymptotically and Mittag–Leffler stable solution x2(t) of the
system of of FrRIDEs in Equation (11) for q = 0.9, τ = 1

10 , ρ = 1
5 and different initial values and

different initial values when t ≥ 1
10 .

For the case q(.) �= 0, we now give the second example and solve it using MATLAB
software.
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Example 2. Consider the system of nonlinear Volterra FrRIDEs with Caputo derivative of or-
der q ∈ (0, 1):

(
C
to

Dq
t x1(t)

C
to

Dq
t x2(t)

)
=

⎡⎣ 12x1(t) +
x1(t)

1+t2+x2
1(t)

12x2(t) +
x2(t)

1+t2+x2
2(t)

⎤⎦+

⎡⎣ x1(t)
1+t2+x2

1(t− 1
10 )

x2(t)
1+t2+x2

2(t− 1
10 )

⎤⎦
+

t∫
t− 1

10

⎡⎣ sin x1(s)
1+t2+s2+x2

1(s)
sin x2(s)

1+t2+s2+x2
2(s)

⎤⎦ds +
t∫

t− 1
5

⎡⎣ x1(s)
1+t2+s2+x2

1(s)
x2(s)

1+t2+s2+x2
2(s)

⎤⎦ds

+

⎛⎝ exp(t)x1
1+exp(2t)+|x1(t− 1

10 )|+|x1(t− 1
5 )|

exp(t)x2
1+exp(2t)+|x2(t− 1

10 )|+|x2(t− 1
5 )|

⎞⎠, (13)

where t ≥ 1
10 , τ = 1

10 and ρ = 1
5 are the constant delay terms and x(t) = x ∈ R2.

Comparing the systems of FrRIDEs in Equation (13) with Caputo derivative and
Equation (2), we note that the functions − f (t, x), g(t, x, x(t− 1

10 )), h(t, s, x) and p(t, s, x)
are the same as those in Example 1. Then, the satisfaction of the conditions of Hypotheses 1
and 2 have been shown in Example 1. For the verification of the condition of Hypothesis 5,
we consider the last term of Equation (13):

q(t, x, x(t− 1
10

), x(t− 1
5
)) =

⎛⎝ exp(t)x1
1+exp(2t)+|x1(t− 1

10 )|+|x1(t− 1
5 )|

exp(t)x2
1+exp(2t)+|x2(t− 1

10 )|+|x2(t− 1
5 )|

⎞⎠
Clearly, it follows that

∣∣∣∣q(t, x, x(t− 1
10

), x(t− 1
5
))

∣∣∣∣ =
∣∣∣∣∣∣
⎛⎝ exp(t)x1

1+exp(2t)+|x1(t− 1
10 )|+|x1(t− 1

5 )|
exp(t)x2

1+exp(2t)+|x2(t− 1
10 )|+|x2(t− 1

5 )|

⎞⎠∣∣∣∣∣∣
=

exp(t)|x1|
1 + exp(2t) +

∣∣∣x1(t− 1
10 )

∣∣∣+ ∣∣∣x1(t− 1
5 )
∣∣∣

+
exp(t)|x2|

1 + exp(2t) +
∣∣∣x2(t− 1

10 )
∣∣∣+ ∣∣∣x2(t− 1

5 )
∣∣∣

≤ exp(t)|x1|
1 + exp(2t)

+
exp(t)|x2|

1 + exp(2t)

=
exp(t)

1 + exp(2t)
[|x1|+ |x2|] = |q0(t)|‖x‖,

where

|q0(t)| =
exp(t)

1 + exp(2t)
≤ 1

2
, |x1|+ |x2| = ‖x‖. (14)

In view of Equations (12) and (14), it is clear that

‖ f (t, x)‖ − ‖g(t, x, x(t− τ))‖ − (q0(t) + τh0 + ρp0)‖x‖ ≥ (9.7)‖x‖ − exp(t)
1 + exp(2t)

‖x‖

≥ (9.7)‖x‖ − 1
2
‖x‖ = (9.2)‖x‖.

As a consequence of this inequality, the condition of Hypothesis 5 holds. Thus, the solutions
of the system of FrRIDEs in Equation (13) with Caputo derivative are bounded as t → ∞ .
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The following graphs of Figures 5–8 show the behaviors of paths of the solutions of
Example 2 for different values of fractional order q.

Figure 5. The boundedness of solution x1(t) of the system of IFrRDEs in Equation (13) for q = 0.5,
τ = 1

10 , ρ = 1
5 and different initial values when t ≥ 1

10 .

Figure 6. The boundedness of solution x2(t) of the system of IFrRDEs in Equation (13) for q = 0.5,
τ = 1

10 , ρ = 1
5 and different initial values when t ≥ 1

10 .
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Figure 7. The boundedness of solution x1(t) of the system of IFrRDEs in Equation (13) for q = 0.9,
τ = 1

10 , ρ = 1
5 and different initial values when t ≥ 1

10 .

Figure 8. The boundedness of solution x2(t) of the system of IFrRDEs in Equation (13) for q = 0.5,
τ = 1

10 , ρ = 1
5 and different initial values when t ≥ 1

10 .

5. Discussions

We would like to explain the contributions of this paper to the relevant literature as
the following.

(1) To the best of our knowledge, in the literature, there are numerous papers on the
uniform stability, asymptotic stability, Mittag–Leffer stability and boundedness of frac-
tional differential equations of integer order both with and without delay. However,
there are no papers in the literature on the asymptotic stability, Mittag–Leffer stability
and boundedness of the FrRIDEs in Equation (2) with Caputo fractional derivative,
except the two papers of Hristova and Tunç [25,26], which include some results on
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the uniform stability. Next, qualitative behaviors of the FrRIDEs in Equation (2) have
not been discussed in the literature yet. Therefore, the results of this paper are new,
original and they have scientific novelty.

(2) If q = 1 in the FrRIDEs in Equation (2), then we have the system of RIDEs

ẋ(t) =− f (t, x(t)) + g(t, x(t), x(t− τ)) +

t∫
t−τ

h(t, s, x(s))ds

+

t∫
t−ρ

p(t, s, x(s))ds + q(t, x(t), x(t− τ), x(t− ρ)). (15)

It is clear that the system of RIDEs in Equation (15) includes, extends and improves
the system of RIDEs in Equation (1). This is a contribution to the topic and the
relevant literature.

(3) In Du [27] (Theorem 4), the uniform asymptotic stability of the zero solution of
the system of RIDEs in Equation (1) was proved using the Lyapunov–Krasovskiı̆
functional:

V(t, x(.)) := ‖x‖+
t∫

t−τ

‖g(s, x(s))‖ds +
t∫

t−τ

∞∫
t

‖h(u, s, x(s))‖duds.

We can prove the same result, [27] (Theorem 4) using the Lyapunov-Razumikhin
method and the Lyapunov function

W(t, x) := ‖x‖ =
n

∑
i=1
|xi| = |x1|+ ... + |xn|.

Clearly, this Lyapunov function does not include the term
t∫

t−τ

‖g(s, x(s))‖ds. The time

derivative of this term gives

d
dt

t∫
t−τ

‖g(s, x(s))‖ds = ‖g(t, x(t))‖ − ‖g(t− τ, x(t− τ))‖.

Based on this approach, we can obtain the result of Du [27] (Theorem 4) under weaker
conditions. Namely, we remove the following hypothesis from Du [27] (Theorem 4):

‖g(t− τ, x(t− τ))‖ − ‖g(t, x(t− τ))‖ ≥ 0, t ∈ R+.

To the best of our information, this is a stronger condition and the satisfaction of this
hypothesis can be difficult. Removing this condition from that of Du [27] (Theorem 4)
leads to an important and strong advantage during the applications of that kind
of equation.

(4) Du [27] (Theorem 4) proved the related theorem without giving an example in a
particular case, which verifies the hypotheses of [27] (Theorem 4). In this paper, we
provided two examples and solved them with MATLAB software, which verifies the
applicability of the results of this paper.

6. Conclusions

This paper has proposed an effective way to discuss some qualitative properties of
solutions of nonlinear Volterra integro-differential equations with Caputo fractional deriva-
tives and multiple constant retardations. Here, a new mathematical model consisting of
non-linear fractional Volterra integro-differential equations with Caputo fractional deriva-
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tives and two constant retardations was considered. New sufficient conditions for the
uniform stability, asymptotic stability and Mittag–Leffer stability of the zero solution, as
well as the boundedness of the solutions were obtained. The presented results were proved
by defining an appropriate Lyapunov function and applying the Lyapunov–Razumikhin
method. An advantage of the new function and method used here is that they eliminate us-
ing Gronwall’s inequality. Compared to related results in the literature, the conditions here
are new, more general, simple and convenient to apply. Examples to show the application
of the theorems have been included.
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Abstract: Suppose that in a real Hilbert space H, the variational inequality problem with Lips-
chitzian and pseudomonotone mapping A and the common fixed-point problem of a finite family of
nonexpansive mappings and a quasi-nonexpansive mapping with a demiclosedness property are
represented by the notations VIP and CFPP, respectively. In this article, we suggest two Mann-type
inertial subgradient extragradient iterations for finding a common solution of the VIP and CFPP.
Our iterative schemes require only calculating one projection onto the feasible set for every iteration,
and the strong convergence theorems are established without the assumption of sequentially weak
continuity for A. Finally, in order to support the applicability and implementability of our algorithms,
we make use of our main results to solve the VIP and CFPP in two illustrating examples.

Keywords: Mann-type inertial subgradient extragradient rule; variational inequality problem; pseu-
domonotone mapping; Nonexpansive and quasi-nonexpansive mappings; common fixed point
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1. Introduction

In a real Hilbert space (H, ‖ · ‖), equipped with the inner product 〈·, ·〉, we assume
that C is a nonempty closed convex subset and PC is the metric projection of H onto C. If
S : C → H is a mapping on C, then we denote by Fix(S) the fixed-point set of S. Moreover,
we denote by R the set of all real numbers. Given a mapping A : H → H. Consider the
classical variational inequality problem (VIP) of finding x∗ ∈ C such that 〈Ax∗, x− x∗〉 ≥ 0
for all x ∈ C. We denote by VI(C, A) the solution set of the VIP.

To the best of our knowledge, one of the most efficient methods to deal with the VIP is
the extragradient method invented by Korpelevich [1] in 1976, that is, for any given u0 ∈ C,
{um} is the sequence constructed by{

vm = PC(um − �Aum),
um+1 = PC(um − �Avm) ∀m ≥ 0,

(1)

with constant � ∈ (0, 1
L ). If VI(C, A) �= ∅, one knows that this method has only weak

convergence, and only requires that A is monotone and L-Lipschitzian. The literature
on the VIP is vast, and Korpelevich’s extragradient method has received great attention
from many authors, who improved it via various approaches so that some new iterative
methods happen to solve the VIP and related optimization problems; see, e.g., [2–12] and
the references therein, to name but a few.

It is worth pointing out that the extragradient method needs to calculate two projec-
tions onto the feasible set C per iteration. Without question, once one is hard to calculate the
projection onto C, the minimum distance problem has to be solved twice per iteration. This

Axioms 2021, 10, 67. https://doi.org/10.3390/axioms10020067 https://www.mdpi.com/journal/axioms23
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perhaps affects the applicability and implementability of the method. To improve Algo-
rithm 1, one has to reduce the number of projections per iteration. In 2011, Censor et al. [13]
first suggested the subgradient extragradient method, in which the second projection onto
C is replaced by a projection onto a half-space:⎧⎨⎩

vm = PC(um − �Aum),
Cm = {w ∈ H : 〈um − �Aum − vm, w− vm〉 ≤ 0},
um+1 = PCm(um − �Avm) ∀m ≥ 0,

(2)

where A is a L-Lipschitzian monotone mapping and � ∈ (0, 1
L ).

Since then, various modified extragradient-like iterative methods have been investi-
gated by many researchers; see, e.g., [14–19]. In 2014, combining the subgradient extra-
gradient method and Halpern’s iteration method, Kraikaew and Saejung [20] proposed
the Halpern subgradient extragradient method for solving the VIP, that is, for any given
u0 ∈ H, {um} is the sequence constructed by⎧⎪⎪⎨⎪⎪⎩

vm = PC(um − �Aum),
Cm = {v ∈ H : 〈um − �Aum − vm, v− vm〉 ≤ 0},
wm = PCm(um − �Avm),
um+1 = αmu0 + (1− αm)wm ∀m ≥ 0,

(3)

where � ∈ (0, 1
L ), {αm} ⊂ (0, 1), limm→∞ αm = 0 and ∑∞

m=1 αm = +∞. They proved the
strong convergence of {um} to PVI(C,A)u0.

In 2018, Thong and Hieu [21] first suggested the inertial subgradient extragradient
method, that is, for any given u0, u1 ∈ H, the sequence {um} is generated by⎧⎪⎪⎨⎪⎪⎩

wm = um + αm(um − um−1),
vm = PC(wm − �Awm),
Cm = {v ∈ H : 〈wm − �Awm − vm, v− vm〉 ≤ 0},
um+1 = PCm(wm − �Avm) ∀m ≥ 1,

(4)

with constant � ∈ (0, 1
L ). Under suitable conditions, they proved the weak convergence of

{um} to an element of VI(C, A). Later, Thong and Hieu [22] designed two inertial subgra-
dient extragradient algorithms with linesearch process for solving a VIP with monotone
and Lipschitz continuous mapping A and a FPP of quasi-nonexpansive mapping T with a
demiclosedness property in H. Under appropriate conditions, they established the weak
convergence results for the suggested algorithms.

Suppose that the notations VIP and CFPP represent a variational inequality problem
with Lipschitzian and pseudomonotone mapping A : H → H and a common fixed-
point problem of finitely many nonexpansive mappings {Ti}N

i=1 and a quasi-nonexpansive
mapping T with a demiclosedness property, respectively. Inspired by the research works
above, we design two Mann-type inertial subgradient extragradient iterations for finding
a common solution of the VIP and CFPP. Our algorithms require only computing one
projection onto the feasible set C per iteration, and the strong convergence theorems are
established without the assumption of sequentially weak continuity for A on C. Finally, in
order to support the applicability and implementability of our algorithms, we make use of
our main results to solve the VIP and CFPP in two illustrating examples.

This paper is organized as follows: In Section 2, we recall some definitions and
preliminaries for the sequel use. Section 3 deals with the convergence analysis of the
proposed algorithms. Finally, in Section 4, in order to support the applicability and
implementability of our algorithms, we make use of our main results to find a common
solution of the VIP and CFPP in two illustrating examples.
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2. Preliminaries

Throughout this paper, we assume that C is a nonempty closed convex subset of a
real Hilbert space H. If {um} is a sequence in H, then we denote by um → u (respectively,
um ⇀ u) the strong (respectively, weak) convergence of {um} to u. A mapping F : C → H
is said to be nonexpansive if ‖Fu− Fv‖ ≤ ‖u− v‖ ∀u, v ∈ C. Recall also that F : C → H
is called

(i) L-Lipschitz continuous (or L-Lipschitzian) if ∃L > 0 such that ‖Fu− Fv‖ ≤ L‖u−
v‖ ∀u, v ∈ C;

(ii) monotone if 〈Fu− Fv, u− v〉 ≥ 0 ∀u, v ∈ C;
(iii) pseudomonotone if 〈Fu, v− u〉 ≥ 0 ⇒ 〈Fv, v− u〉 ≥ 0 ∀u, v ∈ C;
(iv) α-strongly monotone if ∃α > 0 such that 〈Fu− Fv, u− v〉 ≥ α‖u− v‖2 ∀u, v ∈ C;
(v) quasi-nonexpansive if Fix(F) �= ∅, and ‖Fu− p‖ ≤ ‖u− p‖ ∀u ∈ C, p ∈ Fix(F);
(vi) sequentially weakly continuous on C if for {um} ⊂ C, the relation holds: um ⇀ u ⇒

Fum ⇀ Fu.

It is clear that every monotone operator is pseudomonotone, but the converse is
not true. Next, we provide an example of a quasi-nonexpansive mapping which is not
nonexpansive.

Example 1. Let H = R with the inner product 〈a, b〉 = ab and induced norm ‖ · ‖ = | · |.
Let T : H → H be defined as Tu := u

2 sin u ∀u ∈ H. It is clear that Fix(T) = {0} and T is
quasi-nonexpansive. However, we claim that T is not nonexpansive. Indeed, putting u = 2π and
v = 3π

2 , we have ‖Tu− Tv‖ = ‖ 2π
2 sin 2π − 3π

4 sin 3π
2 ‖ = 3π

4 > ‖2π − 3π
2 ‖ = π

2 .

Definition 1 ([23]). Assume that T : H → H is a nonlinear operator with Fix(T) �= ∅. Then
I − T is said to be demiclosed at zero if for any {un} in H, the implication holds: un ⇀ u and
(I − T)un → 0 ⇒ u ∈ Fix(T).

Very recently, Thong and Hieu gave an example to illustrate that there exists a quasi-
nonexpansive mapping T, but I − T is not demiclosed at zero; see ([22], Example 2). For
each u ∈ H, we know that there exists a unique nearest point in C, denoted by PCu, such
that ‖u− PCu‖ ≤ ‖u− v‖ ∀v ∈ C. PC is called a metric projection of H onto C.

Lemma 1 ([23]). The following hold:

(i) 〈u− v, PCu− PCv〉 ≥ ‖PCu− PCv‖2 ∀u, v ∈ H;
(ii) 〈u− PCu, v− PCu〉 ≤ 0 ∀u ∈ H, v ∈ C;
(iii) ‖u− v‖2 ≥ ‖u− PCu‖2 + ‖v− PCu‖2 ∀u ∈ H, v ∈ C;
(iv) ‖u− v‖2 = ‖u‖2 − ‖v‖2 − 2〈u− v, v〉 ∀u, v ∈ H;
(v) ‖λu + (1− λ)v‖2 = λ‖u‖2 + (1− λ)‖v‖2 − λ(1− λ)‖u− v‖2 ∀u, v ∈ H, λ ∈ [0, 1].

Lemma 2 ([24]). For all u ∈ H and α ≥ β > 0, the inequalities hold: ‖u−PC(u−αAu)‖
α ≤

‖u−PC(u−βAu)‖
β and ‖u− PC(u− βAu)‖ ≤ ‖u− PC(u− αAu)‖.

Lemma 3 ([13]). Suppose that A : C → H is pseudomonotone and continuous. Then u∗ ∈ C is a
solution to the VIP 〈Au∗, u− u∗〉 ≥ 0 ∀u ∈ C, if and only if 〈Au, u− u∗〉 ≥ 0 ∀u ∈ C.

Lemma 4 ([25]). Suppose that {am} is a sequence of nonnegative numbers satisfying the condi-
tions: am+1 ≤ (1− λm)am + λmγm ∀m ≥ 1, where {λm} and {γm} lie in R = (−∞, ∞) such
that (i) {λm} ⊂ [0, 1] and ∑∞

m=1 λm = ∞, and (ii) lim supm→∞ γm ≤ 0 or ∑∞
m=1 |λmγm| < ∞.

Then limm→∞ am = 0.
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Lemma 5 ([23]). Suppose that T : C → C is a nonexpansive mapping with Fix(T) �= ∅. Then
I − T is demiclosed at zero, that is, if {um} is a sequence in C such that um ⇀ u ∈ C and
(I − T)um → 0, then (I − T)u = 0, where I is the identity mapping of H.

Lemma 6 ([25]). Suppose that λ ∈ (0, 1], T : C → H is a nonexpansive mapping, and the
mapping Tλ : C → H is defined as Tλu := Tu − λμF(Tu) ∀u ∈ C, where F : H → H is
κ-Lipschitzian and η-strongly monotone. Then Tλ is a contraction provided 0 < μ < 2η

κ2 , that is,
‖Tλu− Tλv‖ ≤ (1− λ�)‖u− v‖ ∀u, v ∈ C, where � := 1−

√
1− μ(2η − μκ2) ∈ (0, 1].

Lemma 7 ([26]). Suppose that {Γm} is a sequence of real numbers that does not decrease at infinity
in the sense that there exists a subsequence {Γmk} of {Γm} which satisfies Γmk < Γmk+1 for each
integer k ≥ 1. Define the sequence {τ(m)}m≥m0 of integers as follows:

τ(m) = max{k ≤ m : Γk < Γk+1},

where integer m0 ≥ 1 such that {k ≤ m0 : Γk < Γk+1} �= ∅. Then, the following conclusions hold:

(i) τ(m0) ≤ τ(m0 + 1) ≤ · · · and τ(m)→ ∞;
(ii) Γτ(m) ≤ Γτ(m)+1 and Γm ≤ Γτ(m)+1 ∀m ≥ m0.

3. Iterative Algorithms and Convergence Criteria

In this section, let the feasible set C be a nonempty closed convex subset of a real
Hilbert space H, and assume always that the following hold:

Ti : H → H is nonexpansive for i = 1, ..., N and T : H → H is a quasi-nonexpansive
mapping such that I − T is demiclosed at zero;

A : H → H is L-Lipschitz continuous, pseudomonotone on H, and satisfies the
condition that for {xn} ⊂ C, xn ⇀ z ⇒ ‖Az‖ ≤ lim infn→∞ ‖Axn‖;

Ω = ∩N
i=0Fix(Ti) ∩VI(C, A) �= ∅ with T0 := T;

f : H → H is a contraction with constant δ ∈ [0, 1), and F : H → H is η-strongly
monotone and κ-Lipschitzian such that δ < τ := 1−

√
1− ρ(2η − ρκ2) for ρ ∈ (0, 2η

κ2 );
{ζn}, {βn}, {γn} ⊂ (0, 1), and {τn} ⊂ (0, ∞) are such that

(i) βn + γn < 1 and ∑∞
n=1 βn = ∞;

(ii) limn→∞ βn = 0 and τn = ◦(βn), i.e., limn→∞ τn/βn = 0;
(iii) 0 < lim infn→∞ γn ≤ lim supn→∞ γn < 1 and 0 < lim infn→∞ ζn ≤ lim supn→∞ ζn <

1.

In addition, we write Tn := TnmodN for integer n ≥ 1 with the mod function taking
values in the set {1, 2, ..., N}, i.e., if n = jN + q for some integers j ≥ 0 and 0 ≤ q < N, then
Tn = TN if q = 0 and Tn = Tq if 0 < q < N.

Algorithm 1. Initialization: Let λ1 > 0, α > 0, μ ∈ (0, 1) and x0, x1 ∈ H be arbitrary.
Iterative Steps: Calculate xn+1 as follows:
Step 1. Given the iterates xn−1 and xn (n ≥ 1), choose αn such that 0 ≤ αn ≤ ᾱn,

where

ᾱn =

{
min{α, τn

‖xn−xn−1‖ } if xn �= xn−1,
α otherwise.

(5)

Step 2. Compute wn = xn + αn(xn − xn−1) and yn = PC(wn − λn Awn).
Step 3. Construct the half-space Cn := {z ∈ H : 〈wn − λn Awn − yn, z− yn〉 ≤ 0}, and

compute zn = PCn(wn − λn Ayn).
Step 4. Calculate vn = ζnxn + (1− ζn)Tnwn and xn+1 = βn f (xn) + γnTzn + ((1−

γn)I − βnρF)vn, and update

λn+1 =

{
min{μ

‖wn−yn‖2+‖zn−yn‖2

2〈Awn−Ayn ,zn−yn〉 , λn} if 〈Awn − Ayn, zn − yn〉 > 0,
λn otherwise.

(6)
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Let n := n + 1 and return to Step 1.

Remark 1. It is easy to see that, from (5) we get limn→∞
αn
βn
‖xn − xn−1‖ = 0. Indeed, we

have αn‖xn − xn−1‖ ≤ τn ∀n ≥ 1, which together with limn→∞
τn
βn

= 0 implies that αn
βn
‖xn −

xn−1‖ ≤ τn
βn
→ 0 as n → ∞.

Lemma 8. Let {λn} be generated by (6). Then {λn} is a nonincreasing sequence with λn ≥ λ :=
min{λ1, μ

L} ∀n ≥ 1, and limn→∞ λn ≥ λ := min{λ1, μ
L}.

Proof. First, from (6) it is clear that λn ≥ λn+1 ∀n ≥ 1. Furthermore, observe that

1
2 (‖wn − yn‖2 + ‖zn − yn‖2) ≥ ‖wn − yn‖‖zn − yn‖
〈Awn − Ayn, zn − yn〉 ≤ L‖wn − yn‖‖zn − yn‖

}
⇒ λn+1 ≥ min{λn,

μ

L
}.

Remark 2. In terms of Lemmas 2 and 8, we claim that if wn = yn or Ayn = 0, then yn is an
element of VI(C, A). Indeed, if wn = yn or Ayn = 0, then 0 = ‖yn − PC(yn − λn Ayn)‖ ≥
‖yn − PC(yn − λAyn)‖. Thus, the assertion is valid.

The following lemmas are quite helpful for the convergence analysis of our algorithms.

Lemma 9. Let {wn}, {yn}, {zn} be the sequences generated by Algorithm 1. Then

‖zn− p‖2 ≤ ‖wn− p‖2− (1− μ
λn

λn+1
)‖wn− yn‖2− (1− μ

λn

λn+1
)‖zn− yn‖2 ∀p ∈ Ω. (7)

Proof. First, by the definition of {λn} we claim that

2〈Awn − Ayn, zn − yn〉 ≤
μ

λn+1
‖wn − yn‖2 +

μ

λn+1
‖zn − yn‖2 ∀n ≥ 1. (8)

Indeed, if 〈Awn − Ayn, zn − yn〉 ≤ 0, then inequality (8) holds. Otherwise, from (6)
we get (8). Furthermore, observe that for each p ∈ Ω ⊂ C ⊂ Cn,

‖zn − p‖2 = ‖PCn(wn − λn Ayn)− PCn p‖2 ≤ 〈zn − p, wn − λn Ayn − p〉
= 1

2‖zn − p‖2 + 1
2‖wn − p‖2 − 1

2‖zn − wn‖2 − 〈zn − p, λn Ayn〉,

which hence yields

‖zn − p‖2 ≤ ‖wn − p‖2 − ‖zn − wn‖2 − 2〈zn − p, λn Ayn〉. (9)

From p ∈ VI(C, A), we get 〈Ap, x− p〉 ≥ 0 ∀x ∈ C. By the pseudomonotonicity of
A on C we have 〈Ax, x− p〉 ≥ 0 ∀x ∈ C. Putting x := yn ∈ C we get 〈Ayn, p− yn〉 ≤ 0.
Thus,

〈Ayn, p− zn〉 = 〈Ayn, p− yn〉+ 〈Ayn, yn − zn〉 ≤ 〈Ayn, yn − zn〉. (10)

Substituting (10) for (9), we obtain

‖zn − p‖2 ≤ ‖wn − p‖2 − ‖zn − yn‖2 − ‖yn − wn‖2 + 2〈wn − λn Ayn − yn, zn − yn〉. (11)

Since zn = PCn(wn − λn Ayn), we get zn ∈ Cn := {z ∈ H : 〈wn − λn Awn − yn, z−
yn〉 ≤ 0}, and hence
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2〈wn − λn Ayn − yn, zn − yn〉 = 2〈wn − λn Awn − yn, zn − yn〉+ 2λn〈Awn − Ayn, zn − yn〉
≤ 2λn〈Awn − Ayn, zn − yn〉,

which together with (8), implies that

2〈wn − λn Ayn − yn, zn − yn〉 ≤ μ
λn

λn+1
‖wn − yn‖2 + μ

λn

λn+1
‖zn − yn‖2.

Therefore, substituting the last inequality for (11), we infer that inequality (7) holds.

Lemma 10. Suppose that {wn}, {xn}, {yn}, and {zn} are bounded sequences generated by Algo-
rithm 1. If xn − xn+1 → 0, wn − yn → 0, wn − zn → 0, zn − Tnzn → 0, and ∃{wnk} ⊂ {wn}
s.t. wnk ⇀ z ∈ H, then z ∈ Ω.

Proof. Utilizing the similar arguments to those in the proof of Lemma 3.3 of [12], we can
derive the desired result.

Lemma 11. Assume that {wn}, {xn}, {yn}, {zn} are the sequences generated by Algorithm 1.
Then they all are bounded.

Proof. Since 0 < lim infn→∞ γn ≤ lim supn→∞ γn < 1 and 0 < lim infn→∞ ζn ≤ lim supn→∞
ζn < 1, we may assume, without loss of generality, that

{γn} ⊂ [a, b] ⊂ (0, 1) and {ζn} ⊂ [c, d] ⊂ (0, 1). (12)

Choose a fixed p ∈ Ω arbitrarily. Then we obtain Tp = p and Tn p = p for all
n ≥ 1, and (7) holds. Noticing limn→∞(1− μ λn

λn+1
) = 1− μ > 0, we might assume that

1− μ λn
λn+1

> 0 for all n ≥ 1. So it follows from (7) that for all n ≥ 1,

‖zn − p‖ ≤ ‖wn − p‖. (13)

Furthermore, note that

‖wn − p‖ ≤ ‖xn − p‖+ αn‖xn − xn−1‖ = ‖xn − p‖+ βn ·
αn

βn
‖xn − xn−1‖. (14)

In terms of Remark 1, one has αn
βn
‖xn − xn−1‖ → 0 as n → ∞. Hence we deduce that

∃M1 > 0 s.t.
M1 ≥

αn

βn
‖xn − xn−1‖ ∀n ≥ 1. (15)

Using (13)–(15), we obtain that for all n ≥ 1,

‖zn − p‖ ≤ ‖wn − p‖ ≤ ‖xn − p‖+ βn M1. (16)

Noticing βn + γn < 1 ∀n ≥ 1, we have βn
1−γn

< 1 for all n ≥ 1. So, using Lemma 6 and
(16) we deduce that

‖vn − p‖ ≤ ζn‖xn − p‖+ (1− ζn)‖Tnwn − p‖
≤ ζn‖xn − p‖+ (1− ζn)‖wn − p‖
≤ ζn(‖xn − p‖+ βn M1) + (1− ζn)(‖xn − p‖+ βn M1)
= ‖xn − p‖+ βn M1,
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and hence

‖xn+1 − p‖ = ‖βn f (xn) + γnTzn + ((1− γn)I − βnρF)vn − p‖
≤ βn‖ f (xn)− p‖+ γn‖Tzn − p‖
+ (1− βn − γn)‖( 1−γn

1−βn−γn
I − βn

1−βn−γn
ρF)vn − p‖

≤ βn(‖ f (xn)− f (p)‖+ ‖ f (p)− p‖) + γn‖zn − p‖
+ (1− βn − γn)‖( 1−γn

1−βn−γn
I − βn

1−βn−γn
ρF)vn − p‖

≤ βn(δ‖xn − p‖+ ‖ f (p)− p‖) + γn‖zn − p‖
+ (1− γn)‖(I − βn

1−γn
ρF)vn − (1− βn

1−γn
)p‖

= βn(δ‖xn − p‖+ ‖ f (p)− p‖) + γn‖zn − p‖
+ (1− γn)‖(I − βn

1−γn
ρF)vn − (I − βn

1−γn
ρF)p + βn

1−γn
(I − ρF)p‖

≤ βn(δ‖xn − p‖+ ‖ f (p)− p‖) + γn‖zn − p‖
+ (1− γn)[(1− βn

1−γn
τ)‖vn − p‖+ βn

1−γn
‖(I − ρF)p‖]

= βn(δ‖xn − p‖+ ‖ f (p)− p‖) + γn‖zn − p‖
+ (1− γn − βnτ)‖vn − p‖+ βn‖(I − ρF)p‖

≤ βnδ(‖xn − p‖+ βn M1) + βn‖ f (p)− p‖+ γn(‖xn − p‖+ βn M1)
+ (1− γn − βnτ)(‖xn − p‖+ βn M1) + βn‖(I − ρF)p‖

≤ [1− βn(τ − δ)]‖xn − p‖+ βn(M1 + ‖ f (p)− p‖+ ‖(I − ρF)p‖)
= [1− βn(τ − δ)]‖xn − p‖+ βn(τ − δ) · M1+‖ f (p)−p‖+‖(I−ρF)p‖

τ−δ

≤ max{‖xn − p‖, M1+‖ f (p)−p‖+‖(I−ρF)p‖
τ−δ }.

By induction, we obtain ‖xn − p‖ ≤ max{‖x1 − p‖, M1+‖ f (p)−p‖+‖(I−ρF)p‖
τ−δ } ∀n ≥ 1.

Thus, {xn} is bounded, and so are the sequences {wn}, {yn}, {zn}, {Tzn}, {Fvn}, {Tnwn}.

Theorem 1. Let the sequence {xn} be constructed by Algorithm 1. Then {xn} converges strongly
to the unique solution x∗ ∈ Ω of the following VIP:

〈(ρF− f )x∗, p− x∗〉 ≥ 0 ∀p ∈ Ω.

Proof. First, it is not difficult to show that PΩ( f + I − ρF) is a contraction. In fact, by
Lemma 6 and the Banach contraction mapping principle, we obtain that PΩ( f + I − ρF)
has a unique fixed point. Say x∗ ∈ H, i.e., x∗ = PΩ( f + I − ρF)x∗. Thus, the following VIP
has only a solution x∗ ∈ Ω:

〈(ρF− f )x∗, p− x∗〉 ≥ 0 ∀p ∈ Ω. (17)

We now claim that

γn(1− μ
λn

λn+1
)[‖wn − yn‖2 + ‖zn − yn‖2] ≤ ‖xn − x∗‖2 − ‖xn+1 − x∗‖2 + βn M4,

for some M4 > 0. In fact, observe that

xn+1 − x∗ = βn( f (xn)− x∗) + γn(Tzn − x∗) + (1− βn − γn){ 1−γn
1−βn−γn

[(I − βn
1−γn

ρF)vn

− (I − βn
1−γn

ρF)x∗] + βn
1−βn−γn

(I − ρF)x∗}
= βn( f (xn)− f (x∗)) + γn(Tzn − x∗) + (1− γn)[(I − βn

1−γn
ρF)vn − (I − βn

1−γn
ρF)x∗]

+ βn( f − ρF)x∗.

Using Lemma 6 and the convexity of the function h(t) = t2 ∀t ∈ R, we have
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‖xn+1 − x∗‖2

≤ ‖βn( f (xn)− f (x∗)) + γn(Tzn − x∗) + (1− γn)[(I − βn
1−γn

ρF)vn − (I − βn
1−γn

ρF)x∗]‖2

+ 2βn〈( f − ρF)x∗, xn+1 − x∗〉
≤ βnδ‖xn − x∗‖2 + γn‖zn − x∗‖2 + (1− βnτ − γn)‖vn − x∗‖2 + βn M2

(18)

where M2 ≥ supn≥1 2‖ f − ρF)x∗‖‖xn − x∗‖ for some M2 > 0. From (7) and (17), we have

‖xn+1 − x∗‖2 ≤ βnδ‖xn − x∗‖2 + γn[‖wn − x∗‖2 − (1− μ λn
λn+1

)‖wn − yn‖2 − (1− μ λn
λn+1

)‖zn − yn‖2]

+ (1− βnτ − γn)[ζn‖xn − x∗‖2 + (1− ζn)‖wn − x∗‖2] + βn M2.
(19)

Again from (16), we obtain

‖wn − x∗‖2 ≤ (‖xn − x∗‖+ βn M1)
2 ≤ ‖xn − x∗‖2 + βn M3, (20)

where M3 ≥ supn≥1(2M1‖xn − x∗‖+ βn M2
1) for some M3 > 0. Using (19) and (20), we get

‖xn+1 − x∗‖2

≤ [1− βn(τ − δ)](‖xn − x∗‖2 + βn M3)− γn(1− μ λn
λn+1

)[‖wn − yn‖2 + ‖zn − yn‖2] + βn M2

≤ ‖xn − x∗‖2 − γn(1− μ λn
λn+1

)[‖wn − yn‖2 + ‖zn − yn‖2] + βn M4,

where M4 := M2 + M3. Consequently,

γn(1− μ
λn

λn+1
)[‖wn − yn‖2 + ‖zn − yn‖2] ≤ ‖xn − x∗‖2 − ‖xn+1 − x∗‖2 + βn M4. (21)

Next we claim that

‖xn+1 − x∗‖2 ≤ [1− βn(τ − δ)]‖xn − x∗‖2

+ βn(τ − δ)[ 2
τ−δ 〈( f − ρF)x∗, xn+1 − x∗〉+ 3M

τ−δ · αn
βn
· ‖xn − xn−1‖]

for some M > 0. In fact, it is easy to see that

‖wn − x∗‖2 ≤ ‖xn − x∗‖2 + αn‖xn − xn−1‖[2‖xn − x∗‖+ αn‖xn − xn−1‖]. (22)

Using (16), (18), and (22), we get

‖xn+1 − x∗‖2 ≤ βnδ‖xn − x∗‖2 + γn‖wn − x∗‖2 + (1− βnτ − γn)[ζn‖xn − x∗‖2

+ (1− ζn)‖wn − x∗‖2] + 2βn〈( f − ρF)x∗, xn+1 − x∗〉
≤ βnδ‖xn − x∗‖2 + γn[‖xn − x∗‖2 + αn‖xn − xn−1‖(2‖xn − x∗‖+ αn‖xn − xn−1‖)]
+ (1− βnτ − γn){ζn‖xn − x∗‖2 + (1− ζn)[‖xn − x∗‖2 + αn‖xn − xn−1‖(2‖xn − x∗‖
+ αn‖xn − xn−1‖)]}+ 2βn〈( f − ρF)x∗, xn+1 − x∗〉

≤ [1− βn(τ − δ)]‖xn − x∗‖2 + βn(τ − δ) · [ 2〈( f−ρF)x∗ ,xn+1−x∗〉
τ−δ + 3M

τ−δ · αn
βn
· ‖xn − xn−1‖],

(23)

where M ≥ supn≥1{‖xn − x∗‖, αn‖xn − xn−1‖} for some M > 0.
For each n ≥ 0, we set

Γn = ‖xn − x∗‖2,
εn = βn(τ − δ),
ϑn = αn‖xn − xn−1‖3M + 2βn〈( f − ρF)x∗, xn+1 − x∗〉.

Then (23) can be rewritten as the following formula:

Γn+1 ≤ (1− εn)Γn + ϑn ∀n ≥ 0. (24)

We next show the convergence of {Γn} to zero by the following two cases:
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Case 1. Suppose that there exists an integer n0 ≥ 1 such that {Γn} is non-increasing. Then

Γn − Γn+1 → 0.

From (21), we get

γn(1− μ
λn

λn+1
)[‖wn − yn‖2 + ‖zn − yn‖2] ≤ Γn − Γn+1 + βn M4.

Since βn → 0, Γn − Γn+1 → 0, 1− μ λn
λn+1

→ 1− μ and {γn} ⊂ [a, b] ⊂ (0, 1), we have

lim
n→∞

‖wn − yn‖ = lim
n→∞

‖zn − yn‖ = 0. (25)

Using Lemma 1 (v), we deduce from (16) that

‖xn+1 − x∗‖2

= ‖βn f (xn) + γnTzn + ((1− γn)I − βnρF)vn − x∗‖2

= ‖βn( f (xn)− ρFvn) + γn(Tzn − x∗) + (1− γn)(vn − x∗)‖2

≤ ‖γn(Tzn − x∗) + (1− γn)(vn − x∗)‖2 + 2βn〈 f (xn)− ρFvn, xn+1 − x∗〉
= γn‖Tzn − x∗‖2 + (1− γn)‖vn − x∗‖2 − γn(1− γn)‖Tzn − vn‖2

+ 2βn〈 f (xn)− ρFvn, xn+1 − x∗〉
= γn‖Tzn − x∗‖2 + (1− γn)[ζn‖xn − x∗‖2 + (1− ζn)‖Tnwn − x∗‖2 − ζn(1− ζn)‖xn − Tnwn‖2]
− γn(1− γn)‖Tzn − vn‖2 + 2βn〈 f (xn)− ρFvn, xn+1 − x∗〉

≤ γn‖zn − x∗‖2 + (1− γn)[ζn‖xn − x∗‖2 + (1− ζn)‖wn − x∗‖2 − ζn(1− ζn)‖xn − Tnwn‖2]
− γn(1− γn)‖Tzn − vn‖2 + 2βn〈 f (xn)− ρFvn, xn+1 − x∗〉

≤ γn(‖xn − x∗‖+ βn M1)
2 + (1− γn)(‖xn − x∗‖+ βn M1)

2 − (1− γn)ζn(1− ζn)‖xn − Tnwn‖2

− γn(1− γn)‖Tzn − vn‖2 + 2βn‖ f (xn)− ρFvn‖‖xn+1 − x∗‖
= (‖xn − x∗‖+ βn M1)

2 − (1− γn)ζn(1− ζn)‖xn − Tnwn‖2

− γn(1− γn)‖Tzn − vn‖2 + 2βn‖ f (xn)− ρFvn‖‖xn+1 − x∗‖,

which immediately yields

(1− γn)ζn(1− ζn)‖xn − Tnwn‖2 + γn(1− γn)‖Tzn − vn‖2

≤ (‖xn − x∗‖+ βn M1)
2 − ‖xn+1 − x∗‖2 + 2βn‖ f (xn)− ρFvn‖‖xn+1 − x∗‖

= Γn − Γn+1 + βn M1(2‖xn − x∗‖+ βn M1) + 2βn‖ f (xn)− ρFvn‖‖xn+1 − x∗‖.

Since βn → 0, Γn − Γn+1 → 0, {γn} ⊂ [a, b] ⊂ (0, 1) and {ζn} ⊂ [c, d] ⊂ (0, 1),
we have

lim
n→∞

‖xn − Tnwn‖ = lim
n→∞

‖Tzn − vn‖ = 0. (26)

Using Lemma 1 (v) again, we have

‖Tzn − vn‖2 = ‖ζn(Tzn − xn) + (1− ζn)(Tzn − Tnwn)‖2

= ζn‖Tzn − xn‖2 + (1− ζn)‖Tzn − Tnwn‖2 − ζn(1− ζn)‖Tnwn − xn‖2.

So it follows from (26) and {ζn} ⊂ [c, d] ⊂ (0, 1) that

lim
n→∞

‖Tzn − xn‖ = lim
n→∞

‖Tzn − Tnwn‖ = 0. (27)

Therefore, from (25)–(27), we conclude that

‖wn − zn‖ ≤ ‖wn − yn‖+ ‖yn − zn‖ → 0 (n → ∞), (28)

‖zn − Tnzn‖ ≤ ‖zn − wn‖+ ‖wn − xn‖+ ‖xn − Tnwn‖+ ‖Tnwn − Tnzn‖
≤ 2‖zn − wn‖+ ‖wn − xn‖+ ‖xn − Tnwn‖ → 0 (n → ∞),

(29)

and
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‖xn+1 − xn‖ = ‖βn f (xn) + γnTzn + ((1− γn)I − βnρF)vn − xn‖
= ‖βn( f (xn)− ρFvn) + γn(Tzn − xn) + (1− γn)(vn − xn)‖
≤ βn‖ f (xn)− ρFvn‖+ γn‖Tzn − xn‖+ (1− γn)‖vn − xn‖
≤ βn(‖ f (xn)‖+ ‖ρFvn‖) + γn‖Tzn − xn‖+ (1− γn)(‖vn − Tzn‖+ ‖Tzn − xn‖)
≤ βn(‖ f (xn)‖+ ‖ρFvn‖) + ‖Tzn − xn‖+ ‖vn − Tzn‖ → 0 (n → ∞).

(30)

Next, by the boundedness of {xn}, we know that ∃{xnk} ⊂ {xn} s.t.

lim sup
n→∞

〈( f − ρF)x∗, xn − x∗〉 = lim
k→∞

〈( f − ρF)x∗, xnk − x∗〉. (31)

Further we might assume that xnk ⇀ x̂. So, from (31) we have

lim sup
n→∞

〈( f − ρF)x∗, xn − x∗〉 = 〈( f − ρF)x∗, x̂− x∗〉. (32)

Noticing wn − xn → 0 and xnk ⇀ x̂, we obtain wnk ⇀ x̂. Since xn − xn+1 → 0, wn −
yn → 0, wn− zn → 0, zn− Tnzn → 0 (due to (25) and (28)–(30)) and wnk ⇀ x̂, by Lemma 10
we get x̂ ∈ Ω. So it follows from (17) and (32) that

lim sup
n→∞

〈( f − ρF)x∗, xn − x∗〉 = 〈( f − ρF)x∗, x̂− x∗〉 ≤ 0, (33)

which hence yields

lim sup
n→∞

〈( f − ρF)x∗, xn+1 − x∗〉
≤ lim sup

n→∞
[‖( f − ρF)x∗‖‖xn+1 − xn‖+ 〈( f − ρF)x∗, xn − x∗〉] ≤ 0.

(34)

Since {βn(τ − δ)} ⊂ [0, 1], ∑∞
n=1 βn(τ − δ) = ∞, and

lim sup
n→∞

[
2〈( f − ρF)x∗, xn+1 − x∗〉

τ − δ
+

3M
τ − δ

· αn

βn
· ‖xn − xn−1‖] ≤ 0,

by Lemma 4 we conclude from (23) that limn→0 ‖xn − x∗‖ = 0.

Case 2. Suppose that ∃{Γnk} ⊂ {Γn} s.t. Γnk < Γnk+1 ∀k ∈ N, where N is the set of all positive
integers. Define the mapping τ : N → N by

τ(n) := max{k ≤ n : Γk < Γk+1}.

Using Lemma 7, we have

Γτ(n) ≤ Γτ(n)+1 and Γn ≤ Γτ(n)+1.

Putting Γn = ‖xn − x∗‖2 ∀n ∈ N and using the same inference as in Case 1, we can
obtain

lim
n→∞

‖xτ(n)+1 − xτ(n)‖ = 0 (35)

and
lim sup

n→∞
〈( f − ρF)x∗, xτ(n)+1 − x∗〉 ≤ 0. (36)

Because of Γτ(n) ≤ Γτ(n)+1 and βτ(n) > 0, we conclude from (23) that

‖xτ(n) − x∗‖2 ≤ 2
τ−δ 〈( f − ρF)x∗, xτ(n)+1 − x∗〉+ 3M

τ−δ ·
ατ(n)
βτ(n)

· ‖xτ(n) − xτ(n)−1‖,

and hence
lim sup

n→∞
‖xτ(n) − x∗‖2 ≤ 0.
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Thus, we have
lim

n→∞
‖xτ(n) − x∗‖2 = 0.

Using (35), we obtain

‖xτ(n)+1 − x∗‖2 − ‖xτ(n) − x∗‖2

= 2〈xτ(n)+1 − xτ(n), xτ(n) − x∗〉+ ‖xτ(n)+1 − xτ(n)‖2

≤ 2‖xτ(n)+1 − xτ(n)‖‖xτ(n) − x∗‖+ ‖xτ(n)+1 − xτ(n)‖2 → 0 (n → ∞).

Taking into account Γn ≤ Γτ(n)+1, we have

‖xn − x∗‖2 ≤ ‖xτ(n)+1 − x∗‖2

≤ ‖xτ(n) − x∗‖2 + 2‖xτ(n)+1 − xτ(n)‖‖xτ(n) − x∗‖+ ‖xτ(n)+1 − xτ(n)‖2.

It is easy to see from (35) that xn → x∗ as n → ∞. This completes the proof.

Next, we introduce another Mann-type inertial subgradient extragradient algorithm.
Algorithm 2. Initialization: Let λ1 > 0, α > 0, μ ∈ (0, 1) and x0, x1 ∈ H be arbitrary.
Iterative Steps: Calculate xn+1 as follows:
Step 1. Given the iterates xn−1 and xn (n ≥ 1), choose αn such that 0 ≤ αn ≤ ᾱn,

where

ᾱn =

{
min{α, τn

‖xn−xn−1‖ } if xn �= xn−1,
α otherwise.

(37)

Step 2. Compute wn = xn + αn(xn − xn−1) and yn = PC(wn − λn Awn).
Step 3. Construct the half-space Cn := {z ∈ H : 〈wn − λn Awn − yn, z− yn〉 ≤ 0}, and

compute zn = PCn(wn − λn Ayn).
Step 4. Calculate vn = ζnxn + (1− ζn)Tzn and xn+1 = βn f (xn) + γnTnwn + ((1−

γn)I − βnρF)vn, and update

λn+1 =

{
min{μ

‖wn−yn‖2+‖zn−yn‖2

2〈Awn−Ayn ,zn−yn〉 , λn} if 〈Awn − Ayn, zn − yn〉 > 0,
λn otherwise.

(38)

Let n := n + 1 and return to Step 1.
It is worth pointing out that Lemmas 8–11 are still valid for Algorithm 2.

Theorem 2. Let the sequence {xn} be constructed by Algorithm 2. Then {xn} converges strongly
to the unique solution x∗ ∈ Ω of the following VIP:

〈(ρF− f )x∗, p− x∗〉 ≥ 0 ∀p ∈ Ω.

Proof. Utilizing the same arguments as in the proof of Theorem 1, we deduce that there
exists a unique solution x∗ ∈ Ω = ∩N

i=0Fix(Ti) ∩VI(C, A) to the VIP (17).

We now claim that

(1− βnτ − γn)(1− ζn)(1− μ
λn

λn+1
)[‖wn − yn‖2 + ‖zn − yn‖2] ≤ ‖xn − x∗‖2 − ‖xn+1 − x∗‖2 + βn M4, (39)

for some M4 > 0. In fact, observe that

xn+1 − x∗ = βn( f (xn)− f (x∗)) + γn(Tnwn − x∗)
+ (1− γn)[(I − βn

1−γn
ρF)vn − (I − βn

1−γn
ρF)x∗] + βn( f − ρF)x∗,
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where vn := ζnxn + (1− ζn)Tzn. Using the similar arguments to those of (19) and (20),
we have

‖xn+1 − x∗‖2 ≤ βnδ‖xn − x∗‖2 + γn‖wn − x∗‖2 + (1− βnτ − γn){ζn‖xn − x∗‖2

+ (1− ζn)[‖wn − x∗‖2 − (1− μ λn
λn+1

)‖wn − yn‖2 − (1− μ λn
λn+1

)‖zn − yn‖2]}+ βn M2.

and
‖wn − x∗‖2 ≤ (‖xn − x∗‖+ βn M1)

2 ≤ ‖xn − x∗‖2 + βn M3,

where M2 ≥ supn≥1 2‖( f − ρF)x∗‖‖xn− x∗‖ for some M2 > 0 and M3 ≥ supn≥1(2M1‖xn−
x∗‖+ βn M2

1) for some M3 > 0. Combining the last inequalities, we obtain

‖xn+1 − x∗‖2

≤ βnδ‖xn − x∗‖2 + γn(‖xn − x∗‖2 + βn M3) + (1− βnτ − γn)(‖xn − x∗‖2 + βn M3)

− (1− βnτ − γn)(1− ζn)[(1− μ λn
λn+1

)‖wn − yn‖2 + (1− μ λn
λn+1

)‖zn − yn‖2] + βn M2

≤ ‖xn − x∗‖2 − (1− βnτ − γn)(1− ζn)(1− μ λn
λn+1

)[‖wn − yn‖2 + ‖zn − yn‖2] + βn M4,

where M4 := M2 + M3. This ensures that (39) holds.
Next we claim that

‖xn+1 − x∗‖2 ≤ [1− βn(τ − δ)]‖xn − x∗‖2

+ βn(τ − δ)[ 2
τ−δ 〈( f − ρF)x∗, xn+1 − x∗〉+ 3M

τ−δ · αn
βn
· ‖xn − xn−1‖] (40)

for some M > 0. In fact, using the similar arguments to those of (22) and (23), we have

‖wn − x∗‖2 ≤ ‖xn − x∗‖2 + αn‖xn − xn−1‖[2‖xn − x∗‖+ αn‖xn − xn−1‖],

and

‖xn+1 − x∗‖2

≤ βnδ‖xn − x∗‖2 + γn‖wn − x∗‖2 + (1− βnτ − γn)[ζn‖xn − x∗‖2 + (1− ζn)‖zn − x∗‖2]
+ 2βn〈( f − ρF)x∗, xn+1 − x∗〉

≤ βnδ‖xn − x∗‖2 + (1− βnτ)[‖xn − x∗‖2 + αn‖xn − xn−1‖(2‖xn − x∗‖
+ αn‖xn − xn−1‖)] + 2βn〈( f − ρF)x∗, xn+1 − x∗〉

≤ [1− βn(τ − δ)]‖xn − x∗‖2 + αn‖xn − xn−1‖(2‖xn − x∗‖+ αn‖xn − xn−1‖)
+ 2βn〈( f − ρF)x∗, xn+1 − x∗〉

≤ [1− βn(τ − δ)]‖xn − x∗‖2 + βn(τ − δ) · [ 2〈( f−ρF)x∗ ,xn+1−x∗〉
τ−δ + 3M

τ−δ · αn
βn
· ‖xn − xn−1‖],

(41)

where M ≥ supn≥1{‖xn − x∗‖, αn‖xn − xn−1‖} for some M > 0.
For each n ≥ 0, we set

Γn = ‖xn − x∗‖2,
εn = βn(τ − δ),
ϑn = αn‖xn − xn−1‖3M + 2βn〈( f − ρF)x∗, xn+1 − x∗〉.

Then (41) can be rewritten as the following formula:

Γn+1 ≤ (1− εn)Γn + ϑn ∀n ≥ 0. (42)

We next show the convergence of {Γn} to zero by the following two cases:

Case 3. Suppose that there exists an integer n0 ≥ 1 such that {Γn} is non-increasing. Then

Γn − Γn+1 → 0.

Using the similar arguments to those of (25), we have

lim
n→∞

‖wn − yn‖ = lim
n→∞

‖zn − yn‖ = 0. (43)
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Using Lemma 1 (v), we get

‖xn+1 − x∗‖2

= ‖βn( f (xn)− ρFvn) + γn(Tnwn − x∗) + (1− γn)(vn − x∗)‖2

≤ ‖γn(Tnwn − x∗) + (1− γn)(vn − x∗)‖2 + 2βn〈 f (xn)− ρFvn, xn+1 − x∗〉
= γn‖Tnwn − x∗‖2 + (1− γn)‖vn − x∗‖2 − γn(1− γn)‖Tnwn − vn‖2

+ 2βn〈 f (xn)− ρFvn, xn+1 − x∗〉
= γn‖Tnwn − x∗‖2 + (1− γn)[ζn‖xn − x∗‖2 + (1− ζn)‖Tzn − x∗‖2 − ζn(1− ζn)‖xn − Tzn‖2]
− γn(1− γn)‖Tnwn − vn‖2 + 2βn〈 f (xn)− ρFvn, xn+1 − x∗〉

≤ γn‖wn − x∗‖2 + (1− γn)[ζn‖xn − x∗‖2 + (1− ζn)‖zn − x∗‖2 − ζn(1− ζn)‖xn − Tzn‖2]
− γn(1− γn)‖Tnwn − vn‖2 + 2βn〈 f (xn)− ρFvn, xn+1 − x∗〉

≤ γn(‖xn − x∗‖+ βn M1)
2 + (1− γn)(‖xn − x∗‖+ βn M1)

2 − (1− γn)ζn(1− ζn)‖xn − Tzn‖2

− γn(1− γn)‖Tnwn − vn‖2 + 2βn‖ f (xn)− ρFvn‖‖xn+1 − x∗‖
= (‖xn − x∗‖+ βn M1)

2 − (1− γn)ζn(1− ζn)‖xn − Tzn‖2

− γn(1− γn)‖Tnwn − vn‖2 + 2βn‖ f (xn)− ρFvn‖‖xn+1 − x∗‖,

which immediately yields

(1− γn)ζn(1− ζn)‖xn − Tzn‖2 + γn(1− γn)‖Tnwn − vn‖2

≤ (‖xn − x∗‖+ βn M1)
2 − ‖xn+1 − x∗‖2 + 2βn‖ f (xn)− ρFvn‖‖xn+1 − x∗‖

= Γn − Γn+1 + βn M1(2‖xn − x∗‖+ βn M1) + 2βn‖ f (xn)− ρFvn‖‖xn+1 − x∗‖.

Since βn → 0, Γn − Γn+1 → 0, {γn} ⊂ [a, b] ⊂ (0, 1) and {ζn} ⊂ [c, d] ⊂ (0, 1), we
have

lim
n→∞

‖xn − Tzn‖ = lim
n→∞

‖Tnwn − vn‖ = 0. (44)

Note that

‖Tnwn − vn‖2 = ‖ζn(Tnwn − xn) + (1− ζn)(Tnwn − Tzn)‖2

= ζn‖Tnwn − xn‖2 + (1− ζn)‖Tnwn − Tzn‖2 − ζn(1− ζn)‖Tzn − xn‖2.

Hence, from (44) we have

lim
n→∞

‖Tnwn − xn‖ = lim
n→∞

‖Tnwn − Tzn‖ = 0. (45)

So, from (43)–(45) we infer that

‖wn − zn‖ ≤ ‖wn − yn‖+ ‖yn − zn‖ → 0 (n → ∞), (46)

‖zn − Tnzn‖ ≤ ‖zn − wn‖+ ‖wn − xn‖+ ‖xn − Tnwn‖+ ‖Tnwn − Tnzn‖
≤ 2‖zn − wn‖+ ‖wn − xn‖+ ‖xn − Tnwn‖ → 0 (n → ∞),

(47)

and

‖xn+1 − xn‖ = ‖βn f (xn) + γnTnwn + ((1− γn)I − βnρF)vn − xn‖
= ‖βn( f (xn)− ρFvn) + γn(Tnwn − xn) + (1− γn)(vn − xn)‖
≤ βn‖ f (xn)− ρFvn‖+ γn‖Tnwn − xn‖+ (1− γn)‖vn − xn‖
≤ βn(‖ f (xn)‖+ ‖ρFvn‖) + γn‖Tnwn − xn‖+ (1− γn)(‖vn − Tnwn‖+ ‖Tnwn − xn‖)
≤ βn(‖ f (xn)‖+ ‖ρFvn‖) + ‖Tnwn − xn‖+ ‖vn − Tnwn‖ → 0 (n → ∞).

(48)

In addition, using the similar arguments to those of (33) and (34), we have

lim sup
n→∞

〈( f − ρF)x∗, xn − x∗〉 ≤ 0,

and hence
lim sup

n→∞
〈( f − ρF)x∗, xn+1 − x∗〉 ≤ 0.

Consequently, applying Lemma 4 to (41), we have limn→0 ‖xn − x∗‖ = 0.

35



Axioms 2021, 10, 67

Case 4. Suppose that ∃{Γnk} ⊂ {Γn} s.t. Γnk < Γnk+1 ∀k ∈ N, where N is the set of all positive
integers. Define the mapping τ : N → N by τ(n) := max{k ≤ n : Γk < Γk+1}. In the
remainder of the proof, using the same arguments as in Case 2 of the proof of Theorem 1,
we obtain the desired assertion. This completes the proof.

It is markable that our results improve and extend the corresponding results of
Kraikaew and Saejung [20] and Ceng et al. [11], in the following aspects.

(i) Our problem of finding an element of ∩N
i=0Fix(Ti) ∩VI(C, A) includes as a special

case the problem of finding an element of VI(C, A) in [20], where T1, ..., TN are nonexpan-
sive and T0 = T is quasi-nonexpansive. It is worth mentioning that Halpern’s subgradient
extragradient method for solving the VIP in [20] is extended to develop our Mann-type
inertial subgradient extragradient rule for solving the VIP and CFPP, in which A is L-
Lipschitz continuous, pseudomonotone on H, but it is not required to be sequentially
weakly continuous on C.

(ii) Our problem of finding an element of ∩N
i=0Fix(Ti) ∩VI(C, A) includes as a special

case the problem of finding an element of ∩N
i=1Fix(Ti) ∩VI(C, A) in [11], where in [11], A

is required to be L-Lipschitz continuous, pseudomonotone on H, and sequentially weakly
continuous on C. The modified inertial subgradient extragradient method for solving
the VIP and CFPP in [11] is extended to develop our Mann-type inertial subgradient
extragradient rule for solving the VIP and CFPP, where Ti is nonexpansive for i = 1, ..., N
and T0 = T is quasi-nonexpansive.

4. Applicability and Implementability of Algorithms

In this section, in order to support the applicability and implementability of our
Algorithms 1 and 2, we make use of our main results to find a common solution of the VIP
and CFPP in two illustrating examples.

Example 2. Let C = [−1, 1] and H = R with the inner product 〈a, b〉 = ab and induced norm
‖ · ‖ = | · |. Let x0, x1 ∈ H be arbitrary. Put f (x) = F(x) = 1

2 x, βn = 1
n+1 , τn = β2

n, μ =

0.2, α = λ1 = 0.1, γn = ζn = 1
3 , ρ = 2, and

αn =

{
min{ β2

n
‖xn−xn−1‖ , α} if xn �= xn−1,

α otherwise.

Then we know that κ = η = 1
2 and τ = 1−

√
1− ρ(2η − ρκ2) = 1 ∈ (0, 1]. For N = 1, we

now present Lipschitz continuous and pseudomonotone mapping A, quasi-nonexpansive mapping
T and nonexpansive mapping T1 such that Ω = Fix(T1) ∩ Fix(T) ∩VI(C, A) �= ∅. Indeed, let
A, T, T1 : H → H be defined as Ax := 1

1+| sin x| −
1

1+|x| , T1x := sin x and Tx := x
2 sin x for all

x ∈ H. We first show that A is pseudomonotone and L-Lipschitz continuous with L = 2. Indeed,
it is easy to see that for all x, y ∈ H,

‖Ax− Ay‖ = | 1
1+‖ sin x‖ −

1
1+‖x‖ −

1
1+‖ sin y‖ +

1
1+‖y‖ |

≤ | ‖y‖−‖x‖
(1+‖x‖)(1+‖y‖) |+ |

‖ sin y‖−‖ sin x‖
(1+‖ sin x‖)(1+‖ sin y‖) |

≤ ‖x−y‖
(1+‖x‖)(1+‖y‖) +

‖ sin x−sin y‖
(1+‖ sin x‖)(1+‖ sin y‖)

≤ 2‖x− y‖,

and

〈Ax, y− x〉 = (
1

1 + | sin x| −
1

1 + |x| )(y− x) ≥ 0 ⇒ 〈Ay, y− x〉 = (
1

1 + | sin y| −
1

1 + |y| )(y− x) ≥ 0.

Furthermore, it is clear that Fix(T) = {0}, T is quasi-nonexpansive but not nonexpansive.
Meantime, I − T is demiclosed at 0 due to the continuity of T. In addition, it is clear that T1 is

36



Axioms 2021, 10, 67

nonexpansive and Fix(T1) = {0}. Therefore, Ω = Fix(T1) ∩ Fix(T) ∩VI(C, A) = {0} �= ∅. In
this case, Algorithm 1 can be rewritten as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

wn = xn + αn(xn − xn−1),
yn = PC(wn − λn Awn),
zn = PCn(wn − λn Ayn),
vn = 1

3 xn +
2
3 T1wn,

xn+1 = 1
n+1 · 1

2 xn +
1
3 Tzn + ( n

n+1 − 1
3 )vn ∀n ≥ 1,

(49)

where for each n ≥ 1, Cn and λn are chosen as in Algorithm 1. So, using Theorem 1, we know
that {xn} converges to 0 ∈ Ω = Fix(T1) ∩ Fix(T) ∩VI(C, A). Meanwhile, Algorithm 2 can be
rewritten as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

wn = xn + αn(xn − xn−1),
yn = PC(wn − λn Awn),
zn = PCn(wn − λn Ayn),
vn = 1

3 xn +
2
3 Tzn,

xn+1 = 1
n+1 · 1

2 xn +
1
3 T1wn + ( n

n+1 − 1
3 )vn ∀n ≥ 1,

(50)

where, for each n ≥ 1, Cn and λn are chosen as in Algorithm 2. So, using Theorem 2, we know that
{xn} converges to 0 ∈ Ω = Fix(T1) ∩ Fix(T) ∩VI(C, A).

Example 3. Let H = L2([0, 1]) with the inner product and induced norm defined by

〈x, y〉 =
∫ 1

0
x(t)y(t)dt and ‖x‖ = (

∫ 1

0
|x(t)|2dt)1/2 ∀x, y ∈ H,

respectively. Then (H, 〈·, ·〉) is a Hilbert space. Let C := {x ∈ H : ‖x‖ ≤ 1} be the unit closed
ball of H. It is known that

PC(x) =

{
x
‖x‖ if ‖x‖ > 1,
x if ‖x‖ ≤ 1.

Let x0, x1 ∈ H be arbitrary. Put f (x) = F(x) = 1
2 x, βn = 1

n+1 , τn = β2
n, μ = 0.2, α =

λ1 = 0.1, γn = ζn = 1
3 , ρ = 2, and

αn =

{
min{ β2

n
‖xn−xn−1‖ , α} if xn �= xn−1,

α otherwise.

Then we know that κ = η = 1
2 and τ = 1−

√
1− ρ(2η − ρκ2) = 1 ∈ (0, 1]. For N = 1, we

now present Lipschitz continuous and pseudomonotone mapping A, quasi-nonexpansive mapping
T and nonexpansive mapping T1 such that Ω = Fix(T1) ∩ Fix(T) ∩VI(C, A) �= ∅. Indeed, let
A, T, T1 : H → H be defined as (Ax)(t) := max{0, x(t)}, (T1x)(t) := 1

2 x(t)− 1
2 sin x(t) and

(Tx)(t) := 1
2 x(t) + 1

2 sin x(t) for all x ∈ H. It can be easily verified (see, e.g., [8,9]) that A is
monotone and L-Lipschitz continuous with L = 1, and the solution set of the VIP for A is given by

VI(C, A) = {0} �= ∅.

We next show that T and T1 are nonexpansive and Fix(T) = Fix(T1) = {0}. Indeed, it is
easy to see that for all x, y ∈ H,

‖Tx− Ty‖ = (
∫ 1

0 | 12 (x(t)− y(t)) + 1
2 (sin x(t)− sin y(t))|2dt)1/2

≤ (
∫ 1

0 (
1
2 |x(t)− y(t)|+ 1

2 |x(t)− y(t)|)2dt)1/2

= (
∫ 1

0 |x(t)− y(t)|2dt)1/2

= ‖x− y‖.
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Similarly, we get ‖T1x− T1y‖ ≤ ‖x− y‖ ∀x, y ∈ H. Moreover, it is clear that Fix(T) =
Fix(T1) = {0}. Therefore, Ω = Fix(T1) ∩ Fix(T) ∩ VI(C, A) = {0} �= ∅. In this case,
Algorithm 1 can be rewritten as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

wn = xn + αn(xn − xn−1),
yn = PC(wn − λn Awn),
zn = PCn(wn − λn Ayn),
vn = 1

3 xn +
2
3 T1wn,

xn+1 = 1
n+1 · 1

2 xn +
1
3 Tzn + ( n

n+1 − 1
3 )vn ∀n ≥ 1,

(51)

where for each n ≥ 1, Cn and λn are chosen as in Algorithm 1. So, using Theorem 1, we know that
{xn} converges strongly to 0 ∈ Ω = Fix(T1) ∩ Fix(T) ∩VI(C, A). Meantime, Algorithm 2 can
be rewritten as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

wn = xn + αn(xn − xn−1),
yn = PC(wn − λn Awn),
zn = PCn(wn − λn Ayn),
vn = 1

3 xn +
2
3 Tzn,

xn+1 = 1
n+1 · 1

2 xn +
1
3 T1wn + ( n

n+1 − 1
3 )vn ∀n ≥ 1,

(52)

where for each n ≥ 1, Cn and λn are chosen as in Algorithm 2. So, using Theorem 2, we know that
{xn} converges strongly to 0 ∈ Ω = Fix(T1) ∩ Fix(T) ∩VI(C, A).
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Abstract: In this paper, we introduce a notion of convex F-contraction and establish some fixed point
results for such contractions in b-metric spaces. Moreover, we give a supportive example to show that
our convex F-contraction is quite different from the F-contraction used in the existing literature since
our convex F-contraction does not necessarily contain the continuous mapping but the F-contraction
contains such mapping. In addition, via some facts, we claim that our results indeed generalize and
improve some previous results in the literature.
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1. Introduction and Preliminaries

In [1], Wardowski introduced the following concept of F-contraction and proved a
fixed point theorem that generalizes the classical Banach contraction mapping principle.

Definition 1 ([1]). Let (X, d) be a metric space and T : X → X be a mapping. Then T is called
an F-contraction if there exists a function F : (0,+∞)→ R such that

(F1) F is strictly increasing on (0,+∞);
(F2) for each sequence {αn} of positive numbers,

lim
n→∞

αn = 0 if and only if lim
n→∞

F(αn) = −∞;

(F3) there exists k ∈ (0, 1) such that lim
α→0+

αkF(α) = 0;

(F4) there exists τ > 0 such that

τ + F(d(Tx, Ty)) ≤ F(d(x, y)) (1)

for all x, y ∈ X with x �= y.

Remark 1. Definition 1 is the modification of [1] (Definition 2.1). In fact, (2) from [1] says
d(Tx, Ty) > 0, that is, Tx �= Ty. Note that Tx �= Ty implies x �= y. Hence, x �= y in (F4)
is weaker condition than d(Tx, Ty) > 0 from (2) of [1]. Moreover, our modification does not
disturb the main results of [1]. Clearly, compared with d(Tx, Ty) > 0 from [1], our x �= y is more
convenient in applications.

Otherwise, by (1) and (F1), we have

d(Tx, Ty) < d(x, y) (2)

Axioms 2021, 10, 71. https://doi.org/10.3390/axioms10020071 https://www.mdpi.com/journal/axioms40
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for all x, y ∈ X with x �= y. Accordingly, any F-contraction is a contraction.

Remark 2. It follows immediately from (2) that any F-contraction implies that the mapping T is a
continuous mapping.

Wardowski [1] proved that any F-contraction has a unique fixed point.

Theorem 1 ([1]). Let (X, d) be a complete metric space and T : X → X be an F-contraction. Then,
T has a unique fixed point x∗ in X. For every x ∈ X, the sequence {Tnx} converges to x∗.

Since then, several authors proved fixed point results for F-contractions (see [2–13]).
However, F-contraction has a great limitation since the mapping must be a continuous
mapping (see Remark 2). But the continuity is a strong condition. Hence, it restricts the
applications greatly.

On the other hand, the concept of b-metric space was introduced by Bakhtin [14] or
Czerwik [15] which is a great generalization of usual metric space.

Definition 2. A b-metric space (X, d, s) (s ≥ 1) is a space defined on a nonempty set X with a
mapping d : X× X → [0,+∞) satisfying the following conditions:

(1) d(x, y) = 0 if and only if x = y;
(2) d(x, y) = d(y, x) for all x, y ∈ X;
(3) d(x, y) ≤ s[d(x, z) + d(z, y)] for all x, y, z ∈ X.

In this case, d is called a b-metric on X.

Regarding some other concepts, such as the concepts of b-convergent sequence, b-
Cauchy sequence and b-completeness, the reader may refer to [16] and the references therein.

In the sequel, unless there is a special explanation, we always denote by N, the set of
positive integers, R, the set of real numbers.

Let (X, d, s) be a b-metric space and T be a self-mapping on X. The Picard sequence
of T is given by {xn}n∈N∪{0} = {Tnx}n∈N∪{0} for any x ∈ X, where T0x = x. In this case,
for the convenience, throughout this paper, we always denote d(xn+1, xn) by dn, for all
n ∈ N∪ {0}.

In this paper, we introduce the concept of convex F-contraction and give some suf-
ficient conditions when the Picard sequence of convex F-contraction on b-metric space
satisfies the Cauchy condition. Our results improve the results of Cosentino and Vetro [17].
Our conclusions are some real generalizations of the results of Popescu and Stan [18].
Moreover, we also expand the main results of Wardowski and Dung [13]. Additionally,
we pose two problems at the end of the main text. We aim to continue to work in order to
solve the problems in the near future.

2. Main Results

In this section, we first define a notion called convex F-contraction in b-metric spaces.
Moreover, we give two examples to illustrate our notion is well-defined. Further, we
present a fixed point result for such contraction.

Definition 3. Let (X, d, s) be a b-metric space and T be a self-mapping on X. We say that T
is a convex F-contraction if there exists a function F : (0,+∞) → R such that Condition (F1)
holds and

(Fα
2 ) for each sequence {αn} of positive numbers, if lim

n→∞
F(αn) = −∞, then lim

n→∞
αn = 0;

(Fs
3) there exists k ∈ (0, 1

1+log2 s ) such that lim
α→0+

αkF(α) = 0;

(Fλ
4 ) there exist τ > 0 and λ ∈ [0, 1) such that

τ + F(dn) ≤ F(λdn + (1− λ)dn−1), (3)
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for all dn > 0, where n ∈ N.

Remark 3. Definition 3 improves Definition 1 greatly. Indeed, (Fα
2 ) is weaker than Condition

(F2). If s = 1, then Condition (Fs
3) is Condition (F3). That is to say, (Fs

3) expands Condition (F3).
Moreover, if λ = 0, then Condition (Fλ

4 ) is a consequence of Condition (F4).

Example 1. Let (X, d, s) be a b-metric space and T : X → X be a mapping. Suppose that T is an
F-contraction of Kannan type, i.e., there exists τ > 0 such that

τ + F(d(Tx, Ty)) ≤ F
(

1
2
[d(x, Tx) + d(y, Ty)]

)
(4)

for all x, y ∈ X with x �= y.
Choose F(α) = ln α, α ∈ (0,+∞), then T is a convex F-contraction. Indeed, it is obvious

that F satisfies Conditions (F1), (Fα
2 ) and (Fs

3). Moreover, T satisfies Condition (Fλ
4 ) based on the

fact that there exists λ = 1
2 such that

τ + F(dn) ≤ F
(

dn

2
+

dn−1

2

)
for all dn > 0, where n ∈ N. That is, (4) becomes (Fλ

4 ).
Otherwise, if F(α) = ln α, α ∈ (0,+∞), then from (4) we have

d(Tx, Ty) ≤ K[d(x, Tx) + d(y, Ty)],

where K = e−τ

2 < 1
2 , i.e., the contraction of Kannan type (see [19]) holds.

Example 2. Let T be an F-contraction of Reich type (see [20]), i.e., there exist τ > 0 and
α, β, γ ∈ [0, 1], α + β + γ = 1 such that

τ + F(d(Tx, Ty)) ≤ F(αd(x, y) + βd(x, Tx) + γd(y, Ty)), (5)

for all x, y ∈ X with x �= y.
Choose F(α) = − 1√

α
, α ∈ (0,+∞), then T is a convex F-contraction. Indeed, it is clear that

F satisfies Conditions (F1), (Fα
2 ) and (Fs

3). Moreover, T satisfies Condition (Fλ
4 ) because there

exists λ = β such that (3) holds. That is, T satisfies Condition (Fλ
4 ).

