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Abstract: Landslides are a common and challenging geohazard that may be caused by earthquakes,
rainfall, or manmade activity. Various monitoring strategies are used in order to safeguard popu-
lations at risk from landslides. This task frequently depends on the utilization of remote sensing
methods, which include the observation of Earth from space, laser scanning, and ground-based
interferometry. In recent years, there have been notable advancements in technologies utilized for
monitoring landslides. The literature lacks a comprehensive study of subsurface monitoring systems
using a mixed review approach that combines systematic and scientometric methods. In this study,
scientometric and systematic analysis was used to perform a mixed review. An in-depth analysis of
existing research on landslide-monitoring techniques was conducted. Surface-monitoring methods
for large-scale landslides are given first. Next, local-scale landslide subsurface monitoring methods
(movement, forces and stresses, water, temperature, and warning signs) were examined. Next,
data-gathering techniques are shown. Finally, the physical modeling and prototype field systems
are highlighted. Consequently, key findings about landslide monitoring are reviewed. While the
monitoring technique selection is mainly controlled by the initial conditions of the case study, the
superior monitoring technique is determined by the measurement accuracy, spatiotemporal reso-
lution, measuring range, cost, durability, and applicability for field deployment. Finally, research
suggestions are proposed, where developing a superior distributed subsurface monitoring system
for wide-area monitoring is still challenging. Interpolating the complex nonlinear relationship be-
tween subsurface monitoring readings is a clear gap to overcome. Warning sign systems are still
under development.

Keywords: landslide monitoring; subsurface monitoring; investigational monitoring; wireless moni-
toring; early warning monitoring; real-time monitoring

1. Introduction

The practice of landslide monitoring is the systematic observation and collection of
data to enhance the understanding and analysis of this geological event. Any effective
monitoring methodology should include the following goals: consistent and systematic
data collection, the use of appropriate equipment, accurate timing of measurements, and
the use of proper analytic techniques (i.e., how to interpret the collected data). These goals
can respond to the following questions: (1) what has to be monitored (such as displacement,
stress, and pore water pressure), (2) the number of devices to be utilized, and (3) the
frequency and data collection methods. These goals and inquiries may be used to establish
the budget, resources, planning, and monitoring system [1].

Geotechnical investigations have been conducted for years to discover the stability
conditions of slopes under various geological and environmental circumstances [2,3]. To
answer the first aforementioned question, landslide monitoring is used to track and measure
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slope stability parameters, such as ground movement (surface movement, subsurface
movement, heights, and cracks), subsurface water conditions (depth of water table, pore
water pressure, soil suction, and soil moisture), and climatic parameters (rainfall, snowfall,
temperature, and humidity). These factors can subsequently be used in landslide prediction
approaches, which were not the focus of this work [4,5]. The number, type, and location
of sensors are determined by the local geology, subsurface conditions, and landslide area
in answer to the second question [6]. Concerning the third question, comprehending the
geographical and temporal distributions of these factors is critical for realizing landslide
dynamics and controlling the associated risk [7].

Determining the most effective monitoring system requires a thorough understanding
of the reasons that generate events (initial conditions). For instance, the use of tilt mea-
surement may not be suitable for translational landslides or slow-moving landslides since
the occurrence of tilting is improbable under such conditions. Similarly, when deep soil
underneath an installation site becomes saturated, it might lead to landslides, which can
damage topsoil moisture sensors [8]. Another example is if the effective rainfall value
is the cumulative value of one day, then collecting data at 15 min intervals may not be
necessary [1]. Landslides are classified as shallow or deep-seated based on the depth of the
slip surface. Both of these types of landslides have distinct features and produce varying
degrees of damage. As a result, defining the type of landslide and estimating the potential
risk of a prospective landslide by measuring the depth of the sliding surface are both
necessary [1]. The monitoring of landslides is divided into phenomena, investigation, and
performance categories. The change in the slope over time in a particular geologic location
is monitored using phenomena. To ascertain the temporal and physical parameters of an
identified landslide, investigation monitoring is performed. A stabilizing system that is
already in place can be evaluated for efficacy via performance monitoring [1].

Monitoring systems can be classified into surface and subsurface techniques [9]. The
former cannot follow internal changes, but the latter can. Thus, this research focused mostly
on subsurface monitoring approaches, where the optimal criteria for a monitoring system,
according to the literature, should have the following features: provide real-time data; high
sensitivity; high spatiotemporal resolution; cost-effectiveness; low power consumption;
reliability; scalability; not affected by signal noise, such as temperature effects; limit the
uncertainty caused by missing data; and be suitable for both shallow and deep landslides,
as well as harsh environment conditions (i.e., the device should be coated) [10–12].

Both scientometric and systematic methodologies are covered in this paper. This paper
is organized as follows: The research technique is presented in Section 2. The scientometric
analysis is highlighted in Section 3. The systematic analysis is emphasized in Section 4,
which is divided into four subsections: surface displacement, subsurface monitoring,
wireless sensing networks, and physical and prototype systems. Section 5 lists the research
gaps and future directions. Section 6 presents the conclusion and future recommendations.

According to the author’s knowledge and available data, Table 1 shows various review
studies that investigated landslide-monitoring techniques. Many of them focused on a
specific methodology and approach. There is a lack of review publications on subsurface
monitoring techniques. Scientometric analysis has rarely been used. As a result, this study’s
uniqueness may be summarized as follows:

(1) A mixed scientometric and systematic review is presented.
(2) All existing subsurface-monitoring technologies (movement, forces and stresses,

groundwater, temperature, and warning signs) were comprehensively addressed
in this study.

(3) A deep illustration of the data-transferring techniques is included (i.e., manual, wiring,
wireless).

(4) A detailed demonstration of the adopted physical laboratory and field-monitoring
systems is presented.

(5) This article presents the most recent research up until 2023.
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Table 1. Available review articles for landslide-monitoring techniques.

Study Year Approach Content

Angeli et al. [2] 2000 Systematic Discussing the management, problems, and solutions of
different systems.

Shamshi [13] 2004 Systematic Landslide-monitoring instruments were reviewed briefly.
Eyo et al. [14] 2014 Systematic Applications of low-cost GPS tools.
De Graff [1] 2011 Systematic Illustrating how to obtain and build a better monitoring system.

Chae et al. [15] 2017 Systematic Landslide prediction, monitoring (remote sensing and in situ
based), and early warning.

So et al. [16] 2021 Systematic LiDAR applications in Hong Kong.

Lapenna & Perrone [17] 2022 Systematic Discussing time-lapse electrical resistivity
tomography applications.

Breglio et al. [18] 2023 Systematic
The uses of photonic technology for monitoring deformation
(slopes and tunnels), temperature, and soil humidity for
agricultural soil.

Huang et al. [19] 2023 Systematic Real-time monitoring using GNSS.
Auflič et al. [20] 2023 Bibliometric Landslide-monitoring techniques based on questionnaire analysis.

This study examined the progression from one approach to another through a macro-
scopic view based on the technology utilized and the initial conditions, followed by a
microscopic demonstration of the different system characteristics.

2. Research Methodology

A mixed review strategy was employed in this study, which consisted of scientometric
and systematic techniques. The methodology is provided to help researchers improve
systematic review reporting through the use of scientometric analysis. Furthermore, it
highlights the complexity of conducting manual searches on database engines [21–24].

Identifying, screening, and qualifying are the three main steps of a systematic review,
as shown in Figure 1. The steps involved in doing scientometric analysis are shown in
Figure 2. These steps typically include collecting bibliometric data, exporting it to the
suitable software, evaluating it, and finally, discussing the findings.

Figure 1. Systematic review process.

Figure 2. Scientometric analysis process, where CSV refers to comma-separated values text files and
VOSviewer is an open-source software application (van Eck & Waltman, 2009) [25].

2.1. Identification Process

Geology, engineering, environmental science, ecology, meteorology, atmospheric sci-
ence, geochemistry and geophysics, physical science, and water resources are some of the
aspects used to study landslides [24]. Furthermore, as shown in Zou and Zheng’s [24]
keyword mapping, landslides have a large number of linked terms. As a consequence, the
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research method began by extracting important studies about landslides from the author’s
perspective. In this section, keywords, search databases, and inclusion and exclusion
criteria were utilized to filter the papers acquired.

2.2. Selection of Database and Keywords

It is advisable to select numerous databases in a systematic review to obtain and
review a thorough selection of relevant publications. Scopus, Web of Science, and Google
Scholar are the three most often used databases in engineering research. Scopus and
Web of Science are also compatible with modern scientific mapping programs, such as
VOSviewer. In this study, we only used Scopus and Web of Science as preliminary search
database sources for landslide monitoring, although Google Scholar was also employed in
the snowballing approach. Following the selection of a search database, relevant keywords
were chosen, namely, “landslide monitoring”, to take into account all accessible datasets for
monitoring approaches.

2.3. Inclusion and Exclusion Criteria

In any systematic review, inclusion and exclusion are crucial for limiting search results
and focusing on the most relevant ones. This research used the following criteria: (1) research
focusing on subsurface landslide monitoring, (2) studies published between 2000 and 2023,
(3) articles published in peer-reviewed journals, and (4) studies published as articles and
review submissions. The exclusion criteria were as follows: (1) papers published in a language
other than English, (2) studies with no full text accessible, (3) manuscripts published in a
subject area other than engineering, and (4) publications published in a source type other than
a journal.

2.4. Screening and Evaluation of Collected Articles

As of May 2023, the Scopus and Web of Science databases revealed a total of 173 and
98 articles, respectively. The selected publications were then evaluated and assessed using
the systematic reviews and meta-analyses (PRISMA) process (see Figure 3) [26]. Following
this method, 143 papers were eliminated because they were duplicated, irrelevant, or did
not have a complete text accessible. After reviewing the whole texts of each included article,
128 articles met the inclusion criteria. The backward and forward snowballing methods
were then used to find more studies that were not found using Scopus or Web of Science
searches [27]. In addition to the manual search, this search method yielded 26 more relevant
articles, for a total of 154 articles suitable for inclusion.

Figure 3. PRISMA screening and selection process diagram.
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3. Scientometric Analysis

The scientometric study was conducted with the open-source VOSviewer software
application version 1.6.20 [25]. This scientometric review was used to provide citation and
co-authorship analyses of nations, organizations, authors, and keywords involved in the
study topic, as shown in the following subsections. The resulting maps, networks, and
analyses (i.e., the VOS output; please refer to Sections 3.1–3.5) highlight the link between
these many aspects, whereas tables were mainly utilized to illustrate the statistics associated
with these network maps. VOSviewer software was used to assess the 154 articles retrieved
via snowballing and manual searching. The primary goal of scientometric analysis is to
guarantee that the findings are relevant enough to be included in a systematic review.

3.1. Landslide Monitoring Annual Publications

Figure 4 depicts the overall number of landslide-monitoring-related papers published
each year. From 2000 to 2016, the average yearly publishing rate was approximately two
articles. Between 2017 and 2023 (until May 2023), the publishing rate increased significantly
to record an average annual publishing rate of approximately 15 articles. The figure’s
second-degree polynomial trend line (refer to the trend equation presented in Figure 4)
depicts how landslide monitoring has evolved. This trend is not surprising considering the
world’s growing concern over the loss of human life, property, and economic resources due
to landslides.

Figure 4. The total number of papers published each year about landslide monitoring.

3.2. Top Journals Contributing to Landslide Monitoring

The VOSviewer tool can now highlight the journals that frequently publish landslide-
monitoring articles. As a consequence, this will help researchers choose a reputable journal
in this field. When utilizing the VOSviewer program, the author employed two thresholds:
a source has to include at least five documents and at least 10 citations. “Sources” were
employed as the unit of analysis, and “bibliographic coupling” was the type of analysis.
As a result, 7 journals out of 62 hit the threshold (Figure 5). In Figure 5, the node size
illustrates the influence of journals as weighted by the number of citations. The overall
link strength of a journal represents the number of links it has with other journals [25].
Engineering Geology was the most widely published and cited journal and had 449 citations
and 12 publications.

3.3. Active Nations and Institutes in Landslide Monitoring

Understanding the scientific collaboration network makes it simpler to identify top
laboratories, organizations, and nations. Furthermore, academic and industry practitioners
seeking innovative landslide solutions should be aware of the cooperation network of
nations investing more in this field. The aforementioned criteria were utilized, using
“countries” as the unit of analysis and “bibliographic coupling” as a type of analysis. Only
10 of the 43 nations met the criterion. Figure 6 depicts the most frequently publishing

5



Remote Sens. 2024, 16, 385

nations, with China, the United States, and Italy having the most publications globally,
with 50, 23, and 23 articles, respectively. Table 2 reports the top five institutions involved
in landslide monitoring by using “bibliometric coupling” as the kind of analysis and
“organization” as the unit of analysis. With five papers and 76 citations, the most frequently
contributing institute was the School of Civil Engineering of Chongqing University, China.

Figure 5. Top journals publishing in landslide monitoring.

Figure 6. Top countries publishing in landslide prediction.

Table 2. Top five institutions publishing in the field of landslide monitoring.

Organization Country Articles Citations

School of Civil Engineering of Chongqing
University China 5 76

Key Laboratory of New Technology for
Construction of Cities in Mountain Areas,
Chongqing University

China 4 67

Dept. of Civil Engineering/Research Center
for Hazard Mitigation and Prevention,
National Central University, Zhongda

Taiwan 3 28

Department of Civil Engineering, University
of Tokyo Japan 2 57

State Key Laboratory of Hydroscience and
Engineering, Tsinghua University, Beijing China 2 57

3.4. Active Scholars and Article Co-Citation Analysis in Landslide Monitoring

An author’s total number of publications and citations on a certain topic can be used
to calculate their influence on that topic. The top five authors based on the number of
publications and citations were assembled using Excel Microsoft 365 software, as shown
in Table 3. To solve the issue of older research obtaining more citations than more recent
research, a normalized citation metric was also utilized in this study. The number of
citations in an article was normalized by dividing the number of citations by the average

6
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number of citations in all publications published that year [25]. As a result, Table 4 lists the
top five publications based on normalized citations.

Table 3. The top five authors on the subject of landslide monitoring.

Authors Documents Citations

Giri P.; Ng K.; Phillips W. 3 [8,28,29] 62
Seguí, C. and Veveakis, M. 2 [30,31] 8
Huisman, J. A., Hubbard, S. S., Redman, J.
D. and Annan, A. P. 1 [32] 728

Iai Susumu 1 [33] 595
Babaeian, E., Sadeghi, M., Jones, S. B.,
Montzka, C., Vereecken, H. and Tuller, M. 1 [34] 230

Table 4. The top ten most cited publications based on normalized citations.

Study Journal Citation
Normalized
Citations

Babaeian et al. [34] Reviews of Geophysics 230 6.50
Zhang et al. [35] Landslides 7 4.81
Chae et al. [15] Geosciences Journal 199 4.60
Iverson [36] Geomorphology 214 4.33
Buurman et al. [37] IEEE Access 60 3.48

3.5. Co-Occurrence Mapping of Keywords in Landslide Prediction

By selecting “co-occurrence” as the kind of analysis and “all keywords” as the unit
of analysis, VOSviewer software version 1.6.20 can identify the most frequently used key-
words (i.e., the keywords used in literature). In this analysis, the author fixed the minimum
number of occurrences at 10; only 17 keywords out of 1050 matched this requirement.
The size of a keyword node correlates to its occurrence frequency. To illustrate, the most
commonly used terms were “landslides” and “landslide monitoring,” which had the largest
node sizes of any keywords. Figure 7 highlights that there were three distinct clusters:
green, blue, and red. The blue clusters show monitoring related to rainfall and soil moisture;
the red clusters highlight keywords linked to monitoring sensors and wireless networks;
and the green clusters highlight subsurface displacement monitoring systems, such as
optical fiber techniques.

Figure 7. Keyword mapping in landslide monitoring weighted by occurrence.
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4. Systematic Review of Monitoring Techniques

Landslide monitoring can be divided into two main categories: (1) surface- and
(2) subsurface-monitoring techniques. In the following sections, both surface and subsur-
face monitoring are illustrated in detail. Figure 8 lists the surface-monitoring techniques,
while Figure 9 presents the subsurface-monitoring process, including the testing procedure
and data transfer mechanism. This paper first discusses the existing surface-monitoring
approaches (refer to Figure 8 and Section 4.1), which have been well evaluated in the
literature (refer to Table 1). Then, an in-depth investigation of subsurface procedures (such
as movement, forces and stresses, water and temperature, and warning techniques) is
presented. The warning approaches are subsurface monitoring devices that simply give a
warning indication and no quantifiable data. The subsurface monitoring system is consis-
tent with data-collection challenges, as well as prototype and physical modeling systems
that are assessed to present a complete picture of such a topic (see Figure 9).

Figure 8. Surface-monitoring techniques.

Figure 9. The subsurface-monitoring processes.

8
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4.1. Surface Displacements

Surface displacement can be measured using various techniques, such as total stations,
global positioning system (GPS) [38], robotized total station (RTS) [39], light detection
and ranging (LiDAR) [16], synthetic aperture radar (SAR), interferometric synthetic aper-
ture radar (InSAR) [40], persistent scatterer interferometry (PS-InSAR) [41], differential
synthetic aperture radar (SAR) interferometry (DInSAR) [42], ground-based InSAR (GB-
InSAR) [43], terrestrial laser scanning [44], global navigation satellite system (GNSS) [19],
aerial photography [45], and satellite remote sensing techniques [46]. These techniques can
only provide information about ground movements and are useful for wide-area surveil-
lance. However, such instruments cannot determine the subsurface physical mechanism of
landslides [14–16,19,20,47,48].

The GPS technique works on the basis that GPS satellites give navigation position-
ing signals for space resection measurement, hence calculating the 3D coordinate of the
measuring point. However, high-power radio-transmitting stations and high-voltage trans-
mission lines have a significant impact on GPS [9]. Furthermore, one GPS monitoring site
costs approximately USD 6000 for a single device [49]. A robotized total station (RTS) is
beneficial for distributing information about the present landslide condition and can give
near real-time data, such as the ADVICE system [50]. However, false alarms owing to data
inconsistencies caused by instrument faults, physical changes at the measurement location,
and/or extremely local/shallow reactivations are always possible [50].

Remote sensing techniques (space-borne, aerial, and terrestrial surveys) can monitor
broad regions without physical contact with the ground, though these technologies are
expensive, have low resolution, and have difficulty collecting real-time data [7]. Although
InSAR offers a better spatial resolution than GPS, it is hampered by atmospheric delay.
Although PS-InSAR, which is an advanced radar interferometric measurement type that
is representative of DInSAR, offers good accuracy, it is impacted by shadows and dense
vegetation [9]. In satellite- and airborne-based SAR applications, the technique of differen-
tial synthetic aperture radar (SAR) interferometry (DInSAR) has been utilized to monitor
vast regions of longer-distance landslides. DInSAR-based systems estimate displacements
in millimeters by measuring phase changes between pairs of ground pictures acquired at
various time intervals. The drawbacks are that the monitoring time intervals are excessive,
ranging from hours (airborne) to weeks (satellite), and that daily or hourly monitoring is
costly. Ground-based SAR (GB-InSAR), which is utilized over ranges ranging from a few
hundred meters to a few kilometers, was created to alleviate the aforementioned difficulties.
However, when a large bandwidth signal (for a high resolution in the range direction) is
employed, a costly instrument is required [51,52]. The 3D laser scanning method has the
added advantage of rapidly collecting (every 5 min) field deformation topography data
with high accuracy and resolution [53]. However, the performance of a laser-light-based
device is also influenced by weather conditions, such as severe fog or snow/rain [51]. By
employing radio waves to scan a large area of the slope and provide temporal pictures,
radar devices can track the movement of the slope. Nevertheless, there are drawbacks to
using radar systems, such as the inability to monitor the slope in the event of snowfall
or rain or when the line of sight (LoS) between the scanning device and the target slope
is blocked. The technology is also useless for providing real-time warnings of sudden
movements (i.e., seconds) since it takes several minutes to hours to scan the slope and
interpret the photos to detect changes in the slope state [28].

A global navigation satellite system (GNSS) has been suggested to eliminate the
requirement for line of sight (LOS) and to offer high-precision 3D monitoring. However,
this technology has a significant maintenance cost and time requirements, as well as
the presence of a single point of failure [54]. LiDAR-derived digital elevation models
(DEMs) can quantify minor displacements across broad regions. Nevertheless, choosing
an appropriate DEM resolution (i.e., pixel size, grid resolution, grid size) for constructing
susceptibility maps is sometimes difficult since the scale of observation influences the
evaluation, results, and interpretation [55].
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The gradual degradation of slope stability generates landslides, and the sliding surface
plays a vital role in landslide evolution. To illustrate, the landslide initiation is generated
from the subsurface deep layers: only when the slope mass changes sufficiently can
the slope surface deform macroscopically [56]. Surface monitoring systems may detect
millimeter-scale deformation and can monitor wide regions with good spatial resolution
and 3D capabilities, which is appropriate for landslide susceptibility, vulnerability, and risk
maps for planning. The considerable time these systems need to spend returning to the
same location, however, prevents these systems from offering real-time monitoring [57],
and is not adequate for rapid landslides [29,58]. Therefore, there is a need for improvements
in the small-scale subsurface monitoring of landslides [59,60]. To demonstrate this, Mucchi
et al. [54] compared wireless sensor networks for ground instability monitoring (Wi-GIM)
with RTSs and GB-InSAR to illuminate the fact that such sensor networks suffer from
durability, precision, environmental impact, and maximum measuring range issues, and
thus, further improvement is needed, as presented in Table 5. Surface displacement
techniques are widely discussed in the literature (refer to Table 1), while this study mainly
focused on subsurface monitoring systems.

Table 5. A comparison between Wi-GIM, RTS, and GB-In-SAR [54].

Case Wi-GIM RTS GB-In-SAR

Cost (area = 100,000 m2) EUR 5220 EUR 18,150 EUR 58,100
Environmental impact Good Very good Very good
Installation effort Excellent Good Very good
Influence of rain/snow Very good/very good Good/good Poor/very good
Completeness of
measurement Very good Excellent Excellent

Durability Fair Good Excellent
Precision Fair (2–3 cm) Very good Excellent
Maximum range Fair Excellent Excellent

4.2. Subsurface Monitoring

Landslide deep displacement monitoring, where landslide initiation begins, is im-
portant for early warning forecasting and stability assessment [4,5,9]. In addition to dis-
placement monitoring, subsurface monitoring techniques provide the added benefit of
tracking internal forces, stress, moisture content, and temperature changes. Furthermore,
such methods can provide early signs for emergencies.

4.2.1. Movement-Monitoring Devices
Extensometer Device

A conventional wire extensometer can provide a continual check of surface movement
that may lead to a landslide. During emergencies, data can be obtained at regular intervals
of 1–3 h, yet during routine situations, measurement intervals are 6 h. However, to obtain
meaningful readings, the wire must be continually tensioned [2]. The quantity and rate of
movement are measured and calculated manually within a centimeter range. However,
key events might be missed if measurements are not obtained on time. To overcome
the aforementioned issues, potentiometric extensometers detect displacement using a
variable resistance mechanism, where a movable arm makes electrical contact along a fixed
resistance strip. This type has the advantage that the wiring can be buried [61]. Crawford
et al. [62] used a cable-extension transducer, which is a stainless-steel cable connected to a
potentiometer housed in a protective casing, where the voltage output is then transformed
to a linear absolute displacement. Fibreglass extensometers were initially placed (drilled
horizontally in boreholes) in the S landslide to provide more precise data [2]. This type
of extensometer is suited for rock slide applications since it can detect movement in the
millimeter range [2]. Setiono et al. [63] created optical-based wire extensometers with an
optical rotary encoder to count optical pulse signals and transform them into length units
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(refer to Figure 10). This approach offers a high resolution of 0.011 ± 0.0083 mm and a
speed limit of approximately 36 mm/s.

Figure 10. Schematic view of the extensometer system (From Setiono et al. [63]).

Nevertheless, the wire extensometer has the drawback of collecting data at the land-
slide surface, making it hard to analyze the deep displacement distribution, and being
overly expensive, costing approximately EUR 1000 for a single monitoring site [64]. More-
over, this technique is a single-point measuring technique and cannot provide distributed
monitoring [8,65]. With technological advancement, wire extensometers may now deliver
real-time and high-resolution measurements. Wire extensometers can be linked to partic-
ular data logging units and can be combined with other sensors for landslide dynamic
analysis. While this technique is more suited for translational landslides, it can additionally
be used in roto-translational landslides and has been validated in field experiments with
land shifts ranging from 12 mm to 150 mm [63].

Inclinometers

Compared with extensometers, inclinometers have the benefit of measuring deep dis-
placement with a spatial vertical resolution of 0.5–1 m [66,67]. Measurements are collected
regularly by installing a single inclinometer into grooved vertical pipes installed in deep
boreholes to analyze their deformation. Later investigations employed numerous analog
inclinometers or a series of digital in-place inclinometers positioned at different depths
inside these pipes for continuous measurement. Inclinometers, however, are difficult to
install, laborious, lack sensitivity, and are vulnerable to environmental dangers [10,61].
Using an inclinometer to determine the precise location of sliding surfaces is limited by the
spatial vertical resolution [68,69], especially when the shear band thickness is small [35].
Automating inclinometers is impractical because the wiring restricts the number of incli-
nometers that may be installed in a region, resulting in limited area spatial resolution [70].
This approach is impracticable for measuring significant lateral deflections for two reasons:
the limited displacement range [9] and the high expense of guide casing (approximately
30 USD/m) [47] (600 USD/inclinometer) [71]. Electric-powered inclinometers are the most
often used equipment for measuring subsurface displacements. However, in real applica-
tions, this technique (i.e., electric-powered inclinometers) suffers from limited stability and
durability, poor resistance to electromagnetic interference, high gravity dependency, and
significant signal loss for long-distance transmission [72].
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Thus, inclinometers are appropriate for landslides that move very slowly to slowly [73]
and have a thick shear bandwidth (refer to Figure 11), for which a lengthy monitoring
interval and low spatial resolution would be sufficient. Intelligent monitoring for landslides
has been widely studied [74]. Recently, numerous research studies have been conducted to
overcome the inclination drawbacks by improving the spatiotemporal resolution, lowering
the cost, giving real-time data, and enabling wireless data transmission.

Time Domain Reflectometry (TDR)

TDR is a relatively new method that, similar to radar, employs a coaxial cable and
a cable tester (refer to Figure 11) [70,71]. A TDR device is made up of a TDR step pulse
generator, an oscilloscope (or receiver), and a transmission line coupled to a multiplexer for
multipoint and multifunction usage through various types of sensing waveguides [69,75].
An electrical pulse is sent down a coaxial cable that has been grouted into a borehole by
the cable tester. The pulse is reflected when it encounters a crack or distortion in the cable.
The reflection is represented by a “spike” in the cable signature. The relative magnitude
and rate of displacement, as well as the position of the deformation zone, can be measured
instantly and precisely [69]. Lin et al. [70] examined TDR behavior using laboratory and
numerical simulations in an attempt to quantify TDR displacement. The main assumptions
and findings can be summarized as follows: (1) TDR looks useless for quantifying shear
displacement unless the shear mode is fixed (for example, if a sliding surface exists between
soft soil and the bedrock layer). To fix the shear mode in the sensor cable, a hard, brittle
grout with low tensile strength can be utilized. (2) The relationship between soil and grout
stiffness has no effect on the TDR response. (3) Achieving high-strength grout is preferable
because the sliding force required to kink the sensing cable is greater than the grout
strength. Ho et al. [68] quantified the relationship between the horizontal displacement
and reflection coefficients with an R2 of 0.93 through laboratory and field tests. Chung and
Lin [69] used recent literature findings to construct a field prototype monitoring system
with the following model characteristics: (1) water/cement ratio = 1 to improve the cable–
grout–soil interface contact; (2) sand and gravel were suggested to be mixed into the grout
cement when grout loss occurs; and (3) the spatial resolution was 5 cm, which was higher
than that of conventional inclinometers and can determine the location of sliding surfaces at
different depths. Chung and Lin [69] found that TDR can work with inclinometers (IN) to
allow for more precise geological and mechanical modeling of a landslide, determining the
amount and direction of shear deformation. In this context, placing TDR wires outside IN
casings was considered for economic reasons [76]. Using a high-gravity centrifuge, Chung
et al. [75,77] enhanced the applicability of TDR. A flexible coaxial wire was modified to
increase its sensitivity for detecting small-scale shear displacement (0.5 mm).

Figure 11. TDR deformation mechanism and affecting factors “Reprinted/adapted with permission
from Chung & Lin [69], Elsevier”.
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This approach, however, faces challenges when quantifying the amount of displace-
ment [68,78]. This is because numerous factors influence displacement, including (1) cable
resistance, (2) soil–grout–cable contact, and (3) interaction and shear bandwidth. As a
result, each cable has unique calibration measurement features. TDR is not suitable for
multi-landslide failure zones [9]. TDR is not recommended for fast-flowing landslides
or difficult-to-access steep slopes [29]. This method works best on rock slopes, and it is
less effective on soft soils [70]. Reflection interference from closely spaced sliding surfaces
requires additional investigation.

For the following reasons, this system is preferable over inclinometers: (1) low cost
(in the United States, high-quality coaxial cable costs 13.5 USD/m, and the connection for
installing each monitor hole costs USD 100.35) [47], (2) automated real-time data-collecting
capability [9], (3) high spatial resolution to detect the exact location of the sliding surface
(0.05 m), (4) TDR is capable of capturing the dynamics of shear deformation due to its
unique characteristic of high temporal resolution (minute range) [69], and (5) the capability
of measuring small displacements (0.5 mm) [77].

Acoustic Emission (AE)

The majority of AE monitoring studies are qualitative, determining the status of a slope
based on the level of AE. A passive waveguide (i.e., grouted waveguide) is typically used
for rock slope monitoring, whereas an active waveguide is used in soil slope monitoring
by employing a steel pipe and granular backfill. The ringdown count (RDC), which is
a frequent AE characteristic, is the number of times the AE signal amplitude surpasses
the preset voltage threshold throughout a period. A certain frequency band of 20–30 kHz,
which is the dominant frequency range produced from an active waveguide, is where AE
signals are solely gathered to remove external noise [56,79,80]. Previous research employed
metal tubes, which are problematic for large deformations because they are prone to failure
from shear or bending. Deng et al. [56] created a unique flexible device to measure large
movement (i.e., >500 mm) and quantified the deformation caused by AE using experimental
shear testing in which a rubber tube was inserted into the borehole and passed through the
sliding surface, as presented in Figure 12.

Figure 12. The AE flexible monitoring system: (1) sleeve with inner wall threaded; (2) anchor cable;
(3) conical metal head; (4) rubber tube; (5) backfill material; (6) AE transducer; (7) ring dynamometer;
(8) pedestal; (9) nut; (10) anchoring end (Modified from Deng et al. [56]).

AE technology is characterized by its dependability, low cost, great precision, and
ability to be performed in real time. AE is sensitive to minor changes in displacement and
velocity, allowing it to detect extremely slow-moving landslides with a high measuring
range, outperforming both TDR and inclinometers. To illustrate, because of the hardness
and brittleness of the inclinometer body, it can be bent excessively when the local shear
displacement reaches approximately 50 mm, resulting in device failure. A comparison
between GPS, extensometer, inclinometer, TDR, and acoustic emission systems is provided
in Table 6.
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Table 6. Comparison of various monitoring systems [56,71].

System Range Precision Displacement Cost (USD) [71]

GPS - 3 mm Surface High (6000–10,000/station)
Extensometer [63] Up to 1000 mm 0.011 ± 0.0083 mm Surface High (600–1500/station)
Inclinometer <50 mm [79] ±0.01 mm per 500 mm Deep High (600/sensor)

TDR [68,81] 60 mm (210-mρ,
reflection coefficient,) 0.5 mm [77] Deep Low (6–10/m)

AE >500 mm [56] 0.0001 mm/h to 400
mm/h [80] Deep Low [56]

Optical Fiber System

Optical fiber technology has become more important, supplying a significant amount
of the world’s internet, television, and telephone networks. Because of the sensitivity
of the propagating light signal to disturbances, such as strain and temperature change,
optical fiber cables have been effectively employed as sensing devices that can transport
high-quality data across large distances at remarkable speeds. Fibre-optic (FO) sensors can
be inserted directly into the ground; linked to a stabilizing structure or reinforcement; or
coupled to traditional monitoring equipment, such as an inclinometer [82].

First, Brillouin optical time domain reflectometry (BOTDR) was developed. However,
BOTDR cannot detect strain and temperature at the same time [47]. A few years later, optical
time domain reflectometry (OTDR) was developed as a distributed sensing technology [65]
and considered a viable alternative to address the aforementioned limitation. Figure 13
depicts the essential components of the OTDR. A laser transmitter releases a short signal
into the fiber, the timing of which is set by an electronic delay generator. The light is
reflected to the source, and the delay generator measures the time delay relative to the
start time of the pulse. Each time delay value is associated with a specific position along
the fiber. Thus, in principle, backscattering and back reflections may be calculated in
terms of their magnitude and pinpointed in terms of the distance along the connection [61].
Figure 14 is an example of a return signal obtained by using an OTDR system. Extrinsic
and intrinsic sensors are the two types of OTDR displacement sensors. Extrinsic sensors
that employ optical fiber as a transmission medium include reflexive, transmission, and
interferometric sensors. Intrinsic sensors are commonly bend-loss-type sensors in which the
optical fiber bends and creates macro bending loss, which is not favorable for long-distance
optical data transmission. Fiber-optic displacement sensors based on the macro bending
loss concept are intensity-based fiber-optical sensors, meaning that light transmission loss
increases abruptly with large curvatures [83]. During light transmission, Rayleigh, Raman,
and Brillouin scatterings occur and cause the light intensity to be attenuated. Rayleigh
backscattering is the most powerful of the three [59,60], and OTDR can detect its light
intensity as a function of time [47,58].

Figure 13. Basic elements of OTDR (modified after Aulakh et al. [61]).
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Figure 14. OTDR system sample return signal trace (modified after Aulakh et al. [61]).

The first single optical fiber can detect deformation with a high beginning accuracy of
0.3 mm; nevertheless, it has a limited sliding distance of 3.6 mm and a dynamic range of
3.3 mm [47]. The first generation of optical fiber has an unsatisfactory spatial distribution
of twenty meters (one optical fiber was used to pass through a whole capillary steel pipe,
with a suitable length of fiber left outside the pipe); it used a base material of PVC with
no filler material within. To increase the spatial resolution, Aulakh et al. [61] developed
a micro bend resolution-enhancer method that can improve the OTDR resolution up to
10 times. To increase the measuring range, Zhu et al. [47] created the second generation
“combined optic fibre transducer” (COFT), with the base material being expansile polyester
ethylene (EPS). Zheng et al. [84] used physical large-scale modeling to build an empirical
formula for an innovative (COFT) that used OTDR based on the concepts of optical fiber
micro bending loss. The COFT has a maximum sliding distance of 26.5 mm and an accuracy
of 1 mm. The most effective material and the best cement-to-sand ratio in mortar were
expandable polystyrene (EPS) and 1:5, respectively. The following are the capabilities of
COFT fibers: (1) accurately predict the slide direction; (2) low cost; (3) remote, long-term,
and real-time monitoring; (4) data collection takes seconds; and (5) distributed across
numerous kilometers with great strain accuracy [47,58,84,85].

However, COFT finds it challenging to locate potential sliding surfaces and collect
dispersed measurements of complex landslides, particularly the arrangement and in-
teraction between multiple sliding surfaces. Therefore, a quasi-distributed measuring
system and prospective sliding surfaces, especially on rock slopes, can be achieved using a
parallel-series connected fiber-optic displacement sensor (PSCFODS) with bowknot bend-
ing modulation that makes it more bendable and sensitive [59,60,83]. The greatest value
was 34 mm, and the initial measurement was 0.98 mm. Different lengths of capillary steel
pipes were arranged to determine the sliding surface location with a spatial resolution
of 250 mm. Zheng et al. [84] employed laboratory shear testing and field experiments in
which many fiber-optic displacement sensors (FODSs) were linked in series. The starting
measurement of the QDFODS was 0.98 mm, and the maximum displacement was 36 mm.

Interferometric “integral coherent measurements” are used in the coherent optical
time-domain sensing principle (C-OTDR). The term comes from the sensing mechanism
that produces an integral of the signal response throughout the whole length of the sensor.
This sensing system demonstrates its suitability for providing an overall indication of
the status of the monitored region, as well as the yielding strain and temperature change
indicators with high temporal resolution [82]. Yu et al. [86] examined experimentally
distributed coherent optical time-domain reflectometry (C-OTDR), which has a spatial
resolution of one meter and a resolution of 0.1 m. The fiber was placed in a snake-like
manner, as shown in Figure 15, to monitor the displacement in both directions at the
same time.
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Figure 15. Schematic view of the snakelike distributed C-OTDR. “Reprinted/adapted with permis-
sion from Yu et al. [86], Elsevier”.

OTDR, BOTDR, and C-OTDR have limited spatial distributions, which limit their
usage. The spatial resolution has risen from 1 m for the Brillouin optical time domain
reflectometry (BOTDR) technique to 0.1 m for the Brillouin optical time domain analysis
(BOTDA) approach due to the rapid growth of fiber optic technology. However, their
BOTDA installation is difficult, as BOTDA requires an incident laser from both ends of
the optical fiber [78]. Schenato et al. [65] used experimental modeling to understand the
evaluation of rainfall-induced landslides using a highly densely distributed optical fiber
strain-sensing system with centimeter (10 mm) spatial resolution. Optical frequency domain
reflectometry (OFDR) technology has recently been improved, allowing for strains to be
measured with an exceptional spatial resolution (i.e., millimeters) [58]. Ivanov et al. [82]
recommended a novel interrogation technique, namely, “Brillouin Optical Correlation
Domain Analysis” (BOCDA), which will be used in a subsequent study to recover the
whole strain profile along the deployed sensor fiber with centimeter spatial resolution.

Previous studies, however, were based on the micro bending theory or the beam theory,
which does not consider mass movement kinematics. Zhang et al. [58] investigated the
mechanism of distributed optical strain sensing (DFOSS) via a kinematic method through a
parametric study on the sliding directions, shear zone width, and shear displacement. This
approach simplifies the deformed sensing optical fiber (SOF) to be an arc or straight line,
but the deformed shape might be rather complex since it is determined using the shearing
angle, soil profile, grouting quality, etc. In contrast to simplistic techniques that assume the
deformed shape to be rectangular or an arc, a more generic shear displacement calculation
method (accumulative integral method (AIM)) is presented herein that does not presuppose
the shape of the DSS cable [35]. In laboratory experiments, this suggested technique
outperformed the triangle and arc models with a relative inaccuracy of approximately 6.5%.

To improve the stress transmission between the sensing cable and the surrounding soil,
Ivanov et al. [82] concluded that the position of the sensors perpendicular to the sliding
direction is preferable where better soil cable coupling is achieved. However, in such cases,
these fibers are subjected to high shearing stresses, which limit their usage to shallow,
slow-moving landslides. Minardo et al. [87] employed small anchors that were installed
by placing pieces of geonet every 25 cm along the optical fiber. Zhang et al. [35] created a
novel distributed-strain-sensing (DSS) cable based on the Brillouin frequency to improve
the coupling behavior between the borehole-installed DSS cable and the surrounding soil.
Anchors and deep confining pressures were used to enhance the coupling behavior, as
shown in Figure 16.

A fiber Bragg grating (FBG)-based inclinometer can monitor quasi-distributed defor-
mation at various depths (i.e., spatial vertical resolution) [72]. The FBG is a wavelength-
selective filter. An FBG sensor will reflect light with a center wavelength matching the
Bragg condition. Strain modifies the Bragg wavelength by causing the grating periodicity
to expand or contract. Wang et al. [72] adopted a prototype monitoring system consisting of
nine FBG-based inclinometers. This system has a spatial resolution of one meter and can de-
tect horizontal displacement with high accuracy in the millimeter range. Zheng et al. [59,60]
used the previous data to build a theoretical deflection relation using the Simpson integral
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model considering the cantilever beam where the displacement difference range was (−10%
to 10%). Allil et al. [48] achieved a spatial resolution of 100 mm through laboratory tests.
Despite FBG’s numerous benefits, it is challenging to extract deformation directly from
FBG strain sensors. Zheng et al. [78] and Zeng et al. [88] developed mathematical equa-
tions based on the conjugate beam approach that were validated using numerical analysis
(ANSYS) and a large field shear test. The highest recorded value in laboratory experiments
was approximately 50 mm, and the most significant absolute error between mathematical
and field testing was approximately 10%. This system offers the benefits of low weight,
small dimensions, corrosion resistance, high measurement precision, high instantaneity,
anti-electromagnetic interference, and ease of installation [59,60]. Temperature, on the
other hand, has an effect on FBG, C-OTDR, and BOTDR/A sensing technologies [72,83].
Thus, Zheng et al. [89] suggested a temperature compensation approach that can be used
to reduce chirp change reflection peaks and offer temperature compensation.

Figure 16. Soil cable coupling improvement. “Reprinted/adapted with permission from Zhang et al. [35],
Springer Nature”.

While FBG-based sensors offer discrete strain and temperature readings at prede-
termined places and are capable of providing dynamic measurements, this technology
is unable to offer monitoring over a wide area. While BOTDR/A monitors strain and
temperature change throughout the entire cable length, they are only capable of static
monitoring, which can be over many kilometers (i.e., the distributed fiber length) [82]. Li
et al. [90] created a novel system by merging BOTDA and XFG (fiber Bragg grating (FBG)
and long-period fiber grating (LPFG)), resulting in a distributed system that can monitor a
sizable region with discrete dynamic strain/temperature, as illustrated in Figure 17. How-
ever, laboratory studies were used to validate these findings. Table 7 lists the characteristics
of FBG in comparison with some other techniques.

Figure 17. The developed hybrid system for multiparameter monitoring (From Li et al. [90]).
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Table 7. A comparison between conventional inclinometers (IN), TDR, single optical fiber (SOF),
combined optic fiber (COFT), parallel-series connected fiber-optic displacement sensor (PSCFODS),
and FBG-based inclinometer.

Method
Initial
Accuracy
(mm)

Maximum
Displace-
ment
(mm)

Spatial
Resolution

Dynamic
Range

Loading
Direction

Sliding
Location

Price
(USD/m)

IN [66–68] 0.01 <50 [79] 500 mm - Yes Yes 30 [47]

TDR [68,77,81] 0.5 mm 60 (210 mρ) 50 mm 0–20.4 [47] Yes Yes 13.5

SOF [91] 0.3 3.6 - 0–3.3 No No 0.03

COFT [47,78,84,85] 0.98 36 - 0–34 Yes Yes 0.45

PSCFODS [58,59,83] 0.98 36 250 mm - Yes Yes 0.2

FBG [48,58,59,89] 0.02 50 100 mm - Yes Yes -

While numerous authors highlight the low cost and long lifespan of the sensor itself
(i.e., optical fiber cables), the truth is quite contrary: costs may reach tens of thousands of
euros and are often built to function in a controlled environment, such as a laboratory [82].
Optical fiber technology has not been used extensively for a long period in challenging
outdoor environments. Additionally, even though the price of the optical sensor itself may
be low, it is necessary to consider the price of additional optical data acquisition tools,
such as fiber optic interrogators and optical fiber grating demodulators, as well as the
need for highly skilled labor to manage and install these technologies. Additionally, the
power consumption of the entire optical sensor system is not optimized for low-power field
applications, where the entire piece of equipment must operate unattended for months on
battery power [10].

Electromechanical Tilt Sensors

Fiber optics are widely used to improve performance, whereas electromechanical
sensors appear to be a viable way to obtain both precision and a wide range of data [92].
However, because microelectromechanical systems (MEMS) are electronic devices, they
must be charged, and their output signals must be transmitted outside by electric cables
or wireless networks, which cannot be too lengthy, or the signals will be compromised by
noise. Optical fiber sensors may be an alternative to electrically powered devices since they
may be operated remotely and are powered by optical fiber cables, such as FBGs, without
the requirement for electricity [48]. Nevertheless, many attempts were proposed to save
sensor power consumption and to overcome wiring issues by developing wireless sensor
networks (WSNs), which are further discussed. The low-power radio communication and
modular architecture make installation and maintenance of the entire system easier than
with cable-connected devices, and data transfer is more efficient [52]. Some types have
excellent performance and are used to create sensors for structural monitoring [12,93,94].

Extensometers can only detect surface displacements, while inclinometers can only
give subsurface displacement in one direction [8,65]. Both approaches require expert labor
to install and maintain such instruments. Moreover, determining the landslide direction
with both inclinometers and extensometers is challenging. Tilt measurements can indirectly
detect two-dimensional shear deformation and determine the rotational direction in terms
of tilt angle and sign convention [95]. When combined with MEMS and WSNS techniques,
tilt sensors can provide the following benefits: (1) minimal cost, (2) simple installation
(no deep boreholes required), and (3) real-time data [96]. Gian et al. [96] used a tiltmeter
combined with other sensors to provide real-time data through WSNs. Chen et al. [97–99]
adopted a MEMS sensor to measure tilt angle with a data frequency of 1 s. Abraham
et al. [93,94] used a MEMS sensor with an accuracy of 0.017◦ and a resolution of 0.003◦ to
measure the tilt angle in two directions (parallel and perpendicular to the slope movement).
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Qiao et al. [52] investigated the relationship between the tilting direction and the depth of
the tilt rod sensor using a MEMS tilt sensor (nominal resolution = 0.0025◦) and temperature
sensor, as shown in Figure 18. For diverse types of landslides, the depth of placement of
tilt sensors with rods should be carefully determined. Both tilt sensors with short rods
and tilt sensors with long rods can be employed for landslides with curved slip surfaces.
Tilt sensors with short rods are ineffective for shallow translational landslides. To monitor
these types of landslides, the tilt sensor rod must be placed in the stable layer. Artese
et al. [12] created a novel sensor called the Position and Inclination Sensor (POIS), which is
wireless, low cost, small, light, and consumes little power. This sensor costs approximately
USD 400 and can measure the tilt in two directions. This sensor is suitable for both slow-
moving and rapid landslides. Ruzza et al. [64] designed a multimodule system that consists
of many biaxial tilt measuring units, as shown in Figure 19. When linked together, it
may be deployed within a borehole supplied with a specialized inclinometer housing.
Once mounted, the device continually collects tilt data at various depths and turns it
into a displacement measurement. For landslides with depths ranging from 5 to 10 m, a
multimodule in-place inclinometer costs EUR 700. The measurement accuracy is 0.37%
of the inclinometer chain depth, the linear measuring range is ±20◦, and it has good
thermal efficiency.

Figure 18. Wireless MEMS tilting monitoring system (From Qiao et al. [52]).
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Figure 19. The multimodule inclinometers (From Ruzza et al. [64]).

Nevertheless, the inclination measurement accuracy is influenced by a variety of error
causes, including noise, drift, and offset. Similar to Ruzza et al. [64] and to overcome the
aforementioned accuracy limitation, Wielandt et al. [100] developed a low-cost, long-term
wireless sensor that consists of three-axis accelerometers (MEMS) and a temperature sensor
to monitor the change in sensor inclination, surrounding soil deformation, and subsurface
temperature to reduce the draft error. The equipment achieved a resolution of 0.39 mm, a
95% confidence interval of ±0.73 mm per meter of probe length, a depth spatial resolution
of 100 mm, and an acceleration range of ±2 g.

Tilt sensors, on the other hand, are point sensors and cannot extract deformations in
regions where there is no inclination (i.e., translational landslides) [8,101]. This system
has a high false alarm rate due to human or animal interventions. To show why there
are so many false alarms from shallow sensors, consider the following: (1) erosion of the
ground on rainy days may cause sensor tilting, although this does not affect landslides, and
(2) external impacts from animals or human activity may cause tilt readings. Multimonitor-
ing systems, therefore, have the benefits and ability to overcome these shortcomings [93,94].

Strain Gauge Sensors

Strain gauges can achieve cost-effective conditions compared with inclinometers. The
strain gauge measures the strain experienced by the soil layer during slope instability and
can be connected to a WSN to provide real-time data [102]. A strain gauge translates force,
pressure, tension, weight, and other variables into a change in electrical resistance that can
be measured. Before a landslide, strain gauges are used to quantify the micro movements
within the unstable soil slope [103].

Ramesh and Vasudevan [6] used a casing up to 21 m long with strain gauges to assess
deep subsurface movement. These strain gauges were attached to the inclinometer case’s
exterior diameter to detect displacement in the sliding direction and with 90, 120, and
240-degree angles to the sliding direction, respectively. Pipe strain gauges (i.e., strain
gauges mounted on inclinometers) have a limited spatial resolution but can detect the
depth of deformation in the soil surrounding the gauges [101]. If the casing has high
bending stiffness in comparison with the surrounding soil, the small motions before the
failure cannot be properly recorded. Additionally, it is difficult to utilize them to track
changes in shallow strata above the bedrock. In comparison with PVC pipes and shapeAc-
celArray/Field (SAAF) devices, soil deformation sensors (SDSs) have been designed with
bending stiffnesses that are 300 times and 50 times lower, respectively [104,105]. SDSs were
created at the Institute for Geotechnical Engineering at ETH Zurich to track the subsurface
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motions of a silty sand slope. Askarinejad and Springman [105] investigated the behavior
of SDS through experimental and numerical (PLAXIS) verification. Askarinejad et al. [73]
developed fully automated novel slope deformation sensors (SDSs) that can measure fine
movement (<1 mm) with a range of 0 to 25 mm and are suitable for rapid silty sand land-
slides. Kumar and Ramesh [10] created a unique Strain Gauge Deep Earth Probe (SG-DEP
sensor) that consists of a basal body (grooved ABS pipe) that can flex/deform with the
soil and strain gauges that can quantify the amount of flexion/deformation in this basal
body. To obtain a full 360-degree directional measurement of the subsurface movement,
1000-ohm linear strain gauges (unaffected by temperature) are bonded to the midsection of
the basal body in both orthogonal planes. The suggested SG-DEP sensor is also used in
the system to monitor the change in curvature of the ABS pipe with a high sensitivity of
0.005799 m−1 (refer to Figure 16).

Acceleration Sensors

The majority of monitoring system components involve sensors for assessing soil
tilting or displacement; however, acceleration sensors have yet to be commonly utilized.
Independent of the trigger, acceleration sensors can be utilized to detect any movement
(Giri et al., 2018). These sensors can be manufactured based on the technology of optical
fibers [90], inertial measuring units (IMUs), and MEMS [8,28], in which sensor reading
data can be transferred via wiring or wireless networks. By supplying a significant voltage
differential Vout, the accelerometer reads a biaxial acceleration change.

Considering optical fiber technology, Li et al. [90] employed an FBG accelerometer
to obtain rockfall vibrations using experimental tests. Inertial measuring units (IMUs)
have the potential for real-time and distant applications in the monitoring and warning of
landslides [28]. IMUs are used to combine different MEMS sensors, such as a three-axis
accelerometer and three-axis gyroscope, to provide information about landslide movement
and rock fall [28]. Based on the concept of a wireless sensor network, Kotta et al. [106] em-
ployed a vibration sensor (accelerometer) on Micaz devices to monitor vibrations brought
on by landslides composed of montmorillonite (expansive clays) using prototype imple-
mentations. Similarly, Rosi et al. [7] adopted a prototype wireless sensor network to monitor
acceleration using accelerometers. Ramesh and Rangan [102], Prabha et al. [103], and Gian
et al. [96] used geophones to monitor vibrations caused by slope instability, which can
provide real-time data when connected with WSNs.

The disadvantage of previous research is that it relied on a combination of linear and
gravitational accelerations, or “raw acceleration data,” to identify tilt or motion. As a
result, a better system for keeping track of slides is needed. Giri et al. [28] used a MEMS
wireless monitoring system to divide the acceleration into tilting and linear motions using
a gyroscope, considering linear accelerations and gravity accelerations independently, as
well as the angular velocities using experimental physical models. This method works well
for translational landslides without tilting. The most obvious indication demonstrating the
failure is the change in linear acceleration. Giri et al. [29] studied the behavior of shallow
fast translational landslides in real time using the same system and scale model as Giri
et al. [28]. According to the experimental study by Giri et al. [28], a translational slide is
shown by a combination of low angular velocities within ±10 deg/s, minor variations in
gravity accelerations within ±2 m/s2, and linear accelerations of more than 1 m/s2 in the
longitudinal direction of the slope.

4.2.2. Force and Stress Monitoring

The majority of widely available monitoring and warning systems rely on displace-
ment, which is affected by a variety of variables, such as rainfall, temperature, and soil
moisture. Landslides, on the other hand, can be predicted in advance by monitoring the
earth pressure and the sliding force in near real time, as the best metric for identifying the
kinematic characteristics of landslides is the sliding force [9].
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Earth pressure cells (EPCs) and seismic vibrators can be buried in the soil layer to
measure the variation in earth pressure. Ma et al. [53] utilized an EPC to measure the earth
pressure using experimental tests, where this device has a capacity of 500 kPa. Similarly,
Askarinejad et al. [73] employed EPCs with an accuracy of 1 kPa, a range of 0–500 kPa,
and a frequency of 100 Hz. Yunus et al. [107] developed a new smart wireless sensor to
measure seismic vibrations. A set of weights placed on the cone transforms the loudspeaker
(Visaton FR8 8-ohm) into a vibration sensor. When the loudspeaker detects seismic waves,
the weights remain in place and apply stress on the cone, changing the distance between
the coil and the base of the center pole. As a result, an output voltage is created at the
loudspeaker’s output terminal.

Using a constant resistance and large deformation (CRLD) anchor cable (refer to
Figure 20), Tao et al. [108] created a monitoring system. The crucial warning threshold was
set at 900 kN of cumulative sliding force, which allowed for an early forecast of a landslide
4 h prior to the event. Figure 20 depicts the monitoring system and monitoring curve stages,
which are divided into three sections: (1) the steady stage, (2) the slowly rising stage, and
(3) the stable stage. In the first stage, a few tensile cracks occur, whereas in the second
stage, tensile cracks deeply penetrate the slope, and the shear plane inside the slope body
extends. In the third stage, failure occurs, and the steady state occurs [108]. Chuan et al. [9]
employed a prototype force sensor with a maximum capacity of 500 kPa and a precision of
1%. He et al. [109] established the “remote monitoring warning system of sliding force”,
which is a real-time and distant intelligence monitoring system based on the functional link
between the sliding force and resistance force. Li et al. [110] developed a high-performance
piezoelectric sensor that is able to adapt to both static and dynamic stresses through the
self-structure pressure distribution method (SSPDM) and the capacitive circuit voltage
distribution method (CCVDM). SSPDM was used to improve the compression capacity, and
CCVDM was used to reduce the measuring error using the low-frequency method. This
sensor can achieve a static range of 1500 kN and a dynamic range of 0–500 kN. However,
this system was calibrated and verified using laboratory tests. It should be emphasized
that the anchor cable must have the following characteristics: (1) strong strength, (2) low
relaxation, and (3) high anticorrosion.

Figure 20. Sliding force monitoring system. “Reprinted/adapted with permission from Tao et al. [108],
Springer Nature”.

4.2.3. Water and Temperature Monitoring

There are three types of near-surface water monitoring: surface water monitoring,
groundwater monitoring, and precipitation monitoring. Precipitation monitoring is pri-
marily concerned with rainfall, whereas surface water monitoring covers near-surface soil
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moisture. Groundwater monitoring includes measures such as the groundwater level, pore
water pressure, water temperature, water quality, and soil water content.

Precipitation Monitoring

Heavy rains are one of the most common causes of landslides. Table 8 shows, for
example, the rainfall categories based on the Head of Meteorology, Climatology, and
Geophysics Agency (BMKG) Regulation No. KEP.009 of 2010 [111].

Table 8. Rainfall intensity classifications.

Class Per h (mm) Per Day (mm)

Per Month

Rainy Days
(Days)

Total Rainfall (mm)
Cumulative

Rainfall (mm)

Very small <1 <5 5–6 10-15 10-15
Small 1–5 5–20 6–7 60–70 70–85

Moderate 5–10 21–50 6–7 180–210 250–295
High 10–20 51–100 2–4 150–250 400–545

Very high >20 >100 1–2 110–300 510–845

Rain gauges are classified into mechanical, optical, electrical, visual, and radar types,
with the mechanical type, such as the traditional tipping bucket rain gauge (TBR), being the
most extensively used and accurate. The mechanical type has the benefit of directly measur-
ing the amount of rainfall, whereas the other methods adopt indirect measurements [112].
Ramesh and Vasudevan [6], Ramesh and Rangan [102], and Prabha et al. [103] adopted
tipping bucket rain gauges to measure rainfall intensity. Latupapua et al. [111] developed
a prototype wireless sensor network for measuring rainfall intensity using the Arduino
Raindrop sensor. Crawford et al. [62] adopted a tipping bucket rain gauge (Rain Wise
Inc) to measure rainfall with a data logger that has a 1 min resolution and is calibrated at
0.25 mm/tip.

However, TBRs suffer from limited measurement accuracy and significant abrasion
under heavy rainfall conditions. Hu et al. [112] created a novel TBR based on multiple
triboelectric nanogenerator (TENG) units capable of real-time rainfall monitoring via a
freestanding TENG (F-TENG) unit and effective rainfall energy collection via a contact–
separation mode TENG (CS-TENG) unit. The range of this system is 0 to 288 mm/d, and
the resolution is 5.5 mm. It also features an excellent anti-humidity interference ability and a
rainwater energy harvesting function, with a peak power generation capability of 7.63 mW
under a rainfall intensity of 250 mm/d. As a result, this device is a self-powered wireless
sensor with a high measuring range and resolution that can be used in hazardous conditions.
Nevertheless, one disadvantage of utilizing rainfall records is that the rainfall criteria (i.e.,
empirical rainfall thresholds) do not account for the inner landslide mechanism [4,5]. Thus,
understanding the subsurface changes in matric suction, moisture content, groundwater
fluctuation, etc., is crucial for the better prediction of landslides.

Near-Surface Water Monitoring

Near-surface technologies, such as gamma-ray attenuation [113], soil heat flux [114],
and ground penetration radar (GPR) [32], are costly, susceptible to noise, and incapable
of providing deep moisture and temperature information [115]. Soil moisture may be
monitored at the regional scale using remote sensing techniques, such as satellite re-
trievals, which are restricted to near-surface soil moisture. Although satellite-based soil
moisture estimations [34] have been found to be beneficial for identifying landslide-
prone situations, their application in landslide early warning systems is restricted by
the coarse spatial resolution and the lower temporal resolution [116]. It should be high-
lighted that this study focused on subsurface monitoring techniques, which exclude the
aforementioned investigations.
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Subsurface Water Monitoring

Subsurface water monitoring approaches include site investigation and laboratory sam-
pling, optical fiber and acoustic emission methods, electrical permittivity tools, geophysical
techniques, and MEMS and IoT technology applications. Subsurface water monitoring
includes soil moisture content (volumetric water content), pore water pressure (suction
pressures), and groundwater level variation. It should be emphasized that soil moisture is
a critical parameter for assessing and monitoring natural hazards, such as landslides. The
volumetric water content response to rainfall events is more immediate than that of pore
water pressure and retains its maximum value for some time before slope failure [115].

In the laboratory, the soil moisture content can be determined using the weight differ-
ence between the dry and wet states of the soil (soil drying technique) [117]. This technique
has high local accuracy; however, it requires considerable time and is labor intensive.
Thus, it is preferable only for small areas [118]. As for acoustic emission monitoring, the
low-energy acoustic emission signals created in soils attenuate dramatically over short
distances [119]. Nevertheless, it is challenging to link acoustic waves with soil moisture
since it is impacted by the soil density, void ratio, effective stress, etc. [120]. The first
generation of fiber Bragg gratings (FBGs) could monitor a volumetric water content (VMC)
of just 5% when the humidity reached 90%. Consequently, Leone et al. [115] created a
new generation of fiber-optic thermos hygrometer-based soil moisture sensors based on
fiber Bragg gratings (FBGs) that can measure the VMC up to 37% in continuous real-time.
This innovative system comprises a polyvinyl chloride (PVC) cylindrical structure with an
upper section sealed by a hermetic stopper that interacts with the soil via a microporous
hydrophobic membrane that covers its lower part (refer to Figure 21). Depending on the
soil water content, a specified quantity of molecules of water in the vapor form can flow
through and spread throughout the package volume when buried in the soil. A comparison
between both systems is shown in Figure 22.

Figure 21. An optimized version of the optical soil moisture instrument (From Leone et al. [115]).
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Figure 22. A comparison between the first generation (reference sensor) and the optimized sensor
(optical fiber) (From Leone et al. [115]).

Dielectric permittivity technologies are used to estimate the volumetric water content
(VWC), tensiometers are used to assess the soil water potential (SWP), and piezometers
are used to monitor the water pressure. Ivanov et al. [82] employed a TDR probe for
soil moisture monitoring. Minardo et al. [87] utilized tensiometers for soil suction stress
monitoring. Ramesh and Vasudevan [6], Ramesh and Rangan [102], and Prabha et al. [103]
adopted dielectric moisture sensors to quantify the volumetric water content and piezome-
ters to measure pore water pressures. High-temporal-resolution measurements of soil
moisture are possible. However, in situ sensors only monitor a small amount of material.
Additionally, measurements may be impacted by local-scale phenomena (i.e., preferential
flow, root development around the sensor) because of the small measurement volumes,
which are in the range of several hundred to a few thousand cubic centimeters, thus making
comparisons of data challenging [115,116].

Ultrahigh-frequency radio-frequency identification (UHF RFID) sensors are a promis-
ing option for soil moisture monitoring since the sensors are inexpensive, can be self-
chargeable (no battery), can provide distance communications up to some meters, and can
transfer real-time data [121]. In UHF RFID, the electrical characteristics of the tags change
with the existence of water. Pichorim et al. [121] used two experimental methods to study
UHF RFID tags for moisture content detection: one tag was buried into the ground as a
sensor tag, and one tag was placed on the surface as a reference tag. This option, however,
is expensive. The second method is affordable, which makes use of the SL900A chip and
examines the relationship between soil moisture and sensor capacity. Sensor moisture
readings vary from 6% in a dry condition to 16% in a saturated state. Both alternatives are
long-term self-rechargeable sensors.

Geophysical techniques, such as electrical resistivity, are feasible approaches for cor-
relating geotechnical observations since they are impacted by the soil profile, saturation
degree, pore structure, effective stress, deformation, etc. As a result, these approaches can
be employed as a monitoring system. They have the benefits of (1) being less expensive than
typical geotechnical monitoring systems, (2) providing information across large regions
rather than single points (i.e., plot-scale soil moisture fluctuation), (3) being nondestructive
studies of ground parameters, (4) having a spatial resolution of meter-to-decameter scale,
and (5) providing great temporal resolution [122]. A prime technique is electrical resistivity
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tomography (ERT), which determines the two- or three-dimensional distribution of electri-
cal resistivity along one or more profile lines of electrodes installed on the soil surface or in
boreholes. Electrical resistivity is calculated using pairs of electrodes that inject an electrical
current into the ground and detect the potential difference [116,118,123,124]. ERT can offer
information regarding the soil profile, moisture status, depth of the slide surface, and shape
of a landslide. In general, single measurements are used for subsurface characterization,
whereas repeated measurements at the same profile line (time-lapse tomography) are used
to investigate time-variant processes in the subsurface. Two ERT profile lines, with one
perpendicular to the slope direction (horizontal profile) and the other parallel to the slope
direction (vertical profile), were placed on the plot, allowing for an assessment of the spatial
variation in hydrological processes and lithological heterogeneity on the plot size [116].
The primary drawbacks of electrical resistivity measurement are the reduction in resolution
with depth, the non-uniqueness of solutions for data inversion and interpretation, and the
lack of direct information [99].

Crawford and Bryson [122] conducted research that correlated electrical resistivity
measurements with shear strength within shallow landslides, in which prototype experi-
ments were conducted to evaluate volumetric water content, soil water potential (suction),
and electrical conductivity. In keeping with a prior study by Crawford and Bryson (2018),
Crawford et al. [62] used electrical conductivity to estimate unsaturated soil properties (soil
water characteristic curve (SWCC) and suction stress characteristic curve (SSCC)) based on
the long-term field monitoring of movement, water content, water potential, and electric
conductivity of rainfall-induced shallow landslides. A novel equation that uses electrical
conductivity as a predictor of suction stress was developed. However, correctly measuring
the water content of the landslide is extremely challenging [125]. When geophysical electri-
cal monitoring (high-density resistivity) of soil moisture content is considered, it is shown
that numerous factors impact the resistivity and moisture content, and the relationship is
complicated and cannot be described using typical linear and nonlinear equations. As a
result, Xiaochun et al. [118] used laboratory testing to train a hybrid artificial intelligence
model, which was then tested using a large-scale model and used in field tests.

Some recent applications show that root zone soil moisture is often the most valuable
hydrologic information for shallow landslide prediction; thus, its distributed monitoring
should be considered by low-cost networks with easy installation and maintenance [126].
IoT technology applications have recently gained popularity. Marino et al. [126] explored
the measurement of volumetric water content utilizing a network of low-cost capacitive
sensors communicating through field testing within the space of Internet of things (IoT)
technology. The correlation between the volumetric water content and the sensor output
voltage (Vout−1) reached an R2 of 0.98. Similarly, MEMS sensors provide a viable way to
provide real-time data at a low cost. Abraham et al. [93,94] used the MEMS volumetric
water content, where the precision of the volumetric water content sensor was ±3%.
Chuan et al. [9] measured the pore water pressure using a sensor with a capacity of 100 kPa
and a precision of 0.3%. Chen et al. [97–99] used an EC–5 (by Decagon Devices, Inc.,
Washington, DC, USA) sensor to measure volumetric water content with a data frequency
of 1 s. When these sensors are connected to a wireless network through ZigBee, Wi-Fi, or
VSAT (satellite) networks, they can accomplish real-time monitoring [102]. Jeong et al. [92]
used a wireless sensor to measure soil suction (tensiometer), groundwater content (soil
moisture sensor), and rainfall (rain gauge). Using a combination of industry-tested sensors,
Chu et al. [125] created SitkaNet, which is a cost-effective alternative. This sensor node
can measure the soil moisture content at various depths (six sensors at various depths),
water table, humidity, atmospheric pressure, temperature, and rainfall for a low cost of
approximately 1000 USD/node. This device can send data in real time with a temporal
resolution of 5 min and can operate for 6 months. However, these methods are point
sensors with limited spatial resolution and suffer from high power consumption.
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Temperature Monitoring

For deep-seated landslides, where thermal sensitivity plays a crucial role in the stability
of the slide, Seguí and Veveakis [30,31] created a theoretical equation to quantify and
decrease the uncertainty of the model parameters and use the temperature in the shear
band. The feasibility of this study was confirmed using field tests, where a thermometer
was employed to determine the potential thermal sensitivity of the material located in one
of the most crucial regions of a landslide (the shear band). However, this system requires
prior investigation to determine the location of the shear band. For shallow landslides,
Ma et al. [53] experimentally showed that the surface temperature can provide early
warning indicators, as the moving mass’s surface temperature is much higher than the
nonmoving mass’s surface temperature. Prior to failure, the average change in surface
temperature exhibits a significant increase, followed by a fall in the surface temperature.

4.2.4. Warning Techniques

Previous monitoring systems primarily focused on the accuracy of acquired data
for improved prediction based on geological parameter monitoring; nevertheless, these
approaches lack scene information and deal with emergency scenarios [127]. Thus, regard-
less of the precision and quantification of the monitored parameter, warning monitoring
systems can offer an early warning indication. Sensors for moisture or slope deformation
are point sensors that are exclusively sensitive to changes in physical characteristics in
their immediate surroundings. As a result, several sensors are necessary to cover a large
possible landslide region. This might drastically raise project costs, but limiting the number
of sensors would reduce the landslide forecast efficiency, making the system itself doubtful.
A promising technique where geological engineering uses damage-free studies of geotech-
nical parameters based on data delivered by elastic waves was developed [97]. Figure 23
illuminates the difference between the elastic wave velocity method and conventional
methods [128].

Figure 23. Comparison between elastic wave technique and conventional methods
“Reprinted/adapted with permission from Irfan et al. [128], Elsevier”.

Figure 24 shows how measuring the change in wave velocities may help to identify the
time of failure start and post-failure strain rate. Such distinct differences in wave velocities
during rainfall can help to construct a viable landslide prediction system. Since elastic
waves are influenced by the internal structure of soil particles, shear modulus, void ratio,
soil moisture content, soil deformation, and soil movement, they can be used to represent
the internal mechanisms of soil [97,99]. Irfan et al. [128] proposed a unique method for
monitoring slope deformation and soil moisture content by varying elastic wave velocities.
The elastic wave characteristics were investigated through a series of triaxial tests. It was
concluded that wave velocities decreased by nearly half when the soil saturation increased
from 20% to ~80%: Figure 25 highlights the response of elastic wave velocities during
rainfall-induced landslides (i.e., yielding).
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Figure 24. Received shear wave signal versus time “Reprinted/adapted with permission from Irfan
et al. [128], Elsevier”.

Figure 25. Elastic wave velocity during rainfall events “Reprinted/adapted with permission from
Irfan et al. [128], Elsevier”.

Chen et al. [97–99] constructed two physical models (small and large) to study the be-
havior of the elastic wave velocity in rainfall-induced landslides. The elastic wave velocity
dropped continually in response to moisture content and deformation, and there was a clear
increase in the rate of wave velocity decline when failure commenced.
Chen et al. [98] proposed a threshold based on centrifuge experiments for predicting
rainfall-induced landslides using a normalized shear velocity limit of 0.9. The scope of
these investigations, however, was restricted to homogenous slopes and laboratory settings.
Chen et al. [97,99] quantified the relationship between S-wave (VS) and P-wave velocities
(VP) with the shear modulus (G0) and constrained modulus (M0). Furthermore, the shear
wave velocity decreased with increasing deformation, which increased the water content,
loss of matric suction, and effective stress in soil.

These studies (elastic wave), however, lacked a cost estimate for field deployment,
and the location (i.e., near the toe, middle, or close to the crest) of the elastic wave transmit-
ter/receiver in the field is unknown. According to experimental and laboratory studies by
Chen et al. [98], the toe is best for monitoring waves. Exciting device selection is a complex
problem (for example, powerful waves can harm slope stability, while weak waves may
be influenced by noise) [97]. Furthermore, exciting devices require a constant high-power
source to create excitation over a lengthy period. Because several receivers may be re-
quired to be deployed along the slope with a single transmitter, the receivers have to be
cost-effective and energy-efficient [97,99]. The layered soil profile affects the wave velocity
and direction, with each soil having unique characteristics that require future investigation
of such complex behavior [98].

