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1. Introduction

Fractional calculus has had a powerful impact on recent research, with many applica-
tions in different branches of science and engineering. Various branches of mathematics
are also influenced by fractional calculus. Articles in the literature [1,2] discuss the history
of fractional calculus and cite its many scientific and engineering applications, successfully
highlighting the importance of this subject. Fractional operators are essential to the study
of fractional calculus. For investigations utilizing fractional calculus, fractional operators
are crucial resources. A brief history of fractional calculus operators is given in [3] and is
further developed in [4]. Applications of fractional operators in complex analysis research
are comprehensive, and interesting new results have been obtained in studies involving
univalent functions theory, a topic which is also covered in [1].

This Special Issue aims to gather new research outcomes combining this prolific tool with
another that generates exciting results when integrated into studies: hypergeometric functions.

The study of hypergeometric functions dates back 200 years. They appear in the works
of Euler, Gauss, Riemann, and Kummer. Interest in hypergeometric functions has grown
in the last few decades due to their applications in a large variety of scientific domains
and many areas of mathematics. Hypergeometric functions are linked to the theory of
univalent functions by L. de Branges’ proof of Bieberbach’s conjecture, published in 1985 [5],
which uses the generalized hypergeometric function. After this connection was established,
hypergeometric functions were studied intensely using geometric function theory.

Quantum calculus is also involved in studies alongside fractional calculus tools and
different hypergeometric functions, as is nicely highlighted in [6].

This Special Issue compiles articles from researchers interested in any of these topics or
a combination of them and their applications in different areas concerning complex analysis.

2. Overview of the Published Papers

After a thorough review procedure, 12 papers were selected for publishing in this
Special Issue.

Najla M. Alarifi and Rabha W. Ibrahim (contribution 1) investigate the geometric
properties of the generalized Prabhakar fractional differential operator in the open unit
disk by using the concept of q–fractional calculus. The generalized operator is inserted in a
special class of analytic functions. By using the methods of differential subordination and
superordination theory, numerous fractional differential inequalities are proven. Addition-
ally, this contribution investigates the potential application of these methods in the solution
of special kinds of q–fractional differential equations.

The research presented by the authors Lei Shi, Muhammad Arif, Javed Iqbal, Khalil
Ullah, and Syed Muhammad Ghufran (contribution 2) concerns the study of logarithmic-
related problems of a certain subclass of univalent functions. A subclass of starlike functions
connected with exponential mapping is introduced, and sharp estimates of the second
Hankel determinant with the logarithmic coefficient as the entry are obtained for this class.
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The well-known parametric formulas for initial coefficients in the Carathéodory class of
functions serve as the methodological foundation for the proof. The authors discover that
the bounds for the coefficients of a function and its inverse function can be obtained by
transferring the logarithmic coefficients of functions. The results on Hankel determinants
with logarithmic coefficients seem to be quite important, since bounds on coefficients of
the inverse function are often a more challenging task to calculate. Since the exponential
function belongs to a special class of hypergeometric functions, this work can serve as an
inspiration for further research on univalent functions that are subordinated to a more
general class.

The results presented by Georgia Irina Oros, Gheorghe Oros, and Shigeyoshi Owa
(contribution 3) arise from a study regarding fractional calculus combined with the classical
theory of differential subordination established for analytic complex valued functions. A
new operator is introduced by applying the Libera integral operator and fractional integral
of order λ for analytic functions. Many subordination properties are obtained for this newly
defined operator by using famous lemmas proved by important scientists concerned with
geometric function theory, such as Eenigenburg, Hallenbeck, Miller, Mocanu, Nunokawa,
Reade, Ruscheweyh, and Suffridge. Results regarding strong starlikeness and convexity of
order λ are also discussed, and an example shows how the outcome of this research can be
applied. The operator defined in this work can be applied to the definition of new subclasses
of analytic functions with certain geometric properties given by the characteristics of this
operator that are already proven in this paper.

In the next paper (contribution 4), Muhammad Bilal Khan, Adriana Cătaş, Najla
Aloraini, and Mohamed S. Soliman introduce left and right exponential trigonometric
convex interval-valued mappings and review some of their important characteristics. The
Hermite–Hadamard inequality for interval-valued functions is proven by utilizing frac-
tional integrals with exponential kernels. Moreover, the idea of left and right exponential
trigonometric convex interval-valued mappings is applied to show various findings for
midpoint and Pachpatte-type inequalities. The authors also show that the results provided
in this paper are expansions of several of the results that have already been demonstrated in
prior publications. The suggested research following from this work generates variants that
are applicable for conducting in-depth analyses of fractal theory, optimization, and research
challenges in several practical domains, such as computer science, quantum mechanics,
and quantum physics.

The investigation conducted by Mohammad Faisal Khan and Mohammed Abaoud
(contribution 5) examines a new subclass of generalized bi-subordinate functions of complex
order γ connected to the q-difference operator. The upper bounds for generalized bi-
subordinate functions of complex order γ are obtained by using the Faber polynomial
expansion technique. Coefficient bounds and the Fekete–Szegő problem are considered
for functions in the newly defined class. The Ruscheweyh q-differential operator along
with the Faber polynomial method are used to discuss the applications of the main results.
The authors suggest that the method presented in this paper could be applied to define a
number of new subclasses of meromorphic, multivalent, and harmonic functions and can
be used to investigate a number of new properties of these classes.

The authors Sadia Riaz, Timilehin Gideon Shaba, Qin Xin, Fairouz Tchier, Bilal Khan,
and Sarfraz Nawaz Malik investigate bi-univalent functions and Euler polynomials in
their study (contribution 6). The Fekete–Szegő problem is solved by the authors, and
bound estimates for the coefficients and an upper bound estimate for the second Hankel
determinant are given for the new class of bi-univalent functions satisfying a certain
subordination and involving Euler polynomials. The authors believe that their results
could be extended for a class of certain q-starlike functions.

A new computational technique for solving some physics problems involving fractional-
order differential equations, including the famous Bagley–Torvik method, is given by Hari
Mohan Srivastava, Waleed Adel, Mohammad Izadi, and Adel A. El-Sayed (contribution 7).
A collocation technique involving a new operational matrix that utilizes the Liouville–Caputo
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operator of differentiation and Morgan–Voyce polynomials is adapted in combination
with the Tau spectral method. The differentiation matrix of fractional order that is used
to convert the problem and its conditions into an algebraic system of equations with
unknown coefficients is first presented. Then, the matrix is used to find the solutions to the
proposed models. An error analysis for the method is proven to verify the convergence
of the acquired solutions. To test the effectiveness of the proposed technique, several
examples are simulated using the presented technique, and these results are compared
with other techniques from the literature. In addition, the computational time is computed
and tabulated to ensure the efficacy and robustness of the method. The outcomes of the
numerical examples support the theoretical results and show the accuracy and applicability
of the presented approach.

The authors Mohammed Z. Alqarni, Ahmed Bakhet, and Mohamed Abdalla (contri-
bution 8) establish a generalization of the fractional kinetic equation using the generalized
incomplete Wright hypergeometric function. This new generalization can be used to com-
pute the change in chemical composition in stars such as the Sun. The pathway-type
transform technique is then used to investigate the solutions to a fractional kinetic equa-
tion with specific fractional transforms. Furthermore, exceptional cases of the outcomes
are discussed and graphically illustrated using MATLAB software. This work provides
a thorough overview for further investigation into these topics in order to gain a better
understanding of their implications and applications.

The next article (contribution 9) investigates the geometric properties of analytic
functions using q-analogues of differential and integral operators. The authors Suha B.
Al-Shaikh, Ahmad A. Abubaker, Khaled Matarneh, and Mohammad Faisal Khan define the
q-analogues of a differential operator by using the basic idea of q-calculus and the definition
of convolution. Using the newly constructed operator, the q-analogues of two new integral
operators are established. Further, by employing these operators, new subclasses of the
q-starlike and q-convex functions are defined. Sufficient conditions for the functions to
belong to the newly defined classes are investigated, and certain subordination findings for
the q-analogue differential operator are given. Certain novel geometric characteristics of
the q-analogues of the integral operators in these classes are also obtained.

A comprehensive investigation to identify the uses of the Sălăgean q-differential
operator for meromorphic multivalent functions is conducted by Isra Al-Shbeil, Jianhua
Gong, Samrat Ray, Shahid Khan, Nazar Khan, and Hala Alaqad (contribution 10). In their
paper, they extend the idea of the q-analogues of the Sălăgean differential operator for
meromorphic multivalent functions using the fundamental ideas of q-calculus. With the
help of this operator, the family of Janowski functions is extended by adding two new
subclasses of meromorphic q-starlike and meromorphic multivalent q-starlike functions.
The radii of starlikeness, partial sums, distortion theorems, and coefficient estimates are
given for the new subclasses under investigation. The technique and ideas of this paper
may stimulate further research in the theory of multivalent meromorphic functions, and
additional generalized classes of meromorphic functions can be defined and investigated.

The next article (contribution 11) introduces three general double-series identities
using Whipple transformations for terminating generalized hypergeometric 4F3 and 5F4
functions. By employing the left-sided Riemann–Liouville fractional integral on these
identities, the authors Mohd Idris Qureshi, Tafaz Ul Rahman Shah, Junesang Choi, and
Aarif Hussain Bhat show the ability to derive additional identities of the same nature
successively. This research further presents various new transformation formulae, such
as Bailey’s quadratic transformation formula, the Clausen reduction formula, the Gauss
quadratic transformation formula, the Karlsson reduction formula, the Orr reduction
formula, and the Whipple quadratic transformation formula. The authors anticipate that
these transformation and summation formulas, as well as those deducible from the same
steps, will have applications in diverse fields, such as mathematical physics, statistics, and
engineering sciences.
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The authors Adeel Ahmad, Jianhua Gong, Isra Al-Shbeil, Akhter Rasheed, Asad Ali,
and Saqib Hussain (contribution 12) define a new generalized domain obtained based on
the quotient of two analytic functions. The sharp upper bounds of the modulus of the
coefficients a2, a3, and a4 are investigated, and the sharp upper bounds for the modulus of
the second-order and third-order Hankel determinants are estimated for the normalized
analytic functions belonging to the newly defined class in the generalized domain. This
work provides a direction to define more interesting generalized domains and to extend to
new subclasses of starlike and convex functions by using quantum calculus.

3. Conclusions

A printed book bearing the same title is available that contains the 12 papers published
in this Special Issue on “Fractional Calculus and Hypergeometric Functions in Complex
Analysis”. This project has resulted in the publication of articles covering a wide range
of topics. Because of this, scholars studying the applications of fractional calculus and
hypergeometric functions in complex analysis and related fields should find this Special
Issue to be interesting. This Special Issue’s sequel is named “Fractional Calculus, Quantum
Calculus, and Special Functions in Complex Analysis”. In order to learn more about
the suggested themes and perhaps contribute to the success of this new initiative by
submitting research outputs, scholars interested in the field are welcome to visit the Special
Issue homepage.
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Abstract: A special function is a function that is typically entitled after an early scientist who studied
its features and has a specific application in mathematical physics or another area of mathematics.
There are a few significant examples, including the hypergeometric function and its unique species.
These types of special functions are generalized by fractional calculus, fractal, q-calculus, (q, p)-
calculus and k-calculus. By engaging the notion of q-fractional calculus (QFC), we investigate the
geometric properties of the generalized Prabhakar fractional differential operator in the open unit disk
∇ := {ξ ∈ C : |ξ| < 1}. Consequently, we insert the generalized operator in a special class of analytic
functions. Our methodology is indicated by the usage of differential subordination and superordina-
tion theory. Accordingly, numerous fractional differential inequalities are organized. Additionally, as
an application, we study the solution of special kinds of q–fractional differential equation.

Keywords: quantum calculus; fractional calculus; fractional differential equation; analytic function;
subordination and superordination; univalent function; fractional differential operator

1. Introduction

The quantum fractional calculus (QFC, q-fractional calculus or Jackson calculus [1])
is an extension of the well-known fractional calculus. It has had applications in the inves-
tigation of the special functions, where it shows a central role to develop what is called
the quantum groups [2]. As a result, it is established in the form of the Fock–Bargmann
joining the theory of holomorphic functions [3]. Newly, the utilization of QFC covers the
exacting solution for measurement systems and their presentation [4,5]. Moreover, QFC is
operated in numerous complex physical systems, which can be selected in [6]. Temporarily
special functions have good results in mathematical physics; therefore, it is a practical to
imagine the ordinary special functions given by the new QFC. Likewise, the credit of the
thermodynamics of QFC can be computed by the usage of QFC, where the structure of
thermodynamics is conserved if one employed a suitable Jackson derivative instead of the
normal thermodynamic derivative. Other applications can be located for the studies in
optimization, control system, transform investigation, resolutions of the difference and
fractional integral inequalities. In geometric function theory, researchers have formulated
different classes of analytic functions using QFC. Recently, some fractional operators were
generalized by assuming QFC. Recently, Hadid et al. [7] developed an expanded class of
multivalent functions geometrically on the open unit disk using the QFC paradigm. In the
framework of the quantum wavelet, Sabrine et al. [8] utilized the basis of quantum wavelets
to present a novel uncertainty principle for the extended q-Bessel wavelet transform. Al-
dawish and Ibrahim [9] formulated a quantum symmetric differential operator and used
it to investigate the geometric of some classes of analytic functions in a complex domain.

Fractal Fract. 2022, 6, 545. https://doi.org/10.3390/fractalfract6100545 https://www.mdpi.com/journal/fractalfract6
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In this work, we carry on the investigation to explore some properties of the Prabhakar
fractional differential operator [10,11] via the QFC.

We study the geometric characteristics of the generalized Prabhakar fractional differ-
ential operator in the open unit disk by using the concept of q–fractional calculus (QFC). In
light of this, we introduce the generalized operator into a unique class of analytic functions.
The use of differential subordination and superordination theories offers a clue to our ap-
proach. As a result, several fractional differential inequalities are categorized. In addition,
as an application, we look at several types of solutions to q–fractional differential equations.

2. Fractional Operators

The Prabhakar integral operator acts on a normalized class of the analytic functions

h(ξ) ∈ H[0, n] = {h ∈ ∇ : h(ξ) = h1ξn + h2ξn+1 + . . .},

as follows: [12–18] (
Pγ,κ

α,β h
)
(ξ) =

∫ ξ

0
(ξ − τ)β−1Ξγ

α,β[κ(ξ − τ)α]h(τ)dτ

= (h · 	γ,κ
α,β)(ξ),

(1)

(
α, β, γ, κ ∈ C, ξ ∈ ∇,�(α),�(β) > 0

)
such that [13]

	
γ,κ
α,β(ξ) := ξβ−1Ξγ

α,β(κξα)

where

Ξγ
α,β(ξ) =

∞

∑
n=0

Γ(γ + n)
Γ(γ)Γ(αn + β)

ξn

n!
.

As a practicing, for h(ξ) = ξε−1, we have [19]—Corollary 2.3

Pγ,κ
α,β ξε−1 =

∫ ξ

0
(ξ − τ)β−1Ξγ

α,β[κ(ξ − τ)α](τε−1)dτ

= Γ(ε)ξβ+ε−1Ξγ
α,β+ε(κξα).

Analogically, Prabhakar derivative is indicated by [11](
D

γ,κ
α,βh
)
(ξ) =

dm

dξm

(
P−γ,κ

α, m−βh(ξ)
)

, ξ ∈ ∇. (2)

In view of the Caputo fractional operator, it is formulated as follows:

C
mD

γ,κ
α,βh(ξ) =

∫ ξ

0
(ξ − ζ)m−β−1Ξ−γ

α,m−β[κ(ξ − ζ)α]

(
dm

dζm h(ξ)
)

dζ. (3)

= P−γ,κ
α,m−β

(
dm

dξm h(ξ)
)

.

Note that

C
mD

γ,κ
α,βh(ξ) = D

γ,κ
α,βh(ξ)−

m−1

∑
k=0

ξk−βΞ−γ
α,k−β[κξα]h(k)(0).

7
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For instance, if we consider h(ξ) = ξλ, λ ≥ 1, then by [19]—Corollary 2.3, we obtain

C
1D

γ,κ
α,β(ξ

λ) =
∫ ξ

0
(ξ − ζ)1−β−1Ξ−γ

α,1−β[κ(ξ − ζ)α]

(
d

dζ
h(ζ)
)

dζ

:=
∫ ξ

0
(ξ − ζ)μ−1Ξ−γ

α,μ [κ(ξ − ζ)α]

(
d

dζ
(ζλ)

)
dζ

= λ
∫ ξ

0
ζλ−1(ξ − ζ)μ−1Ξ−γ

α,μ [κ(ξ − ζ)α]dζ

= Γ(λ + 1)ξμ+λ−1Ξ−γ
α,μ+ε[κ ξα], μ := 1− β.

Generally, we obtain

C
mD

γ,κ
α,β(ξ

λ) =
∫ ξ

0
(ξ − ζ)m−β−1Ξ−γ

α,m−β[κ(ξ − ζ)α]

(
dm

dζm (ζλ)

)
dζ

=
∫ ξ

0
(ξ − ζ)k−β−1Ξ−γ

α,m−β[κ(ξ − ζ)α]

(
d

dζ
(ζλ)

)
dζ

= (1−m + λ)m

∫ ξ

0
ζλ−m(ξ − ζ)m−β−1Ξ−γ

α,m−β[κ(ξ − ζ)α]dζ

= (1−m + λ)m

∫ ξ

0
ζ(λ−m+1)−1(ξ − ζ)m−β−1Ξ−γ

α,k−β[κ(ξ − ζ)α]dζ

:= (ν)m

∫ ξ

0
ζν−1(ξ − ζ)μ−1Ξ−γ

α,μ [κ(ξ − ζ)α]dζ

= (ν)m Γ(ν) ξν+μ−1Ξ−γ
α,μ+ν[κξα],

where μ := m− β, ν := λ−m + 1 and (ν)m =
Γ(1 + λ)

Γ(1 + λ−m)
. Hence, we obtain

C
mD

γ,κ
α,β(ξ

λ) = Γ(1 + λ)ξν+μ−1Ξ−γ
α,μ+ν[κξα]

= Γ(m + ν) ξν+μ−1Ξ−γ
α,μ+ν[κξα].

Modified Operators

In this study, we deal with a special kind of analytic functions in ∇ of the form
(see [20])

h(ξ) = ξ +
∞

∑
n=�+1

hn ξn, ξ ∈ ∇, � ∈ N (4)

and denoted by Λ�. The convolution product of two analytic functions f and g is given by

( f × g)(ξ) =

(
∞

∑
n=0

φnξn

)
×
(

∞

∑
n=0

ϕn ξn

)
=

∞

∑
n=0

φn ϕn ξn.

Proposition 1. For h ∈ Λ�, consider the adjustment operator CΔγ,κ,m
α,β,� : ∇ → ∇ by

CΔγ,κ,m
α,β,� h(ξ) :=

⎛⎝ ξβ

Ξ−γ
α,2−β[κξα]

⎞⎠(CmDγ,κ
α,β

)
h(ξ).

Then, CΔγ,κ,m
α,β,� h = CΔγ,κ,m

α,β,� × h ∈ Λ�.(
α, β, γ, κ ∈ C, ξ ∈ ∇

)
.

8
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Proof. Assume that h ∈ Λ�. Then,

CΔγ,κ,m
α,β,� h(ξ) =

⎛⎝ ξβ

Ξ−γ
α,2−β[κξα]

⎞⎠(CmDγ,κ
α,βh(ξ)

)

=

⎛⎝ ξβ

Ξ−γ
α,2−β[κξα]

⎞⎠(CmDγ,κ
α,β

(
ξ +

∞

∑
n=2

hnξn

))

=

⎛⎝ ξβ

Ξ−γ
α,2−β[κξα]

⎞⎠(CmDγ,κ
α,βξ +

∞

∑
n=�+1

hn
C
mD

γ,κ
α,βξn

)

=

⎛⎝ ξβ

Ξ−γ
α,2−β[κξα]

⎞⎠(Ξ−γ
α,2−β[κξα]ξ1−β +

∞

∑
n=�+1

hn Γ(n + 1)ξn−βΞ−γ
α,n+1−β[κξα]

)

= ξ +
∞

∑
n=�+1

⎛⎝hn Γ(n + 1)
ξ−αΞ−γ

α,n+1−β[κξα]

ξ−αΞ−γ
α,2−β[κξα]

⎞⎠ ξn

= ξ +
∞

∑
n=�+1

⎛⎝hn Γ(n + 1)
Ξ−γ

α,n+1−β[κ]

Ξ−γ
α,2−β[κ]

⎞⎠ ξn

:= ξ +
∞

∑
n=�+1

hn Σnξn

=

(
ξ +

∞

∑
n=�+1

Σn ξn

)
×
(

ξ +
∞

∑
n=�+1

hn ξn

)
=
(
CΔγ,κ,m

α,β,� × h
)
(ξ),

where

Σn := Γ(n + 1)
Ξ−γ

α,n+1−β[κ]

Ξ−γ
α,2−β[κ]

.

This proves that CΔγ,κ,m
α,β,� h ∈ Λ�.

Note that the fractional integral corresponds to [CΔγ,κ,m
α,β,� h](ξ) is given by the series

[CPγ,κ,m
α,β,� h](ξ) = ξ +

∞

∑
n=�+1

⎛⎝hn
Ξ−γ

α,2−β[κ]

Γ(n + 1)Ξ−γ
α,n+1−β[κ]

⎞⎠ ξn,

where
[CΔγ,κ,m

α,β,� ](ξ)× [CPγ,κ,m
α,β,� h](ξ) = h(ξ)

and
[CPγ,κ,m

α,β,� ](ξ)× [CΔγ,κ,m
α,β,� h](ξ) = h(ξ).

3. Quantum Formula

For a complex number ω ∈ C, the Q-shifted factorials is given in the next structure [1]

(ω; q)σ =
�−1

∏
ı=0

(1− qıω), σ ∈ N, (ω; q)0 = 1. (5)

9
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Corresponding to (5) and in expressions of the well known gamma function, the
Q-shifted formula is presented as follows:

(qω; q)� =
Γq(ω + �)(1− q)σ

Γq(ω)
, Γq(ω) =

(q; q)∞(1− q)1−ω

(qω; q)∞
(6)

where

Γq(ω + 1) =
Γq(ω)(1− qω)

1− q
, q ∈ (0, 1).

and

(ω; q)∞ =
∞

∏
ı=0

(1− qıω). (7)

Next is the difference operator for the formulation of the Jackson derivative

Δqh(ξ) =
h(ξ)− h(qξ)

ξ(1− q)
, q ∈ (0, 1) (8)

such that

Δq (ξ
v) =

(
1− qv

1− q

)
ξv−1.

Additionally, the idea of the Q–binomial formula satisfies the equality

(t− y)� = ϑ�

(−y
t

; q
)
�
. (9)

The q-Mittag–Leffler function was described by the authors in [21] as follows:

Ξϑ
ν,μ[χ]q =

∞

∑
n=0

(
qϑ; q
)

n
(q; q)n

χn

Γq(ν n + μ)
. (10)

In view of the above organization, we consider the q–Prabhakar differential operator
as follows:

[ CΔγ,κ,m
α,β,� h(ξ)]q = ξ +

∞

∑
n=�+1

hn[Σn]q ξn, (11)

where

[Σn]q := Γq(n + 1)
Ξ−γ

α,n+1−β[κ]q

Ξ−γ
α,2−β[κ]q

.

Note that the quantum fractional integral corresponds to [CΔγ,κ,m
α,β,� h]q(ξ), which is given

by the series

[CPγ,κ,m
α,β,� h]q(ξ) = ξ +

∞

∑
n=�+1

hn

[Σn]q
ξn, ξ ∈ ∇.

Next, results show the sufficient conditions for the convexity and starlikeness of the
q–operator for a special set of coefficients of h(ξ).

Proposition 2. Let h be convex of order 	, 	 ∈ [0, 1) with non–positive coefficients (hn ≤ 0).
Moreover, let

∞

∑
n=�+1

(
n(n− 	)

1− 	

)
hn[Σn]q ≤ 1.

Then,

• [ CΔγ,κ,m
α,β,� h(ξ)]q is also convex of order 	.

10
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• It achieves the next upper and lower bounds

|ξ| − 1− 	

(�+ 1)(�+ 1− 	)
|ξ|�+1 ≤ |[CΔγ,κ,m

α,β,� h(ξ)]q| ≤ |ξ|+
1− 	

(�+ 1)(�+ 1− 	)
|ξ|�+1

• and its derivative achieves the next upper and lower bounds

1− 1− 	

(�+ 1− 	)
|ξ|� ≤ |[ CΔγ,κ,m

α,β,� h(ξ)]′q| ≤ 1 +
1− 	

(�+ 1− 	)
|ξ|�.

• The above results are sharp such that the maximum function is given by the formula (see
Figure 1)

[ CΔγ,κ,m
α,β,� h(ξ)]q = ξ −

(
(1− 	)

(�+ 1− 	)(�+ 1)

)
ξ�+1.

• Let

CΔγ,κ,m
α,β,� (ξ) := ξ +

∞

∑
n=�+1

[Σn]qξn, ξ ∈ ∇.

If CΔγ,κ,m
α,β,� (ξ) and h(ξ) are a convex of order 	, then CΔγ,κ,m

α,β,� h(ξ) is convex of order ρ, where

ρ :=
�(�+ 1)(�+ 2− 2	)

(�+ 1)3 − 2�(�+ 2)	 + �	2 − 1
.

Proof. By the assumptions of the proposition, the convex function

h(ξ) = ξ −
∞

∑
n=�+1

hn ξn, ξ ∈ ∇, � ∈ N.

satisfies the inequality
∞

∑
n=�+1

(
n(n− 	)

1− 	

)
hn[Σn]q ≤ 1.

In addition, in view of Lemma 2 [22], we have that [ CΔγ,κ,m
α,β,� h(ξ)]q is also convex of

order 	. This completes the first part.
Now, the first part gives the following inequalities:(

(�+ 1)(�+ 1− 	)

1− 	

) ∞

∑
n=�+1

hn[Σn]q ≤
∞

∑
n=�+1

n
(

n− 	

1− 	

)
hn[Σn]q ≤ 1,

which yields

∞

∑
n=�+1

hn[Σn]q ≤
1− 	

(�+ 1)(�+ 1− 	)
.

Moreover, we have

∞

∑
n=�+1

nhn[Σn]q ≤
1− 	

(�+ 1− 	)
.

Consequently, we obtain the second part and third parts respectively. Clearly, the
maximum sharp function is given by the formula

[ CΔγ,κ,m
α,β,� h(ξ)]q = ξ −

(
(1− 	)

(�+ 1− 	)(�+ 1)

)
ξ�+1.

11
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A convolution property implies that

CΔγ,κ,m
α,β,� h(ξ) =

(
CΔγ,κ,m

α,β,� × h
)
(ξ),

where CΔγ,κ,m
α,β,� and h are convex of order 	. To show that CΔγ,κ,m

α,β,� h(ξ) is convex of order ρ,
we have to show that

∞

∑
n=�+1

n
(

n− ρ

1− ρ

)
hn[Σn]q ≤ 1.

Since

∞

∑
n=�+1

n
(

n− 	

1− 	

)
hn ≤ 1,

∞

∑
n=�+1

n
(

n− 	

1− 	

)
[Σn]q ≤ 1,

then by the Cauchy–Schwarz inequality, we obtain

∞

∑
n=�+1

n
(

n− 	

1− 	

)√
hn[Σn]q ≤ 1,

√
hn[Σn]q ≤

1− 	

n(n− 	)
.

However,
1− 	

n(n− 	)
≤ (n− 	)(1− ρ)

n(1− 	)(n− ρ)
; thus, a computation yields

ρ :=
�(�+ 1)(�+ 2− 2	)

(�+ 1)3 − 2�(�+ 2)	 + �	2 − 1
.

Hence, in view of Lemma 2 [22], CΔγ,κ,m
α,β,� h(ξ) is convex of order ρ. This completes the

last part of the result.

Figure 1. 3D–plot of the maximum function of convexity for 	, (a):0; (b):0.25; (c):0.5; (d): 0.6.

12
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Proposition 3. Let h be starlike of order 	, 	 ∈ [0, 1) with non-positive coefficients (hn ≤ 0).
Moreover, let

∞

∑
n=�+1

(
n− 	

1− 	

)
hn[Σn]q ≤ 1.

Then,

• [ CΔγ,κ,m
α,β,� h(ξ)]q is also starlike of order 	.

• It achieves the next upper and lower bounds

|ξ| − 1− 	

�+ 1− 	
|ξ|�+1 ≤ |[CΔγ,κ,m

α,β,� h(ξ)]q| ≤ |ξ|+
1− 	

�+ 1− 	
|ξ|�+1

• and its derivative achieves the next upper and lower bounds

1− (1− 	)(�+ 1)
(�+ 1− 	)

|ξ|� ≤ |[ CΔγ,κ,m
α,β,� h(ξ)]′q| ≤ 1 +

(1− 	)(�+ 1)
(�+ 1− 	)

|ξ|�.

• The above results are sharp such that the maximum function is given by the formula (see
Figure 2)

[ CΔγ,κ,m
α,β,� h(ξ)]q = ξ −

(
1− 	

�+ 1− 	

)
ξ�+1.

• If CΔγ,κ,m
α,β,� (ξ) and h(ξ) are starlike of order 	 then CΔγ,κ,m

α,β,� h(ξ) is starlike of order ρ, where

ρ :=
�+ 1− 	2

�+ 2− 2	
.

Figure 2. 3D–Plot of the maximum function of starlikeness for 	 = 0.5.

Proof. Since h has non-positive coefficients, then it can be written as follows:

h(ξ) = ξ −
∞

∑
n=�+1

hn ξn, ξ ∈ ∇, � ∈ N.

13
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Moreover, since h is starlike of order 	, where 	 ∈ [0, 1), satisfies the inequality

∞

∑
n=�+1

(
n− 	

1− 	

)
hn[Σn]q ≤ 1,

then in view of Lemma 1 [22], we have [ CΔγ,κ,m
α,β,� h(ξ)]q is also starlike of order 	. This

completes the first part.
By the first part of this result, we obtain(

�+ 1− 	

1− 	

) ∞

∑
n=�+1

hn[Σn]q ≤
∞

∑
n=�+1

(
n− 	

1− 	

)
hn[Σn]q ≤ 1,

which yields

∞

∑
n=�+1

hn[Σn]q ≤
1− 	

�+ 1− 	
.

Consequently, we have

|[ CΔγ,κ,m
α,β,� h(ξ)]q| ≥ |ξ| − |ξ|�+1

∞

∑
n=�+1

hn[Σn]q ≥ |ξ| − |ξ|�+1
(

1− 	

�+ 1− 	

)
and

|[ CΔγ,κ,m
α,β,� h(ξ)]q| ≤ |ξ|+ |ξ|�+1

∞

∑
n=�+1

hn[Σn]q ≤ |ξ|+ |ξ|�+1
(

1− 	

�+ 1− 	

)
.

Combining the above two inequalities, we obtain the second part. By using the fact,

∞

∑
n=�+1

nhn[Σn]q ≤ 1− 	 +
	(1− 	)

�+ 1− 	
=

(�+ 1)(1− 	)

�+ 1− 	
.

Therefore, a computation implies that

|[ CΔγ,κ,m
α,β,� h(ξ)]′q| ≥ 1− |ξ|�

∞

∑
n=�+1

nhn[Σn]q ≥ 1− (1− 	)(�+ 1)
(�+ 1− 	)

|ξ|�

and

|[ CΔγ,κ,m
α,β,� h(ξ)]′q| ≤ 1 + |ξ|�

∞

∑
n=�+1

nhn[Σn]q ≤ 1 +
(1− 	)(�+ 1)
(�+ 1− 	)

|ξ|�.

Combining the above inequalities, we receive the third item. A direct calculation
yields the maximum function placed as follows:

[ CΔγ,κ,m
α,β,� h(ξ)]q = ξ −

(
1− 	

�+ 1− 	

)
ξ�+1,

which completes part four.
By the convolution definition, we have

CΔγ,κ,m
α,β,� h(ξ) =

(
CΔγ,κ,m

α,β,� × h
)
(ξ),

14
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where CΔγ,κ,m
α,β,� and h are starlike of order 	. To show that CΔγ,κ,m

α,β,� h(ξ) is starlike of order ρ,
we need to show that

∞

∑
n=�+1

(
n− ρ

1− ρ

)
hn[Σn]q ≤ 1.

Since

∞

∑
n=�+1

(
n− 	

1− 	

)
hn ≤ 1

and

∞

∑
n=�+1

(
n− 	

1− 	

)
[Σn]q ≤ 1,

then in view of the Cauchy–Schwarz inequality, we obtain

∞

∑
n=�+1

(
n− 	

1− 	

)√
hn[Σn]q ≤ 1,

where √
hn[Σn]q ≤

1− 	

n− 	
.

However,
1− 	

n− 	
≤ (n− 	)(1− ρ)

(1− 	)(n− ρ)
;

thus, the equality of the above conclusion yields

ρ :=
�+ 1− 	2

�+ 2− 2	
.

Hence, in view of Lemma 1 [22], CΔγ,κ,m
α,β,� h(ξ) is starlike of order ρ. This completes the

last part of the result.

Note that the sufficient condition for convexity is

�
(

1 +
ξh′′(ξ)
h′(ξ)

)
> 0

and the class of all these functions is denoted by C. Moreover, the sufficient condition for
the starlikeness is

�
(

ξh′(ξ)
h(ξ)

)
> 0

and the class of all these functions is denoted by S∗.
Combining the two definitions to obtain the following functional using the q–operator:

Definition 1. Let h ∈ Λ�. Define a functional [ εJ
γ,κ,m
α,β,� h(ξ)]q as follows:

[ εJ
γ,κ,m
α,β,� h(ξ)]q = (1− ε)

(
ξ[CΔγ,κ,m

α,β,� h(ξ)]′q
[ CΔγ,κ,m

α,β,� h(ξ)]q

)
+ ε

(
1 +

ξ[ CΔγ,κ,m
α,β,� h(ξ)]′′q

[ CΔγ,κ,m
α,β,� h(ξ)]′q

)
. (12)

The Formula (12) is a generalization of the functional appearing in [23]—P250 for
a special type of convex integral operator. We advance to investigate extra properties
utilizing the [CΔγ,κ,m

α,β,� ]q.

15
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4. Differential Inequalities

We consider the following results ([23]—P258–P266).

Lemma 1. Define the following set for a positive integer �,

H[1, �] = {h̄ : h̄(ξ) = 1 + h�ξ� + h�+1ξ�+1 + . . .}.

In addition, for ℘ > 0,ℵ ∈ (−1, 1], the function F ∈ H[1, �] achieves

G(ξ) ≺ 1 + (ℵ+ ℘�)ξ

1− ξ
+

�℘ℵξ

1 + ℵξ
≡ g(ξ).

If g ∈ H[1, �] is a solution of the differential equation

℘ξg′(ξ) + G(ξ).g(ξ) = 1,

then
g(ξ) ≺ 1− ξ

1 + ℵξ
, ξ ∈ ∇,

where ≺ indicates the subordination notion.

Lemma 2. Let φ ∈ Λ�. In addition, let λ > 0 and ς ∈ [0, 1). If one of the following inequalities

ξφ′(ξ)
φ(ξ)

≺ 1 + (1− 2ς + �λ)ξ

1− ξ
+

�λ(1− 2ς)ξ

1 + (1− 2ς)ξ
≡ g(ξ),

(1− λ)

(
ξφ′(ξ)
φ(ξ)

)
+ λ

(
1 +

ξφ′′(ξ)
φ′(ξ)

)
≺ 1 + (1− 2ς + �λ)ξ

1− ξ
+

�λ(1− 2ς)ξ

1 + (1− 2ς)ξ
≡ g(ξ),

holds, then the λ−convex operator that acts on φ

Φλ(ξ) =

(
1
λ

∫ ξ

0
φ1/λ(τ)τ−1dτ

)λ

is starlike of order ς.

The main outcomes of this investigation are as follows:

Theorem 1. Consider the functional in (12). If

[ εJ
γ,κ,m
α,β,� h(ξ)]q ≺ �(ξ), ξ ∈ ∇,

where

�(ξ) = exp

(∫ ξ

0
−

[ εJ
γ,κ,m
α,β,� h(ξ)]q

τ
dτ

)⎛⎜⎜⎜⎜⎝
∫ ξ

0

exp

(∫ ζ
0

[ εJ
γ,κ,m
α,β,� h(ξ)]q

τ
dτ

)
ζ

dζ + 1

⎞⎟⎟⎟⎟⎠
= 1 +

∞

∑
n=1+�

�nξn

satisfies
|�n | ≤ 2 + �+ (−1)n+1�, � ∈ N, n ≥ 1;

then,

[ εJ
γ,κ,m
α,β,� h(ξ)]q ≺

1− ξ

1 + ξ
, ξ ∈ ∇.
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Proof. Our aim is to apply Lemma 1. Clearly, [ εJ
γ,κ,m
α,β,� h(ξ)]q ∈ H[1, �], where

[ εJ
γ,κ,m
α,β,� (0)]q = 1. Formulate a function as follows:

g(ξ) =
1 + 2(�+ 1)ξ + ξ2

1− ξ2

= 1 + 2(�+ 1)ξ + 2ξ2 + 2(�+ 1)ξ3 + 2ξ4 + 2(�+ 1)ξ5 + O(ξ6)

= 1 +
∞

∑
n=�+1

(2 + �+ (−1)n+1�) ξn.

Obviously, g(ξ) is convex univalent in ∇ achieving (see Figure 3)

�
(

1 +
ξg′′(ξ)
g′(ξ)

)
= �

⎛⎜⎜⎜⎝1 +

4ξ(ξ(�(ξ2 + 3) + ξ(ξ + 3) + 3) + 1))
(1− ξ2)3

2(�(ξ2 + 1) + (ξ + 1)2)

(1− ξ2)2

⎞⎟⎟⎟⎠ > 0

for all |ξ| < 1 and � > 0. Obviously, �(ξ) is a solution of the differential equation

ξ �′ (ξ) + G(ξ). � (ξ) = 1,

where G(ξ) = [ εJ
γ,κ,m
α,β,� h(ξ)]q. Since

�(ξ) = 1 +
∞

∑
n=�+1

�nξn

achieves
|�n | ≤ 2 + �+ (−1)n+1�, � ∈ N,

then we obtain the following inequality:

�(ξ)
 g(ξ), ξ ∈ ∇,

where
 indicates the majority relation. Then, by [24]—Corollary 1 and for |ξ| ∈ (0.28,
√

2− 1),
we have

�(ξ) ≺ g(ξ), ξ ∈ ∇.

By the concept of the subordination, there occurs a function w(ξ), |w(ξ)| ≤ |ξ| < 1,
w(0) = 0 then this implies that

�(ξ) = g(w(ξ)), ξ ∈ ∇.

By letting w(ξ) = ξ, we obtain

[ εJ
γ,κ,m
α,β,� h(ξ)]q ≺ g(ξ), ξ ∈ ∇,

where

g(ξ) =
1 + 2(�+ 1)ξ + ξ2

1− ξ2

=
1 + (1 + �)ξ

1− ξ
+

�ξ

1 + ξ
.

17
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Thus, by letting ℘ = ℵ = 1 in Lemma 1, we confirm that

f (ξ) ≺ 1− ξ

1 + ξ
,

which leads to the double inequality

[ εJ
γ,κ,m
α,β,� h(ξ)]q ≺ g(ξ) ≺ 1− ξ

1 + ξ
.

Hence, we reach the fact

[ εJ
γ,κ,m
α,β,� h(ξ)]q ≺

1− ξ

1 + ξ
, ξ ∈ ∇.

Figure 3. The plot of the convex function g(ξ), � = 1, λ = 0.5.

Theorem 2. Consider the functional in (12). If

[ λJ
γ,κ,m
α,β,� h(ξ)]q ≺ �λ(ξ), ξ ∈ ∇, λ > 0,

where

�λ(ξ) = exp

(∫ ξ

0
−

[ λJ
γ,κ,m
α,β,� h(ξ)]q

λτ
dτ

)
.

⎛⎜⎜⎜⎜⎜⎝
∫ ξ

0

exp

(∫ ζ
0

[ λJ
γ,κ,m
α,β,� h(ξ)]q

λτ
dτ

)
λζ

dζ + 1

⎞⎟⎟⎟⎟⎟⎠
= 1 +

∞

∑
n=1+�

�n(λ)ξ
n

achieves
|�n (λ)| ≤ |2− ((−1)n − 1)λ�|, � ∈ N, n ≥ 1,

18
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then the λ−convex operator that acts on the q-operator [ CΔγ,κ,m
α,β,� h(ξ)]q,

Φλ(ξ) =

(
1
λ

∫ ξ

0
[ CΔγ,κ,m

α,β,� h(ξ)]1/λ
q τ−1dτ

)λ

is starlike in ∇.

Proof. Our proof is based on Lemma 2. Eventually, [ λJ
γ,κ,m
α,β,� h(ξ)]q ∈ H[1, �], where

[ λJ
γ,κ,m
α,β,� (0)]q = 1. Formulate a function as follows:

g(ξ) =
1 + 2(� λ + 1)ξ + ξ2

1− ξ2

= 1 + 2(�λ + 1)ξ + 2ξ2 + 2(�λ + 1)ξ3 + 2ξ4 + 2(�λ + 1)ξ5 + O(ξ6)

= 1 +
∞

∑
n=�+1

(2− ((−1)n − 1)�λ) ξn.

Obviously, g(ξ) is convex univalent in ∇ satisfying

�
(

1 +
ξg′′(ξ)
g′(ξ)

)
= �

⎛⎜⎜⎜⎝1 +

4ξ(ξ(�λ(ξ2 + 3) + ξ(ξ + 3) + 3) + 1))
(1− ξ2)3

2(�λ(ξ2 + 1) + (ξ + 1)2)

(1− ξ2)2

⎞⎟⎟⎟⎠ > 0

for all |ξ| < 1, λ > 0 and � > 0. Clearly, �λ(ξ) is a solution of the differential equation

λξ �′λ (ξ) + G(ξ). �λ (ξ) = 1,

where G(ξ) = [ λJ
γ,κ,m
α,β,� h(ξ)]q. However,

�λ(ξ) = 1 +
∞

∑
n=�+1

�n(λ)ξ
n

satisfies
|�n (λ)| ≤ |2− ((−1)n − 1)�λ|, λ > 0, � ∈ N,

then we conclude that
�λ(ξ)
 g(ξ), ξ ∈ ∇.

Then, by [24]—Corollary 1 and for |ξ| ∈ (0.28,
√

2− 1), we have

�λ(ξ) ≺ g(ξ), ξ ∈ ∇.

Again the subordination definition implies that a function occurs with
u(ξ), |u(ξ)| ≤ |ξ| < 1, u(0) = 0 such that

�λ(ξ) = g(u(ξ)), ξ ∈ ∇.

By letting u(ξ) = ξ, we have

[ λJ
γ,κ,m
α,β,� h(ξ)]q ≺ g(ξ), ξ ∈ ∇,

where

[ λJ
γ,κ,m
α,β,� h(ξ)]q = (1− λ)

(
ξ[ CΔγ,κ,m

α,β,� h(ξ)]′q
[ CΔγ,κ,m

α,β,� h(ξ)]q

)
+ λ

(
1 +

ξ[ CΔγ,κ,m
α,β,� h(ξ)]′′q

[ CΔγ,κ,m
α,β,� h(ξ)]′q

)
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and

g(ξ) =
1 + 2(�λ + 1)ξ + ξ2

1− ξ2

=
1 + (1 + �λ)ξ

1− ξ
+

�λξ

1 + ξ
.

Thus, by considering ς = 0 in Lemma 2, we attain that the λ−convex operator that
acts on the q-operator [ CΔγ,κ,m

α,β,� h(ξ)]q,

Φλ(ξ) =

(
1
λ

∫ ξ

0
[ CΔγ,κ,m

α,β,� h(ξ)]1/λ
q τ−1dτ

)λ

, λ > 0,

is starlike in ∇.

Theorem 3. Consider the operator [ CΔγ,κ,m
α,β,� h(ξ)]q. Then,

[ CΔγ,κ,m
α,β,� h(ξ)]q ∈ S∗ ⇒

⎛⎝ξν−1
∫ ξ

0

(
[ CΔγ,κ,m

α,β,� h(τ)]q
τ

)ρ1(
k(τ)

τ

)ρ2

dτ

⎞⎠1/ν

∈ S∗(
2ν− 1

2ν
),

where k is convex univalent function, ν > 1/2 and ρ1 ≥ 0, ρ2 > 0.
Moreover, if

k(ξ) =
ξ

1− ξ
, ρ2 = 1,

then

[ CΔγ,κ,m
α,β,� h(ξ)]q ∈ S∗ ⇒

⎛⎝ξν−1
∫ ξ

0

(
[ CΔγ,κ,m

α,β,� h(τ)]q

τ(1− τ)1/ρ1

)ρ1

dτ

⎞⎠1/ν

∈ S∗(
2ν− 1

2ν
),

where k is convex univalent function and ρ1 ≥ 0, ρ2 > 0.

Proof. Let k(ξ) = ξ + ∑∞
n=�+1 knξn. First, we must show that⎛⎝ξν−1
∫ ξ

0

(
[ CΔγ,κ,m

α,β,� h(τ)]q
τ

)ρ1(
k(τ)

τ

)ρ2

dτ

⎞⎠1/ν

∈ Λ�. (13)

By the definition of [ CΔγ,κ,m
α,β,� h(τ)]q, we have
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I[F, G](ξ) :=

⎛⎝ξν−1
∫ ξ

0

(
[ CΔγ,κ,m

α,β,� h(τ)]q
τ

)ρ1(
k(τ)

τ

)ρ2

dτ

⎞⎠1/ν

=

(
ξν−1

∫ ξ

0

(
τ + ∑∞

n=�+1 hn Σnτn

τ

)ρ1(τ + ∑∞
n=�+1 knτn

τ

)ρ2

dτ

)1/ν

=

(
ξν−1

∫ ξ

0

(
1 +

∞

∑
n=�+1

hn Σnτn−1

)ρ1
(

1 +
∞

∑
n=�+1

knτn−1

)ρ2

dτ

)1/ν

=

(
ξν−1

∫ ξ

0

(
1 + ρ1

∞

∑
n=�+1

hn Σnτn−1 + . . .

)(
1 + ρ2

∞

∑
n=�+1

knτn−1 + . . .

)
dτ

)1/ν

=

(
ξν−1

∫ ξ

0

((
1 + ρ1

∞

∑
n=�+1

hn Σnτn−1

)
+ . . .

)
dτ

)1/ν

.

A direct integration yields the conclusion in (13). Since k(ξ) is convex in ∇, then
it belongs to S∗(1/2) (the class of starlike functions of order 1/2). However, the mul-
tiplication of starlike functions is also starlike; then, the integral I[F, G](ξ) is starlike of
order (2ν− 1)/2ν (see [23]—P169). The second part comes from the first part, when
k(ξ) = ξ/(1− ξ) and ρ2 = 1. Hence, the proof.

Example 1. Consider the differential equation(
ξ[ CΔγ,κ,m

α,β,� h(ξ)]′q
[ CΔγ,κ,m

α,β,� h(ξ)]q

)
=

(
1− ξ

1 + ξ

)
, (14)

and the solution is given by

[ CΔγ,κ,m
α,β,� h(ξ)]q =

ξ

(1− ξ)2 ,

which is starlike (see Figure 1), and hence, in view of Theorem 3, we have⎛⎝ξν−1
∫ ξ

0

(
[ CΔγ,κ,m

α,β,� h(τ)]q

τ(1− τ)1/ρ1

)ρ1

dτ

⎞⎠1/ν

∈ S∗(
2ν− 1

2ν
),

where ρ1 ≥ 0.

Example 2. Consider the differential equation(
ξ[ CΔγ,κ,m

α,β,� h(ξ)]′q
[ CΔγ,κ,m

α,β,� h(ξ)]q

)
= 1, (15)

and the outcome of the above equation is formulated by

[ CΔγ,κ,m
α,β,� h(ξ)]q = ξ,

which satisfies

�
(

ξ[ CΔγ,κ,m
α,β,� h(ξ)]′q

[ CΔγ,κ,m
α,β,� h(ξ)]q

)
= 1 > 0;
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thus, it is starlike. According to Theorem 3, we have(
ξν−1

∫ ξ

0

(
1

(1− τ)1/ρ1

)ρ1

dτ

)1/ν

∈ S∗(
2ν− 1

2ν
),

where ρ1 ≥ 0.

5. Conclusions

From above, we conclude that the q–Prabhakar fractional differential operator of a
complex variable can be studied in view of the geometric function theory by consuming
a special class of analytic functions. Various differential inequalities are studied by the
suggested operator and then its properties are investigated based on the concepts of
subordination and superordination. A starlikeness of the operator implies a starlikeness of
an integral formula, which indicates a solution of the well-known Briot–Bouquet differential
equation (see Theorem 3). Finally, we presented the sharpness of convexity and starlikeness
and estimate the corresponding extreme functions.

For future works, one can suggest the double QFC. Additionally, it is possible to
extend the q–calculus to post quantum calculus, which is represented by the (p, q)-calculus.
In reality, such a QFC extension cannot be achieved by simply replacing q in the q-calculus
with q/p. When p = 1 in the (p, q)–calculus, one can derive the q-calculus. The number of
double QFC is determined by

[n]p,q =
pn − qn

p− q
.

Moreover, the double QFC derivative is given by

Δp,qh(ξ) =
h(pξ)− h(qξ)

ξ(p− q)
, 0 < q < p ≤ 1, Δp,qh(0) = h′(0).
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Abstract: Using the Lebedev–Milin inequalities, bounds on the logarithmic coefficients of an analytic
function can be transferred to estimates on coefficients of the function itself and related functions.
From this fact, the study of logarithmic-related problems of a certain subclass of univalent functions
has attracted much attention in recent years. In our present investigation, a subclass of starlike
functions S∗e connected with the exponential mapping was considered. The main purpose of this
article is to obtain the sharp estimates of the second Hankel determinant with the logarithmic
coefficient as entry for this class.

Keywords: starlike function; exponential function; Hankel determinant; logarithmic coefficient

MSC: 30C45; 30C80

1. Introduction and Definitions

There is a long history of study on univalent functions in geometric function theory.
Suppose that A is the family of analytic functions defined in the open unit disc D :=
{z ∈ C : |z| < 1} normalized by

f (z) = z +
∞

∑
l=2

alzl . (1)

Let S indicate the family of normalized univalent functions. By the 1/4-theorem of
Köebe, it is known that for each univalent function f ∈ S , there exists an inverse function
f−1 defined at least on a disc of radius 1/4 with Taylor’s series of the form

f−1(w) := w +
∞

∑
n=2

Bnwn, (|w| < 1/4). (2)

We say a function is bi-univalent in D if both f and f−1 are univalent in D.
The coefficient conjecture that |an| ≤ n for f ∈ S proposed by Bieberbach [1] in

1916 has attracted many researchers to prove or disprove this result, until it was finally
and solved by De Branges [2] in 1985. During this period, some important subclasses of
univalent functions were introduced and investigated. The most well-known subfamilies
are convex functions K and starlike functions S∗, defined, respectively, by

K :=
{

f ∈ A : �
{

1 +
z f ′′(z)
f ′(z)

}
> 0, z ∈ D

}
(3)

and

S∗ :=
{

f ∈ A : � z f ′(z)
f (z)

> 0, z ∈ D

}
. (4)

Fractal Fract. 2022, 6, 645. https://doi.org/10.3390/fractalfract6110645 https://www.mdpi.com/journal/fractalfract24
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Let α ∈ (0, 1]. If a function f ∈ A satisfies the condition∣∣∣∣arg
z f ′(z)

f (z)

∣∣∣∣ < πα

2
, z ∈ D, (5)

it is called strongly starlike of order α. Moreover, we say a function f ∈ A is strongly
convex of order α if ∣∣∣∣arg

(
1 +

z f ′′(z)
f ′(z)

)∣∣∣∣ < πα

2
, z ∈ D. (6)

For complex parameters α1, · · · , αl and β1, · · · , βm(β j �= 0,−1,−2, · · · ; j = 1, 2, · · · , m),
the generalized hypergeometric function l Fm(z)(α1, · · · , αl ; β1, · · · , βm; z) is defined by

l Fm(z)(α1, · · · , αl ; β1, · · · , βm; z) :=
∞

∑
n=0

(α1)n · · · (αl)n

(β1)n · · · (βm)n

zn

n!
(l ≤ m + 1; l, m ∈ N0 := N∪ {0}; z ∈ D),

where N denotes the set of all positive integers, and (λ)k is the Pochhammer symbol
defined by

(λ)n =

{
1, n = 0,
λ(λ + 1)(λ + 2) · · · (a + λ− 1), n ∈ N; λ ∈ C.

In recent years, many subclasses of analytic univalent functions or bi-univalent func-
tions associated with the generalized hypergeometric function have been introduced and
studied; see, for example, [3–8].

The logarithmic coefficients γn of f ∈ S play an important role in estimation theory.
They are given by the below formula:

log
(

f (z)
z

)
= 2

∞

∑
n=1

γnzn =: Ff (z), z ∈ D. (7)

De Branges [2] obtained that for n ≥ 1,

n

∑
l=1

l(n− l + 1)|γn|2 ≤
n

∑
l=1

n− l + 1
l

, (8)

and the equality holds if and only if f takes the form z
(1−eiθ z)

2 for some θ ∈ R. Clearly,

this inequality gives the famous Bieberbach–Robertson–Milin conjectures about Taylor
coefficients of f belonging to S in its most general form. In 2005, Kayumov [9] solved
Brennan’s conjecture for conformal mappings by considering the logarithmic coefficients.
For n ≥ 3, it seems to be a more difficult work on the logarithmic coefficients problem. It is
noted that the inequality |γn| ≤ 1

n holds for f ∈ S∗, but it does not hold for the full class S ,
even in an order of magnitude (see [3]). For some significant work on studying logarithmic
coefficients, see [10–12].

For the given functions g1, g2 ∈ A, the subordination between g1 and g2 (written as
g1 ≺ g2) if an analytic function v appears in D comes with the restriction that v(0) = 0
and |v(z)| < 1 in such a manner that f (z) = g(v(z)) holds. v is called a Schwarz function.
Moreover, if g2 in D is univalent, it is known that

g1(z) ≺ g2(z), (z ∈ D)

if and only if
g1(0) = g2(0) and g1(D) ⊂ g2(D).
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By employing the principle of subordination, Ma and Minda [13] considered a unified
version of the class S∗(φ) in 1992 defined by

S∗(φ) :=
{

f ∈ A :
z f ′(z)

f (z)
≺ φ(z), z ∈ D

}
,

where φ is a univalent function with φ′(0) > 0 and �φ > 0. Additionally, the region φ(D)
is star-shaped about the point φ(0) = 1 and is symmetric along the real-line axis. In the
past few years, numerous sub-families of the collection S have been examined as particular
choices of the class S∗(φ). For instance, if we choose φ(z) = 1+(1−2ξ)z

1−z with 0 ≤ ξ < 1,

then we achieve the class S∗(ξ) := S∗
(

1+(1−2ξ)z
1−z

)
of the starlike function family of order

ξ. It is noted that S∗ := S∗
(

1+z
1−z

)
is simply the familiar starlike function family. For more

interesting related subclasses, see, for example, [14–16].
The Hankel determinantHq,n( f ) with q, n ∈ N for a function f ∈ S of the series form

(1) was given by Pommerenke [17,18] as

Hq,n( f ) :=

∣∣∣∣∣∣∣∣∣
an an+1 . . . an+q−1
an+1 an+2 . . . an+q
...

... . . .
...

an+q−1 an+q . . . an+2q−2

∣∣∣∣∣∣∣∣∣
.

In the literature, there are only a few references to the Hankel determinant for func-
tions belonging to the general family of univalent functions. In [19], it was proved that
|H2,n( f )| ≤ λ

√
n, where f ∈ S and λ is an absolute constant. The challenge of finding the

sharp limits of Hankel determinants in a particular family of functions drew the attention of
numerous mathematicians. For example, the sharp bound of |H2,2( f )| for the sub-families
K and S∗ were calculated by Janteng et al. [20,21]. It is quite clear from the formulas given
in (10) that the calculation of |H3,1( f )| is far more challenging compared with finding the
bound of |H2,2( f )|. In [22], Babalola investigated the bounds of the third-order Hankel
determinant for the families of K and S∗. Later, several authors [23–26] obtained some
interesting results on |H3,1( f )| for certain sub-families of analytic and univalent functions.
In recent years, some sharp bounds of the third-order Hankel determinant were obtained
for several subclass of univalent functions. Kowalczyk et al. [27] and Lecko et al. [28]
proved that

|H3,1( f )| ≤
{ 4

135 , for f ∈ K,
1
9 , for f ∈ S∗

(
1
2

)
,

where S∗
(

1
2

)
indicate the starlike functions family of order 1

2 . For more contributions in
this direction, see [29–38].

It seems a natural idea to generalize the Hankel determinant with logarithmic coeffi-
cients as entry. In [39,40], Kowalczyk et al. first introduced the Hankel determinant using
logarithmic coefficients. Using the logarithmic coefficient as the element, we have

Hq,n

(
Ff /2

)
=

∣∣∣∣∣∣∣∣∣
γn γn+1 . . . γn+q−1
γn+1 γn+2 . . . γn+q
...

... . . .
...

γn+q−1 γn+q . . . γn+2q−2

∣∣∣∣∣∣∣∣∣
. (9)
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In particular, it is noted that

H2,1

(
Ff /2

)
=

∣∣∣∣ γ1 γ2
γ2 γ3

∣∣∣∣ = γ1γ3 − γ2
2,

H2,2

(
Ff /2

)
=

∣∣∣∣ γ2 γ3
γ3 γ4

∣∣∣∣ = γ2γ4 − γ2
3,

If f is given by (1), then its logarithmic coefficients are given by

γ1 =
1
2

a2 (10)

γ2 =
1
2

(
a3 −

1
2

a2
2

)
(11)

γ3 =
1
2

(
a4 − a2a3 +

1
3

a3
2

)
(12)

γ4 =
1
2

(
a5 − a2a4 + a2

2a3 −
1
2

a2
3 −

1
4

a4
2

)
(13)

Let fθ(z) := e−iθ f (eiθz), θ ∈ R. It is observed that H2,1

(
Ff /2

)
and H2,2

(
Ff /2

)
are

invariant under rotation since we have

H2,1

(
Ffθ

/2
)
=

e4iθ

4

(
a2a4 − a2

3 +
1
12

a4
2

)
= e4iθH2,1

(
Ff /2

)
and

H2,2

(
Ffθ

/2
)

= e6iθ
(

1
288

a6
2 −

1
48

a3a4
2 −

1
24

a3
2a4 +

1
16

a2
3a2

2 −
1
8

a5a2
2 +

1
4

a3a2a4 −
1
4

a2
4 +

1
4

a3a5 −
1
8

a3
3

)
= e6iθH2,2

(
Ff /2

)
.

In 2014, Mendiratta R. et al. [41] introduced a subclass of starlike functions defined by

S∗e :=
{

f ∈ S :
z f ′(z)

f (z)
≺ ez, z ∈ D

}
. (14)

This class was later studied in [42] and generalized by Srivastava et al. [43], in which
the authors determined the upper bound of the Hankel determinant. In 2019, Goel et al. [44]
introduced a subclass of the starlike function S∗seg defined by

S∗seg :=
{

f ∈ S :
z f ′(z)

f (z)
≺ 2

1 + e−z , z ∈ D

}
.

The family S∗sin of starlike functions characterised by the condition

S∗sin :=
{

f ∈ S :
z f ′(z)

f (z)
≺ 1 + sin z, z ∈ D

}

was first investigated by Cho et al. [45]. In virtue of sin z = eiz−e−iz

2i , it is seen that the three
function classes are associated with the exponential function. The exponential function
ϕ(z) = ez has a positive real part in D and an image domain ϕ(D) = {w ∈ C : |log w| < 1}
(see Figure 1). Let ψ(z) = 2

1+e−z . The function ψ is called a modified sigmoid function. It
maps D onto a domain ΔSG :=

{
w ∈ C :

∣∣log
( w

2−w
)∣∣ < 1

}
(see Figure 2). Moreover, ψ is

convex and hence starlike with respect to ψ(0) = 1. For f ∈ S∗sin, the quantity z f ′(z)
f (z) lies in

an eight-shaped region in the right-half plane.
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Figure 1. Image of D under ez.

Figure 2. Image of D under 2
1−e−z .

Recently, Sevtap Sümer Eker et al. [46] obtained the sharp bounds for the second
Hankel determinant of logarithmic coefficients for strongly starlike and strongly convex
functions. In [47], the authors discussed the bounds of second Hankel determinants with
logarithmic coefficients for the class S∗seg and improved the estimation of the existing second
Hankel determinant of logarithmic coefficients for the class S∗sin.

In the present article, our aim is to calculate sharp bounds of the Hankel determinants
with logarithmic coefficients as entry for the class S∗e .

2. Main Results

A function p ∈ P if and only if �p(z) ≥ 0 for z ∈ D with the series expansion

p(z) = 1 +
∞

∑
n=1

cnzn, z ∈ D. (15)

Lemma 1 (see [48]). Let p ∈ P . Then, for some x, δ, ρ ∈ D := {z ∈ C : |z| ≤ 1}, we have

2c2 = c2
1 +
(

4− c2
1

)
x, (16)

4c3 = c3
1 + 2c1x

(
4− c2

1

)
− x2c1

(
4− c2

1

)
+ 2
(

1− |x|2
)(

4− c2
1

)
δ, (17)

8c4 = c4
1 + x

[
c2

1

(
x2 − 3x + 3

)
+ 4x

]
(4− c2

1)− 4(4− c2
1)(1− |x|2)[

c1(x− 1)δ + xδ2 − (1− |δ|2)ρ
]
(4− c2

1). (18)
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Throughout this paper, in the following, we use x, δ and ρ to denote some complex
number satisfying |x| ≤ 1, |δ| ≤ 1 and |ρ| ≤ 1. Let c1 = c, |x| = t and |ρ| = y be real
numbers that lie in the intervals [0, 2], [0, 1] and [0, 1], respectively.

Theorem 1. Let f ∈ S∗e . Then,∣∣∣H2,1

(
Ff /2

)∣∣∣ = ∣∣∣γ1γ3 − γ2
2

∣∣∣ ≤ 1
16

. (19)

The inequality is sharp.

Proof. Suppose that f ∈ S∗e . From the definition, we know it can be written in the form of
a Schwarz function as

z f ′(z)
f (z)

= ew(z), (z ∈ D).

Define

p(z) :=
1 + w(z)
1− w(z)

= 1 + c1z + c2z2 + c3z3 + c4z4 + · · · , (z ∈ D). (20)

It follows that

w(z) =
1
2

c1z +
(

1
2

c2 −
1
4

c2
1

)
z2 +

(
1
8

c3
1 −

1
2

c1c2 +
1
2

c3

)
z3

+

(
1
2

c4 −
1
2

c1c3 −
1
4

c2
2 −

1
16

c4
1 +

3
8

c2
1c2

)
z4 + · · · , (z ∈ D). (21)

Using (1), we obtain

z f ′(z)
f (z)

= 1 + a2z +
(

2a3 − a2
2

)
z2 +

(
a3

2 − 3a2a3 + 3a4

)
z3

+
(

4a5 − a4
2 + 4a2

2a3 − 4a2a4 − 2a2
3

)
z4 + · · · , (z ∈ D). (22)

Using the series expansion of (21), we obtain

ew(z) = 1 +
1
2

c1z +
(

1
2

c2 −
1
8

c2
1

)
z2 +

(
−1

4
c1c2 +

1
48

c3
1 +

1
2

c3

)
z3

+

(
1

348
c4

1 +
1

16
c2

1c2 −
1
4

c1c3 −
1
8

c2
2 +

1
2

c4

)
z4 + · · · , (z ∈ D). (23)

Now, comparing (22) and (23) leads to

a2 =
1
2

c1,

a3 =
1
4

c2 +
1

16
c2

1,

a4 =
1
6

c3 −
1

288
c3

1 +
1
24

c1c2,

a5 =
1

1152
c4

1 −
1

96
c2

1c2 +
1

48
c1c3 +

1
8

c4.
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From (10)–(13), we have

γ1 =
1
4

c1, (24)

γ2 =
1
8

c2 −
1

32
c2

1, (25)

γ3 =
1

288
c3

1 −
1
24

c1c2 +
1
12

c3, (26)

γ4 =
1

3072
c4

1 +
1

128
c2

1c2 −
1

32
c1c3 −

1
64

c2
2 +

1
16

c4. (27)

From (24)–(26), we have∣∣∣γ1γ3 − γ2
2

∣∣∣ = 1
9216

∣∣∣−c4
1 − 24c2

1c2 + 192c1c3 − 144c2
2

∣∣∣.
SinceH2,1

(
Ff /2

)
is rotationally invariant, we may assume that c1 = c ∈ [0, 2]. Using

(16) and (17) to express c2 and c3 in terms of c1 = c, we obtain∣∣∣γ1γ3 − γ2
2

∣∣∣ =
1

9216

∣∣∣∣−c4 − 48c2x2
(

4− c2
)
− 36x2

(
4− c2

)2
+ 12xc2

(
4− c2

)
+96c

(
1− |x|2

)(
4− c2

)
δ
∣∣∣.

By replacing |δ| ≤ 1 and |x| = t, it follows that∣∣∣γ1γ3 − γ2
2

∣∣∣ ≤ 1
9216

[
c4 + 48c2t2

(
4− c2

)
+ 96c

(
1− t2

)(
4− c2

)
+36t2

(
4− c2

)2
+ 12c2t

(
4− c2

)]
=: Ω(c, t).

Differentiating with respect to t, we have

∂Ω(c, t)
∂t

=
1

9216
× 12

(
4− c2

)(
2tc2 − 16tc + c2 + 24t

)
.

As c ∈ [0, 2], it is a simple exercise to show that ∂Ω(c,t)
∂t ≥ 0 for t ∈ [0, 1]. Thus, we have

Ω(c, t) ≤ Ω(c, 1). Putting t = 1 gives∣∣∣γ1γ3 − γ2
2

∣∣∣ ≤ 1
9216

[
c4 + 60c2

(
4− c2

)
+ 36

(
4− c2

)2
]
=: �(c).

Since �′(c) ≤ 0 for c ∈ [0, 2], we see that �(c) is a decreasing function, and it gives its
maximum value at c = 0. This yields∣∣∣H2,2

(
Ff /2

)∣∣∣ ≤ 576
9216

=
1
16

.

Equality is determined using (10)–(12) and

f1(z) = z exp

(∫ z

0

et2 − 1
t

dt

)
= z +

1
2

z3 +
1
4

z5 + · · · . (28)

Theorem 2. Let f ∈ S∗e . Then∣∣∣H2,2

(
Ff /2

)∣∣∣ = ∣∣∣γ2γ4 − γ2
3

∣∣∣ ≤ 1
36

.
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This result is sharp.

Proof. As H2,2

(
Ff /2

)
is rotation-invariant, we assume that c1 = c ∈ [0, 2]. By using

(24)–(27), we have∣∣∣γ2γ4 − γ2
3

∣∣∣ =
1

2654208

(
−59c6 + 228c4c2 + 1056c3c3 − 720c2c2

2 − 5184c2c4

+8064cc2c3 − 5184c3
2 + 20736c2c4 − 18432c2

3

)
. (29)

Suppose that u = 4− c2. An application of Lemma 1 leads to∣∣∣γ2γ4 − γ2
3

∣∣∣ =
1

2654208

{
−5c6 + 528c3u

(
1− |x|2

)
δ− 6c4xu− 828c2u2x2

−912c4x2u− 288x3u2c2 + 144x4u2c2 − 4608u2
(

1− |x|2
)2

δ2

+2592ux2c2 + 648c4ux3 − 648x3u3 + 5184u2x3 − 2592c3u
(

1− |x|2
)

xδ

−2592c2ux̄
(

1− |x|2
)

δ2 + 2592c2u
(

1− |x|2
)(

1− |δ|2
)

ρ

−2016cxu2
(

1− |x|2
)

δ− 5184u2|x|2
(

1− |x|2
)

δ2

−576cu2x2
(

1− |x|2
)

δ + 5184u2x
(

1− |x|2
)(

1− |δ|2
)

ρ
}

.

Thus, we see that∣∣∣γ2γ4 − γ2
3

∣∣∣ = 1
2654208

(
v1(c, x) + v2(c, x)δ + v3(c, x)δ2 + Φ(c, x, δ)ρ

)
,

where

v1(c, x) = −6
(

4− c2
)

x
[
6
(

4− c2
)

x
(
−4x2c2 − 10xc2 + 23c2 − 72x

)
− 108c4x2

+152c4x + c4 − 432xc2
]
− 5c6,

v2(c, x) = −48
(

4− c2
)(

1− |x|2
)

c
[(

12x2 + 42x
)(

4− c2
)
+ 54xc2 − 11c2

]
,

v3(c, x) = −288
(

4− c2
)(

1− |x|2
)[(

2|x|2 + 16
)(

4− c2
)
+ 9x̄c2

]
,

Φ(c, x, δ) = 2592
(

4− c2
)(

1− |x|2
)(

1− |δ|2
)[

2
(

4− c2
)

x + c2
]
.

Now, by utilizing |δ| = y, |x| = t and taking |ρ| ≤ 1, we achieve∣∣∣γ2γ4 − γ2
3

∣∣∣ ≤ 1
2654208

(
|v1(c, t)|+ |v2(c, t)|y + |v3(c, t)|y2 + |Φ(c, t, δ)|

)
,

≤ 1
2654208

[H(c, t, y)]. (30)

where
H(c, t, y) = h1(c, t) + h2(c, t)y + h3(c, t)y2 + h4(c, t)

(
1− y2

)
. (31)
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with

h1(c, t) = 6
(

4− c2
)

t
[
6
(

4− c2
)

t
(

4t2c2 + 10tc2 + 23c2 + 72t
)
+ 108c4t2

+152c4t + c4 + 432tc2
]
+ 5c6,

h2(c, t) = 48
(

4− c2
)(

1− t2
)

c
[(

12t2 + 42t
)(

4− c2
)
+ 54tc2 + 11c2

]
,

h3(c, t) = 288
(

4− c2
)(

1− t2
)[(

2t2 + 16
)(

4− c2
)
+ 9tc2

]
,

h4(c, t) = 2592
(

4− c2
)(

1− t2
)[

2
(

4− c2
)

t + c2
]
.

Let the closed cuboid be Δ := [0, 2]× [0, 1]× [0, 1]. We have to achieve the points of
maxima of H(c, t, y) in Δ. By observing that H(0, 0, 1) = 73728, we know

maxH(c, t, y) ≥ 73728, (c, t, y) ∈ Δ. (32)

Denote m0 = 73728. In the following, we aim to prove that maxH(c, t, y) = m0 for all
(c, t, y) ∈ Δ. To show this, we first prove that the global maximum value of H(c, t, y) can be
obtained on the face of y = 1. On t = 1, H(c, t, y) reduces to

q1(c) := H(c, 1, y) = −229c6 − 4392c4 + 10944c2 + 41472, c ∈ (0, 2). (33)

Solving q′1(c) = 0, we obtain critical points c = c0 = 0 and c = c1 ≈ 1.0694. Here,
c0 is the minimum points of q1. Thus, q1 attains its maximum 47901.1108 at c1. Clearly, it
is impossible for H(c, t, y) to obtain its global maximum on the face of t = 1. On c = 2,
H(c, t, y) reduces to

H(2, t, y) ≡ 320, t, y ∈ [0, 1]. (34)

Obviously, the global maximal value of H(c, t, y) also cannot be obtained on the face
of c = 2. In the following, we assume that c < 2 and t < 1.