Otherwise, if F(α) = − 1√
α

, α ∈ (0,+∞), then (5) implies

d(Tx, Ty) < αd(x, y) + βd(x, Tx) + γd(y, Ty),

which is the contraction of Reich type.

Lemma 1. Let (X, d, s) be a b-metric space and T be a convex F-contraction on X. Then, for every
x ∈ X, the sequences {Tnx}n∈N∪{0} is a b-Cauchy sequence.

Proof. Choose x ∈ X and construct a sequence {xn} by xn = Tnx for all n ∈ N ∪ {0}. If
there exists n0 ∈ N∪ {0} such that xn0+1 = xn0 , then

{xn} = {x, Tx, T2x, . . . , Tn0−1x, xn0 , xn0 , . . .}.

It is valid that {Tnx}n∈N∪{0} is a b-Cauchy sequence. The proof is completed.
Without loss of generality, assume that xn+1 �= xn for all n ∈ N ∪ {0}. That is to say,

assume that dn > 0 for all n ∈ N∪ {0}. From Condition (Fλ
4 ), we have

F(dn) < τ + F(dn) ≤ F(λdn + (1− λ)dn−1).
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Using Condition (F1), we obtain

dn < λdn + (1− λ)dn−1,

then 0 < dn < dn−1 for all n ∈ N. Hence, {dn} is a convergent sequence.
In the following, we show lim

n→∞
dn = 0. To this end, we show

τ + F(dn) ≤ F(dn−1), (6)

for all n ∈ N.
Indeed, if (6) is not true, then

τ + F(dn) > F(dn−1),

for some n ∈ N. Thus, it establishes that

F(dn−1) < τ + F(dn) ≤ F(λdn + (1− λ)dn−1).

Using Condition (F1), we get

dn−1 < λdn + (1− λ)dn−1,

which means dn−1 < dn. This is a contradiction.
It follows immediately from (6) that

F(dn) ≤ F(d0)− nτ, (7)

for all n ∈ N. (7) implies lim
n→∞

F(dn) = −∞. Then by Condition (Fα
2 ), it leads to lim

n→∞
dn = 0.

In view of lim
n→∞

dn = 0, then via Condition (Fs
3), there exists k ∈ (0, 1

1+log2 s ) such that

lim
n→∞

dk
nF(dn) = 0. (8)

From (7) we obtain
dk

nnτ ≤ dk
nF(d0)− dk

nF(dn). (9)

Combine (8) and (9), it is easy to see that

lim
n→∞

dk
nn = 0.

Therefore, there exists n0 ∈ N such that

dn ≤
1

n
1
k

,

for all n ≥ n0. Finally, using [21] (Lemma 11), we claim that {xn} is a b-Cauchy sequence.

Theorem 2. Let (X, d, s) be a b-complete b-metric space and T be a continuous convex F-contraction
on X. Then, T has a fixed point in X.

Proof. For any x ∈ X, by Lemma 1 we deduce that the sequence {Tnx} is b-convergent.
Write x∗ = lim

n→∞
Tnx. Due to the continuity of the mapping T, we conclude that x∗ is a

fixed point of T.

Remark 4. The continuous condition of Theorem 2 is necessary because there exists discontinuous
convex F-contraction. See Example 3 in the sequel.
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3. Some Results Related to Convex F-Contractions

In this section, we obtain some results regarding convex F-contractions. We give a
supportive example to verify that the mapping T with regard to convex F-contraction is not
necessarily continuous. This fact shows that our convex F-contraction is more meaningful
than the F-contraction introduced by Wardowski [1] since any F-contraction must contain
the continuous mapping T (see Remark 2).

First of all, we present a fixed point theorem for F-contraction of Banach type as follows:

Theorem 3. Let (X, d, s) be a b-complete b-metric space and T be a self-mapping on X. Suppose
that there exists a function F : (0,+∞) → R satisfying Conditions (F1), (Fα

2 ), (Fs
3) and (F4).

Then, T has a unique fixed point x∗ in X. Moreover, for any x ∈ X, the sequence {Tnx} b-converges
to x∗.

Proof. From Condition (F4) we obtain Condition (Fλ
4 ) if we choose λ = 0. So, T is a

convex F-contraction. Since (F4) is satisfied, then by Remark 2, T is continuous. Now, from
Theorem 2 and Lemma 1, we conclude that for any x ∈ X, there exists x∗ ∈ X such that
Tx∗ = x∗ and x∗ = lim

n→∞
Tnx.

In the following, we prove that the fixed point of T is unique. Indeed, assume that T
has another fixed point y∗ ∈ X, then by (F4), ones have

F(d(x∗, y∗)) = F(d(Tx∗, Ty∗)) < τ + F(d(Tx∗, Ty∗)) ≤ F(d(x∗, y∗)),

which is a contraction.

Remark 5. Note that, from Theorem 3 we get Theorem 1 because in metric spaces 1 + log2 s = 1
holds, where s = 1. Therefore, Theorem 3 generalizes Theorem 1.

Secondly, we give a fixed point theorem for the F-contraction of Kannan type as fol-
lows:

Theorem 4. Let (X, d, s) be a b-complete b-metric space with s ∈ [1, 2). Let T be an F-contraction
of Kannan type, i.e., T satisfies (4). Suppose that there exists a function F : (0,+∞)→ R satisfying
Conditions (F1), (Fα

2 ) and (Fs
3). Then, T has a unique fixed point x∗ in X. Moreover, for any

x ∈ X, the sequence {Tnx} b-converges to x∗.

Proof. From Example 1 we obtain that T is a convex F-contraction. So, by Lemma 1 we
conclude that there exists x∗ ∈ X such that x∗ = lim

n→∞
xn, where xn = Tnx for any x ∈ X.

Next, from Condition (4) and (F1) we obtain

d(Tx, Ty) <
1
2
[d(x, Tx) + d(y, Ty)] (10)

for all x, y ∈ X with x �= y.
If x∗ �= Tx∗, using (10), we have

d(x∗, Tx∗) ≤ s[d(x∗, xn+1) + d(xn+1, Tx∗)]

≤ s
(

d(x∗, xn+1) +
1
2
[d(xn, xn+1) + d(x∗, Tx∗)]

)
.

Take the limit as n → ∞ from the above inequality, it follows that

d(x∗, Tx∗) ≤ s
2

d(x∗, Tx∗) < d(x∗, Tx∗),

which is a contradiction. Hence, x∗ = Tx∗.
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Finally, we prove the fixed point of T is unique. As a matter of fact, if T has two
distinct fixed points x∗ and y∗, i.e., x∗ �= y∗, then by (10), it is easy to see that

d(x∗, y∗) = d(Tx∗, Ty∗) <
1
2
[d(x∗, Tx∗) + d(y∗, Ty∗)] = 0.

which is a contradiction.

Remark 6. Similar to Theorem 4, the mapping T has a unique fixed point if T from Theorem 4 is
replaced by the F-contraction of Chatterjea type (see [22]), i.e., there exists τ > 0 such that

τ + F(d(Tx, Ty)) ≤ F
(

1
2s

[d(x, Ty) + d(y, Tx)]
)

for all x, y ∈ X with x �= y.

Example 3. Let X = R and define a mapping d : X× X → [0,+∞) by

d(x, y) = |x− y|p

for all x, y ∈ X, where p ∈ [1, 2). Then (X, d, s) is a b-metric space with s = 2p−1 ∈ [1, 2). Let
T : X → X be a mapping defined by

Tx =

{
0, if x ∈ (−∞, 2],
1
2 , if x ∈ (2,+∞).

Let F(α) = ln α, α ∈ (0,+∞), then F satisfies (F1), (Fα
2 ) and (Fs

3). Moreover, there exists
τ = − ln(2K) > 0 such that T is an F-contraction of Kannan type, where K ∈ [ 1

3p , 1
2 ) is a

constant. Hence, T satisfies (4). Clearly, T is not continuous but by Theorem 4, it has a unique
fixed point x∗ = 0 in X.

Otherwise, it is easy to see that

d(Tx, Ty) ≤ K[d(x, Tx) + d(y, Ty)]

for all x, y ∈ X. Therefore, T is a contraction for Kannan type. However, T is not a contraction for
Banach type. Actually, there is not a constant k ∈ (0, 1) such that

d(Tx, Ty) ≤ kd(x, y)

for all x, y ∈ X.

Remark 7. By Example 3, we claim that Theorem 4 has a superiority since the mapping T does
not necessarily be continuous. Hence, our convex F-contraction can derive more applications than
the counterpart of all the results regarding F-contraction. This is because any F-contraction must
contain a continuous mapping (see Remark 2).

Finally, we give a result on F-contraction of Hardy–Rogers type in b-metric spaces.
Our result improves the results of [17,18] in b-metric spaces.

Theorem 5. Let T be a self-mapping on a b-complete b-metric space (X, d, s). Suppose that there
exists a function F : (0,+∞)→ R satisfying Conditions (F1), (Fα

2 ) and (Fs
3). If there exists τ > 0

such that

τ + F(d(Tx, Ty)) ≤ F(ad(x, y) + b[d(x, Tx) + d(y, Ty)]

+ c[d(x, Ty) + d(y, Tx)]), (11)
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for all x, y ∈ X with x �= y, where a, b, c ≥ 0, a + 2b + 2cs = 1 and bs + cs2 < 1, then T has a
unique fixed point x∗ in X. For any x ∈ X, the sequence {Tnx} b-converges to x∗.

Proof. Let x ∈ X and xn = Tnx, for all n ∈ N∪ {0}. If there exists n0 ∈ N∪ {0} such that
xn0+1 = xn0 , that is, Txn0 = xn0 , then xn0 is a fixed point of T.

Without loss of generality, we always assume that xn+1 �= xn for any n ∈ N ∪ {0}.
Making full use of (11), we speculate

τ + F(dn) ≤ F(adn−1 + b(dn + dn−1) + cd(xn−1, xn+1))

≤ F(adn−1 + b(dn + dn−1) + cs(dn−1 + dn))

= F((b + cs)dn + (a + b + cs)dn−1).

That is, (Fλ
4 ) holds. Consequently, T is a convex F-contraction. Via Lemma 1, there

exists x∗ ∈ X such that x∗ = lim
n→∞

xn.

In the following, we prove that x∗ is a fixed point of T. To this end, we suppose that
x∗ �= Tx∗ is absurd. Then

d(x∗, Tx∗) ≤ s[d(x∗, xn+1) + d(xn+1, Tx∗)]

and
d(xn+1, Tx∗) ≤ s[d(xn+1, x∗) + d(x∗, Tx∗)]

imply that

1
s

d(x∗, Tx∗) ≤ lim inf
n→∞

d(xn+1, Tx∗) ≤ lim sup
n→∞

d(xn+1, Tx∗) ≤ sd(x∗, Tx∗). (12)

Put l = lim inf
n→∞

d(xn+1, Tx∗) and L = lim sup
n→∞

d(xn+1, Tx∗). Using Condition (11) and

(F1), we have

d(Txn, Tx∗) < ad(xn, x∗) + b[d(xn, xn+1) + d(x∗, Tx∗)]

+ c[d(xn, Tx∗) + d(x∗, xn+1)]. (13)

Hence, taking the limit as n → ∞ from both sides of (13) and considering (12), we get

l ≤ bd(x∗, Tx∗) + cL. (14)

Hence, using (12) and (14), we obtain

1
s

d(x∗, Tx∗) ≤ l ≤ bd(x∗, Tx∗) + cL ≤ bd(x∗, Tx∗) + csd(x∗, Tx∗),

which means that bs + cs2 ≥ 1. This is a contradiction. Therefore, x∗ = Tx∗.
Finally, we need to prove the uniqueness of the fixed point. To this end, assume that T

has another fixed point y∗. Taking advantage of (11), we arrive at

F(d(x∗, y∗)) = F(d(Tx∗, Ty∗)) < τ + F(d(Tx∗, Ty∗))

≤ F(ad(x∗, y∗) + b[d(x∗, Tx∗) + d(y∗, Ty∗)]

+ c[d(x∗, Ty∗) + d(y∗, Tx∗)])

= F((a + 2c)d(x∗, y∗)),

which follows immediately from Condition (F1) that

d(x∗, y∗) < (a + 2c)d(x∗, y∗) ≤ d(x∗, y∗).

This is a contradiction.
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Remark 8. Theorem 5 generalizes [13] (Corollary 2.5). By virtue of convex F-contractions and
Lemma 1, we can get [13] (Theorem 2.4) and [23] (Theorem 3).

We finally pose the following problems:

Problem 1. Can Condition (Fs
3) be replaced with Condition (F3) in our all results?

Problem 2. Does Theorem 4 hold if s ≥ 1 is arbitrary?
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1. Backgrounds and Motivations

A function f : I ⊆ R→ R is said to be convex on an interval I if

f (tx + (1− t)y) ≤ t f (x) + (1− t) f (y)

holds for all x, y ∈ I and t ∈ [0, 1]. If f : I ⊆ R→ R is a convex function and a, b ∈ I with
a < b, then

f
(

a + b
2

)
≤ 1

b− a

∫ b

a
f (x)d x ≤ f (a) + f (b)

2
. (1)

The equalities in (1) are valid if and only if f (x) is a linear function on [a, b], as can
be seen in [1] (p. 59). In mathematical literature, the double inequality (1) is called the
Hermite–Hadamard inequality, named after Charles Hermite (1822–1901) and Jacques
Hadamard (1865–1963). The Hermite–Hadamard inequality (1) is a necessary and sufficient
condition for a real function to be convex on a closed and bounded real interval. It was
extensively studied and generalized over more than one century, since it was first published
in [2,3]. Copies of these two papers are available on the Internet since they belong to the
fundamental knowledge of the humankind. The monograph [1] is fundamental and can
be freely downloaded from the Internet. Other four fundamental monographs are [4–7].
They present the directions of development of the research in this field until now. Since
then, the double inequality (1) has attracted many mathematicians’ attention. Especially, in
the last three decades, numerous generalizations, variants and extensions of this double
inequality have been presented. In particular, the Hermite–Hadamard-type inequalities
associated with a variety of fractional integral operators have been provided in [8,9] and
closely related references therein.

In the paper [10], the Hermite–Hadamard integral inequality (1) was generalized as
the following theorems.

Theorem 1 ([10] (Lemma 3)). Let f : I ⊆ R→ R be a differentiable mapping on I◦, the interior
of an interval I, with a, b ∈ I and a < b. If f is a convex function on I, then

f
(

a + b
2

)
≤ 1

b− a

∫ b

a
f (x)d x ≤ 1

4

[
f
(

3b− a
2

)
+ 2 f

(
a + b

2

)
+ f

(
3a− b

2

)]
(2)
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and ∣∣∣∣∣ 1
b− a

∫ b

a
f (x)d x− f

( a+b
2
)

2

∣∣∣∣∣ ≤
∣∣∣∣∣ f
( 3b−a

2
)
+ f

( 3a−b
2

)
4

∣∣∣∣∣. (3)

After carefully verifying the above, we find that the convexity of f should be added
to [10] (Theorem 3). The slightly amended version of [10] (Theorem 3) can be stated
as follows.

Theorem 2 ([10] (Lemma 3)). Let f : I ⊆ R→ R be a differentiable mapping on I◦ with a, b ∈ I
and a < b, the second derivative f ′′ :

[ 3a−b
2 , 3b−a

2
]
→ R be a continuous function on

[ 3a−b
2 , 3b−a

2
]
,

and q > 1. If f and | f ′′|q are convex on
[ 3a−b

2 , 3b−a
2

]
, then

∣∣∣∣ 1
b− a

∫ b

a
f (x)d x− 1

4

[
f
(

3b− a
2

)
+ 2 f

(
a + b

2

)
+ f

(
3a− b

2

)]∣∣∣∣
≤ (b− a)2

3

[
1
2

(∣∣∣∣ f ′′
(

3b− a
2

)∣∣∣∣q + ∣∣∣∣ f ′′
(

3a− b
2

)∣∣∣∣q)]1/q

.

In this paper, with the help of two known integral identities (see Lemmas 1 and 2
in the next section) and by virtue of the classical Hölder integral inequality, we aim to
generalize those inequalities in Theorems 1 and 2 to several new Hermite–Hadamard-type
inequalities for convex functions.

2. Two Lemmas

For establishing new Hermite–Hadamard type inequalities for convex functions and
generalizing those inequalities in Theorems 1 and 2, we need the following lemmas.

Lemma 1 ([11] (Lemma 2.1)). Let f : I ⊂ R→ R be a differentiable mapping on I◦ and a, b ∈ I
with a < b. If f ′ ∈ L1([a, b]), then

f (a) + f (b)
2

− 1
b− a

∫ b

a
f (x)d x =

b− a
2

∫ 1

0
(1− 2t) f ′(b + t(a− b))d t. (4)

Remark 1. Since∫ 1/2

0
(1− 2t) f ′(b + t(a− b))d t =

1
2

∫ 1

0
(1− u) f ′

(
b + u

a− b
2

)
d u

and ∫ 1

1/2
(1− 2t) f ′(b + t(a− b))d t = −1

2

∫ 1

0
u f ′

(
a + b

2
+ u

a− b
2

)
d u,

the identity (4) is equivalent to

f (a) + f (b)
2

− 1
b− a

∫ b

a
f (x)d x

=
b− a

4

[∫ 1

0
(1− t) f ′

(
b + t

a− b
2

)
d t−

∫ 1

0
t f ′

(
a + b

2
+ t

a− b
2

)
d t

]
.

Lemma 2 ([12] (Lemma 2.1)). Let f : I ⊆ R→ R be a differentiable mapping on I◦ and a, b ∈ I
with a < b. If f ′ ∈ L1([a, b]), then

1
b− a

∫ b

a
f (x)d x− f

(
a + b

2

)
= (b− a)

[∫ 1/2

0
t f ′(b + t(a− b))d t +

∫ 1

1/2
(t− 1) f ′(b + t(a− b))d t

]
. (5)
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Let u, v ∈ R with u < v and λ > μ ≥ 0. For t ∈ [0, 1], it is clear that

v + t(u− v) =
(

λ− μ

λ + μ
t +

μ

λ + μ

)
λu− μv

λ− μ
+

(
μ− λ

λ + μ
t +

λ

λ + μ

)
λv− μu

λ− μ
. (6)

3. New Integral Inequalities of Hermite–Hadamard Type

Now, with the help of integral identities (4) and (5), and by virtue of the classical
Hölder integral inequality, we begin to establish several new integral inequalities of the
Hermite–Hadamard type for convex functions on R and to generalize integral inequalities
in the aforementioned Theorems 1 to 2.

In this section, we use the notations

Iλ,μ(u, v) =
[

λu− μv
λ− μ

,
λv− μu

λ− μ

]
and I◦λ,μ(u, v) =

(
λu− μv

λ− μ
,

λv− μu
λ− μ

)
. (7)

Theorem 3. Suppose that λ > μ ≥ 0 and a, b ∈ R with a < b. Let f : Iλ,μ(a, b) → R be a
convex function. Then

f
(

a + b
2

)
≤ 1

b− a

∫ b

a
f (x)d x

≤ 1
2(λ + μ)

[
(λ− μ) f

(
λb− μa
λ− μ

)
+ 4μ f

(
a + b

2

)
+ (λ− μ) f

(
λa− μb
λ− μ

)]
(8)

and∣∣∣∣ 1
b− a

∫ b

a
f (x)d x− 2μ

λ + μ
f
(

a + b
2

)∣∣∣∣ ≤ λ− μ

2(λ + μ)

∣∣∣∣ f
(

λb− μa
λ− μ

)
+ f

(
λa− μb
λ− μ

)∣∣∣∣, (9)

where the equalities in (8) and (9) are valid if f (x) is a linear function on [a, b].

Proof. Using the change of the variable x = λ
λ+μ t + μ

λ+μ (a + b) for t ∈
[ λa−μb

λ , λb−μa
λ

]
and

the convexity of f on Iλ,μ(a, b), we have

1
b− a

∫ b

a
f (x)d x =

λ

(λ + μ)(b− a)

∫ (λb−μa)/λ

(λa−μb)/λ
f
(

λ

λ + μ
t +

μ

λ + μ
(a + b)

)
d t

=
λ

(λ + μ)(b− a)

∫ (λb−μa)/λ

(λa−μb)/λ
f
(

λ− μ

λ + μ

λ

λ− μ
t +

2μ

λ + μ

(
a + b

2

))
d t

≤ λ

(λ + μ)(b− a)

∫ (λb−μa)/λ

(λa−μb)/λ

[
λ− μ

λ + μ
f
(

λ

λ− μ
t
)
+

2μ

λ + μ
f
(

a + b
2

)]
d t

=
(λ− μ)2

(λ + μ)2(b− a)

∫ (λb−μa)/(λ−μ)

(λa−μb)/(λ−μ)
f (t)d t +

2μ

λ + μ
f
(

a + b
2

) (10)

and

(λ− μ)2

(λ + μ)2(b− a)

∫ (λb−μa)/(λ−μ)

(λa−μb)/(λ−μ)
f (t)d t ≤ λ− μ

2(λ + μ)

[
f
(

λb− μa
λ− μ

)
+ f

(
λa− μb
λ− μ

)]
. (11)
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Substituting the inequality (11) into the inequality (10), we have

0 ≤ 1
b− a

∫ b

a
f (x)d x− f

(
a + b

2

)
≤ 1

2(λ + μ)

[
(λ− μ) f

(
λb− μa
λ− μ

)
+ 4μ f

(
a + b

2

)
+ (λ− μ) f

(
λa− μb
λ− μ

)]
− f

(
a + b

2

)
=

1
2(λ + μ)

[
(λ− μ) f

(
λb− μa
λ− μ

)
− 2(λ− μ) f

(
a + b

2

)
+ (λ− μ) f

(
λa− μb
λ− μ

)]
.

Therefore, the inequalities (8) and (9) hold.
It is straightforward to verify that, if f (x) = cx + d on [a, b] for c, d being constants,

the equalities in (8) and (9) are valid. Theorem 3 is thus proven.

Remark 2. If setting λ = 1 and μ = 0 in Theorem 3, then we recover the double inequality (1).
If letting λ = 3 and μ = 1 in Theorem 3, we derive the above inequalities (2) and (3) obtained

in [10] (Lemma 3).

Theorem 4. Suppose that λ > μ ≥ 0 and a, b ∈ R with a < b. Let f : Iλ,μ(a, b) → R be a
differentiable mapping on I◦λ,μ(a, b). If | f ′|q for q ≥ 1 is a convex function on Iλ,μ(a, b), then∣∣∣∣ 1

b− a

∫ b

a
f (x)d x− f

(
a + b

2

)∣∣∣∣
≤ b− a

8

{[
λ + 2μ

3(λ + μ)

∣∣∣∣ f ′
(

λa− μb
λ− μ

)∣∣∣∣q + 2λ + μ

3(λ + μ)

∣∣∣∣ f ′
(

λb− μa
λ− μ

)∣∣∣∣q]1/q

+

[
2λ + μ

3(λ + μ)

∣∣∣∣ f ′
(

λa− μb
λ− μ

)∣∣∣∣q + λ + 2μ

3(λ + μ)

∣∣∣∣ f ′
(

λb− μa
λ− μ

)∣∣∣∣q]1/q}
.

(12)

Proof. By Lemma 2 and the Hölder integral inequality, we have∣∣∣∣ 1
b− a

∫ b

a
f (x)d x− f

(
a + b

2

)∣∣∣∣
≤ (b− a)

[∫ 1/2

0
t| f ′(b + t(a− b))|d t +

∫ 1

1/2
(1− t)| f ′(b + t(a− b))|d t

]
≤ (b− a)

{(∫ 1/2

0
t d t

)1−1/q[∫ 1/2

0
t| f ′(b + t(a− b))|q d t

]1/q

+

(∫ 1

1/2
(1− t)d t

)1−1/q[∫ 1

1/2
(1− t)| f ′(b + t(a− b))|q d t

]1/q}
.

(13)

Since (μ− λ)t + λ ≥ 0 and(
λ− μ

λ + μ
t +

μ

λ + μ

)
+

(
μ− λ

λ + μ
t +

λ

λ + μ

)
= 1

for t ∈ [0, 1], letting u = a and v = b in the identity (6) and using the convexity of | f ′|q
arrive at

| f ′(b + t(a− b))|q ≤ (λ− μ)t + μ

λ + μ

∣∣∣∣ f ′
(

λa− μb
λ− μ

)∣∣∣∣q + (μ− λ)t + λ

λ + μ

∣∣∣∣ f ′
(

λb− μa
λ− μ

)∣∣∣∣q. (14)

Straightforward computation yields
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∫ 1/2

0
t| f ′(b + t(a− b))|q d t

≤
∫ 1/2

0
t
[
(λ− μ)t + μ

λ + μ

∣∣∣∣ f ′
(

λa− μb
λ− μ

)∣∣∣∣q + (μ− λ)t + λ

λ + μ

∣∣∣∣ f ′
(

λb− μa
λ− μ

)∣∣∣∣q]d t (15)

=
λ + 2μ

24(λ + μ)

∣∣∣∣ f ′
(

λa− μb
λ− μ

)∣∣∣∣q + 2λ + μ

24(λ + μ)

∣∣∣∣ f ′
(

λb− μa
λ− μ

)∣∣∣∣q
and ∫ 1

1/2
(1− t)| f ′(b + t(a− b))|q d t

≤
∫ 1

1/2
(1− t)

[
(λ− μ)t + μ

λ + μ

∣∣∣∣ f ′
(

λa− μb
λ− μ

)∣∣∣∣q + (μ− λ)t + λ

λ + μ

∣∣∣∣ f ′
(

λb− μa
λ− μ

)∣∣∣∣q]d t

=
2λ + μ

24(λ + μ)

∣∣∣∣ f ′
(

λa− μb
λ− μ

)∣∣∣∣q + λ + 2μ

24(λ + μ)

∣∣∣∣ f ′
(

λb− μa
λ− μ

)∣∣∣∣q.

(16)

It is easy to see that ∫ 1/2

0
t d t =

∫ 1

1/2
(1− t)d t =

1
8

. (17)

Applying inequalities (15), (16), and (17) into the inequality (13) gives

∣∣∣∣ 1
b− a

∫ b

a
f (x)d x− f

(
a + b

2

)∣∣∣∣ ≤ b− a
8

{[∫ 1/2

0
t| f ′(b + t(a− b))|q d t

]1/q

+

[∫ 1

1/2
(1− t)| f ′(b + t(a− b))|q d t

]1/q}
≤ b− a

8

{[
λ + 2μ

3(λ + μ)

∣∣∣∣ f ′
(

λa− μb
λ− μ

)∣∣∣∣q + 2λ + μ

3(λ + μ)

∣∣∣∣ f ′
(

λb− μa
λ− μ

)∣∣∣∣q]1/q

+

[
2λ + μ

3(λ + μ)

∣∣∣∣ f ′
(

λa− μb
λ− μ

)∣∣∣∣q + λ + 2μ

3(λ + μ)

∣∣∣∣ f ′
(

λb− μa
λ− μ

)∣∣∣∣q]1/q}
.

The proof of Theorem 4 is complete.

Corollary 1. Under conditions of Theorem 4,

1. if q = 1, then

∣∣∣∣ 1
b− a

∫ b

a
f (x)d x− f

(
a + b

2

)∣∣∣∣ ≤ b− a
4

[ ∣∣ f ′
( λa−μb

λ−μ

)∣∣+ ∣∣ f ′
( λb−μa

λ−μ

)∣∣
2

]
;

2. if λ = 1 and μ = 0, then∣∣∣∣ 1
b− a

∫ b

a
f (x)d x− f

(
a + b

2

)∣∣∣∣
≤ b− a

8

{[ | f ′(a)|q + 2| f ′(b)|q
3

]1/q

+

[
2| f ′(a)|q + | f ′(b)|q

3

]1/q}
.
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Theorem 5. Suppose that λ > μ ≥ 0 and a, b ∈ R with a < b. Let f : Iλ,μ(a, b) → R be a
differentiable mapping on I◦λ,μ(a, b), where Iλ,μ(a, b) and I◦λ,μ(a, b) are defined as in (7). If | f ′|q for
q > 1 is a convex function on Iλ,μ(a, b), then

∣∣∣∣ 1
b− a

∫ b

a
f (x)d x− f

(
a + b

2

)∣∣∣∣ ≤ b− a
4

(
q− 1

2q− 1

)1−1/q{[
λ + 3μ

4(λ + μ)

∣∣∣∣ f ′
(

λa− μb
λ− μ

)∣∣∣∣q
+

3λ + μ

4(λ + μ)

∣∣∣∣ f ′
(

λb− μa
λ− μ

)∣∣∣∣q]1/q

+

[
3λ + μ

4(λ + μ)

∣∣∣∣ f ′
(

λa− μb
λ− μ

)∣∣∣∣q
+

λ + 3μ

4(λ + μ)

∣∣∣∣ f ′
(

λb− μa
λ− μ

)∣∣∣∣q]1/q}
.

(18)

Proof. Similar to the proof of the inequality (12) in Theorem 4, making use of Lemma 2
and the Hölder integral inequality reveals∣∣∣∣ 1

b− a

∫ b

a
f (x)d x− f

(
a + b

2

)∣∣∣∣
≤ (b− a)

{[∫ 1/2

0
tq/(q−1) d t

]1−1/q[∫ 1/2

0
| f ′(b + t(a− b))|q d t

]1/q

+

[∫ 1

1/2
(1− t)q/(q−1) d t

]1−1/q[∫ 1

1/2
| f ′(b + t(a− b))|q d t

]1/q}
,

(19)

where ∫ 1/2

0
tq/(q−1) d t =

∫ 1

1/2
(1− t)q/(q−1) d t =

q− 1
2q− 1

(
1
2

)(2q−1)/(q−1)

. (20)

From the inequality (14) and by the convexity of | f ′|q, we obtain

∫ 1/2

0
| f ′(b+ t(a− b))|q d t ≤ λ + 3μ

8(λ + μ)

∣∣∣∣ f ′
(

λa− μb
λ− μ

)∣∣∣∣q + 3λ + μ

8(λ + μ)

∣∣∣∣ f ′
(

λb− μa
λ− μ

)∣∣∣∣q (21)

and∫ 1

1/2
| f ′(b + t(a− b))|q d t ≤ 3λ + μ

8(λ + μ)

∣∣∣∣ f ′
(

λa− μb
λ− μ

)∣∣∣∣q + λ + 3μ

8(λ + μ)

∣∣∣∣ f ′
(

λb− μa
λ− μ

)∣∣∣∣q. (22)

Substituting inequalities (20), (21) and (22) into the inequality (19) yields the inequality (18).
The proof of Theorem 5 is complete.

Theorem 6. Suppose that λ > μ ≥ 0 and a, b ∈ R with a < b. Let f : Iλ,μ(a, b) → R be a
differentiable mapping on I◦λ,μ(a, b), where Iλ,μ(a, b) and I◦λ,μ(a, b) are defined as in (7). If | f ′|q for
q ≥ 1 is a convex function on Iλ,μ(a, b), then

∣∣∣∣ f (a) + f (b)
2

− 1
b− a

∫ b

a
f (x)d x

∣∣∣∣ ≤ b− a
8

{[
λ + 2μ

3(λ + μ)

∣∣∣∣ f ′
(

λa− (2μ− λ)b
2(λ− μ)

)∣∣∣∣q
+

2λ + μ

3(λ + μ)

∣∣∣∣ f ′
(
(2λ− μ)b− μa

2(λ− μ)

)∣∣∣∣q]1/q

+

[
2λ + μ

3(λ + μ)

∣∣∣∣ f ′
(
(2λ− μ)a− μb

2(λ− μ)

)∣∣∣∣q
+

λ + 2μ

3(λ + μ)

∣∣∣∣ f ′
(

λb− (2μ− λ)a
2(λ− μ)

)∣∣∣∣q]1/q}
.

(23)
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Proof. By Lemma 1 and the Hölder integral inequality, we have∣∣∣∣ f (a) + f (b)
2

− 1
b− a

∫ b

a
f (x)d x

∣∣∣∣
≤ b− a

4

[∫ 1

0
(1− t)

∣∣∣∣ f ′
(

b + t
a− b

2

)∣∣∣∣d t +
∫ 1

0
t
∣∣∣∣ f ′

(
a + b

2
+ t

a− b
2

)∣∣∣∣d t
]

≤ b− a
4

{(∫ 1

0
(1− t)d t

)1−1/q[∫ 1

0
(1− t)

∣∣∣∣ f ′
(

b + t
a− b

2

)∣∣∣∣q d t
]1/q

(24)

+

(∫ 1

0
t d t

)1−1/q[∫ 1

0
t
∣∣∣∣ f ′

(
a + b

2
+ t

a− b
2

)∣∣∣∣q d t
]1/q}

.

For t ∈ [0, 1], putting u = a and v = a+b
2 in the identity (6) and using the convexity of | f ′|q

result in∣∣∣∣ f ′
(

a + b
2

+ t
a− b

2

)∣∣∣∣q
≤ (λ− μ)t + μ

λ + μ

∣∣∣∣ f ′
(
(2λ− μ)a− μb

2(λ− μ)

)∣∣∣∣q + (μ− λ)t + λ

λ + μ

∣∣∣∣ f ′
(

λb− (2μ− λ)a
2(λ− μ)

)∣∣∣∣q.

Accordingly, we have

∫ 1

0
t
∣∣∣∣ f ′

(
a + b

2
+ t

a− b
2

)∣∣∣∣q d t ≤
∫ 1

0
t
[
(λ− μ)t + μ

λ + μ

∣∣∣∣ f ′
(
(2λ− μ)a− μb

2(λ− μ)

)∣∣∣∣q
+

(μ− λ)t + λ

λ + μ

∣∣∣∣ f ′
(

λb− (2μ− λ)a
2(λ− μ)

)∣∣∣∣q]d t

=
2λ + μ

6(λ + μ)

∣∣∣∣ f ′
(
(2λ− μ)a− μb

2(λ− μ)

)∣∣∣∣q + λ + 2μ

6(λ + μ)

∣∣∣∣ f ′
(

λb− (2μ− λ)a
2(λ− μ)

)∣∣∣∣q. (25)

Similarly, taking u = a+b
2 and v = b in the identity (6) gives

∫ 1

0
(1− t)

∣∣∣∣ f ′
(

b + t
a− b

2

)∣∣∣∣q d t

≤ λ + 2μ

6(λ + μ)

∣∣∣∣ f ′
(

λa− (2μ− λ)b
2(λ− μ)

)∣∣∣∣q + 2λ + μ

6(λ + μ)

∣∣∣∣ f ′
(
(2λ− μ)b− μa

2(λ− μ)

)∣∣∣∣q. (26)

Substituting inequalities (25) and (26) into inequality (24) yields (23). The proof of
Theorem 6 is complete.

Corollary 2. Under conditions of Theorem 6, if q = 1, λ = 1, and μ = 0, then∣∣∣∣ f (a) + f (b)
2

− 1
b− a

∫ b

a
f (x)d x

∣∣∣∣ ≤ b− a
4

[ | f ′(a)|+
∣∣ f ′

( a+b
2
)∣∣+ | f ′(b)|

3

]
.
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Theorem 7. Suppose that λ > μ ≥ 0 and a, b ∈ R with a < b. Let f : Iλ,μ(a, b) → R be a
differentiable mapping on I◦λ,μ(a, b), where Iλ,μ(a, b) and I◦λ,μ(a, b) are defined as in (7). If | f ′|q for
q > 1 is a convex function on Iλ,μ(a, b) and 0 ≤ � ≤ q, then

∣∣∣∣ f (a) + f (b)
2

− 1
b− a

∫ b

a
f (x)d x

∣∣∣∣ ≤ b− a
4

[
q− 1

2q− (�+ 1)

]1−1/q

×
{[

λ + (�+ 1)μ
(�+ 1)(�+ 2)(λ + μ)

∣∣∣∣ f ′
(

λa− (2μ− λ)b
2(λ− μ)

)∣∣∣∣q
+

(�+ 1)λ + μ

(�+ 1)(�+ 2)(λ + μ)

∣∣∣∣ f ′
(
(2λ− μ)b− μa

2(λ− μ)

)∣∣∣∣q]1/q

+

[
(�+ 1)λ + μ

(�+ 1)(�+ 2)(λ + μ)

∣∣∣∣ f ′
(
(2λ− μ)a− μb

2(λ− μ)

)∣∣∣∣q
+

λ + (�+ 1)μ
(�+ 1)(�+ 2)(λ + μ)

∣∣∣∣ f ′
(

λb− (2μ− λ)a
2(λ− μ)

)∣∣∣∣q]1/q}
.

(27)

Proof. Similar to the proof of the inequality (23) in Theorem 6 from Lemma 1 and the
Hölder integral inequality, we derive∣∣∣∣ f (a) + f (b)

2
− 1

b− a

∫ b

a
f (x)d x

∣∣∣∣
≤ b− a

4

[∫ 1

0
(1− t)

∣∣∣∣ f ′
(

b + t
a− b

2

)∣∣∣∣d t +
∫ 1

0
t
∣∣∣∣ f ′

(
a + b

2
+ t

a− b
2

)∣∣∣∣d t
]

≤ b− a
4

{[∫ 1

0
(1− t)(q−�)/(q−1) d t

]1−1/q[∫ 1

0
(1− t)�

∣∣∣∣ f ′
(

b + t
a− b

2

)∣∣∣∣q d t
]1/q

+

[∫ 1

0
t(q−�)/(q−1) d t

]1−1/q[∫ 1

0
t�
∣∣∣∣ f ′

(
a + b

2
+ t

a− b
2

)∣∣∣∣q d t
]1/q}

.

(28)

It is obvious that∫ 1

0
(1− t)(q−�)/(q−1) d t =

∫ 1

0
t(q−�)/(q−1) d t =

q− 1
2q− (�+ 1)

. (29)

By the identity (6) and the convexity of | f ′|q, we obtain

∫ 1

0
(1− t)�

∣∣∣∣ f ′
(

b + t
a− b

2

)∣∣∣∣q d t ≤ λ + (�+ 1)μ
(�+ 1)(�+ 2)(λ + μ)

∣∣∣∣ f ′
(
(λa− (2μ− λ)b

2(λ− μ)

)∣∣∣∣q
+

(�+ 1)λ + μ

(�+ 1)(�+ 2)(λ + μ)

∣∣∣∣ f ′
(
(2λ− μ)b− μa

2(λ− μ)

)∣∣∣∣q (30)

and

∫ 1

0
t�
∣∣∣∣ f ′

(
a + b

2
+ t

a− b
2

)∣∣∣∣q d t ≤ (�+ 1)λ + μ

(�+ 1)(�+ 2)(λ + μ)

∣∣∣∣ f ′
(
(2λ− μ)a− μb

2(λ− μ)

)∣∣∣∣q
+

λ + (�+ 1)μ
(�+ 1)(�+ 2)(λ + μ)

∣∣∣∣ f ′
(

λb− (2μ− λ)a
2(λ− μ)

)∣∣∣∣q. (31)

Substituting inequalities (29), (30) and (31) into the inequality (28) concludes the
inequality (27). The proof of Theorem 7 is complete.

4. Remarks

In this section, we provide several remarks on our main results and related ones
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Remark 3. The facts that inequalities (8) and (9) in Theorem 3 are sharp were observed and pointed
out by an anonymous referee.

Remark 4. In fact, the new inequalities in this paper are obtained by using the computation
techniques inspired by the papers [11,12] and generalizing ideas from the paper [10]. Similar types
of inequalities, or particular cases, are obtained in the literature by other techniques. One may see
the Hermite–Hadamard type inequalities from [13]. These texts are excerpted and adapted from
valuable comments of an anonymous referee of this paper.

Remark 5. The new inequalities for convex and differentiable functions in this paper have particular
cases in [10] and some properties make them distinctive from other existing inequalities of the
Hermite–Hadamard type under similar hypotheses (for example those from [11]). These texts are
excerpted and adapted from valuable comments of an anonymous referee of this paper.

Remark 6. The new inequalities (8) and (9) for convex functions are sharp. But the inequalities
involving differentiable functions having derivatives with convexity properties lose the property
of sharpness within the class of linear functions. For example, the inequality (12) in Theorem
4, the inequality (18) in Theorem 5, the inequality (23) in Theorem 6, and the inequality (27) in
Theorem 7 are not sharp for linear functions, as the classical Hermite-Hadamard inequality (1) and
the inequalities from [11] (for similar types of functions), but they are sharp for constant functions.
This solves the problem of sharpness easily. These texts are excerpted and adapted from valuable
comments of an anonymous referee of this paper.

5. Conclusions

In this paper, with the help of two known integral identities and by virtue of the
Hölder integral inequality, in Theorems 3–7, and their corollaries, we established several
new integral inequalities of the Hermite–Hadamard type for convex functions. These
newly established inequalities generalize corresponding ones in the paper [10].

Author Contributions: Writing—original draft, Y.W., H.-P.Y., and B.-N.G. All authors contributed
equally to the manuscript and read and approved the final manuscript.

Funding: The first two authors, Y.W. and H.-P.Y., were partially supported by the Natural Science
Foundation of Inner Mongolia (Grant No. 2018MS01023) and by the Research Program of Science
and Technology at Universities of Inner Mongolia Autonomous Region (Grant No. NJZZ18154 and
No. NJZY20119) in China.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors appreciate the anonymous referees for their careful corrections to,
helpful suggestions to and valuable comments on the original version of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Dragomir, Silvestru Sever.; Pearce, C.E.M. Selected Topics on Hermite–Hadamard Type Inequalities and Applications, Amended
Version, RGMIA Monographs, Victoria University, 2002. Available online: https://rgmia.org/monographs/hermite_hadamard.
html (accessed on 20 June 2021).

2. Hadamard, J. Étude sur les propriétes des fonctions entiéres et en particulier d’une fonction considerée par Riemann. J. Math.
Pures Appl. 1893, 58, 171–215.

3. Hermite, C. Sur deux limites d’une intégrale définie. Mathesis 1883, 3, 82–82.
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1. Introduction

The research of systems of delay differential equations (DDEs) with multiple constant
and time-varying delays is always a challenging field of study. This is due to the fact that
the system of DDEs can be frequently found in many fields such as mechanics, artificial
neural networks power systems, medicine, physics, biology, population ecology, engi-
neering, and so forth. For example, the books of Burton [1], Hale and Verduyn Lunel [2],
Kiri and Ueda [3], Kolmanovskii and Myshkis [4], Kuang [5], Lakshmikantham et al. [6],
and Smith [7] are very important reference books for various fundamental and qualitative
results of stability and periodic solutions of functional differential equations of the first and
second order. These books also include numerous methods, techniques, their theoretical
and real applications in science, engineering, and technology. Indeed, a large number of ap-
plications in the theory of artificial neural networks, numerous models for some population
dynamics, and ecology problems, etc., can be represented by DDEs with multiple delays,
(see, in particular, Berezansky et al. [8], Gil [9], Smith [7], and the bibliography therein).
Accordingly, the study of qualitative properties of solutions of scalar DDEs and systems
of DDEs with multiple time-varying delays has an important significance in sciences and
engineering, and it deserves the attention of researchers.

In recent years, numerous interesting and fruitful results on the qualitative analyses
for various differential equations of first and second order both with and without delay
have been obtained by applying a linear matrix inequality (LMI) approach, the second
Lyapunov method, the LKM, fixed point method, and so on. In particular, some related
works on the subject can be summarized briefly as the following.

Berezansky et al. [8] considered a non-autonomous system of first order with time-
varying delays. Via the M-matrix method, easily verifiable sufficient stability conditions
for the system and its linear version are obtained in [8].
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In Berezansky et al. [10], uniform exponential stability of linear systems of first order
with time varying coefficients is studied. In [10], a new explicit result is derived with
the proof based on the Bohl–Perron theorem. The resulting criterion has advantages over
some previous ones.

In Gil [9], the author presents exponential stability results for a nonlinear system
of differential equations of first order. Here, the author obtains sharp bounds for the so-
lutions of the system and thus exponential stability can be determined without the use
of Lyapunov functions.

Gözen and Tunç [11] investigate an exponential stabilization problem for a class of linear
systems of first order with two variable delays. Via a suitable Lyapunov–Krasovskiı̆ func-
tional, Leibniz–Newton’s formula and linear matrix inequalities, the authors derive some
new sufficient conditions for the exponential stability of the zero solution of the system.

Liu [12] studies a class of systems of non-autonomous differential equations of first
order with multiple delays. In [12], under proper conditions, several criteria of global
stability of a positive equilibrium are obtained.

In Matsunaga [13], for a linear delay differential system of the first order with two
coefficients and one delay, some necessary and sufficient conditions on the asymptotic
stability of a zero solution, which are composed of delay-dependent and delay-independent
stability criteria, are established and the range of the delay is explicitly given.

In Ngoc [14], general nonlinear time-varying differential systems of a first order with
two variable delays are considered. Several explicit criteria for exponential stability are
given. A discussion of the obtained results and two illustrative examples are presented.

In Petruşel et al. [15], existence, stability, and localization results for a general system
of operator equations in complete metric spaces are presented. The approach is based on
the application of some fixed point theorems for orbital contractions in a complete metric
space.

In Rebenda and Šmarda [16], asymptotic properties of a real two-dimensional differen-
tial system with unbounded non-constant delays are investigated. The sufficient conditions
for the stability and asymptotic stability of solutions are given. Asymptotic properties
of solutions are also studied by means of a Lyapunov–Krasovskiı̆ functional.

Shu [17] considers the linear delay system:

ẋ(t) = Ax(t) + Bx(t− r).

The author gives sufficient conditions for the asymptotic stability of the zero solution
of this system by deriving a pair of one dimensional delay differential equations from the sys-
tem and comparing the Lyapunov exponents of the corresponding fundamental solution.

Slyn’ko and Tunç [18] discusses the instability of set differential equations by using
some geometric inequalities.

In Tunç [19–21] and Tunç and Tunç [22–25], stability, boundedness, and some other
properties of solutions of various non-linear differential systems of second order without
or with delay are investigated by the second Lyapunov method and integration techniques.

In Tunç and Golmankhaneh [26], the stability of fractal differentials in the sense of Lya-
punov is defined. Sufficient conditions for the stability, uniform boundedness, and conver-
gence of solutions for the suggested fractal differential equations are presented and proven.

Yskak [27] considers a class of linear systems of differential equations of first order with
distributed delay and periodic coefficients. The author established sufficient conditions
for the asymptotic stability of solutions to this system, obtain estimates of solutions, and
study robust stability. On the basis of the obtained results, the author proves an analogue
of the Krein’s theorem on stability of solutions to the linear system of differential equations
with distributed delay.

In Zhang and Jiang [28], by constructing a suitable Lyapunov functional and using
some analytical techniques, the authors obtain sufficient conditions for the global expo-
nential stability of zero solution to a class of differential systems of first order with delay.
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The results show a relation between the delay time and the coefficients of the equations.
In [28], two examples also are given to illustrate the validity of the results.

In Zhang and Wu [29], the authors develop a new technique to study the stability
of the delay differential system of first order. In this way, the construction of suitable
functionals for a given system with finite delay is easier. The conditions obtained are
less restrictive. The main results are three theorems on the stability of the zero solution
of the system with finite delay. We also refer readers to the papers of Petruşel and Rus [30],
Kien et al. [31], Chadli et al. [32] and the bibliographies of the mentioned sources.

However, to the best of our knowledge, the LKM is the most effective method to
investigate various properties of systems of delay DDEs with multiple time-varying delays
provided that construct or define a suitable LKF. In fact, from this point of view, construct-
ing, defining, or finding a suitable LKF for a problem under study is a difficult task and
an unsolved problem in the literature until this time.

In 2020, Ren and Tian [33] considered the following system of linear DDEs with
time-varying delay,

ẋ(t) = Ax(t) + Bx(t− h(t)), (1)

x(t) = φ(t), t ∈ [−h2, 0],

where x(t) ∈ Rn is the system state, A, B ∈ Rn×n, and h(t) ∈ C1(R+, (0, ∞)) is the time-
varying delay and satisfies the following conditions:

0 ≤ h1 ≤ h(t) ≤ h2, h21 = h2 − h1, 0 ≤ h′(t) ≤ h0 < 1.

Ren and Tian [33] defined a LKF for the system of DDEs (1). Then, based upon the de-
fined LKF, Ren and Tian [33] proved a theorem, ([33], Theorem 1), on the asymptotically
stability of the system of DDEs (1).

The motivation of the results of this paper has been inspired from the paper of Ren and
Tian ([33], Theorem 1) and those in the bibliography of this paper. In this paper, we take
into consideration a perturbed nonlinear system of DDEs with three multiple time-varying
delays as given below:

ẋ(t) = A(t)x(t) + BF(x(t− h1(t))) + CG(x(t− h2(t))) + P(t, x(t), x(t− h3(t))), (2)

where x ∈ Rn, t ∈ R+ = [0, ∞), hk(t) ∈ C1(R+, (0, ∞)), k = 1, 2, and h3(t) ∈ C(R+, (0, ∞))
are the time-varying delays, A(t) ∈ C(R+,Rn×n), B, C ∈ Rn×n, F, G ∈ C(Rn,Rn),
F(0) = G(0) = 0 and P ∈ C(R+ ×Rn ×Rn,Rn). We assume that the given time-varying
delays h1(t) and h2(t) satisfy the following conditions:

0 ≤ h1 ≤ h1(t) ≤ h2, 0 ≤ h3 ≤ h2(t) ≤ h4,

0 ≤ h′1(t) ≤ h5 < 1, 0 ≤ h′2(t) ≤ h6 < 1,

h = max{h2, h4}, h0 = max{h5, h6}. (3)

We now outline the aim of this paper by the following items, respectively:

(1) We study the uniformly asymptotic stability of zero solution and the integrability
of the norm of solutions of the following unperturbed nonlinear system of DDEs via
Theorem 3 and Theorem 4, respectively:

ẋ(t) = A(t)x(t) + BF(x(t− h1(t))) + CG(x(t− h2(t))). (4)

To investigate these problems, we define a very different LKF from that in Ren and
Tian [16];

(2) We investigate the boundedness of solutions of the perturbed system of nonlinear
DDEs (2), see Theorem 5’
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(3) In particular cases, two new examples with graphs of their solutions are provided to
show applications of Theorems 3–5.

The rest of this paper is organized as follows. Some basic information related to
a general functional differential system and a necessary auxiliary theorem, Burton ([1],
Theorem 4.2.9), are given in Section 2. A reference theorem of this paper, Ren and Tian
([33], Theorem 1), concerning asymptotic stability of the system of linear DDEs (1) is given
in Section 3. Two new results and an example concerning uniformly asymptotic stability
and integrability for the unperturbed system (4) are presented in Section 4, while a result
and an example for the boundedness of solutions of the perturbed system of DDEs (2) are
given in Section 5. Finally, some discussions, contributions, and a conclusion are given
in Sections 6 and 7, respectively.

2. Background and Motivation

Consider the system of DDEs:

dx
dt

= H(t, xt), (5)

where H ∈ C(R×C0,Rn), H(t, 0) = 0 and takes bounded sets into bounded sets. For some
τ > 0, C0 = C0([−τ, 0], Rn) denotes the space of continuous functions φ : [−τ, 0] → Rn.
For any a ≥ 0, ∀t0 ≥ 0 and x ∈ C0([t0 − τ, t0 + a], Rn), we have xt = x(t + θ) for −τ ≤
θ ≤ 0 and t ≥ t0.

Let x ∈ Rn. The norm ‖.‖ is defined by ‖x‖ =
n
∑

i=1
|xi|. Next, let A ∈ Rn×n. For this

case, the matrix norm, ‖A‖, is defined by ‖A‖ = max
1≤j≤n

(
n
∑

i=1

∣∣aij
∣∣).

In this article, without loss of generality, sometimes instead of x(t), we will simply
write x.

For any φ ∈ C0, let:

‖φ‖C0
= sup

θ∈[−r,0]
‖φ(θ)‖ = ‖φ(θ)‖[−r,0]

and
CH = {φ : φ ∈ C0 and ‖φ‖C0

≤ H < ∞}.

We suppose that the function H satisfies the conditions of the uniqueness of solutions
of the system of DDEs (5). We note that the system of DDEs (2) is a particular case
of the system of DDEs (5).

Let x(t) = x(t, t0, φ) be a solution of the system of DDEs (5) such that x(t) = φ(t) on
[t0 − τ, t0], where φ ∈ C([t0 − τ, t0],Rn) is an initial function.

Let,
V1(t, φ) : R+ × CH → R+,R+ = [0, ∞),

be a continuous functional in t and φ with V1(t, 0) = 0. Further, let d
dt V1(t, x) denote

the derivative of V1(t, x) on the right through any solution x(t) of the system of DDEs (5).

Theorem 1 (Burton ([1], Theorem 4.2.9). Assume that:

(A1) The function V1(t, x) satisfies the locally Lipschitz in x, i.e., for every compact S ⊂ Rn and
γ > t0, there exists a Kγs ∈ R with Kγs > 0 such that:

|V1(t, x)−V1(t, y)| ≤ Kγs‖x− y‖[t0−τ,t]

for all t ∈ [t0, γ] and x, y ∈ C0([t0 − τ, t0], S);
(A2) Let Z(t, φ) be a functional such that it satisfies the one-side locally Lipschitz in t:

Z(t2, φ)− Z(t1, φ) ≤ K(t2 − t1), 0 < t1 < t2 < ∞, K > 0, K ∈ R,
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whenever φ ∈ CH, where Z : R+ × CH → R+ is continuous;
(A3) There are four strictly increasing functions ω, ω1, ω2, ω3 : R+ → R+ with value 0 at 0 such

that:
ω(‖φ(0)‖) + Z(t, φ) ≤ V1(t, φ) ≤ ω1(‖φ(0)‖) + Z(t, φ),

Z(t, φ) ≤ ω2(‖φ‖C)

and
d
dt

V1(t, x(.)) ≤ −ω3(‖x(t)‖)

whenever t ∈ R+ and x ∈ CH. Then, the solution x(t) = 0 of the system of DDEs (5) is
uniformly asymptotically stable.

3. Asymptotic Stability

Firstly, we state the main result of Ren and Tian ([33], Theorem 1).

Theorem 2 (Ren and Tian [33], Theorem 1). For given scalars h1 and h2 , the system (1) with
time-varying delays satisfying the condition 0 ≤ h1 ≤ h1(t) ≤ h2 is asymptotically stable if there
exist matrices P ∈ S5n

+ , Q1, Q2, Q3,
Q4 ∈ Sn

+, N1, N2 ∈ R13n×4n , such that the LMI:

Ψ(α) =

⎡⎣Φ(α)− ΓT�(α)Γ− He(ΓT
[
(1− α)NT

1
αNT

2

]
) ∗

αNT
1 + (1− α)NT

2 −Q

⎤⎦ < 0

holds for α = {0, 1}, where:

Φ(α) =He(ΣT
1 PΣ2) + εT

1 Q1ε1 − εT
2 Q1ε2 + εT

2 Q2ε2 − εT
4 Q2ε4 + h2

1εT
0 Q3ε0

+ h2
12εT

0 Q4ε0 − ΣT
3 Q3Σ3 − 3ΣT

4 Q3Σ4 − 5ΣT
5 Q3Σ5 − 7ΣT

6 Q3Σ6,

Σ1 =[εT
1 h1εT

5 αh12εT
6 + (1− α)h12εT

7 h2
1εT

8 h3
1εT

11]
T

,

Σ2 =

[
εT

0 εT
1 − εT

2 εT
2 − εT

4 h1εT
1 − h1εT

5
h2

1
2

εT
1 − h2

1εT
8

]T

,

Σ3 =ε1 − ε2,

Σ4 =ε1 + ε2 − 2ε5,

Σ5 =ε1 − ε2 + 6ε5 − 12ε8,

Σ6 =ε1 − ε2 − 12ε5 + 60ε8 − 120ε11,

Σ7 =ε2 − ε3,

Σ8 =ε2 + ε3 − 2ε6,

Σ9 =ε2 − ε3 + 6ε6 − 12ε9,

Σ10 =ε2 + ε3 − 12ε6 + 60ε9 − 120ε12,

Σ11 =ε3 − ε4,

Σ12 =ε3 + ε4 − 2ε7,

Σ13 =ε3 − ε4 + 6ε7 − 12ε10,

Σ14 =ε3 + ε4 − 12ε7 + 60ε10 − 120ε13,

ε0 =Aε1 + Bε3,

Γ =
[
ΣT

7 ΣT
8 ΣT

9 ΣT
10 ΣT

11 ΣT
12 ΣT

13 ΣT
14

]T
,

Q =diag(Q4, 3Q4, 5Q4, 7Q4),
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and
εi ∈ Rn×13n

is defined as:
εi =

[
0n×(i−1)n In 0n×(13−i)n

]
for i = 1, 2, ..., 13.

4. Uniformly Asymptotic Stability and Integrability

We now deal with the non-perturbed system of DDEs (4). Here, we first extend
and optimize the asymptotic stability result of Ren and Tian ([33], Theorem 1) under very
weaker conditions. Next, we give an integrability result for the solutions of the unperturbed
non-linear system of DDEs (4). The technique of the proofs is based upon the LKM.

The first main result of this paper is given by Theorem 3.

Theorem 3. We assume that the following conditions (C1) and (C2) hold:

(C1) There exist positive constants a0, f0, and g0 such that:

aii(t) +
n

∑
j=1,j �=i

∣∣aji(t)
∣∣ ≤ −a0 for all t ∈ R+,

F(0) = 0, ‖F(u)− F(v)‖ ≤ f0‖u− v‖ for all u, v ∈ Rn

and
G(0) = 0, ‖G(υ)− G(ω)‖ ≤ g0‖υ−ω‖| for all υ, ω ∈ Rn;

(C2) There exist constants a0, f0, g0 and h0 from (C1) and (2), respectively, and δ0 such that:

a0(1− h0)− f0‖B‖ − g0‖C‖ ≥ δ0.

Then zero solution of the unperturbed system of DDEs (4) is uniformly asymptotically stable.

Proof. We define a new LKF W1 := W1(t, xt) by:

W1(t, xt) := ‖x(t)‖+
2

∑
i=1

λi

t∫
t−hi(t)

‖x(s)‖ds, (6)

where λi > 0, λi ∈ R such that these arbitrary constants will be chosen in the proof later.
The LKF (6) can be expanded as the following:

W1(t, xt) :=|x1(t)|+ ... + |xn(t)|+ λ1

t∫
t−h1(t)

‖x(s)‖ds + λ2

t∫
t−h2(t)

‖x(s)‖ds

=|x1(t)|+ ... + |xn(t)|+ λ1

t∫
t−h1(t)

|x1(s)|ds + ... + λ1

t∫
t−h1(t)

|xn(s)|ds

+ λ2

t∫
t−h2(t)

|x1(s)|ds + ... + λ2

t∫
t−h2(t)

|xn(s)|ds.

From (6), it follows that the LKF W1(t, xt) satisfies:

W1(t, 0) = 0, γ1‖x‖ ≤ W1(t, xt), γ1 ∈ (0, 1), γ1 ∈ R .

Let,
γ2 ≥ 1, γ2 ∈ R
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and

Z(t, x) :=
2

∑
i=1

λi

t∫
t−hi(t)

‖x(s)‖ds.

Hence, it is clear that:

γ1‖x‖+ Z(t, x) ≤ W1(t, xt) ≤ γ2‖x‖+ Z(t, x).

As for the next step, by some elementary calculations, we derive:

|W1(t, xt)−W1(t, yt)| ≤| ‖x(t)‖ − ‖y(t)‖ |+
2

∑
i=1

λi

t∫
t−hi(t)

| ‖x(s)‖ − ‖y(s)‖ |ds

≤‖x(t)− y(t)‖+
2

∑
i=1

λi

t∫
t−hi(t)

‖x(s)− y(s)‖ds

≤‖x(t)− y(t)‖+
2

∑
i=1

λihi(t) sup
t−hi(t)≤s≤t

‖x(s)− y(s))‖

≤‖x(t)− y(t)‖+ λ1h2 sup
t−h1(t)≤s≤t

‖x(s)− y(s))‖

+ λ2h4 sup
t−h2(t)≤s≤t

‖x(s)− y(s))‖.

From this point of view, we have:

|W1(t, xt)−W1(t, yt)| ≤(1 + λ1h2 + λ2h4)

×max

{
sup

t−h1(t)≤s≤t
‖x(s)− y(s)‖, sup

t−h2(t)≤s≤t
‖x(s)− y(s)‖

}

=D1 max

{
sup

t−h1(t)≤s≤t
‖x(s)− y(s)‖, sup

t−h2(t)≤s≤t
‖x(s)− y(s)‖

}
,

where:
D1 := 1 + λ1h2 + λ2h4.

Thus, we can conclude that:

|W1(t, xt)−W1(t, yt)| ≤ D1 max
{
‖x(s)− y(s)‖[t−h1(t),t], ‖x(s)− y(s)‖[t−h2(t),t]

}
.

The last inequality shows that the LKF W1(t, xt) satisfies the locally Lipschitz condition.
Hence, the satisfaction of the condition (A1) of Burton ([1], Theorem 4. 2.9) was shown.

For the next step, from the definition of Z(t, x), it follows that:

Z(t, x) =
2

∑
i=1

λi

t∫
t−hi(t)

‖x(s)‖ds ≤ λ1h1(t) sup
t−h1(t)≤s≤t

‖x(s)‖+ λ2h2(t) sup
t−h2(t)≤s≤t

‖x(s)‖

≤ λ2h2 sup
t−h1(t)≤s≤t

‖x(s)‖+ λ2h4 sup
t−h2(t)≤s≤t

‖x(s)‖.

Thus, we get:

Z(t, x) ≤ λ1h2‖x(s)‖[t−h1(t),t] + λ2h4‖x(s)‖[t−h2(t),t].
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As for the next step, using some simple calculations, we find:

Z(t2, x)− Z(t1, x) =
2

∑
i=1

λi

t2∫
t2−hi(t2)

‖x(s)‖ds−
2

∑
i=1

λi

t1∫
t1−hi(t1)

‖x(s)‖ds

=
2

∑
i=1

λi

t2∫
t2−hi(t2)

‖x(s)‖ds−
2

∑
i=1

λi

t1∫
t1−hi(t1)

‖x(s)‖ds

+
2

∑
i=1

λi

t2−hi(t2)∫
t1−hi(t1)

‖x(s)‖ds−
2

∑
i=1

λi

t2−hi(t2)∫
t1−hi(t1)

‖x(s)‖ds

=
2

∑
i=1

λi

t2∫
t1

‖x(s)‖ds−
2

∑
i=1

λi

∫ t2−hi(t2)

t1−hi(t1)
‖x(s)‖ds

≤
2

∑
i=1

λi

t2∫
t1

‖x(s)‖ds

≤(λ1 + λ2) sup
t1≤s≤t2

‖x(s)‖(t2 − t1) = M(t2 − t1),

where:
M = (λ1 + λ2) sup

t1≤s≤t2

‖x(s)‖, 0 < t1 < t2 < ∞.

Thus, the satisfaction of the condition (A2) of Burton ([1], Theorem 4. 2.9) was proven.
As for the next step, we calculate the time derivative of the LKF W1(t, xt) in (6) along

the system of DDEs (4). Then, we can obtain that:

d
dt

W1(t, xt) =
n

∑
i=1

x′ i(t)xi(t + 0) + λ1‖x(t)‖ − λ1‖x(t− h1(t))‖ × (1− h′1(t))

+ λ2‖x(t)‖ − λ2‖x(t− h2(t))‖ × (1− h′2(t)). (7)

We now consider the first term of the equality (7). Via the condition (C1) and some
elementary calculations, we have that:

n

∑
i=1

xi(t + 0)x′ i(t) ≤
n

∑
i=1

aii|xi(t)|+
n

∑
i=1

n

∑
j=1,j �=i

∣∣aji
∣∣ |xi(t)|

+
n

∑
i=1

n

∑
j=1

∣∣bij
∣∣ ∣∣Fj(x(t− h1(t)))

∣∣

+
n

∑
i=1

n

∑
j=1

∣∣cij
∣∣ ∣∣Gj(x(t− h2(t)))

∣∣
=

n

∑
i=1

(
aii(t) +

n

∑
j=1,j �=i

∣∣aji(t)
∣∣)|xi(t)|

+ ‖B‖ ‖F(x(t− h1(t)))‖+ ‖C‖ ‖G(x(t− h2(t)))‖
≤− a0‖x(t)‖+ ‖B‖ ‖F(x(t− h1(t)))‖+ ‖C‖ ‖G(x(t− h2(t)))‖. (8)
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From this point of view, combining (7) and (8) and using the conditions of (3), it
follows that:

d
dt

W1(t, xt) ≤− a0‖x(t)‖+ ‖B‖ ‖F(x(t− h1(t)))‖+ ‖C‖ ‖G(x(t− h2(t)))‖
+ λ1‖x(t)‖ − λ1‖x(t− h1(t))‖ × (1− h′1(t))

+ λ2‖x(t)‖ − λ2‖x(t− h2(t))‖ × (1− h′2(t))

≤− a0‖x(t)‖+ ‖B‖ ‖F(x(t− h1(t)))‖+ ‖C‖ ‖G(x(t− h2(t)))‖
+ λ1‖x(t)‖ − λ1‖x(t− h1(t))‖ × (1− h5)

+ λ2‖x(t)‖ − λ2‖x(t− h2(t))‖ × (1− h6)

≤− a0‖x(t)‖+ ‖B‖ ‖F(x(t− h1(t)))‖+ ‖C‖ ‖G(x(t− h2(t)))‖
+ λ1‖x(t)‖ − λ1(1− h0)‖x(t− h1(t))‖
+ λ2‖x(t)‖ − λ2(1− h0)‖x(t− h2(t))‖

≤− a0‖x(t)‖+ f0‖B‖ ‖x(t− h1(t))‖+ g0‖C‖ ‖x(t− h2(t))‖
+ λ1‖x(t)‖ − λ1(1− h0)‖x(t− h1(t))‖
+ λ2‖x(t)‖ − λ2(1− h0)‖x(t− h2(t))‖.

Since λ1 and λ2 are arbitrary positive constants, let λ1 = f0‖B‖
1−h0

and λ2 = g0‖C‖
1−h0

. Then,
keeping in the mind the condition (C2), we conclude that:

d
dt

W1(t, xt) ≤ −
[

a0 −
f0‖B‖
1− h0

− g0‖C‖
1− h0

]
‖x(t)‖

= − 1
1− h0

[a0(1− h0)− f0‖B‖ − g0‖C‖]‖x(t)‖

≤ −K0‖x(t)‖, (9)

where:
K0 = δ0(1− h0)

−1.

Hence, from (9), it is seen that the derivative d
dt W1(t, xt) is negative definite. Thus,

the condition (A3) of Burton ([1], Theorem 4. 2.9) was satisfied. Hence, all the conditions
of (A1)–(A3) of Burton ([1], Theorem 4. 2.9) were satisfied. The whole discussion proves
that the zero solution of the nonlinear unperturbed system of DDEs (4) with two mul-
tiple time-varying delays is uniformly asymptotically stable. This completes the proof
of Theorem 3.

Theorem 4. Let the conditions (C1) and (C2) of Theorem 3 hold. Then the norm of solutions
of the unperturbed system of DDEs (4) with two multiple time-varying delays are integrable
in the sense of Lebesgue on R+ = [0, ∞).

Proof. The proof of this theorem depends upon the LKF W1(t, xt). Via the conditions (C1)
and (C2), as before we obtain the inequality:

d
dt

W1(t, xt) ≤ −K0‖x(t)‖. (10)

Since d
dt W1(t, xt) is negative definite, the LKF W1(t, xt) is decreasing. Keeping in mind

this fact and integrating the inequality (10), we obtain:

K0

t∫
t0

‖x(s)‖ds ≤ W1(t0, φ(t0))−W1(t, xt) ≤ W1(t0, φ(t0)) ≡ K1 > 0
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for all t ≥ t0. This inequality clearly implies:

∞∫
t0

‖x(s)‖ds ≤ K−1
0 W1(t0, φ(t0)) = K−1

0 K1 < ∞.

Thus, the norm of the solutions of the unperturbed system of DDEs (4) with multiple
two time-varying delays is integrable in the sense of Lebesgue on R+ = [0, ∞). Hence,
the proof of Theorem 4 is completed.

In a particular case of the unperturbed system of DDEs (4) with two multiple time-
varying delays, we now give an example, Example 1, to show that the conditions of (C1)
and (C2) of Theorem 3 and Theorem 4 can hold.

Example 1. Consider the following system of non-linear DDEs with two multiple time-varying
delays: (

x′1
x′2

)
=

( −25− t
t+1

t
t+1

t
t+1 −25− t

t+1

)(
x1
x2

)

+

(
3 2
2 3

)⎛⎝ sin x1

(
t− 1

4 |sin t|
)

sin x2

(
t− 1

4 |sin t|
) ⎞⎠

+

(
2 1
1 2

)⎛⎝ sin x1

(
t− 1

2 |sin t|
)

sin x2

(
t− 1

2 |sin t|
) ⎞⎠, (11)

where h1(t) = 1
4 |sin t| and h2(t) = 1

2 |sin t| are two multiple time-varying delays, and t ≥ 1.

From this point of view, we compare both the system of DDEs (11) and DDEs (4) with
two multiple time-varying delays. Hence, we derive that:

A(t) =
(−25− t

t+1
t

t+1
t

t+1 −25− t
t+1

)
,

B =

(
3 2
2 3

)
, C =

(
2 1
1 2

)
,

F(x(t− h1(t))) = F(x(t− t
4
|sin t|)) =

⎛⎝ sin x1

(
t− 1

4 |sin t|
)

sin x2

(
t− 1

4 |sin t|
) ⎞⎠,

F(0) = 0, x = (x1, x2)
T ,

G(x(t− h2(t))) = G(x(t− 1
2
|sin t|)) =

⎛⎝ sin x1

(
t− 1

2 |sin t|
)

sin x2

(
t− 1

2 |sin t|
) ⎞⎠,

G(0) = 0, x = (x1, x2)
T .

Let,

u = x(t− 1
4
|sin t|), u1 = x1(t−

1
4
|sin t|), u2 = x2(t−

1
4
|sin t|),

v = y(t− 1
4
|sin t|, v1 = y1(t−

1
4
|sin t|), v2 = y2(t−

1
4
|sin t|)
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and

υ = x(t− 1
2
|sin t|), υ1 = x1(t−

1
2
|sin t|), υ2 = x2(t−

1
2
|sin t|),

ω = y(t− 1
2
|sin t|, ω1 = y1(t−

1
2
|sin t|), ω2 = y2(t−

1
2
|sin t|).

In view of the matrix A(t), it is clear that:

a11(t) + |a21(t)| = −25− t
t + 1

+
t

t + 1
= −25 < −24 = −a0

a22(t) + |a12(t)| = −25− t
t + 1

+
t

t + 1
= −25 < −24 = −a0.

Then,

aii(t) +
2

∑
j=1,j �=i

∣∣aji(t)
∣∣ < −24 = −a0 for all t ∈ R+.

Next, by some simple calculations, we obtain:

‖B‖ = 5, ‖C‖ = 3,

and

‖F(u)− F(v)‖ =
∥∥∥∥( sin u1 − sin v1

sin u2 − sin v2

)∥∥∥∥
=|sin u1 − sin v1|+ |sin u2 − sin v2|

=2
∣∣∣∣cos

(
u1 + v1

2

)
sin

(
u1 − v1

2

)∣∣∣∣
≤|u1 − v1|+ |u2 − v2|
=‖u− v‖, f0 = 1.

h1(t) =
1
4
|sin t|,

0 = h1 ≤
1
4
|sin t| ≤ 1

4
= h2,

0 ≤ h′1(t) =
1
4

d
dt
|sin t| = 1

4
sin t
|sin t| × cos t ≤ 1

4
= h5 < 1.

‖G(υ)− G(ω)‖ =
∥∥∥∥( sin υ1 − sin ω1

sin υ2 − sin ω2

)∥∥∥∥ ≤ ‖υ−ω‖, g0 = 1,

h2(t) =
1
2
|sin t|,

0 = h3 ≤
1
2
|sin t| ≤ 1

2
= h4,

0 ≤ h′2(t) =
1
2

d
dt
|sin t| = 1

2
sin t
|sin t| × cos t ≤ 1

2
= h6 < 1.

Assume that:

h0 = max{h5, h6} = max
{

1
4

,
1
2

}
=

1
2

.

Considering the statement of condition (C2) and the above calculations, we have:

a0(1− h0)− f0‖B‖ − g0‖C‖ = 24
(

1− 1
2

)
− 5− 3 = 4 ≥ 4 = δ0.
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From this point of view, it follows that all the conditions of Theorems 3 and 4,
i.e., the conditions (C1) and (C2) hold. For this reason, the zero solution of the system
of DDEs (11) with two multiple time-varying delays is uniformly asymptotic stable as well
as the norm of solutions of the same system are integrable.

Here, Example 1 was solved using MATLAB software. Indeed, the given example was
solved using the 4th order Runge–Kutta method in MATLAB. The graphs of Figures 1 and 2
show the behaviors of paths of the solutions x1(t), x2(t) of Example 1, respectively,
for h1(t) = 1

4 |sin t|, h2(t) = 1
2 |sin t|, t ≥ 1, and different initial values.

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

time(s)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x1
(t

)

x1(1)=1
x1(1)=0.5
x1(1)=-1

Figure 1. This figure shows that the solution x1(t) of the system of DDEs (11) with two multiple
time-varying delays is uniformly asymptotically stable and the norm of this solution is integrable
for h1(t) = 1

4 |sin t|, h2(t) = 1
2 |sin t|, t ≥ 1, and different initial values.

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

time(s)
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-0.6
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0
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0.4

0.6

0.8

1

x2
(t

)

x2(1)=1
x2(1)=0.5
x2(1)=-1

Figure 2. This figure shows that the solution x2(t) of the system of DDEs (11) with two multiple
time-varying delays is uniformly asymptotically stable and the norm of this solution is integrable
for h1(t) = 1

4 |sin t|, h2(t) = 1
2 |sin t|, t ≥ 1 , and different initial values.
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We now present our third main result of this paper related to the boundedness
of solutions of the perturbed nonlinear system of DDEs (2) with three multiple time-varying
delays.

5. Boundedness of Solutions

For the boundedness of solutions of the perturbed system of DDEs (2) with three multi-
ple time-varying delays, in addition to the conditions (C1) and (C2), we need the following
condition:

(C3) There exist positive constants a0, f0, g0, h0, δ0 from (C1) and (C2), L and a continuous
function p0 ∈ C(R,R) such that:

‖P(t, x(t), x(t− h3(t)))‖ ≤ |p0(t)| ‖x(t)‖ for all t ∈ R+, x, x(t− h3(t)) ∈ Rn,

where:
∞∫

0

|p0(s)|ds ≤ L.

Theorem 5. Let conditions (C1)–(C3) hold. Then the solutions of the perturbed system of DDEs
(2) with three multiple time-varying delays are bounded as t → +∞.