Previous research on acoustic emission (AE) was restricted to high-frequency signals
in which AE is generated when a disordered material is subjected to stress, shear, or fail-
ure [129]. Low-frequency AE signals, such as infrasonic signals, have received less attention.
In contrast to traditional monitoring systems (i.e., point systems, such as deformation sys-
tems or subsurface water systems), infrared signals can monitor several landslides within a
local region with high penetration capacity and low attenuation. Zhang et al. [130] created
a novel geophysical warning system based on experimental physical modeling in which
infrasonic signals can reveal any microscopic variations in the subsoil caused by sliding
forces (e.g., change in void ratio or porosity). When landslides begin, sensors can easily
catch a high-energy infrasonic signal (refer to the pulse in Figure 26) as an indication of
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a macroscopic rearrangement of soil particles. The infrasonic signal can be converted to
sound pressure using the short-time Fourier transform (STFT) and can be correlated with
the sliding force, as presented in Figure 26. However, this method is influenced by external
noise, such as wind, thunder, and motor vehicles, which must be filtered out.

Figure 26. Time-series data for infrasonic signals “Reprinted/adapted with permission
from Zhang et al. [130], Elsevier”.

Motakabber and Ibrahimy [131] developed a wireless (almost 100 m sensor node
distance) differential capacitor-type sensor using mathematical models and simulations.
This sensor overcomes the limitations of capacitor-type sensors, which are noise and
complex thermal adjustments, and has the advantages of being simple, robust, reliable, and
cheaper. This system consists of an underground pretension cable with a capacitor gauge
sensor attached at one end. When soil starts to deform, the formation of a force-on-force
plate, as well as the pretension wire, results in a change in the differential capacitor.

Lin et al. [132] used a unique self-powered timbo-like triboelectric force and bend
sensor (TTEFBS) to detect any rockfall movements or subsurface deformation as a volt-
age fluctuation. This system features a quick reaction time (<6 ms), long-term durability
(>40,000 cycles), high compression and bending sensitivity (5.20 V/N and 1.61 V/rad,
respectively), and distributed and wireless sensing capabilities. Similarly, Wang et al. [127]
created a wireless sensor system using small-scale modeling that includes both an ac-
celerometer and a camera sensor. The accelerometer was employed to provide early
warning, and the camera sensor was used to perform visual analysis.

Through numerical (ANSYS) and experimental indoor experiments for soil deforma-
tion monitoring, Kuang [133] investigated a unique chemiluminescence-based approach.
Chemiluminescence devices have reactants that are kept in distinct compartments and
produce light instantly when distorted, making them easily detectable by inexpensive
optoelectronics (i.e., light-dependent resistors (LDRs)). No power is needed for chemi-
luminescence to operate, as it is entirely passive. This device costs 1 USD/unit, where
the dimensions of one unit are 400 mm in length and 15 mm in diameter. However, this
system is sensitive (i.e., vulnerable) to small deformations ranging between 0.43 mm and
24.99 mm. Thus, the position of the system (i.e., A, B, or C as presented in Figure 27) can be
changed based on the expected soil movement to overcome this issue. However, it should
be emphasized that the effectiveness of most warning techniques for predicting landslides
is still being researched.

29



Remote Sens. 2024, 16, 385

Figure 27. Alternative solutions for movement sensitivity “Reprinted/adapted with permission from
Kuang [133], Elsevier”.

4.3. Wireless Sensing Network (WSN)

Wired-based systems have apparent disadvantages, such as difficulty in wiring and
construction in danger zones, human-caused destruction, and natural catastrophe dam-
age [134]. This significantly increases the effort necessary for installation and operation,
both financially and in terms of time. Furthermore, data are often conveyed without any pre-
processing, necessitating the storage and delivery of massive packages of redundant data
linked to a given node of observation before it can be processed and correlated [7]. Thus,
wireless sensor networks have several benefits over traditional techniques, including the
following: (1) the ability to gather and analyze multipoint distributed data, (2) the ability to
cover a large area with little wiring expenses, (3) they are energy efficient since they can run
for months, (4) incorporation with existing equipment [7,28,92,134], (5) installation without
preexisting infrastructure, and (6) low vulnerability to environmental impacts [54]. Other
appealing characteristics of WSNs include self-organizing and self-healing capabilities,
high fault tolerance, and ease of interaction with web-based technologies [6]. Furthermore,
unlike human-controlled systems, WSNs use self-governing technologies to limit the risk
associated with human workers [135]. It should be emphasized, however, that the base
station must be installed in a secure location. The base station consumes energy and must
be linked to an electricity network [7]. When several sensors are required for large-area
monitoring, it is quite costly [51].

The term “wireless sensor network” (WSN) refers to a wireless network that employs
a linked sensor to track the state of physical or environmental factors [111]. The terms
“wireless sensor” and “smart transducer” refer to sensors that are outfitted with microcon-
trollers to give intelligence and network capabilities [107]. It should be noted that WSNs
can collect data and move information in real time; however, the precision and accuracy of
the measurements are mostly dependent on the monitoring mechanism used [54,134].

The sensor nodes, gateway, and monitoring center comprise the landslide wireless
monitoring system. Sensor nodes provide data from the field to the administration of the
landslide monitoring center. The gateway is responsible for connecting the node to the
internet. The monitoring center is in charge of data storage, processing, and analysis. WSNs
are primarily composed of hardware and software systems. The wireless communication
modules included in the sensors are commonly long-term evolution (LTE), Bluetooth,
ZigBee, Wi-Fi, LoRa, etc. Among these, LoRa modulation technology is an appropriate tech-
nological solution for node communication [136]. In a WSN, several sensor nodes structure
the linked networks into a certain architecture. The usual network structure is depicted in
Figure 28. WSNs primarily use the mesh type, star type, and tree type [92]. The hardware
system is made up of four components: (1) a wireless transceiver unit that is in a position
to establish wireless connections, (2) a control unit that is responsible for data processing,
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(3) a data acquisition module that is in control of collecting data from various sensors, and
(4) a background monitoring unit that contains real-time multitasking operating manage-
ment systems. The software system has the role of arranging programming applications
(refer to Figure 28) [107,134].

Figure 28. The structure of the wireless sensor network and topology structure (Modified from
Yueshun & Wei and Jeong et al. [92,134].

However, wireless sensing networks have some challenging issues, such as energy
consumption, memory size, and communication issues [54,137]. To illustrate, the moni-
toring activity is more accurate if sensor nodes are regularly awakened to sample data,
but it has a significant impact on the sensor node lifetime. As a result, it is necessary
to develop a flexible system that considers the detection performance, cost, and energy
savings [127]. Kumar et al. [137] succeeded in constructing an effective wireless network
capable of overcoming the aforementioned drawbacks. This network was built over a 7-acre
(approximately 28,328 m2) rough landscape with 350 sensors, and data was transferred
over 320 km to a data center. This system has been functioning for a decade. It has shown
itself to be capable of handling heterogeneous sensor readings at rates of up to 1700/s
while providing data to the data center with a latency of 10 s.

4.3.1. Energy Consumption Issues

The energy consumption issues are directly related to the amount of transmitted
data, sampling rate, and number of sensors, and they are indirectly related to the adopted
threshold and prediction accuracy (please see Table 9) [102]. There are three approaches
to preserving the system’s energy: (1) lowering the frequency at which data are collected,
(2) limiting the number of active sensors [103], and (3) improving the self-rechargeability of
the power system. As a result, it is critical to comprehend, assess, and construct a threshold
that minimizes the sampling rate while maintaining high accuracy. For example, WSNs are
capable of making decisions themselves, and data transmission can be minimized during
dry seasons [6]. During the rainy season, solar power tends to decline rapidly owing to the
increase in the data frequency rate. As a result, limiting energy consumption becomes an
overriding concern for the network’s long-term operation, particularly when landslides are
imminent (for example, heavy-rainfall-induced landslides [4,5,102].

Table 9. A comparison between different monitoring systems for energy minimization.

Threshold 1 Threshold 2 Threshold 3 Threshold 4

Sampling rate 1/s 1/h 1/s 1/h 1/s 1/h 1/s 1/h
Battery lifetime 17 min 26.29 days 9 min 14 days 5 min 6 days 3.8 min 4.5 days
Cost (USD), Kerala, India 150 380 1050 to 3720 2550 to 5220
Prediction accuracy (%) 50 70 80 >80

Prediction thresholds Rainfall (R) (120 mm/day) R and subsurface
moisture state (Wc)

R, Wc, and pore water
pressure (PWP)

R, Wc, PWP, and soil
movement
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According to Prabha et al. [103], the power consumptions by the sensor nodes, commu-
nication system, and processing system were 77.5%, 22%, and 0.45%, respectively. Thus, all
attention should be given to the minimization of the sensing power consumption. Ramesh
and Rangan [102] studied energy reduction using a prototype field system that consisted of
four different types of sensors to measure rainfall, moisture, pore pressure, and movement.
Table 9 compares the four alternatives that were used.

Regarding innovative thresholds that are responsible for data frequency lowering,
Rosi et al. [7] adopted a threshold that consisted of four stages (quiet stage, quiet-to-motion
stage, motion stage, and motion-to-quiet stage), where the sensor starts to collect, store, and
send data in the second and third stages only. In the first and last stages, the system shuts
down the connection to save energy and maintain accuracy. Ramesh and Rangan [102]
established a threshold system with four levels: rainfall (mm), moisture (%), and pore
pressure (kPa). The lowest level was (20, 0, 0), while (0, 100, 60) was the highest. At the
lowest and highest thresholds, the threshold increased the battery lifespan to 43 days and
63 days, respectively. Another approach was used to reduce further energy use, in which
data collection for moisture and pore pressure began after the threshold for precipitation
was reached. For the lower and higher thresholds, this threshold could prolong life to
150 days and 400 days, respectively. Additional thresholds can be used, wherein only the
sensor with the highest value continues to function while the others go offline. Prabha
et al. [103] adopted two thresholds named context-aware data management (CAD) and
context-aware energy management (CAE) that can improve the lifetime by six times and
twenty times, respectively. To illustrate, the sampling rate of the rain gauge can be modified
based on the present rainfall pattern because a significant rise in the rain rate is highly
improbable. Sensors for detecting movements, such as strain gauges and tiltmeters, should
be detected regularly since their behavior might alter quickly based on specific triggers.

For electromechanical low-power usage sensors, Yang et al. [49] developed a MEMS
system that adopted a temporal resolution of 10 min on rainy days and 1 h in dry seasons
using four Standard Power 7 Alkaline batteries that can power a single sensor device for
more than a year. Abraham et al. [93,94] used a MEMS system with four C-size alkaline
batteries and a sensor that sleeps for 10 min after transmitting a signal, extending the
battery life in the field. Marino et al. [126] used a technique in which the sensor is turned off
when the evaporation rate is very low; otherwise, the data frequency is set to every 2 h. The
weight loss between readings was used to estimate the evaporated water. Wang et al. [127]
invented the dynamic node cycle. In the absence of unusual movement, this system can be
put to sleep; nevertheless, if the sensor node (accelerometer) detects possibly damaging
movement, a camera sensor is activated to conduct object recognition and compression
transmission. Giri et al. [28] incorporated WSNs with inertial measurement unit (IMU)
sensors based on MEMS, which have the advantage of automatically transitioning from a
passive state to an active state to save power when no activity is seen for a certain amount
of time.

Solar cell systems have been widely used in power-monitoring systems [63,126]. The
sensor unit may run semi-permanently without changing the batteries by installing an
optional solar battery, which costs approximately USD 5 [49,52,101]. Lin et al. [132] used
a unique self-powered wireless sensing method called a zigzag-structured triboelectric
nanogenerator (Z-TENG), which has an open-circuit voltage of 2058 V and a short-circuit
current of 154 μA. This system has the benefit of using the energy from moving vehicles to
power the TTEFBS system. Wireless power transfer (WPT), as a breakthrough method for
charging electronic devices, has drawn a significant deal of attention since Tesla’s initial
WPT experiment at the beginning of the twentieth century to eliminate constant battery
changes and charging using plugs. Magnetic resonance wireless power transfer (MR-WPT)
offers several benefits, including long coupling distances, high output power, high transfer
efficiency, minimal influence from nonferromagnetic barriers, and minimal impact on the
human body [138].
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Sharma et al. [139] designed WOATCA, which is a revolutionary trust-based energy-
efficient protocol based on a whale optimization algorithm that outperforms previous
algorithms, such as Adoptive LEACH Mobile (ALM), Topology Control Algorithm for
node mobility (TCM), Q12, and secure CH selection protocols. The primary idea is to
reduce energy usage by grouping comparable nodes into small disjoint groups (clustering).
Ragnoli et al. [136] suggested that LPWAN (LoRa) be utilized in instances where a limited
quantity of data is sent at regular intervals. This frequently results in less sophisticated
transceiver devices, resulting in lower prices and power. A comparative study of different
LPWAN technologies is mentioned in [37]. However, LoRa has several restrictions in terms
of data transfer rates. Bagwari et al. [140] integrated LoRa with Wi-Fi architecture and
customized the sensor node and gateway node to regularly monitor changes with low
energy power consumption.

Hemalatha et al. [57] developed an innovative virtual sensor system based on artificial
intelligence models. To illustrate, a machine learning model was created to learn from
various sensors over a few years, after which specific sensors were maintained and others
were removed. The gained information can be utilized as a virtual sensor for those that
were removed. This strategy can both save energy and lower system costs. The sensors
that were removed can be employed to gather data in other locations, allowing the system
to monitor large regions at a minimal cost and power usage. Jeong et al. [92] developed an
innovative technique for optimizing the number of sensors used to decrease both cost and
power usage. To demonstrate, a geotechnical investigation was conducted to develop a
susceptibility model, and then sensor nodes were placed in areas where the factor of safety
was less than unity.

4.3.2. Communication Issues

The system precision is affected by the distance between nodes; the shorter the distance
is, the higher the precision. To clarify, the precisions for 110 m, 60 m, and 10 m internode
distances were 0.2 m, 0.03 m, and 0.009 m, respectively [54]. Latupapua et al. [111] con-
cluded that the response time rises with the increase in the distance between nodes and
station, where the response times were 1.91, 2.98, 3.09, and 4.47 s for distances of 20, 40, 60,
and 80 m, respectively, while the monitoring center did not gather any data for distances of
100 m. Rosi et al. [7] adopted a new antenna capable of connecting nodes up to 80 m apart.
Mucchi et al. [54] developed a WI-GIM wireless MEMS system with an internode distance
between 60 and 90 m. Yang et al. [49] developed a wireless device that can transmit data
up to 300 m. Jeong et al. [92] implemented a self-organizing mesh network topology and a
time-synchronized mesh protocol (TSMP) to overcome the communication environment of
a hilly region; it was found to be more dependable and adaptable than the star network
design. Wireless underground sensor networks (WUSNs) cannot be implemented using
the current electromagnetic (EM)-based wireless communication technology because it
does not match the application requirements of the underground environment (refer to
Figure 29). Thus, Wang et al. [141] developed the MIS125-III, which is a magnetic induction
communication transceiver that can be buried up to 5.28 m into the ground, and this system
is stable without multipath loss, as shown in the comparison between the two systems
in Figure 29. The transmitter array technique has the following advantages: (1) a cost-
effective method compared with the wireless sensor network, (2) low noise displacement,
(3) can be used for ranges up to 250 m, (4) can monitor near-real-time data, and (5) can
achieve a centimeter data range. Wang [51] undertook a theoretical study to determine
the displacement based on the relative phase difference from two demodulated signals by
installing a transmitter (Tx) at the area of interest (AOI). The transmitter is either hardwired
or designed to send signals in a coordinated order. The two receivers are spaced close
together and demodulate the received signals separately yet coherently.
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Figure 29. The transmission success rate of MI versus EM (ZigBee). “Reprinted/adapted with
per-mission from Wang et al. [141], Wiley”.

4.3.3. Data Loss and Size Issues

A large amount of environmental and geophysical data collected by a variety of
sensors and systems suffers from high levels of ambiguity, noise, and missing data. To
illustrate, the nature of the observed monitoring data fluctuates according to external
triggering (rainfall, earthquakes, etc.), and missing records are highly expected to occur
throughout the monitoring. Data loss may indicate that the program’s goals were not
achieved, which is more than just a negative situation. Blahůt et al. [142] revealed that
while measuring displacement, missing measurements accounted for approximately 24.6%.
To address the aforementioned shortcomings, time-series analysis was used, which included
various statistical approaches, such as regression models, to comprehend the underlying
context of data points or to make predictions based on prior behavior. A second-order
polynomial can be used to approximate trend data representing creep behavior: it should
be noted that the displacement can be divided into creep displacement (simple trend) and
periodic displacement (complex trend) [4]. Paired adaptive regressors for cumulative sum
(PARCS) were utilized for periodic data. Sumathi and Anitha [143] designed a lossless
landslide-monitoring (LLM) system. During the data collection and processing phases,
two algorithms were used. A modified gray wolf optimization method was employed in
the first phase, and an iterative dichotomize-3 (ID-3)-based decision-making strategy was
applied in the second phase. This method boosted the delivery ratio by 30%. de Souza and
Ebecken [144] adopted artificial intelligence models to predict missing data using principal
component analysis (PCA) combined with artificial neural networks (ANNs). Shentu
et al. [145] analyzed the monitoring data using a small Feedback Optimizing Background
Gray Model (FOBGM (1, N)). Wang and Zhao [146] employed time-series analysis using
mean-based low-rank autoregressive tensor completion (MLATC). Li et al. [147] adopted
cubic spline interpolation to estimate the missing data. Long et al. [148] employed multi-
feature fusion transfer learning (MFTL), assuming that landslides with similar geographical
and geological characteristics are comparable but different in magnitude. Practically, De
Graff [1] recommended using a parallel landslide monitoring system to overcome the issue
of data loss. In other words, when a sensor suffers a data loss issue, the parallel one can
help to predict the missing data.

To reduce the amount of data, Wang et al. [127] used an efficient symbolic approach
to transform a time series of sensor data into an ordered symbol string, which solved
the data volume problem. This method was discovered to keep the critical aspects of
the data while reducing its dimension from 128 to 16. Gian et al. [96] developed a novel
compressed sensing (CS) technique to provide a novel technique for reducing the data
size and power usage. The Fourier transform was employed to turn time-domain data
into frequency-domain data, with the transmission based on Fourier coefficients, and a
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nonlinear method was used to recreate the original data. The optimal compression ratio
was found to be 0.55.

4.4. Physical and Prototype Systems

It is challenging to see any purpose for implementing a monitoring program if the
devices being used cannot record data with the required frequency, accuracy, or precision
stated by its objectives. To illustrate, the difference between precision and accuracy is
visualized (the bull’s eye targets) in Figure 30 [149]. In the following sections, both experi-
mental and prototype modeling are discussed for the better simulation and investigation of
landslide monitoring systems.

    
Not accurate and not precise Accurate and not precise Not accurate and precise  Accurate and precise 

Figure 30. Bull’s eye visualization for accuracy and precision conditions.

4.4.1. Experimental Models

Laboratory model testing is a powerful technique that plays a vital part in landslide
engineering studies. Although time-consuming, scale-model testing has helped to advance
our understanding of landslide causes and processes. The most accurate way to analyze
landslides is via laboratory model studies. This is due to the possibility of continuous
monitoring of the water content of the soil slope, as well as subsequent deformation, which
allows for the management of the soil characteristics and boundary conditions [97,99].
Abraham et al. [93,94] recommended laboratory-scale research that would resemble several
types of landslides and identify different criteria for each instance because field testing is
expensive, and failure may not occur or occur at a slow rate. Ivanov et al. [82] proposed
using experimental-scale modeling to avoid concerns with field testing, such as temperature
effects and the harsh environment.

Iai [33] proposed a law for simulation in order to recreate the prototype circumstances
in terms of geometry, material properties, beginning state, and boundary conditions. The
Buckingham π theorem [150] provides the scaling parameters between the prototype and
model, as listed in Table 10, where the length, cohesion, and elastic modulus can be
scaled by a constant factor λ; the permeability scaling factor can be λ0.5; and the density,
friction angle, and gravity has a scale factor of 1. According to Iverson [36], the larger the
experimental apparatus is, the fewer the scale effects concerning the velocity of a sliding
landslide body. Ivanov et al. [82] emphasized the influence of the temporal scaling factor
between small-scale experiments and full-scale phenomena, which may be reasonably
expected to be greater than 10 based on his model. It is crucial to note that all laboratory
tests were conducted in a controlled setting with little outside noise or vibration at a steady
room temperature. As a result, these systems need to be revised and established for field
monitoring [8].

Table 10. Simulation law for prototype and physical modeling.

Parameter
Length, Cohesion,
and Elastic Modulus

Density, Friction
Angle, and Gravity

Permeability

Scale factor λ 1 λ0.5
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4.4.2. Prototype Working Process

The installation of the subsurface monitoring system was illustrated by Chuan et al. [9].
The process consists of (1) hole drilling, (2) monitoring system installation, (3) drilling pipe
installation, (4) sensor checkup, (5) powering the system, (6) data analysis, and (7) data
processing. First, the depth of the borehole (i.e., sensor tip) is determined using drilling
machinery based on the depth of the sliding mass and geological soil profile. The drill pipe
is then removed, and the sensors are mounted in accordance with the design objectives. An
initial examination is required to ensure that the sensor is linked to the subsurface soil. The
next step is to turn on the system and begin data collection and storage. The data are then
processed and displayed before being examined. Adopting a probable prediction model
based on the processed data is the last stage, as illustrated in Figure 31.

Figure 31. Subsurface monitoring system flowchart.

Zheng et al. [59,60] utilized the aforementioned procedure while installing FBG-based
inclinometers. Zheng et al. [89] installed a prototype COFT system in which a borehole
was drilled, the OFS was installed, and then cement mortar was injected into the gap
between the borehole and the sensor. Similarly, Kumar M and Ramesh [10] installed the
SG-DEP sensor from the soil surface to the underlying bedrock using the previous approach.
Digging holes in unreachable high mountains is also impossible. As a result, remotely
controlling and installing subsurface monitoring systems is critical, especially in harsh
outdoor environments. Thus, Molfino et al. [151] developed an innovative robot named
Roboclimber that is entirely operated using wireless links. Roboclimber is an autonomous
mobile drilling device that can drill boreholes up to 20 m deep and climb (i.e., provide a
mobile robotic platform) slopes up to 85 degrees for difficult terrain and rocky landslides
(please see Figure 32).

However, one of the most critical aspects of landslide monitoring is the deployment
of such monitoring devices in the field. While installing monitoring systems, laborers’
health and lives are put at risk by dust, vibrations, accidents caused by falling rocks,
etc. These systems are sometimes expensive to construct and operate, restricting their
application to well-funded projects. Therefore, a MEMS was recently designed in which
sensor modules can be embedded in the ground using a small hammer, which is suitable for
shallow landslide monitoring [49]. Qiao et al. [52] installed different wireless MEMS tilt and
temperature sensors with different rod lengths for shallow and rotational landslides. These
sensors are small in size, have a small weight, and can provide multivariate parameters at
the same point. Regarding the installation time of such sensors, Mucchi et al. [54] installed
a cluster of 11 wireless MEMS sensors in less than two hours. Figure 33 describes the
installation process of the small-sized sensor [101]. Following the subsurface monitoring
system flowchart, this process are as follows: (1) soil removal; (2) installing a borehole;
(3) removal of the borehole case; (4) inserting a steel rod; (5) mounting the tilt sensor;
(6) powering and cabling the system.
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Figure 32. Roboclimber field deployment “Reprinted/adapted with permission from Molfino
et al. [151], Elsevier”.

Figure 33. The installation process of small sensors (From Sheikh et al. [101]).

However, because of the nature of target terrains, the required target placements are
not always easily accessible to people. Therefore, robotic solutions and unmanned ground
vehicles (UGVs) are the sole options for deploying a wireless sensor network, repairing
malfunctioning nodes, and charging the batteries of previously placed nodes. Patané [152]
created a bioinspired robotic system that combines wheeled and legged robots to deploy a
succession of smart sensors at specific sites.

4.4.3. Field Systems

Before implementing any monitoring system, it should be noted that field investiga-
tion and laboratory testing are required [92,153]. A site study can offer basic information
regarding landslide classification, soil profile and features, sliding surface location, etc. The
field investigation program includes a (1) surface geological survey, (2) borehole survey,
(3) test pit, (4) standard penetration test (SPT), (5) field density test, (6) field permeability
test, (7) surface permeability test, (8) cone penetration test (CPT), (9) refraction seismic
survey, and (10) multichannel analysis of surface waves (MASW). Furthermore, labo-
ratory tests for assessing soil attributes include (1) soil classification, (2) water content,
(3) Atterberg limits, (4) grain-size distribution, and (5) soil water characteristic curves
(SWCC) [92]. Because the previous research strategy is time consuming, subsurface studies
employing the geoelectrical resistivity method may be a feasible option. Geoelectrical
resistivity is calculated by passing an electric current through a current electrode into
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the ground and measuring the differential potential of a region. Hasan et al. [153] inves-
tigated subsurface soil properties based on the distribution of resistivity values of the
soil using the Schlumberger geoelectrical resistivity technique of eight locations with 1 m
electrode spacing.

The monitoring locations can be selected using four spatial distribution methods:
random, matrix, vulnerable, and hybrid. The monitoring locations in a random method
are installed at nonspecific random places on a landslide-prone slope. The whole area of
deployment is split into a matrix of NxN cells in the matrix method, and one monitoring
probe is placed in each cell of the matrix. Monitoring stations are placed in vulnerable (i.e.,
critical zones) zones identified during the site investigation, topography mapping, and
soil testing in the vulnerability technique. In the hybrid technique, both the matrix and
vulnerable approaches are used, i.e., start with the matrix and then adjust the locations of
the monitoring devices based on the most critical (i.e., vulnerable) locations [10].

Most of the preceding methods can offer a single measurement (displacement, soil
moisture, etc.); however, the possibility of high false alarms limits its usage. Thus, such
data should be correlated with other monitoring data, such as rainfall or soil moisture,
to reduce such effects. As a result, multimonitoring systems are strongly advised. Multi-
monitoring systems can be produced by combining the individual systems shown above
or by designing a single sensor node with many functionalities. Multifunctional sensor
devices that make use of MEMS sensors and WSNs are now commercially available. Chuan
et al. [9] created a system that includes pore water pressure sensors, a stress sensor, and
a displacement sensor. However, this system does not support wireless data transmis-
sion, and data is stored on an SD card. Ramesh and Vasudevan [6] adopted one of the
prototype WSNs by incorporating a variety of subsurface sensors (piezometers, dielectric
moisture sensors, strain gauges, tiltmeters, and weather stations). Yunus et al. [107] used a
system called wireless sensor network for landslide monitoring (WSNLM) that includes
soil moisture, vibration on land, slope angle, soil temperature, air temperature, humidity,
and atmospheric pressure. Gian et al. [96] utilized a cost-effective wireless monitoring
unit consisting of soil moisture, temperature, tilt meter, geophone sensors, and weather
station to monitor rainfall and wind speed and direction. Jeong et al. [92] built a wireless
sensor network in which a sensor node consists of a rain gauge, tensiometer, soil moisture
sensor, and inclinometer. Yang et al. [49] used a multivariate wireless monitoring sensor
(MEMS) that includes soil moisture, soil matric suction, ground vibration, tilt, and rain-
fall sensors. This device, which can offer real-time data, costs approximately 1500 USD
per point. Similarly, Abraham et al. [93] used a MEMS tilt sensor and volumetric water
content adopted by Abraham et al. [94], which had the following features: this system is
appropriate for shallow landslides where the tilt sensor depth was 1 m and the volumetric
water content sensor was 3 cm below ground level. Sheikh et al. [101] built prototype field
experiments to investigate the relationship between the tilt angle, displacement, strain,
ground level, and rainfall using wireless sensors (tilt sensor, pipe strain gauge, water level
gauge, and rain gauge) (refer to Figure 34). Tables 11 and 12 list the physical and prototype
system characteristics.

   
(a) (b) (c) 

Figure 34. Schematic view of the multifunction monitoring node: (a) tilt sensor; (b) pipe strain gauge;
(c) groundwater sensor (from Sheikh et al. [101]).
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5. Research Gaps and Future Directions

High-accuracy monitoring can be achieved by considering two main factors:
(1) selecting an appropriate monitoring system based on better knowledge of the case
study’s initial conditions, and (2) selecting a suitable technique to interpret and transfer the
data. Choosing the most effective monitoring system necessitates a deep understanding
of the triggering conditions, as each case has its distinct features. Thus, in the conclud-
ing section, the effective use of each subsurface monitoring system is illustrated (refer
to Section 6). However, regardless of the advancement in data transfer and monitoring
techniques, some gaps still need to be filled. Methods for interpreting the monitoring data
using advanced complex statistical models that better represent such complicated data
are missing. Most available techniques are suitable for small regions and are limited by
power issues that necessitate developing new systems for wide areas. Some techniques (i.e.,
warning and subsurface temperature mechanisms) are still undergoing testing and require
more investigation to quantify their response to the failure mechanism. It should be noted
that a wide range of data issues are considered from the computer science point of view
independent of the accuracy of such data from the geotechnical point of view. Installing
such systems in a harsh environment is still challenging in terms of both the location and
the technique, which necessitates using robotic systems to install such systems considering
the vulnerable locations. A common issue about data loss has been considered using statis-
tical models, which neglect the physical slope characteristics where parallel monitoring is
missing. Table 13 summarizes the research gaps and provides the recommendations.

Table 13. The research gaps in subsurface landslide monitoring.

Gap Recommendations

Simple regression analysis was widely utilized to interpret the
monitoring results. However, the relationship between
subsurface monitoring parameters is complicated and complex.

Using artificial intelligence models is limited in the subsurface
monitoring system. Thus, the aforementioned models can
provide a possible solution to filling such a gap [4].

Developing a distributed monitoring system that can provide
subsurface parameters for wide areas with a large monitoring
range, high spatial resolution, suitability for harsh
environments, and being self-powered is still a challenging gap
to overcome.

Collaboration is needed between different disciplines to design
a multi-feature system. To illustrate, triboelectric
nanogenerators and wireless power transfer systems can be
utilized to power the subsurface monitor system. Moreover,
further research is needed to achieve a large monitoring range
with high resolution (i.e., the optical fibers).

Warning sign techniques and the subsurface temperature
mechanism are still under development and require more
research.

More laboratory-scale modeling and prototype field tests are
needed to quantify and investigate such techniques.

Data transfer power issues have been widely studied from the
perspective of computer science, while considering the accuracy
of the data from the geotechnical perspective is still lacking.

A sensitivity analysis considering different frequency rates and
different sensor threshold limits is needed to account for the
system accuracy considering both power, data size, and
accuracy optimization.

Installing the subsurface monitoring system is challenging in
terms of (1) accessing the slope and (2) choosing the optimal
vulnerable location to be monitored.

(1) A ground vehicle robot can be designed to access places that
are very difficult to reach.
(2) Statistical or numerical analysis can be used to perform a
sensitivity and probability analysis to predict the vulnerable
locations [4,5].

Based on the fact that dealing with a harsh environment leads to
a high possibility of data loss issues, most studies adopt
statistical models to overcome such issues (refer to Section 4.3.3),
which neglect the physical and mechanical characteristics of the
slope area [4,5].

Designing a parallel system can provide a viable and effective
solution. To clarify, using multi-node and multi-feature
monitoring systems allows one to obtain different
characteristics for the same slope. These data can be correlated
with each other, solving data loss issues.
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6. Conclusions

This study integrated scientometric and systematic analyses. A scientometric analysis
is a potential approach for addressing manual search issues by highlighting the most signif-
icant contributions of keywords, authors, organizations, and nations. As a consequence,
the key conclusion was that landslide monitoring models have improved over the previous
7 years, indicating growing global concern about preventing the loss of lives and financial
resources. This research presented the most recent advancements and state-of-the-art
landslide-monitoring technologies. According to the literature, each approach has its own
set of pros and limitations.

Surface-monitoring techniques can offer information regarding near-surface move-
ment, moisture content, and other physical information. Such strategies offer the following
benefits: (1) they can offer millimeter-level 3D coordinates, and (2) they can provide dis-
tributed monitoring data with high spatial resolution across large regions. These studies,
however, have the disadvantages of (1) obtaining real-time data is difficult and expensive;
(2) they have a coarse resolution; and (3) they are impacted by severe fog, snow/rain,
atmospheric delay, dense vegetation, and shadow. As a result, these methodologies are ap-
propriate for creating landslide susceptibility, risk, and vulnerability maps [4,5]. However,
such maps cannot provide early warning indications or predict disasters.

These objectives can only be met by a knowledge of the inner mechanism and moni-
toring of subsurface conditions. Extensometers have a high temporal resolution (36 mm/s)
and precision (0.011 ± 0.0083 mm). Nonetheless, this is a single-point surface-movement-
monitoring system. These characteristics are appropriate for translational landslides. By
detecting subsurface displacement, conventional inclinometers outperform extensometers.
The limited spatial vertical resolution (0.5–1 m) restricts its use, particularly for thin shear
bandwidth. Unlike traditional inclinometers, TDR can enable exact monitoring of the slid-
ing surface’s position (spatial resolution of 0.05 m). When compared with the inclinometer
guide enclosure, the coaxial cable costs approximately 55% less. However, measuring
the displacement is difficult. The moderate rigidity of inclinometers restricts their use in
monitoring minor movements. AE techniques are sensitive to minor deformation and are
best suited for slow-moving landslides. Optical-fiber-based inclinometers have recently
gained much interest. This technology combines all of the previously mentioned bene-
fits, including high initial measurement (0.98 mm), measuring range (36 mm), low cost
(0.45 USD/m), and high spatial resolution of 10 mm. FBG may be coupled with BOTDA to
monitor both the strain and temperature across a large region. Because of the restricted
monitoring range, this method is best suited for rock landslides. This method is limited in
its application since it is based on wire connections.

Tilt sensors have the benefit of being able to determine the direction of a landslide with
two-dimensional deformation with an accuracy of 0.0025◦ and a measurement range of
−30◦ to +30◦. The depth of the sensor rod must be carefully calculated: small and long rods
are suited for circular slip surfaces, while long rods should penetrate the rock layer for shal-
low landslides, as short rods are not effective. Many biaxial tilt sensors may be combined to
form a multimodule system (inclinometer) with a spatial resolution of 100 mm, an accuracy
of 0.73 mm, and a cost of 70 EUR/m. Tilt sensors, on the other hand, are point sensors and
cannot extract deformations in areas where there is no inclination (i.e., translational land-
slides). Inclinometers based on strain gauges can detect micro-displacement. Soil deforma-
tion sensors are excellent for quick landslides since they have a low stiffness when compared
with other approaches. SDS can detect micro-displacement (1 mm) throughout a range of 0
to 25 mm. The Strain Gauge Deep Earth Probe (SG-DEP sensor) can give 360-degree direc-
tional measurements and is ideal for both shallow and deep landslides, as well as harsh con-
ditions. Acceleration sensors can detect slope movement independently of external triggers.
This approach is appropriate for translational quick landslides without tilting, where lin-
ear acceleration is the most influential characteristic.

49



Remote Sens. 2024, 16, 385

In addition to subsurface monitoring, the best technique to assess the kinematic
characteristics of landslides is to monitor the sliding force; however, its installation is
complicated. Rainfall monitoring is critical since it is regarded as the primary triggering
factor. Based on multiple triboelectric nanogenerator (TENG) units, a self-powered wireless
sensor with a high measurement range (0 to 288 mm/d) and resolution (5.5 mm) was
recently created. The subsurface moisture state illuminates the antecedent effect of rainfall.
The drying technique for determining soil moisture in a laboratory has great accuracy;
nonetheless, it is a labor-intensive procedure necessitating massive investigation work for a
wide area. It is challenging for AE techniques to link soil moisture with acoustic waves.
FBG can detect up to 37% volumetric water content. UHF radio-frequency identification
(RFID) sensors can detect soil moisture levels as high as 16%. The smart aggregate (SAs)
approach can monitor soil moisture up to 30%. Geophysical methods, such as electrical
resistivity tomography (ERT), can offer information about wide areas rather than single
spots that provide plot-scale soil moisture variation. The spatial resolution of a region
might range from meters to decimeters. This technology can detect soil moisture up to
2 m deep.

MEMS and IoT sensors that can be linked to WSNs can be used to overcome wiring
and installation problems. MEMS can be used as an inclinometer, tiltmeter, volumetric
water content sensors, etc., with the primary goal of low cost and simple installation and
maintenance. These sensors are more suited for shallow landslides. The SitkaNet sensor
may represent a realistic solution to construct a deep spatially distributed moisture content
sensor for approximately 1000 USD per node. In the shear band, temperature sensitivity is
critical for slope stability. Likewise, for shallow strata, the surface temperature can offer
an early warning when moving landslides have greater temperatures than stable zones.
Multifunction nodes offer a feasible alternative to single-function nodes in terms of cost
and false alarm rate.

Regardless of the quantification of subsurface characteristics, warning signs can of-
fer indicators to cope with emergency circumstances. Elastic waves and low-frequency
infrasonic signals can provide warning indications when internal mechanisms (such as
soil moisture, deformation, matric suction, and effective stresses) change. However, im-
plementing such a strategy is rather difficult. Other warning systems, such as differential
capacitors, triboelectric force and bend sensors (TTEFBS), and chemiluminescence-based
approaches are currently under development.

Data may be obtained manually; however, critical events may be missed. Natural
disasters can cause damage to wire- or cable-based systems. Wireless networks can address
the aforementioned limitations by linking several sensors for broad monitoring areas. How-
ever, WSNs are limited by power consumption issues, communications issues, and data
loss and size issues. For power consumption issues, building a sleep threshold, reducing
the number of sensors, and using rechargeable techniques can overcome this dilemma.
Regarding communication issues, the communication distance between sensor nodes can
affect the precision and the response time for the transmitted data. Available techniques can
provide an inter-distance between 90 and 300 m, while the magnetic induction communica-
tion transceiver can be buried up to 5.28 m into the ground. Missing data can be obtained
using a variety of mathematical methods. Laboratory-scale testing provides an appropriate
approach to understanding the mechanism of landslides in a safe and low-cost setting.
Prior to the field installation of the monitoring system, a thorough site study is needed.
The monitoring system is placed under four conditions: random, matrix, vulnerable, or
hybrid. The vulnerable placement allows for reasonable monitoring where the monitoring
points are placed in critical locations.
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Abbreviations

ABS Acrylonitrile butadiene styrene MEMS Microelectromechanical systems
AE Acoustic emission MFTL Multi-feature fusion transfer learning
AIM Accumulative integral method MLATC Mean-based low-rank autoregressive tensor completion
ANN Artificial neural networks MR–WPT Magnetic resonance wireless power transfer
AOI Area of interest OFDR Optical frequency domain reflectometry
BOCDA Brillouin optical correlation-domain analysis OTDR Optical time domain reflectometry
BOFDA Brillouin optical frequency-domain analysis PCA Principal component analysis
BOTDA Brillouin optical time-domain analysis POIS Position and Inclination Sensor
BOTDR Brillouin optical time-domain reflectometry PSCFODS Parallel-series connected fiber-optic displacement sensor
CAD Context-aware data management PS–InSAR Persistent scatterer interferometry
CAE Context-aware energy management PVC Polyvinyl chloride
CCVDM Capacitive circuit voltage distribution method QDFODS Quasi-distributed fiber-optic displacement sensors
CET Cable-extension transducer RDC Ringdown count
COFT Combined optical fiber transducer RTS Robotized total station
C–OTDR Coherent optical time domain reflectometry SAA ShapeAccelArray
CPT Cone penetration test SAAF ShapeAccelArray/Field
CRLD Constant resistance and large deformation SAR Synthetic aperture radar
CS Compressed sensing SAs Smart aggregates
CS–TENG Contact–separation mode TENG SBS Stimulated Brillouin scattering
DEMs Digital elevation models SDSs Soil deformation sensors
DFOSS Distributed fiber optical strain sensing SG–DEP Strain Gauge Deep Earth Probe
DInSAR Differential (SAR) interferometry SOF Sensing optical fiber
DSS Distributed strain sensing SPT Standard penetration test
EM Electromagnetic SSCC Suction stress characteristic curves
EPCs Earth pressure cells SSPDM Self-structure pressure distribution method
EPS Expansile polyester ethylene STFT Short-time Fourier Transform
ERT Electrical resistivity tomography SWCC Soil water characteristic curve
FBG Fiber Bragg grating SWP Soil water potential
FODSs Fiber-optic displacement sensors TBR Tipping bucket rain gauge
F-TENG Freestanding TENG TDR Time domain reflectometry
GB–InSAR Ground-based SAR TENG Triboelectric nanogenerators
GIS Global information system TSMP Time-synchronized mesh protocol
GNSS Global navigation satellite system TTEFBS Timbo-like triboelectric force and bend sensor
GPR Ground penetration radar UGV Unmanned ground vehicles
GPS Global positioning system UHF RFID Ultrahigh-frequency radio-frequency identification
IMUs Inertial measuring units UWB Ultrawide band
IN Inclinometers VMC Volumetric water content
InSAR Interferometric synthetic aperture radar Wi–GIM Wireless sensor network for ground instability monitoring
IoT Internet of things WPT Wireless power transfer
IPI In-place inclinometers WSN Wireless sensor network
LiDAR Light detection and ranging WSNLM Wireless sensor network for landslide monitoring
LLM Lossless landslide monitoring WUSNs Wireless underground sensor networks
LOS Line of sight Z–TENG Zigzag-structured triboelectric nanogenerator
MASW Multichannel analysis of surface waves
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Abstract: Passive radio-frequency identification (RFID) was recently used to monitor landslide
displacement at a high spatio-temporal resolution but only measured 1D displacement. This study
demonstrates the tracking of 2D displacements, using an array of antennas connected to an RFID
interrogator. Ten tags were deployed on a landslide for 12 months and 2D relative localization
was performed using a phase-of-arrival approach. A period of landslide activity was monitored
through RFID and displacements were confirmed by reference measurements. The tags showed
displacements of up to 1.2 m over the monitored period. The centimeter-scale accuracy of the
technique was confirmed experimentally and theoretically for horizontal localization by developing
a measurement model that included antenna and tag positions, as well as multipath interference.
This study confirms that 2D landslide displacement tracking with RFID is feasible at relatively low
instrumental and maintenance cost.

Keywords: phase localization; landslides; RFID; remote sensing; wireless sensor network; early
warning

1. Introduction

Ground deformation monitoring with high resolution both in space and time remains
a challenge due to the high cost of existing solutions, and to environmental limitations,
such as meteorological phenomena, rough terrain or dense vegetation. Amongst several
remote sensing methods [1,2], surface monitoring of large landslides can be typically
performed through interferometric synthetic aperture radar (InSAR), either by space-borne
measurements [3,4] or using ground-based stations [5–9]. Despite the high space resolution
of these methods, the station cost remains high and the time resolution can be multiple
days in the case of satellite remote sensing. More localized techniques, such as GPS [10–13]
and radiofrequency-transponders [14,15], show higher time resolution, but also require
on-board power sources which greatly increase initial cost and maintenance.

In this context, radio-rrequency identification (RFID) has shown increasing poten-
tial for earth science applications [16,17]. Amongst other applications, it is foreseen as a
promising alternative for landslide and civil engineering structure deformation monitor-
ing [18] due to its low cost relative to other solutions, and because it works under rain,
snow and vegetation cover conditions [19,20]. It can thus be used as a tool for landslide
early-warning [21], forecasting or long-term monitoring [22]. A wide range of solutions
exist for tag localization using RFID [23,24], with various possibilities both in measured
quantity and in terms of the measuring scheme.

The quantities most used for localization are the received signal strength and the back-
scattered phase of arrival. Signal-strength-based methods have been widely used for tag
localization [25,26,26–29]. However, phase-based methods have shown better precision and
reliability in recent years [30–32], primarily because they are less sensitive to environmental
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variations and because the phase of the signal varies more rapidly with distance than the
received signal strength.

Phase-based localization is divided into multiple schemes, which are extensively
presented elsewhere [33–36]. These schemes generally rely on either multistatic stationary
antennas and different carrier frequencies [30,37,38], or on a moving antenna with a known
trajectory (e.g., the synthetic aperture radar technique) [39–43]. This paper focuses on a
monostatic multi-antenna time-domain phase difference (TD-PD)-inspired scheme, as TD-
PD has shown the best results for measuring relative displacements outdoors [18], with a
precision of about 1 cm over long time periods for 1D displacement tracking. To date,
RFID systems deployed to monitor moving ground only provide one-dimensional distance
information and are subject to phase unwrapping issues that could be solved by using
multiple antennas. In this article, we test the stationary configuration for 2D RFID tag
localization using a set of four antennas in a TD-PD relative localization approach, and also
discuss 3D localization perspectives. To the best of our knowledge, this is the first attempt
at 2D-localization of RFID tags in an outdoor scenario, using a monostatic, monofrequency
multi-antenna setup.

In the following section, we present the instrumentation of the experimental site
and the methodology for data acquisition and processing. Section 4 provides theoretical
background and experimental validation of the RFID measurement error in order to decide
on ideal antenna positioning by optimizing the localization accuracy and phase ambiguity.
Section 5 reports on an example of 12 months of surface deformation monitoring on the
slow-moving Harmalière landslide.

2. Instrumentation and Methods

2.1. Experimental Site: Harmalière Landslide

The Harmalière landslide (Sinard, Isère, France) is located in the Trièves area about
50 km south of Grenoble in the western Prealps (see Figure 1). Trièves appears as a
sedimentary plateau eroded by the Drac river; the plateau is formed by Quaternary
varved clays and alluvial materials deposited in a glacially dammed lake during the Würm
period [44]. Quaternary sediments also include silts, sometimes with a morainic cover, and
rest on either interglacial Riss-–Würm period glaciofluvial materials (gravels and sands)
or on the underlying Jurassic carbonate bedrock. The thickness of the clay deposits can
vary from 0 to a maximum of 200 m [45]. The landslide is southeast oriented, 400 m wide
at the top, narrowing to 150 m at the toe. It develops from an altitude of 735 m (asl),
down to the Monteynard Lake (480 m), over a distance of about 1.5 km. It was abruptly
activated in 1981 and has remained active ever since, with new peaks of activity in 2016 and
2017 [46]. The slow moving landslide shows regressive behaviour, the headscarp retreating
at an average velocity of 1 m/year, with very strong variations from year-to-year (including
almost a decade of rest). The central body of the landslide is moving at velocities ranging
from cm/year to m/year, with possible dramatic acceleration phases (m/day). A variety of
research subjects are currently investigated in connection with it [46,47].
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Figure 1. (Top) The Harmalière landslide location in France. (Bottom) Overview of the Harmalière
landslide, with the RFID tag distribution (red points). Blue points : antennas and acquisition system.
The dotted black line represents the landslide scar, the gray dotted lines represent 1-meter isolines.

2.2. RFID Instrumentation and Localization
2.2.1. RFID Instrumentation

In February 2020, a section of the landslide was equipped with an RFID system
consisting of 32 battery-assisted passive tags and an acquisition station located near the
landslide scar (see Figure 1). These tags can last about a decade without maintenance
or replacement in the present real-time monitoring scenario. The station includes four
antennas, an interrogator (Impinj SR420), a micro-computer (RPI-3B), and a modem to send
the data automatically to a remote server, as described by (patent pending FR-17/53739).
It is powered by a photovoltaic module and a wind turbine. The station collects RFID
data for 3 min every 20 min from every tag and every antenna. The data includes the
phase of arrival (termed here “phase”) measured at 865.7 Hz, the received signal strength
indication and the tag temperature. The tags were placed in pairs on fiber glass stakes
50 cm and 1 m above ground. They were spread out within the antennas reading range in a
zone approximately 30 m × 30 m wide (see Figure 1), in such a way as to maximize the
line-of-sight readability of each tag by multiple antennas. To validate the RFID localization
calculations, the position of the tags was measured with a LEICA TCR805 tacheometer and
a handheld target (estimated precision 4 cm), approximately once every month.

2.2.2. RFID Localization Scheme

TD-PD is a relative ranging technique based on phase variation δφ = φ1 − φ0 between
two measurements at different points in time. δφ is related to the radial distance variation
δr = r1 − r0 between the tag and reader antenna, by the following equation:

δr = − c
4π f

δφ (1)

where f is the frequency of the electromagnetic wave (see values above) and c is the speed
of light in the propagation medium. It is important to note that Equation (1) is only valid
for displacements smaller than λ/4 ≈ 8 cm between two phase measurements because of
phase ambiguity. In the present case, this condition is generally fulfilled as the incremental
displacements are small compared to the wavelength (usually less than 1 cm between
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two successive acquisitions). Moreover, a series of phase measurements can generally
be unwrapped using well-defined algorithms. In this case, Equation (1) is valid for any
unwrapped phase variation.

Section 3 presents a multidimensional localization scheme based on TD-PD.

3. Theoretical Model

In this section, we derive a mathematical model for phase-based RFID localization
to compute the localization error of our real experiment. The main goal of this derivation
is to study the origins of the localization uncertainty, mainly with respect to the system
geometry and the physical measurement process.

From now on, we will consider that all phase measurements are unwrapped, and that
Equation (1) is valid for all phase variations. Most presented tags were correctly read
and no unwrapping error was detected in the monitored period. The specific case of an
unwrapping error is examined separately, and does not fall within the scope of the present
study.

In the following, index i describes a series of measurements starting at i = 0 and j
describes the antenna indexing.

3.1. Localization Model
3.1.1. One Dimensional TD-PD

The localization method presented in this paper is based on the tag phase shift mea-
sured by each antenna at different points in time (TD-PD) [36]. In a homogeneous medium,
the phase shift φi,j − φ0,j between the initial and the i-th (unwrapped) phase measurement,
is directly proportional to the radial displacement δri,j between the tag and antenna j (see
Equation (1)).

Assuming an initial radial distance r0,j, we obtain a series of radial distances ri,j from
a measured phase series φi,j:

ri,j = r0,j + δri,j (2)

where δri,j is obtained directly through Equation (1). This localization method is, hence,
relative to the initial position, as it does not allow for absolute positioning without further
information about the system (e.g., when r0,j is not known).

3.1.2. 2D Relative Displacement Approach

Using the measurements of multiple antennas, we can expand this TD-PD method
with spatial considerations. For this purpose, we need both the phase measurements and
the geometrical coordinates (xj, yj) of each antenna. This derivation focuses on the 2D
problem; the 3D case will be briefly discussed at the end.

We define the initial distance r0,j from the antenna j to the tag:

r0,j =
√
(xj − x0)2 + (yj − y0)2

where (x0, y0) are the initial coordinates of the tag and (xj, yj) those of the antenna.
Applying Equation (2), we obtain a series of radial displacements from the phase

measurements of each antenna. From these radial distance measurements, a multilateration
approach [48] can be applied to estimate the most probable position (x̂i, ŷi) for the tag at the
ith position. Amongst various possible methods of multilateration, we use an optimization
algorithm that minimizes the following cost function C f for the i-th measurement:

C fi(x, y) =
Na

∑
j=1

∣∣ri,j −
√
(xj − x)2 + (yj − y)2

∣∣ (3)

(x̂i, ŷi) = argmin
(
C fi(x, y)

)
(x,y)∈R2
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where (x, y) are the test point coordinates, Na is the number of antennas, ri,j is the i-th radial
distance from antenna j, and (x̂i, ŷi) is the most probable tag position. The minimization
of this cost function was performed using the Trust-region optimization algorithm [49]
implemented in the Scipy-optimize Python module.

3.2. Geometrical Localization Sensitivity

In this section, we focus on theoretical considerations regarding the localization sen-
sitivity of the geometrical antenna-tag system to compute the value and direction of a
displacement error of the tag with respect to a phase measurement error [19]. For a given
antenna position (xj, yj), the absolute phase accumulated on a linear ray path (line of sight,
LOS) between the antenna and a point (x, y) is expressed as follows:

φj(x, y) = −4π f
c

×
√
(xj − x)2 + (yj − y)2

Let us define Kφj as the space gradient of the measured phase φj, also defined as the
phase sensitivity kernel, expressed in the spatial dimension as:

Kφj(x, y) =

⎡
⎣ ∂φj

∂x
∂φj
∂y

⎤
⎦ =

[
Kx

φj
Ky

φj

]
(4)

For a system consisting of two antennas (A and B) and small phase variations, the re-
lation between the phase variation vector δφ and the true tag displacement δr can then be
approximated by the linear matrix system:

[
δφA
δφB

]
=

[
Kx

φA
Ky

φA

Kx
φB

Ky
φB

][
δ x
δy

]

That we can simply rewrite :
δφ = Kδr (5)

Equation (5) holds for any number of phase measurements (thus any number of anten-
nas Na), and any number of space dimensions M; in such cases, K will be an M × Na matrix.
It expresses the direct solution of the phase-based relative localization problem, where K
represents the transformation matrix from measured phase space to localization space.
For the sake of simplicity, consider now that Na = M = 2, which implies a bijective
relationship between phase measurements and tag 2D relative displacement. In this case,
the invertibility of the K matrix is almost always possible—the only exceptions are when
the point position (x, y) coincides with that of one antenna, or when it is aligned with the
two antennas. We exclude these limit cases that have no significance in our experiments.
The above equation can then be reversed and gives the theoretical phase sensitivity of the
tag position:

δr = K−1 δφ (6)

We now consider the linear transformation matrix K−1 to which we apply singular
value decomposition (SVD). Any real matrix can be decomposed as follows [50]:

K−1 = UΣV� (7)

In our model, V� represents the eigenvectors in phase space, Σ the diagonal eigenvalue
matrix and U the eigenvectors in localization space.

In this derivation, we assume the same variance for all phase measurements; hence,
the covariance matrix Cφ is defined as follows :

Cφ = σ2
φ · INa (8)

62



Remote Sens. 2022, 14, 3577

where σφ is the typical phase standard deviation and INa is an identity matrix of size Na.
Cφ is, thus, a constant diagonal matrix in our model, with typical values of 0.04 rad. This
phase standard deviation is both an experimentally computed value and also corresponds
to the modeled approximation of Equation (12) (see next Section).

Considering a given phase measurement uncertainty for each antenna, we can plug
any phase distribution into the transformation from Equation (7). The shape and orientation
of the resulting spatial distribution around tag position (that we will call localization spot)
is described by the localization-space covariance matrix Cr. This matrix can be expressed in
the following way, depending on K−1 as well as the hypothetical covariance of the phase
measurement matrix Cφ:

Cr = (K−1)�CφK−1 = UΣ2U� (9)

Extracting the eigenvalues and eigenvectors of Cr allows for a completely analytical
determination of the localization spot properties (especially the direction of highest error)
for a given antenna-tag geometry, as shown in Figure 2. With a phase error of 0.04 rad, and
at the given tag position, we expect a localization random error of about 1 cm. Note that in
the model, any relative increase in phase error will result in the same relative increase in
localization error, as the measurement operator is linear.

The calculation presented above can be extended to a three-antenna system for a 3D
localization problem, following Equations (1) to (9) with K a 3 × 3 matrix. In the case where
Na > 3, the system from Equation (5) is overdetermined, and a least-squares solution has
to be found [51,52]. Using the pseudo-inverse of K, Equation (6) then gives:

δr = (K�K)−1K�δφ (10)

This new system can be solved and the eigenvectors computed by considering the
transformation matrix (K�K)−1K�.

Figure 2. Localization error shape at the position of tag A (see Figure 1) compared with the RFID
position estimation during a stable period in the Harmalière (November to December 2020). The green
point distribution is computed through the K−1 transformation (see Equation (6)), using a Gaussian
phase distribution with a standard deviation of 0.04 rad. The eigenvectors of the green distribution
(red lines) are scaled up to encompass 97% of the data. The black points correspond to the RFID-phase
localization results. The antenna positions are set as in the real experiment (see Figure 1).
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3.3. Phase Error Model : Multipath, Phase Standard Deviation and Radiation Pattern

While the previous section focuses on geometrical localization error, we will now
incorporate the impact of real-scenario error sources, e.g., antenna radiation pattern and
multipath. The following derivation is based on the work of [20].

3.3.1. Multipath Propagation Model

Multipath interference is a major challenge in RFID-localization and several solutions
have been proposed to estimate, reduce or mitigate its effect on measurements [53,54].
To start investigating the multipath, we use a simple two-ray model, assuming that the
measured signal is a superposition of the line-of-sight (p = 1) signal and a signal reflected
on the ground (p = 2), as shown in Figure 3. The two signals propagate over different
path lengths rp and orientations, which translate in different received power values due to
Friis’ law:

Pp(r) =
( λ

4πrp

)2 × Pt · GT(ip) · GR(ip) f or p = {1, 2}

where Pt is the power transmitted by the antenna, Pp is the received power along path p,
Gr and Gt are the receiver and transmitter gain which depend on the signal orientation
angle ip and the antenna radiation pattern, λ is the carrier wavelength and rp is the path
propagation distance. We can then define the amplitude gain Ap(ip, rp) for the line-of-sight
(1) and reflected (2) signals :

A1(i1, r1) =
1
r1

√
Gt(i1) · Gr(i1)

A2(i2, r2) =
1
r2

R(i2)
√

Gt(i2) · Gr(i2)

where R(i2) is the reflection coefficient impacting the reflected ray (which depends on
ground relative permittivity). The received signal voltage sp after normalization by the
initial emitted voltage can be expressed by the following phasor:

sp(ip, rp) = Ap(ip, rp) · λ

4π
· e−jkrp f or p = {1, 2} (11)

where k is the wave number. The resulting signal stot arriving on the tag is the sum of the
two phasors:

stot = s1(i1, r1) + s2(i2, r2)

After accounting for tag modulation efficiency Lt [55], and due to the reciprocity of all
gain values during the back-scattered propagation, the full signal phasor received by the
station antenna is finally expressed as follows:

s f ull = s2
tot · Lt

As a reminder, the squared stot corresponds to the back-and-forth path of the signal.
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Figure 3. Schematic definition of the two-ray multipath model. The orange line represents the
line-of-sight path with angle i1 and propagation distance r1. The blue line represents the reflected
path with angle i2 and propagation distance r2. htag and hantenna are the tag and antenna heights
above ground.

3.3.2. Two Types of Phase Error

We define the phase measurement error as the difference between the ideal LOS phase
and the full received phase. This error can be divided into two contributions: the phase
random deviation σrdm and the systematic phase bias φb, which are both consequences of
multipath interference. Let us now consider these two error contributions separately. Previ-
ous investigations [18] have shown a direct relationship between antenna received power
P(W) and phase random deviation σrdm(rad), using the same acquisition configuration (tag,
interrogator, and communication protocol):

σrdm =
4π f

c
· 9.5 · 10−9/

√
P (12)

where c is the light velocity and f the carrier frequency. This empirical relationship
reproduces the phase error value of 0.04 rad used in the previous section. The received
power greatly depends on propagation distance, but also on multipath interference, which
is why σrdm is multipath-sensitive. The systematic phase bias φb is defined as the difference
between the ideal LOS phase φ1 and the full received phase φ f ull :

φb = arg(s2
1)− arg(s f ull) = φ1 − φ f ull (13)

The phase bias obviously depends on multipath behaviour. In phase space, the two
error contributions σrdm and φb can be interpreted, respectively, as a scaling and translation
operation on an ideal phase measurement distribution. Indeed, σrdm represents the width of
the measurement error distribution, and the bias φb represents the center of this distribution;
compared to the LOS ideal measurement; the true measurement will thus be translated
by φb and scaled to a width of σrdm. Assuming Gaussian behaviour for the measurement
process, each antenna j will, hence, present a measurement distribution φj following a
normal law:

φj = N (φb, σ2
rdm)

These considerations can be applied in the phase-localization scheme presented in the
previous section via a multi-antenna phase distribution.

Let us define the scaling matrix S and the translation vector T as follows:

S =

[
σ1 0
0 σ2

]

T =
[
φb1 φb2

]�
The entries of S originate from Equation (12) and the entries of T from Equation (13).

They correspond to the values of phase random error and phase bias measured by each
antenna (Na = 2 in this simple scenario). Note that the phase random deviation values
σj are different for each antenna for geometrical reasons; each antenna is in a different
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location, hence, the multipath and radiation patterns do not yield the same error values.
The scaling S in phase space allows for a definition of the phase covariance matrix Cφ :

Cφ = S · S�

Cφ can be used in the singular value decomposition to compute the displacement
error eigenvectors via the displacement covariance matrix Cr (see Equation (9)). The
localization spot dimensions are, hence, fully described by the following covariance matrix
in displacement space Cr :

Cr = (K−1)�CφK−1 (14)

On the other hand, the translation T induced by the phase bias corresponds to a
translation drb in displacement space, obtained by:

drb = K−1 · T (15)

Equations (14) and (15) represent our best attempt to model the deviation from an
ideal LOS phase measurement, taking into account the various phase measurement errors,
and the geometry of the system. Figure 4 presents a 2D schematic view of the measurement
distributions from phase space to displacement space. We see that the phase distribution is
scaled and translated in phase space, compared to the centered distribution that was set in
Equation (8). In displacement space, this gives a specific localization spot with covariance
Cr, translated from the true LOS measurement by vector drb. The specific values of Cr and
drb are discussed in Section 4.2.

Figure 4. Schematic description of the matrix transformations in phase space towards real 2D space
for a 2-antenna system. (a) Representation of the simulated multipath-induced phase measurement
distribution (orange) compared to the previously assumed centered distribution (blue), highlighting
the scaling S and translation T. The translation is illustrated by the shift between the center of the
blue distribution and the center of the red distribution. (b) True space localization spot obtained by
further transformation via the K−1 matrix. The antennas are not represented. The systematic bias is
again illustrated by the shift between the real position (black point) and the center of the measured
distribution (red point).

4. Harmalière Landslide Monitoring

In this section, we will discuss the specific case of the Harmalière landslide RFID
system. After presenting the acquired data, the theoretical model will be applied to the real
system geometry, then the localization results will be presented.

4.1. Real Phase Data

Among the 32 tags installed in the field, 10 were read almost continuously by more
than two antennas for 12 months (January 2021–February 2022). The rest of the tags yielded
partial results that could not be used for 2D localization via the present scheme. Two main
factors can explain the lack of readability of some tags, namely, the narrow horizontal
directivity of the antennas (+/−30° aperture) and signal attenuation—the furthest tags
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showed the lowest signal quality. Generally speaking, the tags placed 50 cm above ground
showed worse results than those placed 1 m above ground, both in terms of data quality
and localization accuracy. This observation corresponds to the above theoretical results
(see Section 4.2 and Figure 5c), which tend to show that displacements close to the ground
are subject to stronger multipath interference. This study will only show the tags read by
at least two antennas during the whole period. The unwrapped phase measured during
the January 2021–February 2022 time period is presented in Figure 6 for tag A. The data
(70 measurements per day) were averaged over 24 h periods before applying the localiza-
tion algorithm to mitigate the daily phase variations due to humidity and temperature.
The missing values correspond to strong weather events that most likely depleted the
battery of the acquisition system, or to hardware failures.

Figure 5. Mapping of the 2D localization error extracted from Equations (14) and (15), simulating
the geometry of the Harmalière setup. The red dots represent the reader antennas, and the arrows
show the principal antenna directions. The orange cross indicates the position of tag A. The vectors
(�ur, �uθ , �uz) define the cylindrical coordinate system used later on. (a) The colormap shows the random
localization error (maximum dimension of the localization spot) up to 2 cm, related to the phase
random deviation σrdm. The localization bias is not shown. (b) Color-mapping of the systematic
localization bias (related to φb) in the xOy plane shows oscillations with meter-order spatial frequency
and increasing amplitude with distance from the measurement system. The random localization error
is not shown. (c) Color-mapping of the systematic localization bias in the xOz plane, with higher
oscillation amplitude and frequency. The ground is located at z= −3 m.
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Figure 6. Unwrapped phase variation for tag A, measured by four antennas at a frequency
f = 865 MHz, from January 2021 to February 2022. The grey bar shows a period of missing data due
to hardware failure. Data was directly available after replacement of the malfunctioning device.

4.2. Application of the Model to a Real Geometry

Before presenting the localization results, we will first apply the previously developed
model to the real system geometry. The workflow is presented in Figure 7, showing how the
real parameters come together with the geometry and model to compute the localization
error mapping.

Figure 7. Schematic view of the workflow used to estimate the localization error and bias in the
real-scenario Harmalière geometry.

We have set the model geometry according to Table 1, which corresponds to the
Harmalière setup geometry. The number of antennas is now set to Na = 4. The ground
relative permittivity is set according to the literature for dry soils [56,57], and the following
results correspond to this dry soil scenario. In the case of a wet soil, we expect the relative
permittivity to reach values around 25. In the model, this turned out generally to increase
the phase error (and localization error) values by about 30%, which can represent millimeter
to centimeter values depending on the context (see Section 4.2.2).

Table 1. (Up) Geometrical parameters for the positions of the four antennas in the Harmalière setup.
(Down) Values of the main variables used in the two-ray model (see Figure 3); the height of the
station is relative to the ground at the same position.

Antenna No. x (m) y (m) z (m)

1 0 0 0
2 0.018 −0.034 1.55
3 0.013 −2.608 0.256
4 −0.338 2.148 0.287

hantenna (m) 3
htag (m) 1

Ground relative permittivity 2.4
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4.2.1. Random Localization Error of the Experimental Field

The previous developments (Equations (14) and (15)) have been applied to the geome-
try installed in the Harmalière landslide, as shown in Figure 5. A mapping of the random
localization error (related to σrdm, Equation (12)) is shown in Figure 5a. We see that the
lowest error is obtained when facing the antennas, which are oriented eastward. The plot is
separated in two main areas, discriminated by the 2 cm random localization error value.
This value was chosen because it reflects the target precision in our application.

4.2.2. Systematic Localization Bias of the Experimental Field

The systematic localization bias (related to φb, Equation (13)) presented in Figure 5b,c
is not to be understood as a raw localization error, but as a varying bias when moving in
space; the interference between LOS and the reflected signal changes with tag position.

To better understand the effect of the multipath-induced phase bias on 3D displace-
ment measurements, we propose to consider the typical case of a 1 m displacement along a
given spatial direction, starting from the position of tag A. The symmetry of our experiment
being mainly cylindrical, we consider a cylindrical coordinate system with its central axis
in (x = 0, y = 0). For this displacement, we compute the localization bias fluctuation,
and project it on every space direction (along �uθ , �ur, �uz) to obtain an amplitude value.
The displacement length of 1 m was chosen both because it encompasses about one phase
bias cycle, and because it corresponds to the actual displacement we measured in the real
landslide scenario (see next section).

Table 2 reports the simulated localization bias amplitude in the three space directions,
together with real error measurements that were performed on field.

• The direction that produces the least bias variation is a �uθ displacement, which corre-
sponds to the quasi rotational symmetry of the system.

• A horizontal displacement along �ur yields a small localization error. This confirms
previous studies and demonstrates a centimeter precision for the RFID technique in
the horizontal plane [18].

• A vertical displacement along �uz undergoes several strong bias oscillations (Figure 5c).
The subsequent localization error is a cumulative effect of both the strong multipath
interference and the small vertical aperture of the measurement system.

Table 2. Direction-dependent localization bias in the 3 directions (cylindrical coordinates), for a
typical 1 m displacement. Each column corresponds to a different direction of displacement. Each
line represents the localization bias amplitude along a certain direction, during the 1 m displacement.
The values in italic correspond to field experiment localization bias measurements.

Bias
Dir. �uθ �ur �uz

max. �uθ bias <1 cm <1 cm 10 cm
(1 cm ) (20 cm)

max. �ur bias 1 cm 1 cm 2 cm
(1 cm) (15 cm)

max. �uz bias 1 cm <1 cm 70 cm
(5 cm) (110 cm)

These results tend to show that vertical localization in the current localization scheme
cannot be performed with precision. The multipath effect, along with the high system sen-
sitivity in this direction, yield a very high localization bias. This is why we will not present
Oz localization results in the following section. This model highlights the importance of
the geometrical features of the system, such as antenna position and spacing, tag height
and direction of displacement.
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4.3. Surface Displacement Monitoring Results

In this section, we present the experimental localization of the tags in the Harmalière
landslide. We first focus on the 2D localization of one specific tag (tag A) in Figure 1, then
we recapitulate on the whole setup and discuss the results.

4.3.1. 2D Relative Displacement for One Tag

The 2D displacement of tag A, computed from the radial displacements using multi-
lateration and data from the four antennas (see Equation (3)), is shown in Figure 8 against
reference tacheometer position measurements. The xOy results are in good agreement
with the reference points. Note that, for stable phase periods (for example July 2021), the
localization algorithm yields very stable results with a centimeter scale variability, which is
in agreement with the theoretical localization error presented in Figure 2. This correspon-
dence between theory and experiment during stable periods is observed for several tags,
further validating the measurement error model. Note that Figure 2 does not present any
phase bias results, but focuses only on measurement random deviation (dimensions of the
localization spot).

Figure 8. RFID localization in the xOy plane, using phase data for tag A (Figure 6). The total
displacement is about 1.6 m. The color plot represents the time evolution of the RFID relative
localization. The red crosses represent the reference measurements using a tacheometer, with an
estimated error of about 4 cm. The tacheometer measurement of March 2021 is set as an absolute
reference for relative localization. The black crosses correspond to the estimated random error bars
for TD-phase localization (calculated via the model developed in Section 4.2).

4.3.2. 2D Localization for All Tags

Figure 9 shows an overview of the xOy displacement norm measured by the RFID-
phase for all available tags during the measurement period. The total displacement is also
shown for every tag in Table 3. All RFID localization results fit with reference measurements,
notably for displacements greater than 1 m. The steep displacement increase in January 2022
concerning tags 51, 4e and A, was confirmed by tacheometer measurement. This rapid and
localized deformation generated cracks and a landslide retrogression of about two meters
in this area. A south-east tendency is clearly validated and corresponds to the landslide
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main direction, as can be seen in the qualitative vector mapping in Figure 10, with various
displacement amplitudes depending on tag location. This opens the way to 2D spatio-
temporal monitoring of the landslide surface, offering the possibility to better understand
the physical mechanisms at the origin of the landslide activation and propagation, and to
build new early warning monitoring systems.