I. Let (c, t, y) ∈ [0, 2)× [0, 1)× (0, 1). Now, to find points of maxima in Δ, we take
partial derivative of (31) with respect to y. Since

h3(c, t)− h4(c, t) = 288
(

4− c2
)(

1− t2
)
(1− t)

[(
4− c2

)
(16− 2t)− 9c2

]
, (35)

it is easy to see that

∂H
∂y

= h2(c, t) + 2[h3(c, t)− h4(c, t)]y = 48
(

4− c2
)(

1− t2
)

M(c, t)y, (36)

where

M(c, t) = 6ct(2t + 7)
(

4− c2
)
+ (54t + 11)c3 + 12(1− t)

[(
4− c2

)
(16− 2t)− 9c2

]
. (37)

Now, ∂H
∂y = 0 yields

y =
6ct
(
4− c2)(2t + 7) + c3(54t + 11)

12(1− t)[(4− c2)(2t− 16) + 9c2]
.

If y0 is a critical point inside Δ, then y0 ∈ (0, 1), which is possible only if

6ct
(

4− c2
)
(2t + 7) + c3(54t + 11) + 12(1− t)

(
4− c2

)
(16− 2t) < 108(1− t)c2, (38)

and

c2 >
8(8− t)
25− 2t

=: h(t). (39)
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Then, we must obtain the solutions which satisfy both inequalities (38) and (39) for
the existence of the critical points.

Since h′(t) < 0 for (0, 1), h(t) is decreasing in (0, 1), hence, c2 > 56
23 . A simple exercise

shows that (38) does not hold in this case for all values of t ∈
[

1
2 , 1
)

, and there is no critical

point of H in (0, 2)× (0, 1)×
[

1
2 , 1
)

. In fact, suppose that

Υ(c, t) := 6ct
(

4− c2
)
(2t + 7) + c3(54t + 11) + 12(1− t)

(
4− c2

)
(16− 2t)

−108(1− t)c2.

It is easily obtained that

Υ(c, t) ≥ 672− 276c2 + 11c3 + 6(−112 + 46c2 + 9c3)t =: L(c, t). (40)

As it is observed that L
(

c, 1
2

)
≥ 0 and L(c, 1) ≥ 0 for c ∈ [0, 2], we have

L(c, t) ≥ min
{

L
(

c,
1
2

)
, L(c, 1)

}
≥ 0, (c, t) ∈ [0, 2]×

[
1
2

, 1
)

. (41)

Combining (40) and (41), we see (38) is impossible to hold for all t ∈
[

1
2 , 1
)

. This is to

say that there are no critical points of H(c, t, y) satisfying y ∈ (0, 1) with t ∈
[
0, 1

2

)
.

For t < 1
2 , we will prove that all the critical points of H(c, t, y) with y ∈ (0, 1) have

a maximum value no larger than m0. Suppose that (ĉ, t̂, ŷ) is a critical point of H and
ŷ ∈ (0, 1). To guarantee the inequalities (38) and (39) to be true simultaneously, we know
that t̂ < 1

2 . Using (39), it follows that ĉ2 > h
(

1
2

)
= 5

2 . By noting that 1− t2 ≤ 1 and t < 1
2 ,

it is not hard to observe that

h1(c, t) ≤ h1

(
c,

1
2

)
=: κ1(c) (42)

and

hj(c, t) ≤ 4
3

hj

(
c,

1
2

)
=: κj(c), j = 2, 3, 4. (43)

Hence, we obtain that

H(c, t, y) ≤ κ1(c) + κ2(c)y + κ3(c)y2 + κ4(c)
(

1− y2
)
=: Θ(c, y). (44)

A basic calculation shows that

∂2Θ(c, y)
∂y2 = 2[κ3(c)− κ4(c)] = 3456

(
4− c2

)(
5− 2c2

)
≤ 0 (45)

for c2 ∈
( 5

2 , 4
]
. Thus, we know

∂Θ(c, y)
∂y

≥ ∂Θ(c, y)
∂y

|y=1

= κ2(c) + 2[κ3(c)− κ4(c)]

= 48
(

4− c2
)(

360 + 96c− 150c2 + 14c3
)
≥ 0
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with c ∈
(√

5
2 , 2
]

. This leads to

Θ(c, y) ≤ κ1(c) + κ2(c) + κ3(c) := ι(c), c ∈
(√

5
2

, 2

]
. (46)

Now, a basic calculation shows that ι attains its maximum value 38095.55 at c ≈
1.5811399. Therefore, we conclude that

H(ĉ, t̂, ŷ) ≤ Θ(ĉ, ŷ) ≤ ι(ĉ) < m0. (47)

This implies that the global maximum value of H(c, t, y) in Δ cannot be obtained with
y ∈ (0, 1).

II. On the face of y = 0, we have

H(c, t, 0) = h1(c, t) + h4(c, t) =: R1(c, t) (48)

and
H(c, t, 1) = h1(c, t) + h2(c, t) + h3(c, t) =: R2(c, t). (49)

It is noted that

R2(c, t)− R1(c, t) = h2(c, t) + h3(c, t)− h4(c, t) = 48
(

4− c2
)(

1− t2
)

N(c, t), (50)

where

N(c, t) = 12
(

4− c2
)
(1 + c)t2 +

(
−432 + 168c + 162c2 + 12c3

)
t + 384− 150c2 + 11c3. (51)

For t > 7
10 and c ≥ 1, it is found that

∂N(c, t)
∂t

= 24
(

4− c2
)
(1 + c)t− 432 + 168c + 162c2 + 12c3

≥ 84
5

(
4− c2

)
(1 + c)− 432 + 168c + 162c2 + 12c3

=
6
5

(
−304 + 196c + 121c2 − 4c3

)
=: 	(c).

As it is easy to see that 	′(c) > 0 for c ∈ [1, 2), we know that 	 attains its minimum
value at c = 1. Thus, we have

	(c) ≥ 	(1) =
54
5

> 0, c ∈ [1, 2). (52)

It follows that ∂N(c,t)
∂t ≥ 0 for all c ∈ [1, 2). Therefore, we deduce that

N(c, t) ≥ N
(

c,
7
10

)
=

1
25

(
2628 + 3528c− 1062c2 + 338c3

)
≥ 0. (53)

On the other hand, if c > 7
10 and c < 1, it is noted that −432 + 168c + 162c2 + 12c3 ≤ 0

and

N(c, t) ≥ 12
(

4− c2
)
(1 + c)t2 + 384− 150c2 + 11c3

≥ 147
25

(
4− c2

)
(1 + c) + 384− 150c2 + 11c3

=
1
25

(
10188 + 588c− 3897c2 + 128c3

)
> 0.
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Hence, we conclude that

N(c, t) ≥ 0, (c, t) ∈ [0, 2)×
(

7
10

, 1
)

. (54)

This implies that R2(c, t) ≥ R1(c, t) and

H(c, t, 0) ≤ H(c, t, 1), (c, t) ∈ [0, 2)×
(

7
10

, 1
)

. (55)

Thus, we have

maxH(c, t, 0) ≤ maxH(c, t, 1), (c, t) ∈ [0, 2]×
[

7
10

, 1
]

. (56)

For t ≤ 7
10 , it is observed that

h1(c, t) ≤ h1

(
c,

7
10

)
=: τ1(c) (57)

and

h4(c, t) ≤ 100
51

h4

(
c,

7
10

)
=: τ2(c). (58)

Then, it follows that

H(c, t, 0) = h1(c, t) + h4(c, t) ≤ τ1(c) + τ2(c) =: τ3(c). (59)

A basic calculation shows that τ3 attains its maximum value 72285.70 at c = 0. This
means that

H(c, t, 0) ≤ m0 ≤ maxH(c, t, 1), (c, t) ∈ [0, 2)×
[

0,
7
10

]
. (60)

Combining (56) and (60), the global optimal value of H is sure to be achieved on the
face of y = 1. Now, we only need to find points of maxima on the faces y = 1 of Δ. On
y = 1, it is clear that

H(c, t, 1) = h1(c, t) + h2(c, t) + h3(c, t) =: U(c, t). (61)

We note that

U(c, t) = 5c6 + 6
(

4− c2
)[

88c3 +
(

c2 + 432c + 432
)

c2t

+8
(

19c2 − 11c + 54
)

c2t2 + 108
(

c2 − 4c− 4
)

c2t3
]

+36
(

4− c2
)2[

128 + 32ct +
(

23c2 + 16c− 112
)

t2

+2
(

5c2 − 16c + 36
)

t3 + 4
(

c2 − 4c− 4
)

t4
]
.

As we see that c2 − 4c− 4 ≤ 0, 5c2 − 16c + 36 ≥ 0, 19c2 − 11c + 54 ≥ 0 for c ∈ [0, 2]
and t3 ≤ t2 ≤ t, it follows that

U(c, t) ≤ 5c6 + 6
(

4− c2
)[

88c3 +
(

c2 + 432c + 432
)

c2t + 8
(

19c2 − 11c + 54
)

c2t
]

+36
(

4− c2
)2[

128 + 32ct +
(

23c2 + 16c− 112
)

t2 + 2
(

5c2 − 16c + 36
)

t2
]

= 5c6 + 6
(

4− c2
)[

88c3 +
(

153c4 + 344c3 + 864c2
)

t
]

+36
(

4− c2
)2[

128 + 32ct +
(

33c2 − 16c− 40
)

t2
]
=: V(c, t).
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In virtue of t < 1, we deduce that

V(c, t) ≤ 5c6 + 6
(

4− c2
)(

153c4 + 432c3 + 864c2
)

+36
(

4− c2
)2[

128 + 32ct +
(

33c2 − 16c− 40
)

t2
]
=: W(c, t).

Define

S(c, t) := 128 + 32ct +
(

33c2 − 16c− 40
)

t2, (c, t) ∈ [0, 1)× [0, 1). (62)

For c < 1, it is easily noted that 33c2 − 16c− 40 ≤ −23 and

S(c, t) ≤ 128 + 32ct− 23t2 =: T(c, t), (c, t) ∈ [0, 1)× [0, 1). (63)

It is seen that
t0 =

16
23

c ∈ [0, 1); (64)

thus, we have

T(c, t) ≤ 4× (−23)× 128− 1024c2

4× (−23)
= 128 +

256
23

c2 ≤ 128 + 12c2. (65)

It follows that

W(c, t) ≤ 5c6 + 6
(

4− c2
)(

153c4 + 432c3 + 864c2
)
+ 36

(
4− c2

)2(
128 + 12c2

)
= −481c6 − 2592c5 − 360c4 + 10368c3 − 9216c2 + 73728 =: χ(c)

To prove that χ(c) ≤ 73728 for c ∈ [0, 1), we need to show that

− 481c6 − 2592c5 − 360c4 + 10368c3 − 9216c2 ≤ 0, (66)

which is equivalent to

− 481c4 − 2592c3 − 360c2 + 10368c− 9216 ≤ 0. (67)

Let
ϑ(c) := −481c4 − 2592c3 − 360c2 + 10368c− 9216, c ∈ [0, 1). (68)

It is clear that

ϑ(c) ≤ −481c4 − 2592c3 + 10368c− 9216 =: ϑ̂(c). (69)

Since ϑ̂′(c) ≥ 0 for c ∈ [0, 1), thus, we know that ϑ̂(c) ≤ ϑ̂(1) = −1921. This
implies that ϑ(c) ≤ 0. Then we obtain that χ(c) ≤ 73728 and thus U(c, t) ≤ 73728 for all
(c, t) ∈ [0, 1)× [0, 1).

For c ∈ [1, 2), it is found that

∂V(c, t)
∂t

= 6(4− c2)(153c4 + 344c3 + 864c2) + 36(4− c2)2
[
32c + 2(33c2 − 16c− 120)t

]
≥ 6(4− c2)(153c4 + 344c3 + 864c2) + 36(4− c2)2(32c− 23t)

≥ 6(4− c2)(153c4 + 344c3 + 864c2) + 36(4− c2)2(32c− 23)

= 6(4− c2)
(

153c4 + 152c3 + 1002c2 + 768c− 552
)
≥ 0.
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Thus, we have

V(c, t) ≤ V(c, 1)

= 5c6 + 6
(

4− c2
)(

153c4 + 432c3 + 864c2
)
+ 36

(
4− c2

)2(
33c2 + 16c + 88

)
= 275c6 − 2016c5 − 7848c4 + 5760c3 + 14400c2 + 9216c + 50688 =: μ(c)

In virtue of μ attaining its maximum 71992.07 at c ≈ 1.179235, we know U(c, t) ≤ m0
for (c, t) ∈ [1, 2) × [0, 1). Thus, we claim that the maximum value of U(c, t) is sure to
exist in (c, t) ∈ [0, 1)× [0, 1) and hence has a maximum value no larger than m0. Since
H(c, t, 1) = U(c, t), and the global maximum value of H is sure to exist on the face y = 1 of
Δ, we obtain that H(c, t, y) ≤ m0 for (c, x, y) ∈ Δ. From Equation (30), we can write∣∣∣γ2γ4 − γ2

3

∣∣∣ ≤ m0

2654208
=

73728
2654208

=
1
36

.

If f ∈ S∗e , then the equality is determined by using (10)–(13) and

f2(z) = z exp

(∫ z

0

e(t3) − 1
t

dt

)
= z +

1
3

z4 +
5

36
z7 + · · · . (70)

This completes the proof.

3. Conclusions

The Hankel determinants can be used in the study of singularities and power series
with integral coefficients. Additionally, there are some of its applications in meromorphic
functions in the literature. Therefore, to obtain the upper bounds of Hankel determinants
for certain subclasses of univalent functions is an active topic in the field of geometric
function theory. In the present work, we consider a family of starlike functions S∗e connected
with the exponential function. For functions in this class, we obtain some sharp results
on the logarithmic coefficient-related problems. The method of proof is based on the well-
known parametric formulas for initial coefficients in the Carathéodory class of functions.
It was found that the logarithmic coefficients of functions can be transfered to obtain the
bounds for the coefficients of a function and its inverse function. As the calculation of
bounds on coefficients of the inverse function is often a more difficult task, our results on
Hankel determinants with logarithmic coefficients seem to be of great significance. As the
exponential function is a very special class of hypergeometric functions, this work may
inspire some other investigations by considering univalent functions subordinated to a
more general class. Additionally, it will be interesting if the sharp bounds of higher-order
Hankel determinants can be obtained.
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Abstract: The results contained in this paper are the result of a study regarding fractional calculus
combined with the classical theory of differential subordination established for analytic complex
valued functions. A new operator is introduced by applying the Libera integral operator and
fractional integral of order λ for analytic functions. Many subordination properties are obtained for
this newly defined operator by using famous lemmas proved by important scientists concerned with
geometric function theory, such as Eenigenburg, Hallenbeck, Miller, Mocanu, Nunokawa, Reade,
Ruscheweyh and Suffridge. Results regarding strong starlikeness and convexity of order α are also
discussed, and an example shows how the outcome of the research can be applied.

Keywords: analytic function; libera integral operator; fractional integral of order λ; differential
subordination; strongly of order α
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1. Introduction

Ever since the theory of differential subordination was initiated by Miller and Mocanu
in the work published in 1978 [1] and 1981 [2], it was intensely used since it proves useful
at re-obtaining known results in easier manners and also for providing interesting results
when associated to studies involving analytic functions. A line of research which devel-
oped nicely in the context of differential subordination theory resulted after incorporating
different types of operators into the study. Integral operators are an important tool when
such investigations are considered as a recent survey paper shows [3]. The research started
with the integral operator introduced by Alexander in 1915 [4]. A widely investigated
integral operator is the Libera integral operator, introduced in 1965 [5]. Due to its properties
of preserving starlikeness and convexity, it has been associated with many studies (see for
example, references [6–10]) and still provides important new outcomes if combined with
differential operators, such as in [11], with a confluent hypergeometric function, such as
in [12], or with a generalized distribution, such as in [13]. Generalizations of the Libera
operator are also considered for recent studies in papers, such as [14–17].

In the present investigation, the Libera integral operator is extended and combined
with the fractional integral of order λ for introducing a new fractional calculus operator.
The idea was inspired by recent publications where the fractional integral is associated
with the Mittag–Leffler confluent hypergeometric function [18–20], with the confluent hy-
pergeometric function [21,22], with the Ruscheweyh and Sălăgean Operators [23], with the
convolution product of the multiplier transformation and the Ruscheweyh derivative [24],
with the convolution product of Sălăgean operator and Ruscheweyh derivative [25] or with
other operators [26,27].
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Consider the class of functions f (z) of the form

f (z) = z +
∞

∑
k=2

akzk

denoted by A and called analytic functions in the open unit disk U = {z ∈ C : |z| < 1}.
For f (z) ∈ A, Libera [5] introduced the integral operator L1( f (z)) defined as

L1( f (z)) =
2
z

∫ z

0
f (t)dt

= z +
∞

∑
k=2

(
2

k + 1

)
akzk.

Consider the following extension for the operator L1( f (z)).

L2( f (z)) = L1(L1( f (z)))

= z +
∞

∑
k=2

(
2

k + 1

)2
akzk

and

Ln( f (z)) = L1(Ln−1( f (z)))

= z +
∞

∑
k=2

(
2

k + 1

)n
akzk,

where n ∈ N = {1, 2, 3, . . .}, and L0( f (z)) = f (z).
For f (z) ∈ A, the extension called fractional integral of order λ is used in [28,29] as:

Iλ
z ( f (z)) =

1
Γ(λ)

∫ z

0

f (t)
(z− t)1−λ

dt (λ > 0),

where the multiplicity of (z− t)λ−1 is removed by requiring log(z− t) to be real when
z− t > 0, and Γ(z) is the gamma function.

The following form in easily deduced:

Iλ
z ( f (z)) =

1
Γ(2 + λ)

z1+λ +
∞

∑
k=2

k!
Γ(k + 1 + λ)

akzk+λ.

Using Iλ
z ( f (z)), we consider

Lλ( f (z)) =
Γ(2 + λ)

zλ
Iλ
z ( f (z))

= z +
∞

∑
k=2

k!Γ(2 + λ)

Γ(k + 1 + λ)
akzk (λ > 0). (1)

It follows from the above that

L0( f (z)) = lim
λ→0

Lλ( f (z)) = f (z)

and

L1( f (z)) = z +
∞

∑
k=2

(
2

k + 1

)
akzk.
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Definition 1. Using the operator Lλ( f (z)) given by (1), we introduce

Ln+λ( f (z)) = Ln(Lλ( f (z)))

= z +
∞

∑
k=2

(
2

k + 1

)n k!Γ(2 + λ)

Γ(k + 1 + λ)
akzk

and

Lλ+n( f (z)) = Lλ(Ln( f (z)))

= z +
∞

∑
k=2

(
2

k + 1

)n k!Γ(2 + λ)

Γ(k + 1 + λ)
akzk

for n = 0, 1, 2, . . . and 0 < λ ≤ 1. Considering the expressions above, we have:

Ln+λ( f (z)) = Lλ+n( f (z)).

For f (z) ∈ A, f (z) is said to be subordinate to g(z), written f (z) ≺ g(z), if there
exists a function w(z) analytic in U with w(0) = 0 and |w(z)| < 1 (z ∈ U), and such that
f (z) = g(w(z)). If g(z) is univalent in U, then f (z) ≺ g(z) if and only if f (0) = g(0) and
f (U) ⊂ g(U) ([30,31]).

We note that f (z) ∈ A belongs to the class of starlike functions of order α in U if

z f ′(z)
f (z)

≺ 1 + (1− 2α)z
1− z

(z ∈ U)

for 0 ≤ α < 1 and that f (z) ∈ A belongs to the class of convex functions of order α in U if

1 +
z f ′′(z)
f ′(z)

≺ 1 + (1− 2α)z
1− z

(z ∈ U)

for 0 ≤ α < 1.
In addition, the analytic function p(z), z ∈ U, satisfies the condition

| arg p(z)| < π

2
α (z ∈ U)

for certain real values α > 0 if

p(z) ≺
(

1 + z
1− z

)α

(z ∈ U).

In Section 2 of the paper, a series of properties are proved for the newly introduced
operator Lλ( f (z)) given by (1) considering the theory of differential subordination and
a well-known lemma from Miller and Mocanu [30,32]. The study on operator Lλ( f (z))
is continued in Section 3 with results obtained by using lemmas from Suffridge [33] and
its improved form obtained by Hallenbeck and Ruscheweyh [34]. Results related to the
Briot–Bouquet differential subordination involving the operator Lλ( f (z)) are also obtained
in Section 3 by using a lemma from Eenigenburg, Miller, Mocanu and Reade [35]. The study
considering the operator Lλ( f (z)) and known lemmas is concluded in Section 3 with two
theorems that use a result proved by Nunokawa [36,37] for obtaining certain univalence
conditions for the operator Lλ( f (z)). The necessary lemmas cited above are listed in
every section before each new result that is obtained as application. In Section 4, strong
starlikeness and convexity of order α are investigated regarding the operator Lλ( f (z)), and
an example is also presented as an application for the new results.
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2. Subordination Results Regarding Ln+λ(F(Z))

To consider some properties of Ln+λ( f (z)), the following result proved by Miller and
Mocanu ([30,32]) (also from Jack [38]) will be considered in the study.

Lemma 1 ([30,32,38]). Let w(z) be analytic in U with w(0) = 0. Then, if |w(z)| attains its
maximum value on the circle |z| = r < 1 at a point z0 ∈ U, then we have

z0w′(z0) = mw(z0)

and

Re
(

1 +
z0w′′(z0)

w′(z0)

)
≥ m,

where m ≥ 1.

Using the lemma presented above, the following theorem can be stated and proved:

Theorem 1. Consider the function f (z) ∈ A satisfying the subordination

Ln+λ( f (z))
z

≺ α(1 + z)
α + (2− α)z

(z ∈ U) (2)

for certain real values α > 1. The subordination (2) gives:∣∣∣∣ Ln+λ( f (z))
z

− α

2

∣∣∣∣ < α

2
(z ∈ U). (3)

Proof. With condition (2), there exists an analytic function w(z) satisfying the properties
needed for the definition of subordination and

Ln+λ( f (z))
z

=
α(1 + w(z))

α + (2− α)w(z)
(z ∈ U). (4)

Using relation (4) have that

|w(z)| =

∣∣∣∣∣∣∣∣
α

(
Ln+λ( f (z))

z
− 1
)

α− (2− α)
Ln+λ( f (z))

z

∣∣∣∣∣∣∣∣ < 1 (z ∈ U),

and that

2
∣∣∣∣ Ln+λ( f (z))

z

∣∣∣∣2 − α

(
Ln+λ( f (z))

z
+

(
Ln+λ( f (z))

z

))
< 0 (5)

for z ∈ U. Hence, inequality (3) holds.

Remark 1. The result (3) in Theorem 1 shows us that

0 < Re
(

Ln+λ( f (z))
z

)
< α (z ∈ U)

for α > 1.

Let us consider the analytic function f (z) such that

Ln−1+λ( f (z)) =
z(4 + 5z− 2z2)

(2− z)2 (z ∈ U).
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Then, we see that

Ln+λ( f (z)) =
2
z

∫ z

0
Ln−1+λ( f (t))dt

=
2
z

∫ z

0

t(4 + 5t− 2t2)

(2− t)2 dt

=
2z(1 + z)

2− z
. (6)

The function obtained in (6) can be used in subordination (2) and satisfies the inequal-
ity (3) for α = 4.

For an analytic function f (z), the following result can be proved.

Theorem 2. If f (z) ∈ A satisfies

Re
(

Ln−1+λ( f (z))
Ln+λ( f (z))

− 1
)
<

1
4(α− 1)

(z ∈ U) (7)

for 1 < α ≤ 2 or

Re
(

Ln−1+λ( f (z))
Ln+λ( f (z))

− 1
)
<

α− 1
4

(z ∈ U) (8)

for α > 2, then ∣∣∣∣ Ln+λ( f (z))
z

− α

2

∣∣∣∣ < α

2
(z ∈ U).

Proof. Consider an analytic function w(z) that satisfies relation (4). We know that w(0) = 0,
and we obtain from (4) that

z(Ln+λ( f (z)))′

Ln+λ( f (z))
− 1 =

zw′(z)
w(z)

(
w(z)

1− w(z)
− (2− α)w(z)

α + (2− α)w(z)

)
. (9)

Since
z(Ln+λ( f (z)))′ = 2Ln−1+λ( f (z))− Ln+λ( f (z)),

Equation (9) becomes

Ln−1+λ( f (z))
Ln+λ( f (z))

− 1 =
zw′(z)
2w(z)

(
w(z)

1− w(z)
− (2− α)w(z)

α + (2− α)w(z)

)
.

For the considered function w(z), assume that there exists a point z0 ∈ U such that

max
|z|≤|z0|

|w(z)| = |w(z0)| = 1.

In this situation, we write w(z0) = eiθ (0 ≤ θ < 2π) and

z0w′(z0) = kw(z0) (k ≥ 1).

Using the properties seen above, we have

Re
(

Ln−1+λ( f (z0))

Ln+λ( f (z0))
− 1
)
=

k
2

Re
(

w(z0)

1− w(z0)
− (2− α)w(z0)

α + (2− α)w(z0)

)
=

k
2

(
1
2
− (2− α)(2− α + α cos θ)

α2 + (2− α)2 + 2α(2− α) cos θ

)
.

Considering a function g(t) given by

44



Fractal Fract. 2023, 7, 42

g(t) =
2− α + αt

α2 + (2− α)2 + 2α(2− α)t
(t = cos θ),

we have

g′(t) =
4α(α− 1)

(α2 + (2− α)2 + 2α(2− α)t)2 > 0.

Since g(t) is increasing for t = cos θ, we obtain for 1 < α ≤ 2 that

Re
(

Ln−1+λ( f (z0))

Ln+λ( f (z0))
− 1
)
≥ k

4(α− 1)
≥ 1

4(α− 1)
(10)

and

Re
(

Ln−1+λ( f (z0))

Ln+λ( f (z0))
− 1
)
≥ (α− 1)k

4
≥ α− 1

4
(α > 2). (11)

Since (10) contradicts (7) and (11) contradicts (8), we say that there is no w(z) such that
w(0) = 0 and |w(z0)| = 1 for z0 ∈ U. This implies that

|w(z)| =

∣∣∣∣∣∣∣∣
α

(
Ln+λ( f (z))

z
− 1
)

α− (2− α)
Ln+λ( f (z))

z

∣∣∣∣∣∣∣∣ < 1 (z ∈ U),

that is the inequality (5).

Next, our result is

Theorem 3. Consider the analytic function f (z) satisfying the conditions

Re
(

Ln+λ( f (z))
Ln+1+λ( f (z))

− Ln−1+λ( f (z))
Ln+λ( f (z))

− 1
)
<

1
4(α− 1)

(z ∈ U),

for 1 < α ≤ 2 or

Re
(

Ln+λ( f (z))
Ln+1+λ( f (z))

− Ln−1+λ( f (z))
Ln+λ( f (z))

− 1
)
<

α− 1
4

(z ∈ U),

for α > 2.
Then, ∣∣∣∣ Ln+1+λ( f (z))

Ln+λ( f (z))
− α

2

∣∣∣∣ < α

2
(z ∈ U).

Proof. Consider a function w(z) satisfying

Ln+1+λ( f (z))
Ln+γ( f (z))

=
α(1 + w(z))

α + (2− α)w(z)
(z ∈ U).

This shows that w(0) = 0.
Using

z(Ln+1+λ( f (z)))′ = 2Ln+λ( f (z))− Ln+1+λ( f (z))

and
z(Ln+λ( f (z)))′ = 2Ln−1+λ( f (z))− Ln+λ( f (z)),

we obtain that

Ln+λ( f (z))
Ln+1+λ( f (z))

− Ln−1+λ( f (z))
Ln+λ( f (z))

− 1 =
zw′(z)
2w(z)

(
w(z)

1− w(z)
− (2− α)w(z)

α + (2− α)w(z)

)
.
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From this point on, the proof of this theorem is completed by following the same steps as
for the proof of Theorem 2.

3. Applications of Subordinations by Suffridge

We first introduce the following lemma proved by Suffridge [27].

Lemma 2 ([27]). If a function p(z) is analytic in U with p(0) = 1 and satisfies

zp′(z) ≺ h(z) (z ∈ U)

for some starlike function h(z), then

p(z) ≺
∫ z

0

h(t)
t

(z ∈ U).

Applying the above lemma, we have

Theorem 4. Consider the analytic function f (z) satisfying the following subordination

Ln−1+λ( f (z))− Ln+λ( f (z))
z

≺ 1 + (1− 2α)z
2(1− z)

(z ∈ U),

for certain real values α (0 ≤ α < 1).
Then

Ln+λ( f (z))
z

≺ log
( √

z
(1− z)1−α

)
(z ∈ U).

Proof. Consider the analytic function p(z) with p(0) = 1 given by:

p(z) =
Ln+λ( f (z))

z
.

In addition, consider the starlike function of order α h(z) given by

h(z) =
1 + (1− 2α)z

1− z
(z ∈ U),

for 0 ≤ α < 1.
Since

zp′(z) =
z(Ln+λ( f (z)))′ − Ln+λ( f (z))

z

=
2(Ln−1+λ( f (z))− Ln+γ( f (z)))

z

and ∫ z

0

h(t)
t

dt =
∫ z

0

(
1
t
− 2(1− α)

1− t

)
dt

= log
(

z
(1− z)2(1−α)

)
,

by applying Lemma 2, we obtain that

Ln−1+λ( f (z))− Ln+λ( f (z))
z

≺ 1
2

log
(

z
(1− z)2(1−α)

)
(z ∈ U).

Hence, the proof is completed.
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Taking α =
1
2

in Theorem 4, the following corollary emerges:

Corollary 1. If f (z) ∈ A satisfies

Ln−1+λ( f (z))− Ln+λ( f (z))
z

≺ 1
1− z

(z ∈ U),

then
Ln+λ( f (z))

z
≺ 1

2
log
(

z
1− z

)
(z ∈ U).

Hallenbeck and Ruscheweyh [28] obtained the following form for Lemma 2 given by
Suffridge:

Lemma 3 ([28]). If a function p(z) is analytic in U with p(0) = 1 and satisfies

p(z) + zp′(z) ≺ h(z) (z ∈ U)

for some convex function h(z), then

p(z) ≺ 1
z

∫ z

0
h(t)dt (z ∈ U).

Now, we prove the following result.

Theorem 5. Consider the analytic function f (z) satisfying the subordination

2
Ln−1+λ( f (z))

z
− Ln+λ( f (z))

z
≺ log

(
z

(1− z)2(1−α)

)
(z ∈ U),

for certain real values of α (0 ≤ α < 1).
Then,

Ln+λ( f (z))
z

≺ log
(

z
(1− z)2(1−α)

)
+

2(1− α)

z
log(1− z) + (1− 2α) (z ∈ U).

Proof. Consider the analytic function p(z), z ∈ U, with p(0) = 1, given by

p(z) =
Ln+λ( f (z))

z
.

Using it, we can write:

p(z) + zp′(z) = 2
Ln−1+λ( f (z))

z
− Ln+λ( f (z))

z
.

Further, we know that a function h(z) given by

h(z) = log
(

z
(1− z)2(1−α)

)
(z ∈ U)

satisfies

zh′(z) =
1 + (1− 2α)z

1− z
.
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Thus, h(z) is convex in U because zh′(z) is starlike of order α in U. Applying Lemma 3, we
obtain

Ln+λ( f (z))
z

≺ 1
z

∫ z

0

(
log
(

t
(1− t)2(1−α)

))
dt

=
1
z

∫ z

0
(log t− 2(1− α) log(1− t))dt

= log
(

z
(1− z)2(1−α)

)
+

2(1− α)

z
log(1− z) + (1− 2α) (z ∈ U).

Choosing α =
1
2

in Theorem 5, we obtain the following corollary.

Corollary 2. Consider the analytic function f (z) satisfying the following subordination:

2
Ln−1+λ( f (z))

z
− Ln+λ( f (z))

z
≺ log

(
z

1− z

)
(z ∈ U)

Then,
Ln+λ( f (z))

z
≺ log

(
z

1− z

)
+

1
z

log(1− z) (z ∈ U).

Theorem 6. Consider the analytic function f (z) satisfying the following subordination:

2
Ln−1+λ( f (z))

z
− Ln+λ( f (z))

z
≺ 1 + z

1− z
(z ∈ U).

Then,
Ln+λ( f (z))

z
≺ 2

z
log
(

1
1− z

)
− 1 (z ∈ U). (12)

Proof. Letting

p(z) =
Ln+λ( f (z))

z
and h(z) =

1 + z
1− z

,

we have that p(z) is analytic in U with p(0) = 1, and h(z) is convex in U. Since

1
z

∫ z

0
h(t)dt =

1
z

∫ z

0

(
1 + t
1− t

)
dt

=
2
z

log
(

1
1− z

)
− 1,

we have the subordination (12).

Next, the lemma given below, proved by Eenigenburg, Miller, Mocanu and Reade [29],
is used for obtaining a new result.

Lemma 4 ([29]). Let h(z) be convex in U with Re(βh(z) + γ) > 0 (β �= 0). If p(z) is analytic
in U with p(0) = h(0), then the subordination

p(z) +
zp′(z)

βp(z) + γ
≺ h(z) (z ∈ U)

satisfies
p(z) ≺ h(z) (z ∈ U).

With this lemma, we have
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Theorem 7. Consider the analytic function f (z) satisfying the following subordination:

Ln+1+λ( f (z))− 2Ln−1+λ( f (z))
Ln+λ( f (z))

+
2Ln+λ( f (z))
Ln+1+λ( f (z))

≺ 1 + (1− 2α)z
1− z

(z ∈ U),

for 0 ≤ α < 1.
Then,

Ln+1+λ( f (z))
Ln+λ( f (z))

≺ 1 + (1− 2α)z
1− z

(z ∈ U).

Proof. Consider the analytic function p(z), z ∈ U, with p(0) = 1, given by

p(z) =
Ln+1+λ( f (z))

Ln+λ( f (z))
.

In addition, consider the convex function of order α given by

h(z) =
1 + (1− 2α)z

1− z
, 0 ≤ α < 1,

h(0) = 1.
Taking β = 1 and γ = 0 in Lemma 4, we say that

p(z) +
zp′(z)
p(z)

≺ 1 + (1− 2α)z
1− z

(z ∈ U)

implies

p(z) ≺ 1 + (1− 2α)z
1− z

(z ∈ U).

Since
zp′(z)
p(z)

= 2
(

Ln+λ( f (z))
Ln+1+λ( f (z))

− Ln−1+λ( f (z))
Ln+λ( f (z))

)
,

we prove the theorem with Lemma 4.

Next, we consider the following lemma proved by Nunokawa ([30,31]).

Lemma 5 ([30,31]). Let a function p(z) be analytic in U with p(0) = 1. If there exists a point z0
(|z0| < 1) such that

| arg(p(z))| < π

2
β (|z| < |z0|)

and
| arg(p(z0))| =

π

2
β

for some real β > 0, then
z0 p′(z0)

p(z0)
=

2ik arg(p(z0))

π

for some real k such that

k ≥ 1
2

(
a +

1
a

)
> 1,

where
(p(z0))

1
β = ±ia (a > 0).

Now, we derive

49



Fractal Fract. 2023, 7, 42

Theorem 8. Let f (z) ∈ A and

F(z) =
Ln+λ( f (z))− αz

(1− α)z
+ 2

Ln−1+λ( f (z))− αz
Ln+λ( f (z))− αz

− 2 (13)

for 0 ≤ α < 1. If f (z) satisfies

F(z)2 − 1 ≺ 16z
(1− z)2 (z ∈ U), (14)

then,

Re
(

Ln+λ( f (z))
z

)
> α (z ∈ U).

Proof. Consider the analytic function p(z), z ∈ U, with p(0) = 1, given by:

p(z) =
Ln+λ( f (z))

z
.

For such p(z), assume that there exists a point z0 (|z0| < 1) such that

Re
(

p(z)− α

1− α

)
> 0 (|z| < |z0| < 1)

and

Re
(

p(z0)− α

1− α

)
= 0.

If
p(z0)− α

1− α
�= 0,

Lemma 5 gives us that

z0 p′(z0)

p(z0)− α
=

2ik
π

arg
(

p(z0)− α

1− α

)
=

2ik
π

arg(p(z0)− α)

for some real k such that k ≥ 1
2

(
a +

1
a

)
> 1 with

(
p(z0)− α

1− α

) 1
β

= ±ia (a > 0).

It follows from the above that{
p(z0)− α

1− α
+

z0 p′(z0)

p(z0)− α

}
− 1 = F(z0)

2 − 1

= (±ia± ik)2 − 1

≤ −
(

a +
a2 + 1

2a

)2

− 1.

Let us consider a function h(a) given by

h(a) = a +
a2 + 1

2a
(a > 0).
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Then, h(a) satisfies

h(a) ≥ h

(√
1
3

)
=
√

3.

This gives us that {
p(z0)− α

1− α
+

z0 p′(z0)

p(z0)− α

}2

− 1 = F(z0)
2 − 1 ≤ −4.

Here, we define a function g(z) by

g(z) =
16z

(1− z)2 (z ∈ U).

Then, g(z) maps U onto the domain with the slit (−∞,−4). This contradicts our condi-
tion (14).

Having the contradiction, we conclude that p(z) satisfies the condition

Re
(

p(z)− α

1− α

)
= Re

⎛⎜⎝
Ln+λ( f (z))

z
− α

1− α

⎞⎟⎠ > 0,

for all z ∈ U. Hence, the proof of the theorem is completed.

Next, our theorem is

Theorem 9. Consider a function F(z) given by (13) where f (z) is analytic in U and 0 ≤ α < 1.
If F(z) satisfies

F(z) ≺ 1 + z
1− z

(z ∈ U), (15)

then

Re
(

Ln+λ( f (z))
z

)
> α (z ∈ U).

Proof. Consider the analytic function p(z) given by

p(z) =
Ln+λ( f (z))

z
.

Then, there exists a point z0 (|z0| < 1) such that

Re
(

p(z)− α

1− α

)
> 0 (|z| < |z0| < 1) (16)

and

Re
(

p(z0)− α

1− α

)
= 0. (17)

If
p(z0)− α

1− α
= 0,

by Lemma 5, we have
z0 p′(z0)

p(z0)− α
=

2ik
π

arg(p(z0)− α)
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for some real k ≥ 1
2

(
a +

1
a

)
> 1 with

p(z0)− α

1− α
= ±ia (a > 0).

With the properties obtained so far, we can write

p(z0)− α

1− α
+

z0 p′(z0)

p(z0)− α
= F(z0) = ±i(a + k).

Since

Re
(

1 + z
1− z

)
> 0 (z ∈ U),

we say that

F(z) ⊀
1 + z
1− z

(z ∈ U).

This means that there is no z0 (|z0| < 1) such that (16) and (17) are satisfied. Hence, we
obtain the stated conclusion of the theorem.

Re(p(z)− α) = Re
(

Ln+λ( f (z))
z

− α

)
> 0 (z ∈ U).

Remark 2. Considering f (z) an analytic function in U given by

Ln+λ( f (z))
z

=
1

1− z

and α = 0 in Theorem 9, we have that

F(z) =
1 + z
1− z

(z ∈ U).

Therefore, f (z) satisfies the subordination (15) for α = 0. For such f (z), we know that

Re
(

Ln+λ( f (z))
z

)
>

1
2
> 0 (z ∈ U).

4. Results Regarding Strong Properties of Order α

Let f (z) ∈ A and Ln+λ( f (z)) be defined by (1) for n = 0, 1, 2, . . . and 0 ≤ λ ≤ 1. For
f (z) ∈ A satisfying

Re
(

Ln+λ( f (z))
z

)
> α (z ∈ U),

f (z) is said to be strongly of order α in U if f (z) satisfies∣∣∣∣arg
(

Ln+λ( f (z))
z

)∣∣∣∣ < π

2
α (z ∈ U),

where 0 ≤ α < 1.
If f (z) ∈ A satisfies ∣∣∣∣arg

(
z f ′(z)

f (z)

)∣∣∣∣ < π

2
α (z ∈ U)
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for 0 ≤ α < 1, then f (z) is said to be strongly starlike of order α in U. In addition, if
f (z) ∈ A satisfies ∣∣∣∣arg

(
1 +

z f ′′(z)
f ′(z)

)∣∣∣∣ < π

2
α (z ∈ U)

for 0 ≤ α < 1, then we say that f (z) is strongly convex of order α in U.
Let us consider a function w(z) defined by

w(z) =
(

1 + z
1− z

)α

(z ∈ U)

for 0 ≤ α < 1, then we see that

arg w(z) = α arg
(

1 + z
1− z

)
=

π

2
α (z ∈ U).

Thus, a function f (z) given by

f (z) = exp
(∫ z

0

(
1 + t
1− t

)α

dt
)

is strongly starlike of order α in U and a function f (z) ∈ A given by

f ′(z) =
1
z

exp
(∫ z

0

(
1 + t
1− t

)α

dt
)

is strongly convex of order α in U.
Now, we derive

Theorem 10. If f (z) ∈ A satisfies∣∣∣∣ Ln−1+λ( f (z))
Ln+λ( f (z))

− 1
∣∣∣∣ < α

4
Re
(

1 + βz
1− z

)
(z ∈ U)

for some real α (0 ≤ α < 1) and some real β (β �= −1), then∣∣∣∣arg
(

Ln+λ( f (z))
z

)∣∣∣∣ < π

2
α (z ∈ U).

Proof. Define a function p(z) by

p(z) =
Ln+λ( f (z))

z
.

Then, p(z) is analytic in U, and p(0) = 1. This function p(z) satisfies

zp′(z)
p(z)

= 2
(

Ln−1+λ( f (z))
Ln+λ( f (z))

− 1
)

.
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It follows from the above that∣∣∣∣arg
(

Ln+λ( f (z))
z

)∣∣∣∣ = | arg(p(z))| = |Im(log(p(z)))| =
∣∣∣∣Im ∫ z

0
(log(p(t)))′dt

∣∣∣∣
=

∣∣∣∣Im ∫ z

0

p′(t)
p(t)

dt
∣∣∣∣ = ∣∣∣∣Im ∫ z

0

p′(ρeiθ)

p(ρeiθ)
eiθdρ

∣∣∣∣
≤
∫ r

0

∣∣∣∣Im( p′(ρeiθ)

p(ρeiθ)
eiθ
)∣∣∣∣dρ ≤

∫ r

−r

∣∣∣∣ p′(ρeiθ)

p(ρeiθ)

∣∣∣∣dρ

≤ r
2

∫ 2π

0

∣∣∣∣ p′(reiθ)

p(reiθ)

∣∣∣∣dθ =
1
2

∫ 2π

0

∣∣∣∣ reiθ p′(reiθ)

p(reiθ)

∣∣∣∣dθ

=
∫ 2π

0

∣∣∣∣ Ln−1+λ( f (reiθ))

Ln+λ( f (reiθ))
− 1
∣∣∣∣dt <

α

4

∫ 2π

0
Re
(

1 + βreiθ

1− reiθ

)
dθ

=
α

4

∫ 2π

0

{
1− β

2
+

(
1 + β

2

)
1− r2

1 + r2 − 2r cos θ

}
dθ =

π

2
α,

because by Poisson integral

1
2π

∫ 2π

0

1− r2

1 + r2 − 2r cos θ
dθ = 1.

This completes the proof of the theorem.

Example 1. Consider a function f (z) ∈ A given by

Ln+λ( f (z)) = z
(

2
2− z

)3α

(z ∈ U),

with 0 ≤ α < 1. Note that a function

w(z) =
2

2− z

satisfies ∣∣∣∣w(z)− 4
3

∣∣∣∣ < 2
3

(z ∈ U)

and
| arg w(z)| < π

6
(z ∈ U).

This gives us that ∣∣∣∣arg
(

Ln+λ( f (z))
z

)∣∣∣∣ < π

2
α (z ∈ U).

For such f (z), we have∣∣∣∣ Ln−1+λ( f (z))
Ln+λ( f (z))

− 1
∣∣∣∣ = 3

2
α

∣∣∣∣ z
2− z

∣∣∣∣ < 3
2

α (z ∈ U).

Thus, if we consider a real β such that β ≤ −11, then f (z) satisfies∣∣∣∣ Ln−1+λ( f (z))
Ln+λ( f (z))

− 1
∣∣∣∣ < 3

2
α ≤ α(1− β)

8
<

α

4
Re
(

1 + βz
1− z

)
,

for z ∈ U.
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5. Conclusions

The outcome of this paper falls within the research topic which concerns incorporating
fractional calculus in geometric function theory by defining new fractional operators and
conducting studies involving the theory of differential subordination. The operator used
for the investigation denoted by Lλ( f (z)) is introduced in Definition 1 using fractional
integral of order λ defined in [28,29] and the Libera integral operator [5]. The necessary
known definitions regarding the analytic functions are shown in the Introduction. Section 2
contains three theorems that show the results of the study conducted on the operator
Lλ( f (z)) by applying a famous lemma from Miller and Mocanu [30,32] which is presented
at the beginning of this section. Section 3 starts with recalling the lemma from Suffridge [33]
which is used for obtaining the new results regarding the operator Lλ( f (z)) contained in
Theorem 4 and Corollary 1. This lemma was modified by Hallenbeck and Ruscheweyh [34].
Their resulting lemma is first listed, and then Theorems 5 and 6 and Corollary 2 present the
new results obtained by applying it to the operator Lλ( f (z)). A lemma from Eenigenburg,
Miller, Mocanu and Reade [35] is next stated and used for obtaining the new result involving
the operator Lλ( f (z)) presented in Theorem 7. A lemma proved by Nunokawa [36,37]
is next listed and applied to the operator Lλ( f (z)) for the new outcome presented in
Theorems 8 and 9. In Section 4, the basic definition regarding strong starlikeness and
strong convexity of order α are recalled, and a new result concerning the strong starlikeness
of order α of the operator Lλ( f (z)) is proved. An example is also provided in order to show
a certain application of the theoretical result presented in Theorem 10.

As future uses of the results presented here, the operator Lλ( f (z)) given by (1) can be
applied for defining new subclasses of analytic functions with certain geometric properties
given by the characteristics of this operator already proven in this paper. The classes
could be further investigated considering the strong starlikeness of order α of the operator
Lλ( f (z)) having as inspiration recent studies such as [39].
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39. Sümer Eker, S.; Şeker, B.; Çekiç, B.; Acu, M. Sharp Bounds for the Second Hankel Determinant of Logarithmic Coefficients for

Strongly Starlike and Strongly Convex Functions. Axioms 2022, 11, 369. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

56



Citation: Khan, M.B.; Cătaş, A.;
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Abstract: This paper’s main goal is to introduce left and right exponential trigonometric convex
interval-valued mappings and to go over some of their important characteristics. Additionally,
we demonstrate the Hermite–Hadamard inequality for interval-valued functions by utilizing
fractional integrals with exponential kernels. Moreover, we use the idea of left and right expo-
nential trigonometric convex interval-valued mappings to show various findings for midpoint-
and Pachpatte-type inequalities. Additionally, we show that the results provided in this paper
are expansions of several of the results already demonstrated in prior publications The suggested
research generates variants that are applicable for conducting in-depth analyses of fractal theory,
optimization, and research challenges in several practical domains, such as computer science,
quantum mechanics, and quantum physics.

Keywords: left and right exponential trigonometric convex interval-valued mappings;
Riemann–Liouville fractional integral operators having exponential kernels; Hermite–Hadamard
inequalities

1. Introduction

It is common knowledge that mathematical subjects such as mathematical economy,
probability theory, optimal control theory, and others depend heavily on convex function
and convexity. Classical convexity has been expanded and generalized over time to include
harmonic convexity, h-convexity, and p-convexity, among others. In reality, inequality is
the basis for the ideas of convexity and convex function, and its significance cannot be
overstated. One of the most significant classical inequalities, the Hermite–Hadamard (HH)
inequality below, has recently received a lot of attention.

For a convex mapping : K → R on an interval K = [ , ], the HH inequality is
written as: (

+

2

)
≤ 1

−
∫

(κ)dκ ≤ ( ) + ( )

2
. (1)

For all , ∈ K, with K being a convex set. If is concave, then (1) is reversed.
The following inequality as the weighted generalization of (1) was established

by Fejér in [1]. This important generalization of the HH inequality is known as the
HH–Fejér inequality.
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Let us consider : K = [ , ]→ R a convex mapping on a convex set K, and , ∈ K.
Then, we have (

+

2

)
≤ 1∫

C(κ)dκ

∫
(κ)C(κ)dκ ≤ ( ) + ( )

2
. (2)

If C(κ) = 1, then we obtain (1) from (2). For a concave mapping, (2) is reversed.
Different inequalities can be derived using distinct symmetric convex mappings, C(κ).

Integral inequality (1) and (2) in various variants have also been extensively examined
in [2–10] due to the differences between the ideas of convexity. In order to further their study
and take advantage of the growing significance of fractional integrals, numerous writers
have combined fractional integrals and Hermite–Hadamard-type inequalities. Recent
advances in this field in different areas of mathematics can easily be seen and we refer
readers to references [11–22].

Some fractional Hermite–Hadamard-type inequalities have been discovered in this
way; for more information, see references [23–32]. This field of inequalities has many
applications. Similarly, various other types of inequalities have found the bounds of mean
inequalities. For more information, see also [33–43].

On the other hand, Moore initially presented interval analysis as a key method to
manage interval uncertainty [44]. This has a wide range of applications [45–54]. Recently,
Khan et al. also contributed to this field and defined different types of inequalities using
crip theory and fuzzy theory, see [55–58].

In particular, researchers such as Chalco-Cano et al. [59,60], Costa and Román-Flores [61],
Zhao et al. [62,63], An et al. [64], and others have studied a number of classical inequalities
with interval-valued functions. Budak et al. [65] demonstrated the fractional Hermite–
Hadamard inequality for the interval convex function as an additional extension. Since
then, the authors of [66–76] have extensively investigated various additional improvements
to and expansions of Hermite–Hadamard inequalities for different convex fuzzy-valued
functions. Additionally, in [77], some Hermite–Hadamard- and Jensen-type inequalities
for up and down convex fuzzy-number-valued functions were discovered. In this study,
several Hermite–Hadamard-type inequalities for interval-valued left and right exponential
trigonometric functions are established. The earlier inequalities described in [78–93] are
generalized by our findings. For more information, see [94–99].

We establish some additional modifications for interval fractional Hermite–Hadamard-
type inequalities as a result of [77,78,85,86]. Our findings clarify some previous questions.
Furthermore, it is possible that the findings will be acknowledged as important approaches
to investigating the study of interval-valued differential equations, interval optimization,
and interval vector spaces, among other things. In Section 2, we provide an introduction.
The idea of left and right exponential trigonometric I-V·M is introduced in Section 3 along
with several intervals fractional Hermite–Hadamard-type inequalities that are proven.
Finally, several examples are provided in Section 4.

2. Preliminaries

Let XC be the space of all closed and bounded intervals of R and Л ∈ XC defined by

Л = [Л∗, Л∗] = {κ ∈ R| Л∗ ≤ κ ≤ Л∗},(Л∗, Л∗ ∈ R). (3)

If Л∗ = Л∗, then Л is said to be degenerate. In this article, all intervals will be non-
degenerate intervals. If Л∗ ≥ 0, then [Л∗, Л∗] is called a positive interval. The set of all
positive intervals is denoted by X+

C and defined as

X+
C = {[Л∗, Л∗] : [Л∗, Л∗] ∈ XC and Л∗ ≥ 0}.
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Let λ ∈ R and λ ·Л be defined by

λ ·Л =

⎧⎨⎩
[λЛ∗, λЛ∗] if λ > 0,

{0} if λ = 0,
[λЛ∗Л∗] if λ < 0.

(4)

Then, the Minkowski difference −Л, addition Л + and Л× for Л, ∈ XC are
defined by

[ ∗, ∗] + [Л∗, Л∗] = [ ∗ +Л∗, ∗ +Л∗], (5)

[ ∗, ∗]× [Л∗, Л∗] = [min{ ∗Л∗, ∗Л∗, ∗Л∗, ∗Л∗}, max{ ∗Л∗, ∗Л∗, ∗Л∗, ∗Л∗}] (6)

[ ∗, ∗]− [Л∗, Л∗] = [ ∗ −Л∗, ∗ −Л∗]. (7)

Remark 1. For given [ ∗, ∗], [Л∗, Л∗] ∈ XC, we say that [ ∗, ∗] ≤p [Л∗, Л∗] if and only if
∗ ≤ Л∗, ∗ ≤ Л∗ is a partial interval order relation [84].

For [ ∗, ∗], [Л∗, Л∗] ∈ XC, the Hausdorff–Pompeiu distance between intervals
[ ∗, ∗] and [Л∗, Л∗] is defined by

dH([ ∗, ∗], [Л∗, Л∗]) = maκ{| ∗ −Л∗|, | ∗ −Л∗|}. (8)

It is a familiar fact that (XC, dH) is a complete metric space, see [79,82,83].

3. Fractional Integral Operators of Real- and Interval-Valued Mappings

Now, we define and discuss some properties of fractional integral operators of real-
and interval-valued mappings.

Theorem 1. If : [ , ] ⊂ R→ XC is an interval-valued mapping (I·V·M) satisfying that
(κ) =

[
∗(κ),

∗(κ)
]
, then is Aumann integrable (IA-integrable) over [ , ] when and

only when ∗(κ) and ∗(κ) are both integrable over[ , ] such that [79,81]

(IA)
∫

(κ)dκ = [
∫

∗(κ)dκ,
∫

∗(κ)dκ]. (9)

Definition 1. Letα > 0 and L([ , ], R) be the collection of all Lebesgue-measurable mapping on
[ , ]. Then, the left and right Riemann–Liouville fractional integral with exponential kernels in
connection of ∈ L([ , ],R) with order α > 0 are, respectively, defined by [85]:

Iα
+ (κ) =

1
α

∫ κ

e(−
1−α

α (κ−v)) (v)dv, (κ > ), (10)

and
Iα

− (κ) =
1
α

∫
κ

e(−
1−α

α (v−κ)) (v)dv, (κ < ) (11)

Definition 2. Let α > 0 andL
(
[ , ], XC

)
be the collection of all Lebesgue-measurable interval-

valued mapping on [ , ]. Then, the left and right Riemann–Liouville fractional integral with
exponential kernels in connection of ∈ L

(
[ , ], XC

)
with order α > 0 are, respectively,

defined by [86]

Iα
+ (κ) =

[
Iα

+ ∗(κ), Iα
+

∗(κ)
]
=

1
α

∫ κ

e(−
1−α

α (κ−v))[
∗(v),

∗(v)
]
dv, (κ > ), (12)

and
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Iα
− (κ) =

[
Iα

− ∗(κ), Iα
−

∗(κ)
]
=

1
α

∫
κ

e(−
1−α

α (v−κ))[
∗(v),

∗(v)
]
dv, (κ < ), (13)

Definition 3. The mapping : [ , ]→ R is called exponential trigonometric convex mapping
on [ , ] if [78]

(vκ + (1− v)s) ≤ sin πv
2

e1−v (κ) +
cos πv

2
ev

(s). (14)

For all κ, s ∈ [ , ], v ∈ [0, 1], and κ ∈ [ , ]. If (14) is reversed, then is called
exponential trigonometric concave mapping on [ , ].

4. Left and Right Exponential Trigonometric Convex Interval-Valued Functions

In following results, we will use left and right Riemann–Liouville fractional integrals
with left and right exponential kernels, and some nontrivial examples are also given to
prove the validity of these integrals and results.

Definition 4. The I-V·M : [ , ]→ XC is called a left and right exponential trigonometric
convex I-V·M on [ , ] if

(vκ + (1− v)s) ≤p
sinπv

2
e1−v (κ) +

cosπv
2

ev
(s). (15)

For all κ, s ∈ [ , ], v ∈ [0, 1], where (κ) ≥p 0 for all κ ∈ [ , ]. If (15) is reversed, then
is called a left and right exponential trigonometric concave I-V·M on [ , ].

Theorem 2. Let K be an invex set and : K → XC be a F-N-V·M given by

(κ) =
[

∗(κ),
∗(κ)

]
, ∀ κ ∈ K. (16)

For all κ ∈ K. Then is a left and right exponential trigonometric convex F-N-V·M on K if
and only if ∗(κ) and ∗(κ) are both exponential trigonometric convex mappings.

Proof. Consider that ∗(κ) and ∗(κ) are both exponential trigonometric convex and
concave mappings on K, respectively. Then, from (14), we have

∗(vκ + (1− v)s) ≤ sin πv
2

e1−v ∗(κ) +
cos πv

2
ev ∗(s), ∀ κ, s ∈ K, v ∈ [0, 1],

and

∗(vκ + (1− v)s) ≤ sin πv
2

e1−v
∗(κ) +

cos πv
2

ev
∗(s), ∀ κ, s ∈ K, v ∈ [0, 1].

Then, by (16), (8), and (10), we obtain

(vκ + (1− v)s)
=
[

∗(vκ + (1− v)s), ∗(vκ + (1− v)s)
]
,

≤p
sin πv

2
e1−v
[

∗(κ),
∗(κ)

]
+

cos πv
2

ev
[

∗(s),
∗(s)
]
,

that is

(vκ + (1− v)s) ≤p
sin πv

2
e1−v (κ) +

cos πv
2

ev
(s),∀ κ, s ∈ K, v ∈ [0, 1].

Hence, is a left and right exponential trigonometric convex F-N-V·M on K.
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Conversely, let be a left and right exponential trigonometric convex F-N-V·M on K.
Then, for all κ, s ∈ K and v ∈ [0, 1], we have

(vκ + (1− v)s) ≤p
sin πv

2
e1−v (κ) +

cos πv
2

ev
(s).

Therefore, from (16), we have

(vκ + (1− v)s) =
[

∗(vκ + (1− v)s), ∗(vκ + (1− v)s)
]
.

Again, from (16), (6), and (8), we obtain

sin πv
2

e1−v (κ) +
cos πv

2
ev

(κ) =

[
sin πv

2
e1−v ∗(κ),

sin πv
2

e1−v
∗(κ)

]
+

[
cos πv

2
ev ∗(s),

cos πv
2

ev
∗(s)
]

.

For all κ, s ∈ K and v ∈ [0, 1]. Then, by left and right exponential trigonometric
convexity of , we have for all κ, s ∈ K and v ∈ [0, 1] such that

∗(vκ + (1− v)s) ≤ sin πv
2

e1−v ∗(κ) +
cos πv

2
ev ∗(s),

and
∗(vκ + (1− v)s) ≤ sin πv

2
e1−v

∗(κ) +
cos πv

2
ev

∗(s).

Hence, the result follows.�

Remark 2. If ∗(κ) =
∗(κ), then we obtain the classical definition of exponential trigonometric

convex mappings, see [78].

We obtained some new definitions from the literature which will be helpful in investi-
gating some classical and new results as special cases of the main results.

Definition 5. Let : [ , ]→ XC be an I-V·M. Then, (κ) is given by

(κ) =
[

∗(κ),
∗(κ)

]
.

For all κ ∈ [ , ]. Then, is a lower left and right exponential trigonometric convex (concave)
I-V·M on [ , ] if and only if

∗(vκ + (1− v)s) ≤ (≥) sin πv
2

e1−v ∗(κ) +
cos πv

2
ev ∗(s),

and
∗(vκ + (1− v)s) =

sin πv
2

e1−v
∗(κ) +

cos πv
2

ev
∗(s)

Definition 6. Suppose that : [ , ]→ XC is an I-V·M that is defined by

(κ) =
[

∗(κ),
∗(κ)

]
For all κ ∈ [ , ]. Then, is an upper left and right exponential trigonometric convex

(concave) I-V·M on [ , ] if and only if

∗(vκ + (1− v)s) =
sin πv

2
e1−v ∗(κ) +

cos πv
2

ev ∗(s),

and
∗(vκ + (1− v)s) ≤ (≥) sin πv

2
e1−v

∗(κ) +
cos πv

2
ev

∗(s)
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5. Riemann–Liouville Fractional Integrals Hermite–Hadamard-Type Inequalities

In the following section, we use the new concept of left and right exponential trigono-
metric convex interval-valued mapping to illustrate a few Riemann–Liouville fractional
integrals Hermite–Hadamard-type inequalities having exponential kernels.

Theorem 3. Let : [ , ]→ X+
C be an I-V·M on [ , ] given by (κ) =

[
∗(κ),

∗(κ)
]

for all κ ∈ [ , ]. If is a left and right exponential trigonometric convex I-V·M on [ , ] and
∈ L
(
[ , ], X+

C
)
, then√

e
2

(
+

2

)
≤p

1− α

2(1− e−ρ)

[
Iα

+ ( ) + Iα
− ( )

]
≤p

ρ

1− e−ρ C(ρ)
( ) + ( )

2
. (17)

If (κ) is a left and right exponential trigonometric concave I-V·M, then√
e
2
(

+
2
)
≥p

1−α
2(1−e−ρ)

[
Iα

+ ( )

+Iα
− ( )

]
≥p

ρ
1−e−ρ C(ρ) ( )+ ( )

2

(18)

where

C(ρ) =
4ρ + 2πe−ρ−1 + 4
4ρ2 + 8ρ + π2 + 4

+
2πe−1 + 4e−ρ−1(e + ρe)

4ρ2 − 8ρ + π2 + 4
, ρ =

1− α

α
( − ) and 1 > α > 0.

Proof. Let : [ , ]→ X+
C be a left and right exponential trigonometric convex I-V·M.

Then, by hypothesis, we have(
+

2

)
≤p

sin π
4√

e
(v + (1− v) ) +

cos π
4√

e
((1− v) + v ).

After simplification, we find that

2
(

+

2

)
≤p

√
2
e
[ (v + (1− v) ) + ((1− v) + v )].

Therefore, we have

2 ∗
(

+
2
)
≤
√

2
e
[

∗(v + (1− v) ) + ∗((1− v) + v )
]
,

2 ∗
(

+

2

)
≤
√

2
e
[ ∗(v + (1− v) ) + ∗((1− v) + v )].

Taking ∗(.) and multiplying both sides by e−ρv and integrating the obtained result
with respect to v from 0 to 1, we have

2
∫ 1

0
e−ρv

∗

(
+

2

)
dv ≤

√
2
e

[∫ 1

0
e−ρv

∗(v + (1− v) )dv+
∫ 1

0
e−ρv

∗((1− v) + v )dv
]

.

Let u = v + (1− v) and κ = (1− v) + v . Then, we have

2
∫ 1

0 e−ρv
∗
(

+
2
)
dv ≤

√
2
e

1
−
∫

e(−
1−α

α ( −u))
∗(u)du + 1

−
∫

e(−
1−α

α (κ− ))
∗(κ)dκ

=
√

2
e

α
−
[
Iα

+ ∗( ) + Iα
− ∗( )

]
.

(19)

Now, taking the right side of Equation (19), we have

∫ 1

0
e−ρv

∗

(
+

2

)
dv =

1− e−ρ

ρ ∗

(
+

2

)
. (20)
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From (19) and (20), we have

2
α
·1− e−ρ

ρ ∗

(
+

2

)
≤
√

2
e
· 1
−
[
Iα

+ ∗( ) + Iα
− ∗( )

]
. (21)

Similarly, for ∗(κ), we have

2
α
·1− e−ρ

ρ
∗
(

+

2

)
≤
√

2
e
· 1
−
[
Iα

+
∗( ) + Iα

−
∗( )
]
. (22)

From (21) and (22), we have

2
α
·1− e−ρ

ρ

[
∗

(
+

2

)
, ∗
(

+

2

)]
≤p

√
2
e
· 1
−
[[
Iα

+ ∗( ) + Iα
− ∗( )

]
,
[
Iα

+
∗( ) + Iα

−
∗( )
]]

.

That is

2
α
·1− e−ρ

ρ

(
+

2

)
≤p

√
2
e
· 1
−
[
Iα

+ ( ) + Iα
− ( )

]
. (23)

For the right side of Equation (17), since is a left and right exponential trigonometric
convex I-V·M, we can deduce that

(v + (1− v) ) ≤p
sin πv

2
e1−v ( ) +

cos πv
2

ev
( ), (24)

and

((1− v) + v ) ≤p
cos πv

2
ev

( ) +
sin πv

2
e1−v ( ). (25)

Adding (24) and (25), we have

(v + (1− v) ) + ((1− v) + v ) ≤p [ ( ) + ( )]

[
sin πv

2
e1−v +

cos πv
2

ev

]
. (26)

Since is I-V·M, then we have

∗(v + (1− v) ) + ∗((1− v) + v ) ≤
[

∗( ) + ∗( )
][ sin πv

2
e1−v +

cos πv
2

ev

]
,

∗(v + (1− v) ) + ∗((1− v) + v ) ≤ [ ∗( ) + ∗( )]
[

sin πv
2

e1−v +
cos πv

2
ev

]
.

(27)

Taking ∗(.) from (27) and multiplying the inequality with e−ρv, and integrating the
resultant with v from 0 to 1, we have∫ 1

0 e−ρv
∗(v + (1− v) )dv +

∫ 1
0 e−ρv

∗((1− v) + v )dv

≤
[

∗( ) + ∗( )
] ∫ 1

0 e−ρv
[

sin πv
2

e1−v +
cos πv

2
ev

]
dv,

= 4ρ+2πe−ρ−1+4
4ρ2+8ρ+π2+4 + 2πe−1+4e−ρ−1(e+ρe)

4ρ2−8ρ+π2+4

[
∗( ) + ∗( )

]
.

(28)

In a similar way to the above, for ∗(.) we have∫ 1
0 e−ρv ∗(v + (1− v) )dv +

∫ 1
0 e−ρv ∗((1− v) + v )dv

≤ [ ∗( ) + ∗( )]
∫ 1

0 e−ρv
[

sin πv
2

e1−v +
cos πv

2
ev

]
dv,

= 4ρ+2πe−ρ−1+4
4ρ2+8ρ+π2+4 + 2πe−1+4e−ρ−1(e+ρe)

4ρ2−8ρ+π2+4 [ ∗( ) + ∗( )].

(29)
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From (28) and (29), we have∫ 1
0 e−ρv (v + (1− v) )dv +

∫ 1
0 e−ρv ((1− v) + v )dv

≤p
4ρ+2πe−ρ−1+4
4ρ2+8ρ+π2+4 + 2πe−1+4e−ρ−1(e+ρe)

4ρ2−8ρ+π2+4 [ ( ) + ( )].
(30)

From (37) and (30), we have√
e
2

(
+

2

)
≤p

1− α

2(1− e−ρ)

[
Iα

+ ( ) + Iα
− ( )

]
≤p

ρ

1− e−ρ C(ρ)
( ) + ( )

2
.

Hence, the required result. �

If we consider some mild restrictions on Theorem 3, then the following new and
classical outcomes can be obtained.

Remark 3. From Theorem 3, we can clearly see the following.
If one lays which is an upper left and right exponential trigonometric concave I-V·M on

[ , ], then one acquires the following inequality [98]:√
e
2

(
+

2

)
⊇p

1− α

2(1− e−ρ)

[
Iα

+ ( ) + Iα
− ( )

]
⊇p

ρ

1− e−ρ C(ρ)
( ) + ( )

2
. (31)

If α → 1 , then

lim
α→1

ρ = lim
α→1

1− α

α
( − ) = 0, then

lim
α→1

(
4ρ + 2πe−ρ−1 + 4
4ρ2 + 8ρ + π2 + 4

+
2πe−1 + 4e−ρ−1(e + ρe)

4ρ2 − 8ρ + π2 + 4

)
=

2πe−1 + 4
π2 + 4

, lim
α→1

1− α

2(1− e−ρ)
=

1
2( − ).

Now from Theorem 3, we acquire the following result, which is also a new one:√
e
2

(
+

2

)
≤p

1
−
∫

(κ)dκ ≤p
2πe−1 + 4

π2 + 4
[ ( ) + ( )]. (32)

If one lays α → 1 and which is an upper left and right exponential trigonometric
concave I-V·M on [ , ], then one can acquire the following inequality [98]:√

e
2

(
+

2

)
⊇p

1
−
∫

(κ)dκ ⊇p
2πe−1 + 4

π2 + 4
[ ( ) + ( )]. (33)

Let α → 1 and ∗(κ) �= ∗(κ). Then, from Theorem 3, we achieve the Hermite–
Hadamard inequality for the interval-valued left and right exponential trigonometric
convex mapping, which is also a new one:√

e
2

(
+

2

)
≤p

1
−
∫

(κ)dκ ≤p
2πe−1 + 4

π2 + 4
[ ( ) + ( )]. (34)

If ∗(κ) =
∗(κ), then, from Theorem 3, we arrive at classical fractional Hermite–

Hadamard inequality for the exponential trigonometric convex mapping.√
e
2

(
+

2

)
≤ 1− α

2(1− e−ρ)

[
Iα

+ ( ) + Iα
− ( )

]
≤ ρ

1− e−ρ C(ρ)
( ) + ( )

2
. (35)

Let α → 1 and ∗(κ) = ∗(κ). Then, from Theorem 3, we achieve the classical
Hermite–Hadamard inequality for the exponential trigonometric convex mapping, see [78].√

e
2

(
+

2

)
≤ 1

−
∫

(κ)dκ ≤ 2πe−1 + 4
π2 + 4

[ ( ) + ( )]. (36)
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Example 1. Let α = 1
2 , κ ∈ [0, 1], and the I-V·M : [ , ] = [0, 1]→ X+

C , defined by
(κ) =

[
2κ2, 4κ2]. Since left and right end point mappings ∗(κ) = 2κ2, ∗(κ) = 4κ2 are

exponential trigonometric convex mappings, then (κ) is a left and right exponential trigonometric
convex I-V·M. We can clearly see that ∈ L

(
[ , ], X+

C
)

and√
e
2 ∗

(
+

2

)
= ∗

(
5
2

)
=

√
e

2
√

2√
e
2

∗
(

+

2

)
= ∗

(
5
2

)
=

√
e√
2

ρ

1− e−ρ C(ρ) ∗( ) + ∗( )

2
=

8 + 2πe−2

2(16 + π2)(1− e−1)

ρ

1− e−ρ C(ρ)
∗( ) + ∗( )

2
=

8 + 2πe−2

(16 + π2)(1− e−1)
.

Note that
1−α

2(1−e−ρ)

[
Iα

+ ∗( ) + Iα
− ∗( )

]
= 1

2(1−e−1)

∫ 1
0 e−(1−κ) . 2κ2dκ

+ 1
2(1−e−1)

∫ 1
0 e−κ .2κ2dκ

= 1
1−e−1

[
1− 2e−1 + 2− 5e−1]

= 3−7e−1

1−e−1 .

1−α
2(1−e−ρ)

[
Iα

+
∗( ) + Iα

−
∗( )
]

= 1
2(1−e−1)

∫ 1
0 e−(1−κ) . 4κ2dκ

+ 1
2(1−e−1)

∫ 1
0 e−κ . 4κ2dκ

= 2
1−e−1

[
1− 2e−1 + 2− 5e−1]

=
2(3−7e−1)

1−e−1 .