Proof. As in the previous theorems, the proof of this theorem also depends upon the LKF
W1(t, xt). From the conditions (C1)–(C3), we can derive:

d
dt

W1(t, xt) ≤ −K0‖x(t)‖+ ‖P(t, x(t), x(t− h3(t)))‖
≤ |p0(t)| ‖x(t)‖
≤ |p0(t)|W1(t, xt). (12)

Integrating the inequality (12) and using the condition (C3), we obtain that:

W1(t, xt) ≤ W1(0, φ(0)) exp(
t∫

0

|p0(s)|ds).

≤ W1(0, φ(0)) exp(
∞∫

0

|p0(s)|ds)

≤ W1(0, φ(0)) exp(L).

Let,
M = W1(0, φ(0)) exp(L) > 0. (13)

Using (13) and the definition of the LKF W1(t, xt), we have:

‖x(t)‖ ≤ ‖x(t)‖+
2

∑
i=1

λi

t∫
t−hi(t)

‖x(s)‖ds = W1(t, xt) ≤ M,

i.e.,
‖x(t)‖ ≤ M for all t ≥ t0 ≥ 0.

By calculating the limit of this inequality as t → +∞, it is derived that:

lim
t→+∞

‖|x(t)|‖ ≤ lim
t→+∞

M = M.
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Then, we can conclude that the solutions of the perturbed system of nonlinear DDEs
(2) with three multiple time-varying delays are bounded as t → +∞. Thus, Theorem 5 is
proven.

In a particular case of the perturbed system of DDEs (2) with three multiple time-
varying delays, we now give Example 2, to show that the conditions of (C1)–(C3) of Theo-
rem 5 can be provided.

Here, Example 2 was solved using MATLAB software. Indeed, the given example was
solved using the 4th order Runge–Kutta method in MATLAB. The graphs of Figures 3 and 4
show the behaviors of paths of the solutions x1(t), x2(t) of Examples 2, respectively,
for h1(t) = 1

4 |sin t|, h2(t) = 1
2 |sin t|, t ≥ 1, and different initial values.
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Figure 3. This figure shows that the solution x1(t) of the perturbed nonlinear system of DDEs (14)
with three time-varying delays is bounded for h1(t) = 1

4 |sin t|, h2(t) = 1
2 |sin t|, h3(t) = 1

6 |sin t|,
t ≥ 1, and different initial values.

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

time(s)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x2
(t

)

x2(1)=1

x2(1)=0.5

x2(1)=-1

Figure 4. This figure shows that the solution x2(t) of the perturbed nonlinear system of DDEs (14)
with three time-varying delays is bounded for h1(t) = 1

4 |sin t|, h2(t) = 1
2 |sin t|, h3(t) = 1

6 |sin t|,
t ≥ 1, and different initial values.
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Example 2. Consider the following nonlinear system of DDEs with three multiple time-varying
delays: (

x′1
x′2

)
=

( −25− t
t+1

t
t+1

t
t+1 −25− t

t+1

)(
x1
x2

)

+

(
3 2
2 3

)⎛⎝ sin x1

(
t− 1

4 |sin t|
)

sin x2

(
t− 1

4 |sin t|
) ⎞⎠

+

(
2 1
1 2

)⎛⎝ sin x1

(
t− 1

2 |sin t|
)

sin x2

(
t− 1

2 |sin t|
) ⎞⎠

+

⎛⎝ x1 exp(t)
1+exp(2t)+x2

1(t− 1
6 |sin t|)

x2 exp(t)
1+exp(2t)+x2

2(t− 1
6 |sin t|)

⎞⎠, (14)

where h1(t) = 1
4 |sin t|, h2(t) = 1

2 |sin t|, and h3(t) = 1
6 |sin t| are three multiple time-varying

delays, and t ≥ 1.

If nonlinear system of DDEs (14) and the perturbed system of DDEs (2) with three
multiple time-varying delays are compared, then the condition (C1) and (C2) are satisfied,
since they were shown in Example 1. As for the condition (C3), it is clear that:

P(t, x(t), x(t− h3(t))) = P(t, x(t), x(t− 1
6
|sin t|)) =

⎛⎝ x1 exp(t)
1+exp(2t)+x2

1(t− 1
6 |sin t|)

x2 exp(t)
1+exp(2t)+x2

2(t− 1
6 |sin t|)

⎞⎠.

From this point of view, we derive that:

‖P(t, x(t), x(t− 1
6
|sin t|))‖ =

∥∥∥∥∥∥
⎛⎝ x1 exp(t)

1+exp(2t)+x2
1(t− 1

6 |sin t|)
x2 exp(t)

1+exp(2t)+x2
2(t− 1

6 |sin t|)

⎞⎠∥∥∥∥∥∥
=

|x1| exp(t)
1 + exp(2t) + x2

1(t− 1
6 |sin t|)

+
|x2| exp(t)

1 + exp(2t) + x2
2(t− 1

6 |sin t|)

≤ |x1| exp(t)
1 + exp(2t)

+
|x2| exp(t)
1 + exp(2t)

≤ exp(t)
1 + exp(2t)

[|x1|+ |x2|] = |p0(t)|‖x‖,

where:

|p0(t)| =
exp(t)

1 + exp(2t)
, ‖x‖ = |x1|+ |x2|.

Hence, we obtain:

∞∫
0

|p0(s)|ds =
∞∫

0

exp(s)
1 + exp(2s)

ds =
π

4
= L.

The obtained results shows that the conditions of (C1)–(C3) of Theorem 5 can hold.
Thus, all the solutions of the nonlinear system of DDEs (14) with three multiple time-
varying delays are bounded as t → ∞.

In Figures 3 and 4, the system of DDEs (14) was solved by MATLAB software and
the trajectories of the solutions were drawn for when h1(t) = 1

4 |sin t|, h2(t) = 1
2 |sin t|,

h3(t) = 1
6 |sin t|, t ≥ 1, and different initial values.
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6. Discussion and Contribution

We first compare the conditions Theorems 3 with those of the main result of Ren
and Tian ([33], Theorem 1). We also explain the contributions of the next two results,
Theorems 4 and 5, of this paper to the relevant literature by the following items, respec-
tively.

(1) The nonlinear perturbed system of DDEs (2) extend and improve the linear system
of DDEs (1) (see Tian and Ren [33], Theorem 1) from a linear system of the DDEs with
a time-varying delay to the a class of non-linear systems of DDEs with three multiple
time-varying delays. Next, in the main result of Tian and Ren ([33], Theorem 1), see
the above Theorem 2, the satisfaction of the following LMI is very difficult:

Ψ(α) =

⎡⎣Φ(α)− ΓT�(α)Γ− He(ΓT
[
(1− α)NT

1
αNT

2

]
) ∗

αNT
1 + (1− α)NT

2 −Q

⎤⎦ < 0

since the matrix Ψ(α) has numerous terms. This fact can be seen clearly, when we look at
([33], Theorem 1) and the above Theorem 2. Hence, it is clear that this condition can lead
conservatism, computational complexity, and difficulty in application fields. However,
here, we have very simple conditions, (C1) and (C2) for our stronger result of uniformly
asymptotically stability, Theorem 3, instead of asymptotically stability result in ([33],
Theorem 1). For sake of brevity, there is no need for more information

(2) To prove Theorem 1, the following LKF V(xt),

V(xt) =ηT(t)Pη(t) +
t∫

t−h1

xT(s)Q1x(s)ds +
t−h1∫

t−h2

xT(s)Q2x(s)ds

+ h1

t∫
t−h1

t∫
u

ẋT(s)Q3 ẋ(s)dsdu + h12

t−h1∫
t−h2

t∫
u

ẋT(s)Q4 ẋ(s)dsdu (15)

with

η(t) =

[
xT(t)

t∫
t−h2

xT(s)ds
t−h1∫

t−h2

xT(s)ds
t∫

t−h1

t∫
u

xT(s)dsdu
t∫

t−h1

t∫
u

t∫
s

xT(r)drdsdu

]T

is defined by Ren and Tian ([33], Theorem 1). Instead of the LKF (15), we defined
the following LKF:

W1(t, xt) := ‖x(t)‖+
2

∑
i=1

λi

t∫
t−hi(t)

‖x(s)‖ds. (16)

In spite of the non-linear unperturbed system of DDEs (2) having three multiple
time-varying delays, the LKF (16) is very simple and more convenient and effective.
For the particular case of our theorem, Theorem 3, to get the main result of Ren and
Tian ([33], Theorem 1) under very less conservative and optimal conditions, we need
the following LKF:

W0(t, xt) := ‖x(t)‖+ λ

t∫
t−h(t)

‖x(s)‖ds, (17)

which is a particular case of the LKF (16).
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(3) In Ren and Tian ([33], Theorem 1), differentiating the LKF (15) and using the system
of DDEs (1), it was derived that:

V̇(xt) =2ηT(t)Pη̇(t) + xT(t)Q1x(t)− xT(t− h1)Q1x(t− h1)

+ xT(t− h1)Q2x(t− h1)− xT(t− h2)Q2x(t− h2) + h2
1 ẋT(t)Q3 ẋ(t)

+ h2
12 ẋT(t)Q4 ẋ(t)− h1

t∫
t−h1

ẋT(s)Q3 ẋ(s)ds− h12

t−h1∫
t−h2

ẋT(s)Q4 ẋ(s)ds

=ξT(t){He(ΣT
1 PΣ2) + εT

1 Q1ε1 − εT
2 Q1ε2 + εT

2 Q2ε2

− εT
4 Q2ε4 + h2

1εT
0 Q3ε0 + h2

12εT
0 Q4ε0}ξ(t)}

−h1

t∫
t−h1

ẋT(s)Q3 ẋ(s)ds− h12

t−h1∫
t−h2

ẋT(s)Q4 ẋ(s)ds (18)

with
ξ(t) =

[
xT(t) xT(t− h1) xT(t− h(t)) xT(t− h2) ϕT

1 (t) ϕT
2 (t) ϕT

3 (t)
]T ,

ϕ1(t) =

[
1
h1

t∫
t−h1

xT(s)ds 1
h(t)−h1

t−h1∫
t−h(t)

xT(s)ds 1
h2−h(t)

t−h(t)∫
t−h2

xT(s)ds

]T

,

ϕ2(t) =

[
1
h2

1

t∫
t−h1

t∫
u

xT(s)dsdu 1
(h(t)−h1)

2

t−h1∫
t−h(t)

t−h1∫
u

xT(s)dsdu 1
(h2−h(t))2

t−h(t)∫
t−h2

t−h(t)∫
u

xT(s)ds

]T

,

ϕ3(t) =

[
1
h3

1

t∫
t−h1

t∫
u

t∫
v

xT(s)dsdudv 1
(h(t)−h1)

3

t−h1∫
t−h(t)

t−h1∫
u

t−h1∫
v

xT(s)dsdudv

1

(h2 − h(t))3

t−h(t)∫
t−h2

t−h(t)∫
u

t−h(t)∫
v

xT(s)dsdvdu

⎤⎥⎦
T

. (19)

However, let h1(t) = h(t). It is interesting that calculating the time derivative
of the LKF given by (17) and using the system of DDEs (1), we obtain:

d
dt

W0(t, xt) =
n

∑
i=1

x′ i(t)xi(t + 0) + λ1‖x(t)‖ − λ1‖x(t− h(t))‖ × (1− h′(t)). (20)

The equality (20) has a very simple form than those given by (18) and (19). Indeed,
the inequality (20) leads very to less conservative conditions for the negative defi-
niteness of the time derivative d

dt W0(t, xt) than those given by Ren and Tian ([33],
Theorem 1) for the negative definiteness of d

dt V(xt). Here, we would not like to give
the details of the discussions for the sake of brevity. The less restrictive conditions
of Theorem 3 can be followed with a comparison made between the conditions of Ren
and Tian ([33], Theorem 1) and our Theorem 3.

(4) To prove Theorem 2, which is given above, firstly, three lemmas, Lemmas 1–3, are
given by Ren and Tian [33]. Then, based upon the integral and matrix inequalities
therein, a new delay-dependent stability criterion via Theorem 2 is proven in terms
of a linear matrix inequality, see Ren and Tian [33], Theorem 1.
In this paper, we define a more suitable LKF (6) and depend upon Burton [1], (Theo-
rem 4. 2.9), to prove Theorems 3–5. From this point of view, Ren and Tian ([33], Theo-
rem 1) investigated the asymptotic stability of the linear system of DDEs (1). Here,
we investigate the uniformly asymptotically stability of the zero solution and integra-
bility of the norm of solutions of an unperturbed system of DDEs (4) as well as the
boundedness of solutions of the perturbed system of DDEs (2). The result of Theorem
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3, the uniformly asymptotically stability includes and implies the asymptotic stability
of the linear system of DDEs (1), i.e., but the converse is not true.
As a brief summary, here, we extend and improve the result of Ren and Tian ([33],
Theorem 1), and obtain this result under very less conservative conditions and make
it more optimal than before. Next, we also obtain two new results on the qualitative
properties of the nonlinear unperturbed system of DDEs (4) and as well as the nonlin-
ear perturbed system of DDEs (2), (see Theorems 4 and 5). The applicability of our
results can be done easily because of the form of the new less restrictive conditions
of Theorems 3–5.

(5) In this particular case, two nonlinear Examples 1 and 2 with two and three time-
varying delays, respectively, are given. These examples satisfy the conditions of Theo-
rems 3–5 and they were solved depending upon the 4th order Runge–Kutta method.
The trajectories of these examples are plotted by MATLAB software. The stability,
integrability, and boundedness of the solutions can be followed clearly.

(6) An advantage of the new and optimal LKF (6) used in the proof of Theorem 5 is to
eliminate using Gronwall’s inequality for the boundedness of solutions at infinity.
A comparison of Theorems 3–5 and those in the literature also shows that the condi-
tions of Theorems 3–5 are more general, simple, and convenient for applications.

7. Conclusions

In this paper, the unperturbed system of DDEs (4) with two multiple time-varying
delays and the perturbed system of DDEs (2) with three multiple time-varying delays are
taken into consideration. To the best of the authors’ knowledge, the qualitative properties
of the systems of DDEs (2) and (4) with multiple time-varying delays were not investigated
in the relevant literature until this time and the results of this article are new, original, and
have scientific novelty.

Indeed, this paper is comprised of three new results, Theorems 3–5, and two new
examples, Examples 1 and 2. Theorems 3–5 are related to the uniformly asymptotically
stability of zero solution and the integrability of solutions of the non-perturbed system
of DDEs (4) as well as the boundedness of solutions of the perturbed system of the DDEs
(2), respectively. The technique used to prove Theorems 3–5 depends upon a new LKF and
the LKF method. In fact, the real advantage of the new LKF is that it can pioneer to more
optimal, general, and less conservative new qualitative results and also eliminate the use
of Gronwall’s inequality for the boundedness of solutions.

The established sufficient conditions of Theorems 3–5 are more general, simple, less
conservative, and more convenient to apply than those available from the literature.

The results of this paper also improve and extend the result of Ren and Tian ([33],
Theorem 1) and add two new results on the qualitative properties of solutions and con-
tributes to the topic and relevant literature. The given examples illustrate the particular
applications of the new results of this paper.
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Abstract: In this paper, the problem of a Lotka–Volterra competition–diffusion–advection system
between two competing biological organisms in a spatially heterogeneous environments is investi-
gated. When two biological organisms are competing for different fundamental resources, and their
advection and diffusion strategies follow different positive diffusion distributions, the functions of
specific competition ability are variable. By virtue of the Lyapunov functional method, we discuss
the global stability of a non-homogeneous steady-state. Furthermore, the global stability result is also
obtained when one of the two organisms has no diffusion ability and is not affected by advection.
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1. Introduction

For researchers from the fields of biology and mathematics, advancing the exploration
of dynamic systems is a long-term challenge (see [1–3]). The competitive system of two
diffusive organisms is often used to simulate population dynamics in biomathematics; for
an example, see [1,2,4]. The key to spatial heterogeneity has been discussed in a lot of
work, such as [2,5] and its references. In 2020, by proposing a new Lyapunov functional,
Ni et al. [6] first studied and proved the global stability of a diffusive, competitive two-
organism system, and then extended it to multiple organisms.

Since various methods in the reaction–diffusion–convection system cannot continue
to work well, the global dynamics is far from being fully understood. In competitive
diffusion advection systems, some progress has been made in [7–11]. Li et al. introduced
the weighted Lyapunov functional related to the advection term to study global stability
results in 2020 (see [12]), and studied the stability and bifurcation analysis of the model
with the time delay term in 2021 (see [11]). Similarly, in 2021, Ma et al. described the
overlapping characteristics of bifurcation solutions and studied the influence of advection
on the stability of bifurcation solutions. Their results showed that the advection term may
change its stability (see [13]). In 2021, Zhou et al. studied the global dynamics of a parabolic
system using the competition coefficient (see [14]).

Motivated by the efforts of the aforementioned papers, we will investigate the global
stability of a non-homogeneous steady-state solution of a Lotka–Volterra model between
two organisms in heterogeneous environments, where two competing organisms have
different intrinsic growth rates, advection and diffusion strategies, and follow different
positive diffusion distributions.

Hence, we discuss the following advection system:

Axioms 2021, 10, 166. https://doi.org/10.3390/axioms10030166 https://www.mdpi.com/journal/axioms
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ut =∇·[μ1(x)∇( U
ρ1(x) )−R1(x) U

ρ1(x)∇B1(x)]+U[λ1(x)−�11(x)U −�12(x)V],

in Ω×R+,
Vt = ∇·[μ2(x)∇( V

ρ2(x) )−R2(x) V
ρ2(x)∇B2(x)]+V[λ2(x)−�21(x)U−�22(x)V],

in Ω×R+,

μ1(x) ∂
∂n (

U
ρ1
)− R1(x) U

ρ1

∂B1(x)
∂n = 0, on ∂Ω×R+,

μ2(x) ∂
∂n (

V
ρ2
)− R2(x) V

ρ2

∂B2(x)
∂n = 0, on ∂Ω×R+,

U(x, 0) = U0(x) ≥, �≡ 0, V(x, 0) = V0(x) ≥, �≡ 0, in Ω,

(1)

Here, U(x, t) and V(x, t) are the population densities of biological organisms, location
x ∈ Ω, time t > 0, which are supposed to be nonnegative. μ1(x), μ2(x) > 0 correspond
to the dispersal rates of two competing biological organisms, respectively. R1(x), R2(x) > 0
correspond to the advection rates of two competing biological organisms, and B1(x), B2(x) ∈
C2(Ω) are the nonconstant functions and represent the advective directions. Two bounded
functions λ1(x) and λ2(x) are the intrinsic growth rates of competing organisms , ρ1(x),
ρ2(x) ∈ C2(Ω) are two positive diffusion distributions, respectively. �ij(x) > 0,
i = 1, 2, j = 1, 2 show the strength of competition ability. The spatial habitat Ω ⊂ RN is a
bounded smooth domain, 1 ≤ N ∈ Z; n denotes the outward unit normal vector on the
boundary ∂Ω. No one can enter or leave the habitat boundary.

The following are our basic assumptions:

Hypothesis 1. 0 < μi(x), Ri(x) ∈ C1+�(Ω), 0 < λi(x), �ij(x) ∈ C�(Ω), � ∈ (0, 1).

Hypothesis 2.
μ1(x)
R1(x) =: c1 > 0, μ2(x)

R2(x) =: c2 > 0, x ∈ Ω, where c1 and c2 are constants.

To simplify the calculation, by letting u = e−c1B1(x) U
ρ1(x) , v = e−c2B2(x) V

ρ2(x) , the system
(1) converts into the following coupled system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut =
e−c1B1(x)

ρ1(x)
∇[μ1(x)ec1B1(x)∇u] + u[λ1(x)−�11(x)uec1B1(x)ρ1(x)

−�12(x)vec2B2(x)ρ2(x)], in Ω×R+,

vt =
e−c2B2(x)

ρ2(x)
∇[μ2(x)ec2B2(x)∇v] + v[λ2(x)−�21(x)uec1B1(x)ρ1(x)

−�22(x)vec2B2(x)ρ2(x)], in Ω×R+,
∂u
∂n = ∂v

∂n = 0, on ∂Ω×R+,

u(x, 0) = e−c1B1(x) U0(x)
ρ1(x) ≥, �≡ 0, v(x, 0) = e−c2B2(x) V0(x)

ρ2(x) ≥, �≡ 0, in Ω,

(2)

when c1 = c2 = 0, ρ1(x) = ρ2(x) = 1, the model (2) has been studied in Ni et al. [6].
c1 = c2, B1(x) = B2(x), ρ1(x) = ρ2(x) = 1, the model (2) has been studied in Li et al. [12].

The rest of this article is arranged as follows. In Section 2, we carry out some prepara-
tory work and give four lemmas, where some related properties of the system (1) are
deduced from the properties of a single organism model (4). Using the Lyapunov func-
tional method, we will provide and prove our main results in Section 3. In Section 4,
one example is given to explain our conclusions.
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2. Preliminaries

In order to describe our main results, we present the following uniform estimates for
the parabolic equation:⎧⎪⎨⎪⎩

wt = �ij(x)Dijw + β j(x)Djw + λ(x)w + H(x, t, w), in Ω×R+,
∂w
∂n = 0, on ∂Ω×R+,
w(x, 0) = w0(x) ≥, �≡ 0, in Ω,

(3)

where Ω ⊂ RN is bounded and ∂Ω ∈ C2+�(� ∈ (0, 1)) is a smooth boundary. The initial
condition w0(x) ∈ W2,p(Ω), p > 1 + N

2 .
Setting the following assumptions:

(A1) Let �ij, β j, λ ∈ C(Ω), χ1, χ2 > 0, such that

χ1|y|2 ≤ ∑
1≤i,j≤N

�ij(x)yiyj ≤ χ2|y|2, |β j(x)|, |λ(x)| ≤ χ2, f or all x ∈ Ω, y ∈ RN .

(A2) Let Λ > 0 be a constant, such that

‖�ij‖C�(Ω), ‖β j‖C�(Ω), ‖λ‖C�(Ω) ≤ Λ.

(A3) H ∈ L∞(Ω × [0, ∞) × [τ1, τ2]) for some τ1 < τ2 and there is Λ(τ1, τ2) > 0
such that

|H(x, t, w1)−H(x, t, w2)|≤Λ(τ1,τ2)|w1 − w2|, f or all (x, t) ∈ Ω× [0, ∞), w1, w2 ∈ [τ1, τ2],

and there exists Λ > 0, satisfying

|H(x1, t1, w)− H(x2, t2, w)| ≤ Λ(|x1 − x2|� + |t1 − t2|
�
2 ) f or all(x1, t1), (x2, t2) ∈ Ω×

[d, d + 3], u ∈ [τ1, τ2], d ≥ 0.

The following lemma (see [15,16]) is the boundedness result of the solution w(x, t)
in (3).

Lemma 1. Let w(x, t) be a solution of (3) with τ1 < w < τ2, τ1, τ2 ∈ R. Suppose that f , �ij, β j, λ
satisfy the assumptions (A1)− (A3), then for any κ ≥ 1, there is a constant Λ(κ) > 0 such that

max
x∈Ω

‖wt(x, ·)‖
C

�
2 ([κ,+∞))

+ max
t≥κ

‖wt(·, t)‖C(Ω) + max
t≥κ

‖w(·, t)‖C2+�(Ω) ≤ Λ(κ).

In the proof of global stability, the following calculus theory and integral inequality
are very important. For details, see [6,17].

Lemma 2 ([17]). Let β, λ > 0 be constants, ϕ(t) ≥ 0 in [β, ∞). Assume that φ ∈ C1([β, ∞))
has lower bound, φ′(t) ≤ −λϕ(t) in [β, ∞). If one of the following alternatives holds:

• ϕ ∈ C1([β, ∞)) and ϕ′(t) ≤ P in [β, ∞) for P > 0,
• ϕ ∈ C�([β, ∞)) and ‖ϕ‖C�([β,∞)) ≤ P for 0 < m < 1 and P > 0,

where P and m are constants, then lim
t→∞

ϕ(t) = 0.

Lemma 3 ([6]). Let α, α∗ ∈ C2(Ω) with α, α∗ > 0 and m ∈ C1(Ω), b ∈ C2(Ω) with m, b ≥ 0,
α, α∗, m, b are functions. If the following conditions holds:

• q ≥ 1 is a constant, the function h ∈ C0,1(∂Ω× [0, ∞)), x ∈ ∂Ω, h(x,K)
K is a non-increasing

function for K ∈ [0, ∞),
• ∂(b(x)α)

∂ν = h(x, α), ∂(b(x)α∗)
∂ν = h(x, α∗) on ∂Ω,
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then ∫
Ω

b(x)α∗[αq − α∗q]

αq
(
∇{m(x)∇[b(x)α]} − α

α∗
∇{m(x)∇[b(x)α∗]}

)
dx

≤−
∫

Ω
qmb2α2(

α∗

α
)q−1|∇α∗

α
|2 dx ≤ 0.

(4)

Next, we consider the following scalar evolution eqution

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ut =

e−cB(x)

ρ(x)
∇[μ(x)ecB(x)∇u] + u[λ(x)−�(x)uecB(x)ρ(x)], in Ω×R+,

∂u
∂n = 0, on ∂Ω×R+,

u(x, 0) = e−cB(x) U0(x)
ρ(x) ≥, �≡ 0, in Ω,

(5)

where μ(x), c, �(x), λ(x) satisty

0 < μ(x), R(x) ∈ C1+�(Ω), 0 < λ(x), �(x) ∈ C�(Ω), � ∈ (0, 1),
μ(x)
R(x)

= c, where c is a

constant.
(6)

Now we see the following useful lemma.

Lemma 4 ([1]). Assume that 0 < μ(x), λ(x), ρ(x), �(x) on Ω, then the elliptic problem:⎧⎪⎨⎪⎩
e−cB(x)

ρ(x)
∇[μ(x)ecB(x)∇u] + u[λ(x)−�(x)uecB(x)ρ(x)] = 0, in Ω,

∂u
∂n = 0, on ∂Ω,

(7)

has a unique positive solution, denoted by uθ .

3. Main Results

In this section, firstly, by utilizing the Lyapunov function method, the global stability
of the model (5) is obtained, and we can see that the non-constant steady-state for (5) is
equivalent to the solution uθ of (7).

Theorem 1. Assume that u0(x) � 0. If μ, ρ, c, λ, � satisfy (6), then Equation (5) has a unique
solution u(x, t) > 0 with lim

t→∞
u(x, t) = uθ in C2(Ω).

Proof. According to the upper–lower solutions method [1,18], we obtain (5) with a unique
solution u(x, t) > 0. Let M be a upper solution of (5), we have 0 < u(x, t) < M,
(x, t) ∈ Ω× (0, ∞).

By applying Lemma 1, we can obtain that there exists a constant Λ > 0 such that

max
t≥1

‖ut(·, t)‖C(Ω) + max
t≥1

‖u(·, t)‖C2+�(Ω) ≤ Λ. (8)

Then, define a function Φ : [0, ∞)→ R by

Φ(t) =
∫

Ω
ρuθecB(u− uθ − uθ ln

u
uθ

)dx. (9)
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Then, Φ(t) ≥ 0, t ≥ 0. By (2) and (4), we have

Φ′(t) =
∫

Ω
ρuθecB(1− uθ

u
)ut dx

=
∫

Ω
ρuθecB(1− uθ

u
)[

e−cB

ρ
∇(μecB∇u) + u(λ−�uecBρ)]dx

=
∫

Ω
ρuθecB(1− uθ

u
)[

e−cB

ρ
∇(μecB∇u)− ue−cB

uθρ
∇(μecB∇uθ)]dx

+
∫

Ω
ρuθecB(1− uθ

u
)[u(λ−�uecBρ)− u

uθ
uθ(λ−�uθecBρ)]dx

≤−
∫

Ω
μecBu2|∇uθ

u
|2 dx−

∫
Ω

ρ2uθe2cB�(u− uθ)
2 dx.

(10)

We get

Φ′(t) ≤ −
∫

Ω
ρ2uθe2cB�(u− uθ)

2 dx =: −ϕ(t) ≤ 0. (11)

By virtue of (8), we get |ϕ′(t)| ≤ Λ in [1, ∞) for some Λ > 0. From Lemma 2,
it follows that

lim
t→∞

ϕ(t) = lim
t→∞

∫
Ω

ρ2uθe2cB�(u− uθ)
2 dx = 0. (12)

Applying (8) again, {u(·, t) : t ≥ 1} is relatively compact in C2(Ω). It can be found
that there exists some function u∞(x) ∈ C2(Ω) such that

‖u(·, ts)− u∞‖C2(Ω) → 0 as ts → ∞. (13)

Combining with (12), we get u∞(x) = uθ(x) where x ∈ Ω. Hence, we deduce

lim
t→∞

u(x, t) = uθ(x) in C2(Ω).

In addition, taking advantage of Lyapunov function method, the global stability
results of (2) are obtained.

Theorem 2. Suppose that u0(x), v0(x) ≥, �= 0, (H1) and (H2) hold, the system (2) admits a
non-homogeneous steady-state (ũθ(x), ṽθ(x)) > 0 and there exists

η1 > 0, η2 > 0 such that η1 ≤
ũθ(x)
ṽθ(x)

≤ η2, x ∈ Ω. (14)

Suppose that √
η2

η1
< min

Ω

�11�22

�12�21
. (15)

Then, the system (2) admits a solution (u(x, t), v(x, t)) that satisfies

lim
t→∞

u(x, t) = ũθ(x), lim
t→∞

v(x, t) = ṽθ(x) in C2(Ω).

Proof. Assume that the inequality (15) holds, let Φ : [0,+∞)→ R defined by

Φ(t) =
∫

Ω
ρ1ũθec1B1(u− ũθ − ũθ ln

u
ũθ

)dx +
∫

Ω
ξρ2ṽθec2B2(v− ṽθ − ṽθ ln

v
ṽθ

)dx, (16)

where 0 < ξ(x) :=
�12
√

η1η2

�21
. Clearly, Φ(t) ≥ 0. By (2) and (4), we have
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Φ′(t) =
∫

Ω
[ρ1ũθec1B1 (1− ũθ

u
)ut + ξρ2ṽθec2B2 (1− ṽθ

v
)vt]dx

=
∫

Ω
ρ1ũθec1B1 (1− ũθ

u
)[

e−c1B1

ρ1
∇(μ1ec1B1∇u) + u(λ1 −�11uec1B1 ρ1 −�12vec2B2 ρ2)]dx

+
∫

Ω
ξρ2ṽθec2B2 (1− ṽθ

v
)[

e−c2B2

ρ2
∇(μ2ec2B2∇v) + v(λ2 −�21uec1B1 ρ1 −�22vec2B2 ρ2)]dx

=
∫

Ω
ρ1ũθec1B1 (1− ũθ

u
)[

e−c1B1

ρ1
∇(μ1ec1B1∇u)− ue−c1B1

ũθρ1
∇(μ1ec1B1∇ũθ)]dx

+
∫

Ω
ξρ2ṽθec2B2 (1− ṽθ

v
)[

e−c2B2

ρ2
∇(μ2ec2B2∇v)− ve−c2B2

ṽθρ2
∇(μ2ec2B2∇ṽθ)]dx

+
∫

Ω
ρ1ũθec1B1 (1− ũθ

u
)u(λ1 −�11uec1B1 ρ1 −�12vec2B2 ρ2)dx

−
∫

Ω
ρ1ũθec1B1 (1− ũθ

u
)

u
ũθ

ũθ(λ1 −�11ũθec1B1 ρ1 −�12ṽθec2B2 ρ2)]dx

+
∫

Ω
ξρ2ṽθec2B2 (1− ṽθ

v
)v(λ2 −�21uec1B1 ρ1 −�22vec2B2 ρ2)dx

−
∫

Ω
ξρ2ṽθec2B2 (1− ṽθ

v
)

v
ṽθ

ṽθ(λ2 −�21ũθec1B1 ρ1 −�22ṽθec2B2 ρ2)dx

≤−
∫

Ω
μ1ec1B1 u2|∇ ũθ

u
|2 dx−

∫
Ω

μ2ec2B2 v2|∇ ṽθ

v
|2 dx−

∫
Ω

ρ2
1ũθe2c1B1 �11(u− ũθ)

2 dx

−
∫

Ω
ρ1ρ2ec1B1+c2B2 (�12ũθ + ξ�21ṽθ)(u− ũθ)(v− ṽθ)dx

−
∫

Ω
ξρ2

2ṽθe2c2B2 �22(v− ṽθ)
2 dx.

(17)

Note that (14) and (15) give rise to

2
√

ρ2
1ũθe2c1B1 �11ξρ2

2ṽθe2c2B2 �22 − ρ1ρ2ec1B1+c2B2(�12ũθ + ξ�21ṽθ)

=2ρ1ρ2ec1B1+c2B2
√

ξũθ ṽθ�11�22 − ρ1ρ2ec1B1+c2B2(�12ũθ + ξ�21ṽθ)

=ρ1ρ2ec1B1+c2B2(2
√

ξũθ ṽθ
√

�11�22 −
√

ξũθ ṽθ(�12

√
ũθ

ξṽθ
+ �21

√
ξṽθ

ũθ
))

=ρ1ρ2ec1B1+c2B2
√

ξũθ ṽθ(2
√

�11�22 − (�12

√
η2

ξ
+ �21

√
ξ

η1
))

≥ρ1ρ2ec1B1+c2B2
√

ξũθ ṽθ(2
√

�11�22 − 2

√
�12�21

√
η2

η1
)

>0.

Choosing 0 < ε � 1, we have

2
√

ρ2
1ũθe2c1B1(�11 − ε)ξρ2

2ṽθe2c2B2(�22 − ε)− ρ1ρ2ec1B1+c2B2(�12ũθ + ξ�21ṽθ) > 0.

Combining with (17), we can deduce

Φ′(t) ≤ −
∫

Ω
[ρ2

1ũθe2c1B1 ε(u− ũθ)
2 + ξρ2

2ṽθe2c2B2 ε(v− ṽθ)
2]dx =: −ϕ(t) ≤ 0.

From (13), it follows that

lim
t→∞

u(x, t) = ũθ(x), lim
t→∞

v(x, t) = ṽθ(x) in C2(Ω).

Finally, we consider that if one of the two organisms has no diffusion ability and is
not affected by advection, the Lyapunov function method can also deduce the following
global stability results in (2).
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Theorem 3. If u0, v0 ∈ C(Ω) satisfy u0(x) ≥, �≡ 0 and v0(x) > 0 on Ω. Let μ1(x)
R1(x) =:

c1, μ2(x) = R2(x) = 0 for x ∈ Ω, and

�12(x)�21(x) < �11(x)�22(x), x ∈ Ω. (18)

(i) If
�22(x)λ1(x)−�12(x)λ2(x) > 0, ∀x ∈ Ω, (19)

and

min
Ω

λ2(x)
ρ1(x)�21(x)ec1B1(x)

> max
Ω

�22(x)λ1(x)−�12(x)λ2(x)
ρ1(x)ec1B1(x)(�11(x)�22(x)−�12(x)�21(x))

, (20)

then there is a unique non-homogeneous steady-state (ũθ(x), ṽθ(x)) > 0 for the model (2) such that

lim
t→∞

(u(x, t), v(x, t)) = (ũθ(x), ṽθ(x)) in C1(Ω)× L2(Ω).

(ii) If
λ2(x)

ρ1(x)�21(x)ec1B1(x)
≤ ũθ(x), x ∈ Ω, (21)

then there exists a semi-trivial steady-state (ũθ(x), 0) for the model (2) such that

lim
t→∞

(u(x, t), v(x, t)) = (ũθ(x), 0) in C1(Ω)× L2(Ω).

(iii) Let
�22(x)
�12(x)

≤ λ2(x)
λ1(x)

, x ∈ Ω, (22)

then the model (2) has a semi-trivial steady-state (0, ṽθ(x)),

lim
t→∞

(u(x, t), v(x, t)) = (0, ṽθ(x)) in C1(Ω)× L2(Ω),

where ṽθ(x) =
λ2(x)

ρ2(x)�22(x)ec2B2(x)
.

Proof. (i) When μ2(x) = R2(x) = 0, x ∈ Ω, (ũθ(x), ṽθ(x)) of the model (2) satisfies⎧⎪⎪⎪⎨⎪⎪⎪⎩
e−c1B1(x)

ρ1(x)
∇[μ1(x)ec1B1(x)∇u]+u[λ1(x)− �12(x)

�22(x)λ2(x)− ρ1(x)uec1B1(x)

(�11(x)− �12(x)�21(x)
�22(x) )] = 0, x ∈ Ω,

∂u
∂n = 0, x ∈ ∂Ω,

(23)

and ṽθ =
λ2 −�21ρ1ũθec1B1

�22ρ2ec2B2
.

If (18) and (19) hold, we see μ1, λ1 − �12
�22

λ2, ρ1e−c1B1(�11 − �12�21
�22

) > 0, then by
Lemma 4, the problem (23) has a unique solution ũθ(x) > 0. By using the maximum
principle in elliptic equation, we infer

ũθ < max
Ω

�22λ1 −�12λ2

ρ1ec1B1(�11�22 −�12�21)
.

According to (20), we can get ṽθ =
λ2 −�21ρ1ũθec1B1

�22ρ2ec2B2
> 0, hence there exists a unique

steady-state for (2), (ũθ(x), ṽθ(x)) > 0.
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Let us define a function Φ : [0, ∞)→ R,

Φ(t) =
∫

Ω
ρ1ũθec1B1(u− ũθ − ũθ ln

u
ũθ

)dx +
∫

Ω
ξρ2ec2B2(v− ṽθ − ṽθ ln

v
ṽθ

)dx,

where ξ(x) = �12(x)ũθ(x)
�21(x) > 0. Clearly, Φ(t) � 0. From (2) and (4), we get

Φ′(t) =
∫

Ω
[ρ1ũθec1B1(1− ũθ

u
)ut + ξρ2ec2B2(1− ṽθ

v
)vt]dx

=
∫

Ω
ρ1ũθec1B1(1− ũθ

u
)[

e−c1B1

ρ1
∇(μ1ec1B1∇u)

+ u(λ1 −�11uec1B1 ρ1 −�12vec2B2 ρ2)]dx

+
∫

Ω
ξρ2ṽθec2B2(1− ṽθ

v
)[v(λ2 −�21uec1B1 ρ1 −�22vec2B2 ρ2)]dx

=
∫

Ω
ρ1ũθec1B1(1− ũθ

u
)[

e−c1B1

ρ1
∇(μ1ec1B1∇u)− ue−c1B1

ũθρ1
∇(μ1ec1B1∇ũθ)]dx

+
∫

Ω
ρ1ũθec1B1(1− ũθ

u
)u(λ1 −�11uec1B1 ρ1 −�12vec2B2 ρ2)dx

−
∫

Ω
ρ1ũθec1B1(1− ũθ

u
)

u
ũθ

ũθ(λ1 −�11ũθec1B1 ρ1 −�12ṽθec2B2 ρ2)]dx

+
∫

Ω
ξρ2ec2B2(1− ṽθ

v
)v(λ2 −�21uec1B1 ρ1 −�22vec2B2 ρ2)dx

−
∫

Ω
ξρ2ec2B2(1− ṽθ

v
)

v
ṽθ

ṽθ(λ2 −�21ũθec1B1 ρ1 −�22ṽθec2B2 ρ2)dx

≤−
∫

Ω
μ1ec1B1 u2|∇ ũθ

u
|2 dx−

∫
Ω

ρ2
1ũθe2c1B1 �11(u− ũθ)

2 dx

−
∫

Ω
ρ1ρ2ec1B1+c2B2(�12ũθ + ξ�21)(u− ũθ)(v− ṽθ)dx

−
∫

Ω
ξρ2

2e2c2B2 �22(v− ṽθ)
2 dx.

(24)

We can choose 0 < ε � 1 and use (18), such that

2
√

ρ2
1ũθe2c1B1(�11 − ε)ξρ2

2e2c2B2(�22 − ε)− ρ1ρ2ec1B1+c2B2(�12ũθ + ξ�21) > 0.

Combining this with (24), we can deduce

Φ′(t) ≤ −
∫

Ω
[ρ2

1ũθe2c1B1 ε(u− ũθ)
2 + ξρ2

2e2c2B2 ε(v− ṽθ)
2]dx =: −ϕ(t) ≤ 0.

Applying the Lemma 1 and Sobolev embedding theorem, we deduce that u and v are
bounded in Ω× [0, ∞) and there is a constant Λ > 0 such that

max
t≥1

‖u(·, t)‖C1+�(Ω) ≤ Λ f or some 0 < � < 1.

Combining with (2) and |ϕ′(t)| < Λ1 in [1, ∞) for some Λ1 > 0, and making use of
Lemma 2, we get lim

t→∞
ϕ(t) = 0 and we deduce that

lim
t→∞

u(x, t) = ũθ(x), lim
t→∞

v(x, t) = ṽθ(x) in L2(Ω).

Applying Theorem 2, we get lim
t→∞

u(x, t) = ũθ(x) in C1(Ω).
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(ii) Let’s define a function Φ : [0, ∞)→ R,

Φ(t) =
∫

Ω
ρ1ũθec1B1(u− ũθ − ũθ ln

u
ũθ

)dx +
∫

Ω
ξρ2ec2B2 v dx,

where ξ(x) = �12(x)ũθ(x)
�21(x) > 0. From (4) and (21), we have

Φ′(t) =
∫

Ω
ρ1ũθec1B1(1− ũθ

u
)[

e−c1B1

ρ1
∇(μ1ec1B1∇u)− ue−c1B1

ũθρ1
∇(μ1ec1B1∇ũθ)]dx

+
∫

Ω
ρ1ũθec1B1(1− ũθ

u
)u(λ1 −�11uec1B1 ρ1 −�12vec2B2 ρ2)dx

−
∫

Ω
ρ1ũθec1B1(1− ũθ

u
)

u
ũθ

ũθ(λ1 −�11ũθec1B1 ρ1)]dx

+
∫

Ω
ξρ2ec2B2 v(λ2 −�21uec1B1 ρ1 −�22vec2B2 ρ2)dx

≤−
∫

Ω
μ1ec1B1 u2|∇ ũθ

u
|2 dx

−
∫

Ω
ρ1ũθec1B1(u− ũθ)(−�11ec1B1 ρ1(u− ũθ)−�12vec2B2 ρ2)dx

+
∫

Ω
ξρ2ec2B2 v[(λ2 −�21ũθec1B1 ρ1)−�21ec1B1 ρ1(u− ũθ)−�22vec2B2 ρ2]dx

≤−
∫

Ω
ρ2

1ũθe2c2B2 �11(u− ũθ)
2 dx−

∫
Ω

ξρ2
2e2c2B2 �22v2 dx

−
∫

Ω
ρ1ρ2ec1B1+c2B2(�12ũθ + ξ�21)(u− ũθ)v dx.

The following discussion will refer to the part (i), then we will not repeat it.

(iii) Clearly, (2) has a semi-trivial steady-state (0,
λ2(x)

ρ2(x)�22(x)ec2B2(x)
). Let us define

a function Φ : [0, ∞)→ R,

Φ(t) =
∫

Ω
ρ1ec1B1 u dx +

∫
Ω

ξρ2ec2B2(v− ṽθ − ṽθ ln
v
ṽθ

)dx,

where ξ(x) = �12(x)
�21(x) > 0 and ṽθ(x) =

λ2(x)
ρ2(x)�22(x)ec2B2(x)

. From (22), we have

Φ′(t) =
∫

Ω
ρ1ec1B1 u(λ1 −�11uec1B1 ρ1 −�12vec2B2 ρ2)dx

+
∫

Ω
ξρ2ec2B2 v(λ2 −�21uec1B1 ρ1 −�22vec2B2 ρ2)dx

−
∫

Ω
ξρ2ec2B2

v
ṽθ

ṽθ(λ2 −�22ṽθec2B2 ρ2)]dx

=
∫

Ω
ρ1ec1B1 u[(λ1 −�12ṽθec2B2 ρ2)−�11uec1B1 ρ1 −�12ec2B2 ρ2(v− ṽθ)]dx

−
∫

Ω
ξρ2e2c2B2(v− ṽθ)[−�21uec1B1 ρ1 −�22ec2B2 ρ2(v− ṽθ)]dx

≤−
∫

Ω
ρ2

1e2c2B2 �11u2 dx−
∫

Ω
ξρ2

2e2c2B2 �22(v− ṽθ)
2 dx

−
∫

Ω
ρ1ρ2ec1B1+c2B2(�12 + ξ�21)(v− ṽθ)u dx.

The following discussion is similar to the part (i), so we omit it.

4. Example

See the following parabolic problem:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut =
e−cB(x)

ρ(x)
∇[μ1(x)ecB(x)∇u] + u[λ̄1 ϕ(x)ecB(x)ρ(x) + ε1g1(x)

−�̄11 ϕ(x)uecB(x)ρ(x)− �̄12 ϕ(x)vecB(x)ρ(x)], in Ω×R+,

vt =
e−cB(x)

ρ(x)
∇[μ2(x)ecB(x)∇v] + v[λ̄2 ϕ(x)ecB(x)ρ(x) + ε2g2(x)

−�̄21 ϕ(x)uecB(x)ρ(x)− �̄22 ϕ(x)vecB(x)ρ(x)], in Ω×R+,
∂u
∂n = ∂v

∂n = 0, on ∂Ω×R+,

u(x, 0) = e−cB(x) U0(x)
ρ(x) ≥, �≡ 0, v(x, 0) = e−cB(x) V0(x)

ρ(x) ≥, �≡ 0, in Ω,

(25)

where λ̄i, �̄ij, εi are all positive constants, B, ρ ∈ C2(Ω), μi ∈ C1+�(Ω), ϕ, gi ∈ C�(Ω) and
ϕ(x), μi(x) > 0 on Ω.

Proposition 1. If 0 ≤ εi � 1 and �̄21
�̄11

< λ̄2
λ̄1

< �̄22
�̄12

,
�̄11�̄22

�̄12�̄21
> 1, then there exists η1 > 0, η2 >

0 such that
�̄11�̄22

�̄12�̄21
>

√
η2

η1
(26)

and the system (25) admits a positive non-homogeneous steady-state (ũθ(x), ṽθ(x)), which satisfies
η1 ≤ ũθ(x)

ṽθ(x) ≤ η2.

Proof. The steady-state of (25) satisfies the following elliptic problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e−cB(x)

ρ(x)
∇[μ1(x)ecB(x)∇u] + u[λ̄1 ϕ(x)ecB(x)ρ(x) + ε1g1(x)

−�̄11 ϕ(x)uecB(x)ρ(x)− �̄12 ϕ(x)vecB(x)ρ(x)] = 0, in Ω,
e−cB(x)

ρ(x)
∇[μ2(x)ecB(x)∇v] + v[λ̄2 ϕ(x)ecB(x)ρ(x) + ε2g2(x)

−�̄21 ϕ(x)uecB(x)ρ(x)− �̄22 ϕ(x)vecB(x)ρ(x)] = 0, in Ω,
∂u
∂n = ∂v

∂n = 0, on ∂Ω.

(27)

Set k̄i = max
Ω

gi(x)
ϕ(x)ecB(x)ρ(x)

, ki = min
Ω

gi(x)
ϕ(x)ecB(x)ρ(x)

for i = 1, 2. Applying 0 < εi � 1

and �̄21
�̄11

< λ̄2
λ̄1

< �̄22
�̄12

, we have the linear system⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
λ̄1 + ε1k1 − �̄11u− �̄12v̄ = 0,
λ̄2 + ε2k̄2 − �̄21u− �̄22v̄ = 0,
λ̄1 + ε1k̄1 − �̄11ū− �̄12v = 0,
λ̄2 + ε2k2 − �̄21ū− �̄22v = 0.

Then

ū =
�̄22(λ̄1 + ε1k̄1)− �̄12(λ̄2 + ε2k2)

�̄11�̄22 − �̄12�̄21
, u =

�̄22(λ̄1 + ε1k1)− �̄12(λ̄2 + ε2k̄2)

�̄11�̄22 − �̄12�̄21
,

v̄ =
�̄11(λ̄2 + ε2k̄2)− �̄21(λ̄1 + ε1k1)

�̄11�̄22 − �̄12�̄21
, v =

�̄11(λ̄2 + ε2k2)− �̄21(λ̄1 + ε1k̄1)

�̄11�̄22 − �̄12�̄21
.

Hence, the system (25) has a positive non-homogeneous steady-state (ũθ(x), ṽθ(x))
and 0 < u < ũθ(x) < ū and 0 < v < ṽθ(x) < v̄. Let

η1 =
u
v̄

, η2 =
ū
v

. (28)
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we have η1 ≤ ũθ(x)
ṽθ(x) ≤ η2. Applying (28), we get lim

ε1,ε2→0

η2
η1

= 1. Hence, for 0 < εi � 1,

min
Ω

�̄11 ϕ(x)�̄22 ϕ(x)
�̄12 ϕ(x)�̄21 ϕ(x)

=
�̄11�̄22

�̄12�̄21
>

√
η2

η1
.

The proof is completed.

Example 1. In the above (25), let c = 2, B(x) = x, ρ(x) = e−x, μ1(x) = μ2(x) = e−x, R1(x) =
R2(x) = 1

2 e−x, ϕ(x) = e−x, g1(x) = g2(x) = 1 + cos(π
2 x), λ̄1 = 1, λ̄2 = 2, �̄11 = �̄12 =

�̄21 = 1, �̄22 = 3, and ε1 = ε2 = 1
3 , x ∈ Ω = [0, 10]. Then the problem (25) becomes the

following model⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ut = e−x∇[ex∇u] + u[1 + 1

3 (1 + cos(π
2 x))− u− v], in Ω×R+,

vt = e−x∇[ex∇v] + v[2 + 1
3 (1 + cos(π

2 x))− u− 3v], in Ω×R+,
∂u
∂n = ∂v

∂n = 0, on ∂Ω×R+,

u(x, 0) = e−x(2 + cos(πx)) ≥, �≡ 0, v(x, 0) = e−x(2 + cos(πx)) ≥, �≡ 0, in Ω,

(29)

where u0(x), v0(x) ≥, �= 0. It is not difficult to verify that (H1) and (H2) hold. We can find
η1 = 1 > 0, η2 = 7

3 > 0, such that η1 ≤ ũθ(x)
ṽθ(x) ≤ η2 and

√
η2
η1

< min
Ω

�11�22
�12�21

. According to

Theorem 2, the model (29) admits a solution (u(x, t), v(x, t)) that satisfies

lim
t→∞

u(x, t) = ũθ(x), lim
t→∞

v(x, t) = ṽθ(x) in C2(Ω).

Indeed, the steady-state of (29) satisfies the following elliptic problem⎧⎪⎨⎪⎩
e−x∇[ex∇u] + u[1 + 1

3 (1 + cos(π
2 x))− u− v] = 0, in Ω,

e−x∇[ex∇v] + v[2 + 1
3 (1 + cos(π

2 x))− u− 3v] = 0, in Ω,
∂u
∂n = ∂v

∂n = 0, on ∂Ω.

(30)

It is not difficult to see that k̄1 = k̄2 = 2, k1 = k2 = 0. By calculation, we can obtain⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1− u− v̄ = 0,
2 + 2ε2 − u− 3v̄ = 0,
1 + 2ε1 − ū− v = 0,
2− ū− 3v = 0.

Then
ū =

1 + 6ε1

2
=

3
2
> 0, u =

1− 2ε2

2
=

1
6
> 0,

v̄ =
1 + 2ε2

2
=

5
6
> 0, v =

1− 2ε1

2
=

1
6
> 0.

Hence, 0 < u < ũθ(x) < ū and 0 < v < ṽθ(x) < v̄, which yield that there exists a positive
non-homogeneous steady-state (ũθ(x), ṽθ(x)) of (29).

5. Discussion

In this paper, by using the Lyapunov functional method, we mainly analyzed the
global stability of non-homogeneous steady-state for the Lotka–Volterra competition–
diffusion–advection system between two competing biological organisms in heterogeneous
environments, where two biological organisms are competing for different fundamental
resources, their advection and diffusion strategies follow different positive diffusion distri-
butions, and the functions of specific competition ability are variable. Moreover, we also
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obtained the global stability result when one of the two organisms has no diffusion ability
and is not affected by advection.

At the end of this section, we propose an interesting research problem. To the best of
our knowledge, for the Lotka–Volterra competition–diffusion–advection system between
two competing biological organisms in heterogeneous environments, we did not obtain
any results under the condition of cross-diffusion, such as the existence and stability of
nontrivial positive steady state. We leave this challenge to future investigations.
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1. Introduction

In this paper, we focus on the Multiple-sets Split Feasibility Problem (MSSFP), which
is formulated as follows.

Find a point x∗ ∈ C =
t⋂

i=1

Ci such that Ax∗ ∈ Q =
r⋂

j=1

Qj, (1)

where A : H1 → H2 is a bounded and linear operator, Ci ⊂ H1, i = 1, · · · , t, and
Qj ⊂ H2, j = 1, · · · , r are nonempty closed and convex sets, andH1 andH2 are Hilbert
spaces. When t = 1, r = 1, it is the Split Feasibility Problem (SFP). Byrne in [1,2] introduced
the following CQ algorithm to solve the SFP,

xk+1 = PC(xk − αk A∗(I − PQ)Axk), (2)

where αk ∈ (0, 2
‖A‖2 ). It is proven that the iterates {xk} converge to a solution of the SFP.

When PC and PQ have explicit expressions, the CQ algorithm is easy to carry out. However,
PC and PQ have no explicit formulas in general; thus the computation of PC and PQ is itself
an optimization problem.

To avoid the computation of PC and PQ, Yang [3] proposed the relaxed CQ algorithm
in finite dimensional spaces. The algorithm is

xk+1 = PCk (xk − αk A∗(I − PQk )Axk), (3)

where αk ∈ (0, 2
‖A‖2 ), Ck and Qk are sequences of closed half spaces containing C and Q,

respectively.
As for the MSSFP (1), Censor et al. in [4] proposed the following algorithm,

Axioms 2021, 10, 197. https://doi.org/10.3390/axioms10030197 https://www.mdpi.com/journal/axioms91
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xk+1 = PΩ(xk − α∇p(xk)), (4)

where Ω is an auxiliary closed subset, and p(x) is a function to measure the distance from
a point to all the sets Ci and Qj,

p(x) =
1
2

t

∑
i=1

λi‖x− PCi (x)‖2 +
1
2

r

∑
j=1

β j‖Ax− PQj(Ax)‖2, (5)

where λi > 0, β j > 0 for every i and j, and ∑t
i=1 λi + ∑r

j=1 β j = 1, 0 < α < 2/L,
L = ∑t

i=1 λi + ‖A‖2 ∑r
j=1 β j. The convergence of the algorithm (4) is proved in finite

dimensional spaces.
Later, He et al. [5] introduced a relaxed self-adaptive CQ algorithm,

xk+1 = τkμ + (1− τk)(xk − αk∇pk(xk)), (6)

where the sequence {τk} ⊂ (0, 1), μ ∈ H, pk(x) = 1
2 ∑t

i=1 λi‖x− PCk
i
(x)‖2 + 1

2 ∑r
j=1 β j‖Ax−

PQk
j
(Ax)‖2, where the closed convex sets Ck

i and Qk
j are level sets of some convex functions

containing Ci and Qj, and self-adaptive step size αk =
ρk pk(xk)
‖∇pk(xk)‖2 , 0 < ρk < 4. They proved

that the sequence {xk} generated by algorithm (6) converges in norm to PS(μ), where S is
the solution set of the MSSFP.

In order to improve the rate of convergence, many scholars have investigated the
choice of the step size of the algorithms. Based on the CQ algorithm (2), Yang [6] proposed
the step size

αk =
ρk

‖∇ f (xk)‖ ,

where {ρk} is a sequence of positive real numbers satisfying ∑∞
n=0 ρk = ∞ and ∑∞

n=0 ρ2
k <

+∞, and f (x) = 1
2‖(I − PQ)Ax‖2. Assuming that Q is bounded and A is a matrix with

full column rank, Yang proved the convergence of the underlying algorithm in finite
dimensional spaces. In 2012, López et al. [7] introduced another choice of the step size
sequence {αk} in the algorithm (3) as follows

αk =
ρk fk(xk)

‖∇ fk(xk)‖2 ,

where 0 < ρk < 4, fk(x) = 1
2‖(I− PQk )Ax‖2, and they proved the weak convergence of the

iteration sequence in Hilbert spaces. The advantage of this choice of the step size lies in the
fact that neither prior information about the matrix norm A nor any other conditions on Q
and A are required. Recently, Gibali et al. [8] and Chen et al. [9] used step size determined
by Armijo-line search and proved the convergence of the algorithm. For more information
on the relaxed CQ algorithm and the selection of step size, please refer to references [10–12].

On the other hand, in order to make the algorithms converge faster, specific pertur-
bations have been introduced into the iterative format, since the perturbations guide the
iteration to a lower objective function value without losing the overall convergence. So far,
bounded perturbation recovery has been used in many problems.

Consider the usage of the bounded perturbation for the non-smooth optimization
problems, minx∈H φ(x) = f (x) + g(x), where f and g are proper lower semicontinuous
convex functions in real Hilbert spaces, f is differentiable, g is not necessarily differentiable,
and ∇ f is L-Lipschitz continuous. One of the classic algorithms is the proximal gradient
(PG) algorithm, based on which Guo et al. [13] proposed the following PG algorithm with
perturbations,

xk+1 = proxλk g(I − λkD∇ f + e)(xk). (7)
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Assume that (i) D is a bounded linear operator, (ii) 0 < inf λk ≤ λk ≤ sup λk < 2
L ,

(iii) e(xk) satisfies ∑∞
k=0 ‖e(xk)‖ < +∞, and (iv) θk = ∇ f (xk) − D(xk)∇ f (xk) satisfies

∑∞
k=0 ‖θk‖ < +∞. They asserted that the generated sequence {xk} converges weakly

to a solution. Later, Guo and Cui [14] proposed the modified PG algorithm for solving
this problem,

xk+1 = τkh(xk) + (1− τk)proxλk g(I − λk∇ f )(xk) + e(xk), (8)

where τk ⊂ [0, 1], h is a ρ ∈ (0, 1)-contractive operator. They proved that the sequence {xk}
generated by the algorithm (8) converges strongly to a solution x∗. In 2020, Pakkaranang
et al. [15] considered PG algorithm combined with inertial technique{

yk = xk + θk(xk − xk−1),

xk+1 = τkh(yk) + (1− τk)proxλk g(I − λk∇ f )(yk) + e(yk),
(9)

and they proved its strong convergence under suitable conditions.
For the convex minimization problem, minx∈Ω f (x), where Ω is a nonempty closed

convex subset in finite dimensional space and the objective function f is convex, Jin
et al. [16] presented the following projected scaled gradient (PSG) algorithm with errors

xk+1 = PΩ(xk − λkD(xk)∇ f (xk) + e(xk)). (10)

Assume that (i) {D(xk)}∞
k=0 is a sequence of diagonal scaling matrices, and that (ii)

(iii) (iv) are the same as the conditions in algorithm (7); then the generated sequence {xk}
converges weakly to a solution.

In 2017, Xu [17] applied the superiorization techniques to the relaxed PSG. The iterative
form is

xk+1 = (1− τk)xk + τkPΩ(xk − λkD(xk)∇ f (xk) + e(xk)), (11)

where τk is a sequence in [0, 1], and D(xk) is a diagonal scaling matrix. He established
weak convergence of the above algorithm under appropriate conditions imposed on {τk}
and {λk}.

For the variational inequality problem (VIP for short) 〈F(x∗), x − x∗〉 ≥ 0, ∀x ∈ C,
where F is a nonlinear operator, Dong et al. [18] considered the external gradient algorithm
with perturbations {

x̄k = PC(xk − αkF(xk) + e1(xk)),

xk+1 = PC(xk − αkF(x̄k) + e2(xk)).
(12)

where αk = γlmk with mk the smallest non-negative integer such that

αk‖F(xk)− F(x̄k)‖ ≤ μ‖xk − x̄k‖.

Assume that F is monotonous and L-Lipschitz is continuous and that the error se-
quence is summable; the sequence {xk} generated by the algorithm converges weakly to a
solution of the VIP.

For the split variational inclusion problem, Duan and Zheng [19] in 2020 proposed the
following algorithm

xk+1 = τkh(xk) + (1− τk)JB1
γ (I − λk A∗(I − JB2

γ )A)(xk) + e(xk), (13)

where A is a bounded linear operator, B1 and B2 are maximal monotone operators. As-
suming that limk→∞ τk = 0, ∑∞

k=0 τk = ∞, 0 < infk→∞ λk ≤ supk→∞ λk < 2
L , L = ‖A‖2

and ∑∞
k=0 ‖e(xk)‖ < +∞, they proved that the sequence {xk} strongly converges to a
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solution of the split variational inclusion problem, which is also the unique solution of
some variational inequality problem.

For the convex feasibility problem, Censor and Zaslavski [20] considered the pertur-
bation resilience and convergence of dynamic string-averaging projection method.

Adding an inertial term can improve the convergence rate, which is also a perturbation.
Recently, for a common solution of the split minimization problem and the fixed point
problem, Kaewyong and Sitthithakerngkiet [21] combined the proximal algorithm and a
modified Mann’s iterative method with the inertial extrapolation and improved related
results. Shehu et al. [22] and Li et al. [23] added alternated inertial perturbation to the
algorithms for solving the SFP and improved the convergence rate.

At present, the (multiple-sets) split feasibility problem is widely used in application
fields, such as CT tomography, image restoration, and image reconstruction, etc. There
are many related literatures on the iterative algorithms for solving the (multiple-sets)
split feasibility problem. However, there are relatively fewer documents studying the
algorithms of the (multiple-sets) split feasibility problem with perturbations, especially
with self-adaptive step size. In fact, the latter also has a bounded disturbance recovery
property. Motivated by [9,18], we focus on the modified relaxed CQ algorithms to solve
the MSSFP (1) in real Hilbert spaces and assert that the proposed algorithms are also
bounded-perturbation-resilient.

The rest of the paper is arranged as follows. In Section 2, definitions and notions that
will be useful for our analysis are presented. In Section 3, we present our algorithms and
prove their weak convergence. In Section 4, we prove that the proposed algorithms have
bounded perturbation resilience and construct the inertial modification of the algorithms.
Furthermore, finally, in Section 5, we present some numerical simulations to show the
validity of the proposed algorithms.

2. Preliminaries

In this section, we first define some symbols and then review some definitions and
basic results that will be used in this paper.

Throughout this paper,H denotes a real Hilbert space endowed with an inner product
〈·, ·〉 and its deduced norm ‖ · ‖, and I is the identity operator onH. We denote by S the
solution set of the MSSFP (1). Moreover, xk → x (xk ⇀ x) represents that the sequence
{xk} converges strongly (weakly) to x. Finally, we denote by ωω(xk) all the weak cluster
points of {xk}.

An operator T : H → H is said to be nonexpansive if for all x, y ∈ H,

‖Tx− Ty‖ ≤ ‖x− y‖;

T : H → H is said to be firmly nonexpansive if for all x, y ∈ H,

||Tx− Ty||2 ≤ ||x− y||2 − ||(I − T)x− (I − T)y||2,

or equivalently

||Tx− Ty||2 ≤ 〈Tx− Ty, x− y〉.

It is well known that T is firmly nonexpansive if and only if I − T is firmly nonexpan-
sive.

Let C be a nonempty closed convex subset ofH. Then the metric projection PC from
H onto C is defined as

PC(x) = argmin
y∈C

||x− y||2, x ∈ H.

The metric projection PC is a firmly nonexpansive operator.
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Definition 1 ([24]). A function f : H → R is said to be weakly lower semicontinuous at x̂ if xk

converges weakly to x̂ implies

f (x̂) ≤ lim inf
k→∞

f (xk).

Definition 2. If ϕ : H → R is a convex function, the subdifferential of ϕ at x is defined as

∂ϕ(x) = {ξ ∈ H | ϕ(y) ≥ ϕ(x) + 〈ξ, y− x〉, ∀y ∈ H}.

Lemma 1 ([24]). Let C be a nonempty closed and convex subset ofH; then for any x, y ∈ H, z ∈
C, the following assertions hold:
(i) 〈x− PCx, z− PCx〉 ≤ 0;
(ii) ‖PCx− z‖2 ≤ ‖x− z‖2 − ‖PCx− x‖2;
(iii) 2〈x, y〉 ≤ ‖x‖+ ‖x‖‖y‖2;
(iv) 2〈x, y〉 ≤ ‖x‖2 + ‖y‖2.

Lemma 2 ([25]). Assume that {ak}∞
k=0 is a sequence of nonnegative real numbers such that

ak+1 ≤ (1 + σk)ak + δk, ∀k ≥ 0,

where the nonnegative sequences {σk}∞
k=0 and {δk}∞

k=0 satisfies ∑∞
k=0 σk < +∞ and ∑∞

k=0 δk <

+∞, respectively. Then limk→∞ ak exists.

Lemma 3 ([25]). Let S be a nonempty closed and convex subset ofH and {xk} be a sequence inH
that satisfies the following properties:
(i) limk→∞ ‖xk − x‖ exists f or each x ∈ S;
(ii) ωω(xk) ⊂ S.

Then {xk} converges weakly to a point in S.

Definition 3. An algorithmic operator P is said to be bounded perturbations resilient if the iteration
xk+1 = P(xk) and xk+1 = P(xk + λkνk) all converge, where {λk} is a sequence of nonnegative
real numbers, {νk} is a sequence inH, and M ∈ R and satisfies

∞

∑
k=0

λk < +∞, ‖νk‖ ≤ M.

3. Algorithms and Their Convergence

In this section, we introduce two algorithms of the MSSFP (1) and prove their weak
convergence. First assume that the following four assumptions hold.

(A1) The solution set S of the MSSFP (1) is nonempty.
(A2) The level sets of convex functions can be expressed by

Ci = {x ∈ H1 | ci(x) ≤ 0} and Qj = {y ∈ H2 | qj(y) ≤ 0},

where ci : H1 → R (i = 1, · · · , t) and qj : H2 → R (j = 1, · · · , r) are weakly lower
semicontinuous and convex functions.

(A3) For any x ∈ H1 and y ∈ H2, at least one subgradient ξi ∈ ∂ci(x) and ηj ∈ ∂qj(y)
can be calculated. The subdifferential ∂ci and ∂qj are bounded on the bounded sets.

(A4) The sequences of perturbations {ei(xk)}∞
k=0 (i = 1, 2, 3) is summable, i.e.,

∞

∑
k=0
‖ei(xk)‖ < +∞.

Define two sets at point xk by
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Ck
i = {x ∈ H1 | ci(xk) + 〈ξk

i , x− xk〉 ≤ 0},

and

Qk
j = {y ∈ H2 | qj(Axk) + 〈ηk

j , y− Axk〉 ≤ 0},

where ξk
i ∈ ∂ci(xk) and ηk

j ∈ ∂qj(Axk). Define the function fk by

fk(x) =
1
2

r

∑
j=1

β j‖(I − PQk
j
)Ax‖2, (14)

where β j > 0. Then it is easy to verify that the function fk(x) is convex and differentiable
with gradient

∇ fk(x) =
r

∑
j=1

β j A∗(I − PQk
j
)Ax, (15)

and the L-Lipschitz constant of ∇ fk(x) is L = ‖A‖2 ∑r
j=1 β j.

We see that Ck
i (i = 1, · · · , t) and Qk

j (j = 1, · · · , r) are half spaces such that

Ci ⊂ Ck
i , Qj ⊂ Qk

j , for all k ≥ 1. We now present Algorithm 1 with Armijo-line search
step size.

Algorithm 1 (The relaxed CQ algorithm with Armijo-line search and perturbation)

Given constant γ > 0, l ∈ (0, 1), μ ∈ (0, 1). Let x0 be arbitrarily chosen, for k =
0, 1, · · · , compute

x̄k = PCk
[k]
(xk − αk∇ fk(xk) + e1(xk)), (16)

where [k] = k mod t and αk = γlmk with mk the smallest non-negative integer such that

αk‖∇ fk(xk)−∇ fk(x̄k)‖ ≤ μ‖xk − x̄k‖. (17)

Construct the next iterate xk+1 by

xk+1 = PCk
[k]
(xk − αk∇ fk(x̄k) + e2(xk)). (18)

Lemma 4 ([6]). The Armijo-line search terminates after a finite number of steps. In addition,

μl
L

< αk ≤ γ, f or all k ≥ 0. (19)

where L = ‖A‖2 ∑r
j=1 β j.

The weak convergence of Algorithm 1 is established below.

Theorem 1. Let {xk} be the sequence generated by Algorithm 1, and the assumptions (A1)∼(A4)
hold. Then {xk} converges weakly to a solution of the MSSFP (1).

Proof. Let x∗ be a solution of the MSSFP. Note that C ⊂ Ci ⊂ Ck
i , Q ⊂ Qj ⊂ Qk

j , i =

1, · · · , t, j = 1, · · · , r, k = 0, 1, · · · , so x∗ = PC(x∗) = PCi (x∗) = PCk
i
(x∗) and Ax∗ =

PQ(Ax∗) = PQj(Ax∗) = PQk
j
(Ax∗), and thus fk(x∗) = 0 and ∇ fk(x∗) = 0.
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First, we prove that {xk} is bounded. Following Lemma 1 (ii), we have

‖xk+1 − x∗‖2

= ‖PCk
[k]
(xk − αk∇ fk(x̄k) + e2(xk))− x∗‖2

≤ ‖xk − αk∇ fk(x̄k) + e2(xk)− x∗‖2 − ‖xk+1 − xk + αk∇ fk(x̄k)− e2(xk)‖2

= ‖xk − x∗‖2 − ‖xk+1 − xk‖2 − 2〈αk∇ fk(x̄k)− e2(xk), xk − x∗〉
−2〈αk∇ fk(x̄k)− e2(xk), xk+1 − xk〉

= ‖xk − x∗‖2 − ‖xk+1 − xk‖2 − 2〈αk∇ fk(x̄k)− e2(xk), xk+1 − x∗〉
= ‖xk − x∗‖2 − ‖xk+1 − xk‖2 − 2〈αk∇ fk(x̄k), xk+1 − x∗〉

+2〈e2(xk), xk+1 − x∗〉
= ‖xk − x∗‖2 − ‖xk+1 − x̄k‖2 − ‖x̄k − xk‖2 − 2〈xk+1 − x̄k, x̄k − xk〉

−2αk〈∇ fk(x̄k), xk+1 − x∗〉+ 2〈e2(xk), xk+1 − x∗〉
= ‖xk − x∗‖2 − ‖xk+1 − x̄k‖2 − ‖x̄k − xk‖2 − 2〈xk+1 − x̄k, x̄k − xk〉

−2αk〈∇ fk(x̄k), xk+1 − x̄k〉 − 2αk〈∇ fk(x̄k), x̄k − x∗〉+ 2〈e2(xk), xk+1 − x∗〉
= ‖xk − x∗‖2 − ‖xk+1 − x̄k‖2 − ‖x̄k − xk‖2 − 2αk〈∇ fk(x̄k), x̄k − x∗〉

+2〈xk − x̄k − αk∇ fk(x̄k), xk+1 − x̄k〉+ 2〈e2(xk), xk+1 − x∗〉. (20)

From Lemma 1 (iii), we have that

2〈e2(xk), xk+1 − x∗〉 ≤ ‖e2(xk)‖+ ‖e2(xk)‖‖xk+1 − x∗‖2. (21)

Since I − PC is firmly nonexpensive, ∇ fk(x∗) = 0, and Lemma 4, we get that

2αk〈∇ fk(x̄k), x̄k − x∗〉

= 2αk〈
r

∑
j=1

β j A∗(I − PQk
j
)Ax̄k −

r

∑
j=1

β j A∗(I − PQk
j
)Ax∗, x̄k − x∗〉

= 2αk

r

∑
j=1

β j〈(I − PQk
j
)Ax̄k − (I − PQk

j
)Ax∗, Ax̄k − Ax∗〉

≥ 2
μl
L

r

∑
j=1

β j‖(I − PQk
j
)Ax̄k‖2. (22)

Based on the definition of x̄k and Lemma 1 (i), we know that

〈x̄k − xk + αk∇ fk(xk)− e1(xk), xk+1 − x̄k〉 ≥ 0. (23)

Note that (17), (23), and Lemma 1 (iii) yield that

2〈xk − x̄k − αk∇ fk(x̄k), xk+1 − x̄k〉
≤ 2〈−e1(xk) + αk∇ fk(xk)− αk∇ fk(x̄k), xk+1 − x̄k〉
= 2αk〈∇ fk(xk)−∇ fk(x̄k), xk+1 − x̄k〉 − 2〈e1(xk), xk+1 − x̄k〉
≤ 2αk‖∇ fk(xk)−∇ fk(x̄k)‖‖xk+1 − x̄k‖+ 2‖e1(xk)‖‖xk+1 − x̄k‖
≤ 2μ‖xk − x̄k‖‖xk+1 − x̄k‖+ ‖e1(xk)‖+ ‖e1(xk)‖‖xk+1 − x̄k‖2

≤ μ‖xk − x̄k‖2 + μ‖xk+1 − x̄k‖2 + ‖e1(xk)‖+ ‖e1(xk)‖‖xk+1 − x̄k‖2

= μ‖xk − x̄k‖2 + (μ + ‖e1(xk)‖)‖xk+1 − x̄k‖2 + ‖e1(xk)‖. (24)
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From assumption (A4), we know that limk→∞ ‖ei(xk)‖ = 0, i = 1, 2, and thus ∀ε >
0, ∃K, it holds that ‖ei(xk)‖ < ε for k > K. We can therefore assume ‖e1(xk)‖ ∈ [0, 1− μ−
τ) and ‖e2(xk)‖ ∈ [0, 1/2) for k ≥ K, where τ ∈ (0, 1− μ). Hence, from (24), we get that

2〈xk − x̄k − αk∇ fk(x̄k), xk+1 − x̄k〉 ≤ μ‖xk − x̄k‖2 + (1− τ)‖xk+1 − x̄k‖2 + ‖e1(xk)‖. (25)

Substituting (21), (22), and (25) into (20) yields

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − (1− μ)‖xk − x̄k‖2 − τ‖xk+1 − x̄k‖2

+‖e1(xk)‖+ ‖e2(xk)‖+ ‖e2(xk)‖‖xk+1 − x∗‖2

−2
μl
L

r

∑
j=1

β j‖(I − PQk
j
)Ax̄k‖2. (26)

Organizing the above formula we know that

‖xk+1 − x∗‖2 ≤ 1
1− ‖e2(xk)‖‖xk − x∗‖2 − 1− μ

1− ‖e2(xk)‖‖xk − x̄k‖2

− τ

1− ‖e2(xk)‖‖xk+1 − x̄k‖2 +
‖e1(xk)‖+ ‖e2(xk)‖

1− ‖e2(xk)‖

− 2μl
(1− ‖e2(xk)‖)L

r

∑
j=1

β j‖(I − PQk
j
)Ax̄k‖2. (27)

Since ‖e2(xk)‖ ∈ [0, 1/2) for k ≥ K, we get

1 ≤ 1
1− ‖e2(xk)‖ ≤ 1 + 2‖e2(xk)‖ < 2. (28)

This together with (27) shows that

‖xk+1 − x∗‖2 ≤ (1 + 2‖e2(xk)‖)‖xk − x∗‖2 − (1− μ)‖xk − x̄k‖2 + 2‖e1(xk)‖

+2‖e2(xk)‖ − τ‖xk+1 − x̄k‖2 − 2
μl
L

r

∑
j=1

β j‖(I − PQk
j
)Ax̄k‖2

≤ (1 + 2‖e2(xk)‖)‖xk − x∗‖2 + 2‖e1(xk)‖+ 2‖e2(xk)‖. (29)

Using Lemma 2 and assumption (A4), we know the existence of limk→∞ ‖xk − x∗‖2

and the boundedness of {xk}∞
k=0.