Figure 9. Cumulative 2D displacement norm for each tag, with reference measurements performed
via tacheometer (black crosses). An offset was added to every plot to increase readability. The total
displacement values are given in Table 3.

Table 3. Total 2D displacement norm for all presented tags computed from the RFID phase, from Jan-
uary 2021 to February 2022. The reference is computed from the tacheometry measurements, with an
estimated error of ±4 cm.

Tag 51 A 4e 26 55 5f 2d 5c 59 5b

Total disp
(m) 1.54 1.37 1.20 0.81 0.75 0.85 0.69 0.67 0.74 0.56

Reference
(m) 1.57 1.45 1.28 0.81 0.79 0.74 0.77 0.74 0.72 0.59

Figure 10. Vector mapping of the total 2D displacement for all available tags from January 2021
to September 2021. The scale is modified for clarity with a 1 m displacement reference (black
arrow). The red arrows represent the displacement estimated from the RFID measurements, and the
black arrows represent the displacement computed from reference measurements. The blue points
numbered 1 to 4 correspond to the reader antennas.
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4.4. Discussion

In this section we briefly discuss some of the results presented in this paper, as well as
future development of the RFID localization system.

4.5. Localization Error and Reference Measurements

In the context in which RFID localization was performed, absolute reference localiza-
tion at a centimeter level was a complicated task. For practical reasons, reference positions
taken via GPS were not sufficiently accurate to be compared to the RFID localization results.
This is why tacheometry was used, which is a relative localization method. A landslide
is an ever-changing environment, and using absolute references such as trees or antennas
involves several sources of error. For this reason, the tacheometer uncertainty given in
Table 3 is ±4 cm. As has been described in previous reports [18], RFID phase outdoor
localization can outperform the reference measurements.

4.5.1. Discussion on Antenna Position

The above model (Section 4.2) is a tool for optimizing the antenna positions in a given
terrain to minimize localization errors originating from both multipath and geometry. We
performed calculations for several geometrical cases in a plane xOy geometry, searching
for the lowest random deviation in the monitored zone. As a general rule, we conclude
that surrounding the field with antennas yields the best accuracy (lowest localization
random deviation). For example, if four antennas are spread around the Harmalière field,
the horizontal random localization error is expected to reduce to 1 mm.

Such setups are not always possible in real-environment operational situations—the
experimental setup obviously has to be designed taking into account the operational
constraints and priorities. In cases where a portion of the field is inaccessible, for example,
the distance between antennas (system aperture) should be maximized to obtain the lowest
random deviation. This guideline has limitations, such as cable length or station cost, hence
the final setup will generally be a compromise between precision and station/maintenance
cost. Note that other localization methods, such as angle of arrival techniques [54,58] rely
on different system geometries and will not lead to the same optimal antenna disposition.
The guidelines provided here only apply to a relative displacement scheme; absolute
positioning is a different matter which we do not discuss here.

4.5.2. Perspective for Improving Data Availability

In this investigation, the tags that yielded only partial data (i.e., less than two antenna
readings, long time periods without data) were not used, although more complex data
assimilation techniques could be of use [59,60]. Exploiting both the knowledge of the
landslide mechanics and the redundancy of information that the system yields could
allow tag monitoring even in partial data scenarios, which are a common issue in outdoor
environments. Such techniques will be implemented in future work.

5. Conclusions

We have derived a phase-based 2D localization error theoretical model that allows
for error estimation in a scenario of two to four static interrogator antennas, taking into
account the specific setup geometry. The model is based on both the sensitivity kernel of
the measurement system and a two-ray propagation model (multipath). Under certain
conditions, this model confirms the ability to track centimetric ground displacements.
The in-plane horizontal measurements demonstrate much better accuracy than the out-
of-plane vertical measurements, due to the preferential horizontal antenna distribution,
and to ground-reflection multipath interference.

A set of RFID tags was placed on an active landslide and phase measurements were
performed over several months to monitor the tags’ displacement. The results show a clear
south-east displacement of about 1 m in the horizontal plane over the monitored area. The
presented method, inspired by the time-difference phase-difference scheme, has shown
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very good results for the monitoring of relative displacements in 2D at the centimeter scale.
The monitoring of landslides using RFID technology was demonstrated to be a viable
solution, with centimeter-scale accuracy over large periods of time. A further step in large
scale monitoring could be to deploy a moving antenna (SAR) over greater lengths, and to
implement a data assimilation approach to increase data availability.
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Abstract: Reality capture technologies such as Structure-from-Motion (SfM) photogrammetry have
become a state-of-the-art practice within landslide research workflows in recent years. Such technol-
ogy has been predominantly utilized to provide detailed digital products in landslide assessment
where often, for thorough mapping, significant accessibility restrictions must be overcome. UAV
photogrammetry produces a set of multi-dimensional digital models to support landslide manage-
ment, including orthomosaic, digital surface model (DSM), and 3D point cloud. At the same time,
the recognition of objects depicted in images has become increasingly possible with the development
of various methodologies. Among those, Geographic Object-Based Image Analysis (GEOBIA) has
been established as a new paradigm in the geospatial data domain and has also recently found
applications in landslide research. However, most of the landslide-related GEOBIA applications
focus on large scales based on satellite imagery. In this work, we examine the potential of different
UAV photogrammetry product combinations to be used as inputs to image segmentation techniques
for the automated extraction of landslide elements at site-specific scales. Image segmentation is the
core process within GEOBIA workflows. The objective of this work is to investigate the incorporation
of fully 3D data into GEOBIA workflows for the delineation of landslide elements that are often
challenging to be identified within typical rasterized models due to the steepness of the terrain.
Here, we apply a common unsupervised image segmentation pipeline to 3D grids based on the
superpixel/supervoxel and graph cut algorithms. The products of UAV photogrammetry for two
landslide cases in Greece are combined and used as 2D (orthomosaic), 2.5D (orthomosaic + DSM),
and 3D (point cloud) terrain representations in this research. We provide a detailed quantitative
comparative analysis of the different models based on expert-based annotations of the landscapes and
conclude that using fully 3D terrain representations as inputs to segmentation algorithms provides
consistently better landslide segments.

Keywords: UAV; image segmentation; 3D modelling; landslide; superpixels; supervoxels; graph cut

1. Introduction

Landslide disasters constitute a global issue that threatens the sustainability of infras-
tructure and the environment as well as human lives [1]. Sophisticated digital methods
for accurate and efficient assessment based on cutting-edge technologies can enhance
traditional protocols. Unmanned Aerial Vehicle (UAV) photogrammetry has become a
state-of-the-art technique in landslide research in recent years. The ability to produce
high-resolution digital models of inaccessible areas in a short time and with relatively low
cost has made UAVs key assets in landslide assessment and they support decision making.
Digital landslide models permit landslide assessment and support decision making to
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mitigate landslide risk. Consequently, there is a need to improve accuracy, efficiency, and
automation in landslide modelling and minimize subjectivity and human error in visual
interpretations. The products of UAV surveys vary from the 2D orthomosaic and 2.5D
digital surface model (DSM) to high-resolution 3D point cloud. These products permit
powerful visualizations, precise measurements, and detailed analysis tasks such as change
detection to be carried out.

However, there is room to improve the capabilities of our models. To make the models
more intelligent and leverage autonomy, strengthen inter-communication, and perform
efficient queries to speed up current analysis frameworks, we primarily need to transfer
formalized knowledge and inject semantics into the digital model. This mainly comprises a
clustering problem. However, the identification of commonalities, in ultra-high-resolution
geographic data, constitutes a challenge within several applications. It is also important to
structure a large model in a way that it can be manipulated efficiently. This requires the
development of semantic segmentation methodologies that are able to recognize different
geologic/geomorphologic features within a digital model and efficiently accommodate
multi-level conceptualizations [2].

1.1. Motivation and Objectives

The motivation for the work presented in this paper is to assess the effectiveness of
UAV-derived terrain representations of varying dimensionality to support the extraction
of meaningful landslide objects. In landslide scenes, segmentations have predominantly
been applied to 2D or 2.5D images (pixel grids) (see Section 1.2 below). Landslide scenes
are often steep terrains where critical elements such as the scarp zones and/or the flanks
of a landslide may not be adequately modeled in top-view projections. In such cases, a
fully 3D approach might be essential. Although powerful, fully 3D approaches are often
constrained by the high computational resources demand, especially at regional scale
analyses. However, at site-specific scales, the data load can still be handled by commercial
hardware. In this study, the authors thoroughly compare site-specific scale landslide
segmentations produced in all 2D, 2.5D, and 3D operational domains using UAV-derived
terrain representations as inputs to GEOBIA workflows. The segmentation algorithm used
for the assessment of the models was selected based on three criteria:

(a) it is unsupervised (no requirement for large amounts of training data);
(b) it is applicable in the 3D space as well (maintains consistency in the experiments); and
(c) it is tested for the first time in a landslide environment (provides new data for the

landslide community).

It is, however, worth mentioning that the definition of the optimum landslide segmen-
tation algorithm for the task is beyond the scope of this research. Only the dimensionality
of the landslide representation is assessed as the input, based on the algorithm that fulfills
the above criteria, to maintain consistency between the different operational spaces. UAV
deployment at site-specific scales enables the acquisition of detailed 3D models. In steep
terrains such as landslides, moving from 2D image segmentation to fully 3D analyses may
prove to be decisive in the extraction of confident geologic information.

In the research reported here, superpixels and supervoxels are generated under differ-
ent resolutions and the final segmentation of each model is achieved using a data-driven
approach. The supervoxel implementations are modified to operate directly on the voxel
grid rather than on stacked pixel grids. The results of two geologically/geomorphologically
different landslide cases are evaluated against expert annotated reference data, considering
state-of-the-art performance metrics for the task. The methodology followed is illustrated
in the flowchart in Figure 1 and aims to investigate the suitability of individual terrain
representations of varying spatial dimensionality for automatic unsupervised segmentation
towards object-oriented semantic injection in landslide models.

77



Remote Sens. 2022, 14, 5668

 

Figure 1. The methodology of the analysis followed for each landslide study site in the current study
from raw data capture to segmentation and multi-dimensional assessment of UAV-derived models
based on expert-based reference annotations. Each process is coloured by the software/technique
used for the implementation while their products are mentioned in white frames.

1.2. Segmentation Background

Image segmentation was initially implemented within Object-Based Image Analysis
(OBIA) frameworks for medical imaging, but since then it has been applied to multiple
domains such as indoor mapping, traffic detection, and range imaging [3]. It has revolu-
tionized image analysis processes with a move from the traditional pixel-based model to an
object-based contextual model that endeavours to emulate the way humans interpret im-
ages. Subsequently, the objective of segmentation has been changed from pixel labelling to
object partitioning [4]. Since the early 2000s, the same shift has been taking place in remote
sensing. The new paradigm named Geographic Object-Based Image Analysis (GEOBIA),
promises to change the way geoscientists perceive, analyze, and use remote (or close-range)
sensing data [5,6]. In remote sensing, the main objectives are to detect, identify, analyze,
and monitor the dynamics of natural phenomena and several studies have highlighted the
advantages of GEOBIA compared to the pixel-based paradigm [7,8]. However, there are
specific challenges in using the object-oriented data model, such as the under-segmentation
and over-segmentation error associated with the segmentation scale. This occurs when the
object entities include more than one object, or the objects are unnecessarily broken apart
in the segmentation process [9], respectively.

Image segmentation is a critical step in GEOBIA. There are various methods for
semi-automatic or automatic object detection that are based on the application of various
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segmentation algorithms to Earth Observation (EO) data [10]. Many methods for object
recognition and segmentation rely on the tessellation of an image into “superpixels”. A
superpixel is an image patch which is better aligned with object boundaries than a rect-
angular patch. The objective is to group pixels into perceptually meaningful regions to
replace the rigid structure of the raster [11]. Superpixels aim at balancing the conflicting
goals of reducing image complexity and yielding new properties, while avoiding under-
segmentation. The extensive state-of-the-art review on segmentation methods for GEOBIA
conducted by [4] reveals that MRS [12] is the most cited segmentation algorithm and is
often used as a reference for benchmarking. However, Ref. [13] demonstrates that similar or
even better accuracy can be achieved using superpixels instead of MRS-derived segments
as objects. The accuracy and precision of a segmentation technique refer to the degree
by which the segmentation results agree with the reference data extent. Image segmenta-
tion literature is extensive, including different algorithms and approaches. Furthermore,
Ref. [14] have demonstrated a detailed review of recent trends in object detection with
the use of deep learning (e.g., [15]). Because segmentation is the initial phase in the data
analysis, an accurate, precise, and efficient approach must be implemented to minimize
inappropriate results.

The segmentation process defines the entities for object-oriented analysis which should
aim to create meaningfully delineated real-world objects. Entities can be generated based
on different attributes, such as size, texture, shape, spatial and spectral distribution. The
precision and accuracy of object boundary delineation is significant due to its impact on
the subsequent classification phase. Subsequently, the segmentation can be completed
treating these newly formed entities, with their respective attributes, as the image unit
within the desirable clustering approach. This is essentially the principle of object-oriented
models which have proven to yield better performance compared to traditional pixel-based
analyses of 2D and 2.5D images [16].

The same concepts apply to 3D space where the analogous to pixels, voxels (volumetric
pixels) are grouped into supervoxels as discussed in [2]. The generation of the voxel grid
requires the point cloud to be recursively subdivided into eight child voxels until the
desired resolution is reached. The voxel colour and/or other layers are inherited from
the point cloud and the points included within each voxel. In contrast to 2D image over-
segmentation, little work has been carried out in supervoxel algorithms operating directly
on 3D space (i.e., [17,18]). Despite the usefulness in digitizing the real world, 3D point
clouds are tedious to work with and conventional point cloud tools are limited. The vast
majority of the advances in computer vision and machine learning today deal with 2D
images [19]. That is the reason why point clouds are often written off as the raw product
with the focus being put on processed data formats such as rasters. Three-dimensional
scenes are usually treated as a stack of slices along one of the dimensions, each processed as
an individual image. We use point clouds as visualizations for virtual inspections and limit
our work with them to measuring simple distances. However, given the ever-increasing
availability of high-resolution point clouds, fully 3D object-oriented operations might add
substantial value to object-based landslide semantic segmentation.

In the landslide domain, GEOBIA has become a popular method for semantic image
analysis due to the integration of different data types in very high spatial resolutions. The
automatic identification of specific landslide and geomorphologic features [20,21] have
been studied in the literature and GEOBIA has already proven its strength (Martha et al.,
2010). Many studies have used spectral information combined with Digital Elevation
Model (DEM) derivatives to delineate landslide bodies within satellite images utilizing
a non-seeded region growing segmentation algorithm in commercial software [22–25].
Furthermore, the study by [26] proposed a workflow for landslide mapping from satellite
images using open-source tools with a mean shift segmentation. Earlier, Ref. [27] had
successfully segmented glacier surfaces form Airborne Laser Scanning (ALS) data using a
seeded region growing segmentation based on DEM derivatives and laser intensity. Other
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landform applications of GEOBIA include the mapping of drumlins [28] and gully-affected
areas [29].

However, landslide segmentation for object-oriented analysis can be even more de-
tailed, when utilizing UAV-derived data, to segment individual landslide elements. Re-
cently, Ref. [30] utilized UAV photogrammetry to produce 2.5D representations of two
landslide cases at a site-specific scale. The authors used GEOBIA to segment and classify
distinct landslide features such as the scarp, depletion and accumulation zones as well
as anthropogenic structures that constitute elements at risk within the landslide scene.
The segmentation performed in a multi-dimensional feature space consisted of spectral,
topographic, and geometric features using a non-seeded region growing algorithm. Their
approach aimed to propose a framework for targeted landslide mapping and quantified
characterization of specific semantic zones.

Given the advantages of GEOBIA and the ever-increasing availability of high-resolution
3D point clouds, a new approach to object-oriented analyses of landslide scenes, based
on direct point cloud segmentation is proposed by [31]. The development of distinct 3D
object entities represents an advantageous approach for analyzing natural scenes because
points can be meaningfully partitioned into networked homogeneous entities that carry
their full semantic information. Nonetheless, direct 3D data processing is more compli-
cated than image processing and requires proficiency. To date, very few studies have used
Object-Oriented Point cloud Analysis (OBPA) of landslide scenes. Preliminary efforts using
LiDAR point clouds include: (a) segmentation of rotational landslides into individual
geomorphologic zones and vegetation based on a seeded region growing algorithm using
point-based geometric descriptors [32], and (b) segmentation of a multi-hazard railway
rock slope including debris channels, steep rock outcrops, rock benches, and transportation
infrastructure using voxel-based features and a non-seeded region growing segmentation
in 3D [2].

2. Material and Methods

In this study, the derivatives of close-range UAV photogrammetry are employed to
produce 2-, 2.5-, and 3-dimensional coloured terrain representations of landslide cases at
different settings. Superpixel/supervoxel segmentation is applied to each model (depend-
ing on the dimensionality) examining different configurations of the algorithm used. The
resulting over-segmentations are subsequently partitioned into homogenous segments uti-
lizing an unsupervised colour-based clustering technique while different threshold values
are considered. The whole segmentation pipeline is illustrated in Figure 2. Finally, all three
dimensionality input models, accompanied by the varying algorithm configurations, are
evaluated against expert annotated ground truth images of the sites.

This section is organized as follows: Section 2.1 includes a description of the examined
sites aiming to provide the reader with a detailed overview of the geologic and geometric
setting as well as the specificities associated with each landslide mechanism. Section 2.2
provides the technical details of the UAV survey and the techniques used for the generation
of the multi-dimensional models, while in Sections 2.3 and 2.4 the superpixel/supervoxel
generation and unsupervised segmentation algorithms are explained, respectively, together
with the examined parameter settings. Section 2.5 introduces the evaluation methodology.

2.1. Study Sites

Case 1 is located adjacent to the main road network from Karpenisi to Proussos
Monastery in the Evritania region, Greece (Figure 3A). The slope has an average width
of 10 m in the scarp zone and almost 70 m in the depositional zone crossed by the road.
The relative elevation from the top to the toe is approximately 90 m while the hillslope is
approximately 70◦ steep, facing north-east (NE) and located at a 780 m elevation. Geologi-
cally the test site is located in the flysch environment of the Pindos geotectonic unit, in the
central part of Greece. Case 2 is located at the Red Beach of Santorini, Greece, a volcanic
island in the Cyclades Archipelago, and it represents a coastal failure site (Figure 3B). The
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site of Red Beach constitutes part of Cape Mavrorachidi and is geologically situated in
the Akrotiri Volcanic Complex [33]. The coastal erosion and the nature of the geomaterial
created very steep volcanic slopes which dip up to 80◦ and are up to 45 m in height. The
geomaterials examined here consist of medium to well-cemented scoria and compact lavas.
Scoria formation is composed of alternating coarse-grained, medium cemented volcanic
breccias and fine-grained, well-cemented volcanic breccias. The geotechnical properties of
scoria are difficult to assess due to the friable character of rocks that contain air bubbles [34].
The brittle nature of the material in combination with the erosion processes due to enhanced
wave energy and wind guts results in the area being susceptible to rockslides and rockfalls.

Figure 2. Step-by-step illustration of the segmentation pipeline developed for the segmentation of
the multi-dimensional UAV-derived models.
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Figure 3. Overview of the landslide sites examined in the current comparative study for automatic
segmentation via multi-dimensional UAV-derived digital models. (A): Proussos landslide and (B): the
active Red Beach cliffs.

2.2. Digital Model Creation

For the creation of the multi-dimensional digital models, a set of UAV-derived pho-
tographs was collected for each study site. Case study research with a low-cost UAV
platform was carried out at the two landslide sites. The photogrammetric procedure was
performed in four distinct stages: (1) flight planning, (2) flight execution and imagery collec-
tion, (3) Structure-from-Motion processing, and (4) Orthomosaic and digital surface model
creation (Figure 4) [35]. The initial stage includes the flight route planning, which must
ensure the best coverage of the target area with an adequate image frontlap and sidelap,
considering the camera footprint and flight altitude. The UAV platform was programmed
to hover at a constant altitude along the landslide sites to assure optimal conditions for
tie-point identification and bundle adjustment [36].
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Figure 4. The digital models (upper: Proussos case, lower: Red Beach case) generated by SfM
photogrammetry and used as inputs to the developed segmentation pipeline. From left to right, the
columns depict: the orthomosaic, the DSM showing lower elevation in cooler colours and higher
elevation in warmer colours, and 3D point cloud.

At the Proussos case site, field investigations and UAV photogrammetric surveys
were performed on 24 September 2020. In total, 114 photos were collected during the
flight surveys with a commercial UAV platform (DJI Phantom 4 Pro) with a median of
5243 keypoints per image. Regarding the Red Beach case, 104 images were collected during
field investigations during May 2020, with a median of 1485 keypoints per image. All the
images were processed to the orthophoto and the DSM with 0.5 m resolution by using
Pix4D photogrammetric software with WGS84 as the coordinate reference system for the
data. Information on the specific photogrammetric surveys can be found in Table 1.

Table 1. Technical details of the UAV missions for the acquisition of each dataset.

Case 1 Case 2

Number of images 114 104
Average flying altitude (m) 50 70

Image overlap (sidelap–frontlap) (%) 70 70
Ground resolution (m/pixel) 0.034 0.024

Area extent (m2) 16,000 3000
Point density (points/m2) 348.85 213.99

Point cloud points 3,164,848 16,888,932
Orthomosaic resolution (m/pixel) 0.5 0.5

DSM resolution (m/pixel) 0.5 0.5
Overall error X, Y (m) 0.02 0.06

Overall error Z (m) 0.07 0.09
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The orthomosaic of each site was chosen to represent the 2D geographic model which
includes a Red-Green-Blue (RGB) description for each pixel in the rasterized format. Fusion
of the orthomosaic with the digital surface model (DSM) adds the elevation as a fourth
dimension to the pixel description, thereby creating a 2.5D model. The point cloud which
retains direct 3D information of a given area was used to create the 3D model. However,
due to the nature and the inherent lack of structure in the point cloud’s specific data type,
a voxelization process was first implemented to assign structure in a grid-like format
(for further information regarding voxelization please refer to [2]). The product of the
voxelization process is a voxel grid, which is technically the 3D analogue to the pixel grid.
Each voxel (volumetric pixel) represents a cube assigned the mean RBG value of the points
it encloses. Similar to the pixel grid, the resolution of a voxel grid is defined as the length
of the edge of the voxel. The software for the raster operations was developed in Python
3.8 programming language making use of the Python Image Library (PIL) and Rasterio,
while the point cloud and voxel grid manipulation is based on Open3D [37], networkx [38],
and Numerical Python (NumPy) [39] modules.

2.3. Superpixel/Supervoxel Generation

Having each study site represented by both 2-, 2.5-, and 3-dimensional coloured geo-
graphic models (Figure 4) in grid-like formats enables their tessellation into superpixels or
supervoxels, depending on the grid dimensionality. The Simple Linear Iterative Clustering
(SLIC) algorithm is used for this task. SLIC is a state-of-the-art superpixel generation
algorithm discussed in detail by [11]. SLIC includes a local implementation of the k-means
clustering algorithm to the image, thereby offering the following two advantages:

(a) The search area is limited to a specified extent around each cluster centre rather than
searching the whole image. This simplifies the complexity and makes the execution
time linear in the number of pixels and independent of the value of k.

(b) It introduces a distance measure which accounts for colour and spatial similarity
simultaneously and controls the size and compactness of the superpixels.

The process starts with the initialization of the cluster centres, with spatial location
controlled by the step parameter(s). Step controls the arrangement of the superpixels along
a regular grid with a resolution s times coarser than the original model resolution. The
pixel gradient in each cluster is then calculated within a 3 × 3 window and the cluster
centre is moved to the lowest gradient position. The gradient is defined as the normalized
sum of distances in feature space from all the neighbours and computed as:

G(i) =
kadj

∑
j=1

|k(i)− k(j)|
Nadj

, (1)

where, k is the notation for a pixel (or voxel in the 3D), i is the index of each processed
element, j is the index of each element adjacent to the processed element within the defined
window, and N is the total number of adjacent elements.

In SLIC, it is usually recommended to transform the RGB image into the non-linear
L*a*b* colour space (L* for lightness, and a* and b* for the position between red-green and
blue-yellow, respectively) where a given numerical change corresponds to a similar per-
ceived change in colour. To keep the methodology consistent between the different models
and to not introduce bias into the comparison, the authors applied this transformation to
all the applications. In the case of the 2D model where the pixel is characterized by only
the colour values, each cluster centre is initialized as Ci = [Li ai bi xi yi]T while in the 2.5D
model case, the elevation dimension (E) is added to the clustering space as Ci = [Li ai bi Ei
xi yi]T. The elevation range across the whole model is standardized in the range [0:100]
which is the exact same range the parameter L (luminosity) fluctuates within.

For the adaptation of the above process in the 3D space and the generation of su-
pervoxels, the authors developed an extension of the algorithm for application on voxel
grids based on the Voxel Cloud Connectivity Segmentation (VCCS) proposed by Papon
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et al. (2013). Since the bounding box of a point cloud is almost never entirely occupied
by points, there are several cluster seeds within the initial supervoxel grid that remain
empty of points. The step parameter is still linked to the seed grid resolution and affects
the supervoxel segmentation result. In this case, the centre of each non-empty supervoxel
is moved to the nearest voxel while the rest are rejected. Each cluster centre is then moved
to the lower gradient position calculated within a 3 × 3 × 3 window, like in the previous
two cases, using Equation (1).

The colour is again defined in the CIELAB space and the cluster centres initialized
as Ci = [Li ai bi xi yi zi]T with the third dimension being directly integrated in the spatial
component of the distance measure which is calculated as:

D =

√
d2

f +

(
ds

s

)2
c2 (2)

where, df and ds denote the distance in feature space and spatial distance, respectively, s
defines the step parameter, and c weights the relative importance between feature space
similarity (colour or colour + elevation) and spatial proximity. The larger the value of c, the
more important the spatial proximity is and so the resulting superpixels/supervoxels are
more compact in shape. In contrast, lower c values lead to superpixels/supervoxels more
flexible in shape. As such, c stands for compactness which is mathematically expressed
as the area to perimeter ratio. In general, in CIELAB space operation, the compactness
can be in the range [1:40] [11]. The c values were defined after an exploratory trial-and-
error analysis for each site in a way that allows enough flexibility during the formation of
superpixels/supervoxels (between 20 and 30).

2.4. Graph-Based Segmentation

Once the homogenization of the scene and the complexity reduction have been
achieved, the superpixels and supervoxels represent the image unit for further processing
within an object-based conceptualization. For the organization of them into meaningful
objects, the authors employ a graph cut approach to assess the implementation of an
unsupervised data-driven segmentation that does not require empirical knowledge.

Graph cut describes a set of edges whose removal makes the different graphs dis-
connected. The set of models, in their corresponding feature space, are represented by
a weighted undirected graph structure G = (V, E), where the nodes of the graph are
associated with the superpixel or supervoxels and the edges connect adjacent nodes. Each
edge

(
vi, vj

) ∈ E is weighted by the dissimilarity between nodes vi and vj. In this imple-
mentation, colour dissimilarity is used as the edge weight w

(
vi, vj

)
[40,41]. This stage of

the methodology aims at providing an initial estimate of the representativity of the final
segments and their potential within unsupervised object-based semantic segmentation
workflows from UAV models.

The normalized cut (Ncut) function is used to avoid min cut bias. This approach was
developed to solve the perceptual grouping problem in vision by normalizing for the size
of each segment. The normalized cut criterion accounts for both the total dissimilarity
between different clusters and the total similarity within the clusters (Jianbo Shi and Malik,
2000). In this way, the methodology extracts the global impression of a scene rather than
only assessing local information and its consistency in the model. The formulation of the
normalized cut criterion is given in Equation (3).

Ncut(A, B) =
cut(A, B)

∑u∈A,t∈V w(u, t)
+

cut(A, B)
∑u∈B,t∈V w(u, t)

(3)

where, ∑
u∈A,t∈V

w(u, t) is the total weight from edges connecting the nodes in A to all the

nodes in the graph, and ∑
u∈B,t∈V

w(u, t) is for all the nodes in B.
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2.5. Multi-Dimensional Assessments

The landslide sites described in Section 3.1 are both used in the evaluation phase as they
introduce diversity in slope geometry, failure mechanism, and rock types. The evaluation
of the multi-dimensional UAV-derived terrain representations for each case is carried out
in both stages of the segmentation pipeline presented in Figure 2. Expert-based annotations
were prepared for the sites to be used as references for the comparisons. These annotations
include geologic/geomorphologic landslide features such as the scarp, depletion zone,
accumulation zone, coastline, and rockfalls as well as anthropogenic features such as roads
threatened by the landslide activity. The authors project the 3D segment boundaries to
the top-view plane for the comparisons with the raster-based segmentations using the
methodology by [17].

Initially, the superpixels or supervoxels generated by the SLIC algorithm are evaluated
for different resolutions ranging from 5 to 20 m. This aims to assess the suitability of
the models as inputs to over-segmentation methods for properly generating meaningful
image objects, while simultaneously reducing the complexity of a scene. Subsequently,
the result of the unsupervised graph cut segmentation, considering all the different SLIC
outputs, is evaluated separately. The results of different cut cost values are examined
representing three orders of magnitude (0.01, 0.1, and 1) to assess the sensitivity of the
outputs in complex natural terrains such as these active landslide slopes.

3. Results

This section details the segmentation results of the experimental analyses conducted
in the two different landslide scenes introduced in 3.1. Each of the two steps of the
segmentation pipeline (Figure 2) is thoroughly analyzed using the multi-dimensional
UAV-derived models (Figure 4) as inputs, respectively, and expert-labeled ground-truth
segmentations as reference. The authors first provide insights on the generated superpix-
els/supervoxels under different resolutions of the SLIC algorithm. Afterwards, each of
the superpixel/supervoxel assemblies is used to derive the final segmentations through
normalized cut analysis.

3.1. Evaluation Metrics

The most important property of a segmentation algorithm is the ability to generate
segments able to adhere to, and not cross, real object boundaries. To assess the results
quantitatively, two standard metrics called boundary recall [42] and under-segmentation
error [43] are widely used in the literature [11,17,18].

However, these metrics will always provide the best scores for scenes segmented
into many small segments, which is undesirable [18]. The objective of any segmentation
technique is to provide the best scores with the least possible number of segments, and it is
commonly preferred for the metric to be plotted against the number of segments. However,
due to the fact that the number of segments increases exponentially by adding the third
dimension of elevation and to keep the comparison unbiased, the authors plot the scores
against the over-segmentation resolution which is directly related to the number of formed
segments. The lower the resolution, the fewer the SLIC segments and the higher the cut
cost, the fewer the final segments.

3.1.1. Boundary Recall

Boundary recall (BR) measures what fraction of the ground truth edges fall within at
least two pixels of a segment boundary (Equation (4)). High boundary recall indicates that
the segments properly follow the edges of objects defined in the ground truth labeling.

BR =
True Positives

True Positives + False Negatives
(4)
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3.1.2. Under-Segmentation Error

Under-segmentation error (UE) estimates the area that corresponds to erroneous
overlaps. If A is a ground truth segment and B is a generated segment that intersects A, Bin
and Bout refer to the portions of B that do and do not overlap with A, respectively. Thus,
the UE is calculated as follows:

UE =
1
N

[
∑
A

(
∑

B∩A
min(|Bin|, |Bout|)

)]
(5)

where N defines the total number of pixels in the reference model.

3.2. Superpixel/Supervoxel Evaluation

The SLIC algorithm was applied to the three different terrain representations (2D,
2.5D, and 3D) for each case site. Due to the fact that appropriate segmentations depend
on the suitable scale of analysis, and the goal is to achieve the best boundary adherence
with the least possible number of segments, a range of different superpixel/supervoxel
resolutions was examined (5 to 20 m, with an interval of 2.5 m). The authors investigated
the superpixel/supervoxel generation for landslide models using the multi-dimensional
processing methods discussed in 3.3. Figure 5 illustrates over-segmentation results of the
2D, 2.5D, and 3D processing methods, respectively, with both a fine and coarse resolution
for each. It is note-worthy that the 3D results, especially for the Red Beach case, depict a few
intersected segment boundaries. This is due to three factors: (a) the noise introduced to the
point cloud through the SfM process due to the sea waves which is reflected when projected
to the top-down view, (b) shadowed or occluded areas that interrupt the continuity of the
voxel grid and lead the supervoxel seeds to small, disconnected clusters, and (c) areas of
negative slope where segments that are at different elevations intersect with each other
when projected.

It was found that the 3D supervoxel algorithm generates over-segmentations with
over 80% boundary recall (Figure 6) and below 20% under-segmentation error (Figure 7)
for almost all the examined SLIC resolutions for both study sites. In particular, for the finer
resolutions, the boundary recall exceeds 90% while the under-segmentation errors do not
exceed 12%. In contrast, the boundary recall for the respective 2D and 2.5D superpixel
algorithms does not exceed 80%, while it fluctuates between 30–60% for the coarser set-
tings. The same trend is observed for the under-segmentation error too. Two-dimensional
and 2.5D models produce consistently higher under-segmentation error scores than the
3D applications.
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Figure 5. Examples of superpixel/supervoxel output. From left to right: the ground truth annotation,
2D, 2.5D, and 3D input model. Each is shown with two different superpixel/supervoxel resolutions.
In the Proussos case, above, elements such as the scarp (red), depletion zone (yellow), accumulation
zone (blue), road (purple), and non-affected area (green) are delineated, while in the Red Beach case,
below, the annotated elements include landslide areas (green), rockfall deposits (purple), the beach
(yellow), waterbody (blue), and the non-affected area (brown).

Figure 6. Quantitative over-segmentation performance evaluation based on the boundary recall
using SLIC for each dimensionality of the UAV-derived input digital models.

Figure 7. Quantitative over-segmentation performance evaluation based on the under-segmentation
error using SLIC for each dimensionality of the UAV-derived input digital models.

88



Remote Sens. 2022, 14, 5668

3.3. Final Segmentation Evaluation

The seven superpixel/supervoxel assemblies of each model generated in the previous
step were subsequently clustered into larger segments based on the normalized graph cut
segmentation (Figure 8).

 

Figure 8. Examples of superpixel/supervoxel-based normalized cut segmentation outputs. From left
to right: the ground truth annotation, 2D, 2.5D, and 3D input model. In the Proussos case, above,
elements such as the scarp (red), depletion zone (yellow), accumulation zone (blue), road (purple),
and non-affected area (green) are delineated, while in the Red Beach case, below, the annotated
elements include landslide areas (green), rockfall deposits (purple), the beach (yellow), waterbody
(blue), and the non-affected area (brown).

To obtain a better estimate of the different models, the authors performed the segmen-
tation with three different orders of homogeneity magnitude (i.e., 0.01, 0.1, and 1). The
same trend of the superpixel/supervoxel evaluation is propagated to the output of the
final segmentation. In both case studies, it was found that the 3D segmentation algorithm
produces better segments for almost all the resolutions. It turns out that the incorporation
of the third dimension into the 2.5D model by means of a spectral feature provides subtle
improvement in the segmentation output. An example is illustrated in Figure 9 where even
sub-elements such as the flanks and the crest of the landslide are separated with the 3D
operations, compared to the other two models with the same configuration, maintaining a
comparable number of total segments. To achieve a similar decomposition of the landslide
into segments that adhere well to the sub-elements’ boundaries using either the 2D or 2.5D
model, a lower resolution would be required resulting in an exponentially higher number
of segments, which is undesirable.

The best segmentation scores are observed for all the models at the higher cut cost
(1), which is expected since it does not allow merges to happen easily. However, great
boundary recall and low under-segmentation error values are recorded for Ncut = 0.1
(Figures 10 and 11). This is found in the Red Beach case especially, where the boundary
recall scores fluctuate between 70–80% for all the configurations. In Figure 11, it can be
observed that direct 3D operations for the segmentation of both the landslide sites decreases
under-segmentation error for the Ncut = 0.1 model, which seems to be the most effective
order of magnitude for these specific cases.
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Figure 9. A characteristic example of the different outputs produced by 2D, 2.5D, and 3D segmenta-
tions for the delineation of steep sub-elements such as the flanks of a landslide. The white ellipse
delineates the flank and part of the scarp, and the increasing level of important detail defined as the
dimensions of the analysis increase.

Figure 10. The boundary recall of the superpixel/supervoxel-based graph-based segmentation for
each dimensionality of the UAV-derived input digital models.
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Figure 11. The under-segmentation error of the superpixel/supervoxel-based graph-based segmenta-
tion for each dimensionality of the UAV-derived input digital models.

4. Discussion

UAVs constitute a valuable, low-cost tool for data collection in landslide research.
Their ability to produce high-resolution imagery of even inaccessible areas along rock slopes
in a short time places them among the most essential tools in landslide risk assessment.
SfM techniques are able to generate detailed 3D terrain representations from the acquired
set of images, the so-called 3D point clouds, which provide supplementary geometric
and topographic information. However, point cloud processing is often tedious and
conventional tools are limited. Due to this reason, processed data formats such as rasters
are commonly used as 2.5D DSMs to augment the image information. With this rich
information in hand, efforts towards the utilization of semi-automated or automated
image analysis methods of landslide scenes have been initiated. Image analysis tasks
such as segmentation have been successfully implemented within GEOBIA workflows for
landslide mapping from satellite images and DEM derivatives. However, although the
great advances in image segmentation have been adopted by the geoscience community
for landslide mapping at the regional scale, little work has been carried out in image
segmentation of landslide scenes at the site-specific scale.

In this transition from a regional to site-specific scale, the use of UAVs supports the
acquisition of 3D terrain representations. This increases the amount of available informa-
tion and the complexity of the scene while raising the question regarding the adequacy
of simplified 2.5D models compared to fully 3D terrain representations. This study pro-
vides insights about the potential of integrating advanced 3D point cloud segmentation
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methods for geographic OBPA of landslide scenes. A 3D modification of a state-of-the-art
image segmentation pipeline was implemented by the authors and compared to the image
segmentations by both 2D and 2.5D models. It incorporates the concept of voxelization,
which generates a 3D grid that can facilitate neighbourhood and metric operations, thereby
maintaining the 3D character of the data throughout the segmentation process. It highlights
the advantages of direct 3D point cloud processing for landslide scene segmentation in two
complex cases where different site-specific elements exist.

The supervoxels formed by the point cloud-based 3D modification of the SLIC al-
gorithm are shown to segment the two landslide scenes more appropriately than the
superpixels generated with either the 2D or 2.5D model as the input raster. In contrast,
no significant difference was observed between the 2D and 2.5D superpixels for any of
the examined resolutions. Subsequently, the graph-based segmentation performed at the
superpixel/supervoxel level was proven quite effective for fully unsupervised landslide
scene segmentation with Ncut values of 0.1 (Figures 10 and 11). Supervoxel-based seg-
mentations of almost 80% boundary recall (Figure 6) and below 15% under-segmentation
error were achieved (Figure 7). However, the future investigation of image segmentation
algorithms applied directly on 3D space will provide a more confident estimate regarding
the suitability of multi-dimensional UAV-derived models for landslide scene segmentation.

Although the complexity and lack of specialized tools may demotivate landslide
experts to work with 3D point clouds directly, the results of this study encourage famil-
iarization with advanced point cloud processing. The integration of the great advances in
point cloud processing into landslide research can provide strong support to object-oriented
landslide assessment at the site-specific scale. The segmentation results are proven to better
agree with the expert annotations and the resulting point cloud segments can provide
further information for the subsequent classification phase. For instance, areas of negative
slope and overhangs become “visible”. The authors believe that object-oriented analysis
using supervoxels has the potential to support intelligent landslide modelling.

5. Conclusions

UAV-derived models can be used effectively for object-oriented landslide scene analy-
sis at site-specific scales. The detail of the obtained information coupled with advanced
processing methods supports semi-automated or automated identification of landslide
elements within digital models to efficiently support enhanced landslide risk management.

The experimental analysis conducted in this study shows that performing landslide
scene segmentation directly on UAV-derived 3D point clouds is more effective than lever-
aging 2D or 2.5D images by means of the orthomosaic and DSM. Modelling the landslide
scene by adding the elevation information as a fourth image band does not add much value
to the segmentation compared to using only spectral information. In contrast, the ability to
directly segment the 3D point cloud seems to provide a promising opening to 3D GEOBIA
or GEOBPA (Geographic Object-Based Point cloud Analysis) in landslide research.

In steep terrains, such as rock slopes prone to landslides, rasterized projections of the
terrain may not always capture the landscape adequately. The analysis has revealed that
this type of 2.5D representation could limit the effectiveness of the segmentations of the
steep boundary features of a landslide. Typical examples of such elements include the
scarp and the flanks of a landslide which have proven to be more precisely segmented by
directly utilizing fully 3D terrain representations and operations. The ability to operate in
the 3D space may provide an opportunity to unlock the full potential of UAV surveys in
site-specific object-oriented analysis of landslide scenes.

The improvement imposed to landslide scene segmentations by utilizing fully 3D
modelling and processing can enhance landslide mapping and assessment procedures
that employ UAVs in emergency response situations. Furthermore, future research is
encouraged to build upon the findings of this study and orient their efforts towards the
integration of advanced 3D segmentation methods.
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15. Liu, S.; Chen, P.; Woźniak, M. Image Enhancement-Based Detection with Small Infrared Targets. Remote Sens. 2022, 14, 3232.
[CrossRef]

16. Keyport, R.N.; Oommen, T.; Martha, T.R.; Sajinkumar, K.S.; Gierke, J.S. A Comparative Analysis of Pixel- and Object-Based
Detection of Landslides from Very High-Resolution Images. Int. J. Appl. Earth Obs. Geoinf. 2018, 64, 1–11. [CrossRef]

17. Papon, J.; Abramov, A.; Schoeler, M.; Worgotter, F. Voxel Cloud Connectivity Segmentation—Supervoxels for Point Clouds. In
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28
June 2013; pp. 2027–2034. [CrossRef]

18. Ben-Shabat, Y.; Avraham, T.; Lindenbaum, M.; Fischer, A. Graph Based Over-Segmentation Methods for 3D Point Clouds. Comput.
Vis. Image Underst. 2018, 174, 12–23. [CrossRef]

19. Guo, Y.; Wang, H.; Hu, Q.; Liu, H.; Liu, L.; Bennamoun, M. Deep Learning for 3D Point Clouds: A Survey. IEEE Trans. Pattern
Anal. Mach. Intell. 2020, 43, 4338–4364. [CrossRef]

93



Remote Sens. 2022, 14, 5668

20. Hölbling, D.; Friedl, B.; Eisank, C. An Object-Based Approach for Semi-Automated Landslide Change Detection and Attribution
of Changes to Landslide Classes in Northern Taiwan. Earth Sci. Inform. 2015, 8, 327–335. [CrossRef]

21. Yang, Y.; Song, S.; Yue, F.; He, W.; Shao, W.; Zhao, K.; Nie, W. Superpixel-Based Automatic Image Recognition for Landslide
Deformation Areas. Eng. Geol. 2019, 259, 105166. [CrossRef]

22. Feizizadeh, B.; Blaschke, T. A Semi-Automated Object Based Image Analysis Approach for Landslide Delineation. In Proceedings
of the 2013 European Space Agency Living Planet Symposium, Edinburgh, UK, 9–13 September 2013; pp. 9–13. [CrossRef]

23. Hölbling, D.; Abad, L.; Dabiri, Z.; Prasicek, G.; Tsai, T.T.; Argentin, A.L. Mapping and Analyzing the Evolution of the Butangbunasi
Landslide Using Landsat Time Series with Respect to Heavy Rainfall Events during Typhoons. Appl. Sci. 2020, 10, 630. [CrossRef]

24. Hölbling, D.; Füreder, P.; Antolini, F.; Cigna, F.; Casagli, N.; Lang, S. A Semi-Automated Object-Based Approach for Landslide
Detection Validated by Persistent Scatterer Interferometry Measures and Landslide Inventories. Remote Sens. 2012, 4, 1310–1336.
[CrossRef]

25. Lahousse, T.; Chang, K.T.; Lin, Y.H. Landslide Mapping with Multi-Scale Object-Based Image Analysis—A Case Study in the
Baichi Watershed, Taiwan. Nat. Hazards Earth Syst. Sci. 2011, 11, 2715–2726. [CrossRef]

26. Amatya, P.; Kirschbaum, D.; Stanley, T.; Tanyas, H. Landslide Mapping Using Object-Based Image Analysis and Open Source
Tools. Eng. Geol. 2021, 282, 106000. [CrossRef]

27. Höfle, B.; Geist, T.; Rutzinger, M.; Pfeifer, N. Glacier Surface Segmentation Using Airborne Laser Scanning Point Cloud and
Intensity Data. ISPRS Workshop Laser Scanning 2007, XXXVI, 195–200.

28. Eisank, C.; Smith, M.; Hillier, J. Assessment of Multiresolution Segmentation for Delimiting Drumlins in Digital Elevation Models.
Geomorphology 2014, 214, 452–464. [CrossRef] [PubMed]

29. d’Oleire-Oltmanns, S.; Marzolff, I.; Tiede, D.; Blaschke, T. Detection of Gully-Affected Areas by Applying Object-Based Image
Analysis (OBIA) in the Region of Taroudannt, Morocco. Remote Sens. 2014, 6, 8287–8309. [CrossRef]

30. Karantanellis, E.; Marinos, V.; Vassilakis, E.; Christaras, B. Object-Based Analysis Using Unmanned Aerial Vehicles (UAVs) for
Site-Specific Landslide Assessment. Remote Sens. 2020, 12, 1711. [CrossRef]

31. Farmakis, I.; Bonneau, D.; Hutchinson, D.J.; Vlachopoulos, N. Supervoxel-Based Multi-Scale Point Cloud Segmentation Using
Fnea for Object-Oriented Rock Slope Classification Using Tls. ISPRS—Int. Arch.Photogramm. Remote Sens. Spat. Inf. Sci. 2020,
XLIII-B2-2, 1049–1056. [CrossRef]

32. Mayr, A.; Rutzinger, M.; Bremer, M.; Oude Elberink, S.; Stumpf, F.; Geitner, C. Object-Based Classification of Terrestrial Laser
Scanning Point Clouds for Landslide Monitoring. Photogramm. Rec. 2017, 32, 377–397. [CrossRef]

33. Druitt, T.H.; Edwards, L.; Mellors, R.M.; Pyle, D.M.; Sparks, R.S.J.; Lanphere, M.; Davies, M.; Barreirio, B. Santorini Volcano;
Geological Society of London: London, UK, 1999; Volume 19.

34. Marinos, V.; Prountzopoulos, G.; Asteriou, P.; Papathanassiou, G.; Kaklis, T.; Pantazis, G.; Lambrou, E.; Grendas, N.; Karantanellis,
E.; Pavlides, S. Beyond the Boundaries of Feasible Engineering Geological Solutions: Stability Considerations of the Spectacular
Red Beach Cliffs on Santorini Island, Greece. Environ. Earth Sci. 2017, 76, 513. [CrossRef]

35. Westoby, M.J.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M. “Structure-from-Motion” Photogrammetry: A Low-Cost,
Effective Tool for Geoscience Applications. Geomorphology 2012, 179, 300–314. [CrossRef]

36. Triggs, B.; McLauchlan, P.F.; Hartley, R.I.; Fitzgibbon, A.W. Bundle Adjustment—A Modern Synthesis. In Vision Algorithms: Theory
and Practice. IWVA 1999. Lecture Notes in Computer Science; Triggs, B., Zisserman, A., Szeliski, R., Eds.; Springer: Berlin/Heidelberg,
Germany, 2000; pp. 298–372.

37. Zhou, Q.-Y.; Park, J.; Koltun, V. Open3D: A Modern Library for 3D Data Processing. arXiv 2018, arXiv:1801.09847.
38. Hagberg, A.A.; Schult, D.A.; Swart, P.J. Exploring Network Structure, Dynamics, and Function Using NetworkX. In Proceedings

of the 7th Python in Science Conference (SciPy 2008), Pasadena, CA, USA, 19–24 August 2008; pp. 11–15.
39. Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith,

N.J.; et al. Array Programming with NumPy. Nature 2020, 585, 357–362. [CrossRef] [PubMed]
40. Felzenszwalb, P.F.; Huttenlocher, D.P. Efficient Graph-Based Image Segmentation. Int. J. Comput. Vis. 2004, 59, 167–181. [CrossRef]
41. Shi, J.; Malik, J. Normalized Cuts and Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 888–905. [CrossRef]
42. Martin, D.; Fowlkes, C.; Tal, D.; Malik, J. A Database of Human Segmented Natural Images and Its Application to Evaluating

Segmentation Algorithms and Measuring Ecological Statistics. In Proceedings of the Eighth IEEE International Conference on
Computer Vision. ICCV 2001, Vancouver, BC, Canada, 7–14 July 2001; Voume 2, pp. 416–423.

43. Silberman, N.; Hoiem, D.; Kohli, P.; Fergus, R. Indoor Segmentation and Support Inference from RGBD Images. In Proceedings of
the European Conference on Conputer Vision, Florence, Italy, 7–13 October 2012; Springer: Berlin/Heidelberg, Germany, 2012;
pp. 746–760.

94



Citation: He, Y.; Zhang, Y.

Comparison of Three Mixed-Effects

Models for Mass Movement

Susceptibility Mapping Based on

Incomplete Inventory in China.

Remote Sens. 2022, 14, 6068.

https://doi.org/10.3390/rs14236068

Academic Editor: Rachid El

Hamdouni

Received: 27 October 2022

Accepted: 28 November 2022

Published: 30 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing 

Article

Comparison of Three Mixed-Effects Models for Mass
Movement Susceptibility Mapping Based on Incomplete
Inventory in China

Yifei He 1,2 and Yaonan Zhang 1,2,3,*

1 Northwest Institute of Eco-Environment and Resources, CAS, Lanzhou 730000, China
2 National Cryosphere Desert Data Center, Lanzhou 730000, China
3 Gansu Data Engineering and Technology Research Center for Resources and Environment,

Lanzhou 730000, China
* Correspondence: yaonan@lzb.ac.cn

Abstract: Generating an unbiased inventory of mass movements is challenging, particularly in a
large region such as China. However, due to the enormous threat to human life and property caused
by the increasing number of mass movements, it is imperative to develop a reliable nationwide mass
movement susceptibility model to identify mass movement-prone regions and formulate appropriate
disaster prevention strategies. In recent years, the mixed-effects models have shown their unique
advantages in dealing with the biased mass movement inventory, yet there are no relevant studies
to compare different mixed-effects models. This research compared three mixed-effects models to
explore the most plausible and robust susceptibility mapping model, considering the inherently
heterogeneously complete mass movement information. Based on a preliminary data analysis, eight
critical factors influencing mass movements were selected as basis predictors: the slope, aspect, profile
curvature, plan curvature, road density, river density, soil moisture, and lithology. Two additional
factors, namely, the land use and geological environment division, representing the inventory bias
were selected as random intercepts. Subsequently, three mixed-effects models—Statistical-based
generalized linear mixed-effects model (GLMM), generalized additive mixed-effects model (GAMM),
and machine learning-based tree-boosted mixed-effects model (TBMM)—were adopted. These
models were used to evaluate the susceptibility of three distinct types of mass movements (i.e., 28,814
debris flows, 54,586 rockfalls and 108,432 landslides), respectively. The results were compared
both from quantitative and qualitative perspectives. The results showed that TBMM performed
best in all three cases with AUROCs (Area Under the Receiver Operating Characteristic curve) of
cross-validation, spatial cross-validation, and predictions on simulated highly biased inventory, all
exceeding 0.8. In addition, the spatial prediction patterns of TBMM were more in line with the
natural geomorphological underlying process, indicating that TBMM can better reduce the impact of
inventory bias than GLMM and GAMM. Finally, factor contribution analysis showed the key role
of topographic factors in predicting the occurrence of mass movements, followed by road density
and soil moisture. This study contributes to assessing China’s overall mass movement susceptibility
situation and assisting policymakers in master planning for risk mitigation. Further, it demonstrates
the tremendous potential of TBMM for mass movement susceptibility assessment, despite inherent
biases in the inventory.

Keywords: nationwide; susceptibility mapping; mass movement; inventory bias; tree-boosted;
mixed-effects models

1. Introduction

China is the country that experiences the most frequent natural disasters globally,
as it witnesses numerous hazards such as floods, droughts, earthquakes, sandstorms
and wildfires every year [1,2]. The landscape of China is characterized by widespread
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mountainous areas, which makes it highly prone to mass movements [3]. Mass movements
such as debris flows, rockfalls and landslides are major geological disasters that have
devastating effects on property, human life and the country’s ecological environment [4,5].
It has been recognized that mass movements may pose an even more serious threat in
the future due to the potential effects of rapid urbanization, compounded by aggravated
climate change [6]. Therefore, a credible nationwide mass movement susceptibility map is
paramount for providing a generalized overview of potential mass movement propagation
areas in China.

Over the past few decades, an increasing number of studies on mass movement sus-
ceptibility assessments have been published, most of which have been performed on local
areas [7–9]. However, in order to improve the overall perception of mass movement risk,
some studies have begun to assess susceptibility in very large areas, including national-scale
evaluations [10–15], continental-scale analyses [16–19], and global-scale assessments [20–22].
It can be found that such evaluations for large areas are mostly based on statistical or
machine learning models, as the lack of detailed geotechnical data limits the application of
physical-based models [23]. Both statistical models and machine learning models assume
that the conditions that caused mass movements in the past may lead to future mass move-
ments; thus, the correlations between controlling factors and mass movement inventories
of past events were fitted by models to determine the probability of future mass movement
occurrence [24]. So far, many statistical models have been successfully applied to mass
movement susceptibility mapping, such as weight of evidence [25], frequency ratio [26], lo-
gistic regression [27], information value [28] and generalized additive model [29]. Recently,
many machine learning models have demonstrated excellent performance, such as support
vector machine [30], artificial neural network [31], maximum entropy model [32,33], naïve
Bayes [34], decision tree [35], random forest [36] and gradient boosted trees [37]. Each of
these approaches has its own pros and cons. For example, as black-box models, random
forest and gradient-boosted trees tend to show better performance but low interpretability.

During mass movement susceptibility modeling, many factors will affect the final
assessment outcome, including the quality of the mass movement inventory [12,38,39],
the selection of spatial mapping units and their resolutions [40], the sampling strategy for
mass movement-free units [41], the selection of conditional factors and their quality [42],
the choice of the susceptibility algorithm [8,43], the optimization of model parameters [44]
and the model validation metrics [45]. Among them, a representative mass movement
inventory is the key prerequisite to getting a reliable susceptibility map [46–49]. However,
the available mass movement databases are often biased and incomplete. In general, the
reported mass movements tend to be more representative in economically advanced areas
with a large population [4,50]. Such areas have more abundant detection methods with
programs for detailed investigations of mass movements. Thus, mass movements in densely
populated or trafficked areas are more likely to be observed and reported. Suppose the data
on mass movement is derived from the interpretation of optical remote sensing or LiDAR.
In that case, it is typically overrepresented within forested areas and underestimated in
regions with intense human activity, such as the presence of cultivated land [51]. Because
of the distinctive morphological characteristics of mass movements in forest areas, they are
easily identified. On the other hand, for the mass movements occurring within arable land,
their topographical features are easily blurred or eliminated or altered by human activities.
Thus, for a study region as large as China, with its complex topographic conditions and
unbalanced population and economic development [52], the available mass movement
inventory is usually heterogeneously complete.

The spatially heterogeneous completeness of mass movement information has an
enormous impact on susceptibility assessment. Several studies have shown that if inventory
bias is directly ignored, even models that perform well on quantitative metrics such as
accuracy, F1-score, or AUROC will propagate this bias into the model results, leading to
geomorphological implausibility in final spatial prediction patterns [48,53]. For example,
Steger et al. [54] simulated a highly incomplete landslide inventory in forested areas. They
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found that when simply ignored this bias, the models would predict landslide susceptibility
to be low in forested areas, as opposed to predictions when the inventory was complete.

Some researchers have proposed using mixed-effects models, considered beneficial
where measurements are repeated or are statistically relevant. Popular in medicine, ecology,
and economy because of their unique advantages in analyzing hierarchical or longitudinal
data [55,56], they are also helpful in mass movement modelling studies. In a study by
Steger et al. [54], mixed-effects models successfully reduced the effects of inventory bias in
mass movement susceptibility mapping. Unlike the traditional mass movement suscep-
tibility models that use only fixed effects to predict susceptibility, mixed-effects models
also incorporate random effects components. Introducing these additional components can
account for spatially heterogeneous completeness of mass movement inventory, thereby
counterbalancing the associated propagation of biases in the data. In addition, the fixed-
effects term of the mixed effects model can also be implemented in many ways to achieve
the desired results. The generalized linear mixed-effects model (GLMM) [53,54], based
on the GLM, and the generalized additive mixed-effects model (GAMM) [57,58], based
on the GAM, are examples of statistical-based mixed models that have performed well in
this regard. Recently, Sigrist [59] has innovatively developed Tree-boosted mixed-effects
model (TBMM) and demonstrated its excellent performance. However, no relevant research
articles illustrate the suitability of this machine learning-based mixed model in the field
of mass movement susceptibility assessment and its comparison with statistical-based
mixed models.

Against the backdrop of the above discussions, this paper has used three mixed-effects
models (i.e., statistical-based GLMM, GAMM and machine learning-based TBMM) to as-
sess the mass movement susceptibility in selected areas of China. This study addresses
how to account for the inherent spatial incompleteness of the inventory and compares
the performance of the models, both from quantitative and qualitative perspectives and
explores which of them show superior performance. The comparison is based on quantita-
tive analysis of AUROCs of cross-validation, spatial cross-validation, and predictions on
simulated highly biased inventory, as well as qualitative perspectives using spatial patterns
of susceptibility maps.

2. Study Area and Materials

2.1. Characterization of the Study Area

Located in the eastern part of Eurasia along the Pacific Ocean coastline, China is the
third largest country in the world, occupying a territory of about 9.6 million km2. Its geo-
graphic coverage is approximately 73◦–135◦E longitude and 18◦–54◦N latitude (Figure 1).
There are widely varying landscapes and climate zones in China. The mountainous areas
(including mountains, hills and rugged plateaus) are vast and cover about 70% of the
country’s land area [3]. The terrain is generally characterized by a high in the west and
a low in the east, with a “staircase”-type distribution consisting of three steps. The first
step of the staircase is the Qinghai–Tibet Plateau (Tibet region), with an average height of
over 4000 m. The Kunlun, Qilian and Hengduan Mountains are located on its northern and
eastern edges, which mark the boundary between the first and second steps of the terrain.
The second step (including the NW, Loess and SW regions) has huge basins and plateaus
with an average elevation of 1000–2000 m. The Greater Khingan, Taihang, and Xuefeng
Mountains are located to the east, forming a dividing line between the second and third
steps of the terrain. The third step (including NE, Yangtze and SC regions) is dominated by
vast plains and hills, most of which occur at elevations less than 500 m above sea level.
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Figure 1. Overview map of China. The seven geological environment regions are shown as the
Northeastern plain and mountain region (I: NE); the Huang–Huai–Hai–Yangtze River Delta plain
region (II:Yangtze); the South China low mountain and hill region (III:SC); the North China Loess
Plateau region (IV:Loess); the Southwest karst mountain region (V:SW); the Northwest mountain and
basin region (VI:NW); and the Qinhai–Tibet Plateau region (VII:Tibet).

Due to the vastness of its territory and complex terrain characteristics, China exhibits
variable climatic conditions. Its eastern part is significantly affected by the monsoon.
This region exhibits tropical and subtropical climates (SW and SC region) and temperate
monsoon climates (NE region) distributed from south to north. The western part is located
inland, mainly with mountainous highland climate (Tibet region) and temperate continental
climate (NW region) [60]. Precipitation generally declines from southeast to northwest in
China. As for earthquakes, China lies between two of the world’s most extensive seismic
belts, i.e., the Circum-Pacific belt and the Alpide belt, with intense seismic activity [61].
Due to the widespread mountainous areas, rugged terrain, active seismicity and intense
monsoons, China is prone to different geological disasters. Numerous landslides, rockfalls,
and debris flows that occur here cause immeasurable casualties and economic damage [4].

2.2. Spatial Database
2.2.1. Inventory of Mass Movement

A spatial dataset representing former mass movements is essential for carrying out
mass movement susceptibility mapping and hazard assessment [62]. Since 2005, the China
Geological Survey has been conducting detailed investigations on six types of geological
disasters, namely, landslide, rockfall, debris flow, ground subsidence, ground collapse
and ground fissure. The survey consists of three main procedures: (i) interpretation of
high-resolution remote sensing imagery; (ii) field verification; (iii) collating and correct-
ing of obtaining data. The mass movement catalog used in this paper is credited to the
National Geological Hazard Detailed Survey (https://geocloud.cgs.gov.cn/#/home ac-
cessed on 2 April 2022). In this work, the three most widely distributed and profound
mass movements, including landslide (all slide-type movements), rockfall (all fall-type
movements) and debris flow (all flow-type movements) were selected for analysis. There is
a total of 108,432, 54,586 and 28,814 reported landslides, rockfalls and debris flows points,
respectively. The inventory maps and kernel density maps for the three mass movements
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are shown in Figure 2. It was apparent that the completeness of the mass movement in
different regions is heterogeneous. For example, the very low mass movement density in
the northwest China may be related to sparse populations and tough surveys.

Figure 2. Spatial distribution maps and kernel density maps of three types of mass movements.

2.2.2. Mass Movement Influencing Factors

Mass movements’ occurrence mechanism is extremely intricate and is affected by
various conditional factors [7,63]. In the light of the relevant literature, six common categories
of influencing factors, including topography (slope, aspect, profile curvature, plan curvature),
human activities (road density), hydrology (river density, soil moisture), geology (lithology),
land use and geological environment division are chosen as primary factors [4,10,57]. It should
be emphasized that the mass movement data used in this paper are primarily triggered by
heavy rainfall events, floods, earthquakes, or a combination thereof. Thus, considering the
diversity of mass movement triggering conditions, we finally chose the common influencing
factors of these mass movement as evaluation indicators [64,65]. The information of types
and sources for mass movement inventory and influencing factors are shown in Table 1.
Among these factors, slope, aspect, profile curvature, plan curvature, road density, river
density, soil moisture and lithology are considered basic predictors (fixed-effect factors).
In contrast, land use and geological environment division are considered as factors that
are linked to the incompleteness of mass movement data (random intercept factors). The
relationships between mass movement occurrence and conditional factors are described
below. The fixed-effect and random intercept factors are also discussed in some detail.

Table 1. Data type and sources of mass movements inventory and influencing factors.

Data Original Data Type Data Sources

Mass movements inventory Point China geological survey

Slope Grid (90 m) Derived from DEM
https://srtm.csi.cgiar.org (accessed on 5 April 2022)

Aspect Grid (90 m) Derived from DEM
Profile curvature Grid (90 m) Derived from DEM
Plan curvature Grid (90 m) Derived from DEM
Road density Line https://www.tianditu.gov.cn (accessed on 9 April 2022)
River density Line https://www.tianditu.gov.cn (accessed on 9 April 2022)

Soil moisture Grid (1 km) https://csidotinfo.wordpress.com/data/global-high-resolution-soil-
water-balance (accessed on 10 April 2022)

Lithology Polygon https://www.uni-hamburg.de (accessed on 6 April 2022)
Land use Grid (1 km) https://www.resdc.cn (accessed on 6 April 2022)

Geological environment division Polygon https://geocloud.cgs.gov.cn/#/home (accessed on 15 April 2022)
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(1) Fixed-Effect Factors

Topography, road density, hydrology, and geological properties are the fixed-effect
factors discussed here. The slope is the most widely adopted parameter for mass movement
susceptibility mapping [7]. It is not only a prerequisite for the occurrence of a mass
movement but also affects the infiltration process and the resulting field distribution [66].
Aspect represents the orientation of slope, which will affect radiation absorption, rainfall
runoff and weathering conditions, thus indirectly influencing the occurrence of mass
movement [67]. Profile curvature and plan curvature indicate the change rate of slope
along and perpendicular to slope gradient, which primarily influences soil erosion and
surface runoff [68]. These terrain factors were generated from Shuttle Radar Topography
Mission (SRTM) DEM at 90m resolution [69].

Road density is important, as many mass movements tend to occur along the roads
in mountainous areas. This is primarily due to the instability of the slope caused by the
destruction of mountains for road construction. Thus, road density is a commonly utilized
anthropogenic variable for assessing mass movement susceptibility [70].

Hydrological conditions, including river density and soil moisture, are important
in mass movements. Banks of rivers may collapse due to infiltration of pore water and
erosion of slopes [71]. The soil moisture plays a crucial role in soil cohesion and permeation,
leading to changes in soil shear strength [72]. Data on roads and rivers are generated
from the National Platform for Common Geospatial Information Services. Data on soil
moisture is derived from the Global High-Resolution Soil-Water dataset at 1km resolution
and calculated as an annual average value [73].

Concerning the geological properties, lithology was selected to represent the phys-
ical and chemical properties of rocks. There are 16 types of lithology in China, namely,
Basic Volcanic Rocks (VB), Intermediate Volcanic Rocks (VI), Acid Volcanic Rocks (VA),
Basic Plutonic Rocks (PB), Intermediate Plutonic Rocks (PI), Acid Plutonic Rocks (PA),
Metamorphic Rocks (MT), Evaporites (EV), Pyroclastic (PY), Carbonate Sedimentary Rocks
(SC), Siliciclastic Sedimentary Rocks (SS), Mixed Sedimentary Rocks (SM), Unconsolidated
Sediments (SU), Ice and Glaciers (IG), Water Bodies (WB), and No Data (ND). The lithology
data was derived from the Global lithological map (GLiM) developed by Hartmann and
Moosdorf [74].

(2) Random intercept factors

Next, we discuss random intercept factors associated with spatial heterogeneity of
mass movement completeness, introduced into mixed-effects models as random intercept
terms. Based on previous research, land use and division of the geological environment
were chosen in China to account for mass movement incompleteness [57]. As for land
use, mass movements in agricultural land or along transportation infrastructure are more
likely to be blurred or removed by human activities. Those in forest areas are easily
detected due to their distinct characteristics that differentiate them from the surrounding
environment [54]. Thus, the mass movement inventory is expected to be underrepresented
in arable land and overrepresented in forests. In this study, the land use data is derived
from the Remote Sensing Monitoring Database of China’s Land use/Cover in 2005 with
1km resolution, which was reclassified into five categories to better account for the bias
of mass movement inventory. These are classified as Arable land (Ar), Forest land (Fo),
Meadowland (Me), Settlements and Artificial land (SA), and Unutilized land (Un).

The China Geological Survey describes the geological environment as seven divisions
based on geologic structure, geographical conditions, and geomorphology. These are the
Northeastern plain and mountain region (I.NE), the Huang–Huai–Hai–Yangtze River Delta
plain region (Yangtze), the South China low mountain and hill region (III.SC), the North
China Loess Plateau region (IV.Loess), the Southwest karst mountain region (V.SW), the
Northwest mountain and basin region (VI.NW) and the Qinhai–Tibet Plateau region (VII.
Tibet) (Figure 1). Due to differences in topographical conditions and economic development,
the completeness of mass movement inventory vary from region to region [57]. For example,
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mass movement investigations are generally more detailed in the economically developed
SC region. However, the Tibet region is too high to reach, resulting in poorer availability of
mass movement [75].

There is no universal guideline on the choice of mapping unit for mass movement
susceptibility assessment [76]. This paper selected the most popular grid with 1 km resolu-
tion as the primary mapping unit. All the thematic layers were resampled or converted to
1 km resolution for consistency. Since the mass movement inventory was stored as points,
a grid was considered as one with mass movement if it contained at least one event of
mass movement. If the grid unit did not include any mass movements, it was considered
as one without any mass movements. Ultimately, a total of 90,558, 47,057 and 25,425 grid
units were confirmed, which included landslide, rockfall and debris flow, respectively. The
distribution maps of all influencing factors are shown in Figure 3. Further, it has been noted
that the selection of ratio between absence data and presence of data and the sampling
method will affect the accuracy of the mass movement susceptibility model [41]. Based on
previous research, this study adopted a usual 1:1 ratio and performed random sampling on
absence grid units [42,77].

Figure 3. Spatial distribution map of influencing factors. (a) slope; (b) aspect (c) profile curvature;
(d) plan curvature; (e) road density; (f) river density; (g) soil moisture; (h) lithology; (i) land use
(j) geological environment division.
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3. Methodology

The methodological flowchart of this study, including four main phases, is shown
in Figure 4. In step 1, a spatial database was constructed with three mass movement
inventories as response variables, eight basic predictors as fixed effects and two factors
closely related to incompleteness of inventories as random intercepts. In step 2, prelimi-
nary data analysis was carried out to study the correlations between influencing factors
and their relationships with mass movements, and to further confirm the factors that de-
scribe the incompleteness of the inventories. In step 3, three mixed-effects models were
implemented for all the mass movements based on the established spatial database. It
should be noted that the model fitting is based on fixed and random effects. In contrast,
model prediction uses only fixed-effect factors, and the random effects that account for
mass movement incompleteness are zeroed (i.e., averaged-out). In step 4, the prediction
results of the three mixed models are compared and analyzed from both quantitative and
qualitative perspectives.

 
Figure 4. Workflow performed in this study.

3.1. Generalized Linear Mixed-Effects Model

The generalized linear mixed-effects model (GLMM) [78] combines and extends the
characteristics of the linear mixed-effects model (LMM) and generalized linear model
(GLM). Its dependent variable is no longer required to follow a Gaussian distribution (from
GLM), and independent variables can contain both fixed and random effects (from LMM).
GLMM has distinct advantages for analyzing the clustered, longitudinal and hierarchical
data that are grouped at different levels [79]. In recent years, GLMM has been used to
address data incompleteness in mass movement susceptibility mapping with considerable
success [54]. Specifically, while modeling mass movement susceptibility, the Logit Link
Function is adopted to represent the probability of mass movement occurrence P (Y=1)
while specifying variables related to mass movement incompleteness as random intercept
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terms and the other basic predictors as fixed-effect terms. The GLMM for mass movement
susceptibility can be expressed as follows:

logit(P(Y = 1)) = β0 + β1x1 + β2x2 + · · ·+ βmxm + γ (1)

where β0 is the coefficient for the intercept, β1 · · · βm are the fixed-effect coefficients of
associated influencing factors, x1 · · · xm, and γ is the random intercept component that is
presumed to be normally distributed with mean zero and variance σ2 [80]. For more de-
scription on the application of GLMM in mass movement susceptibility, see Steger et al. [54].