Therefore,[√
e√
2

,
√

e√
2

]
≤p

[
8 + 2πe−2

2(16 + π2)(1− e−1)
,

8 + 2πe−2

(16 + π2)(1− e−1)

]
≤p

[
3− 7e−1

1− e−1 ,
2
(
3− 7e−1)
1− e−1

]

and Theorem 3 is verified.

The fractional integrals with exponential kernels can be used to describe Hermite–
Hadamard-type inclusions involving midpoint as follows:

Theorem 4. Let : [ , ] ⊂ R→ X+
C be an I-V·M on [ , ] given by (κ) =

[
∗(κ),

∗(κ)
]

for all κ ∈ [ , ]. If is a left and right exponential trigonometric convex I-V·M on [ , ] and
∈ L
(
[ , ], X+

C
)
, then√

e
2

(
+

2

)
≤p

1− α

2
(

1− e−
ρ
2

)[Iα
( +

2 )
+ ( ) + Iα

( +
2 )

− ( )

]
≤p

ρ

2
(

1− e−
ρ
2

)B(ρ)
( ) + ( )

2
. (37)

If (κ) is a left and right exponential trigonometric concave I-V·M, then√
e
2

(
+

2

)
≥p

1− α

2
(

1− e−
ρ
2

)[Iα

( +
2 )

+ ( ) + Iα

( +
2 )

− ( )

]
≥p

ρ

1− e−
ρ
2

B(ρ)
( ) + ( )

2
, (38)
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where

B(ρ) =
π

(
4e−1−2

3
2 e−

ρ+1
2

)
−2

5
2 ρe−

ρ+1
2 +2

5
2 e−

ρ+1
2

4ρ2−8ρ+π2+4 + 8ρ+2
3
2 πe−

ρ+1
2 −2

5
2 (ρ+1)e−

ρ+1
2 +8

4ρ2+8ρ+π2+4 , ρ = 1−α
α ( − ),

and 1 > α > 0.

Proof. Let : [ , ]→ X+
C be a left and right exponential trigonometric convex I-V·M.

Then, by hypothesis, we have(
+

2

)
≤p

sin π
4√

e

(
v

2
+

2− v

2

)
+

cos π
4√

e

(
2− v

2
+

v

2

)
.

After simplification, we find that

2
(

+

2

)
≤p

√
2
e

[ (
v

2
+

2− v

2

)
+

(
2− v

2
+

v

2

)]
Therefore, we have

2 ∗
(

+
2
)
≤
√

2
e
[

∗
(
v
2 + 2−v

2
)
+ ∗

( 2−v
2 + v

2
)]

,

2 ∗
(

+

2

)
≤
√

2
e

[
∗
(
v

2
+

2− v

2

)
+ ∗

(
2− v

2
+

v

2

)]
.

Taking ∗(.) and multiplying both sides by e−
ρv
2 and integrating the obtained result

with respect to v from 0 to 1, we have

2
∫ 1

0
e−

ρv
2 ∗

(
+

2

)
dv ≤

√
2
e

[∫ 1

0
e−

ρv
2 ∗

(
v

2
+

2− v

2

)
dv+

∫ 1

0
e−

ρv
2 ∗

(
2− v

2
+

v

2

)
dv
]

.

Let u = v
2 + 2−v

2 and κ = 2−v
2 + v

2 . Then, we have

2
∫ 1

0 e−
ρv
2 ∗
(

+
2
)
dv ≤

√
2
e

1
−
∫

+
2

e(−
1−α

α ( −u))
∗(u)du + 1

−
∫

+
2

e(−
1−α

α (κ− ))
∗(κ)dκ

=
√

2
e

α
−

[
Iα

( +
2 )

+ ∗( ) + Iα

( +
2 )

− ∗( )

]
.

(39)

Now, taking the right side of Equation (39), we have

∫ 1

0
e−

ρv
2 ∗

(
+

2

)
dv =

2(1− e−ρ)

ρ ∗

(
+

2

)
. (40)

From (39) and (40), we have

4·1− e−ρ

ρ ∗

(
+

2

)
≤
√

2
e
·2(1− )

−

[
Iα

( +
2 )

+ ∗( ) + Iα

( +
2 )

− ∗( )

]
. (41)

Similarly, for ∗(κ), we have

4·1− e−ρ

ρ
∗
(

+

2

)
≤
√

2
e
·2(1− )

−

[
Iα

( +
2 )

+
∗( ) + Iα

( +
2 )

−
∗( )

]
. (42)

From (41) and (42), we have

2· 1−e−ρ

ρ

[
∗
(

+
2
)
, ∗( +

2
)]

≤p

√
2
e · 1−

−

[[
Iα

( +
2 )

+ ∗( ) + Iα
− ∗( )

]
,
[
Iα

( +
2 )

+
∗( ) + Iα

−
∗( )

]]
.
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That is

2·1− e−ρ

ρ

(
+

2

)
≤p

√
2
e
·1−−

[
Iα

( +
2 )

+ ( ) + Iα

( +
2 )

− ( )

]
. (43)

For the right side of Equation (37), since is a left and right exponential trigonometric
convex I-V·M, we can deduce that(

v

2
+

2− v

2

)
≤p

sin πv
4

e
2−v

2
( ) +

cos πv
4

e
v
2

( ), (44)

and (
2− v

2
+

v

2

)
≤p

cos πv
4

e
v
2

( ) +
sin πv

4

e
2−v

2
( ). (45)

Adding (44) and (45), we have(
v

2
+

2− v

2

)
+

(
2− v

2
+

v

2

)
≤p [ ( ) + ( )]

[
sin πv

4

e
2−v

2
+

cos πv
4

e
v
2

]
. (46)

Since is I-V·M, then we have

∗
(
v
2 + 2−v

2
)
+ ∗

( 2−v
2 + v

2
)
≤
[

∗( ) + ∗( )
][ sin π

4

e
2−

2
+

cos π
4

e 2

]
,

∗(v
2 + 2−v

2
)
+ ∗( 2−v

2 + v
2
)
≤ [ ∗( ) + ∗( )]

[
sin π

4

e
2−

2
+

cos π
4

e 2

]
.

(47)

Taking ∗(.) from (47) and multiplying the inequality by ee−
ρv
2 , and integrating the

resultant with v from 0 to 1, we have

∫ 1
0 ee−

ρv
2

∗
(
v
2 + 2−v

2
)
dv+
∫ 1

0 ee−
ρv
2

∗
( 2−v

2 + v
2
)
dv

≤
[

∗( ) + ∗( )
] ∫ 1

0 ee−
ρv
2

[
sin πv

4
2−v

2
+

cos πv
4

e
v
2

]
dv,

=

⎛⎝π

(
4e−1−2

3
2 e−

ρ+1
2

)
−2

5
2 ρe−

ρ+1
2 +2

5
2 e−

ρ+1
2

4ρ2−8ρ+π2+4 + 8ρ+2
3
2 πe−

ρ+1
2 −2

5
2 (ρ+1)e−

ρ+1
2 +8

4ρ2+8ρ+π2+4

⎞⎠[ ∗( ) + ∗( )
]
.

(48)

In a similar way as above, for ∗(.) we have

∫ 1
0 ee−

ρv
2 ∗(v

2 + 2−v
2
)
dv+

∫ 1
0 ee−

ρv
2 ∗( 2−v

2 + v
2
)
dv

≤ [ ∗( ) + ∗( )]
∫ 1

0 e−ρv

[
sin πv

4

e
2−v

2
+

cos πv
4

e
v
2

]
dv

=

⎛⎝π

(
4e−1−2

3
2 e−

ρ+1
2

)
−2

5
2 ρe−

ρ+1
2 +2

5
2 e−

ρ+1
2

4ρ2−8ρ+π2+4 + 8ρ+2
3
2 πe−

ρ+1
2 −2

5
2 (ρ+1)e−

ρ+1
2 +8

4ρ2+8ρ+π2+4

⎞⎠[ ∗( ) + ∗( )].

(49)

From (48) and (49), we have∫ 1
0 e−ρv

(
v
2 + 2−v

2
)
dv+

∫ 1
0 e−ρv

( 2−v
2 + v

2
)
dv

≤p

⎛⎝π

(
4e−1−2

3
2 e−

ρ+1
2

)
−2

5
2 ρe−

ρ+1
2 +2

5
2 e−

ρ+1
2

4ρ2−8ρ+π2+4 + 8ρ+2
3
2 πe−

ρ+1
2 −2

5
2 (ρ+1)e−

ρ+1
2 +8

4ρ2+8ρ+π2+4

⎞⎠[ ( ) + ( )].
(50)

From (43) and (50), we have√
e
2

(
+

2

)
≤p

1− α

2
(

1− e−
ρ
2

)[Iα

( +
2 )

+ ( ) + Iα

( +
2 )

− ( )

]
≤p

ρ

2
(

1− e−
ρ
2

)B(ρ)
( ) + ( )

2
.
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Hence, the required result. �

Remark 4. From Theorem 4, we can clearly see the following.
If one lays which is an upper left and right exponential trigonometric concave I-V·M on

[ , ], then one acquires the following inequality [98]:√
e
2

(
+

2

)
⊇p

1− α

2
(

1− e−
ρ
2

)[Iα

( +
2 )

+ ( ) + Iα

( +
2 )

− ( )

]
⊇p

ρ

2
(

1− e−
ρ
2

)B(ρ)
( ) + ( )

2
. (51)

If α → 1 , that is

lim
α→1

ρ = lim
α→1

1− α

α
( − ) = 0, then

lim
α→1

ρ

1− e−
ρ
2

=

⎛⎜⎜⎝π

(
4e−1 − 2

3
2 e−

ρ+1
2

)
− 2

5
2 ρe−

ρ+1
2 + 2

5
2 e−

ρ+1
2

4ρ2 − 8ρ + π2 + 4
+

8ρ + 2
3
2 πe−

ρ+1
2 − 2

5
2 (ρ + 1)e−

ρ+1
2 + 8

4ρ2 + 8ρ + π2 + 4

⎞⎟⎟⎠ =
4(2π + 4e)
e(π2 + 4)

, lim
α→1

1− α

2
(

1− ee−
ρ
2
) =

1
−

Then, we acquire the following result, which is also a new one:√
e
2

(
+

2

)
≤p

1
−
∫

(κ)dκ ≤p
2π + 4e

e(π2 + 4)
[ ( ) + ( )] (52)

If one lays α → 1 and which is an upper left and right exponential trigonometric concave
I-V·M on [ , ], then one acquires the following inequality [98]:√

e
2

(
+

2

)
⊇p

1
−
∫

(κ)dκ ⊇p
2π + 4e

e(π2 + 4)
[ ( ) + ( )] (53)

Let α → 1 and ∗(κ) �= ∗(κ). Then, from Theorem 4, we achieve the Hermite–Hadamard
inequality for interval-valuedleft and right exponential trigonometric convex mapping, which is also
a new one: √

e
2

(
+

2

)
≤p

1
−
∫

(κ)dκ ≤p
2π + 4e

e(π2 + 4)
[ ( ) + ( )] (54)

If ∗(κ) =
∗(κ),then, from Theorem 4, we arrive at classical fractional Hermite–Hadamard

inequality forexponential trigonometric convex mapping.√
e
2

(
+

2

)
≤ 1− α

2
(

1− e−
ρ
2

)[Iα

( +
2 )

+ ( ) + Iα

( +
2 )

− ( )

]
≤ ρ

2
(

1− e−
ρ
2

)B(ρ)
( ) + ( )

2
(55)

Let α → 1 and ∗(κ) =
∗(κ). Then, from Theorem 4, we achieve the classical Hermite–

Hadamard inequality for exponential trigonometric convex mapping, see [78].√
e
2

(
+

2

)
≤ 1

−
∫

(κ)dκ ≤ 2π + 4e
e(π2 + 4)

[ ( ) + ( )]. (56)

Finally, we present the Pachpatte-type fractional integral inclusions. Moreover, in Theorem
5 we will establish a fractional integral inclusion, and discuss the several inclusions via a left and
right exponential trigonometric convex I-V·M.

Theorem 5. Let , T : [ , ]→ X+
C be two I-V·Ms on [ , ] defined by (κ) =

[
∗(κ),

∗(κ)
]

and T(κ) = [T∗(κ), T∗(κ)] for all κ ∈ [ , ]. If and T are two left and right exponential
trigonometric convex I-V·Ms on [ , ] and × T ∈ L

(
[ , ], X+

C
)
, then

α

−
[
Iα

+ ( )× T( ) + Iα
− ( )× T( )

]
≤p D(ρ)Δ( , ) +

πe−ρ−1(eρ + 1)
ρ2 + π2 ∇( , ). (57)
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If (κ) and T(κ) are left and right exponential trigonometric concave I-V·Ms, then

α

−
[
Iα

+ ( )× T( ) + Iα
− ( )× T( )

]
≥p D(ρ)Δ( , )+

πe−ρ−1(eρ + 1)
ρ2 + π2 ∇( , ), (58)

where D(ρ) = − e−ρ−2(8e2−8ρe2+π2e2+2ρ2e2−π2eρ)
2(ρ−2)(ρ2−4ρ+π2+4) + 8ρ−π2e−ρ−2+π2+2ρ2+8

2(ρ+2)(ρ2+4ρ+π2+4) , ρ = 1−α
α ( − ),

1 > α > 0, Δ( , ) = [Δ∗( , ), Δ∗( , )] and ∇( , ) = [∇∗( , ), ∇∗( , )].

Proof. Since , T are both left and right exponential trigonometric convex I-V·Ms, taking
left end points mappings, we have

∗(v + (1− v) ) ≤ sin πv
2

e1−v ∗( ) +
cos πv

2
ev ∗( ),

and

T∗(v + (1− v) ) ≤ v
sin πv

2
e1−v T∗( ) +

cos πv
2

ev
T∗( ).

From the definition of left and right exponential trigonometric convex I-V·Ms, it
follows that 0 ≤p (κ) and 0 ≤I T(κ), so

∗(v + (1− v) )× T∗(v + (1− v) )

≤
(

sin πv
2

e1−v ∗( ) +
cos πv

2
ev ∗( ))

(
sin πv

2
e1−v T∗( ) +

cos πv
2

ev T∗( )
)

=
(

sin πv
2

e1−v

)2

∗( )× T∗( ) +
(

cos πv
2

ev

)2

∗( )× T∗( )

+
(

cos πv
2 sin πv

2
e

)
∗( )× T∗( ) +

(
cos πv

2 sin πv
2

e

)
∗( )× T∗( )

(59)

Analogously, we have

∗((1− v) + v )× T∗((1− v) + v )

≤
(

cos πv
2

ev

)2

∗( )× T∗( ) +
(

sin πv
2

e1−v

)2

∗( )× T∗( )

+
(

cos πv
2 sin πv

2
e

)
∗( )× T∗( ) +

(
cos πv

2 sin πv
2

e

)
∗( )× T∗( )

(60)

Adding (59) and (60), we have

∗(v + (1− v) )× T∗(v + (1− v) )
+ ∗((1− v) + v )× T∗((1− v) + v )

≤
[(

sin πv
2

e1−v

)2
+
(

sin πv
2

e1−v

)2
][

∗( )× T∗( ) + ∗( )× T∗( )
]

+
2 cos πv

2 sin πv
2

e
[

∗( )× T∗( ) + ∗( )× T∗( )
] (61)

Multiplying (61) by e−ρv and integrating the obtained result with respect to v over
(0,1), we have∫ 1

0 e−ρv
∗(v + (1− v) )× T∗(v + (1− v) )
+e−ρv

∗((1− v) + v )× T∗((1− v) + v )dv

≤ Δ∗(( , ))
∫ 1

0 e−ρv

[(
sin πv

2
e1−v

)2
+
(

sin πv
2

e1−v

)2
]

dv+ 2∇∗(( , ))
∫ 1

0 e−ρv cos πv
2 sin πv

2
e dv

It follows that

α
−
[
Iα

+ ∗( )× T∗( ) + Iα
− ∗( )× T∗( )

]
≤ D(ρ)Δ∗(( , )) +

πe−ρ−1(eρ+1)
ρ2+π2 ∇∗(( , ))

(62)
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Similarly, for ∗(κ), we have

α
−
[
Iα

+
∗( )× T∗( ) + Iα

−
∗( )× T∗( )

]
≤ D(ρ)Δ∗(( , )) +

πe−ρ−1(eρ+1)
ρ2+π2 ∇∗(( , ))

(63)

where

D(ρ) =
∫ 1

0 e−ρv

[(
sin πv

2
e1−v

)2
+
(

sin πv
2

e1−v

)2
]

dv

= − e−ρ−2(8e2−8ρe2+π2e2+2ρ2e2−π2eρ)
2(ρ−2)(ρ2−4ρ+π2+4) + 8ρ−π2e−ρ−2+π2+2ρ2+8

2(ρ+2)(ρ2+4ρ+π2+4)

and ∫ 1

0
e−ρv cos πv

2 sin πv
2

e
dv =

πe−ρ−1(eρ + 1)
ρ2 + π2

From (62) and (63), we have

α
−
[
Iα

+ ∗( )× T∗( ) +Iα
− ∗( )× T∗( ), Iα

+
∗( )× T∗( ) + Iα

−
∗( )× T∗( )

]
≤p D(ρ)[Δ∗(( , )), Δ∗(( , ))] +

πe−ρ−1(eρ+1)
ρ2+π2 [∇∗(( , )), ∇∗(( , ))].

That is

α

−
[
Iα

+ ( )× T( ) + Iα
− ( )× T( )

]
≤p D(ρ)Δ( , ) +

πe−ρ−1(eρ + 1)
ρ2 + π2 ∇( , ).

and the theorem has been established. �

Remark 5. From Theorem 5 we can clearly see the following.
If one lays which is an upper left and right exponential trigonometric concave I-V·M on

[ , ], then one acquires the following inequality [98]:

α

−
[
Iα

+ ( )× T( ) + Iα
− ( )× T( )

]
⊇p D(ρ)Δ( , )+

πe−ρ−1(eρ + 1)
ρ2 + π2 ∇( , ). (64)

If α → 1 , that is

lim
α→1

ρ = lim
α→1

1−α
α ( − ) = 0, then

lim
α→1

(
− e−ρ−2(8e2−8ρe2+π2e2+2ρ2e2−π2eρ)

2(ρ−2)(ρ2−4ρ+π2+4) + 8ρ−π2e−ρ−2+π2+2ρ2+8
2(ρ+2)(π2+4)

)
= π2−π2e2+8

2(π2+4),

lim
α→1

πe−ρ−1(eρ+1)
ρ2+π2 = 2

πe

Then, we acquire the following result, which is also a new one:

1
−
∫

(κ)× T(κ)dκ ≤p
π2 − π2e2 + 8

4(π2 + 4)
Δ( , ) +

2
πe
∇( , ) (65)

If one lays α → 1 and which is an upper left and right exponential trigonometric concave
I-V·M on [ , ], then one acquires the following inequality [98]:

1
−
∫

(κ)× T(κ)dκ ⊇p
π2 − π2e2 + 8

4(π2 + 4)
Δ( , ) +

2
πe
∇( , ) (66)
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Let α → 1 and ∗(κ) �= ∗(κ). Then, from Theorem 5, we achieve the Hermite–Hadamard
inequality for interval-valuedleft and right exponential trigonometric convex mapping, which is also
a new one:

1
−
∫

(κ)× T(κ)dκ ≤p
π2 − π2e2 + 8

4(π2 + 4)
Δ( , ) +

2
πe
∇( , ). (67)

If ∗(κ) = ∗(κ), then, from Theorem 5, we arrive at the classical fractional Hermite–
Hadamard inequality for exponential trigonometric convex mapping:

α

−
[
Iα

+ ( )× T( ) + Iα
− ( )× T( )

]
≤ D(ρ)Δ( , ) +

πe−ρ−1(eρ + 1)
ρ2 + π2 ∇( , ). (68)

Let α → 1 and ∗(κ) =
∗(κ). Then, from Theorem 5, we achieve the classical Hermite–

Hadamard inequality for exponential trigonometric convex mapping, see [78].

1
−
∫

(κ)× T(κ)dκ ≤ π2 − π2e2 + 8
4(π2 + 4)

Δ( , ) +
2

πe
∇( , ). (69)

Example 2. Let [ , ] = [0, 1], α = 1
4 , (κ) =

[
κ2, 2κ2] and T(κ) =

[
2κ3, 4κ3]. Since

left and right end point mappings ∗(κ) = κ2, ∗(κ) = 2κ2, T∗(κ) = 2κ3 and T∗(κ) =
4κ3 are exponential trigonometric convex mappings, then (κ) and T(κ) are both exponential
trigonometric convex I-V·Ms. We can clearly see that (κ)× T(κ) ∈ L

(
[ , ], X+

C
)

and

α
−
[
Iα

+ ∗( )× T∗( ) + Iα
− ∗( )× T∗( )

]
=
∫ 1

0 e−3(1−κ)(2κ5)dκ +
∫ 1

0 e−3κ(2κ5)dκ
=
(

80e−3

243 + 52
243

)
+
(

80
243 − 1472e−3

243

)
=
(

44
81 − 464e−3

81

)
α
−
[
Iα

+
∗( )× T∗( ) + Iα

−
∗( )× T∗( )

]
=
∫ 1

0 e−3(1−κ)(8κ5)dκ +
∫ 1

0 e−3κ(8κ5)dκ
= 4
[

44
81 − 464e−3

81

]
.

Note that

D(ρ)Δ∗(( , )) =

(
− e−5(2e2+π2e2−π2e3)

2(1+π2)
+ 50−π2e−5+π2

10(25+π2)

)[
∗(0)× T∗(1) + ∗(1)× T∗(1)

]
= 2
(

50−π2e−5+π2

10(25+π2)
− e−5(2e2+π2e2−π2e3)

2(1+π2)

)

D(ρ)Δ∗(( , )) =

(
− e−5(2e2+π2e2−π2e3)

2(1+π2)
+ 50−π2e−5+π2

10(25+π2)

)
[ ∗( )× T∗( ) + ∗( )× T∗( )]

= 8
(

50−π2e−5+π2

10(25+π2)
− e−5(2e2+π2e2−π2e3)

2(1+π2)

)
,

πe−ρ−1(eρ + 1)
ρ2 + π2 ∇∗(( , )) =

πe−ρ−1(eρ + 1)
ρ2 + π2

[
∗(0)× T∗(1) + ∗(1)× T∗(0)

]
= 0,

πe−ρ−1(eρ + 1)
ρ2 + π2 ∇∗(( , )) =

πe−ρ−1(eρ + 1)
ρ2 + π2 [ ∗(1)× T∗(1) + ∗(1)× T∗(0)] = 0.
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Therefore, we have

D(ρ)Δ( , ) +
πe−ρ−1(eρ+1)

ρ2+π2 ∇( , )

=

(
50−π2e−5+π2

10(25+π2)
− e−5(2e2+π2e2−π2e3)

2(1+π2)

)
[2, 8] + πe−ρ−1(eρ+1)

ρ2+π2 [0, 0]

=

(
50−π2e−5+π2

10(25+π2)
− e−5(2e2+π2e2−π2e3)

2(1+π2)

)
[2, 8]

It follows that(
44
81
− 464e−3

81

)
[2, 4] ≤p

(
50− π2e−5 + π2

10(25 + π2)
− e−5(2e2 + π2e2 − π2e3)

2(1 + π2)

)
[2, 8].

and Theorem 5 has been demonstrated.

Theorem 6. Let , T : [ , ]→ X+
C be two I-V·Ms on [ , ] defined by (κ) =

[
∗(κ),

∗(κ)
]

and T(κ) = [T∗(κ), T∗(κ)] for all κ ∈ [ , ]. If and T are two left and right exponential
trigonometric convex I-V·Ms on [ , ] and × T ∈ L

(
[ , ], X+

C
)
, then

2
(

+
2
)
× T
(

+
2
)
≤p

1−α
e(1−e−ρ)

[
Iα

+ ( )× T( ) + Iα
− ( )× T( )

]
+ ρπe−ρ−1(eρ+1)

e(1−e−ρ)(ρ2+π2)
∇( , ) +

ρ
e(1−e−ρ)

D(ρ)Δ( , ).
(70)

If (κ) and T(κ)are left and right exponential trigonometric concave I-V·Ms, then

2
(

+
2
)
× T
(

+
2
)
≥p

1−α
e(1−e−ρ)

[
Iα

+ ( )× T( ) + Iα
− ( )× T( )

]
+ ρπe−ρ−1(eρ+1)

e(1−e−ρ)(ρ2+π2)
∇( , ) +

ρ
e(1−e−ρ)

D(ρ)Δ( , ).
(71)

where D(ρ) = − e−ρ−2(8e2−8ρe2+π2e2+2ρ2e2−π2eρ)
2(ρ−2)(ρ2−4ρ+π2+4) + 8ρ−π2e−ρ−2+π2+2ρ2+8

2(ρ+2)(ρ2+4ρ+π2+4) , ρ = 1−α
α ( − ),

1 > α > 0, Δ( , ) = [Δ∗( , ), Δ∗( , )] and ∇( , ) = [∇∗( , ), ∇∗( , )].

Proof. Consider , T : [ , ]→ X+
C are left and right exponential trigonometric convex

I-V·Ms. Then, by hypothesis, we have

∗
(

+
2
)
× T∗

(
+
2
)

≤ 1
2e

[
∗(v + (1− v) )× T∗(v + (1− v) )

+ ∗((1− v) + (1− v) )× T∗((1− v) + v )

]
+ 1

2e

[
∗((1− v) + v )× T∗(v + (1− v) )

+ ∗(v + (1− v) )× T∗((1− v) + v )

]
≤ 1

2e

[
∗(v + (1− v) )× T∗(v + (1− v) )

+ ∗((1− v) + v )× T∗((1− v) + v )

]

+ 1
2e

⎡⎢⎢⎢⎢⎢⎢⎣

(
cos πv

2
ev ∗( ) +

sin πv
2

e1−v ∗( )
)

×
(

sin πv
2

e1−v T∗( ) +
cos πv

2
ev T∗( )

)
+
(

sin πv
2

e1−v ∗( ) +
cos πv

2
ev ∗( )

)
×
(

cos πv
2

ev T∗( ) +
sin πv

2
e1−v T∗( )

)

⎤⎥⎥⎥⎥⎥⎥⎦
≤ 1

2e

[
∗(v + (1− v) )× T∗(v + (1− v) )

+ ∗((1− v) + v )× T∗((1− v) + v )

]

+ 1
2e

⎡⎣ 2 cos πv
2 sin πv

2
e ∇∗(( , ))

+

[(
sin πv

2
e1−v

)2
+
(

sin πv
2

e1−v

)2
]

Δ∗(( , ))

⎤⎦

(72)

Multiplying (72) by e−ρv and integrating over (0, 1), we find
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∫ 1
0 e−ρv

∗
(

+
2
)
× T∗

(
+
2
)
dv

≤ 1
2e

[∫
e−ρv

∗(κ)× T∗(κ)dv+
∫

e−ρv
∗(s)× T∗(s)dv]

+∇∗(( , ))
2e

∫ 1
0 e−ρv 2 cos πv

2 sin πv
2

e dv+ Δ∗(( , ))
2e

∫ 1
0 e−ρv

[(
sin πv

2
e1−v

)2
+
(

sin πv
2

e1−v

)2
]

dv

1−e−ρ

ρ

∫ 1
0 e−ρv

∗
(

+
2
)
× T∗

(
+
2
)

≤ α
2e( − )

[
Iα

+ ∗( )× T∗( ) + Iα
− ∗( )× T∗( )

]
+πe−ρ−1(eρ+1)

2e(ρ2+π2)
∇∗(( , ))

2e + 1
2e D(ρ)

Δ∗(( , ))
2e .

(73)

Similarly, for ∗(κ), we have

1−e−ρ

ρ
∗( +

2
)
× T∗

(
+
2
)

≤ α
2e( − )

[
Iα

+
∗( )× T∗( ) + Iα

−
∗( )× T∗( )

]
+πe−ρ−1(eρ+1)

2e(ρ2+π2)
∇∗(( , ))

2e + 1
2e D(ρ)

Δ∗(( , ))
2e .

(74)

From (73) and (74), we have

2
[

∗
(

+
2
)

×T∗
(

+
2
)
, ∗( +

2
)
× T∗

(
+
2
)]

≤p
1−α

e( − )

[
Iα

+ ∗( )× T∗( ) + Iα
− ∗( )× T∗( ), Iα

+
∗( )× T∗( ) + Iα

−
∗( )× T∗( )

]
+ ρπe−ρ−1(eρ+1)

e(1−e−ρ)(ρ2+π2)
[∇∗(( , )), ∇∗(( , ))] +

ρ
e(1−e−ρ)

D(ρ)[∇∗(( , )), ∇∗(( , ))],

where

D(ρ) = − e−ρ−2(8e2 − 8ρe2 + π2e2 + 2ρ2e2 − π2eρ
)

2(ρ− 2)(ρ2 − 4ρ + π2 + 4)
+

8ρ− π2e−ρ−2 + π2 + 2ρ2 + 8
2(ρ + 2)(ρ2 + 4ρ + π2 + 4).

Hence, the required result. �

Remark 6. From Theorem 6 we can clearly see the following.
If one lays and T which are upper left and right exponential trigonometric concave I-V·Ms

on [ , ], then one acquires the following inequality [98]:

2
(

+
2
)
× T
(

+
2
)
⊇p

α
e( − )

[
Iα

+ ( )× T( ) + Iα
− ( )× T( )

]
+ ρπe−ρ−1(eρ+1)

e(1−e−ρ)(ρ2+π2)
∇( , ) +

ρ
e(1−e−ρ)

D(ρ)Δ( , ).
(75)

If α → 1 , that is

lim
α→1

ρ = lim
α→1

1− α

α
( − ) = 0, then lim

α→1

1− α

e(1− e−ρ)
=

1
e( − ),

lim
α→1

ρ

e(1− e−ρ)

(
− e−ρ−2(8e2 − 8ρe2 + π2e2 + 2ρ2e2 − π2eρ

)
2(ρ− 2)(ρ2 − 4ρ + π2 + 4)

+
8ρ− π2e−ρ−2 + π2 + 2ρ2 + 8

2(ρ + 2)(π2 + 4)

)
=

π2 − π2e−2 + 8
2e(π2 + 4)

,

lim
α→1

ρπe−ρ−1(eρ + 1)
e(1− e−ρ)(ρ2 + π2)

=
2

πe2 .

Then, we acquire the following result, which is also a new one:

2
(

+

2

)
× T
(

+

2

)
≤p

2
e( − )

∫
(κ)× T(κ)dκ +

2
πe2 Δ( , ) +

π2 − π2e2 + 8
2e(π2 + 4)

∇( , ). (76)

If one lays α → 1 and and T which are upper left and right exponential trigonometric
concave I-V·Ms on [ , ], then one acquires the following inequality [98]:
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2
(

+

2

)
× T
(

+

2

)
⊇p

2
e( − )

∫
(κ)× T(κ)dκ +

2
πe2 Δ( , ) +

π2 − π2e2 + 8
2e(π2 + 4)

∇( , ). (77)

Let α → 1 , ∗(κ) �= ∗(κ) and T∗(κ) �= T∗(κ). Then, from Theorem 6 we achieve the
Hermite–Hadamard inequality for interval-valuedleft and right exponential trigonometric convex
mapping, which is also a new one:

2
(

+

2

)
× T
(

+

2

)
≤p

2
e( − )

∫
(κ)× T(κ)dκ +

2
πe2 Δ( , ) +

π2 − π2e2 + 8
2e(π2 + 4)

∇( , ). (78)

If ∗(κ) = ∗(κ) and T∗(κ) �= T∗(κ), then, from Theorem 6, we achieve the classical
fractional Hermite–Hadamard inequality forexponential trigonometric convex mapping

2
(

+
2
)
× T
(

+
2
)
≤ α

e( − )

[
Iα

+ ( )× T( ) + Iα
− ( )× T( )

]
+ ρπe−ρ−1(eρ+1)

e(1−e−ρ)(ρ2+π2)
∇( , ) +

ρ
e(1−e−ρ)

D(ρ)Δ( , ).
(79)

Let α → 1 , ∗(κ) =
∗(κ) and T∗(κ) �= T∗(κ). Then, from Theorem 6, we achieve the

classical Hermite–Hadamard inequality for exponential trigonometric convex mapping, see [78]

2
(

+

2

)
× T
(

+

2

)
≤ 2

e( − )

∫
(κ)× T(κ)dκ +

2
πe2 Δ( , ) +

π2 − π2e2 + 8
2e(π2 + 4)

∇( , ). (80)

Theorem 7. Let : [ , ] ⊂ R→ X+
C be an I-V·M on [ , ] given by (κ) =

[
∗(κ),

∗(κ)
]

for all κ ∈ [ , ]. If is a left and right exponential trigonometric convex I-V·M on [ , ] and
∈ L
(
[ , ], X+

C
)
, then

e
(

+
2
)
≤p

√
e
2

[ (
3 +

2

)
+
(

+3
2

)]
≤p

1−α

2
(

1−e−
ρ
2

)[Iα
+

(
+
2
)
+ Iα

( +
2 )

+ ( ) + Iα

( +
2 )

− ( ) + Iα
−
(

+
2
)]

≤p
ρ

2
(

1−e−
ρ
2

)K(ρ)
(

( )+ ( )
2 +

(
+
2
))

≤p
ρ

2
(

1−e−
ρ
2

)(1 +
√

e
2

)
K(ρ) ( )+ ( )

2 .

(81)

If (κ)is a left and right exponential trigonometric concave I-V·M, then

e
(

+
2
)
≥p

√
e
2

[ (
3 +

4

)
+
(

+3
4

)]
≥p

1−α

2
(

1−e−
ρ
2

)[Iα
+

(
+
2
)
+ Iα

( +
2 )

+ ( ) + Iα

( +
2 )

− ( ) + Iα
−
(

+
2
)]

≥p
ρ

2
(

1−e−
ρ
2

)K(ρ)
(

( )+ ( )
2 +

(
+
2
))

≥p
ρ

2
(

1−e−
ρ
2

)(1 +
√

e
2

)
K(ρ) ( )+ ( )

2 ,

(82)

where

K(ρ) =
2ρ + 2πe−

ρ+2
2 + 4

ρ2 + 4ρ + π2 + 4
+

2πe−1 + 2e−
ρ
2 (2 + ρ)

ρ2 − 4ρ + π2 + 4
, ρ =

1− α

α
( − ), and 1 > α > 0.
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Proof. Taking
[

, +
2
]
, we deduce that(

3 +

4

)
≤p

sin π
4√

e

(
v + (1− v)

+

2

)
+

cos π
4√

e

(
(1− v) + v

+

2

)
.

After simplification, we find that

2
(

3 +

4

)
≤p

√
2
e

[ (
v + (1− v)

+

2

)
+

(
(1− v) + v

+

2

)]
.

Therefore, we have

2 ∗
(

3 +
4

)
≤
√

2
e
[

∗
(
v + (1− v) +

2
)
+ ∗

(
(1− v) + v +

2
)]

,

2 ∗
(

3 +

4

)
≤
√

2
e

[
∗
(
v + (1− v)

+

2

)
+ ∗

(
(1− v) + v

+

2

)]
.

Taking ∗(.) and multiplying both sides by e−
ρv
2 and integrating the obtained result

with respect to v from 0 to 1, we have

∫ 1

0
e−

ρv
2 ∗

(
3 +

4

)
dv ≤

√
2
e

[∫ 1

0
e−ρv

∗

(
v + (1− v)

+

2

)
dv+

∫ 1

0
e−ρv

∗

(
(1− v) + v

+

2

)
dv
]

.

Let u = v + (1− v) +
2 and κ = (1− v) + v +

2 . Then, we have

∫ 1
0 e−

ρv
2 ∗
(

3 +
4

)
dv ≤

√
2
e

1
−
∫

+
2

e(−
1−α

α ( +
2 −u))

∗(u)du + 1
−
∫

+
2

e(−
1−α

α (κ− ))
∗(κ)dκ

=
√

2
e

α
−

[
Iα

+ ∗
(

+
2
)
+ Iα

( +
2 )

− ∗( )

]
.

(83)

Now, taking the right side of Equation (83), we have

∫ 1

0
e−

ρv
2 ∗

(
3 +

2

)
dv =

2(1− e−ρ)

ρ ∗

(
3 +

4

)
. (84)

From (83) and (84), we deduce that

2(1− e−ρ)

ρ ∗

(
3 +

4

)
≤
√

2
e

1−α
−

[
Iα

+ ∗
(

+
2
)
+ Iα

( +
2 )

− ∗( )

]
. (85)

Similarly, for ∗(.), from (85), we have

2(1− e−ρ)

ρ
∗
(

3 +

4

)
≤
√

2
e

1−α
−

[
Iα

+
∗( +

2
)
+ Iα

( +
2 )

−
∗( )

]
. (86)

From (85) and (86), we deduce that

2(1− e−ρ)

ρ

(
3 +

4

)
≤p

√
2
e

1−α
−

[
Iα

+

(
+
2
)
+ Iα

( +
2 )

− ( )

]
. (87)

For the right side of Equation (81), since is a left and right exponential trigonometric
convex I-V·M, then we can deduce that(

v + (1− v)
+

2

)
≤p

sin πv
4

e1−v ( ) +
cos πv

4
ev

(
+

2

)
, (88)

and (
(1− v) + v

+

2

)
≤p

cos πv
4

ev
( ) +

sin πv
4

e1−v

(
+

2

)
(89)
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Adding (88) and (89), we have(
v + (1− v)

+

2

)
+

(
(1− v) + v

+

2

)
≤p

[
( ) +

(
+

2

)][
sin πv

4
e1−v +

cos πv
4

ev

]
. (90)

Since is I-V·M, then we have

∗
(
v + (1− v) +

2
)
+ ∗

(
(1− v) + v +

2
)
≤
[

∗( ) + ∗
(

+
2
)][ sin πv

4
e1−v +

cos πv
4

ev

]
,

∗(v + (1− v) +
2
)
+ ∗((1− v) + v +

2
)
≤
[ ∗( ) + ∗( +

2
)][ sin πv

4
e1−v +

cos πv
4

ev

]
.

(91)

Taking ∗(.) from (91) and multiplying the inequality by e−
ρv
2 , and integrating the

resultant with v from 0 to 1, we have∫ 1
0 ee−

ρv
2

∗(v +(1− v) +
2
)
dv+

∫ 1
0 ee−

ρv
2

∗
(
(1− v) + v +

2
)
dv

≤
[

∗( ) + ∗
(

+
2
)] ∫ 1

0 ee−
ρv
2
[

sin πv
4

e1−v +
cos πv

4
ev

]
dv,

=

(
2ρ+2πe−

ρ+2
2 +4

ρ2+4ρ+π2+4 + 2πe−1+2e−
ρ
2 (2+ρ)

ρ2−4ρ+π2+4

)[
∗( ) + ∗

(
+
2
)]

.

(92)

In a similar way to the above, for ∗(.) we have

∫ 1
0 ee−

ρv
2 ∗(v +(1− v) +

2
)
dv+

∫ 1
0 ee−

ρv
2 ∗((1− v) + v +

2
)
dv

≤ [ ∗( ) + ∗( )]
∫ 1

0 e−ρv

[
sin πv

4

e
2−v

2
+

cos πv
4

e
v
2

]
dv,

=

(
2ρ+2πe−

ρ+2
2 +4

ρ2+4ρ+π2+4 + 2πe−1+2e−
ρ
2 (2+ρ)

ρ2−4ρ+π2+4

)[ ∗( ) + ∗( +
2
)]

.

(93)

From (92) and (93), we have∫ 1
0 e−ρv (v +(1− v) +

2
)
dv+

∫ 1
0 e−ρv

(
(1− v) + v +

2
)
dv

≤p

(
2ρ+2πe−

ρ+2
2 +4

ρ2+4ρ+π2+4 + 2πe−1+2e−
ρ
2 (2+ρ)

ρ2−4ρ+π2+4

)[
( ) +

(
+
2
)]

.
(94)

Combining (87) and (94), we have√
e
2

(
3 +

2

)
≤p

1−α

2
(

1−e−
ρ
2

)[Iα
+

(
+
2
)
+ Iα

( +
2 )

− ( )

]

≤p
ρ

2
(

1−e−
ρ
2

)K(ρ)

(
( )+

(
+
2

)
2

)
,

(95)

where

K(ρ) =
2ρ + 2πe−

ρ+2
2 + 4

ρ2 + 4ρ + π2 + 4
+

2πe−1 + 2e−
ρ
2 (2 + ρ)

ρ2 − 4ρ + π2 + 4
.

Similarly, if we take the interval
[

+
2 ,

]
, then, from (38), we find that√

e
2

[ (
+3
2

)]
≤p

1−α

2
(

1−e−
ρ
2

)[Iα

( +
2 )

+ ( ) + Iα
−
(

+
2
)]

≤p
ρ

2
(

1−e−
ρ
2

)K(ρ)

( (
+
2

)
+ ( )

2

)
.

(96)

76



Fractal Fract. 2023, 7, 223

Adding (95) and (96), we have√
e
2

[ (
3 +

2

)
+
(

+3
2

)]
≤p

1−α

2
(

1−e−
ρ
2

)[Iα
+

(
+
2
)
+ Iα

( +
2 )

+ ( ) + Iα

( +
2 )

− ( ) + Iα
−
(

+
2
)]

≤p
ρ

2
(

1−e−
ρ
2

)K(ρ)
(

( )+ ( )
2 +

(
+
2
))

.

(97)

To achieve the first and fourth order relations in (81), again by taking

(
+
2
)

=

(
3 +

4 + +3
4

2

)
≤p

sin π
4√

e ( ) +
cos π

4√
e ( )

= 1
2

√
2
e ( ) + 1

2

√
2
e ( )

(98)

and (
+
2
)

=

(
3 +

4 + +3
4

2

)
≤p

sin π
4√

e

(
3 +

4

)
+

cos π
4√

e

(
+3
4

)
= 1

2

√
2
e

(
3 +

4

)
+ 1

2

√
2
e

(
+3
4

)
.

(99)

By using the inclusion relation (98) and (99), we obtain the first and fourth inclusions
of (81). By combining the resultant inclusion and (97), we obtain the following relation:

e
(

+
2
)
≤p

√
e
2

[ (
3 +

2

)
+
(

+3
2

)]
≤p

1−α

2
(

1−e−
ρ
2

)[Iα
+

(
+
2
)
+ Iα

( +
2 )

+ ( ) + Iα

( +
2 )

− ( ) + Iα
−
(

+
2
)]

≤p
ρ

2
(

1−e−
ρ
2

)K(ρ)
(

( )+ ( )
2 +

(
+
2
))

≤p
ρ

2
(

1−e−
ρ
2

)(1 +
√

e
2

)
K(ρ) ( )+ ( )

2 .

Hence, the required result. �

Remark 7. From Theorem 7 we can clearly see the following.
If one lays which is an upper left and right exponential trigonometric concave I-V·M on

[ , ], then one acquires the following inequality [98]:

e
(

+
2
)
⊇p

√
e
2

[ (
3 +

2

) (
+3
2

)]
⊇p

1−α

2
(

1−e−
ρ
2

)[Iα
+

(
+
2
)
+ Iα

( +
2 )

+ ( ) + Iα

( +
2 )

− ( ) + Iα
−
(

+
2
)]

⊇p
ρ

2
(

1−e−
ρ
2

)K(ρ)
(

( )+ ( )
2 +

(
+
2
))

⊇p
ρ

2
(

1−e−
ρ
2

)(1 +
√

e
2

)
K(ρ) ( )+ ( )

2 .

(100)

If α → 1 , that is

lim
α→1

ρ = lim
α→1

1− α

α
( − ) = 0, then
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lim
α→1

ρ

1− e−
ρ
2

(
2ρ + 2πe−

ρ+2
2 + 4

ρ2 + 4ρ + π2 + 4
+

2πe−1 + 2e−
ρ
2 (2 + ρ)

ρ2 − 4ρ + π2 + 4

)
=

4
(
2πe−1 + 4

)
π2 + 4

, lim
α→1

1− α

2
(

1− ee−
ρ
2

) =
1
−

Then, we acquire the following result, which is also a new one:

e
2
(

+
2
)
≤p

1
2

√
e
2

[ (
3 +

2

)
+
(

+3
2

)]
≤p

1
−
∫

(κ)dκ

≤p
2πe−1+4

π2+4

(
( )+ ( )

2 +
(

+
2
))

≤p
2πe−1+4

π2+4

(
1 +
√

e
2

)
( )+ ( )

2 .

(101)

If one lays α → 1 and which is an upper left and right exponential trigonometric concave
I-V·M on [ , ], then one acquires the following inequality [98]:

e
2
(

+
2
)
⊇p

1
2

√
e
2

[ (
3 +

2

)
+
(

+3
2

)]
⊇p

1
−
∫

(κ)dκ

⊇p
2πe−1+4

π2+4

(
( )+ ( )

2 +
(

+
2
))

⊇p
2πe−1+4

π2+4

(
1 +
√

e
2

)
( )+ ( )

2 .

(102)

Let α → 1and ∗(κ) �= ∗(κ). Then, from Theorem 7, we achieve the Hermite–Hadamard
inequality for interval-valuedleft and right exponential trigonometric convex mapping, which is also
a new one:

e
2
(

+
2
)
≤p

1
2

√
e
2

[ (
3 +

2

)
+
(

+3
2

)]
≤p

1
−
∫

(κ)dκ

≤p
2πe−1+4

π2+4

(
( )+ ( )

2 +
(

+
2
))

≤p
2πe−1+4

π2+4

(
1 +
√

e
2

)
( )+ ( )

2 .

(103)

If ∗(κ) = ∗(κ), then, from Theorem 7, we arrive at the classical fractional Hermite–
Hadamard inequality forexponential trigonometric convex mapping:

e
(

+
2
)
≤
√

e
2

[ (
3 +

2

)
+
(

+3
2

)]
≤ 1−α

2
(

1−e−
ρ
2

)[Iα
+

(
+
2
)
+ Iα

( +
2 )

+ ( ) + Iα

( +
2 )

− ( ) + Iα
−
(

+
2
)]

≤ ρ

2
(

1−e−
ρ
2

)K(ρ)
(

( )+ ( )
2 +

(
+
2
))

≤ ρ

2
(

1−e−
ρ
2

)(1 +
√

e
2

)
K(ρ) ( )+ ( )

2 .

(104)

Let α → 1 and ∗(κ) =
∗(κ). Then, from Theorem 7, we arrive at the classical Hermite–

Hadamard inequality for exponential trigonometric convex mapping, see [78].

e
2
(

+
2
)
≤ 1

2

√
e
2

[ (
3 +

2

)
+
(

+3
2

)]
≤ 1

−
∫

(κ)dκ

≤ 2πe−1+4
π2+4

(
( )+ ( )

2 +
(

+
2
))

≤ 2πe−1+4
π2+4

(
1 +
√

e
2

)
( )+ ( )

2 .

(105)

To validate Theorem 7, we provide the following nontrivial example:
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Example 3. Let α = 1
3 , κ ∈ [0, 1], and the I-V·M : [ , ] = [0, 1]→ X+

C , defined by

(κ) =
[
2κ4, 4κ4

]
.

Since left and right end point mappings ∗(κ) = 2κ4, ∗(κ) = 4κ4, are exponential
trigonometric convex mappings then (κ) is an exponential trigonometric convex I-V·M. We can
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Hence, Theorem 7 is verified.

6. Conclusions

This study discusses some fundamental properties and introduces the concepts of left
and right exponential trigonometric interval-valued convex mappings. Furthermore, by
utilizing the idea of fractional integrals having exponential kernels, we established some
novel Hermite–Hadamard-type inequalities and proved certain conclusions for midpoint-
and Pachpatte-type inequalities. Further research is necessary in this important area of
interval-valued analysis that includes fractional integral operators. By utilizing the -integral,
we plan to investigate the integral inequalities of fuzzy-interval-valued functions and some
applications in interval optimizations.

Author Contributions: Conceptualization, M.B.K.; methodology, M.B.K.; validation, M.S.S. and A.C.;
formal analysis, M.S.S.; investigation, M.B.K. and A.C.; resources, M.S.S. and A.C.; data curation,
A.C.; writing—original draft preparation, M.B.K.; writing—review and editing, M.B.K., A.C. and
M.S.S.; visualization, M.B.K.; supervision, M.B.K. and N.A.; project administration, M.B.K., A.C. and
N.A. All authors have read and agreed to the published version of the manuscript.

Funding: The research was funded by the University of Oradea, Romania. The researchers also
would like to acknowledge the Deanship of Scientific Research, Taif University, Saudi Arabia for
funding this work.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the Rector, COMSATS University Islamabad,
Islamabad 44000, Pakistan. The research was funded by the University of Oradea, Romania. The
researchers also would like to acknowledge the Deanship of Scientific Research, Taif University, Saudi
Arabia for funding this work.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Fejér, L. Uberdie Fourierreihen, II. Math. Naturwiss. Anz. Ungar Akad Wiss. 1906, 24, 369–390.
2. Bombardelli, M.; Varošanec, S. Properties of h-convex functions related to the Hermite–Hadamard–Fejér inequalities. Comput.

Math. Appl. 2009, 58, 1869–1877. [CrossRef]
3. Iscan, I. Some new Hermite–Hadamard type inequalities for s-geometrically convex functions and their applications. arXiv 2014,

arXiv:1305.6601.
4. Noor, M.A.; Noor, K.I.; Awan, M.U.; Li, J. On Hermite–Hadamard inequalities for h-preinvex functions. Filomat 2014,

24, 1463–1474. [CrossRef]
5. Latif, M.A.; Alomari, M. On Hadmard-type inequalities for h-convex functions on the co-ordinates. Int. J. Math. Anal. 2009,

3, 1645–1656.
6. Iscan, I. Hermite–Hadamard type inequalities for harmonically convex functions. Hacet. J. Math. Stat. 2014, 43, 935–942. [CrossRef]
7. Tseng, K.L.; Yang, G.S.; Hsu, K.C. Some inequalities for differentiable mappings and applications to Fejér inequality and weighted

trapezoidal formula. Taiwan J. Math. 2011, 15, 1737–1747. [CrossRef]
8. Dragomir, S.S. Inequalities of Hermite–Hadamard type for h-convex functions on linear spaces. Proyecciones 2015,

34, 323–341. [CrossRef]
9. Zhao, T.H.; Castillo, O.; Jahanshahi, H.; Yusuf, A.; Alassafi, M.O.; Alsaadi, F.E.; Chu, Y.M. A fuzzy-based strategy to suppress the

novel coronavirus (2019-NCOV) massive outbreak. Appl. Comput. Math. 2021, 20, 160–176.
10. Zhao, T.H.; Wang, M.K.; Chu, Y.M. On the bounds of the perimeter of an ellipse. Acta Math. Sci. 2022, 42B, 491–501. [CrossRef]
11. Zhao, T.H.; Wang, M.K.; Hai, G.J.; Chu, Y.M. Landen inequalities for Gaussian hypergeometric function. RACSAM Rev. R Acad. A

2022, 116, 53. [CrossRef]
12. Wang, M.K.; Hong, M.Y.; Xu, Y.F.; Shen, Z.H.; Chu, Y.M. Inequalities for generalized trigonometric and hyperbolic functions with

one parameter. J. Math. Inequal. 2020, 14, 1–21. [CrossRef]
13. Zhao, T.H.; Qian, W.M.; Chu, Y.M. Sharp power mean bounds for the tangent and hyperbolic sine means. J. Math. Inequal. 2021,

15, 1459–1472. [CrossRef]
14. Chu, Y.M.; Wang, G.D.; Zhang, X.H. The Schur multiplicative and harmonic convexities of the complete symmetric function.

Math. Nachr. 2011, 284, 53–663. [CrossRef]
15. Chu, Y.M.; Xia, W.F.; Zhang, X.H. The Schur concavity, Schur multiplicative and harmonic convexities of the second dual form of

the Hamy symmetric function with applications. J. Multivar. Anal. 2012, 105, 412–442. [CrossRef]

80



Fractal Fract. 2023, 7, 223

16. Hajiseyedazizi, S.N.; Samei, M.E.; Alzabut, J.; Chu, Y.M. On multi-step methods for singular fractional q-integro-differential
equations. Open Math. 2021, 19, 1378–1405. [CrossRef]

17. Jin, F.; Qian, Z.S.; Chu, Y.M.; Rahman, M. On nonlinear evolution model for drinking behavior under Caputo-Fabrizio derivative.
J. Appl. Anal. Comput. 2022, 12, 790–806. [CrossRef]

18. Wang, F.Z.; Khan, M.N.; Ahmad, I.; Ahmad, H.; Abu-Zinadah, H.; Chu, Y.M. Numerical solution of traveling waves in chemical
kinetics: Time-fractional fisher’s equations. Fractals 2022, 30, 2240051. [CrossRef]

19. Chu, Y.M.; Siddiqui, M.K.; Nasir, M. On topological co-indices of polycyclic tetrathiafulvalene and polycyclic oragano silicon
dendrimers. Polycycl. Aromat. Compd. 2022, 42, 2179–2197. [CrossRef]

20. Chu, Y.M.; Rauf, A.; Ishtiaq, M.; Siddiqui, M.K.; Muhammad, M.H. Topological properties of polycyclic aromatic nanostars
dendrimers. Polycycl. Aromat. Compd. 2022, 42, 1891–1908. [CrossRef]

21. Chu, Y.M.; Numan, M.; Butt, S.I.; Siddiqui, M.K.; Ullah, R.; Cancan, M.; Ali, U. Degree-based topological aspects of polyphenylene
nanostructures. Polycycl. Aromat. Compd. 2022, 42, 2591–2606. [CrossRef]

22. Chu, Y.M.; Muhammad, M.H.; Rauf, A.; Ishtiaq, M.; Siddiqui, M.K. Topological study of polycyclic graphite carbon nitride.
Polycycl. Aromat. Compd. 2022, 42, 3203–3215. [CrossRef]

23. Iscan, I. Hermite–Hadamard–Fejér type inequalities for convex functions via fractional integrals. arXiv 2015, arXiv:1404.7722.
24. Iscan, I.; Wu, S. Hermite–Hadamard type inequalities for harmonically convex functions via fractional integrals. Appl. Math.

Comput. 2014, 238, 237–244.
25. Iscan, I.; Kunt, M.; Yazici, N. Hermite–Hadamard–Fejér type inequalities for harmonically convex functions via fractional integrals.

New Trends Math. Sci. 2016, 4, 239–253. [CrossRef]
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Abstract: This work examines a new subclass of generalized bi-subordinate functions of complex
order γ connected to the q-difference operator. We obtain the upper bounds ρm for generalized
bi-subordinate functions of complex order γ using the Faber polynomial expansion technique. Ad-
ditionally, we find coefficient bounds |ρ2| and Feke–Sezgo problems

∣∣ρ3 − ρ2
2
∣∣ for the functions in

the newly defined class, subject to gap series conditions. Using the Faber polynomial expansion
method, we show some results that illustrate diverse uses of the Ruschewey q differential operator.
The findings in this paper generalize those from previous efforts by a number of prior researchers.

Keywords: quantum (or q-) calculus; analytic functions; univalent functions; q-derivative operator;
convex functions; starlike functions; bi-univalent functions; Faber polynomial expansion

MSC: 05A30; 30C45; 11B65; 47B38

1. Introduction and Definitions

The set of all analytic functions h(z) in the open unit disc E = {z : |z| < 1} is denoted
by the symbol A and every h ∈ A is normalized by

h(0) = 0 and h′(0) = 1.

Thus, every function h ∈ A can be expressed in the following form:

h(z) = z +
∞

∑
m=2

amzm. (1)

Furthermore, S ⊂ A and every h ∈ S is univalent in E. For h1, h2 ∈ A, and h1
subordinate to h2 in E, denoted by

h1(z) ≺ h2(z), z ∈ E,

if there exists a function w0, such that w0 ∈ A, with w0(0) = 0, and |w0(z)| < 1, satisfying

h1(z) = h2(w0(z)), z ∈ E.

Let S∗ represent the class of starlike functions and every h ∈ S∗, if

Re

(
zh

′
(z)

h(z)

)
> 0, z ∈ E

Fractal Fract. 2023, 7, 270. https://doi.org/10.3390/fractalfract7030270 https://www.mdpi.com/journal/fractalfract84
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and C represents the class of convex functions and every h ∈ C, if

1 + Re

(
zh

′′
(z)

h′(z)

)
> 0, z ∈ E.

In terms of subordination, these conditions are equivalent as follows:

S∗ =
{

h ∈ A :
zh

′
(z)

h(z)
≺ 1 + z

1− z

}

and

C =

{
h ∈ A : 1 +

zh
′′
(z)

h′(z)
≺ 1 + z

1− z

}
.

Ma and Minda [1] stated that the aforementioned two classes can be generalized as
follows:

S∗(ϕ) =

{
h ∈ A :

zh
′
(z)

h(z)
≺ ϕ(z)

}
and

C(ϕ) =

{
h ∈ A : 1 +

zh
′′
(z)

h′(z)
≺ ϕ(z)

}
.

where ϕ(z) is a positive real part function and is normalized by the condition

ϕ(0) = 1, ϕ
′
(0) > 0

and ϕ maps E onto a region that is starlike with respect to 1 and symmetric with respect
to the real axis. Ravichandran et al. [2] gave the extension of above two classes in the
following way:

S∗(γ, ϕ) =

{
h ∈ A : 1 +

1
γ

(
zh

′
(z)

h(z)
− 1

)
≺ ϕ(z); γ ∈ C\{0}

}

and

C(γ, ϕ) =

{
h ∈ A : 1 +

1
γ

(
zh

′′
(z)

h′(z)

)
≺ ϕ(z); γ ∈ C\{0}

}
.

These types of functions are referred to as Ma–Minda starlike and convex functions of
γ, (γ ∈ C\{0}), respectively.

The Koebe one-quarter theorem (see [3]) states that the image of E under every h ∈ S
contains a disk of radius one-quarter centered at the origin. Thus, every function h ∈ S has
an inverse h−1 = g,

g(h(z)) = z, z ∈ E

and
h(g(w)) = w, |w| < r0(h), r0(h) ≥

1
4

.

The series of the inverse function g is given by

g(w) = w− a2w2 + (2a2
2 − a3)w3 − (5a3

2 − 5a2a3 + a4)w4 + . . . . (2)

A function h ∈ A is called bi-univalent in E if both h and h−1 are univalent in E and
we denote the class of all bi-univalent functions by Σ.

Lewin [4] developed the idea of class Σ and established that |a2| < 1.51 for every h ∈ Σ.
Styer and Wright [5] demonstrated the existence of h ∈ Σ for which |a2| > 4

3 . Since the
creation of the class Σ, several researchers have been trying to determine how the geometric

85



Fractal Fract. 2023, 7, 270

properties of the functions in the class and the coefficient bounds are related. Indeed,
a strong foundation for the study of bi-univalent functions was laid by authors such as
Lewin [4], Brannan and Taha [6], and Srivastava et al. [7]. Only non-sharp estimates of the
initial coefficients were produced in these recent works. Coefficient estimates for general
subclasses of analytic bi-univalent functions were also obtained in [8]. More recently,
in [9], coefficient estimates for general subclasses of analytic bi-univalent functions were
also obtained using the integral operator based upon Lucas polynomials, while Oros and
Cotirla [10] defined a new subclass of v-fold bi-univalent functions and obtained coefficient
estimates and the Fekete–Szego problem. However, the problem of a sharp coefficient
bound for |am|, (m = 3, 4, 5, . . . ) is still open.

Recently, Hamidi and Jahangiri [11,12] started to apply the Faber polynomial expan-
sion method to find coefficient bounds |am| for m ≥ 3. The Faber polynomial method was
introduced by Faber in [13] and its importance was discussed by Gong [14]. A number of
new subclasses of bi-univalent functions have been introduced and studied by considering
and involving the Faber polynomial expansion method. In the following article [15] Bult
defined some new subclasses of bi-univalent functions and used the Faber polynomial
technique to find general coefficient bounds |am| for m ≥ 3, and also discussed the unpre-
dictable behavior of initial coefficient bounds. The general coefficient bounds |am| m ≥ 3
of analytic bi-univalent functions were also obtained recently, by using the subordination
properties and Faber polynomial expansion method [16], and also using the same technique
that Altinkaya and Yalcin [17] discussed concerning the interesting behavior of coefficient
bounds for new subclasses of bi-univalent functions. Furthermore, many authors have
applied the technique of Faber polynomials and determined some interesting results for
bi-univalent functions.

Jackson [18] presented the idea of the q-calculus operator and defined Dq, while Ismail
et al. [19] were the first to use the q-difference operator (Dq) to define a class of q-starlike
functions. After that, many researchers introduced several subclasses of analytic functions
related to q-calculus, (see, for details, [20–22]). The following articles on differential operators
shall be used for the study of the applications of operators: [23–26].

In order to create some new subclasses of analytic and bi-univalent functions, the core
definitions and ideas of q-calculus need to be discussed.

Definition 1. For η, q ∈ C, the q-shifted factorial (η, q)m is defined by

(η, q)m =

{
1 if m = 0,

(1− η)(1− ηq) . . .
(
1− ηqn−1) if (m ∈ N).

(3)

If η �= q−l , (l ∈ N0), then it can be written as:

(η, q)∞ =
∞

∏
m=0

(1− ηqm), (η ∈ C and |q| < 1), (4)

when η �= 0 and q ≥ 1, (η, q)∞ diverges. Therefore, whenever we use (η, q)∞ then |q| < 1 will be
assumed.

Remark 1. It is noted that when q → 1− in (η, q)m, then (19) reduces to the Pochhammer symbol
(η)m defined by

(η)m = η(η + 1) . . . (η + m− 1) if m ∈ N.

If m = 0, then (η)m = 1.

Definition 2. The (η, q)m in (19) is precise with respect to the q-Gamma function, which is given
below

�q(η) =
(1− q)1−η(q, q)∞

(qη , q)∞
, (0 < q < 1),
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or

(qη , q)m =
(1− q)m

�q(η + m)

�q(η)
, (m ∈ N)

and q-factorial [m]q! is defined by:

[m]q! =
m

∏
k=1

[k]q, if (m ∈ N) (5)

= 1 if m = 0.

It is important to note that ordinary calculus is a limiting case of quantum calculus. It
is expected that a study of quantum difference operators will be crucial to the growth of
q-function theory, which is essential for combinatory analysis. In addition, the differential
and integral operators are widely used in geometric function theory. The most significant
feature of our study is that we are investigating the properties of new class of analytic
bi-univalent functions under a certain q-derivative operator. Geometric-function-theory-
related research on this topic has still not been performed extensively.

In this paper, we first define the q-derivative (q-difference) operator and then consider
this operator to define a new class of analytic bi-univalent functions of class Σ.

Definition 3 ([18]). For h ∈ A, the q-difference operator is defined as:

Dqh(z) =
h(qz)− h(z)

z(q− 1)
, z ∈ E.

Note that, for m ∈ N and z ∈ E and

Dq(zm) = [m]qzm−1, Dq

(
∞

∑
m=1

amzm

)
=

∞

∑
m=1

[m]qamzm−1,

where (0 < q < 1), is defined by

[m]q =
1− qm

1− q
, and [0]q = 0

and the q-number shift factorial is given by

[m]q! = [1]q[2]q[3]q . . . [m]q,

[0]q! = 1.

The q-generalized Pochhammer symbol is defined by

[x]q,m =
�q(x + m)

�q(x)
, m ∈ N, x ∈ C. (6)

Remark 2. For q → 1−, then [x]q,m reduces to (x)m = Γ(x+m)
Γ(x) .

Suppose that ϕ is an analytic function with a positive real part in the unit disk E
satisfying

ϕ(0) = 1 and ϕ
′
(0) > 0

and ϕ(E) is symmetric with respect to the real axis and has the series

ϕ(z) = 1 + B1z + B2z2 + B3z3 + . . . and (B1 > 0). (7)
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The q-calculus operator theory is used to solve a wide range of problems in heat
transfer and other areas of mathematical physics and engineering that include cylindrical
and spherical coordinates. Several remarkable characteristics of new subclasses of analytic
functions have been found using q-differential operators, including new subclasses of
convex and starlike functions. One of the classic areas of geometric function theory is the
study of particular subclasses of starlike functions and its generalization. Therefore, by
means of the q-difference operator (Dq) defined in Definition 3 and inspired by the work
introduced in [27], a new class of analytic bi-univalent functions of class Σ is introduced.
The original results will be proved in the following section using the Faber polynomial
approach and two lemmas.

Definition 4. Let h be the form (1) and h ∈ J(λ, γ, q; ϕ) if

1 +
1
γ

(
zDqh(z) + λz2D2

q(h(z))
(1− λ)h(z) + λzDqh(z)

− 1

)
≺ ϕ(z)

and

1 +
1
γ

(
wDqg(w) + λw2D2

q(g(w))

(1− λ)g(w) + λwDqg(w)
− 1

)
≺ ϕ(w),

where, 0 ≤ λ ≤ 1, γ ∈ C\{0}, z, w ∈ E and g = h−1.

Note: If both h and its inverse map g = h−1 are in J(λ, γ, q; ϕ), then h is called a
generalized bi-subordinate function of complex order γ.

Remark 3. For λ = 0, then we have J(λ, γ, q; ϕ) = J(0, γ, q; ϕ) and for λ = 1, then we have
J(λ, γ, q; ϕ) = J(1, γ, q; ϕ).

Remark 4. For q → 1−, then J(λ, γ, q; ϕ) = J(λ, γ; ϕ), and introduced by Deniz in [28].

2. The Faber Polynomial Expansion Method and Its Applications

For the function h ∈ A, Airault and Bouali ([29], page 184) used Faber polynomials to
show that

zh
′
(z)

h(z)
= 1−

∞

∑
m=2

[Rm−1(a2, a3, . . . am)]zm−1, (8)

where

Rm−1(a2, a3, . . . am) =
∞

∑
i1+2i2+...(m−1)im−1=m−1

A(i1, i2, i3, . . . , im−1)
(

ai1
2 ai2

3 . . . aim−1
m

)
and

A(i1, i2, i3, . . . , im−1) = (−1)(m−1)+2i1+···+mim−1

×
(
(i1 + i2 + i3, · · ·+ im−1 − 1)!(m− 1)

(i1!)(i2!)(i3!), . . . (im−1!)

)
.

The first terms of the Faber polynomial Rm−1, m ≥ 2, are given by (e.g., see ([30],
page 52))

R1 = −a2, R2 = a2
2 − 2a3,

R3 = −a3
2 + 3a2a3 − 3a4),

R3 = a4
2 − 4a2

2a3 + 4a2a4 + 2a2
3 − 4a5).
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Using the Faber polynomial technique for the analytic functions h, then the coefficients
of its inverse map g can be written as follows (see ([29], page 185)):

g(w) = h−1(w) = w +
∞

∑
m=2

1
m

Rm
m−1(a2, a3, . . . , am)wm,

where the coefficients of the m parametric function are

Rp
1 = pa2,

Rp
2 =

p(p− 1)
2

a2
2 + pa3,

Rp
3 = p(p− 1)a2a3 + pa4 +

p(p− 1)(p− 2)
3!

a3
2,

Rp
4 = p(p− 1)a2a4 + pa5 +

p(p− 1)
2

a2
3 +

p(p− 1)(p− 2)
2

a2
2a3 +

p!
(p− 4)!4!

a4
2,

...

Rp
m−1 =

p!
(p−m)!m!

am
2 +

p!
(p−m + 1)!(m− 2)!

am−2
2 a3 +

p!
(p− n + 2)!(m− 3)!

am−3
2 a4

+
p!

(p− n + 3)!(m− 4)!
am−4

2

(
a5 +

p− n + 3
2

a2
3

)

+
p!

(p− n + 4)!(m− 5)!
am−4

2 (a6 + (p−m + 3)a3a4) + ∑
i≥6

am−i
2 Qi,

and Qi is a homogeneous polynomial in the variables a2, a3, . . . , am, for 6 ≤ i ≤ m; see [31],
page 349, and [29], pages 183 and 205. Particularly, the first three terms of Rp

m−1 are

1
2

R1
1 = −a2,

1
3

R−3
2 = 2a2

2 − a3,

1
4

R3
3 = −(5a3

2 − 5a2a3 + a4).

In general, for r ∈ Z (Z := 0,±1,±2, . . . and m ≥ 2, there is an expansion of Rr
m of the

form:

Rr
m = ram +

r(r− 1)
2

V2
m +

r!
(r− 3)!3!

V3
m + · · ·+ r!

(r−m)!(m)!
Vm

m ,

where,
V r

m = V r
m(a2, a3 . . . .),

and by [32], we have

Vv
m(a2, . . . , am) =

∞

∑
m=1

v!(a2)
μ1 . . . (am)μm

μ1!, . . . , μm!
, for a1 = 1 and v ≤ m.

The sum is taken over all nonnegative integers μ1, . . . , μm, which satisfy

μ1 + μ2 + · · ·+ μm = v,

μ1 + 2μ2 + · · ·+ mμm = m.

Clearly,
Vm

m (a1, . . . , am) = Vm
1 ,

89



Fractal Fract. 2023, 7, 270

and the first and last polynomials are

Vm
m = am

1 , and V1
m = am.

Geometric function theory has always placed a great deal of importance on establishing
bounds for the coefficients. The size of the coefficients can determine a number of properties
of analytic functions, including univalency, rate of growth, and distortion. Several scholars
have employed a variety of techniques to resolve the aforementioned problems. Similar
to univalent functions, the bounds of bi-univalent function coefficients have recently
attracted a lot of attention. As a result of the significance of studying the coefficient
problems described above, in this section, we consider the q-difference operator and Faber
polynomial technique to obtain coefficient estimates |ρm| of bi-univalent functions in the
family J(λ, γ, q; ϕ) and discuss the unpredictable behavior of initial coefficient bounds |ρ2|
and Feke–Sezgo problems

∣∣ρ3 − ρ2
2

∣∣ in this family, subject to gap series conditions.
Using the Ruscheweyh differential operator, and Ruscheweyh q-differential operator,

many scholars have defined new classes of convex and starlike functions. In this study, we
also use the Ruscheweyh q-differential operator along with the Faber polynomial method
and discuss the applications of our main results. We also investigate the Feketo–Sezego
problem and some known consequences of our main results.

Set of Lemmas

The following well-known lemmas are required to prove our main theorems:

Lemma 1 ([3]). Let the function p(z) = 1 +
∞
∑

m=1
pmzm and Re(p(z)) > 0 for z ∈ E, then for

−∞ < α < ∞ ∣∣∣p2 − αp2
1

∣∣∣ ≤ { 2− α|p1|2 if α < 1
2

2− (1− α)|p1|2 if α ≥ 1
2 .

Lemma 2 ([28]). Let the function φ(z) =
∞
∑

m=1
φmzm so that |φ(z)| < 1 for z ∈ E, then

∣∣∣φ2 + βφ2
1

∣∣∣ ≤ { 1− (1− δ)|β|2 if β > 0
1− (1 + δ)|β|2 if β ≤ 0.

(9)

This paper uses the q-difference operator for ξ ∈ A, and the new class J(λ, γ, q; ϕ) of
generalized bi-subordinate functions of complex order γ is defined. Next, in Theorem 1,
upper bounds ρm for generalized bi-subordinate functions of complex order γ are proved
and in Theorem 2 the initial coefficient bound |ρ2| and Feke–Sezgo problems

∣∣ρ3 − ρ2
2

∣∣ are
investigated by putting the special value of parameters in the class J(λ, γ, q; ϕ), and we
obtain some new and known results. In Section 4, we use the Ruscheweyh q-differential
operator and investigate some new characteristics of the class of generalized bi-subordinate
functions of complex order γ in the form of some new results. In Section 5, we give
concluding remarks.