From (29), it follows

(1− μ)‖xk − x̄k‖2 + τ‖xk+1 − x̄k‖2 + 2
μl
L

r

∑
j=1

β j‖(I − PQk
j
)Ax̄k‖2

≤ (1 + 2‖e2(xk)‖)‖xk − x∗‖2 − ‖xk+1 − x∗‖2 + 2‖e1(xk)‖+ 2‖e2(xk)‖, (30)

which means that

∞

∑
k=0
‖xk − x̄k‖ < +∞,

∞

∑
k=0
‖xk+1 − x̄k‖ < +∞.

We therefore have

lim
k→∞

‖xk − x̄k‖ = 0, lim
k→∞

‖xk+1 − x̄k‖ = 0. (31)
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Thus, by taking k → ∞ in the inequality ‖xk+1 − xk‖ ≤ ‖xk+1 − x̄k‖+ ‖x̄k − xk‖, we
have

lim
k→∞

‖xk+1 − xk‖ = 0. (32)

From (30), we also know

lim
k→∞

r

∑
j=1

β j‖(I − PQk
j
)Ax̄k‖ = 0. (33)

Hence for every j = 1, 2, · · · , r, we have

lim
k→∞

‖(I − PQk
j
)Ax̄k‖ = 0. (34)

Since {xk} is bounded, the set ωω(xk) is nonempty. Let x̂ ∈ ωω(xk); then there exists
a subsequence {xkn} of {xk} such that xkn ⇀ x̂. Next, we show that x̂ is a solution of the
MSSFP (1), which will show that ωω(xk) ⊂ S. In fact, since xkn+1 ∈ Ckn

[kn ]
, then by the

definition of Ckn
[kn ]

, we have

c[kn ](xkn) + 〈ξkn
[kn ]

, xkn+1 − xkn〉 ≤ 0, (35)

where ξkn
[kn ]

∈ ∂c[kn ](xkn). For every i = 1, 2, · · · , t, choose a subsequence {kns} ⊂ {kn}
such that [kns ] = i, then

ci(xkns ) + 〈ξkns
i , xkns+1 − xkns 〉 ≤ 0. (36)

Following the assumption (A3) on the boundedness of ∂ci and (32), there exists M1
such that

ci(xkns ) ≤ 〈ξkns
i , xkns − xkns+1〉

≤ ‖ξ
kns
i ‖‖xkns − xkns+1‖

≤ M1‖xkns − xkns+1‖ → 0, s → ∞. (37)

From the weak lower semicontinuity of the convex function ci, we deduce from (37)
that ci(x̂) ≤ lim infs→∞ ci(xkns ) ≤ 0, i.e., x̂ ∈ C =

⋂t
i=1 Ci.

Noting the fact that I − PQkn
j

is nonexpansive, together with (31), (34), and A being a

bounded and linear operator, we get that

‖(I − PQkn
j
)Axkn‖ ≤ ‖(I − PQkn

j
)Axkn − (I − PQkn

j
)Ax̄kn‖+ ‖(I − PQkn

j
)Ax̄kn‖

≤ ‖Axkn − Ax̄kn‖+ ‖(I − PQkn
j
)Ax̄kn‖

≤ ‖A‖‖xkn − x̄kn‖+ ‖(I − PQkn
j
)Ax̄kn‖ → 0, n → ∞. (38)

Since PQkn
j
(Axkn) ∈ Qkn

j , we have

qj(Axkn) + 〈ηkn
j , PQkn

j
(Axkn)− Axkn〉 ≤ 0, (39)

where ηkn
j ∈ ∂qj(Axkn). From the boundedness assumption (A3), (38), and (39), there exists

M2 such that
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qj(Axkn) ≤ ‖ηkn
j ‖‖Axkn − PQkn

j
(Axkn)‖

≤ M2‖(I − PQkn
j
)Axkn‖ → 0, n → ∞. (40)

Then qj(Ax̂) ≤ lim infn→∞ qj(Axkn) ≤ 0, thus Ax̂ ∈ Q =
⋂r

j=1 Qj, and therefore x̂ ∈ S.
Using Lemma 3, we conclude that the sequence {xk} converges weakly to a solution of the
MSSFP (1).

Now, we present Algorithm 2 in which the step size is given by the self-adaptive
method and prove its weak convergence.

Algorithm 2 (The relaxed CQ algorithm with self-adaptive step size and perturbation)

Take arbitrarily the initial guess x0, and calculate

xk+1 = PCk
[k]
(xk − αk∇ fk(xk) + e3(xk)), (41)

where αk = ρk fk(xk)
‖∇ fk(xk)‖2 , 0 < ρk < 4, and Ci, Qj, Ck

i , Qk
j and ∇ fk(x) were defined at the

beginning of this section.

The convergence result of Algorithm 2 is stated in the next theorem.

Theorem 2. Let {xk} be the sequence generated by Algorithm 2. Assumptions (A1)∼(A4) hold
and ρk satisfies infk ρk(4− ρk) > 0. Then {xk} converges weakly to a solution of the MSSFP (1).

Proof. First, we prove {xk} is bounded. Let x∗ ∈ S. Following Lemma 1 (ii), we have

‖xk+1 − x∗‖2

= ‖PCk
[k]
(xk − αk∇ fk(xk) + e3(xk))− x∗‖2

≤ ‖xk − αk∇ fk(xk) + e3(xk)− x∗‖2 − ‖xk+1 − xk + αk∇ fk(xk)− e3(xk)‖2

= ‖xk − x∗‖2 − ‖xk+1 − xk‖2 − 2〈αk∇ fk(xk)− e3(xk), xk − x∗〉
−2〈αk∇ fk(xk)− e3(xk), xk+1 − xk〉

= ‖xk − x∗‖2 − ‖xk+1 − xk‖2 − 2αk〈∇ fk(xk), xk − x∗〉
−2〈αk∇ fk(xk), xk+1 − xk〉+ 2〈e3(xk), xk+1 − x∗〉. (42)

From Lemma 1 (iii), it follows

2〈e3(xk), xk+1 − x∗〉 ≤ ‖e3(xk)‖+ ‖e3(xk)‖‖xk+1 − x∗‖2. (43)

Similar with (22), it holds that

2αk〈∇ fk(xk), xk − x∗〉 ≥ 2αk

r

∑
j=1

β j‖(I − PQk
j
)Axk‖2 = 4αk fk(xk). (44)

From Lemma 1 (iv), one has

−2〈αk∇ fk(xk), xk+1 − xk〉 ≤ α2
k‖∇ fk(xk)‖2 + ‖xk+1 − xk‖2. (45)

Substituting (43)–(45) into (42), we get that
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‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 + α2
k‖∇ fk(xk)‖2 − 4αk fk(xk) + ‖e3(xk)‖

+‖e3(xk)‖‖xk+1 − x∗‖2,

= ‖xk − x∗‖2 +
ρ2

k f 2
k (xk)

‖∇ fk(xk)‖4 ‖∇ fk(xk)‖2 − 4
ρk fk(xk)

‖∇ fk(xk)‖2 fk(xk)

+‖e3(xk)‖+ ‖e3(xk)‖‖xk+1 − x∗‖2,

= ‖xk − x∗‖2 − ρk(4− ρk)
f 2
k (xk)

‖∇ fk(xk)‖2 + ‖e3(xk)‖‖xk+1 − x∗‖2

+‖e3(xk)‖. (46)

Organizing the above formula, we obtain that

‖xk+1 − x∗‖2

≤ 1
1− ‖e3(xk)‖‖xk − x∗‖2 − ρk(4− ρk)

1− ‖e3(xk)‖
f 2
k (xk)

‖∇ fk(xk)‖2 +
‖e3(xk)‖

1− ‖e3(xk)‖ . (47)

From assumption (A4), we know that limk→∞ e3(xk) = 0, so we can assume without
loss of generality that ‖e3(xk)‖ ∈ [0, 1/2), k ≥ 0, then

1 ≤ 1
1− ‖e3(xk)‖ ≤ 1 + 2‖e3(xk)‖ < 2. (48)

So (47) can be reduced as

‖xk+1 − x∗‖2 ≤ (1 + 2‖e3(xk)‖)‖xk − x∗‖2 + 2‖e3(xk)‖. (49)

Using Lemma 2, we get the existence of limk→∞ ‖xk − x∗‖2 and the boundedness of
{xk}∞

k=0.
From (47), we know

ρk(4− ρk)

1− ‖e3(xk)‖
f 2
k (xk)

‖∇ fk(xk)‖2

≤ 1
1− ‖e3(xk)‖‖xk − x∗‖2 − ‖xk+1 − x∗‖2 +

‖e3(xk)‖
1− ‖e3(xk)‖ → 0, (50)

then the fact that infk ρk(4− ρk) > 0 asserts that f 2
k (xk)

‖∇ fk(xk)‖2 → 0. Since ∇ fk is Lipschitz

continuity and ∇ fk(x∗) = 0, we get that

‖∇ fk(xk)‖2 = ‖∇ fk(xk)−∇ fk(x∗)‖2 ≤ L2‖xk − x∗‖2. (51)

This implies that ∇ fk(xk) is bounded, and thus (50) yields fk(xk) → 0. Hence for
every j = 1, 2, · · · , r, we have

‖(I − PQk
j
)Axk‖ → 0, k → ∞. (52)

Let {xkn} be a subsequence of {xk} such that xkn ⇀ x̂ ∈ ωω(xk), and {kns} are a
subsequence of {kn} such that [kns ] = i. Similar to the proof of Theorem 1, we know
that ci(x̂) ≤ lim infs→∞ ci(xkns ) ≤ 0, i.e., x̂ ∈ C =

⋂t
i=1 Ci. Since (52) indicates that

qj(Ax̂) ≤ lim infn→∞ qj(Axkn) ≤ 0, Ax̂ ∈ Q =
⋂r

j=1 Qj. Therefore x̂ ∈ S. Using Lemma 3,
we conclude that the sequence {xk} converges weakly to a solution of the MSSFP (1).
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4. The Bounded Perturbation Resilience

4.1. Bounded Perturbation Resilience of the Algorithms

In this subsection, we consider the bounded perturbation algorithms of Algorithms
1 and 2. Based on Definition 3, in Algorithm 1, let ei(xk) = 0, i = 1, 2. The original
algorithm is ⎧⎪⎨⎪⎩

x̄k = PCk
[k]
(xk − αk∇ fk(xk)),

xk+1 = PCk
[k]
(xk − αk∇ fk(x̄k)),

(53)

where αk is obtained by Armijo-line search step size such that αk‖∇ fk(xk)−∇ fk(x̄k)‖ ≤
μ‖xk− x̄k‖, where μ ∈ (0, 1). The generated iteration sequence is weakly convergent, which
is proved as a special case in Section 3. The algorithm with the bounded perturbation
of (53) is that ⎧⎪⎨⎪⎩

x̄k = PCk
[k]
(xk + λkνk − αk∇ fk(xk + λkνk)),

xk+1 = PCk
[k]
(xk + λkνk − αk∇ fk(x̄k)).

(54)

where [k] = k mod t and αk = γlmk with mk the smallest non-negative integer such that

αk‖∇ fk(xk + λkνk)−∇ fk(x̄k)‖ ≤ μ‖xk + λkνk − x̄k‖
≤ μ(‖xk − x̄k‖+ λk‖νk‖). (55)

The following theorem shows that the algorithm (53) is bounded perturbation-resilient.

Theorem 3. Assume that (A1)∼(A3) are true; the sequence {νk}∞
k=0 is bounded and the scalar

sequence {λk}∞
k=0 satisfies λk ≥ 0 and Σ∞

k=0λk < +∞. Then the sequence {xk}∞
k=0 generated by

iterative scheme (54) converges weakly to a solution of the MSSFP (1). Thus, the algorithm (53) is
bounded perturbation-resilient.

Proof. Let x∗ ∈ S. Since Σ∞
k=0λk < +∞ and the sequence {νk}∞

k=0 are bounded, we have

∞

∑
k=0

λk‖νk‖ < +∞, (56)

thus

lim
k→∞

λk‖νk‖ = 0. (57)

So we can assume that λk‖νk‖ ∈ [0, (1− μ− τ)/2), where τ ∈ (0, 1− μ), without loss
of generality. Replacing e2(xk) with λkνk in (20) and using Lemma 1 (iii) show

‖xk+1 − x∗‖2

≤ ‖xk − x∗‖2 − ‖x̄k − xk‖2 − ‖xk+1 − x̄k‖2 − 2αk〈∇ fk(x̄k), x̄k − x∗〉
+2〈xk − x̄k − αk∇ fk(x̄k), xk+1 − x̄k〉+ 2〈λkνk, xk+1 − x∗〉

≤ ‖xk − x∗‖2 − ‖x̄k − xk‖2 − ‖xk+1 − x̄k‖2 − 2αk〈∇ fk(x̄k), x̄k − x∗〉
+2〈xk − x̄k − αk∇ fk(x̄k), xk+1 − x̄k〉+ λk‖νk‖+ λk‖νk‖‖xk+1 − x∗‖2. (58)

Since I − PC is firmly nonexpensive, ∇ fk(x∗) = 0 and Lemma 4, we get that

2αk〈∇ fk(x̄k), x̄k − x∗〉 ≥ 2
μl
L

r

∑
j=1

β j‖(I − PQk
j
)Ax̄k‖2. (59)
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Based on the definition of x̄k and Lemma 1 (i), we know that

〈x̄k − xk + αk∇ fk(xk + λkνk)− λkνk, xk+1 − x̄k〉 ≥ 0. (60)

Based on (55), the following formulas holds

2〈αk∇ fk(xk + λkνk)− αk∇ fk(x̄k), xk+1 − x̄k〉
≤ 2αk‖∇ fk(xk + λkνk)−∇ fk(x̄k)‖‖xk+1 − x̄k‖
≤ 2μ‖xk − x̄k‖‖xk+1 − x̄k‖+ 2μλk‖νk‖‖xk+1 − x̄k‖
= μ‖xk − x̄k‖2 + (μ + λk‖νk‖)‖xk+1 − x̄k‖2 + μ2λk‖νk‖. (61)

Lemma 1 (iii) reads that

−2λk〈νk, xk+1 − x̄k〉 ≤ λk‖νk‖+ λk‖νk‖‖xk+1 − x̄k‖2. (62)

Substituting (60)–(62) into the fifth item of (58), we get

2〈xk − x̄k − αk∇ fk(x̄k), xk+1 − x̄k〉
≤ 2〈xk − x̄k − αk∇ fk(x̄k), xk+1 − x̄k〉

+2〈x̄k − xk + αk∇ fk(xk + λkνk)− λkνk, xk+1 − x̄k〉
= 2〈αk∇ fk(xk + λkνk)− αk∇ fk(x̄k), xk+1 − x̄k〉 − 2λk〈νk, xk+1 − x̄k〉
≤ μ‖xk − x̄k‖2 + (μ + 2λk‖νk‖)‖xk+1 − x̄k‖2 + (1 + μ2)λk‖νk‖
≤ μ‖xk − x̄k‖2 + (1− τ)‖xk+1 − x̄k‖2 + 2λk‖νk‖. (63)

Substituting (59) and (63) into (58) we get

‖xk+1 − x∗‖2 ≤ 1
1− λk‖νk‖

[
‖xk − x∗‖2 + 3λk‖νk‖ − (1− μ)‖x̄k − xk‖2

−τ‖xk+1 − x̄k‖2 − 2
μl
L

r

∑
j=1

β j‖(I − PQk
j
)Ax̄k‖2

]
. (64)

Since λk‖νk‖ ∈ [0, (1− μ− τ)/2), we get

1 ≤ 1
1− λk‖νk‖

≤ 1 + 2λk‖νk‖ < 2. (65)

This, together with (64), shows that

‖xk+1 − x∗‖2 ≤ (1 + 2λk‖νk‖)
[
‖xk − x∗‖2 − (1− μ)‖xk − x̄k‖2 − τ‖xk+1 − x̄k‖2

−2
μl
L

r

∑
j=1

β j‖(I − PQk
j
)Ax̄k‖2

]
+ 6λk‖νk‖

≤ (1 + 2λk‖νk‖)‖xk − x∗‖2 + 6λk‖νk‖. (66)

Using Lemma 2, we know the existence of limk→∞ ‖xk − x∗‖2 and the boundedness
of {xk}∞

k=0.
From (64), it follows that

(1− μ)‖x̄k − xk‖2 + τ‖xk+1 − x̄k‖2 + 2
μl
L

r

∑
j=1

β j‖(I − PQk
j
)Ax̄k‖2

≤ ‖xk − x∗‖2 − (1− λk‖νk‖)‖xk+1 − x∗‖2 + 3λk‖νk‖. (67)
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Thus, we have limk→∞ ‖xk− x̄k‖ = 0, limk→∞ ‖xk+1− x̄k‖ = 0 and limk→∞ ∑r
j=1 β j‖(I−

PQk
j
)Ax̄k‖2 = 0. Hence,

lim
k→∞

‖xk+1 − xk‖ = 0, (68)

and for every j = 1, 2, · · · , r,

lim
k→∞

‖(I − PQk
j
)Ax̄k‖ = 0. (69)

Similarly to with Theorem 1, we conclude that the sequence {xk} converges weakly to
a solution of the MSSFP (1).

Remark 1. When t = 1, r = 1, the MSSFP reduces to the SFP; thus Theorems 1 and 3 guarantee
that algorithm (53) is bounded perturbation-resilient with Armijo-line search step size for the SFP.

Remark 2. Replace fk(x) in algorithm (53) by gk(x), and ∇ fk(x) by ∇gk(x), where gk(x) =
1
2‖(I − PQk

[k]
)Ax‖2, and ∇gk(x) = A∗(I − PQk

[k]
)Ax, [k] = k mod r. The corresponding algo-

rithm is also bounded perturbation-resilient.

Next, we will prove that Algorithm 2 with self-adaptive step size is bounded perturbation-
resilient. Based on Definition 3, let e3(xk) = 0 in Algorithm 2. The original algorithm is

xk+1 = PCk
[k]
(xk − αk∇ fk(xk)), (70)

where αk =
ρk fk(xk)
‖∇ fk(xk)‖2 , 0 < ρk < 4. The iterative sequence converges weakly to a solution

of the MSSFP (1); see [26]. Consider the algorithm with the bounded perturbation

xk+1 = PCk
[k]
(xk + λkνk − α̃k∇ fk(xk + λkνk)), (71)

where α̃k =
ρk fk(xk+λkνk)
‖∇ fk(xk+λkνk)‖2 , 0 < ρk < 4. The following theorem shows that the algorithm (70)

is bounded-perturbation-resilient.

Theorem 4. Suppose that (A1)∼(A3) are true; the sequence {νk}∞
k=0 is bounded and the scalar

sequence {λk}∞
k=0 satisfies λk ≥ 0, Σ∞

k=0λk < +∞, and ρk satisfies infk ρk(4− ρk) > 0. Then the
sequence {xk}∞

k=0 generated by iterative scheme (71) converges weakly to a solution of the MSSFP
(1). Thus, the algorithm (70) is bounded-perturbation-resilient.

Proof. Set e3(xk) = λkνk + αk∇ fk(xk)− α̃k∇ fk(xk + λkνk), then (71) can be rewritten as
xk+1 = PCk

[k]
(xk − αk∇ fk(xk) + e3(xk)), which is the form of Algorithm 2. According to

Theorem 2, it suffices to prove that ∑∞
k=0 e3(xk) < +∞. Since ρk fk(xk+λkνk)

‖∇ fk(xk+λkνk)‖2∇ fk(xk + λkνk)

is continuous, we write

ρk fk(xk + λkνk)

‖∇ fk(xk + λkνk)‖2∇ fk(xk + λkνk) =
ρk fk(xk)

‖∇ fk(xk)‖2∇ fk(xk) + O(λkνk), (72)

where O(λkνk) denotes the infinitesimal of the same order of λkνk. From the expression of
e3(xk), we obtain
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‖e3(xk)‖ ≤ ‖λkνk‖+
∥∥∥αk∇ fk(xk)− α̃k∇ fk(xk + λkνk)

∥∥∥
= ‖λkνk‖+

∥∥∥ ρk fk(xk)

‖∇ fk(xk)‖2∇ fk(xk)− ρk fk(xk + λkνk)

‖∇ fk(xk + λkνk)‖2∇ fk(xk + λkνk)
∥∥∥

= ‖λkνk‖+
∥∥∥ ρk fk(xk)

‖∇ fk(xk)‖2∇ fk(xk)−
( ρk fk(xk)

‖∇ fk(xk)‖2∇ fk(xk) + O(λkνk)
)∥∥∥

= ‖λkνk‖+ ‖O(λkνk)‖. (73)

Since {λkνk} is summable, we know that {e3(xk)} is summable, i.e., ∑∞
k=0 ‖e3(xk)‖ ≤

+∞. Thus, we conclude that the sequence {xk} converges weakly to a solution of the
MSSFP (1); i.e., the algorithm (70) is the bounded-perturbation-resilient.

Remark 3. When t = 1, r = 1, the MSSFP reduces to the SFP; thus Theorems 2 and 4 guarantee
that algorithm (70) is bounded-perturbation-resilient with the self-adaptive step size for the SFP.

4.2. Construction of the Inertial Algorithms by Bounded Perturbation Resilience

In this subsection, we consider algorithms with inertial terms as a special case of
Algorithms 1 and 2. In Algorithm 1, letting ei(xk) = θ

(i)
k (xk − xk−1), i = 1, 2, we obtain⎧⎪⎨⎪⎩

x̄k = PCk
[k]
(xk − αk∇ fk(xk) + θ

(1)
k (xk − xk−1)),

xk+1 = PCk
[k]
(xk − αk∇ fk(x̄k) + θ

(2)
k (xk − xk−1)),

(74)

where the step size αk is obtained by Armijo-line search and

θ
(i)
k =

⎧⎪⎪⎨⎪⎪⎩
λ
(i)
k

‖xk − xk−1‖ , ‖xk − xk−1‖ > 1,

λ
(i)
k , ‖xk − xk−1‖ ≤ 1,

i = 1, 2. (75)

Theorem 5. Assume that the assumptions (A1)∼(A3) are true, and the sequence {λk}∞
k=0 satisfies

λk ≥ 0, and Σ∞
k=0λ

(i)
k < +∞, i = 1, 2. Then, the sequence {xk}∞

k=0 generated by iterative
scheme (74) converges weakly to a solution of the MSSFP (1).

Proof. Let ei(xk) = λ
(i)
k νk, i = 1, 2, where

νk =

⎧⎪⎨⎪⎩
xk − xk−1

‖xk − xk−1‖ , ‖xk − xk−1‖ > 1,

xk − xk−1, ‖xk − xk−1‖ ≤ 1.

(76)

Thus, we know that ‖νk‖ ≤ 1 and {ei(xk)}∞
k=0 satisfies assumption (A4). According

to Theorem 1, we conclude that the sequence {xk} converges weakly to a solution of the
MSSFP (1).

Considering the algorithm with inertial bounded perturbation⎧⎪⎨⎪⎩
x̄k = PCk

[k]
(xk + θk(xk − xk−1)− αk∇ fk(xk + θk(xk − xk−1))),

xk+1 = PCk
[k]
(xk + θk(xk − xk−1)− αk∇ fk(x̄k)).

(77)

where

θk =

⎧⎪⎨⎪⎩
λk

‖xk − xk−1‖ , ‖xk − xk−1‖ > 1,

λk, ‖xk − xk−1‖ ≤ 1.
(78)
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According to Theorem 3, it is easy to know that the sequence {xk} converges weakly
to a solution of the MSSFP (1). More relevant evidence can be found in reference [27].

Similarly, we can get Theorem 6, which asserts that Algorithm 2 with the inertial
perturbation is weakly convergent.

Theorem 6. Assume that (A1)∼(A3) are true; the scalar sequence {λk}∞
k=0 satisfies λk ≥ 0,

and Σ∞
k=0λk < +∞, and ρk satisfies infk ρk(4− ρk) > 0. Then the sequence {xk}∞

k=0 is generated
by each of the following iterative scheme,

xk+1 = PCk
[k]
(xk − αk∇ fk(xk) + θk(xk − xk−1)), (79)

xk+1 = PCk
[k]
(xk − αk∇ fk(xk + θk(xk − xk−1)) + θk(xk − xk−1)), (80)

where θk is the same as (78) and αk is self-adaptive step size which is the same as in Algorithm 2,
converges weakly to a solution of the MSSFP (1).

5. Numerical Experiments

In this section, we compare the asymptotic behavior of algorithms (53) (Chen
et al. [9]), (77) (Algorithm 1), (70) (Wen et al. [26]) and (80) (Algorithm 2), denoted
by NP1, HP1, NP2, and HP2, respectively. For the sake of convenience, we denote
e0 = (0, 0, · · · , 0)T and e1 = (1, 1, · · · , 1)T , respectively. The codes are written in Matlab
2016a and run on Inter(R) Core(TM) i7-8550U CPU @ 1.80 GHz 2.00 GHz, RAM 8.00 GB.
We present two kinds of experiments. One is a real-life problem called LASSO problem,
the other kind is some numerical simulation including three examples of the MSSFP.

5.1. LASSO Problem

Let us consider the following LASSO problem [28]

min
{1

2
‖Ax− b‖2

2 | x ∈ Rn, ‖x‖1 ≤ ε
}

where A ∈ Rm×n, m < n, b ∈ Rm, and ε > 0. The matrix A is generated from a
standard normal distribution with mean zero and unit variance. The true sparse signal x∗

is generated from uniformly distribution in the interval [−2, 2] with random p position
nonzero, while the rest is kept zero. The sample data b = Ax∗. For the considered MSSFP,
let r = t = 1 and C = {x | ‖x‖1 ≤ ε}, Q = {b}. The objective function is defined as

f (x) =
1
2
‖Ax− b‖2

2.
We report the final error between the reconstructed signal and the true signal. Take

‖xk − x∗‖ < 10−4 as the stopping criterion, where x∗ is the true signal. We compare the
algorithms NP1, HP1, NP2 and HP2 with Yang’s algorithm [3]. Let αk = γlmk for all k ≥ 1,

γ = 1, l = 1
2 , μ = 1

2 , θk =
1
4 , ρk = 0.1, and αk = 0.1 ∗ 1

‖A‖2 of Yang’s algorithm [3].

The results are reported in Table 1. Figure 1 shows the objective function value versus
iteration numbers when m = 240, n = 1024, p = 30.

From Table 1 and Figure 1, we know that the inertial perturbation can improve the
convergence of the algorithms and that the algorithms with Armijo-line search or self-
adaptive step size perform better than Yang’s algorithm [3].

We also measure the restoration accuracy by means of the mean squared error,
i.e., MSE= (1/k)‖x∗ − xk‖, where x∗ is an estimated signal of x. Figure 2 shows a compar-
ison of the accuracy of the recovered signals when m = 1440, n = 6144, p = 180. Given
the same number of iterations, the recovered signals generated by algorithms in this pa-
per outperform the one generated by Yang’s algorithm; NP1 needs more CPU time and
presents lower accuracy; algorithms with self-adaptive step size perform better than the
algorithms with step size determined by Armijo-line search in CPU time and imposing
inertial perturbation accelerates the convergence rate and accuracy of signal recovery.
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Table 1. Comparison of algorithms with different step size.

m n p NP1 HP1 NP2 HP2 Yang’s alg.

120 512 15 No. of Iter 1588 1119 10,004 7426 10,944
cpu(time) 0.8560 0.6906 0.6675 0.4991 0.7011

240 1024 30 No. of Iter 1909 1354 10,726 7969 13,443
cpu(time) 2.1224 1.4836 1.6236 1.2011 1.9789

480 2048 60 No. of Iter 2972 2117 17,338 12,897 22,118
cpu(time) 22.5140 14.8782 15.4729 11.1033 19.3376

720 3072 90 No. of Iter 3955 2872 21,853 16,244 28,004
cpu(time) 134.9243 82.6705 79.1640 57.1230 110.0482
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Figure 1. The objective function value versus the iteration number.
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Figure 2. Comparison of signal processing.
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5.2. Three MSSFP Problems

Example 1 ([5]). Take H1 = H2 = R3, r = t = 2, β1 = β2 = 1
2 and αk = γlmk for all k ≥ 1,

γ = 1, l = 1
2 , μ = 1

2 , θk =
1
4 , ρk = 0.1. Define

C1 =
{

x = (x1, x2, x3)
T ∈ R3 | x1 + x2

2 + 2x3 ≤ 0
}

,

C2 =
{

x = (x1, x2, x3)
T ∈ R3 | x2

1
16

+
x2

2
9

+
x2

3
4
− 1 ≤ 0

}
,

Q1 =
{

x = (x1, x2, x3)
T ∈ R3 | x2

1 + x2 − x3 ≤ 0
}

,

Q2 =
{

x = (x1, x2, x3)
T ∈ R3 | x2

1
4

+
x2

2
4

+
x2

3
9
− 1 ≤ 0

}
,

and

A =

⎛⎝2 −1 3
4 2 5
2 0 2

⎞⎠.

The underlying MSSFP is to find x∗ ∈ C1
⋂

C2 such that Ax∗ ∈ Q1
⋂

Q2.

We use inertial perturbation to accelerate the convergence of the algorithm. For the
convenience of comparison, the initial values of the two inertial algorithms are set to be
the same. Let x0 = x1. We use Ek = ‖xk+1 − xk‖/‖xk‖ to measure the error of the k-th
iterate. If Ek < 10−5, then the iteration process stops. We compare our proposed iteration
methods HP1 , HP2 with NP1, NP2 and Liu and Tang’s Algorithm 2 in [29]. Algorithm 2 is
of the form xk+1 = U[k](xk − αk ∑r

j=1 β j A∗(I − Tj)Ax), αk ∈ (0, 2
‖A‖2 ). We take U[k] = PCk

[k]
,

Tj = PQk
j

and αk = 0.2 ∗ 1
‖A‖2 , and the algorithm is referred to as LT alg.

The convergence results and the CPU time of the five algorithms are shown in Table 2
and Figure 3. The errors are shown in Figure 4.

The results show that (80) (HP2) outperforms (77) (HP1) for certain initial values.
The main reason may be that the self-adaptive step size is more efficient than the one
determined by the Armijo-line search. Comparison results of five algorithms and the
convergence behavior show that in most cases, the convergence rate of the algorithm can
be improved by adding an appropriate perturbation.

Table 2. Numerical results of five algorithms for Example 1.

Choice NP1 HP1 NP2 HP2 LT alg.

1. x0 = (0.1, 0.1, 0.1)T No. of Iter 60 43 219 162 420
cpu(time) 0.0511 0.0450 0.0362 0.0347 0.0879

2. x0 = (−0.4, 0.555, 0.888)T No. of Iter 139 85 195 143 178
cpu(time) 0.0669 0.0509 0.0342 0.0318 0.0552

3. x0 = (1, 2, 3)T No. of Iter 142 89 195 141 178
cpu(time) 0.0694 0.0490 0.0352 0.0339 0.0551

4. x0 = (0.123, 0.745, 0.789)T No. of Iter 149 85 108 77 526
cpu(time) 0.0590 0.0448 0.0295 0.0268 0.1018

108



Axioms 2021, 10, 197

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

Time of Iterations

10-5

10-4

10-3

10-2

10-1

100

E
k

NP1
HP1
NP2
HP2
LT alg.

(a)
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Time of Iterations

10-5

10-4

10-3

10-2

10-1

100

E
k

NP1
HP1
NP2
HP2
LT alg.

(b)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Time of Iterations

10-5

10-4

10-3

10-2

10-1

100

101

E
k

NP1
HP1
NP2
HP2
LT alg.

(c)
0 0.02 0.04 0.06 0.08 0.1 0.12

Time of Iterations

10-5

10-4

10-3

10-2

10-1

100

E
k

NP1
HP1
NP2
HP2
LT alg.

(d)

Figure 3. Comparison of CPU times of the algorithms in Example 1: (a) Comparison for choice 1. (b)
Comparison for choice 2. (c) Comparison for choice 3. (d) Comparison for choice 4.
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Figure 4. Comparison of iterations of the algorithms in Example 1: (a) Comparison for choice 1. (b)
Comparison for choice 2. (c) Comparison for choice 3. (d) Comparison for choice 4.

Example 2. Take H1 = Rn, H2 = Rm, A = (aij)m×n with aij ∈ (0, 1) generated randomly,
Ci = {x ∈ Rn | ‖x − di‖2

2 ≤ r2
i }, i = 1, 2, · · · , t, Qj = {y ∈ Rm | ‖y − lj‖2

1 ≤ h2
j }, j =

1, 2, · · · , r, where di ∈ [e0, 10e1], ri ∈ [40, 60], lj ∈ [e0, e1], hj ∈ [10, 20] are all generated
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randomly. Set β1 = β2 = · · · = βr = 1
r and αk = γlmk for all k ≥ 1, γ = 1, l = 1

2 , μ = 1
2 ,

θk =
1
4 , ρk = 0.001.

We consider using inertial perturbation to accelerate the convergence of the algorithm.
If Ek = ‖xk+1 − xk‖/‖xk‖ < 10−4, then the iteration process stops. Let x0 = x1. We choose
arbitrarily three different initial points and consider iterative steps of the four algorithms
with m, n, r, t being different values. See Table 3 for details.

Table 3. Numerical results of the algorithms with and without perturbation for Example 2.

Initial Point NP1 HP1 NP2 HP2

r = t = 10, m = 15, n = 20
x0 = x1 = 2 ∗ e1 No. of Iter 49 36 1281 999

cpu(time) 0.1031 0.0669 0.1480 1494
x0 = x1 = 50 ∗ e1 No. of Iter 187 121 2297 1669

cpu(time) 0.2485 0.1536 0.2887 0.1868
x0 = x1 = 100 ∗ rand(n, 1) No. of Iter 312 225 2357 1811

cpu(time) 0.4202 0.2908 0.2830 0.2159

r = t = 10, m = n = 40
x0 = x1 = 2 ∗ e1 No. of Iter 89 66 956 732

cpu(time) 0.3140 0.1777 0.1534 0.1318
x0 = x1 = 50 ∗ e1 No. of Iter 1710 1583 1301 1061

cpu(time) 4.0390 4.0357 1860 0.1555
x0 = x1 = 100 ∗ rand(n, 1) No. of Iter 1674 1658 1487 1219

cpu(time) 4.6581 3.7752 0.2065 0.1762

r = t = 30, m = n = 40
x0 = x1 = 2 ∗ e1 No. of Iter 136 103 985 753

cpu(time) 0.6912 0.5174 0.3312 0.2515
x0 = x1 = 50 ∗ e1 No. of Iter 1612 1411 1258 968

cpu(time) 12.3437 11.7164 0.3991 0.3127
x0 = x1 = 100 ∗ rand(n, 1) No. of Iter 1541 1133 1643 1012

cpu(time) 11.8273 7.4646 1.0363 0.2965

In this example, we found that the algorithm with Armijo-line search needs fewer
iteration steps in relatively low-dimensional spaces. In the case of high-dimensional spaces,
the algorithm with self-adaptive step size outperforms in time. Generally, the convergence
is improved by inertial perturbations for both algorithms in our paper.

Example 3 ([30]). Take H1 = Rn, H2 = Rm, A = (aij)m×n with aij ∈ (0, 1) generated
randomly, Ci = {x ∈ Rn | ‖x − di‖2

2 ≤ r2
i }, i = 1, 2, · · · , t, Qj = {y ∈ Rm | yT Bjy +

bjy + cj ≤ 0}, j = 1, 2, · · · , r, where di ∈ (6e0, 16e1), ri ∈ (100, 120), bj ∈ (−30e1,−20e1),
cj ∈ (−50,−60), and all elements of the matrix Bj are all generated randomly in the interval
(2,10). Set β1 = β2 = · · · = βr =

1
r and αk = γlmk for all k ≥ 1, γ = 1, l = 1

2 , μ = 1
2 , θk =

1
4 ,

ρk = 0.1.

We consider using inertial perturbation to accelerate the convergence of the algo-
rithm. The stopping criterion is defined by Ek = 1

2 ∑t
i=1 ‖xk − PCk

i
xk‖2 + 1

2 ∑r
j=1 ‖Axk −

PQk
j
Axk‖2 < 10−4. Let x0 = x1. The details are shown in Table 4.
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Table 4. Results of Armijo-line search and self-adaptive algorithms for Example 3.

Initial Point NP1 HP1 NP2 HP2

r = t = 10, m = n = 20
x0 = x1 = e1 No. of Iter 477 357 2268 1700

cpu(time) 1.2453 0.9267 1.0516 0.8038
x0 = x1 = 50 ∗ e1 No. of Iter 757 564 3291 2470

cpu(time) 1.6205 1.2805 1.5623 1.1023
x0 = x1 = 100 ∗ rand(n, 1) No. of Iter 996 737 4323 3231

cpu(time) 1.9087 1.4396 1.9696 1.4493

r = t = 20, m = 40, n = 50
x0 = x1 = e1 No. of Iter 1256 941 5336 4001

cpu(time) 12.1310 4.0061 5.9165 4.0919
x0 = x1 = 50 ∗ e1 No. of Iter 1492 1105 6917 5221

cpu(time) 12.6430 8.2382 12.9631 9.4880
x0 = x1 = 100 ∗ rand(n, 1) No. of Iter 2101 1835 9936 9226

cpu(time) 16.4070 13.2868 14.9611 12.8079

r = t = 40, m = n = 60
x0 = x1 = e1 No. of Iter 1758 1317 8328 6245

cpu(time) 48.2570 38.0668 30.6759 23.4267
x0 = x1 = 50 ∗ e1 No. of Iter 2503 1777 12,905 8677

cpu(time) 59.2127 44.7915 49.5823 32.6868
x0 = x1 = 100 ∗ rand(n, 1) No. of Iter 2274 1474 18,781 13,952

cpu(time) 58.2569 38.1917 72.6622 54.9814

We can see from Table 4 that the convergence rate is improved by inertial perturbations
for both algorithms. In most cases, the algorithm with step size determined by Armijo-line
search outperforms the one with self-adaptive step size in the number of iterations, whereas
the latter outperforms the former in CPU time.

6. Conclusions

In this paper, for the MSSFP, we present two relaxed CQ algorithms with different
kinds of self-adaptive step size and discuss their bounded perturbation resilience. Treating
appropriate inertial terms as bounded perturbations, we construct the inertial acceleration
versions of the corresponding algorithms. For the real-life LASSO problem and three
experimental examples, we numerically compare the performance with or without inertial
perturbation of the algorithms and also compare the performance of the proposed algo-
rithms with Yang’s algorithm [3], and Liu and Tang’s algorithm [29]. The results show the
efficiency of the proposed algorithms and the validity of the inertial perturbation.
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Abstract: In this paper, we propose and study a diffusive HIV infection model with infected cells
delay, virus mature delay, abstract function incidence rate and a virus diffusion term. By introducing
the reproductive numbers for viral infection R0 and for CTL immune response number R1 , we show
that R0 and R1 act as threshold parameter for the existence and stability of equilibria. If R0 ≤ 1,
the infection-free equilibrium E0 is globally asymptotically stable, and the viruses are cleared; if
R1 ≤ 1 < R0, the CTL-inactivated equilibrium E1 is globally asymptotically stable, and the infection
becomes chronic but without persistent CTL response; if R1 > 1, the CTL-activated equilibrium E2

is globally asymptotically stable, and the infection is chronic with persistent CTL response. Next,
we study the dynamic of the discreted system of our model by using non-standard finite difference
scheme. We find that the global stability of the equilibria of the continuous model and the discrete
model is not always consistent. That is, if R0 ≤ 1, or R1 ≤ 1 < R0, the global stability of the two
kinds model is consistent. However, if R1 > 1, the global stability of the two kinds model is not
consistent. Finally, numerical simulations are carried out to illustrate the theoretical results and show
the effects of diffusion factors on the time-delay virus model.

Keywords: basic reproduction number; equilibrium; global stability; immune response; nonstandard
finite difference scheme; numerical simulation

MSC: 35C07; 35K55; 35K57; 92D25

1. Introduction

In the past few years, host-virus dynamics models have been developed to explain
the interactions between virus and target T cells, much attention has been given to the
role of the immune response to human immunodeficiency virus (HIV) infection. Many
different mechanisms of immune system, defenses against viral infections are of interest
because lots of the diseases caused by them, e.g., hepatitis B and AIDS, are chronic and
incurable [1,2]. With the new coronavirus epidemic rages around the world [3–5], virus
dynamics has become a hot spot again. In the immune response mechanism in vivo for viral
infections, the cytotoxic T lymphocyte (CTL) plays a particularly important role, therefore
many authors have examined various CTL dynamics.

A virus must take over host cells and use them to replicate because it can not replicate
on its own. HIV targets the CD4+T cells, often referred to as “helper” T cells, when it
invades the body. These cells can be considered “messengers” , or the command centres of
the immune system. They send signal to other immune cells that an invader is to be fought.
Once invaded by the viruses, these infected cells will cause a cytotoxic T-lymphocyte (CTL)
response from the immune system. The immune response cells, or cytotoxic lymphocytes,
respond to this message and set out to eliminate infection by killing infected cells. Through
the lysis of the infected cells, the viruses are prevented from further replication [2]. The
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CTL response is also striking in that it sometime does damage to the body when it tries to
clear the virus. Over half the tissue damage caused by hepatitis is actually caused by the
CTL response [1,6].

If the immune system is functioning normally, these components work together
efficiently and an infection is eliminated quickly, causing only temporary discomfort
to the host. However, over time HIV is able to deplete the population of CD4+T cells.
What remains unknown is the exact mechanism by which this occurs, but several models
have been suggested. For a variety of different hypotheses of how this occurs, we refer the
reader to papers [7–9]. The natural killer cells may be fit to eliminate infection, but they are
never deployed, which is the the impact of the depletion of CD4+T cells on the host. This
then culminates in a clinical problem wherein the patient becomes vulnerable to infections
that a healthy immune system would normally handle.

Quite a lot of mathematical models of HIV have been set up. The classical model is
a system with three ordinary differential equations [10,11]. To better understanding the
dynamics of these infections, many mathematical models have been proposed by using
different kinds of differential equations, see [12–16] and references therein. For example,
Yang et al. [15] studied the following model⎧⎪⎨⎪⎩

∂T(x,t)
∂t = λ− d1T(x, t)− β1T(x, t)V(x, t),

∂I(x,t)
∂t = β1T(x, t)V(x, t)− d2 I(x, t),

∂V(x,t)
∂t = dΔV(x, t) + γI(x, t)− d3V(x, t),

(1)

where T(x, t), I(x, t) and V(x, t) denote the densities of uninfected cells, infected cells and
free virus cells at position x at time t, respectively. λ stands for the recruitment rate of the
uninfected cells; β1 is the virus-to-cell infection rate; d1, d2 and d3 represent death rates of
uninfected cells, infected cells and free viruses; γ stands for the recruitment rate for free
viruses; d stands for the diffusion coefficient and Δ is the Laplacian operator.

To help the body heal, cytotoxic T-lymphocyte effectors (CTLe) of the immune system
will remove the infected cells to prevent further viral replications. To model these extra
dynamics, researchers have studied the model of viral interaction with CTL response [10,17]⎧⎨⎩

ẋ = λ− dx− βxy,
ẏ = βxy− ay− pyz,
ż = cyz− bz,

(2)

where variables x, y and z denote the density of the healthy cells, the infected cells, and
the CTLs populations, respectively. Healthy cells are produced at rate λ and their natural
mortality is dx; these cells may come into contact with the virus and become infected cells
at rate βxy, infected cells’s natural mortality is ay, and they are removed by CTLs at rate
pyz; the CTL population increases at the rate cyz and they are removed at the rate bz.

In [18,19], researchers studied a mathematical model for HIV-1 infection with both
intracellular delay and cell-mediated immune response:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dx(t)
dt = λ− dx(t)− βxv,

dy(t)
dt = e−aτ βx(t− τ)v(t− τ)− ay(t)− py(t)z(t),

dv(t)
dt = ky(t)− μv(t),

dz(t)
dt = cy(t)z(t)− bz(t).

(3)

Researchers obtain the global stability of the infection-free equilibrium and give many
conditions for the local stability of the two infection equilibria: one without CTLs being
activated and the other with. There are many references in the dynamics of HIV-1 infection
with CTLs response (see, e.g., [17,20–22] and the references therein).

However, there is no diffusion term and only one delay in (3). As we know, the virus is
not stationary in space, the movement of the virus in space leads to the spatial spread of the
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disease, and mostly with general nonlinear incidence rate. Fickian diffusion can reasonably
describe the spread of this virus in space and this diffusion process is often represented
by the Laplace operator. Inspired by [16,23] , in this paper, we extend the classic model of
virus dynamics to a diffusive infection model with intracellular delay and cell-mediated
immune response, with two delays and general nonlinear incidence rate, as follows⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂T(x,t)
∂t = λ− d1T(x, t)− β1T(x, t) f

(
V(x, t)

)
− β2T(x, t)g

(
I(x, t)

)
,

∂I(x,t)
∂t = e−μ1τ1

(
β1T(x, t− τ1) f

(
V(x, t− τ1)

)
+ β2T(x, t− τ1)g(I(x, t− τ1))

)
−d2 I(x, t)− p1 I(x, t)Z(x, t),

∂V(x,t)
∂t = DΔV(x, t) + p2e−μ2τ2 I(x, t− τ2)− d3V(x, t),

∂Z(x,t)
∂t = qI(x, t)Z(x, t)− d4Z(x, t),

(4)

here T(x, t), I(x, t), V(x, t) and Z(x, t) stand for the densities of uninfected cells, infected
cells, virus cells and CTLs at position x at time t, respectively. λ and d1 denote the natural
produce and mortality rate of uninfected cells, and uninfected cells are infected with a rate
β2; and β1 is the virus-to-cell infection rate; and β1 is the virus-to-cell infection rate; the
natural mortality rate of the infected cells are d2 and are killed by CTL with a rate p1 (Note
that d2 reflects the combined effects of natural death rate of uninfected cells, d1, and any
additional cytotoxic effects the virus may have); μ1 represents the death rate for infected
but not yet virus-producing cells, τ1 represents the latent delay, i.e., the time period from
being infected to becoming productive infected cells. Therefore, the probability of surviving
from time t− τ1 to time t is e−μ1τ1 ; the probability of survival of immature virus is denoted
by e−μ2τ2 and the average life time of an immature virus is 1

μ2
; where τ2 represents the time

necessary for the newly produced virus to become mature; D is the diffusion coefficient
and Δ is the Laplacian operator; p2 is the recruitment rate for free viruses. Virus particles
are removed from the system at rate d3; q stands for the CTL responsiveness and d4 denotes
decay rate for CTLs in the absence of stimulation.

Here, the incidences are assumed to be the nonlinear responses to the concentrations
of virus particles and infected cells, using the forms β1T f (V) and β2Tg(I), where f (V) and
g(I) are the force of infection by virus particles and infected cells and satisfy the following
properties [24]:

f (0) = g(0) = 0, f ′(V) > 0, g′(I) > 0, f ′′(V) ≤ 0, g′′(I) ≤ 0. (A1)

It follows from (A1) and the Mean Value Theorem that

f ′(V)V ≤ f (V) ≤ f ′(0)V, g′(I)I ≤ g(I) ≤ g′(0)I, f orI, V ≥ 0. (A2)

Epidemiologically, condition (A1) implies that : (1) the disease cannot spread if there
is no infection; (2) the incidences β1T f (V) and β2Tg(I) become faster when the densities
of the virus particles and infected cells increase; (3) the per capita infection rates by virus
particles and infected cells will slow down as certain inhibiting effect since (A2) implies
that ( f (V)

V )′ ≤ 0 and ( g(I)
I )′ ≤ 0. The incidence rate with condition (A1) contains the

bilinear and the saturation incidences.
In this paper, we will consider the system (4) with initial conditions

T(x, s) = φ1(x, s) ≥ 0, I(x, s) = φ2(x, s) ≥ 0,
V(x, s) = φ3(x, s) ≥ 0, Z(x, s) = φ4(x, s) ≥ 0, (x, s) ∈ Ω̄× [−τ, 0]

(5)

and homogeneous Neumann boundary conditions

∂V
∂n = 0, t > 0, x ∈ ∂Ω. (6)
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where τ = max{τ1, τ2} and Ω is a bounded domain in R4 with smooth boundary ∂Ω, and
∂V
∂n stands for the outward normal derivative on ∂Ω.

Usually, the exact solution for a system as (1) is difficult or even impossible to be
determined. Hence, researchers seek numerical ones instead. However, how to choose
the proper discrete scheme so that the global dynamics of solutions of the corresponding
continuous models can be efficiently preserved is still an open problem [25]. Mickens has
made an attempt in this connection, by presenting a robust non-standard finite difference
(NSFD)scheme [26], which has been widely employed in the study of different epidemic
models [23,25–32]. For example, Yang et al. [30] applied the NSFD scheme to discretize
system (1) and found that the dynamical behaviors of the discrete model are consistent
with the original system. Motivated by the work of [23,25–32], we apply the NSFD scheme
to discretize system (4) and obtain:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Tm
n+1−Tm

n
Δt = λ− d1Tm

n+1 − β1Tm
n+1 f (Vm

n )− β2Tm
n+1g(Im

n ),
Im
n+1−Im

n
Δt = e−μ1τ1

(
β1Tm

n−m1+1 f (Vm
n−m1

) + β2Tm
n−m1+1g(Im

n−m1
)
)

−d2 Im
n+1 − p1 Im

n+1Zm
n ,

Vm
n+1−Vm

n
Δt = D

Vm+1
n+1 −2Vm

n+1+Vm−1
n+1

(Δx)2 + p2e−μ2τ2 Im
n−m2+1 − d3Vm

n+1,
Zm

n+1−Zm
n

Δt = qIm
n+1Zm

n − d4Zm
n+1.

(7)

Here, we assume that x ∈ Ω = [a, b], let Δt > 0 be the time step size and Δx = b−a
N

be the space step size with N a positive integer. Suppose that there exist two inte-
gers m1, m2 ∈ ℵ with τ1 = m1Δt, τ2 = m2Δt. Denote the mesh grid point as {(xm, tn),
m = 0, 1, 2, · · · , N, n ∈ N}with xm = a+ mΔx and tn = nΔt. At each point, we use approx-

imations of
(

T(xm, tn), I(xm, tn), V(xm, tn), Z(xm, tn)
)

by (Tm
n , Im

n , Vm
n , Zm

n ). We set all the
approximation solutions at the time tn by the N + 1-dimensional vector
Un = (U0

n, U1
n, · · · , UN

n )T , where U(·)
n ∈ {(Tn, In, Vn, Zn)} and the notation (·)T is the

transposition of a vector. Un ≥ 0 means that all components of a vector Un are nonnegative.
The discrete initial conditions of system (7) are given as

Tm
s = φ1(xm, ts) ≥ 0, Im

s = φ2(xm, ts) ≥ 0,
Vm

s = φ3(xm, ts) ≥ 0, Zm
s = φ4(xm, ts) ≥ 0,

(8)

for all s = −l,−l + 1, · · · , 0, l = max{m1, m2}, and the discrete boundary conditions are

V−1
n = V0

n , VN
n = VN+1

n , f or n ∈ ℵ.

The main purpose of this paper is to investigate the asymptotic stability of system (4)
and (7). Another purpose of this paper is to discuss , whether the discretized system (7)
that derived by using NSFD scheme can efficiently preserves the global asymptotic stability
of the equilibria to the original system (4) or not.

The paper is organized as follows. In Section 2.1, the model is introduced, and, under
some assumptions, positivity and boundedness properties of the solutions are proved by
using nonlinear functional analysis methods. In Section 2.2, we consider the existence of
infection-free equilibrium, CTL-inactivated equilibrium and infection equilibrium with
immunity. In Section 2.3, by introducing the reproductive numbers for viral infection R0 and
for CTL immune response number R1 , we show that R0 and R1 act as threshold parameter
for the existence and stability of equilibria. If R0 ≤ 1, the infection-free equilibrium E0
is globally asymptotically stable, and the viruses are cleared; if R1 ≤ 1 < R0, the CTL-
inactivated equilibrium E1 is globally asymptotically stable, and the infection becomes
chronic but without persistent CTL response; if R1 > 1, the CTL-activated equilibrium E2
is globally asymptotically stable, and the infection is chronic with persistent CTL response.
In Section 3, we investigate the global dynamics of discrete system (7) correponding to
the continuous system (4), by using nonstandard finite difference scheme. We find that
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the global stability of the equilibria of the continuous model and the discrete model is not
always consistent. That is, if R0 ≤ 1, or R1 ≤ 1 < R0, the global stability of the two kinds
model is consistent. However, if R1 > 1, the global stability of the two kinds model is not
consistent. In Section 4, some numerical simulations are given to illustrate the theoretical
results and show the effects of diffusion factors on the time-delay virus model. The paper
ends with a discussion in Section 5.

2. Dynamical Behaviors of Continuous System

2.1. Positivity and Boundedness of Solutions

In order to study positivity and boundedness of solutions to system (4), we first
introduce some notations.

Assume X = C(Ω̄,R4) be the space of continuous functions from the topological space
Ω̄ into the space R4. Let C = C([−τ, 0], X) be the Banach space of continuous functions
from [−τ, 0] into X with the usual supremum normal. φ ∈ C is defined by

φ(x, s) = φ(s)(x).

Define xt(s) = x(t + s), s ∈ [−τ, 0], where x(·) : [−τ, σ)→ X is a continuous function from
[0, σ) to C.

Theorem 1. For any φ ∈ C,
(a) system (4)–(6) has a unique solution defined on [0,+∞) ; and
(b) the solution of (4)–(6) is nonnegative and bounded for all t ≥ 0.

Proof. For any φ = (φ1, φ2, φ3, φ4)
T ∈ C and x ∈ Ω̄, assume

F = (F1, F2, F3, F4) : C → X

by ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

F1(φ)(x) = λ− d1φ1(x, 0)− β1φ1(x, 0) f
(

φ3(x, 0)
)
− β2φ1(x, 0)g

(
φ2(x, 0)

)
,

F2(φ)(x) = e−μ1τ1
[

β1φ1(x,−τ1) f
(

φ3(x,−τ1)
)
+ β2φ1(x,−τ1)g

(
φ2(x,−τ1)

)]
−d2φ2(x, 0)− p1φ2(x, 0)φ4(x, 0),

F3(φ)(x) = p2e−μ2τ2 kφ2(x,−τ2)− d3φ3(x, 0),
F4(φ)(x) = qφ2(x, 0)φ4(x, 0)− d4φ4(x, 0).

Then system (4)–(6) can be rewritten as following form{
U′(t) = AU + F(Ut), t > 0,
U(0) = φ ∈ X,

(9)

where U = (T, I, V, Z)T ,φ = (φ1, φ2, φ3, φ4)
T and AU = (0, 0, dΔv, 0)T . It is clear that the

operator F is locally Lipschitz in space X. From [27,32–36], we conclude that system (9)
has a unique local solution on t ∈ [0, Tmax), where Tmax is the maximal existence time for
solution of system (4). In addition, it follows from 0 is a sub-solution of each equation of
system (4) that T(x, t) ≥ 0, I(x, t) ≥ 0, V(x, t) ≥ 0, Z(x, t) ≥ 0.

Next, we prove the boundedness of solutions. Let

G1(x, t) = e−μ1τ1 T(x, t− τ1) + I(x, t) +
p1

q
Z(x, t),
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then

∂G1(x, t)
∂t

= λe−μ1τ1 − d1e−μ1τ1 T(x, t− τ1)− d2 I(x, t)− p1d4

q
Z(x, t)

≤ λ− d̃G1(x, t),

where d̃ = min{d1, d2, d4}, then

G1(x, t) ≤ max

{
λ

d̃
, maxx∈Ω̄

{
e−μ1τ1 φ1(x,−τ1) + φ2(x, 0) +

p1

q
φ3(x, 0)

}}
= ξ1,

so T(x, t),I(x, t) and Z(x, t) are bounded.
From the boundedness of I(x, t) and system (4)–(6), V(x, t) satisfies the following system⎧⎨⎩

∂V
∂t − DΔV ≤ p2e−μ2τ2 ξ1 − d3V,
∂V
∂n = 0,
V(x, 0) = φ3(x, 0) ≥ 0.

(2)

Assume V1(t) be a solution to the ordinary differential equation{ dV1
dt = p2e−μ2τ2 ξ1 − d3V1,

V1(0) = maxx∈Ω̄φ3(x, 0),
(3)

then

V1(t) ≤ max
{ p2e−μ2τ2 ξ1

d3
, maxx∈Ω̄φ3(x, 0)

}
, ∀t ∈ [0, Tmax).

It follows from the comparison principle [37] that V(x, t) ≤ V1(t). Therefore

V(x, t) ≤ max
{ p2e−μ2τ2 ξ1

d3
, maxx∈Ω̄φ3(x, 0)

}
= ξ2, ∀(x, t) ∈ Ω̄× [0, Tmax).

From the above, T(x, t), I(x, t), V(x, t) and Z(x, t) are bounded in Ω̄ × [0, Tmax).
Furthermore, it follows from the standard theory for semilinear parabolic systems [38] that
Tmax = +∞.

2.2. Existence of Equilibria

It is clear that system (4) always has an infection-free equilibrium

E0 = (T0, 0, 0, 0),

where T0 = λ
d , corresponding to the maximal level of healthy CD+

4 T cells. It is the only
biologically meaningful equilibrium if

R0 =
λe−μ1τ1(β1 p2 f ′−μ2τ2 + β2d3g′(0))

d1d2d3
< 1,

where R0 is basic reproduction number.
At an equilibrium of model (4), we have⎧⎪⎪⎪⎨⎪⎪⎪⎩

λ = d1T + β1T f (V) + β2Tg(I),

e−μ1τ1
(

β1T f (V) + β2Tg(I)
)
= d2 I + p1 IZ,

p2e−μ2τ2 I = d3V,
qIZ = d4Z,

(4)
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if Z = 0, then a short calculation

λ− d1T =
d2d3eμ1τ1+μ2τ2

p2
V, I =

d3eμ2τ2

p2
V,

which implies that in order to have T ≥ 0 and V > 0 at an equilibrium, then
V ∈ (0, λp2

d2d3eμ1τ1+μ2τ2
]. From the second equation of (4), we have

T =
d2d3eμ1τ1+μ2τ2

p2

(
β1 f (V) + β2g( d3eμ2τ2

p2
V)

)V,

then substituting T into the first equation of (4)

λ =
d1d2d3eμ1τ1+μ2τ2

p2

(
β1 f (V) + β2g( d3eμ2τ2

p2
V)

)V +
d2d3μeμ1τ1+μ2τ2

p2
V = H(V).

According to (A2), for all V > 0, we have

H′(V) =
d1d2d3eμ1τ1+μ2τ2

(
β1( f (V)−V f ′(V)) + β2

(
g( d3eμ2τ2

p2
V)− d3eμ2τ2

p2
Vg′( d3eμ2τ2

p2
V)

))
p2(β1 f (V) + β2g( d3eμ2τ2

p2
V))2

+
d2d3eμ1τ1+μ2τ2

p2
> 0,

further, from (A1)

lim
V→0+

H(V) =
d1d2d3eμ1τ1+μ2τ2

p2β1 f ′(0) + d3β2eμ2τ2 g′(0)
=

λ

R0
,

and
H(

λp2

d2d3eμ1τ1+μ2τ2
) = λ +

λd1

β1 f
(

λp2
d2d3eμ1τ1+μ2τ2

)
+ β2g

(
λ

d2eμ1τ1

) > λ,

this implies that there exists a CTL-inactivated equilibrium E1 = (T1, I1, V1, 0) when R0 > 1.
Define

R1 =
λqe−μ1τ1

(
β1 f ( d4 p2e−μ2τ2

d3q ) + β2g( d4
q )

)
d2d4

(
d1 + β1 f ( d4 p2e−μ2τ2

d3q ) + β2g( d4
q )

) ,

which stands for the immune response activation number and determines whether a
persistent immune response can be established or not. If Z �= 0, then from (4), we have

T2 =
λ

d1 + β1 f (V2) + β2g(I2)
, I2 =

d4

q
,

V2 =
d4 p2e−μ2τ2

d3q
, Z2 =

d2

p1
(R1 − 1),

then, the infection equilibrium with immunity E2 = (T2, I2, V2, Z2) exists if R1 > 1. From
the above, we have the following result.

Lemma 1. For system (4),

(1) if R0 < 1, then there exists a unique infection-free equilibrium E0 .
(2) if R1 ≤ 1 < R0, then there exists a unique infection equilibrium without immunity E1 besides E0.
(3) if R1 > 1, then there exists a unique infection equilibrium with immunity E2 besides E0 and E1.
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2.3. Global Asymptotic Stability

In this section, we will investigate the global asymptotic stability of the system (4).
Assume ϕ(u) = u− 1− ln u for u ∈ (0,+∞), then ϕ(x) ≥ ϕ(1) = 0.

Theorem 2. For system (4), if R0 ≤ 1, the infection-free equilibrium E0 is globally asymptotically stable.

Proof. Define the Lyapunov function as follows

L1 =
∫

Ω

{
T0 ϕ(

T
T0

) + eμ1τ1 I +
β1 p2T0e−μ2τ2 f ′(0)

R0d3

∫ t

t−τ2

I(s)ds +
β1T0 f ′(0)

R0d3
V

+
p1eμ1τ1

q
Z +

∫ t

t−τ1

[
β1T(s) f (V(s)) + β2T(s)g

(
I(s)

)]
ds

}
dx,

then L1 ≥ 0, calculating dL1
dt along the solutions of system (4) and using λ = d1T0, we have

dL1
dt =

∫
Ω

{(
1− T0

T(x,t)

)(
d1T0 − d1T(x, t)− β1T(x, t) f

(
V(x, t)

))
− β2T(x, t)g

(
I(x, t)

)
+ β1T(x, t− τ1) f

(
V(x, t− τ1)

)
+ β2T(x, t− τ1)g

(
I(x, t− τ1)

)
− d2eμ1τ1 I(x, t)− p1eμ1τ1 I(x, t)Z(x, t)

+ β1T0 f ′(0)
R0d3

[
DΔV(x, t) + p2e−μ2τ2 I(x, t− τ2)− d3V(x, t)

]
+ p1eμ1τ1

q

[
qI(x, t)Z(x, t)− d4Z(x, t)

]
+ β1T(x, t) f

(
V(x, t)

)
+ β2T(x, t)g

(
I(x, t)

)
− β1T(x, t− τ1) f

(
V(x, t− τ1)

)
− β2T(x, t− τ1)g

(
I(x, t− τ1)

)
+ β1 p2T0e−μ2τ2 f ′(0)

R0d3

[
I(x, t)− I(x, t− τ2)

]}
dx,

=
∫

Ω

{
d1T0

(
2− T0

T(x,t) −
T(x,t)

T0

)
+
(

T0
T(x,t) − 1

)[
β1T(x, t) f

(
V(x, t)

)
+ β2T(x, t)g

(
I(x, t)

)]
− d2eμ1τ1 I(x, t) + β1T0 f ′(0)

R0d3
DΔV(x, t)

+ β1T0 f ′(0)p2e−μ2τ2

R0d3
I(x, t− τ2)− β1T0 f ′(0)

R0
V(x, t)− p1d4eμ1τ1

q Z(x, t)

+ β1T(x, t) f
(

V(x, t)
)
+ β2T(x, t)g

(
I(x, t)

)
+ β1T0 f ′(0)p2e−μ2τ2

R0d3
I(x, t)

− β1T0 f ′(0)p2e−μ2τ2

R0d3
I(x, t− τ2)

}
dx,

from
∫

Ω ΔV(x, t)dx = 0 and condition (A2) , we obtain

d2eμ1τ1 − β1 p2T0 f ′−μ2τ2

R0d3
=

β2T0g′(0)
R0

,

therefore
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dL1
dt =

∫
Ω

{
d1T0

[
2− T0

T(x,t) −
T(x,t)

T0

]
+ β1T0 f

(
V(x, t)

)
+ β2T0g

(
I(x, t)

)
− d2eμ1τ1 I(x, t)− β1T0 f ′(0)

R0
V − p1d4eμ1τ1

q Z(x, t)

+ β1T0 f ′(0)p2e−μ2τ2

R0d3
I(x, t)

}
dx.

≤
∫

Ω

{
d1T0

[
2− T0

T(x,t) −
T(x,t)

T0

]
+ β1T0 f ′(0)

R0
V(x, t)(R0 − 1)

+ β2T0g′(0)
R0

I(x, t)(R0 − 1)− d4 p1eμ1τ1

q Z(x, t)

}
dx.

It is follows from R0 ≤ 1 that dL1
dt ≤ 0. Furthermore, the largest invariant set of

{ dL1
dt = 0} is the singleton {E0}. Then, the classical LaSalle’s invariance principle implies

that E0 is globally asymptotically stable. This completes the proof.

Theorem 3. For system (4), if R1 ≤ 1 < R0, the CTL-inactivated infection equilibrium E1 is
globally asymptotically stable.

Proof. Define the Lyapunov function as follows

L2 =
∫

Ω

{
T1 ϕ( T

T1
) + eμ1τ1 I1 ϕ( I

I1
) + β1T1 f (V1)

p2e−μ2τ2 I1
V1 ϕ( V

V1
) + p1eμ1τ1

q Z

+ β1T1 f (V1)
∫ t

t−τ1
ϕ
( T(θ) f

(
V(θ)

)
T1 f (V1)

)
dθ + β2T1g(I1)

∫ t
t−τ1

ϕ
( T(θ)g

(
I(θ)

)
T1g(I1)

)
dθ

+ β1T1 f (V1)
∫ t

t−τ2
ϕ
(

I(θ)
I1

)
dθ

}
dx.

The Lyapunov derivative along system (4) is

dL2
dt =

∫
Ω

{(
1− T1

T(x,t)

)[
λ− d1T(x, t)− β1T(x, t) f

(
V(x, t)

)
− β2T(x, t)g

(
I(x, t)

)
+

(
1− I1

I(x,t)

)[
β1T(x, t− τ1) f

(
V(x, t− τ1)

)
+ β2T(x, t− τ1)g

(
I(x, t− τ1)

)]
− d2eμ1τ1 I(x, t)− p1eμ1τ1 I(x, t)Z(x, t)]

+ β1T1 f (V1)
p2e−μ2τ2 I1

(
1− V1

V(x,t)

)[
DΔV(x, t) + p2e−μ2τ2 I(x, t− τ2)− d3V(x, t)

]
+ p1eμ1τ1

q

[
qI(x, t)Z(x, t)− d4Z(x, t)

]
+ β1T1 f (V1)

[ T(x,t) f
(

V(x,t)
)

T1 f (V1)
−

T(x,t−τ1) f
(

V(x,t−τ1)

)
T1 f (V1)

+ ln
T(x,t−τ1) f

(
V(x,t−τ1)

)
T(x,t) f

(
V(x,t)

) ]
+ β2T1g(I1)

[ T(x,t)g
(

I(x,t)
)

T1g(I1)

−
T(x,t−τ1)g

(
I(x,t−τ1)

)
T1g(I1)

+ ln
T(x,t−τ1)g

(
I(x,t−τ1)

)
T(x,t)g

(
I(x,t)

) ]
+ β1T1 f (V1)

[
I(x,t)

I1
− I(x,t−τ2)

I1
+ ln I(x,t−τ2)

I1

]}
dx.

According to the equilibrium conditions of E1, that
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λ = d1T1 + β1T1 f (V1) + β2T1g(I1),

β1T1 f (V1) + β2T1g(I1) = d2eμ1τ1 I1, p2e−μ2τ2 I1 = d3V1,

also recall
∫

Ω ΔV(x, t)dx = 0 and
∫

Ω
ΔV(x,t)
V(x,t) dx =

∫
Ω
‖∇V(x,t)‖2

V2(x,t) dx, we have

dL2
dt =

∫
Ω

{
d1T1

(
1− T1

T(x,t)

)(
1− T(x,t)

T1

)
+
(

1− T1
T(x,t)

)[
β1T1 f (V1) + β2T1g(I1)

− β1T(x, t) f
(

V(x, t)
)
− β2T(x, t)g

(
I(x, t)

)]
+

(
1− I1

I(x,t)

)[
β1T(x, t− τ1) f

(
V(x, t− τ1)

)
+ β2T(x, t− τ1)g

(
I(x, t− τ1)

)]
−

(
1− I1

I(x,t)

)
I(x,t)

I1

(
β1T1 f (V1) + β2T1g(I1)

)
− p1eμ1τ1 I(x, t)Z(x, t) + p1eμ1τ1 I1Z(x, t) + β1T1 f (V1)

(
1− V1

V(x,t)

)(
I(x,t−τ2)

I1

− V(x,t)
V1

)
+ p1eμ1τ1 I(x, t)Z(x, t)− p1eμ1τ1 d4

q Z(x, t)

+ β1T1 f (V1)
[ T(x,t) f

(
V(x,t)

)
T1 f (V1)

−
T(x,t−τ1) f

(
V(x,t−τ1)

)
T1 f (V1)

+ ln
T(x,t−τ1) f

(
V(x,t−τ1)

)
T(x,t) f

(
V(x,t)

) ]

+ β2T1g(I1)
[ T(x,t)g

(
I(x,t)

)
T1 g(I1)

−
T(x,t−τ1)g

(
I(x,t−τ1)

)
T1 g(I1)

+ ln
T(x,t−τ1)g

(
I(x,t−τ1)

)
T(x,t)g

(
I(x,t)

) ]
+ β1T1 f (V1)

[
I(x,t)

I1
− I(x,t−τ1)

I1
+ ln I(x,t−τ2)

I(x,t)

]}
dx

− β1T1 f (V1)DV1
p2 I1e−μ2τ2

∫
Ω
‖∇V(x,t)‖2

V2(x,t) dx

=
∫

Ω

{
d1T1

(
1− T1

T(x,t)

)(
1− T(x,t)

T1

)
+ β1T1 f (V1)

[
3− T1

T(x,t) −
V1 I(x,t−τ2)

I1V(x,t)

−
T(x,t−τ1) f

(
V(x,t−τ1)

)
I1

T1 f (V1)I(x,t) + f (V)
f (V1)

− V
V1

+ ln
T(x,t−τ1) f

(
V(x,t−τ1)I(x,t−τ2)

)
T(x,t) f

(
V(x,t)

)
I(x,t)

]

+ β2T1g(I1)
[
2− T1

T(x,t) −
T(x,t−τ1)g

(
I(x,t−τ1)

)
I1

T1 g(I1)I(x,t) + ln
T(x,t−τ1)g

(
I(x,t−τ1)

)
T(x,t)g

(
I(x,t)

)
+ g(I)

g(I1)
− I(x,t)

I1

]
+ p1 I1eμ1τ1 Z(x, t)− p1eμ1τ1 d4

q Z(x, t)

}
dx

− β1T1 f (V1)DV1
p2 I1e−μ2τ2

∫
Ω
‖∇V(x,t)‖2

V2(x,t) dx

=
∫

Ω

{
d1T1

(
1− T1

T(x,t)

)(
1− T(x,t)

T1

)
+ β1T1 f (V1)

[
− ϕ

(
T1

T(x,t)

)
− ϕ

( T(x,t−τ1) f
(

V(x,t−τ1)

)
I1

T1 f (V1)I(x,t)

)
− ϕ

(
V1 I(x,t−τ2)

I1V(x,t)

)
+ f (V(x,t))

f (V1)
− V(x,t)

V1
+ ln f (V1)V(x,t)

f
(

V(x,t)
)

V1

]

+ β2T1g(I1)
[
− ϕ( T1

T(x,t) )− ϕ
(

T(x,t−τ1)g(I(x,t−τ1))I1

T1 g(I1)I(x,t)
) +

g
(

I(x,t)
)

g(I1)
− I(x,t)

I1

+ ln g(I1)I(x,t)

g
(

I(x,t)
)

I1

]
+ p1eμ1τ1 (I1 − I2)Z(x, t)

}
dx

− β1T1 f (V1)DV1
p2 I1e−μ2τ2

∫
Ω
‖∇V(x,t)‖2

V2(x,t) dx

=
∫

Ω{d1T1

(
1− T1

T(x,t)

)
(1− T(x,t)

T1
) + β1T1 f (V1)

[
− ϕ( T1

T(x,t) )− ϕ
(

V1 I(x,t−τ2)
I1V(x,t)

)
− ϕ

( T(x,t−τ1) f
(

V(x,t−τ1)

)
I1

T1 f (V1)I(x,t)

)
− ϕ

(
f (V1)V(x,t)

f
(

V(x,t)
)

V1

)
+
( f

(
V(x,t)

)
f (V1)

− V(x,t)
V1

)(
1− f (V1)

f (V(x,t))

)]
+ β2T1g(I1)

[
− ϕ

(
T1

T(x,t)

)
− ϕ

(
T(x,t−τ1)g(I(x,t−τ1))I1

T1 g
(

I1 I(x,t)
) − ϕ

(
g(I1)I(x,t)
g(I(x,t))I1

)

+
( g

(
I(x,t)

)
g(I1)

− I(x,t)
I1

)(
1− g(I1)

g(I(x,t))

)]
+ p1eμ1τ1 (I1 − I2)Z(x, t)}dx

− β1T1 f (V1)DV1
p2 I1e−μ2τ2

∫
Ω
‖∇V(x,t)‖2

V2(x,t) dx.
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It follows from (A1) that

( f
(

V(x, t)
)

f (V1)
− V(x, t)

V1

)(
1− f (V1)

f
(

V(x, t)
)) ≤ 0,

( g
(

I(x, t)
)

g(I1)
− I(x, t)

I1

)(
1− g(I1)

g
(

I(x, t)
)) ≤ 0.