3.2. Generalized Additive Mixed-Effects Model

The generalized additive mixed-effects model (GAMM) [81,82] extends the properties
of the GLMM approach by replacing linear functions with smoothing functions to allow
nonlinear associations between the dependent and independent variables while maintain-
ing additivity [83]. GAMM is highly flexible and can easily control overfitting because
it employs non-parametric additive functions to model linear or nonlinear covariate ef-
fects [84]. To evaluate a binary outcome (i.e., mass movement presence/absence) in mass
movement susceptibility modeling, the GAMM has the form:

logit(P(Y = 1)) = β0 + f1(x1) + f2(x2) + · · ·+ fm(xm) + γ (2)

where the feature function, f1 · · · fm, is constructed by a non-parametric smoothing spline,
which can automatically model nonlinear associations without manually trying out many
different transformations on each factor. Other parameters are similar to those in GLMM
(Section 3.1). See Lin et al. [57] for more details on the methodology.

3.3. Tree-Boosted Mixed-Effects Model

Tree-boosted mixed-effects model (TBMM) [59] is a novel machine learning-based
mixed-effects model that combines gradient-boosted trees with random effects. The model
allows the relaxation of the linearity assumption of the response variable in a flexible
nonparametric manner, and it can handle both continuous and discrete independent
variables. The boosted trees have recently attracted significant attention in mass movement
susceptibility mapping because of their state-of-the-art prediction performance and higher
flexibility than other machine learning methods [8,85]. TBMM also has these advantages
and can combine random effects to analyze grouped data; thus, it has great potential
to solve the problem of incompleteness in mass movement susceptibility mapping. The
equation of TBMM in this research is as follows:

logit(P(Y = 1)) = TB(X) + γ (3)

where X is the m-dimensional fixed-effects design matrix, e.g., there are m predictor vari-
ables. TB() is a boosted tree. More specifically, the GPBoost algorithm is adopted to train
the model, which iteratively learns the (co)variance parameters of the random effects and
uses a gradient boosting step to add a tree to the ensemble of trees. In particular, the Light-
GBM [86] library is used to learn tree-boosting. LightGBM is very suitable for handling
large-scale data due to its higher efficiency than other gradient boosting trees. More detailed
principles of TBMM can be found in Sigrist [59]. Regarding the hyperparameter settings of
this study, we used the built-in grid search function (‘gpb.grid_search_tune_parameters’)
of the “gpboost” package to select the optimal algorithm parameter. The final parameters
settings for the three types of mass movements are shown in Table 2.
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Table 2. Parameter settings of TBMM for three types of mass movement.

Parameter Debris Flow Rockfall Landslide

learning_rate 0.8 0.5 0.8
max_depth 10 6 5

min_data_in_leaf 80 30 30
num_boost_round 200 200 300

3.4. Model Evaluation

To quantitatively assess the predictive ability of all the mixed-effects models, the
Area Under the Receiver Operating Characteristic curve (AUROC) was adopted [87]. The
value ranges from 0.5 to 1, where 0.5 is a random prediction and 1 is a perfect prediction.
The AUROCs for all models were calculated by repeated Spatial Cross Validation (SCV)
and non-spatial Cross Validation (CV) approaches [88]. In this context, 10-times-repeated
10-fold partitioning of training and testing sets were used for both SCV and CV. The
final spatial mass movement susceptibility maps produced from each model have been
checked for plausibility, considering the incompleteness of the data on spatial variation
of the mass movement and the comparative analysis of the spatial pattern observed from
different models.

All the data preprocessing was performed in ArcMap software. Before introducing the
data into the model, a multicollinearity test and frequency ratio analysis was performed
using python and ArcMap software. The conditional frequency plots were based on
the cdplot function in the R. GLMM and GAMM were achieved with “lme4” [89] and
“mgcv” [90] packages in software R, respectively. TBMM is built based on the package
“gpboost” [59] in python. SCV and CV for GLMM and GAMM were estimated using R
package “sperrorest” [88], and for TBMM, they were implemented with the “sklearn” [91]
package in python.

4. Results

The results of this study mainly include analysis of influencing factors, quantitative
performance comparison of different mixed models, spatial pattern comparison of suscepti-
bility map, and evaluation of the relative importance of influencing factors to three types
of movements.

4.1. Preliminary Data Analysis
4.1.1. Multicollinearity Test

Multicollinearity is a common issue in model evaluation. It occurs when there are high
correlations among predictors, which can reduce the stability of the model or even cause
the model to fail. Thus, it is essential to perform a multicollinearity calculation before the
predictors are entered into the model. The tolerance (TOL = 1− R2 J) and variance inflation
factor (VIF = 1/TOL) are typical indicators for testing multicollinearity. If the value of
TOL < 0.1 or VIF > 10, it means serious multicollinearity [92]. The results demonstrate
that the VIF values of all predictors are < 5, and the TOL values are > 0.2, among which
the soil moisture achieved the highest VIF of 4.3645 and the lowest TOL of 0.2291 (Table 3).
These results indicate that there is no multicollinearity problem for all selected predictors.

Table 3. Results of multicollinearity test for predictors.

Influencing Factors VIF TOL

Slope 2.3926 0.4179
Aspect 3.1363 0.3188

Profile curvature 1.1988 0.8342
Plan curvature 1.1532 0.8672
Road density 1.2351 0.8087
River density 1.3272 0.7535
Soil moisture 4.3645 0.2291

Lithology 2.3306 0.4291
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4.1.2. Correlation Analysis between Mass Movements and Influencing Factors

The Frequency Ratio (FR) approach was adopted to analyze the association between
inventoried mass movements and each conditional factor [93]. A FR value below 1 reveals
a weak relationship, and a value above 1 indicates a high probability of mass movement
occurrence [94]. Since FR can handle only categorical variables, the Jenks natural breaks
method is adopted to classify continuous factors. Figure 5 depicts the relationship between
the three types of movements and each influencing factor. It can be conclueded that the
slope of the land illustrated a positive association with debris flows. However, for rockfalls
and landslides, there was an initial increasing trend followed by a decreasing trend. Except
for the first class of all mass movements and the last class of landslides, all other FR values
exceed 1, indicating that the slope is crucial to the occurrence of mass movements. For
aspect, the frequencies of three types of mass movements are slightly higher in east and
southeast. For profile curvature, all movements have a high frequency of occurrence in the
first three categories. Rockfalls also have a higher incidence in the class of 0.002–0.02, and
landslides additionally have a higher incidence in the categories of 0.002–0.02 and 0.02–0.03,
indicating that most mass movements are more abundant in concave and some convex
areas. Regarding the plan curvature, mass movements are more frequently distributed
within concave and convex classes. The results of FR values for road density and river
density show that the occurrence frequency of mass movements is positively correlated
with the density of roads and rivers, indicating their critical influence on mass movement
occurrence. As for soil moisture, the FR values of debris flows initially increased and
then decreased, while the frequency of rockfall and landslide occurrence is proportional
to soil moisture. At the same time, debris flows have a higher frequency in areas with
moderate humidity (categories 3 to 6). In comparison, rockfalls and landslides have a higher
frequency in areas with high humidity (the last two categories). The lithology results show
that Intermediate Volcanic Rocks, Basic Plutonic Rocks, Acid Plutonic Rocks, Metamorphic
Rocks, Pyroclastic, Carbonate Sedimentary Rocks, Siliciclastic Sedimentary Rocks and
Mixed Sedimentary Rocks have higher FR values, demonstrating a high likelihood of mass
movement in these lithological units.

The three types of movements are more concentrated in arable and forest land for
the land use factor. In addition, debris flows are abundant on meadowland. Landslides
are also more distributed in settlements and artificial land. This phenomenon may be
related to the discrepancies in the completeness of the inventory of mass movements for
different land use types reported by Petschko et al. [95]. In addition, as can be found in
Figure 6a, the distribution of land use varies between different slopes. Both arable land
and settlements and artificial land are more frequently spread over gentler areas, while
forest land and meadowland tend to be concentrated in steeper terrains. Therefore, this
confounding relationship needs to be avoided when modeling. In the case of geological
environment division, the distribution of mass movements in different regions varies
greatly. Debris flows are reported in more detail in SW, Loess and Tibet regions, rockfalls
are predominantly reported in SC and Loess regions, and landslides are more concentrated
in SW and SC regions. The distribution difference in mass movements across the geological
environment division is believed to be tightly associated with the difference in resource
investment for mass movement investigations and the availability of mass movement
information [57]. In addition, geological environment division and soil moisture are also
spatially correlated (Figure 6b). For example, SC and SW are mainly distributed in humid
areas, while NW is primarily located in arid areas. Therefore, this discrepancy in the
representation of movements data within different geological environment subregions
could have biased effects on soil moisture.
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Figure 5. Correlations between three types of mass movements and influencing factors.

In summary, we find that land use and geological environment division are directly
related to the incompleteness of data on mass movements. They are also associated with
other predictors (e.g., slope and soil moisture). Therefore, mixed-effects models are needed
to account for these biases [54,57].
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Figure 6. Conditional frequency plots between (a) land use and slope; (b) geological environment
division and soil moisture.

4.2. Quantitative Performance Comparison
4.2.1. Cross-Validation Results

Table 4 presents the comparison results of three mixed-effects models for different
types of movements. For debris flow, the median AUROCs of non-spatial cross-validation
(CV) for all models are higher than 0.8. For GAMM and TBMM, the median AUROCs
of spatial cross-validation (SCV) are above 0.8. This value is lower than 0.8 for GLMM,
indicating the better spatial and non-spatial performance of GAMM and TBMM. In ad-
dition, the median AUROCs of all models decrease (SCV vs. CV) are below 0.02, with
all interquartile ranges below 0.1, demonstrating the robustness of spatial predictions.
Regarding the rockfall, the median AUROCs of SCV results for all models are above 0.8,
and the median AUROCs of CV results for GAMM and TBMM are higher than 0.8 but
only 0.773 for GLMM, suggesting that GAMM and TBMM perform better. In addition, the
median AUROCs of the SCV for GLMM and GAMM are abnormally greater than that of
CV, and the SCV of TBMM is only 0.013 lower than CV with the interquartile ranges less
than 0.15, indicating that the prediction performance of TBMM is more stable. In the case of
landslide, the median AUROCs of CV results for all models are above 0.8, while the median
AUROCs of SCV results for GLMM and GAMM are below 0.8, indicating their unstable
spatial predictive performance. For TBMM, the median AUROC value dropped by (SCV vs.
CV) only 0.018, indicating that its predictive power is more spatially robust compared to
GLMM (0.039) and GAMM (0.056). Regarding the differences in interquartile, GAMM has
the best performance with an interquartile of 0.055, and both GLMM and TBMM performed
somewhat poorly, with interquartile ranges of about 0.19.

Overall, TBMM consistently produced SCV and CV results above 0.8 and higher than
GLMM and GAMM for all types of movements, and its reduced values (SCV vs. CV) and
interquartile ranges were acceptable, which are generally considered to reflect superior
validation performance [54].

Table 4. Cross-validation results of three mixed models for mass movements.

Model
AUROC

Median (1st–3rd Quantile)
Debris Flow Rockfall Landslide

GLMM
Non-spatial Cross Validation 0.816 (0.813–0.819) 0.773 (0.769–0.775) 0.827 (0.825–0.830)

Spatial Cross Validation 0.799 (0.760–0.832) 0.805 (0.679–0.817) 0.788 (0.654–0.845)

GAMM
Non-spatial Cross Validation 0.848 (0.844–0.852) 0.801 (0.799–0.805) 0.839 (0.836–0.842)

Spatial Cross Validation 0.844 (0.781–0.855) 0.805 (0.734–0.846) 0.783 (0.751–0.806)

TBMM
Non-spatial Cross Validation 0.866 (0.863–0.868) 0.830 (0.826–0.833) 0.841 (0.837–0.844)

Spatial Cross Validation 0.848 (0.800–0.858) 0.817 (0.733–0.865) 0.823 (0.678–0.867)
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4.2.2. Predictions Based on Highly Biased Inventories

According to Steger et al. [54], an excellent model could maintain higher predictive
performance even when the inventory is severely incomplete. This study simulated several
inventory data that were highly biased by randomly deleting 80% of debris flows, rockfalls
and landslides in the SC and SW regions, NW and Tibet regions, forest land, and arable
land, respectively. Finally, SC-and SW-related, NW- and Tibet-related, forest-related, and
arable-related biased inventories were obtained (Table 5).

Table 5. The number of mass movements in different highly biased inventories.

Movements Original Data
SC and SW

Regions
NW and Tibet

Regions
Forest Land Arable Land

Debris flow 25,425 19,307 17,252 19,393 20,218
Rockfall 47,057 22,479 41,697 31,632 35,192

Landslide 90,558 28,187 85,622 58,112 66,092

Then, all mixed models were trained based on these highly biased data and were used
to predict the unmodified mass movements; the results are shown in Figure 7. A conclusion
can be drawn that TBMM exhibits the best predictive performance for all the cases. At the
same time, the range of variation of the prediction results based on different biased data
was compared. For debris flow, all models showed a small range of variations from 0.002
for GAMM, 0.003 TBMM and 0.006 for GLMM. In the case of rockfall, the value for TBMM
remained stable with a range of 0.007, while the GAMM and GLMM performed poorly
with values, respectively, in the ranges of 0.020 and 0.023. Regarding landslide, GLMM and
TBMM performed best with a range of 0.006, while GAMM was the worse, with a range
of 0.025. Overall, TBMM showed the best score with a stable variation range (less than
0.01) across all types of land movements, indicating its advanced and robust prediction
performance based on highly biased inventories.

 

Figure 7. Comparison of model predictions (AUROC) for different types of mass movements based
on highly incomplete data.

4.3. Spatial Pattern Comparison of the Susceptibility Map

Susceptibility maps for three movements were generated by predicting the probability
of occurrence for each grid using three mixed-effects models separately. Then, the sus-
ceptibility index was classified into five categories using the Jenks natural break strategy
in ArcMap 10.8 [96]. Figures 8–10 demonstrate the spatial patterns of debris flow, rock-
fall and landslide susceptibility based on the three mixed models and detailed local area
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comparisons. Regarding the differences between susceptibility maps, we first quantified
susceptibility levels from very low to very high as one to five, and then the differences are
obtained by subtracting one susceptibility map from the other through Raster Calculator
tool in ArcMap. The results of debris flow show that three susceptibility maps (Figure 8a–c)
are generally consistent. Areas that are highly prone to mass movements are abundant
in the hilly areas of the Changbai Mountains (NE region), the southeast hills (SC region),
and the Taihang Mountains (Loess region). The mountains around the Sichuan Basin (SW
region), the Altai Mountains and the Tian Shan Mountains (NW region) and the mountains
of the Qinghai–Tibetan Plateau (Tibet region) are also highly prone to mass movements.
These results show that the three mixed-effects models can effectively reduce the impact of
inventory bias, so they also have better predictive capability in the NW and Tibet regions,
where there is a significant lack of data.

 
Figure 8. Debris flow susceptibility maps. (a–i) Susceptibility maps for China and local areas yield by
three mixed models; (j,k,m,n) the difference between TBMM and other models in local areas; (l,o) the
topography slope in local areas.
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Figure 9. Rockfall susceptibility maps. (a–i) Susceptibility maps for China and local areas yielded by
three mixed models; (j,k,m,n) the difference between TBMM and other models in local areas; (l,o) the
topography slope in local areas.
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Figure 10. Landslide susceptibility maps. (a–i) Susceptibility maps for China and local areas gener-
ated by three mixed models; (j,k,m,n) the difference between TBMM and other models in local areas;
(l,o) the topography slope in local areas.

Further, it has been observed that the susceptibility maps produced by GLMM are
poor representations of the ground truth. For example, the slope angles in the Yangtze River
Delta Plain are almost below 5 degrees. Still, the susceptibility map obtained by GLMM is
greatly affected by roads in the plain. Many grids near roads are classified as medium or
high susceptibility (see Figure 8o,g). The difference between TBMM and GAMM is lower
than that of GLMM, with most values ranging between −1 and 1 (Figure 8j,k,m,n). Their
predicted susceptibility in the plains was generally very low and significantly lower than
that of GLMM (Figure 8h,i,m). The susceptibility was higher in mountainous areas than in
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GLMM (Figure 8j,m), suggesting that the prediction results of TBMM and GAMM are more
reasonable. Besides, some areas in the middle of the Taklimakan desert region (southern
NW region) are predicted by GAMM to be moderate to high susceptibility (Figure 8e). In
fact, the incidence of debris flow in arid regions is very low, and there are no debris flow
points in the region (Figure 2a). In contrast, the susceptibility based on TBMM is lower than
that of GAMM in this region (Figure 8k), indicating that the prediction of TBMM is better.

For rockfall, the susceptibility results of the GLMM (Figure 9a) performed relatively
poorly. For example, in the Yangtze River Delta Plain, GLMM is severely affected by roads,
and many areas are classified into medium to very high levels (Figure 9g). Overall, TBMM
(Figure 9c) and GAMM (Figure 9b) are similar and perform better than GLMM in both
mountains (Figure 9j,m) and plains (Figure 9m). TBMM also performed better than GAMM
in desert areas (Figure 9k). The results indicate that GAMM may have overestimated the
susceptibility in many areas, while GLMM underestimated the results.

Regarding the landslide, both TBMM (Figure 10c) and GAMM (Figure 10b) showed
better performance. GLMM classified many areas in the Yangtze delta plain as moderate-to-
high landslide susceptibility types (Figure 10g), which obviously do not match the actual
topographic features. In addition, it can be observed that TBMM generates higher suscep-
tibility indices than GAMM in the Tianshan and Altai mountains and the southeastern
hills (Figure 10k,n). These results are similar to a previous study that used a representative
landslide inventory from the local area [97]. The comparability of results suggests that
TBMM has a more robust predictive capability.

To understand the overall pattern of mass movement distribution and mass movement
susceptible areas, we performed summary statistics on the distribution of mass movement
in each susceptibility class, distribution of susceptibility classes and the frequency ratio
of mass movements in each susceptibility class (Figure 11). In general, models with
more historical mass movement points concentrated in predicted high-prone areas are
considered to have better performance [98]. From Figure 11, it can be found that for
the three types of mass movements, only TBMM’s results have more than 80% of the
mass movement points concentrated in the areas with high and very high susceptibility
(81.6%, 80.4%, and 85.1% for debris flow, rockfall and landslide, respectively), and the least
mass movements were classified to low and very low-prone areas (6.9%, 5.8%, and 2.5%,
respectively). Additionally, according to the results of Figure 11c, with the improvement of
the susceptibility grade, the frequency ratios of debris flow, rockfall and landslide points
increased by: 199 (0.033–6.557), 123 (0.039–4.813) and 247 (0.017–4.192) times, respectively,
in TBMM; 104 (0.048–4.993), 52 (0.077–4.015) and 190 (0.027–5.139) times, respectively, in
GAMM; and 51 (0.135–6.934), 37 (0.123–4.493) and 134(0.037–4.962) times, respectively, in
GLMM. Therefore, the susceptibility maps produced by TBMM showed the most reliable
results. In order for readers to accurately determine the susceptibility of any location,
we provide the original data of three susceptibility maps generated by TBMM in the
Supplementary Materials.

Almost all previous literature has only evaluated landslide susceptibility in China.
Therefore, we compare the TBMM-generated landslide susceptibility map from this paper
with three previous studies carried out in recent years (Figure 12). In general, Figure 12a
is very similar to Figure 12b, which also employed a mixed-effects model. The results in
both these figures predicted higher susceptibility in the NW and Tibet region’s mountain-
ous areas compared to those shown in Figure 12c,d. Both of these are the results from
the application of traditional non-mixed models. Due to the high altitude and sparse
population of Tibet and NW regions, the survey of landslides is relatively rough and
possibly not representative of the actual situation. This example demonstrates how the
lack of data significantly influences the model’s outcome and confirms the mixed-effects
models’ superiority.
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Figure 11. Statistics on the susceptibility maps of three type of mass movements. (a) distribution of
mass movements in each susceptibility class; (b) distribution of susceptibility classes; (c) frequency
ratio of mass movements in each susceptibility class.

Further, the results presented in Figure 12a show lower susceptibility in the Yangtze
River Delta plain compared to the situation presented in Figure 12b. This result indicates
that TBMM performs better in areas where landslides are unlikely to occur. It is to be noted
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that between these two cases, there is a notable difference in the basic unit used for the
study. While the spatial mapping unit used in Figure 12a is a grid with an area of 1 km2,
that for Figure 12b is a much larger sub-watershed, with an average area of 129.1 km2.
Thus, in the latter case, almost all the mountainous areas in the SW and SC regions are
predicted to be more vulnerable, which can be misguiding and, therefore, not appropriate
to be recommended as guidelines for the government for decision-making and evolving
disaster prevention measures. On the contrary, the TBMM-based results that presented
in Figure 12a are finer and more realistic, which allows for more targeted development of
disaster prevention and resource investment strategies.

Figure 12. Comparison of results from this study with that of previous research. (a) Landslide
susceptibility map generated by this paper based on TBMM; similar maps from (b) Lin et al. [57]; (c)
Liu and Miao [99]; (d) Wang et al. [10].

4.4. Factor Contribution Analysis

Since the fixed part of TBMM is fitted with LightGBM, the relative importance of
each predictor for susceptibility modeling can be obtained. Results illustrating the mean
and standard deviation (error bar) of the relative importance of each factor based on both
spatial and non-spatial cross-validations are shown in Figure 13. It can be found that
profile curvature, slope, road density and soil moisture are the four significant factors
with relative importance greater than 0.1 for susceptibility modeling of debris flow. With
relative importance of less than 0.05, aspect and plan curvature are factors that seem to
have the least importance. In the case of rockfall, the slope, road density and soil moisture
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contributed more to predicting rockfall risks with relative importance above 0.1. With a
relative importance factor of less than 0.05, aspect, plan curvature and lithology have little
influence on rock fall. In the case of landslide susceptibility modeling, the slope, road
density and soil moisture have more influence, with their relative importance of more than
0.1. In contrast, the aspect and plan curvature seem relatively insignificant predictors.

Figure 13. The relative importance of predictors in different mass movements.

The influencing parameters in the three types of movements have varying levels of
importance. While slope, road density and soil moisture contribute significantly to the
generation of debris flow, rockfall and landslide susceptibility, plan curvature and aspect
appear to have the least importance in triggering all these movements. Additionally, it is
noted that profile curvature has the highest importance in debris flow but is less critical for
rockfall and landslide.

5. Discussion

With the development of artificial intelligence and the improvement in computing
power, significant progress has been made in mass movement susceptibility modeling. An
increasing number of susceptibility assessment models and optimization algorithms are
being developed, and they are becoming increasingly complex [7–9]. However, reducing
the bias propagation effect originating from the unavoidable incompleteness of mass
movement inventory remains a fundamental and important challenge for susceptibility
assessment, especially on a large scale such as that of China [57].

To address the issue of incomplete inventory in modeling mass movement suscepti-
bility and to make realistic predictions, this research proposes three mixed-effects models,
namely, GLMM, GAMM and TBMM. These models combine basic predictors (topography,
road density, hydrology, geological properties, etc.) and random effect factors that account
for biases in the mass movement inventory to improve the reliability of susceptibility eval-
uation in China. It is worth noting that all mixed models use both fixed and random effects
to train the algorithm while only using fixed effects to predict the final susceptibility index.
This step ensures that all models can counterbalance the adverse effects of biases in the
inventory. However, there are some fundamental differences between the structure of the
three models. The fixed part of GLMM is fitted by a parametric linear Generalized linear
model (GLM). On the other hand, GAMM uses a semi-parametric nonlinear Generalized
additive model (GAM) to fit the fixed effects term. Deviating from GLM and GAM, the
fixed effects of TBMM are implemented by a non-parametric nonlinear LightGBM model.
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Our study indicates that the forms of GAMM and TBMM are more flexible and may better
fit the relationship between basic predictors and response variables. The empirical results
also confirm this speculation. Based on the results presented in Table 4, GLMM had the
worst performance in Cross-validation (CV) and Spatial cross-validation (SCV) for all types
of mass movements. It is to be noted that with only half (3/6) of median AUROCs above
0.8, the level of performance of GLMM was low. While the median AUROCs produced
by GAMM were mostly (5/6) above 0.8. TBMM performed best, with all values above
0.8. As for the difference between median AUROCs of SCV and CV, TBMM performed
best, with the largest variation of 0.018, followed by GLMM with the largest difference
of 0.039, and GAMM performed worst with the largest variation of 0.056. These differ-
ences are significantly more minor than those of the traditional non-mixed-effects model
in the results of Lin et al. [57], and are close to the results of the mixed-effects model it
used, which reflects the robustness of the mixed-effects model. Furthermore, according
to Steger et al. [54], a good model can still have a high prediction score for the original
mass movement data when the training data is highly biased. This paper simulated several
types of highly biased inventory data to train all models and then predict the position of
the original mass movements (Figure 7). It was found that TBMM still outperformed the
other mixed models with all AUROCs above 0.8 and with the smallest fluctuations, further
demonstrating the excellent performance of TBMM.

For the final mass movement susceptibility map generated for China, it can be found
that both the mixed-effects models (Figures 8–10 and 12a,b) and the traditional non-mixed
models (Figure 12c,d) yield similar high to very high susceptibilities in the SC, SW and
Loess regions of China. It shows that the mass movement inventory in these areas is well
represented; thus, all the models can yield good results. However, too low susceptibility
levels for the northwestern mountainous areas (Tian Shan Mountainous and Altai Moun-
tainous) obtained from traditional models are not credible, as they propagate the biases of
mass movement inventory directly into the final results. On the other hand, results of all
mixed-effects models classified the susceptibility of mountainous areas in the NW region as
moderate to very high, which are also consistent with the results based on a representative
inventory [97]. In addition, from the comparison of the susceptibility maps from different
mixed effects models, it is found that TBMM not only maintained its excellent performance
in mountainous areas but also did well in plain and desert areas, where mass movements
are unlikely to occur. All these results indicate the superior quality of TBMM. Finally, the
factor contribution analysis shows that the specific dominant factors of three type of mass
movements are different (Figure 13). However, in general, topographic factors are the
most important, followed by human activities and hydrology, indicating that topographical
conditions are very crucial to the occurrence of mass movements. This observation is
consistent with the views of most published results [42,64,65,100].

The results of this research emphasize the necessity to account for the effects of
inherent inventory bias for susceptibility mapping, especially where the study area is as
large as China. Considering this aspect of modelling, we implemented three mixed-effects
models to account for the incompleteness of mass movement data, and our studies have
suggested the superiority of TBMM. We find that this model can fit the relationship between
the basic predictor and the response variables quite well while reducing the effect of the
inventory bias. Therefore, this superior mass movement susceptibility evaluation model
will provide a solid foundation for subsequent risk analysis and disaster prevention. In
recent years, several other novel mixed-effects models have emerged. Among them are the
MERF and BiMM combined with random forests [101,102]; the GMET and GMERT that
combined decision trees [103,104]; and the MeNets and LMMNN combined with neural
networks [105,106]. These novel mixed models have great potential to be explored in the
field of mass movement susceptibility mapping. Moreover, there are some other strategies
to deal with the incompleteness of the inventory data, such as using a fuzzy logic model
to simulate the distribution characteristics of the entire mass movement based on a small
portion of the mass movement inventory [107]. Training the susceptibility model for a
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small area, where the inventory was considered relatively complete, and then making
predictions for the whole research region based on the calibrated model [18]. Combining
the results of remote sensing interpretation, heuristic and multinomial statistical models
to compensate for the uncertainty caused by limited inventory data [75]. Applying the
maximum entropy model to deal with limited data due to its advantage of not requiring
negative samples [108,109]. A comparison of mixed-effects models with these methods
should be considered in future studies.

Although this study found a better mixed-effects model to be more efficient in dealing
with biased inventory, limitations still exist, starting with the size of the mapping unit. Due
to the computational inefficiency of mixed-effects models, we need to find a compromise
between resolution and computational efficiency in such a large study area. The 1 km × 1 km
grid used in this study is relatively coarse, which may result in some grids containing more
than one mass movement. More reasonably sized mapping units or intensity mapping
instead of susceptibility mapping can be explored in future studies, as has been suggested
by some previous researchers [40,110]. Secondly, implementing mass movement suscep-
tibility mapping over such a large area makes it impossible to obtain an unbiased input
data. Although the mixed-effects models we used can minimize this biasing effect, the
results remained difficult to interpret and validate. Thirdly, this paper employed grid
search to optimize the parameters of TBMM, but this method is still rough and extremely
time-consuming [111]. Exploring better parameter optimization strategies is a focus of
future research. Fourthly, Some studies have found that recent mass movements are more
likely to affect future mass movements than earlier ones [112]. Since the mass movement
inventory used in this paper have been collected since 2005, there may be some older
mass movements that have little impact on the future and therefore affect the predictive
performance of the model. Finally, we used road and river data in 2017 and land use data
in 2005 due to limitations of data acquisition, which may influence the plausibility of the
model predictions and need to be improved in future work. Given these limitations, we
emphasize that the three types of mass movement susceptibility maps in this paper provide
a general situational awareness of mass movement-prone areas in China, but they are not
recommended for local decision making.

6. Conclusions

The incompleteness of inventory data is inevitable while performing the susceptibility
mapping for mass movements in large areas such as China. The mixed-effects model pro-
posed in recent years can solve this problem well, but there are also many ways to achieve
it. In this paper, three mixed-effects models are implemented to evaluate the susceptibility
of mass movements in China, and several important conclusions can be drawn.

(i) From a quantitative point of view, the tree-boosted mixed-effects model (TBMM)
performs best in both spatial and non-spatial cross-validation for all mass movements.
In addition, when further reducing the completeness of inventory data in different
categories of land use or geological environment division, TBMM maintained the best
AUROC scores with little variation among the different highly biased types.

(ii) From a qualitative point of view, the derived TBMM yielded more plausible spatial
susceptibility patterns than the other two mixed models and conventional methods
discussed in the existing literature.

(iii) Through the factor contribution analysis, it was found that the profile curvature and
slope contribute significantly to the evaluation of debris flow. For rockfall, slope, soil
moisture and road density had more significant contribution. Regarding the landslide,
slope and road density were the most critical factors.

In general, this paper aims to explore the best mixed-effects model to counterbalance
the undesired effects of incomplete inventory data in susceptibility mapping and finally
confirm the superiority of TBMM from both quantitative and qualitative perspectives. The
susceptibility maps obtained in this study serve as a foundation for disaster prevention and
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spatial planning. Further, this model provides a reference for future susceptibility mapping
of other regions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14236068/s1, The original format of the three types of mass
movements susceptibility maps generated by TBMM.
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Abstract: Rockfall simulations constitute the first step toward hazard assessments and can guide
future rockfall prevention efforts. In this work, we assess the impact of digital elevation model (DEM)
resolution on the accuracy of numerical rockfall simulation outputs. For this purpose, we compared
the simulation output obtained using 1 m, 2 m and 3 m resolution UAV-derived DEMs, to two other
models based on coarser topographic data (a 5 m resolution DEM obtained through interpolating
elevation contours and the Shuttle Radar Topographic Mission 30m DEM). To generate the validation
data, we conducted field surveys in order to map the real trajectories of three boulders that were
detached during a rockfall event that occurred on 1 December 2018. Our findings suggest that the
use of low to medium-resolution DEMs translated into large errors in the shape of the simulated
trajectories as well as the computed runout distances, which appeared to be exaggerated by such
models. The geometry of the runout area and the targets of the potential rockfall events also appeared
to be different from those mapped on the field. This hindered the efficiency of any prevention or
correction measures. On the other hand, the 1m UAV-derived model produced more accurate results
relative to the field data. Therefore, it is accurate enough for rockfall simulations and hazard research
applications. Although such remote sensing techniques may require additional expenses, our results
suggest that the enhanced accuracy of the models is worth the investment.

Keywords: rockfall simulation; Rif; DEM resolution; UAV; back analysis

1. Introduction

Rockfalls and rock avalanches are characterized by high velocities and important
runout distances [1], which could lead to injuries or even casualties in populated areas.
In the western Mediterranean region, the population growth and its consequential urban
expansion have led to the exploration of hazardous rocky cliffs, which resulted in many
rockfall occurrences in the last few decades [2–8]. In some cases, this natural hazard can
threaten the lives and goods of people residing in high-risk areas, which subsequently
affects their socio-economic development.

To assess rockfall hazards, different laboratory and field tests (e.g., [9]) as well as
numerical techniques are being used by hazard scientists (e.g., [10,11]). For the latter
approach, topographic data are needed to predict the trajectory of potential future events.
Such data can be freely downloaded with different spatial resolutions depending on the
location of the study area or generated by landslide researchers. For instance, airborne
LiDAR data, which provide more accurate digital elevation models (DEMs) compared to
other DEM generation techniques, cover only a small portion of the globe [12]. In other
parts of the world, airborne imagery techniques can be deployed to generate LiDAR scenes
for local and regional applications. However, the cost is often high making it inaccessible
to many researchers worldwide [13–15]. Other techniques such as structure-from-motion
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(SFM), also known as digital aerial photogrammetry (DAP), are less expensive but are
difficult to use in densely vegetated areas [16]. Therefore, the resolution and accuracy of
DEMs that are used for rockfall trajectory simulations depend on the availability of the
data for a given study area as well as the financial resources dedicated to the research
project. Such challenges may affect the usability and reliability of the output spatial hazard
maps and hinder the ability to compare the results coming from different areas of the
world. In fact, previous research efforts attempted to assess the effects of DEM resolution
on rockfall numerical simulations. Generally, the researchers agreed that, in addition to the
physical parameters of the soil layers, DEM resolution is equally significant in determining
the output of the said models (e.g., [17–20]). Despite this obvious effect, some authors
(e.g., [21–23]) used coarse DEMs to build rockfall hazard assessment models and based
their conclusions and assumptions on the said models. Since the latter constituted the basis
for all hazard prevention and mitigation attempts, it is important to assess the significance
and potential influence of simulation errors on prevention scenarios and strategies. If
such investigations show that coarser DEMs are practically unusable, the investment into
acquiring more detailed topographic data becomes more justified.

Based on this and given the popularity of numerical modeling techniques, the accuracy
and usability of rockfall simulation models may be compromised in various applications.
In fact, incorrect models can decrease the value of property in low-hazard areas while
limiting the ability of decision makers and authorities to prevent future occurrences in high-
hazard locations. To avoid this, validation data needs to be generated through either field
investigations and the documentation of previous occurrences if possible, or by conducting
laboratory tests that simulate such processes [24–29] in order to assess the accuracy of
the simulations. However, most efforts have mostly used laboratory tests and rarely field
data. Though the former can be rightly used for such purposes, the latter is more objective
and, therefore, excludes any experimental biases. However, it is difficult to map rockfall
trajectories on a field, given their spatio-temporal unpredictability.

Therefore, a well-documented rockfall occurrence in the Bouanane cliff in Northern
Morocco, is used in this paper as the validation data to assess the performance of five DEMs
used for the rockfall simulations. The event that took place on 1 December 2018, offers the
opportunity to evaluate the accuracy of rockfall simulation models that were produced using a
1 m, 2 m, 3 m, 5 m and 30 m DEM through conducting a back-analysis of this event. The results
will be analyzed and an attempt to explain the variability of the results will be presented.

2. Study Area

2.1. Geological and Geomorphological Setting

The Bouanane cliff is located immediately to the South of Tetouan (Figure 1a). From a
morphological point of view, it is characterized by a subvertical topography with an elevation
difference of about 120 m. The geological material outcropping at the site is attributed to
the Dorsale Calcaire structural unit, which is mainly formed by thick layers of Triasic and
Jurassic carbonate rocks with a fairly developed Tertiary sedimentary cover [30–33]. This
structural unit is considered a unique morphostructural domain that is essentially constructed
by carbonate rock ridges consequential to the thrust sheet structure of the Rif Cordillera [34].

However, the structure of the Bouanane cliff is not attributed to these N-S oriented
thrust faults. It is, in fact, the result of late Miocene to Pliocene extensional deformation,
which reactivated the E-W striking, right-lateral, strike-slip Tetouan accident into a normal
faulting system (Figure 1b). This system of strike-slip faults, mainly N50◦ to N90◦, is
believed to be responsible for the morphogenesis of the Tetouan water-gap [35,36]. The
field observations and visual interpretation of the aerial photographs allow for the mapping
such structures to the south of the Bouanane site. These aerial photographs show that the
Bouanane ridge is formed by thick limestone and dolostone strata that are affected by the
E-W strike-slip faults (Figure 1). Using the thick strata as a reference mark, the right-lateral
motion of the faults can be clearly distinguished. The Bouanane cliff is also considered to
be the result of complex right-lateral normal faulting that cuts the Bouanane ridge short to

124



Remote Sens. 2022, 14, 6205

the north. On the field, one can also observe a dense tectonic joint network striking mainly
N130◦ to N160◦, which split the massive carbonate rocks into multiple metric blocs.

Figure 1. (a) Geological map of the study area. (b) Aerial photographs showing strike-slip faults
affecting the Bouanane massif. (c) Geological cross section of the Dorsale Calcaire thrust sheets south
of Tetouan.
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2.2. Rockfall Occurences in the Bouanane Site

In Northern Morocco, which is part of the Mediterranean peripheral chains, several
rockfall and rock avalanche occurrences have had pronounced consequences. The sites
subject to such phenomena include the village of Ametrass [37], El Onsar village north
of Tetouan [38] and the cliff of Bouanane which is the subject of the present paper. The
common characteristics between the above-mentioned cases is the damage caused due to
the presence of human dwellings and infrastructures in the piedmont of these cliffs and
the lack of protection structures against rockfalls. In Bouanane, three previous events have
caused material damage without any casualties. The first, which dates back to 1994, did
not cause any damage despite the large size of the detached boulder. The second, unlike
the first, damaged two parked vehicles in 2011, despite the relatively smaller size of the
boulders involved. The most recent occurrence, which took place on 1 December 2018,
caused damage to the decorative fence surrounding a car parking spot and stopped at the
doorstep of a coffee shop. The latter event will be investigated in detail. The trajectory and
some of the impact points will also be used as validation data to assess the accuracy of the
simulation models produced using the three DEMs with different resolutions.

3. Materials and Methods

3.1. Stability of the Bouanane Cliff

Before presenting the simulation models, we will attempt to study the detachment
mechanisms and assess the stability of the Bouanane cliff. To do so, the strike and dip of
56 tectonic joints were measured during several field surveys conducted in 2017 and 2018.
This helps to identify the major joint directions/families in the area and their geometrical
association with the cliff’s morphology.

Regarding the stability of the Bouanane cliff, the SMR (slope mass rating) index [39]
was calculated using the automated SMRTool beta 1.10 [40]. Although this classification
constitutes a good tool for assessing the stability of the rocky slopes, several modifica-
tions were developed to further enhance its performance in heterogeneous or anisotropic
slopes [41]. Given the important elevation difference of the Bouanane cliff, we opted for the
Chinese adaptation CSMR [42], which integrates the elevation difference of the investigated
slope into the calculation Formula (1)

CSMR = E · RMR + L (F1 · F2 · F3) + F4 (1)

where E = 0.43 + 0.57 (80/elevation difference), RMR (rock mass rating) is the Beniawski
index [43], F1, F2, F3 and F4 are the correction parameters and L is an index that reflects the
state of the geological fractures affecting the cliff [39].

L (between 0.8 and 1) is the index that reflects the state of the geological fractures
affecting the cliff. A value of 0.8 is generally assigned where the involved geological
fractures are large-scale metric or decametric joints, and a value of 1 in the opposite case.
In this study, the former value is adopted. The height of the slope used in this calculation
was 65 m, while its dip and dip direction were 50◦ and N315, respectively. As the general
slope was natural, the F4 parameter value used was 15.

3.2. Detachment Mechanisms

To decide which detachment mechanism controls the rockfall dynamics at the study area,
dip and dip direction measurements were used to graphically estimate the probability of top-
pling (T), planar sliding (P) and wedge sliding (W) in Bouanane, using the Goodman method [44].
To estimate the risk of toppling, we counted the number of joint planes poles that were
projected inside the zone and delimited by the friction cone (trend = slope dip direction + 90,
plunge = 0; and angle = 60) and the sliding limit surface (dip = slope dip-friction angle;
dip direction = slope dip direction). Such joints have a high potential for producing rock-
falls through toppling. The more poles there are, the greater the risk. To determine which
joint planes may cause planar sliding, the density of the poles located outside the friction
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cone (trend = 0, plunge = 90 and angle = friction angles) and delimited by the daylight
envelope of the slope, were visually estimated, which reflected the probability of rockfall
occurrence by planar sliding. For the last mechanism, the intersection points between the
average planes of each joint family, located within the zone delimited by the slope and the
friction cone (trend = 0; plunge = 90; and angle = 90 friction angle), indicated the potentially
unstable planes that may produce wedge sliding. The quantification of this risk was also
achieved through a graphical estimation of the density of unstable joint families.

3.3. Preparation of Topographic Data

In this study, we will use five DEMs with varying spatial resolution and vertical
accuracies. The first was downloaded from the USGS’s Earth Explorer platform (https://
earthexplorer.usgs.gov/, accessed on 3 December 2022). It is a 1 arc second (approximately
30 meter) resolution DEM produced by the Shuttle Radar Topography Mission (SRTM).
This dataset has the lowest resolution. The second DEM (5 m resolution) was generated
using elevation contours derived from the 1:25,000 topographic map of the study area. The
elevation contours were digitized manually and an interpolation of the data was performed.

Another high-resolution digital surface model (DSM) (11 cm) was generated using
a set of UAV-derived aerial photographs. The UAV used was a DJI Phantom 4 drone
equipped with a Global Positioning System (GPS) module, with a vertical accuracy of
0.1 m and a horizontal accuracy of 0.3 m. The camera used for capturing the aerial
photographs is a 1/2.3” CMOS camera with a total number of effective pixels of 12.4 M.
Further information regarding the hardware specifications and acquisition parameters is
presented in Supplementary Table S1.

The processing chain that was followed to obtain this model first consisted of eliminat-
ing the bad quality tie points and introducing 310 ground control points (GCPs) (Supple-
mentary Figure S1) to optimise the initial point cloud before generating the 3D dense points
cloud and the digital surface model (DSM). The GCPs that were exploited to enhance the
model were acquired by the Urban Agency of Tetouan using a dual frequency SpectraSP60
D-GPS in static mode, with a spatial accuracy of +/− 5 cm. The tool used to perform
the structure-from-motion (SFM) analyses in this study was the open source MicMac
photogrammetry software that is freely available at https://micmac.ensg.eu, accessed on
3 December 2022.

One of the main difficulties that we encountered in this study, was the presence of
a dense forest canopy in the surveyed area, which needed to be filtered out in order to
avoid creating artificial barriers in the simulation model. To do so, several post-processing
steps were performed to correct the altitude values of the forest canopy tie points. The
correction methods frequently deployed were based on the use of GCPs that were measured
using precise ground positioning techniques. These were subsequently used to correct the
elevation values for the areas with dense vegetation [45], a near-infrared based filtration
of the points corresponding to the forest canopy [46] and the use of a ground-based
scanner (TLS) [47]. LiDAR imagery was an alternative, but its cost was higher and it was
consequently not considered in this study for budgetary reasons. In addition, obtaining
permits for the use of this technique in our study area was not possible, so we opted for the
SFM alternative.

To correct the forest canopy points, we used the first approach where 186 of the
310 GCPs, provided by the Urban Agency of Tetouan (Supplementary Figure S1) and
measured using differential GPS, were used to calculate the mean elevation of the pine
tree canopy in the study area. This was achieved through subtracting the interpolated
elevation surface, calculated using the GCPs, from the canopy elevation raster provided by
the UAV-derived model. The average tree height was found to be around 9.23 m with a
standard deviation of 2.74 m. This low variance was due to the fact that all the trees at the
site were planted in the same year (1969) as part of a reforestation effort by the Moroccan
government and, therefore, have a more or less similar size. After the subtraction was done,
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the surface was smoothed using a majority filtering algorithm that replaced each cell value
based on the twelve contiguous neighboring cells (Figure 2).

Figure 2. Processing chain of the UAV images.

The resolution of the UAV model was downgraded to 1 m to avoid memory allocation
errors in the Rocpro 3D simulation software (Figure 3). Two other models were derived
from the UAV DEM with spatial resolutions of 2 m and 3 m. Along with the other two DEMs
(Figure 3), the topographic data was prepared for simulation purposes. An additional
102 GCPs (Supplementary Figure S1B) acquired from the same agency were used to assess
the vertical accuracy of the used DEMs and compare them to one another. The vertical error
distribution presented in Figure 3D shows that the 1 m and 3 m DEMs are very similar
in terms of the mean error values, the standard deviation and the overall distribution.
Surprisingly, the 2 m DEM was less accurate than the 3 m one. Finally, the 5 m and 30 m
DEMs were shown to present the highest mean error values and also presented a more
uniform error distribution compared to the UAV-derived DEM.

3.4. D trajectory Simulation

The software deployed in this study (RocPro3D) used physical parameters such as
rebound (restitution coefficient and lateral deviation), rolling (friction coefficient, limit
velocity) and transition parameters of the soil and boulders in order to estimate the possible
propagation trajectories, energy, velocity and impact points. The approximate values of
these parameters for bare and densely vegetated dolomite scree deposits and loose soils
were taken from the typical values table available in the Help section of the website (www.
rocscience.com, accessed on 3 December 2022), which is based on previous experimental
research [21,23]. This research estimated the parameter range for soils that are similar to
the ones present at Bouanane. Although the individual trees were not integrated into the
3D mesh, their effects on the soil parameters were also included in these estimation efforts.
The soils covered by the forest canopy in our study area were considered densely vegetated
soils and, therefore, their corresponding parameters were adopted. With respect to the
trajectory estimation, we chose the rigid body approach of the RocPro3D simulator for a
maximum output of 50 simulated trajectories. The boulder diameter used was that of the
biggest dolomite boulder that fell in 2018. This was done in order to validate our simulation
results using the field data, which cannot be achieved if the boulder sizes are different.
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Figure 3. DEMs used for simulating the 2018 event. (A) UAV-derived DEM. (B) 5 m DEM. (C) SRTM
30 m DEM. (D) Vertical error distribution for the three DEMs used in this study.

3.5. Statistical Analyses

While visual interpretation of the results allowed for a comparison the three models
used in this study, numerically deploying statistical techniques quantified the difference,
which provided more solid evidence regarding the degree of significance of our findings.
Therefore, we first attempted to assess the horizontal error distribution through a histogram
plot of the distance to real trajectory of each of the five simulated models. To do so, the
polyline shapefiles representing the simulated trajectories were first rasterized using a GIS
tool. Then, the latter were used to compute the Euclidean distance separating the centre
of each pixel from the field trajectories. Generally speaking, an error range of 0 to 2 m is
considered good since all of the potential rockfall targets at Bouanane are objects wider than
4 m (e.g., buildings, cars, café terraces, etc.). Therefore, the probability that the simulated
boulder missed its real target is low for such an error range.

Additionally, we prepared a box plot of the runout simulation results in order to
graphically represent the simulated samples and compare them to the field reference values.
Subsequently, the Kruskal–Wallis non-parametric test [48] was performed to compare the
three produced simulations, since the data were clearly non-normally distributed [48]. The
input variables introduced to the Kruskal–Wallis algorithm were the simulated velocity,
energy and bounce height, obtained from our 3D simulation effort. The null hypothesis
for such a test was that all five models would be equal and that the observed difference
would not be statistically significant. Dunn’s (PostHoc) test [49] was also performed to
point out which of the models were similar and which were different based on a pairwise
comparison approach.
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3.6. Morphometry of Scree Pebbles and Boulders

To study the morphometry of the piedmont deposits at Bouanane, the length (a),
width (b) and thickness (c) of 1749 pebbles were measured at 11 sampling stations during
several field investigations (Supplementary Tables S2 and S3 and Figure S2). The same
measurements were taken for 55 boulders, the locations of which were determined using
a GPS tool (Supplementary Tables S4 and S5). For the boulders, the measured values
were projected onto the Sneed and Folk ternary diagram [50] using the Hockey coordinate
system [51]. The latter was adopted for its simplicity. The computer tool used in this study
was "Tri-plot" (https://www.lboro.ac.uk/microsites/research/phys-geog/tri-plot/index.
html, accessed on 3 December 2022). The results should allow for the studying of the
morphology of the pebbles and boulders and consequently the characterization of their size
and shape distributions. For the scree pebbles, the value of the ’b’ axis was used to generate
a cumulative frequency plot in order to determine the statistical mode of the samples. This
allowed for the determination of the physical soil parameters of the scree deposits layers
using the above-mentioned reference values table.

4. Results

4.1. Stability of the Bouanane Cliff and Detachment Mechanisms

The geometric attributes and geomechanical measurements of the seven tectonic
joint families identified in the study area were used in CSMR calculations. Our results
yielded a value of around 70 in the study area (Table 1), which means that the Bouanane
cliff can be considered as a class II slope according to the Romana classification [39]. In
terms of the stability, this class was deemed stable with few rockfall occurrences. Their
temporal probability should not exceed 0.2 according to the same classification, which was
in accordance with the testimonies and accounts of the local people.

Table 1. CSMR analysis results for the Bouanane cliff.

Joints
Family *

RMR α (j) β (j) α (s) β (s) H (m) L E F1 F2 F3 F1*F2*F3 CSMR

F1 40.12 225 55 315 50 65 0.85 2.23 0.15 1 0.65 0 89.5

F2 27.32 270 66 315 50 65 1 2.23 0.22 0.98 1.19 −0.25 61

F2’ 27.32 90 66 315 50 65 1 2.23 0.22 1 −2.15 −0.47 60

F3 34.6 315 54 315 50 65 1 2.23 1 0.96 −4.68 −4 73

F4 39.4 180 65 315 50 65 0.9 2.23 1 0.96 −1.76 −0.39 88

F5’ 27.1 135 80 315 50 65 1 2.23 1 1 −25 -25 35

F5 27.1 315 80 315 50 65 1 2.23 1 0.99 −0.64 −0.63 60

F6 39.33 225 85 315 50 65 0.8 2.23 0.15 1 −25.31 −4 85

F7 39.3 0 63 315 50 65 1 2.23 0.22 0.97 −1.47 −0.31 87

Average = 70

* RMR (rock mass rating). α (j) joint dip direction. β (j) joint dip. α (s) slope dip direction. β (sj) slope dip. H (m)
height of the slope. L (index that reflects the state of the geological fractures affecting the cliff). E = 0.43 + 0.57
(80/elevation difference). F1, F2 and F3 are the correction parameters of Romana.

According to our field surveys and the UAV high-resolution images, the main joints
family responsible for the segmentation of the cliff into smaller metric blocks is the conju-
gated WNW-ESE to NW-SE tectonic joints (Figure 4). Together, they form X-shaped lines
that intersect the cliff at a 60◦ to 70◦ angles.
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Figure 4. Major joint directions obtained from the field investigations and UAV images.

Regarding the boulder detachment mechanisms, the Goodman analysis [44] performed
in the Bouanane cliff (Figure 5) showed that wedge sliding processes had a high occurrence
probability. This was explained by the presence of the above-described dense joint network,
the orientation of which was quasi-orthogonal to the main scarp direction. As for the other
possible detachment styles, the probability of planar sliding and toppling were found to be
low (<5%) due to the low frequency of NE-SW oriented tectonic joints (Figures 4 and 5).

Figure 5. Result of the Goodman analysis conducted on the Bouanane cliff. (a) Toppling analysis,
(b) Planar slide analysis. (c) Wedge slide analysis.

4.2. Investigation of the December 2018 Event

Our field surveys that were conducted immediately after the rockfall event of
1 December 2018, allowed us to draw the trajectory of three detached boulders (Figure 6a).
At the source area, fresh impact holes were identified (Figure 6b). These holes were not
very deep but were large enough to suggest a significant impact force that exposed the dark
quaternary soil layers. Immediately below the source area, fresh mechanical injuries were
seen on some trees that did not show any signs of impact prior to the event (Figure 6c,d).
The fresh yellowish color of the impacts on the Pinus halepenesis trunks also indicated the
freshness of the injuries, since old impacts on these pine trees tend to darken very quickly
due to the hardening of the resin secretions [52]. At the bottom of the steep slope, the
three detached boulders landed separately. The two that reached the inhabited zone were
easy to locate since they left behind clear impacts on manmade structures (Figure 6e,f).
However, the third boulder was more difficult to find since it was stopped by an older and
bigger buried boulder (Figure 6g). The latter boulder was distinguished from the older
boulders by the presence of reddish wood and resin stains on its surface. The size of all
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three boulders was measured on the field. Their diameters were found to be 1.2 m, 1.8 m
and 1.5 m, respectively, indicating a more or less similar size.

Figure 6. (a) Trajectories of the 2018 event projected over the UAV-derived orthoimage. (b) Boulder
impact near the source area. (c) and (d) Mechanical injuries on the tree stems. (e) and (f) impact
observed on manmade structures. (g) photograph showing a recently detached boulder with fresh
resin and live wood stains on its surface and its supposed impact on a nearby tree.

4.3. Significance of the 2018 Event

The diameter-frequency distribution (Figure 7a) for the 55 boulders measured be-
low the source area, showed that 0.5-to-2-meter large boulders constituted the dominant
category in the study area (Figure 7a). Given that 26 of the 55 boulders belonged to the
1 to 1.5 m category (Figure 7a), the rockfall event of December 2018 can be considered
typical of the Bouanane site. In fact, with a boulder diameter ranging from 1.2 to 1.8 m,
the detached boulders were “coarse” according to the [53] classification, with this category
being the most dominant in the study area.
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Figure 7. (a) Size-frequency distribution of boulders in the Bouanane site. (b) Boulders measured in
the Bouanane site projected onto the Sneed and Folks (1958) diagram. The used classification for the
boulders investigated in the study area is shown in Table S6 of the Supplementary Materials.

4.4. Rockfall Trajectory Simulation and Back-Analysis

The trajectory simulations produced using the five above-mentioned DEMs are shown
in Figure 8. The first model, which used the 1 m resolution DEM as the topography input,
produced complex trajectories that corresponded more or less to the field observations
(Figure 8a). Of the different calculated trajectories, a significant portion did not reach
manmade structures, while the rest either stopped at the coffee shop impacted by the
2018 event or continued further to impact other buildings downhill. As can be seen in
Figure 8, the runout distances rarely exceed that of the longest documented path (Figure 8f),
suggesting a reasonably accurate depiction of the real event. The 2 m (Figure 8b) and 3 m
(Figure 8c) DEM simulations were more or less similar trajectories with slightly wider
invasion zones and longer runout distances. These differences, although small, produced a
significant runout calculation error according to Figure 8f, since the runout value range did
not intersect that of the real trajectories.

The fourth and fifth models, which used the 5 m and 30 m DEMs as the topographic
data, respectively, produce smoother and longer trajectories that did not follow the paths
of the 2018 rockfall occurrence (Figure 8d,e). For the mid-resolution model, most if not all
calculated runouts significantly exceeded the observed values with no boulders stopping
before they reached the inhabited area (Figure 8f). As for the low-resolution simulation,
the runout values were even bigger, with all the boulders reaching areas that presented no
signs of any recent occurrences (Figure 8e,f). The simulated trajectories of the fifth model
also missed the coffee shop that was affected by the recorded 2018 rockfall, yielding a
deformed representation of the real event. The consequences of such errors are discussed
in Section 5.

In terms of the horizontal error distribution, the distance to real trajectory histogram
presented in Figure 9 confirmed the visual interpretation results. According to this his-
togram, the percentage of the 0 to 2 m error range (good error range) negatively correlated
with the DEM resolution, which means that the lower the resolution, the greater the overlap
between the simulated and real invasion zones. Conversely, the >25 m error range was
dominated by the 30 m model (Figure 9), which also correlated well with our visual inter-
pretation of the results. Consequently, the high spatial errors were reverse proportional
to the resolution of the data where coarser models produced significantly worse results
relative to the real trajectories.
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Figure 8. Simulated rockfall trajectories using the 1 m UAV-derived DEM (A), the 2 m DEM (B), the
3 m DEM (C), the 5 m DEM (D) and the 30 m DEM (E). (F) Box plot of the runout distances obtained
from the simulation models compared to the observed runouts of the 2018 event.

Figure 9. Statistical distribution of the horizontal error for all five simulated models.
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4.5. Energy and Velocity Simulation

The simulated velocity values showed that the 3 m resolution DEM produced the
widest range of values. It also yielded the highest velocity with a maximum of 33.96 m/s
compared to a maximum of only 29.28 m/s, 28.17 m/s, 26.69 m/s and 21.56 m/s for the
other models (Figure 10). However, when the simulated boulders reached the manmade
structures, the velocity for the first and third models (Figure 10a,c) was low in comparison
to the rest, which presented higher velocities reaching up to 20 m/s. By comparing these
values to the impacts observed on the field, the latter appeared to correspond more to
the high-resolution simulation since the damage was mainly aesthetic and indicated low-
velocity impacts. As for the 2 m and the medium and low-resolution models, they were
found to exaggerate the true velocity downhill. Similar remarks can be given regarding the
spatial distribution of the energy values (Figure 11).

Figure 10. Simulated rockfall velocity simulation in the Bouanane cliff obtained using the 1 m
DEM (a), the 2 m DEM (b), the 3 m DEM (c), the 5 m DEM (d) and the 30 m DEM (e).

In terms of the percentage, the spatial distribution of both the velocity and energy
values differs, where low to medium values tend to cover the most area in the 1 m and 3 m
models, while high values dominate in the other models, especially the 5 m model. The
probable reasons for this are explained in Section 5.

This spatial distribution difference was well attested by the Kruskal–Wallis test results
(Table 2) that showed a low P-value output (<0.0001). Given a threshold of 0.05, these
findings proved that the observed spatial distribution difference was statistically significant.
The pairwise Dunn test also yielded a similar output for the velocity and energy, with
P-values largely inferior to 0.05 (<0.001) (Table 3), with the exception of the 2 m and 3 m
DEMs, which appeared to have similar velocity distributions.
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Figure 11. Simulated rockfall energy simulation in the Bouanane cliff obtained using the 1 m DEM (a),
the 2 m DEM (b), the 3 m DEM (c), the 5 m DEM (d) and the 30 m DEM (e).

Table 2. Kruskal–Wallis test results.

Dependent Variable
Kruskal–Wallis Test

H p-Value

Velocity 470.035 <0.001

Energy 1387.988 <0.001

Bouncing height 498.55 <0.001

Table 3. Dunn’s (Post Hoc) test results.

Dependent Variable DEMs p-Value Dependent Variable DEMs p-Value

Velocity

1–2 m <0.001

Bouncing height

1–2 m <0.001

1–3 m <0.001 1–3 m <0.001

1–5 m <0.001 1–5 m <0.001

1–30 m 0.002 1–30 m <0.001

2–30 m <0.001 2–3 m <0.001
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Table 3. Cont.

Dependent Variable DEMs p-Value Dependent Variable DEMs p-Value

2–3 m 0.237 2–5 m <0.001

2–5 m <0.001 2–30 m <0.001

3–5 m <0.001 3–5 m <0.001

3–30 m <0.001 3–30 m <0.001

5–30 m <0.001 5–30 m <0.001

Energy

1–2 m <0.001

1–3 m <0.001

1–5 m <0.001

1–30 m <0.001

2–3 m <0.001

2–5 m <0.001

2–30 m <0.001

3–5 m <0.001

3–30 m <0.001

5–30 m <0.001

5. Discussion

5.1. How the DSM Resolution Impacts the Rockfall Numerical Simulations

In the rockfall simulations, the researchers sought to model the geometry of the
possible boulder trajectories, which allowed for distinguishing between hazardous and
safe areas, the runout values that determine how far a detached boulder can travel and
the velocity and energy of boulders once they descend the slope. The DEM resolution
influenced all the above-mentioned aspects of the rockfall research. In fact, [18] declared
that the use of coarser topographic grids translated into a decreased variability in the
computed trajectories, higher mean velocity values and lower bounce heights due to the
smoother geometry of the DEM. Similar remarks were reported in a more recent study
by [19] who showed that higher resolution input data exhibited more complex trajectory
shapes that agreed more with historical inventories. In our case study, the UAV-derived
1 m DEM yielded more complex geometries that agreed well with our field observations
(Figure 11a). The invasion zone produced by this high-resolution model was also smaller
but had more variability in terms of the shape and length of the simulated trajectories,
which was similar to the previous findings.

In the previous research, the runout extent was also shown to change significantly
in some cases [19,20] and stayed the same in others [18]. This effect can be explained by
the roughness of the terrain which was demonstrated to be proportional to the runout
variability using anecdotal evidence [20]. In this work, the mean runout for the high-
resolution model was lower than those obtained using coarser DEMs. In fact, it appeared
that the lower the resolution of the topographic data, the longer a boulder will travel
downhill. Such results were due (in our study as well) to the rugged and bumpy topography
of the site, which translated into large differences between the DEMs used in this study.
However, the effects of the slope roughness on the travel mode of rockfalls depends on the
slope ratio as well. [54] showed that while rough surfaces tend to promote higher velocity
rockfalls in steep slopes, their influence is reversed in gentler slopes due to a loss of energy
on impact (Figure 10). This explains why the highest velocity calculated in this case study
was given by the higher resolution DEMs near the source area, despite them presenting
the shortest runouts. Consequently, the appropriateness of a DEM for use in a simulation
can be summarized in its ability to depict the micro-topographic geometries, such as micro
terraces, small holes and micro-ridges. Such small but significant details regarding the
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topography of a given slope can change the outcome of a rockfall simulation depending
on the steepness of the hillslopes and its real shape. In Bouanane, the topography was
dominated by small convex uphill surfaces, which explained why the simulated velocity in
this segment of the slope was higher in the high-resolution model compared to the medium
and low-resolution models (Figure 12a). Larger concave downhill surfaces were accurately
represented by the 1 m DEM but appeared smoother in the coarser DEM, resulting in
shorter runouts in the former and longer trajectories in the latter (Figure 12b,c).

Figure 12. Theoretical 2D profiles of a rockfall event, drawn on a topographic profile extracted from
the 1 m resolution DEM (a), the 5 m resolution DEM (b) and the 30 m resolution DEM (c).

In addition to the roughness, the elevation of the unstable cliff/slope determined
how big the effect of the DEM resolution was on the simulation results, especially the
runout distance. The experimental results published by [18] showed that the runout did
not change significantly when using different DEM resolutions. However, in cases where
the source area belongs to the domain of middle slopes and ridges, such as the case of the
Bouanane cliff, the resolution and detailed depiction of the topography determined mostly
where the boulders stop. This was because the valley floor was a flat surface, the shape of
which does not vary from one DEM to the other. Therefore, the falling boulder stopped at
approximately the same area due to an absence of a horizontal component of acceleration.
In addition, the moving object lost energy quickly regardless of the initial impact force.
Nevertheless, when the topography was inclined, the stopping position was more sensitive
to the acceleration component and friction forces that mainly depended on the shape of the
impact surface. As such, the existence of micro topography features became more relevant
to the results. For instance, the 1 m, 2 m and 3 m DEMs adopted in this study produced
significantly different invasion zones and runout distributions despite being derived from
the same techniques. The reason for this was the loss of the microtopographic details
mentioned above.

5.2. Impact of the Simulation Results on the Hazard Assessment and Prevention Efforts

When an area is revealed to be hazardous, various solutions are implemented to
reduce the vulnerability of constructions to rockfalls. Such protection countermeasures are
either natural (e.g., tree barrier effect, etc.), quasi-natural (e.g., building embankments and
ditches), structural (e.g., monolithic rockfall protection galleries) or flexible (e.g., fences and
other flexible barriers). The proper design and dimensions of such protection structures
varies depending on the geometry of the slope, the simulated energy of the boulders,
the impact load and the bouncing height in the runout area [55]. Since such values are
generally obtained from numerical models, the above-presented effects of the topography
on the simulation results plays a major role in rockfall prevention efforts. For instance,
the construction of rockfall protection fences in Bouanane (which are deemed the most
appropriate technique due to the geometry of the slope) required information regarding
the runout, bouncing height and the most probable targets for potential future events. In
the coarse resolution simulations, the output was shown to differ significantly from the
real trajectory drawn on the field. For the 5 m DEM model, the inaccuracies were mainly
due to the shape of the modeled trajectories, which deviated significantly from field data.
In addition, the velocity and energy values (Figures 10 and 11) were exaggerated near the
real target area compared to the slight impacts observed (Figure 6). As for the 30 m model,
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it was shown to miss the most probable trajectory, stopping far away from the observed
rockfall path (Figure 6). Therefore, if such models were to be used, they would induce
significant positioning errors. Conversely, the 1 m model presented a reasonably accurate
invasion zone that corresponded to the reality of the field, which could be used for hazard
zonation mapping and rockfall prevention efforts.

Regarding the bouncing height distribution for the modeled trajectories, the 1 m and
2 m models appeared to present the highest uphill values (Figure 13a,b) compared to the
coarse models where the boulders kept rolling downhill (Figure 13d,e). Although the
detached boulders of the 2018 event did not leave behind evidence of high bouncing, old
broken tree stems were hit at a ground elevation of 2 to 3 m (Figure 13g). The area where
these trees were found corresponded to a clear land in the middle of the forest (Figure 13f),
where the modeled trajectories revealed the highest bouncing heights. The implications
for such variation are significant, given that a future protection fence should absorb the
energy of the falling rock and, therefore, needs to be as high as or higher than the bouncing
boulder itself. As such, the underestimation of the bouncing by the medium and coarse
resolution models could hinder the effectiveness of the rockfall protection structures if the
engineers were to rely solely on such data.

5.3. How the DEM Resolution Improve the Results

Although it is obvious that higher resolution data improves the simulation results,
the question of a threshold resolution for the rockfall simulations remains valid. In this
study, we tested five DEMs with a resolution range of 1 to 30 metres, with some being
practically unusable for achieving accurate rockfall modeling. While the improvement is
very significant going from the lowest to the highest resolutions, the difference between
the 1 m and 2 m DEMs is less obvious, especially in terms of the trajectory shape and
invasion zone geometry. Therefore, we wonder if exceeding the 1 m resolution limit would
have produced any significant improvement in our case study. Some results presented
by [20], who worked on two different sites, clearly showed that the geomorphological
setting of the study area determined how the resolution will influence the output. Therefore,
such investigations need to be conducted in a variety of locations around the world to
determine a “universal” DEM threshold for rockfall hazard modeling under different
geomorphological circumstances. Failling to do so may lead to large errors in many models
that still use coarse DEMs. This matter will be more significant in developing countries
where high-resolution topographic data is scarce and the investment in data acquisition
technology is low.
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Figure 13. Bouncing height simulations produced using the 1 m DEM (a), the 5 m DEM (b) and
the 30 m DEM (c). (d) UAV-derived orthoimage showing clear land (f) caused by repetitive rockfall
events. (e) stem breakage (g) caused by an old rockfall occurrence.

6. Conclusions

Based on our findings, we believe that low-resolution DEMs are unsuitable for site
specific rockfall simulations. Moreover, medium and coarse-resolution topographic data
also induce large positioning and geometric errors that degrade the quality of a simulation
and hinder its usability for prevention and protection efforts. The results of this paper
suggest that high-resolution DEMs are required to produce reasonably accurate simulation
models, with trajectory shapes, invasion zones and runout areas that agree well with field
observations. This is especially true for areas belonging to the domain of middle slopes
and ridges, such as the case of the Bouanane cliff, where the microtopographic features
determine the simulation output. Although such data are not available worldwide, the
use of new remote-sensing technology such UAVs can solve this problem and provide the
accurate data needed for such studies. This technology is low cost, which should encourage
its use especially when we consider the significant difference it has with respect to the
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accuracy of the output. However, fieldwork must always constitute the reference data,
which allows for the calibration and validation of the simulation no matter the accuracy of
the input.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14246205/s1, Figure S1: Spatial distribution of GCPs used
for constructing the UAV-derived DEM (A) and for testing the accuracy of all DEMs used in this
study (B). Figure S2: Photographs taken during field missions; A- the measured rock clast axes
(after [55]). B- and C- are photographed taken in measurement stations 1 and 8; Table S1: Hardware
specifications and UAV acquisition parameters.; Table S2: b-axis measurements (cm) for pebbles
forming the scree deposits downhill of the Bouanane cliff.; Table S3: WGS84 coordinates for pebble
measurement stations; Table S4: EPSG:26191 coordinates of the boulders subject to morphometric
analyses; Table S5: Morphometric measurements of boulders in the Bouanane site; Table S6: Sneed
and Folks classification for the boulders investigated in the study area. Ref. [56] is cited in the
Supplementary Materials.
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Abstract: Landslides are one of the extremely high-incidence and serious-loss geological disasters
in the world, and the early monitoring and warning of landslides are of great importance. The
Cheyiping landslide, located in western Yunnan Province, China, added many cracks and dislocations
to the surface of the slope due to the severe seasonal rainfall and rise of the water level, which
seriously threaten the safety of residents and roads located on the body and foot of the slope.
To investigate the movement of the landslide, this paper used Sentinel-1A SAR data processed
by time-series interferometric synthetic aperture radar (InSAR) technology to monitor the long-
time surface deformation. The landslide boundary was defined, then the spatial distribution of
landslide surface deformation from 5 January 2018 to 27 December 2021 was obtained. According to
the monthly rainfall data and the temporal deformation results, the movement of the landslide was
highly correlated with seasonal rainfall, and the Cheyiping landslide underwent seasonal sectional
accelerated deformation. Moreover, the water level change of the Lancang River caused by the water
storage of the hydropower station and seasonal rainfall accelerates the deformation of the landslide.
This case study contributes to the interpretation of the slow deformation mechanism of the Cheyiping
landslide and early hazard warning.