3. Main Results

Theorem 1. Let 0 ≤ λ ≤ 1, γ ∈ C\{0}. If both function h(z) = z +
∞
∑

m=2
ρmzm and its inverse

map g = h−1 are in J(λ, γ, q; ϕ) and ρk = 0, 2 ≤ k ≤ m− 1, then

|ρm| ≤
|γ|B1(

[m]q − 1
)(

1 + λ
(
[m]q − 1

)) , (B1 > 0).
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Proof. If we write
Λ(h(z)) = (1− λ)h(z) + λzDqh(z),

then

h ∈ J(λ, γ, q; ϕ)⇔ 1 +
1
γ

(
zDq(Λ(h(z)))

Λ(h(z))
− 1
)
≺ ϕ(z)

and

g = h−1 ∈ J(λ, γ, q; ϕ)⇔ 1 +
1
γ

(
wDq(Λ(g(w)))

Λ(g(w))
− 1
)
≺ ϕ(w).

We notice that
am = 1 + λ

(
[m]q − 1

)
ρn

for

Λ(h(z)) = z +
∞

∑
m=2

amzm.

Now, using the Faber polynomial expansion (8) for the power series J(λ, γ, q; ϕ) yields:

1 +
1
γ

(
zDq(Λ(h(z)))

Λ(h(z))
− 1
)
= 1− 1

γ

∞

∑
m=2

[Rm−1(a2, a3, . . . am)]zm−1, (10)

and for the inverse map g = h−1, obviously, we have

1 +
1
γ

(
wDq(Λ(h(w)))

Λ(h(w))
− 1
)
= 1− 1

γ

∞

∑
m=2

Rm−1(b2, b3, . . . bm)wm−1 (11)

where
bm = 1 + λ

(
[m]q − 1

)
τn =

1
m

Rm
m−1(a2, a3, . . . , am).

By the definition of subordination, there exist two Schwarz functions

u(z) =
∞

∑
m=1

cmzm

and

v(w) =
∞

∑
m=1

dmwm,

Additionally, we have

ϕ(u(z)) = 1− B1

∞

∑
m=1

R−1
m (c1,−c2, . . . (−1)m+1cm, B1, B2, . . . Bm)zm (12)

and

ϕ(v(w)) = 1− B1

∞

∑
m=1

R−1
m (d1,−d2, . . . , (−1)m+1dm, B1, B2, . . . Bm)wm. (13)
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In general (e.g., see [28]), the coefficients Rp
m = Rp

m(k1, k2, . . . , km, B1, B2, . . . Bm) are
given by

Rp
m =

p!
(p−m)!(m)!

km
1

Bm

B1
+

p!
(p−m + 1)!(m− 2)!

km−2
1 k2

Bm−1

B1

+
p!

(p−m + 2)!(m− 4)!
km−3

1 k3

(
Bm−2

B1

)

+
p!

(p−m + 3)!(m− 4)!
km−4

1

[
k4

(
Bm−3

B1

)
+

(
p−m + 3

2

)
k2

2

(
Bm−2

B1

)]

+
p!

(p−m + 4)!(m− 5)!
km−5

1

[
k5

(
Bm−4

B1

)
+ (p−m + 4)k2k3

(
Bm−3

B1

)]
+ ∑

j≥6
km−j

1 Qj,

where Qj in the variables k2, k3, . . . km is a homogeneous polynomial of degree j.
Evaluating the coefficients of Equations of (10) and (12) yields

1
γ

Rm−1(a2, a3, . . . am) = B1R−1
m (c1,−c2, . . . (−1)mcm, B1, B2, . . . Bm). (14)

However, using the facts |cm| ≤ 1 and |dm| ≤ 1 (e.g., see [3]), and under the assumption
2 ≤ k ≤ m− 1 and ak = 0, respectively, we have

1
γ

(
[m]q − 1

)
am =

1
γ

(
[m]q − 1

)(
1 + λ

(
[m]q − 1

))
ρm = −B1cm−1. (15)

Evaluating the coefficients of Equations (11) and (13) yields

1
γ

Rm−1(b2, b3, . . . bm) = B1R−1
m (d1,−d2, . . . (−1)mdm, B1, B2, . . . Bm), (16)

which by the hypothesis, we obtain

− 1
γ

(
[m]q − 1

)
bm = −B1dm−1.

Note that, for, 2 ≤ k ≤ m− 1, bm = −am and ak = 0; therefore

1
γ

(
[m]q − 1

)
am =

1
γ

(
[m]q − 1

)(
1 + λ

(
[m]q − 1

))
ρm = −B1dm−1. (17)

Taking the absolute values of either of Equations (15) or (17) we obtain the required
bound.

This completes Theorem 1.

For λ = 0, in Theorem 1, we obtain a new corollary, which is given below.

Corollary 1. Let γ ∈ C\{0}. If both function h(z) and its inverse map g = h−1 are in J(0, γ, q; ϕ)
and ρk = 0, 2 ≤ k ≤ m− 1, then

|ρm| ≤
|γ|B1

[m]q − 1
, B1 > 0.

For λ = 1, in Theorem 1, we obtain a new corollary, which is given below.
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Corollary 2. Let γ ∈ C\{0}. If both function h(z) and its inverse map g = h−1 are in J(1, γ, q; ϕ)
and ρk = 0, 2 ≤ k ≤ m− 1, then

|ρm| ≤
|γ|B1

[m]q

(
[m]q − 1

) , B1 > 0.

For q → 1− in Theorem 1, we obtain a known corollary that was proven in [28].

Corollary 3 ([28]). Let 0 ≤ λ ≤ 1, γ ∈ C\{0}. If both function h(z) and its inverse map
g = h−1 are in J(λ, γ; ϕ) and ρk = 0, 2 ≤ k ≤ m− 1, then

|ρm| ≤
|γ|B1

(m− 1)(1 + λ(m− 1))
, B1 > 0.

For λ = 0, and q → 1− in Theorem 1, we obtain a known corollary that was proven in [28].

Corollary 4 ([28]). Let 0 ≤ λ ≤ 1, γ ∈ C\{0}. If both function h(z) and its inverse map
g = h−1 are in J(γ; ϕ) and ρk = 0, 2 ≤ k ≤ m− 1, then

|ρm| ≤
|γ|B1

m− 1
, B1 > 0.

Theorem 2. Let 0 ≤ λ ≤ 1, γ ∈ C\{0}. If both function h(z) = z +
∞
∑

m=2
ρmzm and its inverse

map g = h−1 are in J(λ, γ, q; ϕ), then

|ρ2| ≤

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

√
|γ|B1{(

[3]q−1
)(

1+λ
(
[3]q−1

))
−
(
[2]q−1

)(
1+λ
(
[2]q−1

))2
} if B1 ≥ |B2|√

|γ|B2{(
[3]q−1

)(
1+λ
(
[3]q−1

))
−
(
[2]q−1

)(
1+λ
(
[2]q−1

))2
} if B1 < |B2|

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
and ∣∣∣ρ3 − ρ2

2

∣∣∣ ≤
⎧⎪⎨⎪⎩

|γ||B1|(
[3]q−1

)(
1+λ
(
[3]q−1

)) if B1 ≥ |B2|
|γ||B2|(

[3]q−1
)(

1+λ
(
[3]q−1

)) if B1 < |B2|

⎫⎪⎬⎪⎭.

Proof. For m = 2, Equations (14) and (16), respectively, yield

ρ2 =
γB1c1(

[2]q − 1
)(

1 + λ
(
[2]q − 1

)) and ρ2 =
−γB1d1.(

[2]q − 1
)(

1 + λ
(
[2]q − 1

)) . (18)

If we take the absolute values of any of these two equations, and apply |cm| ≤ 1 and
|dm| ≤ 1 (e.g., see Duren [3]), we obtain

|ρ2| ≤
|γB1|(

[2]q − 1
)(

1 + λ
(
[2]q − 1

)) .

For m = 3, Equations (14) and (16), respectively, yield

1
γ

⎛⎜⎜⎝
(
[3]q − 1

)(
1 + λ

(
[3]q − 1

))
ρ3

−
(
[2]q − 1

)(
1 + λ

(
[2]q − 1

))2
ρ2

2

⎞⎟⎟⎠ = B1c2 + B2c2
1 (19)
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and

1
γ

⎛⎜⎜⎜⎜⎜⎝
−
(
[3]q − 1

)(
1 + λ

(
[3]q − 1

))
ρ3

+

⎧⎨⎩ 2
(
[3]q − 1

)(
1 + λ

(
[3]q − 1

))
−
(
[2]q − 1

)(
1 + λ

(
[2]q − 1

))2

⎫⎬⎭ρ2
2

⎞⎟⎟⎟⎟⎟⎠ = B1d2 + B2d2
1. (20)

By combining the two equations mentioned above and finding |ρ2|, we arrive at

ρ2
2 =

γ
(

B1c2 + B2c2
1 + B1d2 + B2d2

1
)

2
{(

[3]q − 1
)(

1 + λ
(
[3]q − 1

))
−
(
[2]q − 1

)(
1 + λ

(
[2]q − 1

))2
} .

Or

|ρ2|2 ≤
|γ|B1

(∣∣∣c2 +
B2
B1

c2
1

∣∣∣+ ∣∣∣d2 +
B2
B1

d2
1

∣∣∣)
2
{(

[3]q − 1
)(

1 + λ
(
[3]q − 1

))
−
(
[2]q − 1

)(
1 + λ

(
[2]q − 1

))2
} . (21)

If B2 ≤ 0, and δ = B2
B1

, then by using Lemma 2 for (21), we obtain

|ρ2|2 ≤
|γ|B1

[
1−
(

B1+B2
B1

)
|c1|2
]
+
[
1−
(

B1+B2
B1

)
|d1|2

]
2
{(

[3]q − 1
)(

1 + λ
(
[3]q − 1

))
−
(
[2]q − 1

)(
1 + λ

(
[2]q − 1

))2
} . (22)

If B1 + B2 > 0, then (22) yields

|ρ2| ≤
√√√√√ |γ|B1{(

[3]q − 1
)(

1 + λ
(
[3]q − 1

))
−
(
[2]q − 1

)(
1 + λ

(
[2]q − 1

))2
} .

If B1 + B2 < 0, then for the maximum values of |c1| = |d1|

|ρ2|2 ≤
2|γ|B1

[
1−
(

B1+B2
B1

)]
2
{(

[3]q − 1
)(

1 + λ
(
[3]q − 1

))
−
(
[2]q − 1

)(
1 + λ

(
[2]q − 1

))2
}

=
−|γ||B2|{(

[3]q − 1
)(

1 + λ
(
[3]q − 1

))
−
(
[2]q − 1

)(
1 + λ

(
[2]q − 1

))2
} .

If B2 > 0, and δ = B2
B1

, then by using Lemma 2 on (21), we obtain

|ρ2|2 ≤
|γ|B1

{[
1−
(

B1−B2
B1

)
|c1|2
]
+
[
1−
(

B1−B2
B1

)
|d1|2

]}
2
{(

[3]q − 1
)(

1 + λ
(
[3]q − 1

))
−
(
[2]q − 1

)(
1 + λ

(
[2]q − 1

))2
} . (23)

If B1 − B2 > 0, then (23) yields

|ρ2| ≤
√√√√√ |γ|B1{(

[3]q − 1
)(

1 + λ
(
[3]q − 1

))
−
(
[2]q − 1

)(
1 + λ

(
[2]q − 1

))2
} .
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If B1 − B2 < 0, then for the maximum values of |c1| = |d1|, we have

|ρ2|2 ≤
2|γ|B1

[
1−
(

B1+B2
B1

)]
2
{(

[3]q − 1
)(

1 + λ
(
[3]q − 1

))
−
(
[2]q − 1

)(
1 + λ

(
[2]q − 1

))2
}

=
|γ||B2|{(

[3]q − 1
)(

1 + λ
(
[3]q − 1

))
−
(
[2]q − 1

)(
1 + λ

(
[2]q − 1

))2
} .

Therefore

|ρ2| ≤
√√√√√ |γ||B2|{(

[3]q − 1
)(

1 + λ
(
[3]q − 1

))
−
(
[2]q − 1

)(
1 + λ

(
[2]q − 1

))2
} .

Now we subtract (19) and (20), and B1 > 0, we have

ρ3 − ρ2
2 =

γB1

2
(
[3]q − 1

)(
1 + λ

(
[3]q − 1

)){(c2 +
B2

B1
c2

1

)
−
(

d2 +
B2

B1
d2

1

)}
. (24)

If we take the absolute values of the two sides of (24), we obtain

∣∣∣ρ3 − ρ2
2

∣∣∣ ≤
|γ|B1

{∣∣∣c2 +
B2
B1

c2
1

∣∣∣+ ∣∣∣d2 +
B2
B1

d2
1

∣∣∣}
2
(
[3]q − 1

)(
1 + λ

(
[3]q − 1

)) .

(25)

If B2 ≤ 0, and δ = B2
B1

, then by using Lemma 2 on (25), we obtain

∣∣∣ρ3 − ρ2
2

∣∣∣ ≤ |γ|B1

{[
1−
(

B1+B2
B1

)
|c1|2
]
+
[
1−
(

B1+B2
B1

)
|d1|2

]}
2
(
[3]q − 1

)(
1 + λ

(
[3]q − 1

)) . (26)

If B1 + B2 > 0, then (26) yields∣∣∣ρ3 − ρ2
2

∣∣∣ ≤ |γ|B1(
[3]q − 1

)(
1 + λ

(
[3]q − 1

)) .

If B1 + B2 < 0, then for the maximum values of |c1| = |d1|, inequality (26) yields

∣∣∣ρ3 − ρ2
2

∣∣∣ ≤
2|γ|B1

[
1−
(

B1+B2
B1

)]
2
(
[3]q − 1

)(
1 + λ

(
[3]q − 1

))
=

−|γ||B2|(
[3]q − 1

)(
1 + λ

(
[3]q − 1

)) .

If B2 > 0, and δ = B2
B1

, then by using Lemma 2 for (25) we obtain

∣∣∣ρ3 − ρ2
2

∣∣∣ ≤ |γ|B1

{[
1−
(

B1−B2
B1

)
|c1|2
]
+
[
1−
(

B1−B2
B1

)
|d1|2

]}
2
(
[3]q − 1

)(
1 + λ

(
[3]q − 1

)) . (27)
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If B1 − B2 > 0, then (27) yields∣∣∣ρ3 − ρ2
2

∣∣∣ ≤ |γ|B1(
[3]q − 1

)(
1 + λ

(
[3]q − 1

)) .

If B1 − B2 < 0, then for the maximum values of |c1| = |d1|, the inequality (27) yields

∣∣∣ρ3 − ρ2
2

∣∣∣ ≤
2|γ|B1

[
1−
(

B1+B2
B1

)]
2
(
[3]q − 1

)(
1 + λ

(
[3]q − 1

))
=

|γ||B2|(
[3]q − 1

)(
1 + λ

(
[3]q − 1

)) .

This concludes the proof of Theorem 2.

Taking λ = 0 in Theorem 2, we obtain a new corollary.

Corollary 5. Let 0 ≤ λ ≤ 1, γ ∈ C\{0}. If both function h(z) = z +
∞
∑

m=2
ρmzm and its inverse

map g = h−1 are in J(γ, q; ϕ), then

|ρ2| ≤

⎧⎪⎪⎨⎪⎪⎩
√

|γ||B1|
[3]q−[2]q

if B1 ≥ |B2|√
|γ||B2|
[3]q−[2]q

if B1 < |B2|

⎫⎪⎪⎬⎪⎪⎭
and ∣∣∣ρ3 − ρ2

2

∣∣∣ ≤
⎧⎨⎩

|γ||B1|
[3]q−1 if B1 ≥ |B2|
|γ||B2|
[3]q−1 if B1 < |B2|

⎫⎬⎭.

Taking λ = 1 in Theorem 2, we obtain the following new corollary.

Corollary 6. Let 0 ≤ λ ≤ 1, γ ∈ C\{0}. If both function h(z) = z +
∞
∑

m=2
ρmzm and its inverse

map g = h−1 are in J(1, γ, q; ϕ), then

|ρ2| ≤

⎧⎪⎪⎨⎪⎪⎩
√

|γ|B1{(
[3]q−1

)
[3]q−

(
[2]q−1

)
[2]2q
} if B1 ≥ |B2|√

|γ||B2|{
[3]q
(
[3]q−1

)
−
(
[2]q−1

)
[2]2q
} if B1 < |B2|

⎫⎪⎪⎬⎪⎪⎭
and ∣∣∣ρ3 − ρ2

2

∣∣∣ ≤
⎧⎪⎨⎪⎩

|γ|B1

[3]q
(
[3]q−1

) if B1 ≥ |B2|
|γ||B2|

[3]q
(
[3]q−1

) if B1 < |B2|

⎫⎪⎬⎪⎭.

Taking q → 1− in Theorem 2, we obtain the known corollary proved in [28].
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Corollary 7. Let 0 ≤ λ ≤ 1, γ ∈ C\{0}. If both function h(z) = z +
∞
∑

m=2
ρmzm and its inverse

map g = h−1 are in J(λ, γ; ϕ), then

|ρ3| ≤

⎧⎪⎪⎨⎪⎪⎩
√

|γ|B1

2(1+2λ)−(1+λ)2 if B1 ≥ |B2|√
|γ||B2|

2(1+2λ)−(1+λ)2 if B1 < |B2|

⎫⎪⎪⎬⎪⎪⎭
and ∣∣∣ρ3 − ρ2

2

∣∣∣ ≤
⎧⎨⎩

|γ|B1
2(1+2λ)

if B1 ≥ |B2|
|γ||B2|

2(1+2λ)
if B1 < |B2|

⎫⎬⎭.

4. Applications

Kanas and Raducanu [21] defined the Ruscheweyh q-differential operator as follows:
For f ∈ A,

Rδ
qh(z) = h(z) ∗ Fq,δ+1(z) (δ > −1, z ∈ E) (28)

where

Fq,δ+1(z) = z +
∞

∑
m=2

�q(m + δ)

[m− 1]! Γq(1 + δ)
zm = z +

∞

∑
m=2

[δ + 1]m−1

[m− 1]!
zm. (29)

We note that

lim
q→1−

Fq,δ+1(z) =
z

(1− z)δ+1 , lim
q→1−

Rδ
qh(z) = h(z) ∗ z

(1− z)δ+1 .

Making use of (28) and (29), we have

Rδ
qh(z) = z +

∞

∑
m=2

�q(m + δ)

[m− 1]! Γq(1 + δ)
amzm = z +

∞

∑
m=2

ψmamzm (z ∈ E), (30)

where �q is the q-generalized Pochhammer symbol defined in (6) and

ψm =
�q(m + δ)

[m− 1]q! Γq(1 + δ)
. (31)

From (30), we note that

R0
qh(z) = h(z),

R1
qh(z) = zDqh(z),

Rδ
qh(z) =

zDδ
q(zδ−1h(z))
[δ]q!

(δ ∈ N).

We also have

Dq(Rδ
qh(z)) = 1 +

∞

∑
m=2

[m]qψmamzm−1. (32)

Remark 5. When q → 1−, then the Ruscheweyh q-differential operator reduces to the differential
operator defined by Ruscheweyh [33].

Definition 5. Let h be of the form (1) and h ∈ J(λ, γ, ψ, q; ϕ) if

1 +
1
γ

⎛⎝ zDq

(
Rδ

qh(z)
)
+ λz2D2

q

(
Rδ

qh(z)
)

(1− λ)Rδ
qh(z) + λzDq

(
Rδ

qh(z)
) − 1

⎞⎠ ≺ ϕ(z)
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and

1 +
1
γ

⎛⎝ zDq

(
Rδ

qg(z)
)
+ λw2D2

q

(
Rδ

qg(w)
)

(1− λ)
(
Rδ

qg(w)
)
+ λwDq

(
Rδ

qg(w)
) − 1

⎞⎠ ≺ ϕ(w),

where 0 ≤ λ ≤ 1, γ ∈ C\{0}, z, w ∈ E and g = h−1.

Theorem 3. Let 0 ≤ λ ≤ 1, γ ∈ C\{0}. If both function h(z) = z +
∞
∑

m=2
ρmzm and its inverse

map g = h−1 are in J(λ, γ, ψ, q; ϕ) and ρk = 0, 2 ≤ k ≤ m− 1, then

|ρm| ≤
|γ|B1

ψm
(
[m]q − 1

)(
1 + λ

(
[m]q − 1

)) .

Proof. If we write

Λ(h(z)) = (1− λ)Rδ
qh(z) + λzDq

(
Rδ

qh(z)
)

,

then

h ∈ J(λ, γ, ψ, q; ϕ)⇔ 1 +
1
γ

⎛⎝ zDq

(
Λ
(
Rδ

qh(z)
))

Λ
(
Rδ

qh(z)
) − 1

⎞⎠ ≺ ϕ(z)

and

g = h−1 ∈ J(λ, γ, ψ, q; ϕ)⇔ 1 +
1
γ

⎛⎝wDq

(
ΛRδ

qg(w)
)

Λ(g(w))
− 1

⎞⎠ ≺ ϕ(w).

We see that
am = ψm

(
1 + λ

(
[m]q − 1

))
for

Λ(h(z)) = z +
∞

∑
m=2

amzm.

Now, an application of Faber polynomial expansion to the power series J(λ, γ, ψ, q; ϕ)
yields:

1 +
1
γ

(
zDq(Λ(h(z)))

Λ(h(z))
− 1
)
= 1− 1

γ

∞

∑
m=2

[Rm−1(a2, a3, . . . am)]zm−1,

After that, by using the similar method of Theorem 1, we can obtain Theorem 3.

Theorem 4. Let 0 ≤ λ ≤ 1, γ ∈ C\{0}. If both function h(z) = z +
∞
∑

m=2
ρmzm and its inverse

map g = h−1 are in J(λ, γ, ψ, q; ϕ), then

|ρ2| ≤

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

√
|γ|B1{(

[3]q−1
)(

1+λ
(
[3]q−1

))
ψ3−
(
[2]q−1

)(
1+λ
(
[2]q−1

))2
ψ2

2

} if B1 ≥ |B2|√
|γ|B2{(

[3]q−1
)(

1+λ
(
[3]q−1

))
ψ3−
(
[2]q−1

)(
1+λ
(
[2]q−1

))2
ψ2

2

} if B1 < |B2|

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
and ∣∣∣ρ3 − ρ2

2

∣∣∣ ≤
⎧⎪⎨⎪⎩

|γ|B1(
[3]q−1

)(
1+λ
(
[3]q−1

))
ψ3

if B1 ≥ |B2|
|γ|B2(

[3]q−1
)(

1+λ
(
[3]q−1

))
v

if B1 < |B2|

⎫⎪⎬⎪⎭.
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Proof. For m = 2, Equations (14) and (16), respectively, yield

ρ2 =
γB1c1

ψ2

(
[2]q − 1

)(
1 + λ

(
[2]q − 1

)) and ρ2 =
−B1d1.

ψ2

(
[2]q − 1

)(
1 + λ

(
[2]q − 1

)) .

If we take the absolute values of any of these two equations, and apply |cm| ≤ 1 and
|dm| ≤ 1 (e.g., see Duren [3]), we obtain

|ρ2| ≤
|γB1|

ψ2

(
[2]q − 1

)(
1 + λ

(
[2]q − 1

)) .

For m = 3, Equations (14) and (16), respectively, yield

1
γ

⎛⎝
(
[3]q − 1

)(
1 + λ

(
[3]q − 1

))
ψ3ρ3

−
(
[2]q − 1

)(
1 + λ

(
[2]q − 1

))2
ψ2

2ρ2
2

⎞⎠ = B1c2 + B2c2
1

and

1
γ

⎛⎜⎜⎜⎝
−
(
[3]q − 1

)(
1 + λ

(
[3]q − 1

))
ψ3ρ3

+

⎧⎨⎩ 2
(
[3]q − 1

)(
1 + λ

(
[3]q − 1

))
ψ3

−
(
[2]q − 1

)(
1 + λ

(
[2]q − 1

))2
ψ2

2

⎫⎬⎭ρ2
2

⎞⎟⎟⎟⎠ = B1d2 + B2d2
1.

By using the similar method of Theorem 2, we can obtain the required result of
Theorem 4.

5. Conclusions

In order to introduce a new class of generalized bi-subordinate functions of complex
order γ in the open unit disk E, we used the idea of convolution and q-calculus in the
current work. We produced estimates for the general coefficients in their Taylor–Maclaurin
series expansions in the open unit disk E for functions that belong to the class of analytic and
bi-univalent functions. Our approach is mostly based on the Faber polynomial expansion
technique. In addition, we listed some corollaries and applications of our primary findings.

The application of the idea of subordination and the Faber polynomial technique for
producing findings involving the newly defined operators can be identified when addi-
tional research proposals are produced. Additionally, the method that has been presented
in this paper might also apply to define a number of new subclasses of meromorphic, mul-
tivalent, and harmonic functions and can be investigated for a number of new properties of
these classes. The only innovation in the types of studies that can be conducted in these
classes will come from the researchers themselves and how the findings presented here
motivate them.
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Abstract: Some well-known authors have extensively used orthogonal polynomials in the framework
of geometric function theory. We are motivated by the previous research that has been conducted and,
in this study, we solve the Fekete–Szegö problem as well as give bound estimates for the coefficients
and an upper bound estimate for the second Hankel determinant for functions in the class GΣ(v, σ)

of analytical and bi-univalent functions, implicating the Euler polynomials.

Keywords: analytic function; bi-univalent function; Fekete–Szegö problem; second Hankel determinant;
Euler polynomials

1. Introduction

Let the collection of all functions f be expressed by A and has the following form
of series.

f (ξ) = ξ +
∞

∑
l=2

slξ
l = ξ + s2ξ2 + s3ξ3 + · · ·+ slξ

l + · · · , sl ∈ C, (1)

which are holomorphic in U where

U = {ξ ∈ C : |ξ| < 1}

in the complex plane. If a function never yields the same value twice, it is said to be
univalent in U . Mathematically

ξ1 �= ξ2 for all points ξ1 and ξ2 in U implies f (ξ1) �= f (ξ2).

Let S represent the family of all univalent functions in A as well. As the families of starlike
and convex functions of order φ, respectively, the sets S∗(φ) and C(φ) are some of the
significant and well-researched subclasses of S , therefore, have been added here as follows
(see [1,2]).

S∗(φ) =
{

f ∈ S : �
(

ξ f ′(ξ)
f (ξ)

)
> φ, φ ∈ [0, 1), ξ ∈ U

}
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and

C(φ) =
{

f ∈ S : �
(

1 +
ξ f ′′(ξ)

f ′(ξ)

)
> φ, φ ∈ [0, 1), ξ ∈ U

}
.

Remark 1. It is easy to seen that

S∗(0) = S∗ and C(0) = C,

where S∗ and C are the well-known function classes of starlike and convex functions, respectively.

Suppose g and f be analytical functions in U . For an analytic function w with

|ω(ξ)| < 1 and ω(0) = 0 (ξ ∈ U ),

The function f is considered to be subordinate to g if the relation below holds, that is

g(ω(ξ)) = f (ξ).

In addition to that, if the function g ∈ S , then the following equivalency exists:

f (ξ) ≺ g(ξ) if g(0) = f (0)

and
f (U ) ⊂ g(U ).

For details, see [1]. The inverse function for every f ∈ S , is defined by

F ( f (ξ)) = ξ, f (F (w)) = w,
(
|w| < r0( f ), r0( f ) ≥ 1

4

)
and (ξ, w ∈ U ),

where
F (w) = w− s2w2 + (2s2

2 − s3)w3 + (−5s3
2 + 5s2s3 − s4)w4 + · · · . (2)

A function f which is analytic is said to be bi-univalent in U if both f and f−1 are univalent
in U . The classes of all such function is denoted by Σ.

The housebreaking research of Srivastava et al. [3] in fact, in the past decades, revital-
ized the examination of bi-univalent functions. Following the study of Srivastava et al. [3],
numerous unique subclasses of the class Σ were presented and similarly explored by numer-
ous authors. The function classes HΣ(γ, ε, μ.ς; α) and HΣ(γ, ε, μ.ς; β) as an illustration, were
defined and Srivastava et al. [4] produced estimates for the Taylor–Maclaurin coefficients
|a2| and |a3|. Many authors were motivated by the work of Srivastava and have defined a
number of other subclasses of analytic and bi-univalent functions, and for their defined
functions classes different types of results were obtained. In this paper, motivated by the
work of Srivastava, we define certain new classes of bi-univalent functions and obtain some
remarkable results for our defined function’s classes, including, for example, the initial
bonds for the coefficients, the Fekete–Szegö problem and the second Hankel determinant.

The theory of special functions, originating from their numerous applications, is a very
old branch of analysis. The long existing interest in them has recently grown due to their
new applications and further generalizations. The contemporary intensive development
of this theory touches various unexpected areas of applications and is based on the tools
of numerical analysis and computer algebra system, used for analytical evolutions and
graphical representations of special functions. Additionally, in Computer Science, special
functions are used as activation functions, which play a significant role in this area. Particu-
larly, orthogonal polynomials are an important and intriguing class of special functions.
Many branches of the natural sciences contain them, including discrete mathematics, theta
functions, continuous fractions, Eulerian series, elliptic functions, etc.; see [5,6], also [7–9].
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In pure mathematics, the functions mentioned above have numerous uses. A lot of
researchers have started working in a variety of fields as a result of the widespread use of
these functionalities. Modern geometric function theory research focuses on the geometric
features of special functions, including hypergeometric functions, Bessel functions, and
certain other related functions. We refer to [10,11] and any relevant references in relation to
some of the geometric characteristics of these functions. In this paper, we develop a new
class of bi-univalent functions and use a particular special function, the Euler polynomial.

Using the generating function, the Eulers polynomials Em(v) are frequently defined
(see, e.g., [12,13]):

L(v, t) =
2etv

et + 1
=

∞

∑
m=0

Em(v)
tm

m!
, |t| < π (3)

An explicit formula for Em(v) is given by

En(v) =
n

∑
m=0

1
2m

m

∑
k=0

(−1)k
(

m
k

)
(v + k)n

Now Em(v) in terms of Ek can be obtained from the equation above as:

Em(v) =
m

∑
k=0

(
m
k

)Ek

2k

(
v− 1

2

)m−k
. (4)

The initial Euler polynomials are:

E0(v) = 1

E1(v) =
2v− 1

2
E2(v) = v2 − v (5)

E3(v) =
4v3 − 6v2 + 1

4
E4(v) = v4 − 2v3 + v.

Geometric function theory continues to struggle with the subject of determining
bounds on the coefficients. The size of their coefficients can have an impact on a variety
of aspects of analytic functions, including univalency, rate of growth, and distortion. The
Fekete–Szegö problem, Hankel determinants, and many other formulations of efficient
problems include an estimate of general or lth coefficient bounds. The coefficient concerns
discussed above were addressed by several researchers using various approaches. Here,
the functional of Fekete–Szegö for a function f (ξ) ∈ S is quite significant, and is denoted
by Lβ( f ) = |s3 − βs2

2|. By giving this functional, Fekete and Szegö [14] invalidated the
Littlewood and Parley’s claim that the modulus of coefficients of odd functions f ∈ S are
less than or equal to 1. Much attention has been paid to the functional, especially in several
subfamilies of univalent functions (see [15,16]).

Pommerenke [17] investigated and defined below the lth-Hankel determinant, denoted
by Hs(l)(s, l ∈ N = {1, 2, 3, · · · }), for any function f ∈ S in geometric function theory:

Hs(l) =

∣∣∣∣∣∣∣∣∣∣∣

jl jl+1 . . . jl+s−1
jl+1 jl+2 . . . jl+s
jl+2 jl+3 . . . jl+s+1

...
... . . .

...
jl+s−1 jl+s . . . jl+2(s−1)

∣∣∣∣∣∣∣∣∣∣∣
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For certain s and l values,

H2(1) =
∣∣∣∣ j1 j2

j2 j3

∣∣∣∣ = |j3 − j22 | and H2(2) =
∣∣∣∣ j2 j3

j3 j4

∣∣∣∣ = |j2 j4 − j23 |. (6)

We see that the determinant |H2(1)| corresponds with the L1( f ), implying that Lβ( f )
is a generalization of |H2(1)|. Following that, many additional subclasses of univalent
functions paid close attention to the problem of determining bounds on coefficients. Recent
research in this area includes the papers in [18,19].

In this study, we define the new subclass introduced and studied in the present paper,
denoted by GΣ(v, σ), consisting of bi-univalent functions satisfying a certain subordination
involving Eulers polynomials. We solve the Fekete–Szegö problem for functions in the class
GΣ(v, σ) and in the special instances, as well as provide bound estimates for the coefficients.

Definition 1. For f ∈ GΣ(v, σ), suppose the following subordination is true:

(1− σ)
ξ f ′(ξ)

f (ξ)
+ σ

(
f ′(ξ) + ξ f ′′(ξ)

f ′(ξ)

)
≺ L(v, ξ) =

∞

∑
m=0

Em(v)
ξm

m!
(7)

and

(1− σ)
wF′(w)

F (w)
+ σ

(F′(w) + wF′′(w)

F′(w)

)
≺ L(v, w) =

∞

∑
m=0

Em(v)
wm

m!
, (8)

where σ ≥ 0, v ∈ ( 1
2 , 1], ξ, w ∈ U , L(v, w) is given by (3), and F = f−1 is given by (2). It

could be seen that both the functions f and and its inverse F = f−1 are univalent in U , so we can
conclude that the function f is bi-univalent belonging to the function class GΣ(v, σ).

Remark 2. Setting σ = 0 in Definition 1, we have bi-starlike function class f ∈ S∗Σ(v), which
fulfilled the following conditions:

ξ f ′(ξ)
f (ξ)

≺ L(v, ξ) =
∞

∑
m=0

Em(v)
ξm

m!
(9)

and

wF′(w)

F (w)
≺ L(v, w) =

∞

∑
m=0

Em(v)
wm

m!
, (10)

where ξ, w ∈ U , L(v, w) is given by (3), and F = f−1 is given by (2).

Remark 3. Setting σ = 1 in Definition 1, we have bi-convex function class f ∈ CΣ(v), which
fulfilled the following conditions:

f ′(ξ) + ξ f ′′(ξ)
f ′(ξ)

≺ L(v, ξ) =
∞

∑
m=0

Em(v)
ξm

m!
(11)

and
F′(w) + wF′′(w)

F′(w)
≺ L(v, w) =

∞

∑
m=0

Em(v)
wm

m!
, (12)

where L(v, w) is given by (3), and F = f−1 is given by (2).

Next, let P represent the class including those functions, analytic in U , and having
series form given below as:

α(ξ) = 1 +
∞

∑
l=1

αlξ
l , (13)
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such that
�{α(ξ)} > 0 (∀ ξ ∈ U ).

Lemma 1. [1] Let α ∈ P be given by

α(ξ) = 1 + α1ξ + α2ξ2 + · · · (ξ ∈ U ) (14)

then
|αl | ≤ 2 (l ∈ {1, 2, 3, · · · }). (15)

Lemma 2. [20] Let α ∈ P be given by (14), then

2α2 = α2
1 + x(4− α2

1) (16)

and
4α3 = α3

1 + 2α1(4− α2
1)x− α1(4− α2

1)x2 + 2(4− α2
1)(1− |x|2)ξ (17)

for some x, ξ, |x| ≤ 1, and |ξ| ≤ 1.

2. Coefficients Bounds for the Functions of Class GΣ(v, σ)

Theorem 1. Let f ∈ GΣ(v, σ). Then:

|s2| ≤
√

Ω1(σ, v),

|s3| ≤
(2v− 1)2

4(1 + σ)2 +
2v− 1

4(1 + 2σ)

and

|s4| ≤
(1 + 4σ)(2v− 1)3

12(1 + 2σ)(1 + σ)3 +
(15 + 45σ)(2v− 1)2

48(1 + σ)(1 + 2σ)2 +
4v3 − 6v2 + 1

72(1 + 2σ)

where

Ω1(σ, v) =
(2v− 1)3

|2(σ + 1)(2σ + 2(σ− 1)v2 − 2(3σ + 1)v + 1)| . (18)

Proof. Let f ∈ Σ given by (1) be in the class GΣ(v, σ). Then

(1− σ)
ξ f ′(ξ)

f (ξ)
+ σ

(
f ′(ξ) + ξ f ′′(ξ)

f ′(ξ)

)
= L(v, a(ξ)) (19)

and

(1− σ)
wF′(w)

F (w)
+ σ

(F′(ξ) + wF′′(w)

F′(w)

)
= L(v, b(w)) (20)

We define α, δ ∈ P as follows:

α(ξ) =
1 + a(ξ)
1− a(ξ)

= 1 + α1ξ + α2ξ2 + α3ξ3 + · · ·

⇒ a(ξ) =
α(ξ)− 1
α(ξ) + 1

(ξ ∈ U ) (21)

and

δ(w) =
1 + b(w)

1− b(w)
= 1 + δ1w + δ2w2 + δ3w3 + · · ·

⇒ b(w) =
δ(w)− 1
δ(w) + 1

(w ∈ U ). (22)
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From (21) and (22), we obtain

a(ξ) =
α1

2
ξ +

(
α2

2
− α2

1
4

)
ξ2 +

(
α3

2
− α1α2

2
+

α3
1

8

)
ξ3 + · · · (23)

and

b(w) =
δ1

2
w +

(
δ2

2
− δ2

1
4

)
w2 +

(
δ3

2
− δ1δ2

2
+

δ3
1
8

)
w3 + · · · . (24)

Taking it from (23) and (24), we have:

L(v, a(ξ)) = E0(v) +
E1(v)

2
α1ξ +

[
E1(v)

2

(
α2 −

α2
1

2

)
+
E2(v)

8
α2

1

]
ξ2

+

[
E1(v)

2

(
α3 − α1α2 +

α3
1

4

)
+
E2(v)

4
α1

(
α2 −

α2
1

2

)
+
E3(v)

48
α3

1

]
ξ3 + · · · (25)

and

L(v, b(w)) = E0(v) +
E1(v)

2
δ1w +

[
E1(v)

2

(
δ2 −

δ2
1
2

)
+
E2(v)

8
δ2

1

]
w2

+

[
E1(v)

2

(
δ3 − δ1δ2 +

δ3
1
4

)
+
E2(v)

4
δ1

(
δ2 −

δ2
1
2

)
+
E3(v)

48
δ3

1

]
w3 + · · · . (26)

It follows from (19), (20), (25) and (26) that we have:

(1 + σ)s2 =
E1(v)

2
α1 (27)

−(1 + 3σ)s2
2 + 2(1 + 2σ)s3 =

E1(v)
2

(
α2 −

α2
1

2

)
+
E2(v)

8
α2

1 (28)

(1 + 7σ)s3
2 − 3(1 + 5σ)s2s3 + 3(1 + 3σ)s4 =

E1(v)
2

(
α3 − α1α2 +

α3
1

4

)

+
E2(v)

4
α1

(
α2 −

α2
1

2

)
+
E3(v)

48
α3

1 (29)

−(1 + σ)s2 =
E1(v)

2
δ1 (30)

(3 + 5σ)s2
2 − 2(1 + 2σ)s3 =

E1(v)
2

(
δ2 −

δ2
1
2

)
+
E2(v)

8
δ2

1 (31)

−3(1 + 3σ)s4 + (12 + 30σ)s2s3 − (10 + 22σ)s3
2 =

E1(v)
2

(
δ3 − δ1δ2 +

δ3
1
4

)

+
E2(v)

4
δ1

(
δ2 −

δ2
1
2

)
+
E3(v)

48
δ3

1. (32)

Adding (27) and (30) and further simplification, we have

α1 = −δ1, α2
1 = δ2

1 and α3
1 = −δ3

1. (33)

107



Fractal Fract. 2023, 7, 295

When (27) and (30) are squared and added, the following result is obtained:

2(1 + σ)2s2
2 =

E2
1 (v)(α

2
1 + δ2

1)

4
(34)

⇒ s2
2 =

E2
1 (v)(α

2
1 + δ2

1)

8(1 + σ)2 . (35)

Additionally, adding (28) and (31) gives

2(1 + σ)s2
2 =

2E1(v)(α2 + δ2) + α2
1(E2(v)− 2E1(v))

4

8(1 + σ)s2
2 = 2E1(v)(α2 + δ2) + α2

1(E2(v)− 2E1(v)). (36)

Applying (33) in (34)

α2
1 =

4(1 + σ)2

E2
1 (v)

s2
2. (37)

In (36), replacing α2
1 with the following results:

|s2|2 ≤
2E3

1 (v)(|α2|+ |δ2|)
2|2(1 + σ)E2

1 (v)− (1 + σ)2[E2(v)− 2E1(v)]|
. (38)

Applying Lemma 1 and (5), we obtain:

|s2| ≤
√

Ω1(σ, v)

where Ω1(σ, v) is given by (18).

Subtracting (31) and (28) and with some computation, we have

s3 = s2
2 +

E1(v)(α2 − δ2)

8(1 + 2σ)
(39)

s3 =
E2

1 (v)α
2
1

4(1 + σ)2 +
E1(v)(α2 − δ2)

8(1 + 2σ)
(40)

Applying Lemma 1 and (5), we obtain:

|s3| ≤
(2v− 1)2

4(1 + σ)2 +
2v− 1

4(1 + 2σ)
(41)

By removing (32) from (29), we arrive at:

s4 =
(1 + 4σ)E3

1 (v)
12(1 + 3σ)(1 + σ)3 α3

1 +
(15 + 45σ)E2

1 (v)(α2 − δ2)

96(1 + σ)(1 + 2σ)(1 + 3σ)
α1 +

E1(v)(α3 − δ3)

12(1 + 3σ)

+
[E2(v)− 2E1(v)](α2 + δ2)

24(1 + 3σ)
α1 +

[6E1(v)− 6E2(v) + E3(v)]
144(1 + 3σ)

α3
1. (42)

Applying Lemma 1 and (5), we obtain:

|s4| ≤
(1 + 4σ)(2v− 1)3

12(1 + 3σ)(1 + σ)3 +
(15 + 45σ)(2v− 1)2

48(1 + σ)(1 + 2σ)(1 + 3σ)
+

4v3 − 6v2 + 1
72(1 + 3σ)

.
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If we put σ = 0 in Theorem 1, then we have the next corollary.

Corollary 1. Let f ∈ S∗Σ(v). Then:

|s2| ≤
√

(2v− 1)3

|2(2v2 + 2v− 1)| ,

|s3| ≤
v(2v− 1)

2
and

|s4| ≤
(2v− 1)3

12
+

15(2v− 1)2

48
+

4v3 − 6v2 + 1
72

For σ = 1, we arrive at the next corollary of Theorem 1.

Corollary 2. Let f ∈ CΣ(v). Then:

|s2| ≤
√

(2v− 1)3

|4(3− 8v)| ,

|s3| ≤
(2v− 1)(6v + 13)

192
,

and

|s4| ≤
5(2v− 1)3

384
+

5(2v− 1)2

96
+

4v3 − 6v2 + 1
288

.

3. Fekete–Szegö Inequalities for the Functions of Class GΣ(v, σ)

Theorem 2. Let f ∈ GΣ(v, σ). Then, for some μ ∈ R,

∣∣∣s3 − μs2
2

∣∣∣ ≤
⎧⎪⎪⎨⎪⎪⎩

2|1− μ|Ω1(σ, v)
(
|1− μ|Ω1(σ, v) ≥ 2v−1

4(1+2σ)

)
2v−1

2(1+2σ)

(
|1− μ|Ω1(σ, v) < 2v−1

4(1+2σ)

)
,

where Ω1(σ, v) is given by (18).

Proof. From (39), we obtain:

s3 − μs2
2 = s2

2 +
E1(v)(α2 − δ2)

8(1 + 2σ)
− μs2

2

Applying the popular triangular inequality, we obtain:

|s3 − μs2
2| ≤

2v− 1
4(1 + 2σ)

+ |1− μ|Ω1(σ, v)

If:
|1− μ|Ω1(σ, v) ≥ 2v− 1

4(1 + 2σ)

Furthermore, we obtain
|s3 − μs2

2| ≤ 2|1− μ|Ω1(σ, v)

where
|1− μ| ≥ 2v− 1

4(1 + 2σ)Ω1(σ, v)

109



Fractal Fract. 2023, 7, 295

and if:
|1− μ|Ω1(σ, v) ≤ 2v− 1

4(1 + 2σ)

then, we obtain:

|s3 − μs2
2| ≤

2v− 1
2(1 + 2σ)

where
|1− μ| ≤ 2v− 1

4(1 + 2σ)Ω1(σ, v)

and Ω1(σ, v) is given in (18).

By putting σ = 0 in the above Theorem 2, we obtain the following result.

Corollary 3. Let f ∈ S∗Σ(v). Then, for some μ ∈ R,

∣∣∣a3 − μa2
2

∣∣∣ ≤
⎧⎪⎪⎨⎪⎪⎩

2|1− μ|Ω1(σ, v)
(
|1− μ|Ω1(σ, v) ≥ 2v−1

4

)
2v−1

2

(
|1− μ|Ω1(σ, v) ≤ 2v−1

4

)
,

where

Ω1(v) =
(2v− 1)3

|2(2v2 + 2v− 1)| . (43)

Letting σ = 1 in Theorem 2, we can obtain the next result.

Corollary 4. Let f ∈ CΣ(v). Then, for some μ ∈ R,

∣∣∣a3 − μa2
2

∣∣∣ ≤
⎧⎪⎪⎨⎪⎪⎩

2|1− μ|Ω1(v)
(
|1− μ|Ω1(v) ≥ 2v−1

12

)
2v−1

6

(
|1− μ|Ω1(v) ≤ 2v−1

12

)
,

where

Ω1(v) =
(2v− 1)3

|4(3− 8v)| . (44)

4. Second Hankel Determinant for the Class GΣ(v, σ)

Theorem 3. Let the function f (ξ) be in the class GΣ(v, σ). Then:

H2(2) =
∣∣∣s2s4 − s2

3

∣∣∣ ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T(2, v) (B1 ≥ 0 and B2 ≥ 0)

max
{(

2v−1
4(1+2σ)

)2
, T(2, v)

}
(B1 > 0 and B2 < 0)

(
2v−1

4(1+2σ)

)2
(B1 ≤ 0 and B2 ≤ 0)

max{T(g0, v), T(2, v)} (B1 < 0 and B2 > 0).

where

T(2, v) =
2(1 + 4σ)E4

1 (v)
3(1 + 3σ)(1 + σ)4 +

E1(v)E3(v)
18(1 + σ)(1 + 3σ)

+
E4

1 (v)
(1 + σ)4

T(g0, t) =
E2

1 (v)
4(1 + 2σ)2 +

9B4
2(1 + σ)4

4(1 + 2σ)2(1 + 3σ)B3
1
+

3B3
2(1 + σ)2

4(1 + 2σ)2(1 + 3σ)B2
1

.
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B1 = E1(v)

[
24E3

1 (v)(1 + 4σ)(1 + 2σ)2 + 2(6E1(v)− 6E2(v) + E3(v))(1 + σ)3(1 + 2σ)2

+ 36E3
1 (v)(1 + 3σ)(1 + 2σ)2 − 24E1(v)(1 + σ)3(1 + 2σ)2 + 9E1(v)(1 + σ)4(1 + 3σ)− 9E2

1 (v)

(1 + σ)2(1 + 3σ)(1 + 2σ)

]
r4

B2 = E1(v)

[
3(1 + 2σ)(1 + 3σ)E2

1 (v) + 4E1(v)(1 + σ)(1 + 2σ)2 + 4(E2(v)− 2E1(v))

(1 + σ)(1 + 2σ)2 + 8E1(v)(1 + σ)(1 + 2σ)2 − 6E1(v)(1 + σ)2(1 + 3σ)

]
r2.

Proof. From (27) and (42), we have

s2s4 =
(1 + 4σ)E4

1 (v)
24(1 + 3σ)(1 + σ)4 α4

1 +
(15 + 45σ)E3

1 (v)(α2 − δ2)

192(1 + σ)2(1 + 2σ)(1 + 3σ)
α2

1 +
E2

1 (v)(α3 − δ3)

24(1 + σ)(1 + 3σ)
α1

+
E1(v)[E2(v)− 2E1(v)](α2 + δ2)

48(1 + σ)(1 + 3σ)
α2

1 +
E1(v)[6E1(v)− 6E2(v) + E3(v)]

288(1 + σ)(1 + 3σ)
α4

1

With some calculations, we have

s2s4 − s2
3 =

(1 + 4σ)E4
1 (v)

24(1 + 3σ)(1 + σ)4 α4
1 +

E3
1 (v)(α2 − δ2)

64(1 + σ)2(1 + 2σ)
α2

1 +
E2

1 (v)(α3 − δ3)

24(1 + σ)(1 + 3σ)
α1

+
E1(v)[E2(v)− 2E1(v)](α2 + δ2)

48(1 + σ)(1 + 3σ)
α2

1 +
E1(v)[6E1(v)− 6E2(v) + E3(v)]

288(1 + σ)(1 + 3σ)
α4

1

− E4
1 (v)

16(1 + σ)4 α4
1 −

E2
1 (v)(α2 − δ2)

2

64(1 + 2σ)2

By using Lemma 2,

α2 − δ2 =
(4− α2

1)(x− u)
2

(45)

α2 + δ2 = α2
1 +

(4− α2
1)(x + u)
2

(46)

and

α3 − δ3 =
α3

1
2

+
4− α2

1
2

α1(x + u)− 4− α2
1

4
α1(x2 + u2)

+
4− α2

1
2

[
(1− |x|2ξ)− (1− |u|2)w

]
(47)

for some x, u, ξ, w with |x| ≤ 1, |u| ≤ 1, |ξ| ≤ 1, |w| ≤ 1, |α1| ∈ [0, 2] and substituting
(α2 + δ2), (α2 − δ2) and (α3 − δ3), and after some straightforward simplifications, we have
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s2s4 − s2
3 =

(1 + 4σ)E4
1 (v)

24(1 + 3σ)(1 + σ)4 α4
1 +

E3
1 (v)(4− α2

1)(x− u)
128(1 + σ)2(1 + 2σ)

α2
1 +

E2
1 (v)

48(1 + σ)(1 + 3σ)
α4

1

+
E2

1 (v)(4− α2
1)(x + u)

48(1 + σ)(1 + 3σ)
α2

1 −
E2

1 (v)(4− α2
1)(x2 + u2)

96(1 + σ)(1 + 3σ)
α2

1

+
E2

1 (v)(4− α2
1)[(1− |x|2ξ)− (1− |y|2)w]

48(1 + σ)(1 + 3σ)
+
E1(v)[E2(v)− 2E1(v)]

48(1 + σ)(1 + 3σ)
α4

1

+
E1(v)[E2(v)− 2E1(v)](4− α2

1)(x + u)
96(1 + σ)(1 + 3σ)

α2
1 +

E1(v)[6E1(v)− 6E2(v) + E3(v)]
288(1 + σ)(1 + 3σ)

α4
1

− E4
1 (v)

16(1 + σ)4 α4
1 −

E2
1 (v)(4− α2

1)
2(x− u)2

256(1 + 2σ)2

Let r = α1, assume without any restriction that r ∈ [0, 2], η1 = |x| ≤ 1, η2 = |u| ≤ 1 and
applying triangular inequality, we have

|s2s4 − s2
3| ≤

{
(1 + 4σ)E4

1 (v)
24(1 + 3σ)(1 + σ)4 r4 +

E2
1 (v)

48(1 + σ)(1 + 3σ)
r4 +

E2
1 (v)(4− r2)

24(1 + σ)(1 + 3σ)
r

+
E1(v)[E2(v)− 2E1(v)]

48(1 + σ)(1 + 3σ)
r4 +

E1(v)[6E1(v)− 6E2(v) + E3(v)]
288(1 + σ)(1 + 3σ)

r4 +
E4

1 (v)
16(1 + σ)4 r4

}

+

{
E3

1 (v)(4− r2)

128(1 + σ)2(1 + 2σ)
r2 +

E2
1 (v)(4− r2)

48(1 + σ)(1 + 3σ)
r2

+
E1(v)[E2(v)− 2E1(v)](4− r2)

96(1 + σ)(1 + 3σ)
r2

}
(η1 + η2) +

{
E2

1 (v)(4− r2)

96(1 + σ)(1 + 3σ)
r2

− E2
1 (v)(4− r2)

48(1 + σ)(1 + 3σ)
r

}
(η2

1 + η2
2) +

E2
1 (v)(4− α2

1)
2

256(1 + 2σ)2 (η1 + η2)
2

and equivalently, we have

|s2s4 − s2
3| ≤ Y1(v, r) + Y2(v, r)(η1 + η2) + Y3(v, r)(η2

1 + η2
2) + Y4(v, r)(η1 + η2)

2 (48)

= J(η1, η2)

where

Y1(v, r) =

{
(1 + 4σ)E4

1 (v)
24(1 + 3σ)(1 + σ)4 r4 +

E2
1 (v)

48(1 + σ)(1 + 3σ)
r4 +

E2
1 (v)(4− r2)

24(1 + σ)(1 + 3σ)
r

+
E1(v)[E2(v)− 2E1(v)]

48(1 + σ)(1 + 3σ)
r4 +

E1(v)[6E1(v)− 6E2(v) + E3(v)]
288(1 + σ)(1 + 3σ)

r4

+
E4

1 (v)
16(1 + σ)4 r4

}
≥ 0

Y2(v, r) =

{
E3

1 (v)(4− r2)

128(1 + σ)2(1 + 2σ)
r2 +

E2
1 (v)(4− r2)

48(1 + σ)(1 + 3σ)
r2

+
E1(v)[E2(v)− 2E1(v)](4− r2)

96(1 + σ)(1 + 3σ)
r2

}
≥ 0

Y3(v, r) =

{
E2

1 (v)(4− r2)

96(1 + σ)(1 + 3σ)
r2 − E2

1 (v)(4− r2)

48(1 + σ)(1 + 3σ)
r

}
≤ 0
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Y4(v, r) =
E2

1 (v)(4− α2
1)

2

256(1 + 2σ)2 ≥ 0

where 0 ≤ r ≤ 2. We now maximize the function J(η1, η2) in the closed square

Ψ = {(η1, η2) : η1 ∈ [0, 1], η2 ∈ [0, 1]} f or r ∈ [0, 2].

The maximum of J(η1, η2) with reference to r must be explored, taking into considera-
tion the cases where r = 0, r = 2, and r ∈ (0, 2). Given a fixed value of r, the coefficients of
the function J(η1, η2) in (48) are dependent on m.
The First Case

When r = 0,

J(η1, η2) = Y4(v, 0) =
E2

1 (v)
16(1 + 2σ)2 (η1 + η2)

2.

Clearly the function J(η1, η2) attains its maximum at (η1, η2) and

max{J(η1, η2) : η1, η2 ∈ [0, 1]} = J(1, 1) =
E2

1 (v)
4(1 + 2σ)2 . (49)

The Second Case

In the case of r = 2, J(η1, η2) is represented as a constant function with regard to m,
giving us

J(η1, η2) = Y1(v, 2) =

{
2(1 + 4σ)E4

1 (v)
3(1 + 2σ)(1 + σ)4 +

E1(v)E3(v)
18(1 + σ)(1 + 2σ)

+
E4

1 (v)
(1 + σ)4

}
.

The Third Case

When r ∈ (0, 2), let η1 + η2 = d and η1 · η2 = Y in this case, then (48) can be of the form

J(η1, η2) = Y1(v, r) + Y2(v, r)d + (Y3(v, r) + Y4(v, r))d2 − 2Y3(v, r)l = Y(d, q) (50)

where, d ∈ [0, 2] ald q ∈ [0, 1]. Now, we need to investigate the maximum of

Y(d, q) ∈ Θ = {(d, q) : d ∈ [0, 2], q ∈ [0, 1]}. (51)

By differentiating Y(d, q) partially, we have

∂Y
∂c

= Y2(v, r) + 2(Y3(v, r) + Y4(v, r))d = 0

∂Y
∂l

= −2Y3(v, r) = 0.

These findings demonstrate that Y(d, r) has no critical point in the square Ψ, and, conse-
quently, J(η1, η2)has no critical point in the same region.
Because of this, the function J(η1, η2) is unable to reach its maximum value inside of Ψ.
The maximum of J(η1, η2) on the square’s Ψ boundary will then be examined.
For η1 = 0, η2 ∈ [0, 1] (also, for η2 = 0, η1 ∈ [0, 1]) and

J(0, η2) = Y1(v, r) + Y2η2 + (Y3(v, r) + Y4(v, r))η2
2 = D(η2). (52)

Now, since Y3(v, r) + Y4(v, r) ≥ 0, then we have

D′(η2) = Y2(v, r) + 2[Y3(v, r) + Y4(v, r)]η2 > 0

which implies that D(η2) is an increasing function. Therefore, for a fixed r ∈ [0, 2) and
v ∈ (1/2, 1], the maximum occurs at η2 = 1. Thus, from (52),
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max{r(0, η2) : η2 ∈ [0, 1]} = J(0, 1)

= Y1(v, r) + Y2(v, r) + Y3(v, r) + Y4(v, r). (53)

For η1 = 1, η2 ∈ [0, 1] (also, for η2 = 1 , η1 ∈ [0, 1]) and

J(1, η2) = Y1(v, r) + Y2(v, r) + Y3(v, r) + Y4(v, r) + [Y2(v, r)

+2Y4(v, r)]η2 + [Y3(v, r) + Y4(v, r)]η2
2 = N(η2) (54)

N′(η2) = [Y2(v) + 2Y4(v)] + 2[Y3(v) + Y4(v)]η2. (55)

We know that Y3(v) + Y4(v) ≥ 0, then

N′(η2) = [Y2(v) + 2Y4(v)] + 2[Y3(v) + Y4(v)]η2 > 0.

Therefore, the function N(η2) is an increasing function and the maximum occurs at η2 = 1.
From (54), we have

max{J(1, η2) : η2 ∈ [0, 1]} = J(1, 1)

= Y1(v, r) + 2[Y2(v, r) + Y3(v, r)] + 4Y4(v, r). (56)

Hence, for every r ∈ (0, 2), taking it from (53) and (56), we have

Y1(v, r) + 2[Y2(v, r) + Y3(v, r)] + 4Y4(v, r)

> Y1(v, r) + Y2(v, r) + Y3(v, r) + Y4(v, r).

Therefore,

max{J(η1, η2) : η1 ∈ [0, 1], η2 ∈ [0, 1]}
= Y1(v, r) + 2[Y2(v, r) + Y3(v, r)] + 4Y4(v, r).

Since,
D(1) ≤ N(1) f or r ∈ [0, 2] and v ∈ [1, 1],

then
max{J(η1, η2)} = J(1, 1)

occurs on the boundary of square Ψ.
Let T : (0, 2)→ R defined by

T(v, r) = max{J(η1, η2)} = J(1, 1) = Y1(v, r) + 2Y2(v, r) + 2Y3(v, r) + 4Y4(v, r). (57)

Now, inserting the values of Y1(v, r), Y2(v, r), Y3(v, r) and Y4(v, r) into (57) and with some
calculations, we have

T(v, r) =
E2

1 (v)
4(1 + 2σ)2 +

B1

576(1 + σ)4(1 + 2σ)2(1 + 3σ)
r4 +

B2

48(1 + σ)2(1 + 2σ)2(1 + 3σ)
r2,

where
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B1 = E1(v)

[
24E3

1 (v)(1 + 4σ)(1 + 2σ)2 + 2(6E1(v)− 6E2(v) + E3(v))(1 + σ)3(1 + 2σ)2

+ 36E3
1 (v)(1 + 3σ)(1 + 2σ)2 − 24E1(v)(1 + σ)3(1 + 2σ)2 + 9E1(v)(1 + σ)4(1 + 3σ)− 9E2

1 (v)

(1 + σ)2(1 + 3σ)(1 + 2σ)

]
r4

B2 = E1(v)

[
3(1 + 2σ)(1 + 3σ)E2

1 (v) + 4E1(v)(1 + σ)(1 + 2σ)2 + 4(E2(v)− 2E1(v))

(1 + σ)(1 + 2σ)2 + 8E1(v)(1 + σ)(1 + 2σ)2 − 6E1(v)(1 + σ)2(1 + 3σ)

]
r2.

If T(v, r) achieves a maximum value inside of r ∈ [0, 2] and by using some basic mathemat-
ics, we have

T′(v, r) =
B1

144(1 + σ)4(1 + 2σ)2(1 + 3σ)
r3 +

B2

24(1 + σ)2(1 + 2σ)2(1 + 3σ)
r.

In virtue of the signs of B1 and B2, we must now investigate the sign of the function T′(v, r).
1st result:

Suppose B1 ≥ 0 and B2 ≥ 0 then,
T′(v, r) ≥ 0. This shows that T(v, r) is an increasing function on the boundary of

r ∈ [0, 2] that is r = 2. Therefore,

max{T(v, r) : r ∈ (0, 2)} = 2(1 + 4σ)E4
1 (v)

3(1 + 3σ)(1 + σ)4 +
E1(v)E3(v)

18(1 + σ)(1 + 3σ)
+

E4
1 (v)

(1 + σ)4

2nd result:

If B1 > 0 and B2 < 0 then,

T′(v, r) =
B1r3 + 6B2r(1 + σ)2

144(1 + σ)4(1 + 2σ)2(1 + 3σ)
= 0 (58)

at critical point

r0 =

√
−6B2(1 + σ)2

B1
(59)

is a critical point of the function T(v, r). Now,

T′′(r0) =
−B2

8(1 + σ)2(1 + 2σ)2(1 + 3σ)
+

B2

24(1 + σ)2(1 + 2σ)2(1 + 3σ)
> 0.

Therefore, r0 is the minimum point of the function T(v, r). Hence, T(v, r) can not have a
maximum.
3rd result:

If B1 ≤ 0 and B2 ≤ 0 then,
T′(v, r) ≤ 0.

Therefore, T(v, r) is a decreasing function on the interval (0, 2). Consequently,

max{T(v, r) : r ∈ (0, 2)} = T(0) =
E2

1 (v)
4(1 + 2σ)2 . (60)
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4th result:

If B1 < 0 and B2 > 0

T′′(v0, r) =
−B2

12(1 + σ)2(1 + 2σ)2(1 + 3σ)
< 0.

Therefore, T′′(v, r) < 0. Hence, g0 is the maximum point of the function T(v, r) and r = g0
is the maximum value. Likewise

max{T(v, r) : r ∈ (0, 2)} = T(g0, s)

T(g0, t) =
E2

1 (v)
4(1 + 2σ)2 +

9B4
2(1 + σ)4

4(1 + 2σ)2(1 + 3σ)B3
1
+

3B3
2(1 + σ)2

4(1 + 2σ)2(1 + 3σ)B2
1

.

Taking σ = 0 in Theorem 3, we have the next corollary.

Corollary 5. Let the function f (ξ) given by (1) be in the class S∗Σ(v). Then:

H2(2) =
∣∣∣a2a4 − a2

3

∣∣∣ ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T(2, v) (B1 ≥ 0 and B2 ≥ 0)

max
{

(2v−1)2

16 , T(2, v)
}

(B1 > 0 and B2 < 0)

(2v−1)2

16 (B1 ≤ 0 and B2 ≤ 0)

max{T(g0, v), T(2, v)} (B1 < 0 and B2 > 0).

where

T(2, v) =
5E4

1 (v)
3

+
E1(v)E3(v)

18

T(g0, v) =
E2

1 (v)
4

+
3B4

2(3B2 + B1)

4B3
1

.

B1 = E1(v)[60E3
1 (v) + 2(E3(v)− 6E2(v))− 3E1(v)− 9E2

1 (v)]r
4

B2 = E1(v)[3E2
1 (v)− 2(2E2(v)− E1(v))]r2.

Taking σ = 1 in Theorem 3, we have the next corollary.

Corollary 6. Let the function f (ξ) given by (1) be in the class CΣ(v). Then:

H2(2) =
∣∣∣a2a4 − a2

3

∣∣∣ ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T(2, v) (B1 ≥ 0 and B2 ≥ 0)

max
{

(2v−1)2

144 , T(2, v)
}

(B1 > 0 and B2 < 0)

(2v−1)2

144 (B1 ≤ 0 and B2 ≤ 0)

max{T(g0, v), T(2, v)} (B1 < 0 and B2 > 0).

where

T(2, v) =
11E4

1 (v)
96

+
E1(v)E3(v)

144

T(g0, v) =
E2

1 (v)
36

+
B4

2
B3

1
+

B2
2

12B2
1

.
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B1 = E1(v)[2376E3
1 (v) + 144(E3(v)− 6E2(v))− 288E1(v)− 432E2

1 (v)]r
4

B2 = E1(v)[36E2
1 (v)− 24(E1(v)− 3E2(v))]r2.

5. Conclusions

The many well-known mathematicians have been studied the special functions, as
well as polynomials in the recent years, due to the fact that they are used in a wide variety
of mathematical and other scientific fields as indicated in the introduction section. The
subject of this paper is a novel subclass of analytical and univalent functions which have
been defined by using Euler polynomial. We solved the Fekete–Szegö problem, as well as
provided bound estimates for the coefficients and an upper bound estimate for the second
Hankel determinant for functions in the class GΣ(v, σ). One can extend the above results
for a class of certain q-Starlike functions, as mentioned in [21–27].
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Abstract: In this research, we present a new computational technique for solving some physics prob-
lems involving fractional-order differential equations including the famous Bagley–Torvik method.
The model is considered one of the important models to simulate the coupled oscillator and various
other applications in science and engineering. We adapt a collocation technique involving a new
operational matrix that utilizes the Liouville–Caputo operator of differentiation and Morgan–Voyce
polynomials, in combination with the Tau spectral method. We first present the differentiation matrix
of fractional order that is used to convert the problem and its conditions into an algebraic system of
equations with unknown coefficients, which are then used to find the solutions to the proposed mod-
els. An error analysis for the method is proved to verify the convergence of the acquired solutions. To
test the effectiveness of the proposed technique, several examples are simulated using the presented
technique and these results are compared with other techniques from the literature. In addition, the
computational time is computed and tabulated to ensure the efficacy and robustness of the method.
The outcomes of the numerical examples support the theoretical results and show the accuracy and
applicability of the presented approach. The method is shown to give better results than the other
methods using a lower number of bases and with less spent time, and helped in highlighting some
of the important features of the model. The technique proves to be a valuable approach that can
be extended in the future for other fractional models having real applications such as the fractional
partial differential equations and fractional integro-differential equations.

Keywords: fractional-order equations; collocation method; Liouville–Caputo’s fractional derivative
operator; error analysis; Tau method

1. Introduction

Fractional calculus is a branch of mathematics that deals with the study of deriva-
tives and integrals of non-integer order. It has been around since the late 17th century
when Gottfried Leibniz first proposed the concept of fractional derivatives, which has
developed into a powerful tool for simulating different physical problems in many areas
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such as physics, chemistry, engineering, economics, and biology. The concept of fractional
calculus was initially met with skepticism due to its unfamiliarity and lack of intuitive
understanding. However, over time, its usefulness has been recognized and there have
been various definitions and properties. These definitions vary depending on the context in
which it is used, which in general have a common definition as the study of derivatives and
integrals with non-integer orders. This means that instead of taking derivatives or integrals
concerning a single variable (as in traditional calculus), fractional calculus allows for deriva-
tives or integrals to be taken concerning multiple variables simultaneously. This allows
for more complex phenomena such as memory effects, diffusion processes, and chaotic
systems that might be difficult to solve using traditional definitions. In addition, fractional
derivatives are useful in many fields such as physics, engineering, economics, and finance.
For example, Zhao et al. [1] investigated the possible application of fractional definitions to
simulate a class of nonlinear fractional Langevin equations with important application in
fluid dynamics. In addition, Zhang et al. [2] employed an exponential Euler scheme for
simulating the multi-delay Caputo–Fabrizio fractional-order differential equations with
application in control theory. Additionally, other applications of fractional calculus in sev-
eral branches of science and engineering include the simulation of the model of viscoelastic
materials in engineering applications and financial markets in economics. They can also be
used to describe chaotic systems in physics and other fields. There are various definitions
of the fractional order including the Riemann–Liouville operator [3], Grünwald–Letnikov
operator [4], Liouville–Caputo operator [5] and Weyl–Riesz operator [6]. Each of these
definitions adheres to some advantages and disadvantageous over the other and the most
widely used of these applications is the Liouville–Caputo and Riemann–Liouville operators.
There is a close relationship between these two definitions since they can be converted
through some regularity assumption [7]. The Liouville–Caputo fractional operator is con-
sidered a powerful tool for solving fractional differential equations (FDEs) that have been
used widely for simulating different complex problems. The Liouville–Caputo fractional
operator is a generalization of the classical derivative operator and can be used to solve
FDEs with non-integer order derivatives. It has the advantage of simulating physical
phenomena that involve memory effects or non-local interactions. In addition, it allows
for more accurate solutions since it takes into account memory effects and it provides
more flexibility when solving FDEs; because it can be applied to any function that can
be expressed as a power expansion series. This was one of the reasons to be used for the
simulation of non-integer models. For example, the definition of the Liouville–Caputo
operator has been used in simulating disease models. Bonyah et al. [8] simulated the defini-
tion of the Liouville–Caputo for investigating the dynamics of the COVID-19 infection. In
addition, the time-dependent influenza model has been studied in [9] to provide insight
into the dynamics of such a model and to provide measure precautions to stop its spread.
Additionally, Gao et al. [10] proposed a new fractional numerical differentiation formula
for the Liouville–Caputo fractional derivative and tested the new formulae for multiple
applications. Additionally, the constant proportional Liouville–Caputo operators were
employed in [11] for simulating the dynamics of the HIV disease model to understand
its dynamics and ways of spread. Han et al. identified some solutions for the variable-
coefficient fractional-in-space KdV equation in [12]. Some basic therapies and applications
of the fractional differential equations have been illustrated in [13] while [14,15] provided
some parametric and argument variations of the operators related to fractional calculus.
With the importance of such definitions, the Liouville–Caputo operator is of importance in
helping to understand such behavior of complex models.