As ϕ(u) ≥ 0 for u > 0, similar to [23], sgn(I1 − I2) = sgn(R1 − 1), then dL2
dt ≤ 0,

therefore E1 is stable, and dL2
dt = 0 holds if and only if T(x, t) = T1, I(x, t) = I1, V(x, t) = V1

and Z(x, t) = 0 when R1 < 1 , or T(x, t) = T1, I(x, t) = I1, V(x, t) = V1 when R1 = 1.
The largest invariance set of { dL2

dt = 0} is the singleton {E1}. It follows from the classical
LaSalle’s invariance principle that E1 is globally asymptotically stable when R1 ≤ 1 < R0.
This completes the proof.

Theorem 4. For system (4), if R1 > 1, the interior equilibrium E2 is globally asymptotically stable.

Proof. Define the Lyapunov function as follows

L3 =
∫

Ω

{
T2 ϕ(

T
T2

) + eμ1τ1 I2 ϕ(
I
I2
) +

β1T2 f (V2)

p2 I2e−μ2τ2
V2 ϕ(

V
V2

)

+
p1eμ1τ1

q
Z2 ϕ(

Z
Z2

) + β1T2 f (V2)
∫ t

t−τ1

ϕ
(T(θ) f (V(θ))

T2 f (V2)

)
dθ

+ β2T2g(I2)
∫ t

t−τ1

ϕ
(T(θ)g

(
I(θ)

)
T2g(I2)

)
dθ + β1T2 f (V2)

∫ t

t−τ2

ϕ
( I(θ)

I2

)
dθ

}
dx,

calculating dL3
dt along the solutions of system (4) , we have

dL3
dt =

∫
Ω

{(
1− T2

T(x,t)

)(
λ− d1T(x, t)− β1T(x, t) f

(
V(x, t)

)
− β2T(x, t)g

(
I(x, t)

))
+

(
1− I2

I(x,t)

)[
β1T(x, t− τ1) f

(
V(x, t− τ1)

)
+ β2T(x, t− τ1)g

(
I(x, t− τ1)

)]
− eμ1τ1

(
1− I2

I(x,t)

)[
d2 I(x, t)− p1 I(x, t)Z(x, t)

]
+ β1T2 f (V2)

p2 I2e−μ2τ2

(
1− V2

V(x,t)

)[
ΔV(x, t) + p2e−μ2τ2 I(x, t− τ2)− d3V(x, t)

]
+ p1eμ1τ1

q

(
1− Z2

Z(x,t)

)[
qI(x, t)Z(x, t)− d4Z(x, t)

]
+ β1T2 f (V2)

[ T(x,t) f
(

V(x,t)
)

T2 f (V2)
−

T(x,t−τ1) f
(

V(x,t−τ1)

)
T2 f (V2)

+ ln
T(x,t−τ1) f

(
V(x,t−τ1)

)
T(x,t) f

(
V(x,t)

) ]

+ β2T2g(I2)
[ T(x,t)g

(
I(x,t)

)
T2g(I2)

−
T(x,t−τ1)g

(
I(x,t−τ1)

)
T2g(I2)

+ ln
T(x,t−τ1)g

(
I(x,t−τ1)

)
T(x,t)g

(
I(x,t)

) ]
+ β1T2 f (V2)

[
I(x,t)

I2
− I(x,t−τ2)

I2
+ ln I(x,t−τ2)

I(x,t)

]}
dx,

using the equilibrium conditions of E2, then

λ = d1T2 + β1T2 f (V2) + β2T2g(I2), p2e−μ2τ2 I2 = d3V2,
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β1T2 f (V2) + β2T2g(I2) = eμ1τ1(d2 I2 + p1 I2Z2), I2 =
d4

q
,

also recall
∫

Ω ΔV(x, t)dx = 0 and
∫

Ω
ΔV(x,t)
V(x,t) dx =

∫
Ω
‖∇V(x,t)‖2

V2(x,t) dx, we have

dL3
dt =

∫
Ω

{
d1T2

(
1− T2

T(x,t)

)(
1− T(x,t)

T2

)
+ β1T2 f (V2)

[
3− T2

T(x,t) −
V2 I(x,t−τ2)

I2V(x,t)

−
T(x,t−τ1) f

(
V(x,t−τ1)

)
I2

T2 f (V2)I(x,t) +
f
(

V(x,t)
)

f (V2)
− V(x,t)

V2
+ ln

T(x,t−τ1) f
(

V(x,t−τ1)

)
I(t−τ2)

T(x,t) f (V(x,t))I(x,t)

]
+ β2T2g(I2)

[
2− T2

T(x,t) −
T(x,t−τ1)g

(
I(x,t−τ1)

)
I2

T2g(I2)I(x,t) +
g
(

I(x,t)
)

g(I2)
− I(x,t)

I2

+ ln
T(x,t−τ1)g

(
I(x,t−τ1)

)
T(x,t)g

(
I(x,t)

) ]}
dx− β1T2 f (V2)DV2

p2 I2e−μ2τ2

∫
Ω
‖∇V(x,t)‖2

V2(x,t) dx

=
∫

Ω{d1T2

(
1− T2

T(x,t)

)
(1− T(x,t)

T2
) + β1T2 f (V2)

[
− ϕ( T2

T(x,t) )− ϕ(V2 I(x,t−τ2)
I2V(x,t) )

− ϕ
( T(x,t−τ1) f

(
V(x,t−τ1)

)
I2

T2 f (V2)I(x,t)

)
+

f
(

V(x,t)
)

f (V2)
− V(x,t)

V2
+ ln f (V2)V(x,t)

V2 f (V(x,t))

]
+ β2T2g(I2)

[
− ϕ( T2

T(x,t) )− ϕ
( T(x,t−τ1)g

(
I(x,t−τ1)

)
I2

T2g(I2)I(x,t)

)
+

g
(

I(x,t)
)

g(I2)
− I(x,t)

I2
+ ln g(I2)I(x,t)

I2g
(

I(x,t)
) ]}dx− β1T2 f (V2)DV2

p2 I2e−μ2τ2

∫
Ω
‖∇V(x,t)‖2

V2(x,t) dx

=
∫

Ω{d1T2

(
1− T2

T(x,t)

)(
1− T(x,t)

T2

)
+ β1T2 f (V2)

[
− ϕ

(
T2

T(x,t)

)
− ϕ

(
V2 I(x,t−τ2)

I2V(x,t)

)
−

ϕ
( T(x,t−τ1) f

(
V(x,t−τ1)

)
I2

T2 f (V2)I(x,t)

)
− ϕ

(
f (V2)V(x,t)

V2 f
(

V(x,t)
))+

(
f (V(x,t))

f (V2)
− V(x,t)

V2

)(
1− f (V2)

f
(

V(x,t)
))]

+ β2T2g(I2)
[
− ϕ

(
T2

T(x,t)

)
− ϕ

( T(x,t−τ1)g
(

I(x,t−τ1)

)
I2

T2g(I2)I(x,t)

)
− ϕ

(
g(I2)I(x,t)

I2g
(

I(x,t)
))

+
( g

(
I(x,t)

)
g(I2)

− I(x,t)
I2

)(
1− g(I2)

g(I(x,t))

)]}
dx− β1T2 f (V2)DV2

kI2

∫
Ω
‖∇V(x,t)‖2

V2(x,t) dx,

from (A1), it is easy to see that( f (V(x, t))
f (V1)

− V(x, t)
V1

)(
1− f (V1)

f (V(x, t))

)
≤ 0,

( g(I(x, t))
g(I1)

− I(x, t)
I1

)(
1− g(I1)

g(I(x, t))

)
≤ 0.

As ϕ(u) ≥ 0 for u > 0, then dL3
dt ≤ 0. The largest invariant set of { dL3

dt = 0} is the
single point {E2}, similar to the proof of Theorem 3, E2 is globally asymptotically stable.
This completes the proof.

3. Dynamical Behaviors of Discrete System

In preceding section, by introducing Lyapunov functions, we have shown by using
continuous Lyapunov functionals that the global asymptotic stability of the equilibria of
the continuous system (4) is completely determined by the basic reproduction number. R0
and R1 act as threshold parameter for the existence and stability of equilibria. This arises a
natural question that whether the global asymptotic stability of the equilibria of the discrete
system (7) can be preserved. In this section, we will discuss this problem.

Obviously, the discrete system (7) has the same equilibria as system (4). Similarly,
E0 = (T0, 0, 0, 0) is the infection-free equilibrium, E1 = (T1, I1, V1, 0) stands for the CTL-
inactivated equilibrium and E2 = (T2, I2, V2, Z2) is the CTL-activated equilibrium.
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Rewriting the discrete system (7) yields⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Tm
n+1 = λΔt+Tm

n
1+Δt(d1+β1 f (Vm

n +β2g(Im
n ))

,

Im
n+1 =

Im
n +Δte−μ1τ1 (β1Tm

n−m1+1 f (Vm
n−m1

)+β2Tm
n−m1+1g(Im

n−m1
)

1+Δt(d2+p1Zm
n )

,
AVn+1 = Vn + Δtp2e−μ2τ2 In−m2+1,

Zm
n+1 =

(1+ΔtqIm
n+1)

1+Δtd4
Zm

n ,

, (5)

where the square matrix A of dimension (N + 1)× (N + 1) is given by⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c1 c2 0 · · · 0 0 0
c2 c3 c2 · · · 0 0 0
0 c2 c3 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · c3 c2 0
0 0 0 · · · c2 c3 c2
0 0 0 · · · 0 c2 c1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
with c1 = 1 + DΔt/(Δx)2 + d3Δt, c2 = −DΔt/(Δx)2, c3 = 1 + 2DΔt/(Δx)2 + d3Δt. It is
clear that A is strictly diagonally dominant matrix, therefore A is non-singular. From the
third equation of the above system, we have

Vn+1 = A−1(Vn + Δtp2e−μ2τ2 In−m2+1).

Theorem 5. For any Δt > 0, Δx > 0, the solutions of the system (7) remain nonnegative and
bounded for all n ∈ N.

Proof. Since all parameters in (7) are positive, then using the induction , it is easy to deduce
from (5) that all solutions of system (7) remain nonnegative provided that the initial value
are nonnegative, for all n ∈ ℵ.

Next, we establish the boundedness of solutions. Define a sequence Gn as follows

Gm
n = Tm

n + Im
n +

p1

q
Zm

n + Δt
n−1

∑
j=n−m1

[
β1 f (Vm

j ) + β2g(Im
j )

]
Tm

j+1e−Δtμ1(n−j),

then

Gm
n+1 − Gm

n = Δt
(

λ− d1Tm
n+1 − β1Tm

n+1 f (Vm
n )− β2Tm

n+1g(Im
n )

)
+ Δt

[
e−μ1τ1

(
β1Tm

n−m1+1 f (Vm
n−m1

) + β2Tm
n−m1+1g(Im

n−m1
)
)

− d2 Im
n+1 − p1 Im

n+1Zm
n

]
+

p1

q
Δt(qIm

n+1Zm
n − d4Zm

n+1)

+ Δt
n

∑
j=n−m1+1

[
β1 f (Vm

j ) + β2g(Im
j )

]
Tm

j+1e−Δtμ1(n−j+1)

− Δt
n−1

∑
j=n−m1

[
β1 f (Vm

j ) + β2g(Im
j )

]
Tm

j+1e−Δtμ1(n−j)

= Δt

{
λ− d1Tm

n+1 − d2 Im
n+1 −

p1d4

q
Zm

n+1

+
(

1− eΔtμ1
) n

∑
j=n−m1+1

[
β1 f (Vm

j ) + β2g(Im
j )

]
Tm

j+1e−Δtμ1(n−j+1)

}
≤ Δt(λ− ξGm

n+1),
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where ξ = min{d1, d2, d4, eΔtμ1−1
Δt }, then we have

Gm
n+1 ≤

1
1 + Δtξ

Gm
n +

Δtλ
1 + Δtξ

,

it follows from the induction that

Gm
n ≤ (

1
1 + Δtξ

)nGm
0 +

λ

ξ

[
1− (

1
1 + Δtξ

)n
]
,

therefore
lim sup

n→∞
Gm

n ≤
λ

ξ
, f or all m ∈ {0, 1, · · · , N},

this implies that {Gn} is bounded, then {Tn},{In} and {Zn} are bounded.
From the third equation of system (7)

N

∑
m=0

Vm
n+1 =

1
1 + d3Δt

( N

∑
m=0

Vm
n + Δtp2e−μ2τ2

N

∑
m=0

Im
n−m2+1

)
,

since {In} is bounded, then there exists η > 0 such that Im
n ≤ η for all n ∈ {−m2,−m2 +

1, · · · , 0, 1, · · · }, m ∈ {0, 1, · · · ,ℵ}, then

N

∑
m=0

Vm
n+1 ≤

1
1 + d3Δt

[ N

∑
m=0

Vm
n + Δtp2e−μ2τ2 η(N + 1)

]
,

by induction, we have

N

∑
m=0

Vm
n ≤ 1

(1 + d3Δt)n

N

∑
m=0

Vm
0 +

p2e−μ2τ2 η(N + 1)
d3

[
1− 1

(1 + d3Δt)n

]
≤

N

∑
m=0

Vm
0 +

p2e−μ2τ2 η(N + 1)
d3

,

therefore {Vn} is bounded. This completes the proof.

Global Stability

In this section, we will study the global stability of the equilibria of system (7) .

Theorem 6. For system (7), if R0 ≤ 1, the infection-free equilibrium E0 is globally asymptotically stable.

Proof. Define the discrete Lyapunov function as follows

Wn =
N

∑
m=0

{
1

Δt

[
T0 ϕ(

Tm
n

T0
) + eμ1τ1

(
1 + Δt

β2T0g′(0)
R0eμ1τ1

)
Im
n +

β1T0 f ′(0)
d3R0

(
1 + Δtd3

)
Vm

n

+
p1eμ1τ1

q

(
1 + Δtd4

)
Zm

n

]
+

n−1

∑
j=n−m1

(
β1 f (Vm

j ) + β2g(Im
j )

)
Tm

j+1

+
β1 p2T0 f ′−μ2τ2

R0d3

n−1

∑
j=n−m2

Im
j+1

}
.

It follows from u− 1 ≥ ln u for all u > 0, that Wn ≥ 0 for all n ∈ ℵ. Then, along the
trajectory of (7)
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Wn+1 −Wn =
N

∑
m=0

{
1

Δt

[
Tm

n+1 − Tm
n + T0 ln

Tm
n

Tm
n+1

+ eμ1τ1
(

1 + Δt
β2T0g′(0)

R0eμ1τ1

)
(Im

n+1 − Im
n )

+
β1T0 f ′(0)

d3R0

(
1 + Δtd3

)(
Vm

n+1 −Vm
n

)
+

p1eμ1τ1

q

(
1 + Δtd4

)(
Zm

n+1 − Zm
n

)]
+

n

∑
j=n−m1+1

(
β1 f (Vm

j ) + β2g(Im
j )

)
Tm

j+1

−
n−1

∑
j=n−m1

(
β1 f (Vm

j ) + β2g(Im
j )

)
Tm

j+1

+
β1 p2T0 f ′−μ2τ2

R0d3

[ n

∑
j=n−m2+1

Im
j+1 −

n−1

∑
j=n−m2

Im
j+1

]}
,

using the equilibrium condition of E0, we have

Wn+1 −Wn ≤
N

∑
m=0

{(
1− T0

Tm
n+1

)(
d1T0 − d1Tm

n+1 −
(

β1 f (Vm
n ) + β2g(Im

n )
)

Tm
n+1

)
+

(
1 + Δt

β2T0g′(0)
R0eμ1τ1

)(
β1Tm

n−m1+1 f (Vm
n−m1

) + β2Tm
n−m1+1g(Im

n−m1
)
)

+ eμ1τ1
(

1 + Δt
β2T0g′(0)

R0eμ1τ1

)(
− d2 Im

n+1 − p1 Im
n+1Zm

n

)
+

β1T0 f ′(0)
d3R0

(
1 + Δtd3

)
D

Vm+1
n+1 − 2Vm

n+1 + Vm−1
n+1

(Δx)2

+
β1T0 f ′(0)

d3R0

(
1 + Δtd3

)(
p2eμ2τ2 Im

n−m2+1 − d3Vm
n+1

)
+

p1eμ1τ1

q

(
1 + Δtd4

)(
qIm

n+1Zm
n − d4Zm

n+1

)
+
(

β1 f (Vm
n ) + β2g(Im

n )
)

Tm
n+1

−
(

β1 f (Vm
n−m1

) + β2g(Im
n−m1

)
)

Tm
n−m1+1

− β1 p2T0 f ′−μ2τ2

R0d3

(
Im
n+1 − Im

n−m2+1

)}

=
N

∑
m=0

{
d1T0

(
2− T0

Tm
n+1

−
Tm

n+1
T0

)
+ β1T0 f (Vm

n ) + β2T0g(Im
n )

− β2T0g′(0)
R0

Im
n −

β1T0 f ′(0)
R0

Vm
n −

d4 p1eμ1τ1

q
Zm

n

}

+
β1T0 f ′(0)D
d3R0(Δx)2

(
VN+1

n+1 −VN
n+1 + V−1

n+1 −V0
n+1

)
≤

N

∑
m=0

{
d1T0

(
2− T0

Tm
n+1

−
Tm

n+1
T0

)
+

β1T0 f ′(0)
R0

Vm
n

(
R0 − 1

)

+
β2g′(0)T0

R0
Im
n

(
R0 − 1

)
− d4 p1eμ1τ1

q
Zm

n

}
,

the last inequality is deduced from condition (A2), if R0 ≤ 1, then Wn+1 −Wn ≤ 0, for
all n ∈ ℵ, therefore, {Wn} is monotone decreasing sequence. It follows from Wn ≥ 0 that
limn→∞ Wn ≥ 0, then

lim
n→∞

(Wn+1 −Wn) = 0,

therefore
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(1) If R0 < 1, then limn→∞(Wn+1 − Wn) = 0 implies that limn→∞ Tm
n = T0 ,

limn→∞ Vm
n = 0, limn→∞ Zm

n = 0, limn→∞ Im
n = 0.

(2) If R0 = 1, then limn→∞(Wn+1 − Wn) = 0 implies that limn→∞ Tm
n = T0 ,

limn→∞ Zm
n = 0, from system (7), we obtain limn→∞ Im

n = 0, limn→∞ Vm
n = 0.

Hence, E0 is globally asymptotically stable when R0 ≤ 1. This completes the proof.

Theorem 7. For system (7), if R1 < 1 < R0, the CTL-inactivated infection equilibrium E1 of is
globally asymptotically stable .

Proof. Define the discrete Lyapunov function as follows

W̃n =
N

∑
m=0

{
1

Δt

[
T1 ϕ(

Tm
n

T1
) + eμ1τ1 I1 ϕ(

Im
n
I1
) +

β1T1 f (V1)

p2e−μ2τ2 I1
V1 ϕ(

Vm
n

V1
) +

p1eμ1τ1

q
Zm

n

]
+ β1T1 f (V1)

n−1

∑
j=n−m1

ϕ
(Tm

j+1 f (Vm
j )

T1 f (V1)

)
+ β2T1g(I1)

n−1

∑
j=n−m1

ϕ
(Tm

j+1g(Im
j )

T1g(I1)

)

+ β1T1 f (V1)
n−1

∑
j=n−m2

ϕ
( Im

j+1

I1

)
+ β1T1 f (V1)ϕ

( f (Vm
n )

f (V1)

)
+ β2T1g(I1)ϕ

( g(Im
n )

g(I1)

)}
.

Since u− 1 ≥ ln u for all u > 0, then W̃n ≥ 0 for all n ∈ ℵ. The Lyapunov derivative
along (7) is

W̃n+1 − W̃n =
N

∑
m=0

{
1

Δt

[
Tm

n+1 − Tm
n + T1 ln

Tm
n

Tm
n+1

+ eμ1τ1
(

Im
n+1 − Im

n + I1 ln
Im
n

Im
n+1

)
+

β1T1V1

p2e−μ2τ2 I1

(
Vm

n+1 −Vm
n + V1 ln

Vm
n

Vm
n+1

)
+

p1eμ1τ1

q

(
Zm

n+1 − Zm
n

)]
+ β1T1 f (V1)

[ n

∑
j=n−m1+1

ϕ
(Tm

j+1 f (Vm
j )

T1 f (V1)

)
−

n−1

∑
j=n−m1

ϕ
(Tm

j+1 f (Vm
j )

T1 f (V1)

)]

+ β2T1g(I1)
[ n

∑
j=n−m1+1

ϕ
(Tm

j+1g(Im
j )

T1g(I1)

)
−

n−1

∑
j=n−m1

ϕ
(Tm

j+1g(Im
j )

T1g(I1)

)]

+ β1T1 f (V1)
[ n

∑
j=n−m2+1

ϕ
( Im

j+1

I1

)
−

n−1

∑
j=n−m2

ϕ(
Im
j+1

I1
)
]

+ β1T1 f (V1)
( f (Vm

n+1)

f (V1)
− f (Vm

n )

f (V1)
+ ln

f (Vm
n )

f (Vm
n+1)

)
+ β2T1g(I1)

( g(Im
n+1)

g(I1)
− g(Im

n )

g(I1)
+ ln

g(Im
n )

g(Im
n+1)

)}

≤
N

∑
m=0

{ 1
Δt

[(
1− T1

Tm
n+1

)(
Tm

n+1 − Tm
n

)
+ eμ1τ1

(
1− I1

Im
n+1

)(
Im
n+1 − Im

n

)
+

β1T1 f (V1)

p2e−μ2τ2 I1

(
1− V1

Vm
n+1

)(
Vm

n+1 −Vm
n

)
+

p1eμ1τ1

q
(Zm

n+1 − Zm
n )

]
+ β1T1 f (V1)

[
ϕ
(Tm

n+1 f (Vm
n )

T1 f (V1)

)
− ϕ

(Tm
n−m1+1 f (Vm

n−m1
)

T1 f (V1)

)]
+ β2T1g(I1)

[
ϕ(

Tm
n+1g(Im

n )

T1g(I1)
)− ϕ(

Tm
n−m1+1g(Im

n−m1
)

T1g(I1)
)
]

+ β1T1 f (V1)
[

ϕ(
Im
n+1
I1

)− ϕ(
Im
n−m2+1

I1
)
]

+ β1T1 f (V1)
[ f (Vm

n+1)

f (V1)
− f (Vm

n )

f (V1)
+ ln

f (Vm
n )

f (Vm
n+1)

]
+ β2T1g(I1)

[ g(Im
n+1)

g(I1)
− g(Im

n )

g(I1)
+ ln

g(Im
n )

g(Im
n+1)

]}
.
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As E1 satisfies
λ = d1T1 + β1T1 f (V1) + β2T1g(I1),

β1T1 f (V1) + β2T1g(I1) = e−μ1τ1 d2 I1, p2e−μ1τ1 I1 = d3V1,

then

W̃n+1 − W̃n ≤
N

∑
m=0

{
d1T1

(
1− T1

Tm
n+1

)(
1−

Tm
n+1
T1

)
+
(

1− T1

Tm
n+1

)(
β1T1 f (V1) + β2T1 g(I1)

)
−

(
1− T1

Tm
n+1

)(
β1Tm

n+1 f (Vm
n ) + β2Tm

n+1 g(Im
n )

)
+

(
1− I1

Im
n+1

)(
β1Tm

n−m1+1 f (Vm
n−m1

) + β2Tm
n−m1+1 g(Im

n−m1
)
)

− β1T1 f (V1)
Im
n+1
I1

(
1− I1

Im
n+1

)
− β2T1 g(I1)

Im
n+1
I1

(
1− I1

Im
n+1

)
+ β1T1 f (V1)

(
1− V1

Vm
n+1

)( Im
n−m2+1

I1
−

Vm
n+1
V1

)
− p1d4eμ1 τ1

q
Zm

n+1

+ β1T1 f (V1)
[

ϕ
( Tm

n+1 f (Vm
n )

T1 f (V1)

)
− ϕ

( Tm
n−m1+1 f (Vm

n−m1
)

T1 f (V1)

)]
+ β2T1 g(I1)

[
ϕ
( Tm

n+1 g(Im
n )

T1 g(I1)

)
− ϕ

( Tm
n−m1+1 g(Im

n−m1
)

T1 g(I1)

)]
+ β1T1 f (V1)

[
ϕ
( Im

n+1
I1

)
− ϕ

( Im
n−m2+1

I1

)]
+ β1T1 f (V1)

( f (Vm
n+1)

f (V1)
− f (Vm

n )

f (V1)
+ ln

f (Vm
n )

f (Vm
n+1)

)
+ β2T1 g(I1)

( g(Im
n+1)

g(I1)
− g(Im

n )

g(I1)
+ ln

g(Im
n )

g(Im
n+1)

)}

−
N

∑
m=0

β1T1 f (V1)D
p2 I1e−μ2 τ2 (Δx)2

(
1− V1

Vm
n+1

)(
Vm+1

n+1 − 2Vm
n+1 + Vm−1

n+1

)

=
N

∑
m=0

{
d1T1

(
1− T1

Tm
n+1

)(
1−

Tm
n+1
T1

)
+ β1T1 f (V1)

[
3− T1

Tm
n+1

−
V1 Im

n−m2+1

Vm
n+1 I1

−
Tm

n−m1+1 f (Vm
n−m1

)I1

T1 f (V1)Im
n+1

+
f (Vm

n+1)

f (V1)
−

Vm
n+1
V1

+ ln
Tn−m1+1 f (Vm

n−m1
)Im

n−m2+1

Tm
n+1 f (Vm

n+1)Im
n+1

]
+ β2T1 g(I1)

[
2− T1

Tm
n+1

−
Tm

n−m1+1 g(Im
n−m1

)I1

T1 g(I1)Im
n+1

+
g(Im

n+1)

g(I1)

−
Im
n+1
I1

+ ln
Tm

n−m1+1 g(Im
n−m1

)

Tm
n+1 g(Im

n+1)

]
− p1d4eμ1 τ1

q
Zm

n+1

}
− β1T1 f (V1)D

p2 I1e−μ2 τ2 (Δx)2 V1

N−1

∑
m=0

(Vm+1
n+1 −Vm

n+1)
2

Vm+1
n+1 Vm

n+1

=
N

∑
m=0

{
d1T1

(
1− T1

Tm
n+1

)(
1−

Tm
n+1
T1

)
+ β1T1 f (V1)

[
− ϕ(

T1

Tm
n+1

)

− ϕ
( Tm

n−m1+1 f (Vm
n−m1

)I1

T1 f (V1)Im
n+1

)
− ϕ

( V1 Im
n−m2+1

Vm
n+1 I1

)
+

f (Vm
n+1)

f (V1)
−

Vm
n+1
V1

+ ln
f (Vm

1 )Vm
n+1

f (Vm
n+1)V1

]
+ β2T1 g(I1)

[
− ϕ

( T1

Tm
n+1

)
− ϕ

( Tm
n−m1+1 g(Im

n−m1
)I1

T1 g(I1)Im
n+1

)
+

g(Im
n+1)

g(I1)
−

Im
n1

I1
+ ln

g(Im
1 )Im

n+1
g(Im

n+1)I1

]
− p1d4eμ1 τ1

q
Zm

n+1

}
− β1T1 f (V1)D

p2 I1e−μ2 τ2 (Δx)2 V1

N−1

∑
m=0

(Vm+1
n+1 −Vm

n+1)
2

Vm+1
n+1 Vm

n+1

=
N

∑
m=0

{
d1T1

(
1− T1

Tm
n+1

)(
1−

Tm
n+1
T1

)
+ β1T1 f (V1)

[
− ϕ(

T1

Tm
n+1

)

− ϕ
( Tm

n−m1+1 f (Vm
n−m1

)I1

T1 f (V1)Im
n+1

)
− ϕ

( V1 Im
n−m2+1

Vm
n+1 I1

)
− ϕ

( f (Vm
1 )Vm

n+1
f (Vm

n+1)V1

)
+
( f (Vm

n+1)

f (V1)
−

Vm
n+1
V1

)(
1−

f (Vm
n+1)V1

f (Vm
1 )Vm

n+1

)]
+ β2T1 g(I1)

[
− ϕ

( T1

Tm
n+1

)
− ϕ

( Tm
n−m1+1 g(Im

n−m1
)I1

T1 g(I1)Im
n+1

)
− ϕ

( g(Im
1 )Im

n+1
g(Im

n+1)I1

)
+

( g(Im
n+1)

g(I1)
−

Im
n+1
I1

)(
1− g(I1)

g(Im
n+1)

)]
− p1d4eμ1 τ1

q
Zm

n+1

}

− − β1T1 f (V1)D
p2 I1e−μ2 τ2 (Δx)2 V1

N−1

∑
m=0

(Vm+1
n+1 −Vm

n+1)
2

Vm+1
n+1 Vm

n+1

.
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Similar to the proof of Theorem 3, we have( f (V(x, t))
f (V1)

− V(x, t)
V1

)(
1− f (V1)

f (V(x, t))

)
≤ 0,

( g(I(x, t))
g(I1)

− I(x, t)
I1

)(
1− g(I1)

g(I(x, t))

)
≤ 0.

It follows from ϕ(u) ≥ 0 that (W̃n+1 − W̃n) ≤ 0, for all n ∈ ℵ, this implies that {W̃n}
is monotone decreasing sequence. As W̃n ≥ 0, then limn→∞ W̃n ≥ 0, limn→∞(W̃n+1 −
W̃n) = 0, so that limn→∞ Tm

n = T1. Combined with system (7), we obtain limn→∞ Im
n = I1,

limn→∞ Vm
n = V1 and limn→∞ Zm

n = 0, for all m ∈ {0, 1, · · · , N}, then E1 of system (7) is
globally asymptotically stable. This completes the proof.

Theorem 8. For system (7), if R1 > 1, the interior equilibrium E2 is not globally asymptotically stable .

Proof. Define the discrete Lyapunov function as follows

Wn =
N

∑
m=0

{
1

Δt

[
T2 ϕ

(Tm
n

T2

)
+ eμ1τ1 I2 ϕ

( Im
n
I2

)
+

β1T2 f (V2)

p2e−μ2τ2 I2
V2 ϕ

(Vm
n

V2

)
+

p1eμ1τ1

q
Z2 ϕ

(Zm
n

Z2

)
+ Δtp1eμ1τ1 I2Zm

n

]
+ β1T2 f (V2)

n−1

∑
j=n−m1

ϕ
(Tm

j+1 f (Vm
j )

T2 f (V2)

)
+ β2T2g(I2)

n−1

∑
j=n−m1

ϕ
(Tm

j+1g(Im
j )

T2g(I2)

)
+ β1T2 f (V2)

n−1

∑
j=n−m2

ϕ
( Im

j+1

I2

)

+ β1T2 f (V2)ϕ
( f (Vm

n )

f (V2)

)
+ β2T2g(I2)ϕ

( g(Im
n )

g(I2)

)}
,

it follows from u− 1 ≥ ln u that Wn ≥ 0 for all n ∈ ℵ. Then, along the trajectory of (7)

Wn+1 −Wn =
N

∑
m=0

{
1

Δt

[
Tm

n+1 − Tm
n + T2 ln

Tm
n

Tm
n+1

+ eμ1τ1
(

Im
n+1 − Im

n + I2 ln
Im
n

Im
n+1

)
+

β1T2 f (V2)

p2e−μ2τ2 I2

(
Vm

n+1 −Vm
n + V2 ln

Vm
n

Vm
n+1

)
+

p1eμ1τ1

q
(Zm

n+1 − Zm
n

+ Z2 ln
Zm

n
Zm

n+1
) + Δtp1eμ1τ1 I2

(
Zm

n+1 − Zm
n

)]
+ β1T2 f (V2)

[ n

∑
j=n−m1+1

ϕ
(Tm

j+1 f (Vm
j )

T2 f (V2)

)
−

n−1

∑
j=n−m1

ϕ
(Tm

j+1 f (Vm
j )

T2 f (V2)

)]
+ β2T2g(I2)

[ n

∑
j=n−m1+1

ϕ
(Tm

j+1g(Im
j )

T2g(I2)

)
−

n−1

∑
j=n−m1

ϕ
(Tm

j+1g(Im
j )

T2g(I2)

)]
+ β1T2 f (V2)

[ n

∑
j=n−m2+1

ϕ
( Im

j+1

I2

)
−

n−1

∑
j=n−m2

ϕ
( Im

j+1

I2

)]
+ β1T2 f (V2)

( f (Vm
n+1)

f (V2)
− f (Vm

n )

f (V2)
+ ln

f (Vm
n )

f (Vm
n+1)

)
+ β2T2g(I2)

( g(Im
n+1)

g(I2)
− g(Im

n )

g(I2)
+ ln

g(Im
n )

g(Im
n+1)

)
}
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≤
N

∑
m=0

{
1

Δt

[(
1− T2

Tm
n+1

)(
Tm

n+1 − Tm
n

)
+ eμ1τ1

(
1− I2

Im
n+1

)(
Im
n+1 − Im

n

)
+

β1T2 f (V2)

p2e−μ2τ2 I2

(
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Vm
n+1
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Vm

n+1 −Vm
n

)
+
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q

(
1− Z2
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n+1

)(
Zm

n+1 − Zm
n

)
+ Δtp1eμ1τ1 I2

(
Zm

n+1 − Zm
n

)]
+ β1T2 f (V2)

[
ϕ
(Tm

n+1 f (Vm
n )

T2 f (V2)

)
− ϕ

(Tm
n−m1+1 f (Vm

n−m1
)

T2 f (V2)

)]
+ β2T2g(I2)

[
ϕ
(Tm

n+1g(Im
n )

T2g(I2)

)
− ϕ

(Tm
n−m1+1g(Im
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)]
+ β1T2 f (V2)

[
ϕ
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n+1
I2

)
− ϕ

( Im
n−m2+1

I2

)]
+ β1T2 f (V2)

( f (Vm
n+1)

f (V2)
− f (Vm

n )

f (V2)
+ ln

f (Vm
n )

f (Vm
n+1)

)
+ β2T2g(I2)

( g(Im
n+1)

g(I2)
− g(Im

n )

g(I2)
+ ln

g(Im
n )

g(Im
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)}
.

From the equilibrium condition of E2, we have

λ = d1T2 + β1T2 f (V2) + β2T2g(I2), p2e−μ2τ2 I2 = d3V2,

β1T2 f (V2) + β2T2g(I2) = eμ1τ1(d2 I2 + p1 I2Z2), I2 =
d4

q
,

then

Wn+1 −Wn ≤
N

∑
m=0
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n ) + β2Tm

n+1g(Im
n )

)
+
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− DV2β1T2 f (V2)

p2e−μ2τ2 I2(Δx)2

N−1
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=
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Similar to the proof of Theorem 3, we have( f (V(x, t))
f (V1)

− V
V1

)(
1− f (V1)

f (V(x, t))

)
≤ 0,

( g(I(x, t))
g(I1)

− I(x, t)
I1

)(
1− g(I1)

g(I(x, t))

)
≤ 0,

this implies that {Wn} is a monotone decreasing sequence, then Wn ≥ 0, limn→∞ Wn
≥ 0, therefore

lim
n→∞

(Wn+1 −Wn) = 0.

According to the system (7), we claim that the CTL-activated equilibrium E2 is not
globally asymptotically stable. In fact, if the CTL-activated equilibrium E2 is globally
asymptotically stable, from the above inequality, we have

0 ≤ −d2eμ1τ1 I2 − p1eμ1τ1 Z2 I2 < 0,

this is a contradiction. This completes the proof.

4. Numerical Simulation

In this section, we choose f (V) = V, g(I) = I, some numerical results of system (4) are
presented for supporting our analytic results. Based on biological meanings of virus dynamics
model from papers [39,40], we have estimated the values of our model parameters as follows:
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If we choose D = 3, then we can give a numerical simulation of the stability of system (4).
Using the data in Table 1, we first show in a simulation that the interior equilibrium is stable
(see Figure 1).

Table 1. State variables and parameters of HIV-1 infection model.

Parameter Description

λ 0.9 References [40]
d1 0.03 Reference [39]
d2 0.5 Reference [39]
d3 0.1 Reference [40]
d4 0.3 Reference [40]
β1 0.3 Reference [40]
β2 0.4 Reference [40]
p1 0.08 day−1 Estimate
p2 0.5 day−1 Reference [40]
q 0.4 Estimate

Figure 1. When D = 3, R1 > 1, the interior equilibrium E2 is globally asymptotically stable.

From Figure 1, we can see that the population has gradually stabilized after a
sharp fluctuation.

If we choose β1 = 0.0003 and β2 = 0.004, then R0 < 1. We can simulate that the
infection-free equilibrium is globally asymptotically stable (see Figure 2).

From Figure 2 , we can see that the number of infected cells, virus and CTLs tends to
zero, except uninfected cells.

If we choose q = 0.000004 and p2 = 0.9, then R1 ≤ 1 < R0. This moment the
CTL-inactivated equilibrium is globally asymptotically stable (see Figure 3).
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Figure 2. When D = 3, R0 < 1, the infection-free equilibrium E0 is globally asymptotically stable.

Figure 3. When D = 3, R1 ≤ 1 < R0, the CTL-inactivated equilibrium E1 is globally asymptotically stable.

From Figure 3, we can see that the population in the compartment CTLs tends to 0.
In addition, except for CTLs, the number of uninfected cells, infected cells, virus tends to
certain constants.

The novelty of this paper is that we consider the effects of diffusion, time delay, and
abstract functions on the spread of viruses. In order to see the impact of proliferation on
the spread of the virus more intuitively, we first choose q = 0.04. Next, we select D = 0
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and D = 300 decibels to simulate the image of I while other parameters keep the values in
the Table 1.

The left image in Figure 4 is an image without time delay, and the right image is an
image with time delay equal to 300. Since we are simulating long-term dynamic behavior,
from the overall image of the two figures, there is no obvious difference in either the stable
position or the growth rate. So where is the effect of diffusion reflected? We believe that
the effect of diffusion should be reflected in the growth of I. Therefore, we project the two
graphs in Figure 4 on the time-quantity axis (Figure 5).

Figure 4. Comparison of compartment I at D = 0 and D = 300.

Figure 5. Comparison projection of compartment I when D = 0 and D = 300.

From the left image of Figure 5, we can clearly see that when there is no time delay, the
image rises smoothly and the curve is smooth. When the time lag is equal to 300, the image
is not a smooth curve, which shows that the proliferation brings about the proliferation of
infected cells and the uneven fluctuation.

5. Conclusions and Discussion

It is necessary to understand the dynamics model for HIV infection since these infected
cells usually cause a CTL response from the immune system. In this paper, we first devel-
oped a diffusive infection model (4) with general nonlinear incidence rate and two delays
on the base of model (3), we show that the global stability of equilibria is completely deter-
mined by the reproductive numbers for viral infection R0 and for CTL immune response R1.
Second, we considered the corresponding discretization of the continuous model by using
nonstandard finite difference scheme, and then studied the global stability of the discrete
system. Some numerical simulations were also presented to support our analytic results.
In general, systems of PDE cannot be solved explicitly, and numerical solutions have to be
studied instead. By using the NSFD scheme, we showed that the proposed discrete model
partly preserves the global stability of equilibria of the corresponding continuous model.
We plan to address how other diffusive terms (for infected and uninfected cells) affect the
model in future work.
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Abstract: Recently, the fixed-circle problems have been studied with different approaches as an
interesting and geometric generalization. In this paper, we present some solutions to an open
problem CC: what is (are) the condition(s) to make any circle C�0,σ as the common fixed circle for two
(or more than two) self-mappings? To do this, we modify some known contractions which are used
in fixed-point theorems such as the Hardy–Rogers-type contraction, Kannan-type contraction, etc.

Keywords: metric spaces; fixed circle; common fixed circle

MSC: 54E35; 54E40; 54H25

1. Introduction

In the recent past, the fixed-circle problem has been introduced as a new geometric
generalization of fixed-point theory. After that, some solutions to this problem have been
investigated using various techniques (for example, see [1–8], and the references therein).
In addition, in [1], the following open problem was given:

Let (X,D) be a metric space and C�0,σ = {� ∈ X : D(�, �0) = σ} be any circle on X.
Open Problem CC: What is (are) the condition(s) to make any circle C�0,σ as the

common fixed circle for two (or more than two) self-mappings?
Let ξ and g be two self-mappings on a set X. If ξ� = g� = � for all � ∈ C�0,σ, then

C�0,σ is called a common fixed circle of the pair (ξ, g) (see [9] for more details).
Some solutions were given for this open problem (for example, see [8,9]). To obtain

new solutions, in this paper, we define new contractions for the pair (ξ, g) and prove new
common fixed-circle results on metric spaces. Before moving on to the main results, we
recall the following.

Throughout this article, we denote by R the set of all real numbers and by R+ the set
of all positive real numbers.

Let ξ and g be self-mappings on a set X. If ξ� = g� = w for some � in X, then � is
called a coincidence point of ξ and g, w is called a point of coincidence of ξ and g.

Let C(ξ, g) = {� ∈ X : ξ� = g� = �} denote the set of all common fixed-points of
self-mappings ξ and g.

In [10], Wardowski introduced the following family of functions to obtain a new type
of contraction called F -contraction.

Let F be the family of all mappings F : R+ → R that satisfy the following conditions:

(F1)F is strictly increasing, that is, for all a, b ∈ R+ such that a < b implies that F (a) <
F (b);

(F2)For every sequence {an}n∈N of positive real numbers, limn→∞ an = 0 and
limn→∞ F (an) = −∞ are equivalent;
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(F3)There exists k ∈ (0, 1) such that lima→0+ akF (a) = 0.

Some examples of functions that confirm the conditions (F1), (F2), and (F3) are
as follows:

• F (a) = ln(a);
• F (a) = ln(a) + a;
• F (a) = ln

(
a2 + a

)
;

• F (a) = − 1√
a (see [10] for more details).

Definition 1. [10] Let (X,D) be a metric space, F ∈ F and ξ : X → X. The mapping ξ is called
an F -contraction if there exists τ > 0 such that

τ +F (D(ξ�, ξv)) ≤ F (D(�, v))

for all �, v ∈ X satisfying D(T�, Tv) > 0.

2. Main Results

In this section, we prove new common fixed-circle theorems on metric spaces. For
this purpose, we modify some well-known contractions such as the Wardowski-type
contraction [10], Nemytskii–Edelstein-type contraction [11,12], Banach-type contraction
[13], Hardy–Rogers-type contraction [14], Reich-type contraction [15], Chatterjea-type
contraction [16], and Kannan-type contraction [17].

At first, we introduce the following new contraction type for two mappings to obtain
some common fixed-circle results on metric spaces.

Definition 2. Let (X,D) be a metric space and ξ, g be two self-mappings on X. If there exist
τ > 0,F ∈ F and �0 ∈ X such that

τ +F (D(�, ξ�) +D(�, g�)) ≤ F (D(�0, �))

for all � ∈ X satisfying min{D(�, ξ�),D(�, g�)} > 0, then the pair (ξ, g) is called a
Wardowski-type Fξg-contraction.

Notice that the point �0 mentioned in Definition 2 must be a common fixed-point of
the mappings ξ and g. In fact, if �0 is not a common fixed-point of ξ and g, then we have
D(�0, ξ�0) > 0 and D(�0, g�0) > 0. Hence, we obtain

min{D(�0, ξ�0),D(�0, g�0)} > 0 =⇒ τ +F (D(�0, ξ�0) +D(�0, g�0)) ≤ F (D(�0, �0)).

This gives a contradiction since the domain of F is (0, ∞). As a result, we receive the
following proposition as a consequence of Definition 2.

Proposition 1. Let (X,D) be a metric space. If the pair (ξ, g) is a Wardowski-typeFξg-contraction
with �0 ∈ X, then we have ξ�0 = g�0 = �0.

Using this new type contraction, we give the following fixed-circle theorem.

Theorem 1. Let (X,D) be a metric space and the pair (ξ, g) be a Wardowski-type Fξg-contraction
with �0 ∈ X. Define the number σ by

σ = inf{D(�, ξ�) +D(�, g�) : � �= ξ�, � �= g�, � ∈ X}. (1)

Then, C�0,σ is a common fixed circle of the pair (ξ, g). Especially, ξ and g fix every circle C�0,r
where r < σ.

Proof. We distinguish two cases.
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Case 1: Let σ = 0. Clearly, C�0,σ = {�0} and by Proposition 1, we see that C�0,σ is a
common fixed circle of the pair (ξ, g).

Case 2: Let σ > 0 and � ∈ C�0,σ. If ξ� �= � and g� �= �, then by (1), we have
D(�, ξ�) +D(�, g�) ≥ σ. Hence, using the Wardowski-type Fξg-contraction property
and the fact that F is increasing, we obtain

F (σ) ≤ F (D(�, ξ�) +D(�, g�))

≤ F (D(�0, �))− τ

< F (D(�0, �))

= F (σ)

This gives a contradiction. Therefore, we have D(�, ξ�) +D(�, g�) = 0, that is,
� = ξ� and � = g�. As a consequence, C�0,σ is a common fixed circle of the pair (ξ, g).

Now, we show that ξ and g also fix any circle C�0,r with r < σ. Let � ∈ C�0,r
and suppose that D(�, ξ�) +D(�, g�) > 0. With the Wardowski-type Fξg-contraction
property, we have

F (D(�, ξ�) +D(�, g�)) ≤ F (D(�0, �))− τ

< F (D(�0, �))

= F (r).

Since F is increasing, then we find

D(�, ξ�) +D(�, g�) < D(�0, �) < r < σ.

However, σ = inf{D(�, ξ�) +D(�, g�) : � �= ξ�, � �= g�, � ∈ X}, so this gives a
contradiction. Thus, D(�, ξ�) +D(�, g�) = 0 and � = ξ� = g�. Hence, C�0,r is a
common fixed circle of the pair (ξ, g).

Example 1. Let X =
{

0, 1,−e, e, e− 1, e + 1,−e2, e2, e2 − 1, e2 + 1, e2 − e, e2 + e
}

with usual
metric. Define ξ, g : X → X by

ξ� =

{
1, � = 0
�, otherwise

and

g� =

{
e− 1, � = 0

�, otherwise
.

Take F (a) = ln(a) + a, a > 0, τ = e and �0 = e2. Thus, the pair (ξ, g) is a Wardowski-type
Fξg-contraction. For � = 0, we have

min{D(�, ξ�),D(�, g�)} = min{D(0, 1),D(0, e− 1)}
= min{1, e− 1}
= 1 > 0

In addition, we can easily see that the following inequality is satisfied:

τ +F (D(�, ξ�) +D(�, g�)) ≤ F (D(�0, �))

e +F (1 + e− 1) ≤ F
(

e2
)

e + ln e + e ≤ ln e2 + e2

2e + 1 ≤ 2 + e2
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With Theorem (1), we obtain

σ = inf{D(�, ξ�) +D(�, g�) : � �= ξ�, � �= g�, � ∈ X} = inf{1 + e− 1} = e

and ξ, g fix the circle Ce2,e =
{

e2 − e, e2 + e
}

. Notice that ξ and g fix also the circle Ce2,1 ={
e2 − 1, e2 + 1

}
.

The converse of Theorem 1 fails. The following example confirms this statement.

Example 2. Let (X,D) be a metric space with any point �0 ∈ X. Define the self-mappings ξ and
g as follows:

ξ� =

{
�, D(�, �0) ≤ μ
�0, D(�, �0) > μ

and

g� =

{
�, D(�, �0) ≤ μ
�0, D(�, �0) > μ

,

for all � ∈ X with any μ > 0. Then, it can be easily checked that the pair (ξ, g) is not a Wardowski-
type Fξg-contraction for the point �0 but ξ and g fix every circle C�0,r where r ≤ μ.

Example 3. Let C be the set of complex numbers, (C,D) be the usual metric space, and define the
self-mappings ξ, g : C→ C as follows:

ξ� =

{
�, |�− 2| < e

� + 1
2 , |�− 2| ≥ e

and

g� =

{
�, |�− 2| < e

�− 1
2 , |�− 2| ≥ e

,

for all � ∈ C. We have σ = inf{D(�, ξ�) +D(�, g�) : � �= ξ�, � �= g�, � ∈ C}. Thus, the
pair (ξ, g) is a Wardowski-type Fξg-contraction with F = ln(a), τ = ln e and �0 = 2 ∈ C.
Obviously, the number of common fixed circles of ξ and g is infinite.

Definition 3. If there exist τ > 0, F ∈ F and �0 ∈ X such that for all � ∈ X the following holds:

τ +F (D(ξ�, �) +D(g�, �)) < F (D(�, �0))

with min{D(ξ�, �),D(g�, �)} > 0, then the pair (ξ, g) is called a Nemytskii–Edelstein-type
Fξg-contraction.

Proposition 2. Let (X,D) be a metric space. If the pair (ξ, g) is a Nemytskii-Edelstein-type
Fξg-contraction with �0 ∈ X, then we have ξ�0 = g�0 = �0.

Proof. It can be easily proved from the similar arguments used in Proposition 1.

Theorem 2. Let the pair (ξ, g) be a Nemytskii–Edelstein-type Fξg-contraction with �0 ∈ X and
σ be defined as in (1). Then, C�0,σ is a common fixed circle of the pair (ξ, g). Especially, ξ and g fix
every circle C�0,r where r < σ.

Proof. It can be easily seen from the proof of Theorem 1.

In addition, we inspire the classical Banach contraction principle to give the following
definition:
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Definition 4. If there exist τ > 0, F ∈ F and �0 ∈ X such that for all � ∈ X, the follow-
ing holds:

τ +F (D(ξ�, �) +D(g�, �)) ≤ F (ηD(�, �0))

with min{D(ξ�, �),D(g�, �)} > 0 where η ∈ [0, 1), then the pair (ξ, g) is called a Banach-type
Fξg-contraction.

Proposition 3. Let (X,D) be a metric space. If the pair (ξ, g) is a Banach-type Fξg-contraction
with �0 ∈ X, then we have ξ�0 = g�0 = �0.

Proof. It can be easily proved from the similar arguments used in Proposition 1.

Theorem 3. Let the pair (ξ, g) be a Banach-type Fξg-contraction with �0 ∈ X and σ be defined
as in (1). Then C�0,σ is a common fixed circle of the pair (ξ, g). Especially, ξ and g fix every circle
C�0,r where r < σ.

Proof. It can be easily seen from the proof of Theorem 1.

If we consider Example 1, then the pair (ξ, g) is both a Nemytskii–Edelstein-type
Fξg-contraction and a Banach-type Fξg-contraction with F (a) = ln(a) + a, a > 0, τ = e,
�0 = e2 and so ξ, g have two common fixed circles Ce2,e and Ce2,1.

We introduce the notion of Hardy–Rogers-type Fξg-contraction.

Definition 5. Let (X,D) be a metric space and ξ, g be two self-mappings on X. The pair (ξ, g) is
called a Hardy–Rogers-type Fξg-contraction if there exist τ > 0 and F ∈ F such that

τ +F (D(�, ξ�) +D(�, g�)) ≤ F
(

αD(�, �0) + βD(�, ξ�)
+γD(�, g�) + δD(�0, ξ�0) + ηD(�0, g�0)

)
(2)

holds for any �, �0 ∈ X with min{D(�, ξ�),D(�, g�)} > 0, where α, β, γ, δ, η are nonnegative
numbers, α �= 0 and α + β + γ + δ + η ≤ 1.

Proposition 4. If the pair (ξ, g) is a Hardy–Rogers-type Fξg-contraction with �0 ∈ X, then we
have ξ�0 = g�0 = �0.

Proof. Suppose that ξ�0 �= �0 and g�0 �= �0. From the definition of the Hardy–Rogers-
type Fξg-contraction with min{D(�0, ξ�0),D(�0, g�0)} > 0, we obtain

τ +F (D(�0, ξ�0) +D(�0, g�0)) ≤ F
(

αD(�0, �0) + βD(�0, ξ�0)
+γD(�0, g�0) + δD(�0, ξ�0) + ηD(�0, g�0)

)
= F ((β + δ)D(�0, ξ�0) + (γ + η)D(�0, g�0))

< F (D(�0, ξ�0) +D(�0, g�0))

a contradiction because of τ > 0. Thus, we have ξ�0 = g�0 = �0.

Using Proposition 4, we rewrite the condition (2) as follows:

τ +F (D(�, ξ�),D(�, g�)) ≤ F (αD(�, �0) + βD(�, ξ�) + γD(�, g�))

with min{D(�, ξ�),D(�, g�)} > 0 where α, β, γ are nonnegative numbers, α �= 0 and
α + β + γ ≤ 1.

Using this inequality, we present the following fixed-circle result.

Theorem 4. Let the pair (ξ, g) be a Hardy–Rogers-type Fξg-contraction with �0 ∈ X and σ be
defined as in (1). If β = γ, then C�0,σ is a common fixed circle of the pair (ξ, g). In addition, ξ and
g fix every circle C�0,r with r < σ.
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Proof. We distinguish two cases.
Case 1: Let σ = 0. Clearly, C�0,σ = {�0} and by Proposition 4, we see that C�0,σ is a

common fixed circle of the pair (ξ, g).
Case 2: Let σ > 0 and � ∈ C�0,σ. Using the Hardy–Rogers-type Fξg-contractive

property and the fact that F is increasing, we have

F (σ) ≤ F (D(�, ξ�) +D(�, g�))

≤ F (αD(�, �0) + βD(�, ξ�) + γD(�, g�))− τ

< F (ασ + β(D(�, ξ�) +D(�, g�)))

< F ((α + β)(D(�, ξ�) +D(�, g�)))

< F (D(�, ξ�) +D(�, g�)).

This gives a contradiction. Therefore, D(�, ξ�) +D(�, g�) = 0 and so ξ� = � = g�. As
a result, C�0,σ is a common fixed circle of the pair (ξ, g).

Now, we show that ξ and g also fix any circle C�0,r with r < σ. Let � ∈ C�0,r
and suppose that D(�, ξ�) +D(�, g�) > 0. By the Hardy–Rogers-type Fξg-contraction,
we have

F (D(�, ξ�) +D(�, g�)) ≤ F (αD(�, �0) + βD(�, ξ�) + γD(�, g�))− τ

< F (αD(�, �0) + βD(�, ξ�) + γD(�, g�))

< F (D(�, ξ�) +D(�, g�))

a contradiction. So, we obtain D(�, ξ�) +D(�, g�) = 0 and ξ� = � = g�. Thus, C�0,r is
a common fixed circle of the pair (ξ, g).

Remark 1. If we take α = 1 and β = γ = δ = η = 0 in Definition 5, then we obtain the concept
of a Wardowski-type Fξg-contractive mapping.

Now, we give the concept of a Reich-type Fξg-contraction as follows.

Definition 6. If there exist τ > 0, F ∈ F and �0 ∈ X such that for all � ∈ X, the follow-
ing holds:

τ +F (D(ξ�, �) +D(g�, �)) ≤ F
(

αD(�, �0) + β[D(�, ξ�) +D(�, g�)]
+γ[D(�0, ξ�0) +D(�0, g�0)]

)
(3)

with min{D(ξ�, �),D(g�, �)} > 0, where α + β + γ < 1, α �= 0 and α, β, γ ∈ [0, ∞). Then,
the pair (ξ, g) is called a Reich-type Fξg-contraction on X.

Proposition 5. If the pair (ξ, g) is a Reich-type Fξg-contraction with �0 ∈ X, then we have
ξ�0 = �0 = g�0.

Proof. Assume that ξ�0 �= �0 and g�0 �= �0. From the definition of the Reich-type
Fξg-contraction with min{D(�0, ξ�0),D(�0, g�0)} > 0, we get

τ +F (D(�0, ξ�0) +D(�0, g�0)) ≤ F
(

αD(�0, �0) + β[D(�0, ξ�0) +D(�0, g�0)]
+γ[D(�0, ξ�0) +D(�0, g�0)]

)
= F ((β + γ)[D(�0, ξ�0) +D(�0, g�0)])

< F (D(�0, ξ�0) +D(�0, g�0))

a contradiction because of τ > 0. Then, we have ξ�0 = �0 = g�0.

Using Proposition 5, we rewrite the condition (3) as follows:

τ +F (D(ξ�, �) +D(g�, �)) ≤ F (αD(�, �0) + β[D(�, ξ�) +D(�, g�)])
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with min{D(ξ�, �),D(g�, �)} > 0 where α + β < 1, α �= 0 and α, β ∈ [0, ∞).

Using this inequality, we obtain the following common fixed-circle result.

Theorem 5. Let the pair (ξ, g) be a Reich-type Fξg-contraction with �0 ∈ X and σ be defined as
in (1). Then, C�0,σ is a common fixed circle of the pair (ξ, g). Especially, ξ and g fix every circle
C�0,ρ with ρ < σ.

Proof. We distinguish two cases.
Case 1: Let σ = 0. Clearly, C�0,σ = {�0} and by Proposition 5, we see that C�0,σ is a

common fixed circle of the pair (ξ, g).
Case 2: Let σ > 0 and � ∈ C�0,σ. This case can be easily seen since

F (σ) ≤ F (D(ξ�, �) +D(g�, �))

≤ F ((α + β)[D(ξ�, �) +D(g�, �)])

< F (D(ξ�, �) +D(g�, �)).

Consequently, C�0,σ is a common fixed circle of the pair (ξ, g). Especially, ξ and g fix
every circle C�0,ρ with ρ < σ.

To obtain, some new common fixed-circle results, we define the following contractions.

Definition 7. If there exist τ > 0, F ∈ F and �0 ∈ X such that for all � ∈ X, the follow-
ing holds:

τ +F (D(ξ�, �) +D(g�, �)) ≤ F (η[D(ξ�, �0) +D(g�, �0)])

with min{D(ξ�, �),D(g�, �)} > 0 where η ∈
(

0, 1
3

)
, then the pair (ξ, g) is called a Chatterjea-

type Fξg-contraction.

Proposition 6. If the pair (ξ, g) is a Chattereja-type Fξg-contraction with �0 ∈ X, then we have
ξ�0 = �0 = g�0.

Proof. From the similar arguments used in Proposition 4, it can be easily proved.

Theorem 6. Let the pair (ξ, g) be a Chatterjea-type Fξg-contraction with �0 ∈ X and σ be defined
as in (1). Then, C�0,σ is a common fixed circle of the pair (ξ, g). Especially, ξ and g fix every circle
C�0,ρ with ρ < σ.

Proof. We distinguish two cases.
Case 1: Let σ = 0. Clearly, C�0,σ = {�0} and by Proposition 6, we see that C�0,σ is a

common fixed circle of the pair (ξ, g).
Case 2: Let σ > 0 and � ∈ C�0,σ. Using the Chatterjea-type Fξg-contractive property,

the fact that F is increasing, and the triangle inequality property of metric function d, we
have

F (σ) ≤ F (D(ξ�, �) +D(g�, �))

≤ F (η[D(ξ�, �0) +D(g�, �0)])− τ

≤ F (η[D(ξ�, �) +D(�, �0) +D(g�, �) +D(�, �0)])

= F (η[2D(�, �0) + [D(ξ�, �) +D(g�, �)]])

= F (3η[D(ξ�, �) +D(g�, �)])

< F (D(ξ�, �) +D(g�, �)).
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This gives a contradiction. Thus, D(ξ�, �) +D(g�, �) = 0, that is, ξ� = � = g�.
As a result, C�0,σ is a common fixed circle of the pair (ξ, g). By the similar arguments used
in the proof of Theorem 1, ξ and g also fix any circle C�0,ρ with ρ < σ.

Definition 8. If there exist τ > 0, F ∈ F and �0 ∈ X such that for all � ∈ X the following holds:

τ +F (D(ξ�, �) +D(g�, �)) ≤ F (η[D(�, ξ�0) +D(�, g�0)]) (4)

with min{D(ξ�, �),D(g�, �)} > 0 where η ∈
(

0, 1
2

)
, then the pair (ξ, g) is called a Kannan-

type Fξg-contraction.

Proposition 7. If the pair (ξ, g) is a Kannan-type Fξg-contraction with �0 ∈ X, then we have
ξ�0 = �0 = g�0.

Proof. From the similar arguments used in Proposition 4, it can be easily obtained.

Theorem 7. Let the pair (ξ, g) be a Kannan-type Fξg-contraction with �0 ∈ X and σ be defined
as in (1). Then, C�0,σ is a common fixed circle of the pair (ξ, g). Especially, ξ and g fix every circle
C�0,ρ with ρ < σ.

Proof. We distinguish two cases.
Case 1: Let σ = 0. Clearly, C�0,σ = {�0} and by Proposition 7, we see that C�0,σ is a

common fixed circle of the pair (ξ, g).
Case 2: Let σ > 0 and � ∈ C�0,σ. Using the Kannan-type Fξg-contractive property, the

fact that F is increasing, and the triangle inequality property of metric function d, we have

F (σ) ≤ F (D(ξ�, �) +D(g�, �))

≤ F (η[D(�, ξ�0) +D(�, g�0)])− τ

≤ F (η[D(�, �0) +D(�, �0)])

≤ F (2ησ)

< F (D(ξ�, �) +D(g�, �)).

This gives a contradiction. Thus, D(ξ�, �) +D(g�, �) = 0, that is, ξ� = � = g�. As a
result, C�0,σ is a common fixed circle of the pair (ξ, g). By similar arguments used in the
proof of Theorem 1, ξ and g also fix any circle C�0,ρ with ρ < σ.

Now, we present an illustrative example of our obtained results.

Example 4. Let X =
{

1, 2, e2, e2 − 1, e2 + 1
}

be the metric space with the usual metric. Let us
define the self-mappings ξ, g : X −→ X as

ξ� =

{
2, � = 1
�, otherwise

and

g� =

{
2, � = 1
�, otherwise

,

for all � ∈ X.

The pair (ξ, g) is a Hardy–Rogers-type Fξg-contraction with F = lna + a, τ = 0.01,
α = β = γ = 1

4 and �0 = e2. Indeed, we get

min{D(�, ξ�),D(�, g�)} = min{D(1, 2),D(1, 2)} = 1 > 0
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for � = 1 and we get

αD(�, �0) + βD(�, ξ�) + γD(�, g�) =
1
4

[
D
(

1, e2
)
+D(1, 2) +D(1, 2)

]
=

1
4

[
e2 − 1 + 1 + 1

]
=

e2 + 1
4

.

Then, we have

τ +F (D(�, ξ�) +D(�, g�)) = 0.01 + ln 2 + 2

≤ F
(

e2 + 1
4

)
= ln

(
e2 + 1

)
− ln 4 +

e2 + 1
4

.

The pair (ξ, g) is a Reich-type Fξg-contraction with F = ln a, τ = ln
(
e2 + 1

)
− ln 6,

α = β = 1
3 and �0 = e2. Indeed, we get

min{D(�, ξ�),D(�, g�)} = min{D(1, 2),D(1, 2)} = 1 > 0

for � = 1 and we have

αD(�, �0) + β[D(�, ξ�) +D(�, g�)] =
1
3
D
(

1, e2
)
+

1
3
[D(1, 2) +D(1, 2)]

=
e2 + 1

3
.

Then, we obtain

τ +F (D(�, ξ�) +D(�, g�)) = ln
(

e2 + 1
)
− ln 6 + ln 2

≤ F
(

e2 + 1
3

)
= ln(e2 + 1)− ln 3.

The pair (ξ, g) is both a Chatterjea-type Fξg-contractions and a Kannan-type Fξg-
contraction with F = lna, τ = ln

(
e2 − 2

)
− ln 4, η = 1

4 and �0 = e2. Indeed, for Chatterjea-
type Fξg-contractions, we get

min{D(�, ξ�),D(�, g�)} = min{D(1, 2),D(1, 2)} = 1 > 0

for � = 1 and we have

η[D(�0, ξ�) +D(�0, g�)] =
1
4

[
D
(

e2, 2
)
+D

(
e2, 2

)]
≤ 1

4

[
2(e2 − 2)

]
=

e2 − 2
2

.
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Then, we obtain

τ +F (D(�, ξ�) +D(�, g�)) = ln
(

e2 − 2
)
− ln 4 + ln 2

≤ F
(

e2 − 2
2

)
= ln

(
e2 − 2

)
− ln 2.

For Kannan-type Fξg-contractions, we have

min{D(�, ξ�),D(�, g�)} = min{D(1, 2),D(1, 2)} = 1 > 0

for � = 1 and we have

η[D(�, ξ�0) +D(�, g0)] =
1
4

[
D
(

1, e2
)
+D

(
1, e2

)]
≤ 1

4

[
2(e2 − 1)

]
=

e2 − 1
2

.

Then, we obtain

τ +F (D(�, ξ�) +D(�, g�)) = ln
(

e2 − 2
)
− ln 4 + ln 2

≤ F
(

e2 − 1
2

)
= ln

(
e2 − 1

)
− ln 2.

Consequently, ξ and g fix the circle Ce2,1 = {e2 − 1, e2 + 1}.
If we combine the notions of Banach-type Fξg-contractions, Chatterjea-type Fξg-

contractions, and Kannan-type Fξg-contractions, then we get the following corollary. This
corollary can be considered as Zamfirescu-type common fixed-circle result [18].

Corollary 1. Let (X,D) be a metric space, ξ, g : X −→ X be two self-mappings and σ be defined
as in (1). If there exist τ > 0, F ∈ F and �0 ∈ X such that for all � ∈ X, at least one of the
followings holds:

(1) τ +F (D(ξ�, �) +D(g�, �)) ≤ F (αD(�, �0)),
(2) τ +F (D(ξ�, �) +D(g�, �)) ≤ F (β[D(ξ�, �0) +D(g�, �0)]),
(3) τ +F (D(ξ�, �) +D(g�, �)) ≤ F (γ[D(�, ξ�0) +D(�, g�0)]),

with min{D(ξ�, �),D(g�, �)} > 0 where 0 ≤ α < 1, 0 ≤ β, γ < 1
2 , then C�0,σ is a common

fixed circle of the pair (ξ, g). Especially, ξ and g fix every circle C�0,ρ with ρ < σ.

Proof. It is obvious.
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9. Mlaiki, N.; Taş, N.; Özgür, N.Y. On the fixed-circle problem and Khan type contractions. Axioms 2018, 7, 80. [CrossRef]
10. Wardowski, D. Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2012, 2012,

94. [CrossRef]
11. Edelstein, M. On fixed and periodic points under contractive mappings. J. Lond. Math. Soc. 1962, 37, 74–79. [CrossRef]
12. Nemytskii, V.V. The fixed point method in analysis. Usp. Mat. Nauk 1936, 1, 141–174. (In Russian)
13. Banach, S. Sur les operations dans les ensembles abstraits et leur application auxequations integrales. Fund. Math. 1922, 3,

133–181. [CrossRef]
14. Hardy, G.E.; Rogers, T.D. A generalization of a fixed point theorem of Reich. Canad. Math. Bull. 1973, 16, 201–206. [CrossRef]
15. Reich, S. Some remarks concerning contraction mappings. Oanad. Math. Bull. 1971, 14, 121–124. [CrossRef]
16. Chatterjea, S.K. Fixed-point theorems. C. R. Acad. Bulgare Sci. 1972, 25, 727–730. [CrossRef]
17. Kannan, R. Some results on fixed points. Bull. Calcutta Math. Soc. 1968, 60, 71–76.
18. Zamfirescu, T. A theorem on fixed points. Atti Acad. Naz. Lincei Rend. Cl. Sei. Fis. Mat. Natur. 1972, 52, 832–834.

149



Citation: Huang, H.; Du, W.-S. On a

New Integral Inequality:

Generalizations and Applications.

Axioms 2022, 11, 458. https://

doi.org/10.3390/axioms11090458

Academic Editor: Simeon Reich

Received: 23 August 2022

Accepted: 4 September 2022

Published: 6 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

On a New Integral Inequality: Generalizations
and Applications

Huaping Huang 1,† and Wei-Shih Du 2,*,†

1 School of Mathematics and Statistics, Chongqing Three Gorges University,
Wanzhou, Chongqing 404020, China

2 Department of Mathematics, National Kaohsiung Normal University, Kaohsiung 82444, Taiwan
* Correspondence: wsdu@mail.nknu.edu.tw
† These authors contributed equally to this work.

Abstract: In this paper, we present some generalizations and improvements of a new integral
inequality from the 29th IMC in 2022. Some applications of our new results are also provided.
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1. Introduction and Motivation

As we all know, in the history of the research process of inequality theory, many
important generalization studies often come from some simple inequalities that have
widespread applications. Over the past more than five decades, rapid developments
in inequality theory and its applications have contributed greatly to many branches of
mathematics, economics, finance, physics, dynamic systems theory, game theory, and so
on; for more details, one can refer to [1–4] and the references therein.

The following new integral inequality (here we regard it as a theorem) arose from
the 29th International Mathematics Competition for University Students (for short, IMC
2022), which was held in Blagoevgrad, Bulgaria on 1–7 August 2022. For more information
(including proofs), please visit the following official website of IMC 2022: https://www.
imc-math.org.uk (accessed on 1 August 2022).

Theorem 1. Let f : [0, 1]→ (0,+∞) be an integrable function such that f (x) · f (1− x) = 1 for

all x ∈ [0, 1]. Then
∫ 1

0
f (x)dx ≥ 1.

Motivated by the above integral inequality, the following questions arise naturally.
Question 1. Can we establish new real generalizations of Theorem 1?
Question 2. Does Theorem 1 still hold if we replace the codomain (0,+∞) of f with
(−∞,+∞)?

In this work, our questions will be answered affirmatively. In Section 2, we successfully
establish a new real generalization (see Theorem 2 below) of Theorem 1, which is a positive
answer to Question 1. In Section 3, we first construct a new simple counterexample to show
that Question 2 is not always true. Furthermore, we establish an equivalent theorem (see
Theorem 3 below) of Theorem 2. Finally, some applications of our new results are given in
Section 4. The new results we present in this paper are novel and developmental.

2. New Results for Question 1

The following result is very crucial for answering Question 1.

Axioms 2022, 11, 458. https://doi.org/10.3390/axioms11090458 https://www.mdpi.com/journal/axioms150
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Lemma 1. Let f (x) be an integrable function on [a, b]. Then

∫ b

a
f (x)dx =

∫ b

a
f (a + b− x)dx

=
1
2

∫ b

a
[ f (x) + f (a + b− x)]dx

=
∫ a+b

2

a
[ f (x) + f (a + b− x)]dx

=
∫ b

a+b
2

[ f (x) + f (a + b− x)]dx.

Proof. By using integration by substitution (see, e.g., [5]), we have

∫ b

a
f (x)dx

(let t=a+b−x)
=========

∫ a

b
f (a + b− t) (−dt)

=
∫ b

a
f (a + b− t)dt =

∫ b

a
f (a + b− x)dx. (1)

Hence, we obtain ∫ b

a
f (x)dx =

1
2

[∫ b

a
f (x)dx +

∫ b

a
f (a + b− x)dx

]
=

1
2

∫ b

a
[ f (x) + f (a + b− x)]dx. (2)

Note that∫ b

a+b
2

[ f (x) + f (a + b− x)]dx
(let t=a+b−x)
=========

∫ a

a+b
2

[ f (a + b− t) + f (t)] (−dt)

=
∫ a+b

2

a
[ f (a + b− t) + f (t)]dt (3)

=
∫ a+b

2

a
[ f (x) + f (a + b− x)]dx,

so it is easy to see that

∫ b

a
[ f (x) + f (a + b− x)]dx

=
∫ a+b

2

a
[ f (x) + f (a + b− x)]dx +

∫ b

a+b
2

[ f (x) + f (a + b− x)]dx

= 2
∫ a+b

2

a
[ f (x) + f (a + b− x)]dx.

Combining (1) and (2) together with (3), we prove the desired conclusion.

With the help of Lemma 1, we can establish the following generalization of Theorem 1.

Theorem 2. Let f : [a, b]→ (0,+∞) be an integrable function such that

f (x) · f (a + b− x) = c (4)

for all x ∈ [a, b], where c > 0 is a constant. Then

∫ b

a
f (x)dx ≥ (b− a)

√
c. (5)
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The case of equality holds in (5) if and only if f (x) = f (a + b− x) =
√

c for all x ∈ [a, b].

Proof. We use two methods to show (5).
Method 1. By (4) and using the arithmetic-mean–geometric-mean (AM-GM) inequality,
we have

f (x) + f (a + b− x) ≥ 2
√

f (x) f (a + b− x) = 2
√

c for any x ∈ [a, b]. (6)

By (6) and applying Lemma 1, we arrive at

∫ b

a
f (x)dx =

∫ a+b
2

a
[ f (x) + f (a + b− x)]dx ≥

∫ a+b
2

a
2
√

c dx = (b− a)
√

c.

Obviously, the equality holds in (5) if and only if the equality holds in (6) and if and only if
f (x) = f (a + b− x) =

√
c for all x ∈ [a, b].

Method 2. By applying Lemma 1 and using (4), it follows that

∫ b

a
f (x)dx =

∫ b

a
f (a + b− x)dx =

∫ b

a

c
f (x)

dx.

Applying Cauchy–Schwarz inequality, we obtain(∫ b

a
f (x)dx

)2

=
∫ b

a
f (x)dx ·

∫ b

a

c
f (x)

dx ≥
(∫ b

a

√
c dx

)2

= (b− a)2c.

This proves the inequality (5). Clearly, the equality holds in (5) if and only if f (x) =
f (a + b− x) =

√
c for all x ∈ [a, b].

Remark 1. By taking a = 0 and b = c = 1 in Theorem 2, we can prove Theorem 1.

Remark 2. There are many functions satisfying condition (4), as in Theorem 2, such as

(i) f (x) =
√

c, x ∈ [a, b], where c > 0 is a constant;
(ii) f (x) = αx, x ∈ [a, b], where α > 0 with α �= 1;

(iii) f (x) =
x

a + b− x
, x ∈ [a, b];

(iv) f (x) =
a + b− x

x
, x ∈ [a, b];

(v) f (x) =

⎧⎪⎨⎪⎩
(a + b− x)2 + 1, x ∈ [a, a+b

2 ),
1, x = a+b

2 ,
1

x2+1 , x ∈ ( a+b
2 , b].

3. New Results for Question 2

In this section, we first provide a simple counterexample to show that Question 2 is
not always true if we replace the codomain (0,+∞) of f with (−∞,+∞).

Example 1. Let f : [0, 1]→ (−∞,+∞) be defined by

f (x) =

{
1, x ∈ [0, 1

4 ) ∪ ( 3
4 , 1],

−1, x ∈ [ 1
4 , 3

4 ].

Then, f is an integrable function on [0, 1] but not continuous on [0, 1]. Clearly, f (x) satisfies
f (x) · f (1− x) = 1 for all x ∈ [0, 1]. However, it is easy to see that∫ 1

0
f (x)dx = 0 < 1.
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By applying Theorem 2, we obtain the following result.

Theorem 3. Let g : [a, b]→ (−∞,+∞) be an integrable function such that

g(x) · g(a + b− x) = λ (7)

for all x ∈ [a, b], where λ is a nonzero constant. Then

∫ b

a
|g(x)|dx ≥ (b− a)

√
|λ|. (8)

The case of equality holds in (8) if and only if |g(x)| = |g(a + b− x)| =
√
|λ| for all x ∈ [a, b].