Keywords: Cheyiping landslide; seasonal movement; time-series InSAR technology; deformation
monitoring

1. Introduction

The landslide is the movement of a large amount of rock, mud, or debris along a
slope [1], usually triggered by external factors such as earthquakes, heavy rainfall, wa-
ter level change, typhoons, floods, etc. [2]. A total of 4862 fatal landslide disasters were
recorded from 2004 to 2016 around the world, most of which were located in Central
America, the Caribbean islands, South America, East Africa, Asia, Turkey, Iran, and the
European Alps [3]. The majority of fatal landslides are caused by intense rainfall around
the world, and most disasters occur from June to September in Asia because of the summer
monsoon [4,5]. China suffered numerous disasters compared to other countries. For exam-
ple, in 2010, 87% of the landslides triggered by rainfall in Asia occurred in China, especially
during the peak of rainfall in July and August [6]. Due to huge potential energy, land-
slides carry on a high-speed dangerous geological body after breaking away from the
parent rock, causing serious loss of life and property [7,8]. There were 55,997 fatalities
caused by landslides between 2004 and 2016. From 1950 to 2016, 1911 non-earthquake
landslides caused 28,139 deaths in China [9]. Some landslide events were extremely
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hazardous. On 22 March 2014, a landslide near Oso, Washington, USA caused a great
catastrophe. The mud and debris crossed a floodplain for more than 1 km and then demol-
ished the Steelhead Haven community, killing 43 people and destroying 35 houses [10,11].
On 23 July 2019, a landslide occurred at Jichang Town in Shuicheng, Liupanshui City,
Guizhou Province, resulting in 43 deaths, 9 missing, 11 injuries, and a direct economic loss
of 190 million yuan [12,13]. It can be seen that landslide disasters pose serious harm to
people; therefore, landslide detection and early warning are extremely necessary.

Among the quantifiable parameters in landslide monitoring (volume, position, activity
status, etc.), the surface deformation caused by slope movement is the most direct physical
quality reflecting the current stability and movement condition of the landslide [14]. Tra-
ditional methods such as manual field investigation, Globe Positioning System, real-time
monitoring, photogrammetry, distributed fiber optic sensing, and geodetic methods have
high monitoring accuracy in field measurements [15–18]. While in some places where
the terrain is steep or landslides have already occurred, it is difficult for people to reach
the sites, making field monitoring and rescue operations difficult [19,20]. Because of the
all-weather, all-time, and strong penetrability qualities of the data, Synthetic Aperture
Radar Interferometry (InSAR) developed in the past 30 years can detect micro-deformation
in the early stage of landslide disasters with large space coverage, high monitoring accu-
racy [21,22]. In 1990, Gabriel et al. first proposed the differential interferometric synthetic
aperture radar technique (D-InSAR) and validated its application in surface deformation
monitoring [23,24]. Subsequently, D-InSAR technology has been successively used to
monitor land subsidence [25], earthquakes [26,27], landslide movement [28], etc.

Nevertheless, the D-InSAR method seriously interfered with atmospheric factors,
and the change in the scattering characteristics of ground objects when the observation time
becomes longer leads to a decrease in image coherence, which means that the accuracy of D-
InSAR results often fails to meet expectations [29,30]. To solve this problem, scientists have
proposed time-series InSAR technology [31]. In 2000, Ferretti et al. proposed the permanent
scatterer interferometry technique (PS-InSAR) [32], and Berardino et al. proposed the short
baseline set differential interferometry technique (SBAS-InSAR) in 2002 [33]. Time-series
InSAR technology extracts coherent points with stable scattering characteristics in multi-
scene SAR data for deformation analysis, reducing the decoherence effect caused by long-
term baselines, removing atmospheric effects through statistical methods, and achieving
considerable monitoring for slow and long-term landslides [34,35].

The Cheyiping landslide is an ancient landslide, located in the high-altitude geological
disaster area in northwest Yunnan Province. As early as the 1920s, the residents moved out
because of the severe surface deformation of the landslide. In the 1980s, the overall situation
became stable, so the residents moved back to the original site one after another. After the
rainy season in 2017, there were gaps and cracks at the front, middle, and trailing edges of
the mountain. As the Huangdeng Hydropower Station downstream began to impound
in May 2018, the changes in the water level of the Lancang River impaired the stability
of the landslide. Moreover, Preliminary ground investigations show that the speed of the
landslide is about 1m/a. The slow-moving landslide tends to persist for several years to
decades, and once it occurs, it can cause damage to infrastructure or even serious casualties
in a short period of time [36], which poses a serious threat to the safety of people’s lives and
property. However, the local monitoring of the Cheyiping landslide is still mainly based
on field geological surveys, and there is no detailed and long-term observation record to
clarify the motion of the landslide. Therefore, it is significant to monitor the movement
patterns of the Cheyiping landslide following its resurrection in recent years, especially
based on the time-series InSAR technology, which can obtain monitoring results in a wide
coverage, high resolution, and long time series.

In this paper, 60 scenes of Sentinel-1A data were collected to monitor the Cheyiping
landslide from January 2018 to December 2021 by using PS-InSAR and SBAS-InSAR tech-
niques to get long-time series, high-precision, and high-density surface deformation of
the study area. This study gives a case study to analyze the changes in the time series of
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the surface deformation speed and the accumulated settlement of the landslide, detect
the characteristics of landslide movements and deformation, and explore the inducement
of the landslide based on the geological and geomorphological conditions, the seasonal
rainfall and the fluctuation of the Lancang River water level caused by the hydropower
station. This study reveals the evolution process of the Cheyiping landslide, which could
provide data support for the early warning of landslide disasters, thus, reducing loss of life
and property, and setting a case example for the geological hazard in the nearby region
suffering a similar external environmental condition.

2. Study Area and Data

2.1. Study Area

The Cheyiping landslide is a medium-sized, slow-moving planar sliding landslide
composed of clay and sand [37], which is located in Shideng Township, Lanping County,
Lisu Autonomous Prefecture of Nujiang, Yunnan Province. The study area has little culti-
vated land, a large elevation difference, and plenty of deeply cut valleys, in which several
geological disasters are distributed. Figure 1a shows the topography and geographical
location of the study area. The center of landslide is located at 26.7928◦N, 99.1863◦E, with an
altitude range of 1796 to 1855 m, a slope aspect of approximately 250◦, and a terrain slope of
around 25◦. Located along the Lancang River, 155 households with a total of 535 people live
in Cheyiping Village and the primary school on the landslide. In addition, the Bao–Tibet
Highway was built in the middle of it. There have been lots of cracks appearing on the road
and walls in the village because of movement in recent years. The location of the highway
and the village on the landslide are shown in Figure 1b.

Figure 1. Overview of the study area. (a) The geographical location of the Cheyiping landslide
(the red triangle). (b) The Google map of the Cheyiping landslide, labeled with Bao–Tibet highway,
Cheyiping village, and the boundary of the Cheyiping landslide.

2.2. Data

This paper uses 60 scenes of Sentinel-1A SAR ascending data of orbit 172 acquired
from 5 January 2018 to 27 December 2021. The imaging mode is IW (Interferometric Wide-
swath) SLC (Single Look Complex), and the central incident angle is 39.28◦. The resolution
is 13.94 m in azimuth and 2.32 m in the slant range. The Sentinel-1 satellite operates in
the C-band with an orbital height of about 7000 km, with a 12-day revisit period and
a large-scale spatial coverage of 250 km × 250 km. It can perform all-weather and all-
day high-resolution monitoring of the global land and sea surface in multi-polarization.
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Therefore, these characteristics of Sentinel-1A data could meet the requirements of the
landslide observation. The time information of the data used is shown in Table 1.

Table 1. Acquisition time of SAR data.

Number Date Number Date Number Date Number Date

1 5 January 2018 16 31 December 2018 31 7 January 2020 46 13 January 2021
2 29 January 2018 17 24 January 2019 32 31 January 2020 47 6 February 2021
3 22 February 2018 18 17 February 2019 33 24 February 2020 48 14 March 2021
4 18 March 2018 19 13 March 2019 34 19 March 2020 49 7 April 2021
5 11 April 2018 20 6 April 2019 35 12 April 2020 50 1 May 2021
6 5 May 2018 21 12 May 2019 36 6 May 2020 51 25 May 2021
7 29 May 2018 22 5 June 2019 37 30 May 2020 52 18 June 2021
8 22 June 2018 23 29 June 2019 38 23 June 2020 53 12 July 2021
9 16 July 2018 24 23 July 2019 39 17 July 2020 54 5 August 2021
10 9 August 2018 25 16 August 2019 40 10 August 2020 55 29 August 2021
11 2 September 2018 26 9 September 2019 41 3 September 2020 56 22 September 2021
12 26 September 2018 27 3 October 2019 42 27 September 2020 57 16 October 2021
13 20 October 2018 28 27 October 2019 43 21 October 2020 58 9 November 2021
14 13 November 2018 29 20 November 2019 44 14 November 2020 59 3 December 2021
15 7 December 2018 30 14 December 2019 45 20 December 2020 60 27 December 2021

It is necessary to remove terrain phase errors from the satellite orbit information
during the process of image registration and differential interference. Therefore, the POD
precise orbit data was used for orbit refinement when importing data [38,39]. The image of
the study area was cropped out to improve processing efficiency (Figure 2). The SRTM1
30 m elevation data jointly measured by NASA and the Department of Defense’s National
Mapping Agency (NIMA) were used in the interferometric processing to remove the
topographic phase [40].

Figure 2. The Sentinel-1A SAR data coverage.

3. Methodology

The workflow of this paper is shown in Figure 3, which is mainly divided into datasets,
data process, results, deformation analysis, and inducement analysis of landslide. The data
processing method is described in detail here.
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Figure 3. The workflow of the study.

3.1. The Principle of PS-InSAR

The process of PS-InSAR uses multi-scene SAR images to detect highly coherent
persistent scatterers (PSs) that are not affected by time and space baseline decorrelation
based on a statistical analysis of the stability of amplitude and phase information in the time
series. From these PSs, the topography, elevation, and atmospheric phases are estimated
and eliminated before the deformation phase is ultimately separated.

Firstly, the image acquired on 16 August 2019 was selected as the super master image,
and the master-slave image pairs were established to generate the connection network
as shown in Figure 4a. Secondly, all the slave images are co-registered on the super
master image to correct the deviation caused by the incident angle and orbit position
during imaging. Next, the super master and slave images are subjected to interference
processing to generate differential interferogram pair sequences, and the topographic
phase is eliminated by using the DEM data. Then, the stable candidate points in the time
series are selected, and the amplitude dispersion value is used to represent the phase
standard deviation to measure the stability of the point target on the time series. When
the coherence of the point target on the time series is smaller than a fixed value, known as
the amplitude dispersion index (the ratio of SAR intensity average to Standard Deviation),
it can be set as a candidate point [41]. Then, Delaunay’s triangulated irregular network
was built between persistent scatterers. Linear deformation rate and elevation error are
inverted in phase unwrapping. Data processing is greatly disturbed by atmospheric effects.
Fortunately, the atmosphere is not correlated in time, only in space. According to this
feature, the atmospheric phase could be removed through high-pass filtering in the time
domain and low-pass filtering in the spatial domain on multi-view images. Therein, we can
get the final average deformation rate and the deformation variable per phase, and finally
convert the result of the Doppler coordinate system to the geographic coordinate system.

148



Remote Sens. 2023, 15, 51

(a) (b)

Figure 4. (a) Time−Position map of PS-InSAR. (b) Time−Position map of SBAS-InSAR. The master
image is presented as a red star, the slave images are presented as black dots, and all images are
marked with the serial number in Table 1. Each line represents a master-slave image pair, and the
horizontal and vertical coordinates show their time and space baselines.

3.2. The Principle of SBAS-InSAR

Using a scene of the super master image, and the coherence will be weakened when
the baseline becomes longer. To reduce the possibility of spatiotemporal decoherence, Be-
rardino et al. proposed a small baseline set method that combines multiple main images to
form a short spatiotemporal baseline, which ensures the coherence of the interferogram [42].
The combination of isolated data pairs with long time intervals has achieved good results
for areas with fast changes in the coherence of ground objects, especially in vegetation
coverage areas [43].

To begin with, the max space baseline was set as 2% of the critical baseline value,
and the max time baseline was set as 90 days. The possible image connections are consid-
ered acceptable when the space and time baseline are less than the maximum thresholds.
The interference pair diagram is shown in Figure 4b. Secondly, a total of 169 interferograms
are generated, and the ratio of the range looks and azimuth looks is set as 4:1 in multilook
processing. The Goldstein adaptive filtering method is used to remove noise, and the
Delaunay MFC method is used for phase unwrapping [44–49]. The third step is orbital
refinement and phase re-flattening. A Ground Control Point (GCP) file must be previously
generated. Firstly, a representative image was chosen in all filtered interferograms and
unwrapped images, respectively, as shown in Figure 5. Then GCPs were chosen in slant
range image (Figure 5b) with reference to each phase in Figure 5a. The criteria for GCPs
selection are no residual topography fringes, far away from the displacement area, and no
phase jumps. Finally, 30 GCPs were selected and checked to be suitable for as many image
pairs as possible. After inputting the GCP file, the phase ramp is estimated to remove the
residual phase and phase ramp. Next, the deformation rate is obtained by the singular
value decomposition (SVD) method, and the spatio-temporal filter is used for removing
the atmospheric phase, which is the same as PS-InSAR. In the end, the displacement on the
time series is calculated, and the deformation result is obtained by geocoding.
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(a) (b)

Figure 5. (a) Filtered interferogram, which is used for determining terrain and deformation areas.
(b) Unwrapped interferogram with 30 GCPs. The red plus sign represents GCPs.

4. Results

4.1. Results in LOS Direction and Comparison

The results of the two time-series InSAR methods are shown in Figure 6a,b. It can
be noted that there are few monitoring results in many places because of the decoherence.
The ground objects in the research region are mostly bare soil, and natural characteristics
like flora have low coherence, so there will be decoherence due to the long time baseline.
The PS-InSAR and SBAS-InSAR select out high phase-correlation points for further analysis,
which are mostly dispersed among man-made features, such as buildings and roads [50].
As a result, the raster is inconsistent with a few monitoring points. The red deformation
result represents the deformation rate as positive, indicating that the objects move close to
the satellite in the radar line-of-sight (LOS) direction, whereas the objects move away from
the satellite in the LOS direction in the green area.

(a) (b)

Figure 6. Monitoring results in LOS direction by PS-InSAR (a) and SBAS-InSAR (b), respectively.
The annual average velocity results overlay the Sentinel-2 satellite data. The red raster shows uplifted
deformation in the LOS direction, the green indicates descend.

The average deformation rate in the study area obtained by the PS-InSAR ranges from
−25.7 to 61 mm/a. However, there are insufficient monitoring points on the landslide body
to establish the landslide’s deformation condition. The average deformation rate obtained
by the SBAS-InSAR ranges from −15.3 to 157.8 mm/a, and the deformation magnitude
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of the landslide is much larger than that in other areas, which proves that this method is
effective. Comparing the results of the two methods, the deformation trends of the two
methods are generally consistent, but the SBAS-InSAR has far more monitoring points than
PS-InSAR. The SBAS-InSAR results have more coherent points on the features with larger
deformation, which depicts the deformation more accurately. These differences are mainly
due to the different principles of the two methods combining the interferometric image
pairs. The PS-InSAR uses only one main image to produce interference pairs, and when the
time baseline between the main and auxiliary images becomes longer, the ground objects
will change significantly in the natural vegetation coverage area, resulting in decoherence.
Whereas the SBAS-InSAR uses the short baseline set criterion to generate image pairs, which
greatly reduces the number of low-coherence points, and, thus, the results of SBAS-InSAR
were selected to conduct further analysis of the Cheyiping landslide.

4.2. Projection of Deformation Direction

The deformation results obtained by time-series InSAR processing are along the radar
line of sight (LOS). Deformation usually occurs in the direction of the steepest slope, so
the deformation parallel to the direction of the maximum slope is regarded to indicate the
deformation features of a landslide [51,52]. The projection method of deformation rate
proposed by Colesanti et al. in 2006 is used to project the deformation from LOS to the
maximum slope direction (slope) [53]. The spatial relationship between LOS direction
and slope direction is shown in the following Figure 7, and the projection transformation
formulas are as Formulas (1) and (2).

vslope =
1

cos β
× vLOS (1)

cos β =(− sin α × cos ϕ)× (− sin θ × cos αs)+

(− cos α × cos ϕ)× (− sin θ × sin αs)+

sin ϕ × cos θ

(2)

Figure 7. Spatial relationship between vslope and vLOS directions for a point (black dot) located on
the slope. vslope is the deformation rate along the slope, vLOS is the deformation rate along the LOS
direction. β is the angle between the vLOS and vslope directions, rotating from vslope to LOS direction.
α is the aspect angle. ϕ is the slope angle. θ is the angle between the vertical direction and LOS,
i.e., the incidence angle with reference to flat land. αs is the angle between the satellite azimuth and
the true north direction, rotating from the north to ascending orbit direction in our study, and for the
Sentinel-1A at orbit 172 is −12◦.
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Along LOS, the direction from the target to the sensor is positive, and the direction
along LOS away from the sensor is negative; along the slope, the upward movement is
positive, and downward movement is negative, as indicated by the red and blue plus signs
in Figure 7. When the cos β is close to 0, the vslope tends toward infinity. Therefore, the fixed
threshold Herrera et al. proposed was used in 2013 (cos β = ±0.3) to avoid great anomalies
in the absolute value during the conversion from vslope to vLOS, and vslope cannot be larger
than 3.33 times that of vLOS. Therefore, when cos β < −0.3, cos β = −0.3; when cos β > 0.3,
cos β = 0.3 [38]. The result of projecting the LOS direction result obtained by the SBAS
method to the slope direction is shown in Figure 8. The positive and negative values of
the deformation rate, as well as the magnitude of the value, have altered when compared
to the LOS direction result in Figure 6b. It is logical that the velocity of the landslide is
negative and indicates a downward movement along the slope. The dividing line of the
change in slope aspect, or the location where significant deformation occurs, is the junction.
Figure 8 clearly depicts the delimitation of the Cheyiping landslide (the range shown by
the black solid line).

Figure 8. Deformation rate and interpretation boundary of the Cheyiping landslide. Two white
dotted lines represent the lines of profiles, which are labeled with start and end coordinates.

5. Analysis and Discussion

5.1. Delimitation of the Landslide

According to the slope direction results in Figure 8, the deformation rate of the
landslide varies from −528.3∼−15.9 mm/a, and the plane shape of the landslide presents
an irregular triangle with a length of approximately 1500 m from east to west and a width
of approximately 800 m from north to south. According to the field investigation data,
the landslide covers an area of about 0.8 km2, the thickness of the landslide body ranges
from 7 to 35 m, the average thickness is about 10 m, and the volume of the landslide body
is about 8 million m3. The front edge of the landslide is bounded by the left bank of the
Lancang River, a road in the south, gullies in the north, and the rear wall of the landslide
which extends to Beizhiqing Village.
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5.2. Time Series Change of Landslide Deformation Field

The regional distribution of the landslide surface deformation differs significantly.
Figure 8 depicts cross-sections of the landslide body with the greatest deformation rate
(as shown by the white dashed line), from which we retrieved the deformation rate and
cumulative deformation in a partial time series. The deformation change of Profile A and
Profile B is shown in Figure 9.

(a) (b)

Figure 9. Time−series cumulative deformation of profiles. (a) Profile A. (b) Profile B. The solid
lines represent cumulative deformation from 5 January 2018, until the date, corresponding to the
left vertical axis; and the dotted lines represent the average annual deformation rate of points on
the profile lines, corresponding to the right vertical axis. The grey parts represent the elevation of
the profiles.

Figure 9a illustrates that the farther away from the Lancang River, the slower the
landslide deforms. The sliding rate is the most extreme along the river bank, where the
deformation rate surpasses −430 mm/a and the highest settlement is about 1790 mm.
In Figure 9b, the landslide deformation rate increases, then decrease, and finally increases
again. There are two subsidence centers on profile B located at 0.38 km and 0.8 km, and the
highest subsidence rate reaches −230 mm/a, and the greatest deformation is −850 mm. It
is worth noting that on the deformation curves of profiles A and B, the deformation of the
middle part is smaller than that of the neighborhood. The positions of 0.57 km of profile
line A and 0.6 km of profile line B are Bao–Tibet highway and Cheyiping village, and the
cement floor is more stable than that of the soil. Therefore, there is an upward trend in the
middle of settlement curves. Figure 10c–h shows the deformation photos. There are many
cracks in the ground in the village (Figure 10c,d), on the walls of houses (Figure 10e,f),
and on the roads (Figure 10g,h). In general, the landslide sinks at different rates over time.
The foot of the landslide body is the most active zone of deformation, and the village and
highway are relatively stable.

To further investigate the changes in landslide movement in the time dimension, we
generated time series deformation of the overall landslide images presented in Figure 11. It
can be seen that the deformation of the landslide developed progressively from the front
edge to the trailing edge, and the sliding range on the horizontal projection surface grew.
In the height direction, the magnitude of sinking is likewise increasing. It is worth noting
that the front edge of the landslide along the Lancang River demonstrates deformation
characteristics before the trailing edge, and the front edge drives the trailing edge to slide,
demonstrating traction sliding characteristics.
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Figure 10. Field survey photos. (a) The trailing edge has sunk. (b) The front edge has slid. (c) Cracks
in the Cheyiping primary school. (d) Cracks in villagers’ homes. (e) Fissures in the walls. (f) Cracks
in houses. (g) Cracks in the road in the village. (h) Deformation of Bao–Tibet highway.

Figure 11. Time−series cumulative deformation calculated from 5 January 2018 of the landslide on
each acquisition date. The base map is the SAR intensity average image, and the dates are labeled on
the top right corner of every subgraph.
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Based on the deformation characteristics of various portions of the landslide, five
distinct areas a, b, c, d, and e were identified. Figure 12 shows manual field survey photos
and monitoring results in these areas. The field investigation reveals that the trailing edge
generates cracks and subsidence (Figure 12a). The deformation rate in Area a is around
−140 mm/a (as shown in Figure 12f), with a cumulative deformation of −560 mm (as
shown in Figure 12g). Lateral surface cracks have developed in the top and middle parts of
the landslide, spreading to the north and south sides, and the vertical dislocation is visible
on both sides of the crack (Figure 12b). The typical points in Area b deform at a rate of
roughly −220 mm/a, with a cumulative deformation of −880 mm. However, because the
Bao-Tibet Highway runs through the heart of the landslide, and it is near the village,
the stability of the landslide is critical. The field photos demonstrate that the road has
begun to crack, and the fissures are growing, where noticeable subsidence and dislocation
are apparent. At the same time, the ground in the village was fractured, and the cracks were
repaired with mortar by the villagers (Figure 12c). The deformation rate of the characteristic
points in Area c is about −170 mm/a, and the accumulated settlement reaches −680 mm.
Area d is located in the middle and lower part of the landslide (Figure 12d), with more
cracks on the surface than the upper part, the deformation rate is around −290 mm/a,
and the accumulated settlement is −1160 mm. The front edge of the landslide lies near the
Lancang River, and the deformation in Area e is the most noticeable (Figure 12e). As the
landslide descends, the landslide continues to crack and sink. The deformation rate in
Area e is measured at a maximum of −430 mm/a, and the accumulated subsidence is
−1790 mm, so the front edge is vulnerable to slide and collapse.

Figure 12. Field survey photos and monitoring results. (a) Cracks on the trailing edge (Area a in (f)).
(b) Faults in the middle−upper part (Area b in (f)). (c) Fissures on the pavement in Cheyiping village
(Area c in (f)). (d) Cracks in the middle and lower part (Area d in (f)). (e) Collapse on the front edge
(Area e in (f)). (f) Deformation rates of regional typical points. (g)Accumulated settlement of three
typical points in each area of (f).

5.3. Seasonal Movement Characteristics of Landslides

Figure 12g shows the cumulative deformation of the feature points over time, which
is tentatively judged to be brought about by seasonal rainfall, given the physical setting of
the study area. Specifically, the landslide deformation rate is significantly accelerated in the
rainy season and slowed down in the wet season. The study area has distinct dry and wet
seasons, with rainfall concentrated from May to October. According to different motion
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change characteristics, we plotted the cumulative deformation for selected points in areas a
and b (as shown in Figure 12g) in Figure 13a and areas c, d, and e in Figure 13b. Figure 13
shows the relationship between the total deformation and the monthly average rainfall.

(a)

(b)

Figure 13. Time−series cumulative deformation of feature points. (a) The feature points in Area a, b
(as shown in Figure 12f). (b) The feature points in Area c, d, e (as shown in Figure 12f).

It can be seen from Figure 13 that the rainfall mainly takes place from May to October,
and precipitation always reaches its peak in July, with the maximum average total rainfall
in July 2019 reaching 462 mm. These rainfall season months are marked as mauve blocks,
and the rest are wet season months. Time series analysis reveals that the displacement is
corrected to the precipitation, and the rainfall variations have more impact on the middle
and lower part of the landslide body than on the top body. The cumulative deformation
curves of areas a and b have a slight trend of accelerated deformation after every wet season,
as shown by the periods of time in the black dashed lines and red arrows in Figure 13a.
The cumulative deformation curves of areas c, d, and e show segmented changes, and there
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are four acceleration periods in Figure 13b. Around four rainy seasons (from July 2018
to January 2019, from July 2019 to February 2020, from August 2020 to February 2021,
and from September 2021 to November 2021), the slope of the curves increased, indicating
the deformation accelerated, and the curves flattened in the rest months (from February
2019 to June 2019, from March 2020 to July 2020 and from March 2021 to August 2021).
The landslide has clearly changed during the last four years. The cumulative deformation
of Area a, which is the slowest, grew by four times from 100 mm to 500 mm. Area e had the
most dramatic deformation, reaching 1700mm by the end of 2021, more than three times
that of 2018.

Analyzing and comparing the change characteristics of the deformation variable
curves in these five regions, it was found that the slope of the curve becomes steeper
one to two months after the first rainy month. For example, in Figure 13b, the rainy
seasons started in May from 2018 to 2021, whereas the acceleration period began in July
2018, June 2019, August 2020, and August 2021 separately. Moreover, the influence of the
precipitation on the landslide body often lasts for several months, as evidenced by the fact
that the accelerated deformation ended in January 2019, February 2020, February 2021,
and November 2021. Therefore, seasonal rainfall has a strong inducing effect on landslide
deformation. The generation and disappearance of this aggravating effect will not be
reflected immediately, but are usually delayed for a period of time, which has been found
in many studies [54,55]. This is because it takes a period of time for rainfall to infiltrate
into the landslide rock mass, so its influence on the deformation rate of the landslide has a
hysteresis, which is consistent with many studies [56–59].

5.4. The Inducement of the Landslide

Whether the landslide slips or not depends on the relationship between the slope angle
and the critical angle, and the critical angle is influenced by the block material composition,
size, shape, and water content. Most of the non-earthquake landslides are triggered by
broken structures, soil strength, intensive rainfall, and the effect of water level in many
studies [60–62]. Accordingly, the causes of the Cheyiping landslide are divided into internal
causes, mainly topography, geology, geotechnical properties, and external causes of water
for analysis.

5.4.1. Topography and Geology

The Cheyiping landslide is located in an area of the sloping terrain, with an overall the
slope direction of about 255◦, a slope length of 1500 m, a terrain slope of 15◦ to 20◦, a village
side slope height of 1.5 to 4.7 m, and a slope gradient of 65◦ to 280◦. Morphologically, it is a
moderately steep and long slope, which can be classified as a loose cap rock slope according
to the slope process. With the sliding of the slope body concentrated on the front edge and
the middle, the movement rate of the back end is small and belongs to a traction landslide.
The topography of the area has a steep slope and a large relative height difference. resulting
in a large gravitational potential energy of soil on the slope, which provides the impetus for
the sliding of the slope material [60]. According to regional geological data, the Cheyiping
fault developed on the west side of the Bao-Tibet highway at about 350–400 m, which
could cause the geological structure to fragment and change the tectonic stress field, thus,
increasing the risk of landslides [56].

5.4.2. Lithology

In Lanping county, the Mesozoic strata are mainly exposed, followed by the Ceno-
zoic and Paleozoic, and a very small amount of unidentified metamorphic rock series.
The Mesozoic is almost all over the region, mainly composed of Cretaceous, Jurassic,
Triassic siltstone, silty mudstone, and quartz sandstone. The Cenozoic is the sandstone,
conglomerate, and calcareous siltstone of the Tertiary, and the sandy clay and sandy gravel
of the Quaternary. Paleozoic strata are dominated by mudstones, sandstones, and Car-
boniferous bioclastic tuffs, schists, and andesites. The geology of the study area is shown in
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Figure 14 (source of data: https://geocloud.cgs.gov.cn, accessed on 27 September 2022).
Meanwhile, there are small amounts of basalt, andesite, and other volcanic rocks located
in the eastern and western margins. The rock mass is mainly composed of layered and
fractured structural soft rocks, so the weak structure affects the engineering geological
properties [63].

The surface of the landslide is brownish-red and brownish-yellow clay with debris
in the residual slope of the Quaternary System. The soil structure is loose, the water
permeability is strong, the soil softens and collapses when it meets water, and the stability
is poor; thus, excavation disturbance is prone to collapse and landslide. The underlying
stratum is the purple-red and grey-green sandstone and mudstone weathering rock of
the Jurassic Middle Jurassic Huakai Zuo Group (J2h), which is mainly exposed on the
ridges of the north and south sides of the village and on the steeper topography of the
village, with weak lithology. The rocks within the slope are strongly weathered mudstone
interspersed with muddy siltstone, which is a weak structural plane due to the poor
connectivity in rock and soil bodies. The dip Angle of the structural plane is similar to that
of the natural slope, which forms the sliding plane.

Figure 14. The geological map of the study area.

5.4.3. Influence of Seasonal Rainfall and Water Level

Water is a major cause of landslides [61]. The involvement of water removes the
adsorption bond between soil particles, changes the pore water pressure, reduces the resis-
tance to sliding, and erodes the strength of the soil. According to previous studies [64,65],
continuous rainfall and rapid changes in the water level have a joint impact on the dis-
placement rate of the landslide. The stability of the landslide decreased with the increase in
rainfall intensity and the changes in the water level of the Lancang River. The combination
of these two factors in the study area may be the main reason for the accelerated deforma-
tion of the Cheyiping landslide. Moreover, the unregulated discharge of water for domestic
use by residents in the village and the erosion of the two gullies on the slope impair the
stability of the slope.

• Seasonal rainfall. The region of the landslide is characterized by the low-latitude
mountain monsoon and typical vertical distribution of the three-dimensional climate,
with the highest temperature in July and the lowest temperature in January. With a
clear division between wet and dry seasons, the rainfall in the study area is regular.
The average annual precipitation is 1002.4 mm and the average annual rainfall is
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158 days, with the rainy season from late May to mid-October, which accounts for over
90% of the annual precipitation. The monsoonal climate and seasonal precipitation
concentrated in the summer provide a strong trigger for the landslide. According to
the ERA5-Land reanalysis dataset, the seasonal precipitation around the Cheyiping
area from 2018 to 2021 is shown in Figure 15, indicating that the amount of rainfall in
the rainy season is much greater than in the wet season.

Figure 15. Seasonal precipitation. Wet season: from May to October. Dry season: from January to
April, November, and December.

Persistent rainfall increases the pore pressure of the landslide, which reduces the sheer
strength of the soil, the bond between the rock particles, and the friction within the
landslide, resulting in a high risk of landslides [66]. Water causes expansion and
contraction of geotechnical particles, which can alter the pore pressure of the landslide
and seasonal rainfall makes this change frequently, whereas pore pressure changes
are the main driver of landslide movement, and the larger pore pressure changes can
induce landslides [67].

• Erosion and water level rise of the Lancang River. The study area is located in the
high mountain area and canyon in the middle-upper reaches of the Lancang River.
The Lancang River runs north to south through the mountain valley in Lanping
County, with a natural drop of 127 m, an average slope of 9.8%, an average annual
flow of 909 m3, and the driest flow of 277 m3. Moreover, the front edge of the
Cheyiping landslide is adjacent to the Lancang River. The Huangdeng Hydropower
Station is built at the position of 99.1197◦E, 26.5597◦N, which is 26 km away from
the landslide, as shown in Figure 16a. The normal storage level of the reservoir is
1619 m, which started to store water in May 2018. The water level in the Cheyiping
landslide section was 1557 m; however, after the impoundment, the water level rose
by 62 m. By checking the width of the river surface in the radar image Figure 16b,c, it
is possible to determine that the water level has significantly risen from January 2018
to January 2019.
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Figure 16. Variation of the Lancang River water level before and after impoundment. (a) The relative
locations of the Cheyiping landslide and the Huangdeng Hydropower Station. (b) SAR image of
white dotted line range in (a) on 5 January 2018. (c) SAR image of white dotted line range in (a) on
24 January 2019.

Changes in water level have multiple effects on the stability of landslides. The rise
in water level caused by the Huangdeng Hydropower Station storage will affect the
geotechnical strength of the slope, the groundwater level, and the pressure difference
between the water inside and outside the slope. When the water level changes, there
is a lag in the change of the groundwater level, and the pressure difference between
the inside and outside of the landslide will disrupt the original equilibrium of the
slope [68]. When the water level rises, the external pressure enhances the stability of
the slope to a certain extent, and in this case, the accelerated deformation of the slope
is typically a result of the softening impact of the water. Therefore, the deformation
rate of the slope during the high water level is significantly higher than during the
low water level [69].

6. Conclusions

In this study, Sentinel-1A images were collected, and the time-series deformation
monitoring results of the Cheyiping landslide from 5 January 2018 to 27 December 2021
were obtained using the time-series InSAR technology. The monitoring results of the
PS-InSAR and the SBAS-InSAR show the same deformation trend in most regions, while
the SBAS-InSAR intensively detects the landslide with many more monitoring points.
The results of the slope direction shows that the deformation rate of the landslide increases
from the back edge to the front edge, the deformation rate at the foot of the slope near the
Lancang River reaches approximately −430 mm/a, and the accumulated subsidence during
the study period is as high as −1790 mm. The front edge of the landslide occurs first, driving
the overall movement of the landslide. Based on these results, it was found that the intense
concentrated seasonal rainfall accelerates the surface deformation of the slope, and the
deformation velocity slows down in the dry season, meaning the landslide movement
shows a periodical accelerated trend. Moreover, the water level change of the Lancang River
brought by the water storage of the Huangdeng hydropower station downstream makes
the landslide destabilized, and seasonal rainfall and water level changes of the Lancang
River were the primary causes for the significant movement of the Cheyiping landslide.

160



Remote Sens. 2023, 15, 51

In summary, the time-series InSAR technology is feasible for monitoring the defor-
mation of the Cheyiping landslide. The analysis of the time-series changes of landslide
deformation based on geological and geomorphological factors, seasonal rainfall, and water
level changes of the Lancang River can predict the landslide movement. In the future,
accurate landslide hazard warnings could be carried out by combining field survey data
with remote sensing data, thus, providing protection for the life and property safety of the
residents in this area.
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Abstract: On 5 September 2022, an Mw 6.6 earthquake occurred in Luding County in China, resulting
in extensive surface rupture and casualties. Sufficient study on distribution characteristics and sus-
ceptibility regionalization of the earthquake-induced disasters (especially coseismic landslides) in the
region has great significance to mitigation of seismic hazards. In this study, a complete coseismic land-
slide inventory, including 6233 landslides with 32.4 km2 in area, was present through multi-temporal
satellite images. We explored the distribution and controlling conditions of coseismic landslides
induced by the 2022 Luding event from the perspective of epicentral distance. According to the
maximum value of landslide area density, the geographical location with the strongest coseismic
landslide activity intensity under the influence of seismic energy, the macro-epicenter, was deter-
mined, and we found a remarkable relationship with the landslide distribution and macro-epicentral
distance, that is, both the landslide area and number density associatively decreased with the increase
in macro-epicentral distance. Then, a fast and effective method for coseismic landslide intensity
zoning based on the obvious attenuation relationship was proposed, which could provide theoretical
reference for susceptibility mapping of coseismic landslides induced by earthquakes in mountainous
areas. Additionally, to quantitatively assess the impact of topographic, seismogenic and lithological
factors on the spatial pattern of coseismic landslides, the relationships between the occurrences of
coseismic landslides and influencing factors, i.e., elevation, slope angle, local relief, aspect, distance
to fault and lithology, were examined. This study provides a fresh perspective on intensity zoning of
coseismic landslides and has important guiding significance for post-earthquake reconstruction and
land use in the disaster area.

Keywords: coseismic landslides; Luding earthquake; spatial distribution; micro-epicenter; macro-epicenter

1. Introduction

On 5 September 2022, at 12:52 p.m. local time, an Mw6.6 earthquake struck Luding,
China [1]. The Luding event’s epicenter is at 29.59◦N, 102.08◦E with a focus depth of
16 km. This earthquake damaged a vast amount of infrastructure, resulting in 88 deaths
and over 400 injuries. Simultaneously, significant disasters such as coseismic landslides
and collapses were induced, seriously endangering the personal security of local residents
as well as reconstruction efforts.

Coseismic landslides are a geological disaster induced by earthquakes with strong
destruction [2]. Thus, analyzing the distribution of coseismic landslides, investigating
the correlations between coseismic landslides and triggering factors, and assessing the
vulnerability of coseismic landslides are all crucial for guiding post-disaster reconstruction
and secondary disaster prevention [3–5]. The landslide inventory serves as the foundation
for analyzing and evaluating the mechanism of formation and spatial distribution of
coseismic landslides, and many scholars have cataloged the coseismic landslide inventories
for different earthquakes, such as the 1994 Mw6.7 Northridge event, America [6]; the
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1999 Mw7.6 Chi-Chi event, China [7]; the 2008 Mw7.9 Wenchuan event, China [8] and the
2013 Mw6.6 Lushan event, China [9–11].

Coseismic landslide science research has become a focused issue, and numerous
studies have been carried out on coseismic landslides of different earthquake magnitudes
worldwide [12–20]. The findings indicate that the spatial pattern of coseismic landslides is
attributed to the ground motion mode, vibration energy, geological environment and land
type [21–25]. Without the restriction of geological environment, it is generally believed
that the larger the earthquake energy level is, the more landslides there are with closer
epicenter distance [26,27]. Keefer [28] discovered that the spatial frequency density of
the coseismic landslides caused by the 1989 California earthquake decayed exponentially
with the focal fault distance. Landslide susceptibility mapping and landslide sensitivity
models considering different influencing factors are conducive to understanding landslide
hazard risk [29]. Su et al. [30] found that the spatial distribution of the coseismic landslides
induced by the 2008 Wenchuan event in Qingchuan County was mainly determined by
lithology by using the logistic regression model. Zhao et al. [31] discovered that the
majority of the coseismic landslides caused by the 2008 Wenchuan event and the 2013
Lushan event were concentrated in the Longmenshan fault’s hanging wall, revealing the
effect of tectonic mechanism on landslide distribution. All of these studies indicate that
the controlling factors make great contributions to the occurrence and distribution of
coseismic landslides. Thus, a thorough understanding of the interaction between coseismic
landslides and controlling factors is critical for analyzing the formation mechanism of the
distribution pattern [32].

Coseismic landslides are essentially the surface deformation caused by earthquakes [33],
and their spatial distribution features are often associated with release of the seismic energy.
However, there is no effective reference point that can indirectly reflect the release and
spread of seismic energy on the surface. The epicenter of the earthquake can hardly reflect
the location of the largest release of seismic energy, because some cases have shown that
the coseismic landslide distribution is not strongly interrelated with the distance from the
epicenter; for example, coseismic landslides induced by the Mw6.1 Ludian event in China
were not concentrated at the epicenter but 5 km away [2], and many other earthquakes have
similar deviations [18,24,32,34–36]. Consequently, it is very necessary to find a benchmark
observation point that can reflect the intensity of the earthquake energy on the surface.

In this study, we focused on analyzing the spatial distribution pattern of coseismic
landslides with elevation, slope angle, local relief, aspect, distance to fault and lithology. The
maximum value of landslide area density (LAD) was utilized to determine the geographic
location with the strongest landslide activity intensity affected by the Luding earthquake,
which could be used as a key parameter to evaluate the impact of earthquake energy on
the spatial pattern of coseismic landslides. Then, based on the landslide number density
(LND) and landslide area density (LAD) with the grading threshold, the landslide intensity
zoning was divided. The spatial pattern and formation mechanism of coseismic landslides
were surveyed from the perspective of macro-epicentral distance. Our study gives detailed
distribution characteristics of coseismic landslides induced by the 2022 Luding event which
benefit ecological restoration and disaster management in the local region. Furthermore,
we provide a novel reference for susceptibility zoning of coseismic landslides.

2. Materials and Methods

2.1. Study Area

The 2022 Luding event occurred in Luding County in China (Figure 1), at the south-
eastern margin of the Tibetan Plateau. Affected by the Indian Ocean monsoon climate,
the earthquake area is rainy in autumn and summer, providing sufficient hydrodynamic
conditions for the occurrence of post-earthquake geological disasters. The bedrock adjacent
to the river is constantly eroded for a long term, reducing the stiffness of the unloaded rock
mass exposed to the air. In this case, the broken rock layers and weathered fracture on the
valley slopes are conducive to the failure of the coseismic landslides. With regard to the
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plate structure, the study region is situated at the intersection of the Indian Ocean plate
and the Eurasian plate, which is the junction of the Longmenshan fault, the Xianshuihe
fault and the Anninghe fault. The Indian Ocean plate continues to squeeze the Tibetan
Plateau at a rate of 40–50 mm/a to the Eurasian plate every year, causing the crust in this
area to move toward WE at a rate of 5–15 mm/a recorded by the global positioning system
(GPS) [34]. The active crustal and tectonic movements in this area lay the groundwork for
earthquake susceptibility, which is also the reason for the 2008 Wenchuan earthquake. The
2022 Luding event’s epicenter, sited in the south of the Xianshuihe fault zone, is located
in the Hailuogou scenic area of Moxi Town, only about 110 km away from the 2013 Ms7.0
Lushan earthquake [10]. The Xianshuihe fault, located in the famous Y-shaped fault region,
is a sizable left-lateral strike-slip fault with considerable activity and NNW strike. It is
about 400 km long and less than 300 km away from the Longmenshan fault in the north-
east [37]. The 2022 Luding event is characteristic with a sinistral strike slip earthquake,
and the seismogenic fault dips westward with a strike of 160◦ and an inclination of 80◦.
The maximum slip near the epicenter is about 184 cm, and the rupture duration is about
18 s. The earthquake gave rise to wide-ranging house damage and surface failure, affecting
82 townships of 12 counties. The intensity of the earthquake is elliptically distributed with
the Xianshuihe fault as the long axis.

Figure 1. Location of the 2022 Luding earthquake in the southeastern Tibetan Plateau (the seismic in-
tensity is from https://www.mem.gov.cn/xw/yjglbgzdt/202209/t20220911_422190.shtml; accessed
on 15 September 2022).

2.2. Data and Methodology

It is not feasible to conduct a detailed on-site investigation for each coseismic land-
slide induced by the earthquake because of the rugged terrain in the region, so multi-
temporal satellite images play a significant part in procuring coseismic landslide inventory
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data [34,38,39]. To compile a comprehensive landslide inventory database, we conducted
spot observations and satellite image interpretation. The post-earthquake satellite images
included GF-2 (access time: 10 September 2022; resolution: 3.2 m), GF-6 (access time: 10
September 2022; resolution: 8 m) and Beijing-3 (access time: 10 September 2022; resolution:
3 m), covering an area of about 2 × 104 km2 (Figure 2). Coseismic landslides caused by the
Luding event could be visually captured by comparing with pre-earthquake satellite images.
The pre-earthquake satellite images included ZY-1 (access time: 8 July 2022; resolution: 2 m)
and Sentinel-2 (access time: 29 April 2021; resolution: 10 m). We identified 6233 coseismic
landslides according to the discrepancy in hue, texture, forest cover and other information
of the satellite images (Figure 3). We outlined the profile of the coseismic landslide in
ArcGIS platform to calculate the area of each coseismic landslide. Meanwhile, the field
investigation gave great help for us to understand the coseismic landslide morphology
more specifically.

Figure 2. Coverage of satellite image.
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Figure 3. Coseismic landslides obtained from pre- (A,B) and post- (C,D) seismic satellite images.

In addition, to evaluate the impact of geology, seismic faults and topography on
the spatial pattern of coseismic landslides, we collected elevation, slope angle, aspect,
local relief, distance to seismogenic fault and lithology data. Slope angle, aspect and
distance to seismogenic fault were collected from digital elevation model (DEM) data with
30 m resolution (http://www.gscloud.cn/; accessed on 15 September 2022). Geological
data including lithology and faults were extracted from a geological map digitized to
1:250,000 scale. Subsequently, the spatial pattern of coseismic landslides with different
factors was statistically analyzed in ArcGIS platform.

Landslide abundance is a commonly used indicator to measure the distribution scale
of coseismic landslides [37,40]. We analyzed landslide area density (LAD) and landslide
number density (LND) of the coseismic landslide inventory through the grid-based maps
produced by small squares of 1 km in length and width with an area of 1 km2 (LAD refers to
the total area of coseismic landslides per km2; LND refers to the total number of coseismic
landslides per km2).

3. Results

3.1. Landslide Inventory

The energy aroused by the Mw6.6 Luding event is dozens of times smaller than that
of the 2008 Wenchuan event [41], so the type of landslide differs from that of the Wenchuan
event dominated by a large landslide. The spot survey reveals that the type of coseismic
landslide is mainly shallow landslide including natural slopes and cut slopes, manifested
as mountain peeling. Affected by seismic amplification effect along the slope and shear
vibration, coseismic landslides are mainly developed in the steep and gentle slope break
section of watershed, ridge and mountainside, mainly including soil collapses, strongly
weathered bedrocks (mainly granite in lithology) and rockfalls (Figure 4).
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Figure 4. Typical coseismic landslide types induced by the Luding event. (A) collapse flow;
(B–F) soil landslides.

The coseismic landslides triggered by the 2022 Luding event are primarily concen-
trated along the Moxi–Wanggangping section and distributed along both sides of the
seismogenic fault. The coseismic landslides are most concentrated about 10 km to the south
of Moxi Town, which is also a severe disaster area of coseismic landslides. However, there
are relatively few coseismic landslides at the epicenter (Figure 5A,B). Landslide densities
(LAD and LND) are mainly located south of the epicenter and are asymmetrically dis-
tributed along the fault. Over a 3545 km2 affected region, the 2022 Luding event caused
6233 coseismic landslides at a minimum. In accordance with the correlations between the
area affected by coseismic landslides and earthquake magnitude, most events are located at
the lower side of the envelope (dashed and solid lines) [26,27]. The 2022 Luding earthquake
follows the criteria as well (Figure 6A). For the landslide number and total area, the Luding
event is as close to the trend line as the previous earthquakes and is located below the fitting
line, demonstrating the coseismic landslides are more numerous and larger in area than
the earthquakes with same magnitude (Figure 6B,C) [33,42]. With regard to the coseismic
landslide frequency density p, Figure 6D compares the distribution frequency of the land-
slide area with other earthquakes near the fault: the 2008 Wenchuan event (Mw 7.9), the
2013 Lushan event (Mw 6.6) and the 2017 Jiuzhaigou event (Mw 6.5) [18]. The 2022 Luding
earthquake also fits the inverse gamma distribution, i.e., log(p) = −1.56 × log(A) + 3.0. For
the size distribution, we divided the coseismic landslides into five scales in Table 1.
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Figure 5. Regional distribution of the coseismic landslides caused by the 2022 Luding event. (A) LND;
(B) LAD.

 

Figure 6. Comparison of landslide inventory caused by the 2022 Luding event with other events.
(A) the earthquake magnitude and the area affected by coseismic landslides (the black circle represents
other earthquake cases from [26,27]); (B) the earthquake magnitude and the number of landslides
(other cases are referred from [33,42]); (C) the total area of landslides and earthquake magnitude;
(D) the correlations of landslide area frequency density for the 2022 Luding event, the 2008 Wenchuan
event, the 2013 Lushan event and the 2017 Jiuzhaigou event. The base map of (C,D) are referred
from [18].
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Table 1. Distribution characteristics of coseismic landslides in different scales.

Classification Landslide Area/m2 Landslide Number Total Ratio %

I areas < 1000 2337 37.50
II 1000 ≤ areas < 5000 2409 38.64
III 5000 ≤ areas < 10,000 720 11.56

IV 10,000 ≤ areas <
50,000 688 11.04

V areas ≥ 50,000 79 1.26
Total 6233 100

3.2. Spatial Pattern of Coseismic Landslides with Epicentral Distance

The epicentral distance for a coseismic landslide is considered as the distance from
the coseismic landslide point to the seismogenic epicenter [2,34]. The spatial distribution
of coseismic landslides is significantly impacted by the epicentral distance as well [28,43].
However, the initial rupture site of the Xianshuihe fault which is regarded as the micro-
epicenter of the 2022 Luding event is not the most intensive zone of the coseismic landslides
(Figure 7A). The pertinence between the distribution of the coseismic landslide and the
micro-epicentral distance is not correlative; the closer to the micro-epicenter of the earth-
quake, the lower occurrence probability of the coseismic landslides is, manifesting that the
initial rupture point of the seismogenic fault cannot generate the energy that can trigger
the occurrence of large-scale coseismic landslides. Since landslide concentration can assess
earthquake damage to the ground [44], we set the geographical location at the maximum
landslide area density as the macro-epicenter (located in 29.5◦N, 102.15◦E). Figure 7B
clearly demonstrates that coseismic landslides are concentrated near the macro-epicenter,
and the coseismic landslide number decreases inch by inch with the extension of the
macro-epicentral distance. Notably, coseismic landslides with large area (red circle) appear
sporadically far away from the macro-epicenter on the Xianshuihe fault’s hanging wall,
indicating that the spatial distribution of coseismic landslides caused by the 2022 Luding
event is not only driven by the magnitude of seismic energy, but may be related to other
influencing factors as well, such as terrain and stratum [43].

In order to quantitatively obtain the relationships between the spatial pattern of
coseismic landslides and the epicentral distance, we compared the correlations between
LAD and LND with the micro- and macro-epicenter, respectively, where the distance from
the epicenter is the Euclidean distance [3]. The LAD and LND of coseismic landslides have
no obvious correlation with micro-epicenter distance (Figure 8A,B), but are quantitatively
related with macro-epicenter distance, i.e., y = 216881 × x(−0.69) with R2 = 0.956 for LAD
and y = 0.011x2 − 0.89x + 18.78 with R2 = 0.791 for LND (Figure 8C,D). Therefore, the
macro-epicentral distance, as a metric, can better indicate the degree of harm on the
surface in the process of seismic energy diffusion when exploring the spatial pattern of
coseismic landslides triggered by earthquakes compared with the micro-epicentral distance.
Emphatically, the reason why two different functions were used is that we wanted to
obtain a best goodness-of-fit of each LAD and LND with satisfying R2 to ensure that the
subsequent quantitative analysis had a smaller deviation.
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Figure 7. Coseismic landslide distribution with epicentral distance. (A) micro-epicenter; (B) macro-epicenter.

 
Figure 8. Correlations between epicentral distance and landslide abundance (LAD and LND).
(A,B) micro-epicenter; (C,D) macro-epicenter.

The spatial distribution of coseismic landslides takes on a clear gradient reduction
tendency with the macro-epicentral distance in Figure 8. Based on this, considering the

172



Remote Sens. 2023, 15, 1323

landslide abundance, we proposed a fast and effective landslide intensity zoning method.
The partition thresholds were calculated by the fitting function of LAD and LND with
macro-epicenter distance in Table 2. Figure 9 is the landslide intensity map, depicting the
spatial pattern of coseismic landslides in high-, mid- and low-prone area. According to
statistics, the landslide number induced by the 2022 Luding earthquake in the high-, mid-
and low-prone areas is 3829, 2164 and 240, respectively, with areas for 18.78 km2, 12.30 km2

and 1.34 km2, respectively.

Table 2. Zoning value for landslide intensity.

Intensity Level LAD (m2/km2) LND
Macro-Epicentral

Distance (km)

high-prone 50,000 10 11.5
mid-prone 25,000 5 22.9
low-prone 18,000 1 39.0

 

Figure 9. Landslide intensity map.

3.3. Controlling Factors of Coseismic Landslide Distribution

Earlier research has found the nonuniformity in the coseismic landslide spatial pat-
tern [20,45]. In this part, we aim to analyze the related influencing factors that lead to the
phenomenon. Six related factors were taken into account to thoroughly understand the
impact of controlling factors on the spatial pattern of coseismic landslides.
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3.3.1. Topographic Factors

Elevation is a crucial topographic feature that affects the occurrence of coseismic
landslides [24]. The spatial pattern of coseismic landslides caused by the 2022 Luding
event with elevation was statistically analyzed based on DEM data (Figure 10A). For the
landslide abundance, the LAD and LND are mainly concentrated in the range of 0–10 km
from the macro epicenter and 10–35 km from the micro epicenter, and the larger values
of the LAD and LND correspond to the elevation of 1400–1800 m (Figure 10B,C). For the
individual landslide, the regions with the elevation ranking from 1000 to 2300 m are more
prevalent for coseismic landslides (Figure 10D), with 5518 in total, accounting for 88.5% of
the total. This prone area is a concentrated area of human activities (housing construction,
mining, road construction and water conservancy projects), manifesting that these activities
have a significant effect on the susceptibility of coseismic landslides. After the elevation
exceeds 1500 m, the landslide number decreases gradually as the elevation rises. With
the increasing elevation, the landslide area expands inch by inch, and the relationship is
approximately Log (y) = 0.52x + 2.35 (where y is landslide area, x is elevation of landslide).

 

Figure 10. (A) coseismic landslide distribution with elevation; (B,C) elevation of landslide with
macro- and micro-epicentral distance; (D) individual landslide distribution with elevation.

As is known, the slope angle has a massive effect on the distribution pattern of
coseismic landslides. The shear stress of the rock mass along the slope increases with
the increasing angle, in which case slope failure occurs in steep places even without
earthquake. Numerous studies have found that most landslides are concentrated around
20–50◦ [8,46]. Figure 11A–C shows that the most intensive landslide abundance (LAD and
LND) occurs in the range of 30–40◦, and the epicentral distance has little influence on the
angle. Throughout the whole affected region, most of the landslide cluster is in the range
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of 30 to 40◦, totaling 4211, accounting for 67.6% of the total (Figure 11D). The landslide
number shows a Gaussian distribution with the slope angle, reaching a peak at 35◦.

 

Figure 11. (A) coseismic landslide distribution with slope angle; (B,C) slope angle with macro- and
micro-epicentral distance; (D) individual landslide distribution with slope angle.

Local relief reflects the surface distortion and is also a quantitative indicator of the
gravity potential energy in the region. Figure 12A depicts the coseismic landslide distribu-
tion with the local relief as the background (the local relief map is extracted in GIS platform
based on 5 × 5 km window). As shown in Figure 12B,C, the most intensive LAD and LND
are primarily gathered at the elevation difference ranking from 1400 to 1800 m. In addition,
90.7% of the landslides occurred in the elevation of 1200–2000 m, 5654 in total (Figure 12D).

During seismic wave propagation, the development of coseismic landslides would be
impacted by the aspect of slope [40,45,47]. In addition, the influence of climate on slopes
with different aspect is also not consistent, resulting in different sensitivity to the instability
of slopes of different aspect. For example, the slope on the windward side is more prone
to runoff due to rain erosion, and these unstable slopes are more likely to be triggered by
earthquakes [13]. The spatial pattern of landslides in various slope aspects is shown in
Figure 13A. Statistical analysis indicates that the aspect distribution presents primarily S-E
predominance, consistent with the Xianshuihe fault’s strike and the travelling direction of
seismic waves, which can be explained by the stronger amplification effect on the slopes
that are back to the seismic wave’s propagation direction (Figure 13B,C) [48]. The coseismic
landslides in N, NE, E, SE, S, SW, W and NW are 292, 740, 1081, 1245, 908, 737, 684 and 546,
respectively, accounting for 4.7%, 11.9%, 17.3%, 20.0%, 14.6%, 11.8%, 11.0% and 8.7% of
total, respectively.
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Figure 12. (A) coseismic landslide distribution with local relief; (B,C) local relief with macro- and
micro-epicentral distance; (D) individual landslide distribution with local relief.

 

Figure 13. (A) coseismic landslide distribution with slope aspect; (B) landslide number and aspect;
(C) landslide area and aspect.
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3.3.2. Seismogenic Factor

The distribution of coseismic landslides is predominantly controlled by the seismo-
genic fault, confirmed in other cases [28,37]. In general, coseismic landslides occur on both
sides of the seismogenic fault, and the landslide number exponentially decreases as the
distance to fault increases [49]. Figure 14A shows the landslide distribution pattern with
different distance to fault. The landslide distributed in 0–5 km, 5–10 km, >10 km counts
4652, 1242 and 339, respectively, occupy 74.7%, 19.9 and 5.4% of total, respectively, and
follows an exponential distribution y = 1613 × e(−x/4.2) − 17.5 (Figure 14B). Furthermore,
the area of the coseismic landslides increases with the increase in the distance to fault,
following a relationship of approximately Log(y) = 0.04x + 3.05.

 

Figure 14. (A) coseismic landslide distribution with distance to fault; (B) correlations between
landslide distribution and distance to fault.

3.3.3. Geological Factor

Figure 15A shows the landslide spatial distribution pattern related to different stra-
tums. The potential impact areas of landslides have complex controlling lithologies, mainly
including sedimentary rocks and intrusive rocks. Statistically, there are 2261, 1358, 956, 745,
369, 227 and 177 landslides occurring in granite, quartz diorite, tuff sandstone, metasand-
stone, quartz sandstone, carbonatite and ultrabasic rock, accounting for 36.3%, 21.9%,
15.3%, 12.0%, 5.9% and 2.3% of the total, respectively (Figure 15B). Granite is the main
factor affecting the distribution of coseismic landslides. This “weakening effect” may be
that the granite rock mass has very developed fissure joints due to the long-term tectonic
activity in this area, leading to the decline of rock mass stability [40,50].
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Figure 15. (A) coseismic landslide distribution with lithology; (B) correlations between landslide
number and lithology.

4. Discussion

4.1. Landslide Intensity Mapping

Typically, seismic events cause varying extents of damage to the site. The Environmen-
tal Macroseismic Scale (EMS-98) can evaluate the level of ground damage of earthquakes,
mainly determined by the damage to objects or buildings and the feelings of people in the
epicentral area [51]. However, the EMS-98 is limited in a sparsely populated mountain
area. Subsequently, the Environmental Seismic Intensity Scale (ESI-07) was exclusively
developed to evaluate the impact of earthquakes in mountain areas on the natural en-
vironment [52]. The ESI-07 defines earthquake damage by considering the occurrence
and area distribution of earthquake environmental effect (EEE), including surface fault,
geological uplift and settlement, landslide, rockfall, liquefaction, surface subsidence and
tsunami [53]. Gosar [54] determined the seismic intensity map of the 1998 Mw 5.6 Krn
Mountains earthquake by investigating the spatial pattern of 78 rockfalls triggered by the
earthquake, indicating that the seismic damage can be reflected by the spatial pattern of
coseismic landslides/rockfalls when the geo-disasters caused by the seismic event are
dominated by slope movements. The intensity isoseism can be determined by the distribu-
tion probability of landslides/rockfalls of different sizes. However, it is not easy to gauge
the intensity isoseism and coseismic landslide regional intensity when there are mixed
numerous coseismic landslides/rockfalls with various size. The 2022 Luding event also
conforms to this characteristic.

The intensity zoning map of coseismic landslides developed in this paper reflected
the concentration of coseismic landslides from the distribution abundance, which could
therefore avoid some uncertainty caused by non-uniform landslide distribution with vari-
able size using ESI-07. The threshold values of different partition levels are determined
according to the specific distribution of coseismic landslides induced by earthquakes with
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different magnitudes. Emphatically, the landslide intensity map may not accurately reflect
the macro earthquake intensity, but provide a suggestion. The landslide intensity map is
the manifestation of the joint control of topographic conditions, seismogenic faults and
stratum lithology, which is helpful for people to better comprehend the damage caused by
seismic events on the spatial scale. The intensity mapping of coseismic landslides is not
only applicable to the 2022 Luding event, but is also worth exploring in other earthquakes
in the future. The zoning method based on macro-epicentral distance has better guiding
significance for post-earthquake landslide prevention, rapid evaluation of seismic intensity
and land-use planning.

4.2. Tectonic Genesis for the Discrepancy of Landslide Distribution

Many earthquakes have occurred on the Xianshuihe fault in history due to abundant
tectonic activities (Figure 16). According to the record, the GPS horizontal displacement
velocity in the seismogenic fault’s hanging wall is significantly larger than that in the
footwall and the direction of velocity is nearly parallel, which contributes to a sinistral
strike-slip earthquake for the 2022 Luding event. The spatial pattern of coseismic landslides
is profoundly affected by the fault slip mode. Coseismic landslides caused by strike-
slip earthquakes, particularly deep landslides, are often localized within 5 km of the
seismogenic fault [55]. The coseismic landslide spatial pattern of the Luding event also
conforms to this rule. The majority of coseismic landslides towards SE also reveal that
there is a strong correlation between the direction of seismic waves and the distribution of
coseismic landslides. Additionally, the preponderance of the coseismic landslides localized
in the hanging wall implies that the Xianshuihe fault’s hanging wall exhibits more robust
vibrational characteristics than the footwall wall [1].

Figure 16. Regional map showing the velocity field of GNSS horizontal motion before the 2022
Luding M6.8 earthquake (from http://data.earthquake.cn; accessed on 20 October 2022) and the
historical earthquakes (>Mw6) since 1900 (from USGS.gov|Science for a changing world; accessed
on 20 October 2022).
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The location of the micro-epicenter, projection point from source to surface, is deter-
mined by inversion from nearby stations based on seismic waves released by the initial
rupture of the fault. Seen in Figure 17A, the distance between the fault and the micro-
epicenter is a particular amount related to dip angle of the fault, slip angle and focal
depth. The accumulated stress in the process of plate compression is released suddenly
after an earthquake, and the fault plane releases seismic energy onto the surrounding
area (Figure 17B). During energy transmission, the seismic energy attenuates along the
path [56], resulting that the micro-epicenter is not the place with the largest surface energy,
which explains why the coseismic landslide spatial pattern is more closely related to the
macro-epicentral distance, and the macro-epicenter has more control over the occurrence
and spatial pattern of coseismic landslides than the micro-epicenter. In fact, the specific
position of the macro-epicenter depends vastly on the rupture direction of the seismogenic
fault during an earthquake. On account of the southward rupture of the seismogenic fault
during the Luding event [57], the macro-epicenter is located on the south side of the micro-
epicenter. This phenomenon is also confirmed in the 2008 Wenchuan earthquake because
the controlled area of coseismic landslides induced by the Wenchuan earthquake is just on
the northward rupture of the seismogenic fault, rather than the micro-epicenter [24]. The
impact of tectonics on spatial pattern of coseismic landslides induced by the 2022 Luding
event is emphasized, which differs from the combination of topography and tectonics
proposed by Zhao et al. [1]. Thus, we propose that more focus should be placed on the
macro-epicentral distance rather than the micro-epicentral distance in the future study of
the spatial characteristics of coseismic landslides controlled by epicentral distance.

 

Figure 17. Schematic Diagram of the 2022 Luding Mw6.6 earthquake. (A) three-dimensional focal
mechanism; (B) propagation process of earthquake energy.

4.3. Limitations

This study aims to compile a thorough coseismic landslide inventory for the 2022
Luding event and analyze the impact of potential controlling factors on the distribution
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pattern of coseismic landslides. However, there are still a few drawbacks in landslide
mapping and corresponding analysis.

For landslide mapping, we extracted 6233 landslides totaling 32.4 km2 in size, cov-
ering the area 50 km away from the epicenter. However, some small landslides may not
be effectively identified due to the inadequate resolution of satellite images and lush veg-
etation, resulting in a modest undercount of landslides compared to the actual situation.
Despite the fact that the data for the landslide inventory is overestimated, the present data
of coseismic landslides covered the whole meizoseismal region and will not change the
assessment results.

In addition, the mismatch between the DEM data (resolution: 30 m × 30 m) and
the geological map at 1:250,000 scale may lead to deviation in results, but this can be
avoided because it is not our main research purpose. The weathering of granite can also
be considered in the spatial pattern of coseismic landslides to obtain more comprehensive
outcomes, which requires more detailed geological and lithological mapping at a scale
larger than 1:250,000 (such as 1:25,000, 1:10,000 or 1:5000). These further studies are able to
add to our awareness of the relationship between geology and coseismic landslides and
additional details of granite weathering grade maps as a predisposing factor [58], which
contributes to our comprehension of landslide distribution for further landslide risk and
hazard assessment.

With regard to the analysis of epicentral distance, we took the place with the maximum
value of LAD in the study region as the macro-epicenter of the earthquake. However,
whether this location is the projection point on the surface where the maximum energy
is released when the fault breaks remains to be debated. Surely, the macro-epicenter, the
location where the surface is most affected by the earthquake, is related to the release
of earthquake stress. Moreover, we solely explored the correlation between epicentral
distance and spatial pattern of coseismic landslides from the macroscopic phenomenon
on the surface, without considering the intrinsic influence of seismic physical parameters
on landslides, such as seismic attenuation acceleration (α), ground motion period (T),
seismic vibration duration (t), etc. because these not only involve the research content of
the earthquake itself, but also involve the relationship between seismic physical parameters
and landslide material characteristic parameters. If the seismic physical parameters and the
coseismic landslide physical parameters are studied together, there will be many complex
functional relationships, and no satisfactory solution can be obtained.

5. Conclusions

In order to clarify the spatial pattern characteristics of coseismic landslides caused
by the 2022 Luding event, we provided a complete landslide inventory containing 6233
coseismic landslides through remote sensing interpretation and field investigation. The
associations between the spatial pattern of coseismic landslides and six potential controlling
factors encompassing elevation, slope angle, slope aspect, local relief, distance to the
seismogenic fault and lithology were analyzed. We found that mostly coseismic landslides
are primarily concentrated on the slopes at elevation from 1000 to 2300 m with slope of
30–40◦, an E–S aspect and local relief from 1200 to 2000 m. The main coseismic landslide
occurred in granite, accounting for the largest proportion (36.3%). Within 5 km from the
fault, there is an intensive concentration of coseismic landslides, clustered along both sides
of the fault. The seismogenic fault and focal mechanism play an important role in the
spatial pattern of coseismic landslides in this earthquake.

Through the maximum value of LAD of coseismic landslides, the position of the
macro-epicenter is established. The LAD and LND of coseismic landslides exhibit a
fairly satisfactory function relationship with the macro-epicentral distance (compared
with the micro epicenter) as follows: y = 216,881 × x(−0.69) for LAD with R2 = 0.956;
y = 0.011x2 − 0.89x + 18.78 for LND with R2 = 0.791. Then, the intensity distribution map
of coseismic landslides was proposed. The intensity distribution of landslides can reveal
the dissipation process of seismic energy propagation and provide information on the
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damage of the earthquake to mountain areas. In addition, we also revealed the reason
why the spatial pattern of coseismic landslides deviated from the micro-epicenter in the
2022 Luding earthquake from the perspective of tectonic activities, assisting us in better
comprehending the distribution mechanism of earthquake-induced landslides.
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Abstract: This case study focuses on the area of El Plateado near the city of Loja, Ecuador, where
landslides with a high impact on infrastructures require monitoring and control. The main objectives
of this work are the characterization of the landslide and the monitoring of its kinematics. Four
flights were conducted using a remotely piloted aerial vehicle (RPAS) to capture aerial images that
were processed with SfM techniques to generate digital elevation models (DEMs) and orthoimages of
high resolution (0.05 m) and sufficient accuracy (below 0.05 m) for subsequent analyses. Thus, the
DEM of differences (DoD) and profiles are obtained, but a morphometric analysis is conducted to
quantitatively characterize the landslide’s elements and study its evolution. Parameters such as slope,
aspect, topographic position index (TPI), terrain roughness index (TRI), and topographic wetness
index (TWI) are analyzed. The results show a higher slope and roughness for scarps compared
to stable areas and other elements. From TPI, slope break lines have been extracted, which allow
the identification of landslide features such as scarps and toe tip. The landslide shows important
changes in the landslide body surface, the retraction of the main scarp, and advances of the foot.
A general decrease in average slope and TRI and an increase in TWI are also observed due to
the landslide evolution and stabilization. The presence of fissures and the infiltration of rainfall
water in the unsaturated soil layers, which consist of high-plasticity clays and silts, contribute to
the instability. Thus, the study provides insights into the measurement accuracy, identification
and characterization of landslide elements, morphometric analysis, landslide evolution, and the
relationship with geotechnical factors that contribute to a better understanding of landslides. A higher
frequency of the RPAS surveys and quality of geotechnical and meteorological data are required to
improve the instability analysis together with a major automation of the GIS procedures.

Keywords: landslide characterization; evolution; RPAS; DEM; slope; aspect; TPI; TRI; TWI; Loja-Ecuador

1. Introduction

The study of landslides is of vital importance to understand and mitigate the risks
associated with natural phenomena as well as to promote the sustainable development
of affected areas. Understanding the characterization and analysis of the evolution of
landslides plays a fundamental role in the Sustainable Development Goals, because it allows
an adequate management of natural resources, more efficient territorial planning, and
protection of the communities that inhabit areas prone to landslides [1–4]. Understanding
the characterization and analysis of landslide evolution can significantly contribute to the
Sustainable Development Goals in several ways:
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Disaster risk management: Understanding the characterization of landslides and their
evolution makes it possible to identify landslide-prone areas and assess the associated
risk. This facilitates the implementation of adequate prevention and mitigation measures
to reduce the exposure of communities to landslides [5,6]. By minimizing the risks of
natural disasters, both people and the natural environment are protected, contributing to
long-term sustainability.

Sustainable urban planning: Analysis of the evolution of landslides helps to under-
stand how human activities can contribute to their occurrence. This is especially relevant
in the context of urban planning, where the growth of cities can increase the pressure on
slopes and unstable terrain [7,8]. By taking this information into account, regulations and
development guidelines can be established to avoid construction in areas of high landslide
risk, thus promoting more sustainable urban planning.

Ecosystem conservation: Landslides can have a significant impact on ecosystems,
altering soils, vegetation, and local hydrology. Understanding the characterization of
landslides and their evolution makes it possible to identify the factors that contribute to
their appearance, such as deforestation or soil degradation [9]. By taking steps to preserve
and restore natural ecosystems, you can strengthen the resilience of vulnerable areas to
landslides and promote environmental sustainability.