Numerical simulation using collocation and spectral methods is a powerful tool for
solving complex problems in engineering and science. It is a method of approximating
solutions to differential equations by utilizing computational techniques such as collocation
and spectral methods. Collocation methods are used to approximate solutions to various
differential equations by representing them as a linear combination of basis functions.
Spectral methods are used to approximate solutions to differential equations by repre-
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senting them as an infinite series of (orthogonal) polynomials. Both of these techniques
have been widely used in the field of computational science, with applications ranging
from fluid dynamics to quantum mechanics. Collocation techniques have been widely
used for acquiring accurate results for these models using different types of bases. The
main idea of this technique is that the solution to a differential equation can be repre-
sented as a linear combination of basis functions. These basis functions can be chosen from
a variety of sources including polynomials or other types. For example, Izadi et al. [16]
investigated the solution of the waste plastic management model in the ocean system
using the Morgan–Voyce polynomials. In addition, Adel et al. [17] employed a collocation
method of Genocchi polynomials for simulating the solution to the fourth-order singular
singularly perturbed and Emden–Fowler problems, which have significant importance
in physics. Izadi et al. [18] developed a collocation approach with a new definition of the
Chelyshkov polynomials to solve the fractional delay differential equations. Additionally,
El-Gamel et al. [19] adapted the Genocchi collocation method for solving a class of high-
order boundary value problems. The B-spline bases have been used to simulate physical
models as well as other basis functions. For example, De Boor [20] was the first to intro-
duce the basic definitions of the B-spline basis, and then researchers have been using it to
simulate real-life models. Kaur et al. [21] employed the adaptive wavelet optimized finite
difference technique combined with the B-spline polynomial for the solution of random
partial differential equations. Zahra et al. [22] developed a robust uniform B-spline colloca-
tion method for solving the generalized PHI-four equation. In addition, a cubic B-spline
collocation algorithm has been used to solve the Newell–Whitehead–Segel type equations
in [23]. Additionally, the combination of the wavelet along with other polynomials has
been used in the simulation of different models [24] and Alqhtani et al. [25] simulated a
high-dimensional chaotic Lorenz system using the Gegenbauer wavelet polynomials. The
coefficients in the linear combination are determined by solving an optimization problem
that minimizes the error between the approximate solution and the exact solution. This
approach is particularly useful when dealing with boundary value problems since it allows
for accurate approximations near the boundaries without having to solve for all points
in between. Spectral methods on the other hand are based on the idea that solutions to
differential equations can be represented as an infinite series of orthogonal polynomials.
These polynomials can be chosen from a variety of sources including the Chebyshev polyno-
mials [26] which have been used in the simulation of the fractional diffusion-wave equation
by Atta et al. [27]. Another type of polynomials is the Legendre polynomials [28], which is
also used for solving the linear Fredholm integro-differential equations accompanied by
the Galerkin method by Fathy et al. [29]. In addition, Abdelhakem et al. [30] employed the
pseudo-spectral matrices method for treating some models using the Legendre polynomials.
More general orthogonal polynomials such as Hermite [31] or Laguerre polynomials [32]
have also been used in practical simulations. This approach is particularly useful when
dealing with initial value problems since it allows for accurate approximations at all points
in time without having to solve for all points in between. Both of these techniques have
been extensively studied over the past few decades, leading to significant advances in their
accuracy and efficiency. They have become essential tools for solving complex problems in
engineering and science, allowing researchers to accurately simulate physical phenomena
with unprecedented accuracy and speed.

One of these polynomials that prove to have an effective role in simulating and
acquiring efficient results is the Morgan–Voyce polynomials (MVP). This type of polynomial
is a family of polynomials that was developed in the early 20th century by the American
mathematician and physicist, Edward L. Morgan, see [33]. Polynomials were initially
developed as a tool to study the behavior of certain physical systems, such as electrical
circuits and mechanical systems. These polynomials have since become an important tool in
many areas of mathematics; for example, in algebraic geometry to study curves and surfaces
defined by polynomial equations and in number theory to study Diophantine equations
and prime numbers. Many researchers have recently been using the MVP accompanied by
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the collocation technique to solve engineering problems. For example, the MVP has been
used to simulate a class of high-order differential equations by Türkyilmaz et al. in [34].
Additionally, Tarakci et al. [35] adapted a combination of the MVP with cubic and quadratic
terms with the collocation strategy to simulate the nonlinear ordinary differential equations.
Functional integro-differential equations of Volterra-type have been solved using the MVP
collocation approach by Özel et al. [36]. In addition, Izadi et al. [37] employed the MVP
to simulate the fractional Lotka–Volterra population model. Furthermore, Izadi et al. [38]
employed the shifted MVP for solving a class of nonlinear diffusion equations. Additionally,
Bushra et al. [39] proposed a collocation scheme for solving the Bratu problem with the
aid of the MVP. With the little work on the application of the MVP, we are interested in
expanding the application of such polynomials to fractional models.

In this research study, we are mainly interested in finding an accurate solution to a
class of fractional order boundary value problems in the form

�1 D
2 g(t) + �2 D

ζ g(t) + �3 g(t) = ϑ(t), (1)

with the initial conditions
g(0) = g0, g′(0) = g1. (2)

Here, �1, �2, �3, and ϑ(t) in Equation (1) are constant coefficients depending on the
application type and the source term, respectively. In addition, g0 and g1 are the starting
values for the problem’s solution andDζ is the fractional-order operator defined in Liouville–
Caputo sense with the fractal value 1 < ζ < 2. To the best of our knowledge, this is the
first time that the MVP is utilized for solving the model (1). This model incorporates a
different form of fractional differential equations. One of the main models represented
by the model (1) is the Bagley–Torvik model. This model has been used to simulate the
motion of a rigid plate immersed in a Newtonian fluid and also describes the behavior of
a system of coupled oscillators and was first discovered by Torvik and Begly [40]. Since
then, it has been widely studied and applied to various fields such as nonlinear optics,
fluid mechanics, and plasma physics. With the importance of this type of model, numerous
analytical and numerical techniques have been employed to find accurate solutions to
these problems. For examples, we mention neuro-swarming computational solver [41],
cubic B-spline method [42], Haar wavelet [43], fractional Meyer neural network [44] and
other related techniques. For more details and information, the reader may refer to the
works [45–47] and references therein.

In this paper, we interfered in simulating this model using the MVP with the definition
of the fractional order in terms of the Liouville–Caputo fractional derivative. We adapt the
proposed collocation method accompanied by the Tau method for simulating a different
model of fractional order having real-life applications. We use MVP as the basis function
in the collocation method because it has multiple advantages. Some of the advantages of
the proposed technique using the MVP are the ability to accurately approximate functions
with fewer terms than other methods, their ability to represent complex functions with a
single equation, and their ability to be used in a wide variety of applications. Additionally,
they can be used to solve equations that would otherwise be difficult or impossible to solve
using traditional methods. On the other hand, there are some drawbacks to the complexity
of the equations involved and they may not always provide an optimal solution for certain
types of problems. The novelty of the paper lies within the following few points:

• A novel operational matrix of fractional order is derived in the sense of the Liouville–
Caputo fractional derivative for the MVP.

• The technique is a combination of the collocation technique with the Tau method.
• The method converts the nonlinear fractional differential equation into a system of

algebraic equations that are solved easily.
• The convergence analysis is performed to prove the error bound for the technique.
• The proposed technique is adapted for solving various examples with the application

including the Bagley–Torvik and Bratu models.
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• The acquired results prove that the technique is better than the other methods in terms
of error and computational cost.

• The proposed algorithm can be extended to more complex problems having real-
life applications.

The organization of the rest of this paper can be summarized as the following. Section 2
provides the basic definitions and preliminaries related to the fractional calculus that
will be used later in the subsequent sections. The main relations and definitions of the
MVP are introduced in Section 3 with a derivation of the new fractional order matrix of
differentiation. In Section 4, the derivation of the integer and fractional operational matrix
of derivatives is illustrated in detail and the Tau-collocation technique is demonstrated for
solving the general model. In addition, the convergence analysis for the proposed technique
is provided in detail in the same section to prove the convergence of the developed method.
Several examples are introduced in Section 5 to validate the theistical results in light of the
absolute error and computational time. Finally, Section 6 presents the conclusion of the
study and some possible future work for the study.

2. Preliminaries and Notations

In this part, we will provide some of the fundamentals that will be needed in later
sections. We begin with the following definitions.

Definition 1 ([48]). Assume that g(t) is continuously differentiable k−times. The operator of
fractional-order derivative in the Liouville–Caputo sense is defined by:

Dζ g(t) =

⎧⎨⎩
Υk−ζ g(k)(t), k− 1 < ζ < k,

g(k)(t), ζ = k, k ∈ N,
(3)

where

Υζ g(t) =
1

Γ(ζ)

∫ t

0

g(t)
(t− τ)1−ζ

dτ, ζ > 0, t > 0. (4)

The linearity properties for Liouville–Caputo’s operator hold as

Dζ(a1 g1(t) + a2 g2(t)) = a1 D
ζ g1(t) + a2 D

ζ g2(t), (5)

where a1, a2 are constants.
The above principle Definition 1 of the Liouville–Caputo fractional-order operator is

utilized to obtain the following results for polynomials. Below, we use these facts,

Dζ a1 = 0, a1 is a constant, (6)

Dζ tm =

⎧⎪⎨⎪⎩
Γ(1+m)

Γ(1+m−ζ)
tm−ζ , m ∈ N0 ∧ m ≥ �ζ� or m /∈ N0 ∧ m > �ζ�,

0, m ∈ N0 ∧ m < �ζ�,
(7)

where the ceiling and floor functions are �ζ�, �ζ�, respectively. Additionally, if ζ ∈ N, then
the classical differential operator of integer-order is obtained, see [48].

In what follows, we use the following theorem, a proof of which can be found in [49].
Before we proceed, let us mention that by Dnζ we denote Dnζ := Dζ ·Dζ · · ·Dζ , n times.

Theorem 1 (Generalized Taylor’s formula). Let assume that 0 < ζ ≤ 1 and for n = 0, 1, . . . , m
we have Dnζ(g(t)) ∈ C(0, T ], where T > 0. Then, the function g(t) can be stated in the power
series form given by

g(t) =
m

∑
n=0

tnζ

Γ(1 + nζ)
Dnζ g(0+) +

t(m+1)ζ

Γ(1 + (m + 1)ζ)
D(m+1)ζ g(κ), ∀t ∈ [0, T ],
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for some κ ∈ (0, T ).

Corollary 1. Under the assumptions of Theorem 1 if we have |D(m+1)ζ(g(t)| ≤ Mmax, then the
following upper bound holds

∣∣∣g(t)− m

∑
n=0

tnζ

Γ(1 + nζ)
Dnζ g(0+)

∣∣∣ ≤ t(m+1)ζ

Γ(1 + (m + 1)ζ)
Mmax, ∀t ∈ [0, T ].

Next, we will provide the details of the Morgan–Voyce polynomials.

3. Morgan–Voyce Polynomials

Let us provide the details and properties of the MVP [34,36,39] that will be needed to
treat model (1).

Definition 2. The Morgan–Voyce polynomials of the degree m ≥ 1 in the variable t is explicitly
expressed in the power formula

MVm(t) =
m

∑
i=0

(
m + i + 1

m− i

)
ti, m ∈ N. (8)

Additionally, the Morgan–Voyce polynomials, MVm(t), can be constructed by taking
the next recurrence relation

MVm+2(t) = (t + 2) MVm+1(t)−MVm(t), m ≥ 0, (9)

where MV0(t) = 1, MV1(t) = t + 2. A few examples of these Morgan–Voyce polynomi-
als are

MV2(t) = t2 + 4t + 3,

MV3(t) = t3 + 6t2 + 10t + 4,

MV4(t) = t4 + 8t3 + 21t2 + 20t + 5,

MV5(t) = t5 + 10t4 + 36t3 + 56t2 + 35t + 6.

Moreover, MVm(t) are the solution of the following second kind ordinary differential equation

(t2 + 4t)u′′m(t) + (3t + 6)u′m(t)−m(m + 2)um(t) = 0, (10)

where um(t) = MVm(t), m = 0, 1, . . . values. These polynomials MVm(t) over the interval
(−4, 0) are orthogonal with regard to the weight function

√
4− (t + 2)2.

3.1. Morgan–Voyce Polynomials Operational Matrices of Derivatives

In this subsection, the operational matrices of Morgan–Voyce polynomials in the
integer and fractional-orders of derivatives will be proposed. On the [0, T ] Lebesgue
integrable space, consider g(t) to be a square integrable function defined on it. Assume
g(t) can be expressed as an infinite series linear independent combination of the terms of
MVP as the following formula:

g(t) =
∞

∑
i=0

di MVi(t). (11)

Using truncation for the infinite series terms to have only (m+ 1)−terms, then Equation (11)
becomes as

g(t) ≈ gm(t) =
m

∑
i=0

di MVi(t) = DT
m Ψm(t), (12)
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where
DT

m = [d0, d1, . . . , dm], (13)

and
Ψm(t) = [MV0(t), MV1(t), . . . , MVm(t)]

T . (14)

Consider now the following vector form:

Pm(t) = [1, t, t2, . . . , tm]T , (15)

then, we can use Equation (15) to write the Ψm(t) of Equation (14) as follows:

Ψm(t) = W Pm(t), (16)

where W is (m + 1)× (m + 1) non-singular square matrix

W =

⎛⎜⎜⎜⎜⎜⎝
w0,0 0 0 0 . . . 0
w1,0 w1,1 0 0 . . . 0
w2,0 w2,1 w2,2 0 . . . 0

...
...

...
...

...
...

wm,0 wm,1 wm,2 . . . wm,m−1 wm,m

⎞⎟⎟⎟⎟⎟⎠.

The components of the matrix W are given by

(wr,s)0≤r,s≤m =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, r = s,

Γ(r + s + 2)
Γ(r− s + 1)Γ(2s + 2)

, r > s,

0, otherwise.

(17)

Clearly, det(W) = 1, which indicates that W is non-singular. The matrix W of dimension
5× 5 is given as an example as follows:

W =

⎛⎜⎜⎜⎜⎝
1 0 0 0 0
2 1 0 0 0
3 4 1 0 0
4 10 6 1 0
5 20 21 8 1

⎞⎟⎟⎟⎟⎠.

Therefore, through Equation (16), we gain

Pm(t) = W−1 Ψm(t). (18)

3.2. MV(t) Polynomials Integer-Order Operational Matrix of Derivatives

In this subsection, we deduce the integer-order derivative of the vector Ψ(t) as follows:

d
dt

Ψm(t) = Q(1) Pm(t), (19)

where Q(1) =
(

q(1)l j

)
is (m + 1)× (m + 1) operational matrix of derivatives of integer-order

contains the derivatives coefficients for MV(t). Here, Q(1) is (m + 1)× (m + 1) singular
square matrix

Q(1) =

⎛⎜⎜⎜⎜⎜⎝
0 0 0 0 . . . 0

q1,1 0 0 0 . . . 0
q2,1 q2,2 0 0 . . . 0

...
...

...
...

...
...

qm,1 qm,2 qm,3 . . . qm,m 0

⎞⎟⎟⎟⎟⎟⎠,
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where the components of Q(1) can be determined directly by using

q(1)1≤l,j≤m =

⎧⎨⎩0, l < j,
j Γ(l + j + 2)

Γ(l − j + 1) Γ(2j + 2)
, l ≥ j.

(20)

Consider the case m = 5 as an example for the first-order derivative operational matrix,
Q(1), as follows

Q(1) =

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
1 0 0 0 0 0
4 2 0 0 0 0
10 12 3 0 0 0
20 42 24 4 0 0
35 112 108 40 5 0

⎞⎟⎟⎟⎟⎟⎟⎠
6×6

.

Hence, via the two Equations (19) and (20), we can obtain the classical derivatives integer-
order operational matrix of order more than the first order as the following:

dk

dtk Ψm(t) = Q(k) Pm(t) =
(

Q(1)
)k

Pm(t), k = 1, 2, . . . . (21)

3.3. MV(t) Polynomials Fractional-Order Operational Matrix of Derivatives

Below, we will investigate the processes that enable us to obtain the fractional-
order operational matrix of Morgan–Voyce polynomials. According to (16) we have
Ψm(t) = W Pm(t). Then, we get

Dζ Ψm(t) = Dζ(W Pm(t)) = W Dζ [1, t, t2, . . . , tm]T .

Using Equation (7) to obtain

Dζ Ψm(t) = W
[

0,
2

Γ(2− ζ)
t(1−ζ),

3
Γ(3− ζ)

t(2−ζ), . . . ,
Γ(m + 1)

Γ(m + 1− ζ)
t(m−ζ)

]T

= W

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 . . . 0
0 2

Γ(2−ζ)
t−ζ 0 . . . 0

0 0 3
Γ(3−ζ)

t−ζ . . . 0
...

...
...

...
...

0 0 0 . . . Γ(m+1)
Γ(m+1−ζ)

t−ζ

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣
1
t
t2

...
tm

⎤⎥⎥⎥⎥⎦
= t−ζ W Υ Pm(t),

(22)

where

Υ =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0 . . . 0
0 2

Γ(2−ζ)
0 . . . 0

0 0 3
Γ(3−ζ)

. . . 0
...

...
...

...
...

0 0 0 . . . Γ(m+1)
Γ(m+1−ζ)

⎤⎥⎥⎥⎥⎥⎥⎦. (23)

Using Equation (18), we have

DζΨm(t) = t−ζ W Υ W−1 Ψm(t). (24)

Hence, (t−ζ W Υ W−1) is called the fractional-order operational matrix for Dζ Ψm(t).

4. Proposed Methodology and Convergence Analysis

In this section, we will provide details on the main steps for finding the solution of
model Equation (1) using the proposed Tau-collocation method. In addition, we will prove
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the convergence of the suggested method to ensure that the method convergence to the
required solution.

4.1. Proposed Methodology

We will now illustrate the main steps for finding the solution of model Equation (1) us-
ing the proposed Tau-collocation method. Consider Equation (1), firstly. Then, by using the
content of Section 3 especially Equations (12) and (16), in addition to Equations (21) and (24)
to obtain the following matrix form:

�1 DT
m Q(2) W−1 Ψm(t) + �2 DT

m t−ζ W Υ W−1 Ψm(t) + �3 DT
m Ψm(t) = ϑ(t), t ∈ (0, T ]. (25)

The residual related to Equation (25) can be computed through

tζ R(t) = tζ �1 DT
m Q(2) W−1 Ψm(t) + �2 DT

m W Υ W−1 Ψm(t) + tζ�3 DT
m Ψm(t)− tζ ϑ(t). (26)

Through application of the Tau method (see for example [50]) to have

∫ T
0

tζ R(t)Ψj
m(t) dt = 0, 0 ≤ j ≤ m. (27)

Additionally, the initial conditions that given in Equation (2) can be re-expressed in
the matrix form as follows:

DT
m Ψm(0) = g0, DT

m Q(1) Ψm(0) = g1. (28)

Using Equations (25) and (28) a system of algebraic equations is created to represent the
unknown expansion coefficients di of dimension (m + 1). The resultant algebraic system
will be solved using the Gaussian elimination method. As a result, it is possible to compute
the appropriate numerical solution in Equation (12) for the model (1). In the next subsection,
we will prove the convergence of the method.

4.2. Convergence of Morgan–Voyce Bases

In the final stage, we pay attention to the convergence of Morgan–Voyce polynomial
functions in the space of L2[0, T ], where T > 0. As mentioned in (11), every square-
integrable function g(t) ∈ L2[0, T ] can be represented in terms of Morgan–Voyce polyno-
mials in an infinite series form. However, we practically consider only (m + 1) terms series
expansion as given in (12). It follows that we restrict ourselves to the finite-dimensional
subspace Sm defined by

Sm = Span〈MV0(t), MV1(τ), . . . , MVm(τ)〉.

Additionally, let us define the error between g(t) and its approximation gm(t) by
Em(t) = g(t)− gm(t). Next, we assert that by increasing m, the error converges to zero in
the L2 norm. Also, by ‖·‖2 we denote the L2 norm of a function over [0, T ].

Theorem 2. Assume that 0 < δ := ζ/2 ≤ 1 and for n = 0, 1, . . . , m + 1 we have
Dnδg(t) ∈ C(0, T ]. Suppose further that gm(t) = DT

m Ψm(t) in (12) represents the best pos-
sible approximation for g(t) out of Sm. Then, the following estimate for the error Em(t) is valid:

‖Em(t)‖2 ≤
Mmax(

Γ(1 + 2(m + 1)δ)
) 1

2

T 1
2+(m+1)δ

Γ(1 + (m + 1)δ)
,

where
∣∣∣D(m+1)δg(t)

∣∣∣ ≤ Mmax, for t ∈ [0, T ].
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Proof. Owing to the fact that 0 < δ ≤ 1 and in accordance to Theorem 1, the generalized
Taylor form of g(t) is represented as follows:

Gm(t) = g(0+) +
tδ

Γ(1 + δ)
Dδg(0+) + . . . +

tmδ

Γ(1 + mδ)
Dmδg(0+).

By applying Corollary 1, the associated upper bound is given by

|Gm(t)− g(t)| ≤ t(m+1)δ

Γ(1 + (m + 1)δ)
Mmax, 0 < t < T . (29)

By virtue of the fact that the approximate solution gm(t) ∈ Sm represents the finest approxi-
mation to g(t), we have, consequently,

‖g(t)− gm(t)‖2 ≤ ‖g(t)− f (t)‖2, ∀ f ∈ Sm.

Employing in particular f (t) = Gm(t) in the forgoing inequality reveals that

‖g(t)− gm(t)‖2
2 ≤ ‖g(t)− Gm(t)‖2

2 =
∫ T

0
|g(t)− Gm(t)|2 dt.

By (29) and the definition of the error term, we immediately find that

‖Em(t)‖2
2 ≤
[ Mmax

Γ(1 + (m + 1)δ)

]2 ∫ T
0

t2(m+1)δdt.

By computing the integral, we obtain

‖Em(t)‖2
2 ≤
[ Mmax

Γ(1 + (m + 1)δ)

]2 T 1+2(m+1)δ

Γ(1 + 2(m + 1)δ)
.

The proof in finished by performing the square roots on the last expression.

5. Numerical Simulations

This section presents several examples that are solved numerically using our proposed
method, i.e., the Morgan–Voyce operational matrix method (MVOMM). The numerical
results of these examples support the analytical investigation and demonstrate the feasi-
bility of the introduced technique. In the paper, two types of errors are used to evaluate
the performance of the model: the L2 error and the L∞ error. The L2 error measures the
average squared difference between the true values and the predicted values, while the L∞
error measures the maximum absolute difference between the true values and the predicted
values. Additionally, the simulations were run using a Core-i7 laptop with 16 GB RAM and
the used software is Mathematica 11.0.

Example 1 ([51–53]). Consider the following inhomogeneous Bagley–Torvik initial value problem:

D2 g(t) + Dζ g(t) + g(t) = ϑ(t), ζ ∈ (1, 2), t ∈ (0, 1), g(0) = 1, g(1) = 3, (30)

where
ϑ(t) = t3 +

6
Γ(4− ζ)

t3−ζ + 7t + 1.

The exact solution of Equation (30) is given by g(t) = t(t2 + 1) + 1.

We apply the investigated method to have the following result as described. In Table 1,
we present numerical results for g(t) and its approximation gm(t) at various points in
the interval [0, 1], obtained using the MVOMM with m = 3. The results in this table
demonstrate the high accuracy of the MVOM method. The CPU time that takes through

128



Fractal Fract. 2023, 7 , 301

obtaining these results at m = 3 is 3.766 s. For comparison, we also include results obtained
using the VIM and FIM methods from Mekkaouii and Hammouch [52]. The last column
in the table shows the exact values problem. As can be seen from the table, the MVOM
technique with m = 3 yields more accurate results than the VIM, FIM, and LDG approaches.
Table 2 presents L2-error and L∞-error results using our suggested method MVOMM in
addition to the comparison with these results obtained via Lucas wavelet scheme (LWS) [53].
From these results, we obtain the accuracy of the proposed method. For further illustration,
we introduce Figure 1, which shows the absolute error (left), and (right) the approximate
solutions ξ = 1.9, 1.8, 1.7, 1.5, 1.3 for Example 1 with m = 3. Clearly, from Figure 1, the
accuracy and efficiency of the MVOMM is useful for obtaining the numerical solutions in
several cases. In addition, it can be noticed from the figure that while changing the value of
the fractional order ξ, the value of the solution is increasing. This proves that the change in
the fractional order has an impact on the simulation of the results.

Figure 1. The absolute error (left), while (right) the numerical solution for different fractional-order
cases of ξ for Example 1 with m = 3.

Table 1. Approximate solution result comparisons for the methods in [51,52], and the proposed
method for Example 1, ζ = 1.5, and m = 3.

t LDG [51] VIM [52] FIM [52] MVOMM Exact

0.10 1.101000000 1.183140356 1.103763584 1.100999999 1.101000
0.25 1.265624999 1.438783940 1.269040456 1.265624999 1.265625
0.30 1.326999999 − − 1.326999999 1.327000
0.40 1.463999999 − − 1.463999999 1.464000
0.50 1.625000000 1.519844510 1.623997167 1.624999999 1.625000
0.60 1.816000000 − − 1.815999999 1.816000
0.75 2.171875000 0.830835570 2.166900262 2.171875000 2.171875
0.80 2.312000000 − − 2.312000000 2.312000
0.90 2.629000000 − − 2.629000000 2.629000

Table 2. Comparison of the strategy used in the present study for Example 1 with distinct errors and
the LWS introduced in [53].

Error Type LWS [53] (k = 0, H = 4) LWS [53] (k = 1, H = 4) MVOMM (m = 3)

L2-error 5.9× 10−15 4.9× 10−15 1.78× 10−15

L∞-error 9.3× 10−15 7.8× 10−15 8.98× 10−16

Example 2 ([51]). In our next experiment, we will show that MVOM method can handle problems
with discontinuities. To keep things simple, we will consider a model problem that only has
one discontinuous point, but it is possible to extend the method to handle a larger number of
discontinuities. We will consider a fractional-order Bagley–Torvik equation with an initial value
and a discontinuous right-hand side.

D2 g(t) + D1.5 g(t) + g(t) = ϑ(t), t ∈ (0, 2), g(0) = g′(0) = 0, (31)
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where

ϑ(t) =

⎧⎨⎩2 + t2 + 4t0.5√
π

, 0 ≤ t < t1,

1 + 7t + t3 + 8t1.5√
π

, t1 ≤ t ≤ t2.

In this case, t1 is a point where the discontinuity occurs. The exact solutions to the problem are
g(t) = t2 for the variable t in the interval I1 = [0, t1) and g(t) = t(t2 + 1) + 1 for t in the interval
I2 = [t1, t2]. We will assume that the discontinuous point t1 coincides with a mesh node.

For the purposes of this example, we will set I1 = [0, 1) and I2 = [1, 2]. Using m = 3,
we obtain the following approximations:

g3(t) = −4.44089× 10−16 + t2 − 3.45025 10−16t3, t ∈ I1,

g3(t) = 1 + t− 1.77636× 10−15t2 + t3, t ∈ I2.
(32)

For Example 2, through both intervals I1, I2 and with m = 3, we obtain all the results
via our suggested technique (MVOMM), reported in Equation (32), Table 3, Figures 2 and 3.
The results that were obtained by Equation (32) indicate the approximate solutions were
approximately consistent with the analytical solutions. Table 3 represented the absolute
error, which is very tiny. Figure 2 shows the exact and approximate solutions (right), and
the absolute error (left) at t ∈ I1. Figure 3 presents the exact and approximate solutions
(right), and the absolute error (left) where t ∈ I2. Moreover, when m = 3, the CPU time
required to produce these results at t ∈ I1, t ∈ I2 are 0.720 s, 0.858 s, respectively. Based
on the presented results, we can say that our proposed algorithm gives high accuracy
and efficiency.

Table 3. Absolute error comparisons for the presented method for Example 2, ξ = 1.5, m = 3.

t ∈ I1 Absolute Errors t ∈ I2 Absolute Errors

0.0 4.44089× 10−16 1.0 8.88178× 10−15

0.1 4.37773× 10−16 1.1 8.70304× 10−15

0.2 4.20204× 10−16 1.2 8.51763× 10−15

0.3 3.93453× 10−16 1.3 8.31890× 10−15

0.4 3.59589× 10−16 1.4 8.10019× 10−15

0.5 3.20684× 10−16 1.5 7.85483× 10−15

0.6 2.78806× 10−16 1.6 7.57616× 10−15

0.7 2.36027× 10−16 1.7 7.25753× 10−15

0.8 1.94416× 10−16 1.8 6.89226× 10−15

0.9 1.56044× 10−16 1.9 6.47371× 10−15

1.0 − 2.0 5.99520× 10−15

Figure 2. The exact and an approximate are shown on the right, while the absolute error is shown on
the left for Example 2 where t ∈ I1 and m = 3.
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Figure 3. The exact and an approximate are shown on the right, while the absolute error is shown on
the left for Example 2 where t ∈ I2 and m = 3.

Example 3 ([51]). For the last examination, we choose a case study that is representative of the
types of issues encountered in the modeling of electrical and mechanical oscillations, in order to
make the example more applicable and realistic to real-world situations:

a1D
2 g(t) + a2 g(t) = f0 cos(	t), f0, 	 > 0, (33)

with the original state
g(0) = g0, g′(0) = 0, 0 < t ≤ τ.

In our analysis of Equation (33), we only considered the cases where the forcing
function is a sinusoidal wave with an amplitude of f0 and a frequency of 	. Using the
MVOM scheme, we examined three different vibration problems for a1 and a2 values of 1.
We obtain the numerical solution for these cases as the following:

Case I: f0 = 0, g0 = 1, and τ = 1. The analytical solution is g(t) = cos(t).
Case II: f0 = 0.01, g0 = 0, 	 = 1, and τ = 1. The precise solution g(t) = 0.005 t sin(t).
Case III: f0 = 1, g0 = 0, and τ = 1. The true solution is g(t) = 1

1−	2 (cos(	t)− cos(t)),

where 	2 �= 1. Here, we have 	 = 6.

The proposed approach that was explained in the preceding Section is used to compute
the absolute error for the three cases of Example 3. It is visible from analyzing the outcomes
of Table 4 that were generated by the proposed methodology and the results produced by
the method provided in [51] that the results provided by the proposed scheme are more
accurate than those published in [51]. Additionally, the CPU time of our method is better
than of [51] because we have few terms of the expansion series m = 4, 6 only. We obtain the
CPU time in these different cases (Case I, Case II, and Case III), which are 0.093, 0.110, and
0.125 s, respectively. A great degree of precision is also provided by the proposed method
for solving oscillation problems.

Figures 4–6 are reported at m = 6 for Example 3 through three different cases of
oscillations. Figure 4 gives the absolute error on left, the analytic and an approximation
solutions on right for Case I. Figure 5 presents the absolute error on left, the exact and
numerical solutions on right for Case II. Figure 6 indicates the absolute error on left, the
exact and an approximation solutions on right for Case III. At first glance of these three
figures, we notice a great degree of agreement between the exact and the numerical solution.
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Table 4. Absolute error comparisons for the presented method for Example 3.

Case I Case II Case III

t LDG [51] MVOMM (m = 4) LDG [51] MVOMM (m = 4) LDG [51] MVOMM (m = 6)

0.0 − 2.22× 10−16 − 2.42× 10−20 − 3.95× 10−20

0.1 1.95× 10−8 4.44× 10−16 7.76× 10−10 1.14× 10−15 1.12× 10−9 7.12× 10−17

0.2 1.36× 10−8 1.89× 10−15 5.38× 10−10 3.58× 10−15 5.91× 10−10 1.92× 10−16

0.3 9.66× 10−9 3.33× 10−15 3.79× 10−10 6.32× 10−15 1.92× 10−8 3.07× 10−16

0.4 9.96× 10−9 4.89× 10−15 3.94× 10−10 8.86× 10−15 3.11× 10−8 4.18× 10−16

0.5 1.02× 10−8 6.22× 10−15 4.01× 10−10 1.11× 10−14 1.92× 10−8 5.31× 10−16

0.6 5.06× 10−9 7.44× 10−15 2.01× 10−10 1.33× 10−14 5.55× 10−9 6.33× 10−16

0.7 9.44× 10−9 8.77× 10−15 3.72× 10−10 1.55× 10−14 1.88× 10−8 7.27× 10−16

0.8 3.58× 10−9 1.01× 10−14 1.42× 10−10 1.78× 10−14 1.62× 10−8 8.18× 10−16

0.9 4.79× 10−9 1.10× 10−14 1.89× 10−10 1.94× 10−14 9.71× 10−9 9.03× 10−16

1.0 3.18× 10−15 1.08× 10−14 1.19× 10−16 1.87× 10−14 1.12× 10−19 9.15× 10−16

Figure 4. For Example 3, Case I with m = 6: the absolute error is shown on (left), the analytic and
the approximation solutions are presented on (right).

Figure 5. For Example 3, Case II with m = 6: the absolute error is shown on (left), and the analytic
and an approximation solutions are presented on (right).

Example 4 ([53,54]). Let us select the initial-value Bagley–Torvik equation of the fractional order

D2 g(t) +D1.5 g(t) + g(t) = ϑ(t), t ∈ [0, 1],

ϑ(t) = t3 +
8√
π

t
3
2 + 5t,

(34)

with the boundary conditions
g(0) = g(1) = 0.

The corresponding exact solution for Example 4 takes the form g(t) = t3 − t.
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Figure 6. For Example 3, Case III with m = 6: the absolute error is shown on the (left), and the
analytic and an approximation solutions are presented on the (right).

We use the suggested method for solving this problem numerically. Additionally,
some comparisons are made between the obtained results of MVOMM and the LWS and
the reproducing kernel Hilbert space (RKHS) reported in [53,54]. By using the LWS, the
obtained solution is [53]

ḡ3(t) = t3 − 2.33591× 10−13t2 − t + 2.22045× 10−16.

While the results with m = 3 using our method are as follows:

g3(t) = t3 − 2.66454× 10−15t2 − t. (35)

For Example 4 at m = 3, we acquire all findings using our recommended technique
(MVOMM), which is provided in Equation (35), Table 5, Table 6 and Figure 7. Equation (35)
shows that the approximations were roughly congruent with the analytical solutions.
Table 5, represented a comparison of the present study’s exact solution with the absolute
inaccuracy of the techniques developed in [53,54]. Table 6, displays findings for L2-error
and L∞-error utilizing our recommended approach MVOMM as well as a comparison
to results obtained via [53]. Figure 7 presents the absolute error (left) and the numerical
and true solutions (right). All results are obtained with CPU time 0.813 s (including all
numerical results and plotting the figures). The results derived from these Tables and
Figures for Example 4 provide a strong indication of the superiority of the presented Tau-
collocation algorithm. In terms of accuracy and efficiency, the proposed method was found
to outperform the other methods considered.

Table 5. Comparison of the present study’s exact solution with the absolute inaccuracy of the
RKHS [54] and LWS [53], relative to Example 4.

t Exact RKHS [54] (n = 20) RKHS [54] (n = 40) LWS [53] (H = 4) MVOMM (m = 3)

0.2 −0.192000 1.890× 10−4 5.700× 10−5 9.575× 10−15 4.547× 10−16

0.4 −0.336000 2.537× 10−4 7.131× 10−5 3.758× 10−14 1.080× 10−15

0.6 −0.384000 2.168× 10−4 5.992× 10−5 8.426× 10−14 1.833× 10−15

0.8 −0.288000 1.198× 10−4 3.312× 10−5 1.497× 10−13 2.672× 10−15

1.0 0 0 0 0 0

Table 6. Comparison between the LWS introduced in [53] and the current study for Example 4 with
various errors.

Error Type LWS [53] (k = 0, H = 4) LWS [53] (k = 1, H = 4) MVOMM (m = 3)

L2-error 8.5× 10−14 2.2× 10−13 3.55× 10−15

L∞-error 1.6× 10−13 5.0× 10−13 1.88× 10−15
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Figure 7. The absolute error (left), while the numerical and approximate solutions (right) for
Example 4 with m = 3.

Example 5 ([55–57]). Finally, we turn our attention to another form of equation, which is know as
the fractional-order Bratu differential equation type:

Dξ g(t)− 2eg(t) = 0, t ∈ [0, 1], ξ ∈ (1, 2], (36)

with the initial conditions
g(0) = g′(0) = 0.

The exact solution that corresponds to Example 5 at ξ = 2 is g(t) = −2 ln(cos(t)).

The following results are obtained by applying our recommended approach for solving
this problem numerically and comparing the outcomes with those reported in [55–57]. The
developed methods are the compact finite difference method (CFDM), the reproducing
kernel Hilbert space method (RKM), and the combined spectral Bessel quasilinearization
method (Bessel-QLM), respectively. For Example 5, we obtain all the results utilizing
our advised method (MVOMM), and these are presented in Tables 7 and 8 and Figure 8.
Table 7, introducing comparisons of the absolute error between the current methodology
and the other research approaches, CFDM and RKM published in [55,56] with m = 6. The
computational time (CPU time) in the case of m = 6 is 0.282 s using our suggested method.
Table 8 reported a comparison between the recommended approach MVOMM and this
given in [55] with L2-error and L∞-error at ξ = 2 and diverse values of m. Additionally,
the CPU time in different values of m is reported in the last column of Table 8. Figure 8,
listed the achieved absolute error for ξ = 2 (left) and the numerical values at several values
of the fractional-order term ξ = 2, 1.9, 1.8, 1.7, 1.5, 1.3 (right) with m = 6. These Tables and
Figures for numerical results of Example 5 give clear evidence of the proposed method’s
superiority. The proposed method was found to perform better than the other existing
numerical procedures taken into consideration in terms of efficiency and accuracy.

Table 7. Comparison of the absolute inaccuracy between the MVOMM and the CFDM and RKM
used in the previous studies [55–57] using ξ = 2 for Example 5.

t CFDM [55] RKM [56] Bessel-QLM (M = 7) [57] MVOMM (m = 6)

0.1 7.1× 10−6 1.67× 10−5 4.20× 10−8 2.75× 10−17

0.2 1.23× 10−5 3.10× 10−7 1.22× 10−7 3.016× 10−17

0.3 1.71× 10−5 1.13× 10−6 1.86× 10−7 1.65× 10−16

0.4 2.26× 10−5 2.12× 10−4 2.61× 10−7 1.87× 10−16

0.5 2.90× 10−5 2.90× 10−6 3.55× 10−7 8.05× 10−17

0.6 3.69× 10−5 4.10× 10−6 4.10× 10−7 1.32× 10−16

0.7 4.72× 10−5 6.50× 10−6 5.79× 10−7 2.19× 10−16

0.8 6.14× 10−5 7.50× 10−6 6.83× 10−7 1.67× 10−16

0.9 8.32× 10−5 3.35× 10−6 3.04× 10−7 2.79× 10−16

1.0 1.29× 10−5 4.37× 10−8 3.23× 10−5 2.52× 10−16
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Table 8. Comparison of the highest absolute errors for Example 5 using ξ = 2 and various values of
m from [55] and our proposed approach.

CFDM [55] MVOMM

N = m L∞-Error m L∞-Error CPU Time (s)

5 1.67× 10−3 2 1.42× 10−8 0.185
10 8.32× 10−5 4 5.61× 10−13 0.225
20 4.43× 10−6 6 4.11× 10−16 0.282
40 2.38× 10−7 8 8.34× 10−16 0.586
80 1.36× 10−8 10 1.47× 10−16 1.592

Figure 8. The absolute error (left) and the numerical solution (right) for various fractional-order
cases of ξ for Example 5 with m = 6.

6. Conclusions

In this research manuscript, we propose a novel technique based on the collocation
strategy to acquire the approximate and numerical solutions for a class of fractional-order
differential equations with various applications in science. To achieve this purpose, we
utilize a novel operational matrix of fractional order for the Morgan–Voyce polynomials
defined in the Liouville–Caputo sense combined with the collocation and Tau method.
This approach involves converting the fractional order model into an algebraic system
of equations with unknown coefficients, which are then solved to find these coefficients
efficiently. A rigorous error analysis for the presented Tau-collocation technique shows
that the proposed technique converges to the required solution. Several examples are
illustrated to highlight the efficiency of the technique including the well-known Bagley–
Torvik and Bratu equations and other models with different fractional orders. The results
are compared with other relevant available techniques from the literature which support
the proposition of a more accurate solution with fewer bases. These results provide insight
into the behavior of the solution of the investigated models. In addition, the robustness of
the proposed algorithm is verified by providing computational time which supports the
claim. The method successfully provides accurate results highlighting the importance of the
solved model, especially of the Bagley–Torvik model which have applications in simulating
coupled oscillator. Thus, the provided methods are considered promising techniques for
simulating similar models and can be extended to some more complex problems in the
future including fractional partial differential equations with real-life applications.
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Abstract: We present in this paper a generalization of the fractional kinetic equation using the
generalized incomplete Wright hypergeometric function. The pathway-type transform technique
is then used to investigate the solutions to a fractional kinetic equation with specific fractional
transforms. Furthermore, exceptional cases of our outcomes are discussed and graphically illustrated
using MATLAB software. This work provides a thorough overview for further investigation into
these topics in order to gain a better understanding of their implications and applications.

Keywords: incomplete Wright hypergeometric functions; pathway-type transform; fractional
kinetic equations

1. Introduction

Fractional-order differential equations have fractional derivatives instead of integer
derivatives [1–5]. A kinetic equation is one of the essential kinds of fractional-order differen-
tial equations. Its importance is reflected in the fact that it has received increased attention
in electrodynamics, control systems, economics, hydrodynamics, physics, geophysics, and
mathematics. Furthermore, fractional-order kinetic (reaction-type) equations play a sig-
nificant role as tools of mathematics that are frequently employed to describe a variety of
physical and astrophysical phenomena (see [6–10]). For example, reaction-type (kinetic)
equations can explain how nuclei are created and destroyed during chemical (thermonu-
clear) processes. A formal representation of reactions characterized by a time-dependent
quantity E = E(ξ) is given by the following Cauchy problem (see, for example, [11]):

dE

dξ
= −δ(E) + p(E), E(0) = E0, (1)

where E0 is the initial data and δ and p are the destruction and production rate of E,
respectively. Furthermore, Haubold and Mathai studied a special case of this Cauchy
problem [11] given by

dE

dξ
= −ϑE, ϑ ∈ R+, E(0) = E0. (2)

Equation (2) is known as the standard kinetic equation. They also gave a representation
in the form of a fractional equation as follows:

E(ξ)− E0 = −ϑ 0D
−1
ξ E(ξ), ϑ, ξ ∈ R+, (3)
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where 0D
−ν
ξ is the fractional integral operator [1] given by

0D
−ν
ξ f (ξ) =

1
Γ(ν)

∫ ξ

0
(ξ − s)ν−1 f (s)ds, ν ∈ R+. (4)

Many generalizations and solutions of the fractional-order kinetic equation have re-
cently been developed, utilizing a variety of fractional integral transforms including the
fractional Laplace transform [12–16], fractional Sumudu transform [17–19], Hadamard
fractional integrals [20–22], fractional pathway transform [23,24] and Prabhakar-type
operators [25], which have been extensively studied. In particular, Khan et al. [14] pre-
sented solutions for fractional kinetic equations associated with the (p, q)-extended τ-
hypergeometric and confluent hypergeometric functions using the Laplace transform,
while Hidan et al. [15] discussed a technique for the Laplace transformation of solutions of
fractional kinetic equations involving extended (k, t)-Gauss hypergeometric matrix func-
tions. In addition, Abubakar [16] derived solutions for fractional kinetic equations using the
(p, q; l)-extended τ-Gauss hypergeometric function. Gaining insight from the last recently
mentioned manuscripts, this paper provides an in-depth exploration of fractional kinetic
equations and their solutions by using the generalized incomplete Wright hypergeometric
function and pathway-type transform technique. We provide a comprehensive overview
that is sure to give researchers plenty to think about when it comes to implications and ap-
plications. Overall, this work should be regarded as required reading for anyone interested
in learning more about these themes.

2. Preliminaries

Here, we highlight a few concepts that would be helpful for future discussion.
The Gauss hypergeometric function given by

F(θ1, θ2, θ3; z) =
∞

∑
j=0

(θ1)j (θ2)j

(θ3)j

zj

j!
, z ∈ C, (5)

will be convergent absolutely and uniformly under the condition |z| < 1. Here, θ1, θ2, and
θ3 are complex parameters with θ3 ∈ C \Z−0 , and

(θ1)j =
Γ(θ1 + j)

Γ(θ1)
=

⎧⎨⎩
θ1(θ1 + 1) · · · (θ1 + j− 1), j ∈ N, θ1 ∈ C

1, j = 0; θ1 ∈ C \ {0},
(6)

is known to be the Pochhammer symbol of θ1, whereas Γ(v) is the standard gamma function,
defined as

Γ(θ) =
∫ ∞

0
υθ−1e−υdυ, θ ∈ C \Z−0 . (7)

Moreover, we define the lower and upper incomplete gamma functions, as shown
in [26], as

γ(θ; x) =
∫ x

0
υθ−1e−υdυ, θ ∈ C \Z−0 , (8)

and

Γ(θ; x) =
∫ ∞

x
υθ−1e−υdυ, θ ∈ C \Z−0 , (9)

respectively. The decomposition formula of Γ(θ) can be preformed using Equations (8) and (9)
as follows:

γ(θ; x) + Γ(θ; x) = Γ(θ). (10)
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The incomplete Pochhammer symbols (θ; x)n and [θ; x]n are defined by

(θ; x)n =
γ(θ + n; x)

Γ(θ)
(11)

and

[θ; x]n =
Γ(θ + n; x)

Γ(θ)
. (12)

Similar to Equation (10), a decomposition of (θ)n can be given by the functions in
Equations (11) and (12) as follows:

(θ; x)n + [θ; x]n = (θ)n, (13)

Wright’s (τ − Gauss) hypergeometric function was first studied in [27] as follows:

2R1(ϑ1, ϑ2; ϑ3; τ; η) =
Γ(ϑ3)

Γ(ϑ2)

∞

∑
j=0

(ϑ1)jΓ(ϑ2 + τ j)
Γ(ϑ3 + τ j)

η j

j!
(τ ∈ R+, |η| < 1), (14)

where ϑ1, ϑ2, and ϑ3 are complex parameters such that �(ϑ1) > 0,�(ϑ2) > 0, and
�(ϑ3) > 0.

In addition, the incomplete Wright’s hypergeometric function was studied in [28]
as follows:

2Γ1(ϑ1, ϑ2; ϑ3; τ; η) =
Γ(ϑ3)

Γ(ϑ2)

∞

∑
j=0

[ϑ1; x]jΓ(ϑ2 + τ j)
Γ(ϑ3 + τ j)

η j

j!
(τ ∈ R+, |η| < 1) (15)

and

2γ1(ϑ1, ϑ2; ϑ3; τ; η) =
Γ(ϑ3)

Γ(ϑ2)

∞

∑
j=0

(ϑ1; x)jΓ(ϑ2 + τ j)
Γ(ϑ3 + τ j)

η j

j!
(τ ∈ R+, |η| < 1), (16)

where ϑ1, ϑ2, and ϑ3 are complex parameters such that �(ϑ1) > 0,�(ϑ2) > 0, and
�(ϑ3) > 0. Recent developments and expansions of Wright’s hypergeometric function
can be found, for example, in [29,30].

The family of the generalized incomplete Wright’s hypergeometric functions of the p
numerator and q denominator is given by [28]

pΓ(τ)
q

[
(θp, x);

ηq;
z
]
= pΓ(τ)

q

[
(θ1, x), θ2, . . . , θp;

η1, η2, . . . , ηq;
z
]

=
Γ(η1), . . . , Γ(ηq)

Γ(θ2), . . . , Γ(θp)

∞

∑
n=0

[θ1, x]n Γ(θ2 + nτ) . . . Γ(θp + nτ)

Γ(η1 + nτ)Γ(η2 + nτ) . . . Γ(ηq + nτ)

zn

n!
,

(17)

where ϑp, ηq ∈ C, τ > 0, p = q + 1, p, q ∈ N0, |z| < 1, and

pγ
(τ)
q

[
(θp, x);

ηq;
z
]
= pγ

(τ)
q

[
(θ1, x), θ2, . . . , θp;

η1, η2, . . . , ηq;
z
]

=
Γ(η1), . . . , Γ(ηq)

Γ(θ2), . . . , Γ(θp)

∞

∑
n=0

(θ1, x)n Γ(θ2 + nτ) . . . Γ(θp + nτ)

Γ(η1 + nτ)Γ(η2 + nτ) . . . Γ(ηq + nτ)

zn

n!
,

(18)

where ϑp, ηq ∈ C, τ > 0, p = q + 1, and p, q ∈ N0, |z| < 1.
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The generalized incomplete hypergeometric functions pΓ(τ)
q and pγ

(τ)
q satisfy the

following decomposition formula:

pΓ(τ)
q

[
(θp, x);

ηq;
z
]
+ pγ

(τ)
q

[
(θp, x);

ηq;
z
]
=p R

(τ)
q

[
θp;
ηq;

z
]

(19)

Remark 1. Some special cases of the generalized incomplete Wright’s hypergeometric functions are
as follows:

(i) By setting τ = 1 in Equations (17) and (18) and employing the relation in Equation (6), we
have the extended incomplete Gauss hypergeometric function (see [31]):

pΓq

[
(θp, x);

ηq;
z
]
= pΓq

[
(θ1, x), θ2, . . . , θp;

η1, η2, . . . , ηq;
z
]

=
∞

∑
n=0

[θ1, x]n (θ2)n + . . . (θp)n

(η1)n . . . (ηq)n

zn

n!
,

(20)

where ϑp, ηq ∈ C, τ > 0, p = q + 1, p, q ∈ N0, |z| < 1, and

pγq

[
(θp, x);

ηq;
z
]
= pγq

[
(θ1, x), θ2, . . . , θp;

η1, η2, . . . , ηq;
z
]

=
∞

∑
n=0

(θ1, x)n (θ2)n + . . . (θp)n

(η1)n . . . (ηq)n

zn

n!
,

(21)

where ϑp, ηq ∈ C, τ > 0, p = q + 1, and p, q ∈ N0, |z| < 1.

As an immediate consequence of Equations (20) and (21), we have the following decomposition
formula:

pΓq

[
(θp, x);

ηq;
z
]
+ pγq

[
(θp, x);

ηq;
z
]
=p Fq

[
θp;
ηq;

z
]

, (22)

in terms of the generalized hypergeometric function.

(ii) If we put p = 2 and q = 1 into Equations (17) and (18), we obtain

2Γ(τ)
1

[
(θ2, x);

η1;
z
]
= pΓ(τ)

q

[
(θ1, x), θ2;

η1;
z
]

=
Γ(η1)

Γ(θ2)

∞

∑
n=0

[θ1, x]n Γ(θ2 + nτ)

Γ(η1 + nτ)Γ(η2 + nτ)

zn

n!
,

(τ > 0, |z| < 1),

(23)

and

2γ
(τ)
1

[
(θ2, x);

η1;
z
]
= 2γ

(τ)
1

[
(θ1, x), θ2;

η1;
z
]

=
Γ(η1))

Γ(θ2)

∞

∑
n=0

(θ1, x)n Γ(θ2 + nτ)

Γ(η1 + nτ)

zn

n!
,

(τ > 0, |z| < 1).

(24)

Equations (23) and (24) contain the following decomposition formula as a direct result:

2Γ(τ)
1

[
(θ1, x), θ2;

η1;
z
]
+ 2γ

(τ)
1

[
(θ1, x), θ2;

η1;
z
]
=2 R

(τ)
1

[
θ1, θ2;

η1;
z
]

(25)

for the Wright hypergeometric function in (14).
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The derivative formulas for generalized incomplete Wright’s hypergeometric functions
are as follows (see [28]):

dn

dzn

{
pΓ(τ)

q

[
(θ1, x), θ2, . . . , θp;

η1, η2, . . . , ηq;
z
]}

=
(θ1)n Γ(θ2 + nτ) . . . Γ(θp + nτ)

Γ(η1 + nτ)Γ(η2 + nτ) . . . Γ(ηq + nτ)

× pΓ(τ)
q

[
(θ1 + n, x), θ2 + nτ, . . . , θp + nτ;

η1 + nτ, η2 + nτ, . . . , ηq + nτ;
z
] (26)

and

dn

dzn

{
pγ

(τ)
q

[
(θ1, x), θ2, . . . , θp;

η1, η2, . . . , ηq;
z
]}

=
(θ1)n Γ(θ2 + nτ) . . . Γ(θp + nτ)

Γ(η1 + nτ)Γ(η2 + nτ) . . . Γ(ηq + nτ)

×p γ
(τ)
q

[
(θ1 + n, x), θ2 + nτ, . . . , θp + nτ;

η1 + nτ, η2 + nτ, . . . , ηq + nτ;
z
]

.

(27)

The pathway-type transform (Kω transform) is defined in [23,24] as

Kω [ f (t), s] = F(s) =
∫ ∞

0
[1 + (ω− 1)s]

−t
ω−1 f (t)dt ω > 1, (28)

with

lim
ω→1+

[1 + (ω− 1)s]
−t

ω−1 = e−st. (29)

The Laplace transform (L[., .]) is generalized by this transformation; which can be
seen from

lim
ω→1

Kω [ f (t), s] = L[ f (t), s]. (30)

The two useful properties of the Kω transform are as follows:

Kω [1, s] =
ω− 1

ln[1 + (ω− 1)s]
(31)

and

Kω [
tn

n!
, s] =

{ ω

ln[1 + (ω− 1)s]

}n+1
. (32)

Furthermore, using the convolution theorem of the Kω transform [23], we see that
Equation (4) may be represented by

Kω [0D
−λ
t f (t), s] =

[ ω− 1
ln[1 + (ω− 1)s]

]λ
Kω [ f (t), s] λ ∈ C. (33)

3. Statement of Results

In this section, we solve the fractional kinetic equation associated with the τ-generalized
incomplete hypergeometric functions using the method of the Kω transform.
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Theorem 1. Let λ > 0, d > 0, z ∈ C, and τ > 0. Then, we conclude that the solution of the
τ-generalized incomplete hypergeometric function’s fractional kinetic equation

E(z)− E0 pΓ(τ)
q (z) = −dλ

0D
−λ
z E(z), (34)

is given by

E(z) =E0
Γ(η1), . . . , Γ(ηq)

Γ(θ2), . . . , Γ(θp)

∞

∑
n=0

[θ1, x]n Γ(θ2 + nτ) . . . Γ(θp + nτ)

Γ(η1 + nτ)Γ(η2 + nτ) . . . Γ(ηq + nτ)

×
∞

∑
m=0

(−1)m(d)mλ zmλ+n

(mλ + n)!
.

(35)

Proof. By using the Kω transform of both sides of Equation (34) and using Equations (32) and (33),
we have

Kω

[
E(z)
][

1 + dλ
{ ω− 1

ln{1 + (ω− 1)r}
}λ]

= E0
Γ(η1), . . . , Γ(ηq)

Γ(θ2), . . . , Γ(θp)

∞

∑
n=0

[θ1, x]n Γ(θ2 + nτ) . . . Γ(θp + nτ)

Γ(η1 + nτ)Γ(η2 + nτ) . . . Γ(ηq + nτ)

×
[ ln{1 + (ω− 1)}

ω− 1
]−n−1

(36)

and

Kω

[
E(z)
]
=E0

Γ(η1), . . . , Γ(ηq)

Γ(θ2), . . . , Γ(θp)

∞

∑
n=0

[θ1, x]n Γ(θ2 + nτ) . . . Γ(θp + nτ)

Γ(η1 + nτ)Γ(η2 + nτ) . . . Γ(ηq + nτ)[ ln{1 + (ω− 1)r}
ω− 1

]−n−1 ∞

∑
m=0

(−1)m

m!

[ d(ω− 1)
ln{1 + (ω− 1)r}

]mλ

= E0
Γ(η1), . . . , Γ(ηq)

Γ(θ2), . . . , Γ(θp)

∞

∑
n=0

[θ1, x]n Γ(θ2 + nτ) . . . Γ(θp + nτ)

Γ(η1 + nτ)Γ(η2 + nτ) . . . Γ(ηq + nτ)

×
∞

∑
m=0

(−1)m dmλ(ω− 1)n+mλ+1
[

ln{1 + (ω− 1)r}
]−(n+mλ+1)

.

(37)

Now, when we take the inverse of the Kω transform and apply Equation (32), we have
the desired result.

Theorem 2. Let λ > 0, d > 0, z ∈ C, and τ > 0. Then, we conclude that the solution of the
τ-generalized incomplete hypergeometric function’s fractional kinetic equation

E(z)− E0
{ d

dz pΓ(τ)
q (z)

}
= −dλ

0D
−λ
t E(z), (38)

is given by

E(z) =E0

[ θ1(θ2 + τ) . . . (θp + τ)

(η1 + τ) . . . (ηq + τ)

] ∞

∑
n=0

[θ1 + 1, x]n (θ2 + τ)n . . . (θp + τ)n

(η1 + τ)n(η2 + τ)n . . . (ηq + τ)n
zn

×
∞

∑
m=0

(−1)m(dz)mλ

(mλ + n)!
.

(39)
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Proof. By taking the Kω transform of both sides of Equation (38) and using Equations (26),
(32), and (33), we find

Kω

[
E(z)
][

1 + dλ
{ ω− 1

ln{1 + (ω− 1)r}
}λ]

=E0

[ θ1(θ2 + τ) . . . (θp + τ)

(η1 + τ) . . . (ηq + τ)

] ∞

∑
n=0

[θ1 + 1, x]n (θ2 + τ)n . . . (θp + τ)n

(η1 + τ)n(η2 + τ)n . . . (ηq + τ)n

×
[ ln{1 + (ω− 1)r}

ω− 1
]−n−1

(40)

and

Kω

[
E(z)
]
=E0

[ θ1(θ2 + τ) . . . (θp + τ)

(η1 + τ) . . . (ηq + τ)

] ∞

∑
n=0

[θ1 + 1, x]n (θ2 + τ)n . . . (θp + τ)n

(η1 + τ)n(η2 + τ)n . . . (ηq + τ)n[ ln{1 + (ω− 1)r}
ω− 1

]−n−1 ∞

∑
m=0

(−1)m

m!

[ d(ω− 1)
ln{1 + (ω− 1)r}

]mλ

=E0

[ θ1(θ2 + τ) . . . (θp + τ)

(η1 + τ) . . . (ηq + τ)

] ∞

∑
n=0

[θ1 + 1, x]n (θ2 + τ)n . . . (θp + τ)n

(η1 + τ)n(η2 + τ)n . . . (ηq + τ)n

×
∞

∑
m=0

(−1)m dmλ(ω− 1)n+mλ+1
[

ln{1 + (ω− 1)r}
]−(n+mλ+1)

.

(41)

By taking the inverse of the Kω transform of both sides of Equation (41) and applying
Equation (32), we readily obtain the desired result.

Now, we give the results for the solution of the fractional kinetic equation of the

pγ
(τ)
q -generalized incomplete hypergeometric function in Equation (27), which are given in

the following two theorems:

Theorem 3. Let λ > 0, d > 0, z ∈ C, and τ > 0. Then, the solution of the fractional kinetic
equation of the τ-generalized incomplete hypergeometric functions

E(z)− E0 pγ
(τ)
q (z) = −dλ

0D
−λ
z E(z), (42)

is given by

E(z) =E0
Γ(η1), . . . , Γ(ηq)

Γ(θ2), . . . , Γ(θp)

∞

∑
n=0

(θ1, x)n Γ(θ2 + nτ) . . . Γ(θp + nτ)

Γ(η1 + nτ)Γ(η2 + nτ) . . . Γ(ηq + nτ)

×
∞

∑
m=0

(−1)m(d)mλ zmλ+n

(mλ + n)!
.

(43)

Proof. The proof here runs in parallel with that for Theorem 1. The details have been
omitted.

Theorem 4. Let λ > 0, d > 0, z ∈ C, and τ > 0. Then, the solution of the fractional kinetic
equation of the τ-generalized incomplete hypergeometric functions

E(z)− E0
{ d

dz pγ
(τ)
q (z)

}
= −dλ

0D
−λ
t E(z), (44)
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is given by

E(z) =E0

[ θ1(θ2 + τ) . . . (θp + τ)

(η1 + τ) . . . (ηq + τ)

] ∞

∑
n=0

(θ1 + 1, x)n (θ2 + τ)n . . . (θp + τ)n

(η1 + τ)n(η2 + τ)n . . . (ηq + τ)n
zn

×
∞

∑
m=0

(−1)m(dz)mλ

(mλ + n)!
.

(45)

Proof. This proof follows a similar pattern to that of Theorem 2. The specifics have been
left out.

4. Illustrative Examples

The following are some examples of the special cases of the solution to fractional
kinetic equations, including the τ-generalized incomplete hypergeometric functions,

(i) If we have p = 2 and q = 1, then Equation (34) reduces to

E(z)− E0 2Γ(τ)
1 (z) = −dλ

0D
−λ
z E(z), (46)

whose solution is

E(z) =E0
Γ(η1)

Γ(θ2)

∞

∑
n=0

[θ1, x]n Γ(θ2 + nτ)

Γ(η1 + nτ)

∞

∑
m=0

(−1)m(d)mλ zmλ+n

(mλ + n)!
. (47)

(ii) When we have p = 2 and q = 1, then Equation (42) reduces to

E(z)− E0 2γ
(τ)
1 (z) = −dλ

0D
−λ
z E(z), (48)

whose solution is

E(z) =E0
Γ(η1)

Γ(θ2)

∞

∑
n=0

(θ1, x)n Γ(θ2 + nτ)

Γ(η1 + nτ)

∞

∑
m=0

(−1)m(d)mλ zmλ+n

(mλ + n)!
. (49)

(iii) When we have p = 2, q = 1 and τ = 1, then Equation (34) reduces to

E(z)− E0 2Γ1(z) = −dλ
0D
−λ
z E(z) (50)

and its solution is

E(z) =E0

∞

∑
n=0

[θ1, x]n (θ2)n

(η1)n

∞

∑
m=0

(−1)m(d)mλ zmλ+n

(mλ + n)!
. (51)

(iv) When we have p = 2 and q = 1, then Equation (38) reduces to a hypergeometric function

E(z)− E0
{ d

dz 2Γ(τ)
1 (z)

}
= −dλ

0D
−λ
t E(z), (52)

given by

E(z) =E0

[ θ1(θ2 + τ)

(η1 + τ)

] ∞

∑
n=0

[θ1 + 1, x]n (θ2 + τ)n

(η1 + τ)n
zn

×
∞

∑
m=0

(−1)m(dz)mλ

(mλ + n)!
.

(53)

(v) When we substitute p = 2 and q = 1, then Equation (44) reduces to

E(z)− E0
{ d

dz 2γ
(τ)
1 (z)

}
= −dλ

0D
−λ
t E(z) (54)
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and its solution is

E(z) =E0

[ θ1(θ2 + τ)

(η1 + τ)

] ∞

∑
n=0

(θ1 + 1, x)n (θ2 + τ)n

(η1 + τ)n
zn

×
∞

∑
m=0

(−1)m(dz)mλ

(mλ + n)!
.

(55)

5. Comments on the Graphical Interpretations

Figure 1 depicts the plots of solutions to Equation (35) with parametric values
E0 = 1, q = 20, p = 21, and z = 0.5, · · · , 5 for various values of λ = 0.1, 0.2, · · · , 0.9
in Figure 1a and with fixed values of x = 2, d = 0.2, and τ = 1. In Figure 1b, we fix the
values to τ = 1, d = 1 and λ = 0.5 and generate graphs for various values of x = 0.1, · · · , 2.
The valid region of convergence of the solutions is given by the time interval z = 0.5, · · · , 5.
Figure 2 exhibits 2D plots of the solutions to Equation (43) for various values of λ and x in
Figure 2a and Figure 2b, respectively, with fixed values of τ = 1, d = 1, and E0 = 1. The
graphical findings show that the region of convergence of the solutions was continually de-
pendent on the parameters λ and x. As a result, evaluating the behavior of the solutions for
various parameters and time periods revealed that E(z) was always positive. Furthermore,
we could change the values of λ, x, τ, and d to obtain more accurate results.

(a)

(b)

Figure 1. Graphs of the solution to Equation (35) with various values of λ in (a) and various values
of x in (b).
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(a)

(b)

Figure 2. Graphs of the solution to Equation (43) with various values of λ in (a) and various values
of x in (b).

6. Conclusions

Because of the usefulness and great importance of the kinetic equation in some astro-
physical issues, fractional kinetic equations have been investigated to describe the various
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phenomena governed by anomalous reactions in dynamical systems [6–9]. Several authors
have recently presented solutions to various families of fractional kinetic equations involv-
ing special functions using the Laplace transform, Sumudu transform, Prabhakar-type
operators, Hadamard fractional integrals, and pathway-type transform based on these
principles (see, for example, [10–25]).

Motivated by the above works, the authors developed a new and generalized form
of the fractional kinetic equation involving the generalized incomplete Wright hypergeo-
metric function. This new generalization can be used to compute the change in chemical
composition in stars such as the Sun. The manifold generality of the Mittag-Leffler function
was discussed in terms of the solution to the above fractional kinetic equation by applying
a pathway-type transform. Furthermore, a graphical representation of the solutions was
provided to demonstrate the behavior of these solutions and to analyze special situations
for fractional kinetic equations.

Author Contributions: Methodology, M.A.; Software, M.Z.A.; Formal analysis, A.B.; Investigation,
A.B. and M.A.; Data curation, M.Z.A.; Writing—original draft, M.Z.A.; Writing—review & editing,
A.B. and M.A.; Supervision, M.A. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was funded by the Deanship of Scientific Research at King Khalid University
through a large group research project under grant number RGP2/25/44.

Data Availability Statement: No data were used to support this study.

Conflicts of Interest: This work does not have any conflict of interest.

References

1. Abbas, S.; Benchohra, M.; Guerekata, G.M.N. Topics in Fractional Differential Equations; Springer: New York, NY, USA, 2012.
2. Zhou, Y. Basic Theory of Fractional Differential Equations; World Scientific: Singapore, 2014.
3. Abbas, M.I.; Ragusa, M.A. Solvability of Langevin equations with two Hadamard fractional derivatives via Mittag-Leffler

functions. Appl. Anal. 2020, 101, 3231–3245.
4. Bakhet, A.; He, F. On the matrix version of extended Struve function and its application on fractional calculus. Filomat 2022, 36,

3381–3392. [CrossRef]
5. Youssri, Y.H.; Abd-Elhameed, W.M.; Ahmed, H.M. New fractional derivative ex-pression of the shifted third-kind Chebyshev

polynomials: Application to a type of non-linear fractional pantograph differential equations. J. Funct. Spaces 2022, 3966135.
6. Saxena, R.K.; Mathai, A.M.; Haubold, H.J. On fractional kinetic equations. Astrophys. Space Sci. 2002, 282, 281–287. [CrossRef]
7. Saxena, R.K.; Mathai, A.M.; Haubold, H.J. On generalized fractional kinetic equations. Phys. A 2004, 344, 657–664.
8. Saxena, R.K.; Kalla, S.L. On the solutions of certain fractional kinetic equations. Appl. Math. Comput. 2008, 199, 504–511. [CrossRef]
9. Chaurasia, V.B.L.; Pandey, S.C. On the new computable solution of the generalized fractional kinetic equations involving the

generalized function for the fractional calculus and related functions. Astrophys. Space Sci. 2008, 317, 213–219. [CrossRef]
10. Kolokoltsov, V.N.; Troeva, M. A new approach to fractional kinetic evolutions. Fractal Fract. 2022, 6, 49. [CrossRef]
11. Haubold, H.J.; Mathai, A.H. The fractional kinetic equation and thermonuclear functions. Astrophys. Space Sci. 2000, 327, 53–63.

[CrossRef]
12. Habenom, H.; Oli, A.; Suthar, D.L. (p, q)-Extended Struve function: Fractional integrations and application to fractional kinetic

equations. J. Math. 2021, 2021, 5536817.
13. Sharma, K.P.; Bhargava, A.; Suthar, D.L. Application of the Laplace transform to a new form of fractional kinetic equation

involving the composition of the Galue Struve function and the Mittageffler function. Math. Probl. Eng. 2022, 2022, 5668579.
[CrossRef]

14. Khan, O.; Khan, N.; Choi, J.; Nisar, K.S. A type of fractional Kinetic equations associated with the (p, q)-extented τ-hypergeomtric
and confluent hypergeomtric functions. Nonlinear Funct. Anal. Appl. 2021, 26, 381–392.

15. Hidan, M.; Akel, M.; Abd-Elmageed, H.; Abdalla, M. Solution of fractional kinetic equations involving extended (k, t)-Gauss
hypergeometric matrix functions. AIMS Math. 2022, 7, 14474–14491. [CrossRef]

16. Abubakar, U.M. Solutions of fractional kinetic equations using the (p, q; l)-extended τ -Gauss hypergeometric function. J. New
Theory 2022, 38, 25–33. [CrossRef]

17. Purohit, S.D.; Ucar, F. An application of q-Sumudu transform for fractional q-kinetic equation. Turk. J. Math. 2018, 42, 726–734.
[CrossRef]

18. Agarwal, P.; Ntouyas, S.K.; Jain, S.; Chand, M.; Singh, G. Fractional kinetic equations involving generalized k-Bessel function via
Sumudu transform. Alex. Eng. J. 2018, 57, 1937–1942. [CrossRef]

148



Fractal Fract. 2023, 7, 348

19. Yagci, O.; Sahin, R. Solutions of fractional kinetic equations involving generalized Hurwitz-Lerch Zeta functions using Sumudu
transform. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2021, 70, 678–689. [CrossRef]

20. Akel, M.; Hidan, M.; Boulaaras, S.; Abdalla, M. On the solutions of certain fractional kinetic matrix equations involving Hadamard
fractional integrals. AIMS Math. 2022, 7, 15520–15531. [CrossRef]

21. Ahmed, W.; Salamoon, A.; Pawar, D. Solution of fractional kinetic equation for Hadamard type fractional integral via Mellin
transform. Gulf. J. Math. 2022, 12, 15–27. [CrossRef]

22. Abdalla, M.; Akel, M. Contribution of using Hadamard fractional integral operator via Mellin integral transform for solving
certain fractional kinetic matrix equations. Fractal Fract. 2022, 6, 305. [CrossRef]

23. Kumar, D. Solution of fractional kinetic equation by a class of integral transform of pathway type. J. Math. Phys. 2013, 54, 043509.
[CrossRef]

24. Mathur, G.A.R. Solution of fractional kinetic equations by using integral transform. AIP Conf. Proc. 2020, 2253, 020004.
25. Dorrego, G.A.; Kumar, D. A generalization of the kinetic equation using the Prabhakar-type operators. Honam Math. J. 2017, 39,

401–416.
26. Chaudhry, M.A.; Zubair, S.M. On a Class of Incomplete Gamma Functions with Applications; Chapman and Hall/CRC: Boca Raton,

FL, USA, 2002.
27. Virchenko, N.; Kalla, S.L.; Al-Zamel, A. Some results on a generalized hypergeometric function. Integral Transforms Spec. Funct.

2001, 12, 89–100. [CrossRef]
28. Nisar, K.S.; Rahman, G.; Mubeen, S.; Arshad, M. The incomplete Pochhammer symbols and their application to generalized

hypergeometric functions. Int. Bull. Math. Res. 2017, 4, 1–13.
29. Khan, N.; Usman, T.; Aman, M.; Al-Omari, S.; Araci, S. Computation of certain integral formulas involving generalized Wright

function. Adv. Differ. Equ. 2020, 1–10. [CrossRef]
30. Ghaffar, A.; Saif, A.; Iqbal, M.; Rizwan, M. Two classes of integrals involving extended Wright type generalized hypergeometric

function. Commun. Math. Appl. 2019, 10, 599–606. [CrossRef]
31. Srivastava, H.M.; Chaudhry, M.A.; Agarwal, R.P. The incomplete Pochhammer symbols and their applications to hypergeometric

and related functions. Integral Transform. Spec. Funct. 2012, 23, 659–683. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

149



Citation: Al-Shaikh, S.B.; Abubaker,

A.A.; Matarneh, K.; Khan, M.F. Some

New Applications of the

q-Analogous of Differential and

Integral Operators for New

Subclasses of q-Starlike and q-Convex

Functions. Fractal Fract. 2023, 7, 411.

https://doi.org/10.3390/

fractalfract7050411

Academic Editors: Hari Mohan

Srivastava, Gheorghe Oros and

Georgia Irina Oros

Received: 7 March 2023

Revised: 5 May 2023

Accepted: 17 May 2023

Published: 19 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fractal and fractional

Article

Some New Applications of the q-Analogous of Differential and
Integral Operators for New Subclasses of q-Starlike and
q-Convex Functions

Suha B. Al-Shaikh 1,*, Ahmad A. Abubaker 1, Khaled Matarneh 1 and Mohammad Faisal Khan 2

1 Faculty of Computer Studies, Arab Open University, Riyadh 11681, Saudi Arabia;
a.abubaker@arabou.edu.sa (A.A.A.); k.matarneh@arabou.edu.sa (K.M.)