Proof. Due to (7), we know that g(x) �= 0 for all x ∈ [a, b]. So we can define f : [a, b] →
(0,+∞) by

f (x) = |g(x)| for x ∈ [a, b].

Since g is integrable, f is integrable. From (7) again, we obtain

f (x) · f (a + b− x) = |g(x) · g(a + b− x)| = |λ| for all x ∈ [a, b].

Let c = |λ|. Then c > 0. Hence, all conditions in Theorem 2 are satisfied. By Theorem 2, we
obtain ∫ b

a
|g(x)|dx =

∫ b

a
f (x)dx ≥ (b− a)

√
c = (b− a)

√
|λ|,

and the equality holds in (8) if and only if |g(x)| = |g(a + b− x)| =
√
|λ|. The proof is

completed.

Remark 3. We applied Theorem 2 to show Theorem 3. It is obvious that Theorem 2 is a special case
of Theorem 3. Therefore, we can conclude that Theorems 2 and 3 are indeed equivalent.

Taking advantage of Theorem 3, we easily obtain the following results.

Corollary 1. Let g : [0, 1]→ (−∞,+∞) be an integrable function such that

g(x) · g(1− x) = λ

for all x ∈ [0, 1], where λ is a nonzero constant. Then∫ 1

0
|g(x)|dx ≥

√
|λ|. (9)

The case of equality holds in (9) if and only if |g(x)| = |g(1− x)| =
√
|λ| for all x ∈ [0, 1].

Proof. Taking a = 0 and b = 1 in Theorem 3, then the desired result is obtained.

Corollary 2. Let m > 0. Suppose that g : [−m, m]→ (−∞,+∞) is an integrable function such
that

g(x) · g(−x) = 1

for all x ∈ [−m, m]. Then ∫ m

−m
|g(x)|dx ≥ 2m. (10)

The case of equality holds in (10) if and only if |g(x)| = |g(−x)| = 1 for all x ∈ [−m, m].

Proof. Take a = −m, b = m, and λ = 1 in Theorem 3, then the desired conclusion is
proved.
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As a consequence of Theorem 3, we obtain the following theorem.

Theorem 4. Let h : (−∞,+∞) → (−∞,+∞) be a function satisfying
∫ +∞
−∞h(x)dx < ∞.

Suppose that there exist a, b ∈ (−∞,+∞) with a < b such that

h(x) · h(a + b− x) = λ (11)

for all x ∈ [a, b], where λ is a nonzero constant. Then, for any u, v ∈ (−∞,+∞) with u ≤ a and
b ≤ v, we have ∫ v

u
|h(x)|dx ≥ (b− a)

√
|λ|,

∫ +∞

u
|h(x)|dx ≥ (b− a)

√
|λ|,∫ v

−∞
|h(x)|dx ≥ (b− a)

√
|λ|

and ∫ +∞

−∞
|h(x)|dx ≥ (b− a)

√
|λ|.

Proof. Define g : [a, b]→ (−∞,+∞) by

g(x) = h(x) for x ∈ [a, b].

Since
∫ +∞
−∞ h(x)dx < ∞,

∫ b
a h(x)dx < ∞. Hence, h is integrable on [a, b]. It follows that g,

|g|, and |h| are integrable on [a, b] and

∫ b

a
|g(x)|dx =

∫ b

a
|h(x)|dx.

By (11), we obtain

g(x) · g(a + b− x) = h(x) · h(a + b− x) = λ for all x ∈ [a, b].

Hence all conditions in Theorem 3 are satisfied. By utilizing Theorem 3, we obtain

∫ v

u
|h(x)|dx ≥

∫ b

a
|h(x)|dx ≥ (b− a)

√
|λ|,

∫ +∞

u
|h(x)|dx ≥

∫ b

a
|h(x)|dx ≥ (b− a)

√
|λ|,

∫ v

−∞
|h(x)|dx ≥

∫ b

a
|h(x)|dx ≥ (b− a)

√
|λ|

and ∫ +∞

−∞
|h(x)|dx ≥

∫ b

a
|h(x)|dx ≥ (b− a)

√
|λ|.

The proof is completed.

4. Some Applications

In this section, we first establish the following new useful inequalities, which improve
the known inequalities for exponential functions.

Theorem 5. Let a > 0. Then, the following hold.

(i) If 0 < a < 1, then ax < 1 + xa
x
2 ln a for all x > 0.

(ii) If a = 1, then ax = 1 + xa
x
2 ln a = 1 for all x > 0.

154



Axioms 2022, 11, 458

(iii) If a > 1, then ax > 1 + xa
x
2 ln a for all x > 0.

In particular, we have
ex > xe

x
2 + 1 > x + 1 for all x > 0.

Proof. Given x > 0. Let f (y) = ay for y ∈ [0, x]. Then f is integrable on [0, x], and

f (y) · f (x− y) = ax for all y ∈ [0, x].

Hence, by applying Theorem 2, we have

1
ln a

(ax − 1) =
∫ x

0
ay dy ≥ xa

x
2 . (12)

(i) If 0 < a < 1, then ln a < 0. Note that f (y) = f (x − y) = a
x
2 holds for y = x

2 . So the
equality does not hold in (12). From (12), we obtain

ax < 1 + xa
x
2 ln a for all x > 0.

(ii) Clearly, if a = 1, then ax = 1 = 1 + xa
x
2 ln a for all x > 0.

(iii) If a > 1, then ln a > 0. Since f (y) = f (x− y) = a
x
2 holds for y = x

2 , the equality does
not hold in (12). Hence, using (12) again, we obtain

ax > 1 + xa
x
2 ln a for all x > 0.

In particular, by taking a := e, we have

ex > xe
x
2 + 1 > x + 1 for all x > 0.

The proof is completed.

Next, we provide a new simple proof of the following important fundamental inequal-
ity for hyperbolic sine functions by applying Theorem 2, Theorem 3, or their corollaries.

Theorem 6. sinh x > x for all x > 0.

Proof. Given x > 0. Let f (y) = ey for y ∈ [−x, x]. Then f is integrable on [−x, x] and

f (y) · f (−y) = e0 = 1 for all y ∈ [−x, x].

By applying Theorem 2 (or Theorem 3 or Corollary 2), we obtain

ex − e−x =
∫ x

−x
ey dy ≥ 2x.

Since ex �= e−x for x �= 0, we obtain

sinh x =
ex − e−x

2
> x.

The proof is completed.

In this paper, we introduce the concept of quasi-hyperbolic sine function.

Definition 1. A function q-sinh : (0,+∞)× (−∞,+∞) → (−∞,+∞) is said to be a quasi-
hyperbolic sine function if

q- sinh(a, x) =
ax − a−x

2
for a > 0 and x ∈ (−∞,+∞).
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Remark 4. In [6], Nantomah, Okpoti, and Nasiru defined generalized hyperbolic sine function
using

sinha x =
ax − a−x

2
for a > 1 and x ∈ (−∞,+∞).

It is obvious that a hyperbolic sine function is a generalized hyperbolic sine function, and a general-
ized hyperbolic sine function is a quasi-hyperbolic sine function, but the converse is not true.

We now give the following new inequalities for quasi-hyperbolic sine functions.

Theorem 7. Let a > 0. Then, the following hold.

(i) If 0 < a < 1, then q-sinh(a, x) < x ln a for all x > 0.
(ii) If a = 1, then q-sinh(a, x) = 0 for all x > 0.
(iii) If a > 1, then q-sinh(a, x) = sinha x > x ln a for all x > 0.

Proof. Given x > 0. Let f (y) = ay for y ∈ [−x, x]. Thus, f is integrable on [−x, x] and

f (y) · f (−y) = a0 = 1 for all y ∈ [−x, x].

By applying Theorem 2 (or Theorem 3 or Corollary 2), we obtain

1
ln a

(
ax − a−x) = ∫ x

−x
ay dy ≥ 2x. (13)

(i) If 0 < a < 1, then ln a < 0. Since ax �= a−x for x �= 0, the equality does not hold in (13).
Hence (13) yields

q- sinh(a, x) =
ax − a−x

2
< x ln a.

(ii) Clearly, q-sinh(1, x) = 1x−1−x

2 = 0 for all x > 0.
(iii) If a > 1, then ln a > 0. Since ax �= a−x for x �= 0, the equality does not hold in (13). So,
from (13) again, we obtain

q- sinh(a, x) = sinha x =
ax − a−x

2
> x ln a.

The proof is completed.

Remark 5. Theorem 6 is a special case of Theorem 7 (iii).

Theorem 8. Let a < b. Then there exists ξ ∈
(

a+b
2 , b

)
such that

eξ =
eb − ea

b− a
.

Proof. From the Lagrange mean value theorem or integral mean value theorem, it is easy
to see that there exists ξ ∈ (a, b) such that

eξ =
eb − ea

b− a
. (14)

We now claim that ξ ∈
(

a+b
2 , b

)
. Let f (x) = ex for x ∈ [a, b]. Then f is integrable on [a, b]

and
f (x) · f (a + b− x) = ea+b := c for all x ∈ [a, b].

156



Axioms 2022, 11, 458

Note that f (x) = f (a + b − x) =
√

c holds for x = a+b
2 . Accordingly, by applying

Theorem 2, we obtain

eb − ea =
∫ b

a
ex dx > (b− a)

√
c = (b− a)e

a+b
2 , (15)

which follows immediately from (14) and (15) that ξ > a+b
2 . Therefore, ξ ∈

(
a+b

2 , b
)

.

Theorem 9. Let 0 < a < b. Then there exists ξ ∈
(

a, a+b
2

)
such that

b− a = ξ(ln b− ln a).

Proof. Making full use of the Lagrange mean value theorem, we can find ξ ∈ (a, b), such
that

1
ξ
=

ln b− ln a
b− a

. (16)

We now speculate that ξ ∈
(

a, a+b
2

)
. To this end, put f (x) =

x
a + b− x

for x ∈ [a, b]. Thus

f is integrable on [a, b] and

f (x) · f (a + b− x) = 1 for all x ∈ [a, b].

Note that f (x) = f (a + b− x) = 1 holds for x = a+b
2 . So, by utilizing Theorem 2, we obtain

(a + b)(ln b− ln a)− (b− a) =
∫ b

a

x
a + b− x

dx > b− a. (17)

Combining (16) and (17), we obtain ξ < a+b
2 . Therefore, we show ξ ∈

(
a, a+b

2

)
.

5. Conclusions

In this paper, we study two questions for Theorem 1 as follows:
Question 1. Can we establish new real generalizations of Theorem 1?
Question 2. Does Theorem 1 still hold if we replace the codomain (0,+∞) of f with
(−∞,+∞)?

We establish Theorem 2, which is a new real generalization of Theorem 1, and a
positive answer to Question 1. A new simple counterexample is given to verify that
Question 2 is not always true. Furthermore, we prove Theorem 3, which is equivalent to
Theorem 2, and show some applications of our new results. In summary, our new results
are original, novel, and developmental in the literature. We hope that our new results can
be applied to nonlinear analysis, mathematical physics, and related fields in the future.
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Abstract: The goal of this paper is to investigate the curves intersected by a vertical plane with
the surfaces based on certain NCP functions. The convexity and differentiability of these curves
are studied as well. In most cases, the inflection points of the curves cannot be expressed exactly.
Therefore, we instead estimate the interval where the curves are convex under this situation. Then,
with the help of differentiability and convexity, we obtain the local minimum or maximum of the
curves accordingly. The study of these curves is very useful to binary quadratic programming.

Keywords: NCP functions; section curves; convexity; differentiability; binary quadratic programming

1. Introduction

The nonlinear complementarity problem (NCP) is finding a vector x ∈ Rn such that

x ≥ 0, F(x) ≥ 0 and 〈x, F(x)〉 = 0,

where 〈·, ·〉 is the Euclidean inner product and F is a function from Rn to Rn. Since a few
decades ago, the NCP has attracted significant attention due to its various applications in
areas such as economics, engineering, and information engineering [1]. There are many
methods proposed for solving the NCP. One popular approach is to reformulate the NCP
as a system of nonlinear equations, whereas the other approach is to recast the NCP as an
unconstrained minimization problem. Both methods rely on the so-called NCP function. A
function φ : R2 → R is said to be an NCP function if it satisfies

φ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0 and ab = 0.

In light of the NCP function, one can define the vector-valued function ΦF (x) : Rn →
Rn by

ΦF (x) :=

⎛⎜⎝φ(x1, F1(x))
...

φ(xn, Fn(x))

⎞⎟⎠,

where F(x) = (F1(x), · · · , Fn(x)) is a mapping from Rn to Rn. Consequently, solving the
NCP is equivalent to solving a system of equation ΦF (x) = 0. In particular, it also induces
a merit function of the NCP which is given by

min
x∈Rn

ΨF (x) :=
1
2
‖ΦF (x)‖2.

It is clear that the global minimizer of ΨF (x) is the solution to the NCP. During the
past few decades, several NCP functions have been discovered [2–7]. A well-known NCP
function is the Fischer–Burmeister function [8,9] φFB : R2 → R, defined as

φFB(a, b) = ||(a, b)|| − (a + b),

Axioms 2022, 11, 557. https://doi.org/10.3390/axioms11100557 https://www.mdpi.com/journal/axioms159
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where ||(a, b)|| =
√

a2 + b2. In [10], Tseng did an extension of the Fischer–Burmeister
function, in which a 2-norm is relaxed to a general p-norm. In other words, the so-called
generalized FB function is defined by

φp
FB
(a, b) = ||(a, b)||p − (a + b), (1)

where ||(a, b)||p = p
√
|a|p + |b|p and p > 1. Similarly, it induces a merit function ψ

p
FB :

R2 → R+ given by

ψp
FB
(a, b) =

1
2
|φp

FB
(a, b)|2 (2)

where p > 1.

Another popular NCP function is the natural residual function [4], φNR : R→ R given
by

φNR(a, b) = a− (a− b)+.

Is there a similar extension for the natural residual NCP function? Wu, Ko and Chen
answered this question in [4]. The extension is kind of discrete generalization because they
defined the function φ

p
NR : R2 → R by

φp
NR
(a, b) = ap − (a− b)p

+, (3)

where p > 1 and p is an odd integer. Recently, the idea of discrete generalization of natural
residual function has beei applied to construct discrete Fischer–Burmeister functions. More
specifically, φ

p
D−FB : R2 → R is defined by

φp
D−FB

(a, b) = (
√

a2 + b2)p − (a + b)p, (4)

where p > 1 and p is an odd integer. If p = 1, then it is exactly the classical Fischer–
Burmeister function (see [4,11]). The graph of φ

p
NR is not symmetric. Is it possible to

construct a symmetric natural residual NCP function? Chang, Yang, and Chen answered
this question in [2]. Note that the function φ

p
NR can also be expressed as a piecewise function:

φp
NR
(a, b) =

{
ap − (a− b)p, if a > b,
ap, if a ≤ b,

where p > 1 and p is an odd integer. They use this expression of φ
p
NR to modify the part on

a < b, and achieve symmetrization of φ
p
S−NR(a, b) as below:

φp
S−NR

(a, b) =

⎧⎨⎩
ap − (a− b)p, if a > b,
ap = bp, if a = b,
bp − (b− a)p, if a < b,

(5)

where p > 1 and p is an odd integer. Surprisingly, it is still an NCP function.

How about the merit function induced by φ
p
S−NR(a, b)? Observing that the merit

function has squared terms, Chang, Yang, and Chen combined ap and bp together and
constructed ψ

p
S−NR(a, b) as

ψp
S−NR

(a, b) =

⎧⎨⎩
apbp − (a− b)pbp, if a > b,
apbp = a2p, if a = b,
apbp − (b− a)pap, if a < b,

(6)

where p > 1 and p is an odd integer.

Recently, more and more NCP functions have been discovered. As mentioned,
Wu et al. [4] proposed a discrete type of natural residual function. Regarding this dis-
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crete counterpart, Alcantara and Chen [1] consider a continuous type of natural residual
function as below:

φ̃p
NR
(a, b) = sgn(a)|a|p − [(a− b)+]p, (7)

where p > 1 is a real number and

sgn(x) =

⎧⎨⎩
1, if x > 0,
0, if x = 0,

−1, if x < 0.

The main principle behind their work is described as follows. If f (·) is a bijection
mapping and φ = φ1 − φ2 is a given NCP function, then f (φ) = f (φ1)− f (φ2) is also an
NCP function. Hence, it can be verified that

φ̃p
NR
(a, b) = f (a)− f ([a− b]+)

is an NCP function by employing the bijective function f (t) = sgn(t)|t|p, see [12]. Note
that when p is an positive odd integer, it reduces to the discrete type of a natural residual
function, that is, φ̃

p
NR(a, b) = φ

p
NR(a, b).

For further symmetrization, using the above idea in (5) and (6), one can obtain a
continuous type of natural residual functions [12]:

φ̃p
S−NR

(a, b) =
{

sgn(a)|a|p − (a− b)p, if a ≥ b,
sgn(b)|b|p − (b− a)p, if a < b,

(8)

and its corresponding merit function

ψ̃p
S−NR

(a, b) =
{

sgn(a)sgn(b)|a|p|b|p − sgn(b)(a− b)p|b|p, if a ≥ b,
sgn(a)sgn(b)|a|p|b|p − sgn(a)(b− a)p|a|p, if a < b,

(9)

where p > 0. Again, when p is an odd integer, we see the beloe relations,

φ̃p
S−NR

(a, b) = φp
S−NR

(a, b), and ψ̃p
S−NR

(a, b) = ψp
S−NR

(a, b).

The NCP functions can also be constructed by certain invertible functions. What
kind of inverse functions can be applied to construct the NCP functions? Lee, Chen, and
Hu [6] figured it out in ([6], Proposition 3.8). In particular, let f : R→ R be a continuous
differentiable function and g : R→ R with g(0) = 1. They chose functions of f (t) and g(t)
satisfying the below conditions to construct new NCP functions:

(i) f is invertible on [1, ∞).
(ii) ( f−1)′ is a strictly monotonically increasing function.
(iii) g(0) = 1, g(t) ≥ 1, ∀t > 0 and −1

2 < g(t) ≤ 1 ∀t < 0.

More specifically, it is shown that the function

φ f ,g(a, b) = f ( f−1(|a|) + f−1(|b|)− f−1(0))− (g(b)a + g(a)b)

is an NCP function. For example, taking f (t) = ln(t), we see that f (t) is invertible on [1, ∞)

and the inverse function is f−1(t) = et. It is easy to see that ( f−1(t))
′
= et > 0, ∀t ∈ R.

Thus, f−1 is strictly monotone increasing on R. For third condition, we take g(t) = et,
which gives g(t) > 1 on (1, ∞) and− 1

2 < g(t) < 1 on (−∞, 0). We list some more examples
of f and g as below. Examples of f (t) are

f1(t) =
√

t− 1, f2(t) =
5
√

t− 1, f3(t) = ln(t),
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and examples of g(t) are

g1(t) = et, g2(t) =

√
t2 + 4 + t

2
, g3(t) =

4− e−t

1 + 2e−t .

In summary, nine corresponding NCP functions are generated by using the above f (t)
and g(t).

φ f1,g1
(a, b) =

√
a2 + b2 − eba− eab.

φ f1,g2
(a, b) =

√
a2 + b2 −

(√
b2 + 4 + b

2

)
a−

(√
a2 + 4 + a

2

)
b.

φ f1,g3
(a, b) =

√
a2 + b2 −

(
4− e−b

1 + 2e−b

)
a−

(
4− e−a

1 + 2e−a

)
b.

φ f2,g1
(a, b) = 5

√
|a|5 + |b|5 − eba− eab.

φ f2,g2
(a, b) = 5

√
|a|5 + |b|5 −

(√
b2 + 4 + b

2

)
a−

(√
a2 + 4 + a

2

)
b. (10)

φ f2,g3
(a, b) = 5

√
|a|5 + |b|5 −

(
4− e−b

1 + 2e−b

)
a−

(
4− e−a

1 + 2e−a

)
b.

φ f3,g1
(a, b) = ln(e|a| + e|b| − 1)− eba− eab.

φ f3,g2
(a, b) = ln(e|a| + e|b| − 1)−

(√
b2 + 4 + b

2

)
a−

(√
a2 + 4 + a

2

)
b.

φ f3,g3
(a, b) = ln(e|a| + e|b| − 1)−

(
4− e−b

1 + 2e−b

)
a−

(
4− e−a

1 + 2e−a

)
b.

In [13], Tsai et al. discussed the geometry of curves on Fischer–Burmeister function
surfaces, which are intersected by the plane a + b = 2r for r ∈ R. They parametrized the
curves by considering a = r + t and b = r − t and defined the vector valued function
α(t) : R → R3 and β(t) : R → R3 as α(t) = (r + t, r − t, φ(r + t, r − t)) and β(t) =
(r + t, r− t, ψ(r + t, r− t)), respectively. Tsai et al. also found the local maxima and minima
and studied the convexity of curves.

In this paper, we follow a similar idea to the one in [13] to investigate the curves, which
are the intersection of a vertical plane a + b = 1 and surfaces based on NCP functions. We
also have to point out that the study on these curves is very useful to binary quadratic
programming. See [14] for the details. We parametrize the curves by the vector functions
τ(x) : R → R3 and σ(x) : R → R3, where τ(x) = (x, 1 − x, φ(x, 1 − x)) and σ(x) =
(x, 1− x, φ(x, 1− x)). Then, we explore the behavior of the curves when the value p is
perturbed. In addition, we discuss the convexity and local minimum and maximum of
curves. Although the inflection points cannot be exactly determined, we can still estimate
the interval in which the curves are convex such as in ([14], Proposition 2.1(b)). With the
convexity or differentiability of a curve, we discuss the local minimum and maximum.

2. Preliminaries

In this section, we review some prerequisite knowledge about the convexity and
differentiability of NCP functions which will be applied to investigate the curves. First, it is
known that the convexity and differentiability of an NCP function cannot hold simultane-
ously (see [15]). The convexity of NCP functions has been thoroughly investigated in the
literature. We will now quickly recall some results directly.
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Lemma 1 ([3], Property 2.1 and Property 2.2, [2], Proposition 2.2). Let φ
p
FB , ψ

p
FB and φ

p
D−FB be

defined as in (1), (2) and (4) respectively. Then, the following hold.

(a) The function φ
p
FB(a, b) is differentiable everywhere except for the origin, and convex on R2,

provided p > 1.
(b) The function ψ

p
FB(a, b) is differentiable everywhere, but neither convex nor concave, provided

p > 1.
(c) The function φ

p
D−FB(a, b) is differentiable everywhere, but neither convex nor concave provided

p > 1 and is an odd integer.

Lemma 2 ([4], Proposition 2.4, [2], Proposition 2.2). Let φ
p
NR , φ

p
S−NR , and ψ

p
S−NR be defined as in

(3), (5) and (6) respectively. Then, when p > 1 and is an odd integer, the following hold.

(a) The function φ
p
NR(a, b) is differentiable everywhere, but neither convex nor concave.

(b) The function φ
p
S−NR(a, b) is differentiable everywhere except for a = b. but neither convex nor

concave.
(c) The function ψ

p
S−NR(a, b) is differentiable everywhere, but neither convex nor concave.

Lemma 3 ([1], Proposition 2). Let φ̃
p
NR , φ̃

p
S−NR and ψ̃

p
S−NR be defined as in (7), (8) and (9) respec-

tively. Then, for p > 1, the following hold.

(a) The function φ̃
p
NR(a, b) is differentiable everywhere, but neither convex nor concave.

(b) The function φ̃
p
S−NR(a, b) is differentiable everywhere except for a = b, but neither convex nor

concave.
(c) The function ψ̃

p
S−NR(a, b) is differentiable everywhere, but neither convex nor concave.

Proposition 1 ([12], Proposition 2.3). Suppose that g is strictly increasing on some interval
I = [0, t0). Then, for p > 1, the function φ

p
g = ‖(a, b)‖p − (g(b)a + g(a)b) is an NCP function,

but nonconvex.

We can apply Proposition 1 to check the convexity of NCP functions as in (10). In
particular, based on Proposition 1, the following NCP functions are nonconvex and not
differentiable at (0, 0).

(a) φ f1,g1
(a, b) =

√
a2 + b2 − eba− eab.

(b) φ f1,g2
(a, b) =

√
a2 + b2 −

(√
b2+4+b

2

)
a− (

√
a2+4+a

2 )b.

(c) φ f1,g3
(a, b) =

√
a2 + b2 −

(
4−e−b

1+2e−b

)
a− ( 4−e−a

1+2e−a )b.

(d) φ f2,g1
(a, b) = 5

√
|a|5 + |b|5 − eba− eab.

(e) φ f2,g2
(a, b) = 5

√
|a|5 + |b|5 −

(√
b2+4+b

2

)
a− (

√
a2+4+a

2 )b.

(f) φ f2,g3
(a, b) = 5

√
|a|5 + |b|5 −

(
4−e−b

1+2e−b

)
a− ( 4−e−a

1+2e−a )b.

Moreover, the below NCP functions are nonconvex as well.

(g) φ f3,g1
(a, b) = ln(e|a| + e|b| − 1)− eba− eab.

(h) φ f3,g2
(a, b) = ln(e|a| + e|b| − 1)−

(√
b2+4+b

2

)
a− (

√
a2+4+a

2 )b.

(i) φ f3,g3
(a, b) = ln(e|a| + e|b| − 1)−

(
4−e−b

1+2e−b

)
a− ( 4−e−a

1+2e−a )b.

3. The Differentiability of the Curves

In this section, we investigate the differentiability of the curves, which are the intersec-
tion of surfaces of NCP functions φ(a, b), (or merit functions ψ(a, b)) with the vertical plane
a + b = 1. To proceed, we set a = x and b = 1− x. Then, the curves are parameterized as

τ(x) = φ(x, 1− x) and σ(x) = ψ(x, 1− x).

163



Axioms 2022, 11, 557

From the aforementioned NCP functions in Section 2, the parametrized curves are
listed as below:

τp
FB
(x) = p

√
|x|p + |1− x|p − 1. (11)

σp
FB
(x) =

1
2
|τ p

FB(x)|2. (12)

τp
D−FB

(x) =
(√

x2 + (1− x)2
)p
− 1. (13)

τp
NR
(x) = xp − (2x− 1)p

+. (14)

τp
S−NR

(x) =

⎧⎪⎨⎪⎩
xp − (2x− 1)p, if x > 1

2 ,
( 1

2 )
p, if x = 1

2 ,
(1− x)p − (1− 2x)p, if x < 1

2 .

(15)

σp
S−NR

(x) =

⎧⎪⎨⎪⎩
xp(1− x)p − (2x− 1)p(1− x)p, if x > 1

2 ,
( 1

2 )
2p, if x = 1

2 ,
xp(1− x)p − xp(1− 2x)p, if x < 1

2 .

(16)

τ̃p
NR
(x) = sgn(x)|x|p − [(2x− 1)+]p. (17)

τ̃p
S−NR

(x) =

{
sgn(x)|x|p − (2x− 1)p, if x ≥ 1

2 ,
sgn(1− x)|1− x|p − (1− 2x)p, if x < 1

2 .
(18)

σ̃p
S−NR

(x) =

{
sgn(x)sgn(1− x)|x|p|1− x|p − sgn(1− x)(2x− 1)p|1− x|p, if x ≥ 1

2 ,
sgn(x)sgn(1− x)|1− x|p|x|p − sgn(x)(1− 2x)p|x|p, if x < 1

2 .
(19)

τf1,g1(x) =
√

x2 + (1− x)2 − e(1−x)x− ex(1− x). (20)

τf1,g2(x) =
√

x2 + (1− x)2 −
(√

(1− x)2 + 4 + (1− x)
2

)
x−

(√
x2 + 4 + x

2

)
(1− x). (21)

τf1,g3(x) =
√

x2 + (1− x)2 −
(

4− e−(1−x)

1 + 2e−(1−x)

)
x−

(
4− e−x

1 + 2e−x

)
(1− x). (22)

τf2,g1(x) = 5
√
|x|5 + |1− x|5 − e(1−x)x− ex(1− x). (23)

τf2,g2(x) = 5
√
|x|5 + |1− x|5 −

(√
(1− x)2 + 4 + (1− x)

2

)
x−

(√
x2 + 4 + x

2

)
(1− x). (24)

τf2,g3(x) = 5
√
|x|5 + |1− x|5 −

(
4− e−(1−x)

1 + 2e−(1−x)

)
x−

(
4− e−x

1 + 2e−x

)
(1− x). (25)

τf3,g1(x) = ln
(

e|x| + e|1−x| − 1
)
− e(1−x)x− ex(1− x). (26)

τf3,g2(x) = ln
(

e|x| + e|1−x| − 1
)
−
(√

(1− x)2 + 4 + (1− x)
2

)
x−

(√
x2 + 4 + x

2

)
(1− x). (27)
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τf3,g3(x) = ln(e|x| + e|1−x| − 1)−
(

4− e−(1−x)

1 + 2e−(1−x)

)
x−

(
4− e−x

1 + 2e−x

)
(1− x). (28)

Proposition 2. Let τ
p

FB , σ
p
FB and τ

p
D−FB be defined as (11), (12) and (13) respectively. Then, the

following hold.

(a) For p > 1, the function τ
p

FB(·) is differentiable on R.
(b) For p > 1, the function σ

p
FB(·) is differentiable on R.

(c) For all odd integers, the function τ
p

D−FB(·) is differentiable on R.

Proof. The results follow immediately from Lemma 1. �

Proposition 3. Let τ
p

NR(x), τ
p

S−NR and σ
p
S−NR be defined as in (14), (15) and (16), respectively.

Then, for p > 1 and p is an odd integer, the following hold.

(a) The function τ
p

NR(·) is differentiable on R;
(b) The function τ

p
S−NR(·) is not differentiable at x = 1

2 ;
(c) The function σ

p
S−NR(·) is differentiable on R.

Proof. The results are immediate consequences of Lemma 2. �

Proposition 4. Let τ̃
p

NR , τ̃
p

S−NR , and σ̃
p
S−NR be defined as in (17), (18) and (19), respectively. Then,

for p > 1, the following hold.

(a) The function τ̃
p

NR(·) is differentiable on R.
(b) The function τ̃

p
S−NR(·) is not differentiable at x = 1

2 .
(c) The function σ̃

p
S−NR(·) is differentiable on R.

Proof. The results follow from Lemma 3 directly. �

Proposition 5. Let τfi ,gj
be defined as in (20)–(28) where i = 1, 2, 3 and j = 1, 2, 3. Then, the

following hold.

(a) For i = 1, 2 and j = 1, 2, 3, the function τfi ,gj
(·) is differentiable on R.

(b) For j = 1, 2, 3, The function τf3,gj
(·) is not differentiable at x = 0 or x = 1.

Proof. (a) Based on Proposition 2(a), the function τ
p

FB(x) is differentiable on R. In addition,
we know that the exponential function and

√
(1− x)2 + 4 are differentiable on R. Therefore,

τfi ,gj
(x) is differentiable on R.

(b) Let h(x) = ln(e|x| + e|1−x| − 1), which says h′(x) =
x
|x| e

|x|− (1−x)
|1−x| e|1−x|

e|x|+e|1−x|−1
. For x > 0, the right

derivative at x = 0 is h′(0+) = 1−e
e . For x < 0, the left derivative at x = 0 is h′(0−) = −1−e

e .
Then, it is clear that h′(0+) �= h′(0−), hence h(·) is not differentiable at x = 0. Similarly, it
is easy to check the non-differentiability at x = 1. To summarize, the function τf3,gj

(x) is

not differentiable at x = 0 or x = 1. �

4. The Convexity of the Curves

In Section 2, we discussed the convexity of NCP functions. It naturally leads to the
convexity of the curves. Although we cannot find the inflection points one by one, we focus
on estimating the interval where the curves are convex. In addition, with different p, the
geometric structure of the curves will be changed. The following lemma will be employed
to check the convexity.

165



Axioms 2022, 11, 557

Lemma 4. (a) If g(x) and h(x) are convex on an interval, then g(x) + h(x) is also convex on
the interval.

(b) Let g(x) : Rn → (−∞, ∞) be a convex function and let h(x) : g(Rn)→ R be a nondecreas-
ing convex function. Then f (x) = h(g(x)) is convex on Rn.

Proof. These are very basic materials which are also well known, see [16]. �

Proposition 6. Let τ
p

FB and τ
p

D−FB be defined as in (11) and (13), respectively. Then, the following
hold. See Figure 1.

(a) For p > 1, the function τ
p

FB(·) is convex on R.
(b) When p is an odd integer, the function τ

p
D−FB(·) is convex on R.
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Figure 1. Graph of τ
p

FB (x) and τ
p

D−FB (x) with different p. (a) Graph of τ
p

FB (x) with different values of p;
(b) Graph of τ

p
D−FB (x) with different values of p.

Proof. (a) First, as indicated in (11), τ
p

FB(x) = p
√
|x|p + |1− x|p − 1. Since the curve τ

p
FB(x)

is the section of a plane with the surface of the function φ
p
FB(a, b), which is convex on R2

according to Lemma 1(a). τ
p

FB(x) is convex on R.

(b) As shown in (13), τ
p

D−FB(x) =
(√

x2 + (1− x)2
)p
− 1, where p is an odd integer. Let

g(x) :=
√

x2 + (1− x)2 and h(x) := xp − 1. It is clear that h(x) is nondecreasing and
convex; moreover, g(x) is positive and convex. Then, according to Lemma 4(b), τ

p
D−FB(·) is

convex on R. �

Proposition 7. Let σ
p
FB be defined as in (12). Then, for any p > 1, the function σ

p
FB(·) is convex on

(−∞, 0) and (1, ∞). See Figure 2.
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Figure 2. Graphs of σ
p
FB with different values of p.
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Proof. As given in (12), σ
p
FB(x) = 1

2

(
τ

p
FB(x)

)2
. Let g(x) := τ

p
FB(x) and h(x) := 1

2 x2. It is
clear that h(x) is nondecreasing and convex on (0, ∞). Furthermore, g(x) is convex and
positive on (1, ∞). Hence, according to Lemma 4(b), σ

p
FB(x) is convex on (1, ∞). In addition,

due to symmetry, σ
p
FB(x) is also convex on (−∞, 0). �

Remark 1. (i) Set p = 2. The second derivative of σ2
FB
(x) = 1

2 |τ2
FB
(x)|2 gives(

σ2
FB

)′′
(x) = 2− 1

(2x2 − 2x + 1)
3
2

.

From this, we know that a± = 1
2

(
1±

√
2(

1
3 ) − 1

)
are two inflection points of the function

σ
p
FB(x). Hence, the function σ

p
FB(x) is convex on the intervals (−∞, a−) and (a+, ∞). For

a general p > 1, we have difficulty in determining their infection points. However, let us
study their behavior when p goes to ∞ on the interval (0, 1). When 1/2 < x < 1, we have
|x| > |1− x|. Hence, the function σ

p
FB(x) approaches 1

2 (x− 1)2 as p goes to ∞. Similarly,
provided 0 < x < 1/2, the function σ

p
FB(x) approaches 1

2 x2 as p goes to ∞. Note also that
σ

p
FB(

1
2 ) approaches 1

8 as p goes to ∞.
(ii) We also examine the behavior of the second derivative of the function σ

p
FB(x) at the point 0.55

which is near 1
2 . We present the numerical results in Figure 3. Observe that their inflection

points ap
± approaches 1/2, and also that (σp

FB)
′′(0.55) approaches 1 as p goes to ∞.

According to Remark 1 and Figure 3, we make a conjecture here.

Conjecture 1. Let σ
p
FB be defined as in (12). Then, for any p > 1, the function σ

p
FB(·) has two

inflection points 0 < ap
− < 1

2 < ap
+ < 1, and both approach 1

2 as p goes to ∞.

(a) (b)

Figure 3. Graphic evidence regarding Remark 1 and Conjecture 1. (a) Graphs of σ∞
FB(x) when

0 < x < 1; (b) Graphs of (σp
FB )
′′(0.55) for different p.

Proposition 8. Let τ
p

NR and τ
p

S−NR be defined as in (14) and (15), respectively. Then, when p is an
odd integer, the following hold. See Figure 4.

(a) The function τ
p

NR(·) is convex on (0, 4
7 ).

(b) The function τ
p

S−NR(·) is convex on ( 3
7 , 4

7 ).
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Figure 4. Graphs of τ
p

NR and τ
p

S−NR with different values of p. (a) Graphs of τ
p

NR with different values
of p; (b) Graphs of τ

p
S−NR with different values of p.

Proof. (a) As given in (14), τ
p

NR(x) = xp − (2x− 1)p
+, which says

(
τp

NR

)′
(x) = p

(
x(p−1) −

[
(2x− 1) + |2x− 1|

2

](p−1)

(1 + sgn(2x− 1))

)
,

(
τp

NR

)′′
(x) = p(p− 1)

(
x(p−2) −

[
(2x− 1) + |2x− 1|

2

](p−2)

(1 + sgn(2x− 1))2

)
.

To proceed, we discuss three subcases:

Case (i): On the interval (0, 1
2 ), we have (1 + sgn(2x− 1))2 = 0, which says

(
τ

p
NR

)′′
(x)

= p(p− 1)x(p−2) > 0.

Case (ii): At the points a = 1
2 , we have

(
τ

p
NR

)′′
( 1

2 ) = p(p− 1)( 1
2 )

(p−2) > 0 as well.

Case (iii): On the interval ( 1
2 , 4

7 ), we need to show that
(

τ
p

NR

)′′
(x) > 0 over ( 1

2 , 4
7 ) for all p ≥

3. Indeed, on the interval ( 1
2 , 4

7 ), we have
[
(2x−1)+|2x−1|

2

]
= 2x− 1 and (1 + sgn(2x− 1))2 =

4. Define gx(p) := x(p−2) − 4(2x− 1)p−2. Then, our goal is to show gx(p) > 0 for all p ≥ 3
on the interval ( 1

2 , 4
7 ). When p = 3, we have gx(3) = x − 4(2x − 1) = −7x + 4 > 0 on

( 1
2 , 4

7 ). In addition, note that x > 4(2x− 1) on the same interval. For other p = 3 + k with
k > 0, we have

gx(3 + k) = x1+k − 4(2x− 1)1+k

= xxk − 4(2x− 1)1+k

> 4(2x− 1)xk − 4(2x− 1)1+k

= 4(2x− 1)
[

xk − (2x− 1)k
]
.

Let a = 1− x, b = 2x− 1. Then, the term xk − (2x− 1)k in gx(3 + k) is expressed as

xk − (2x− 1)k = (1− x + 2x− 1)k − (2x− 1)k = (a + b)k − bk.

Since, on the interval ( 1
2 , 4

7 ) a and b are positive, we conclude that gx(3 + k) > 0.

To summarize, on the interval ( 1
2 , 4

7 ), the second derivative
(

τ
p

NR

)′′
(x) > 0, which

means that τ
p

NR(x) is convex on this interval.
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(b) As stated in (15), τ
p

S−NR(x) =

⎧⎨⎩
xp − (2x− 1)p if x > 1

2 ,
( 1

2 )
p if x = 1

2 ,
(1− x)p − (1− 2x)p if x < 1

2 .
For x > 1

2 , similar

to part (a), it can be verified that τ
p

NR(x) is convex. Therefore, τ
p

S−NR(x) is convex on ( 1
2 , 4

7 ).
For x < 1

2 , due to symmetry, τ
p

S−NR(x) is convex on ( 3
7 , 1

2 ).

Additionally, note that τ
p

S−NR(x) is continuous on ( 3
7 , 4

7 ), and increasing (decreasing) on

the right (left) hand side of the point a = 1
2 , since

(
τ

p
S−NR

)′
(1/2+) = p(1/2)p−1 > 0,(

τ
p

S−NR

)′′
(x) > 0 on the interval ( 1

2 , 4
7 ) as well as

(
τ

p
S−NR

)′
(1/2−) = −p(1/2)p−1 < 0,(

τ
p

S−NR

)′′
(x) > 0 on the interval ( 3

7 , 1
2 ). Hence, the point a = 1

2 is the only minimizer on

the interval ( 3
7 , 4

7 ). In summary, we can conclude that τ
p

S−NR(x) is convex on the interval
( 3

7 , 4
7 ). �

Proposition 9. Let σ
p
S−NR be defined as in (16). Then, when p ≥ 3 and p is an odd integer, the

function σ
p
S−NR(x) is convex on (−∞, 0) and (1, ∞). See Figure 5.
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Figure 5. Graph of the function σ
p
S−NR with different values of p.

Proof. As indicated in (16), σ
p
S−NR(x) =

⎧⎪⎨⎪⎩
xp(1− x)p − (2x− 1)p(1− x)p if x > 1

2 ,
( 1

2 )
2p if x = 1

2 ,
xp(1− x)p − xp(1− 2x)p if x < 1

2 ,
where p is an odd integer and p > 1. Since σ

p
S−NR(x) is symmetric about x = 1

2 , we
divide it into two cases:

Cases (i): Suppose x > 1, the first and second derivative of this function are(
σp

S−NR

)′
(x) = −p(1− x)p−1[xp − (2x− 1)p] + (1− x)p[p(xp−1 − 2(2x− 1)p−1)](

σp
S−NR

)′′
(x) = f1(x) + f2(x) + f3(x)

where

f1(x) = (−2p)p[xp−1 − 2(2x− 1)p−1](1− x)p−1 = xp−1[1− 2(2− 1
x
)p−1](1− x)p−1(−2p)p,

f2(x) = p(p− 1)[xp−2 − 4(2x− 1)p−2](1− x)p = xp−2[1− 4(2− 1
x
)p−1](1− x)p(p− 1)p,

f3(x) = p(p− 1)[xp − (2x− 1)p](1− x)p−2 = xp[1− (2− 1
x
)p−2](1− x)p−2(p− 1)p.

Note that
(

σ
p
S−NR

)′′
(1) = 0, we want to show that

(
σ

p
S−NR

)′′
(x) is positive for p > 1.

Because x > 1, we have 1 < 2− 1
x , which implies 1− 2(2− 1

x )
p−1 < −1. Moreover,

as we have (−2p)pxp−1 < 0 and (1− x)p−1 > 0, then f1(x) > 0. Similarly, because x > 1,

169



Axioms 2022, 11, 557

we have 1 < 2− 1
x . Hence, 1− 4(2− 1

x )
p−1 < −3. Moreover, as we have (p− 1)pxp−2 > 0

and (1− x)p < 0, then f2(x) > 0. Finally, because x > 1 we have 1 < 2− 1
x , which gives

1− (2− 1
x )

p−2 < 0. Moreover, we have (p− 1)pxp > 0 and (1− x)p−2 < 0. Then, it says
f3(x) > 0.

To summarize, we have shown f1(x) + f1(x) + f1(x) > 0 for x > 1, which says(
σ

p
S−NR

)′′
(x) > 0 for x > 1. In other words, σ

p
S−NR(·) is convex on (1, ∞).

Cases (ii): Suppose x < 0, since σ
p
S−NR(x) is symmetric about x = 1

2 . In this case, it is clear
that σ

p
S−NR(x) is convex on (−∞, 0).

By cases (i) and (ii), we prove that σ
p
S−NR(x) is convex on (−∞, 0) and (1, ∞). �

Because τ̃
p

NR , τ̃
p

S−NR and σ̃
p
S−NR are the continuous types of τ

p
NR, τ

p
S−NR and σ

p
S−NR , similar

to Propositions 8 and 9, we establish the next proposition.

Proposition 10. Let τ̃
p

NR , τ̃
p

S−NR and σ̃
p
S−NR be defined as in (17), (18), and (19), respectively. Then,

the following hold. See Figure 6.

(a) If p ≥ 3, then the function τ̃
p

NR(x) is convex on (0, 4
7 ).

(b) If p ≥ 3, then the function τ̃
p

S−NR(x) is convex on ( 3
7 , 4

7 ).
(c) If p ≥ 3, then the function σ̃

p
S−NR(x) is convex on (−∞, 0) and (1, ∞).
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Figure 6. Graphs of τ̃
p

NR (x), τ̃
p

S−NR (x) and σ̃
p
S−NR with different values of p. (a) Graphs of τ̃

p
NR (x) with

different values of p; (b) Graphs of τ̃
p

S−NR (x) with different values of p; (c) Graphs of σ̃
p
S−NR with

different values of p.

The following proposition is simple but tedious. We list it here for the readers’ conve-
nience.
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Proposition 11. Let τfi ,gj
where i = 1, 2 and j = 1, 2, 3 be defined from (20)–(28). Then, the

following hold.

(a) The function τfi ,gj
(·) for i = 1, 2 and j = 1, 2 is convex on R.

(b) The function τf3,gj
(·) for j = 1, 2 is convex on intervals (−∞, 0), (0, 1) and (1, ∞).

(c) The function τfi ,g3
(·) for i = 1, 2, 3 has inflection points, and thus is neither convex nor

concave on entire R.

Proof. (a) As stated in (20), τf1,g1
(x) =

√
x2 + (1− x)2 − e(1−x)x− ex(1− x). Let g(x) :=√

x2 + (1− x)2 and h(x) := −e(1−x)x− ex(1− x). Because g(x) is convex on R according
to Proposition 6(b), it suffices to show that h(x) is convex. Taking the first and second
derivatives of this function give

h′(x) = e(1−x)(x− 1) + exx, and h′′(x) = xex + ex − e1−xx + 2e1−x.

In order to verify that h′′(x) > 0, we divide it into three cases:
Cases (i) : Suppose x ≥ 1/2. We have x ≥ 1 − x, hence ex ≥ e1−x. Then, we obtain
h′′(x) = x(ex − e1−x) + ex + 2e1−x > 0.
Cases (ii): Suppose 0 ≤ x ≤ 1/2. We have 2 > x, hence 2e1−x > xe1−x. Then, we obtain
h′′(x) = (2e1−x − xe1−x) + ex + xex > 0.
Cases (iii): Suppose x ≤ 0. We have x ≤ 1 − x, hence ex ≤ e1−x. Then, we obtain
h′′(x) = x(ex − e1−x) + ex + 2e1−x > 0.

This shows that h′′(x) is always positive, which indicates that h(x) is convex on R.
Because g(x) and h(x) are convex on R, according to Lemma 4(a), the function τf1,g1

(·) is
convex on R.

As indicated in(21), τf 1,g2(x) =
√

x2 + (1− x)2 −
(√

(1−x)2+4+(1−x)
2

)
x−

(√
x2+4+x

2

)
(1− x). Let h(x) :=

√
x2 + (1− x)2 and g(x) := −(

√
(1−x)2+4+(1−x)

2 )x− (
√

x2+4+x
2 )(1− x).

We need to verify that g(x) is convex. Taking the second derivative of g(x) gives

g′′(x) =
−x3 + 3x2 − 9x + 5

(x2 − 2x + 5)
3
2

+
x3 + 6x− 2

(x2 + 4)
3
2

+ 2.

We want to show that that g′′(x) > 0. The main principle of this is to check whether
the minimum of the second derivative is positive. Taking the third derivative gives

g′′′(x) =
6(x + 4)

(x2 + 4)
5
2
+

6(x− 5)

(x2 − 2x + 5)
5
2

The critical numbers of g′′(x) are x ≈ 1
2 ,−1.946503, and 2.946503. Moreover, g′′( 1

2 ) ≈
2.2568, and g′′(−1.946503) = g′′(2.946503) ≈ 1.945045. The intervals where it is increas-
ing are (−1.946503, 1

2 ) and (2.946503, ∞), and the intervals where it is decreasing are
(−∞,−1.946503) and ( 1

2 , 2.946503). Therefore, the local minimum is 1.945045, and the local
maximum is 2.2568. Furthermore, we also find lim

x→±∞
g′′(x) = 2. This shows that the global

minimum of g′′(x) is positive, hence g′′(x) > 0 on the entire R. This implies that g(x) is
convex on R. As h(x) and g(x) are convex on R according to Lemma 4(a), τf1,g2

(·) is convex
on R.

As shown in (23), τf 2,g1(x) = 5
√
|x|5 + |1− x|5 − e(1−x)x− ex(1− x). As

5
√
|x|5 + |1− x|5 and −e(1−x)x − ex(1 − x) are convex on R from previous discussions

according to Lemma 4(a), τf2,g1
(x) is convex on R.
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As given in (24), τf2,g2
(x) = 5

√
|x|5 + |1− x|5 − (

√
(1−x)2+4+(1−x)

2 )x− (
√

x2+4+x
2 )(1−

x). As 5
√
|x|5 + |1− x|5 and −(

√
(1−x)2+4+(1−x)

2 )x − (
√

x2+4+x
2 )(1 − x) are convex on R

from previous work according to Lemma 4(a), τf2,g2
(x) is convex on R.

(b) As shown in (26), τf3,g1
(x) = ln(e|x| + e|1−x| − 1) − e(1−x)x − ex(1− x). Let h(x) :=

ln(e|x| + e|1−x| − 1) and g(x) := −e(1−x)x− ex(1− x). As g(x) is convex on R based on the
proof of the case for τf 1,g1 , the convexity of h(x) is all that remains to determined. Note that
h(x) is not differentiable at x = 0 and x = 1, and we need to discuss three cases:
Cases (i): Suppose 0 < x < 1. Taking the first derivative and second derivative of h(x) give

h′(x) =
xe|x|
|x| −

(1−x)e|1−x|

|1−x|
e|x| + e|1−x| − 1

,

h′′(x) =
(e|x| + e|1−x|)(e|x| + e|1−x| − 1)− ( x

|x| e
|x| − (1−x)

|1−x| e
|1−x|)2

(e|x| + e|1−x| − 1)2
.

Since the denominator of h′′(x) is positive, we need to check whether the numerator
is positive. The numerator is (ex + e1−x)2 − (ex + e1−x)− (ex − e1−x)2 = 4e− (ex + e1−x).
For 0 < x < 1, we have 1 < ex < e and 1 < e(1−x) < e, which indicates that the numerator
is positive. Therefore, we conclude h′′(x) > 0, and hence τf3,g1

(·) is convex on the interval
(0, 1).
Cases (ii): Suppose x > 1, taking the second derivative of h(x) gives

h′′(x) =
−
(

ex + e(x−1)
)

(
ex + e(x−1) − 1

)2 + ex(x + 1)− e1−x(x− 2).

We want to show that h′′(x) > 0 for x > 1. Taking the third derivative of h(x) yields

h′′′(x) = (
(ex + ex−1 + 1)(ex + ex−1)

(ex + ex−1 − 1)3 ) + (e1−x(x− 3) + ex(x + 2)).

For the first term of h′′′(x), since ex + ex−1 > e + 1, the denominator is positive, and
hence the first term is positive. For the second term of h′′′(x), we have

e1−x(x− 3) + ex(x + 2) = e1−xx + exx + 2ex − 3e(1−x) = e1−xx + exx + 2eex−1 − 3e(1−x).

As 2e > 3 and ex−1 > e1−x when x > 1, it is also positive. Therefore, we obtain
h′′′(x) > 0. This shows that h′′(x) is increasing. Note also that h′′(1) = 1 + 2e− 1+e

e2 > 0.
Then, it follows that h′′(x) > 0. τf3,g1

(x) is convex on the interval (1, ∞).

Cases (iii): Suppose x < 0. As τf3,g1
(x) is symmetric about the point x = 1

2 according to
case (ii), the function τf3,g1

(·) is convex on interval (−∞, 0).
As indicated in (27),

τf3,g2
(x) = ln(e|x| + e|1−x| − 1)−

(√
(1− x)2 + 4 + (1− x)

2

)
x−

(√
x2 + 4 + x

2

)
(1− x).

Let h(x) := ln(e|x| + e|1−x| − 1) and g(x) := −(
√

(1−x)2+4+(1−x)
2 )x− (

√
x2+4+x

2 )(1−
x). g(x) is convex on R according to the proof of the case for τf1,g2

and h(x) is convex on
the intervals (−∞, 0), (0, 1) and (1, ∞) according to previous arguments. Therefore, τf3,g2

is
convex on the intervals (−∞, 0), (0, 1), and (1, ∞).
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(c) As given in (22), τf1,g3
(x) =

√
x2 + (1− x)2 − ( 4−e−(1−x)

1+2e−(1−x) )x − ( 4−e−x

1+2e−x )(1− x). Taking
the second derivative of τf1,g3

(x) gives

(
τf1,g3

)′′
(x) =

1

(2x2 − 2x + 1)
3
2
+

9
2
(− e(x− 2)

2ex + e
− 2e3x

(2ex + e)3

+
e2(3x− 2)
(2ex + e)2 +

4ex(x + 1)− 2e2x(x− 3)
(ex + 2)3 ).

The inflection points are x ≈ −1.986749, 2.986749, −12.999449, and 13.99944. Then,
the intervals where the curve is convex are (−1.986749, 2.986749), (−∞,−12.999449) and
(13.999449, ∞).

As indicated in (25), we know

τf2,g3
(x) = 5

√
|x|5 + |1− x|5 −

(
4− e−(1−x)

1 + 2e−(1−x)

)
x−

(
4− e−x

1 + 2e−x

)
(1− x).

Similarly, we use the second derivative to find the inflection points. The inflection
points are x ≈ 3.005175, −2.005175, −11.286820, and 12.286820. Therefore, the intervals
where the curve is convex are (−2.005175, 3.005175), (12.286820, ∞), and (−∞,−11.286820).

As shown in (28), we know

τf3,g3
(x) = ln(e|x| + e|1−x| − 1)−

(
4− e−(1−x)

1 + 2e−(1−x)

)
x−

(
4− e−x

1 + 2e−x

)
(1− x).

Similarly, we use the second derivative to find the inflection points. The inflection
points are x ≈ −1.904132 and 2.904132. Because ln(e|x| + e|1−x| − 1) is not differentiable at
the points 0 and 1, we can only assure that the interval where the curve is convex is (0, 1).
�

Recall that a function is called subdifferentiable at x if there exists at least one subgra-
dient at x. Although τf3,g1

(x) is not differentiable at the points 0 and 1, with the help of
Proposition 11(b), we can still show that it is subdifferentiable thereat.

Proposition 12. (a) The function τf3,g1
(·) is subdifferentiable at the points 0 and 1 and the

subdifferential is described by

∂τf3,g1
(0) =

[
(−1− e)

e
− e,

(1− e)
e

− e
]

,

∂τf3,g1
(1) =

[
(e− 1)

e
+ e,

(e + 1)
e

+ e
]

.

Moreover, τf3,g1
(·) is convex on R.

(b) The function τf3,g2
(·) is subdifferentiable at the points 0 and 1 and the subdifferential is

described by

∂τf3,g2
(0) =

[
(−1− e)

e
−
√

5
2

,
(1− e)

e
−
√

5
2

]
,

∂τf3,g2
(1) =

[
(e− 1)

e
+

√
5

2
,
(e + 1)

e
+

√
5

2

]
.

Moreover, τf3,g2
(·) is convex on R.
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Proof. (a) Taking the first derivative of τf3,g1
(x) gives

(
τf3,g1

)′
(x) =

xe|x|
|x| −

(1−x)e|1−x|

|1−x|
e|x| + e|1−x| − 1

+ (e(1−x)(x− 1) + exx).

The right and left derivatives at the point 0 are
(

τf3,g1

)′
(0+) = 1−e

e − e and
(

τf3,g1

)′
(0−)

= −1−e
e − e, respectively. Moreover, we have

(
τf3,g1

)′
(0+) >

(
τf3,g1

)′
(0−). Based on the

convexity of τf3,g1
(x) on (−∞, 0) from Proposition 11(b), we have

τf3,g1
(ε− + h)− τf 3,g1(ε−) ≥

(
τf 3,g1

)′
(ε−)h

with small ε− < 0 and h < 0. Note here the τf3,g1
(x) is a continuous function. Let

ε− → 0. Thus, we have τf3,g1
(h) − τf3,g1

(0) ≥
(

τf 3,g1

)′
(0−)h for h < 0. Similarly, ac-

cording to the convexity of τf3,g1
(x) on (0, 1) from Proposition 11(b), we can obtain that

τf3,g1
(h)− τf3,g1

(0) ≥
(

τf3,g1

)′
(0+)h where 0 < h < 1. Therefore, we show that τf3,g1

(x) is

subdifferentiable at 0, and ∂τf3,g1
(0) =

[
(−1−e)

e − e, (1−e)
e − e

]
. Moreover based on Lemma

2.13 in [17], τf3,g1
(x) is convex on the interval (−∞, 1), especially at the point 0. Likewise,

∂τf3,g1
(1) =

[
e−1

e + e, e+1
e + e

]
and it is convex at the point 1. Hence, τf3,g1

(x) is convex on
entire R.

(b) Taking the first derivative of τf3,g2
(x) yields

(
τf3,g2

)′
(x) =

xe|x|
|x| −

(1−x)e|1−x|

|1−x|
e|x| + e|1−x| − 1

+
1
2

[
(1− x)

( −x√
x2 + 4

− 1
)
+
√

x2 + 4− (x− 1)x√
x(x− 2) + 5

+ 3x−
√

x(x− 2) + 5− 1

]
.

The right derivative at the point 0 is
(

τf3,g2

)′
(0+) = ( 1−e

e )−
√

5
2 and the left derivative

at the point 0 is
(

τf3,g2

)′
(0−) = −1−e

e −
√

5
2 . Therefore, we obtain

∂τf3,g2
(0) =

[
−1− e

e
−
√

5
2

,
1− e

e
−
√

5
2

]
.

Similarly, ∂τf3,g2
(1) =

[
e−1

e +
√

5
2 , e+1

e +
√

5
2

]
. �

5. The Local Minimum and Maximum of the Curves

After discussing the convexity and differentiability, we now work on finding the local
minimum or maximum value of the curves. In addition, we shall investigate the convergent
behavior of local minimum or maximum values when p becomes very large.

Proposition 13. Let τ
p

FB , τ
p

D−FB and σ
p
FB be defined as in (11), (13), and (12) respectively. Then, the

following hold. See Figure 7.

(a) The function τ
p

FB(x) has a local minimum at x = 1
2 and its local minimum value converges to

− 1
2 .

(b) When p is an odd integer, the function τ
p

D−FB(x) has a local minimum at x = 1
2 and its local

minimum value converges to −1.
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(c) The function σ
p
FB(x) has local minima at x = 0 and 1. Furthermore, it has a local maximum

value at x = 1
2 and its local maximum value converges to 1

8 .

Proof. (a) From (11), we know that

τp
FB
(x) = p

√
|x|p + |1− x|p − 1

where p > 1. The first derivative of this function is

(
τp

FB

)′
(x) = (|x|p + |1− x|p)

1
p−1

[sgn(x)|x|p−1 − |1− x|p−1sgn(1− x)].

Note that the first term is positive. We then investigate the second term:[
sgn(x)|x|p−1 − |1− x|p−1sgn(1− x)

]
.

Case (i): If x > 1/2, then sgn(x)|x|p−1 − |1− x|p−1sgn(1− x) > 0.

Case (ii): If x < 1/2, then sgn(x)|x|p−1 − |1− x|p−1sgn(1− x) < 0.

Case (iii): When x = 1
2 , we see that a = 1

2 is the only root of
(

τ
p

FB

)′
(x) = 0. Moreover,

τ
p

FB(x) is convex on R, which indicates a = 1
2 is the only local minimizer and the value is

( 1
2 )(2

1
p )− 1. Furthermore, we observe that the local minimum value converges to − 1

2 as
p → ∞.

(b) From (13), we know that

τp
D−FB

(x) = (
√

x2 + (1− x)2)p − 1

where p > 1 and p is an odd integer. Taking the first derivative of this function yields(
τp

D−FB

)′
(x) = p(x2 + (1− x)2)

p
2−1(2x− 1).

It can be verified that a = 1
2 is the singular critical point. Note that τ

p
D−FB(x) is convex

on R, hence a = 1
2 is a local minimizer and the value is

(√
2( 1

2 )
2
)p
− 1. In addition, the

local minimum value converges to −1 when p → ∞.

(c) From (12), we know that

σp
FB
(x) =

1
2
|τp

FB
(x)|2

where p > 1. Taking the first derivative of this function gives(
σp

FB

)′
(x) = τp

FB
(x)

(
τp

FB

)′
(x).

We want to solve
(

σ
p
FB

)′
(x) = 0, which implies τ

p
FB(x) = 0 or

(
τ

p
FB

)′
(x) = 0. If

τ
p

FB(x) = 0, we have x = 0 and x = 1. If
(

τ
p

FB

)′
(x) = 0, we have x = 1

2 . Thus, the critical

numbers are x = 0, 1
2 , 1. Note that 0 and 1 are the only two roots of τ

p
FB(x) = 0 and τ

p
FB(x) is

non-negative. Therefore, we see that x = 0 and x = 1 are local minimizers, and the values
are both 0.

On the other hand, we know that τ
p

FB(x) is decreasing (increasing) on the right (left)
hand side of the point a = 1

2 . Hence, the point a = 1
2 is a local maximizer, and the value is

1
2

[
(2( 1

2 )
p)

1
p − 1

]2
. This further implies that when p → ∞, the local maximum converges

to 1
8 . �
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Figure 7. Graphs of τ
p

FB (x), τ
p

D−FB (x) and σ
p
FB (x) with different values of p. (a) Local minimum of

τ
p

FB (x); (b) Local minimum of τ
p

D−FB (x); (c) Local minimum and maximum of σ
p
FB (x).

Proposition 14. Let τ
p

NR be defined as in (14) with odd integer p. Then, the function τ
p

NR(·) has a
local maximum at x = 1

2−2
− 1

p−1
. Furthermore, its minimum value converges to 1

4 . See Figure 8.

Proof. From (14), we know that τ
p

NR(x) = xp − (2x − 1)p
+ where p > 1 and p is an odd

integer. Computing the first derivative of this function gives

(
τp

NR

)′
(x) = p

(
x(p−1) −

[
(2x− 1) + |2x− 1|

2

](p−1)(
1 +

2x− 1
|2x− 1|

))
.

To proceed, we discuss two cases:

Cases (i): If x < 1
2 , then

(
τ

p
NR

)′
(x) = pxp−1 ≥ 0. Hence, τ

p
NR(x) is increasing on (−∞, 1

2 ),
which indicates that it does not have local minimum or maximum value.
Cases (ii): If x > 1

2 , then
(

τ
p

NR

)′
(x) = p[xp−1− 2(2x− 1)p−1]. It is verified that a = 1

2−2
− 1

p−1

is the only root of p[xp−1 − 2(2x− 1)p−1] = 0 for p > 1. Moreover, we have that τ
p

NR(x)
is decreasing (increasing) on the right (left) hand side of the point a. Hence, a is a local

maximizer and the local maximum value is

[
1

2−2
− 1

p−1

]p

−
[

2( 1

2−2
− 1

p−1
)− 1

]p

. Furthermore,

the local maximum value

[
1

2−2
− 1

p−1

]p

−
[

2( 1

2−2
− 1

p−1
)− 1

]p

converges to 1
4 as p → ∞. �
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Figure 8. Local maximum of τ
p

NR (x) with different values of p.

Proposition 15. Let τ
p

S−NR and σ
p
S−NR be defined as in (15) and (16), respectively. Then, for the odd

integer p, the following hold. See Figure 9.

(a) The function τ
p

S−NR(·) has a local maximum at x = 1−
(

1

2−2
− 1

p−1

)
and 1

2−2
− 1

p−1
. Its local

maximum value converges to 1
4 . Furthermore, it has a local minimum at x = 1

2 , which
converges to 0.

(b) The function σ
p
S−NR(·) has a local maximum at x = 1

2 and its maximum value converges to 0.
In addition, it has a local minimum at x = 0 and x = 1.

Proof. (a) From (15), we know that

τp
S−NR

(x) =

⎧⎪⎨⎪⎩
xp − (2x− 1)p, if x > 1

2 ,
( 1

2 )
p, if x = 1

2 ,
(1− x)p − (1− 2x)p, if x < 1

2 ,

where p is an odd integer. As τ
p

S−NR(x) is symmetric at the point x = 1
2 , we consider the

below two cases:

Cases (i): If x > 1
2 , according to Proposition 14, the local maximum point is a = 1

2−2
− 1

p−1
and

the maximum value is

[
1

2−2
− 1

p−1

]p

− [2( 1

2−2
− 1

p−1
)− 1]p, which converges to 1

4 as p → ∞.

Cases (ii): If x < 1
2 , similar to Case (i), we obtain that a = 1 −

(
1

2−2
− 1

p−1

)
is a local

maximum point and the maximum value is

(
1

2−2
− 1

p−1

)p

−
(
−1 + 2

2−2
− 1

p−1

)p

, which

converges to 1
4 as p → ∞.

Furthermore, because the function is increasing (decreasing) on the right (left) hand
side of the point a = 1

2 , we can conclude a = 1
2 is a local minimizer. Its the minimum value

is ( 1
2 )

p, which converges to 0 when p → ∞.

(b) From (16), we know that

σp
S−NR

(x) =

⎧⎪⎨⎪⎩
xp(1− x)p − (2x− 1)p(1− x)p, if x > 1

2 ,
( 1

2 )
2p, if x = 1

2 ,
xp(1− x)p − xp(1− 2x)p, if x < 1

2 ,

where p is an odd integer. Since σ
p
S−NR(x) is symmetric at the point x = 1

2 , we divide it into
two cases:
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Case (i): Suppose x ≥ 2
3 , the first derivative is(

σp
S−NR

)′
(x) = −p(1− x)p−1[xp − (2x− 1)p] + (1− x)p

[
p(xp−1 − 2(2x− 1)p−1)

]
.

Based on this, it is verified that a = 1 is a critical point. Because σ
p
S−NR(x) is non-

negative and σ
p
S−NR(1) = 0, we can conclude that 1 is a local minimum point and the value

is 0.

Case (ii): Suppose x ≤ 1
3 . Based on symmetry, the local minimum point is a = 0 and the

value is 0.

Case (iii): Suppose 1
3 < x < 2

3 , we know that
(

σ
p
S−NR

)′
( 1

2 ) = 0 and σ
p
S−NR(x) is decreasing

(increasing) on the right (left) side of the point a = 1
2 . Hence, we obtain that a = 1

2 is a
local maximizer and the maximum value is ( 1

2 )
2p for p ≥ 3. It clearly converges to 0 when

p → ∞. �
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Figure 9. Graphs of τ
p

S−NR (x) and σ
p
S−NR (x) with different values of p. (a) Local minimum and

maximum of τ
p

S−NR (x) ; (b) Local minimum and maximum of σ
p
S−NR (x).

Due to the fact that τ̃
p

NR , τ̃
p

S−NR , and σ̃
p
S−NR are continuous counterparts of τ

p
NR , τ

p
S−NR and

σ
p
S−NR, analogous to Propositions 14 and 15, their local maximums and minimums can be

obtained. We omit the proof here.

Proposition 16. Let τ̃
p

NR(x), τ̃
p

S−NR and σ̃
p
S−NR be defined as in (17), (18), and (19), respectively.

Then, for p > 1, the following hold. See Figure 10.

(a) The function τ
p

NR(·) has a local maximum at x = 1

2−2
− 1

p−1
. Furthermore its minimum value

converges to 1
4 .

(b) The function τ̃
p

S−NR(·) has a local maximum at x = 1−
(

1

2−2
− 1

p−1

)
and 1

2−2
− 1

p−1
and its

local maximum value converges to 1
4 . Furthermore, it has a local minimum at x = 1

2 and
converges to 0.

(c) The function σ̃
p
S−NR(·) has a local maximum at x = 1

2 and its local maximum value converges
to 0. In addition, it has a local minimum at x = 0 and x = 1.
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Figure 10. Graphs of τ̃
p

NR (x), τ̃
p

S−NR (x) and σ̃
p
S−NR (x) with different values of p. (a) Local maximum of

τ̃
p

NR (x); (b) Local minimum and maximum of τ̃
p

S−NR (x); (c) Local minimum and maximum of σ̃
p
S−NR (x).

The local minimum for other τfi ,gi
(·) is simple.

Proposition 17. Let τfi ,gi
with i = 1, 2, 3 be defined as in (20)–(28). Then, the function τfi ,gi

(·)
has a local minimum at x = 1

2 . See Figure 11.
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Figure 11. Local minimum of τfi ,gi
(x) for i, j = 1, 2, 3.

Proof. Because each τfi ,gi
(x) is nearly convex according to x = 1

2 and τfi ,gi
(x) has a critical

number at x = 1
2 , the local minimum at x = 1

2 is confirmed and can be calculated easily.
We only present the values here.
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τf1,g1

(
1
2

)
=

1√
2
−
√

e

τf1,g2

(
1
2

)
= −1

4
+

1√
2
−
√

17
4

τf1,g3

(
1
2

)
=

1√
2
+

1− 4
√

e
2 +

√
e

τf2,g1

(
1
2

)
=

1

2
4
5
−
√

e

τf2,g2

(
1
2

)
= −1

4
+

1

2
4
5
−
√

17
4

τf2,g3

(
1
2

)
=

1

2
4
5
+

1− 4
√

e
2 +

√
e

τf3,g1

(
1
2

)
= ln(2

√
e− 1)−

√
e

τf3,g2

(
1
2

)
= ln(2

√
e− 1)− 1

4
−
√

17
4

τf3,g3

(
1
2

)
= ln(2

√
e− 1) +

1− 4
√

e
2 +

√
e

This completes the proof. �

6. Summary

To summarize, when comparing all the curves based on NCP functions, almost all of
them are neither convex nor concave. Only the curve based on the Fischer–Burmeister func-
tion is convex due the fact that its corresponding NCP function is also convex. Nonetheless,
we observe that some curves are convex whereas their corresponding NCP functions are
not. For instance, the curve based on the discrete type of the Fischer–Burmeister function.
This indicates that the convexity of the curves depends on the choice of vertical plane. In
addition, when p is perturbed, the interval of convexity will be shrunk or stretched. For the
local minimum or maximum, when p becomes very large, most of the minima and maxima
converge. and the minima or maxima vary by the perturbation of p.
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1 Department of Mathematics and Computer Science, “Aurel Vlaicu” University of Arad, Elena Drăgoi Street
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Abstract: In this paper, we consider several problems related to the so-called multi-valued Feng–
Liu–Subrahmanyan contractions in complete metric spaces. Existence of the fixed points and of the
strict fixed points, as well as data dependence and stability properties for the fixed point problem,
are discussed. Some results are presented, under appropriate conditions, and some open questions
are pointed out. Our results extend recent results given for multi-valued graph contractions and
multi-valued Subrahmanyan contractions.

Keywords: complete metric space; fixed point; data dependence; Ulam–Hyers stability; Ostrowski
stability

MSC: 47H10; 54H25

1. Introduction and Preliminaries

Let (M, d) be a metric space. We denote by P(M) the set of all nonempty subsets
of M, by Pcl(M) the set of all nonempty closed subsets of M, and by Pcl,b(M) the set of all
nonempty closed and bounded subsets of M.

The following notations are used throughout this paper:
(1) The distance between a point m ∈ M and a set A ∈ P(M):

D(m, A) := inf{d(m, a) | a ∈ A}.

(2) The excess of A over B, where A, B ∈ P(M):

e(A, B) := sup{D(a, B) | a ∈ A}.

(3) The Hausdorff–Pompeiu distance between the sets A, B ∈ P(M):

H(A, B) = max{e(A, B), e(B, A)}.

Notice that H is a generalized metric (in the sense that it takes values in R ∪ {+∞}) on
Pcl(M) and it is a metric on Pcl,b(M).

Let (M, d) be a metric space and S : M → P(M) be a multi-valued operator with
nonempty values. A fixed point of S is an element m∗ ∈ M such that m∗ ∈ S(m∗). A
strict fixed point of S is an element m∗ ∈ M such that S(m∗) = {m∗}. We denote by
Fix(S) the fixed point set of S and by SFix(S) the set of all strict fixed points of S. By
Graph(S) := {(u, v) | v ∈ S(u)}, we denote the graph of S.

Axioms 2022, 11, 563. https://doi.org/10.3390/axioms11100563 https://www.mdpi.com/journal/axioms182
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A multi-valued operator S : M → P(M) is said to be a multi-valued K-contraction if
K ∈ [0, 1[ and the following relation holds:

H(S(u), S(v)) ≤ Kd(u, v), for all (u, v) ∈ M×M.

The main fixed point result for multi-valued contractions was given by Nadler in 1969;
see [1]. The result was slightly improved in 1970 by Covitz and Nadler (see [2]), and it is
known as the multi-valued contraction principle. It says that any multi-valued contraction
on a complete metric space has at least one fixed point.

In the same context, S is called a multi-valued graph contraction with constant K if

H(S(u), S(v)) ≤ Kd(u, v), for all (u, v) ∈ Graph(S).

For the main fixed point result concerning multi-valued graph contractions, see [3].
Fixed point theorems for multi-valued (graph) contractions are important tools in

various applications, from integral and differential inclusions to optimization and fractal
theory. Moreover, strict fixed point theorems are important in the theory of generalized
games (abstract economies), as well as in the study of the convergence, to the fixed point,
of various iterative schemes (see [4–7]).

For fixed point results for multi-valued contractions and multi-valued graph contrac-
tions, see [3,8–10] and the references therein.

The following concept was introduced by Feng and Liu in [11].

Definition 1. Let (M, d) be a metric space, S : M → P(M) be a multi-valued operator, b ∈]0, 1[,
and u ∈ M. Consider the set

Iu
b := {v ∈ S(u) : bd(u, v) ≤ D(u, S(u))}.

Then, S is called a multi-valued K-contraction of Feng–Liu type if K ∈]0, 1[ such that for each
u ∈ M there is v ∈ Iu

b with the property:

D(v, S(v)) ≤ Kd(u, v).

It is easy to see that any multi-valued K-contraction is a multi-valued K-contraction
of Feng–Liu type, but not reversely (for examples, see Remark 1 in the paper [11]). For
fixed-point-results-related Feng–Liu operators, see [11–17].

The following definition was introduced in [18]. Some fixed point results for this class
of multi-valued operators are given in the same paper. For the single-valued case, see
[19,20].

Definition 2. Let (M, d) be a metric space and S : M → P(M) be a multi-valued operator with
nonempty values. Then, S is said to be a multi-valued Subrahmanyan contraction if there exists a
function ψ : M → [0, 1[ such that

(i) H(S(u), S(v)) ≤ ψ(u)d(u, v), for all (u, v) ∈ Graph(S);
(ii) ψ(v) ≤ ψ(u), for every (u, v) ∈ Graph(S).

In this paper, we introduce a new class of multi-valued contraction type operators by
combining the above two conditions: the multi-valued contraction condition of Feng–Liu
type and the multi-valued Subrahmanyan contraction. As a consequence, we present
existence and stability results for the fixed point inclusion m ∈ S(m), m ∈ M, where (M, d)
is a complete metric space and S : M → P(M) is a multi-valued Feng–Liu–Subrahmanyan
contraction. The strict fixed point problem is also considered and some open questions are
pointed out. Our results extend recent results given for multi-valued graph contractions
and multi-valued Subrahmanyan contractions.
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2. Main Results

Let (M, d) be a metric space and S : M → P(M) be a multi-valued operator. For
each (m0, m1) ∈ Graph(S), the sequence {mn}n∈N with the property mn+1 ∈ S(mn), n ∈ N
is called the sequence of successive approximations for S starting from (m0, m1). We recall
now the notion of multi-valued weakly Picard operator.