Natural resource management: Landslides can impact the availability and quality of
natural resources such as water and fertile soil. Through the characterization and analysis
of landslides, it is possible to understand how these processes affect natural resources and
take measures for their sustainable management. For example, soil and water conservation
practices can be implemented to reduce erosion and prevent landslides, thus ensuring the
availability of essential resources for future generations. To study natural hazards, specifi-
cally landslides, it is necessary to have techniques and procedures that provide information
on terrain evolution with sufficient spatial and temporal resolution [10–15] to determine
geomorphic changes. Currently, Global Navigation Satellite Systems (GNSS) [16–20] and
Terrestrial Laser Scanning (TLS) are commonly used, which provide high-density point
clouds and high-quality digital elevation models [21]. However, these techniques require
significant processing time and are costly. In this context, the use of remotely piloted
aerial systems (RPAS), also known as drones, represents a low-cost alternative [22–24]
that enables the acquisition of high-resolution aerial imagery for mapping and monitoring
small-scale areas [5,25–27].

The use of RPAS in the study of landslides has allowed for the evaluation of their
kinematic behavior and temporal evolution [5,25,26,28–30]. This is achieved through the
acquisition of photogrammetric products derived from precise processing, enabling mea-
surements that can even detect small-scale terrain changes. Structure from Motion (SfM)
algorithms are employed for images orientation [31–34] providing accuracies of about
0.10 m from which photogrammetric products such as DEMs and orthoimages are ob-
tained. The former are usually compared by means of DEM of differences (DoDs) and
the latter are used for interpretation and digital image correlation (DIC) [25–27,35–45].
The accuracy of photogrammetric products largely depends on the number and distri-
bution of ground control points (GCPs) and checkpoints (CHK) measured using GNSS
techniques [16,25,38,46,47], which enable model orientation [17]. Additionally, geodetic
measurements [45] using GNSS techniques provide high-precision coordinate estimation,
making them valuable for monitoring surfaces undergoing both slow and rapid deforma-
tions at different scales [48].

The geomorphometric approach [49] is employed to analyze the morphology of the
terrain based on high-resolution digital elevation models (DEMs) derived from LiDAR
systems or through RPAS photogrammetry, which allows for the detection of subtle changes
in the topography. This information can be used to generate maps of slope, aspect, curvature
and roughness, among others, which help to characterize landslides, identify their elements,
and understand the kinematics and dynamics of the slope [50–54].
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Recent findings regarding landslides in Ecuador have significant implications for the
understanding and management of this natural phenomenon. These discoveries allowed
for a greater understanding of the determinant and triggering factors of landslides, such as
topography, geology, seismic activity, and weather conditions. In addition, they have made
it possible to identify areas prone to this type of event [55,56], which contributes to better
urban and rural planning, as well as the implementation of preventive and adequate miti-
gation measures. These findings have also improved the ability to monitor land changes in
landslides areas based on classical approaches such as photointerpretation, DoDs calcula-
tion and point extraction and measurement [57], which is essential to alert communities
at risk and take timely measures to ensure the safety of the population. However, other
approaches are required such as DIC for a better measurement of displacements; object-
based analysis (OBIA) for features identification; and morphometric analysis, the approach
implemented in this work, for landslide and terrain characterization. In general, scientific
advances in this field are strengthening Ecuador’s resilience against landslides and require
a solid foundation for the development of effective natural risk management strategies.

Thus, the main objectives of this study are: (a) the characterization of the landslide,
identifying its elements and describing its morphology; and (b) the monitoring of its kine-
matics. For it, we have analyzed not only the direct photogrammetric products such as DEM
and orthoimages but also topographic or morphometric parameters and their changes. The
detailed and systematic analysis of these parameters is the main contribution of this study,
which has allowed precise landslide characterization and monitoring. Previous works
have focused on some parameters such as slope [52,53], aspect [53], curvature [51–54],
roughness [50,53] or TWI [50], but none have examined all of them and even less with a
multitemporal approach that allows landslide monitoring.

Thus, multitemporal RPAS flights were captured in a landslide in the El Plateado
sector of the city of Loja, Ecuador. One of the main advantages of RPAS is their capability to
fly at altitudes below 100 m, allowing for the integration of new sensors on aerial platforms.
RPAS can capture images from various angles, provide flexibility in conducting work
at different scales, offer cost-effective solutions, and deliver high-quality results [15–18].
RPAS technology has been successfully used for the cartography and monitoring of areas
spanning few square kilometers.

The scheduled flights allowed for the acquisition of images, which once processed,
produced orthoimages and DEMs. For this purpose, the photogrammetric image blocks
were oriented using SfM techniques with the support of ground control points whose
positions were determined using differential GNSS. The interpretation of the orthoimages
has allowed the observation of morphological features and changes in land cover and
elements affected by the landslide. Moreover, from DEMs, longitudinal profiles, DEMs
of differences (DoDs), and especially detailed maps of morphometric parameters derived
from DEMs such as slope, aspect, TPI, TRI, and TWI were obtained. These models have
enabled the detection of morphologies that contribute to the characterization of landslides
in the study area, and furthermore, due to their multitemporal nature, the analysis of their
temporal evolution.

2. Materials and Methods

2.1. Study Area

The study area is situated in the El Plateado sector on the western side of the city
of Loja, located in southern Ecuador, along the bypass road (Figure 1). Geologically, the
study area is part of the Trigal Formation (Miocene), which is primarily exposed in the
western portion of the basin (Figure 1). It predominantly consists of a homogeneous, finely
laminated brown clay with occasional gypsum veins. Additionally, it comprises coarse-
grained sandstones with thin layers of conglomerate and minor occurrences of limonite.
The sandstones exhibit horizontal stratification with crossbedding planes.
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Figure 1. Location and geological framework of the El Plateado study area. Adapted from
(Zárate et al., 2021 [57]).

The activity of the landslide is evident through the deposition of material at the
low part of the hillslope as well as the presence of cracks, lobes, and the formation of
main, lateral, and secondary scarps resulting from the ongoing movement and material
detachment (Figure 2b–d). The progressive development of the main scarp and the right
(southern) flank of the landslide caused the collapse of a residential structure (Figure 2a)
without any reported loss of human life.
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Figure 2. (a) Collapse of houses due to slope movement activity; (b) Presence of cracks in the slope
body; (c) View of the main scarp on the southern flank of the slope; (d) Accumulation zone along
the roadway.

2.2. Materials (RPAS and GNSS)

The RPAS used in this study consisted of a DJI Phantom 2 vehicle (Figure 3a) with
the following specifications: a maximum horizontal range of 1000 m, maximum horizontal
speed of 12 m/s, ascent speed of 6 m/s, descent speed of 2 m/s, net weight including the
battery of 1 kg, horizontal displacement accuracy of 2.50 m, vertical displacement accuracy
of 0.80 m, operating angle and temperature range from −10 to 50 ◦C. It was equipped
with a Zenmuse H3-3D gimbal made of aluminum alloy, which maintained the camera’s
position fixed in three axes using an Inertial Measurement Unit (IMU). The gimbal weighed
22 g (excluding the camera) and was compatible with GoPro and MAPIR cameras. The
power for the gimbal was supplied by a DJI Phantom 2 intelligent battery.

For autonomous flight of the RPAS, the DJI 2.4 GHz Datalink system (Figure 3b) was
used, enabling communication between the ground base and the aerial system through
bidirectional data communication modules. This system allowed the flight plan to be loaded
onto the RPAS via Bluetooth for subsequent execution. Flight planning and execution were
carried out using the DJI Ground Station Version 1.4.63 application. Images were captured
using a GoPro Silver Edition 3+ camera with a resolution of 10 Mp. The image capture
interval was set to 2 s.

The ground control point (GCP) coordinates were measured using the differential
GNSS technique with a Trimble R6 GNSS receiver (Figure 3c).
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Figure 3. (a) Phantom 2 equipped with a ventral camera and gimbal; (b) DJI 2.4 GHz Datalink
system for ground-to-air connection; (c) Dual-frequency GNSS receiver used for control network
point measurements; (d) Plastic markers used as ground control points (GCPs).

2.3. Methods

The methodology employed can be summarized as follows:

(1) Data capture of images from Remotely Piloted Aircraft Systems (RPASs) and ground
control points (GCPs) measurement using differential GNSS; software used Trimble
Business Center (TBC) [58];

(2) Processing of photogrammetric blocks and generation of DEMs and orthophotographs;
software used: Agisoft Photoscan V 1.4.5 [29,35,59,60];

(3) Generation of DoDs, profiles, and derivative models by a Geographic Information
System (GIS); software used: QGIS V 3.30.0–ArcGIS 10.2.2 [61–63];

(4) Mapping, morphometric analysis, and evolutionary assessment; software used: QGIS
V 3.30.0, SAGA GIS V 9.0.1 [64];

(5) Geotechnical characterization of materials.

2.3.1. Data Capture: Images and GCPs

The investigation of the slope movement in the El Plateado sector was conducted from
24 January 2017 to 12 March 2020, during which 4 RPAS campaigns were carried out for
image capture. Table 1 displays the dates and characteristics of the flights.
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Table 1. Details of RPAS missions in the study area.

RPAS Mission Control 1 Control 2 Control 3 Control 4

Date 24 January 2017 9 June 2017 8 June 2018 12 March 2020

RPAS drone Phantom 2

Camera GoPro Silver Edition 3+

Flight height (m) 84.2 87 87.6 89
Area (km2) 0.265 0.285 0.258 0.251
Resolution (cm/pix) 4.20 4.33 4.10 4.00
Number of images 327 489 335 356
Longitudinal overlap (%) 70 70 70 70
Transversal overlap (%) 70 70 70 70

Number of GCP 9 9 9 9

X error (m) 0.022 0.033 0.036 0.028
Y error (m) 0.028 0.024 0.039 0.021
XY error (m) 0.036 0.041 0.053 0.035
Z error (m) 0.031 0.034 0.023 0.031

Number of CHK 6 6 7 6

X error (m) 0.011 0.023 0.036 0.014
Y error (m) 0.031 0.024 0.019 0.021
XY error (m) 0.033 0.033 0.041 0.025
Z error (m) 0.025 0.041 0.028 0.026

To provide photogrammetric support and orientation for the models, an in situ net-
work of control and checkpoints was implemented. These points consisted of simple
concrete markers with a diameter of 0.15 m and a depth of 0.30 m, with a steel rod of 12 mm
diameter anchored at their center. Plastic markers measuring 1.00 m × 1.00 m were placed
on the control points to ensure proper model orientation during the processing phase with
the software (Figure 3d). Metal rings were installed at the center and ends of the markers,
allowing for precise centering over the network points and fixation to the ground using
metal hooks.

The coordinates of the control points were measured using differential GNSS technique
employing a Trimble R6 GNSS receiver (Figure 3d) with an occupation time of 10 min
at each point of the network. The post-processing of GNSS data used the data from the
LJEC GNSS reference station of the Military Geographic Institute (IGM) belonging to the
SIRGAS network and the Trimble Business Centre software version 2.6. The coordinates
were oriented in the UTM WGS 84 zone 17 South coordinate system. The number of control
and checkpoints is indicated in Table 1.

2.3.2. Photogrammetric Processing and Generation of Products

The aerial images obtained in the four RPAS campaigns were processed using Agisoft
PhotoScan Professional software version 1.4.5. The accuracies achieved in the orientation
process are shown in Table 1, and they are expressed as the root mean square error (RMSE).

The horizontal errors, both in the GCPs and the CHKs, ranged from 0.035 to 0.053 m,
while the vertical errors ranged from 0.023 to 0.041 m, all of which were consistently below
the recommended threshold of 0.10 m [40].

Subsequently, photogrammetric and SfM techniques were applied in the software to
orient the photogrammetric blocks. Point clouds and dense point clouds were generated
for the four processed flights, which were then filtered using a tool to remove outliers and
noise. On average, the dense point clouds encompassed 11,238,000 points for the four
flights. The result of this process was the corresponding digital elevation models (DEMs),
which were exported in TIFF format for analysis in a GIS, with a resolution of 0.05 m.

Finally, orthophotos were also produced at a resolution of 0.05 m with the aforemen-
tioned accuracy being below the pixel size. The orthophotos can be used to delineate
landslides in relation to the surrounding environment as well as to identify features such
as scarps, cracks, etc., through photointerpretation.
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2.3.3. Generation of DODs, Profiles and Derivative Models

First, the DEM of differences (DoD) is obtained using raster calculators in the GIS. For
the surface monitoring of landslides, at least two data acquisition periods are required [65].
In the case of multitemporal analysis [25,27,57], the DEMs are compared in pairs. DoDs
allow for the observation of vertical changes rather than vertical displacements. In fact, in
many cases, what is observed are horizontal displacements and advances of the mass, which
result in modifications of the DEMs [24,26,57]. DoDs can have negative values when the
surface is lower in the later date and positive values when the surface is higher in the later
date. Thus, excluding changes due to vegetation growth or decline, construction activities,
and human interventions on the terrain (excavations, flattening, or fillings), natural changes
in the surface of the terrain can occur due to surface descents (negative DoDs) in scarps
and head areas, or horizontal displacements that result in excavation (negative DoDs) or
accumulation of material (positive DoDs) in different areas of the landslide (head, body
or foot).

Second, to analyze the topographic parameters in the study area, profile lines were
established, as shown in Figure 4. Profiles were generated based on the DEMs using Profiles
tool in ArcGIS software, with a horizontal sampling interval of 0.50 m. The placement of
the profiles considered soil displacements observed during field inspections and surface
features. Profile A is longitudinal with a direction of N72◦E, Profiles B and C are oblique
with a direction of N33◦E and N30◦E, respectively, where B is more centered and C is more
displaced to the foot area. The profiles provide a clear visualization of the topography and
microtopography of the slope and the landslide, including all characteristic features such
as scarps, head area, main body, foot, toes, and even cracks. By comparing the profiles, the
changes in topography over time, the movement (downward and forward) of the mass,
and its eventual retreat can be observed.

Figure 4. Placement of profiles in the study area for the analysis of topographic factors.
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Lastly, in the third step, various derived models from the DEM have been obtained.
These models consist of a series of topographic parameters that characterize the morphology
of the slope and extract terrain features, focusing specifically on the main landslide but
also on other instability processes observed in the study area. The derived models include
slope angle, slope aspect, topographic position index (TPI), terrain roughness index (TRI),
and topographic wetness index (TWI) for each analyzed date.

Slope angle or simply slope is the most relevant factor in determining slope
stability [52,53,66–70]. Alterations in slope can increase shear stresses within the soil mass
due to gravitational forces, leading to slope failure. Depending on the slope gradient, slow
or rapid surface movements can occur.

Slope aspect or orientation, defined as the direction of the terrain’s inclination in each
cell, influences the physical properties of soils primarily through the effects of rainfall,
wind, and solar exposure [53,71–73].

The topographic position index (TPI) enables the description of morphological aspects
of the terrain by determining and segmenting the hillslope [49,53,54,74–76]. It is calculated
for the i-th pixel of the DEM elevation hi, where ui represents the standard deviation of
the DEM pixels and, σi is the standard deviation of the DEM pixels within that same range.
The calculation is given by Equation (1):

TPI =
(hi − ui)

σi
(1)

The terrain roughness index (TRI) [50,54,77] is a measure that quantifies the variability
of terrain height in a given area. It can be expressed using Equation (2):

TRI =
σz

Zo
(2)

where σz is the standard deviation of the terrain heights and Zo is the mean height of the
terrain surface. The result of the equation is a dimensionless number.

Finally, the topographic wetness index (TWI) [50,69,78] has been considered, which
is related to the slope of a terrain and is used to identify areas where moisture or water
accumulates. It is represented by Equation (3):

TWI = ln
(

a
tanβ

)
(3)

where a is the drained area for a specific cell, and tanβ is the slope of the analyzed cell.
For the determination of slope and aspect, ArcGIS V 10.2.2 software was used with

the employment of Slope and Aspect tools, while QGIS V 3.30.0 and SAGA (System for
Automated Geoscientific Analyses) V 9.0.1 software were used for TPI, TRI, and TWI [69].

2.3.4. Mapping, Morphometric Analysis, and Evolution Assessment

From DEMs and derivative models, terrain and hillslope forms in general and land-
slide features in particular can be identified and extracted. Slope and roughness (TRI) allow
for the identification of scarps (steep slopes) and the body or foot of the landslide. However,
it is the curvature or in this case the topographic position index (TPI) [51–54,79–81] that
enables the identification of slope break lines and consequently delineates different parts
of the movement. Specifically, the upper and lower break lines of scarps can be extracted.
Additionally, other elements such as the foot of the landslides and especially its toe can
also be detected [53].

The procedure involved obtaining the TPI map and symbolizing it with different
classification and palette schemes to find the most appropriate thresholds for detecting
break lines. The thresholds were ultimately set at +0.05 for the upper break line of scarps
and −0.05 for the lower break line. Once the thresholds were selected, the skeletonization
tool (SAGA tools) was applied to trace the lines (vectors) in shapefile format. The classified
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and color-symbolized rasters as well as the vectors from different dates can be used to
observe the evolution of the scarps (for instance, retreat of main and lateral scarps and
advancement of secondary scarps). Displacement measurements can be made using the
measuring tool in GIS. Other resolutions different to the reference one at 0.05 m (e.g., 1 m)
were also tested to better detect other features such as the toe, where the slope break is not
as abrupt and thus more visible over a longer profile.

Finally, after identifying the main landslide elements and other features through
photointerpretation, observation of the different derivative models, and the mentioned
automatic extraction methods, a zoning of the study area was performed in order to analyze
the characteristic morphometric parameters that define them. On one hand, landslide
features and on the other hand, vegetation and constructions (roads, and buildings) were
digitized. The latter were digitized to create masks that excluded the areas occupied
by these elements from the analysis of characteristic landslide and terrain elements. In
the case of vegetation, trees, shrubs, and undifferentiated areas of trees and shrubs were
differentiated. Additionally, as support for photointerpretation, the alternative vegetation
index GLI (Green Leaf Index) [82–84], which works with the native digital values of the
red, green and blue (RGB) bands, was calculated.

Once the vector layers of landslide elements, unstable areas, vegetation, and construc-
tions are obtained, they are rasterized. Subsequently, the raster calculator is applied to
obtain a new raster excluding the vegetation and construction areas using Equation (4):

Raster = raster elements × (raster vegetation − 1)× (raster constructions − 1) (4)

The elements identified and differentiated in the main landslide are as follows: main
scarp, head, lateral flank and scarps, secondary and counterslope scarps, body, secondary
body or lobe, and foot. Scarps, bodies, and foots of other minor instabilities in the study
area were also detected.

Finally, the analysis of morphometric parameters (slope, aspect, TPI, TRI, and TWI)
for the different elements was performed using zonal analysis tools (zonal statistics and
zonal histogram) in QGIS.

2.3.5. Geotechnical Characterization of Materials

Laboratory tests were carried out on different soil samples (3 soil samples at the head,
3 samples at the body and 3 samples at the foot of the slope) all obtained at a depth of 3
m with an open pit. Using the Center-pivot backhoe loader 450, a Soil Moisture SM300
Kit was used to measure soil moisture (w%) at the time of extracting the samples for
the respective analyses. The following tests were carried out in the laboratory, and the
respective standards used for their execution are indicated:

• Water Content of Soil (ASTM D4643-17) [85];
• Liquid Limit, Plastic Limit, and Plasticity Index of Soils (ASTM D4318-17e1) [86];
• Particle-Size Analysis of Soils (ASTM D422-63) [87];
• Unified Soil Classification System (ASTM D2487-17e1) [88];
• Direct Shear Test of Soils Under Consolidated Drained Conditions (ASTM D3080) [89]

3. Results

3.1. Orthoimages and DEMs

The orthoimages obtained in the study area for the different flights are shown in
Figure 5. Visual analysis of these orthoimages allowed for the identification of the main
scarp, the head, the lateral flank and scarps, the secondary and counterslope scarps, the
body, the foot, and other features. Among these, tension cracks in the head, body, and foot
of the landslide were noteworthy both in longitudinal and transverse arrangement. At the
crown level, the presence of induced cracks led to the failure of crown material, resulting in
multiple scarps. The crown of the main scarp maintained a semicircular shape during the
three observation periods. The landslide body could be clearly identified, as well as the
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accumulation zone at the foot and the advancement of material on one of the road lanes, as
shown in Figure 5a–d. The main scarp was continuously eroded due to the material falling
onto the slope body; however, its retreat was not very relevant, as will be discussed later.

 
Figure 5. Orthoimages obtained from the study area, where superficial changes can be observed in
the four-control dates. The dotted line shows the landslide limits: (a) 24 January 2017, (b) 9 June 2017,
(c) 8 June 2018, and (d) 12 March 2020.

In Figure 6, the digital elevation models (DEMs) generated from the dense point cloud
for the four-monitoring dates are displayed.
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Figure 6. DEMs obtained from the study area for the four monitoring dates. The dotted line
represents the landslide limit as well as the locations of the GCPs: (a) 24 January 2017, (b) 9 June 2017,
(c) 8 June 2018, and (d) 12 March 2020.

3.2. DEM of Differences (DoDs)

Figure 7 presents the DoDs of the El Plateado sector. The color palette was adjusted to
visualize subtle movements in the DoDs. The color palette represents positive values (red)
and negative values (green), with the former indicating an increase in terrain elevation and
the latter indicating a decrease in terrain elevation.

The DoDs were generated from two study periods. The first period corresponds to
January 2017 to June 2017; the second one covers from June 2017 to June 2018; and finally,
the third one covers from June 2018 to March 2020. In the first period (Figure 7a), it is
clearly visible that there are areas of terrain surface descent in the head and the upper part
of the landslide body. Similarly, in the landslide body, there are areas of terrain surface
descent related to secondary scarps and ascent due to the accumulation of material from
the main scarp and secondary scarps. At the foot, the terrain surface ascent due to material
accumulation or advancement is notable. As mentioned initially, points cloud filtering
was performed to remove vegetation, although there were areas where filtering was not
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applied to preserve the topographic surface, as seen in the southern zone of the slope
where positive values (light brown color) representing a surface elevation are observed,
corresponding to vegetation growth (corn crops).

Figure 7. DEM of difference (DoD): (a) January 2017 to June 2017; (b) June 2017 to June 2018; (c) June
2018 to March 2020.
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Figure 7b corresponds to the DoDs for the second period (June 2017 to June 2018). In
both the head and the body of the landslide, areas of surface descent or ascent are identified,
slightly displaced downhill compared to the previous period, indicating the progressive
downslope movement of the slope, mainly in the ENE direction. In the foot, surface descent
is observed, which is possibly related to the removal of material from the road. There is
also clear evidence of instability under the road, with a material descent indicating the
formation of a scarp.

In Figure 7c, a generalized descent is observed throughout the landslide body, which
can be attributed to the anthropogenic action of material removal for slope stabilization
carried out in early 2020.

3.3. Profiles

The results of the profiles (Figure 8) obtained from the DEMs allowed for the recog-
nition of changes in the landslide body and foot corresponding mainly to horizontal
displacements, taking the profiles obtained from the first DEM (24 January 2017) as refer-
ence. Profile line A, which corresponds to a longitudinal profile in the main direction of
landslide progress from the crown at the WSW toward the foot at the ENE, clearly reveals
different parts of the landslide: the main scarp and the head; followed by the body with a
counterslope scarp in the upper part and secondary scarps in the lower part; and finally
the foot that reaches the road. This same profile is observed in the subsequent dates (9 June
2017; and 8 June 2018), although it is displaced downslope and has less pronounced scarps
due to the evolution of the landslide. These features allow for estimating greater mass
descents and advances in the head and upper part of the body (total descent of about 6–8 m
and advances of around 20–25 m; 3–4 m and 10–12 m in each period); while at the foot, the
mass advances about 5–6 m, which may be underestimated due to material removal in the
road area. However, the profile from the last date (12 March 2020) is different, showing
a much more uniform slope from the crown area to the foot. Thus, what is observed
is a flattening of the slope with material removal and the disappearance of the typical
morphology, both in the scarp, in the body and even in the foot, where nevertheless a
steeper slope is present in the road embankment.

In the case of profile line B, which represents an oblique profile from the right flank-
scarp to the road, the main scarp is clearly observed in the first date, which is followed
by the head with a slight counterslope toward the scarp. Further down the body, there
is a convex shape, which then leads to a steeper slope toward the lower part of the body
and the foot at the road. This shape remains consistent with time, although the surface
gradually descends in the second and third dates. In the last date, there was smoothing of
the slope shape from the scarp to the road, although a certain slope was still observable.
We hardly observed any significant mass advancement in this profile due to its nearly
transverse direction compared to the main movement direction.

Profile line C, parallel to the previous one but shifted toward the foot area, shows
on the first date a more gentle right flank with almost no main scarp. Slightly below, the
body exhibits a secondary scarp, and finally, there is a slightly steeper slope in the foot and
road area. In the following two dates, there was a descent of about 3–5 m and a horizontal
advancement of about 6–8 m, as expected in the foot area. However, this advancement
could be attenuated by material removal from the road. In the last date, the change was
minor and mainly corresponded to a surface descent due to slope repair works.
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Figure 8. Details of profiles obtained from DEMs. The dashed line represents the lateral edge of the
road as a reference point for the corresponding analysis: (a) profile A; (b) profile B; and (c) profile C.

3.4. Topographic Parameter Maps

Before describing the topographic or morphometric parameters, the map of landslide
elements and unstable zones (Figure 9) mentioned in Section 2.3.4 is presented. This
map identifies the different types of scarps (main, lateral, secondary, counterslopes), the
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head, body, and foot of the main landslide, as well as other unstable zones present in the
study area.

Figure 9. Zoning of the landslide where the main features and elements obtained through photointer-
pretation and digitization are identified.

This zoning also serves for the analysis of the morphometric parameters presented in
the following subsections.

3.4.1. Distribution and Evolution of Slope

Slope is the most important topographic parameter that describes the behavior of the
terrain surface along time caused by slope kinematics [90]. Slope maps of the different
monitoring dates are shown in Figure 10, and these allow for analyzing visually the
temporal changes in slope distribution.

In the maps shown in Figure 10, areas with low slopes (<10◦) can be observed on the
road and the embankment below it as well as in the high and stable zone above the landslide
crown. Areas with steep slopes (above 30◦) can be seen in vegetated areas, especially trees
and bushes, which need to be disregarded. Focusing on the landslide area, steep slopes
are clearly observed in the different scarps (main, lateral, and secondary), while the slopes
in the body are lower, alternating between flat areas with steeper slopes corresponding to
secondary scarps. Slightly higher slopes are also observed in the foot area.

The slopes for the landslide elements for the first date are presented in Table 2. It can
be observed that the scarp areas have average slopes greater than 40◦ with the main scarp
reaching nearly 54◦. The head has a slope of 23.25◦, the main body has a slope of 19.84◦,
and the foot has a slope of 27.76◦. The overall slope of the landslide was 24.15◦ compared to
the stable zone with a slope of 15.61◦. Other unstable zones have average slopes of 22.59◦,
with the slopes of their scarps slightly lower than those of the main landslide scarps.
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Figure 10. Slope maps of the study area for the four monitoring dates: (a) 24 January 2017; (b) 9 June
2017; (c) 8 June 2018; (d) 12 March 2020.

Table 2. Slope statistics for landslide elements.

Element Average Mode Min. Max. Range Std-D. C.Var.

Main landslide

Main scarp 53.53 20.61 0.15 85.63 85.48 16.14 0.30

Head 23.25 20.48 0.00 75.60 75.60 12.39 0.53
Lateral scarps-flanks 40.97 19.12 0.56 83.23 82.67 16.08 0.39
Secondary scarps 43.65 25.46 0.30 82.28 81.98 13.67 0.31
Counterslope scarps 48.02 12.93 2.80 74.53 71.73 15.09 0.31
Body 19.84 7.10 0.00 77.69 77.69 10.60 0.53
Secondary body 26.75 25.46 0.07 81.11 81.04 12.49 0.47
Foot 27.76 25.46 0.07 70.36 70.29 12.50 0.45

Other landslides

Main scarps 40.95 32.01 0.00 83.05 83.05 13.60 0.33
Heads 18.83 12.93 0.00 74.74 74.74 10.41 0.55
Secondary scarps 35.99 14.64 1.05 65.63 64.59 13.54 0.38
Bodies 20.21 12.93 0.00 75.27 75.27 11.97 0.59
Foots 29.98 30.99 0.25 63.58 63.33 9.34 0.31

Stable area

Stable area 15.61 7.10 0.00 84.30 84.30 10.28 0.66

In Figure 11, the distribution of slopes in some of the different landslide elements
is shown.
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Figure 11. The distribution of the slope in landslide elements. The main scarp shows slope values
greater than 50◦. The landslide body has a slope range between 5◦ and 25◦; the foot of the landslide
has its highest slope is in the range between 25◦ and 45◦; and the stable zone has a slope range is
between 0◦ and 20◦.

The evolution of the slope can be observed through their frequency distribution in
each profile (Figure 12). In longitudinal profile A, taking the first date (24 January 2017)
as a reference with an average slope of 18.11◦, a gradual decrease in slope is observed,
becoming 17.75◦ in the second date, 16.72◦ in the third date, and more significantly in the
fourth date, decreasing to 13.30◦. In profile B, oblique to the direction of the landslide
and with an initial average slope of 21.79◦, the trend is a progressive decrease, reaching
21.40◦ in the second date, 20.40◦ in the third date, and 18.10◦ in the fourth date. Meanwhile,
profile C, which is located more marginally than the others, starts with an initial average
slope of 17.43◦ but exhibits different and more irregular behavior. In the second date, it
increases to 20.24◦, after which it decreases to 18.70◦ in the third date and increases again
to 21.42◦ in the fourth date.

Figure 12. Temporal evolution of slope in profiles: (a) Profile A; (b) Profile B; (c) Profile C. Dashed
lines represent the mean slope values for each monitoring date and corresponding profile. Each
colored line corresponds to the monitoring date.

202



Remote Sens. 2023, 15, 3860

The frequency of slopes below 20◦ increases in each profile. In profile A, it starts
at 60%, slightly decreases in the second date to 58%, then increases significantly in the
third date (65%) and particularly in the fourth date (76%). In profile B, a similar pattern
is observed with an initial percentage of 46%, which slightly increases in the second date
and further increases in the third (52%) and fourth (64%) dates. Profile C starts at 66%,
decreases in the second date to 56%, increases in the third date to 68%, and decreases again
in the fourth date to 60%.

3.4.2. Distribution and Evolution of Aspect

Figure 13 displays the aspect maps of the study area for the four monitoring dates.

 
Figure 13. Aspect maps in the study area for the four monitoring periods: (a) 24 January 2017;
(b) 9 June 2017; (c) 8 June 2018; (d) 12 March 2020.

In the maps shown in Figure 13, a set of slope units alternately oriented toward the
NW and SE can be observed, the landslide slope being oriented toward the NE but with a
wide range between the N and SE directions. There are also some localized areas in the
landslide with slopes facing the SW. This general arrangement remains consistent in all
analyzed dates, although the counterslope areas (between the S and W) generally appear
downslope in the other dates, except for the last date where they practically disappear.

In the element analysis for the first date presented in Table 3 and Figure 14, it can be
observed that the main scarp has an average orientation toward the NE although with
several relative maxima toward the N and E. The secondary scarps have a similar average
orientation to the NE, while the lateral scarps face the E, with two maxima toward the SE
and N, corresponding to the left and right flanks, respectively. Finally, the counterslope
scarps are oriented toward W. The body has an orientation in a wide range between the N in
the lower part and the S in the upper part. The orientation of the foot is highly concentrated
toward the NNE. The other unstable areas exhibit variable orientations, while the stable

203



Remote Sens. 2023, 15, 3860

zone shows a relatively insignificant average with maxima between the N and E or even
the NW.

Table 3. Aspect statistics for landslide elements.

Element Average Mode Min Max Range Std-D. C.Var.

Main landslide

Main scarp 68 0 0.00 359.99 359.99 139.43 1.05
Head 90 90 0.00 359.98 360.98 104.06 0.91
Lateral scarps-flanks 89 0 0.00 359.99 359.99 130.09 1.02
Secondary scarps 64 0 0.00 359.98 359.98 154.46 0.94
Counterslope scarps 271 270 1.28 358.73 357.45 29.81 0.11
Body 91 90 0.00 359.97 360.97 99.17 0.82
Secondary body 46 0 0.00 359.98 359.98 124.71 1.18
Foot 31 0 0.00 359.97 359.97 120.77 1.40

Other landslides

Scarps 313 0 0.00 359.99 360.99 107.93 0.40
Heads 280 0 0.00 359.97 360.97 121.74 0.52
Secondary scarps 110 180 0.00 358.79 358.79 74.40 0.68
Bodies 267 0 0.00 359.98 360.98 142.33 0.76
Foots 32 0 0.00 359.97 359.97 101.22 1.56

Stable area

Stable area 124 0 0.00 359.98 359.98 123.87 0.72

Figure 14. The distribution of aspects in landslide elements. The graph shows a greater distribution
of frequencies of all elements between 0◦ and 145◦ and from 270◦ to 359◦. However, the main scarp
presents a maximum at 0◦ (N) and other relative maximums at 45◦ (NE) and 90◦ (E). Body orientations
extended in the ranges of 0–145◦ and 330–359◦ (NW-SE); foot orientation is concentrated in the ranges
of 0–45◦ and 345–359◦ (N-NE); and stable area orientations are distributed in the ranges of 0–90◦ (NE)
and 270–359◦ (NW).

The evolution of orientation in profile A (Figure 15a) starts in the first date with a
predominant orientation toward the N and NE (scarp, body and foot), although there is also
a relative maximum toward the south (upper part of the body and counterslope scarps).
From there, the majority orientation gradually shifts more toward the NE, reducing the
orientations toward the S and W.

In profile B (Figure 15b), a similar pattern is observed, with an absolute maximum
orientation toward the N and NE in the first date, along with a relative maximum toward
the south. In the following two dates, no significant changes are observed although the
orientations toward the south decrease. In the last date, this trend continued, but the
absolute maximum clearly shifted toward the east–northeast.

Finally, in profile C (Figure 15c), the orientation is distributed between N and E in
the first date, remaining similar in the second date. In the third date, a relative maximum
appears toward the SE, and in the fourth date, the maximum shifts toward the NE.
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Figure 15. Temporal evolution of aspect in profiles: (a) Profile A; (b) Profile B; (c) Profile C.
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3.4.3. Distribution and Evolution of the Topographic Position Index (TPI)

Figure 16 displays the maps of the topographic position index (TPI) at a 1 m resolution
for the four considered dates.

Figure 16. Topographic position index (TPI) maps at 1 m resolution in the study area for the four
monitoring periods: (a) 24 January 2017; (b) 9 June 2017; (c) 8 June 2018; (d) 12 March 2020.

In these maps, there is a general predominance of TPI values close to zero throughout
the area, with concentrated sectors that are elongated in a certain direction, alternating
between positive and negative values. These sectors correspond to areas with clear slope
breaks, which correspond to the upper and lower boundaries of the main scarp as well as
the lateral and secondary scarps.

In the element analysis of the TPI at 0.05 m resolution for the first date, as shown
in Table 4 and Figure 17, all elements and zones show average values close to zero. The
differences occur in the range and, especially, the standard deviation, which is higher in the
scarps, particularly in the main scarp (0.13), and lower in the body and foot of the landslide
(0.02) as well as in the stable zone (0.01), which shows the least variability among all the
analyzed zones.

Meanwhile, Figure 18 displays the results of applying the skeletonization tool on the
four-measurement dates for TPI at 1 m resolution, showing the corresponding extracted
lines. The lines representing the upper boundary (blue) and lower boundary (red) of the
scarps are clearly visible.
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Table 4. TPI statistics for the landslide elements.

Element Average Mode Minimum Maximum Range Std-D. C.Var.

Main landslide

Main scarp 0.00 −0.02 −1.04 0.88 1.92 0.13 −103.11
Head 0.00 0.00 −0.35 0.36 0.70 0.02 −11.94
Lateral scarps-flanks 0.01 0.00 −0.63 0.40 1.03 0.06 9.27
Secondary scarps 0.00 0.00 −0.52 0.56 1.09 0.05 40.75
Counterslope scarps 0.00 −0.03 −0.26 0.31 0.57 0.08 −55.03
Body 0.00 0.00 −0.28 0.35 0.63 0.02 −28.22
Secondary body 0.00 0.00 −0.40 0.39 0.79 0.02 −23.97
Foot 0.00 0.00 −0.19 0.21 0.40 0.02 −217.18

Other landslides

Scarps 0.00 0.00 −0.54 0.81 1.35 0.05 −188.40
Heads 0.00 0.00 −0.17 0.43 0.60 0.02 −8.23
Secondary scarps 0.00 0.00 −0.22 0.17 0.39 0.04 58.95
Bodies 0.00 0.00 −0.25 0.24 0.49 0.02 −17.44
Foots 0.00 0.00 −0.20 0.20 0.39 0.02 −12.25

Stable area

Stable area 0.00 0.00 −0.68 0.53 1.21 0.01 108.33

Figure 17. Distribution of TPI at 0.05 m resolution in landslide elements. It can be seen that all the
elements present a maximum near 0, but the body, foot and stable area present a steeper peak, while
the main scarp has a smoother peak, that is, higher absolute values typical of zones with slope break.
The distribution of the TPI of the foot (red line) and the stable zone (green line) are coincident.

Throughout the different analyzed dates, excluding areas with vegetation changes,
changes in the position of the upper and lower slope break or edge lines of the scarps can
be observed, particularly the upper lines of the main scarp and the lateral scarps, which
show a retreat toward the upper part of the slope, as will be discussed later. Meanwhile,
the lower lines of these scarps exhibit less variation, and the lines of other scarps are more
discontinuous and irregularly distributed throughout the landslide area. Regarding the
foot area, the line defined by the tip is identified by the lower break or edge line of the TPI
at 1 m resolution. In this case, advancements of the lines in the downslope direction can
be observed, occupying the road area in the second and third dates, with a retreat in the
fourth date.
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Figure 18. Slope break lines obtained from TPI at 1 m resolution superimposed over the corresponding
orthoimages for the four monitoring dates: (a) 24 January 2017; (b) 9 June 2017; (c) 8 June 2018;
(d) 12 March 2020. The upper lines are drawn in blue and the lower ones in red.

3.4.4. Distribution and Evolution of the Terrain Roughness Index (TRI)

In the maps of Figure 19, areas of high roughness can be observed, particularly in
relation to the scarps, especially the main scarp and the lateral scarps, but also in the
secondary scarps and the foot of the main landslide, while the landslide body exhibits low
roughness. Areas of relatively high roughness are also observed in the scarps of other minor
landslides, while the stable zone presents the lowest roughness if areas with vegetation
are excluded.

The roughness values for the different landslide elements are shown in Table 5 and
Figure 20. It can be observed that the scarps have an average roughness of 0.14, which
is slightly higher in the main scarp (0.22). Meanwhile, the head area shows an average
roughness value of 0.06, which is slightly higher than the body (0.05) and lower than the
foot (0.07). The other instability areas exhibit generally lower but comparable values, which
are always higher than the stable zone (0.04).
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Figure 19. Terrain roughness index (TRI) maps in the study area for the four monitoring periods:
(a) 24 January 2017; (b) 9 June 2017; (c) 8 June 2018; (d) 12 March 2020.

Table 5. TRI statistics for the landslide elements.

Average Mode Min. Max. Range Std-D. C.Var.

Main landslide

Main scarp 0.22 0.05 0.00 1.60 1.59 0.16 0.71
Head 0.06 0.05 0.00 0.52 0.52 0.04 0.65
Lateral scarps-flanks 0.13 0.04 0.00 1.03 1.03 0.09 0.68
Secondary scarps 0.13 0.06 0.00 0.90 0.90 0.07 0.55
Counterslope scarps 0.16 0.03 0.01 0.44 0.43 0.09 0.52
Body 0.05 0.02 0.00 0.56 0.56 0.03 0.61
Secondary body 0.07 0.03 0.00 0.78 0.78 0.04 0.58
Foot 0.07 0.06 0.00 0.34 0.34 0.04 0.53

Other landslides

Scarps 0.12 0.08 0.00 1.00 1.00 0.08 0.65
Heads 0.04 0.03 0.00 0.45 0.45 0.03 0.64
Secondary scarps 0.10 0.03 0.00 0.27 0.27 0.05 0.50
Bodies 0.05 0.03 0.00 0.47 0.47 0.03 0.69
Foots 0.07 0.07 0.00 0.24 0.24 0.03 0.37

Stable area

Stable area 0.04 0.02 0.00 1.22 1.22 0.03 0.76
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Figure 20. Distribution of TRI in landslide elements. The stable area and landslide body present a dis-
tribution with low roughness indicative of a terrain with little topographic variability. Meanwhile, the
foot but especially the main scarp present higher roughness: that is, a greater topographic variability.

The evolution of roughness observed in the maps is relatively smooth at the overall
landslide level and is mainly concentrated in the scarps, where roughness increases in the
second and third dates. Changes in the position of high-roughness areas can be observed
in the body and foot areas due to landslide displacement. However, in the fourth date, a
general decrease in roughness can be observed in the body and foot. Some changes can
also be seen in other unstable zones, especially the one occurring under the road, over the
entire analyzed period.

3.4.5. Distribution and Evolution of the Topographic Wetness Index (TWI)

Figure 21 shows the distribution of TWI for each monitoring date, where higher
positive TWI values are represented in shades of blue. These areas indicate a high potential
for water accumulation or surface water runoff, primarily from rainfall, thus representing
in some way the drainage network of the slope. Negative values correspond to areas where
water accumulation is not possible, generally corresponding to the higher parts of the slope.

Thus, it can be observed that in the upper part of the landslide, near the main scarp
and lateral scarps, the values are low, gradually increasing in the head and along the body
where a drainage network formed within the landslide. Two drainage lines stand out
on both sides of the body, between it and the scarps, which developed from the cracks
generated by friction and displacement of the mass. Additionally, it is important to note
how the different networks converge in the foot zone and the road, where the highest index
values are reached. The remaining sectors of the study area outside the movement show a
better organized drainage network except in the areas of crops and vegetation, which are
more irregular. The drainage configuration changed throughout the analyzed dates, with
a tendency to accumulate higher index values in the foot zone around the road from the
first to the third date, while in the last date, the area shows a less hierarchical and more
irregular drainage structure.

These observations are corroborated by the results of the element analysis shown
in Table 6 and Figure 22. Thus, the scarps have low values of the TPI index, especially
the main scarp, which even presents negative values (−0.69). The remaining parts of the
landslide show increasing values from the head (1.74), body (1.88), and foot, where the
highest values are reached (2.22). The other unstable zones also show increasing values
from the scarps (1.35) to the foot (2.07). Moreover, the stable zone presents even higher
average values (2.38).
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Figure 21. Topographic wetness index (TWI) maps in the study area for the four monitoring periods:
(a) 24 January 2017; (b) 9 June 2017; (c) 8 June 2018; (d) 12 March 2020.

Table 6. TWI statistics for the landslide elements.

Average Mode Min. Max. Range Std-D. C.Var.

Main landslide

Main scarp −0.69 −2.65 −5.25 7.95 13.19 1.28 −1.85
Head 1.74 2.83 −4.55 12.18 16.72 1.51 0.87
Lateral scarps-flanks 1.02 −1.03 −4.73 8.43 13.16 1.55 1.52
Secondary scarps 1.04 −2.76 −5.34 7.11 12.44 1.39 1.33
Counterslope scarps −0.24 −4.15 −4.15 5.11 9.26 1.44 −6.00
Body 1.88 2.83 −4.46 13.57 18.03 1.59 0.85
Secondary body 2.06 0.59 −4.98 13.74 18.72 1.53 0.74
Foot 2.22 2.83 −3.56 11.50 15.05 1.21 0.54

Other landslides

Scarps 1.35 −1.34 −5.24 7.31 12.55 1.32 0.98
Heads 2.01 0.75 −4.72 11.71 16.44 1.39 0.70
Secondary scarps 0.77 2.68 −3.40 6.78 10.18 1.04 1.35
Bodies 2.35 2.83 −4.17 14.15 18.32 1.56 0.67
Foots 2.07 0.62 −3.86 8.54 12.41 1.23 0.59

Stable area

Stable area 2.38 2.83 −5.02 15.26 20.28 1.66 0.70

In Figure 23, the temporal changes of TWI in each profile are shown. In the case of
longitudinal profile A (Figure 23a), it can be observed that the mean TWI values gradually
increase from 1.38 (24 January 2017) to 1.49 (9 June 2017), 1.60 (8 June 2018), and 1.81
(12 March 2022), mainly in the foot area, as previously pointed out. In profile B (Figure 23b),
which is oblique to the landslide, the mean TWI values are 1.99, 1.66, 1.79, and 2.56 for the
considered date, showing an increasing trend of TWI in general. In profile C (Figure 23c),
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which occupies a more marginal position toward the foot area, a decrease in mean TWI
values can be observed, from 2.24 to 2.12, 1.92, and finally to 1.60. The discussion will further
analyze the variations of TWI and its relationship with the behavior of the slope movement.

Figure 22. Distribution of TWI in landslide elements. The main scarp present TWI values significantly
lower (negative average) than the body, foot and stable area of the slope (positive average).

Figure 23. Temporal evolution of TWI in profiles: (a) Profile A; (b) Profile B; (c) Profile C. Dashed
lines represent the mean TWI values in each monitoring date and corresponding profile. Each colored
line corresponds to the monitoring date.

212



Remote Sens. 2023, 15, 3860

3.5. Geotechnical Characterization of the Affected Materials

Table 7 shows the results of the tests conducted on soil samples. At the head, soils
with high plasticity clay (CH) have been determined, while at the body and foot levels,
inorganic silts (MH-OH) are present. LL represents the liquid limit, LP represents the
plastic limit, SUCS is the system classification of soil, φ represents the friction angle, and C
represents cohesion.

Table 7. Summary of laboratory test results conducted on soil samples obtained from the slope.

Ubication Sampling w (%) + LL w (%) * LP SUCS φ C (kg/cm2)

Crown
1 28.55 59.7 27.6 5.86 CH

27◦ 1.652 28.00 59.4 27.3 6.04 CH
3 28.26 60.1 27.4 6.17 CH

Body
1 34.22 67.9 33.8 38.3 MH-OH

22◦ 0.372 34.12 67.0 33.8 37.6 MH-OH
3 34.31 66.3 33.6 37.4 MH-OH

Foot
1 40.51 86.2 39.9 37.6 MH-OH

11◦ 0.342 41.02 84.6 39.9 37.1 MH-OH
3 40.74 86.0 39.1 38.7 MH-OH

+ Laboratory determined moisture content. * Moisture content measured in the field with Soil Moisture SM300 Kit.

4. Discussion

4.1. Accuracy and Uncertainty of DEMs and Orthoimages

Considering the root mean square errors (RMSE) at the checkpoint (CHK) locations
shown in Table 1, it can be observed that the horizontal errors (XY) range from 0.025 to 0.041 m
through the different flights, which is even lower than those found in GCPs (0.035–0.053),
and they are always below the 0.05 m resolution of the orthoimages and DEMs. Both these
values and those calculated for the control points are similar to the errors obtained by other
authors in RPAS surveys under comparable conditions [25,26,30,34,38,57,91,92]. Therefore,
the uncertainty for horizontal measurements is established at 0.05 m.

Regarding vertical RMSE (Z), the obtained values vary from 0.025 to 0.041 m with an
average of 0.030 m, which is similar to the average error obtained at GCPs (0.023–0.034 m).
According to previous studies [26,27,67], the uncertainty of the DEMs is estimated to be
two to three times the value of these errors, which amounts to approximately 0.10 m.
Meanwhile, the vertical uncertainty of the DoDs, also known as the minimum level of
detection (minLoD), is estimated as [23,26,46,93–96]:

UncertYEAR 1−YEAR 2 =
(

Uncert2
YEAR 1 + Uncert2

YEAR 2

)0.5
(5)

Thus, based on the overall uncertainty of DEMs, the uncertainty of DoDs can be stated
in 0.15 m.

In both cases, the displacements of metric order, both horizontal and vertical, caused
by the landslide in the study area far exceed these uncertainty thresholds, suggesting that
the models and orthophotos have more than sufficient quality for this study.

4.2. Detection of Elements through Photointerpretation and Semiautomatic Extraction

The detection and mapping of terrain features, specifically those related to the land-
slide, have been carried out through both photointerpretation and semiautomatic extraction
using orthoimages, DEMs, and derived models.

Photointerpretation of the orthoimages has allowed for the identification, delineation
and digitization of several features and elements of the main landslide, such as different
types of scarps (main, lateral, secondary and counterslope), crown and head, body and foot.
Other areas of instability and their corresponding elements as well as areas with vegetation
and structures have also been identified and mapped to exclude them from subsequent
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analyses. The identification of features and elements has followed the classic guidelines
of photointerpretation primarily involving the analysis of color (RGB images), including
shadows, and texture analysis.

However, this identification and mapping of elements has also relied on the observa-
tion of DEMs, especially the derived models. There are many works based on topographic
parameters carried out at different resolutions, from models corresponding to aerial Li-
DAR [51,53] to models obtained with RPAS images [52–54]. Thus, the slope model, for
instance, provides a good approximation for identifying different types of scarps in steep
areas (greater than 30◦−45◦), but it is also useful for identifying other landslide elements
such as the foot, with slope contrasting to the body or the stable zone where the slope
is gentler.

Meanwhile, aspect or orientation allows us to observe some features such as scarps or
lobes; thus, the scarps in some cases interrupt the general orientation of the slope, such as
the right lateral scarp that has a N orientation within a slope exposed to the ESE. Within the
landslide body, the lobed surface of a flow-type movement can be seen oriented to the N
on the left part and SE on the right part, suggesting an ENE axis as the direction of advance
of the landslide. In this area, counterslope scarps (WNW) are also very visible.

The TPI makes it possible to clearly delimit scarps and other elements such as the toe
or tip of the foot where slope breaks occur. Thus, the skeletonization of the zones with high
absolute values (positive and negative) of the index leads to quite clearly identifying the
lines corresponding to the upper and lower edge of the scarps, respectively. This index
and the curvature, which are usually closely related, have been used in previous works for
detecting landslide scarps [51,53,54,81]. In scarps, the slope breaks are very pronounced,
so they are well detected in the very high-resolution models (0.05 m) as well as in the
high-resolution models (1 m), although they are logically more precisely in the former.
However, other elements such as the foot and more specifically the toe, in which the break
is less pronounced, are better extracted with models of 1 m resolution.

The roughness also allows the identification of scarps in a very similar way to the
slope, but it does not provide any significant improvement with respect to it, so it is not
analyzed in detail in this work. Finally, the TWI makes it possible to identify the hillslope
areas where there is a great potential to accumulate or circulate water mainly from rain
and runoff. Thus, the drainage network of the hillslope is somehow represented, and its
higher or lower development and hierarchical order are analyzed. It can be seen that in
the upper part of the landslide, the values are low and increase in the body until reaching
higher values (water accumulation) at the foot next to the road. The formation of drainage
channels on the flanks can also be seen. The relationship of this index with the soil and its
incidence on the stability of the landslide are discussed later.

4.3. Morphometric Analysis

The morphometric analysis makes it possible to characterize in a quantitative way
the different landslide elements and distinguish them from the stable area of the hillslopes
based on the statistical values obtained for each of the parameters considered.

Thus, the scarps are one of the elements that are best characterized as they present
high slopes and roughness. Slope present average values greater than 40◦, and even 50◦
in the main scarp, which allows this parameter to be used for detecting areas that can
eventually be mapped as scarps. Meanwhile, the average slope of the landslide is about
24◦, more than 8◦ higher than that of the stable zone, which is consistent with the fact that
the slope, together with roughness, is a determining factor in stability and susceptibility
analyses both probabilistic and deterministic [97]. Furthermore, this slope is characteristic
of slide-flow type movements such as the one studied [98]. For the remaining elements,
the main body barely reaches an average slope of 20◦, the head of 23◦, and the foot of
almost 28◦.

The aspect logically does not show characteristic values as the slope angle, but it does
allow distinguishing elements of the landslide regarding the overall hillslope. Thus, in a
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sequence of hillslopes oriented to the NW and SE, the landslide shows an orientation with
a greater N component (NE in the body and NE in the foot). There are also areas with an
orientation contrary to the general one, corresponding to counterslope scarps.

The TPI average values are very uniform across all considered elements; in this
case, the statistical measure that marks the differences is the standard deviation, which
is significantly lower in the stable zone but increases noticeably in the landslide area,
especially in the scarp but also in the foot. In the scarps, although the mean value is
always close to 0 due to the compensation of positive curvature (upper limit) and negative
curvature (lower zone), the absolute values and consequently the standard deviation are
higher than in the stable zone, where they are always close to 0.

The TRI exhibits a distribution similar to the slope, with the highest values found in
the scarp zones (0.14), particularly on the main scarp (0.22). Meanwhile, the head area
shows an average roughness value of 0.06, which is slightly higher than the body (0.05)
and lower than the foot (0.07). The other instability zones also present higher values in the
scarps compared to the other elements, although these are slightly lower. In both cases, the
average roughness values are always higher than in the stable zone (0.04).

Finally, the TWI within the landslide area shows increasing values from the head to the
foot where the highest values are reached, indicating water concentration in the foot and
road area, which can promote instability in this part and the overall movement. However,
it is interesting to note that the mean TWI value is lower in the sliding zone and other
unstable areas compared to the stable zone, which may be attributed to the disorganization
of the hydrographic network within the landslides areas.

4.4. Landslide Evolution and Kinematics

The analysis of the landslide evolution has been carried out using various techniques:
photointerpretation, observation of DEM of differences and derived model maps, topo-
graphic and parameter profiles, and the break lines extracted from TPI. Based on these
analyses and the obtained results, areas of depletion and accumulation of material can be
identified in the head and foot, respectively, resulting from the landslide kinematics. In
summary, the following observations can be made regarding landslide evolution:

• The landslide had already developed before the start of the monitoring campaigns with
RPAS flights (24 January 2017), as clearly seen in the maps, profiles, and lines extracted
from the TPI maps, showing a well-formed main scarp and various secondary scarps
along the mass body. The body appeared individualized with a lobed shape and an
ENE direction axis, as indicated by the aspect map discussed previously, ending in a
foot that progressed in a direction with a greater N component due to the presence of
the road. The TWI allows for the observation of two drainage channels formed close
to the two-lateral flanks and a more irregular and less hierarchical drainage network
within the landslide. The average initial slope in the landslide area was 24◦, calculated
from the total area, and 18–22◦ in the two most significant profiles (longitudinal and
oblique-centered). This can be explained by the fact that the profiles include part of
the terrain on the crown and the road beneath the toe. The frequency of slopes less
than 20◦ was 60% in profile A and 46% in profile B.

• In the next two dates (flights on 9 June 2017 and 8 June 2018), an advancement of the
landslide mass could be observed, which can be estimated from the secondary and
counterslope scarps observed in the DoDs and derived models (slopes, aspect, TPI, and
TRI) but especially in the topographic profiles. In the longitudinal profile (A), mass
descents of approximately 6–8 m and advancements of around 20–25 m were estimated
in the head area and upper part of the body, which were distributed almost equally in
each period. These results lead to an average velocity approximately twice as high in
the first period (descent of about 1 m/month and advancement of about 4–5 m/month)
compared to the second period (0.5 m/month and 2–2.5 m/month, respectively). In the
foot and toe, the mass advanced about 5–6 m, mostly occurring in the first period with
an estimated velocity of around 1 m/month, although it may be underestimated due
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to material removal in the road area. The other profiles of a transversal nature allow for
estimating a descent of about 3–5 m and an advancement of about 6–8 m in the toe area,
which were also higher in the first period. The slope gradually decreased in both dates
in profiles A and B, as a result of the landslide advancement and material evacuation,
while profile C shows a more irregular evolution due to its marginal position in the
landslide. Meanwhile, the percentages of slopes exceeding 20% increase up to 65% in
profile A and up to 52% in profile B.

• In the last date (12 March 2020), a much flatter shape of the slope was clearly observed,
with material removal from the body and foot, although the slope above the road was
still present. The secondary scarps and counterslopes disappeared, as observed in the
aspect models, and the overall morphology of the body was smoothed, with a descent
of the surface that became progressively greater toward the lower part of the body
and the foot, reaching about 5 m compared to the third date and about 8 m compared
to the first date. The slope angle clearly decreased compared to the previous dates,
especially in the longitudinal profile (from 17◦ to 13◦). The percentage of slopes less
than 20◦ increased to 76% in profile A and 64% in profile B.

• Details about the evolution of the landslide, such as the formation of scarps and the
development of the foot, can also be deduced from the models and profiles. In this
case, the most appropriate analysis is the comparison of break lines extracted from
the TPI, both the 0.05 m resolution for the scarps and the 1 m resolution for the toe
(specifically the tip). Thus, the retreat of the main and lateral scarps of about 2–3 m
can be observed (Figure 24a), irregularly distributed (more in some sectors and less
in others) between the first date (24 January 2017) and the third date (8 June 2018).
Regarding the toe, advancements of about 5 m were observed between the first and
third dates (Figure 24b). This generally coincides with what is observed in the profiles.

Figure 24. Details of the evolution of the landslide based on slope break lines: retreat of the main
scarp with top edges extracted from TPI 0.05 m over the image of 24 January 2017 (a) and the image
of 8 June 2018 (b); (c) advancement of the toe with bottom edges extracted from TPI 1 m over the
image of 24 January 2017 and the image of 8 June 2018 (d).
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Therefore, the use of DEM with centimetric resolutions allows the detailed representa-
tion of the topographic changes caused by landslides, so it is feasible to detect changes in
some topographic parameters such as the slope, aspect, TRI and TWI.

4.5. Relationship between TWI and Soil Characteristics

Landslides occur when, in addition to the slope intrinsic factors or instability deter-
minants (such as lithology, slope, morphology, and vegetation cover), other triggering
external factors come into play, including rainfall [25,99–102], earthquakes [70], anthro-
pogenic factors [80], etc. However, in this case, rainfall is the main factor that affects
landslide processes, as established in the region surrounding the study area, where rainfall
thresholds triggering landslides have been determined [103]. A superficial exploration of
the terrain reveals the presence of well-identified cracks and jumps at the head (Figure 1b,c).

Analyzing the TWI maps, it is clear that blue shades represent areas of water accu-
mulation or circulation, which are concentrated in the lower part of the body and the foot
of the landslide, particularly over the road. This is confirmed by morphometric analysis.
This accumulation in the foot causes it to tend to flow, contributing to the instability of the
overall movement, which acquires a complex typology with a greater component of slide
in the head and earth/mud flow in the foot [104,105].

4.6. Relationship between the Landslide and Geotechnical Data

The data in Table 6 establish that the landslide head is composed of high-plasticity
clays, while the body and foot are made of high-plasticity silts. During the rainfall events,
the superficial runoff water with the infiltration causes the unsaturated soil layers to
decrease in resistance to cutting, causing instability. In this case, the presence of fissures
concentrates the flow paths, which increases the infiltration of rainfall water and therefore
causes alterations in the interstitial pressures that change the properties of the soil.

When there are clayey soils with high-plasticity indices (>29), the swelling and contrac-
tion processes can contribute to the opening and closing of cracks, significantly affecting
them [73]. Likewise, the presence of a more permeable layer underlying unsaturated soils
can create a capillary barrier effect, cause the storage of water at the bottom of the cracks
and, in the presence of finer soils, reach critical saturation conditions, in particular to the
variation of soil pressures that affect stability. The accumulation of water and saturation of
soil, with the consequent loss of shear strength due to an increase in interstitial pressure,
occurs to a greater extent in the lower part of the landslide and the foot, which causes it
to flow.

5. Conclusions

The use of remote sensing techniques such as remote piloted aircraft systems (RPAS)
has enabled the capture of high-resolution images and the generation of photogrammetric
products that can be employed for various analyses and applications. From these images
and the corresponding GCPs surveyed with GNSS techniques, DEMs and orthoimages of
high precision and resolution can be obtained for detailed landslide analysis. If several
surveys are available, multitemporal and evolutionary analysis can be addressed.

The case study of this work is a landslide in the area of El Plateado near the city of
Loja in Ecuador. Landslides in Ecuador are a widespread hazard with a high impact on
infrastructures; therefore, their characterization and monitoring are mandatory and urgent.
Thus, the main objectives of this study are: (1) to characterize the landslide, identify its
elements and describe its morphology; and (2) to monitor its kinematics.

Regarding the methodology developed to achieve these objectives, the following
observations can be made:

• Four RPAS flights were conducted for capturing images, which were processed with
SfM techniques to generate digital elevation models (DEMs) and orthoimages with
a resolution of 0.05 m. The horizontal uncertainty estimated was under resolution
(0.05 m), while the vertical uncertainty was 0.10 m for DEMs and 0.15 m for DoDs.
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Since the features observed and the displacements measured in the landslide are at
least an order of magnitude higher than the uncertainties, the quality of images is
more than sufficient for this study.

• We analyzed not only direct photogrammetric products (DEMs and orthoimages)
but also topographic or morphometric parameters such as slope, aspect, topographic
position index (TPI), terrain roughness index (TRI) and topographic wetness index
(TWI), which were determined using GIS tools. The systematic and detailed analysis of
these parameters and the obtained results can be considered as the main contribution
of this paper.

• Thus, the detection and mapping of landslide features have been carried out by
means of photointerpretation and identification from DEM, profiles, and derived
models. Morphometric analysis with GIS areal tools has allowed the characterization
of these features and landslide elements to be used in their automatic identification in
other areas.

• Meanwhile, multitemporal analysis by the calculation of DoDs, visual comparison
of orthoimages and DEM derivative maps and profiles has allowed the study and
monitoring of landslide evolution.

• The integration of the previous analysis, especially the TWI parameter maps, with
geotechnical data and soil properties leads to establishing the role of rainfalls as a
triggering factor.

• The main results obtained are as follows:
• Several scarps (main, lateral and secondary) were identified, and the landslide body

and foot were differentiated from the stable area. Moreover, lines of slope break such
as those at the upper and lower part of scarps or at the tip (toe) of the landslide foot
were extracted from TPI analysis at different resolutions (0.05 and 1 m).

• Scarps present the highest values of slope (up 40◦) and TRI, which are followed by the
foot and the body, and finally the stable area (8◦ lower than the whole landslide area). A
general decrease in average slope and TRI was observed due to the displacement of the
landslide mass and, in particular, due to the works of stabilization in the last period.

• TWI within the landslide area shows increasing values from the head toward the foot
where the highest values are reached, indicating water concentration. Moreover, its
value is lower in the landslide area than in the stable zone, which may be due to the
disorganization of the hydrographic network within the landslide. An increase in
TWI is also observed, especially in the landslide foot, which can accumulate a certain
amount of water.

• Horizontal displacements of 20–25 m and terrain descents of 6–8 m have been mea-
sured in the upper part (head and body), while in the foot, the mass advances about
5–6 m in the more active period (24 January 2017–8 June 2018). These displacements
coincide with those observed with the comparison of break lines at the foot area. This
comparison also allows us to observe a retraction of 2–3 m in the main scarp.

• The integration of the previous analysis, especially the TWI maps, with geotechnical
data and soil properties leads to establishing the role of rainfalls as a triggering factor.
Thus, rainfall produces water infiltration favored by the presence of cracks on the
terrain surface and therefore the flow accumulation of runoff water in the foot area.
This fact together with the geotechnical conditions, such as the presence of high-
plasticity clays in the landslide head and high-plasticity silts in the foot, leads to soil
saturation, an increase in pore pressure and then a loss of soil strength and slope
instability. The limitations of this study are related first to the temporal resolution of
images captured with RPAS and the scarcity and even the lack of geotechnical and
meteorological data, which does not allow real landslide monitoring. Meanwhile,
another important limitation deals with the low automation of the procedure both in
the feature extraction and morphometric analysis.

Future work should endeavor to overcome these limitations: both the capture and pro-
cessing of larger amounts of different data and the automation of the different procedures.
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Thus, a higher frequency of RPAS surveys would allow better landslide monitoring and
deeper analysis of its kinematics and dynamics through the study of relationships with
geotechnical parameters. In this sense, more and more accurate geotechnical and me-
teorological data would support this analysis. Regarding automation, GIS models, and
especially machine learning methods (ML) for feature extraction and characterization,
would be an interesting development for this approach. Moreover, techniques of digital
image correlation (DIC) could also support kinematic analysis.
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Abstract: Landslide occurrence in Colombia is very frequent due to its geographical location in the
Andean mountain range, with a very pronounced orography, a significant geological complexity and
an outstanding climatic variability. More specifically, the study area around the Bogotá-Villavicencio
road in the central sector of the Eastern Cordillera is one of the regions with the highest concentration
of phenomena, which makes its study a priority. An inventory and detailed analysis of 2506 landslides
has been carried out, in which five basic typologies have been differentiated: avalanches, debris
flows, slides, earth flows and creeping areas. Debris avalanches and debris flows occur mainly in
metamorphic materials (phyllites, schists and quartz-sandstones), areas with sparse vegetation, steep
slopes and lower sections of hillslopes; meanwhile, slides, earth flows and creep occur in Cretaceous
lutites, crop/grass lands, medium and low slopes and lower-middle sections of the hillslopes. Based
on this analysis, landslide susceptibility models have been made for the different typologies and
with different methods (matrix, discriminant analysis, random forest and neural networks) and input
factors. The results are generally quite good, with average AUC-ROC values above 0.7–0.8, and
the machine learning methods are the most appropriate, especially random forest, with a selected
number of factors (between 6 and 8). The degree of fit (DF) usually shows relative errors lower
than 5% and success higher than 90%. Finally, an integrated landslide susceptibility map (LSM) has
been made for shallower and deeper types of movements. All the LSM show a clear zonation as a
consequence of the geological control of the susceptibility.

Keywords: landslide; susceptibility analysis; modelling; Bogotá-Villavicencio road; Eastern Cordillera;
Colombian Andes

1. Introduction

Landslides are considered one of the most important natural hazards worldwide,
causing thousands of casualties and costs amounting to billions of euros each year [1–3].
Compared to other risk phenomena such as earthquakes or floods, the effect of landslides
is more diffuse and continuous in space and time, so their impact can be underestimated
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according to some evaluations [2]. Nevertheless, they cause significant damage to infras-
tructure, properties and the environment, as well as the interruption of socioeconomic
activity [1,4].

In Colombia, the occurrence of natural hazard phenomena, including landslides,
earthquakes, and volcanic eruptions, is very frequent due to its geographical location
in the Andean mountain range, with a steep orography, a great geological complexity
and a significant climatic variability [5–8]. In fact, according to [9], it is one of the most
prominent countries in global databases such as the Disaster database (EM-DAT [10]), the
Disaster Inventory System (DesInventar [11]), the Global Landslide Catalog (GLC [12]) and
the Global Fatal Landslide database (GFLD [13]). Specifically, DesInventar [11] reports
10,559 incidents and 7400 deaths for Colombia.

Thus, landslides in Colombia represent almost half of all natural catastrophic events,
far exceeding disasters caused by floods, earthquakes and volcanic eruptions [14], with an
average of 47 landslides and 59 deaths each year from 1993 to 2004. According to infor-
mation available in the Mass Movements Information System (SIMMA) of the Colombian
Geological Service (SGC [15]), 135,632 mass movements have been reported in the country
since 1900. Due to this, 31,631 people have lost their lives, and 68,792 families have been af-
fected. Combining different national and international databases, García-Delgado et al. [8]
collected a total of 2351 fatal landslides that caused almost 40,000 deaths, with some of
them in historical times (prior to 1912) and the majority in modern times (1912–2020), with
an upward trend in the last 20 years. In another work, Aristizábal and Sánchez [6] compiled
about 30,730 landslides that caused 34,198 fatalities and economic losses of more than
600 million dollars in the period of 1900–2018.

According to SIMMA [15], among the most affected regions in absolute terms are
the departments of Cundinamarca, Boyacá and Norte de Santander, located in the East-
ern Cordillera at the central and northern part of the country, as well as Cauca in the
Colombian Massif in the south. Other smaller departments, such as Caldas, Risaralda or
Quindío in the Central Cordillera or Atlántico in the Sierra de Santa Marta, also present
a considerable density in relative terms [15]. These data coincide with the compilation of
García-Delgado et al. [8], in which the highest densities of landslides occur in the depart-
ments of Tolima, Caldas, Risaralda, Bogotá, Quindío, Cauca and Cundinamarca. Specif-
ically, the departments of Cundinamarca and Meta in the central sector of the Eastern
Cordillera are exposed to medium and high probabilities of occurrences of catastrophic
phenomena, particularly landslides, caused, among other reasons, by a high anthropic
intervention on the slopes with the consequent deterioration of the hydrographic basins
and their stability conditions. Thus, the Subdirectorate of Geoambiental Engineering of
Ingeominas (now Subdirectorate of Geo-Hazards of the SGC) prioritized six regions with a
higher concentration of phenomena: the Guavio river basin, the area around the Bogotá-
Villavicencio road, the eastern slope of the Negro River, the Sumapaz river basin, the
middle basin of the Bogotá River and the municipality of San Cayetano [16]. This work
focuses on the vicinity of the road from Bogotá to Villavicencio, specifically on its section
towards the Orinoco river basin.

One of the most effective measures for risk prevention and mitigation is the evaluation
of both the hazard of the phenomenon and of the exposure and vulnerability of the elements
at risk [17]. In Colombia, some studies have been carried out that evaluate risk assessment
and reduction [7,18–20], but there are many more that evaluate hazard or susceptibility.
For hazard, there are numerous deterministic and probabilistic methods, the latter of which
are generally the most applied for extensive areas due to the lack of precise and exhaustive
data in such areas. Within the deterministic methods, different hydrological models [21,22]
or stability analysis methods such as infinite slope [23], r.slope.stability of GRASS [24],
FOSM [25–27], SLIP [26,27], PEM point estimates [25] or deformation analysis [28] have
been applied. These models have been used in high-impact landslides such as the Mocoa
debris flow in the southern part of the country [21,29–31], hillslopes around Medellin [22]
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and San Eduardo in Boyacá [28] or watersheds such as La Arenosa and La Liboriana [24–27]
in the department of Antioquia in the Western Cordillera.