2 Department of Basic Sciences, College of Science and Theoretical Studies, Saudi Electronic University,
Riyadh 11673, Saudi Arabia; f.khan@seu.edu.sa

* Correspondence: s.alshaikh@arabou.edu.sa

Abstract: In the geometric function theory of complex analysis, the investigation of the geometric
properties of analytic functions using q-analogues of differential and integral operators is an important
area of study, offering powerful tools for applications in numerical analysis and the solution of
differential equations. Many topics, including complex analysis, hypergeometric series, and particle
physics, have been generalized in q-calculus. In this study, first of all, we define the q-analogues of a
differential operator (DRm,n

λ,q ) by using the basic idea of q-calculus and the definition of convolution.
Additionally, using the newly constructed operator (DRm,n

λ,q ), we establish the q-analogues of two new

integral operators (Fm,n,q
λ,γ1,γ2,...γl

and Gm,n,q
λ,γ1,γ2,...γl

), and by employing these operators, new subclasses
of the q-starlike and q-convex functions are defined. Sufficient conditions for the functions ( f ) that
belong to the newly defined classes are investigated. Additionally, certain subordination findings
for the differential operator (DRm,n

λ,q ) and novel geometric characteristics of the q-analogues of the
integral operators in these classes are also obtained. Our results are generalizations of results that
were previously proven in the literature.

Keywords: analytic functions; convolution; quantum (or q-) calculus; q-difference operator; q-integral
operator; q-starlike and q-convex functions; differential subordination

MSC: 05A30; 30C45; 11B65; 47B38

1. Introduction and Definitions

Since the dawn of analytic function theory, when Alexander [1] introduced the first
integral operator in 1915, differential and integral operators have been the subject of
scholarly research. Novel combinations of differential and integral operators are constantly
being invented (see [2,3]). Sălăgean and Ruscheweyh operators have great importance
in research [4–7]. Recent research on differential and integral operators from several
perspectives, including quantum calculus, has produced remarkable findings that have
applications in other branches of physics and mathematics. Some fascinating uses of
differential and integral operators are highlighted in a recent survey-cum-expository review
study [8]. Some examples of publications on the extension of Sălăgean differential operators
are included in [9,10], with examples of q-extensions in [11–18]).

The theory of real and complex-order integrals and derivatives has been used in the
study of geometric functions, and it has also shown potential for mathematical modeling
and analysis of practical concerns in the applied sciences. Analyzing the dynamics of
dengue transmission [19] and creating a novel model of the human liver [20] are both
examples of studies that are included within the aforementioned field of research.
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In particular, the family of integral operators related to the first-kind Lommel functions
was introduced in [21] and is crucial for understanding both pure and applied mathematics.
It is now possible to examine differential equations from the perspectives of functional
analysis and operator theory due to differential operators. Differential operator properties
are employed to solve differential equations using the operator technique. For the integral
operators introduced in this work, several interesting geometric and mapping features are
also deduced. In this line of study, we use the concepts of quantum operator theory and
introduce the q-analogues of the differential operator, then consider this operator. We also
introduce two new integral operators in this paper. From the viewpoints of operator theory
and functional analysis, the study of differential equations utilizes operators, and with
more investigation, it might be discovered that such operators play a role in solving partial
differential equations.

In the open unit disc U = {z ∈ C : |z| < 1}, letA stand for the collection of all analytic
functions, and let every f ∈ A in this set have a series of the form:

f (z) = z +
∞

∑
j=2

ajzj, z ∈ U. (1)

The class T is a subclass of A, and every f ∈ T has a series of the form

f (z) = z−
∞

∑
j=2

ajzj, z ∈ U. (2)

For 0 ≤ α < 1, let S∗(α) stand for the set of all star-shaped functions of order α, which
we define as follows:

S∗(α) =
{

f ∈ A: Re

(
z f

′
(z)

f (z)

)
> α

}
.

For α = 0,
S∗(0) = S∗.

The convolution of the functions f , g ∈ A is denoted by

( f ∗ g)(z) = z +
∞

∑
j=2

ajbjzj = (g ∗ f )(z), z ∈ U,

where f (z) is defined by Equation (1), and

g(z) = z +
∞

∑
j=2

bjzj.

Definition 1 ([22]). If K1and K2 are two analytic functions in the open unit disk (U), if there is
an analytic function (u0) in U, then K1 is subordinate to K2, (K1 ≺ K2) with

u0(0) = 0, and |u0(z)| < 1

the set of all z ∈ U then
K1(z) = K2(u0(z)).

If K2 is univalent, then

K1 ≺ K2 ⇐⇒ K1(0) = K2(0)

and
K1(U) ⊆ K2(U).
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Definition 2 ([22]). Let ψ : U ×C3 −→ C and h is univalent in U. If s is analytic in U and the
following differential subordination conditions hold:

ψ
(

s(z), zs
′
(z), z2s

′′
(z); z

)
≺ h(z), for all z ∈ U, (3)

then s is the solution of the differential subordination. Dominant refers to the univalent function (r)
if s ≺ r for all s satisfying (3). A dominant r̃ satisfying r̃ ≺ r for all dominants r of (3) is said to be
the best dominant of (3). Up to a rotation of U, the best dominant is unique.

Geometric function theory, q-difference equations, and q-integral equations are only
a few examples of the recent generalization of quantum (q-) calculus across many areas
of mathematics and science. Starting with the basics of q-calculus theory, Jackson [23]
introduced the q-derivative and q-integral operators; then, Ismail et al. [24] defined q-
starlike functions using the same ideas. After the q-difference operator was introduced, a
rush of studies examined the q-analogues of other differential operators. In order to build a
new class of analytic functions in the conic domain, Kanas and Raducanu [25] created the
q-analogue of the Ruscheweyh differential operator. The multivalent generalizations were
later provided by Arif et al. [26]. Using the basics of q-calculus, Zang et al. [27] constructed
a generalized conic domain and studied a new category of q-starlike functions in this
context. Geometric function theory (GFT) and q-calculus theory both have been the subject
of a great deal of research by numerous mathematicians to date (for details, see [28–34]).
It has been established that time-scale calculus, a more general branch of mathematics,
involves quantum calculus. Time-scale calculus enables the investigation of dynamic
equations according to a cogent framework in both discrete and continuous domains.

The main contribution of this study is the quantum calculus operator theory. We
develop several new forms of q-analogues of the differential and integral operators using
the fundamental principles of quantum calculus operator theory and the q-difference
operator. Using these operators, we build many new classes of q-starlike and q-convex
functions and investigate several interesting features of the analytic function ( f ) that
belongs to these classes.

Definition 3. Jackson [23] provided the following definition of the q-difference (or derivative)
operator (∂q) for analytic functions ( f ), where q ∈ (0, 1).

∂q f (z) =
f (qz)− f (z)
(q− 1)z

, z �= 0,

= 1 +
∞

∑
j=2

[j]qajzj−1, (4)

where [j]q is the q-number and defined as:

[j]q =
1− qj

1− q

= 1 + q + q2 + . . . + qj−1, j ∈ N

and
[0]q = 0.

The factorial of q, [j]q! is identified as follows:

[j]q! = [j]q[j− 1]q[j− 2]q . . . [2]q[1]q

and
[0]q! = 1.
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Definition 4. Jackson [35] defined the q-integral for the function f ∈ A as follows:

∫
f (z)dq(z) = (1− q)z

∞

∑
j=0

f
(

qjz
)

qj.

By using the same technique of the Al-Oboudi differential operator [36], now we define the
q-analogues of the Al-Oboudi differential operator (Dm

λ,q) for analytic functions as follows:

Definition 5. For λ ≥ 0, q ∈ (0, 1), m, n ∈ N, and f ∈ A, the operator Dm
λ,q : A → A, is

defined by

D0
λ,q f (z) = f (z),

D1
λ,q f (z) = (1− λ) f (z) + λz∂q f (z) = Dλ,q f (z)

· · ·
Dm

λ,q f (z) = (1− λ)Dm−1
q f (z) + λz∂q

(
Dm−1

q f (z)
)
= Dλ,q(Dm−1

λ,q f (z).

After some simple calculation, we have

Dm
λ,q f (z) = z +

∞

∑
j=2

{
λ
(
[j]q − 1

)
+ 1
}m

ajzj. (5)

Remark 1. For the function ( f ) of the form (2), the series expansion of Dm
λ,q is given by:

Dm
λ,q f (z) = z−

∞

∑
j=2

{
λ
(
[j]q − 1

)
+ 1
}m

ajzj.

Remark 2. Specifically, when λ = 1, the operator Dm
λ,q simplifies to the Sălăgean q-differential

operator given by [37].

Remark 3. If q → 1−, then we obtain the Al-Oboudi differential operator studied in [36].

Remark 4. If λ = 1, and q → 1−, then we obtain the Sălăgean differential operator defined
in [38].

The Ruscheweyh q-differential operator (Rn
q ) was developed by Kanas and Raducanu

utilizing fundamental concepts from operator theory in quantum mechanics. Very intrigu-
ing aspects of this operator in the conic domain were explored; they also created a new
subclass of q-starlike functions connected to the conic domain.

Definition 6 ([25]). To define the operator Rn
q : A → A for n ∈ N and f ∈ A, we write

R0
q f (z) = f (z),

R1
q f (z) = z∂q f (z)

· · ·

Rn
q f (z) =

z∂n
q (zn−1 f (z)

[n]!
, z ∈ U
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or

Rn
q f (z) = z +

∞

∑
j=2

Γq(j + n)
[j− 1]!Γq(1 + n)

ajzj (6)

= z +
∞

∑
j=2

[n + 1]j−1

[j− 1]!
ajzj.

The standard quantum calculus has been extensively studied by numerous mathemati-
cians, physicists, and engineers. Applications in areas including engineering, economics,
mathematics, and other disciplines have helped q-calculus improve in a number of ways.
If we consider the above facts about q-calculus in many areas, it is safe to assume that
q-calculus has functioned as the interface between mathematics and physics throughout
the last three decades. In addition, the q-calculus operator, the q-integral operator, and the
q-derivative operator are used to build several classes of regular functions and play an
intriguing role, since they are used and applied in many different branches of mathematics,
including the theory of relativity, the calculus of variations, orthogonal polynomials, and
basic hypergeometric functions. In [39], Akça et al. used the q-derivative and generated
solutions to some differential equations. Therefore, we have also made use of q-calculus
and provide certain important new types of q-analogues of differential and integral op-
erators, as mentioned in this paper. Non-commutative q-calculus is a generalization of
classical calculus as developed by Newton and Leibnitz. This q-derivative may be used
with any function whose domain of definition does not include 0. When q equals 1, the
result simplifies to the standard derivative; that is, the results obtained by the q-differential
and integral operators are quite effective and efficient.

Here, we define the q-analogues of differential operator DRm,n
λ,q by using the definition

of convolution on the newly defined differential operator Dm
λ,q and the Ruscheweyh q-

differential operator Rn
q . This newly defined operator will help us to define two new

integral operators introduced in this study.

Definition 7. For f ∈ A, n, m ∈ N = {1, 2, 3 . . .} and λ ≥ 0, the q-analogues of differential
operator DRm,n

λ,q is defined by

DRm,n
λ,q f (z) = Dm

λ,q f (z) ∗ Rn
q f (z), z ∈ U. (7)

Using (5) and (6) in (7) and applying the definition of convolution, we obtain the following
series expansion of DRm,n

λ,q :

DRm,n
λ,q f (z) = z +

∞

∑
j=2

{
λ
(
[j]q − 1

)
+ 1
}m Γq(j + n)

[j− 1]!Γq(1 + n)
a2

j zj, z ∈ U.

Remark 5. The series expansion of DRm,n
λ,q for the function ( f ) of type (2) is as follows:

DRm,n
λ,q f (z) = z−

∞

∑
j=2

{
λ
(
[j]q − 1

)
+ 1
}m Γq(j + n)

[j− 1]!Γq(1 + n)
a2

j zj, z ∈ U,

where λ ≥ 0, m, n ∈ N. The following identity holds for the function f ∈ T:

DRm+1,n
λ,q f (z) =

(
1−

[λ]q

qλ

)
DRm,n

λ,q f (z) +

(
[λ]q

qλ

)
z∂q

(
DRm,n

λ,q f (z)
)

. (8)

The following formulation introduces two new integral operators, Fm,n,q
λ,γ1,γ2,...γl

and

Gm,n,q
λ,γ1,γ2,...γl

, while considering the convolution operator DRm,n
λ,q f (z):
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Definition 8. For functions fi ∈ T, and γi ∈ R, i ∈ {1, 2, 3 . . . , l}, the integral operators
Fm,n,q

λ,γ1,γ2,...γl
and Gm,n,q

λ,γ1,γ2,...γl
are defined as follows:

Fm,n,q
λ,γ1,γ2,...γl

=

z∫
0

(
DRm,n

λ,q f1(t)

t

)γ1

. . .

(
DRm,n

λ,q fl(t)

t

)γl

dqt (9)

and

Gm,n,q
λ,γ1,γ2,...γl

=

z∫
0

(
∂q

(
DRm,n

λ,q f1(t)

t

))γ1

. . .

(
∂q

(
DRm,n

λ,q fl(t)

t

))γl

dqt, (10)

where
λ ≥ 0, q ∈ (0, 1), m, n ∈ N, and z ∈ U.

Remark 6. For λ = 0, m = 0, and q → 1−, we obtain the integral operators introduced by Breaz
and Breaz in [40,41].

We establish several new types of q-starlike and q-convex functions by utilizing the
q-difference operator and the q-analogues of the differential operator DRm,n

λ,q provided in
Definition 7.

Definition 9. Let an analytic function ( f ) of the form (2) be a member of class R(δ, q), if it satisfies
the following inequality

Re

⎛⎝ z∂q

(
DRm,n

λ,q f (z)
)

DRm,n
λ,q f (z)

⎞⎠ < δ, for all z ∈ U, and δ > 1.

Definition 10. Let an analytic function ( f ) of the form (2) be a member of class C(δ, q) if it satisfies
the following inequality

Re

⎛⎝1 +
z∂2

q

(
DRm,n

λ,q f (z)
)

∂q

(
DRm,n

λ,q f (z)
)
⎞⎠ < δ, for all z ∈ U, and δ > 1.

Definition 11. Let an analytic function ( f ) of the form (2) be a member of class RA(β, μ, q), if∣∣∣∣∣∣
z∂q

(
DRm,n

λ,q f (z)
)

DRm,n
λ,q f (z)

− 1

∣∣∣∣∣∣ < μ

∣∣∣∣∣∣β
⎛⎝ z∂q

(
DRm,n

λ,q f (z)
)

DRm,n
λ,q f (z)

⎞⎠− 1

∣∣∣∣∣∣, z ∈ U,

where
0 ≤ β < 1, and 0 < μ ≤ 1.

Definition 12. Let an analytic function ( f ) of the form (2) be a member of class CA(β, μ, q), if∣∣∣∣∣∣
z∂2

q

(
DRm,n

λ,q f (z)
)

∂q

(
DRm,n

λ,q f (z)
)
∣∣∣∣∣∣ < μ

∣∣∣∣∣∣β
⎛⎝1 +

z∂2
q

(
DRm,n

λ,q f (z)
)

∂q

(
DRm,n

λ,q f (z)
)
⎞⎠+ 1

∣∣∣∣∣∣, z ∈ U,

where
0 ≤ β < 1, and 0 < μ ≤ 1.
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In the following definitions, we consider integral operators Fm,n,q
λ,γ1,γ2,...γl

and Gm,n,q
λ,γ1,γ2,...γl

given in Definition 8, and we define two new subclasses of q-convex functions:

Definition 13. Let an analytic function ( fi, i ∈ {1, 2, . . . l)) of the form (2) be a member of class
LAF(λ, β, μ, γ1,γ2,...γl , q) if

Re

⎛⎝1 +
z∂2

q

(
Fm,n,q

λ,γ1,γ2,...γl
(z)
)

∂q

(
Fm,n,q

λ,γ1,γ2,...γl
(z)
)
⎞⎠ ≥ β

∣∣∣∣∣∣
z∂2

q

(
Fm,n,q

λ,γ1,γ2,...γl
(z)
)

∂q

(
Fm,n,q

λ,γ1,γ2,...γl
(z)
)
∣∣∣∣∣∣+ μ, z ∈ U,

where λ ≥ 0, β ≥ 0, −1 ≤ μ ≤ 1, and Fm,n,q
λ,γ1,γ2,...γl

(z) is defined by (9).

Definition 14. Let an analytic function ( fi, i ∈ {1, 2, . . . l)) of the form (2) be a member of class
LAG(λ, β, μ, γ1,γ2,...γl , q) if

Re

⎛⎝1 +
z∂2

q

(
Gm,n,q

λ,γ1,γ2,...γl

)
∂q

(
Gm,n,q

λ,γ1,γ2,...γl

)
⎞⎠ ≥ β

∣∣∣∣∣∣
z∂2

q

(
Fm,n,q

λ,γ1,γ2,...γl
(z)
)

∂q

(
Fm,n,q

λ,γ1,γ2,...γl
(z)
)
∣∣∣∣∣∣+ μ, z ∈ U,

where λ ≥ 0, β ≥ 0, −1 ≤ μ ≤ 1, and Gm,n,q
λ,γ1,γ2,...γl

(z) is defined in (10).

This article is composed of four sections. We briefly reviewed some fundamental
geometric function theory ideas, investigated some new q-analogues of differential and
integral operators, and considered these operators to define a number of new subclasses
of q-starlike and q-convex functions in Section 1 because they were important to our main
finding. In Section 2, we provide some known lemmas and investigate some new lemmas
that are used to prove our main results. In Section 3, we present our key findings, and in
Section 4, we provide concluding remarks.

2. Set of Lemmas

Here, we provide some previously established lemmas and prove four new ones that
are used in the proof of our key findings.

Lemma 1 ([42]). For convex univalent function p and

Re

[
1− ϑ

ϑ
+ 2p(z) +

(
1 +

zp
′′
(z)

p(z)

)]
> 0.

If f ∈ A satisfies

z f
′
(z)

f (z)
+ ϑz2 f

′′
(z)

f ′(z)
≺ (1− ϑ)p(z) + ϑp2(z) + γzp

′
(z),

then,
z f

′
(z)

f (z)
≺ p(z),

where 0 < ϑ ≤ 1, and p(z) is the best dominant.

Lemma 2 ([42]). Let an analytic function (p) be in the open unit disk (U) and

p(0) = 1, and h(z) =
zp

′
(z)

p(z)
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is starlike and univalent in U. If f ∈ A satisfies

(z f (z))
′′

f ′(z)
− 2

z f
′
(z)

f (z)
≺ h(z)

then,
z2 f

′
(z)

f 2(z)
≺ p(z),

where p(z) is the best dominant.

Lemma 3 ([22]). Consider the case when p is univalent and φ is analytic in the set of all p(U). If

zp
′
(z)

φ(p(z))

is starlike and
φ(ψ(z))zψ

′
(z) ≺ φ(p(z))zp

′
(z), z ∈ U,

then,
ψ(z) ≺ p(z),

where p(z) is the best dominant.

Lemma 4 ([43]). For complex numbers, α, β and γ and γ �= 0. Let analytic functions s and p be
in U, and p be a convex univalent; suppose that

Re

[
α

γ
+

2β

γ
p(z) +

(
1 +

zp
′′
(z)

p(z)

)]
> 0.

If s(z) = 1 + c1z + . . . is analytic in U and

αs(z) + βs2(z) + γzs
′
(z) ≺ αp(z) + βp2(z) + γzp

′
(z),

then, s(z) ≺ p(z), and the function p(z) is the best dominant.

Now, we generalize the lemmas introduced in [22,43] by using the fundamentals of
q-calculus operator theory.

Lemma 5. Consider the case when p is univalent and φ is analytic in the set of all p(U). If

z∂q p(z)
φ(p(z))

(11)

is starlike and
φ(ψ(z))z∂qψ(z) ≺ φ(p(z))z∂q p(z), z ∈ U, (12)

then, ψ(z) ≺ p(z), and p(z) is the best dominant.

Proof. Suppose that φ is analytic in a domain containing p(U) and p is analytic in U.
Letting q → 1− in (11) and (12) yields

zp
′
(z)

φ(p(z)),

which is starlike; then,

zψ
′
(z)φ(ψ(z)) ≺ zp

′
(z)φ(p(z)), z ∈ U.
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Then, from the lemma in [22], we obtain ψ(z) ≺ p(z), and p(z) is the best domi-
nant.

Lemma 6. We assume that p and h are analytic in U and that h is convex and univalent in U,
where α, ϑ, γ ∈ C. Furthermore, we assume

Re

[
α

γ
+

2ϑ

γ
h(z) +

(
1 +

z∂2
qh(z)

h(z)

)]
> 0. (13)

If p(z) is analytic in U and

αp(z) + ϑp2(z) + γz∂q p(z) ≺ αh(z) + ϑh2(z) + γz∂qh(z), (14)

then, p(z) ≺ h(z), and h(z) is the best dominant.

Proof. Suppose that p and h are analytic in U. Letting q → 1− in (13) and (14), we have

Re

[
α

γ
+

2ϑ

γ
p(z) +

(
1 +

zp
′′
(z)

p(z)

)]
> 0.

If p(z) is analytic in U and

αp(z) + ϑp2(z) + γzp
′
(z) ≺ αh(z) + ϑh2(z) + γzh

′′
(z), z ∈ U,

then, from the lemma in [43], we obtain p(z) ≺ h(z), and h(z) is the best dominant.

Lemma 7. For fi(z) = z−
∞
∑

j=2
ai,jzj ∈ T, i ∈ {1, 2, . . . l), we get

z∂2
q

(
Fm,n,q

λ,γ1,γ2,...γl
(z)
)

∂q

(
Fm,n,q

λ,γ1,γ2,...γl
(z)
) =

l

∑
i=1

γi

⎛⎜⎜⎜⎝
−

∞
∑

j=2

(
[j]q − 1

){
λ
(
[j]q − 1

)
+ 1
}m Γq(j+n)

[j−1]!Γq(1+n) a2
i,jz

j

1−
∞
∑

j=2

{
λ
(
[j]q − 1

)
+ 1
}m Γq(j+n)

[j−1]!Γq(1+n) a2
i,jz

j

⎞⎟⎟⎟⎠,

where Fm,n,q
λ,γ1,γ2,...γl

(z) is defined in (9).

Proof. For fi(z) = z−
∞
∑

j=2
ai,jzj, i ∈ {1, 2, . . . l), then

∂q

(
DRm,n

λ,q fi(z)
)
= 1−

∞

∑
j=2

[j]q
{

λ
(
[j]q − 1

)
+ 1
}m Γq(j + n)

[j− 1]!Γq(1 + n)
a2

i,jz
j−1.

We obtain

∂q

(
Fm,n,q

λ,γ1,γ2,...γl
(z)
)
=

(
DRm,n

λ,q f1(z)

z

)γ1

. . .

(
DRm,n

λ,q fl(z)

z

)γl

,

so

∂2
q

(
Fm,n,q

λ,γ1,γ2,...γl
(z)
)

= E1

(
∂q

(
Fm,n,q

λ,γ1,γ2,...γl
(z)
)) z

DRm,n
λ,q f1(z)

+ . . . + El

(
∂q

(
Fm,n,q

λ,γ1,γ2,...γl
(z)
)) z

DRm,n
λ,q fl(z)

,
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where

Ei = γi

⎛⎝ z∂q

(
DRm,n

λ,q fi(z)
)
− DRm,n

λ,q fi(z)

z2

⎞⎠.

We calculate the expression

z∂2
q

(
Fm,n,q

λ,γ1,γ2,...γl
(z)
)

∂q

(
Fm,n,q

λ,γ1,γ2,...γl
(z)
) =

l

∑
i=1

γi

⎡⎣ z∂q

(
DRm,n

λ,q fi(z)
)

DRm,n
λ,q fi(z)

− 1

⎤⎦.

We find

z∂2
q

(
Fm,n,q

λ,γ1,γ2,...γl
(z)
)

∂q

(
Fm,n,q

λ,γ1,γ2,...γl
(z)
)

=
l

∑
i=1

γi

⎛⎜⎜⎜⎝
z−

∞
∑

j=2
[j]q
{

λ
(
[j]q − 1

)
+ 1
}m Γq(j+n)

[j−1]!Γq(1+n) a2
i,jz

j

z−
∞
∑

j=2

{
λ
(
[j]q − 1

)
+ 1
}m Γq(j+n)

[j−1]!Γq(1+n) a2
i,jz

j
− 1

⎞⎟⎟⎟⎠

=
l

∑
i=1

γi

⎛⎜⎜⎜⎝
−

∞
∑

j=2

(
[j]q − 1

){
λ
(
[j]q − 1

)
+ 1
}m Γq(j+n)

[j−1]!Γq(1+n) a2
i,jz

j

z−
∞
∑

j=2

{
λ
(
[j]q − 1

)
+ 1
}m Γq(j+n)

[j−1]!Γq(1+n) a2
i,jz

j

⎞⎟⎟⎟⎠

=
l

∑
i=1

γi

⎛⎜⎜⎜⎝
−

∞
∑

j=2

(
[j]q − 1

){
λ
(
[j]q − 1

)
+ 1
}m Γq(j+n)

[j−1]!Γq(1+n) a2
i,jz

j

1−
∞
∑

j=2

{
λ
(
[j]q − 1

)
+ 1
}m Γq(j+n)

[j−1]!Γq(1+n) a2
i,jz

j

⎞⎟⎟⎟⎠.

Lemma 8. For fi(z) = z−
∞
∑

j=2
ai,jzj, i ∈ {1, 2, . . . l), we get

z∂2
q

(
Gm,n,q

λ,γ1,γ2,...γl
(z)
)

∂q

(
Gm,n,q

λ,γ1,γ2,...γl
(z)
) = −

l

∑
i=1

γi

⎛⎜⎜⎜⎝
∞
∑

j=2
[j]q
(
[j− 1]q

){
λ
(
[j]q − 1

)
+ 1
}m Γq(j+n)

[j−1]!Γq(1+n) a2
i,jz

j

1−
∞
∑

j=2
[j]q
{

λ
(
[j]q − 1

)
+ 1
}m Γq(j+n)

[j−1]!Γq(1+n) a2
i,jz

j

⎞⎟⎟⎟⎠,

where Gm,n,q
λ,γ1,γ2,...γl

(z) is defined in (10).

Proof. For fi(z) = z−
∞
∑

j=2
ai,jzj, i ∈ {1, 2, . . . l), we obtain

∂q

(
Gm,n,q

λ,γ1,γ2,...γl
(z)
)
=
(

∂q

(
DRm,n

λ,q f1(z)
))γ1

. . .
(

∂q

(
DRm,n

λ,q f1(z)
))γl

,

so

∂2
q

(
Gm,n,q

λ,γ1,γ2,...γl
(z)
)
=

l

∑
i=1

γi

(
∂q

(
Gm,n,q

λ,γ1,γ2,...γl
(z)
))∂2

q

(
DRm,n

λ,q fi(z)
)

∂q

(
DRm,n

λ,q fi(z)
) .
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We calculate the expression
z∂2

q

(
Gm,n,q

λ,γ1,γ2,...γl
(z)
)

∂q

(
Gm,n,q

λ,γ1,γ2,...γl
(z)
)

z∂2
q

(
Gm,n,q

λ,γ1,γ2,...γl
(z)
)

∂q

(
Gm,n,q

λ,γ1,γ2,...γl
(z)
) =

l

∑
i=1

γi

⎡⎣ z∂2
q

(
DRm,n

λ,q fi(z)
)

∂q

(
DRm,n

λ,q fi(z)
)
⎤⎦.

We find

z∂2
q

(
Gm,n,q

λ,γ1,γ2,...γl
(z)
)

∂q

(
Gm,n,q

λ,γ1,γ2,...γl
(z)
)

=
l

∑
i=1

γi

⎛⎜⎜⎜⎝
−

∞
∑

j=2
[j]q
(
[j− 1]q

){
λ
(
[j]q − 1

)
+ 1
}m Γq(j+n)

[j−1]!Γq(1+n) a2
i,jz

j−1

1−
∞
∑

j=2
[j]q
{

λ
(
[j]q − 1

)
+ 1
}m Γq(j+n)

[j−1]!Γq(1+n) a2
i,jz

j−1

⎞⎟⎟⎟⎠.

Hence,

z∂2
q

(
Gm,n,q

λ,γ1,γ2,...γl
(z)
)

∂q

(
Gm,n,q

λ,γ1,γ2,...γl
(z)
)

= −
l

∑
i=1

γi

⎛⎜⎜⎜⎝
∞
∑

j=2
[j]q
(
[j− 1]q

){
λ
(
[j]q − 1

)
+ 1
}m Γq(j+n)

[j−1]!Γq(1+n) a2
i,jz

j−1

1−
∞
∑

j=2
[j]q
{

λ
(
[j]q − 1

)
+ 1
}m Γq(j+n)

[j−1]!Γq(1+n) a2
i,jz

j−1

⎞⎟⎟⎟⎠.

3. Main Results

We then provide necessary and sufficient criteria for the classes LAF(λ, β, μ, γ1,γ2,...γl , q)
and LAG(λ, β, μ, γ1,γ2,...γl , q), where

λ ≥ 0, β ≥ 0, and − 1 ≤ μ ≤ 1.

Theorem 1. For i ∈ {1, 2, 3 . . . l}, let fi ∈ T. Then, fi ∈ LAF(λ, β, μ, γ1,γ2,...γl , q) if and only
if

l

∑
i=1

γi(β + 1)

⎛⎜⎜⎜⎝
∞
∑

j=2

(
[j]q − 1

){
λ
(
[j]q − 1

)
+ 1
}m Γq(j+n)

[j−1]!Γq(1+n) a2
i,jz

j

1−
∞
∑

j=2

{
λ
(
[j]q − 1

)
+ 1
}m Γq(j+n)

[j−1]!Γq(1+n) a2
i,jz

j

⎞⎟⎟⎟⎠ ≤ 1− μ, (15)

where β ≥ 0, −1 ≤ μ ≤ 1.

Proof. In order to demonstrate that (15) is true, we must prove that

β

∣∣∣∣∣∣
z∂2

q

(
Fm,n,q

λ,γ1,γ2,...γl
(z)
)

∂q

(
Fm,n,q

λ,γ1,γ2,...γl
(z)
)
∣∣∣∣∣∣− Re

⎛⎝ z∂2
q

(
Fm,n,q

λ,γ1,γ2,...γl
(z)
)

∂q

(
Fm,n,q

λ,γ1,γ2,...γl
(z)
)
⎞⎠ ≤ 1− μ.
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We have

β

∣∣∣∣∣∣
z∂2

q

(
Fm,n,q

λ,γ1,γ2,...γl
(z)
)

∂q

(
Fm,n,q

λ,γ1,γ2,...γl
(z)
)
∣∣∣∣∣∣− Re

⎛⎝ z∂2
q

(
Fm,n,q

λ,γ1,γ2,...γl
(z)
)

∂q

(
Fm,n,q

λ,γ1,γ2,...γl
(z)
)
⎞⎠ ≤ (β + 1)

∣∣∣∣∣∣
z∂2

q

(
Fm,n,q

λ,γ1,γ2,...γl
(z)
)

∂q

(
Fm,n,q

λ,γ1,γ2,...γl
(z)
)
∣∣∣∣∣∣.

Applying Lemma 7, we obtain

(β + 1)

∣∣∣∣∣∣
z∂2

q

(
Fm,n,q

λ,γ1,γ2,...γl
(z)
)

∂q

(
Fm,n,q

λ,γ1,γ2,...γl
(z)
)
∣∣∣∣∣∣

= (β + 1)

∣∣∣∣∣∣∣∣∣
l

∑
i=1

γi

⎛⎜⎜⎜⎝
−

∞
∑

j=2

(
[j]q − 1

){
λ
(
[j]q − 1

)
+ 1
}m Γq(j+n)

[j−1]!Γq(1+n) a2
i,jz

j−1

1−
∞
∑

j=2

{
λ
(
[j]q − 1

)
+ 1
}m Γq(j+n)

[j−1]!Γq(1+n) a2
i,jz

j−1

⎞⎟⎟⎟⎠
∣∣∣∣∣∣∣∣∣

≤ (β + 1)
l

∑
i=1

γi

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∞
∑

j=2

(
[j]q − 1

){
λ
(
[j]q − 1

)
+ 1
}m Γq(j+n)

[j−1]!Γq(1+n) a2
i,j

∣∣zj−1
∣∣

1−
∞
∑

j=2

{
λ
(
[j]q − 1

)
+ 1
}m Γq(j+n)

[j−1]!Γq(1+n) a2
i,j

∣∣zj−1
∣∣
⎫⎪⎪⎪⎬⎪⎪⎪⎭

≤ (β + 1)
l

∑
i=1

γi

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∞
∑

j=2

(
[j]q − 1

){
λ
(
[j]q − 1

)
+ 1
}m Γq(j+n)

[j−1]!Γq(1+n) a2
i,j

1−
∞
∑

j=2

{
λ
(
[j]q − 1

)
+ 1
}m Γq(j+n)

[j−1]!Γq(1+n) a2
i,j

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ≤ 1− μ.

Therefore, we deduce

β

∣∣∣∣∣∣
z∂2

q

(
Fm,n,q

λ,γ1,γ2,...γl
(z)
)

∂q

(
Fm,n,q

λ,γ1,γ2,...γl
(z)
)
∣∣∣∣∣∣− Re

⎛⎝ z∂2
q

(
Fm,n,q

λ,γ1,γ2,...γl
(z)
)

∂q

(
Fm,n,q

λ,γ1,γ2,...γl
(z)
)
⎞⎠ ≤ 1− μ,

or, equivalently,

Re

⎛⎝1 +
z∂2

q

(
Fm,n,q

λ,γ1,γ2,...γl
(z)
)

∂q

(
Fm,n,q

λ,γ1,γ2,...γl
(z)
)
⎞⎠ ≥ β

∣∣∣∣∣∣
z∂2

q

(
Fm,n,q

λ,γ1,γ2,...γl
(z)
)

∂q

(
Fm,n,q

λ,γ1,γ2,...γl
(z)
)
∣∣∣∣∣∣+ μ.

Thus, fi ∈ LAF(λ, β, μ, γ1,γ2,...γl , q).
Contrarily, assume that fi ∈ LAF(λ, β, μ, γ1,γ2,...γl , q). Lemma 7 and (15) allow us

to derive

1−
l

∑
i=1

γi

⎡⎢⎢⎢⎣
∞
∑

j=2

(
[j]q − 1

){
λ
(
[j]q − 1

)
+ 1
}m Γq(j+n)

[j−1]!Γq(1+n) a2
i,j

∣∣zj−1
∣∣

1−
∞
∑

j=2

{
λ
(
[j]q − 1

)
+ 1
}m Γq(j+n)

[j−1]!Γq(1+n) a2
i,j

∣∣zj−1
∣∣
⎤⎥⎥⎥⎦

≥ β

∣∣∣∣∣∣∣∣∣
l

∑
i=1

γi

∣∣∣∣∣∣∣∣∣
∞
∑

j=2

(
[j]q − 1

){
λ
(
[j]q − 1

)
+ 1
}m Γq(j+n)

[j−1]!Γq(1+n) a2
i,jz

j−1

1−
∞
∑

j=2

{
λ
(
[j]q − 1

)
+ 1
}m Γq(j+n)

[j−1]!Γq(1+n) a2
i,jz

j−1

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
+ μ

≥ β
l

∑
i=1

γi

⎛⎜⎜⎜⎝
∞
∑

j=2

(
[j]q − 1

){
λ
(
[j]q − 1

)
+ 1
}m Γq(j+n)

[j−1]!Γq(1+n) a2
i,jz

j−1

1−
∞
∑

j=2

{
λ
(
[j]q − 1

)
+ 1
}m Γq(j+n)

[j−1]!Γq(1+n) a2
i,jz

j−1

⎞⎟⎟⎟⎠+ μ,
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which is equivalent to

l

∑
i=1

βγi

⎡⎢⎢⎢⎣
∞
∑

j=2

(
[j]q − 1

){
λ
(
[j]q − 1

)
+ 1
}m Γq(j+n)

[j−1]!Γq(1+n) a2
i,jz

j−1

1−
∞
∑

j=2

{
λ
(
[j]q − 1

)
+ 1
}m Γq(j+n)

[j−1]!Γq(1+n) a2
i,jz

j−1

⎤⎥⎥⎥⎦

+
l

∑
i=1

γi

⎡⎢⎢⎢⎣
∞
∑

j=2

(
[j]q − 1

){
λ
(
[j]q − 1

)
+ 1
}m Γq(j+n)

[j−1]!Γq(1+n) a2
i,jz

j−1

1−
∞
∑

j=2

{
λ
(
[j]q − 1

)
+ 1
}m Γq(j+n)

[j−1]!Γq(1+n) a2
i,jz

j−1

⎤⎥⎥⎥⎦
≤ 1− μ,

which reduces to

l

∑
i=1

(β + 1)γi

⎡⎢⎢⎢⎣
∞
∑

j=2

(
[j]q − 1

){
λ
(
[j]q − 1

)
+ 1
}m Γq(j+n)

[j−1]!Γq(1+n) a2
i,jz

j−1

1−
∞
∑

j=2

{
λ
(
[j]q − 1

)
+ 1
}m Γq(j+n)

[j−1]!Γq(1+n) a2
i,jz

j−1

⎤⎥⎥⎥⎦ ≤ 1− μ,

Inequality (15) is found when z → 1− is on the real axis.

For q → 1−, we obtain known result that were proven in [44].

Corollary 1 ([44]). For i ∈ {1, 2, 3 . . . l}, let fi ∈ T. Then, fi ∈ LAF(λ, β, μ, γ1,γ2,...γl) if and
only if

l

∑
i=1

γi(β + 1)

⎛⎜⎜⎜⎝
∞
∑

j=2
{λ(j− 1) + 1}m (n+j−1)!

n!(j−2)! a2
i,jz

j

1−
∞
∑

j=2
{λ(j− 1) + 1}m (n+j−1)!

n!(j−1)! a2
i,jz

j

⎞⎟⎟⎟⎠ ≤ 1− μ.

Theorem 2. For i ∈ {1, 2, 3 . . . l}, let fi ∈ T. Then, fi ∈ LAG(λ, β, μ, γ1,γ2,...γl , q) if and only
if

l

∑
i=1

γi(β + 1)

⎛⎜⎜⎜⎝
∞
∑

j=2
[j]q[j− 1]q

{
λ
(
[j]q − 1

)
+ 1
}m Γq(j+n)

[j−1]!Γq(1+n) a2
i,j

1−
∞
∑

j=2
[j]q
{

λ
(
[j]q − 1

)
+ 1
}m Γq(j+n)

[j−1]!Γq(1+n) a2
i,j

⎞⎟⎟⎟⎠ ≤ 1− μ,

where β ≥ 0, −1 ≤ μ ≤ 1.

Proof. Using Lemma 8 and the method used to prove Theorem 1, we arrive at Theorem 2.

We now demonstrate some characteristics of the integral operators Fm,n,q
λ,γ1,γ2,...γl

(z) and

Gm,n,q
λ,γ1,γ2,...γl

(z) for the families R(δ, q), C(δ, q), RA(β, μ, q), and CA(β, μ, q).

Theorem 3. Let fi ∈ T and

∣∣∣∣∣ ∂q

(
DRm,n

λ,q f (z)
)

DRm,n
λ,q f (z)

∣∣∣∣∣ < Mi. If fi ∈ RA(βi, μi, q), then Fm,n,q
λ,γ1,γ2,...γl

(z) ∈

D(δ
′
), where

δ
′
= 1 +

l

∑
i=1

γiμi(βi Mi + 1), z ∈ U,

where
γi ∈ R, γi > 0, i ∈ {1, 2, 3 . . . l}.
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Proof. As shown in (9), Fm,n,q
λ,γ1,γ2,...γl

∈ T. Upon differentiating Fm,n,q
λ,γ1,γ2,...γl

(z) as shown in (9),
we obtain

∂q

(
Fm,n,q

λ,γ1,γ2,...γl
(z)
)
=

l

∏
i=1

(
DRm,n

λ,q f (z)

z

)γi

. (16)

Taking the logarithmic differentiation of (16) and multiplying by z, we obtain

z∂2
q

(
Fm,n,q

λ,γ1,γ2,...γl
(z)
)

∂q

(
Fm,n,q

λ,γ1,γ2,...γl
(z)
) =

l

∑
i=1

γi

⎛⎝ z∂q

(
DRm,n

λ,q f (z)
)

DRm,n
λ,q f (z)

− 1

⎞⎠,

or, equivalently,

1 +
z∂2

q

(
Fm,n,q

λ,γ1,γ2,...γl
(z)
)

∂q

(
Fm,n,q

λ,γ1,γ2,...γl
(z)
) = 1 +

l

∑
i=1

γi

⎛⎝ z∂q

(
DRm,n

λ,q f (z)
)

DRm,n
λ,q f (z)

− 1

⎞⎠. (17)

By taking a real part from either side of (17), we obtain

Re

⎛⎝1 +
z∂2

q

(
Fm,n,q

λ,γ1,γ2,...γl
(z)
)

∂q

(
Fm,n,q

λ,γ1,γ2,...γl
(z)
)
⎞⎠ = 1 +

l

∑
i=1

γi

⎛⎝Re

⎛⎝ z∂q

(
DRm,n

λ,q f (z)
)

DRm,n
λ,q f (z)

⎞⎠− 1

⎞⎠
≤ 1 +

l

∑
i=1

γi

∣∣∣∣∣∣
z∂q

(
DRm,n

λ,q f (z)
)

DRm,n
λ,q f (z)

− 1

∣∣∣∣∣∣.
Since fi ∈ RA(βi, μi, q), we deduce that

Re

⎛⎝1 +
z∂2

q

(
Fm,n,q

λ,γ1,γ2,...γl
(z)
)

∂q

(
Fm,n,q

λ,γ1,γ2,...γl
(z)
)
⎞⎠ < 1 +

l

∑
i=1

γiμi

∣∣∣∣∣∣βi

z∂q

(
DRm,n

λ,q f (z)
)

DRm,n
λ,q f (z)

+ 1

∣∣∣∣∣∣
< 1 +

l

∑
i=1

γiμiβi

∣∣∣∣∣∣
z∂q

(
DRm,n

λ,q f (z)
)

DRm,n
λ,q f (z)

∣∣∣∣∣∣+
l

∑
i=1

γiμiβi

< 1 +
l

∑
i=1

γiμi(βi Mi + 1).

Furthermore,

l

∑
i=1

γiμi(βi Mi + 1) > 0, and Fm,n,q
λ,γ1,γ2,...γl

(z) ∈ D(δ
′
),

where

δ
′
= 1 +

l

∑
i=1

γiμi(βi Mi + 1), z ∈ U.

For q → 1−, we obtain the result proven in [44].
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Corollary 2. Let γi ∈ R, γi > 0, i ∈ {1, 2, 3 . . . l}, fi ∈ T and

∣∣∣∣∣ (DRm,n
λ f (z))

′

DRm,n
λ f (z)

∣∣∣∣∣ < Mi. If

fi ∈ RA(βi, μi), then Fm,n
λ,γ1,γ2,...γl

(z) ∈ D(δ
′
), where

δ
′
= 1 +

l

∑
i=1

γiμi(βi Mi + 1), z ∈ U.

The following is a corollary of Theorem 3 under the assumptions that l = 1, γ1 = γ,
δ1 = δ, and f1 = f .

Corollary 3. Let f ∈ T and
∣∣∣ ∂q f (z)

f (z)

∣∣∣ < M. If f ∈ RA(β, μ, q), then
z∫

0

(
f (t)

t

)γ
dq(t) ∈ D(δ

′
),

where
δ
′
= 1 + γμ(βM + 1),

and γ ∈ R, γ > 0, z ∈ U.

Theorem 4. Let fi ∈ T. Then, Fm,n,q
λ,γ1,γ2,...γl

(z) ∈ D(δ
′
), where

δ
′
= 1 +

l

∑
i=1

γi(δi − 1), z ∈ U

and
γi ∈ R, δi > 1, γi > 0, i ∈ {1, 2, 3...l}.

Proof. From (17), we have

Re

⎛⎝1 +
z∂2

q

(
Fm,n,q

λ,γ1,γ2,...γl
(z)
)

∂q

(
Fm,n,q

λ,γ1,γ2,...γl
(z)
)
⎞⎠ = 1 +

l

∑
i=1

γiRe

⎛⎝ z∂q

(
DRm,n

λ,q fi(z)
)

DRm,n
λ,q fi(z)

⎞⎠− l

∑
i=1

γi

< 1 +
l

∑
i=1

γiδi −
l

∑
i=1

γi = 1 +
l

∑
i=1

γi(δi − 1).

Since δi > 1, evidently,
l

∑
i=1

γi(δi − 1) > 0; hence, Fm,n,q
λ,γ1,γ2,...γl

(z) ∈ D(δ
′
), where

δ
′
= 1 +

l

∑
i=1

γi(δi − 1), z ∈ U.

The following is a corollary of Theorem 4 under the assumptions that l = 1, γ1 = γ,
δ1 = δ, and f1 = f .

Corollary 4. Let f ∈ R(δ). Then,
z∫

0

(
f (t)

t

)γ
dq(t) ∈ D(δ

′
), where

δ
′
= 1 + γ(δ− 1)

and
δ > 1, γ > 0, z ∈ U.
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Theorem 5. Let fi ∈ D(δi). Then, Gm,n,q
λ,γ1,γ2,...γl

(z) ∈ D(δ
′
), where

δ
′
= 1 +

l

∑
i=1

γi(δi − 1), z ∈ U

and
γi > 0, i ∈ {1, 2, 3, . . . , l}, δi > 1.

Proof. From the definition of Gm,n,q
λ,γ1,γ2,...γl

(z) given by (10), we have

Re

⎛⎝1 +
z∂2

q

(
Gm,n,q

λ,γ1,γ2,...γl
(z)
)

∂q

(
Gm,n,q

λ,γ1,γ2,...γl
(z)
)
⎞⎠ = 1 +

l

∑
i=1

γiRe

⎛⎝ z∂q

(
DRm,n

λ,q fi(z)
)

DRm,n
λ,q fi(z)

⎞⎠− l

∑
i=1

γi

< 1 +
l

∑
i=1

γiδi −
l

∑
i=1

γi = 1 +
l

∑
i=1

γi(δi − 1).

Since δi > 1, it seems to reason that
l

∑
i=1

γi(δi − 1) > 0 and that Gm,n,q
λ,γ1,γ2,...γl

(z) ∈ D(δ
′
),

where

δ
′
= 1 +

l

∑
i=1

γi(δi − 1), z ∈ U.

The following is a corollary of Theorem 5 under the assumptions l = 1, γ1 = γ, δ1 = δ,
and f1 = f .

Corollary 5. Let f ∈ D(δ). Then,
z∫

0

(
f
′
(t)
)γ

dq(t) ∈ D(δ
′
), where

δ
′
= 1 + γ(δ− 1)

and
γ > 0, δ > 1.

Theorem 6. Let fi ∈ DA(βi, μi, q) and

∣∣∣∣∣ ∂2
q

(
DRm,n

λ,q f (z)
)

∂q

(
DRm,n

λ,q f (z)
)
∣∣∣∣∣ < Mi. Then, Gm,n,q

λ,γ1,γ2,...γl
(z) ∈ D(δ

′
),

where

δ
′
= 1 +

l

∑
i=1

γiμi(βi Mi + 1)

and
γi ∈ R, γi > 0, z ∈ U, i ∈ {1, 2, 3...l}.

Proof. The following is derived from the definition of Gm,n,q
λ,γ1,γ2,...γl

in (10):

Re

⎛⎝1 +
z∂2

q

(
Gm,n,q

λ,γ1,γ2,...γl
(z)
)

∂q

(
Gm,n,q

λ,γ1,γ2,...γl
(z)
)
⎞⎠ ≤

l

∑
i=1

γi

∣∣∣∣∣∣
z∂2

q

(
DRm,n

λ,q f (z)
)

∂q

(
DRm,n

λ,q f (z)
)
∣∣∣∣∣∣

<
l

∑
i=1

γiμi

∣∣∣∣∣∣βi

⎛⎝1 +
z∂2

q

(
DRm,n

λ,q f (z)
)

∂q

(
DRm,n

λ,q f (z)
) + 1

⎞⎠∣∣∣∣∣∣+ 1
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< 1 +
l

∑
i=1

γiμiβi

⎛⎝1 +

∣∣∣∣∣∣
z∂2

q

(
DRm,n

λ,q f (z)
)

∂q

(
DRm,n

λ,q f (z)
)
∣∣∣∣∣∣
⎞⎠+

l

∑
i=1

γiμi + 1

<
l

∑
i=1

[βi(1 + Mi) + 1]γiμi + 1.

Because
l

∑
i=1

[βi(1 + Mi) + 1]γiμi > 0,

we draw the following conclusion

Gm,n,q
λ,γ1,γ2,...γl

(z) ∈ D(δ
′
),

where

δ
′
= 1 +

l

∑
i=1

[βi(1 + Mi) + 1]γiμi, z ∈ U.

For q → 1−, we obtain the result proven in [44].

Corollary 6 ([44]). Let γi ∈ R, γi > 0, i ∈ {1, 2, 3 . . . l}, fi ∈ DA(βi, μi), and

∣∣∣∣∣∣
(

DRm,n
λ,q f (z)

)′′
(

DRm,n
λ,q f (z)

)′
∣∣∣∣∣∣ <

Mi. Then, Gm,n
λ,γ1,γ2,...γl

(z) ∈ D(δ
′
), where

δ
′
= 1 +

l

∑
i=1

γiμi(βi Mi + 1), z ∈ U.

The following is a corollary of Theorem 6 under the assumptions l = 1, γ1 = γ,
M1 = 1, and f1 = f .

Corollary 7. Let f ∈ DA(β, μ, q) and
∣∣∣ ∂q f (z)

f (z)

∣∣∣ < M, where M is fixed. Then,
z∫

0

(
f
′
(t)
)γ

dq(t) ∈

D(δ
′
), where

δ
′
= 1 + γμβ[1 + M) + 1]

and
γ ∈ R, γ > 0, z ∈ U.

Subordination Results:

In this paper, we generalize Lemmas 1 and 2 to the operator DRm,n
λ,q f (z).

Theorem 7. Assuming h is both convex and univalent, ς �= 0, and

Re

{
(1− ς)qλ

[λ]qς
+

2qλ

[λ]q
h(z) +

(
1 +

z∂2
qh(z)

∂qh(z)

)}
> 0.

166



Fractal Fract. 2023, 7, 411

If the differential subordination condition for f ∈ T holds, then⎛⎝γ
DRm+2,n

λ,q f (z)

DRm+1,n
λ,q f (z)

+ 1− ς

⎞⎠DRm+1,n
λ,q f (z)

DRm,n
λ,q f (z)

≺ (1− ς)h(z) + ςh2(z) +
ς[λ]q

qλ
z∂qh(z) (18)

then,
DRm+1,n

λ,q f (z)

DRm,n
λ,q f (z)

≺ h(z), z ∈ U.

Proof. Consider

p(z) =
DRm+1,n

λ,q f (z)

DRm,n
λ,q f (z)

, z ∈ U. (19)

We achieved

∂q p(z)
p(z)

=
DRm,n

λ,q f (z)

DRm+1,n
λ,q f (z)

⎧⎪⎨⎪⎩
(

DRm,n
λ,q f (z)

)
∂q

(
DRm+1,n

λ,q f (z)
)
− DRm+1,n

λ,q f (z)∂q

(
DRm,n

λ,q f (z)
)

(
DRm,n

λ,q f (z)
)2

⎫⎪⎬⎪⎭
=

∂q

(
DRm+2,n

λ,q f (z)
)

DRm+1,n
λ,q f (z)

−
∂q

(
DRm+1,n

λ,q f (z)
)

DRm,n
λ,q f (z)

.

Thus,

z∂q p(z)
p(z)

=
z∂q

(
DRm+2,n

λ,q f (z)
)

DRm+1,n
λ,q f (z)

−
z∂q

(
DRm+1,n

λ,q f (z)
)

DRm,n
λ,q f (z)

. (20)

By using (8) in (20), we obtain

z∂q p(z)
p(z)

=
qλ

[λ]q

⎛⎝DRm+2,n
λ,q f (z)

DRm+1,n
λ,q f (z)

⎞⎠− qλ

[λ]q

(
1−

[λ]q

qλ

)
−

qλ

[λ]q

⎛⎝DRm+1,n
λ,q f (z)

DRm,n
λ,q f (z)

⎞⎠+
qλ

[λ]q

(
1−

[λ]q

qλ

)
.

[λ]q

qλ

(
z∂q p(z)

p(z)

)
=

⎛⎝DRm+2,n
λ,q f (z)

DRm+1,n
λ,q f (z)

⎞⎠− p(z)

DRm+2,n
λ,q f (z)

DRm+1,n
λ,q f (z)

=
[λ]q

qλ

(
z∂q p(z)

p(z)
+

qλ

[λ]q
p(z)

)
.
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We deduce from (8) that

DRm+1,n
λ,q f (z)

DRm,n
λ,q f (z)

⎧⎨⎩ς
DRm+2,n

λ,q f (z)

DRm+1,n
λ,q f (z)

+ 1− ς

⎫⎬⎭
= p(z)

{
ς[λ]q

qλ

(
z∂q p(z)

p(z)
+

qλ

[λ]q
p(z)

)
+ 1− ς

}

= (1− ς)p(z) + ςp2(z) +
ς[λ]q

qλ
z∂q p(z).

Therefore, the differential subordination in (18) becomes

(1− ς)p(z) + ςp2(z) +
ς[λ]q

qλ
z∂q p(z)

≺ (1− ς)h(z) + ςh2(z) +
ς[λ]q

qλ
z∂q p(z).

Using Lemma 6, we obtain

DRm+1,n
λ,q f (z)

DRm,n
λ,q f (z)

≺ h(z),

where h is the best dominant.

For q → 1−, we obtain the result proven in [44].

Corollary 8 ([44]). Let h be both convex and univalent, ς �= 0, and

Re

{
(1− ς)

λς
+

2
λ

h(z) +

(
1 +

zh
′′
(z)

h′(z)

)}
> 0.

If f ∈ T satisfies the differential subordination

DRm+1,n
λ f (z)

DRm,n
λ f (z)

(
ς

DRm+2,n
λ f (z)

DRm+1,n
λ f (z)

+ 1− ς

)
≺ (1− ς)h(z) + ςh2(z) + ςλzh

′
(z),

then
DRm+1,n

λ f (z)
DRm,n

λ f (z)
≺ h(z), z ∈ U.

Theorem 8. For h(0) �= 0, ς �= 0. Let h be univalent in U and z∂qh(z)
h(z) be both univalent and

starlike in U. If the differential subordination condition for f ∈ T holds, then

DRm+2,n
λ,q f (z)

DRm+1,n
λ,q f (z)

− ς
DRm+1,n

λ,q f (z)

DRm,n
λ,q f (z)

≺
[λ]q

qλ

z∂qh(z)
h(z)

+ 1− ς, (21)
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then
zς−1DRm+1,n

λ,q f (z)(
DRm,n

λ,q f (z)
)ς ≺ h(z), z ∈ U, (22)

where the best dominant function is h.

Proof. Let

p(z) =
zς−1DRm+1,n

λ,q f (z)(
DRm,n

λ,q f (z)
)ς , (23)

which, when differentiated, yields

∂q p(z) =

⎧⎪⎨⎪⎩
zς−2(γ− 1)

(
DRm+1,n

λ,q f (z)
)
+ zς−1∂q

(
DRm+1,n

λ,q f (z)
)

(
DRm,n

λ,q f (z)
)ς

⎫⎪⎬⎪⎭
−

ςzς−1
(

DRm+1,n
λ,q f (z)

)
∂q

(
DRm,n

λ,q f (z)
)

(
DRm,n

λ,q f (z)
)(

DRm,n
λ,q f (z)

)ς .

Therefore,

z∂q p(z)
p(z)

=

(
DRm,n

λ,q f (z)
)ς

zς−1DRm+1,n
λ,q f (z)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

zς−2(ς−1)
(

DRm+1,n
λ,q f (z)

)
+zς−1∂q

(
DRm+1,n

λ,q f (z)
)

(
DRm,n

λ,q f (z)
)ς

−
ςzς−1

(
DRm+1,n

λ,q f (z)
)

∂q

(
DRm,n

λ,q f (z)
)

(
DRm,n

λ,q f (z)
)(

DRm,n
λ,q f (z)

)ς

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
= (ς− 1) +

z∂q

(
DRm+1,n

λ,q f (z)
)

DRm+1,n
λ,q f (z)

− ς
z∂q

(
DRm,n

λ,q f (z)
)

DRm,n
λ,q f (z)

.

We deduce from (8) that

z∂q p(z)
p(z)

= (ς− 1) +
qλ

[λ]q

⎛⎝DRm+2,n
λ,q f (z)

DRm+1,n
λ,q f (z)

⎞⎠− qλ

[λ]q

(
1−

[λ]q

qλ

)

−ς
qλ

[λ]q

⎛⎝DRm+1,n
λ,q f (z)

DRm,n
λ,q f (z)

⎞⎠+ ς
qλ

[λ]q

(
1−

[λ]q

qλ

)

=
qλ

[λ]q

⎛⎝DRm+2,n
λ,q f (z)

DRm+1,n
λ,q f (z)

⎞⎠− ς
qλ

[λ]q

⎛⎝DRm+1,n
λ,q f (z)

DRm,n
λ,q f (z)

⎞⎠
+
(ς− 1)[λ]qqλ + qλ(ς− 1)

(
qλ − [λ]q

)
[λ]qqλ

=
qλ

[λ]q

⎛⎝DRm+2,n
λ,q f (z)

DRm+1,n
λ,q f (z)

⎞⎠− ς
qλ

[λ]q

⎛⎝DRm+1,n
λ,q f (z)

DRm,n
λ,q f (z)

⎞⎠
+

qλ(ς− 1)
[λ]q

,

169



Fractal Fract. 2023, 7, 411

which corresponds to

DRm+2,n
λ,q f (z)

DRm+1,n
λ,q f (z)

− ς
DRm+1,n

λ,q f (z)

DRm,n
λ,q f (z)

=
[λ]q

qλ

z∂q p(z)
p(z)

+ (1− ς).

According to hypothesis (21), we have

z∂q p(z)
p(z)

≺ z∂qh(z)
h(z)

.

By using Lemma 5, we obtain

zς−1DRm+1,n
λ,q f (z)(

DRm,n
λ,q f (z)

)ς ≺ h(z),

where h is the best dominant.

For q → 1−, we obtain the result proven in [44].

Corollary 9 ([44]). For h(0) �= 0, ς �= 0. Let h be univalent in U, and zh
′
(z)

h(z) be univalent and
starlike in U. The differential subordination condition is satisfied if and only if f ∈ T

DRm+2,n
λ f (z)

DRm+1,n
λ f (z)

− ς
DRm+1,n

λ f (z)
DRm,n

λ f (z)

≺ λ
zh

′
(z)

h(z)
+ 1− ς,

then
zς−1DRm+1,n

λ f (z)(
DRm,n

λ f (z)
)ς ≺ h(z), z ∈ U,

where the best dominant function is h.

4. Conclusions

This study presents a modification of previous work that used quantum calculus
to better understand geometric function theory. In this study, first of all, in Section 1,
we defined the convolution operator DRm,n

λ,q inspired by the q-Sălăgean operator and the
Ruscheweyh q-differential operator. Then, using the operator DRm,n

λ,q , two new integral

operators, Fm,n,q
λ,γ1,γ2,...γl

(z) and Gm,n,q
λ,γ1,γ2,...γl

(z), were introduced. Some new subclasses of ana-
lytic functions were introduced by means of these operators. In Section 2, four innovative
lemmas that are connected to the new integral operators and were used in the justifications
of the first findings in Sections 3 were proven. In Section 3, we first determined the sufficient
conditions in Theorems 1 and 2 for the functions from class T to belong to classes LAF and
LAG. Next, in Theorems 3–6, we proved some new properties of the integral operators
Fm,n,q

λ,γ1,γ2,...γl
(z) and Gm,n,q

λ,γ1,γ2,...γl
(z) for newly defined classes R(δ, q), C(δ, q), RA(β, μ, q), and

CA(β, μ, q). We examined Theorems 7 and 8 by presenting the best dominants for certain
differential subordinations. The results of this article are the generalizations discussed
earlier in in [44].

Many new subclasses of analytic, meromorphic, and p-valent functions can be defined
by utilizing the differential and integral operators introduced in this article, and a number
of useful properties can be investigated for these classes.

Differential operators have allowed us to study differential equations from the per-
spective of operator theory and functional analysis. The use of differential operators allows
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for the solution of differential equations. In the future, research might be conducted to
determine whether PDEs can be solved using these operators. These novel operators may
be studied for potential applications in the applied sciences and other practical sciences,
where similar results have been reported for numerous differential operators.
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13. Cotîrlă, L.I. New classes of analytic and bi-univalent functions. AIMS Math. 2021, 6, 10642–10651. [CrossRef]
14. Amini, E.; Omari, S.A.; Nonlaopon, K.; Baleanu, D. Estimates for coefficients of bi- univalent functions associated with a fractional

q-difference operator. Symmetry 2022, 14, 879. [CrossRef]
15. Aldawish, I.; Swamy, S.R.; Frasin, B.A. A special family of m-fold symmetric bi-univalent functions satisfying subordination

condition. Fractal Fract. 2022, 6, 271. [CrossRef]
16. Khan, S.; Hussain, S.; Naeem, M.; Darus, M.; Rasheed, A. A subclass of q-starlike functions defined by using a symmetric

q-derivative operator and related with generalized symmetric conic domains. Mathematics 2021, 9, 917. [CrossRef]
17. Zhang, C.; Khan, S.; Hussain, A.; Khan, N.; Hussain, S.; Khan, N. Applications of q-difference operator in harmonic univalent

functions. AIMS Math. 2021, 7, 667–680. [CrossRef]
18. Khan, M.F.; Goswami, A. Khan, S. Certain new subclass of multivalent q-starlike functions associated with q-symmetric calculus.

Fractal Fract. 2022, 6, 367. [CrossRef]
19. Srivastava, H.M.; Jan, R.; Jan, A.; Deebai, W.; Shutaywi, M. Fractional-calculus analysis of the transmission dynamics of the dengue

infection. Chaos 2021, 31, 053130. [CrossRef]
20. Baleanu, D.; Jajarmi, A.; Mohammadi, H.; Rezapour, S. A new study on the mathematical modelling of human liver with

Caputo–Fabrizio fractional derivative. Chaos Solitons Fract. 2020, 134, 109705. [CrossRef]
21. Park, J.H.; Srivastava, H.M.; Cho, N.E. Univalence and convexity conditions for certain integral operators associated with the

Lommel function of the first kind. AIMS Math. 2021, 6, 11380–11402. [CrossRef]

171



Fractal Fract. 2023, 7, 411

22. Miller, S.S.; Mocanu, P.T. Differential Subordinations: Theory and Applications; Series on Monographs and Textbooks in Pure and
Applied Mathematics; Marcel Dekker: New York, NY, USA; Basel, Switzerland, 2000; Volume 225.

23. Jackson, F.H. On q-functions and a certain difference operator. Trans. R. Soc. Edinb. 1908, 46, 253–281. [CrossRef]
24. Ismail, M.E.H.; Merkes, E.; Styer, D. A generalization of starlike functions. Complex Var. Theory Appl. 1990, 14, 77–84. [CrossRef]
25. Kanas, S.; Raducanu, R. Some class of analytic functions related to conic domains. Math. Slovaca 2014, 64, 1183–1196. [CrossRef]
26. Arif, M.; Srivastava, H.M.; Umar, S. Some applications of a q-analogue of the Ruscheweyh type operator for multivalent functions.

RACSAM 2019, 113, 1211–1221. [CrossRef]
27. Zhang, X.; Khan, S.; Hussain, S.; Tang, H.; Shareef, Z. New subclass of q-starlike functions associated with generalized conic

domain. AIMS Math. 2020, 5, 4830–4848. [CrossRef]
28. Yousef, F.; Amourah, A.; Frasin, B.A.; Bulboac, T. An Avant-Garde construction for subclasses of analytic bi-univalent functions.

Axioms 2022, 11, 267. [CrossRef]
29. Srivastava, H.M.; Tahir, M.; Khan, B.; Ahmad, Q.A.; Khan, N. Some general classes of q-starlike functions associated with the

Janowski functions. Symmetry 2019, 11, 292. [CrossRef]
30. Tang, H.; Khan, S.; Hussain, S.; Khan, N. Hankel and Toeplitz determinant for a subclass of multivalent q-starlike functions of

order α. AIMS Math. 2021, 6, 5421–5439. [CrossRef]
31. Noor, K.I.; Arif, M. Mapping properties of an integral operator. Appl. Math. Lett. 2012, 25, 1826–1829. [CrossRef]
32. Marin, M.; Ellahi, R.; Valse, S.; Bhatti, M.M. On the decay of exponential type for the solutions in a dipolar elastic body. J. Taibah

Univ. Sci. 2020, 14, 534–540. [CrossRef]
33. Khan, S.; Hussain, S.; Darus, M. Inclusion relations of q -Bessel functions associated with generalized conic domain. AIMS Math.

2021, 6, 3624–3640. [CrossRef]
34. Jia, Z.; Khan, S.; Khan N.; Khan, B.; Muhammad, A. Faber polynomial coefficient bounds for -Fold symmetric analytic and

bi-univalent functions involving q–calculus. J. Funct. Spaces V 2021, 2021, 5232247. [CrossRef]
35. Jackson, F.H. On q-definite integrals. Pure Appl. Math. Q. 1910, 41, 193–203.
36. Al-Oboudi, F.M. On univalent functions defined by a generalized Sălăgean operator. Ind. J. Math. Math. Sci. 2004, 27, 1429–1436.
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Abstract: Many researchers have defined the q-analogous of differential and integral operators
for analytic functions using the concept of quantum calculus in the geometric function theory.
In this study, we conduct a comprehensive investigation to identify the uses of the Sălăgean q-
differential operator for meromorphic multivalent functions. Many features of functions that belong
to geometrically defined classes have been extensively studied using differential operators based
on q-calculus operator theory. In this research, we extended the idea of the q-analogous of the
Sălăgean differential operator for meromorphic multivalent functions using the fundamental ideas
of q-calculus. With the help of this operator, we extend the family of Janowski functions by adding
two new subclasses of meromorphic q-starlike and meromorphic multivalent q-starlike functions. We
discover significant findings for these new classes, including the radius of starlikeness, partial sums,
distortion theorems, and coefficient estimates.

Keywords: quantum (or q-) calculus; q-derivative operator; Sălăgean q-differential operator;
meromorphic multivalent q-starlike functions; Janowski functions

MSC: Primary: 05A30; 30C45; Secondary: 11B65; 47B38

1. Introduction and Definitions

Currently, researchers have given more attention to the study of q-calculus due to
its applications in the fields of physics and mathematics. Before Ismail et al. [1] looked
into the q-extension of the class of starlike functions, Jackson [2,3] was the first to consider
some applications of q-calculus and define the q-analogue of the derivative and integral.
After that, several scholars carried out great studies in geometric function theory (GFT).
The q-Mittag–Leffler functions were specifically researched by Srivastava and others, and
the authors of [4] also studied the class of q-starlike functions and looked into a third
Hankel determinant. A recent survey-cum-expository review conducted by Srivastava [5]
is also beneficial for researchers studying these subjects. In this review study, Srivastava [5]
discussed applications of the fractional q-derivative operator in geometric function theory
and provided some mathematical justifications. In their paper [6], Arif et al. defined and
explored the q-derivative operator for multivalent functions, and [7] Zang et al. defined
a generalized conic domain and then investigated a novel subclass of q-starlike functions
using the definition of subordination and q-calculus operator theory. Recently, many
well-known mathematicians have used q-calculus and studied some subclasses of analytic
functions and their properties (see, for example, [8,9]). Recently, several authors published
a series of studies [10–12] focusing on the classes of q-starlike functions connected to
Janowski functions [13] from various angles.

The above works serve as the main inspiration for this article, which will first define a
new q-analog of the Sălăgean differential operator for meromorphic multivalent functions.
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By taking this operator into consideration, a new subclass of meromorphic multivalent
functions related to Janowski functions is defined and studied, along with its geometric
properties such as sufficient coefficient estimates, partial sums, distortion theorems, and
the radius of starlikeness.

The setM(p) contains all meromorphic multivalent functions h that are analytic in
the punctured open unit disk

U∗ = {ς : ς ∈ C and 0 < |ς| < 1},

and have the following series of representation:

h(ς) =
1
ςp +

∞

∑
i=0

ai+pςi+p, (p ∈ N = {1, 2, ...}). (1)

In particular, if p = 1, then

h(ς) =
1
ς
+

∞

∑
i=1

aiς
i, (2)

In other words, we have
M(1) =M,

which is the set of meromorphic univalent functions that are analytic in the punctured open
unit disk.

A function h ∈ MS∗(p) is called a meromorphic multivalent starlike function if
h ∈ M(p) satisfies the inequality

Re
(
− ςh′(ς)

h(ς)

)
> 0.

A function h ∈ MS∗(p, α) is called a meromorphic multivalent starlike functions of
the order α (0 ≤ α < 1) if h ∈ M(p) satisfies the inequality

Re
(
− ςh′(ς)

h(ς)

)
> α, ((0 ≤ α < p)

In particular, we have
MS∗(p, 0) =MS∗(p).

A function h ∈ MC(p) is called a meromorphic multivalent convex function if
h ∈ M(p) satisfies the inequality

Re

(
−
(

1 +
ςh

′′
(ς)

h′(ς)

))
> 0. (0 ≤ α < p)

A function h ∈ MC(p, α) is called a meromorphic multivalent convex function of the
order α (0 ≤ α < p) if h ∈ M(p) satisfies the inequality

Re

(
−
(

1 +
ςh

′′
(ς)

h′(ς)

))
> α.

In particular, we have
MC(p, 0) =MC(p).

The basic ideas of these classes started in 1959 when Cluin [14] studied meromorphic
schlicht functions. In 1963, Pommerenke [15] defined a class of meromorphic starlike
functions and investigated coefficient estimates, and in [16], Royste studied meromorphic
starlike multivalent functions for the first time and also found the same type of coefficient
problems for the class of meromorphic starlike multivalent functions. In 1970, Miller [17]
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defined a class of meromorphic convex functions and investigated some generalized
coefficient problems and other useful characteristics of meromorphic convex functions.