Definition 3 ([21]). Let (M, d) be a metric space. Then, S : M → P(M) is called a multivalued
weakly Picard operator if for each u ∈ M and each v ∈ S(u) there exists a sequence {mn}n∈N in
M such that

(i) m0 = u, m1 = v;
(ii) mn+1 ∈ S(mn), for all n ∈ N;
(iii) {mn}n∈N is convergent in (M, d) and its limit m∗(u, v) is a fixed point of S.

Let us recall the following important notions.

Definition 4. Let (M, d) be a metric space and S : M → P(M) be a multi-valued weakly Picard
operator. Let us consider the multi-valued operator S∞ : Graph(S) → P(Fix(S)) defined by
S∞(u, v) := {m∗ ∈ Fix(S) | there is a sequence of successive approximations of S starting from
(u, v) convergent to m∗}. Then, S satisfies the local retraction–displacement condition if there exists
a selection s∞ of S∞ such that

d(u, s∞(u, v)) ≤ C(u, v)d(u, v), for all (u, v) ∈ Graph(S),

for some C(u, v) > 0.
When C is independent of u and v, then we say that S satisfies the retraction–displacement

condition.

A similar concept is given now in our next definition.

Definition 5. Let (M, d) be a metric space and let S : M → P(M) be a multi-valued operator such
that Fix(S) �= ∅. Then, we say that S satisfies the local strong retraction–displacement condition if
there exists a set retraction r : M → Fix(S) such that

d(m, r(m)) ≤ C(m)D(m, S(m)), for all m ∈ M, (1)

for some C(m) > 0.

For related notions, examples, and results, see [1,18,21–24].
We now define the central concept of this paper, i.e., a multi-valued Feng–Liu–Subrahmanyan

contraction on a metric space.

Definition 6. Let (M, d) be a metric space, S : M → P(M) be a multi-valued operator, b ∈]0, 1[,
and m ∈ M. Consider the set

Iu
b := {v ∈ S(u) | bd(u, v) ≤ D(u, S(u))}.

Then, by definition, S is a multi-valued Feng–Liu–Subrahmanyan contraction if there exists ψ :
M → [0, b[ such that for each u ∈ M there is v ∈ Iu

b with
(i) D(v, S(v)) ≤ ψ(u)d(u, v), for all (u, v) ∈ Graph(S);
(ii) ψ(v) ≤ ψ(u), for every (u, v) ∈ Graph(S).

It is obvious that any multi-valued Subrahmanyan contraction is a multi-valued
Feng–Liu–Subrahmanyan contraction, but the reverse implication, in general, does not hold.

Our first main result is a fixed point theorem for a multi-valued Feng–Liu–Subrahmanyan
contractions with closed graph.
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Theorem 1. Let (M, d) be a complete metric space, and consider a multi-valued Feng–Liu–Subrahmanyan
contraction S : M → P(M) with closed graph. Then, the following conclusions hold:

(a) Fix(S) �= ∅;
(b) For every u ∈ M there exists a sequence {mn}n∈N of successive approximations for S

starting at m0 = u which converges to a fixed point m∗(u) of S, and the following apriori estimation
holds:

d(mn, m∗(u)) ≤
(

ψ(u)
b

)n 1
b− ψ(u)

D(u, S(u)), for every n ∈ N.

(c) The following local strong retraction–displacement type condition holds:

d(u, m∗(u)) ≤ 1
b− ψ(u)

D(u, S(u)), for all u ∈ M.

Proof. Let m0 = u ∈ M be arbitrary and b ∈]0, 1[. Then, since S(u) ∈ Pcl(M), the set Iu
b is

nonempty, for each u ∈ M. By Definition 6, there exist ψ : M → [0, b[ and m1 ∈ Iu
b (i.e.,

bd(u, m1) ≤ D(u, S(u))) such that
(i) D(m1, S(m1)) ≤ ψ(m0)d(m0, m1);
(ii) ψ(m1) ≤ ψ(m0).

In a similar way, there exists m2 ∈ Im1
b (i.e., bd(m1, m2) ≤ D(m1, S(m1))) such that

(i) D(m2, S(m2)) ≤ ψ(m1)d(m1, m2);
(ii) ψ(m2) ≤ ψ(m1).

Hence, we have

d(m1, m2) ≤
1
b

D(m1, S(m1)) ≤
ψ(m0)

b
d(m0, m1)

and

D(m2, S(m2)) ≤ ψ(m1)d(m1, m2) ≤
ψ(m1)

b
D(m1, S(m1)) ≤

ψ(m1)

b
ψ(m0)d(m0, m1) ≤

ψ(m1)ψ(m0)

b2 D(u, S(u)) ≤
(

ψ(u)
b

)2

D(u, S(u)).

In the next step, there exists m3 ∈ Im2
b (i.e., bd(m2, m3) ≤ D(m2, S(m2))) such that

(i) D(m3, S(m3)) ≤ ψ(m2)d(m2, m3);
(ii) ψ(m3) ≤ ψ(m2).

Hence, in this case, we have

d(m2, m3) ≤
1
b

D(m2, S(m2)) ≤
ψ(m1)

b
d(m1, m2) ≤

ψ(m1)

b
ψ(m0)

b
d(m0, m1) ≤

(
ψ(m0)

b

)2

d(m0, m1)

and

D(m3, S(m3)) ≤ ψ(m2)d(m2, m3) ≤
ψ(m2)

b
D(m2, S(m2)) ≤

ψ(m2)

b
ψ(m1)

b
D(m1, S(m1)) ≤

(
ψ(m1)

b

)2

D(m1, S(m1)) ≤
(

ψ(m0)

b

)3

D(u, S(u)).

Inductively, there exists a sequence {mn}n∈N such that
(i) D(mn+1, S(mn+1)) ≤ ψ(mn)d(mn, mn+1);
(ii) ψ(mn+1) ≤ ψ(mn);
(iii) mn+1 ∈ Imn

b , for n ∈ N, i.e., bd(mn, mn+1) ≤ D(mn, S(mn)).
Hence, we have

d(mn, mn+1) ≤
1
b

D(mn, S(mn)) ≤
ψ(mn−1)

b
d(mn−1, mn) ≤ · · · ≤

(
ψ(m0)

b

)n
d(m0, m1)
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and

D(mn+1, S(mn+1)) ≤ ψ(mn)d(mn, mn+1) ≤
ψ(mn)

b
D(mn, S(mn)) ≤ · · · ≤

(
ψ(m1)

b

)n
D(m1, S(m1)) ≤

(
ψ(m0)

b

)n+1

D(u, S(u)).

In order to show that the sequence {mn}n∈N is Cauchy, we can estimate

d(mn, mn+p) ≤ d(mn, mn+1) + · · ·+ d(mn+p−1, mn+p) ≤(
ψ(m0)

b

)n
d(m0, m1) + · · ·+

(
ψ(m0)

b

)n+p−1

d(m0, m1) =(
ψ(m0)

b

)n
[

1 +
ψ(m0)

b
+ · · ·+

(
ψ(m0)

b

)p−1
]

d(m0, m1) ≤

(
ψ(m0)

b

)n b
b− ψ(m0)

d(m0, m1)→ 0 as n, p → ∞.

We also observe that

d(mn, mn+p) ≤
(

ψ(m0)

b

)n b
b− ψ(m0)

d(m0, m1), for each n, p ∈ N∗. (2)

It follows that {mn}n∈N is Cauchy sequence in (M, d) and, thus, there exists m∗(u) ∈
M such that {mn}n∈N is convergent to m∗(u) ∈ M. From the condition that S has a closed
graph, we deduce that m∗(u) is a fixed point for S.

In addition, for p → +∞ in (2), we have

d(mn, m∗(u)) ≤
(

ψ(u)
b

)n b
b− ψ(u)

d(u, m1) ≤(
ψ(u)

b

)n 1
b− ψ(u)

D(u, S(u)), for every n ∈ N. (3)

Taking n = 0 in (3), it follows that d(u, m∗(u)) ≤ 1
b−ψ(u) D(u, S(u)), for all u ∈ M.

Example 1. Let S : M := R×R→ R×R given by

S(u, v) =

{
{(u, v+|u|+v|v−|u||

2+|v−|u|| )}, (u, v) ∈ M, v = |u|
{(0, 1), (0,−1)}, (u, v) ∈ M, v �= |u|.

(4)

Then, S is a multi-valued Feng–Liu–Subrahmanyan contraction with ψ(u, v) := (v−|u|)2+3|v−|u||+2
(v−|u|)2+3|v−|u||+4 .

Notice that Fix(S) = {(u, v) ∈ M : v = |u|} and S is not a multi-valued Feng–Liu operator since
sup

(u,v)∈M
ψ(u, v) = 1.

We recall now some stability concepts for the fixed point inclusion m ∈ S(m).

Definition 7. Let (M, d) be a metric space and S : M → P(M) be a multi-valued operator. We
say that the fixed point inclusion

m ∈ S(m), m ∈ M (5)
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is local Ulam–Hyers stable if for any ε > 0 and any ε-solution u of the fixed point inclusion (5) (i.e.,
u ∈ M with the property D(u, S(u)) ≤ ε), there exist C = C(u) > 0 and m∗ = m∗(u) ∈ Fix(S)
with

d(u, m∗) ≤ Cε.

If C does not depend on u, then we say that the fixed point inclusion is Ulam–Hyers stable (see [25]
for related results).

A local data dependence property is given in our next definition.

Definition 8. Let (M, d) be a metric space and S : M → P(M) be a multi-valued operator. By
definition, the fixed point inclusion

m ∈ S(m), m ∈ M

has the local data dependence property if, for any multi-valued operator, T : M → P(M), satisfying:
(i) Fix(T) �= ∅;
(ii) There exists η > 0 such that H(S(m), T(m)) ≤ η, for all m ∈ M,the following implica-

tion holds: for each u ∈ Fix(T) there exist C = C(u) > 0 and m∗ = m∗(u) ∈ Fix(S) such that
d(u, m∗) ≤ C(u)η.

The well-posedness of the fixed point inclusion m ∈ S(m) is defined as follows
(see [26,27]):

Definition 9. Let (M, d) be a metric space and let S : M → P(M) be a multi-valued operator
such that Fix(S) �= ∅. Suppose there exists r : M → Fix(S), a set retraction. Then, the fixed point
inclusion m ∈ S(m) is called well-posed in the sense of Reich and Zaslavski if for each v ∈ Fix(S)
and for any sequence {vn}n∈N ⊂ r−1(v) such that

D(vn, S(un))→ 0 as n → ∞,

we have that
vn → v as n → ∞.

Finally, we recall the notion of Ostrowski stability property for a fixed point inclusion
(see [23]).

Definition 10. Let (M, d) be a metric space and let S : M → P(M) be a multi-valued operator
such that Fix(S) �= ∅. Suppose there exists r : M → Fix(S), a set retraction. Then, the fixed point
inclusion m ∈ S(m) is said to have the Ostrowski stability property if for each m∗ ∈ Fix(S) and
for any sequence {wn}n∈N ⊂ r−1(m∗) such that:

D(wn+1, S(wn))→ 0 as n → ∞,

we have that
wn → m∗ as n → ∞.

Two abstract results concerning some stability properties of a multi-valued operator
are given in our next results.

Theorem 2. Let (M, d) be a metric space and let S : M → P(M) be a multi-valued operator
satisfying the local strong retraction–displacement condition such that Fix(S) �= ∅. Then, the fixed
point inclusion m ∈ S(m) has the local Ulam–Hyers stability property and satisfies the local data
dependence property.
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Proof. Suppose there exists a set retraction r : M → Fix(S) such that

d(m, r(m)) ≤ C(m)D(m, S(m)), for all m ∈ M, (6)

for some C(m) > 0.
Let ε > 0 and u ∈ M with the property D(u, S(u)) ≤ ε. Then, by (6), there exists

C = C(u) > 0 such that

d(u, r(u)) ≤ C(u)D(u, S(u)) ≤ C(u)ε.

Thus, m∗(u) = r(u) ∈ Fix(S) and the local Ulam–Hyers stability property is established.
For the local data dependence property, let us consider any multi-valued opera-

tor T : M → P(M) such that Fix(T) �= ∅ and for which there exists η > 0 such that
H(S(m), T(m)) ≤ η, for all m ∈ M. Take t ∈ Fix(T). Then, by (6), there exists C = C(t) > 0
such that

d(t, r(t)) ≤ C(t)D(t, S(t)) ≤ C(t)η.

Since r(t) ∈ Fix(S), the local data dependence property is proven.

By the above abstract result, we immediately obtain the following stability properties
for multi-valued Feng–Liu–Subrahmanyan contractions.

Theorem 3. Let (M, d) be a complete metric space and S : M → P(M) be a multi-valued
Feng–Liu–Subrahmanyan contraction with closed graph. Then, the fixed point inclusion (5) is local
Ulam–Hyers stable and satisfies the local data dependence property.

Proof. By Theorem 1, we know that Fix(S) �= ∅ (conclusion (a)) and S satisfies the lo-
cal strong retraction–displacement condition (see conclusion (c)). The result follows by
Theorem 2.

Example 2. Let S : M := R×R→ R×R given by

S(u, v) =

{
{(u, v+|u|+v|v−|u||

2+|v−|u|| )}, (u, v) ∈ M, v = |u|
{(0, 1), (0,−1)}, (u, v) ∈ M, v �= |u|.

(7)

Then, S is a multi-valued Feng–Liu–Subrahmanyan contraction with closed graph and Fix(S) =
{(u, v) ∈ M : v = |u|}. By Theorem 2 and Theorem 3, the fixed point inclusion m ∈ S(m) is local
Ulam–Hyers stable and satisfies the local data dependence property.

Remark 1. It is an open question to obtain the well-posedness property in the sense of Reich and
Zaslavski and the Ostrowski stability property for the fixed point inclusion m ∈ S(m), m ∈ M for a
multi-valued Feng–Liu–Subrahmanyan contraction with closed graph defined on a complete metric
space (M, d). For example, if ψ has the following property:

(P) there exists q > 0 such that ψ(m) ≤ b− q, for all m ∈ M,

then, under the assumption given in Theorem 1, the fixed point inclusion m ∈ S(m) has the
well-posedness property in the sense of Reich and Zaslavski. Indeed, by Theorem 1 (a,b) we know
that Fix(S) �= ∅ and there exists a retraction r : M → Fix(S) given by r(u) := {m∗(u) :
and there exists a sequence of successive approximations starting from u converging to m∗(u)}.

If we take v ∈ Fix(S) and any sequence {vn}n∈N ⊂ r−1(v) such that

D(vn, S(un))→ 0 as n → ∞,

then, by Theorem 1 (c), we have that

d(vn, v) ≤ 1
b− ψ(vn)

D(vn, S(vn)) ≤
1
q

D(vn, S(vn))→ 0, as n → ∞.
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Another open question is to obtain strict fixed point theorems for multi-valued
Feng–Liu–Subrahmanyan contractions with closed graph defined on a complete metric
space (M, d). For example, we have the following strict fixed point result for multi-valued
Feng–Liu–Subrahmanyan contractions, which generalize some theorems in [18,28]. As a
matter of fact, the conclusion of the next theorem is Fix(S) = SFix(S) �= ∅, which is a quite
a usual assumption in various iteration methods for multi-valued operators.

Theorem 4. Let (M, d) be a complete metric space and S : M → P(M) be a multi-valued
Feng–Liu–Subrahmanyan contraction with closed graph. Suppose that

(a) S(S(m)) ⊂ S(m), for each m ∈ M;
(b) If A ∈ Pcl(M) with S(A) = A, then A is a singleton.

Then, Fix(S) = SFix(S) �= ∅.

Proof. By Theorem 1, we have that Fix(S) �= ∅. Let m∗ ∈ Fix(S). By the assumption (a)
of this theorem, we obtain that S(m∗) ⊂ S(S(m∗)) ⊂ S(m∗). Thus, S(S(m∗)) = S(m∗), i.e.,
S(m∗) is a fixed set for S. By the assumption (b), we obtain that S(m∗) is a singleton. Hence,
S(m∗) = {m∗}. We also observe that Fix(S) ⊂ SFix(S). Thus, Fix(S) = SFix(S) �= ∅.

3. Conclusions

In this work, we introduced, in the context of a metric space (M, d), the class of multi-
valued Feng–Liu–Subrahmanyan contractions, and we presented a fixed point theory for
these kind of multi-valued operators. More precisely, if S : M → P(M) is a multi-valued
Feng–Liu–Subrahmanyan contraction, we proved the following:

• An existence and approximation result for the fixed point inclusion m ∈ S(m), m ∈ M;
• An existence result for the strict fixed point problem S(m) = {m}, m ∈ M;
• The Ulam–Hyers stability property for the fixed point inclusion m ∈ S(m), m ∈ M;
• The data dependence property for the solution of the fixed point inclusion

m ∈ S(m), m ∈ M;
• A partial answer for the well-posedness property in the sense of Reich and Zaslavski

for the fixed point inclusion m ∈ S(m), m ∈ M.

Two open questions concerning the well-posedness property and the existence of the
strict fixed points for multi-valued Feng–Liu–Subrahmanyan contractions are highlighted.
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1. Introduction

In the last two decades, under the influence of some applications revealed in [1],
there was a vast boom of research of the so-called variable exponent spaces, and the
operator in them. For the time being, the theory of such variable exponent Lebesgue, Orlicz,
Lorentz and Sobolev function spaces is widely developed, and we refer to the books [2,3]
and the surveying papers [4–7]. Herz spaces with variable exponents have been recently
introduced in [8–10]. In [11], variable parameters were used to define continual Herz spaces,
and proved the boundedness of sublinear operators in these spaces. The boundedness
of other operators such as Riesz potential operator and the Marcinkiewicz integrals was
proved in [12,13].

The concept of Morrey spaces Lp,λ was introduced by C. Morrey in 1938 (see [14])
in order to study regularity questions that appear in the calculus of variations. They
describe local regularity more precisely than Lebesgue spaces and are widely used not just
in harmonic analysis, but also in PDEs. Meskhi introduced the idea of grand Morrey spaces
Lr),θ,λ and derived the boundedness of a class of integral operators (Hardy–Littlewood
maximal functions, Calderón–Zygmund singular integrals and potentials) in these spaces,
see ([15]). Moreover, Izuki [16] defined the Herz–Morrey spaces with a variable exponent
and investigated the boundedness of fractional integrals on these spaces.

In [17], the idea of grand variable Herz spaces K̇α,p),θ
q(·) (Rn) was introduced and proved

the boundedness of sublinear operators K̇α,p),θ
q(·) (Rn). Motivated by the concept, in this article,

we introduce the concept of grand Herz–Morrey spaces, and prove the boundedness of
the Riesz potential operator on grand Herz–Morrey spaces with variable exponents. There
are four sections in this article; the first section is dedicated to the introduction, the second
section contains some basic definitions and lemmas, we introduce the concept of grand
Herz–Morrey spaces in part three, and the boundedness of the Riesz potential operator on
grand variable Herz–Morrey spaces is proved in the last section.
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2. Preliminaries

For this section, we refer to [2,3,9,10,18].

2.1. Lebesgue Space with Variable Exponent

Assume that G ⊆ Rn is an open set and p(·) : G → [1, ∞) is a real-valued measurable
function. Let the following condition hold:

1 ≤ p−(G) ≤ p+(G) < ∞, (1)

where

(i) p− := ess inf
g∈G

p(g)

(ii) p+ := ess sup
g∈G

p(g).

Lebesgue space Lp(·)(G) is the space of measurable functions f1 on G such that,

ILp(·) ( f1) =
∫
G

| f1(g)|p(g)dg < ∞,

norm is defined as,

‖ f1‖Lp(·)(G) = ess inf
{

γ > 0 : ILp(·)

(
f1

γ

)
≤ 1

}
,

this is the Banach function space, p′(g) = p(g)
p(g)−1 denotes the conjugate exponent of p(g).

Next, we will define the space Lp(·)
loc (G) as,

Lp(·)
loc (G) :=

{
κ : κ ∈ Lp(·)(K) for all compact subsets K ⊂ G

}
.

Now to define the log-condition,

|η(z1)− η(z2)| ≤
C

− ln |z1 − z2|
, |z1 − z2| ≤

1
2

, z1, z2 ∈ G, (2)

where C = C(η) > 0 is not dependent on z1, z2.
For the decay condition: let η∞ ∈ (1, ∞), such that

|η(z1)− η∞| ≤
C

ln(e + |z1|)
, (3)

|η(z1)− η0| ≤
C

ln |z1|
, |z1| ≤

1
2

, (4)

inequality (4) holds for η0 ∈ (1, ∞) in case of homogenous Herz spaces. We adopted the
following notations in this paper:

(i) The Hardy–Littlewood maximal operator M for f ∈ L1
loc(G) is defined as

M f (g) := sup
t>0

t−n
∫

D(g,r)

| f (g)|dg (g ∈ G),

where D(g, t) := {y ∈ G : |g− y| < t}.
(ii) The set P(G) is the collection of all p(·) satisfying p− > 1 and p+ < ∞.
(iii) P log = P log(G) is the class of functions p ∈ P(G) satisfying (1) and (2).
(iv) When G is unbounded, P∞(G) and P0,∞(G) are the subsets of P(G) and its values

lies in [1, ∞) satisfying (3) and (4), respectively.
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(v) In the case G is bounded, P∞(G) and P0,∞(G) are the subsets of P(G).
(vi) In the case S is unbounded, P∞(S) are the subsets of exponents in L∞(S) and its values

lies in [1, ∞], which satisfy both conditions (2) and (3), respectively, and P log
∞ (S) is the

set of exponents p ∈ P∞(S), satisfying condition (1).

C is a constant that is independent of the main parameters involved, and its value
varies from line to line.

Lemma 1 ([11]). Let D > 1 and η ∈ P0,∞(Rn). Then,

1
k0

t
n

η(0) ≤ ‖χRt,Dt
‖η(·) ≤ k0t

n
η(0) , for 0 < t ≤ 1 (5)

and
1

k∞
t

n
η∞ ≤ ‖χRt,Dt

‖η(·) ≤ k∞t
n

η∞ , for t ≥ 1, (6)

respectively, where k0 ≥ 1 and k∞ ≥ 1 depend on D and do not depend on t.

Lemma 2 (Generalized Hölder’s inequality [2]). Assume that G is a measurable subset of Rn,
and 1 ≤ p−(G) ≤ p+(G) ≤ ∞. Then,

‖ f g‖Lr(·)(G) ≤ C‖ f ‖Lp(·)(G)‖g‖Lq(·)(G)

holds, where f ∈ Lp(·)(G), g ∈ Lq(·)(G) and 1
r(z) =

1
p(z) +

1
q(z) for every z ∈ G.

2.2. Herz Spaces with Variable Exponent

We adopted the following notations in this subsection:

(a) χk = χRk ;
(b) Rk = Dk \ Dk−1;
(c) Dk = D(0, 2k) = {x ∈ Rn : |x| < 2k} for all k ∈ Z.

Definition 1. Let r, s ∈ [1, ∞), α ∈ R, the classical versions of Herz spaces, commonly known as
non-homogenous and homogenous Herz spaces, can be defined by the norms,

‖g‖Kα
r,s(Rn) := ‖g‖Lr(D(0,1)) +

⎧⎪⎪⎨⎪⎪⎩∑
k∈N

2kαs

⎛⎜⎝ ∫
R2k−1,2k

|g(z)|rdz

⎞⎟⎠
s
r
⎫⎪⎪⎬⎪⎪⎭

1
s

, (7)

‖g‖K̇α
r,s(Rn) :=

⎧⎪⎪⎨⎪⎪⎩∑
k∈Z

2kαs

⎛⎜⎝ ∫
R2k−1,2k

|g(z)|rdz

⎞⎟⎠
s
r
⎫⎪⎪⎬⎪⎪⎭

1
s

, (8)

respectively, where Rt,τ stands for the annulus Rt,τ := D(0, τ)\D(0, t).

Definition 2. Let r ∈ [1, ∞), α ∈ R and s(·) ∈ P(Rn). The homogenous Herz space K̇α,r
s(·)(R

n)

is defined by

K̇α,r
s(·)(R

n) =

{
g ∈ Ls(·)

loc(R
n \ {0}) : ‖g‖K̇α,r

s(·)(R
n) < ∞

}
, (9)

where

‖g‖K̇α,r
s(·)(R

n) =

(
k=∞

∑
k=−∞

‖2kαgχk‖r
Ls(·)

) 1
r

.
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Definition 3. Let r ∈ [1, ∞), α ∈ R and s(·) ∈ P(Rn). The non-homogenous Herz space
Kα,r

s(·)(R
n) is defined by

Kα,r
s(·)(R

n) =

{
g ∈ Ls(·)

loc (R
n \ {0}) : ‖g‖Kα,r

s(·)(R
n) < ∞

}
, (10)

where

‖g‖Kα,r
s(·)(R

n) =

(
k=∞

∑
k=−∞

‖2kαgχk‖r
Ls(·)

) 1
r

+ ‖g‖Ls(·)(D(0,1)).

2.3. Herz–Morrey Spaces

Next, we define Herz–Morrey spaces with variable exponent.

Definition 4. Let α ∈ R, 0 ≤ λ < ∞, 0 < r < ∞ and s(·) ∈ P(Rn). A Herz–Morrey spaces
with variable exponent MK̇αλ

r,s(·)(R
n) is defined by,

MK̇αλ
r,s(·)(R

n) =

{
g ∈ Ls(·)

loc (R
n \ {0}) : ‖g‖MK̇αλ

r,s(·)(R
n) < ∞

}
,

where

‖g‖MK̇αλ
r,s(·)(R

n) = sup
k0∈Z

2−k0λ

(
k0

∑
k=−∞

2kαr‖gχk‖r
Ls(·)(R

n)

) 1
r

.

2.4. Grand Lebesgue Sequence Space

Now, we will define the grand Lebesgue sequence space. G is representing one of the
sets N0,Zn,N,Z in the following definitions (see [19]).

Definition 5. Let r ∈ [1, ∞) and θ > 0. The grand Lebesgue sequence space lr)θ can be defined by
the norm

‖{xk}k∈G‖lr)θ(G) =‖x‖lr)θ(G)

:= sup
δ>0

(
δθ ∑

k∈X
|xk|r(1+δ)

) 1
r(1+δ)

= sup
δ>0

δ
θ

r(1+δ) ‖x‖lr(1+δ)θ(G),

where x = {xk}k∈G. The following nesting properties hold:

lr(1−δ) ↪→ lr ↪→ lr),θ1 ↪→ lr),θ2 ↪→ lr(1+δ) (11)

for 0 < δ < 1
r , δ > 0 and 0 < θ1 ≤ θ2.

3. Grand Variable Herz–Morrey Spaces

Grand variable Herz–Morrey spaces are introduced in this section.

Definition 6. Let α(·) ∈ L∞(Rn), r ∈ [1, ∞), s : Rn → [1, ∞), θ > 0, 0 ≤ λ < ∞. We define
the homogeneous grand variable Herz–Morrey spaces can be defined by the norm:

MK̇α(·),r),θ
λ,s(·) (Rn) =

{
g ∈ Ls(·)

loc (R
n \ {0}) : ‖g‖

MK̇α(·),r),θ
λ,s(·) (Rn)

< ∞
}

,

where

‖g‖
MK̇α(·),r),θ

λ,s(·) (Rn)
= sup

δ>0
sup
ko∈Z

2−k0λ

(
δθ ∑

k∈Z
2kα(·)r(1+δ)‖gχk‖r(1+δ)

Ls(·)(Rn)

) 1
r(1+δ)

.
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For λ = 0, the grand Herz–Morrey spaces become grand Herz spaces.

Non-homogeneous grand variable Herz–Morrey spaces can be defined in a similar way.

Theorem 1. If 0 < ri < ∞,1 ≤ q− ≤ q+ < ∞, α(·) ∈ L∞(Rn), i = 1, 2, 1
r = 1

r1
+ 1

r2
,

1 = 1
q(·) +

1
q′(·) , λ = λ1 + λ2 and α(·) = α(·)1(·) + α2(·). Then

‖ f g‖
MK̇α(·),r),θ

λ,1

≤ ‖ f ‖
MK̇

α1(·),r1),θ
λ,q(·)

‖g‖
MK̇α2(·),r2),θ

λ,q′(·)
.

Proof. We have

‖ f g‖
MK̇α(·),),θ

λ,1 (Rn)
= sup

δ>0
sup
ko∈Z

2−k0λ

(
δθ ∑

k∈Z
2kα(·)r(1+δ)‖ f χk‖r(1+δ)

L1

) 1
r(1+δ)

= sup
δ>0

sup
ko∈Z

2−k0λ

⎛⎝δθ ∑
k∈Z

2kα(·)r(1+δ)

(∫ 2k+1

2k
| f g|

)r(1+δ)
⎞⎠ 1

r(1+δ)

,

by using Hölder’s inequality

≤C sup
δ>0

sup
ko∈Z

2−k0λ

(
δθ ∑

k∈Z
2k(α1(·)+α2(·))r(1+δ)‖ f χk‖r(1+δ)

Lq(·) ‖gχk‖r(1+δ)

Lq′(·)

) 1
r(1+δ)

=C sup
δ>0

sup
ko∈Z

2−k0λ

(
δθ ∑

k∈Z
2k(α1(·)+α2(·))r(1+δ)‖ f χk‖r(1+δ)

Lq(·) ‖gχk‖r(1+δ)

Lq′(·)

) 1
r(1+δ)

=C sup
δ>0

sup
ko∈Z

2−k0λ

(
δθ ∑

k∈Z

(
2kα1(·)‖ f χk‖Lq(·)

)r(1+δ)(
2kα2(·)‖gχk‖Lq′(·)

)r(1+δ)
) 1

r(1+δ)

≤C sup
δ>0

sup
ko∈Z

2−k0λ

(
δθ ∑

k∈Z

(
2kα1(·)‖ f χk‖Lq(·)(Rn)

)r(1+δ)(
2kα2(·)‖gχk‖Lq′(·)

)r(1+δ)
) 1

r(1+δ)

,

by using generalized Hölder’s inequality

≤C sup
δ>0

sup
ko∈Z

2−k0λ

(
δθ ∑

k∈Z

(
2kα1(·)‖ f χk‖Lq(·)

)r1(1+δ)
) 1

r1(1+δ)

× sup
δ>0

sup
ko∈Z

2−k0λ

(
δθ ∑

k∈Z

(
2kα1(·)‖ f χk‖Lq′(·)

)r2(1+δ)
) 1

r2(1+δ)

=C‖ f ‖
MK̇

α1(·),r1),θ
λ,q(·)

‖ f ‖
MK̇α2(·),r2),θ

λ,q′(·)
.
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4. Boundedness of the Riesz Potential Operator

Now Riesz potential operator can be defined as

Iγ f (z1) =
1

ηn(γ)

∫
Rn

f (z2)

|z1 − z2|n−γ
dz2 (12)

with the normalizing constant ηn(γ) = 2γπ
n
2

Γ(γ/2)
Γ((n−γ)/2) .

Whenever γq1(z1) < n, we can define the Sobolev conjugate of q1 by the usual relation

1
q2(z1)

:=
1

q1(z1)
− γ

n
, z1 ∈ Rn (13)

The well-known Sobolev theorem was extended to variable exponents in [20] for
bounded sets in Rn under the assumption that the maximal operator is bounded in Lp(·)(Ω);
for unbounded sets, proved in [21], the Sobolev theorem runs as follows.

Theorem 2. Let s2 ∈ P log
∞ (Rn) and γs+1 < n,

‖Iγg‖s2(·) ≤ C‖g‖s1(·).

Theorem 3. Let 1 ≤ r < ∞, α(·), q(·) ∈ P log
∞ (Rn) , q1 is sobolev conjugate defined by the

relation (13) such that

(i) γ− n
q(0) < α(0) < n

q′(0) ;

(ii) γ− n
q∞

< α∞ < n
q′∞

.

Suppose that Riesz potential operator Iγ is bounded on Lebesgue spaces and satisfies the size
condition (12). Then, Iγ from MK̇α(·),r),θ

q1(·) (Rn) to MK̇α(·),r),θ
q2(·) (Rn).

Proof. Let f ∈ MK̇α(·),p),θ
q2(·) (Rn), and f (z1) = Σ∞

l=−∞ f (z1)χl(z1) = Σ∞
l=−∞ fl(z1), we have

‖Iγ f ‖
MK̇α(·),p,θ

q2(·)
(Rn)

= sup
δ>0

sup
ko∈Z

2−k0λ

(
δθ ∑

k∈Z
2kα(·)r(1+δ)‖χk Iγ f ‖r(1+δ)

Lq2(·)(Rn)

) 1
r(1+δ)

≤ sup
δ>0

sup
ko∈Z

2−k0λ

(
δθ ∑

k∈Z
2kα(·)r(1+δ)

(
∞

∑
l=−∞

‖χk Iγ f (χl)‖r(1+δ)

Lq2(·)(Rn)

)) 1
r(1+δ)

≤ sup
δ>0

sup
ko∈Z

2−k0λ

⎛⎝δθ ∑
k∈Z

2kα(·)r(1+δ)

(
k−2

∑
l=−∞

‖χk Iγ( f χl)‖Lq2(·)(Rn)

)r(1+δ)
⎞⎠ 1

r(1+δ)

+ sup
δ>0

sup
ko∈Z

2−k0λ

⎛⎝δθ ∑
k∈Z

2kα(·)r(1+δ)

(
k+1

∑
l=k−1

‖χk Iγ( f χl)‖Lq2(·)(Rn)

)r(1+δ)
⎞⎠ 1

r(1+δ)

+ sup
δ>0

sup
ko∈Z

2−k0λ

⎛⎝δθ ∑
k∈Z

2kα(·)r(1+δ)

(
∞

∑
l=k+2

‖χk Iγ( f χl)‖Lq2(·)(Rn)

)r(1+δ)
⎞⎠ 1

r(1+δ)

= E1 + E2 + E3.
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As operator Iγ is bounded on the Lebesgue space Lq2(·)(Rn) so for E2,

E2 ≤ sup
δ>0

sup
ko∈Z

2−k0λ

⎛⎝δθ ∑
k∈Z

2kα(·)r(1+δ)

(
k+1

∑
l=k−1

‖Iγ( f χl)‖Lq2(·)(Rn)

)r(1+δ)
⎞⎠ 1

r(1+δ)

≤ sup
δ>0

sup
ko∈Z

2−k0λ

⎛⎝δθ
−1

∑
k=−∞

2kα(·)r(1+δ)

(
k+1

∑
l=k−1

‖Iγ( f χl)‖Lq2(·)(Rn)

)r(1+δ)
⎞⎠ 1

r(1+δ)

+ sup
δ>0

sup
ko∈Z

2−k0λ

⎛⎝δθ
∞

∑
k=0

2kα(·)r(1+δ)

(
k+1

∑
l=k−1

‖Iγ( f χl)‖Lq2(·)(Rn)

)r(1+δ)
⎞⎠ 1

r(1+δ)

= E21 + E22.

By using the fact 2kα(z1) = 2kα(0), k < 0, z1 ∈ Rk implies that

‖2kα(·) f χk‖Lq1(·)(Rn)
= 2kα(0)‖ f χk‖Lq1(·)(Rn)

,

E21 ≤ sup
δ>0

sup
ko∈Z

2−k0λ

⎛⎝δθ
−1

∑
k=−∞

2kα(·)r(1+δ)

(
k+1

∑
l=k−1

‖Iγ( f χl)‖Lq2(·)(Rn)

)r(1+δ)
⎞⎠ 1

r(1+δ)

≤C sup
δ>0

sup
ko∈Z

2−k0λ

⎛⎝δθ
−1

∑
k=−∞

2kα(0)r(1+δ)

(
k+1

∑
l=k−1

‖ f χl‖Lq1(·)(Rn)

)r(1+δ)
⎞⎠ 1

r(1+δ)

≤C sup
δ>0

sup
ko∈Z

2−k0λ

(
δθ

−1

∑
k=−∞

2kα(0)r(1+δ)‖ f χk‖r(1+δ)

Lq1(·)(Rn)

) 1
r(1+δ)

≤C sup
δ>0

sup
ko∈Z

2−k0λ

(
δθ ∑

k∈Z
2kα(·)r(1+δ)‖ f χk‖r(1+δ)

Lq1(·)(Rn)

) 1
r(1+δ)

=C‖ f ‖
MK̇α(·),r),θ

q1(·)
(Rn)

.

For E22, we use the fact 2kα(z1) = 2kα∞ , k ≥ 0, z1 ∈ Rk, we obtain

E22 ≤ sup
δ>0

sup
ko∈Z

2−k0λ

⎛⎝δθ
∞

∑
k=0

2kα(·)r(1+δ)

(
k+1

∑
l=k−1

‖Iγ( f χl)‖Lq2(·)(Rn)

)r(1+δ)
⎞⎠ 1

r(1+δ)

≤C sup
δ>0

sup
ko∈Z

2−k0λ

⎛⎝δθ
∞

∑
k=0

2kα∞r(1+δ)

(
k+1

∑
l=k−1

‖ f χl‖Lq1(·)(Rn)

)r(1+δ)
⎞⎠ 1

r(1+δ)

≤C sup
δ>0

sup
ko∈Z

2−k0λ

(
δθ

∞

∑
k=0

2kα∞r(1+δ)‖ f χk‖r(1+δ)

Lq1(·)(Rn)

) 1
r(1+δ)

≤C sup
δ>0

sup
ko∈Z

2−k0λ

(
δθ ∑

k∈Z
2kα(·)r(1+δ)‖ f χk‖r(1+δ)

Lq1(·)(Rn)

) 1
r(1+δ)

=C‖ f ‖
MK̇α(·),r),θ

q1(·)
(Rn)

.
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For each k ∈ Z and l ≤ k− 2 and a.e. z1 ∈ Rk, z2 ∈ Rl , we have

E1 ≤ sup
δ>0

sup
ko∈Z

2−k0λ

⎛⎝δθ ∑
k∈Z

2kα(·)r(1+δ)

(
k−2

∑
l=−∞

‖χk Iγ( f χl)‖Lq2(·)(Rn)

)r(1+δ)
⎞⎠ 1

r(1+δ)

|Iγ( f χl)(z1)| ≤
∫

Rl

|z1 − z2|γ−n| f (z2)|dz2

≤C2k(γ−n)
∫

Rl

| f (z2)|dz2

≤C2k(γ−n)‖ f χl‖Lq1(·)(Rn)
‖χl‖Lq′1(·)(Rn)

,

splitting E1 by using Minkowski’s inequality we have

E1 ≤ sup
δ>0

sup
ko∈Z

2−k0λ

⎛⎝δθ
−1

∑
k=−∞

2kα(·)r(1+δ)

(
k−2

∑
l=−∞

‖χk Iγ( f χl)‖Lq2(·)(Rn)

)r(1+δ)
⎞⎠ 1

r(1+δ)

+ sup
δ>0

sup
ko∈Z

2−k0λ

⎛⎝δθ
∞

∑
k=0

2kα(·)r(1+δ)

(
k−2

∑
l=−∞

‖χk Iγ( f χl)‖Lq2(·)(Rn)

)r(1+δ)
⎞⎠ 1

r(1+δ)

=E11 + E12.

By using Lemma 1, we have

2k(γ−n)‖χk‖Lq2(·)(Rn)
‖χl‖Lq′1(·)(Rn)

≤ C2k(γ−n)2
kn

q2(0) 2
ln

q′1(0) ≤ C2
(l−k)n
q′1(0) , (14)

applying above estimates to E11, we can obtain

E11 ≤ sup
δ>0

sup
ko∈Z

2−k0λ

⎛⎝δθ
−1

∑
k=−∞

2kα(·)r(1+δ)

(
k−2

∑
l=−∞

‖χk Iγ( f χl)‖Lq2(·)(Rn)

)r(1+δ)
⎞⎠ 1

r(1+δ)

≤ C sup
δ>0

sup
ko∈Z

2−k0λ

[
δθ

−1

∑
k=−∞

2kα(·)r(1+δ)

(
k−2

∑
l=−∞

‖χk‖Lq2(·)(Rn)
2k(γ−n)

‖ f χl‖Lq1(·)(Rn)
‖χl‖Lq′1(·)(Rn)

)r(1+δ)] 1
r(1+δ)

,

let b = n
q′1(0)

− α(0),

E11 ≤ C sup
δ>0

sup
ko∈Z

2−k0λ

[
δθ

−1

∑
k=−∞

(
k−2

∑
l=−∞

2α(0)l‖ f χl‖Lq1(·)(Rn)
2b(l−k)

)r(1+δ)] 1
r(1+δ)

, (15)
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by using Hölder’s inequality, Fubini’s theorem and the inequality 2−r(1+δ) < 2−r, we obtain

E11 ≤C sup
δ>0

sup
ko∈Z

2−k0λ

[
δθ

−1

∑
k=−∞

(
k−2

∑
l=−∞

2α(0)r(1+δ)l‖ f χl‖r(1+δ)

Lq1(·)(Rn)
2br(1+δ)(l−k)/2

×
k−2

∑
l=−∞

2br(1+δ)′(l−k)/2

) r(1+δ)
r(1+δ)′ ] 1

r(1+δ)

=C sup
δ>0

sup
ko∈Z

2−k0λ

(
δθ

−1

∑
k=−∞

k−2

∑
l=−∞

2α(0)r(1+δ)l‖ f χl‖r(1+δ)

Lq1(·)(Rn)
2br(1+δ)(l−k)/2

) 1
r(1+δ)

=C sup
δ>0

sup
ko∈Z

2−k0λ

(
δθ

−1

∑
l=−∞

2α(0)r(1+δ)l‖ f χl‖r(1+δ)

Lq1(·)(Rn)

−1

∑
k=l+2

2br(1+δ)(l−k)/2

) 1
r(1+δ)

<C sup
δ>0

sup
ko∈Z

2−k0λ

(
δθ

−1

∑
l=−∞

2α(0)r(1+δ)l‖ f χl‖r(1+δ)

Lq1(·)(Rn)

−1

∑
k=l+2

2bp(l−k)/2

) 1
r(1+δ)

≤C sup
δ>0

sup
ko∈Z

2−k0λ

(
δθ

−1

∑
l=−∞

2α(0)r(1+δ)l‖ f χl‖r(1+δ)

Lq1(·)(Rn)

) 1
r(1+δ)

=C sup
δ>0

sup
ko∈Z

2−k0λ

(
δθ ∑

l∈Z
2α(·)r(1+δ)l‖ f χl‖r(1+δ)

Lq1(·)(Rn)

) 1
r(1+δ)

≤C‖ f ‖
MK̇α,r),θ

q1(·)
(Rn)

.

Now, for E12 using Minkowski’s inequality, we have

E12 ≤ sup
δ>0

sup
ko∈Z

2−k0λ

⎛⎝δθ
∞

∑
k=0

2kα(·)r(1+δ)

(
−1

∑
l=−∞

‖χk Iγ( f χl)‖Lq2(·)(Rn)

)r(1+δ)
⎞⎠ 1

r(1+δ)

+ sup
δ>0

sup
ko∈Z

2−k0λ

⎛⎝δθ
∞

∑
k=0

2kα(·)r(1+δ)

(
k−2

∑
l=0
‖χk Iγ( f χl)‖Lq2(·)(Rn)

)r(1+δ)
⎞⎠ 1

r(1+δ)

= A1 + A2.

The estimate for A2 can be obtained by similar way to E11 by replacing q′1(0) with q′1∞
and using the fact n

q′1∞
− α∞ > 0. For A1 using Lemma 1, we obtain

2k(γ−n)‖χk‖Lq2(·)(Rn)
‖χl‖Lq′1(·)(Rn)

≤ C2k(γ−n)2
kn

q2∞ 2
ln

q′1(0)

≤ C2
−kn
q′1∞ 2

ln
q′1(0) ,
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as α∞ − n
q′1∞

< 0, we have

A1 ≤ C sup
δ>0

sup
ko∈Z

2−k0λ

⎛⎝δθ
∞

∑
k=0

2kα∞r(1+δ)

(
−1

∑
l=−∞

‖χk Iγ( f χl)‖Lq2(·)(Rn)

)r(1+δ)
⎞⎠ 1

r(1+δ)

≤ C sup
ε>0

[
δθ

∞

∑
k=0

2kα∞r(1+δ) ×
(

−1

∑
l=−∞

2
−kn
q1∞ 2

ln
q′1(0) ‖ f χl‖Lq1(·)(Rn)

)r(1+δ)] 1
r(1+δ)

≤ C sup
δ>0

sup
ko∈Z

2−k0λ

[
δθ

∞

∑
k=0

2(kα−kn/q′1∞ )r(1+δ) ×
(

−1

∑
l=−∞

2
ln

q′1(0) ‖ f χl‖Lq1(·)(Rn)

)r(1+δ)] 1
r(1+δ)

≤ C sup
δ>0

sup
ko∈Z

2−k0λ

⎛⎝δθ

(
−1

∑
l=−∞

2
ln

q′(0) ‖ f χl‖Lq1(·)(Rn)

)r(1+δ)
⎞⎠ 1

r(1+δ)

≤ C sup
δ>0

sup
ko∈Z

2−k0λ

⎛⎝δθ

(
−1

∑
l=−∞

2
ln

q′1(0)
−α(0)l

‖ f χl‖Lq1(·)(Rn)
2α(0)l

)r(1+δ)
⎞⎠ 1

r(1+δ)

.

Now, by using Hölder’s inequality and the fact n
q′1(0)

− α(0) > 0, we have

A1 ≤ sup
δ>0

sup
ko∈Z

2−k0λ

⎛⎝δθ

(
−1

∑
l=−∞

2
ln

q′1(0)
−α(0)l

‖ f χl‖Lq1(·)(Rn)
2α(0)l

)r(1+δ)
⎞⎠ 1

r(1+δ)

≤C sup
δ>0

sup
ko∈Z

2−k0λ

[
δθ

−1

∑
l=−∞

2α(0)lr(1+δ)‖ f χl‖r(1+δ)

Lq1(·)(Rn)

×
(

−1

∑
l=−∞

2
( ln

q′1(0)
−α(0)l)r(1+δ)′

) r(1+δ)
r(1+δ)′ ] 1

r(1+δ)

≤C sup
δ>0

sup
ko∈Z

2−k0λ

(
δθ

(
∑
l∈Z

2α(·)lr(1+δ)‖ f χl‖r(1+δ)

Lq1(·)(Rn)

)) 1
r(1+δ)

≤C‖ f ‖
MK̇α(·),r),θ

q1(·)
(Rn)

.

Now, we estimate E3, for every k ∈ Z and l ≥ k + 2 and a.e. z1 ∈ Rk; the size condition
and Hölder’s inequality imply

|Iγ( f χl)(z− 1)| ≤
∫

Rl

|z1 − z2|−n| f (z2)|dz2

≤C2l(γ−n)
∫

Rl

| f (z2)|dz2

≤C2l(γ−n)‖ f χl‖Lq1(·)(Rn)
‖χl‖Lq′1(·)(Rn)

,

splitting E3 by applying the Minkowski’s inequality we have
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E3 ≤C sup
δ>0

sup
ko∈Z

2−k0λ

⎛⎝δθ ∑
k∈Z

2kα(·)r(1+δ)

(
∞

∑
l=k+2

‖χk Iγ( f χl)‖Lq2(·)(Rn)

)r(1+δ)
⎞⎠ 1

r(1+δ)

≤C sup
δ>0

sup
ko∈Z

2−k0λ

⎛⎝δθ
−1

∑
k=−∞

2kα(·)r(1+δ)

(
∞

∑
l=k+2

‖χk Iγ( f χl)‖Lq2(·)(Rn)

)r(1+δ)
⎞⎠ 1

r(1+δ)

+C sup
δ>0

sup
ko∈Z

2−k0λ

⎛⎝δθ
∞

∑
k=0

2kα(·)r(1+δ)

(
∞

∑
l=k+2

‖χk Iγ( f χl)‖Lq2(·)(Rn)

)r(1+δ)
⎞⎠ 1

r(1+δ)

=E31 + E32.

For E32 Lemma 1 yields

2l(γ−n)‖χk‖Lq2(·)(Rn)
‖χl‖Lq′1(·)(Rn)

≤ C2l(γ−n)2
kn

q2∞ 2
ln

q′1∞ ≤ C2
(k−l)n

q1∞ , (16)

we get

E32 ≤ sup
δ>0

sup
ko∈Z

2−k0λ

⎛⎝δθ
∞

∑
k=0

2kα(·)r(1+δ)

(
∞

∑
l=k+2

‖χk Iγ( f χl)‖Lq2(·)(Rn)

)r(1+δ)
⎞⎠ 1

r(1+δ)

≤ C sup
δ>0

sup
ko∈Z

2−k0λ

[
δθ

∞

∑
k=0

2kα(·)r(1+δ)

(
∞

∑
l=k+2

‖χk‖Lq2(·)(Rn)
2l(γ−n)·

‖ f χl‖Lq1(·)(Rn)
‖χl‖Lq′1(·)(Rn)

)r(1+δ)] 1
r(1+δ)

≤ C sup
δ>0

sup
ko∈Z

2−k0λ

⎛⎝δθ
∞

∑
k=0

(
∞

∑
l=k+2

2(α∞)l‖ f χl‖Lq1(·)(Rn)
2d(k−l)

)r(1+δ)
⎞⎠ 1

r(1+δ)

,

where d = n
q1∞

+ α∞ > 0. Then, we use Hölder’s theorem for series and 2−r(1+δ) < 2−r

to obtain

E32 ≤C sup
δ>0

sup
ko∈Z

2−k0λ

[
δθ

∞

∑
k=0

(
∞

∑
l=k+2

2l(α∞)r(1+δ)‖ f χl‖r(1+δ)

Lq1(·)(Rn)
2dr(1+δ)(k−l)/2

)

×
(

∞

∑
l=k+2

2dr(1+δ)′(k−l)/2

) r(1+δ)
r(1+δ)′ ] 1

r(1+δ)

≤C sup
δ>0

sup
ko∈Z

2−k0λ

(
δθ

∞

∑
k=0

∞

∑
l=k+2

2l(α∞)r(1+δ)‖ f χl‖r(1+δ)

Lq1(·)(Rn)
2dr(1+δ)(k−l)/2

) 1
r(1+δ)

≤C sup
δ>0

sup
ko∈Z

2−k0λ

(
δθ

∞

∑
l=0

2l(α∞)r(1+δ)‖ f χl‖r(1+δ)

Lq1(·)(Rn)

l−2

∑
k=0

2dr(1+δ)(k−l)/2

) 1
r(1+δ)

<C sup
δ>0

sup
ko∈Z

2−k0λ

(
δθ ∑

l∈Z
2l(α∞)r(1+δ)‖ f χl‖r(1+δ)

Lq1(·)(Rn)

l−2

∑
k=−∞

2dp(k−l)/2

) 1
r(1+δ)

≤C sup
δ>0

sup
ko∈Z

2−k0λ

(
δθ ∑

l∈Z
2α(·)r(1+δ)l‖ f χl‖r(1+δ)

Lq1(·)(Rn)

) 1
r(1+δ)

≤C‖ f ‖
MK̇α(·),r),θ

λ,q1(·)
(Rn)

.
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Now, for E31 using Monkowski’s inequality, we have

E31 ≤ sup
δ>0

sup
ko∈Z

2−k0λ

⎛⎝δθ
−1

∑
k=−∞

2kα(·)r(1+δ)

(
−1

∑
l=k+2

‖χk Iγ( f χl)‖Lq2(·)(Rn)

)r(1+δ)
⎞⎠ 1

r(1+δ)

+ sup
δ>0

sup
ko∈Z

2−k0λ

⎛⎝δθ
−1

∑
k=−∞

2kα(·)r(1+δ)

(
∞

∑
l=0
‖χk Iγ( f χl)‖Lq2(·)(Rn)

)r(1+δ)
⎞⎠ 1

r(1+δ)

=B1 + B2.

The estimate for B1 can be obtained similar to E32 by replacing q1∞ with q1(0) and
applying the fact that n

q1(0)
+ α(0) > 0. For B2 using Lemma 1, we obtain

2l(γ−n)‖χk‖Lq2(·)(Rn)
‖χl‖Lq′(·)(Rn)

≤ C2l(γ−n)2
kn

q2(0) 2
ln

q′1∞ ≤ C2
kn

q1(0) 2
l(−n)
q1∞ (17)

B2 ≤C sup
δ>0

sup
ko∈Z

2−k0λ

⎛⎝δθ
−1

∑
k=∞

2kα(0)r(1+δ)

(
∞

∑
l=0
‖χk Iγ( f χl)‖Lq2(·)(Rn)

)r(1+δ)
⎞⎠ 1

r(1+δ)

≤C sup
δ>0

sup
ko∈Z

2−k0λ

(
δθ

−1

∑
k=∞

2kα(0)r(1+δ) ×
(

∞

∑
l=0

2l(γ−n)2
kn

q1(0) 2
ln

q1∞ ‖ f χl‖Lq1(·)(Rn)

)r(1+δ)
⎞⎠ 1

r(1+δ)

≤C sup
δ>0

sup
ko∈Z

2−k0λ

(
δθ

−1

∑
k=∞

2kα(0)r(1+δ) ×
(

∞

∑
l=0

2
kn

q1(0) 2γl2
−ln
q1∞ ‖ f χl‖Lq1(·)(Rn)

)r(1+δ)
⎞⎠ 1

r(1+δ)

≤C sup
δ>0

sup
ko∈Z

2−k0λ

(
δθ

−1

∑
k=∞

2k(α(0)+n)/q1(0)r(1+δ) ×
(

∞

∑
l=0

2γl2
−ln
q1∞ ‖ f χl‖Lq1(·)(Rn)

)r(1+δ)
⎞⎠ 1

r(1+δ)

≤C sup
δ>0

sup
ko∈Z

2−k0λ

⎛⎝δθ

(
∞

∑
l=0

2γl2
−ln
q1∞ ‖ f χl‖Lq1(·)(Rn)

)r(1+δ)
⎞⎠ 1

r(1+δ)

≤C sup
δ>0

sup
ko∈Z

2−k0λ

⎛⎝δθ

(
∞

∑
l=0

2l(α∞)‖ f χl‖Lq1(·)(Rn)
2l(nq1∞+α∞)

)r(1+δ)
⎞⎠ 1

r(1+δ)

.

Now, by using Hölder’s inequality and the fact that n
q∞

+ α∞ > 0, we have

B2 ≤ sup
δ>0

sup
ko∈Z

2−k0λ

⎛⎝δθ

(
∞

∑
l=0

22l(α∞)r(1+δ)‖ f χl‖r(1+δ)

Lq1(·)(Rn)

)r(1+δ)

×
(

∞

∑
l=0

2l(nq1∞+α∞)r(1+δ)

) r(1+δ)
r(1+δ)′

⎞⎟⎠
1

r(1+δ)

≤C sup
δ>0

sup
ko∈Z

2−k0λ

(
δθ

(
∑
l∈Z

2l(α∞)r(1+δ)‖ f χl‖r(1+δ)

Lq1(·)(Rn)

)) 1
r(1+δ)

≤C‖ f ‖
MK̇α(·),r),θ

λ,q1(·)
(Rn)

202



Axioms 2022, 11, 583

Combining the estimates for E1, E2 and E3 yields

‖Iγ f ‖
MK̇α(·),r),θ

λ,q2(·)
(Rn)

≤ C‖ f ‖
MK̇α(·),r),θ

λ,q1(·)
(Rn)

5. Conclusions

We have defined a new type of space called variable exponents grand Herz–Morrey
spaces, where we used discrete grand spaces, and we have proved the boundedness of the
Riesz potential operator on these spaces.
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Abstract: In this paper, we introduce a second-order strong subdifferential of set-valued maps, and
discuss some properties, such as convexity, sum rule and so on. By the new subdifferential and its
properties, we establish a necessary and sufficient optimality condition of set-based robust efficient
solutions for the uncertain set-valued optimization problem. We also introduce a Wolfe type dual
problem of the uncertain set-valued optimization problem. Finally, we establish the robust weak
duality theorem and the robust strong duality theorem between the uncertain set-valued optimization
problem and its robust dual problem. Several main results extend to the corresponding ones in the
literature.

Keywords: uncertain set-valued optimization problems; set-based robust efficient solutions;
second-order strong subdifferential; robust weak duality; robust strong duality

MSC: 49N15; 49N30; 54C60

1. Introduction

Robust optimization is an important deterministic technique for studying optimization
problems with data uncertainty, which is protected against data uncertainty and has
grown significantly, see [1–6]. The optimization theory mainly includes multi-objective
optimization and focuses on finding global optimal solutions or global efficient solutions.
However, in real-world situations where the solutions are very susceptible to perturbations
from the variables, we might not always be able to identify the global optimal solutions.
To reduce the sensitivity to variable perturbations under these conditions, we are going to
find the robust solutions.

The set-valued optimization problem:

(SOP)

{
min H(z) = {H1(z), H2(z), . . . , Hk(z), . . . , Hq(z)}
s.t. z ∈ M, Bj(z) ⊆ R−, j = 1, . . . , l

has been widely studied by scholars, where M is a closed and convex subset of a real
topological linear space X, Hk : M → 2R, k = 1, . . . , q and Bj : M → 2R, j = 1, . . . , l
are given functions. Set-valued optimization is a thriving research field with numerous
applications, for example in risk management [7,8], statistics [9], and others. Hamel and
Heyde [7] defined set-valued (convex) measures of risk and their acceptance sets, and they
gave dual representation theorems. Hamel et al. [8] defined set-valued risk measures on Lp

d
with 0 � p � ∞ for conical market models, and primal and gave dual representation results.
Hamel and Kostner [9] discussed relationships to families of univariate quantile functions
and to depth functions, and introduced a corresponding Value at Risk for multivariate
random variables as well as stochastic orders by the set-valued approach. The vectorial
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criterion and the set criterion are the two different forms of solution criteria for set-valued
optimization problems. Each different criterion has been studied independently. The
challenge of minimizing a function, when the representation of a point is actually a set,
is dealt by set-valued optimization. Since there is no way to minimize a set by a total
order relation, it is necessary to give a definition for minimizing the set-valued objective
function. The literature [10–12] introduced the concepts of preorders to compare sets. These
preorders enable the formulation of set-valued optimization problems pertaining to the
robustness of multi-objective optimization problems. Eichfelder and Jahn [10] presented
different optimality notions such as minimal, weakly minimal, strongly minimal and
properly minimal elements in a pre-ordered linear space and discussed the relations among
these notions. Young [11] introduced the upper set less relation and lower set less relation
and then used these set relations to analyze the upper and lower limits of real number
sequences. Kuroiwa et al. [12] referred to the upper-type set relation and considered
some duality theorems of a set optimization problem. Furthermore, six other forms of set
relations [13] were also used by Kuroiwa et al. [12] to solve set optimization problems.
By generalized differentiable assumptions, a separation scheme is used to construct some
robust necessary conditions for uncertain optimization problems by Wei et al. [14]. By
using the constraint qualification and the regularity condition, Wang et al. [15] developed
weak and strong KKT robust necessary conditions for a nonconvex nonsmooth uncertain
multiobjective optimization problem under the conditions of upper semi-continuity.

Rockafellar and Tyrrell [16] first introduced subdifferential concepts of convex func-
tions. Recently, many authors have generalized subdifferentials of a vector-valued map to
the one of a set-valued map [17,18]. There are two main approaches to define the subdiffer-
ential of set-valued mappings: one is to define the subdifferential by the derivative of the
set-valued maps [17], the other is to define subdifferential by using algebraic forms [18–22].
Tanino [18] pioneered conjugate duality for vector optimization problems and introduced
weak efficient points of a set to provide a weak subdifferential for set-valued mappings.
A few characteristics of this weak subdifferential were covered by Sach [19]. By using an
algebraic form, Yang [20] defined a weak subdifferential for set-valued mappings, demon-
strated an extension theorem of the Hahn-Banach theorem, and talked about the existence
of the weak subgradients. Chen and Jahn [21] introduced a kind of weak subdifferential,
which is more powerful than the weak subdifferential [20]. By the weak subdifferential,
they established a sufficient optimality condition for set-valued optimization problems.
Borwein [22] introduced a strong subgradient, and proved a Lagrange multiplier theorem
and a Sandwich theorem for convex maps. Peng et al. [23] proved the existence of the
Borwein-strong subgradient and Yang-weak subgradient for set-valued maps and pre-
sented a new Lagrange multiplier theorem and a new Sandwich theorem for set-valued
maps. Li and Guo [24] investigated the features of the weak subdifferential that was
first proposed in [21], as well as the necessary and sufficient conditions for optimality
in set-valued optimization problems. Hernández and Rodríguez-Marín [25] presented
a new definition of the strong subgradient for set-valued mappings that were stronger
than the weak subgradient of set-valued mappings introduced by Chen and Jahn [21].
Long et al. [26] obtained two existence theorems for weak subgradients of set-valued
mappings described in [21]. They also deduced several features of the weak subdifferential
for set-valued mappings. İnceŏglu [27] defined the second-order weak subdifferential and
examined some properties of the concept.

Recently, the dual theorem in the face of data uncertainty has received a great deal
of attention due to the reality of uncertainty in many real-world optimization problems.
Suneja et al. [28] constructed strong/weak duality results between the primary problem
and its Mond-Weir type dual problem using Clarke’s generalized gradients and sufficient
optimality criteria for the vector optimization problems. Chuong and Kim [29] established
sufficient conditions for (weakly) efficient solutions of a nonsmooth semi-infinite multiob-
jective optimization problem and proposed types of Wolfe and Mond-Weir dual problems
via the limiting subdifferential of locally Lipschitz functions. Moreover, they explored
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weak and strong duality. By means of multipliers and limiting subdifferentials of the
related functions, Chuong [30] established necessary/sufficient optimality conditions for
robust (weakly) Pareto solutions of a robust multiobjective optimization problem involving
nonsmooth/nonconvex real-valued functions. In addition, they addressed a dual (robust)
multiobjective problem to the primal one, and explored weak/strong duality. By virtue
of subdifferential [31], Sun et al. [32] obtained optimality condition and established Wolfe
type robust duality between the uncertain optimization problem and its uncertain dual
problem under the conditions of continuity and cone-convex-concavity.

To the best of our knowledge, there are a few concepts of solutions for the uncertain
set-valued optimization problem through set-order relation. Moreover, there is very little
literature on the optimality condition and the dual theorem for set-based robust efficient
solutions of uncertain set-valued optimization problems by terms of the second-order
strong differential of a set-valued mapping. Lately, Som and Vetrivrl [33] introduced
robustness for set-valued optimization to generalize some existing concepts of robustness
for scalar and vector-valued optimization, and they followed the set approach for solutions
to set-valued optimization problems.

To weaken the conditions of continuity and cone-convex-concavity [15,32], inspired
by the subdifferential [20,22] and set-order relations [34], we introduce a new second-order
strong subdifferential of set-valued mapping and define the set-based robust efficient
solution for an uncertain set-valued optimization problem. Meanwhile, by using the
second-order strong subdifferential of set-valued maps, we put forward Wolfe type dual
problem and investigate the robust weak duality and robust strong duality of the set-based
robust efficient solutions for uncertain set-valued optimization problems.

This paper is organized as follows. We quickly go through the concepts in Section 2
before introducing a brand-new second-order strong subdifferential of a set-valued map.
We derive some crucial new subdifferential features in Section 3. We obtain a necessary
and sufficient condition for the set-based robust efficient solutions to the uncertain set-
valued optimization problem in Section 4 thanks to the concept of the second-order strong
subdifferential of set-valued mappings. The robust weak duality and robust strong duality
of the uncertain set-valued optimization problem are established in Section 5. Section 6 is a
short conclusion of the paper.

2. Preliminaries and Definitions

Throughout the paper, let X and Y be two real topological linear spaces with their
topological dual spaces X∗ and Y∗, respectively. 0X and 0Y denote the original points of X
and Y, respectively. Let K ⊆ Y be a solid closed convex pointed cone. The dual cone of K is
defined by

K∗ = {y∗ ∈ Y∗ : 〈y∗, y〉 � 0, ∀y ∈ K}.

Let N be a natural number and n, m, l ∈ N. Let D ⊆ Y be a nonempty subset. clD and intD
denote the closure and interior of D, respectively. T (Y) := {E ⊆ Y | E is nonempty}.

Let M be a subset of X and H : M → 2Y be a set-valued map. The domain, graph and
epigraph of H are defined, respectively, by

domH := {z ∈ M : H(z) �= ∅}, grH := {(z, y) ∈ M×Y : y ∈ H(z), z ∈ M}

and
epiH := {(z, y) ∈ M×Y : y ∈ H(z) + K}.

A partial order relation(�K) of space Y caused by the cone K as follows:

e �K s if and only if s− e ∈ K,

e ≺K s if and only if s− e ∈ intK, ∀e, s ∈ Y.

Definition 1 ([34]). Let E, S ∈ T (Y) be arbitrarily chosen sets.
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(i) The lower set less order relation is defined by

E �l
K S ⇔ E + K ⊇ S ⇔ ∀s ∈ S, ∃e ∈ E : e �K s,

E ≺l
K S ⇔ E + intK ⊇ S ⇔ ∀s ∈ S, ∃e ∈ E : e ≺K s.

(ii) The upper set less order relation is defined by

E �u
K S ⇔ S− K ⊇ E ⇔ ∀e ∈ E, ∃s ∈ S : e �K s,

E ≺u
K S ⇔ S− intK ⊇ E ⇔ ∀e ∈ E, ∃s ∈ S : e ≺K s.

Definition 2 ([35]). Let E, S ∈ T (Y) be arbitrarily chosen sets. Then the certainly less order
relation is defined by

E �c
K S ⇔ (E = S) or (E �= S, ∀e ∈ E, ∀s ∈ S : e �K s),

or equivalently, E = S or, S− E ⊆ K whenever E �= S.

Definition 3 ([31]). Let M be a nonempty subset of X. M is said to be convex if for any x, z ∈ M
and for all β ∈ [0, 1],

βx + (1− β)z ∈ M.

Definition 4 ([31]). Let M be a nonempty convex subset of X. H : M → 2R is called K-convex if
for any x, z ∈ M and for all β ∈ [0, 1],

βH(x) + (1− β)H(z) ⊆ H(βx + (1− β)z) + K.

Definition 5. A function H : M → 2R has a global minimum at (x1, y1) if

y1 �R+
y2, ∀x2 ∈ M, y2 ∈ H(x2).

Definition 6 ([22]). Let H : M → 2Y be a set-valued map and be K-convex, x1 ∈ M, y1 ∈ H(x1)
and H(x1)− y1 ⊆ K, the set

∂H(x1, y1) = {ξ ∈ X∗ | y2 − y1 − 〈ξ, x2 − x1〉 ∈ K, ∀x2 ∈ M, y2 ∈ H(x2)}

is called the Borwein-strong subdifferential of H at (x1, y1).

Enlightened by the Borwein-strong subdifferential in [22,23], we put forward the new
notion of second-order strong subdifferential for a set-valued map.

Definition 7. Let H : M → 2R be a set-valued map, x1 ∈ M, y1 ∈ H(x1) and H(x1)− y1 ⊆
R+. Then ξ ∈ X∗ is said to be a second-order strong subgradient of H at (x1, y1) if

y2 − y1 − 〈ξ, x2 − x1〉2 ∈ R+, ∀x2 ∈ M, y2 ∈ H(x2).

The set

∂2
s H(x1, y1) = {ξ ∈ X∗ | y2 − y1 − 〈ξ, x2 − x1〉2 ∈ R+, ∀x2 ∈ M, y2 ∈ H(x2)}

is said to be the second-order strong subdifferential of H at (x1, y1). If ∂2
s H(x1, y1) �= ∅, then H is

said to be second-order strong subdifferentiable at (x1, y1).

The following example shows Definition 7.
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Example 1. Let H : R→ 2R be a set-valued map with H(x) = {y ∈ R | y ≥ x2} for any x ∈ R.
Take (x1, y1) = (0, 0). A simple calculation shows that H(x1)− y1 ⊆ R+. Then we obtain

∂2
s H(0, 0) = {ξ ∈ R : ξ ∈ [−1, 1]}.

Remark 1. Let H : M → 2R be a set-valued map. If the condition H(x1) − y1 ⊆ R+ is not
satisfied, Definition 7 is not complete. The following example shows the case.

Example 2. Let H : R+ → 2R be a set-valued map with H(x) = {y ∈ R | y ≤ x2} for any
x ∈ R+. Take (x1, y1) = (1,−1). A simple calculation shows that H(x1)− y1 � R+. Then it
follows from Definition 7 that ξ does not exist, i.e.,

∂2
s H(1,−1) = ∅.

Therefore, the condition H(x1)− y1 ⊆ R+ is necessary in Definition 7.

Remark 2. Let H : M → 2R be a set-valued map. Obviously, if the second-order strong subdiffer-
ential exists, then 0 ∈ ∂2

s H(x1, y1). However, 0 ∈ ∂H(x1, y1) may not necessarily be true. Now
we give an example to illustrate the case.

Example 3. Let H : R+ → 2R be a set-valued map, and let H(x) = {y ∈ R | y ≥ − 1
2 x} for

any x ∈ R+. Take (x1, y1) = (0, 0). A simple calculation shows that H(x1)− y1 ⊆ R+. Then
we have

∂2
s H(0, 0) = {ξ ∈ R : ξ = 0}.

and
∂H(0, 0) = {ξ ∈ R : ξ ∈ (−∞,−1

2
]}.

Thus, 0 ∈ ∂2
s H(0, 0), but 0 /∈ ∂H(0, 0).

3. Properties of a Second-Order Strong Subdifferential of Set-Valued Maps

In this section, we present some properties of a second-order strong subdifferential of
set-valued maps. Firstly, we introduce the following lemma.

Lemma 1. Let x ∈ X, ξ, η ∈ X∗ and β ∈ [0, 1]. Set hx(ξ) := 〈ξ, x〉. Then

βh2
x(ξ) + (1− β)h2

x(η) � h2
x(βξ + (1− β)η).

Proof. Let x ∈ X, ξ, η ∈ X∗ and β ∈ [0, 1]. Since β2 − β � 0 and hx is a linear function,

h2
x(βξ + (1− β)η) =[hx(βξ) + hx((1− β)η)]2

=h2
x(βξ) + h2

x((1− β)η) + 2hx(βξ)hx((1− β)η)

=βh2
x(ξ) + (1− β)h2

x(η)

+ (β2 − β)(h2
x(ξ) + h2

x(η)− 2h2
x(ξ)h

2
x(η))

�βh2
x(ξ) + (1− β)h2

x(η).

This proof is complete.

Theorem 1. Let H : M → 2R be a set-valued map, x1 ∈ M, y1 ∈ H(x1) and H(x1)− y1 ⊆ R+.
Then the set ∂2

s H(x1, y1) is convex.

Proof. If ∂2
s H(x1, y1) = ∅, then there is nothing to be demonstrated.

Suppose ∂2
s H(x1, y1) �= ∅. Let ξ ∈ ∂2

s H(x1, y1), η ∈ ∂2
s H(x1, y1) and λ ∈ [0, 1]. Then,

y2 − y1 − 〈ξ, x2 − x1〉2 ∈ R+, ∀x2 ∈ M, y2 ∈ H(x2)
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and
y2 − y1 − 〈η, x2 − x1〉2 ∈ R+, ∀x2 ∈ M, y2 ∈ H(x2),

i.e.,

λ(y2 − y1)− λ〈ξ, x2 − x1〉2 ∈ R+, ∀x2 ∈ M, y2 ∈ H(x2) (1)

and

(1− λ)(y2 − y1)− (1− λ)〈η, x2 − x1〉2 ∈ R+, ∀x2 ∈ M, y2 ∈ H(x2). (2)

By Lemma 1, it follows from (1) and (2) that

y2 − y1 − (λ〈ξ, x2 − x1〉2 + (1− λ)〈η, x2 − x1〉2)

�y2 − y1 − 〈λξ + (1− λ)η, x2 − x1〉2 ∈ R+, ∀x2 ∈ M, y2 ∈ H(x2).

Thus,
λξ + (1− λ)η ∈ ∂2

s H(x1, y1).

This proof is complete.

Theorem 2. Let H : M → 2R be a set-valued map, x1 ∈ M, y1 ∈ H(x1) and H(x1)− y1 ⊆ R+.
Let H be second-order strong subdifferentiable at (x1, y1). Then H has a global minimum at (x1, y1)
if and only if 0X∗ ∈ ∂2

s H(x1, y1).

Proof. (⇒) Since H has a global minimum at (x1, y1),

y2 − y1 ∈ R+, ∀x2 ∈ M, y2 ∈ H(x2).

Then,
y2 − y1 − 〈0X∗ , x2 − x1〉2 ∈ R+, ∀x2 ∈ M, y2 ∈ H(x2),

which implies that 0X∗ ∈ ∂2
s H(x1, y1).

(⇐) Let 0X∗ ∈ ∂2
s H(x1, y1). Then, by Definition 7, we obtain

y2 − y1 − 〈0X∗ , x2 − x1〉2 ∈ R+, ∀x2 ∈ M, y2 ∈ H(x2),

which implies that y2 − y1 ∈ R+ for all x2 ∈ M, y2 ∈ H(x2). Therefore, according to
Definition 5, H has a global minimum at (x1, y1). This proof is complete.

Theorem 3. Let H : M → 2R be a set-valued map and α > 0. Let x1 ∈ M, y1 ∈ H(x1) and
H(x1)− y1 ⊆ R+. If H and αH are second-order strong subdifferentiable at (x1, y1) and (x1, αy1),
respectively, then

∂2
s (αH)(x1, αy1) =

√
α∂2

s H(x1, y1).

Proof. Let ξ ∈ ∂2
s (αH)(x1, αy1). Then

αy2 − αy1 − 〈ξ, x2 − x1〉2 ∈ R+, ∀x2 ∈ M, y2 ∈ H(x2)

⇔y2 − y1 −
1
α
〈ξ, x2 − x1〉2 ∈ R+, ∀x2 ∈ M, y2 ∈ H(x2)

⇔y2 − y1 − 〈
1√
α

ξ, x2 − x1〉2 ∈ R+, ∀x2 ∈ M, y2 ∈ H(x2)

⇔ 1√
α

ξ ∈ ∂2
s H(x1, y1)

⇔ξ ∈
√

α∂2
s H(x1, y1).
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Here we finish the proof.

Now, we provide an illustration of Theorem 3.

Example 4. Let H : R → 2R be a set-valued map, and let H(x) = {y ∈ R | y ≥ 3x2}. Take
(x1, y1) = (0, 0). A simple calculation shows that H(x1)− y1 ⊆ R+. Then for any α > 0, we
obtain

∂2
s (αH)(0, 0) = {ξ ∈ R : ξ ∈ [−

√
3α,
√

3α]}
and

√
α∂2

s H(0, 0) = {ξ ∈ R : ξ ∈ [−
√

3α,
√

3α]}.