Meanwhile, within probabilistic methods, most are extensively applied in the esti-
mation of spatial probability or susceptibility, which are based on the statistical analysis
of correlation between determinant factors and landslides, according to the susceptibility
definition established by Brabb [32]. To develop susceptibility models using statistical tech-
niques, numerous methods are available, which, according to Reichenbach et al. [33], can
be grouped into models based on indices [34–36] and bivariate statistics [37]; multicriteria
evaluation [34]; multivariate statistics [4,38,39]; machine learning, ML [40] and artificial
neural networks (ANN) [41,42]. The last two groups, sometimes with the ANN integrated
in the more general group of ML, have advanced regarding classical statistical methods
due to their greater versatility and better performance in nonlinear systems such as models
developed from factors of different nature [43]. These methods allow the integration of a
great number of factors that are not usually analyzed and selected since the algorithms
directly perform the fit of the models [33]. In our opinion, this lack of factor control and
selection leads to a loss of knowledge in the elaboration of the models and sometimes to an
overfitting of them.

Different studies have been conducted in the Colombian Andes, using all types of
methods from index-based methods such as frequency ratio or weight of evidence [44–48];
statistical methods such as logistic regression [31,46,48–51]; machine learning methods such
as random forest [46], graded boosted regression trees, GBRT [46] or multivariate adaptive
regression [31] and simple [46,52] or convolutional neural networks [53]. The methods have
been applied to different areas such as Capitanejo in the NE of the country [52], Medellín
and the department of Antioquia to the NW [47–49], Caldas [44], Cauca [45,50], Boyacá [52],
Bogotá and Cundinamarca [46,51] and Mocoa in the south [31]. Most of these studies, not
only in Colombia but also throughout the world, do not take into account the landslide
typology, which produces less precision and noise in the models.

Finally, it should be mentioned that those methods for determining rainfall thresholds
and, where appropriate, establishing early warning systems, exist throughout the whole
country [54] or in different departments such as Bolívar, Antioquia and Caldas to the
northwest [50,55–58] or in Bogotá [59]. Regarding precipitation, the influence of deep
convective systems [60] and the impact of climate change on the generation of landslides
and other risks [61] have also been evaluated in these previous works.

The main objective of this work is to present a detailed inventory and susceptibility
models of the study area. The inventory will allow the understanding of the different
processes that occur in this mountainous area and their characteristics, while the subse-
quent factor analysis by typologies will allow the factor selection and the determination
of the conditions under which they originate, as a previous step to modeling landslide
susceptibility. Thus, an important limitation of most current studies, such as the lack of
knowledge of the different landslide typologies, factors and conditions, can be overcome.
From this knowledge, susceptibility models for the different typologies have been devel-
oped using several methods and introducing an increasing number of factors, which will
allow a control of the models’ behavior in relation to overfitting and noise. Examples of
the main groups of methods that have been used are the matrix method (index), linear
discriminant analysis (multivariate statistics), random forest (machine learning) and a
perceptron ANN (neural networks). The results have been compared in order to provide
consistent results in determining the landslide hazard in the region and ensuring robust
models that can be applied in other areas. Finally, once the susceptibility models from the
different typologies are obtained and selected, they have been integrated into susceptibility
maps for shallower and deeper processes in order to assess the hazard in the study area.
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2. Materials and Methods

2.1. Study Area

The study area is located in the central sector of the Eastern Cordillera of the Colombian
Andes (Figure 1a). This is a mountain chain that extends for about 1000 km from southern
Colombia (Colombian Massif, where the cordillera divides into its three main branches,
Western, Central and Eastern) to near the border with Venezuela in the north (Sierra Nevada
del Cocuy), where the highest altitudes of around 5400 m are reached. To the west of the
Cordillera lies the Cundinamarca Plateau, where the capital of Bogotá (Figure 1b) and
many other towns are located; from there, it descends to the Magdalena River, which flows
between the Eastern and Central Cordilleras; to the east, the basins of the Orinoco and
Amazon rivers extend. In this central sector of the Eastern Cordillera, altitudes range
from a few hundred meters in the river basins to 4000 m at the summits. The Eastern
Cordillera of Colombia is an intracontinental mountain belt 100 to 200 km wide [62] with a
SW-NE trend. The materials correspond mainly to marine deposits but also transitional
to continental, ranging from the Cretaceous to Paleocene in age [63,64]. On both sides of
the Cordillera, in the Magdalena River valley and the Amazon and Orinoco basins, there
are Tertiary sedimentary or volcanoclastic deposits. Above all of them appear Quaternary
materials: alluvial, colluvial and paludal fillings. The structure consists of thrusts and folds,
which, in some cases, bring to the surface metamorphic materials of the Paleozoic substrate
(Ordovician and Devonian) without reaching the Proterozoic crystalline basement.

More specifically, the study area has an extension of approximately 746 km2 on the
vicinity of the road between Bogotá and Villavicencio (Figure 1b,c), a city located 75 km
southeast of the country capital (120 km by this road, also known as “Vía al Llano” or
Route 40). The area extends through the municipalities of Cáqueza, Fosca, Quetame
and Guayabetal in the Oriente province of the department of Cundinamarca and the
municipality of Villavicencio in the department of Meta. The municipalities’ total number
of inhabitants and percentage of rural population are Cáqueza with 15,594 inhabitants and
58%; Fosca, 5578 inhabitants and 75%; Quetame with 4929 inhabitants and 77%; Guayabetal
with 5809 inhabitants and 70% and Villavicencio with 451,212 inhabitants, of which only
the 7% are rural population [65]. The road between Bogotá and Villavicencio connects the
entire area together other minor roads.

The elevations range from 600 m in Villavicencio up to 3500 m in the mountain range
to the east of Quetame. The average annual rainfall varies from 500 mm in the western
sector to over 3000 mm in the Villavicencio sector. The slopes are generally quite steep,
with almost 64% in the range of 20–45◦. Hydrographically, it corresponds to the Negro river
basin, a tributary of the Guayuriba River that in turn flows into the Orinoco river basin.

From a geological point of view, materials from the Paleozoic substrate and Creta-
ceous sedimentary series [66] outcrop in this area, with the former in the lower part of
the basin and the latter in the higher part (Figure 1d). Within the Paleozoic, there are two
sets of materials: first, metamorphic rocks of low grade, phyllites, schists and quartzites
of Ordovician age; over them, discordantly, there are quartz sandstones and shales of
Devonian-Carboniferous age. In the Cretaceous series, there is a small outcrop of conglom-
erates and transitional environment sands at the base of the series, which pass to lutites of
a marine environment, which are predominant in the area. These series end in Paleogene,
and then Miocene sedimentary and volcanoclastic deposits fill the basins formed within
the Cordillera and at the east over the Paleozoic and Precambrian basement. The structure
is of thrusts and folds with NNE-SSW main direction, which allow the outcrop of the
underlying Paleozoic formations to the Cretaceous series in the lower part of the area. On
top of all these sets, there are Quaternary materials consisting of terraces, colluvial deposits
and current alluvial deposits in the riverbeds.

In the municipalities of the area, landslide activity is very high, according to SIMMA [15]:
Cáqueza has had 169 incidences; Quetame, 22 incidences; Guayabetal, 9 incidences and
Villavicencio, 94 incidences.
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Figure 1. Location and geology of study area: (a) Location of Cundinamarca and Meta Departments
in Colombia (own elaboration on AutoNavi Base Maps); (b) Colombian Andes and Eastern Cordillera
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(own elaboration on Esri Physical Map); (c): Study area and main populations (own elaboration
on Google Satellite); (d) Geological setting adapted from the Geological Map of Colombia [64].
Coordinates are in WGS84 (lat/long at left and top margins) and in WGS84-UTM 18 (projected, in
right and down margins).

2.2. Materials

The sources of information and software used are listed in Table 1. For the inventory,
background images from Google Maps—Google Earth (GE-GM) and Bing Maps (BM)
were used, corresponding to Airbus (Pleiades), Maxar and Copernicus (Sentinel-2). In GE,
images of different dates and resolutions could be observed.

Regarding the factor layers, the digital elevation model (DEM) obtained by InSAR
from ALOS PALSAR images of 2011 [67] was used, with a spatial resolution of 12.5 m,
downloaded from the Alaska Satellite Facility [68]. The geology comes from the Geological
Atlas of Colombia [69], available as vector information, from which the lithological units
have been extracted. A Sentinel image from 2020 [70] was used to calculate the NDVI
index and obtain the classification of land cover. Finally, the map of average precipitation
available in IDEAM [71] was used.

Table 1. Sources of information and software used in this study.

Information Resources Software

Digital elevation model (12.5 m resolution) JAXA/METI ALOS PALSAR, 2011 [67,68] Google Earth 7.3.6.9345 [72]
Background images GM, GE, BM (Airbus, Maxar, Copernicus) QGIS versión 3.18.3 [73]

Geology: Geological Atlas of Colombia Layer files (shp): Servicio Geológico
Colombiano, 2015 [69] SAGA versión: 7.9.1 [74]

Sentinel-2 image Copernicus, 2020 [70]
Rstudio 2022.02.2 [75]Precipitation in Colombia Raster files (tif): IDEAM, 2015 [71]

Regarding software, Google Earth Pro 7.3.6.9345 [72] was used for image visualization,
and QGIS 3.18.3 [73] and SAGA GIS 7.9.1 [74] for data processing and analysis. Additionally,
R studio 2022.02.2 statistical software [75] was used for generating multivariate statistical
and machine learning susceptibility models.

2.3. Methodology

The methodology is summarized in the flowchart of Figure 2. It includes first the
elaboration of a detailed landslide inventory in the study area. Second, it includes the
analysis of landslide determinant factors by typologies in order to the factor selection and
understanding the conditions of their occurrence. Third, it includes the elaboration of
susceptibility models (LSM) for each landslide typology using different methods, as well
as their validation, and finally, it includes the integration of LSM in synthesis maps.

2.3.1. Landslide Inventory

The landslide inventory was carried out using photointerpretation and digitization
from the GM-GE and BM background images. In addition, the database of the Colombian
Mass Movements Information System, SIMMA [15], was used as support. The digitization
of the identified movements was carried out by connecting to these images through WMS
from the open-source software QGIS, although the photointerpretation was helped by the
pseudo-3D views of the images in GE (Airbus/Pleiades, Maxar and Copernicus/Sentinel-2).
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Figure 2. Flowchart followed in this study.

Once digitized, a database was created, which, according to Chacon et al., 2006 [76] and
Guzzetti et al., 2012 [77], should include the spatial location, temporal dating and thematic
attributes of the landslides. Specifically, this database or inventory includes as attributes
the typology [78] and the activity [79], which were supported by the multi-temporal GE
images, and their area, calculated with the attribute calculation tools of QGIS. From this
database, an analysis has been carried out that will allow us to know the frequency and
total extension, the activity and the average area of each landslide typology.

2.3.2. Analysis of Determinant Factors

For the analysis of determinant factors and the elaboration of LSM with GIS, it is
necessary to have the factor layers. In this case, factor layers and maps have been obtained
from different official geographic information sources in Colombia (Table 2). Figure 3
shows the factor maps both the quantitative (DEM derivatives, precipitation, NDVI and
distance to roads and rivers) and the qualitative (lithology and land cover).

Table 2. Factors used in the analysis and their corresponding sources of information.

Factor Origin

Elevation
Derived from DEM

of 12.5 m resolution from JAXA-ALOS
PALSAR [67,68]

Slope
Aspect

Curvature
Topographical Position Index (TPI)

Terrain Roughness Index (TRI)
Lithology Geological Atlas of Colombia, SGC [69]

Precipitation Raster files (tif): IDEAM, 2015 [71]
Land Cover Sentinel-2 image, Copernicus 2020 [70]

Normalized Difference Vegetation Index (NDVI)
Distance to roads Roads digitized on GE-GM image
Distance to rivers Rivers digitized on GE-GM image
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Figure 3. Factor maps considered in the study area; (a): Elevation; (b): Slope; (c): Aspect;
(d): Curvature; (e): TPI; (f): TRI; (g): Lithology; (h): Precipitation; (i): Land Cover; (j): NDVI;
(k): Distance to roads; (l): Distance to rivers.
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From the digital elevation model (DEM), derivative models such as slope, aspect or
orientation, terrain curvature, topographic position index (TPI) and terrain roughness index
(TRI) have been obtained using QGIS analysis functions. Additionally, lithological units
extracted from the Geologic Atlas of Colombia [69] were used, which were rasterized; then,
a quantitative value was assigned to each unit based on material resistance [80], as shown
in Table 3 (lower to hard rocks and higher to soft rocks). The NDVI and land use were
obtained from a Sentinel-2 image using the corresponding formula [81] and supervised
classification (maximum probability), respectively. In the case of land cover, a similar
scheme to lithology was followed, assigning a value to each unit based on the vegetation
cover or other considerations [82], also shown in Table 3. Precipitation data were obtained
directly from a raster layer of precipitation intervals [71]. Finally, the distance to rivers and
roads was obtained through vector digitization on the GM/GE background image and
subsequent distance calculation using the corresponding QGIS function.

Table 3. Values assigned to lithological and land cover units. In lithological units, the values are
assigned to each unit based on material resistance (lower to hard rocks and higher to soft rocks). In
land cover units, values are assigned to each unit based mainly on the vegetation cover.

Lithology Land Cover
Unit Value Unit Value

Phyllites-Schists 0.3 Urban 0.6
Quartzarenites 0.4 Scarce vegetation 0.8
Conglomerates 0.8 Grass-Crops 0.5

Lutites 1.0 Bush-Shrubs 0.4
Shales 0.9 Forest 0.2

Volcanic 0.2 Water 0
Terraces 0.5

Alluvial fans 0.6
Alluvial deposits 0.7

The factorial analysis consisted of cross-tabulating the maps of determinant factors
and the landslide inventory, both global and/or by typologies. Then, the Kolmogorov–
Smirnov (K–S) coefficient was calculated to compare the distributions of factors in areas
affected and not affected by movements, thus estimating the correlation between factors
and landslides. At the same time, an analysis was conducted among the factors themselves
by determining the Pearson linear correlation coefficient in order to estimate the collinearity
between them. These analyses allowed for the selection of factors involved in the models
and the identification of conditions for the occurrence of the different landslide typologies.
The analysis has been made taking into account the landslide activity, although in most
typologies, the differences are not significant, so only the general results are shown in the
next section.

2.3.3. Susceptibility Models

Susceptibility models have been developed using different methodologies [33]: matrix
method (indices), lineal discriminant analysis, LDA (classical multivariate statistics), ran-
dom forest, RF (machine learning) and a simple artificial neural network (ANN) (Figure 4).

In the matrix method, the procedure starts by combining the raster layers of factors
in order to obtain the units of unique condition. For qualitative factors, discrete values
are used (Table 2), and for quantitative factors, continuous values are classified in inter-
vals. Next, a cross-tabulation is performed between the raster layer of unique condition
and the binary raster layers of presence/absence of landslides by typologies. From
this table, the percentage area of each combination of factors affected by landslides
can be obtained [35,36,83,84]. This is the susceptibility index, which is obtained by
the expression:

Ii =
zi
si
× 100 (1)
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where Ii is the susceptibility index; zi and si are, respectively, the area of each factor
combination affected by landslides and the total area of the combination.

 

Figure 4. LSM methods: (a) Matrix; (b) Linear discriminant analysis; (c) Random forest; (d) Artificial
neural network.

This index is used as a classification template, and thus, the susceptibility map is
obtained by reclassifying the unique condition raster layer with it [35,36,83,84].

Meanwhile, the remaining methods follow a different scheme that starts with obtaining
a random sampling of points. Based on previous works [85–89], a total of 5000 points
have been obtained with GIS tools (QGIS) in the stable zone (absence of landslides) and
5000 points in each of the differentiated landslide typologies (presence). A table was
then created by extracting the values of the different factors’ layers at each point or pixel.
Therefore, continuous (for quantitative factors) or discrete (for qualitative factors) values
are used. The integrated tables of landslides’ presence/absence were introduced in R studio
statistical software [75] with the aim of obtaining susceptibility models and maps (LSM).

Linear discriminant analysis is one of the multivariate statistical models most used
in slope instability or landslide susceptibility. These models assume that the factors that
caused landslides in a given area are the same ones that will cause landslides in the future.
The general linear models take the form [4,90]:

L = B0 + B1X1 + B2X2 + B3X3 + ... + BnXn + ε (2)

where L is the presence/absence or area percentage of landslides in each mapping unit; X’s
are input predictor variables or factors in each mapping unit; B’s are coefficients estimated
from the data through statistical techniques and ε represents the model error.

In discriminant analysis, the probability or susceptibility of landslides in a given
area (a pixel in our case) is calculated by adjusting the linear discriminant function to data
inputs and then minimizing the model error [38,39]. These data inputs are, on one hand, the
presence/absence of landslide in the area and, on the other hand, the values of determinant
factors considered in the same area (pixels in our case).

Random Forest (RF) is a nonlinear supervised method used for data classification
and regression. It is considered an ensemble method consisting of a combination of
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deep decision trees so that each tree depends on values taken from a vector sampled
randomly for growing [40,46,91,92]. Each decision tree grows splitting the input data
(in our case, factors values) recursively so that each division contains more or less
homogeneous states of the target variable (in our case, landslide susceptibility) [93].
In RF, each tree is trained on a subset of the data set and returns a result (in our case,
landslide presence/absence). Therefore, the result of each decision tree is considered a
vote, and thus, the final result is the one with the most votes or, in our case, the highest
probability of landslide occurrence [91,94]. Some relevant RF characteristics are its
predictive accuracy, low tendency to overfitting, relatively low computational cost and
its ability to work with high dimensional data [40,92,95].

An artificial neural network (ANN) is a set of interconnected nodes or neurons useful
for modeling problems with a complex relationship between analysis factors, so it is
ideal for dynamic and nonlinear phenomena such as landslide occurrence [41,42]. The
ANN architecture consists of a set of inputs (determinant factors); a set of intermediate
layers (hidden layers) that perform the processing and an output layer with the prediction
result [96]. Neural networks generally refer to supervised classification algorithms, which
compare a given output with a predicted output, adapting the necessary parameters
based on this comparison [97]. There are several neural network algorithms such as
convolutional neural networks (CNNs) or recurrent neural networks (RNNs); however,
one of the most widely used is multilayer perceptron (MLP), which has been applied in
several studies [41,42,98,99]. A perceptron is an individual neuron that allows us to classify
a set of inputs into one or two categories by means of a step function, which returns 1 if the
weighted sum of inputs exceeds a threshold or otherwise returns 0 [96]:

z = b + ∑ wixi

y =

{
1 i f z ≥ 0
0 i f z < 0

(3)

where y is the label or output variable (to predict); xi is the feature or input variable; wi
and b are the weights and the bias, both parameters that the model has to learn during the
training process.

Another important feature is the activation function, which allows an ANN to work
with nonlinear problems [96] and can be of linear, sigmoid or logistic types, hyperbolic
tangent or rectified linear unit (ReLU).

The MLP algorithm consists of a set of perceptrons organized in layers connected by
synapses that are assigned a weight. Connection weights, hidden layers and the output
layer were initialized and then updated using the backpropagation algorithm [42]. In our
case, the MLP implemented had only one hidden layer with 3 or 4 neurons.

In practice, modeling using discriminant analysis methods [4,38,39,90] and random
forest [40,46,91,92,94] involved partitioning the sample into training (80%) and validation
(20%) sub-samples, giving a 80/20 ratio as some works recommend [100], although other
proportions have been tested, such as 70/30 and 60/40. Next, a k-folds procedure (5 folds)
was applied with the training sub-sample in order to fit the models while avoiding skewed
partitions [101], in turn with an 80/20 ratio in training/testing. This procedure allowed us
to obtain the corresponding susceptibility models and maps (LSM) and their validation
through the area under the Receiver Operating Characteristic curve (AUC-ROC) [102]. In
the case of random forest, model refinement methods are applied based on hyperparameter
control, mainly number of trees (ntree, nodesize and tuneGrid) [40,91,95].

In the neural network models [41,42,46,52,95–99,103–107], the same landslide pres-
ence/absence samples as in the previous methods were used, from which a partition as
also made into training (80%) and validation (20%) sub-samples. With the training sample,
a one-layer ANN with 3 or 4 hidden neurons was adjusted using the rprop algorithm for
backpropagation [95]. The R script returned the corresponding LSM, and the AUC-ROC
value was estimated with the validation sample.
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Every method described allows the elaboration of LSM for each typology indepen-
dently, but from the results of factor analysis, synthesis maps have been made, grouping
the types of landslides that present similar conditions. In this way, an integrated LSM
was obtained for avalanches and debris flows and another for slides, earth flows and
creeping processes.

2.3.4. Models Validation

A key aspect in the use of all these methods and models is validation, which enables
them to be used as predictive models for estimating hazard and proposing prevention
and mitigation measures. The susceptibility models developed can be validated through
random, spatial and temporal partitioning of the inventory [108]. In this study, a random
partition validation was mainly used, based on obtaining training and validation sam-
ples [33]. As mentioned before, in LDA, RF and ANN methods, a sample of 2000 points
(20%) was used to validate the models fitted with the training sample (80%). However, to
validate the results of the matrix method, which is based on a different scheme, a new ran-
dom sampling of 2000 points (1000 in each of the landslide typologies and 1000 in the stable
area) was performed in QGIS. In all cases, the susceptibility values were extracted from
LSM by means of QGIS tools. The value tables were imported into R studio [75], where the
theoretical values (susceptibility) were compared with the actual values (presence/absence)
to calculate the AUC-ROC values.

AUC-ROC values were calculated from the ROC curves, which were built representing
some values derived from the confusion matrix [109] such as True Positive Rate (TPR)
or sensitivity in Y axis, versus the False Positive Rate (FPR) or 1—specificity in X-axis
for different thresholds of the predicted values (for instance, for intervals of 0.1). The
expressions for TPR and FPR are:

TPR (sensitivity) = TP
TP+FN

FPR = FP
FP+TN = 1 − speci f icity

(4)

where: TP are the true positives; TN are the true negatives; FP are the false negatives and
FN are the false negatives.

In addition to the validation with the AUC-ROC values, derived from the confusion
matrix, another independent validation method has been applied. The degree of fit (DF),
calculated in previous works from slope units [39] or landslide polygon areas [35,36,84]
has been adapted to random point samples. Thus, the LSM obtained with the procedure
described before were classified into five levels by means of the quantile method. Then,
the additional point sample obtained for validation of the LSM of the matrix method
(1000 points in stable area and 1000 points in each landslide typology) were used to extract
the susceptibility levels in them (very low, low, moderate, high, very high). The DF of each
susceptibility level was calculated as:

DFi =
pli/pti

∑ pli/pti
(5)

where pli is the number of points in landslide areas in each susceptibility level and pti is the
total number of points in each susceptibility level (approximately 200 points). Sum of pli is
1000, and sum of pti is 2000.

The sum of DF in very low to low susceptibility levels was considered the relative
error of LSM, while the sum of DF in high to very high levels was the relative success [36].

Finally, a temporal validation was conducted, obtaining the training samples from
the landslides catalogued as latent and relict (4000 points in each typology), while the
validation samples were extracted from the active landslides (1000 points in each typology).
Additionally, from the 5000-point sample obtained for the previous validation strategy,
4000 points were added to complete the training sample, and 1000 points were added to
the validation sample, giving again a training/validation ratio of 80/20. The next steps are
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the same as in the previous strategy, thus calculating the AUC-ROC values. This validation
has been applied only for LDA, RF and ANN methods.

3. Results

3.1. Landslide Inventory

The landslide inventory of Villavicencio-Bogotá (Figure 5) shows a total of 2506 landslides,
representing 8.13% of the study area (Table 4). Five basic typologies have been differentiated
according to Varnes [77] and Hungr et al. [110]: avalanches or collapses; debris flows; slides
and earth flows, often as complex movements but classified according to the dominant
type and soil creep, with a reduced speed and slow activity over time.

 

Figure 5. Landslide inventory in the study area. Five landslide typologies are distinguished.
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Table 4. Analysis of landslide inventory. Areas are in m2.

Typologies Number Total Area
Area Ind. (m2)

Active Latent Relict
No % A (m2) % No % No % No %

Avalanches 979 39 7.95 13 8123 760 78 199 20 20 2
Debris flows 866 35 2.29 4 2649 594 69 271 31 1 0

Slides 437 17 39.00 64 89,261 59 14 122 28 256 59
Earth flows 179 7 7.47 12 41,747 4 2 70 39 105 59

Creep 45 2 3.99 7 88,803 6 13 36 80 3 7
All landslides 2506 - 60.71 8.13 1 24,231 1423 57 698 28 385 15

1 This percentage corresponds to the area occupied by all landslides regarding the total study area.

The most predominant movements are avalanches (39%) and debris flows (35%),
followed by slides (17%), earth flows (7%) and creep processes (2%). However, in terms of
area, landslides occupy the largest extent (64%), with the percentages of avalanches and
debris flows decreasing to 13% and 4%, respectively and the percentages of earth flows and
creep increasing to 12% and 7%, respectively. These data are consistent with the fact that
the average size (area) of slides and creeping processes is almost 90,000 m2, whereas that
of earth flows is approximately 42,000 m2 and avalanches and debris flows have average
areas of only 8100 and 2650 m2, respectively.

From the activity perspective, most landslides are catalogued as active (57%), while
remaining are considered latent (28%) and relict (15%). However, this distribution is
different by type (Table 3), with avalanches and debris flows being predominantly active
(78% and 69%, respectively), whereas slides and earth flows are mostly relict (59%) and
creeping processes are latent (80%).

3.2. Analysis of Determinant Factors

The factors used in this study (shown in Figure 3) were analyzed; thus, their distribu-
tion in the area and their correlation with landslides are shown in Table 5 and Figure 6.

Table 5. Distribution of factor classes and cross-correlation with the landslides (all the landslides and
for landslide typologies). The distribution of factor classes is expressed in % of area of every class
respect to the total area of the study area. The density of landslides is expressed in % of landslide area
for each class respect to the total area of this class. The correlation is expressed as the Kolmogorov-
Smirnov (K–S) coefficient. The predominant classes of each factor, the classes with the highest density
of landslides and K–S coefficients considered as significant are shown in bold.

Factors Classes All Landslides Avalanches Debris Flows Slides Earth Flows Creep

Elevation (m)

500–1000 5.90% 4.00% 1.90% 0.11% 1.61% 0.37% 0.00%
1000–1500 15.53% 11.51% 3.76% 0.72% 6.73% 0.30% 0.00%
1500–1800 16.08% 15.40% 1.61% 0.50% 12.05% 0.88% 0.37%
1800–2000 11.86% 10.35% 0.97% 0.41% 7.55% 1.07% 0.34%
2000–2400 23.10% 8.85% 0.80% 0.46% 4.58% 1.71% 1.29%
2400–2600 9.75% 6.98% 0.60% 0.48% 3.17% 2.30% 0.44%
2600–2800 6.83% 5.85% 0.62% 0.64% 1.75% 1.87% 0.97%
2800–3600 10.96% 2.87% 0.29% 0.91% 0.32% 0.73% 0.62%

K–S 0.18 0.32 0.14 0.29 0.25 0.34

Slope (◦)

0–5 1.94% 6.96% 0.62% 0.29% 3.46% 0.76% 1.83%
5–10 6.38% 7.53% 0.58% 0.15% 4.00% 1.26% 1.53%

10–20 22.69% 9.02% 0.79% 0.21% 5.12% 1.73% 1.17%
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Table 5. Cont.

Factors Classes All Landslides Avalanches Debris Flows Slides Earth Flows Creep

20–30 31.08% 9.91% 1.22% 0.42% 6.34% 1.46% 0.47%
30–45 32.62% 8.89% 1.87% 0.86% 5.43% 0.64% 0.09%
45–90 5.29% 9.93% 3.24% 1.37% 5.08% 0.23% 0.00%
K–S 0.03 0.19 0.27 0.05 0.20 0.38

Aspect

N 11.25% 7.72% 1.34% 0.42% 4.77% 0.98% 0.21%
NE 11.88% 9.11% 1.49% 0.58% 5.71% 0.92% 0.40%
E 12.13% 10.37% 1.50% 0.80% 6.40% 1.08% 0.58%

SE 14.15% 9.47% 1.51% 0.83% 5.41% 0.99% 0.73%
S 13.23% 9.07% 1.52% 0.51% 4.33% 1.47% 1.24%

SW 13.17% 10.11% 1.50% 0.44% 5.85% 1.55% 0.77%
W 12.36% 9.37% 1.20% 0.37% 6.46% 1.06% 0.28%

NW 11.82% 7.90% 1.02% 0.37% 5.06% 1.21% 0.24%
K–S 0.04 0.05 0.14 0.06 0.08 0.24

Curvature

−1–−0.02 6.26% 10.45% 3.20% 0.98% 5.30% 0.77% 0.21%
−0.02–−0.01 18.06% 10.27% 1.62% 0.60% 6.10% 1.34% 0.62%
−0.01–0.01 51.22% 9.25% 1.16% 0.47% 5.65% 1.29% 0.68%

0.1–0.2 18.28% 8.04% 1.09% 0.47% 4.97% 0.99% 0.52%
0.02–1 6.19% 7.30% 1.67% 0.76% 4.17% 0.51% 0.19%
K–S 0.04 0.11 0.07 0.03 0.06 0.06

TPI

−100–−6 16.94% 12.29% 3.24% 0.82% 6.65% 1.22% 0.37%
−6–−2.5 16.52% 11.41% 1.47% 0.57% 6.87% 1.70% 0.80%
−2.5–0 16.47% 9.75% 1.01% 0.47% 5.98% 1.47% 0.81%
0–2.5 16.02% 8.58% 0.87% 0.44% 5.28% 1.25% 0.75%
2.5–6 16.29% 7.29% 0.88% 0.46% 4.58% 0.90% 0.47%
6–100 17.76% 5.83% 0.84% 0.51% 3.69% 0.49% 0.29%
K–S 0.12 0.24 0.09 0.10 0.15 0.12

TRI

0–2 16.02% 7.93% 0.58% 0.17% 4.31% 1.36% 1.52%
2–3 16.68% 9.36% 0.87% 0.23% 5.40% 1.83% 1.03%
3–4 18.12% 9.96% 1.14% 0.36% 6.34% 1.57% 0.54%
4–6 17.04% 9.72% 1.45% 0.57% 6.34% 1.10% 0.27%
5–6 13.65% 8.90% 1.74% 0.76% 5.59% 0.70% 0.10%
>6 18.50% 8.99% 2.49% 1.15% 4.94% 0.38% 0.03%

K–S 0.03 0.19 0.27 0.06 0.19 0.38

Lithology

Phylites-
Schists 38.43% 5.77% 1.85% 0.89% 2.90% 0.14% 0.00%

Quartzarenites 13.62% 5.62% 2.84% 1.27% 1.28% 0.22% 0.01%
Shales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Lutites 45.48% 13.32% 0.56% 0.06% 9.07% 2.37% 1.26%

Conglomerates 0.89% 4.22% 0.50% 0.20% 3.53% 0.00% 0.00%
Volcanic 0.13% 4.77% 0.85% 0.00% 1.92% 2.00% 0.00%

Alluvial fans 0.09% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Alluvial
deposit 0.93% 4.41% 1.88% 0.00% 2.53% 0.00% 0.00%

Terraces 0.42% 6.69% 2.86% 0.44% 3.39% 0.00% 0.00%
K–S 0.23 0.28 0.42 0.31 0.48 0.55
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Table 5. Cont.

Factors Classes All Landslides Avalanches Debris Flows Slides Earth Flows Creep

Precipitation (mm)

500–1000 2.43% 20.56% 0.38% 0.06% 15.44% 1.74% 2.93%
1000–1500 12.31% 9.80% 0.29% 0.01% 7.58% 1.63% 0.29%
1500–2000 7.74% 9.10% 1.51% 0.60% 3.58% 3.07% 0.35%
2000–2500 32.25% 7.91% 2.07% 0.85% 4.45% 0.38% 0.17%
2500–3000 14.37% 3.47% 1.88% 0.52% 0.90% 0.17% 0.00%
3000–4000 13.50% 3.40% 1.39% 0.86% 0.95% 0.20% 0.00%
4000–5000 17.40% 2.64% 1.12% 1.12% 0.40% 0.00% 0.00%

K–S 0.21 0.22 0.27 0.33 0.42 0.59

Land cover

Urban 5.00% 18.68% 7.06% 1.09% 9.58% 0.53% 0.43%
No

vegetation 1.94% 17.16% 5.70% 1.12% 8.46% 0.58% 1.30%

Grass 9.83% 16.15% 1.70% 0.50% 11.41% 1.21% 1.33%
Bush-Shrubs 62.01% 10.20% 1.07% 0.48% 6.27% 1.68% 0.71%

Forest 21.03% 2.40% 0.39% 0.33% 1.38% 0.27% 0.03%
Water 0.20% 15.44% 8.45% 0.58% 6.32% 0.00% 0.09%
K–S 0.17 0.29 0.09 0.17 0.17 0.20

NDVI

−0.5–0.1 5.08% 4.40% 1.81% 1.09% 1.48% 0.01% 0.02%
0.1–0.25 19.68% 2.40% 0.39% 0.34% 1.38% 0.26% 0.02%
0.25–0.4 58.66% 10.06% 1.11% 0.49% 6.14% 1.64% 0.69%
0.4–0.6 11.07% 16.61% 2.47% 0.60% 11.23% 1.13% 1.19%
0.6–1 5.52% 13.24% 5.35% 1.25% 5.51% 0.46% 0.66%
K–S 0.19 0.25 0.08 0.20 0.21 0.24

Distance to roads (m)

0–100 4.91% 17.53% 1.84% 0.02% 13.88% 1.17% 0.62%
100–250 6.49% 15.93% 1.31% 0.11% 12.38% 1.34% 0.79%
250–500 9.08% 13.50% 1.12% 0.22% 10.57% 0.83% 0.76%

500–1000 14.66% 11.81% 0.92% 0.30% 8.28% 1.07% 1.24%
>1000 64.85% 6.61% 1.50% 0.73% 2.79% 1.21% 0.38%
K–S 0.20 0.05 0.22 0.34 0.03 0.23

Distance to rivers (m)

0–100 3.95% 17.43% 6.33% 0.15% 10.57% 0.23% 0.15%
100–250 5.85% 17.44% 2.86% 0.46% 13.45% 0.45% 0.21%
250–500 9.00% 15.25% 1.93% 0.67% 11.55% 0.98% 0.11%

500–1000 16.32% 11.54% 1.31% 0.52% 7.98% 1.56% 0.18%
>1000 64.88% 6.47% 0.89% 0.57% 3.00% 1.21% 0.80%
K–S 0.21 0.24 0.04 0.31 0.08 0.21

The factors and their correlation with landslides are described below:
Elevation shows a wide range between 500 and 3600 m, although the majority (68%)

is well distributed between 1500 and 2800 m. Landslides have their highest density in
the range of 1500 to 1800 m. By typologies, avalanches are mainly concentrated in the
range of 1000 to 1500 m, debris flows above 2800 m, slides between 1500 and 1800 m, earth
flows between 2400 and 2600 m and creeping processes between 2000 and 2400 m. They
show a significant correlation in practically all the typologies, especially in avalanches and
creeping processes (more than 0.3).
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Figure 6. Distribution of classes and landslide density by class in each of the factors considered:
(a): Elevation; (b): Slope; (c): Aspect; (d): Curvature; (e): TPI; (f): TRI; (g): Lithology; (h): Precipitation;
(i): Land Cover; (j): NDVI; (k): Distance to roads; (l): Distance to rivers. Percentage area of the
different classes and intervals are shown as histogram bars in blue; Landslide density in each class is
shown as line diagram in red.

Slope is distributed practically throughout the total range from 0 to 90◦, but more
than 80% is between 10 and 45◦. The landslide density is equally well distributed in the
different ranges (between 7 and 10%), but by typologies, the distribution is different. Thus,
avalanches and debris flows have a higher density as the slope increases, while slides
reach their highest density in the range of 20 to 30◦, earth flows between 10 and 20◦ and
creeping processes between 0 and 10◦. Practically all typologies, except slides, show a
significant correlation.

Aspect appears to be fairly well distributed in all main orientations (11–14%). Mean-
while, the density is equally similar for all the movements (8–10%) and even in the analysis
by typologies. Only the creeping processes have a higher density on south-facing slopes,
so the correlations are generally low in all typologies, except for these processes.

Curvature presents a normal distribution concentrated around values close to 0. How-
ever, the distribution of landslides is higher in negative values (concave shapes) than in
positive values (convex shapes). This is more evident in some typologies such as avalanches
and slides, while in creeping processes, the higher density occurs in values close to 0. Cor-
relations are not significant in any case.

Topographic Position Index (TPI): The classification allows for a balanced distribution
(16–17%) of all intervals. However, the landslides’ overall density is higher in negative
values (10–12%) compared to positive values (6–8%). This asymmetry is very clear in
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avalanches, which concentrate in the lower sections of the hillslopes with negative index,
and not so much in slides, earth flows and creeping processes that move towards the lower-
middle and middle sections of the hillslopes. The correlation is significant in avalanches,
landslides and creeping processes.

Terrain Roughness Index (TRI): As in the previous case, the classification produces
a fairly uniform distribution of the different classes (14–18%). In this case, the landslide
density is relatively uniform in the different classes, although the analysis by types does
show important differences. Thus, avalanches and debris flows mainly concentrate in
high roughness classes, while landslides and especially creeping processes do so in low
roughness classes. The correlation is significant in all types, except for slides.

Lithology: Of the nine differentiated classes, three of them, such as lutites (45%),
phyllites and schists (38%) and quartz sandstones (14%), have a significant extension, while
the remaining classes barely reach 1%, including quaternary materials. Taking this into
account, a higher density is observed in Cretaceous lutites in all the landslide types; but
especially, a clear difference is observed between the distribution of avalanches and debris
flows with higher density in phyllites and quartz sandstones compared to slides, earth
flows and creeping processes, with higher density in Cretaceous lutites and conglomerates.
Avalanches and slides also involve quaternary materials (alluvial and colluvial). Meanwhile,
correlations are significant in all types and even for the landslides as a whole.

Precipitation has a wide range from 500 to nearly 5000 mm of average annual precipi-
tation, with the interval of 2000 to 2500 m having the greatest extension (32%). Unlike that
which might be expected, the landslide density decreases in the intervals of higher precip-
itation for all the movements, but certain differences are observed between the different
typologies. Thus, avalanches and debris flows have a higher density in areas of medium or
high precipitation, while slides, earth flows and creep processes have a higher density in
areas of lower precipitation. In all cases, correlations are significant.

Land cover: Of the six differentiated classes, there is a predominance of shrub areas
(62%) over-forested areas (21%), grasslands and crops (10%), areas with scarce vegetation
(2%), urban areas (5%) and water (0.2%). Excluding water and urban areas, which are
occasionally affected by movements, the highest landslide density occurs in areas with
scarce vegetation and grass/crop areas (19% and 17%, respectively) compared to shrub
areas (10%) and forested areas (2.4%). There are certain differences by typologies, as
avalanches and debris flows have a higher density in areas with scarce vegetation, while
slides, earth flows and creep processes occur mainly in grass/crop areas and even shrub
areas. In all cases, forest areas produce the lowest densities. The certain incidence of
avalanches and slides in urban or water areas is noteworthy. The correlations are also
significant in all cases.

NDVI: The most extended class is the 0.4–0.6 with almost 60%, followed by the 0.6–1
with almost 20% and the 0.25–0.4 with 10%. In terms of landslide density, the highest is
achieved in the middle values of the index, decreasing towards the low and high values.
By typologies, avalanches and debris flows present higher densities in the low values
than in the high ones, except in the very low values generally associated with urban areas;
meanwhile, slides, earth flows and creeping processes have the highest densities in the
middle values of the index. The correlations are significant in practically all cases.

The distance to roads logically shows an increasing distribution of the area as the
distance increases, with almost 65% of the surface area being more than 1 km from the main
roads. The landslide density, however, is higher at shorter distances than at longer ones.
By typologies, avalanches and earth flows barely present a relationship with roads, while
in debris flows and creeping processes, the density increases with distance; only in slides
is there an increase in density at shorter distances. The correlations are only significant in
slides, debris flows and creeping processes.

Distance to rivers: As in the case of roads, it shows an increasing distribution of
the area with distance, and almost 65% of the surface is more than 1 km away from the
riverbeds. Similarly, the landslide density increases at shorter distances compared to
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longer ones, although this does not happen in the same way for all typologies. Thus,
avalanches and slides have higher density at shorter distances, while creep processes have
higher density at longer distances, and debris flows and earth flows do not present a clear
relationship. Correlations are only significant in avalanches, slides, and creeping processes.

Meanwhile, the results of multicollinearity analysis among the factors are shown in
Table 6. As can be seen, strong correlations are only found between slope and TRI (0.97),
and land use and NDVI (0.75); moderate correlations appear between TPI and curvature
(0.65) and lithology and precipitation (0.59). Finally, weak correlations appear between
elevation and distance to roads and distance to rivers and between lithology and slope
and roughness.

Table 6. Correlation coefficients (Pearson) between factors. Strong and moderate correlations are
shown in bold.

Factors Elevation Slope Aspect Curvat. TPI TRI Lithol. Precip. Land C. NDVI D. Roads D. Rivers

Elevation 1.000
Slope 0.014 1.000

Aspect 0.001 0.022 1.000
Curvature 0.034 0.005 0.000 1.000

TPI 0.090 0.009 0.000 0.654 1.000
TRI 0.010 0.971 0.023 0.003 0.006 1.000

Lithology 0.006 0.355 0.045 0.003 0.007 0.326 1.000
Precipitation 0.248 0.231 0.029 0.000 0.001 0.210 0.585 1.000

Land
cover 0.114 0.073 0.140 0.000 0.004 0.058 0.022 0.215 1.000

NDVI 0.107 0.041 0.175 0.005 0.007 0.026 0.043 0.150 0.754 1.000
D.Roads 0.380 0.179 0.026 0.003 0.013 0.169 0.470 0.401 0.044 0.014 1.000
D.Rivers 0.471 0.086 0.012 0.011 0.036 0.071 0.029 0.119 0.021 0.006 0.185 1.000

Based on these analyses, a factor selection has been made for the elaboration of
susceptibility models and maps (Table 7). At the first level, all 12 factors used were
considered. At the second level, those factors that showed a clear collinearity (strong
and moderate correlation) were discarded, retaining those eight factors considered as
independent. At the third level, only those non-collinear factors that showed significant
correlation with the different landslide typologies were considered. Finally, the four factors
that show total independence between them but correlation with most typologies were
maintained: elevation, slope, TPI and lithology.

Table 7. Selected factors for susceptibility models: 1: All factors; 2: Non-collinear factors; 3: Factors
with significant correlation with the different landslide typologies; 4: Independent factors between
them but correlated with most typologies: Elevation, slope, TPI and lithology factors.

Factors Elevation Slope Aspect Curvat. TPI TRI Lithol. Precip. Land C. NDVI D. Roads D. Rivers

Avalanches 1234 1234 12 1 1234 1 1234 1 123 1 12 123
Debris
flows 1234 1234 123 1 124 1 1234 1 123 1 12 12

Slides 1234 124 12 1 124 1 1234 1 123 1 123 123
Earth
flows 1234 1234 12 1 1234 1 1234 1 123 1 12 12

Creep 1234 1234 123 1 124 1 1234 1 123 1 12 12

In summary, the conditions under which landslides occur preferentially are lithology
of lutites; anthropic land use, areas with scarce vegetation and grass-crop lands, with NDVI
between 0.2 and 0.4; elevation range between 1500 and 2000 m; precipitation between
500 and 1000 mm and the lower-concave section of the hillslopes.
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If the analysis is considered by typologies:

• Avalanches show a higher density in Paleozoic quartz sandstones and phyllites, areas
with scarce vegetation and NDVI between 0.1 and 0.25, altitudes between 1000 and
1500 m, slopes greater than 30◦, the lower-concave sections of the hillslopes, areas
with high roughness and areas near streams.

• Debris flows occur mainly in phyllites and quartz sandstones in areas with scarce
vegetation, elevations above 2800 m, slopes greater than 30◦, areas facing the east and
southeast and areas with high roughness.

• Slides occur more frequently in Cretaceous lutites and grass-crop areas with NDVI
between 0.25 and 0.4, elevations between 1500 and 1800 m, the middle-lower sections
of the hillslopes and areas near streams and roads.

• Earth flows are concentrated mainly in lutites in areas with shrub vegetation with
NDVI between 0.4 and 0.6, elevations between 2400 and 2800 m, slopes between
10 and 20◦ and the middle-lower sections of the hillslopes with low roughness.

• Creeping processes occur in lutites and grass-crop areas with NDVI between 0.25 and
0.4, elevations between 2000 and 2400 m, slopes of 0 to 10◦ and areas facing south with
low roughness.

As can be observed, there is a certain similarity between the conditions for the occur-
rence of avalanches and debris flows on the one hand, and slides, earth flows and creep
processes on the other hand. Thus, the first group is mainly associated with the lithology of
phyllites, schists and quartz sandstones, areas with scarce vegetation, slopes greater than
30◦ and lower sections of the hillslopes with high roughness. Meanwhile, the second group
is associated with Cretaceous lutites, grass-crop areas with NDVI between 0.25 and 0.4 and
slopes of 0 to 20◦ in middle-lower sections of hillslopes with low roughness.

3.3. Susceptibility Models and Validation

The results of the susceptibility models and maps (LSM) performed with training
samples of 8000 points (80%), using various methods and sets of factors, are shown in
Figure 7. Meanwhile, Table 8 shows the results of the AUC-ROC obtained with sample
validation (20%), Table 9 the DF for the same validation and Table 10 the AUC-ROC values
obtained with temporal validation.

It can be observed that in general, for all landslide typologies, techniques and numbers
of input factors, the models were well fitted, with the AUC-ROC for the validation samples
always above 0.70. Regarding typologies, the creeping processes presented AUC-ROC
values generally higher than 0.90; the avalanches and earth flows also reached quite high
values (average above 0.84), while slides and debris flows had the lowest values, although
still high (average above 0.80).

Regarding methods, the matrix method provides very high fits in general (average
close to 0.90), followed by RF (0.88), ANN (0.84) and finally LDA (0.82). Generally, starting
from the models obtained with the four basic factors (elevation, slope, TPI and lithology),
all statistical and machine learning methods underwent an improvement when one or two
factors were introduced that had some correlation with the landslides and low collinearity
(reaching AUC-ROC from approximately 0.80 to 0.84). Then, they moderated their growth
when non-collinear factors that did not show a high correlation with landslides (AUC-
ROC up to 0.86) were introduced and even stabilized when all factors were introduced,
including those that showed collinearity (0.87). The matrix method also improved when
factors correlated with landslides were introduced (AUC-ROC from 0.80 to 0.90), stabilized
with non-correlated factors (0.90) and increased again when all factors, even those showing
collinearity, were considered (0.98).

An analysis carried out with other training/validation ratios (70/30 and 60/40)
showed similar results. Thus, creeping processes presented the maximum AUC-ROC
values (average of 0.93 in both cases), and debris flows presented the minimum values
(0.80–0.81). Meanwhile, excluding matrix methods in which these ratios are not considered,
RF presented the highest AUC-ROC values (0.87–0.88) and LDA the lowest (0.82).
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Figure 7. Cont.
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Figure 7. Landslide susceptibility models: Avalanches (a): LDA; (b): RF; (c): ANN; Debris flows:
(d): LDA; (e): RF; (f): ANN; Slides: (g): LDA; (h): RF; (i): ANN; Earth flows: (j): LDA; (k): RF;
(l): ANN; Creep: (m): LDA; (n): RF; (o): ANN. Color scale from blue-green (lower levels of suscepti-
bility) to orange-red (higher levels of susceptibility.

Table 8. AUC-ROC values of LSM in sample validation for the different typologies, methods and
number of factors.

Methods N Factors Avalanches Debris fl. Slides Earth Flows Creep All mov.

Matrix

4 f 0.804 0.739 0.835 0.842 0.884 0.825
5–6 f 0.908 0.897 0.881 0.911 0.942 0.908
8 f 0.914 0.861 0.904 0.924 0.952 0.910
12 f 0.977 0.978 0.977 0.984 0.987 0.982

LDA

4 f 0.790 0.750 0.733 0.805 0.875 0.791
5–6 f 0.832 0.781 0.780 0.805 0.901 0.820
8 f 0.834 0.791 0.782 0.808 0.919 0.827
12 f 0.848 0.794 0.807 0.815 0.932 0.839

RF

4 f 0.773 0.727 0.776 0.817 0.908 0.800
5–6 f 0.874 0.870 0.874 0.830 0.916 0.873
8 f 0.894 0.882 0.891 0.915 0.984 0.913
12 f 0.885 0.873 0.897 0.939 0.988 0.916

ANN

4 f 0.800 0.715 0.802 0.810 0.867 0.796
5–6 f 0.857 0.806 0.814 0.822 0.909 0.842
8 f 0.857 0.799 0.818 0.833 0.934 0.848
12 f 0.844 0.819 0.841 0.877 0.940 0.845

Average 0.856 0.818 0.838 0.862 0.927 0.860

Methods

Matrix 0.901 0.869 0.899 0.915 0.941 0.906
LDA 0.826 0.779 0.776 0.808 0.907 0.819
RF 0.857 0.838 0.860 0.875 0.949 0.876

ANN 0.840 0.785 0.819 0.844 0.903 0.838

N. Factors

4 f 0.792 0.733 0.787 0.821 0.884 0.803
5–6 f 0.868 0.839 0.837 0.842 0.917 0.861
8 f 0.875 0.833 0.849 0.870 0.947 0.875
12 f 0.889 0.866 0.881 0.904 0.969 0.902
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Table 9. Degree of Fit of lower/higher susceptibility levels for the different typologies, methods and
number of factors.

Methods N Factors Avalanches Debris fl. Slides Earth Flows Creep All mov.

Matrix

4 f 5/79 11/58 6/88 3/95 2/98 5/84
5–6 f 2/96 3/96 1/92 1/99 1/98 2/96
8 f 3/95 5/87 1/94 1/97 1/97 2/94
12 f 2/97 1/99 1/99 1/99 1/99 1/99

LDA

4 f 5/82 4/72 9/78 7/93 1/99 5/85
5–6 f 6/86 4/81 8/84 7/93 1/99 5/89
8 f 5/88 4/81 7/84 6/93 1/99 4/89
12 f 4/90 4/81 5/85 6/93 1/99 4/ 90

RF

4 f 4/82 5/74 4/87 1/95 1/99 3/88
5–6 f 2/93 2/90 1/98 1/97 1/99 1/95
8 f 1/96 1/95 1/98 1/99 1/99 1/98
12 f 2/95 1/94 1/97 1/99 0/100 1/97

ANN

4 f 4/82 4/79 5/87 2/93 1/99 3/87
5–6 f 4/89 3/86 3/92 1/94 1/99 3/92
8 f 4/89 4/86 4/88 1/94 1/99 3/91
12 f 4/90 4/88 4/89 1/95 1/99 3/92

Average 4/89 4/84 4/90 3/96 1/99 3/92

Methods

Matrix 3/92 5/85 2/93 1/98 1/97 2/93
LDA 5/86 4/79 7/83 6/93 1/99 3/89
RF 2/91 2/88 1/95 1/98 1/99 2/94

ANN 4/86 4/84 4/89 1/94 1/99 3/91

N. Factors

4 f 5/81 6/71 6/85 4/94 1/98 4/86
5–6 f 4/91 3/88 3/91 3/96 1/99 3/93
8 f 3/92 4/87 3/91 2/96 1/99 2/93
12 f 3/94 2/91 2/94 2/98 1/99 2/95

Table 10. AUC-ROC values of LSM in temporal validation for the different typologies, methods and
number of factors.

Methods N Factors Avalanches Debris fl. Slides Earth Flows Creep All mov.

LDA

4 f 0.803 0.794 0.724 0.781 0.857 0.792
5–6 f 0.845 0.800 0.716 0.790 0.894 0.809
8 f 0.845 0.811 0.724 0.784 0.900 0.813
12 f 0.848 0.786 0.779 0.786 0.921 0.824

RF

4 f 0.745 0.699 0.687 0.755 0.868 0.751
5–6 f 0.789 0.795 0.735 0.787 0.865 0.794
8 f 0.794 0.724 0.743 0.806 0.913 0.796
12 f 0.832 0.748 0.790 0.829 0.923 0.824

ANN

4 f 0.801 0.770 0.705 0.768 0.831 0.775
5–6 f 0.819 0.793 0.726 0.764 0.847 0.790
8 f 0.834 0.793 0.734 0.795 0.869 0.805
12 f 0.926 0.785 0.785 0.808 0.926 0.846

Average 0.823 0.775 0.737 0.788 0.885 0.802

Methods
LDA 0.835 0.798 0.736 0.785 0.893 0.809
RF 0.790 0.742 0.739 0.794 0.892 0.791

ANN 0.845 0.785 0.737 0.784 0.868 0.804

N. Factors

4 f 0.783 0.754 0.705 0.768 0.852 0.773
5–6 f 0.818 0.796 0.726 0.780 0.869 0.798
8 f 0.824 0.776 0.734 0.795 0.894 0.805
12 f 0.869 0.773 0.785 0.808 0.923 0.831
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The validation made with degree of fit showed that the error/success ratio was very
suitable in most cases, with an average of 3/92, with the creeping processes being those
that presented the best ratio (1/99) and the debris flows the worst (4/84). By methods,
the matrix method and RF presented slightly better average ratios (2/93 and 2/94) than
ANN (3/91) and LDA (3/89). Regarding the number of factors included in the models, the
aver-age ratio of the models with four factors was the worst (4/86), while the remaining
ones reached 2–3/93–95.

The temporal validation shows acceptable results in general, with AUC-ROC values
being mostly higher than 0.7 but between 0 and 12 points lower than in the sample vali-
dation. The average is 0.80, which is 4.5 points lower than in the sample validation. By
typologies, the best results are obtained also in creeping processes (0.89) and the worst
in slides (0.74), in which the AUC-ROC values decrease about eight points. By methods,
all of them (LDA, RF and ANN) present similar AUC-ROC average values, about 0.80.
Regarding the number of factors involved, the models present increasing AUC-ROC values,
from 0.77 with 4 factors to 0.83 with 12 factors.

Finally, the integrated LSM of shallower processes (avalanches and debris flows) and
deeper processes (slides, earth flows and creep), modeled with the random forest method
and eight factors, are shown in Figure 8. In this case, the AUC-ROC values using sample
validation and an 80/20 ratio are 0.88 and 0.83, respectively.

Figure 8. Cont.
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Figure 8. Integrated LSM: (a) Shallow movements; (b) Deeper movements. Color scale from blue-
green (lower levels of susceptibility) to orange-red (higher levels of susceptibility).

4. Discussion

This study was conducted in an area of the central sector of the Eastern Andes moun-
tain range in Colombia, which is characterized by intense landslide activity due to particular
geological, topographical and climatic conditions. The geology of the area consists of Creta-
ceous sedimentary series, mostly composed of lutites and sandstones, structured by thrust
faults and folds with a SSW-NNE direction, through which materials from the Paleozoic
substrate with a certain degree of metamorphism outcrop [63,64]. The predominant ele-
vation in the area ranges from 1000 to 3000 m, with relatively steep slopes (modal range
between 20 and 30◦), generally above 1000–1500 mm of precipitation, and land cover made
up mainly of shrub-bush, grass-crop and forest areas.

4.1. Lanslides Inventory

A predominance of slide and earth flow type movements was observed when the
total area or extension of landslides were considered, although avalanches, debris flows
and creeping processes were also present. The individual areas were larger in slides and
soil creep (almost 90,000 m2), whereas that of earth flows was approximately 42,000 m2

and only 8100 and 2650 m2, respectively, for avalanches and debris flows. Meanwhile,
slides and earth flows occasionally had a complex character, although in this work, they
were considered the dominant process, which generally depends on their greater or lesser
evolution, respectively. On the other hand, the creeping processes corresponded to undiffer-
entiated flows with slow movement in general. Avalanches, which in other terminologies
may be called collapses [36,111], are frequently in transition with both rock falls and debris
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slides-debris flows; however, considering the morphology and slopes observed (steep but
not sub-vertical) and the materials in which they originate (phyllites, schists and quartzites
often superficially weathered), they are classified as debris avalanches. Nevertheless, these
avalanches can evolve into debris flows if the hillslope morphology allows it.

The inventory and differentiated typologies generally coincided with other studies of
the Eastern Cordillera of the Colombian Andes. Thus, in the study by Calderón et al. [46],
translational, rotational and wedge slides were differentiated in the vicinity of the Bogotá-
Villavicencio highway. In the study by Valencia and Martínez-Graña [52], debris-flow,
debris slides and rock falls were also inventoried in the Capitanejo area (Santander), further
north in the Eastern Cordillera. Garcia-Delgado et al. [28] studied deep landslides and grav-
itational processes in San Eduardo, which is also to the North. Finally, Pradhan et al. [51]
and Ramos-Cañon et al. [59] catalogued rock falls, avalanches, rotational and translational
landslides, earth-mud flows and debris flows. In other parts of the country, such as the
Western and Central Cordilleras, shallow slides, falls, debris flows and mud-flows have
been identified [5,24–27,29,45,50,55]; in the southern Colombian Massif, specifically in
Mocoa, debris flows, debris avalanches and shallow slides have been found [8,21,30,31].

Regarding the estimated activity based on photointerpretation, smaller movements
such as avalanches, debris flows and small slides show higher activity than larger slides,
earth flows and creeping processes, which have lower activity. This generally agrees
with what happens in other regions of the world where these types of analyses have
been addressed [111]. Activity generally depends on precipitation, which is abundant in
the region due to the influence of deep convective systems [60] and which will probably
have an even greater impact in the coming years [61,112]. This influence of precipitation
has been analyzed by applying hydrological models [21,22,29,39] or determining rainfall
thresholds [54–59,113]. The influence of other phenomena as triggering factors, such as
earthquakes [8,114], active faults [115] or deforestation [116], has been also considered.

4.2. Analysis of Determinant Factors

Regarding factor analysis, the number of factors to be used in the models can be
very high, especially in machine learning models [33], where it is common not to perform
factor selection and allow the algorithms to fit the models. In this work, 12 variables have
been used, which more or less coincide with those used in previous studies on suscep-
tibility modelling, both globally [35,36,38,40–42,90,97,103,104,106,107] and in Colombian
Andes [31,44–53]. Among them, the ones derived from the DEM stand out, which are
related to the spatial distribution of important parameters such as slope, morphology, soil
moisture or flow direction [51,117,118]; those related to geology and the geomechanical
characteristics of materials [119] or those related to land use and land cover [81].

Despite what was said above, some authors recommend performing a certain factor
selection to optimize the predictive capacity of the models and the performance of computa-
tional processes [120], generally based on the multicollinearity between factors or through
methods of dimensionality reduction, which allows the selection of the most determinant
factors and discarding other ones [121]. In addition, this analysis allows us to determine
the conditions of the different landslide typologies [36,74,122]. The analysis carried out
in this work shows that the factors that mainly condition the landslides’ generation are
elevation and lithology; although in the differentiated analysis by typologies, slope must
be considered, and in some cases, TPI, aspect, land cover, distance to roads and distance
to rivers should be considered as well. Some factors such as TRI, precipitation and NDVI
also show some correlation with different landslides typologies but at the same time are
strongly correlated to slope, TPI, lithology and land cover, respectively. These factors are
similar to those found in previous works in other areas of the Colombian Andes, where
a factor selection has been made. Thus, in Calderón et al.’s work [46], landslides were
found to be related to the distance to faults, profile curvature, flow length, accumulated
flow and land use. Salazar et al. [44] considered elevation, slope, planar curvature, land-
form shape, distance to faults, geological units, distance to rivers and distance to roads.
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Correa et al. [50] considered slope, flow length, TWI, convergence index and soil types.
Goyes-Peñafiel et al. [45] considered slope, curvature, TWI, landform shape, geological
units and land use.

The conditions in which landslides occur preferably are the lithology of lutites, which
is usually lower-resistance material and therefore more prone to landslides; areas with
scarce vegetation and grass-crop lands, with NDVI between 0.2 and 0.4, that is, areas
where there is a scarce or null vegetation cover protecting the soil from erosion and
weathering processes; elevation between 1500 and 2000 m, where various geological, soil
and morphological conditions favourable to instability are concentrated; rainfall between
500 and 1000 mm, which has no justification but is a consequence of the correlation of
this factor with lithology and is therefore discarded in the analysis and, finally, lower-
concave sections of the hillslopes, where hydrological and erosive phenomena promote
the landslide generation. These conditions are similar to those found in other parts of the
world and specifically in the Colombian Andes. Thus, in Salazar et al. [44] and Valencia and
Martínez-Graña [52], landslides were associated with steep slopes (above 25–30◦), southern
orientation, concave morphologies, high roughness and a certain proximity to rivers but not
so much to roads. However, they differed in altitude intervals and especially in the most
affected lithology, which in the case of Valencia and Martínez-Graña [52] in the Eastern
Cordillera were lutites or shales similar to those in the study area; and in Salazar et al. [44]
in the Western Cordillera, with a different geological environment, they were volcanic
rocks. Meanwhile, in Grima et al.’s work [116], landslides occurred in a proportion of six
times more in deforested areas than in forested areas, while in Renza et al.’s work [53], no
clear relationship was found between NDVI and other vegetation indices and landslides.

One of the interesting aspects of this work is the typology-based factor analysis,
which has allowed us to observe differences in the conditions of occurrence of the different
landslide typologies. From the results, a dichotomy was observed in the conditions in which
landslides occur, with a first group of shallower landslides corresponding to avalanches
and debris flows and a second group of larger and usually deeper landsides corresponding
to slides, earth flows and creep processes. These conditions are shown in the Figure 9 for
every determinant factor. Lithology appears as a crucial factor that in turn influences other
factors such as slope, elevation or land cover, among others.

Thus, since lithology is the most determinant factor, a higher resolution of the geologi-
cal map is needed, which allows greater precision in the identification of the conditions
in which landslides and their corresponding typologies originate. The same can be stated
about other factors such as the land cover, NDVI and even DEM derivatives.

Despite this, it can be observed that avalanches and debris flows present similar
occurrence conditions that are different from the remaining typologies. As previously
noted, there can be a certain transition between avalanches and debris flows, such that
the former may eventually evolve into the latter if the morphological conditions allow for
it. Thus, the conditions that lead to a higher landslide density are mainly the lithology
of Paleozoic quartz sandstones and phyllites, which are rocks more resistant a priori,
enabling the formation of quite steep slopes where these processes originate [36]. Therefore,
the slopes on which they occur are generally higher than 30◦ and even up to 45◦, with
a high terrain roughness. However, avalanches occur in the lower-concave sections of
the hillslopes and close to the channels, which is not the case with debris flows, which
extend to higher sections, as the elevation analysis shows (1000–1500 m and over 2800 m,
respectively). Furthermore, both types are associated with areas of low vegetation cover
and low NDVI values (0.10–0.25).

250



Remote Sens. 2023, 15, 3870

 

Figure 9. Conditions in which the shallower (orange line) and deeper landslides (blue line) occur.
X axis: Classes of the different factors; Y axis: % of area occupied for landslides in each class.
(a): Elevation; (b): Slope; (c): Aspect; (d): Curvature; (e): TPI; (f): TRI; (g): Lithology; (h): Precipitation;
(i): Land Cover; (j): NDVI; (k): Distance to roads; (l): Distance to rivers.

Meanwhile, slides, earth flows and creeping processes occur more frequently in
Cretaceous lutites, which are rocks with less resistance than the previous ones. Hence,
landslides can occur even at lower slopes than with the previous types. Specifically, slides
occur at a wide range of slopes but more frequently between 20 and 30◦, with earth flows
between 10 and 20◦ and creeping processes on slopes below 10◦. Additionally, they often
occur in the middle and lower sections of the slopes, with low roughness. Regarding
land cover and NDVI, they are more concentrated in grass-crop and shrub areas, with
medium NDVI values (0.25–0.6). However, the elevations range from lower for slides to
medium-high for earth flows and creeping processes.

4.3. Susceptibility Models and Validation

Regarding susceptibility models and maps (LSM), four methods have been applied
according to the groups established in Reichenbach et al. [33]: matrix method (index),
discriminant analysis (multivariate statistics), random forest and an artificial neural network
(machine learning). In general, all methods showed good results, with AUC-ROC values
above 0.70 for the different typologies and number of factors considered in the models
(Table 8, Figure 10a). For typologies, creeping processes generally had AUC-ROC values
above 0.90, which shows that these processes are associated with very specific conditions
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that make the models very fitted. In fact, in this case, there are methods such as RF that have
higher ROC AUC values (0.95) than even the matrix method (0.94). Next are avalanches
and earth flows with also quite high values (average around 0.86), reaching maximum
values in the matrix method (0.90–0.91). Finally, slides and debris flows present the lowest
AUC-ROC average values (0.84 and 0.82, respectively), since the conditions for the landslide
occurrence are not so clearly defined in these typologies, reaching maximum values also in
the matrix method (0.88–0.90).

 

Figure 10. AUC-ROC values: (a): By typologies; (b): By methods; By number of factors (4 to 12) in
the different methods (c): Matrix; (d): LDA; (e): RF; (f): ANN.

Linking to the above, the comparison by methods shows that the matrix method
provides very high fits in general (average close to 0.90), followed by RF (0.88), ANN (0.84),
and finally LDA (about 0.82) (Figure 8b). As can be seen, the matrix method elaborated from
unique condition units provides very good fits even with randomly selected testing samples.
This agrees with the results obtained in previous works, where other validation techniques
such as temporal validation (performed with inventories elaborated after the one used in
the model) produce degree of fit [39] of 5–10% in the classes of very low to low susceptibility
(errors) and 70–80% in the classes of high to very high susceptibility (success) [35,36,83].
Despite that, matrix and other index-based or bivariate statistical methods have some
limitations related to the simplification of the conditioning factors (especially when they
are classified as in matrix approach) and the assumption of conditional independence
between them [123]. Thus, they fit very well to the specific conditions of an area when
inventories are exhaustive, but their performance is reduced when they are transferred to
other areas [124] or when the starting inventories are less exhaustive.

The LDA models showed relatively lower fits, although they can be considered ac-
ceptable, as they reached average values of AUC-ROC around 0.80 for most landslide
typologies and even 0.90 for creeping processes. This is corroborated by previous studies
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where 70–80% of the slopes were correctly classified in high susceptibility classes [4,39].
However, multivariate statistical methods maintain some of the limitations of the bivariate
methods, such as the simplification and dependence between factors [123]. Moreover, these
limitations cannot be overcome due to the linearity of the discriminant functions compared
to the greater versatility and better performance of machine learning methods in non-linear
systems such as susceptibility models developed from factors of different nature [105,125].

The RF method produced excellent results, with AUC values between 0.84 and 0.88 in
most landslide typologies and 0.95 in creeping processes, which agrees with other studies
where values close to and above 0.90 were achieved [40,92,126–128]. In the studies carried
out Colombian Andes, Calderón et al. [46] applied RF starting from 14 similar factors, with
very good results (area under the success rate curve, ASRC, of 93%).

Finally, the application of a perceptron-type ANN with a single hidden layer and three–four
neurons provided fits that were somewhat lower to RF but higher to LDA. Thus, except
for the lower AUC-ROC value for debris flows (0.79), the remaining typologies had values
between 0.82 and 0.84, and even the creeping processes reached a value of 0.90. These
values are consistent with the results obtained by numerous authors who have applied
neural networks of different types, from MLP to convolutional ones, passed through Radial
Basis Funtion (RBF) networks and others. Focusing on perceptron-type networks, Pradham
and Lee [41] obtained an AUC of 0.91–0.94; Tien Bui et al. [42], 0.92; Bravo et al. [95], 0.76;
Zare et al. [98], 0.88; Pham et al. [99], 0.87; Park et al. [104], 0.81 and Aslam et al. [107], 0.87.
In the Colombian Andes, Calderón et al. [46], in an area that encompasses that used in this
article, applied an MLP-type ANN with 14 factors (input neurons) and two hidden layers
of 16 neurons, which provided an ASRC of 0.88. When factor selection was applied (five
factors), the ASRC became 0.86, and after applying factor reduction by means of PCA, the
ASRC decreased to 0.81. Meanwhile, Valencia and Martínez-Graña [52], further north in the
Santander department, applied a perceptron-type ANN with backpropagation algorithm,
starting from 14 factors and a layer of 20 neurons, which provides a very high AUC-ROC
value (0.988).

Regarding the number of factors, although all methods show a better fit as the number
of factors used in the models increases, not all do so in the same way, which allows us to
extract considerations about the behavior of these models and the opportunity to make
or not make factor selection (Figure 10c–f). Thus, starting from models with four basic
factors common to all typologies and independent of each other (elevation, slope, TPI
and lithology), statistical methods (LDA) and machine learning (RF and ANN) undergo a
significant increase when introducing one or two factors that have a certain correlation with
landslides and low collinearity. Then, the AUC-ROC value increases from approximately
0.80 to 0.845, mainly in RF. However, this growth is attenuated (0.86) when up to eight
non-collinear factors are included, although some of them did not show a correlation with
landslides, and it practically stabilizes when all factors are introduced, including those
that show collinearity (0.87). This behavior, in which the value of the AUC-ROC on the
validation sample stabilizes, may be evidence of noise when introducing factors that do not
show an influence on landslides and of overfitting or overtraining [129] when introducing
redundant factors. In this sense, it is important to mention that the strong correlation
between factors also increases the probability of overfitting [130]. This shows the interest
of the factor analysis that allows for factor selection.

These observations are partially corroborated by the behavior observed in the matrix
method, which does not aim to develop a statistical or learning model but rather fit the
susceptibility zoning to the data on factors and movements in a specific area. Thus, the
value of AUC increases as correlated factors with landslides are introduced (from 0.80 to
0.90), which is consistent with what was observed in the previous methods, indicating
the importance of including as many determinant factors of landslides as possible. Then,
the AUC-ROC value stabilizes when introducing factors uncorrelated to landslides (0.90),
which confirms that these factors do not improve the model and may introduce noise.
However, unlike the other methods, the AUC-ROC value again increases when all factors
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are introduced, even those that show collinearity (0.98), which could be a clear indication
of overfitting in this method when a large number of factors are introduced. It should be
noted that, despite using a random validation sample, this validation sample is not entirely
independent of the total mobilized surface used to develop the susceptibility map, since
the matrix method uses the entire landslide area to fit the model.