Cho and Owa [18] examined the partial sum for meromorphic p-valent functions, while
Aouf et al. [19] determined a class of meromorphic p-valent functions and investigated the
partial sums for meromorphic p-valent functions. In 2004, Srivastava [20] suggested some
new classes of meromorphic multivalent functions and described some helpful features
of meromorphic functions. Frasin and Maslina [21] investigated positive coefficients for a
class of meromorphic functions.

A function ϕ(z) is said to be in the class P[F,K] if it is analytic in U∗ with ϕ(z) = 1
and

ϕ(z) ≺ 1 + Fz
1 +Kz

,

Equivalently, we can write ∣∣∣∣ ϕ(z)− 1
F−Kϕ(z)

∣∣∣∣ < 1.

Recalling certain definitions of the q-calculus operator theory would be helpful because
they are essential for understanding this article. Unless otherwise stated, we assume the
following throughout the article:

q ∈ (0, 1), −1 ≤ K < F ≤ 1, and p ∈ N.

Definition 1 ([22]). The q-number [ζ]q is defined by

[ζ]q =

⎧⎪⎨⎪⎩
1−qζ

1−q , (ζ ∈ C),

∑i−1
k=0 qk, (ζ = i ∈ N),

and for any non-negative integer i, we have

[i]q! =

⎧⎨⎩
[i]q[i− 1]q[i− 2]q...[2]q[1]q, i ≥ 1,

1, i = 0.

Definition 2 ([2,3]). Let A be the set of all analytic functions h in the open unit disk

U = {ς : ς ∈ C and |ς| < 1}

and have the following series representation.

h(ς) = ς +
∞

∑
i=2

aiς
i.

The q-derivative (or q-difference) Dq is defined by

(
Dqh
)
(ς) =

⎧⎪⎨⎪⎩
h(ς)−h(qς)
(1−q)ς , (ς �= 0),

h
′
(0), (ς = 0).

(3)

Equation (3) shows that if h is differentiable at ς, then

lim
q→1−

(
Dqh
)
(ς) = h′(ς).
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For h ∈ A, and from Equation (3), we have

(
Dqh
)
(ς) = 1 +

∞

∑
i=2

[i]qaiς
i−1.

Definition 3 ([23]). The Sălăgean q-differential operator for h ∈ A is defined by

S0
q h(ς) = h(ς), S1

q h(ς) = ςDqh(ς) =
h(qς)− h(ς)

q− 1
, · · · ,

Sm
q h(ς) = ςDq

(
Sm−1

q h(ς)
)
= h(ς) ∗

(
ς +

∞

∑
i=2

[i]mq ςi

)
,

= ς +
∞

∑
i=2

[i]mq aiς
i.

Mahmood et al. extended the concept of the q-difference operator for h ∈ M and
constructed a new subclass MS∗q [F,K] of meromorphic functions using the analogue of
Definition 2:

Definition 4 ([24]). For h ∈ M, the q-derivative (or q-difference) Dq is defined by

(
Dqh
)
(ς) =

h(ς)− h(qς)

(1− q)ς
. (4)

For h ∈ M, and from Equation (4), we have

(
Dqh
)
(ς) =

−1
qς2 +

∞

∑
i=1

[i]qaiς
i−1, ∀ς ∈ U∗. (5)

Using Equations (1) and (4), we extend the idea of the Sălăgean q-differential operator
for meromorphic functions as follows:

Definition 5. Let h ∈ M. Then, the Sălăgean q-differential operator for a meromorphic function
is given by

S0
q h(ς) = h(ς), S1

q h(ς) = Dqh(ς) =
h(qς)− h(ς)
(q− 1)ς

,

· · ·
Sm

q h(ς) = Dq

(
Sm−1

q h(ς)
)

Sm
q h(ς) =

−1
qς2 +

∞

∑
i=1

[i]mq aiς
i−1. (6)

Definition 6. Let h be a meromorphic multivalent function given by Equation (1). Then, the
Sălăgean q-differential operator is given by

S0
q,ph(ς) = h(ς), S1

q,ph(ς) = Dqh(ς) =
h(ς)− h(qς)

(1− q)ς
,

· · ·
Sm

q,ph(ς) = Dq

(
Sm−1

q,p h(ς)
)

Sm
q,ph(ς) =

−1
qpςp+1 +

∞

∑
i=0

[i + p]mq ai+pςi+p−1. (7)
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Remark 1. By taking p = 1 in Equation (7), then we have the Sălăgean q-differential operator for
h ∈ M, which is given by Equation (6).

In the case of the recently introduced Sălăgean q-differential operator h ∈ M, we intro-
duce a novel subclass of meromorphic q-starlike functions connected to Janowski functions.

Definition 7. A function h ∈ M belongs to the classMS∗q [m, F,K] if∣∣∣∣∣∣∣∣
(K− 1)

(
− ς(Sm

q h)(ς)
h(ς)

)
− (F− 1)

(K+ 1)
(
− ς(Sm

q h)(ς)
h(ς)

)
− (F + 1)

− 1
1− q

∣∣∣∣∣∣∣∣ <
1

1− q
.

We provide a novel subclass of meromorphic q-starlike functions connected to Janowski
functions in the context of the recently introduced Sălăgean q-differential operator h ∈ M(p).

Definition 8. A function h ∈ M(p) belongs to the classMS∗q,p[m, F,K] if∣∣∣∣∣∣∣∣
(K− 1)

(
− ς(Sm

q,ph)(ς)
h(ς)

)
− (F− 1)

(K+ 1)
(
− ς(Sm

q,ph)(ς)
h(ς)

)
− (F + 1)

− 1
1− q

∣∣∣∣∣∣∣∣ <
1

1− q
.

Remark 2. It can be easily observed that

MS∗q,1(1, F,K) =MS∗q(F,K),

which was introduced and studied by Mahmood et al. [24].

Remark 3. It is clear that

lim
q→1−

MS∗q,1[m, F,K] =MS∗[F,K],

which was introduced and studied by Ali et al. [25].

Remark 4. For q → 1−, m = 1, F = 1, and K= −1, then

lim
q→1−

MS∗q,1[1,−1] =MS∗,

whereMS∗ denotes the class of meromorphic starlike function.

The sufficient condition for h ∈ MS∗q,p[m, F,K] is examined in Theorem 1, which
can be used as a supporting result to research further findings. We will also look into
the relationship between a function h of the type (Equation (1)) and the partial sums of
its series

hk(ς) =
1
ςp +

k

∑
i=0

ai+pςi+p, (k ∈ N), (8)

when the coefficients are sufficiently small.
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2. Main Results

2.1. Sufficient Condition

Theorem 1. If a function h ∈ M(p) of the form in Equation (1) satisfies the following condition,
then h ∈MS∗q,p[m, F,K]:

∞

∑
i=0

2
(
[i + p]mq + 1

)
+
∣∣∣(K+ 1)[i + p]mq − (F− 1)

∣∣∣qp∣∣ai+p
∣∣

≤ |(K+ 1)− (F + 1)qp|+ 2(1− qp). (9)

Proof. Supposing that Equation (9) is satisfied, then it is enough to prove that∣∣∣∣∣∣∣∣∣∣
(K− 1)

(
− ς(Sm

q,ph)(ς)
h(ς)

)
− (F− 1)

(K+ 1)

(
−

ς
(
Sm

q,Ph
)
(ς)

h(ς)

)
− (F + 1)

− 1
1− q

∣∣∣∣∣∣∣∣∣∣
<

1
1− q

.

Now, we have ∣∣∣∣∣∣∣∣
(K− 1)

(
− ς(Sm

q,ph)(ς)
h(ς)

)
− (F− 1)

(K+ 1)
(
− ς(Sm

q,ph)(ς)
h(ς)

)
− (F + 1)

− 1
1− q

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
(K− 1)

(
− ς(Sm

q,ph)(ς)
h(ς)

)
− (F− 1)

(K+ 1)
(
− ς(Sm

q,ph)(ς)
h(ς)

)
− (F + 1)

− 1 + q− q
1− q

∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣
−(K− 1)ς

(
Sm

q,ph
)
(ς)− (F− 1)h(ς)

−(K+ 1)ς
(
Sm

q,Ph
)
(ς)− (F + 1)h(ς)

− 1− q
1− q

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
−(K− 1)ς

(
Sm

q,ph
)
(ς)− (F− 1)h(ς)

−(K+ 1)ς
(
Sm

q,Ph
)
(ς)− (F + 1)h(ς)

− 1

∣∣∣∣∣∣+ q
1− q

= 2

∣∣∣∣∣∣
ς
(
Sm

q,ph
)
(ς) + h(ς)

−(K+ 1)ς
(
Sm

q,ph
)
(ς)− (F + 1)h(ς)

∣∣∣∣∣∣+ q
1− q

= 2

∣∣∣∣∣∣∣∣
(

1− 1
qp

)
+

∞
∑

i=0

(
1 + [i + p]mq

)
ai+pςi+p

(K+ 1) 1
qp − (F + 1)−

∞
∑

i=0

(
(K+ 1)[i + p]mq − (F− 1)

)
ai+pςi+p

∣∣∣∣∣∣∣∣+
q

1− q

= 2

∣∣∣∣∣∣∣∣
(qp−1)

qp +
∞
∑

i=0

(
1 + [i + p]mq

)
ai+pςi+p

(K+ 1) 1
qp − (F + 1)−

∞
∑

i=0

(
(K+ 1)[i + p]mq + (F + 1)

)
ai+pςi+p

∣∣∣∣∣∣∣∣+
q

1− q

≤ 2

⎛⎜⎜⎝ |qp − 1|+
∞
∑

i=0

(
1 + [i + p]mq

)
qp
∣∣∣ai+p

∣∣∣
|(K+ 1)− (F + 1)qp| −

∞
∑

i=0

∣∣{(K+ 1)[i + p]mq − (F− 1)
}

qp
∣∣∣∣∣ai+p

∣∣∣
⎞⎟⎟⎠+

q
1− q

. (10)
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The inequality in Equation (10) is bounded by 1
1−q if

∞

∑
i=0

2
(
[i + p]mq + 1

)
+
∣∣∣(K+ 1)[i + p]mq − (F− 1)

∣∣∣qp∣∣ai+p
∣∣

< |(K+ 1)− (F + 1)qp|+ 2(1− qp).

Thus, this completes the proof of Theorem 1.

Corollary 1. If a function h ∈ M(p) of the form in Equation (1) belongs to the classMS∗q,p[m, F,K],
then

ai+p ≤
|(K+ 1)− (F + 1)qp|+ 2(1− qp)

2
(
[i + p]mq + 1

)
+
∣∣∣(K+ 1)[i + p]mq − (F− 1)

∣∣∣qp
, (i ∈ N). (11)

This equality will satisfy the function

hi(ς) =
1
ςp +

|(K+ 1)− (F + 1)qp|+ 2(1− qp)

2
(
[i + p]mq + 1

)
+
∣∣∣(K+ 1)[i + p]mq − (F− 1)

∣∣∣qp
ςi+p−1.

Theorem 2. If a function h ∈ M of the form given in Equation (2) satisfies the following condition,
then h ∈MS∗q [m, F,K]:

∞

∑
i=0

2
(
[i + 1]mq + 1

)
+
∣∣∣(K+ 1)[i + 1]mq − (F− 1)

∣∣∣q∣∣ai+p
∣∣

≤ |(K+ 1)− (F + 1)q|+ 2(1− q). (12)

By taking p = 1 and m = 1 in Theorem 1, then we have following known result, which
was introduced in [24]:

Corollary 2 ([24]). If a function h ∈ M of the form in Equation (1) satisfies the following
condition, then h ∈ MS∗q [F,K]:

∞

∑
i=1

Λ(i, F,K, q)|ai| ≤ Υ(F,K, q),

where
Λ(i, F,K, q) = 2

(
[i]q + 1

)
+
∣∣∣(K+ 1)[i]q − (F− 1)

∣∣∣q
and

Υ(F,K, q) = |(K+ 1)− (F + 1)q|+ 2(1− q).

2.2. Distortion Inequalities

Theorem 3. If h ∈ MS∗q,p[m, F,K], then

1
rp −

|(K+ 1)− (F + 1)qp|+ 2(1− qp)

2
(
[1 + p]mq + 1

)
+
∣∣∣(K+ 1)[1 + p]mq − (F− 1)

∣∣∣qp
rp

≤ |h(ς)| ≤ 1
rp +

|(K+ 1)− (F + 1)qp|+ 2(1− qp)

2
(
[1 + p]mq + 1

)
+
∣∣∣(K+ 1)[1 + p]mq − (F− 1)

∣∣∣qp
rp.

This equality holds for the function

h(ς) =
1
ςp +

|(K+ 1)− (F + 1)qp|+ 2(1− qp)

2
(
[1 + p]mq + 1

)
+
∣∣∣(K+ 1)[1 + p]mq − (F− 1)

∣∣∣qp
ςp at ς = ir.
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Proof. Let h ∈ MS∗q,p[m, F,K]. Then, in light of Theorem 1, we have

2
(
[1 + p]mq + 1

)
+
∣∣∣(K+ 1)[1 + p]mq − (F− 1)

∣∣∣qp
∞

∑
i=1

∣∣ai+p
∣∣

≤
∞

∑
i=1

2
(
[i + p]mq + 1

)
+
∣∣∣(K+ 1)[i + p]mq − (F− 1)

∣∣∣qp∣∣ai+p
∣∣

< |(K+ 1)− (F + 1)qp|+ 2(1− qp),

which yields

|h(ς)| ≤ 1
rp +

∞

∑
i=1

∣∣ai+p
∣∣ri−p ≤ 1

rp + rp
∞

∑
i=1

∣∣ai+p
∣∣

≤ 1
rp +

|(K+ 1)− (F + 1)qp|+ 2(1− qp)

2
(
[1 + p]mq + 1

)
+
∣∣∣(K+ 1)[1 + p]mq − (F− 1)

∣∣∣qp
rp.

Similarly, we have

|h(ς)| ≥ 1
rp −

∞

∑
i=1

∣∣ai+p
∣∣ri−p

≥ 1
rp − rp

∞

∑
i=1

∣∣ai+p
∣∣

≥ 1
rp −

|(K+ 1)− (F + 1)qp|+ 2(1− qp)

2
(
[1 + p]mq + 1

)
+
∣∣∣(K+ 1)[1 + p]mq − (F− 1)

∣∣∣qp
rp.

Thus, this completes the proof of Theorem 3.

Theorem 4. If a function h of the form in Equation (2) belongs to the classMS∗q [m, F,K], then

1
r
− |(K+ 1)− (F + 1)q|+ 2(1− q)

2
(
[2]mq + 1

)
+
∣∣∣(K+ 1)[2]mq − (F− 1)

∣∣∣q r

≤ |h(ς)| ≤ 1
r
+

|(K+ 1)− (F + 1)q|+ 2(1− q)

2
(
[2]mq + 1

)
+
∣∣∣(K+ 1)[2]mq − (F− 1)

∣∣∣q r.

This equality holds for the function

h(ς) =
1
ς
+

|(K+ 1)− (F + 1)q|+ 2(1− q)

2
(
[2]mq + 1

)
+
∣∣∣(K+ 1)[2]mq − (F− 1)

∣∣∣q ς at ς = ir.

Proof. Here, we omit the proof of Theorem 4. It is similar to that of the proof of Theorem 3.

For p = 1 and m = 1 in Theorem 3, then we have the known corollary given in [24]:

Corollary 3 ([24]). If h ∈ MS∗q [F,K], then

1
r
− |(K+ 1)− (F + 1)q|+ 2(1− q)

2
(
[2]q + 1

)
+ |(K+ 1)− (F− 1)|q r

≤ |h(ς)| ≤ 1
r
+

(K+ 1)− (F + 1)(1− q)
2
(
[2]q + 1

)
+
∣∣(K+ 1)[2]q − (F− 1)

∣∣q r.
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This equality holds for the function

h(ς) =
1
ς
+

|(K+ 1)− (F + 1)q|+ 2(1− q)
2
(
[2]q + 1

)
+
∣∣(K+ 1)[2]q − (F− 1)

∣∣q ς at ς = ir.

Theorem 5. If h ∈ MS∗q,p[m, F,K], then

1
rp+1 −

(p + 1)|(K+ 1)− (F + 1)qp|+ 2(1− qp)

2
(
[1 + p]mq + 1

)
+
∣∣∣(K+ 1)[1 + p]mq − (F− 1)

∣∣∣qp

≤ |h(ς)| ≤ 1
rp+1 +

(p + 1)|(K+ 1)− (F + 1)qp|+ 2(1− qp)

2
(
[1 + p]mq + 1

)
+
∣∣∣(K+ 1)[1 + p]mq − (F− 1)

∣∣∣qp
, (|ς| = r).

Proof. Here, we omit the proof of Theorem 5. Its proof is similar to that of the proof
Theorem 3.

For p = 1 and m = 1, then we have a known corollary introduced in [24]:

Corollary 4 ([24]). If h ∈ MS∗q [F,K], then

1
r2 −

2|(K+ 1)− (F + 1)q|+ 2(1− q)
2
(
[2]q + 1

)
+
∣∣(K+ 1)[2]q − (F− 1)

∣∣q
≤
∣∣h′(ς)∣∣ ≤ 1

r2 +
2|(K+ 1)− (F + 1)q|+ 2(1− q)

2
(
[2]q + 1

)
+
∣∣(K+ 1)[2]q − (F− 1)

∣∣q , (|ς| = r).

2.3. Partial Sums for the Function ClassMS∗q,p[m, F,K]
In this section, we study the ratio of a function of the form in Equation (1) to its

sequence of partial sums

hk(ς) =
1
ςp +

k

∑
i=0

ai+pςi+p

when the coefficients of h are sufficiently small to satisfy the condition in Equation (9). We
will investigate the sharp lower bounds for

Re
(

h(ς)
hk(ς)

)
,
(

hk(ς)

h(ς)

)
, Re

(
Sm

q,ph(ς)
Sm

q,phk(ς)

)
and Re

(
Sm

q,phk(ς)

Sm
q,ph(ς)

)
.

The sequence of partial sums of hk is denoted by

hk(ς) =
1
ςp +

k

∑
i=0

ai+pςi+p.

Theorem 6. If a function h ∈ M(p) of the form in Equation (1) satisfies the condition in
Equation (9), then

Re
(

h(ς)
hk(ς)

)
≥ 1− 1

χk+p+1
(∀ς ∈ U) (13)

and

Re
(

hk(ς)

h(ς)

)
≥

χk+p+1

1 + χk+p+1
, (∀ς ∈ U), (14)

where

χk+p =
2
(
[k + p]mq + 1

)
+
∣∣∣(K+ 1)[k + p]mq − (F− 1)

∣∣∣qp

|(K+ 1)− (F + 1)qp|+ 2(1− qp)
. (15)
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Proof. For the proof of the inequality in Equation (13), we set

χk+p+1

[
h(ς)
hj(ς)

−
(

1− 1
χk+p+1

)]

=

1 +
k
∑

i=0
ai+pςi+p−1 + χk+p+1

∞
∑

i=k+1
ai+pςi+p+1

1 +
k
∑

i=0
ai+pςi+p+1

=
1 + q1(ς)

1 + q2(ς)
.

If we fix
1 + q1(ς)

1 + q2(ς)
=

1 + w(ς)

1− w(ς)
,

then after some simplification, we obtain

w(ς) =
q1(ς)− q2(ς)

2 + q1(ς) + q2(ς)
.

We find that

w(ς) =

χk+p+1
∞
∑

i=k+1
ai+pςi+p−1

2 + 2
k
∑

i=0
ai+pςi+p+1 + χk+p+1

∞
∑

i=k+1
ai+pςi+p+1

and

|w(ς)| ≤
χk+p+1

∞
∑

i=k+1

∣∣ai+p
∣∣

2− 2
k
∑

i=0

∣∣ai+p
∣∣− χk+p+1

∞
∑

i=k+1

∣∣ai+p
∣∣ .

Now, one can see that
|w(ς)| ≤ 1

if and only if

2χk+p+1

∞

∑
i=k+1

∣∣ai+p
∣∣ ≤ 2− 2

k

∑
i=0

∣∣ai+p
∣∣,

which implies that
k

∑
i=0

∣∣ai+p
∣∣+ χk+p+1

∞

∑
i=k+1

∣∣ai+p
∣∣ ≤ 1. (16)

Finally, to prove Equation (13), it is enough to show that the L.H.S. of Equation (16) is

bounded above by
∞
∑

i=0
χi+p
∣∣ai+p

∣∣, which is equal to

k

∑
i=0

(
1− χi+p

)∣∣ai+p
∣∣+ ∞

∑
i=k+1

(
χk+p+1 − χi+p

)∣∣ai+p
∣∣ ≥ 0. (17)

Hence, the proof of the inequality in Equation (13) is complete.
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For the proof of the inequality in Equation (14), we fix

(
1 + χk+p

)(hk(ς)

h(ς)
−

χk+p

1 + χk+p

)

=

1 +
k
∑

i=0
ai+pςi+p−1 − χk+p+1

∞
∑

i=k+1
ai+pςi+p−1

1 +
∞
∑

i=0
ai+pςi+p−1

=
1 + w(ς)

1− w(ς)
,

where

|w(ς)| ≤

(
1 + χk+p+1

) ∞
∑

i=k+1

∣∣ai+p
∣∣

2− 2
k
∑

i=0

∣∣ai+p
∣∣− (χk+p+1 − 1

) ∞
∑

i=k+1

∣∣ai+p
∣∣ ≤ 1. (18)

The inequality in Equation (18) is equivalent to

k

∑
i=0

∣∣ai+p
∣∣+ χk+p+1

∞

∑
i=k+1

∣∣ai+p
∣∣ ≤ 1. (19)

Finally, we can find that the L.H.S. in Equation (19) is bounded above by
∞
∑

i=0
χi+p
∣∣ai+p

∣∣,
and thus we have completed the inequality in Equation (14). Hence, the proof of Theorem 6
is complete.

Theorem 7. If h ∈ M(p) of the form in Equation (1) satisfies the condition in Equation (9), then

Re

(
Sm

q,ph(ς)
Sm

q,php,k(ς)

)
≥ 1−

[k + p]mq
χk+p+1

, (∀ς ∈ U)

and

Re

(
Sm

q,php,k(ς)

Sm
q,ph(ς)

)
≥

χk+p+1

χk+p+1 + [k + p]mq
, (∀ς ∈ U),

where χk+p is given by Equation (15).

Proof. Here we omit the proof of Theorem 7. It is similar to that of Theorem 6.

2.4. Partial Sums for the Function Class MS∗q [m, F,K]
We will study the ratio of a function of the form in Equation (1) to its sequence of

partial sums

hk(ς) =
1
ς
+

k

∑
i=0

ai+1ςi+1

when the coefficients of h are sufficiently small to satisfy the condition in Equation (9). We
will investigate the sharp lower bounds for

Re
(

h(ς)
hk(ς)

)
,
(

hk(ς)

h(ς)

)
, Re

(
Sm

q h(ς)
Sm

q hk(ς)

)
and Re

(
Sm

q hk(ς)

Sm
q h(ς)

)
.
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The sequence of partial sums of hk is denoted by

hk(ς) =
1
ς
+

k

∑
i=0

ai+1ςi+1.

Theorem 8. If we let h ∈ M of the form in Equation (2) satisfy the condition in Equation (12),
then

Re
(

h(ς)
hk(ς)

)
≥ 1− 1

χk+2
(∀ς ∈ U)

and

Re
(

hk(ς)

h(ς)

)
≥ χk+2

1 + χk+2
(∀ς ∈ U),

where

χk+1 =
2(1− α)

(
[k + 1]mq + 1

)
+
∣∣∣(K+ 1)[k + 1]mq − (F− 1)

∣∣∣q
|(K+ 1)− (F + 1)q|+ 2(1− q)

. (20)

Proof. Here, we omit the proof for Theorem 8. It is similar to that of the proof for Theorem 7.

Theorem 9. If we let h ∈ M of the form in Equation (2) satisfy the condition in Equation (12),
then

Re

(
Sm

q h(ς)
Sm

q hk(ς)

)
≥ 1−

[k + 1]mq
χk+2

, (∀ς ∈ U)

and

Re

(
Sm

q hk(ς)

Sm
q h(ς)

)
≥ χk+2

χk+2 + [k + 1]mq
, (∀ς ∈ U),

where χk+1 is given by Equation (20).

Proof. Here, we omit the proof for Theorem 9. It is similar to that of the proof for Theorem 6.

2.5. Radius of Starlikeness

In the next result, we obtain the radius of starlikeness for the classMS∗q,p[m, F,K]:

Theorem 10. Let the function h with Equation (1) belong to the classMS∗q,p[m, F,K]. If

inf
i≥1

⎡⎣ (1− α)2
(
[i + p]mq + 1

)
+
∣∣∣(K+ 1)[i + p]mq − (F− 1)

∣∣∣qp

(i + p + 1− α)|(K+ 1)− (F + 1)qp|+ 2(1− qp)

⎤⎦
1

i+p

= r

is positive, then the function h is p-valently meromorphically starlike to the order α in |ς| ≤ r.

Proof. To prove the above result, we have to show that∣∣∣∣ ςh′(ς)
h(ς)

+ 1
∣∣∣∣ ≤ 1− α, (0 ≤ α < 1) and |ς| ≤ r1.

From the above inequality, we have∣∣∣∣ ςh′(ς)
h(ς)

+ 1
∣∣∣∣ =
∣∣∣∣∣∑

∞
i=0(i + p + α)ai+pςi+p

1
ςp + ∑∞

i=0 ai+pςi+p

∣∣∣∣∣
≤ ∑∞

i=0(i + p + α)
∣∣ai+p

∣∣|ς|i+p

1−∑∞
i=0
∣∣ai+p

∣∣|ς|i+p . (21)
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Hence, Equation (21) holds true if

∞

∑
i=0

(i + p + α)
∣∣ai+p

∣∣|ς|i+p ≤ (1− α)

(
1−

∞

∑
i=0

∣∣ai+p
∣∣|ς|i+p

)
. (22)

Now, we can set the inequality in Equation (22) as follows:

∞

∑
i=0

(
i + p + 1− α

1− α

)∣∣ai+p
∣∣|ς|i+p ≤ 1. (23)

With the help of Equation (9), the inequality in Equation (23) is true if(
i + p + 1− α

1− α

)
|ς|i+p

≤
(1− α)2

(
[i + p]mq + 1

)
+
∣∣∣(K+ 1)[i + p]mq − (F− 1)

∣∣∣qp

|(K+ 1)− (F + 1)qp|+ 2(1− qp)
. (24)

By solving Equation (24) for |ς|, we have

|ς| ≤

⎛⎝ (1− α)2
(
[i + p]mq + 1

)
+
∣∣∣(K+ 1)[i + p]mq − (F− 1)

∣∣∣qp

(i + p + 1− α)|(K+ 1)− (F + 1)qp|+ 2(1− qp)

⎞⎠
1

i+p

. (25)

This completes the proof.

3. Discussion

This section serves as an introduction to the conclusions section, we will specifically
highlight the relevance of our primary findings and their applications. With a primary
motive to consolidate the study of the famous convex function with starlike and convex
functions, Govindaraj and Sivasubramanian in [23] involved the q-calculus operator and
defined the Sălăgean q-differential operator for analytic functions. However, the mero-
morphic functions and meromorphic multivalent functions could not be defined with the
other geometrically defined subclasses of M and M(p) using the same meromorphic
q-analogue of the Sălăgean differential operator. For the functions in M and M(p), we
smartly established a Sălăgean q-differential operator in this study so that normalization
could be preserved.

When considering the Sălăgean q-differential operator for h ∈ M, the family of
functionsMS∗q [m, F,K] (see Definition 7) is defined to include q-starlike functions, and the
other family of functionsMS∗q,p[m, F,K] (see Definition 8) is defined by using the Sălăgean
q-differential operator for h ∈ M(p).

Another notable difference from earlier research is the fact that we found criteria for
the classes ofMS∗q [m, F,K] andMS∗q,p[m, F,K] that are more broadly applicable. Hence,
if we let p = 1 and m = 1, then some of our results in Section 2 will reduce to results for
the class of q-starlike functions introduced in [24]. The approach used by different authors
in this paper in arriving at solutions to the challenges of the classes is the same. However,
several novel and traditional results can be obtained as a special case of our main findings.

4. Conclusions

The extension and unification of various well-known classes of functions were the
main objectives of this paper. In this article, we used the q-calculus operator theory,
introduced the Sălăgean q-differential operator for meromorphic multivalent functions
and defined two new subclasses of meromorphic multivalent functions in the Janowski
domain. We investigated some interesting properties, such as coefficient estimates, partial
sums, distortion theorems, and the radius of starlikeness. The technique and ideas of this
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paper may stimulate further research in the theory of multivalent meromorphic functions
and further generalized classes of meromorphic functions can be defined and investigated
for several other useful properties such as Hankal determinants, Feketo–Sezego problems,
coefficient inequalities, growth problems, and many others.
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Abstract: In this article, we introduce three general double-series identities using Whipple transfor-
mations for terminating generalized hypergeometric 4F3 and 5F4 functions. Then, by employing the
left-sided Riemann–Liouville fractional integral on these identities, we show the ability to derive
additional identities of the same nature successively. These identities are used to derive transfor-
mation formulas between the Srivastava–Daoust double hypergeometric function (S–D function)
and Kampé de Fériet’s double hypergeometric function (KDF function) with equal arguments. We
also demonstrate reduction formulas from the S–D function or KDF function to the generalized
hypergeometric function pFq. Additionally, we provide general summation formulas for the pFq

and S–D function (or KDF function) with specific arguments. We further highlight the connections
between the results presented here and existing identities.

Keywords: Bailey quadratic transformation; generalized hypergeometric function; Kampé de
Fériet’s double hypergeometric function; series rearrangement technique; Srivastava–Daoust double
hypergeometric function; Whipple transformations; left-sided Riemann–Liouville fractional integral

MSC: 26A33; 33C05; 33C20

1. Introduction and Preliminaries

The generalized hypergeometric series (or function) pFq (p, q ∈ Z�0), which is a natu-
ral generalization of the Gaussian hypergeometric series 2F1, is defined by (see, e.g., [1–6])

pFq

[ μ1, μ2, . . . , μp;
ν1, ν2, . . . , νq;

z
]
= pFq(μ1, . . . , μp; ν1, . . . , νq; z)

= pFq

[
(μp);
(νq);

z
]

:=
∞

∑
n=0

p
∏
j=1

(μj)n

q
∏
j=1

(νj)n

zn

n!

(1)

(
μk ∈ C (k = 1, . . . p), νj ∈ C \Z�0 (j = 1, . . . , q)

)
,

where (ξ)η (ξ, η ∈ C) is the Pochhammer symbol defined in terms of gamma function Γ
(see, e.g., [5], pp. 2, 5), by

(ξ)η =
Γ(ξ + η)

Γ(ξ)
=

{
1 (η = 0, ξ ∈ C \Z�0),
ξ(ξ + 1) · · · (ξ + n− 1) (η = n ∈ N, ξ ∈ C),

(2)

it being understood that (0)0 = 1. Here and elsewhere, an empty product is interpreted
as 1, and let C, R, and Z denote the sets of complex numbers, real numbers, and integers,
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respectively. Additionally, let A��, A>�, A��, and A<� be the subsets of the set A (R or Z)
whose elements are greater than or equal to, greater than, less than or equal to, and less
than some � ∈ R, respectively. In particular, let N := Z�1.

If μk ∈ Z�0 for some k = 1, . . . p, then pFq series terminates, that is, becomes a
polynomial in z, and converges for all z ∈ C. In case of μk ∈ C \Z�0 for some k = 1, . . . p,
the series pFq in (1) becomes a polynomial of finite order. For the detailed convergence
conditions for pFq in (1), one can consult, for example, [7], p. 20.

The popularity and usefulness of the hypergeometric function 2F1, as well as its gener-
alized versions in one variable pFq, have motivated researchers to explore hypergeometric
functions in multiple variables. Appell [8] initiated the study of hypergeometric functions
in two variables by introducing the Appell functions F1, F2, F3, and F4 as generalizations
of Gauss’s hypergeometric function 2F1. Subsequently, Humbert [9] investigated the con-
fluent forms of these functions. A comprehensive list of these functions is available in
standard literature, such as [10]. Kampé de Fériet [11] later expanded upon the work of
Appell, generalizing the four Appell functions and their confluent forms to more general
hypergeometric functions of two variables. Burchnall and Chaundy [12,13] introduced an
abbreviation for the notation created by Kampé de Fériet for his double hypergeometric
functions of superior order. In a slightly modified notation, Srivastava and Panda [14]
(p. 423, Equation (26)) presented the definition of a more comprehensive double hypergeo-
metric function than the one defined by Kampé de Fériet. This convenient generalization
of the Kampé de Fériet function is defined as follows (see, for example, [7], p. 27):

Fp:q;k
�:m;n

[
(ap) : (bq); (ck);
(α�) : (βm); (γn);

x, y
]

=
∞

∑
r,s=0

p

∏
j=1

(aj)r+s

q

∏
j=1

(bj)r

k

∏
j=1

(cj)s

�

∏
j=1

(αj)r+s

m

∏
j=1

(β j)r

n

∏
j=1

(γj)s

xr

r!
ys

s!
,

(3)

where, for convergence,

(i) p + q < �+ m + 1, p + k < �+ n + 1, |x| < ∞, |y| < ∞,
or

(ii) p + q = �+ m + 1, p + k = �+ n + 1, and{
|x|1/(p−�) + |y|1/(p−�) < 1, if p > �,

max{|x|, |y|} < 1, if p ≤ �.

To gain further insight into the convergence properties of the double series in Equation (3),
which encompasses conditional convergence as well, one can consult the research con-
ducted by Hái et al. [15].

Lemma 1. The following formula holds.

Fp:q;k
�:m;n

[
(ap) : (bq); (ck);
(α�) : (βm); (γn);

x, y
]
= Fp:k;q

�:n;m

[
(ap) : (ck); (bq);
(α�) : (γn); (βm);

y, x
]

. (4)

In particular,

Fp:q;k
�:m;n

[
(ap) : (bq); (ck);
(α�) : (βm); (γn);

x, x
]
= Fp:k;q

�:n;m

[
(ap) : (ck); (bq);
(α�) : (γn); (βm);

x, x
]

. (5)

Proof. Observing the following fact is sufficient: Interchanging the summation indices r
and s leaves the quantity on the right-hand side of Equation (3) unchanged.
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Srivastava and Daoust ([16], p. 199) introduced a generalization of the Kampé de
Fériet function ([8], p. 150) by means of the double hypergeometric series (see also [17,18]):

FA: B; B′
C: D; D′

(
[(aA) : ϑ, ϕ] : [(bB) : ψ]; [(b′B′) : ψ′];
[(cC) : δ, ε] : [(dD) : η]; [(d′D′) : η′];

x, y
)

=
∞

∑
m=0

∞

∑
n=0

A
∏
j=1

(aj)mϑj+nϕj

B
∏
j=1

(bj)mψj

B′

∏
j=1

(b′j)nψ′j

C
∏
j=1

(cj)mδj+nε j

D
∏
j=1

(dj)mηj

D′

∏
j=1

(d′j)nη′j

xm

m!
yn

n!
,

(6)

where the coefficients

ϑ1, . . . , ϑA; ϕ1, . . . , ϕA; ψ1, . . . , ψB; ψ′1, . . . , ψ′B′ ; δ1, . . . , δC;

ε1, . . . , εC; η1, . . . , ηD; η′1, . . . , η′D′
(7)

are real and positive. Let

Δ1 := 1 +

(
C

∑
j=1

δj +
D

∑
j=1

ηj

)
−
(

A

∑
j=1

ϑj +
B

∑
j=1

ψj

)

and

Δ2 := 1 +

(
C

∑
j=1

ε j +
D′

∑
j=1

η′j

)
−
(

A

∑
j=1

ϕj +
B′

∑
j=1

ψ′j

)
.

Then
(i) The double power series in (6) converges for all complex values of x and y when

Δ1 > 0 and Δ2 > 0.
(ii) The double power series in (6) is convergent for suitably constrained values of |x|

and |y| when Δ1 = 0 and Δ2 = 0.
(iii) The double power series in (6) would diverge except when, trivially, x = y = 0

when Δ1 < 0 and Δ2 < 0.
The emergence of extensively generalized special functions, such as (3), has sparked

intriguing research into their reducibility. The Kampé de Fériet function, in particular,
has been studied extensively by many researchers for its reducibility and transformation
formulas. Many reduction and transformation formulas for the Kampé de Fériet function
can be found in the literature, as documented in various references, such as [19–42].

Buschman and Srivastava [19] provided insightful remarks on previous studies, specif-
ically [43,44]. They employed a double-series manipulation technique, utilizing Whipple’s
transformation (see [45], Equation (7.1); see also [10], p. 190, Equation (1), [4], p. 90,
Theorem 32):

3F2

[
α, β, γ;

1 + α− β, 1 + α− γ;
z

]

= (1− z)−α
3F2

[
α
2 , α+1

2 , 1 + α− β− γ;

1 + α− β, 1 + α− γ;
− 4z

(1−z)2

]
(

α− β, α− γ ∈ C \Z�−1; |z| < 1, 4|z|/{|1− z|2} < 1, | arg(1− z)| < π
)

.

(8)

Through this approach, they introduced three double-series identities, which incorporated
a bounded sequence of complex numbers. In addition, they [19] demonstrated that the ap-
plication of double-series identities enables the provision of numerous reduction formulas
for the Kampé de Fériet function, whether they are already known or newly discovered.
Subsequently and concurrently, a number of papers have utilized series manipulation
techniques along with, among several others, transformation formulas for 2F1 (13) and (19)
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in Chan et al. [21]; the reduction formula for 2F1 (15) in Karlsson [46]; a particular case of
Euler’s transformation formula for 2F1 (12) in Karlsson [47]; terminating summation for-
mulas for 4F3(1) (Equations (2.3), (2.4), (2.6), Tables 1 and 2, there) and the transformation
formula for 4F3(1) (10) in Karlsson [30]; transformation formulas for 2F1 (12) and (13) in
Liu and Wang [48]; transformation formulas for 2F1 ([22], Equations (2.8) and (2.9)) (cf. [10],
p. 112, Equations (17) and (16), respectively), Whipple’s transformation 3F2 (8) and sum-
mation formula for a terminating 3F2(1) [22], Equation (3.2) (see also [49]), and Dougall’s
summation theorem for a terminating well-poised 7F6(1) [22], Equation (3.7) (see also [10],
p. 189, Equation (4).4(8)), [50], p. 244, Equation (III. 14)) in Chen and Srivastava [22]; and
terminating 3F2(

4
3 ) [51], Equation (1.3) (see also Gessel–Stanton summation theorem [52],

Equation (5.21), and terminating 3F2(
3
4 ) [51], Equation (1.4) (see also [53], Equation (1.12))

in Qureshi et al. [51]. These papers have presented multiple or double-series identities,
which have been employed to derive a range of reduction formulas for the Kampé de Fériet
function and other intriguing identities for the pFq functions.

Inspired by the aforementioned papers, especially [19], and utilizing Whipple’s trans-
formation formulas (refer to [45], p. 266, Equation (6.6))

5F4

[
−m

2 , −m+1
2 , E, 1−m− B− C, 1−m− D ;

1−m− B, 1−m− C, 1+E−D−m
2 , 2+E−D−m

2 ;
1

]

=
(D)m

(D− E)m
4F3

[
−m, B, C, E ;

1−m− B, 1−m− C, D ;
1

]
(

m ∈ Z�0; B, C ∈ C \Z�1−m; D, 1+E−D−m
2 , 2+E−D−m

2 ∈ C \Z�0

)
(9)

and (see [54], p. 537, Equation (10.11); see also [30], Equation (2.5))

4F3

[
−m, X, Y, Z ;

U, W, X + Y + Z + 1−U −W −m ;
1

]

=
(U − X)m(Y + Z + 1−U −W −m)m

(U)m(X + Y + Z + 1−U −W −m)m

× 4F3

[
−m, W −Y, W − Z, X ;

1−m + X−U, U + W −Y− Z, W ;
1

] (10)

(m ∈ Z�0; U, W, X + Y + Z + 1−U −W −m,

1−m + X−U, U + W −Y− Z, W ∈ C \Z�0

)
,

our objective is to introduce three double-series identities. These identities incorporating
bounded sequences of complex numbers are derived using series rearrangement techniques
and Pochhammer symbol identities. These issues are further discussed in Section 2. In
Section 3, we employ these general double-series identities to establish three transforma-
tions of Srivastava–Daoust double hypergeometric functions. These transformations are
expressed using Kampé de Fériet functions. By utilizing the left-sided Riemann–Liouville
fractional integral on these identities in Sections 2 and 4, we demonstrate the capability to
iteratively derive further identities of a similar nature. Section 5 further presents various
new transformation formulae, such as Bailey’s quadratic transformation formula, Clausen
reduction formula, Gauss quadratic transformation formula, Karlsson reduction formula,
Orr reduction formula, and Whipple quadratic transformation formula. We achieve this by
using the following formulas.
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Required formulas

Binomial theorem (see, e.g., [6], p. 44, Equation (8)):

(1− z)−λ =
∞

∑
n=0

(λ)n
zn

n!
= 1F0(λ ; − ; z)

(|z| < 1, λ ∈ C, | arg(1− z)| < π);

(11)

Euler’s transformation formula (see, e.g., [3], p. 248, Equation (9.5.3), [1], p. 68,
Equation (2.2.7)):

2F1(α, β ; γ ; z) = (1− z)γ−α−β
2F1(γ− α, γ− β ; γ ; z)

(|z| < 1, γ ∈ C \Z�0, | arg(1− z)| < π);
(12)

Pfaff–Kummer transformation formula (see, e.g., [3], p. 247, Equations (9.5.1) and
(9.5.2), [1], p. 68, Equation (2.2.6)):

2F1(α, β ; γ ; z) = (1− z)−α
2F1

(
α, γ− β ; γ ;

−z
1− z

)
(|z| < 1, |z|/|1− z| < 1, γ ∈ C \Z�0, | arg(1− z)| < π)

(13)

and

2F1(α, β ; γ ; z) = (1− z)−β
2F1

(
β, γ− α ; γ ;

−z
1− z

)
(|z| < 1, |z|/|1− z| < 1, γ ∈ C \Z�0, | arg(1− z)| < π);

(14)

A reduction formula (see, e.g., [4], p. 70, Equation (10)):

2F1

(
γ, γ− 1

2
; 2γ ; z

)
=

(
2

1 +
√

1− z

)2γ−1

(|z| < 1, 2γ ∈ C \Z�0);
(15)

Bailey transformation formula (see, e.g., [55], p. 251, Equation (4.22)):

2F1(α, β ; 2β ; z) = (1− z)−
α
2 2F1

(
α
2 , β− α

2 ; β + 1
2 ; −z2

4(1−z)

)
(
|z| < 1, |z|2/{4|1− z|} < 1, 2β ∈ C \Z�0,

β + 1
2 ∈ C \Z�0, | arg(1− z)| < π

)
;

(16)

Gauss transformation formula (see, e.g., [10], p. 111, Equation (2), and p. 112, Equation (18)):

2F1

(
2α, 2β ; α + β + 1

2 ; z
)
= 2F1

(
α, β ; α + β + 1

2 ; 4z(1− z)
)

(
|z| < 1, 4|z(1− z)| < 1, α + β + 1

2 ∈ C \Z�0

)
;

(17)

Bailey product formula (see, e.g., [56], p. 383, Equation (7.4)):

2F1(α, β ; γ ; z) 2F1(γ− β, 1− β ; α− β + 1 ; z)

= (1− z)β−α−γ
4F3

[
α, γ− β, α+γ−β

2 , α+γ−β+1
2 ;

γ, α + γ− β, α− β + 1 ;
−4z

(1−z)2

]
(18)

(
|z| < 1, 4|z|/|1− z|2; γ, α− β + 1, α + γ− β ∈ C \Z�0; | arg(1− z)| < π

)
;
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Letting γ → ∞ on both sides of (8) gives the following transformation formula ([10],
Equation 2.11 (34)) (see also [21], p. 425, Equation (34)):

2F1

[
α, β;

1 + α− β;
z

]
= (1 + z)−α

2F1

[
α
2 , α+1

2 ;

1 + α− β;
4z

(1+z)2

]
(19)

(
α− β ∈ C \Z�−1; |z| < 1, 4|z|/{|1 + z|2} < 1, | arg(1 + z)| < π

)
,

A number of reduction formulae for the Kampé de Fériet function, for example,

F0:p;r
0:q;s

[
: α1, . . . , αp; γ1, . . . , γr;
: β1, . . . , βq; δ1, . . . , δs;

x, y
]

= pFq

[
α1, . . . , αp;
β1, . . . , βq;

x
]

rFs

[
γ1, . . . , γr;
δ1, . . . , δs;

y
] (20)

(see, e.g., [7], p. 28, Equation (31));

Fp:1;1
q:0;0

[
α1, . . . , αp : ν; σ;
β1, . . . , βq : ; ;

z, z
]
= p+1Fq

[
α1, . . . , αp, ν + σ;

β1, . . . , βq;
z
]

(
β1, . . . , βq ∈ C \Z�0; |z| < 1 (p = q)

) (21)

(see, e.g., [8], pp. 23, 155, Equation (25), [57], p. 33, Equation (1.5.1.7));

Fp:2;1
q:1;0

[
α1, . . . , αp : λ∗, μ∗; ν∗ − λ∗ − μ∗;
β1, . . . , βq : ν∗ ; ;

z, z
]

= p+2Fq+1

[
α1, . . . , αp, ν∗ − λ∗, ν∗ − μ∗;

β1, . . . , βq, ν∗;
z
]

(
β1, . . . , βq, ν∗ ∈ C \Z�0; |z| < 1 (p = q); |z| < ∞ (p � q− 1)

)
(22)

(see, e.g., [7], p. 28, Equation (34));

Fp:2;2
q:1;1

[
α1, . . . , αp : g, h; g, h− 1;
β1, . . . , βq : g + h− 1

2 ; g + h− 1
2 ;

z, z
]

= p+3Fq+2

[
α1, . . . , αp, 2g, 2h− 1, g + h− 1;

β1, . . . , βq, g + h− 1
2 , 2g + 2h− 2;

z
]

(
β1, . . . , βq, g + h− 1

2 , 2g + 2h− 2 ∈ C \Z�0; |z| < 1 (p = q)
)

(23)

(see, e.g., [30], p. 34, Table 3(Ic), [7], p. 29, Equation (38));
A summation formula for 3F2 (see, e.g., [58], p. 540, Entry (114)):

3F2

⎡⎣ − m
2 , −m+1

2 , A;
1

B, 3
2 + A− B−m;

⎤⎦ = 4−m (2B− 2A− 1)m(2B + m− 1)m

(B)m(B− A− 1
2 )m

(24)

(
m ∈ Z�0; B, 3

2 + A− B−m, B− A− 1
2 ∈ C \Z�0

)
;

The following generalized summation formulae for 2F1:

192



Fractal Fract. 2023, 7, 700

Generalized Kummer first summation theorem (see [59], p. 828, Theorem 3):

2F1

[
C, D ;

1 + C− D + m ;
1

]
=

2m−2DΓ(D−m)Γ(1 + C− D + m)

Γ(D)Γ(C− 2D + m + 1)

×
m

∑
k=0

(−1)k
(

m
k

)Γ
(

C+k+m+1
2 − D

)
Γ
(

C+k−m+1
2

) (25)

(
m ∈ Z�0, D− C ∈ C \Z�m+1, �(D) < 1+m

2

)
;

Generalized Kummer first summation theorem (see [59], p. 828, Theorem 4):

2F1

[
C, D ;

1 + C− D−m ;
− 1

]
=

2−m−2DΓ(1 + C− D−m)

Γ(C− 2D−m + 1)

×
m

∑
k=0

(
m
k

)Γ
(

C+k−m+1
2 − D

)
Γ
(

C+k−m+1
2

) (26)

(
m ∈ Z�0, C− D ∈ C \Z�m−1, 1−m

2 � �(D) < 1− m
2

)
;

Generalized Kummer second summation theorem (see [59], p. 827, Theorem 1):

2F1

[
C, D ;

1
2 (1 + C + D + m) ;

1
2

]
=

2D−1Γ
(

C+D+m+1
2

)
Γ
(

C−D−m+1
2

)
Γ(D)Γ

(
C−D+m+1

2

)
×

m

∑
k=0

(−1)k
(

m
k

) Γ
(

D+k
2

)
Γ
(

C+k−m+1
2

)
(27)

(
m ∈ Z�0, 1

2 (1 + C + D + m) ∈ C \Z�0

)
;

Generalized Kummer second summation theorem (see, e.g., [58], p. 491, Entry 7.3.7.2):

2F1

[
C, D ;

1
2 (1 + C + D−m) ;

1
2

]
=

2D−1Γ
(

C+D−m+1
2

)
Γ(D)

×
m

∑
k=0

(
m
k

) Γ
(

D+k
2

)
Γ
(

C+k−m+1
2

)
(28)

(
m ∈ Z�0, 1

2 (1 + C + D−m) ∈ C \Z�0

)
;

Generalized Kummer third summation theorem (see [59], p. 828, Theorem 5):

2F1

[
C, 1− C + m ;

D ;
1
2

]
=

2m−CΓ(C−m)Γ(D)

Γ(C)Γ(D− C)

×
m

∑
k=0

(−1)k
(

m
k

) Γ
(

D−C+k
2

)
Γ
(

D+C+k
2 −m

) (29)

(m ∈ Z�0, D ∈ C \Z�0);
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Generalized Kummer third summation theorem (see [60], Equation (20)):

2F1

[
C, 1− C−m ;

D ;
1
2

]
=

2−m−CΓ(D)

Γ(D− C)

m

∑
k=0

(
m
k

)Γ
(

D−C+k
2

)
Γ
(

D+C+k
2

) (30)

(m ∈ Z�0, D ∈ C \Z�0),

which is the corrected version of [59], p. 828, Theorem 6.
Lastly, in Section 6, we derive a set of summation theorems with arguments of 1, −1,

1
2 , − 1

4 , − 1
8 , and − 1

16 .

Remark 1. It is intriguing to compare Entries 131 and 132 in ([61], p. 583) with the summation
Formulas (29) and (30).

One can find the specific instances of Equations (29) and (30) in [62] (Equation (6) along with
Table 3) for the values of m equal to 0, 1, 2, 3, 4, and 5.

The numerator parameters −m
2 and −m+1

2 of the 5F4 on the left side of Equation (9) both yield
negative integers if m is even and odd, respectively. The 5F4 and 4F3 on the left and right sides of
Equation (9) exhibit properties of being Saalschützian and nearly poised, respectively.

Wolfram’s MATHEMATICA has implemented the pFq function as hypergeometric PFQ, which
is appropriate for performing both symbolic and numerical computations.

2. Three General Double-Series Identities

This section demonstrates three general double-series identities that involve bounded
sequences by primarily utilizing Whipple transformations (9) and (10).

Theorem 1. Let {Ψ(μ)}∞
μ=0 be a bounded sequence of complex (or real) numbers such that

Ψ(0) �= 0. Additionally, let α + β, γ, δ ∈ C \ Z�0. Then the following general double-series
identity holds true:

∞

∑
m=0

∞

∑
n=0

Ψ(2m + n)
(α)m+n(β)m+n

(
γ+δ−1

2

)
m+n

(
γ+δ

2

)
m+n

(γ)m+n(α + β)m+n(δ)m+n

(−4z2)m(4z)n

m! n!

=
∞

∑
m=0

∞

∑
n=0

Ψ(m + n)
(γ + δ− 1)m+n(α)m(β)m (α)n(β)n

(α + β)m+n(γ)m(δ)n

zm+n

m! n!
,

(31)

provided that both sides of the double series are absolutely convergent.

Proof. Let Ξ1(z) be the left member of (31). By using a double-series manipulation,

∞

∑
m=0

∞

∑
n=0

Φ(m, n) =
∞

∑
n=0

[ n
2 ]

∑
m=0

Φ(m, n− 2m), (32)

where Φ : Z�0 × Z�0 → C is a bounded function, and provided that both sides of the
double series are absolutely convergent, we obtain

Ξ1(z) =
∞

∑
n=0

[ n
2 ]

∑
m=0

Ψ(n)
(α)n−m(β)n−m

(
γ+δ−1

2

)
n−m

(
γ+δ

2

)
n−m

(−1)m 4n−m zn

(γ)n−m(α + β)n−m(δ)n−m m! (n− 2m)!
. (33)

Recall the following Pochhammer symbol identities:

(λ)n−k =
(−1)k (λ)n

(1− λ− n)k
(k = 0, 1, . . . , n). (34)
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Setting λ = 1 in (34) gives

(n− k)! =
(−1)k n!
(−n)k

(k = 0, 1, . . . , n). (35)

Additionally,
(λ)2n = 22n

(
λ
2

)
n

(
λ+1

2

)
n

(n ∈ Z�0). (36)

Using (34)–(36) in (33), and expressing the inner sum in the resultant double series in terms
of pFq in (1), we have

Ξ1(z) =
∞

∑
n=0

Ψ(n)
(α)n(β)n(γ + δ− 1)2nzn

(γ)n(α + β)n(δ)n n!

× 5F4

[
− n

2 , −n+1
2 , 1− γ− n, 1− α− β− n, 1− δ− n;

1− α− n, 1− β− n, 3−δ−γ−2n
2 , 2−δ−γ−2n

2 ;
1

]
.

(37)

Applying Whipple transformation (9) to (37), with the aid of

(λ)m+n = (λ)m (λ + m)n (m, n ∈ Z�0) (38)

and (35), we obtain

Ξ1(z) =
∞

∑
n=0

Ψ(n)
(α)n(β)n(γ + δ− 1)n zn

(α + β)n(δ)n n! 4F3

[ −n, α, β, 1− δ− n;
1− α− n, 1− β− n, γ;

1
]

=
∞

∑
n=0

Ψ(n)
(α)n(β)n(γ + δ− 1)n zn

(α + β)n(δ)n

×
n

∑
m=0

(−1)m (α)m(β)m(1− δ− n)m

(1− α− n)m(1− β− n)m(γ)m m! (n−m)!
.

(39)

Finally, using the following double-series manipulation,

∞

∑
n=0

n

∑
m=0

Φ(m, n) =
∞

∑
n=0

∞

∑
m=0

Φ(m, n + m), (40)

where Φ : Z�0 × Z�0 → C is a bounded function, and provided that both sides of
the double series are absolutely convergent, and (34) on the right-hand side of (39), we
prove (31).

Theorem 2. Let {Ψ(μ)}∞
μ=0 be a bounded sequence of complex (or real) numbers such that

Ψ(0) �= 0. Additionally, let β + δ, γ ∈ C \Z�0. Then the following general double-series identity
holds true:

∞

∑
m=0

∞

∑
n=0

Ψ(2m + n)
(−1)m (α)m+n(β)m(δ)m(γ− α)m

22m (γ)m

(
β+δ

2

)
m

(
β+δ+1

2

)
m

z2m+n

m! n!

=
∞

∑
m=0

∞

∑
n=0

Ψ(m + n)
(γ)m+n(α)m(β)m (α)n(δ)n

(β + δ)m+n(γ)m(γ)n

zm+n

m! n!
,

(41)

provided that both sides of the double series are absolutely convergent.

Proof. Let Ξ2(z) be on the right-hand side of (41). A similar process of the proof of
Theorem 1 with the aid of the identities (32) and (34)–(36) gives

Ξ2(z) =
∞

∑
n=0

Ψ(n)
(α)n zn

n! 5F4

[ n
2 , −n+1

2 , β, δ, γ− α ;

γ, 1− α− n, β+δ
2 , β+δ+1

2 ;
1

]
. (42)
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Applying Whipple transformation (9) to the right-hand side of (42) with the aid of (34)
(k = n), we find

Ξ2(z) =
∞

∑
n=0

Ψ(n)
(α)n(δ)n zn

(δ + β)nn! 4F3

[
−n, α, β, 1− γ− n ;

γ, 1− α− n, 1− δ− n ;
1

]

=
∞

∑
n=0

Ψ(n)
(α)n(δ)n zn

(δ + β)n n!

n

∑
m=0

(−n)m(α)m(β)m(1− γ− n)m

(1− α− n)m(1− δ− n)m(γ)m m!
.

(43)

Employing the double-series manipulation (40) to the last member of (43) and using (34)
and (35) in the resultant expression, we obtain the desired identity (41).

Theorem 3. Let {Ψ(μ)}∞
μ=0 be a bounded sequence of complex (or real) numbers such that

Ψ(0) �= 0. Additionally, let α + λ, α + σ, β + λ, γ ∈ C \ Z�0. Then the following general
double-series identity holds true:

∞

∑
m=0

∞

∑
n=0

Ψ(m + n)
(−1)m (α + β + λ + σ− 1)2m+n(α)m(γ− β)m

(α + σ)m(α + λ)m(γ)m

zm+n

m! n!

=
∞

∑
m=0

∞

∑
n=0

Ψ(m + n)
(α + β + λ + σ− 1)m+n(λ + β)m+n(α + β− γ + σ)m

(γ)m+n(α + λ)m+n(α + σ)m(β + λ)n

× (α)m (γ− α)n (λ)n
zm+n

m! n!
,

(44)

provided that both sides of the double series are absolutely convergent.

Proof. Let Ξ3(z) be the left-hand side of (44). Using the following double-series manipulation,

∞

∑
m=0

∞

∑
n=0

Φ(m, n) =
∞

∑
n=0

n

∑
m=0

Φ(m, n−m), (45)

where Φ : Z�0 × Z�0 → C is a bounded function, and provided that both sides of the
double series are absolutely convergent, we obtain

Ξ3(z) =
∞

∑
n=0

n

∑
m=0

Ψ(n)
(−1)m (α + β + λ + σ− 1)m+n(α)m(γ− β)m zn

(α + σ)m(α + λ)m(γ)m m! (n−m)!
. (46)

Applying (35) and (36) to (46) and denoting the resultant expression in terms of pFq in (1),
we derive

Ξ3(z) =
∞

∑
n=0

Ψ(n)
(α + β + λ + σ− 1)n zn

n!

× 4F3

[ −n, α + β + λ + σ− 1 + n, α, γ− β;
γ, α + λ, α + σ;

1
]

.

(47)

Employing Whipple transformation (10) in (47), we find

Ξ3(z) =
∞

∑
n=0

Ψ(n)
(α + β + λ + σ− 1)n zn

n!
(γ− α)n(λ)n

(α + λ)n(γ)n

× 4F3

[ −n, α, 1− β− λ− n, α + β− γ + σ;
1 + α− γ− n, 1− λ− n, α + σ;

1
]

=
∞

∑
n=0

Ψ(n)
(λ)n(γ− α)n(α + β + λ + σ− 1)n zn

(α + λ)n(γ)n

×
n

∑
m=0

(−n)m(α)m(1− β− λ− n)m(α + β− γ + σ)m

(1 + α− γ− n)m(1− λ− n)m(α + σ)m m!
.

(48)
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Using (35) for (−n)m in the double series in (48) and employing the following double-series
manipulation,

∞

∑
n=0

n

∑
m=0

Φ(m, n) =
∞

∑
m=0

∞

∑
n=0

Φ(m, n + m), (49)

where Φ : Z�0 × Z�0 → C is a bounded function, and provided that both sides of the
double series are absolutely convergent, we prove the desired identity (44).

3. Transforming Srivastava-Daoust Functions to Kampé de Fériet Function

This section establishes three main transformations between the Srivastava–Daoust
function in (6) and Kampé de Fériet function in (3) by utilizing the results in Section 2.

Theorem 4. The following transformation formulas hold true:

FD+4:0;0
E+3:0;0

(
[(dD) : 2, 1], [α : 1, 1], [β : 1, 1], [ γ+δ−1

2 : 1, 1], [ γ+δ
2 : 1, 1] : ; ;

[(eE) : 2, 1], [γ : 1, 1], [α + β : 1, 1], [δ : 1, 1] : ; ;
− 4z2, 4z

)

= FD+1:2;2
E+1:1;1

[
(dD), γ + δ− 1 : α, β; α, β;

(eE), α + β : γ; δ;
z, z
]

; (50)

FD+1:3;0
E:3;0

(
[(dD) : 2, 1], [α : 1, 1] : [β : 1], [δ : 1], [γ− α : 1] ; ;

[(eE) : 2, 1] : [γ : 1], [ β+δ
2 : 1], [ β+δ+1

2 : 1] ; ;
− z2

4 , z
)

= FD+1:2;2
E+1:1;1

[
(dD), γ : α, β; α, δ;

(eE), δ + β : γ; γ;
z, z
]

; (51)

FD+1:2;0
E:3;0

(
[(dD) : 1, 1], [α + β + λ + σ− 1 : 2, 1] : [α : 1], [δ : 1], [γ− β : 1] ; ;

[(eE) : 1, 1] : [α + λ : 1], [α + σ : 1], [γ : 1] ; ;
− z, z

)

= FD+2:2;2
E+2:1;1

[
(dD), α + β + λ + σ− 1, λ + β : α + β− γ + σ, α; λ, γ− α;

(eE), γ, α + λ : α + σ; λ + β;
z, z
]

, (52)

where

z ∈ R>0, �(ξ) > 0; e1, e2, . . . , eE, δ, γ, α + β, α + λ, α + σ, β + δ, β + λ ∈ C \Z�0,

provided that the other constraints for parameters and variable would follow from those in (3) and (6)
so that the identities here are meaningful.

Proof. Setting

Ψ(μ) =
(d1)μ(d2)μ . . . (dD)μ

(e1)μ(e2)μ . . . (eE)μ
=

D
∏
j=1

(dj)μ

E
∏
j=1

(ej)μ

(μ ∈ Z�0)
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on both sides of the general double-series identity (31), we obtain

∞

∑
m=0

∞

∑
n=0

D
∏
j=1

(dj)2m+n(α)m+n(β)m+n

(
γ+δ−1

2

)
m+n

(
γ+δ

2

)
m+n

(−4z2)m (4z)n

E
∏
j=1

(ej)2m+n(γ)m+n(α + β)m+n(δ)m+n m! n!

=
∞

∑
m=0

∞

∑
n=0

D
∏
j=1

(dj)m+n(γ + δ− 1)m+n(α)m(β)m (α)n(β)n zm+n

E
∏
j=1

(ej)m+n(α + β)m+n(γ)m(δ)n m! n!
,

which, upon expressing in terms of the Srivastava–Daoust function (6) for its left side and
Kampé de Fériet function (3) for its right side, leads to (50).

Likewise, identities (51) and (52) can be demonstrated, but specific details have been
omitted.

4. Application of Fractional Calculus

This section demonstrates that the identities presented in Sections 2 and 3 can be
converted into one another by employing the Riemann–Liouville fractional integrals. To do
this, recall the left-sided Riemann–Liouville fractional integral and its related formula (see,
e.g., [63], Equations (2.2.1) and (2.2.10), respectively):(

Iξ
0+ f
)
(z) :=

1
Γ(ξ)

∫ z

0

f (t)
(z− t)1−ξ

dt (z ∈ R>0; �(ξ) > 0), (53)

and (
Iξ
0+tη−1

)
(z) =

Γ(η)
Γ(η + ξ)

zη+ξ−1 (z ∈ R>0; �(ξ) > 0, �(η) > 0). (54)

Replacing z by t in the identities in Theorems 1–3, and applying the left-sided Riemann-
Liouville fractional integral (53) to both sides of the resultant identities, with the aid of (54),
we obtain the following identities, respectively. Here, we provide only a detailed proof of
Theorem 5.

Theorem 5. Let {Ψ(μ)}∞
μ=0 be a bounded sequence of complex (or real) numbers such that

Ψ(0) �= 0. Additionally, let α + β, γ, δ ∈ C \ Z�0; z ∈ R>0, �(ξ) > 0. Then the following
general double-series identity holds true:

∞

∑
m=0

∞

∑
n=0

Ψ(2m + n)
(1)2m+n (α)m+n(β)m+n

(
γ+δ−1

2

)
m+n

(
γ+δ

2

)
m+n

(ξ + 1)2m+n (γ)m+n(α + β)m+n(δ)m+n

(−4z2)m(4z)n

m! n!

=
∞

∑
m=0

∞

∑
n=0

Ψ(m + n)
(1)m+n (γ + δ− 1)m+n(α)m(β)m (α)n(β)n

(ξ + 1)m+n (α + β)m+n(γ)m(δ)n

zm+n

m! n!
,

(55)

provided that both sides of the double series are absolutely convergent.

Proof. Replacing z by t in (31), we obtain

∞

∑
m=0

∞

∑
n=0

Ψ(2m + n)
(α)m+n(β)m+n

(
γ+δ−1

2

)
m+n

(
γ+δ

2

)
m+n

(γ)m+n(α + β)m+n(δ)m+n

(−4)m4n t2m+n

m! n!

=
∞

∑
m=0

∞

∑
n=0

Ψ(m + n)
(γ + δ− 1)m+n(α)m(β)m (α)n(β)n

(α + β)m+n(γ)m(δ)n

tm+n

m! n!
.

(56)
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Applying the left-sided Riemann-Liouville fractional integral (53) to both sides of (56),
we find

∞

∑
m=0

∞

∑
n=0

Ψ(2m + n)
(α)m+n(β)m+n

(
γ+δ−1

2

)
m+n

(
γ+δ

2

)
m+n

(γ)m+n(α + β)m+n(δ)m+n

(−4)m4n
(

Iξ
0+t2m+n

)
(z)

m! n!

=
∞

∑
m=0

∞

∑
n=0

Ψ(m + n)
(γ + δ− 1)m+n(α)m(β)m (α)n(β)n

(α + β)m+n(γ)m(δ)n

(
Iξ
0+tm+n

)
(z)

m! n!
.

(57)

Using (54) in (57), we derive

∞

∑
m=0

∞

∑
n=0

Ψ(2m + n)
(α)m+n(β)m+n

(
γ+δ−1

2

)
m+n

(
γ+δ

2

)
m+n

(γ)m+n(α + β)m+n(δ)m+n

(−4)m4n z2m+n+ξ Γ(2m + n + 1)
m! n! Γ(2m + n + 1 + ξ)

=
∞

∑
m=0

∞

∑
n=0

Ψ(m + n)
(γ + δ− 1)m+n(α)m(β)m (α)n(β)n

(α + β)m+n(γ)m(δ)n

Γ(m + n + 1) zm+n+ξ

Γ(m + n + 1 + ξ)m! n!
.

(58)

Dividing both sides of (58) by zξ and using (2) in the resultant identity, we obtain the
desired identity (55).

Theorem 6. Let {Ψ(μ)}∞
μ=0 be a bounded sequence of complex (or real) numbers such that

Ψ(0) �= 0. Additionally, let β + δ, γ ∈ C \Z�0; z ∈ R>0, �(ξ) > 0. Then the following general
double-series identity holds true:

∞

∑
m=0

∞

∑
n=0

Ψ(2m + n)
(−1)m (1)2m+n (α)m+n(β)m(δ)m(γ− α)m

22m (ξ + 1)2m+n (γ)m

(
β+δ

2

)
m

(
β+δ+1

2

)
m

z2m+n

m! n!

=
∞

∑
m=0

∞

∑
n=0

Ψ(m + n)
(1)m+n (γ)m+n(α)m(β)m (α)n(δ)n

(ξ + 1)m+n (β + δ)m+n(γ)m(γ)n

zm+n

m! n!
,

(59)

provided that both sides of the double series are absolutely convergent.

Theorem 7. Let {Ψ(μ)}∞
μ=0 be a bounded sequence of complex (or real) numbers such that

Ψ(0) �= 0. Additionally, let α + λ, α + σ, β + λ, γ ∈ C \ Z�0; z ∈ R>0, �(ξ) > 0. Then the
following general double-series identity holds true:

∞

∑
m=0

∞

∑
n=0

Ψ(m + n)
(−1)m (1)m+n (α + β + λ + σ− 1)2m+n(α)m(γ− β)m

(ξ + 1)m+n (α + σ)m(α + λ)m(γ)m

zm+n

m! n!

=
∞

∑
m=0

∞

∑
n=0

Ψ(m + n)
(1)m+n (α + β + λ + σ− 1)m+n(λ + β)m+n(α + β− γ + σ)m

(ξ + 1)m+n (γ)m+n(α + λ)m+n(α + σ)m(β + λ)n

× (α)m (γ− α)n (λ)n
zm+n

m! n!
,

(60)

provided that both sides of the double series are absolutely convergent.

By employing the identical procedure used to derive the identities in Theorem 4, we
extend our analysis to the outcomes presented in Theorems 5–7, leading to the subse-
quent theorem.

Theorem 8. The following transformation formulas hold true:

FD+5:0;0
E+4:0;0

(
[(dD) : 2, 1], [1 : 2, 1], [α : 1, 1], [β : 1, 1], [ γ+δ−1

2 : 1, 1], [ γ+δ
2 : 1, 1] : ; ;

[ξ + 1 : 2, 1], [(eE) : 2, 1], [γ : 1, 1], [α + β : 1, 1], [δ : 1, 1] : ; ;
− 4z2, 4z

)
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= FD+2:2;2
E+2:1;1

[
(dD), 1, γ + δ− 1 : α, β; α, β;
ξ + 1, (eE), α + β : γ; δ;

z, z
]

; (61)

FD+2:3;0
E+1:3;0

(
[(dD) : 2, 1], [1 : 2, 1], [α : 1, 1] : [β : 1], [δ : 1], [γ− α : 1] ; ;

[ξ + 1 : 2, 1], [(eE) : 2, 1] : [γ : 1], [ β+δ
2 : 1], [ β+δ+1

2 : 1] ; ;
− z2

4 , z
)

= FD+2:2;2
E+2:1;1

[
(dD), 1, γ : α, β; α, δ;

ξ + 1, (eE), δ + β : γ; γ;
z, z
]

; (62)

FD+2:3;0
E+1:3;0

(
[(dD) : 1, 1], [1 : 1, 1], [α + β + λ + σ− 1 : 2, 1] : [α : 1], [δ : 1], [γ− β : 1] ; ;

[ξ + 1 : 1, 1], [(eE) : 1, 1] : [α + λ : 1], [α + σ : 1], [γ : 1] ; ;
− z, z

)

= FD+3:2;2
E+3:1;1

[
(dD), 1, α + β + λ + σ− 1, λ + β : α + β− γ + σ, α; λ, γ− α;

ξ + 1, (eE), γ, α + λ : α + σ; λ + β;
z, z
]

, (63)

where

z ∈ R>0, �(ξ) > 0; e1, e2, . . . , eE, δ, γ, α + β, α + λ, α + σ, β + δ, β + λ ∈ C \Z�0,

provided that the other constraints for parameters and variable would follow from those in (3) and (6)
so that the identities here are meaningful.

5. Certain Instances of Transformations (50)–(52)

This section demonstrates that certain special cases of transformations (50)–(52) result
in the Bailey quadratic transformation, Clausen reduction formula, Gauss quadratic trans-
formation, Karlsson reduction formula, Orr reduction formula, Whipple quadratic transfor-
mation, and several new transformations, which are given in the following examples.