Therefore, ∂2
s (αH)(0, 0) =

√
α∂2

s H(0, 0).

Theorem 4. Let H and Q : M → 2R be set-valued maps, x1 ∈ M, y1 ∈ H(x1), y2 ∈ Q(x1),
H(x1)− y1 ⊆ R+ and Q(x1)− y2 ⊆ R+. If H and Q are second-order strong subdifferentiable
at (x1, y1) and (x1, y2), respectively, then

∂2
s H(x1, y1) + ∂2

s Q(x1, y2) ⊆
√

2∂2
s (H + Q)(x1, y1 + y2).

Proof. Let ξ1 ∈ ∂2
s H(x1, y1) and ξ2 ∈ ∂2

s Q(x1, y2). Then,

y3 − y1 − 〈ξ1, x2 − x1〉2 ∈ R+, ∀x2 ∈ M, y3 ∈ H(x2)

and
y4 − y2 − 〈ξ2, x2 − x1〉2 ∈ R+, ∀x2 ∈ M, y4 ∈ Q(x2),

i.e.,

1
2
(y3 − y1)−

1
2
〈ξ1, x2 − x1〉2 ∈ R+, ∀x2 ∈ M, y3 ∈ H(x2) (3)

and

1
2
(y4 − y2)−

1
2
〈ξ2, x2 − x1〉2 ∈ R+, ∀x2 ∈ M, y4 ∈ Q(x2). (4)

According to Lemma 1, it follows from (3) and (4) that

1
2
[(y3 − y1) + (y4 − y2)]− [

1
2
〈ξ1, x2 − x1〉2 +

1
2
〈ξ2, x2 − x1〉2]

�1
2
[(y3 + y4)− (y1 + y2)]− 〈

1
2

ξ1 +
1
2

ξ2, x2 − x1〉2 ∈ R+,

∀x2 ∈ M, y3 + y4 ∈ (H + Q)(x2).

Thus, √
2

2
ξ1 +

√
2

2
ξ2 ∈ ∂2

s (H + Q)(x1, y1 + y2),

i.e.,
ξ1 + ξ2 ∈

√
2∂2

s (H + Q)(x1, y1 + y2).

Therefore, ∂2
s H(x1, y1) + ∂2

s Q(x1, y2) ⊆
√

2∂2
s (H + Q)(x1, y1 + y2). This proof is com-

plete.
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Corollary 1. Let Hi : M → 2R be set-valued maps, i = 1, . . . , m, x1 ∈ M, yi ∈ Hi(x1) and
Hi(x1)− yi ⊆ R+. If Hi is second-order strong subdifferentiable at (x1, yi), i = 1, . . . , m, then

m

∑
i=1

∂2
s Hi(x1, yi) ⊆

√
m∂2

s

m

∑
i=1

Hi(x1,
m

∑
i=1

yi).

Remark 3. Let H and Q : M → 2R be set-valued maps. If H and Q are strong subdifferentiable at
(x1, y1) and (x1, y2), respectively, then

∂H(x1, y1) + ∂Q(x1, y2) ⊆ ∂(H + Q)(x1, y1 + y2).

However,
√

2 can not be omitted in Theorem 4.

We take into consideration the following examples to demonstrate Theorem 4 and
Remark 3.

Example 5. Let H and Q : R → 2R be set-valued maps with H(x) = {y ∈ R | y ≥ x2} and
Q(x) = {y ∈ R | y ≥ 4x2}. Take x1 = 1, y1 = 1 ∈ H(x1) and y2 = 4 ∈ Q(x1). A simple
calculation shows that H(x1)− y1 ⊆ R+ and Q(x1)− y2 ⊆ R+. Then we obtain

∂2
s H(1, 1) = {ξ1 ∈ R : ξ1 ∈ [−1, 1]}

and
∂2

s Q(1, 4) = {ξ2 ∈ R : ξ2 ∈ [−2, 2]},

so,
∂2

s H(1, 1) + ∂2
s Q(1, 4) = {ξ1 + ξ2 ∈ R : ξ1 + ξ2 ∈ [−3, 3]}.

Moreover,
∂2

s (H + Q)(1, 5) = {ξ3 ∈ R : ξ3 ∈ [−
√

5,
√

5]}.

and √
2∂2

s (H + Q)(1, 5) = {
√

2ξ3 ∈ R :
√

2ξ3 ∈ [−
√

10,
√

10]}.

In fact, 3 ≮
√

5 and 3 <
√

10. Therefore, ∂2
s H(x1, y1) + ∂2

s Q(x1, y2) � ∂2
s (H + Q)(x1, y1 +

y2) and ∂2
s H(x1, y1) + ∂2

s Q(x1, y2) ⊆
√

2∂2
s (H + Q)(x1, y1 + y2).

Example 6. Let H and Q : R → 2R be set-valued maps, and let H(x) = {y ∈ R | y ≥ x},
Q(x) = {y ∈ R | y ≥ 4x}. Take (x1, y1) = (0, 0) = (x1, y2). A simple calculation shows that
H(x1)− y1 ⊆ R+ and Q(x1)− y2 ⊆ R+. Then we obtain

∂H(0, 0) = {ξ1 ∈ R : ξ1 � 1}

and
∂Q(0, 0) = {ξ2 ∈ R : ξ2 � 4},

so,
∂H(0, 0) + ∂Q(0, 0) = {ξ1 + ξ2 ∈ R : ξ1 + ξ2 � 5}.

Moreover,
∂(H + Q)(0, 0) = {ξ3 ∈ R : ξ3 � 5}.

Therefore, ∂H(x1, y1) + ∂Q(x1, y2) ⊆ ∂(H + Q)(x1, y1 + y2).

4. The Optimality Condition for the Uncertain Set-Valued Optimization Problem

Problem (SOP) has been studied extensively without taking into account data uncer-
tainty. However, in most real-world practical applications, there are more uncertainties in
optimization problems. To define an uncertain set-valued optimization problem (USOP),
we assume that uncertainties in the objective function are given as scenarios from a known
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uncertainty set U = {u1, u2, . . . , um} ⊆ Rm, where ui is an uncertain parameter, i = 1, . . . , m.
The following uncertain set-valued optimization problem (USOP) can be used to describe
the problem (SOP) when there is data uncertainty for both the objectives and the constraints:

(USOP)

{
min H(z, ui) = {H1(z, ui), H2(z, ui), . . . , Hk(z, ui), . . . , Hq(z, ui)}
s.t. z ∈ M, ui ∈ U, Bj(z, vj) ⊆ R−, ∀vj ∈ Vj, j = 1, . . . , l,

where Hk : M × Rm → 2R, k = 1, . . . , q and Bj : M × Rl → 2R, j = 1, . . . , l are given
functions, and the uncertain parameter vj belongs to a compact and convex uncertainty set
Vj ⊆ Rl .

Let G : M×U → 2R be a set-valued map, max
ui∈U

G(z, ui) is defined as follows:

G(z, ui) �l
R+

max
ui∈U

G(z, ui), ∀i = 1, . . . , m.

In this paper, we investigate problem (USOP) using a robust approach. As we all
know, there is no proper method to directly solve problem (USOP), so it is necessary to
replace problem (USOP) by the deterministic version, that is, the robust counterpart of
problem (USOP). By this means, various concepts of robustness have been proposed on
the basis of different robust counterparts to describe the preferences of decision makers.

The most celebrated and researched robustness concept is called worst-case robustness
(also known as min-max robustness or strict robustness in the literature). The idea is to
minimize the worst possible objective function value, and search for a solution that is
good enough in the worst case. Meanwhile, the constraints should be satisfied for every
parameter vj ∈ Vj, j = 1, . . . , l. Worst-case robustness is a conservative concept and reveals
the pessimistic attitude of a decision maker. Then, the robust (worst-case) counterpart of
problem (USOP) is as follows :

(URSOP)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
min max

ui∈U
H(z, ui) = {max

ui∈U
H1(z, ui), max

ui∈U
H2(z, ui), . . . , max

ui∈U
Hk(z, ui),

. . . , max
ui∈U

Hq(z, ui)}

s.t. z ∈ M, Bj(z, vj) ⊆ R−, ∀vj ∈ Vj, j = 1, . . . , l.

Definition 8. The robust feasible set of problem (USOP) is defined by

A := {z ∈ M | Bj(z, vj) ⊆ R−, ∀vj ∈ Vj, j = 1, . . . , m}.

We assume that A �= ∅. Obviously, the set of all robust feasible solutions to problem (USOP) is the
same as the set of all feasible solutions to problem (URSOP).

Definition 9. z̆ ∈ A is said to be a �l
R+

-robust efficient solution to problem (USOP) if z̆ is a
�l

R+
-efficient solution to problem (URSOP), i.e., for all z ∈ A such that

max
ui∈U

Hk(z̆, ui) �l
R+

max
ui∈U

Hk(z, ui).

In this part, we create a necessary and sufficient optimality condition of the�l
R+

-robust
efficient solution to problem (USOP).

Theorem 5. Let Hk : M×Rm → 2R, k = 1, . . . , q and Bj : M×Rl → 2R, j = 1, . . . , l be set-
valued maps, z̆ ∈ M, y̆ ∈ ⋂

ui∈U Hk(z̆, ui) and y̆j ∈
⋂

vj∈Vj
Bj(z̆, vj). Assume that the following

conditions hold:

(i) Hk is bounded on M×U;
(ii) max

ui∈U
Hk(z, ui) exists for all z ∈ M;

(iii) for any i, j and k, Hk(z̆, ui)− y̆ ⊆ R+ and Bj(z̆, vj)− y̆j ⊆ R+;
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(iv) for any j and k, Hk, Bj is second-order strong subdifferentiable at (z̆, y̆) and (z̆, y̆j), respec-
tively.

Then z̆ is a �l
R+

-robust efficient solution to problem (USOP) if and only if for any i, j and k,
there exist ŭi ∈ U, v̆j ∈ Vj and μ̆j ∈ R+ such that

0 ∈ ∂2
s Hk(·, ŭi)(z̆, y̆) +

l

∑
j=1

μ̆j∂
2
s Bj(·, v̆j)(z̆, y̆j),

(μ̆jBj)(z̆, v̆j) = {0}
and

Hk(z̆, ŭi) = max
ui∈U

Hk(z̆, ui).

Proof. (⇒) Let z̆ be a�l
R+

-robust efficient solution to problem (USOP). Then z̆ ∈ A. Hence,
for all vj ∈ Vj, we have Bj(z̆, vj) ⊆ R−. Thus, take v̆j ∈ Vj such that

Bj(z̆, v̆j) ⊆ R−.

Moreover, for any j, there exists μ̆j ∈ R+ such that

(μ̆jBj)(z̆, v̆j) = {0}. (5)

In fact, there are two cases to illustrate (5) as follows:

(i) If Bj(z̆, v̆j) = {0}, then take arbitrary μ̆j > 0, we get (μ̆jBj)(z̆, v̆j) = {0}.
(ii) If Bj(z̆, v̆j) ⊆ R− \ {0}, then take μ̆j = 0, we can easily get that (μ̆jBj)(z̆, v̆j) = {0}.

Since U is a finite set and Hk is bounded, there exists ŭi ∈ U such that

Hk(z̆, ŭi) = max
ui∈U

Hk(z̆, ui).

According to the definition of the second-order strong subdifferential, one obtains

0 ∈ ∂2
s Hk(·, ŭi)(z̆, y̆) and 0 ∈

l

∑
j=1

μ̆j∂
2
s Bj(·, v̆j)(z̆, y̆j).

Therefore, we get

0 ∈ ∂2
s Hk(·, ŭi)(z̆, y̆) +

l

∑
j=1

μ̆j∂
2
s Bj(·, v̆j)(z̆, y̆j).

(⇐) Assume that for any i, j and k, there exist z̆ ∈ A, ŭi ∈ U, v̆j ∈ Vj and μ̆j ∈ R+ such
that

0 ∈ ∂2
s Hk(·, ŭi)(z̆, y̆) +

l

∑
j=1

μ̆j∂
2
s Bj(·, v̆j)(z̆, y̆j),

(μ̆jBj)(z̆, v̆j) = {0}
and

Hk(z̆, ŭi) = max
ui∈U

Hk(z̆, ui). (6)
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By Theorem 3 and Corollary 1, we get

∂2
s Hk(·, ŭi)(z̆, y̆)+

l

∑
j=1

μ̆j∂
2
s Bj(·, v̆j)(z̆, y̆j)

=∂2
s Hk(·, ŭi)(z̆, y̆) +

l

∑
j=1

∂2
s (μ̆

2
j Bj)(·, v̆j)(z̆, μ̆2

j y̆j)

⊆
√

l + 1∂2
s (Hk(·, ŭi) +

l

∑
j=1

(μ̆2
j Bj)(·, v̆j))(z̆, y̆ +

l

∑
j=1

μ̆2
j y̆j).

Since 0 ∈ ∂2
s Hk(·, ŭi)(z̆, y̆) + ∑l

j=1 μ̆j∂
2
s Bj(·, v̆j)(z̆, y̆j), one has

0 ∈
√

l + 1∂2
s (Hk(·, ŭi) +

l

∑
j=1

(μ̆2
j Bj)(·, v̆j))(z̆, y̆ +

l

∑
j=1

μ̆2
j y̆j).

Therefore,

0 ∈ ∂2
s (Hk(·, ŭi) +

l

∑
j=1

(μ̆2
j Bj)(·, v̆j))(z̆, y̆ +

l

∑
j=1

μ̆2
j y̆j).

Obviously, y̆ ∈ Hk(z̆, ŭi), y̆j ∈ Bj(z̆, v̆j). Then by Definition 7, we get

y− y̆ +
l

∑
j=1

μ̆2
j yj −

l

∑
j=1

μ̆2
j y̆j ∈ R+, ∀z ∈ A, y ∈ Hk(z, ŭi), yj ∈ Bj(z, v̆j). (7)

Since (μ̆jBj)(z̆, v̆j) = {0} for any j, we calculate that ∑l
j=1(μ̆

2
j Bj)(z̆, v̆j) = {0},

i.e., for the preceding element y̆j ∈ Bj(z̆, v̆j), we have ∑l
j=1 μ̆2

j y̆j = 0. Together with

∑l
j=1(μ̆

2
j Bj)(z, v̆j) ⊆ R− for all z ∈ A, i.e., ∑l

j=1 μ̆2
j yj ∈ R− for all z ∈ A and yj ∈ Bj(z, v̆j), it

follows from (7) that
y− y̆ ∈ R+, ∀z ∈ A, y ∈ Hk(z, ŭi),

i.e.,
Hk(z̆, ŭi) �l

R+
Hk(z, ŭi), ∀z ∈ A.

Moreover, by the transitivity of �l
R+

set-order relation, it follows from (6) and
Hk(z, ŭi) �l

R+
max
ui∈U

Hk(z, ui), one has

max
ui∈U

Hk(z̆, ui) �l
R+

max
ui∈U

Hk(z, ui), ∀z ∈ A.

Thus, z̆ is a �l
R+

-robust efficient solution to problem (USOP). This proof is complete.

Remark 4.

(i) We extend the uncertain scalar optimization problem in [32] (Theorem 3.1) to the uncertain
set-valued optimization problem (USOP) in Theorem 5.

(ii) Ref. [32] (Theorem 3.1) is established under the conditions of continuity and cone-convex-
concavity, [15] (Corollaries 3.1 and 3.2) are established under the conditions of upper semi-
continuity, it is under the conditions of existence of the maximum and boundedness that we
obtain Theorem 5. Since bounded functions may not be continuous, our result in Theorem 5
extends [32] (Theorem 3.1) and [15] (Corollaries 3.1 and 3.2).
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5. Wolfe Type Robust Duality of Problem (USOP)

The robust weak duality and the robust strong duality are covered in this section,
which begin by introducing a Wolfe type dual problem (DSOPW) for the uncertain set-
valued optimization problem (USOP).

We now consider the Wolfe type dual problem (DSOPW) of problem (USOP):⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

max (H1(z, ui) + ∑l
j=1(μjBj)(z, vj), . . . , Hq(z, ui) + ∑l

j=1(μjBj)(z, vj))

s.t. 0 ∈ ∂2
s Hk(·, ui)(z, y) + ∑l

j=1 μj∂
2
s Bj(·, vj)(z, yj),

(μjBj)(z, vj) ⊆ R−, j = 1, . . . , l,
ui ∈ U, i = 1, . . . , m, vj ∈ Vj, μj ∈ R+,
z ∈ A, y ∈ Hk(z, ui), yj ∈ Bj(z, vj), k = 1, . . . , q.

Definition 10. The robust feasible solution set P of problem (DSOPW) is defined by

P := {(z, μj, ui, vj) |0 ∈ ∂2
s Hk(·, ui)(z, y) +

l

∑
j=1

μj∂
2
s Bj(·, vj)(z, yj),

(μjBj)(z, vj) ⊆ R−, vj ∈ Vj, μj ∈ R+, j = 1, . . . , l,

ui ∈ U, i = 1, . . . , m, z ∈ A, y ∈ Hk(z, ui),

yj ∈ Bj(z, vj), k = 1, . . . , q}.

In this section, we suppose that P �= ∅.

Definition 11. (x̆, μ̆j, ŭi, v̆j) ∈ P is said to be a≺u
R+

-robust efficient solution to problem (DSOPW)

if there is no feasible solution (z, μj, ui, vj) ∈ P other than (x̆, μ̆j, ŭi, v̆j) such that

Hk(x̆, ŭi)−
l

∑
j=1

(μ̆jBj)(x̆, v̆j) ≺u
R+

Hk(z, ui)−
l

∑
j=1

(μjBj)(z, vj),

i = 1, . . . , m, k = 1, . . . , q.

Theorem 6. (Robust weak duality) If for any k, Hk is bounded and closed, and max
ui∈U

Hk(x, ui)

exists for all x ∈ M, then for any feasible solution x to problem (URSOP) and any feasible solution
(z, μj, ui, vj) to problem (DSOPW), we have

max
up∈U

Hk(x, up) ⊀u
R+

Hk(z, ui) +
l

∑
j=1

(μjBj)(z, vj), i = 1, . . . , m, k = 1, . . . , q. (8)

Proof. Let x be a feasible solution to problem (URSOP) and (z, μj, ui, vj) be a feasible
solution to problem (DSOPW).

To the contrary, suppose that (8) does not hold. Then, there exist x̆, z̆ ∈ A, ŭi ∈ U,
v̆j ∈ Vj and μ̆j ∈ R+ such that

max
up∈U

Hk(x̆, up) ≺u
R+

Hk(z̆, ŭi) +
l

∑
j=1

(μ̆jBj)(z̆, v̆j). (9)

From ∑l
j=1(μ̆jBj)(x̆, v̆j) ⊆ R−, we have

max
up∈U

Hk(x̆, up) +
l

∑
j=1

(μ̆jBj)(x̆, v̆j) ≺u
R+

Hk(z̆, ŭi) +
l

∑
j=1

(μ̆jBj)(z̆, v̆j).
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Then, for all ẙ ∈ maxup∈U Hk(x̆, up) and yj ∈ Bj(x̆, v̆j), there exist y̆ ∈ Hk(z̆, ŭi) and
y̆j ∈ Bj(z̆, v̆j) such that

ẙ +
l

∑
j=1

μ̆jyj ≺R+
y̆ +

l

∑
j=1

μ̆j y̆j,

i.e.,

(ẙ +
l

∑
j=1

μ̆jyj)− (y̆ +
l

∑
j=1

μ̆j y̆j) ∈ intR−. (10)

Due to Hk(x̆, ŭi) �c
R+

max
up∈U

Hk(x̆, up), we can conclude that Hk(x̆, ŭi) �= max
up∈U

Hk(x̆, up).

In fact, suppose that Hk(x̆, ŭi) = max
up∈U

Hk(x̆, up). Then, it follows from (9) that

Hk(x̆, ŭi) ≺u
R+

Hk(x̆, ŭi) +
l

∑
j=1

(μ̆jBj)(x̆, v̆j).

Since Hk is bounded and closed, and ∑l
j=1(μ̆jBj)(x̆, v̆j) ⊆ R−, we obtain

max
up∈U

Hk(x̆, up) ≺u
R+

Hk(x̆, ŭi) +
l

∑
j=1

(μ̆jBj)(x̆, v̆j),

which is impossible. Thus, Hk(x̆, ŭi) �= max
up∈U

Hk(x̆, up). And then, by the definition of �c
R+

set-order relationship, one has

y �R+
ẙ, ∀y ∈ Hk(x̆, ŭi), ẙ ∈ max

up∈U
Hk(x̆, up). (11)

It follows from 0 ∈ ∂2
s Hk(·, ŭi)(z̆, y̆) and (11) that

y− y̆− 〈0, x− z̆〉2 ∈ R+, ∀x ∈ A, y ∈ Hk(x, ŭi),

i.e.,

ẙ− y̆− 〈0, x− z̆〉2 ∈ R+, ∀x ∈ A, ẙ ∈ max
up∈U

Hk(x, up). (12)

Moreover, it follows from 0 ∈ ∑l
j=1 μj∂

2
s Bj(·, v̆j)(z̆, y̆j), one has

l

∑
j=1

μ̆jyj −
l

∑
j=1

μ̆j y̆j − 〈0, x− z̆〉2 ∈ R+, ∀x ∈ A, yj ∈ Bj(x, v̆j). (13)

Thus, it follows from (12) and (13) that

(ẙ +
l

∑
j=1

μ̆jyj)− (y̆ +
l

∑
j=1

μ̆j y̆j) ∈ R+, ∀ẙ ∈ max
up∈U

Hk(x̆, up), yj ∈ Bj(x̆, v̆j),

which contradicts (10). Therefore, for any feasible solution x to problem (URSOP) and any
feasible solution (z, μj, ui, vj) to problem (DSOPW), we have

max
up∈U

Hk(x, up) ⊀u
R+

Hk(z, ui) +
l

∑
j=1

(μjBj)(z, vj), i = 1, . . . , m, k = 1, . . . , q.

217



Axioms 2022, 11, 648

We complete the proof.

Theorem 7 (Robust strong duality). Let Hk : M×Rm → 2R, k = 1, . . . , q and Bj : M×Rl →
2R, j = 1, . . . , l be set-valued maps, x̆ ∈ M, y̆ ∈ ⋂

ui∈U Hk(x̆, ui) and y̆j ∈
⋂

vj∈Vj
Bj(x̆, vj).

Assume that the following conditions hold:

(i) Hk is bounded on M×U for any k;
(ii) max

ui∈U
Hk(x, ui) exists for all x ∈ M and k;

(iii) for any i, j and k, Hk(x̆, ui)− y̆ ⊆ R+ and Bj(x̆, vj)− y̆j ⊆ R+;
(iv) for any j and k, Hk and Bj are second-order strong subdifferentiable at (x̆, y̆) and (x̆, y̆j),

respectively;
(v) x̆ ∈ A is a �l

R+
-robust efficient solution to problem (USOP).

Then for any i, j, k, there exist ŭi ∈ U, v̆j ∈ Vj and μ̆j ∈ R+ such that (x̆, μ̆j, ŭi, v̆j) is a
≺u

R+
-robust efficient solution to problem (DSOPW).

Proof. Let x̆ be a�l
R+

-robust efficient solution to problem (USOP). By Theorem 5, we know
that for any i, j and k, there exist ŭi ∈ U, v̆j ∈ Vj and μ̆j ∈ R+ such that

0 ∈ ∂2
s Hk(·, ŭi)(x̆, y̆) +

l

∑
j=1

μ̆j∂
2
s Bj(·, v̆j)(x̆, y̆j),

(μ̆jBj)(x̆, v̆j) = {0} (14)

and

Hk(x̆, ŭi) = max
ui∈U

Hk(x̆, ui), k = 1, 2, . . . , q. (15)

Therefore, (x̆, μ̆j, ŭi, v̆j) is a feasible solution to problem (DSOPW). Then, for any feasible
solution (z, μj, ui, vj) to problem (DSOPW), it follows from (14) and (15) and Theorem 6 that

Hk(x̆, ŭi)−
l

∑
j=1

(μ̆jBj)(x̆, v̆j) =max
ui∈U

Hk(x̆, ui)

�Hk(z, ui) +
l

∑
j=1

(μjBj)(z, vj)− intR+.

Hence, (x̆, μ̆j, ŭi, v̆j) is a ≺u
R+

-robust efficient solution to problem (DSOPW). This proof is
complete.

Remark 5. Theorems 10 and 11 generalize Theorems 4.1 and 4.2 in [32] from a scalar case to a
set-valued one, respectively.

6. Conclusions

In this paper, we introduce a new second-order strong subdifferential of the set-
valued maps and the robust efficient solutions for set approach of the uncertain set-valued
optimization problems, and then a necessary and sufficient optimality condition is derived
for set-based robust efficient solutions of the uncertain set-valued optimization problem.
Finally, we demonstrate robust strong duality and robust weak duality for the dual problem
of the uncertain set-valued optimization problem. Our discussion makes it desirable to
investigate optimality conditions and the duality theorem of a set-valued optimization
problem, and the main results can be applied to risk management.
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1. Introduction

The complex optimization problem has been applied in many fields in electrical
engineering, such as minimal entropy or maximum kurtosis. Levinson published their
study on complex linear programming in 1966 [1]. Since then, case studies on complex
nonlinear, fractional, and duality programming problems have been discussed [2–4]. Duca
formulated the vectorial optimization problem in complex space and obtained the necessary
and sufficient conditions [5–8]. Datta and Bhatia started their study on a complex minimax
problem in 1984 [9]. Lai and Huang constructed various cases of complex minimax optimal
problems. Following that, Huang et. al. constructed several types of second-order duality
models for complex fractional and nonfractional minimax programming problems, and
also derived the duality theorems under second-order generalized Θ-bonvexity [10–12].

All of the above, the complex optimal problems were focused on the real parts of
complex objective functions. Youness and Elbrolosy considered the general case with
both real and imaginary parts [13,14]. The complex extended programming problem is
formulated as follows.

(P0) min f (z, z)
such that X = {(z, z) ∈ Q | − g(z, z) ∈ S},

where S is a polyhedral cone in Cm, f : C2n → C and g : C2n → Cm are analytic in
z = (z, z) ∈ Q, and the set Q = {(z, z) | z ∈ Cn} ⊂ C2n is a linear manifold over real field.
Elbrolosy extended the complex multi-objective vector optimization problem (P), and also
defined the concept of optimal efficient solutions and established the optimality conditions
of the problem (P) by using the scalarization techniques as follows [15].

(P) min f (z) = ( f1(z), . . . , fp(z))
such that z = (z, z) ∈ X =

{
z ∈ Q | − g(z) ∈ S

}
,

where S ⊂ Cq is a polyhedral cone, and f : C2n → Cp, g : C2n → Cq are analytic in
z = (z, z) ∈ Q = {(z, z) | z ∈ Cn} ⊂ C2n.

Recently, Huang and Tanaka established the sufficient optimality conditions of prob-
lem (P), formulated the parametric dual problem and proved their duality theorems under
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the generalized convexities [16]. Usually, the objective function in the complex program-
ming problem was focused on the real part only. The novelty of this paper is extended
the case of objective function from the real part to the case of both real and imaginary
parts. Moreover, we would formulate the second-ordered parametric dual problem (D)
with respect to the problem (P) and prove their duality theorems under the second-ordered
generalized Θ-bonvexity.

2. Notations and Preliminary

Given z ∈ Cp, the notations z, zT and zH are the conjugate, transpose and conjugate
transpose of z. Let T = {z ∈ Cp | Re(Kz) ≥ 0} ⊂ Cp be a polyhedral cone with matrix
K ∈ Ck×p where k is a positive integer. The dual cone T∗ of the convex cone T is defined by

T∗ = {η ∈ Cp | Re〈z, η〉 ≥ 0 for all z ∈ T},

where 〈z, η〉 = ηHz is defined to be the inner product of z and η in complex spaces. For
z0 ∈ T, the set T(z0) is the intersection of those closed half spaces that includes z0 in their
boundaries. Thus, if z0 ∈ int(T), T(z0) is the whole space Cp.

Let T ⊂ Cp be a pointed, closed convex cone. For any y, y0 ∈ Cp, the ordered relation
notation “≤T” with respect to cone T is defined as:

y0 ≤T y ⇔ y− y0 ∈ T.

Note that for a nonzero vector μ ∈ T∗,

y0 ≤T y ⇒ Re[μH(y− y0)] ≥ 0.

Definition 1 (Duca [8], Definition 3.3.1 (Optimal efficient solution)). Let X be a nonempty
subset of Q = {z = (z, z) ∈ C2n | z ∈ Cn} ⊂ C2n, T ⊂ Cp be a pointed and closed convex cone,
and f : X → Cp be a map from X to Cp.

(1) The point z0 = (z0, z0) ∈ X is a minimal efficient (or Pareto-minimal) solution of f with
respect to T if there exists no other feasible point z = (z, z) ∈ X such that f (z0)− f (z) ∈
T \ {0}.

(2) The point z0 = (z0, z0) ∈ X is a maximal efficient (or Pareto-maximal) solution of f with
respect to T if there exists no other feasible point z = (z, z) ∈ X such that f (z)− f (z0) ∈
T \ {0}.

Note that z0 ∈ X is a minimal efficient solution of f with respect to T if
(

f (X) −
f (z0)

)
∩ (−T) = {0}; analogously, z0 ∈ X is a maximal efficient solution of f with respect

to T if
(

f (z0)− f (X)
)
∩ (−T) = {0}. The minimal efficient solution or maximal efficient

solution of f with respect to T in a multi-objective programming problem is called the
optimal efficient solution of f with respect to T.

In order to establish the optimality conditions and duality properties, we re-called the
gradient expression and second-order gradient expression of the complex functions. Given
z = (z, z) ∈ C2n and a twice differentiable analytic function f : C2n → C, the gradient
expression ∇ f (z) is denoted by

∇ f (z) =
(
∇z f (z),∇z f (z)

)
∈ Cp×2n
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with ∇z f (z) =

⎛⎜⎜⎜⎝
∂

∂z1
f1(z) . . . ∂

∂zn
f1(z)

...
. . .

∂
∂z1

fp(z) . . . ∂
∂zn

fp(z)

⎞⎟⎟⎟⎠, ∇z f (z) =

⎛⎜⎜⎜⎝
∂

∂z1
f1(z) . . . ∂

∂zn
f1(z)

...
. . .

∂
∂z1

fp(z) . . . ∂
∂zn

fp(z)

⎞⎟⎟⎟⎠ ∈ Cp×n.

The second-order gradient expression ∇2 fk(z), k = 1 . . . , p is denoted by

∇2 fk(z) =

( ∇zz fk(z), ∇zz fk(z)
∇zz fk(z), ∇zz fk(z)

)
∈ C2n×2n

with

∇zz fk(z) =

(
∂2

∂zizj
fk(z)

)
n×n

, i, j = 1, . . . n, ∇zz fk(z) =
(

∂2

∂zizj
fk(z)

)
n×n

, i, j = 1, . . . n,

∇zz fk(z) =

(
∂2

∂zizj
fk(z)

)
n×n

, i, j = 1, . . . n, ∇zz fk(z) =
(

∂2

∂zizj
fk(z)

)
n×n

, i, j = 1, . . . n.

We express the differential form of a complex function by using the gradient represen-
tations as the following lemma.

Lemma 1. Given z = (z, z), z0 = (z0, z0) ⊂ C2n and (v, v) = (z− z0, z− z0). Suppose that
f (·) : C2n → Cp, τ = (τ1, . . . , τp) ∈ Cp and Φ(z) = 〈 f (z), τ〉 = τH f (z). Then

(a) -ok

Re[Φ′(z0)(z− z0)] = Re
〈

z− z0, τT∇z f (z0) + τH∇z f (z0)
〉

.

(b)

(z− z0)
T∇2Φ(z0)(z− z0) =

〈
v, vH [τT∇zz f (z0)]

〉
+
〈

vH [τH∇zz f (z0)], vs.
〉

+
〈

v, vT [τT∇zz f (z0)]
〉
+
〈

vT [τH∇zz f (z0)], vs.
〉

.

The real part of Equation (b) is equal to

Re
〈

v, vH
[
τT∇zz f (z0) + τH∇zz f (z0)

]
+ vT

[
τT∇zz f (z0) + τH∇zz f (z0)

] 〉
.

Proof.

(a) Since 〈x, y〉 = yHx is the inner product in complex space,

Φ′(z0)(z− z0) = 〈 f ′(z0)(z− z0), τ〉
=

〈(
∇z f (z0),∇z f (z0)

)( v
v

)
, τ
〉

=
〈
∇z f (z0)v +∇z f (z0)v, τ

〉
= τH∇z f (z0)v + τH∇z f (z0)v

=
p

∑
j=1

n

∑
i=1

τj
∂

∂zi
fj(z0) vi +

p

∑
j=1

n

∑
i=1

τj
∂

∂zi
fj(z0) vi

=
p

∑
j=1

n

∑
i=1

(
τj ·

∂

∂zi
fj(z0)

)
· vi +

p

∑
j=1

n

∑
i=1

vi ·
(

τj ·
∂

∂zi
fj(z0)

)
=

〈
v, τT∇z f (z0)

〉
+
〈

τH∇z f (z0), v
〉

.

We obtain

Φ′(z0)(z− z0) =
〈

z− z0, τT∇z f (z0)
〉
+
〈

τH∇z f (z0), z− z0

〉
.
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Moreover, since Re [ 〈x, y〉 ] = Re[ 〈y, x〉 ] = Re [ 〈y, x〉 ], we have

Re [Φ′(z0)(z− z0)] = Re
{ 〈

z− z0, τT∇z f (z0)
〉
+
〈

τH∇z f (z0), z− z0

〉 }
= Re

〈
z− z0, τT∇z f (z0)

〉
+ Re

〈
z− z0, τH∇z f (z0)

〉
= Re

〈
z− z0, τT∇z f (z0)

〉
+ Re

〈
z− z0, τH∇z f (z0)

〉
= Re

〈
z− z0, τT∇z f (z0) + τH∇z f (z0)

〉
.

(b) Let Φ(z) = 〈 f (z), τ〉 =
p

∑
k=1

τk fk(z0) = τ1 f1(z0) + · · ·+ τp fp(z0), where fk(z0) is the

mapping from C2n to C1 for k = 1, . . . , p. Then

(z− z0)
T∇2〈 f (z0), τ〉(z− z0)

= (z− z0)
Tτ1∇2 f1(z0)(z− z0) + · · ·+ (z− z0)

Tτp∇2 fp(z0)(z− z0). (1)

For j = 1, . . . , p, and z− z0 = (z− z0, z− z0) = (v, v),

(z− z0)
Tτj∇2 f j(z0)(z− z0) =

(
v, v

)( τj∇zz fj(z0), τj∇zz fj(z0)
τj∇zz fj(z0), τj∇zz fj(z0)

)(
v
v

)

=
n

∑
l=1

[ n

∑
k=1

vkτj
∂2 f j(z0)

∂zk∂zl

]
vl +

n

∑
l=1

[ n

∑
k=1

vkτj
∂2 f j(z0)

∂zk∂zl

]
vl +

n

∑
l=1

[ n

∑
k=1

vkτj
∂2 f j(z0)

∂zk∂zl

]
vl +

n

∑
l=1

[ n

∑
k=1

vkτj
∂2 f j(z0)

∂zk∂zl

]
vl

=
n

∑
l=1

[ n

∑
k=1

vkτj
∂2 f j(z0)

∂zk∂zl

]
vl +

n

∑
l=1

[ n

∑
k=1

vkτj
∂2 f j(z0)

∂zk∂zl

]
vl +

n

∑
l=1

vl

[ n

∑
k=1

vkτj
∂2 f j(z0)

∂zk∂zl

]
+

n

∑
l=1

vl

[ n

∑
k=1

vkτj
∂2 f j(z0)

∂zk∂zl

]
=

〈
v, vH [τj∇zz fj(z0)]

〉
+
〈

vT [τj∇zz fj(z0)], vs.
〉
+
〈

v, vT [τj∇zz fj(z0)]
〉
+
〈

vH [τj∇zz fj(z0)], vs.
〉

.

By formula above, Equation (1) implies that

(z− z0)
T∇2〈 f (z0), τ〉(z− z0) =

〈
v, vH [τT∇zz f (z0)]

〉
+
〈

vT [τH∇zz f (z0)], vs.
〉

+
〈

v, vT [τT∇zz f (z0)]
〉
+
〈

vH [τH∇zz f (z0)], vs.
〉

,

and the real part of the above identity is equal to

Re
(〈

v, vH
[
τT∇zz f (z0) + τH∇zz f (z0)

]
+ vT

[
τT∇zz f (z0) + τH∇zz f (z0)

] 〉 )
.

3. Optimality Conditions

We would like to find the minimum efficient solutions to the complex multi-objective
programming problem (P). The scalarization technique is going to be applied to the multi-
objective programming problem. We would obtain the existence of minimum efficient
solutions of problem (P) above by scalarized programming problem (Pτ) below, and the
lemmas followed will be stated [15,16].

Given a nonzero vector τ ∈ Cp, we consider the scalarized programming problem
with respect to problem (P) as follows.

(Pτ) min Re[τH f (z)]
such that X = {ζ = (z, z) ∈ Q | − g(z) ∈ S}.

Lemma 2 (Elbrolosy [15], Theorem 4.4). Let T ⊂ Cp be a pointed, closed and convex cone and
f (X) be a convex set. If point z0 is a minimal efficient solution of (P) with respect to T, then there
exists a nonzero vector τ ∈ T∗ such that z0 is an optimal solution of (Pτ).
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Lemma 3 (Elbrolosy [15], Theorem 4.6). Let T ⊂ Cp be a pointed, closed and convex cone,
and τ ∈ T∗ with τ �= 0. Assume that z0 is an optimal solution of (Pτ), and anyone of the following
conditions holds,
(1) nonzero vector τ ∈ int(T∗),
(2) point z0 is the unique optimal solution of (Pτ).

Then z0 is the minimal efficient solution of (P) with respect to T.

Elbrolosy [15] established the Kuhn-Tucker necessary optimality conditions of problem
(P) by using the scalarization techniques, we described as follows.

Definition 2 (Lai and Huang [12], Definition 3). The problem (P) is said to satisfy the con-

straint qualification

at a point z0 = (z0, z0), if for any nonzero μ ∈ S∗ ⊂ Cq,

〈 g′z(z0)(z− z0), μ 〉 �= 0, for z �= z0.

Under the gradient expression as in Lemma 1, the constraint qualification can be
expressed by

μT∇zg(z0) + μH∇zg(z0) �= 0, for μ �= 0 in S∗,

where μH = μT .

Theorem 1 (Elbrolosy [15], Theorem 4.9 (Necessary optimality conditions)). Let T ⊂ Cp

be a pointed, closed and convex cone, S be a polyhedral cone in Cq and f (X) be a convex set.
Suppose that the mappings f (·) : C2n → Cp and g(·) : C2n → Cq are analytic on X ⊆ Q, and
z0 is a minimal efficient solution of (P) with respect to T. If problem (P) possesses the constraint
qualification at z0, there are nonzero vectors τ ∈ T∗ ⊂ Cp and μ ∈ S∗ ⊂ Cq satisfying the
following conditions:

τT∇z f (z0) + τH∇z f (z0) + μT∇zg(z0) + μH∇zg(z0) = 0, (2)

Re μH g(z0) = 0. (3)

In order to formulate the sufficient optimality conditions and duality theorems, we
introduce the generalized convexity in complex spaces as follows.

Definition 3 (Lai and Huang [12], Definition 1). The real part of an analytic function f (·) is
said to be:

(i) convex (strictly) at z0 ∈ Q ⊂ C2n if for all z ∈ Q,
Re

[
f (z)− f (z0)

]
≥ (>) Re

[
f ′(z0)(z− z0)

]
,

(ii) pseudoconvex (strictly) at z0 ∈ Q if for all z ∈ Q,
Re

[
f ′(z0)(z− z0)

]
≥ 0 ⇒ Re

[
f (z)− f (z0)

]
≥ 0(> 0),

(iii) quasiconvex at z0 ∈ Q if for all z ∈ Q,
Re

[
f (z)− f (z0)

]
≤ 0 ⇒ Re

[
f ′(z0)(z− z0)

]
≤ 0.

Huang and Tanaka [16] established the sufficient optimality conditions below.

Theorem 2 ([16], Theorem 3.6 (Sufficient optimality conditions)). Let T ⊂ Cp be a pointed,
closed and convex cone, S be a polyhedral cone in Cq, and f (·) : C2n → Cp and g(·) : C2n → Cq

be two analytic mappings on X ⊆ Q, where Q ⊂ C2n. Suppose that z0 is a feasible solution of (P),
and there are nonzero vectors τ ∈ T∗ ⊂ Cp and μ ∈ S∗ ⊂ Cq satisfying conditions (2) and (3) in
Theorem 1. If any one of the following conditions (i)–(iii) holds:

(i) Either of Re[τH f (·)] or Re[μH g(·)] is strictly convex and the other is convex at z0 ∈ Q,
or both are strictly convex at z0 ∈ Q,

(ii) Re[τH f (·)] is quasiconvex at z0 ∈ Q and Re[μH g(·)] is strictly pseudoconvex at z0 ∈ Q,
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(iii) Re[τH f (·) + μH g(·)] is strictly pseudoconvex at z0 ∈ Q,
then z0 is the minimal efficient solution of (P) with respect to T.

4. The Second-Order Parametric Duality Model

We would like to use the following differential notations to simplify the expression.
Let u = (u, u) ∈ C2n, τ ∈ Cp, μ ∈ Cq, and f : C2n → Cp, g : C2n → Cq are
analytic mappings:

F(1)(u, τ) = τT∇z f (u) + τH∇z f (u);
F(2)

1 (u, τ) = τT∇zz f (u) + τH∇zz f (u); F(2)
2 (u, τ) = τT∇zz f (u) + τH∇zz f (u).

G(1)(u, μ) = μT∇zg(u) + μH∇zg(u);
G(2)

1 (u, μ) = μT∇zzg(u) + μH∇zzg(u); G(2)
2 (u, μ) = μT∇zzg(u) + μH∇zzg(u).

The second-order parametric dual problem of problem (P) is considered as the
following form.

(D) max
FD

γ = (γ1, . . . , γp),

where FD is the set of all feasible solutions (τ, u, μ, ν, γ) satisfied the following conditions:
For u = (u, u) ∈ Q, τ ∈ Cp, ν ∈ Cn and μ ∈ S∗,

[
F(1)(u, τ) + G(1)(u, μ)

]
+ νH[F(2)

1 (u, τ) + G(2)
1 (u, μ)

]
+ νT[F(2)

2 (u, τ) + G(2)
2 (u, μ)

]
= 0, (4)

Re 〈 f (u)− γ, τ〉 ≥ 1
2

Re
〈

ν , νH F(2)
1 (u, τ) + νT F(2)

2 (u, τ)
〉

, (5)

Re 〈g(u), μ〉 ≥ 1
2

Re
〈

ν , νHG(2)
1 (u, μ) + νTG(2)

2 (u, μ)
〉

. (6)

We introduce the second-ordered generalized Θ-bonvexity as follows.

Definition 4 (Huang [10], Definition 4.1). The real part of an analytic function f (·) is called,

(i) Θ-bonvex (strictly) at z0 ∈ Q ⊂ C2n if there exists a suitable mapping Θ : C2n ×C2n →
C2n such that for any z ∈ Q,

Re
{

f (z)− f (z0) +
1
2
(z− z0)

T∇2 f (z0)(z− z0)
}

≥ (>) Re
{
[∇ f (z0) + (z− z0)

T∇2 f (z0)]Θ(z, z0)
}

,

(ii) Θ-pseudobonvex (strictly) at z0 ∈ Q ⊂ C2n if there exists a suitable mapping Θ :
C2n ×C2n → C2n such that for any z ∈ Q,

Re
{
[∇ f (z0) + (z− z0)

T∇2 f (z0)]Θ(z, z0)
}
≥ 0

⇒ Re
{

f (z)− f (z0) +
1
2
(z− z0)

T∇2 f (z0)(z− z0)
}
≥ 0 (> 0),

(iii) Θ-quasibonvex at z0 ∈ Q if there exists a suitable mapping Θ : C2n ×C2n → C2n such
that for any z ∈ Q,

Re
{

f (z)− f (z0) +
1
2
(z− z0)

T∇2 f (z0)(z− z0)
}
≤ 0

⇒ Re
{
[∇ f (z0) + (z− z0)

T∇2 f (z0)]Θ(z, z0)
}
≤ 0.

Using the generalized Θ-bonvexities, we could obtain the weak, strong and strictly
converse duality theorem of dual problem (D) with respect to primary problem (P).
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Theorem 3 (Weak Duality). Let z = (z, z) be (P)-feasible solution, and (τ, u, μ, ν, γ) be (D)-
feasible solution. Suppose that any one of the conditions holds:

(i) Either one of Re[τH f (·)] or Re[μH g(·)] is strictly Θ-bonvex and the other is Θ-bonvex at
u ∈ Q, or both are strictly Θ-bonvex at u ∈ Q,

(ii) Re[τH f (·)] is Θ-quasibonvex at u ∈ Q and Re[μH g(·)] is strictly Θ-pseudobonvex at
u ∈ Q,

(iii) Re[τH f (·) + μH g(·)] is strictly Θ-pseudoconvex at u ∈ Q.

Then
f (z) ≮T γ.

Proof. Suppose on the contrary that

γ− f (z) ∈ T \ {0}. (7)

We could pick a nonzero vector τ ∈ T∗, such that Re〈γ− f (z), τ〉 ≥ 0, or

Re〈 f (z)− γ, τ〉 ≤ 0.

By inequality (5), then

Re〈 f (z)− γ, τ〉 ≤ 0 ≤ Re〈 f (u)− γ, τ〉 − 1
2

Re
〈

ν , νH F(2)
1 (u, τ) + νT F(2)

2 (u, τ)
〉

.

That is

Re〈 f (z)− f (u), τ〉+ 1
2

Re
〈

ν , νH F(2)
1 (u, τ) + νT F(2)

2 (u, τ)
〉
≤ 0. (8)

Since the feasibility of z for problem (P) and the inequality (6),

Re 〈g(z), μ〉 ≤ 0 ≤ Re〈g(u), μ〉 − 1
2

Re
〈

ν , νHG(2)
1 (u, μ) + νTG(2)

2 (u, μ)
〉
.

We get the following inequality

Re
〈

g(z)− g(u), μ
〉
+

1
2

Re
〈

ν , νHG(2)
1 (u, μ) + νTG(2)

2 (u, μ)
〉
≤ 0. (9)

(a) If hypothesis (i) holds, without loss of generality, assume that Re[τH f (·)] is strictly
Θ-bonvex and Re[μH g(·)] is Θ-bonvex at u ∈ Q, and let (ν, ν) = z− u.
From inequality (8) and Re[τH f (·)] is strictly Θ-bonvex at u ∈ Q, then there is a
mapping Θ : C2n ×C2n → C2n such that

Re
{
[∇τH f (u) + (ν, ν)T∇2τH f (u)]Θ(z, u)

}
< 0. (10)

From inequality (9) and Re[μH g(·)] is Θ-bonvex at u ∈ Q, then there is a mapping
Θ : C2n ×C2n → C2n such that

Re
{
[∇μH g(u) + (ν, ν)T∇2μH g(u)]Θ(z, u)

}
≤ 0. (11)

Combine inequalities (10) and (11), then

Re
{
∇[τH f (u)μH g(u)] + (ν, ν)T∇2[τH f (u) + μH g(u)]

}
Θ(z, u) < 0.

This implies that

[
F(1)(u, τ) + G(1)(u, μ)

]
+ νH[F(2)

1 (u, τ) + G(2)
1 (u, μ)

]
+ νT[F(2)

2 (u, τ) + G(2)
2 (u, μ)

]
�= 0, (12)

this contradicts the equality (4).
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(b) If hypothesis (ii) holds, Re[τH f (·)] is Θ-quasibonvex at u and according to inequality (8),
then there is a mapping Θ : C2n ×C2n → C2n such that

Re
{
[∇τH f (u) + (ν, ν)T∇2τH f (u)]Θ(z, u)

}
≤ 0.

By inequality (9) and Re[μH g(·)] is strictly Θ-pesudobonvex at u ∈ Q, then there is a
mapping Θ : C2n ×C2n → C2n such that

Re {[∇μH g(u) + (ν, ν)T∇2μH g(u)]Θ(z, u)} < 0.

We obtain inequality (12) by summing up the two inequalities above, and then this
contradicts the equality of (4).

(c) Combine inequalities (8) and (9), and since Re[τH f (·) + μH g(·)] is strictly
Θ-pseudoconvex at u ∈ Q, then we get the same inequality (12), which contradicts
the equality (4).
Therefore, the result of theorem is proved.

Theorem 4 (Strong Duality). Let T ⊂ Cp is a pointed, closed and convex cone. Suppose that z0
is a minimal efficient solution of (P) with respect to T, and the problem (P) satisfies the constraint
qualification at z0. Then there exists (τ, z0, μ, ν, γ) a feasible solution of the dual problem (D).
Moreover, if the hypotheses of Theorem 3 are fulfilled, then (τ, z0, μ, ν, γ) is also an optimal solution
of (D) with respect to T, and the two problems (P) and (D) have the same optimal values.

Proof. Let z0 = (z0, z0) ∈ Q is a minimal efficient solution of problem (P) with optimal
value γ, and take ν = z0 − z0 = 0. By using Theorem 1 (Necessary optimality conditions),
there exist τ ∈ T∗ ⊂ Cp and μ ∈ S∗ ⊂ Cq such that

τT∇z f (z0) + τH∇z f (z0) + μT∇zg(z0) + μH∇zg(z0) = 0,
Re[μH g(z0)] = 0,

then conditions (4) and (6) of dual problem (D) are hold. Because γ is the optimal value
of problem (P), that is γ = min f (z) = f (z0). It implies that Re〈 f (z0) − γ, τ〉 = 0, the
condition (5) of problem (D) holds. Hence, (τ, z0, μ, ν = 0, γ) is a feasible solution of the
dual problem (D). From Theorem 3, the optimality of the feasible solution (τ, z0, μ, ν, γ)
for (D) reduces to be the optimal value of (D). Indeed, if there exists a feasible solution
(τ, z′, μ, ν, γ′) of (D) such that γ′ − γ ∈ T \ {0}. Since γ = f (z0) is the optimal value of
problem (P), we obtain

γ′ − f (z0) ∈ T \ {0},

which contradicts to Theorem 3.

Theorem 5 (Strictly Converse Duality). Let T ⊂ Cp is a pointed, closed and convex cone.
Suppose that ẑ and (τ, û, μ, ν, γ) are optimal efficient solutions of (P) and (D) with respect to T,
respectively, and assume that the assumptions of Theorem 4 are fulfilled. Meanwhile, if Re[τH f (·)]
is strictly Θ-pseudobonvex at û ∈ Q and Re[μH g(·)] is Θ-quasibonvex at û ∈ Q, then ẑ = û,
and the problems of (P) and (D) with the same optimal values.

Proof. We assume that ẑ �= û. Since ẑ is an optimal efficient solution of (P) with optimal
value γ, and from Theorem 4, then

γ = min f (ẑ) =
(

f1(ẑ), . . . , fp(ẑ)
)
.
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So, we get Re〈 f (ẑ) − γ, τ〉 = 0 for nonzero τ ∈ T∗. By condition (5) and the
above inequality,

Re〈 f (ẑ)− γ, τ〉 = 0 ≤ Re 〈 f (û)− γ, τ〉 − 1
2

Re
〈

ν , νH F(2)
1 (û, τ) + νT F(2)

2 (û, τ)
〉

.

That is,

Re〈 f (ẑ)− f (û), τ〉+ 1
2

Re
〈

ν , νH F(2)
1 (û, τ) + νT F(2)

2 (û, τ)
〉
≤ 0. (13)

Using the feasibility of ẑ of (P) with μ ∈ S∗, and inequality (6),

Re[μH g(ẑ)] ≤ 0 ≤ Re[μH g(û)]− 1
2

Re
〈

ν , νHG(2)
1 (u, μ) + νTG(2)

2 (u, μ)
〉

.

Then

Re[μH g(ẑ)− μH g(û)] +
1
2

Re
〈

ν , νHG(2)
1 (u, μ) + νTG(2)

2 (u, μ)
〉
≤ 0. (14)

If Re[τH f (·)] is strictly Θ-pseudobonvex at û ∈ Q and by inequality (13), there is a
mapping Θ : C2n ×C2n → C such that

Re
{
[∇τH f (u) + (ν, ν)T∇2τH f (u)]Θ(z, u)

}
< 0. (15)

If Re[μH g(·)] is Θ-quasibonvex at û ∈ Q and by inequality (14), there is a mapping
Θ : C2n ×C2n → C such that

Re
{
[∇μH g(u) + (ν, ν)T∇2μH g(u)]Θ(z, u)

}
≤ 0. (16)

By considering inequalities (15) and (16), we could obtain the following inequality:[
F(1)(û, τ) + G(1)(û, μ)

]
+ νH[F(2)

1 (û, τ) + G(2)
1 (û, μ)

]
+ νT[F(2)

2 (û, τ) + G(2)
2 (û, μ)

]
�= 0,

which contradicts the equality (4). This completed the proof.

5. Conclusions

In this paper, we state the necessary and sufficient optimality conditions of (P), estab-
lish the second-ordered parameter dual model (D) with respect to problem (P), and discuss
their duality theorems.
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Abstract: As the classic branching process, the Galton-Watson process has obtained intensive atten-
tions in the past decades. However, this model has two idealized assumptions–discrete states and
time-homogeneity. In the present paper, we consider a branching process with continuous states,
and for any given n ∈ N, the branching law of every particle in generation n is determined by the
population size of generation n. We consider the case that the process is extinct with Probability
1 since in this case the process will be substantially different from the size-dependent branching
process with discrete states. We give the extinction rate in the sense of L2 and almost surely by
the form of harmonic moments, that is to say, we show how fast {Z−1

n } grows under a group of
sufficient conditions. From the result of the present paper, we observe that the extinction rate will be
determined by an asymptotic behavior of the mean of the branching law. The results obtained in this
paper have the more superiority than the counterpart from the existing literature.

Keywords: size-dependent Jir̆ina process; L2-convergence; extinction

MSC: 60J80

1. Introduction and Preliminaries

Branching process is an important class of Markov processes, which describes the
survival and extinction of a particle system. The most classical branching process is called
the Galton-Watson process (see [1]). For a chosen family, Galton and Watson [1] used this
process to record the number of males in each generation. For a Galton-Watson process
{Zn},, we usually set Z0 = 1, which means that there is a male ancestor in the family. The
relationship between Zn+1 and Zn is written by

Zn+1 = 1Zn≥1

Zn

∑
i=1

ηn,i,

where ηn,i presents the number of boys whose father (in generation n) is indexed by i. In a
Galton-Watson process, the random array {ηn,i}n,i∈N is set to be i.i.d. Hence, Galton-Watson
process is a time homogeneous Markov chains with discrete state. There are two idealized
assumptions in this model: one is the discrete state space, the other is the property of time
homogeneous. In other words, there are two directions to extend this model.

Jir̆ina process (see [2–5]) is the continuous version of the Galton-Watson process, which
stresses that the role of ηn,i can take value in R+ (R+ := [0,+∞)) instead of N. Since the
state space of this process is a subset of R+, we use the Laplace transform to describe
the relationship between the number of particles in generation n and n + 1, which is
described by

E(e−sZn+1 |Zn = x) = e−xF(s), x ∈ R+,

where F(s) is a cumulate generate function of a certain infinitely divisible distribution G. G
can be observed as the common branching mechanism (i.e., the law of η1,1) of each particle.

Axioms 2023, 12, 13. https://doi.org/10.3390/axioms12010013 https://www.mdpi.com/journal/axioms231
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It should be noted that in the above equality, F(s) is independent of n, thus, we see that the
Jir̆ina process is still time-homogeneous.

To break the feature of time homogeneous, several time-inhomogeneous branching
processes have been studied over the past decades. There are different motivations to
construct the time-inhomogeneous property for a branching process, one of which assumes
that the common law of ηn,1, ηn,2, . . . is depending on Zn, and ηn,i takes value in N for every
n, i. We call this a time-inhomogeneous branching process as the size-dependent branching
process (with discrete time and discrete state). This assumption (the law of ηn,1 depends
on Zn) has a strong practical background; for example, when a country is overpopulated,
the government may promote family planning, while if a country faces the problem of
population scarcity, the government will encourage childbearing. This model has been
investigated in [6–8] and some other papers.

In the present paper, the model we consider is the continuous version of the size-
dependent branching process, which is also called the generalized Jir̆ina process (for
short, GJP). This model was introduced in [9], where the model is defined by the Laplace
transform as

E(e−Zn+1τ |Zn = x) = e−xF(x,s), x ∈ R+, (1)

where F(x, s) is called a reproduction cumulative function (for short, r.c.f.) and it has the
following representation:

F(x, s) = r(x)τ +
∫ +∞

0+
(1− e−us)v(x, du). (2)

We can refer to [9] on how to obtain (2). On the other hand, ref. [9] also explains that
r(x) is a non-negative Borel function, and (1∧ u)v(x, du) is a bounded kernel from R+ to
(0,+∞). That is to say,

∀x ≥ 0,
∫ +∞

0+
(1∧ u)v(x, du) < +∞.

Hence, we see that the r.c.f. F(x, τ) is determined by r(x) and v(x, du). Obviously, if
there exist a constant r and a measure v on (0,+∞) such that

r(x) ≡ r, v(x, du) ≡ v(du),

then GJP will degenerate to the Jir̆ina process. Moreover, from (1) one can see

E(Zn+1|Zn = x) = −∂e−xF(x,s)

∂s

∣∣∣
s=0+

.

Note that
lim

s→0+
F(x, s) = 0

and

lim
s→0+

∂F(x, s)
∂s

= r(x) +
∫ +∞

0+
uv(x, du).

Actually, we have set that (1∧ u)v(x, du) is a bounded kernel. Denote

m(x) := r(x) +
∫ +∞

0+
uv(x, du),

then we have
E(Zn+1|Zn = x) = xm(x),
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which means that m(x) presents the expectation of the children reproduced by unit parent
when the generation of the parent contains x particle(s). The above equality is equivalent to

E(Zn+1|Zn) = Znm(Zn).

Denote

σ2(x) :=
∫ +∞

0+
u2v(x, du) =

∂2e−xF(x,s)

∂2s

∣∣∣
s=0+

.

By a direct calculation we obtain

E(Z2
n+1|Zn) =σ2(Zn)Zn + Z2

nm2(Zn).

For a branching process {Zn}, a very important topic, which is usually considered
first, is the limit behavior of Zn and the distribution of the limit (if it exists). For example,
the celebrated Kesten-Stigum theorem (see [1], Chapter 1) for the Galton-Watson process
and various generalized Kesten-Stigum theorem for different types of branching processes
(see [3,7,10]). In summary, the Kesten-Stigum theorem and its various of generalized ver-
sions demonstrate that {Zn} converges to 0 with Probability p0 and to +∞ with Probability
1− p0 and p0 depends on the branching mechanism (reproduction law) of the branching
process. Ref. [11] showed that the asymptotic behavior of GJP also behaves as

P
(

lim
n→∞

Zn ∈ {0,+∞}
)
= 1

and p0 := P(Zn → 0) is depending on some properties of F(x, s). The author of [11] also
pointed out that it is as similar as the asymptotic behavior of size-dependent branching
process for the case {Zn → +∞}. The most interesting and worth investigating is the case
that {Zn → 0}, since when the state space is N, then Zn → 0 means that there exists a finite
generation n such that Zn = 0 but Zn can always be positive even though Zn → 0 when
the state space is R+. Under some mild assumptions, ref. [10] gave the extinction rate of
Zn in the sense of almost surely when P(Zn → 0) = 1. The idea to deal with the extinction
rate is to consider the growth rate of Z−1

n , then, the method to show the growth rate of the
size-dependent branching process {Xn} when P(Xn → +∞) = 1 can be referred. Ref. [12]
gave a sufficient condition to ensure that the extinction rate in the sense of it almost surely
is also the extinction rate in the sense of L2. In the present paper, we obtain a new extinction
rate, which is easier to understanding by the definition of the mean function m(·) (see
Section 3 for detail). Combining with the result in [12], we can observe that an extinct GJP
may have different extinction rates under different conditions.

In this paper, we consider the rate of Zn in the sense of almost surely and L2 when
the GJP behaves as P(Zn → 0) = 1. We will give another group of sufficient conditions to
ensure that there exists a constant sequence {cn} such that {cn/Zn} has a limit in the sense
of almost surely and L2. Compared with the previous results, our results have more values
for applications.

The GJP has a strong connection with reality. We can use GJP to model a number of
chemical reactions and biological situations. For instance, it is proper to describe the trend
of the concentration by GJP for some bacteria or virus whose reproduction depend on their
concentration in the medium. For more examples, we recommend [7] and the references
therein.

2. Main Results

For the sake of presenting our results, first of all, we give some basic assumptions as
follows.

(A1) r := lim
x→0+

m(x), where 0 < r < 1.
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(A2) There exits a function m̄(x) ≥ m(x) for all x ≥ 0 which satisfies that inf
x≥0

m̄(x) ≥ r and

p(x) := |m̄(1/x)− r|(= m̄(1/x)− r)

is non-increasing, xp(x) is non-decreasing and concave, and∫ +∞

1

p(x)
x

dx < +∞.

(A3) For any x ≥ 0, it satisfies rx
∫ +∞

0
e−xF(x,s)ds ≤ 1.

(A4) xp(
√

x) is non-decreasing, concave and xp2(
√

x) is concave.

(A5) For any x ≥ 0, it satisfies r2x2
∫ +∞

0
se−xF(x,s)ds ≤ 1.

We remind that if p′′(x) exists on (0,+∞), then (A2) implies (A4). Denote

Yn :=
1

Zn
, q :=

1
r

, Sn :=
Yn

qn =
rn

Zn
.

First, we give some lemmas and results which will be used during, as we prove our
main theorems.

Lemma 1. Suppose that h(x) is a positive and non-increasing function, then for any t > 1, ε > 0,
the following propositions are equivalent:

(1)
∫ +∞

1

h(x)
x dx < +∞;

(2)
∞
∑

n=1
h(εtn) < +∞.

Proof. See ([6], p. 42).

Lemma 2. Let h(x) be a positive and non-increasing real function defined on [0,+∞). Assume

that xh(x) is non-decreasing and
∫ +∞

1

h(x)
x dx < +∞. Let {cn} be a positive sequence and there

exists a t > 1 such that for any n, it satisfies

|cn+1 − cn| ≤ cnh(cntn),

then {cn} exists a finite non-negative limit. Moreover, there exists a constant c̃ depending on h(x)
and t such that, lim

n→∞
cn > 0 only if the first term c0 > c̃.

Proof. See ([6], p. 45).

It is worth mentioning that the method from this paper is mainly concentrating on the
martingale convergence theorems listed below.

Theorem 1. (Martingale convergence theorem, (ref. [13], p. 270)) If {ξn} is a sub-martingale and
sup

n
E|ξn| < +∞, then there exists a random variable (denoted by ξ+∞) satisfying that

lim
n→∞

ξn = ξ+∞, a.s., P(ξ+∞ < +∞) = 1, E|ξ+∞| < +∞.
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Theorem 2. (Martingale Lp convergence theorem, (ref. [14], p. 60)) If {ξn} is a sub-martingale
and sup

n
E|ξ p

n| < +∞ for some p > 1, then, there exists a random variable (denoted by ξ+∞)

satisfying that

lim
n→∞

ξn = ξ+∞, a.s., Lp, P(ξ+∞ < +∞) = 1, E|ξ p
+∞| < +∞.

Now, we give our main results as follows:

Theorem 3. Let {Zn} be a GJP, if Assumptions (A1)–(A3) hold and P(Z0 = z0) = 1, where
z0 is a positive constant, then there exist a constant γ ∈ (0,+∞) and a random variable S (both
depending on z0) such that

γ = lim
n→∞

E(Sn|Z0 = z0),

S = lim
n→∞

Sn, a.s.,

and
ES < +∞.

Proof. Let Fn be the σ-algebra field, which is generated by Z0, Z1, . . ., Zn. Recalling that
Zn := 1

Yn
, which means that

E(Yn+1|Fn) = E
(

1
Zn+1

|Fn

)
= E

(∫ +∞

0
e−sZn+1ds

∣∣Zn

)
=

∫ +∞

0
E(e−sZn+1 |Zn)ds

=
∫ +∞

0
e−Zn F(Zn ,s)ds

=
∫ +∞

0
e−

1
Yn F( 1

Yn ,s)ds

:= h(Yn). (3)

The second equality above is due to c
∫ +∞

0
e−csds = 1, where c > 0 is a constant. By

Taylor’s expansion we can observe

F(x, s) ≤ m(x)s. (4)

Assumption (A3) and (4) imply that∫ +∞

0
e−xm̄(x)sds ≤

∫ +∞

0
e−xm(x)sds ≤

∫ +∞

0
e−xF(x,s)ds ≤ 1

rs
=

∫ +∞

0
e−xrsds.

By the smoothing property of conditional expectation and (3), we obtain that

|ESn −ESn+1|

=
1

qn+1 |E(qYn)−E(h(Yn))|

=
1

qn+1

∣∣∣∣E ∫ +∞

0
e−

s
qYn ds−E

∫ +∞

0
e−

1
Yn F( 1

Yn ,s)ds
∣∣∣∣

≤ 1
qn+1

∣∣∣∣E ∫ +∞

0
(e−rsZn − e−Znm̄(Zn)s)ds

∣∣∣∣.
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According to the mean value theorem, there exists a constant ϑ ∈ [0, 1] such that∣∣∣∣E ∫ +∞

0
(e−rsZn − e−Znm̄(Zn)s)ds

∣∣∣∣
=

∣∣∣∣E ∫ +∞

0
(e−(rsZn+ϑ(Znm̄(Zn)s−rsZn))(sZnm̄(Zn)− rsZn)ds

∣∣∣∣
≤

∣∣∣∣E ∫ +∞

0
e−rsZn(m̄(Zn)sZn − rsZn)ds

∣∣∣∣
=

∣∣∣∣(m̄(Zn)− r)ZnE
∫ +∞

0
e−rsZn sds

∣∣∣∣.
Hence, we have

|ESn −ESn+1|

≤ 1
qn+1

∣∣∣∣E( (m̄(Zn)− r)Zn

r2Z2
n

)∣∣∣∣
≤

∣∣∣∣E( (m̄(Zn)− r)Yn

r2qn+1

)∣∣∣∣
=

1
r
E(Sn|(m̄(Zn)− r)|).

From Assumption (A2), i.e., the concavity of p(x), we have

|ESn+1 −ESn| =
1
r
E(p(Yn)Sn) ≤

1
r

p(EYn)E(Sn) =
1
r

p(qnESn)E(Sn).

Note that q > 1, hence by applying Lemma 2, it follows that lim
n→∞

ESn exists and

b := lim
n→∞

ESn < +∞.

Note that b lies on the starting state Z0. Since P(Z0 = z0) = 1, then by using Lemma 2
it is easy to observe that b > 0 if ES0 = 1/z0 large enough. Therefore, by a similar argument
as stated in [12], we can observe b > 0 only if z0 > 0.

On the other hand, noting that

Sn −E(Sn+1|Fn) =
∫ +∞

0

1
tn+1 (e

−rsZn − e−Zn F(Zn ,s))ds > 0,

we declare that {Sn,Fn} is a non-negative super martingale. Using Theorem 1 we speculate
that there exists a random variable S such that

lim
n→∞

Sn = S, a.s..

By Fatou’s Lemma we claim that

ES ≤ lim
n→∞

ESn < +∞.

Accordingly, we complete the proof.

Theorem 4. Let {Zn} be a GJP, Assumptions (A1)–(A5) hold and P(Z0 = z0) = 1. Then,

S = lim
n→∞

Sn, in L2,

and
P(S > 0) > 0.
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Proof. Recall a simple calculation

c2
∫ +∞

0
se−csds = 1, c > 0.

First, we observe that

E(Y2
n+1|Fn) = E

(
1

Z2
n+1

|Fn

)

= E
(∫ +∞

0
se−sZn+1ds|Zn

)
=

∫ +∞

0
sE(e−sZn+1 |Zn)ds

=
∫ +∞

0
se−Zn F(Zn ,s)ds

=
∫ +∞

0
se−

1
Yn F( 1

Yn ,s)ds.

Hence, one sees that

|ES2
n −ES2

n+1|

=
1

q2n+2

∣∣∣∣E ∫ +∞

0
se−

s
qYn ds−E

∫ +∞

0
se−

1
Yn F( 1

Yn ,s)ds
∣∣∣∣

≤ 1
q2n+2

∣∣∣∣E(∫ +∞

0
s(e−rsZn − e−Znm̄(Zn)s)ds

)∣∣∣∣. (5)

By the mean-value theorem, there exists a constant ϑ ∈ [0, 1] such that∣∣∣∣E(∫ +∞

0
s(e−rsZn − e−Znm̄(Zn)s)ds

)∣∣∣∣
=

∣∣∣∣E ∫ +∞

0
s(e−(rsZn+ϑ(Znm̄(Zn)s−rsZn))(Znm̄(Zn)s− rsZn))ds

∣∣∣∣
≤

∣∣∣∣E ∫ +∞

0
s2Zne−rsZn(m̄(Zn)− r)ds

∣∣∣∣
≤ E

2|m̄(Zn)− r|Zn

r3Z3
n

. (6)

Based on (5) and (6) we obtain

|ES2
n −ES2

n+1| ≤
1

q2n E
2|m̄(Zn)− r|

rZ2
n

=
2

rq2n E(Y
2
n p(Yn)).

By the concavity of l(x) := xp(
√

x), we have

|ES2
n −ES2

n+1| =
2

rq2n E(l(Y
2
n))

≤ 2
rq2n l(EY2

n)

=
2
r
ES2

n p
(√

E(S2
n)q

n
)

.

Since p(x) is non-increasing, we obtain

|ES2
n −ES2

n+1| ≤
2
r
ES2

n p(qnESn).

237



Axioms 2023, 12, 13

According to the conclusion in Theorem 1 we obtain b∗ := inf
n
ESn > 0. Hence, ones

have
|ES2

n −ES2
n+1| ≤

2
r
ES2

n p(qnb∗).

That is to say, we arrive at

ES2
n+1 ≤

2
r
ES2

n(1 + p(qnb∗)).

From Lemma 1 we have
∞
∑

n=1
p(b∗qn) < +∞, which means that

sup
n

ES2
n < +∞

and thus the limit β := lim
n→∞

ES2
n exists. Now, we construct a martingale as

Un := Sn + Vn,

where

Vn :=
n−1

∑
k=0

∫ +∞

0

1
qk+1 (e

−rsZk − e−Zk F(Zk ,s))ds.

Denote ‖X‖ as the L2-norm of the random variable X, hence, it is clear that

‖Un‖ ≤ ‖Sn‖+ ‖Vn‖.

Define

Qk =
∫ +∞

0

1
qk+1 (e

−rsZk − e−Zk F(Zk ,s))ds.

It is obvious that for any n, one has

‖Vn‖ ≤
∞

∑
k=0
‖Qk‖.

Moreover, from the estimate in the proof of Theorem 3, we have

|Qn| ≤
1

qn+1

∫ +∞

0
e−Zns|rsZn − F(Zn, s)Zn|ds ≤ 1

qr2
|r−m(Zn)|

Sn
.

Since xp2(
√

x) is a concave function (see Assumption (A4)), we can obtain that

∞

∑
k=0
‖Qk‖ ≤

∞

∑
k=0

√
E
[( 1

qr2 Sk p(Skqk)
)2
]

≤
∞

∑
k=0

1
r

√
E(S2

k)p2(qkESk).

Since α2 := supn ES2
n < +∞, then it follows that

sup
n
‖Vn‖ ≤

∞

∑
k=0

α

r
p(ESkqk).

Thus, by utilizing Lemma 1, it is not hard to verify that

∞

∑
k=0

p(ESkqk) ≤
∞

∑
k=0

p(b∗qk) < +∞,
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then

sup
n
‖Vn‖ ≤

∞

∑
k=0
‖Qk‖ < +∞,

which establishes that

sup
n
‖Un‖ ≤ sup

n
‖Sn‖+ sup

n
‖Vn‖ ≤ α2 + sup

n
‖Vn‖ < +∞.

Combining the above inequality with the fact that {Un,Fn} is a martingale, we claim
that {Un} has a limit in the sense of L2 from the martingale Lp convergence theorem. On

the other hand, we observe that {Vn} also has the L2 limit since
{

n
∑

k=0
‖Qk‖

}
is a Cauchy

sequence. Recall that Sn = Un − Vn and we have shown that {Sn} has the limit S in the
sense of almost surely, then we have

Sn → S, a.s., L2,

and
lim

n→∞
ES2

n = ES2.

Moreover, lim
n→∞

ESn = ES > 0, thus, P(S > 0) > 0. That is to say, S is non-

degenerate.

3. Conclusions

Compared with the results in [12], the assumptions in the present paper do not need
that inf

x≥0
r(x) > 0. We also even do not require that inf

x≥0
m(x) > 0. Intuitively, inf

x≥0
m(x) = 0

will make the process more likely to be extinct. Hence, inf
x≥0

r(x) > 0 is not a natural enough

condition under the case P(Zn → 0) = 1, which we consider. Moreover, the extinction rate
may be different between in [12] and in this paper, since under the assumption in [12] the
rate will be lim

x→0+
r(x) (if it exists). One can see that there are many cases (for example, the

case that v(x, du) is not depending on x) in which lim
x→0+

r(x) < lim
x→0+

m(x). We remind that

the rate in our paper lim
x→0+

m(x) appears reasonable because of m(x) = x−1E(Zn+1|Zn = x),

and further, we consider the case that the process is extinct.
Throughout our paper, under the Assumptions (A1)–(A5), we obtain an extinction

rate for a GJP in the sense of almost surely and L2, which enriches the limit theory of GJP
process. Therefore, our results have potential values in applications.
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12. Lv, Y.; Li, Y. L2 limits of generalized Jiřina process. Statat. Probab. Lett. 2017, 129, 588–596. [CrossRef]
13. Bass, R.F. Real Analysis for Graduate Students, 2nd ed.; CreateSpace Independent Publishing Platform: Charleston, SC, USA, 2013.
14. Loeve, M. Probability Theory, 2nd ed.; Springer: New York, NY, USA, 1978.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

240



MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

www.mdpi.com

Axioms Editorial Office
E-mail: axioms@mdpi.com

www.mdpi.com/journal/axioms

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are

solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s).

MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from

any ideas, methods, instructions or products referred to in the content.





Academic Open 
Access Publishing

mdpi.com ISBN 978-3-7258-1039-0