Example 1. Putting D = E = 0 and δ = α + β− γ + 1 in (50) and using the double-series
manipulation (see, e.g., [64], p. 4, Equation (12))

∞

∑
m,n=0

Φ(m + n)
xmyn

m! n!
=

∞

∑
p=0

Φ(p)
(x + y)p

p!
, (64)

where Φ : Z�0 → C is a bounded function, and provided that both sides of the series are absolutely
convergent, we obtain a product formula for pFq:

4F3

[
α, β, α+β

2 , α+β+1
2 ;

γ, α + β, α + β− γ + 1;
4z(1− z)

]

= 2F1

[
α, β;

γ;
z
]

2F1

[
α, β;

α + β− γ + 1;
z
] (65)

(α + β, α + β− γ + 1, γ ∈ C \Z�0; |z| < 1, 4|z(1− z)| < 1).

Identity (65) is due to Bailey ([56], p. 382, Equation (6.1)) (see also ([4], p. 275, Prob. 8)).
Setting γ = α+β+1

2 in (65) and replacing α and β by 2α and 2β gives a formula for the square
of 2F1:

3F2

[
2α, 2β, α + β;

2α + 2β, α + β + 1
2 ;

4z(1− z)
]
=

{
2F1

[
2α, 2β;

α + β + 1
2 ;

z
]}2

, (66)

which, upon using Gauss transformation Formula (17), yields

3F2

[
2α, 2β, α + β;

2α + 2β, α + β + 1
2 ;

4z(1− z)
]
=

{
2F1

[
α, β;

α + β + 1
2 ;

4z(1− z)
]}2

. (67)
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Replacing 4z(1− z) by z in (67) yields the well-known Clausen formula in [65] (see, e.g., [2], p. 86,
Equation (4), [50], p. 75, Equation (2.5.7)).

Putting α = a, β = δ = b, and γ = a + b + 1
2 in (88), and using the procedure illustrated in

Example 13, we also acquire the Clausen formula.

Example 2. Putting D = E = 0 and γ = δ = α in (50) and using (64), we obtain

F1:1;1
1:0;0

[
2α− 1 : β ; β ;
α + β : ; ;

z, z
]
= 2F1

[
α− 1

2 , β;
α + β;

4z(1− z)
]

(68)

(α + β ∈ C \Z�0; |z| < 1, 4|z(1− z)| < 1).

Applying the reduction Formula (21) to the left-hand side of (68), we obtain

2F1

[
2α− 1, 2β ;

α + β;
z
]
= 2F1

[
α− 1

2 , β;
α + β;

4z(1− z)
]

(69)

(α + β ∈ C \Z�0; |z| < 1, 4|z(1− z)| < 1),

which, upon replacing α by α + 1
2 , corresponds to Gauss transformation Formula (17).

Example 3. Putting D = E = 0 and γ = α δ = β in (50) and using (64) gives the first equality
of the identity

F1:1;1
1:0;0

[
α + β− 1 : β ; α ;

α + β : ; ;
z, z
]
= 2F1

[
α+β−1

2 , α+β
2 ;

α + β;
4z(1− z)

]
= (1− z)1−α−β

(70)

(α + β ∈ C \Z�0; |z| < 1, 4|z(1− z)| < 1).

Applying the reduction Formula (21) to the leftmost member of (70) yields the second equality
of (70). Interestingly, the identity where β = α + 1 in [48] (Equation (2.10)) is equivalent to the
second equality of (70).

Example 4. Putting D = E = 0 and δ = 2α + 2β− γ + 1 in (50) and using (64), we acquire a
reduction formula for the Kampé de Fériet function in (3):

F1:2;2
1:1;1

[
2α + 2β : α, β; α, β;

α + β : γ; 2α + 2β− γ + 1;
z, z
]

= 3F2

[
α, β, α + β + 1

2 ;
γ, 2α + 2β− γ + 1;

4z(1− z)
] (71)

(α + β, γ, 2α + 2β− γ + 1 ∈ C \Z�0; |z| < 1, 4|z(1− z)| < 1).

Example 5. Putting D = E = 0 and γ = β in (50) and using (64), we attain a reduction formula
for the Kampé de Fériet function in (3):

F1:1;2
1:0;1

[
β + δ− 1 : α; α, β;

α + β : ; δ;
z, z
]
= 3F2

[
α, β+δ

2 , β+δ−1
2 ;

α + β, δ;
4z(1− z)

]
(72)

(α + β, δ ∈ C \Z�0; |z| < 1, 4|z(1− z)| < 1).

Setting δ = α in (72) leads to identity (70).
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Example 6. Putting D = E = 0 and δ = γ + 1 in (50) and using (64), we gain a reduction
formula for the Kampé de Fériet function in (3):

F1:2;2
1:1;1

[ 2γ : α, β; α, β;
α + β : γ; γ + 1;

z, z
]
= 3F2

[ α, β, γ + 1
2 ;

α + β, γ + 1;
4z(1− z)

]
(73)

(α + β, γ ∈ C \Z�0; |z| < 1, 4|z(1− z)| < 1).

Setting γ = α + β − 1
2 in (73) and using a particular case (Table 3, 1a) of the known

general reduction formula Fp:2;2
q:1;1 [z, z] = p+3Fq+2[z] in [30], Equation (3.2), we derive the following

transformation formula:

3F2

[ 2α, 2β, 2α + β− 1;
α + β + 1

2 , 2α + 2β− 1;
z
]
= 2F1

[ α, β;
α + β + 1

2 ;
4z(1− z)

]
(74)

(
α + β + 1

2 , 2α + 2β− 1 ∈ C \Z�0; |z| < 1, 4|z(1− z)| < 1
)

.

Example 7. Putting D = E = 0 and δ = γ− β and using the binomial theorem (11), we obtain a
product formula of 2F1’s:

(1− z)−α
4F3

[ α, β, γ− α, γ− β;
γ, γ

2 , γ+1
2 ;

−z2

4(1−z)

]
= 2F1

[ α, β;
γ;

z
]

2F1

[ α, γ− β;
γ;

z
] (75)

(
γ ∈ C \Z�0; |z| < 1, |z|2/{4|1− z|} < 1

)
,

which is a known formula due to Bailey [56], p. 382, Equation (6.3).
Applying Pfaff–Kummer transformation Formula (13) to the second 2F1 on the right-hand side

of (75), we obtain a product formula of 2F1’s:

4F3

[ α, β, γ− α, γ− β;
γ, γ

2 , γ+1
2 ;

−z2

4(1−z)

]
= 2F1

[ α, β;
γ;

z
]

2F1

[ α, β;
γ;

−z
1−z

] (76)

(
γ ∈ C \Z�0; |z| < 1, |z|2/{4|1− z|} < 1, |z|/|1− z| < 1

)
,

which is another known formula due to Bailey [56], p. 383, Equation (7.2).

Example 8. Putting D = E = 0 and γ = β in (51) and using the binomial theorem (11), we
deduce a reduction formula for the Kampé de Fériet function in (3):

F1:1;2
1:0;1

[
β : α; α, δ;

β + δ : ; β;
z, z
]
= (1− z)−α

3F2

[
α, β− α, δ;

β+δ
2 , β+δ+1

2 ;
−z2

4(1−z)

]
(77)

(
β, β + δ ∈ C \Z�0; |z| < 1, |z|2/{4|1− z|} < 1, | arg(1− z)| < π

)
.

Setting δ = β− 2α in (77) and, via (5), using (22) in the resultant identity, we obtain a transfor-
mation formula for 2F1:

2F1

[ 2α, β− α;
2β− 2α;

z
]
= (1− z)−α

2F1

[ α, β− 2α;
β− α + 1

2 ;
−z2

4(1−z)

]
(78)

(
2β− 2α, β− α + 1

2 ∈ C \Z�0; |z| < 1, |z|2/{4|1− z|} < 1, | arg(1− z)| < π
)

,
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which is a particular case of Bailey transformation Formula (16).
In view of (4), the reduction Formula (77) equals

F1:2;1
1:1;0

[
β : α, δ; α;

β + δ : β; ;
z, z
]
= (1− z)−α

3F2

[
α, β− α, δ;

β+δ
2 , β+δ+1

2 ;
−z2

4(1−z)

]
(79)

(
β, β + δ ∈ C \Z�0; |z| < 1, |z|2/{4|1− z|} < 1, | arg(1− z)| < π

)
,

which is interesting to compare with the following known formula (see [27], Equation (2.2)):

F1:2;1
1:1;0

[
α : β− ε, γ; ε;
β : δ; ;

z, z
]
= (1− z)−α

3F2

[
α, β− ε, δ− ε;

β, δ;
−z

1−z

]
(80)

(β, δ ∈ C \Z�0; |z| < 1, |z|/|1− z| < 1, | arg(1− z)| < π).

Example 9. Putting D = E = 0 and δ = β in (51) and using the binomial theorem (11), we
obtain a reduction formula for the Kampé de Fériet function in (3):

F1:2;2
1:1;1

[
γ : α, β; α, β;

2β : γ; γ;
z, z
]
= (1− z)−α

3F2

[
α, γ− α, β;

γ, β + 1
2 ;

−z2

4(1−z)

]
(81)

(
2β, β + 1

2 , γ ∈ C \Z�0; |z| < 1, |z|2/{4|1− z|} < 1, | arg(1− z)| < π
)

.

Setting γ = β in (81) and the reduction formula of the Kampé de Fériet function (21) to the
right-hand side of transformation (81) gives Bailey transformation Formula (16).

Additionally, as in obtaining (74), setting γ = α + β + 1
2 in (81), and using a particular case

(Table 3, 1e) of the known general reduction formula ([30], Equation (3.2)), we obtain the following
transformation formula:

2F1

[ 2α, α + β;
2α + 2β;

z
]
= (1− z)−α

2F1

[ α, β;
α + β + 1

2 ;
−z2

4(1−z)

]
(82)

(
α + β + 1

2 , 2α + 2β ∈ C \Z�0; |z| < 1, |z|2/{4|1− z|} < 1, | arg(1− z)| < π
)

.

Example 10. Putting D = E = 0 and δ = 2γ− 2α− β and using the binomial theorem (11), we
attain a reduction formula for the Kampé de Fériet function in (3):

F1:2;2
1:1;1

[
γ : α, β; α, 2γ− 2α− β;

2γ− 2α : γ; γ;
z, z
]

= (1− z)−α
3F2

[
α, β, 2γ− 2α− β;

γ, γ− α + 1
2 ;

−z2

4(1−z)

] (83)

(
2γ− 2α, γ− α + 1

2 , γ ∈ C \Z�0; |z| < 1, |z|2/{4|1− z|} < 1, | arg(1− z)| < π
)

.

Example 11. Putting D = E = 0 and δ = β− 1 in (51) and using the binomial theorem (11), we
acquire a reduction formula for the Kampé de Fériet function in (3):

F1:2;2
1:1;1

[
γ : α, β; α, β− 1;

2β− 1 : γ; γ;
z, z
]

= (1− z)−α
3F2

[
α, β− 1, γ− α;

γ, β− 1
2 ;

−z2

4(1−z)

] (84)

(
β− 1

2 , γ ∈ C \Z�0; |z| < 1, |z|2/{4|1− z|} < 1, | arg(1− z)| < π
)

.
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Setting γ = 2β− 1 in (84) and using the reduction Formula (20), we obtain a product formula
for 2F1’s:

(1− z)−α
3F2

[ α, β− 1, 2β− α− 1;
2β− 1, β− 1

2 ;
−z2

4(1−z)

]
= 2F1

[ α, β;
2β− 1;

z
]

2F1

[ α, β− 1;
2β− 1;

z
] (85)

(
β− 1

2 ∈ C \Z�0; |z| < 1, |z|2/{4|1− z|} < 1, | arg(1− z)| < π
)

.

Example 12. Putting D = E = 0 and δ = 2γ − 2α − β − 1 in (51) and using the binomial
theorem (11), we gain a reduction formula for the Kampé de Fériet function in (3):

F1:2;2
1:1;1

[
γ : α, β; α, 2γ− 2α− β− 1;

2γ− 2α− 1 : γ; γ;
z, z
]

= (1− z)−α
3F2

[
α, β, 2γ− 2α− β− 1;

γ, γ− α− 1
2 ;

−z2

4(1−z)

] (86)

(
γ, γ− α− 1

2 ∈ C \Z�0; |z| < 1, |z|2/{4|1− z|} < 1, | arg(1− z)| < π
)

.

Setting γ = 2α + 1 in (86) and using the reduction Formula (20), we deduce a product
formula for 2F1’s:

(1− z)−α
3F2

[ α, β, 2α− β + 1;
2α + 1, α + 1

2 ;
−z2

4(1−z)

]
= 2F1

[ α, β;
2α + 1;

z
]

2F1

[ α, 2α− β + 1;
2α + 1;

z
] (87)

(
α + 1

2 ∈ C \Z�0; |z| < 1, |z|2/{4|1− z|} < 1, | arg(1− z)| < π
)

.

Example 13. Putting D = E = 1, d1 = δ + β, and e1 = γ in (51) and using the reduction
Formula (20), we obtain a reduction formula for the Srivastava–Daoust function in (6):

F2:3;0
1:3;0

(
[δ + β : 2, 1], [α : 1, 1] : [β : 1], [δ : 1], [γ− α : 1]; ;

[γ : 2, 1] : [γ : 1], [ β+δ
2 : 1], [ β+δ+1

2 : 1]; ;
− z2

4 , z

)

= 2F1

[ α, β;
γ;

z
]

2F1

[ α, δ;
γ;

z
]
.

(88)

Setting α = a, β = b, δ = b− 1, and γ = a + b− 1
2 in (88) gives

∞

∑
n=0

∞

∑
m=0

(2b− 1)2m+n(a)m+n(b− 1)m(−1)m(z)2m+n(
a + b− 1

2

)
2m+n

(
a + b− 1

2

)
m
(4)mm!n!

= 2F1

[ a, b;
a + b− 1

2 ;
z
]

2F1

[ a, b− 1;
a + b− 1

2 ;
z
]
,

which, upon utilizing the double-series manipulation (32) and then the Pochhammer symbol
identity (34), yields

∞

∑
n=0

(2b− 1)n(a)n(z)n(
a + b− 1

2

)
n
n!

3F2

[ − n
2 , −n+1

2 , b− 1;
a + b− 1

2 , 1− a− n;
1
]

= 2F1

[ a, b;
a + b− 1

2 ;
z
]

2F1

[ a, b− 1;
a + b− 1

2 ;
z
]
.

(89)
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Applying the summation theorem for 3F2(1) (24) to the 3F2(1) in (89), we attain a product formula
for 2F1’s:

3F2

[
2a, 2b− 1, a + b− 1;

2a + 2b− 2, a + b− 1
2 ;

z
]
= 2F1

[ a, b;
a + b− 1

2 ;
z
]

2F1

[ a, b− 1;
a + b− 1

2 ;
z
]

(90)

(
2a + 2b− 2, a + b− 1

2 ∈ C \Z�0; |z| < 1
)

,

which is due to Orr [66] (see also [50], p. 77, Equation (2.5.13)).

Example 14. Putting α = a + 1
2 , β = b − 1

2 , δ = b + 1
2 , and γ = a + b + 1

2 in (88) and
performing the identical procedure as demonstrated in Example 13, we arrive at a known formula
(see [30], p. 34, Table 3(Id)):

3F2

[
2a, 2b + 1, a + b;

2a + 2b, a + b + 1
2 ;

z
]
= 2F1

[ a + 1
2 , b− 1

2 ;
a + b + 1

2 ;
z
]

2F1

[ a + 1
2 , b + 1

2 ;
a + b + 1

2 ;
z
]

(91)

(
2a + 2b, a + b + 1

2 ∈ C \Z�0; |z| < 1
)

.

Example 15. Putting α = b, β = a + 1, δ = a, and γ = a + b + 1
2 in (88) and following the

same procedure shown in Example 13, we obtain a known formula (see [30], p. 34, Table 3(Ic)):

3F2

[
2b, 2a + 1, a + b;

2a + 2b, a + b + 1
2 ;

z
]
= 2F1

[ a + 1, b;
a + b + 1

2 ;
z
]

2F1

[ a, b;
a + b + 1

2 ;
z
]

(92)

(
2a + 2b, a + b + 1

2 ∈ C \Z�0; |z| < 1
)

.

Example 16. Putting D = E = 0, β = α, and γ = 2α + λ + σ − 1 in (52) and using the
binomial theorem (11), we attain a product formula for 2F1’s:

(1− z)1−2α−λ−σ
4F3

[
α, α + λ + σ− 1, 2α+λ+σ−1

2 , 2α+λ+σ
2 ;

α + σ, α + λ, 2α + λ + σ− 1;
−4z

(1−z)2

]
= 2F1

[ 1− λ, α;
α + σ;

z
]

2F1

[ λ, α + λ + σ− 1;
α + λ;

z
] (93)

(
α + σ, α + λ, 2α + λ + σ− 1 ∈ C \Z�0;

|z| < 1, |z|2/{4|1− z|} < 1, | arg(1− z)| < π
)
.

Example 17. Putting D = E = 0, γ = λ + β, and σ = 1 − β and using the binomial
theorem (11), we obtain a product formula for 2F1’s:

(1− z)−α−λ
4F3

[
α, λ, α+λ

2 , α+λ+1
2 ;

α− β + 1, α + λ, β + λ;
−4z

(1−z)2

]
= 2F1

[ α, α− λ− β + 1;
α− β + 1;

z
]

2F1

[ λ, β− α + λ;
β + λ;

z
] (94)

(
α− β + 1, α + λ, β + λ ∈ C \Z�0;

|z| < 1, |z|2/{4|1− z|} < 1, | arg(1− z)| < π
)
.
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Setting λ = γ− β in (94) and utilizing Euler transformation (12) in the 2F1 on the resultant
identity, we obtain a product formula for 2F1’s due to Bailey [56], p. 383, Equation (7.4):

(1− z)β−α−γ
4F3

[
α, γ− β, α+γ−β

2 , α+γ−β+1
2 ;

α− β + 1, α + γ− β, γ;
−4z

(1−z)2

]

= 2F1

[ α, β;
γ;

z
]

2F1

[ 1− β, γ− β;
α− β + 1;

z
] (95)

(
γ, α− β + 1, α + γ− β ∈ C \Z�0;

|z| < 1, |z|2/{4|1− z|} < 1, | arg(1− z)| < π
)
.

Example 18. Putting D = E = 0 and β = α in (52) and using the binomial theorem (11), we
acquire a reduction formula:

F1:2;2
1:1;1

[
2α + λ + σ− 1 : α, 2α− γ + σ; λ, γ− α;

γ : α + σ; α + λ;
z, z
]

= (1− z)1−2α−λ−σ
4F3

[
α, γ− α, 2α+λ+σ−1

2 , 2α+λ+σ
2 ;

α + λ, α + σ, γ;
−4z

(1−z)2

] (96)

(
γ, α + σ, α + λ ∈ C \Z�0; |z| < 1, |z|2/{4|1− z|} < 1, | arg(1− z)| < π

)
.

Example 19. Putting D = E = 0 and γ = α+ β+ λ in (52) and using the binomial theorem (11),
we gain a reduction formula:

F2:2;1
2:1;0

[
α + β + λ + σ− 1, λ + β : α, σ− λ; λ;

α + β + λ , α + λ : α + σ; ;
z, z
]

= (1− z)1−α−β−λ−σ
3F2

[
α, α+β+λ+σ−1

2 , α+β+λ+σ
2 ;

α + β + λ, α + σ;
−4z

(1−z)2

] (97)

(
α + β + λ, α + λ, α + σ ∈ C \Z�0;

|z| < 1, |z|2/{4|1− z|} < 1, | arg(1− z)| < π
)
.

Applying the reduction Formula (22) to the left-hand side of (97), we obtain a transformation
formula for 3F2:

(1− z)1−α−β−λ−σ
3F2

[
α, α+β+λ+σ−1

2 , α+β+λ+σ
2 ;

α + β + λ, α + σ;
−4z

(1−z)2

]

= 3F2

[
λ + β, α + β + λ + σ− 1, σ;

α + β + λ, α + σ;
z
] (98)

(
α + β + λ, α + σ ∈ C \Z�0;

|z| < 1, |z|2/{4|1− z|} < 1, | arg(1− z)| < π
)
,

which is a transformation formula of the type in (8) due to Whipple.

Example 20. Putting D = E = 0 and σ = γ− α− β− λ + 1 in (52) and using the binomial
theorem (11), we deduce a reduction formula:

F1:2;2
1:1;1

[
β + λ : α, 1− λ; λ, γ− α;
α + λ : γ− β− λ + 1; β + λ;

z, z
]

= (1− z)−γ
4F3

[
α, γ

2 , γ+1
2 , γ− β;

α + λ, γ− β− λ + 1, γ;
−4z

(1−z)2

] (99)
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(
α + λ, γ− β− λ + 1, γ, β + λ ∈ C \Z�0;

|z| < 1, |z|2/{4|1− z|} < 1, | arg(1− z)| < π
)
.

Example 21. Additionally, we can derive numerous reduction and transformation formulas by
specializing the parameters in (52). For instance,

(i) Putting (D = E = 0, λ = γ− β) or (D = E = 0, σ = 1− β) in (52) and using the binomial
theorem (11), we can derive reduction formulas for F1:2;2

1:1;1 of the similar type in (99).
(ii) Putting (D = E = 0, σ = 0) or (D = E = 0, β = 0) or (D = E = 0, λ = 0) or (D = E = 0,

γ = α) in (52) and using the binomial theorem (11) and the reduction Formula (22), we can
attain certain transformation formulas of the type (8) due to Whipple.

Example 22. (i) It is interesting to recall a transformation formula for the Kampé de Fériet
function (see [67], Equation (3.3)):

F1:2;2
1:1;1

[ b : a, c; a′, c′;
c + c′ : b; b;

x, y
]

= (1− x)−a (1− y)−a′F1:2;2
1:1;1

[ b : a, c; a′, c′;
c + c′ : b; b;

x
1−x , y

1−y

]
,

(100)

which can be used to provide some suitably altered formulas of (71), (73), (81), (83), (84), (86),
(96), and (99). Additionally, Karlsson [46] (see also [30,47], [68], Equation (15)) presented a
reduction formula from Fp:2;...;2

q:1;...;1 with equal variables and two more parameters per variable
having certain relations to a single variable p+2Fq+1.

(ii) Liu and Wang provided a number of reduction formulas for F1:1;2
1:0;1 [z, z] in [48] (Equations (2.4),

(2.11), (2.12), (2.13)), which are found to be distinct from (72) and (77).

6. Summation Formulas for Kampé de Fériet and p+1Fp

This section demonstrates specific general summation formulas for the Kampé de
Fériet and p+1Fp with specified parameters and arguments 1, −1, 1

2 , − 1
4 , − 1

8 , and − 1
16 ,

among many others.
Instance 1. Putting α = a, β = b, γ = a+b+j+1

2 , and z = 1
2 in (65) and using (27)

and (28), we obtain the following general summation formula for 4F3(1):

4F3

[
a, b, a+b

2 , a+b+1
2 ;

a + b, a+b+j+1
2 , a+b−j+1

2 ;
1

]
=

⎧⎨⎩2b−1Γ
(

a+b+j+1
2

)
Γ
(

a−b−j+1
2

)
Γ(b)Γ

(
a−b+j+1

2

)
×

j

∑
r=0

(−1)r
(

j
r

) Γ
(

b+r
2

)
Γ
(

a+r−j+1
2

)
⎫⎬⎭
⎧⎨⎩2b−1Γ

(
a+b−j+1

2

)
Γ(b)

j

∑
r=0

(
j
r

) Γ
(

b+r
2

)
Γ
(

a+r−j+1
2

)
⎫⎬⎭,

(101)

where j ∈ Z�0.
Instance 2. Putting α = a, β = 1− a + j, γ = b, and z = 1

2 in (65) and using (29), we gain

4F3

[
a, 1− a + j, 1+j

2 , 2+j
2 ;

b, 1 + j, 2 + j− b;
1

]

=

⎧⎨⎩2j−aΓ(a− j)Γ(b)
Γ(a)Γ(b− a)

j

∑
r=0

(−1)r
(

j
r

) Γ
(

b−a+r
2

)
Γ
(

b+a+r
2 − j

)
⎫⎬⎭

×

⎧⎨⎩2j−aΓ(a− j)Γ(2 + j− b)
Γ(a)Γ(2 + j− b− a)

j

∑
r=0

(−1)r
(

j
r

) Γ
(

2+j−b−a+r
2

)
Γ
(

2+j−b+a+r
2 − i

)
⎫⎬⎭,

(102)

where j ∈ Z�0.
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Instance 3. Putting α = a, β = 1− a + j, γ = 2a − j + k, and z = −1 in (76) and
using (25) and (29), we attain

4F3

[
a, 1− a + j, a− j + k, 3a− 2j + k− 1;

2a− j + k, 2a−j+k
2 , 1+2a−j+k

2 ;
− 1

8

]
=

{
2k−2+2a−2j

Γ(1− a + j)

× Γ(1− a + j− k)Γ(2a− j + k)
Γ(3a− 2j + k− 1)

k

∑
r=0

(−1)r
(

k
r

)Γ
(

a+r+k+1
2 − 1 + a− j

)
Γ
(

a+r−k+1
2

) }

×
{

2j−aΓ(a− j)Γ(2a− j + k)
Γ(a)Γ(a− j + k)

j

∑
r=0

(−1)r
(

j
r

) Γ
(

a−j+r+k
2

)
Γ
(

3a−j+r+k
2 − j

)},

(103)

where j, k ∈ Z�0.
Instance 4. Putting α = a, β = 1 − a − j, γ = 2a + j + i, and z = −1 in (76) and

using (25) and (30), we acquire

4F3

[
a, 1− a− j, a + j + k, 3a + 2j + k− 1;

2a + j + k, 2a+j+k
2 , 1+2a+j+k

2 ;
− 1

8

]
=

{
2k−2+2a+2j

Γ(1− a− j)

× Γ(1− a− j− k)Γ(2a + j + k)
Γ(3a + 2j + k− 1)

k

∑
r=0

(−1)r
(

k
r

)Γ
(

a+r+k+1
2 − 1 + a + j

)
Γ
(

a+r−k+1
2

) }

×
{

2−j−a Γ(2a + j + k)
Γ(a + j + k)

j

∑
r=0

(
j
r

) Γ
(

a+j+r+k
2

)
Γ
(

3a+j+r+k
2

)},

(104)

where j, k ∈ Z�0.
Instance 5. Putting α = a, β = 1− a + j, γ = 2a − j − k, and z = −1 in (76) and

using (26) and (29), we derive

4F3

[
a, 1− a + j, a− j− k, 3a− 2j− k− 1;

2a− j− k, 2a−j−k
2 , 1+2a−j−k

2 ;
− 1

8

]

=

{
2−k−2+2a−2j Γ(2a− j− k)

Γ(3a− 2j− k− 1)

k

∑
r=0

(
k
r

)Γ
(

a+r−k+1
2 − 1 + a− j

)
Γ
(

a+r−k+1
2

) }

×
{

2j−aΓ(a− j) Γ(2a− j− k)
Γ(a− j− k) Γ(a)

j

∑
r=0

(−1)r
(

j
r

) Γ
(

a−j+r−k
2

)
Γ
(

3a−j+r−k
2 − j

)},

(105)

where j, k ∈ Z�0.
Instance 6. Putting α = a, β = 1− a − j, γ = 2a + j − k, and z = −1 in (76) and

using (26) and (30), we obtain

4F3

[
a, 1− a− j, a + j− k, 3a + 2j− k− 1;

2a + j− k, 2a+j−k
2 , 1+2a+j−k

2 ;
− 1

8

]

=

{
2−k−2+2a+2jΓ(2a + j− k)

Γ(−1 + 3a + 2j− k)

k

∑
r=0

(
k
r

)Γ
(

a+r−k+1
2 − 1 + a + j

)
Γ
(

a+r−k+1
2

) }

×
{

2−j−a Γ(2a + j− k)
Γ(a + j− k)

j

∑
r=0

(
j
r

) Γ
(

a+j+r−k
2

)
Γ
(

3a+j+r−k
2

)},

(106)
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where j, k ∈ Z�0.
Instance 7. Putting α = a, δ = β = b, γ = 1 + a − b + j, and z = −1 in (88) and

using (25), we obtain

F2:2;0
1:2;0

(
[2b : 2, 1], [a : 1, 1] : [b : 1], [1− b + j : 1]; ;

[1 + a− b + j : 2, 1] : [1 + a− b + j : 1], [ 2b+1
2 : 1]; ;

− 1
4 ,−1

)

=

⎧⎨⎩2j−2bΓ(b− j)Γ(1 + a− b + j)
Γ(b)Γ(a− 2b + j + 1)

j

∑
r=0

(−1)r
(

j
r

)Γ
(

a+r+j+1
2 − b

)
Γ
(

a+r−j+1
2

)
⎫⎬⎭

2

,

(107)

where j ∈ Z�0.
Instance 8. Putting α = a, δ = β = b, γ = 1 + a − b − j, and z = −1 in (88) and

using (26), we obtain

F2:2;0
1:2;0

(
[2b : 2, 1], [a : 1, 1] : [b : 1], [1− b− j : 1]; ;

[1 + a− b− j : 2, 1] : [1 + a− b− j : 1], [ 2b+1
2 : 1]; ;

− 1
4 ,−1

)

=

⎧⎨⎩2−j−2bΓ(1 + a− b− j)
Γ(a− 2b− j + 1)

j

∑
r=0

(
j
r

)Γ
(

a+r−j+1
2 − b

)
Γ
(

a+r−j+1
2

)
⎫⎬⎭

2

,

(108)

where j ∈ Z�0.
Instance 9. Putting α = a, δ = β = b, γ = 1+a+b+j

2 , and z = 1
2 in (88) and using (27),

we gain

F2:2;0
1:2;0

(
[2b : 2, 1], [a : 1, 1] : [b : 1], [ 1−a+b+j

2 : 1]; ;
[ 1+a+b+j

2 : 2, 1] : [ 1+a+b+j
2 : 1], [ 2b+1

2 : 1]; ;
− 1

16 , 1
2

)

=

⎧⎨⎩2b−1Γ( 1+a+b+j
2 )Γ( 1+a−b−j

2 )

Γ(b)Γ( 1+a−b+j
2 )

j

∑
r=0

(−1)r
(

j
r

) Γ
(

b+r
2

)
Γ
(

a+r−j+1
2

)
⎫⎬⎭

2

,

(109)

where j ∈ Z�0.
Instance 10. Putting α = a, δ = β = b, γ = 1+a+b−j

2 , and z = 1
2 in (88) and using (28),

we attain

F2:2;0
1:2;0

(
[2b : 2, 1], [a : 1, 1] : [b : 1], [ 1−a+b−j

2 : 1]; ;
[ 1+a+b−j

2 : 2, 1] : [ 1+a+b−j
2 : 1], [ 2b+1

2 : 1]; ;
− 1

16 , 1
2

)

=

⎧⎨⎩2b−1Γ( 1+a+b−j
2 )

Γ(b)

j

∑
r=0

(
j
r

) Γ
(

b+r
2

)
Γ
(

a+r−j+1
2

)
⎫⎬⎭

2

,

(110)

where j ∈ Z�0.
Instance 11. Putting α = a, δ = β = 1− a + j, γ = b, and z = 1

2 in (88) and using (29),
we acquire

F2:2;0
1:2;0

(
[2− 2a + 2j : 2, 1], [a : 1, 1] : [1− a + j : 1], [b− a : 1]; ;

[b : 2, 1] : [b : 1], [ 3−2a+2j
2 : 1]; ;

− 1
16 , 1

2

)

=

⎧⎨⎩2j−aΓ(a− j)Γ(b)
Γ(a)Γ(b− a)

j

∑
r=0

(−1)r
(

j
r

) Γ
(

b−a+r
2

)
Γ
(

b+a+r
2 − j

)
⎫⎬⎭

2

,

(111)

where j ∈ Z�0.

209



Fractal Fract. 2023, 7, 700

Instance 12. Putting α = a, δ = β = 1− a− j, γ = b, and z = 1
2 in (88) and using (30),

we derive

F2:2;0
1:2;0

(
[2− 2a− 2j : 2, 1], [a : 1, 1] : [1− a− j : 1], [b− a : 1]; ;

[b : 2, 1] : [b : 1], [ 3−2a−2j
2 : 1]; ;

− 1
16 , 1

2

)

=

⎧⎨⎩2−j−aΓ(b)
Γ(b− a)

j

∑
r=0

(
j
r

)Γ
(

b−a+r
2

)
Γ
(

b+a+r
2

)
⎫⎬⎭

2

,

(112)

where j ∈ Z�0.
Instance 13. Putting α = a

2 , β = b
2 , and z = 1

2 in (66) and using the classical Kummer
second summation theorem (the case m = 0 of (28)), with the aid of a duplication formula for the
gamma function (see, e.g., [5], p. 6),

Γ
(

1
2

)
Γ(2z) = 22z−1 Γ(z) Γ

(
z + 1

2

)
, (113)

we obtain

3F2

[
a, b, a+b

2 ;
a + b, a+b+1

2 ;
1
]
=

⎧⎨⎩Γ
(

1
2

)
Γ
(

a+b+1
2

)
Γ
(

a+1
2

)
Γ
(

b+1
2

)
⎫⎬⎭

2

. (114)

7. Concluding Remarks

In this article, we introduced three general double-series identities using Whipple
transformations for 4F3 and 5F4 functions. By employing the left-sided Riemann–Liouville
fractional integral on those results in Section 2, in Section 4, we showcased the potential
to systematically derive additional identities of a similar nature through iterative pro-
cesses. These identities were then utilized to derive transformation formulas between
the Srivastava–Daoust double hypergeometric function (S–D function) and Kampé de
Fériet’s double hypergeometric function (KDF function) with equal arguments. We also
demonstrated reduction formulas from the S–D function or KDF function to the pFq func-
tion. Furthermore, we provided various general summation formulas for the pFq and S–D
function (or KDF function) with specific arguments. By following the steps presented in this
article, additional reduction and summation formulas of similar types can be derived. We
anticipate that these transformation and summation formulas, as well as those deducible
from the same steps, will have applications in diverse fields, such as mathematical physics,
statistics, and engineering sciences.
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Abstract: One of the fundamental parts of Geometric Function Theory is the study of analytic
functions in different domains with critical geometrical interpretations. This article defines a new
generalized domain obtained based on the quotient of two analytic functions. We derive various
properties of the new class of normalized analytic functions X defined in the new domain, including
the sharp estimates for the coefficients a2, a3, and a4, and for three second-order and third-order
Hankel determinants,H2,1X ,H2,2X , andH3,1X . The optimality of each obtained estimate is given
as well.

Keywords: analytic function; subordination; sharp upper bound; Hankel determinant; generalized
domain

1. Introduction

Let A be the class of all analytic functions X defined in the open unit disc U = {z ∈
C : |z| < 1} with X (0) = 0 and X ′(0) = 1. Thus, each analytic function in A has the
following Taylor series representation

X (z) = z +
∞

∑
t=2

atzt. (1)

Let S be the subclass of all analytic functions in A that are univalent in U.
An analytic function X is said to be subordinate to an analytic function g in U, denoted

as X ≺ g, if there exists a Schwarz function ξ that is analytic in U with ξ(0) = 0 and |ξ(z)|
< 1, such that X (z) = g(ξ(z)). In particular (see [1]), if g is univalent in U, then X ≺ g if
and only if

X (0) = g(0) and X (U) ⊂ g(U).

Using the concept of subordination, many subclasses have been defined and studied,
such as S∗, C, K andR of starlike, convex, close to convex, and functions with bounded
turnings, respectively. See [2–6] for the new results about more subclasses.

For two analytic functions X and ζ in A with the series representation of X given

in (1) and ζ(z) = z +
∞
∑

t=2
btzt the convolution (Hadamard product) X ∗ ζ is defined by

(X ∗ ζ)(z) = z +
∞

∑
t=2

atbtzt = (ζ ∗ X )(z). (2)
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Shanmugam [7] generalized the idea of Padmanabhan et al. [8] and introduced the
general form of function class S∗h (ϕ) as follows

S∗h (ϕ) =

{
X ∈ A :

z(X ∗ h)′(z)
(X ∗ h)(z)

≺ ϕ(z), z ∈ U

}
,

where h is a fixed function in A and ϕ is a convex univalent function on U with ϕ(0) = 1
and Re(ϕ(z)) > 0.

Ma and Minda [9] defined a more general form of function class S∗(ϕ) by applying
for some restrictions h(z) = z

1−z (and hence X ∗ h = X ) with ϕ(0) = 1 and ϕ′(0) > 0. The
generic form of Ma and Minda-type class of starlike functions is defined as

S∗(ϕ) =

{
X ∈ A :

zX ′(z)
X (z)

≺ ϕ(z), z ∈ U

}
. (3)

In recent years, many authors have established important subfamilies of analytic
functions by varying ϕ(z) in S∗(ϕ), and they proved significant geometric properties of
those subfamilies. For details, see [10–14].

We discuss the following two classes that have some interesting geometric properties.

(i) For ϕ1(z) =
√

1 + z, the class S∗(ϕ) becomes S∗L , which was introduced by Sokol

and Stankiewicz [15], and it contains those functions X ∈ A such that zX ′ (z)
X (z) lies

in the region bounded by the right half of the lemniscate of Bernoulli defined by∣∣z2 − 1
∣∣ < 1.

(ii) For ϕ2(z) = 2
1+e−z , the class S∗(ϕ) becomes S∗sig, which was defined and investigated

by Geol et al. [16]. Geometrically, a function X ∈ S∗sig if and only if zX ′ (z)
X (z) lies in the

region defined by
{

w ∈ C :
∣∣log
( w

2−w
)∣∣ < 1

}
.

By taking inspiration from all of the previous works mentioned, we introduce the
following new class of analytic functions by using the quotient of ϕ1(z) =

√
1 + z and

ϕ2(z) = 2
1+e−z .

Definition 1. Let X ∈ A, given in (1). We say X ∈ Rsl if it satisfies the following condition

X ′(z) ≺ 2
√

1 + z
1 + e−z , z ∈ U. (4)

Geometrically, each X ∈ Rsl maps the open unit disc into a balloon-shaped domain,
which is symmetric about the real axis, as shown in the following Figure 1.

0.5 1 1.5 2

1

0.5

0

0.5

1

Figure 1. The geometry of the function φ(z)= 2
√

1+z
1+e−z .
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For X ∈ A and n, k ≥ 0, Pommerenke [17] defined the kth order Hankel determinant
Hk,n by

Hk,n(X ) =

∣∣∣∣∣∣∣∣∣∣∣∣

an an+1 . . . an+k−1
an+1 an+2 . . . an+k

. . . . . .

. . . . . .

. . . . . .
an+k−1 an+k . . . an+2(k−1)

∣∣∣∣∣∣∣∣∣∣∣∣
. (5)

Recently, finding the sharp upper bounds of the Hankel determinants Hk,n(X ) for
certain n and k for various subfamilies of analytic functions has been identified as an
interesting and important problem. Many researchers have observed sharp upper bounds
of Hankel determinants for many subfamilies of analytic functions. In particular, the upper
bounds of second and third-order Hankel determinants have been estimated in [18–23] for
several subclasses of normalized analytic function.

Hayman [24] was the first to give the sharp inequality for X ∈ S , and subsequently
proved that |H2,n(X )| ≤ λ

√
n, where λ > 0. This inequality is further explained in [25]

and showed that |H2,2(X )| ≤ λ, where 1 ≤ λ ≤ 11
3 .

Janteng et al. [26] determined the sharp bounds ofH2,2(X ) for the subfamilies of K,
S∗, andR. Babalola [27] studied a third-order Hankel determinant for the subclasses of S∗
and C, while Zaprawa [28] amended Babalola’s results and gave the following estimates,
which it is believed may not be the best possible results.

|H3,1(X )| ≤

⎧⎨⎩
49

540 (X ∈ K),
1 (X ∈ S∗),
41
60 (X ∈ R).

Kwon et al. [29] improved this determinant for starlike functions as |H3,1(X )| ≤ 8
9 .

Zaprawa et al. [30] extended his work by estimating |H3,1(X )| ≤ 5
9 for X ∈ S∗.

Arif et al. [31] calculated the sharpness of the bounds of the coefficients andH3,1(X )
for a subfamily of starlike functions related to sigmoid functions; see [32] for the modified
sigmoid functions. Orhan et al. [33] estimated the sharp Hankel determinants for a
subfamily of analytic functions associated with the lemniscate of Bernoulli. Moreover,
Shi et al. [34,35] estimated the sharpness of Hankel determinants for the functions with
bounded turning associated with a petal-shaped domain and inverse functions, respectively.

Moreover, the estimation of various bounds can be considered for many classes of
functions; for example, see [36–38].

It is natural to ask what the upper bounds for the analytic functions in the newly
defined classRsl related to the coefficients of the Taylor series representation (1) and Hankel
determinants are.

The aim and novelty of this article are the sharp upper bounds of the modulus of
the coefficients a2, a3, and a4 and the second-order and third-order Hankel determinants,
H2,1X ,H2,2X , andH3,1X , for the analytic functions in the new classRsl .

2. A Set of Lemmas

Let P represent the class of analytic functions p, such that p(0) = 1, Re(p(z)) > 0 for
z ∈ U, which has the following Taylor series form,

p(z) = 1 +
∞

∑
t=1

ctzt. (6)

The subsequent Lemmas 1–4 will help to demonstrate our main findings, where
ct, ct+k, and ct+2k for t, k ∈ N are coefficients of the Taylor series (6).
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Lemma 1 ([17]). Let p ∈ P . Then, the following inequalities hold true

|ct| ≤ 2 for t ≥ 1, (7)

|ct+k − ρctck| < 2 for 0 ≤ ρ ≤ 1, (8)∣∣∣ct+2k − ρctc2
k

∣∣∣ ≤ 2(1 + 2ρ), for 0 ≤ ρ ≤ 1, (9)

and ∣∣∣∣∣c2 −
c2

1
2

∣∣∣∣∣ ≤ 2−
∣∣c2

1

∣∣
2

. (10)

Lemma 2. Let p ∈ P . Then there exists q, γ, and μ ∈ C with |q| ≤ 1, |γ| ≤ 1, and |μ| ≤ 1
such that

c2 =
1
2

(
c2

1 + q
(

4− c2
1

))
, (11)

c3 =
1
4

(
c3

1 + 2c1q
(

4− c2
1

)
−
(

4− c2
1

)
c1q2 + 2

(
4− c2

1

)(
1− |q|2

)
γ
)

, (12)

and

c4 =
1
8

⎛⎝ c4
1 + q

(
4− c2

1
)
(4q + (q2 − 3q + 3)c2

1)− 4
(
4− c2

1
)(

1− |q|2
)
(c(q− 1)γ

−μ
(

1− |γ|2
)
+ qγ2)

⎞⎠. (13)

The inequalities given in (11)–(13) are due to [17,39,40], respectively.

Lemma 3 ([39]). If p ∈ P , 0 ≤ R ≤ 1, and R(2R− 1) ≤ S ≤ R, then the following inequality
holds true ∣∣∣c3 − 2Rc1c2 + Sc3

1

∣∣∣ ≤ 2. (14)

Lemma 4 ([41]). Let α, β, γ, and λ satisfying the conditions 0 < α < 1,
0 < λ < 1, and

8λ(1− λ)
[
(αβ− 2γ)2 + (α(λ + α)− β)2

]
+ α(1− α)(β− 2λα)2 ≤ 4α2(1− α)2λ(1− λ).

Let p ∈ P be given in (6), then the following inequality holds true∣∣∣∣γc4
1 + λc2

2 + 2αc1c3 −
3
2

βc2
1c2 − c4

∣∣∣∣ ≤ 2. (15)

3. Main Results

Theorem 1. Let X ∈ Rsl . Then, the following inequalities for the coefficients in (1) are true.

|a2| ≤
1
2

, |a3| ≤
1
3

, |a4| ≤
1
4

, and |a5| ≤
1
5

.

The sharpness of these inequalities can be obtained using the function

X ′n(z) =
2
√

1 + zn

1 + e−zn , n ∈ N.

In particular, if n = 1, 2, 3, and 4, then we have
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X1 =

z∫
0

(
2
√

1 + t
1 + e−t

)
dt = z +

1
2

z2 +
1
24

z3 − 1
96

z4 − 11
1920

z5, (16)

X2 =

z∫
0

(
2
√

1 + t2

1 + e−t2

)
dt = z +

1
3

z3 +
1
40

z5 − 1
168

z7, (17)

X3 =

z∫
0

(
2
√

1 + t3

1 + e−t3

)
dt = z +

1
4

z4 +
1
56

z7, (18)

X4 =

z∫
0

(
2
√

1 + t4

1 + e−t4

)
dt = z +

1
5

z5. (19)

Proof. As X ∈ Rls, from (4), we obtain

X ′(z) = 2
√

1 + ξ(z)
1 + e−ξ(z)

. (20)

Then, (1) gives
X ′(z) = 1 + 2a2z + 3a3z2 + 4a4z3 + 5a5z4.... (21)

Let p ∈ P be written by

p(z) =
1 + ξ(z)
1− ξ(z)

= 1 + c1z + c2z2 + c3z3 + c4z4 + . . . .

This implies that

ξ(z) =
1
2

c1z +
(

1
2

c2 −
1
4

c2
1

)
z2 +

(
1
8

c3
1 −

1
2

c1c2 +
1
2

c3

)
z3

+

(
1
2

c4 −
1
2

c1c3 −
1
4

c2
2 −

1
16

c4
1 +

3
8

c2
1c2

)
z4 + . . . .

Then,

2
√

1 + ξ(z)
1 + e−ξ(z)

= 1 +
(

1
2

c1

)
z +
(

1
2

c2 −
7
32

c2
1

)
z2 +

(
1
2

c3 −
7

16
c1c2 +

17
192

c3
1

)
z3

+

(−203
6144

c4
1 +

17
64

c2
1c2 −

7
16

c1c3 −
7

32
c2

2 +
1
2

c4

)
z4 + .... (22)

It follows from (21) and (22) that

a2 =
1
4

c1, (23)

a3 =
1
6

c2 −
7

96
c2

1, (24)

a4 =
17

768
c3

1 −
7

64
c1c2 +

1
8

c3, (25)

a5 =
−203
30720

c4
1 +

17
320

c2
1c2 −

7
80

c1c3 −
7

160
c2

2 +
1
10

c4. (26)

Using Lemma 1, (23) and (24) imply

|a2| ≤
1
2

and |a3| ≤
1
3

.
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By (25),

|a4| =
1
8

∣∣∣∣c3 −
7
8

c1c2 +
17
96

c3
1

∣∣∣∣.
Using Lemma 3, we obtain

|a4| ≤
1
4

.

From (26), we have

|a5| =
1
10

∣∣∣∣ 203
3072

c4
1 +

7
16

c2
2 + 2

(
7

16

)
c1c3 −

17
32

c2
1c2 − c4

∣∣∣∣.
By applying Lemma 4,

|a5| ≤
1
5

.

Theorem 2. Let X ∈ Rls. Then, the sharp upper bound for the following second-order Hankel
determinant is given by

|H2,1(X )| ≤ 1
3

. (27)

The function (17) gives the sharpness of the inequality (27).

Proof. Applying to the identities (23) and (24),∣∣∣a3 − a2
2

∣∣∣ = 1
6

∣∣∣∣c2 −
13
16

c2
1

∣∣∣∣.
Using Lemma 1, we obtain

|H2,1(X )| ≤ 1
3

.

It is easy to verify that the function (17) gives the sharpness of the inequality (27).

Theorem 3. Let X ∈ Rls. Then, the sharp upper bound for the following second-order Hankel
determinant is given by

|H2,2X | ≤
1
9

. (28)

The function (17) gives the sharpness of the inequality (28).

Proof. By the identities (23)–(25),∣∣∣a2a4 − a2
3

∣∣∣ = ∣∣∣∣ 1
4608

c4
1 −

7
2304

c2
1c2 +

1
32

c3c1 −
1

36
c2

2

∣∣∣∣.
Now, using Lemma 2, we have∣∣∣a2a4 − a2

3

∣∣∣ = 1
4608

∣∣∣−32t2q2 − 36tq2c2
1 − 72γtc1

(
1− q2

)
+ tqc2

1 − 2c4
1

∣∣∣.
Using the triangular inequality by taking |c1| = c ∈ [0, 2], t = 4 − c2, |γ| ≤ 1, and
|q| = b ∈ [0, 1].

∣∣∣a2a4 − a2
3

∣∣∣ ≤ 1
4608

(
32
(

4− c2
)2

b2 + 36
(

4− c2
)

b2c2 + 72c
(

4− c2
)(

1− b2
)
+
(

4− c2
)

bc2 + 2c4
)

.

Let
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F(b, c) =
1

4608

(
32
(

4− c2
)2

b2 + 36
(

4− c2
)

b2c2 + 72c
(

4− c2
)(

1− b2
)
+
(

4− c2
)

bc2 + 2c4
)

.

Then
∂F
∂b

=
1

4608

(
4− c2

)(
256b + 8bc2 − 144bc + c2

)
≥ 0,

which shows that F(b, c) is an increasing function for all b ∈ [0, 1] and c ∈ [0, 2]. Thus, the
maximum value occurs at b = 1. Consequently,

F(b, c) ≤ F(1, c) =
1

4608

(
32
(

4− c2
)2

+ 36
(

4− c2
)

c2 +
(

4− c2
)

c2 + 2c4
)

. (29)

Let
G(c) = 32

(
4− c2

)2
+ 36

(
4− c2

)
c2 +

(
4− c2

)
c2 + 2c4,

which implies
∂G
∂c

= −12c
(

c2 + 18
)
≤ 0,

this shows that G(c) is a decreasing function for all c ∈ [0, 2], and the maximum value
occurs at c = 0. By referring to (29), we can deduce the required inequality,

|H2,2X | =
∣∣∣a2a4 − a2

3

∣∣∣ ≤ 1
9

.

It is also easy to verify that the function (17) provides the sharpness of the inequality (28).

Theorem 4. Let X ∈ Rls. Then, we have the sharp upper bound for the following third-order
Hankel determinant.

|H3,1X | ≤
1

16
. (30)

The sharpness of this inequality can occur according to the function given in (18).

Proof. From (5), we have

H3,1(X ) = 2a2a3a4 − a2
2a5 − a3

3 + a3a5 − a2
4. (31)

Taking c1 = c in the identities (23)–(26), we have

H3,1(X ) =
1

1105920

( −16c6 − 309c4c2 + 1944c3c3 − 246c2c2
2 − 14976c2c4

−13184c3
2 + 18432c2c4 − 17280c2

3 + 25632cc2c3

)
. (32)

Also, taking 4− c2 = t in Lemma 2, we can simplify the terms in (32).
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−309c4c2 = −309
2

c6 − 309
2

tqc4,

1944c3c3 = 486c6 − 486tc4q2 + 972tc4q + 972
(

1− |q|2
)

tγc3,

−246c2c2
2 = −123

2
c6 − 123c4tq− 123

2
c2t2q2,

−14976c2c4 = −1872c6 − 1872tc4q3 + 5616tc4q2 − 5616tc4q + 7488
(

1− |q|2
)

tc3qγ

−7488
(

1− |q|2
)

tc3γ− 7488tc2q2 + 7488
(

1− |q|2
)

tc2qγ2

−7488
(

1− |q|2
)

t
(

1− |γ|2
)

μc2,

−13184c3
2 = −1648c6 − 4944c4tq− 4944c2t2q2 − 1648t3q3,

18432c2c4 = 1152c6 + 1152c4tq3 − 3456c4tq2 + 4608c4tq− 4608
(

1− |q|2
)

c3tqγ

+4608
(

1− |q|2
)

c3tγ + 1152c2t2q4 − 3456c2t2q3 + 3456c2t2q2 + 4608c2tq2

−4608
(

1− |q|2
)

c2tqγ2 + 4608
(

1− |q|2
)(

1− |γ|2
)

μc2t− 4608
(

1− |q|2
)

ct2q2γ

+4608
(

1− |q|2
)

ct2qγ + 4608t2q3 − 4608
(

1− |q|2
)

t2q2γ2

+4608
(

1− |q|2
)(

1− |γ|2
)

μt2q,

−17280c2
3 = −1080c6 + 2160c4tq2 − 4320c4tq− 4320c3

(
1− |q|2

)
tγ− 1080c2t2q4

+4320c2t2q3 − 4320c2t2q2 + 4320c
(

1− |q|2
)

t2q2γ− 8640c
(

1− |q|2
)

t2qγ

−4320
(

1− |q|2
)2

t2γ2,

25632cc2c3 = 3204c6 − 3204c4tq2 + 9612c4tq + 6408
(

1− |q|2
)

γc3t− 3204c2t2q3

+6408c2t2q2 + 6408
(

1− |q|2
)

γct2q.

Substituting the simplified terms into (32),

H3,1(X ) =
1

1105920

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

26c6 − 720c4tq3 + 630c4tq2 + 69
2 c4tq + 2880c3

(
1− |q|2

)
tqγ

+180c3
(

1− |q|2
)

tγ + 2880c2
(

1− |q|2
)

tqγ2 − 288c
(

1− |q|2
)

t2q2γ

−2880c2
(

1− |γ|2
)(

1− |q|2
)

μt− 2340c2t2q3 + 1077
2 c2t2q2 − 2880c2tq2

+2376c
(

1− |q|2
)

t2qγ− 4320
(

1− |q|2
)2

t2γ2 − 4608
(

1− |q|2
)

t2q2γ2

+72c2t2q4 + 4608
(

1− |γ|2
)(

1− |q|2
)

t2q− 1648t3q3 + 4608t2q3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Since t = 4− c2,

H3,1(X ) =
1

1105920

[
m1(c, q) + m2(c, q)γ + m3(c, q)γ2 + ϕ(c, q, γ)μ

]
,

where

m1(c, q) = 26c6 − 1
2

(
4− c2

)
q
( (

4− c2)q(1384c2q− 144c2q2 − 1077c2 + 3968q
)
+

5760c2q− 1260c4q + 1440c4q2 − 69c4

)
,

m2(c, q) = −36c
(

4− c2
)(

1− |q|2
)(

2
(

4− c2
)

q(4q− 33)− 80c2q− 5c2
)

,

m3(c, q) = −288
(

4− c2
)(

1− |q|2
)((

4− c2
)(

q2 + 15
)
− 10c2q

)
,

ϕ(c, q, γ) = 576
(

4− c2
)(

1− |q|2
)(

1− |γ|2
)(

8
(

4− c2
)

q− 5c2
)

.
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Let |γ| = y and |μ| ≤ 1, then

|H3,1(X )| ≤ 1
1105920

[
|m1(c, q)|+ |m2(c, q)|y + |m3(c, q)|y2 + |ϕ(c, q, γ)|

]
≤ 1

1105920
[G(c, q, y)], (33)

where
G(c, q, y) = n1(c, q) + n2(c, q)y + n3(c, q)y2 + n4(c, q)

(
1− y2

)
,

with

n1(c, q) = 26c6 +
1
2

(
4− c2

)
q
[ (

4− c2)q(1384c2q + 144c2q2 + 1077c2 + 3968q
)

+5760c2q + 1260c4q + 1440c4q2 + 69c4

]
,

n2(c, q) = 36c
(

4− c2
)(

1− |q|2
)[(

4− c2
)

q(8q + 66) + 80c2q + 5c2
]
,

n3(c, q) = 288
(

4− c2
)(

1− |q|2
)[(

4− c2
)(

q2 + 15
)
+ 10c2q

]
,

n4(c, q) = 576
(

4− c2
)(

1− |q|2
)[

8q
(

4− c2
)
+ 5c2

]
.

To find the maximum values of the function G(c, q, y) within the closed cuboid! =
[0, 2]× [0, 1]× [0, 1], we need to examine the function G(c, q, y) inside the cuboid, on its
faces and along its edges. Let us divide the analysis into the following three cases.

I. Interior points of cuboid

Now, we find the maximum value of G(c, q, y) within the cuboid’s interior.
Let (c, q, y) ∈ [0, 2)× [0, 1)× (0, 1). By differentiating G(c, q, y) with respect to y, we

obtain

∂G
∂y

=

⎛⎝ 36c
(
4− c2)(1− |q|2

)[(
4− c2)q(8q + 66) + 5c2(16q + 1)

]
+576y

(
4− c2)(1− |q|2

)[(
4− c2)(q− 15) + 10c2](q− 1)

⎞⎠.

Putting ∂G
∂y = 0, gives

y =
c
[
2q
(
4− c2)(4q + 33) + 5c2(16q + 1)

]
16[(4− c2)(15− q)− 10c2](q− 1)

= y1.

If y1 is a critical point inside!, then y1 ∈ (0, 1), which is possible only if

5c3(16q + 1) + 2cq
(

4− c2
)
(4q + 33) + 16

(
4− c2

)
(15− q)(1− q) < 160(1− q)c2, (34)

and

c2 >
4(15− q)

25− q
. (35)

To identify the critical point, we need to find a solution that satisfies the inequalities
(34) and (35). Let g(q) = 4(15−q)

25−q with g′(q) = − 40
(25−q)2 < 0, which shows that g(q) is a

decreasing function, so

c2 >
7
3

.

It follows from the simple calculations that (34) is not held for q ∈
[

15
32 , 1
)

. As a result, it
can be concluded that the function G(c, q, y) does not possess any critical points within the
interior of the cuboid [0, 2)×

[
15
32 , 1
)
× (0, 1).
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Suppose (c, q, y) is a critical point of G in the interior of the cuboid, satisfying the
conditions q ∈

[
0, 15

32

)
and y ∈ (0, 1) which leads us to c2 > g

(
15
32

)
= 372

157 . It can also be
observed that

n1(c, q) ≤ n1

(
c,

15
32

)
= ϑ1(c).

Since 1− q2 ≤ 1 and 0 < q < 15
32 , we have

n2(c, q) ≤ 36
(

4− c2
)[(

4− c2
)(

8c
(

15
32

)2
+ 66c

(
15
32

))
+ 5
(

16
(

15
32

)
+ 1
)

c3

]
,

=
1024
799

n2

(
c,

15
32

)
= ϑ2(c).

Similarly, we obtain

nj(c, q) ≤ 1024
799

nj

(
c,

15
32

)
= ϑj(c) (j = 3, 4).

It follows that

G(c, q, y) ≤ ϑ1(c) + ϑ4(c) + ϑ2(c)y + (ϑ3(c)− ϑ4(c))y2 = Ψ(c, y).

Differentiating with regard to “y”, we have

∂Ψ
∂y

= ϑ2(c) + 2(ϑ3(c)− ϑ4(c))y.

Consider

ϑ3(c)− ϑ4(c) = 288
(

4− c2
)(7905

256
− 13 345

1024
c2
)
≤ 0, c ∈

(√
372
157

, 2

)
.

Then, for all c ∈
(√

372
157 , 2

)
and y ∈ (0, 1), we have

∂Ψ
∂y

= ϑ2(c) + 2(ϑ3(c)− ϑ4(c))y

≥ ϑ2(c) + 2(ϑ3(c)− ϑ4(c))

= 36
(

4− c2
)(1255

128
c3 − 13345

64
c2 +

4185
32

c +
7905

16

)
≥ 0.

Thus, we obtain

Ψ(c, y) ≤ Ψ(c, 1) = ϑ1(c) + ϑ2(c) + ϑ3(c) = ζ(c),

where

ζ(c) = −1269383
131 072

c6 − 11295
32

c5 +
32362695

16 384
c4 − 13185

4
c3 − 210375495

8192
c2 +

37665
2

c +
2348865

32
.

It can be seen that ζ ′(c) �= 0, for any c ∈
(√

372
157 , 2

)
. Also, ζ(c) is a decreasing

function and its maximum value occurs at c ≈ 1.53928554, which is 37,437.

II. On the six faces of the cuboid

Next, we proceed to examine the maximum value of the function G(c, q, y) on all six
faces of the cuboid!.
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(i) On the face c = 0: G(0, q, y) becomes

h1(q, y) = 31744q3 +
(

4608(q− 1)(q− 15)y2 + 73728q
)(

1− q2
)

,

then
∂h1

∂y
= −9216y

(
q2 − 1

)
(q− 1)(q− 15) �= 0 for y ∈ (0, 1),

which implies that h1 does not have any optimal points within the interval (0, 1)× (0, 1).
(ii) On the face c = 2, we have

G(2, q, y) = 1664 (36)

(iii) On the face q = 0, G(c, 0, y) becomes

h2(c, y) = 26c6 + 180c3y
(

4− c2
)
+ 7200c4y2 − 2880c4 − 46080c2y2 + 11520c2 + 69120y2,

then ∂h2
∂y = 0 gives

y =
c3

16(5c2 − 12)
= y0. (37)

For the provided range of y, y0 ∈ (0, 1), if c > c0 ≈ 1.5491933.
Also, ∂h2

∂c = 0 gives

12c
(

13c4 − 75c3y + 2400c2y2 − 960c2 + 180cy− 7680y2 + 1920
)
= 0. (38)

Putting (37) in (38), we obtain

14925c9 − 1222920c7 + 7916976c5 − 17694720c3 + 13271040c = 0.

Solving for c within the range (0, 2), we find that c ≈ 1.4228. This indicates that there is no
optimal solution for G(c, 0, y).

(iv) On the face q = 1: G(c, 1, y) becomes

h3(c, y) = −820c6 + 334c4 + 4264c2 + 31744,

then ∂h3
∂c = 0 gives a critical point c ≈ 1.208, where h3 attains its maximum value; that is,

h3(c, y) ≤ 36129. (39)

(v) On the face y = 0: G(c, q, 0) becomes

h4(c, q) = 72c6q4 − 28c6q3 − 183
2

c6q2 − 69
2

c6q + 26c6 − 576c4q4 − 5280c4q3

−1788c4q2 + 4746c4q− 2880c4 + 1152c2q4 + 32064c2q3 + 8616c2q2

−36864c2q + 11520c2 − 41984q3 + 73728q.

Thus,

∂h4

∂c
= 432c5q4 − 168c5q3 − 549c5q2 − 207c5q + 156c5 − 2304c3q4 − 21 120c3q3 − 7152c3q2

+18984c3q− 11520c3 + 2304cq4 + 64128cq3 + 17232cq2 − 73728cq + 23040c,

∂h4

∂q
= 288c6q3 − 84c6q2 − 183c6q− 69

2
c6 − 2304c4q3 − 15840c4q2 − 3576c4q + 4746c4

+4608c2q3 + 96192c2q2 + 17232c2q− 36864c2 − 125952q2 + 73728.
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Computation shows that the system of equations ∂h4
∂c = 0 and ∂h4

∂q = 0 has no solutions in
(0, 2)× (0, 1).

(vi) On the face y = 1: G(c, q, 1), becomes

h5(c, q) = 72c6q4 − 28c6q3 − 183
2

c6q2 − 69
2

c6q + 26c6 − 288c5q4 + 504c5q3 + 468c5q2

−504c5q− 180c5 − 864c4q4 + 2208c4q3 − 8700c4q2 − 2742c4q + 4320c4

+2304c3q4 + 7488c3q3 − 3024c3q2 − 7488c3q + 720c3 + 3456c2q4 − 16320c2q3

+52392c2q2 + 11520c2q− 34560c2 − 4608cq4 − 38016cq3 + 4608cq2 + 38016cq

−4608q4 + 31744q3 − 64512q2 + 69120.

It follows that
∂h5

∂c
= 432c5q4 − 168c5q3 − 549c5q2 − 207c5q + 156c5 − 1440c4q4 + 2520c4q3 + 2340c4q2

−2520c4q− 900c4 − 3456c3q4 + 8832c3q3 − 34 800c3q2 − 10 968c3q + 17 280c3

+6912c2q4 + 22 464c2q3 − 9072c2q2 − 22 464c2q + 2160c2 + 6912cq4 − 32 640cq3

+104 784cq2 + 23 040cq− 69 120c− 4608q4 − 38 016q3 + 4608q2 + 38 016q,

∂h5

∂q
= 288c6q3 − 84c6q2 − 183c6q− 69

2
c6 − 1152c5q3 + 1512c5q2 + 936c5q− 504c5

−3456c4q3 + 6624c4q2 − 17 400c4q− 2742c4 + 9216c3q3 + 22 464c3q2 − 6048c3q

−7488c3 + 13 824c2q3 − 48 960c2q2 + 104 784c2q + 11 520c2 − 18 432cq3 − 114 048cq2

+9216cq + 38 016c− 18 432q3 + 95 232q2 − 129 024q.

Also, the computation indicates that the system of equations ∂h5
∂c = 0 and ∂h5

∂q = 0 has
no solutions in (0, 2)× (0, 1).

III. On the twelve edges of the cuboid

Finally, we need to find the maximum values of G(c, q, y) along the twelve edges.
(i) On q = 0 and y = 0: G(c, 0, 0) becomes

h6(c) = 26c6 − 2880c4 + 11520c2,

then ∂h6
∂c = 0 gives the critical point c ≈ 1.4343, where the maximum value is obtained as

follows.
h6(c) ≤ 11737. (40)

(ii) On q = 0 and y = 1: G(c, 0, 1) becomes

h7(c) = 26c6 − 180c5 + 4320c4 + 720c3 − 34560c2 + 69120.

It is clear that ∂h7
∂c ≤ 0, for all c ∈ [0, 2]. This indicates that h7(c) is a decreasing function

and attains its maximum value at c = 0.

h7(c) ≤ 69120. (41)

(iii) On q = 0 and c = 0: G(0, 0, y) becomes

h8(y) = 66816y2 + 2304.

Therefore, ∂h8
∂c > 0 for the interval [0, 1], which shows that h8(y) is an increasing function.

As a result, it attains its maximum value at y = 1; that is,

h8(y) ≤ 69120. (42)
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As the terms G(c, 1, 1) and G(c, 1, 0) are free from q, that is

h9(c) = G(c, 1, 0) = G(c, 1, 1) = −56c6 − 5778c4 + 16488c2 + 31744.

Putting ∂h9
∂c = 0, we find a critical point c ≈ 1.1825. At this critical point, h9(c) achieves its

maximum value, which is
h9(c) ≤ 43349. (43)

(iv) On q = 1 and c = 0: G(0, 1, y) becomes

h10(y) = G(0, 1, y) = 31744.

(v) On c = 2:

G(2, 0, y) = G(2, 1, y) = G(2, q, 1) = G(2, q, 0) = 1664.

(vi) On c = 0 and y = 0: G(0, q, 0) becomes

h11(q) = −1024q
(

41q2 − 72
)

,

and calculation shows that ∂h11
∂q ≤ 0 for all q ∈ [0, 1], which means h11(q) is a decreasing

function and maximum value occurs at q = 0; that is,

h11(q) ≤ 0. (44)

(vii) On c = 0 and y = 1: G(0, q, 1) becomes

h12(q) = −4608q4 + 31744q3 − 64512q2 + 69120.

Let ∂h12
∂q = 0, we then find a critical point q = 0, where the function h12(q) achieves its

maximum value,
h12(q) ≤ 69120. (45)

Therefore, we can conclude that

G(c, q, y) ≤ 69120.

And hence, we reach the following inequality as described by (33),

|H3,1(X )| ≤ 1
16

.

4. Conclusions

In the present article, we defined a class of analytic functions by considering the ratio
of two well-known functions. We investigated the sharp upper bounds of the modulus of
coefficients a2, a3, and a4; and the sharp upper bounds for the modulus of three second-
order and third-order Hankel determinants,H2,1X ,H2,2X , andH3,1X , for the normalized
analytic functions X belonging to the newly defined class. These findings contribute to
the existing body of knowledge and provide valuable insights for further research in the
field. This work provides a direction to define more interesting generalized domains and
to extend to new subclasses of starlike and convex functions by using quantum calculus.
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5. Murugusundaramoorthy, G. Fekete–Szegő Inequalities for Certain Subclasses of Analytic Functions Related with Nephroid
Domain. J. Contemp. Math. Anal. 2022, 57, 90–101. [CrossRef]

6. Khan, M.G.; Khan, B.; Gong, J.; Tchier, F.; Tawfiq, F.M.O. Applications of First-Order Differential Subordination for Subfamilies of
Analytic Functions Related to Symmetric Image Domains. Symmetry 2023, 15, 2004. [CrossRef]

7. Shanmugam, T.N. Convolution and Differential subordination. Int. J. Math. Math. Sci. 1989, 12, 333–340. [CrossRef]
8. Padmanabhan K.S.; Parvatham, R. Some applications of differential subordination. Bull. Aust. Math. Soc. 1985, 32, 321–330.

[CrossRef]
9. Ma, W.C.; Minda, D. A unified treatment of some special classes of univalent functions. In Proceedings of the Conference on Complex

Analysis; Li, Z., Ren, F., Yang, L., Zhang, S., Eds.; International Press: New York, NY, USA, 1992; pp. 157–169.
10. Cho, N.E.; Kumar, V.; Kumar, S.S.; Ravichandran, V. Radius problems for starlike functions associated with the sine function. Bull.

Iran. Math. Soc. 2019, 45, 213–232. [CrossRef]
11. Kumar, S.S.; Arora, K. Starlike functions associated with a petal-shaped domain. arXiv 2020, arXiv:2010.10072.
12. Mendiratta, S.; Nagpal, V.; Ravichandran, V. On a subclass of strongly starlike functions associated with exponential function.

Bull. Malays. Math. Sci. Soc. 2015, 38, 365–386. [CrossRef]
13. Mundula, M.; Kumar, S.S. On subfamily of starlike functions related to hyperbolic cosine function. J. Anal. 2023, 31 , 2043–2062.

[CrossRef]
14. Sharma, K.; Jain, N.K.; Ravichandran, V. Starlike functions associated with cardioid. Afr. Mat. 2016, 27, 923–939. [CrossRef]
15. Sokol, J.; Stankiewicz, J. Radius of convexity of some subclasses of strongly starlike functions. Zeszyty Naukowe Oficyna Wydawnicza

Al. Powstánców Warszawy 1996, 19, 101–105.
16. Geol, P.; Kumar, S.S. Certain class of starlike functions associated with modified sigmoid function. Bull. Malays. Math. Sci. Soc.

2020, 43, 957–991. [CrossRef]
17. Pommerenke, C.; Jensen, G. Univalent Functions; Vandenhoeck and Ruprecht: Gottingen, Germany, 1975.
18. Riaz, A.; Raza, M.; Binyamin, M.A.; Saliu, A. The second and third Hankel determinants for starlike and convex functions

associated with Three-Leaf function. Heliyon 2023, 9, 12748. [CrossRef] [PubMed]
19. Bansal, D.; Maharana, S.; Prajapat, J.K. Third order Hankel determinant for certain univalent functions. J. Korean Math. Soc. 2015,

52, 1139–1148. [CrossRef]
20. Krishna, D.V.; Venkateswarlu, B.; RamReddy, T.Third Hankel determinant for bounded turning functions of order alpha. J. Niger.

Math. Soc. 2015, 34, 121–127. [CrossRef]
21. Singh, G. On the second Hankel determinant for a new subclass of analytic functions. J. Math. Sci. Appl. 2014, 2, 1–3.
22. Al-Shbeil, I.; Gong, J.; Khan, S.; Khan, N.; Khan, A.; Khan, M.F.; Goswami, A. Hankel and Symmetric Toeplitz Determinants for a

New Subclass of q-Starlike Functions. Fractals Fract. 2022, 6, 658. [CrossRef]
23. Orhan, H.; Deniz, E.; Raducanu D. The Fekete–Szegö problem for subclasses of analytic functions defined by a differential

operator related to conic domains. Comput. Math. Appl. 2010, 59, 283–295.
24. Hayman, W.K. On second Hankel determinant of mean univalent functions. Proc. Lond. Math. Soc. 1968, 3, 77–94. [CrossRef]
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