Regarding the other methods and strategies of validation, the analysis carried out
with other training/validation ratios showed similar results for AUC-ROC values, which
ensured that the ratio used (80/20) is valid for this case and in general [100]. Meanwhile,
the degree of fit showed an error/success ratio that was very suitable in most cases. Relative
errors were lower than 5% in practically every case, and relative successes reached values
usually higher than 90% and even 95%. Moreover, the results by typologies, methods and
number of factors involved were in agreement with those obtained with the AUC-ROC.
Finally, the temporal validation showed acceptable results in general, with AUC-ROC
values mostly higher than 0.7. However, these values were between 0 and 12 points lower
than in the sample validation, being an average of 4.5 points lower. By typologies, methods
and number of factors, similar tendencies were observed, with the models of creeping
processes and the models with a greater number of factors presenting higher AUC-ROC
values. However, there were some differences such as the lowest values observed in slides
that probably are related to the different size and, thus, the conditions of the active slides
(smaller, in areas of higher slopes and lower sections of hillslopes) and non-active (larger, in
areas of moderate slopes and lower-middle sections of the hillslopes). The other typologies
presented similar conditions between active and non-active landslides, so the AUC-ROC
values obtained in temporal validation were higher. The other difference was the similar
behavior between the methods analyzed (LDA, RF and ANN since this validation was not
applied for the matrix approach). In this case, the global reduction of AUC-ROC values
made the values of different methods less distinguishable.

In summary, we can conclude about the importance of choosing the more adequate
method as well as the factor selection for LSM. Regarding the method, it seems that machine
learning methods, especially random forest, show better performance than statistical
methods due to their greater flexibility and non-linear adjustment. Regarding the matrix
method, it has less statistical basis and produces significant overfitting, especially when
there is no factor selection. Factor analysis and selection appear to be a recommended
procedure to avoid overfitting and noise, even in machine learning methods where the
importance of factor selection is not as apparent.

Finally, regarding the distribution of landslide susceptibility, a clear zoning can be
observed in the maps of the different typologies whatever the method and the number of
factors that have been used. Thus, the LSM corresponding to avalanches and debris flows
show greater susceptibility in the south-eastern part (lower basin), which is also clearly
observed in the integrated map of these typologies; meanwhile, the LSM of slides, earth
flows and creep processes have a higher susceptibility in the north-western part (upper
basin), as can also be observed in the integrated map. This zoning is the consequence of
geological control, as mentioned before in the discussion of factor analysis, since meta-
morphic rocks outcrop in the lower basin through fold and thrust structures; these rocks
are generally more coherent and resistant, developing steep slopes where avalanches and
debris flows occur (affecting mainly the superficial layers of weathered rocks). Meanwhile,
the Cretaceous shales outcrop predominantly in the upper part of the basin, and these
sedimentary rocks, usually less resistant, are more susceptible to slides, earth flows and
creeping processes. Logically, this general zoning is discriminated by the remaining factors,
such as slopes, TPI, land cover and distance to roads in those maps that show better results
(e.g., maps obtained with RF). Moreover, given the importance of the lithological factor,
a higher resolution of the geological maps would have allowed a better discrimination
of susceptibility.
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5. Conclusions

The present study has allowed the characterization of landslides in a sector of almost
750 km2 in the Eastern Cordillera of the Colombian Andes, by means of the elaboration
of inventories using photointerpretation, GIS factors analysis and landslide susceptibility
maps (LSM). A total of 2506 landslides were inventoried, occupying approximately 8% of
the study area, including avalanches, debris flows, slides, earth flows and creeping pro-
cesses. Debris flows (39%) and avalanches (35%) were the most abundant in number, while
landslides (64%) occupied the largest area due to their larger individual size. Avalanches
and debris flows were predominantly active, while most slides and earth flows were relict
and creeping processes were latent.

The factors analysis showed that elevation, lithology and land cover were the factors
that most influenced the generation of landslides. However, in the differentiated analysis
by typologies, slope and, in some cases, TPI, the aspect, distance to roads and distance to
rivers had to also be considered. Some factors, such as TRI, precipitation and NDVI, also
showed some correlation with different landslide typologies but were strongly related to
slope, TPI, lithology and land cover, respectively. This analysis also allowed us to observe
differences in the conditions of occurrence of the different typologies. Thus, avalanches
and debris flows had similar conditions of occurrence, which were the lithology of quartz-
sandstone and phyllites from the Paleozoic era (more resistant rocks) and areas with scarce
vegetation and low NDVI values (0.10–0.25); slopes higher than 30◦ and lower sections of
the hillslopes with high roughness. Meanwhile, slides, earth flows and creeping processes
occurred mainly in Cretaceous lutites and grass/crop areas; morphologically, they occurred
on a wide range of slopes, generally lower than 30◦ in the middle and lower sections of the
hillslopes with low roughness.

Regarding LSM, different types of methods were tested to provide consistent results
in determining landslide hazards in the region, including index-based methods (matrix),
multivariate statistical methods (discriminant analysis, LDA), machine learning methods
(random forest, RF) and a perceptron-type neural network (ANN). In general, all methods
produced good results, with the AUC-ROC values always above 0.7 and obtained with
the validation sample (20%). For landslide typologies, the best fits occur in cases where
the conditions are more specific, such as creeping processes (0.90) and debris flows and
avalanches (0.84), and the worst fits occur where they are not so specific, such as slides
and debris flows (0.82–0.80). By methods, although the matrix method provides very high
fits (average close to 0.90), there is a certain tendency toward overfitting, especially when
no factor selection is addressed. LDA offers relatively lower adjustments (average around
0.82), while RF and ANN present very good fits in general (average around 0.88 and 0.84,
respectively). In all these methods, starting from four common and non-collinear factors
with a high correlation with all typologies (elevation, slope, TPI and lithology), an increase
in AUC-ROC occurs when one or two additional factors specific for each typology are
introduced. Then, they moderate their increase when non-collinear factors with lower
correlation with the movements are included (introducing noise), and especially when
collinear factors are also considered (producing overfitting). But whatever the method
used, the LSM maps show a zoning as a consequence of geological control, which produces
higher susceptibility to avalanches and debris flow in the lower part of the basin, with
more resistant rocks, while a higher susceptibility to slides, earth flows and creep occurs in
the upper part of the basin where less resistant rocks appear.

The importance of the choice of susceptibility modeling method and factor selection
is also checked in order to avoid noise and overfitting. This ensures the development
of robust and coherent models that can be in neighboring areas of this region. Thus,
the use of RF or other machine learning methods is recommended due to their greater
versatility and better behavior in nonlinear systems such as LSM. Likewise, a certain factor
analysis is also recommended that allows a better understanding of the conditions in which
landslides occur and also an improvement in the factor selection. In this case, models with
six or eight factors are considered to provide the most reliable results, and thus, synthesis
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maps have been prepared for shallower or deeper movements, with AUC-ROC values
of 0.87 and 0.83, respectively.

The main limitations of this work are related to the quality and resolution of input
data, especially the determinant factors. Thus, although the resolution of DEM can be
considered as sufficient, its precision as a DEM derived from PalSAR could be limited.
Nevertheless, the most limiting aspect is the resolution of thematic factors, especially the
geological map as the main determinant factor; in addition, a better quality and temporal
signification of the land cover, even with derived land use, and vegetation indices is also
required. Meanwhile, another limiting aspect is the estimation of landslide activity that can
allow not only a refinement of susceptibility maps but also the elaboration of hazard maps.

Thus, for future improvements and work, the introduction of new determinant factors,
especially the improvement of those used in this work, is proposed, both derived from
the DEM and thematic maps, which allow the models to be refined. This would also
allow the analysis of the influence of spatial and thematic resolution on the models. Thus,
robust models are developed, which can be applied to other neighboring areas. Automated
methods for factor selection and complex models for susceptibility maps can be tested, but
always subject to control by the analysts. Finally, the estimation of temporal probability
based on the realization of multi-temporal inventories and the introduction of triggering
factors (mainly rainfall) will allow the creation of hazard or threat maps in the study area
and other areas of the mountain range.
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Abstract: Karakoram Highway (KKH) is an international route connecting South Asia with Central
Asia and China that holds socio-economic and strategic significance. However, KKH has extreme
geological conditions that make it prone and vulnerable to natural disasters, primarily landslides,
posing a threat to its routine activities. In this context, the study provides an updated inventory of
landslides in the area with precisely measured slope deformation (Vslope), utilizing the SBAS-InSAR
(small baseline subset interferometric synthetic aperture radar) and PS-InSAR (persistent scatterer
interferometric synthetic aperture radar) technology. By processing Sentinel-1 data from June 2021
to June 2023, utilizing the InSAR technique, a total of 571 landslides were identified and classified
based on government reports and field investigations. A total of 24 new prospective landslides
were identified, and some existing landslides were redefined. This updated landslide inventory
was then utilized to create a landslide susceptibility model, which investigated the link between
landslide occurrences and the causal variables. Deep learning (DL) and machine learning (ML)
models, including convolutional neural networks (CNN 2D), recurrent neural networks (RNNs),
random forest (RF), and extreme gradient boosting (XGBoost), are employed. The inventory was
split into 70% for training and 30% for testing the models, and fifteen landslide causative factors
were used for the susceptibility mapping. To compare the accuracy of the models, the area under
the curve (AUC) of the receiver operating characteristic (ROC) was used. The CNN 2D technique
demonstrated superior performance in creating the landslide susceptibility map (LSM) for KKH. The
enhanced LSM provides a prospective modeling approach for hazard prevention and serves as a
conceptual reference for routine management of the KKH for risk assessment and mitigation.

Keywords: convolutional neural network; recurrent neural networks; landslide susceptibility mapping;
extreme gradient boosting; random forest

1. Introduction

Landslides, one of the most common natural disasters, prevalent in mountainous
regions worldwide, pose significant threats to the ecosystem [1]. Landslides are accounted
as the downhill movement of debris, soil, and rocks under the force of gravity and can be
classified based on the materials involved (mud, rock, soil, or debris) and their movement
type (topple flow or slide) [2]. The factors leading to landslides are a combination of tecton-
ics, geomorphology, and climate change, which culminate in a critical slope evolution [3,4].
Other triggering factors contribute to landslides depending on the specific features of the
area. Natural variables such as rainfall, rapid snowmelt, earthquakes, and anthropogenic
activities, e.g., habitation construction, irrigation, etc., can play a role in the occurrence of
landslides [5]. While landslides are often regarded as a natural process, their occurrence
mostly has been influenced by anthropogenic activity [6]. In recent years, exponentially
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growing populations, a surge in infrastructure development, and settlement growth in
developing countries’ mountainous regions have increased the probability of landslides,
leading to an alarming increase in landslide-related fatalities [7].

The “China-Pakistan Economic Corridor” (CPEC), a significant project under the “One
Belt and One Road” initiative, is centered around connecting Pakistan and China via the
Karakoram Highway (KKH). The KKH was constructed from 1974 to 1978 and commenced
operation in 1979. The highway encompasses most of the route of the CPEC. However, this
vital route faces challenges due to the high mountainous terrain with overflowing loose
debris and heavy rainfall, triggering frequent and severe geological catastrophes such as
glacier debris flows, rock falls, landslides, debris and soil slippage, and avalanches [8].
Determining landslide probabilities along the KKH is a complex process influenced by
limited data availability, technical limitations, and harsh environments. Since its completion,
the reputation of the KKH has been marred by various geohazards [9]. Specifically, earth-
induced landslides in 2005 caused considerable damage to the highway [10]. Enormous
rockslides and rock avalanches have occurred, with over 115 incidents reported since
1987 [11]. Moreover, in 2010, a landslide blocked the Hunza River, inundating 19 km
of the highway with a loss of 20 lives and damaging 350 houses [12]. The geological
conditions along the KKH pose additional challenges, including fragile and weathered rock
masses, varying climates, low and high terrains, diverse stratigraphy, and local variations in
tectonic motion. Due to these factors, the study region has become a geohazard laboratory.
Enhancing precise LSM along the KKH to mitigate the risks posed by these natural hazards
is imperative.

Recently, remote sensing (RS) and geographic information systems (GIS) technology
have made remarkable technological progress. The utilization of GIS spatial analysis tools
and remote-sensing-derived data has enhanced the effectiveness of landslide suscepti-
bility mapping for accurate assessment. Here, comprehensive landslide inventory data
and knowledge of landslide conditioning factors are crucial for both data-driven spatial
modeling and knowledge-based approaches [13]. Researchers have conducted numerous
studies using bivariate analyses to quantify the spatial correlations between landslides
and specific factors that influence their dispersion [14–17]. Several other studies have
applied knowledge-based spatial approaches to produce natural risk vulnerability maps,
fuzzy logic models [18,19], the analytical hierarchy process (AHP) [20], and the eviden-
tial belief function [21], as well as data-driven spatial approaches such as support vector
machines [22–24], logistic regression methods [24,25], artificial neural network (ANN) mod-
els [26–28], alternating decision tree (ADTree) [29], principal component analysis (PCA) [30],
deep belief network (DBN) [31], decision tree [25,32], superposable neural networks [33],
and naïve Bayes [34]. Expertise-based models often encounter challenges due to their
reliance on expert opinions, which can introduce biases [35,36].

The primary strengths of probabilistic and ML approaches lie in their objective sta-
tistical foundation, consistency, capacity for precisely analyzing the factors influencing
landslide development, and capacity building for updates. In this perspective, researchers
are continuously seeking new and relatively more robust algorithms that can generalize
across different spatial scales [37,38]. Deep learning algorithms, which are specifically devel-
oped for large datasets but have seen limited application thus far, need to be implemented
and evaluated in this context. Currently, deep learning models, particularly recurrent neu-
ral networks and convolutional neural networks, have demonstrated remarkable success
across various applications, making them well suited for handling big data [39]. RNNs,
like other DL models, comprise a loss function, learnable parameters, and layers [40]. On
the other hand, CNNs differ from RNNs as they include convolutional and pooling layers
and focus solely on the current input data, while RNNs consider both the earlier provided
inputs and present input data [41]. CNNs have proven effective in tasks like semantic
segmentation and object detection [7]. Conversely, RNNs show superior performance in
tasks such as image recognition, characterization, and sequential data analysis, including
time series spatial data [42]. Despite the acceptable results achieved by CNNs and RNNs in
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various domains, their true efficiency and capabilities in landslide modeling and large-scale
landslide susceptibility mapping (LSM) on big data have not been thoroughly analyzed [13].
A few deep learning models have been utilized for natural hazard vulnerability mapping,
containing landslide susceptibility mapping and flash floods [43–45]. However, these stud-
ies have separately employed different deep learning models, and their relative proficiency
has not been evaluated yet.

In recent years, interferometric synthetic aperture radar (InSAR) methods have ac-
quired universal approval and usage as tools for landslide monitoring and mapping. Over
the past two decades, the RS technique, particularly In-SAR, has demonstrated substantial
possibility across different fields, including the study of landslide deformation [46] and
groundwater extraction [47]. PS-InSAR proves useful in automatic slow-moving landslide
mapping using a spatial statistical technique, the detection of particular landslides and
the delineation of extended unstable regions, redefining of the limits of historical land-
slides, the detection of landslides using a multitemporal analysis of SAR imagery, and
the verification of the terrain elements causing slope deformation [48]. In areas prone to
frequent and rapid large landslides, RS provides a solution through surveys and advanced
detection methods [49]. These techniques can greatly aid in assessing and creating land-
slide inventory maps. Various methods of InSAR have been effectively used in mapping
slope displacement, including that in [50], the assessment of land displacement places
identified by using SBAS-InSAR [51], the D-InSAR technique for landslide observing and
land deformation [51,52], the coherence pixel technique [53], the SqeeInSAR approach to
measuring surface motion [51], interferometric point target analysis [54], the use of StaMPS
to evaluate the displacement in a high-vegetation region [55,56], and the PSInSAR method
to compute the movement of landslides. These approaches are related to detecting and
mapping landslide events, as mentioned in [54,57,58].

In this study, a combination of optical RS analysis and the InSAR technique is utilized
to identify landslides and create an updated landslide inventory. The main goals are as
follows: (1) mapping all types of landslides along the KKH and estimating displacement
maps to identify new landslides, identify unstable places, and redefine the boundaries
of previously identified landslides based on the deformation model; (2) generating a
landslide susceptibility map using state-of-the-art ML and deep learning (DL) models,
including random forest, XGBoost, recurrent neural networks, and convolutional neural
networks; (3) comparing the performance of these advanced ML and DL models in terms
of landslide susceptibility; (4) assessing the significance and relationships of environmental
and anthropogenic factors influencing landslides and their role in evaluating landslide
susceptibility in the study area; and (5) determining the most accurate susceptible model
reliant on precision and AUC value. Despite the fact that the KKH faces significant landslide
threats every summer, previous research has not adequately addressed the issue. Therefore,
the landslide susceptibility map produced in this study will aid urban planning and disaster
reduction efforts in the area. Moreover, the final InSAR-based landslide inventory will
assist in tracking risky areas to minimize future hazards and fatalities. It is imperative to
highlight that no previous studies have applied RNNs and CNNs for LSM at KKH. As the
first study to utilize and compare these ML and DL models for LSM in this region, it will
substantially contribute to the scientific literature.

2. Materials and Methods

2.1. Study Area and Geological Settings

The KKH in northern Pakistan is significant as part of the CPEC but is prone to frequent
disruptions caused by various geological and hydro-climatological hazards. The study area
was focused along a 263 km section of the KKH, passing through different districts of Gilgit
Baltistan. A 5 km buffer around this section, covering an area of 3320 km2 (Figure 1), was
examined for the study. The terrain in the study area is rugged, with elevations ranging
from 822 to 5545 m above mean sea level. The area experiences mild summers and harsh
winters, and the yearly rainfall varies from 120 to 130 mm. The minimum and maximum

264



Remote Sens. 2023, 15, 4703

temperatures are −21 ◦C and 16 ◦C, respectively, according to data from the Meteorological
Department of Pakistan (https://www.pmd.gov.pk, accessed on 15 March 2023).

 
Figure 1. Location of the study area. (a) Pakistan, (b) Study area in red outline.
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The lithology in the research area is significant in triggering landslides. The rocks of the
area are primarily of Mesozoic and Paleozoic age. Based on the geological map produced
by Searle et al. [59], the research area comprises a diverse range of rocks, including sedi-
mentary, volcano-sedimentary, igneous, volcanic, and metamorphic rocks (Figure 2). These
rocks are further stratified into various types, such as greenschist, siliciclastic, carbonates,
basalt, andesite, granite, gabbro, and others. The Chalt schists, kilk formation, Quaternary
sediments, deformed Misgar slates, and Gujhal dolomite are the most significant among
the area’s lithologic formations. All of these lithologies have been tectonically affected and
have contributed to slope destabilization along the highway [9]. Over time, the lithologies
exposed along the KKH have undergone weathering and weakening due to anthropogenic,
hydro-climatic, and seismic events, resulting in significant landslides and surface distortion.
Structurally, the area is sophisticated because it lies in a convergent boundary, specifically
the Main Karakoram Thrust. This structural setting adds to the susceptibility of the area to
geological hazards like landslides.

 

Figure 2. Regional geological map of the study region, which depicts the fault lines (MKT and MMT)
and Geological units in the research area, where CC is Chilas Complex (Mafic and Ultra-mafic rocks),
Gm is Gilgit complex metasedimentary rocks, Cv is Chalt group, Pm stands for Permian massive
Limestone, HPU is a Hunza plutonic unit, Ka stands for Komila amphibolite Complex, Sg is Sumayar
Leucogranite, KB is Kohistan Batholiths, SSm is Shyok Suture Melange, Q is Quaternary deposits,
SKm stands for southern Karakoram complex, Pz is Palaeozoic Metasedimentary rocks, Sv is Kohistan
Arc sequence, Tr is Triassic massive dolomite and limestone, and Y stands for Yasin group.

2.2. Datasets

The Alaska Satellite Facility (ASF) datasets provide an ALOS-PALSAR DEM (digital
elevation model) with a resolution of 12.5 m, which was accessed from https://search.
asf.alaska.edu/ (accessed on 10 February 2023). Additionally, Sentinel-2 images with a
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resolution of 10 m were derived from the Copernicus dataset (https://scihub.copernicus.eu,
accessed on 10 February 2023) to produce a landcover map for the study area. Geological
maps and fault lines for the research area were processed using the ArcGIS software
10.8 to understand the geological features [59,60]. To assess the relationship between
rainfall and landslide events, annual precipitation data were obtained from the GIOVANNI
online database system (https://giovanni.gsfc.nasa.gov/giovanni/, accessed on 15 March
2023), as rainfall and landslides are found to be directly proportionally related. For this
study, two years (June 2021 to June 2023) of C-band Sentinel-1A SAR dataset imagery was
obtained from the ASF (search.asf.alaska.edu) online system. The dataset contains scenes
in descending and ascending tracks, as presented in Table 1. Figure 3 depicts the technical
route of the research.

Table 1. Datasets used in PS-InSAR and SBAS-InSAR analysis.

Data Information Ascending Descending

Product type Sentinel 1 SLC
Acquisition mode IW

Polarization VV
Wavelength (m) 0.056

No of images 63 60
Time period June 2021–June 2023

Frame 114 473
Track 100 107

Coverage (km2) 250
Incident angle Horizontal (~45◦) to vertical (~23◦)

Azimuth resolution and
range (m) 5 × 20

 

Figure 3. Technical route applied in the research.
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2.3. Updated Landslide Inventory

Creating landslide inventory maps is a crucial step in LSM [61]. These maps provide
essential information about the landscape’s locations and types of landslides, serving as a
foundation for predicting future landslides [1]. Landslide inventory maps are generated
for a diversity of reasons, including identifying the type and location of landslides in a
particular region; showing the impact of a single landslide-triggering incident, such as
a rapid snowmelt incident, an intense rainfall event, or an earthquake; emphasizing the
quantity of mass movements; calculating the frequency area statistics of slope failures; and
providing relevant data to build landslide risk models or susceptibility models [62].

In this study, a total of 571 landslides were mapped using various techniques, including
SBAS-InSAR and PS-InSAR, past studies [12,60,63], Frontier Works Organization road
clearance logs, optical imagery analysis, Google Earth, and fieldwork in the study area. The
landslide inventory, on the other hand, was developed through the visual interpretation
of Sentinel-2 images with 10 m resolution (2022) and by using Google Earth, and it was
checked using previous documents and a field evaluation of the study region. The inventory
map was categorized into eight categories based on the material displacement, comprising
99 scree, 113 rockslides, 28 rock falls, 20 rock avalanches, 20 debris slides, 271 debris flows,
7 debris falls, and 13 complex slides (Figure 4).

 

Figure 4. Landslide inventory categorization derived from movement along KKH (black line) with
various colors.
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The inventory map is applied to verify the identification of landslides through InSAR
in the study area. Following the InSAR analysis, potential landslides are recognized
based on their high displacement velocity, and these newly detected landslides are then
incorporated into the updated version of the inventory map.

2.4. Landslide Conditioning Factors (LCFs)

The process of achieving high accuracy in the landslide susceptibility model and
predicting vulnerable areas heavily relies on carefully selecting and preparing the Land-
slide Conditioning Factors (LCFs) database [64]. There are no universal standards for
selecting independent variables for LSM [8,65,66]. The LCFs were chosen in this study
based on information gathered from the relevant literature, data specific to the study
area, and field investigations. Fifteen LCFs were selected for the current study, including
slope, aspect, topographic wetness index (TWI), distance to roads, lithology, distance to
rivers, roughness, distance to faults, curvature, precipitation, plan curvature, soil, profile
curvature, elevation, and landcover (Table 2). Thematic layers with a spatial resolution
of 12.5 × 12.5 m pixel size were prepared (Figures 5 and 6), all using the WGS84 Datum,
UTM-Zone 43 coordinate system.

Table 2. List of landslide causative variables used in the research.

S.NO Variables Sources Description/Extraction

1
Aspect, Elevation, Slope, Curvature,
Plan Curvature, Profile Curvature,
TWI, Distance to River, Roughness,

Digital Elevation Model
ALOS-PALSAR-DEM

(https://search.asf.alaska.edu, accessed on
10 February 2023)

2 Lithology, Distance to Fault,
Distance to road Geological Map Geological Survey of Pakistan

3 Landcover Sentinel-2 images
Land use/Landcover

(https://earthexplorer.usgs.gov/,
accessed on 10 February 2023)

4 Soil Soil map

Food and Agricultural Organization
(FAO) website

(http://www.fao.org/soils-portal/data-
hub/soil-maps-and-databases/en/,

accessed on 10 March 2023)

5 Precipitation GIOVANNI
(https:

//giovanni.gsfc.nasa.gov/giovanni/,
accessed on 15 March 2023)

Figure 5. Cont.

269



Remote Sens. 2023, 15, 4703

Figure 5. LCFs used in the study area.

 

Figure 6. LCFs used in the study area.

2.5. Multicollinearity Assessment

In landslide susceptibility prediction, selecting the right variables is a critical step that
significantly impacts the model’s performance. To improve the accuracy of hazard mapping,
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it is essential to identify and choose appropriate variables for inclusion in the model [67].
One of the main challenges in variable selection is dealing with multicollinearity, which
may arise due to the improper use of redundant or highly correlated factors [68]. To address
the issue of multicollinearity, tolerance and variance inflation factors (VIF) are calculated.
These measures help to identify closely and linearly related variables in a regression model,
which could potentially lead to a reduction in the model’s performance [69]. Through
the standard equations for VIF and tolerance, a thorough evaluation of the degree of
multicollinearity in the data is conducted. By identifying and removing variables with high
levels of multicollinearity, the precision of landslide susceptibility models can be enhanced,
and the most significant variables contributing to the prediction of landslide hazards can
be identified more accurately.

TOL = 1 − R2
j (1)

VIF =
1

1 − R2
j

(2)

where R2
j represents the regression value of j on various factors. Thus, multicollinearity

problems usually happen if the TOL value is <0.10 and the variance inflation factors value
is >10 [70].

2.6. Machine Learning Models

The modeling process included fitting, identifying, and developing an ML model.
The grid unit was used as the model unit, with a spatial resolution of 12.5 m for both

the DEM and RS data, and all evaluation factors are recalculated at this level.
The model includes 15 conditioning factors and a landslide target variable (1 indicating

landslide and 0 indicating non-landslide), with each row producing an object.
Each column illustrates an object’s characteristic, and it is modified into a two-

dimensional matrix for training (70%, 2138 samples) and testing (30%, 917 samples).
The models are constructed using training data, and predictions are made using test

data. The landslide vulnerability index maps are produced by combining the prediction
values for each model unit in each group. The results of the four models are transferred to
a geographic information system. Landslide vulnerability is classified into five categories
using Jenks natural breaks [71]: very low, low, moderate, high, and very high. The four
models are tested using the ROC curve and the AUROC curve.

2.6.1. RF

Random forest (RF) is a well-known homogeneous bagging-based ensemble model
developed by Breiman in 2001 [72]. It consists of multiple decision trees, making it an
ensemble learning technique that aggregates the outputs of these trees to produce a classifi-
cation [72–74]. The mechanism of the RF model can be outlined as follows:

I. Using the bootstrap approach, it creates numerous decision trees to randomly choose
fresh sample sets from the initial training dataset with substitution.

II. At each resampling, a set of features is randomly selected, and the decision trees are
built based on this subset of features.

III. The generated trees are combined into an RF, which is then used to categorize
new data.

The RF method exhibits robustness against missing, unbalanced, and multicollinear
data and is capable of handling high-dimensional data [75,76]. One of its primary advan-
tages is its resistance to overfitting, even when a large number of random forest trees are
grown. Additionally, there is no need to rescale, transform, or modify the data when apply-
ing the RF algorithm. In this research, the landslide susceptibility model was developed
using the “randomForest” package in R 4.0.2 software [16]. After numerous attempts, the
number of trees (ntree) was set to 500, and the mtry parameter was set to 6. To minimize
the fluctuation of the model findings and to limit overfitting, RF was conducted using a
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10-fold cross-validation technique. The hyperparameters used in the RF model are listed in
Table 3.

Table 3. List of parameters used in random forest model.

Parameters Values

Node size 14
mtry 06
ntree 500

2.6.2. XGBoost

The XGBoost supervised classification model is built on the gradient tree boosting
algorithm [77,78], which is a powerful machine learning model designed by Chen and
Guestrin in 2016 [79]. This model creates consecutive decision trees using the estimated
residuals or errors from the preceding tree rather than integrating separate trees. This
approach allows the algorithm to focus on samples with higher uncertainty, improving its
performance. XGBoost offers several advantages, including scalability for various use cases
with low computing resource essentials, fast processing speed, efficient handling of sparse
data, and smooth integration [80]. The algorithm utilizes a loss function with an additional
regularization term to smooth the final learned weights and prevent overfitting [79]. It
also employs first- and second-order gradient statistics to optimize the loss function [81].
While XGBoost shares some parameters with other tree-based models, it involves addi-
tional hyperparameters to control the overfitting concern, enhance precision, and mitigate
forecasting variance [82]. This study develops the landslide susceptibility model using the
“XGBoost” package in R 4.0.2 software, which provides powerful capabilities for classifi-
cation tasks [83]. In this research, three general parameters were chosen for us to alter in
the XGBoost algorithm for LSM application: nrounds (the maximum number of boosting
repetitions), subsample (the subsample ratio of the training instance), and colsample_bytree
(the subsample ratio of columns while constructing each tree). The hyperparameters used
in XGBoost model are listed in Table 4. The key points and usability of machine learning
models are shown in Table 5.

Table 4. List of parameters used in extreme gradient boosting model.

Parameters Values

nround 210
subsample 1

colsample_bytree 0.75
max_depth 6

gamma 0.01
eta 0.05

Table 5. The key points of RF and XGBoost models.

RF XGBoost

Bagging ensemble method Boosting ensemble method
Bagging-based algorithm where only a subset
of features are selected at random to build a

forest or collection of decision trees

Gradient boosting employs gradient descent
algorithm to minimize errors in

sequential models
Reduce risk overfitting Regularization for avoiding overfitting

Maintain precision when a large proportion of
data is missing. Efficient handling of missing data

Time-consuming process Less time-consuming process
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2.7. Deep Learning Models
2.7.1. CNN-2D

As a supervised DL approach, the CNN excels in achieving high predictive perfor-
mance in fields such as image and speech recognition. It accomplishes this by hierarchically
composing simple local features into complex models. A typical CNN comprises one or
more convolutional layers, fully associated layers, and max pooling layers, enabling it to
classify and extract features from high-dimensional data [84]. In the context of landslide
susceptibility mapping (LSM), the landslide occurrence potential in each grid cell is influ-
enced by multiple factors. Each grid cell possesses a unique set of characteristic values
that illustrate the likelihood of a landslide event. We must initialize the process to apply
the CNN for LSM by transforming the 1D input grid cell containing various characteristic
attributes into a 2D matrix.

We compared the number of landslide-impacting variables with the number of charac-
teristic values for every variable in this study. The largest of these two integers was then
chosen to define the size of the related 2D grid. For example, if the research region has
9 lithological classes and 15 landslide influencing factors, we create 9 × 9 matrices for each
grid cell. In the matrix, each column vector represents an attribute value, and the element
at the corresponding position is assigned the value of 1. In contrast, other elements in the
vector are assigned the value of 0. Some of the predictive parameters utilized in the present
research for CNN models are provided in Figure 7 and Table 6.

Figure 7. The structure of CNN-2D is illustrated in a schematic figure.

Table 6. List of parameters used in CNN-2D model.

Parameters Values

Batch size 8
Epoch 250

Dropout 0.5
Learn rate 0.002

Activation function ReLU
Optimizer Adam

2.7.2. RNN

An RNN (recurrent neural network) has the ability to capture dynamic information
in sequential data by creating connections between hidden layer nodes at different time
steps. Unlike other neural networks, RNNs can effectively leverage sequential data. In
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traditional neural networks, all inputs are treated as self-reliant entities. However, in the
RNN technique, each unit is linked to other units in the hidden layer at various time
intervals, allowing data to be propagated from one layer to the next in the network [85].
This characteristic of RNNs is achieved through the concept of “loop feedback,” where
information is shared throughout the RNN. A simple RNN is typically executed using
Jordan or Elman network architectures. At time step t, let xt, yt, and ht represent the
input vector, the output vector, and the hidden state vector, respectively. By utilizing these
elements, we can acquire:

ht = σ(Whxt + Uhht−1 + bh) (3)

yt = σ
(
Wyht + by

)
(4)

where σ(·) is the training sample sequence’s loss function, U and W are variable matrices,
and b is the appropriate bias vector.

RNN is particularly adept at manipulating sequential inputs through its recurrent
hidden states. Hence, the accurate visualization of data is crucial in realizing the forecasting
capability of RNNs. This portion presents the data visualization method for landslide
susceptibility mapping using RNNs, as illustrated in Figure 8. The parameters used in the
RNN model are listed in Table 7.

 

Figure 8. Data representation for RNN.

Table 7. List of parameters used in RNN model.

Parameters Values

Batch size 64
Epoch 50

Dropout 0
Learn rate 0.001
Optimizer Adam

First, each LCF is treated as a single-band image, and all variable categories are assem-
bled. Subsequently, these variable categories are then ordered in a decreasing sequence
of relevance. Hence, each pixel can be transformed into a sequential sample based on its
importance level. This approach ensures that the most significant variables are fed to the
RNN framework first, while the less crucial variables are sent to the model last. Because of
the recurrent nature of the RNN, essential data contributing to landslide occurrences are
reserved and passed to the next hidden state. This retention of important information is
advantageous for the final LSM. By organizing the data representation in this manner, we
can effectively leverage the sequential processing capabilities of the RNN to improve the
precision of the LSM. The key points and usability of DL models are in Table 8.
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Table 8. The key points of CNN-2D and RNN models.

CNN 2D RNN

Basics Most popular type of
neural networks

Most advanced and complex
neural network

Structural layout
Structure is based on multiple
layers of nodes including one

or two conventional layers

Information flows in different
direction, which gives it its

self-learning feature and memory
Spatial recognition Yes No

Recurrent connection No Yes

Drawback Large training data required Slow and complex training and
gradient concern

2.8. InSAR

The InSAR technique has proven to be highly valuable for the early identification of
landslides due to its weather independence, wide monitoring coverage, and high accuracy.
Among the various InSAR techniques, the small baseline subset (SBAS) is particularly
useful for identifying slow-moving deformations with millimeter-level precision by uti-
lizing a stack of SAR interferograms [86]. Additionally, the PS-InSAR and SBAS-InSAR
techniques are utilized to evaluate the deformation in susceptible regions as generated by
the models. This research collects and evaluates imagery from the Sentinel-1A IW sensor
with a temporal resolution of 12 days.

2.8.1. SBAS-InSAR Processing

The SBAS-InSAR technology is used in this part to verify the LSM along the KKH.
The basic data analysis chart, shown in Figure 3, incorporates the preprocessing of data,
interferometric creation, phase unwrapping, refinement and re-flattening assessment, and
displacement estimations.

The computation of time and spatial baselines between all Sentinel-1 picture pairs is
part of data preparation. Following clipping and registration, the DEM data are utilized
to finish image authorization, and the proportional conjunction that meets a particular
threshold is chosen to generate a differential SAR interferogram set [87]. This investigation
used a 30 m resolution SRTM-DEM to construct interferograms. The super primary image
utilized comes from the images acquired on 15 July 2022, and 720 interferometric image
pairings were created.

The key phase of SBAS-InSAR manipulation is an inversion, and the displacement
computation is highly dependent on the investigation of inversion findings. The displace-
ment rate and residual topography are estimated in the first inversion, and the input
interferogram is optimized in the second unwrapping [88]. The second inversion expands
upon the first by employing low-pass and high-pass filtering to calculate and eliminate
the atmospheric phase, allowing for more accurate final displacement estimates and, ulti-
mately, geocoding to determine the displacement rate dispersion in the research region. To
avoid the effects of unwrapping inaccuracies, the line-of-sight displacement velocity was
computed using a coherence threshold of 0.3 for SBAS-InSAR analysis [89].

2.8.2. PS-InSAR Processing

The PS-InSAR process analyzes the uniformity of the phase and amplitude using
multitemporal SAR images wrapped around the same area, which determines the pixels
that are not as caused by spatiotemporal decorrelation and then defines specific displace-
ment information on each component of the phase, which must be conjunctly assessed and
modeled to remove discrepancies [90,91].

The data preparation analysis steps (Figure 3) for importing SLC data with accurate
paths comprise the following:
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Acquiring imagery: Images with the same rotations are obtained, and both slave
and master images are selected. The master images of the research area are obtained first,
followed by the selection of slave images that overlap the same region.

Coregistration and examination: A specific area of interest is coregistered and evalu-
ated. Various measures such as atmospheric phase screen (APS), track errors, and other
factors are corrected and measured.

Phase constancy assessment: The phase constancy of the acquired data is evaluated.
The pixels are projected to exhibit similar amplitudes and reduced phase distributions
for these acquisitions. Absolute amplitude levels are not a significant concern in terms of
manipulation disturbances.

Amplitude stability index (ASI): The ASI is used to choose persistent scatterers (PS) in
the SARPROZ software (2023) procedure. PS points with ASI values greater than 0.7 are
selected. This constraint parameter ensures that only a limited number of PS points are
considered, which is necessary for accurate atmospheric phase screen computation.

Reference network and linear model: A reference network is built by linking PS
points using Delaunay triangulation. The extracted linear model is removed, including
residual height and linear deformation velocities. The APS is analyzed using an inverse
network from the phase residual, and a single point of reference is defined to estimate the
object’s velocity.

Multi-image sparse point (MISP) processing: Second-order PS points are chosen using
the criteria of ASI > 0.6 in this step. Thicker PS points are obtained at this phase. To eliminate
APS, identical parameters and reference points used for APS estimates are applied.

Geocoding and visualization: Google Earth is used to geocode and map the PS points.
The landslide susceptibility map only includes PS points with a coherence of 0.60, indicating
their reliability [92].

3. Results

3.1. Multicollinearity Analysis

This research assumed that there are no significant linear associations among the
landslide causative variables that can negatively impact the susceptibility models. A
multicollinearity analysis is conducted on the 15 landslide conditioning variables, and the
outcomes are presented in Table 9. The rainfall variable has the highest VIF score of 4.892,
while the lowest VIF score of 1.017 is observed for Aspect. The TOL values ranged from
0.204 to 0.982.

Table 9. Multicollinearity assessment of the LCFs.

S.No. Variables
Collinearity Statistics

TOL VIF

1 Aspect 0.982 1.017
2 Landcover 0.826 1.209
3 Rainfall 0.204 4.892
4 Geology 0.549 1.821
5 TWI 0.655 1.524
6 Soil 0.284 3.509
7 Slope 0.531 1.881
8 Distance to Fault 0.979 1.021
9 Distance to Road 0.783 1.275
10 Distance to River 0.641 1.432
11 Roughness 0.637 1.542
12 Elevation 0.375 2.662
13 Profile Curvature 0.800 1.249
14 Plan Curvature 0.922 1.084
15 Curvature 0.779 1.282
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3.2. Landslide Susceptibility Mapping

The landslide susceptibility maps are generated using deep learning and machine
learning models: CNN 2D, RNN, XGBoost, and RF (Figure 9). The experiment showed
that the CNN 2D model had the best performance among the four models. The LSMs were
classified into five categories using the Jenks natural break [71] technique in ArcGIS.

The precision of the landslide susceptibility maps was assessed using the confusion
matrix proposed by [32]. Table 10 shows the performance of the CNN 2D, RNN, XGBoost,
and RF models during the training stage. The outcomes revealed that the CNN 2D model
has a high precision rate of 0.836 in the study region. Further validation was performed
using the ROC (receiver operating characteristic) method [93], which plots “sensitivity”
vs. “specificity” for different cut-off estimates. However, to understand the model’s
performance, the ROC’s AUC was used [94]. The AUC results for the CNN 2D, RNN,
XGBoost, and RF models are 82.56%, 79.43%, 76.04%, and 75.37%, respectively (Figure 10).

 

Figure 9. LSM using CNN 2D, RNN, XGBoost, and RF models.
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Table 10. Confusion matrix of CNN 2D, RNN, XGBoost, and RF models.

Models Observation
Predicted

Precision
No Yes

CNN 2D
No 46 53 83.61

Yes 127 872

RNN
No 38 49 83.24

Yes 135 876

Extreme Gradient
Boosting

No 41 55 83.01

Yes 132 870

Random Forest
No 36 58 82.24

Yes 137 876

 

Figure 10. ROC plots of CNN 2D, RNN, XGBoost, and RF models.

3.3. Landslide Mapping Based on Deformation Velocity

A thorough landslide inventory was organized for the identification and analysis of
landslides along KKH. This inventory was built by combining data from several sources,
including displacement values acquired from both descending and ascending data gathered
from PS-InSAR and SBAS-InSAR observation.

In this study, the InSAR analysis successfully detected the majority of previously
mapped landslides. Moreover, based on the PS and SBAS data, several new landslides
with significant deformation velocity were identified, along with the boundaries, which
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were calibrated through fieldwork. The PS and SBAS techniques were applied to derive
displacement rates along the time series in a one-dimensional LOS direction using a set of
highly coherent interferograms with small spatial and temporal baselines [95,96].

3.3.1. PS-InSAR Results

Surface deformation on the Earth’s surface was calculated using a temporal coherence
threshold of 0.7 for PS-InSAR analysis. A total of 324,747 PS/DS target points were obtained,
representing the LOS deformation values ranging from −92.37 to 72.28 mm/year. These
values were converted into Vslope using the transformation formula (5), resulting in a total
of 212,373 points. The maximum slope displacement velocity was determined, with an
appropriate threshold set between 0 and −20 mm/year (Figure 11). It was ascertained that
barren terrain has a higher concentration of PS points than forested regions.

Vslope =
VLOS
cos∅

(5)

where VLOS is displacement and Ø is the incident angle.

Figure 11. Displacement velocity along landslides and slope measured by using PS-InSAR applying
the ascending and descending orbit data.
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As a result, a total of 15 potential landslides were identified and detected based on
the PS-InSAR-identified displacement velocity. Among the 15 landslides detected using
PS-InSAR, 10 were exclusively identified using ascending Sentinel-1 datasets, while 5 were
specifically detected using descending Sentinel-1 datasets (Figure 12). This observation
demonstrates that the combination of descending and ascending datasets can overcome
the constraints of acquiring data from a single scanning posture, improving the landslide
detection process.

Figure 12. Landslide distribution identified through multi-track Sentinel-1 datasets based on PS-
InSAR. LA and LD: the landslide identified from ascending and descending Sentinel-1 datasets.

In the identification and detection of landslides, the PS-InSAR identifies displacement
data and characteristics from images and field photographs, which are found valuable
when used in integration. Most of these landslides are concealed by PS-InSAR-detected
coherent targets (Figure 13). However, some landslides may not strictly meet the criteria of
higher deformation velocity to be identified as active landslides, as they might experience
lower rates of deformation due to steeper slopes or being in an actual inactive state.
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Figure 13. PS-InSAR displacement observation and optical image assessment of identified and
interpreted landslides.

3.3.2. SBAS-InSAR Results

In the SBAS-InSAR processing, the LOS displacement velocity (VLos) was determined
using a coherent threshold of 0.3. The slope orientation velocity (Vslope) was then derived
from the satellite LOS data, showing only unidirectional displacement. Since landslides
and Earth’s surface deformations mostly happen over steep land, Vslope is an essential
constituent used to forecast landslide evolution. The SBAS-InSAR results indicate that the
displacement velocity along the LOS ranged from −81.89 to 75.40 mm/year (as depicted in
Figure 14).
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Figure 14. Displacement velocity along landslides and slope measured by using SBAS-InSAR apply-
ing the ascending and descending orbit data.

The preliminary delineation of landslide boundaries was conducted by combining the
displacement velocity along the slope from both descending and ascending datasets with
visual analysis of optical RS images and field assessments. This involves referring to areas
with relatively high deformation velocity, topographic characteristics obtained from the
digital elevation model (DEM), and features observed in the optical images.

As a result of the SBAS-InSAR analysis, a total of 9 potential landslides were detected
and identified. Additionally, 547 landslides were represented through a combination of
information from the literature [12,60,66] and field observations (Figure 15). Among the
9 SBAS-InSAR-identified landslides, the ascending Sentinel-1 dataset identified 6, and 3
were specifically identified using the descending Sentinel-1 dataset.
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Figure 15. Landslide distribution identified through multi-track Sentinel-1 datasets based on SBAS-
InSAR. LA and LD: the landslide detected by using ascending and descending Sentinel-1 dataset.

Figure 15 provides comparative examples of identified landslides, most of which are
wrapped by SBAS-InSAR-identified coherent targets. The analysis of the landslides re-
vealed that approximately 90% of them are associated with Quaternary deposits, the Hunza
plutonic unit, southern Karakorum Metamorphic Complex, Permian massive limestone,
and Chilas Complex formations. Their delineation was achieved through field investiga-
tions, analysis of optical RS images, and references to the existing literature (Figure 16).
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Figure 16. SBAS-InSAR displacement observation and the optical image assessment of identified and
interpreted landslides.

The majority of KKH’s landscape is barren, with nearly 90 percent of the landslides
occurring in non-vegetated zones. While SBAS-InSAR and PS-InSAR methods may have
limitations in vegetation-covered areas, they still apply to more than 60% of the land devoid
of vegetation. This suggests that vegetation plays a critical role in controlling slope stability
in the region, consistent with previous research findings [60,97,98].

4. Discussion

The current study utilized RS techniques, such as optical RS and InSAR, for risk as-
sessment and landslide mapping along the KKH [63,99,100]. This study took benefit of the
multi-azimuth interpretation provided by the descending and ascending Sentinel-1 dataset,
allowing for more extensive monitoring of surface displacement. The PS-InSAR and SBAS-
InSAR techniques effectively captured regions with high deformation rates in most areas
along the KKH. Additionally, the comprehensive landslide inventory presented in this
study includes the latest landslides, ensuring the database is up to date and its valuable
information. By processing Sentinel-1 data from June 2021 to June 2023, utilizing the InSAR
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technique, 24 new prospective landslides were identified, and some existing landslides
were redefined. This updated landslide inventory was then utilized to create a landslide
susceptibility model, which investigated the link between landslide occurrences and the
causal variables. By combining the findings from PS-InSAR, SBAS-InSAR, and field investi-
gations, the inventory was updated with landslides that have the potential for future failure
and pose risks for the region, contributing to improved landslide susceptibility mapping.

The selected landslide influencing factors were used to construct CNN 2D and RNN
architectures for comparison with the XGBoost and RF methods. The LSMs were validated
and compared based on the AUROC curve and accuracy. CNN is known for its ability
to efficiently obtain spatial data using weight sharing and local connections, making it a
promising method for landslide modeling [101]. Earlier research has shown that combining
CNNs with additional statistical approaches can produce better accuracy in landslide
susceptibility modeling than using CNNs alone [102]. According to [103], CNN models
are an improved tool for landslide modeling due to their substantial outcomes and higher
accuracy rate in spatial landslide forecasting. The outcomes also reveal that both DL and
traditional ML algorithms give excellent precision in a variety of sectors, such as landslide
assessment and earth science studies throughout the world [104], which is in line with our
findings, which showed that the ROC for the four models varies from 82.56 to 75.37%.

In the subsequent experiments, the proposed CNN and RNN models demonstrated
enhanced predictive capability compared to the popular XGBoost and RF classifiers. Specif-
ically, CNN-2D attained the highest AUC value of 0.825 on the validation set, indicating
its effectiveness in improving prediction performance and its potential as a potential ap-
proach for future research. Various statistical and machine learning approaches have
been compared and applied for landslide spatial forecast in areas, including AHP and
Scoops 3D [105], frequency ratio (FR) and weight of evidence [106], the weighted overlay
technique and AHP [9], random forest [63], support vector classification (SVC) [107], and
XGBoost [100], but DL techniques, such as CNNs, provide powerful improvements by auto-
matically exploring representations from raw data, making them valuable in various fields,
including landslide susceptibility assessments. The experimental findings highlighted that
CNN-2D outperformed the traditional DL approach of RNNs and the classical XGBoost
and RF ML techniques. Furthermore, the suggested data representation techniques offer an
innovative approach to handling raw landslide data. By exploiting the power of DL meth-
ods and combining them with other approaches, there is enormous potential to advance
landslide susceptibility analysis in the future. The proposed 2D CNN structure includes
convolutional max pooling layers and a dropout layer. Overfitting is a common issue when
utilizing a 2D CNN in LSM. To address overfitting, each convolution layer is subsequently
followed by a dropout layer, which temporarily discards NN units during the training
process of the CNN based on a certain probability. This helps to improve classification
accuracies and enhance the model’s generalization capability.

Different LCFs influence landslide triggers and relate to each other, making the se-
lection of appropriate variables crucial for building an accurate landslide susceptibility
model. The aim is to construct models with reduced noise and greater forecast ability.
Before analyzing landslide susceptibility, it is essential to evaluate the forecasting potential
of each contributing factor. To attain this, efforts are made to select the most relevant and
impactful factors. Multicollinearity analysis is employed to evaluate correlations between
the LCFs. In this study, 15 landslide conditioning variables were chosen as independent
factors for evaluating landslide susceptibility, and the results are presented in Table 3. The
variance inflation factor (VIF) was used to test the multicollinearity between these factors.
Among the selected factors, rainfall had the highest VIF score of 4.892, while aspect had
the lowest VIF score of 1.017. The tolerance (TOL) values ranged from 0.204 to 0.982. The
outcomes revealed that there is no significant multicollinearity among the chosen variables,
allowing all variables to be integrated into the models. It is worth noting that landslides
can still occur in areas with significant vegetation due to rainfall and other external forces.
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Despite the beneficial effect of the selected factors in evaluating landslide suscepti-
bility, the current research could have been more effective if certain factors were adhered
to. One major factor is data availability. This research relied on limited data diversity
with a focus on historical landslide data, which limited the comprehensive analysis [60].
Another factor is that the input data resolution remains unpredictable during the data
preparation phase, which has been a prevalent issue in past investigations [108,109]. Terrain
condition factors were derived from a 12.5 m resolution DEM, while variables related to
geological conditions were based on a 1:500,000 scale geological map. All factor layers
were resampled at a 12.5 m resolution in ArcGIS 10.8 software to ensure data availability
and computational convenience. The analysis of model performance in this study indicates
that resampling processing was feasible. Secondly, because of restricted data availability,
we examined several types of landslides with varying triggering conditions throughout a
given time. While some investigators have previously explored this approach, a separate
investigation of distinct types of landslides is more in line with the practical and current
state factors [110,111].

5. Conclusions

The PS-InSAR and SBAS-InSAR techniques and multi-track ascending and descending
Sentinel-1 SAR datasets were used to measure surface displacement velocity along the
KKH. An updated and comprehensive landslide inventory was created by combining field
surveys, image analysis, and a literature evaluation, identifying 571 landslides, including
24 newly detected active landslides and 547 landslides from previous records. To predict
landslide susceptibility along KKH, two well-known deep learning (CNN-2D and RNN)
and machine learning (XGBoost and RF) algorithms were utilized and compared. The
CNN-2D algorithm demonstrated superior performance with an AUC of 82.56, outper-
forming RNN, XGBoost, and RF in terms of AUC, ROC, predictive power, and accuracy.
The landslide susceptibility maps generated by these models can serve as valuable tools
for decision-makers, land use planners, and various non-governmental and governmental
organizations involved in resource and disaster management, infrastructure development,
and human activity in the study area. In the future, studies can explore improved deep
learning and machine learning architectures for landslide susceptibility mapping to im-
prove accuracy and predictive capabilities utilizing this research as a baseline.

The current study is limited because of the absence of geotechnical and geophysical
data. It is suggested that the developed dataset be used in future studies to improve
algorithm prediction potency, create more precise LSM, and discover correlations between
landslide incidence and these new geo-environmental variables. It is also advised to
combine DL algorithms with metaheuristic techniques to optimize model parameters and
boost algorithm prediction capabilities.
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Abstract: In recent years, numerous ancient landslides initially triggered by historic earthquakes
on the eastern Tibetan Plateau have been reactivated by fault activity and heavy rainfall, causing
severe human and economic losses. Previous studies have indicated that short-term heavy rainfall
plays a crucial role in the reactivation of ancient landslides. However, the deformation behavior and
reactivation mechanisms of seasonal rainfall-induced ancient landslides remain poorly understood.
In this paper, taking the Dandu ancient landslide as an example, field investigations, ring shear
experiments, and interferometric synthetic aperture radar (InSAR) deformation monitoring were
performed. The cracks in the landslide, formed by fault creeping and seismic activity, provide
pathways for rainwater infiltration, ultimately reducing the shear resistance of the slip zone and
causing reactivation and deformation of the Dandu landslide. The deformation behavior of landslides
is very responsive to seasonal rainfall, with sliding movements beginning to accelerate sharply during
the rainy season and decelerating during the dry season. However, this response generally lags
by several weeks, indicating that rainfall takes time to infiltrate into the slip zone. These research
results could help us better understand the reactivation mechanism of ancient landslides triggered by
seasonal rainfall. Furthermore, these findings explain why many slope failures take place in the dry
season, which typically occurs approximately a month after the rainy season, rather than in the rainy
season itself.

Keywords: ancient landslide; slip zone; reactivation mechanism; InSAR; seasonal rainfall

1. Introduction

There have been numerous giant ancient landslides triggered by paleo-earthquakes on
the eastern Tibetan Plateau [1–3], and the platforms of these landslides are important living
sites for people in high mountain canyon areas. However, in recent decades, many ancient
landslides have been reactivated by fault activity and heavy rainfall (Figure 1), causing se-
vere human and economic losses [4,5]. In 2018, the Jiangdingya ancient landslide in Zhouqu
County, Gansu Province, was reactivated by heavy rainfall, blocking the Bailong River,
flooding the upstream villages and towns, and destroying roads [6]. In 2018, influenced by
the continuous cumulative rainfall in the previous 14 days, a giant ancient landslide in Boli
Village, Yanyuan County, was reactivated, damaging 186 houses and causing significant
economic losses [7]. In 2021, heavy rainfall led to the reactivation of the Moli landslide in
Guoye Township, Zhouqu County, Gansu Province, causing the deformation of a large
number of houses and threatening the lives of more than 1000 people [8]. In 2021, the
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Aniangzhai ancient landslide in Danba County, Sichuan Province, China, induced by heavy
rainfall, was reactivated, and the Dadu River was dammed [9].

 

Figure 1. (a) Location of the study area on the Tibetan Plateau; (b) distribution of ancient landslides
and reactivated landslides on the east Tibetan Plateau. The SRTM DEM was freely downloaded
from USGS (https://earthexplorer.usgs.gov/, accessed on 10 October 2021), and the fault data were
collected from the Geological Cloud, China Geological Survey (http://geocloud.cgs.gov.cn, accessed
on 18 March 2019).

Currently, there are still numerous ancient landslides on the Tibetan Plateau that are
slowly moving, with minimal displacement during the dry season but accelerated sliding
during the rainy season [10,11]. These ancient landslides may also slide intermittently for
several decades or even centuries [4]. Alternatively, they may experience rapid acceleration
within a short period of time and catastrophic failure, leading to extensive destruction and
fatalities [12–14]. Previous studies have indicated that short-term heavy rainfall is a key
factor in the reactivation of ancient landslides [6,15], but the deformation behavior and reac-
tivation mechanism of seasonal rainfall-induced ancient landslides, which are prerequisites
for mitigating the hazards of landslide reactivation, are still not well understood [16–18].

Interferometric synthetic aperture radar (InSAR) is a measurement technique based
on active microwave remote sensing that has been widely applied in the study of active
landslides [19]. InSAR technology has the capability to capture ground deformations at
the centimeter to millimeter level [20–23]. Time-series InSAR methods, such as the small
baseline subset InSAR (SBAS-InSAR), can trace the historical deformation processes of
landslides over time [23,24]. The SBAS-InSAR technique, with its excellent deformation-
detection ability, has been used for studying surface deformation, especially landslide
detection and reconstruction of the landslide evolution process [25], offering valuable
information for analyzing the patterns and causes of active landslides. In recent years,
small unmanned aerial vehicles (UAVs) have been increasingly utilized in the study of
individual landslide deformations. They can acquire high-resolution optical orthophotos
and precise digital surface model (DSM) data [26].
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In general, ancient landslides are reactivated along pre-existing slip zones that have
reached the residual state [27,28]. Therefore, understanding the mechanism of residual
strength evolution in slip zones is a prerequisite for the stability assessment and engineering
design of mitigation measures for ancient landslides [29–31]. The ring shear apparatus can
reach almost unlimited shear displacements and is, therefore, widely used to assess the
residual strength and resistance of soils [32,33].

In this paper, we utilized the Dandu ancient landslide, which is located upstream of the
Xianshui River on the eastern Tibetan Plateau, as a typical case. Field surveys, unmanned
aerial vehicle (UAV) mapping, ring shear experiments, and InSAR deformation monitoring
were employed to study the deformation behavior and reactivation mechanism. The
study results are important references for the disaster risk prevention of ancient landslide
reactivation on the eastern Tibetan Plateau.

2. Study Area

2.1. Geological Setting

The Dandu landslide is situated in Luhuo County, Sichuan Province, China, on the
eastern margin of the Tibet Plateau, upstream of the Xianshui River, at 100◦27′14.00′′E,
31◦33′16.40′′N. The G317 national road passes over the front edge of the landslide. The
elevation of the surrounding mountain tops in the study area ranges from 3700 to 4000 m,
and there is a relative elevation difference of 800–1000 m from the mountain peaks to
the valley.

The Xianshui River active fault, the southwestern boundary fault of the Bayan Har
block [34], passes through the middle of the landslide (Figure 2). The Xianshui River Fault,
the most active fault on the Tibetan Plateau, is a left-trending strike-slip fault with a total
length of approximately 350 km, an overall strike of 320~330◦, and an average sliding
rate of 10 mm/a [34–36]. Since 1725, the Xianshui River Fault has been involved in a
total of 9 earthquakes with magnitudes higher than Ms 7.0, as well as 17 earthquakes
with magnitudes of Ms 6–6.9 [35]. Notable examples include the Ms 7.5 earthquake in
1816 and the Ms 7.6 earthquake in Fuhuo County in 1973 [35,36]. These historical earth-
quakes have triggered numerous large-scale ancient landslides that are similar to the Dandu
landslide [1].

 

Figure 2. A geological background map of the Dandu landslide. Qp: Holocene alluvium; Qh:
Pleistocene alluvium; T3ln1: metamorphic sandstone of the lower part Lianghekou Formation in the
Upper Triassic; T3ln2: Metamorphic sandstone of the middle part of Lianghekou Formation in the
Upper Triassic; T3r1: metamorphic sandstone interbedded with slate of the lower part of Ruganian
Formation in the Upper Triassic; T3r2: basalt, sandstone, limestone, and slate of the upper part of
Rugenian Formation in the Upper Triassic.

294



Remote Sens. 2023, 15, 5538

The climate type in the study area is sub-humid, which is typical in the Tibet Plateau,
as the dry and rainy seasons are distinct. The average annual precipitation in the region is
672.8 mm. The majority of rainfall occurs in the rainy season, which spans from May to
September and accounts for approximately 86.4% of the average annual precipitation [1,37].

2.2. Features of Ancient Landslide

The Dandu ancient landslide was a rockslide triggered by a historic earthquake. In
plan view, the ancient landslide has a “long-tongued” shape, and its rear edge exhibits
a “crown” geomorphology [38,39]. The longitudinal length of the landslide measures
approximately 1180 m, while the average width is approximately 650 m. The total surface
area of the landslide is about 70 × 104 m2. The thickness of the landslide mass ranges from
20 to 30 m, for a total volume of approximately 1600 × 104 m3. The profile of the landslide
is characterized by stepped slopes, with an inclination ranging from 10◦ to 15◦.

The lithology of the Dandu landslide area consists of basalt, sandstone, limestone, and
slate of the Rugenian formation (T3r2). The origin of the strata is 300◦∠75◦, which was
affected by the fault; the rock structure was broken, and the slickensides of the bedrock
formed by extrusion and shearing are obvious. The lithology of the landslide mass is
a mixture of soil and rock, with 30% to 60% gravel content and a gravel grain size of
5–20 cm. The lithology of the gravel is metamorphic sandstone and limestone, and most
of the basalt in the landslide has been weathered into soil. Giant boulders, up to 6 m in
diameter, are distributed in the channel at the leading edge of the landslide and in the
middle of the landslide, and the boulder lithology is mainly weather-resistant limestone.

3. Materials and Methods

3.1. Field Investigation and UAV Photography

A field investigation was conducted to observe and study the deformation features,
such as cracks and scarps, of the Dandu landslide. Additionally, the field characteristics of
the slip zone soil were examined. The orthophotos were taken using a UAV (DJI Mavic 3E,
manufactured by DJI Innovation Technology Co. in Shenzhen, China). The DJI Mavic 3E
was equipped with a wide-angle camera with an effective pixel of 20 million, and it adopted
network RTK for precise positioning, supporting high-precision, high-efficiency surveying
and mapping operations (Figure 3a). The South Surveying and Mapping Company’s
reference station was used, and the UAV was 300–2000 m from the reference station during
the flight. On 18 October 2022, four flights were conducted at a flight altitude of 300 m
and a flight area of about 3.5 km2, obtaining a total of 480 images (Figure 3b), with photo
resolutions of 5472 × 3078. The planned routes have a 70 percent longitudinal overlap and
a 50 percent transverse overlap. Furthermore, a digital surface model (DSM) was created
using the DJI Smart Map (3.7.0) software (Figure 3c,d). The DSM, with a resolution of
0.5 m, synthesized the collected data and provided a comprehensive understanding of the
morphological characteristics of the landslide and its recent deformation behavior.

3.2. Deformation Monitoring by InSAR

Taking into account the well-developed summer grasslands and shrubbery on the
surface of the Dandu landslide, this study utilized the computation method of SBAS-
InSAR. Compared to traditional persistent scatterer (PS-InSAR) algorithms, SBAS-InSAR
technology utilizes short temporal and spatial baseline sets, improving the decorrelation
issues caused by a single master image and enhancing the spatial coverage density of the
measurement points [22]. Simultaneously, SBAS-InSAR technology holds advantages for
measuring rapid deformations in landslides over short periods. The basic principle was as
follows [40].

(1) N + 1 views of SAR images covering the study area were obtained, acquired at times:
t0, t1, . . ., tn. Suitable spatial–temporal baseline thresholds were set to register the slave
images with the master images. The interferometric pairs were obtained accordingly,
at a number M.
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(2) M pairs of interferometric pairs were used to generate time-series interferograms for
multi-master images.

(3) The regression algorithm was applied to the deformation dataset to estimate and
remove the elevation residuals; the residual phases, such as noise and atmospheric
delays, were separated according to the selected combined filter methods.

(4) The deformation time series was reconstructed using the small baseline set time
series deformation solution model. With t0 as the reference moment, the differential
interferometric phase was acquired during data processing with observed quantities.
Time ti was the relative time i to t0 (0 < i < N) and obtained unknown quantities, and
the interferometric phase value of the image element (r, c) was:

δϕi(r, c) = ϕ(tB, r, c)− ϕ(tA, r, c) ≈ 4π

λ
[d(tB, r, c)− d(tA, r, c)] (1)

where λ is the radar wavelength and d(tB, r, c,) and d(tA, r, c,) are the deformation of
pixels traveling at moments tB and tA along the radar line-of-sight direction, respectively.

 

Figure 3. UAV image acquisition and processing: (a) unmanned aerial vehicle (DJI Mavic 3E);
(b) planned flight routes; (c) orthophoto generated by DJI Smart Map software with a resolution of
0.1 m; (d) digital surface model (DSM) with a resolution of 0.5 m.

The deformation characteristics of the Dandu landslide were analyzed using a total of
149 Sentinel-1A SAR images acquired in ascending geometry. These images were collected
from 7 January 2018 to 24 December 2022. The detailed parameters of the SAR dataset are
shown in Table 1. The SAR image from 9 October 2020 was chosen as the master image.
The remaining SAR images were registered with the master image to ensure azimuthal
registration accuracy to within one-thousandth of a pixel. The spatial vertical baseline
lengths between SAR data were mostly within 200 m, with the longest being 266.5 m. The
time intervals for InSAR computations ranged from a maximum of 48 d to a minimum of
12 d, with a total of 441 interferometric data pairs (Figure 4).

Table 1. Parameters of SAR data.

Satellite Track Date Range
Number

of Images

Revisit
Cycle (Days)

Resolution (m) Angle of
Incidence (◦)Azimuth Range

Sentinel-1 P26 7 January 2018–
24 December 2022 149 12/24 13.98 2.33 34.71
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Figure 4. Spatial perpendicular baseline of the 149 SAR images in the SBAS-InSAR process.

3.3. Ring Shear Test of Slip Zone Soil

In this study, an ARS-3 ring shear machine from Wille-Geotechnik, Germany [41], was
utilized. The machine featured a circular shear box with an inner diameter of
50 mm, an outer diameter of 100 mm, and a height of 25 mm. The normal stress and
the torque were controlled by the servo-actuated loading piston and the servo hydraulic
motor, respectively. The maximum axial pressure of the machine was 10 kN; the maximum
shear stress was 1000 kPa; and the maximum shear rate was 100 mm/min. Transducers
installed in the pressurized system measured the shear stress and normal stresses, and
the test data was automatically collected by a data acquisition device and transferred to a
computer (Figure 5). During shearing, the hanging wall was fixed, while the foot wall with
the shear box led to a shear surface in the vicinity of the shearing gap.

Field investigations revealed that the Dandu landslide sheared out from the bed of
the Xianshui River, where slip zone soil can be seen. The basic physical properties of
the slip zone soil are presented in Table 2 (Figure 6). The slip zone is predominantly
composed of gravelly, gray-green silt-clay, which is a result of the compression, kneading,
and argillization of basalt and sericite slate. The thickness of the slip zone measures between
0.2 and 0.3 m and exhibits clear slickensides (Figure 7c,d). Additionally, there is a significant
amount of groundwater outflow along the slip surface (Figure 7e). The dry slip zone is
characterized by its dense and hard composition. However, the water-soaked slip zone has
a mud-like soil with considerably low strength.

Table 2. Basic physical properties of the slip zone soil of the Dandu landslide.

Dry Density
(g/cm3)

Plastic
Limit (%)

Liquid
Limit (%)

Plasticity
Index (IP)

Particle Size Distribution (mm, %)

<0.005 0.005~0.075 0.075~2 >2

1.80~1.88 21.1~21.5 37.0~37.7 15.9~16.2 16 26 38 20

In this study, a total of eight groups of remolded samples were tested, each with
different normal stresses. The particle size of the samples used in the tests was less than
or equal to 2 mm. Four samples were tested at natural moisture content (10%), and the
other four samples needed to be saturated. The water content of the saturated samples was
approximately 21%. After saturation was complete, the sample was placed in the shear
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box. Prior to each shear test, the samples were consolidated for 24 h, then sheared to reach
their residual states at a shear rate of 0.2 mm/min. The ring shear tests were conducted
following the standard geotechnical test methods (GB/T50123-2019) [42]. The specific
testing scheme for the ring shear tests is provided in Table 3.

 
Figure 5. Schematic illustration of the ring shear test. (a) ARS-3 ring shear apparatus; (b) soil sample
in the shear box; (c) size of the test specimen; and (d) shear surface.

 
Figure 6. Particle size distribution of the slip zone.

Table 3. Ring shear test scheme for slip zone soil of the landslide.

Sample
Number

Dry
Density ρ

(g/cm3)

Normal
Stress

(σn/kPa)

Initial
Water

Content

Particle Size Distribution (mm, %)

<0.005 0.005~0.075 0.075~2

DD01 1.83 100

10%

20 33 47

DD02 1.84 200

DD03 1.82 400

DD04 1.84 800

DD05 1.81 100

Saturated
DD06 1.82 200

DD07 1.80 400

DD08 1.80 800
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Figure 7. Reactivation features of the Dandu landslide: (a) overall view of the Dandu landslide;
(b) deformation zone at the front of the landslide; (c) slip zone at the landslide’s toe; (d) slickensides
on the slip surface; (e) groundwater outflow along the slip zone; and (f) cracks in the front of
the landslide.

4. Results

4.1. Reactivation Features and Zonation of the Landslide

The Dandu ancient landslide can be divided into three zones based on deformation
and cumulative displacement (Figures 7a and 8). Zone I, an ancient landslide, was initially
triggered by a historic earthquake, and the main scarp is clear. Zone II is a secondary
landslide that formed due to the reactivation of the ancient landslide. Zone II can be further
divided into two subzones, namely, II-1 and II-2.

Zone II-1 is located on the left side of the front edge of the ancient landslide and is
a rotational landslide. The landslide has a longitudinal length of 360 m and a transverse
width of 300 m, with an area of about 9 × 104 m2, a thickness of 15 to 25 m, and a volume of
about 150 × 104 m3 (Figure 7). Currently, significant deformation can be observed in Zone
II-1, characterized by a steep scarp measuring 10–15 m in height. Additionally, numerous
cracks have developed in this zone (Figures 7b, 8 and 9).

Zone II-2, located on the right side of the front edge of the ancient landslide, is
relatively stable compared to Zone II-1. The longitudinal length of the landslide is 540 m,
and the transverse width ranges from 250 to 320 m. The total area affected by the landslide
is approximately 13 × 104 m2. The thickness of the landslide ranges from 15 to 25 m, and
the volume of the landslide is estimated to be around 200 × 104 m3.
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Figure 8. Engineering geological map of the Dandu landslide.
 

 

Figure 9. Engineering geological profile of the Dandu landslide (see A-A′ profile in Figure 8).

Zone III is a tertiary landslide formed by reactivation along the front edge of Zone II-1,
with a scarp height of 5 m, a longitudinal length of 100 m, a transverse width of 100~250 m,
an area of about 1.5 × 104 m2, a thickness of about 20m, and a landslide volume of about
30 × 104 m3 (Figure 7a,b and Figure 8). The deformation was strongest in Zone III, where
there are several tension cracks 10–30 cm wide and extending over 10 m in the middle and
lower parts of the landslide, which has led to ground uplift and destruction of the retaining
wall at the landslide toe. The original G317 road also suffered significant damage due to
landslide deformation. As a result, a new G317 road had to be constructed on the opposite
bank of the Xianshui River. Currently, zone III is still creeping, squeezing the channel of the
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Xianshui River, and, as the foot of the landslide continues to be eroded by the river, sliding
of the landslide could accelerate and pose a threat to the new G317 road (Figures 7–9).

4.2. Deformation Characteristics Monitored by InSAR

The SBAS-InSAR results in Figure 7 indicate deformation rates ranging from −45 to
19 mm/a from 2018 to 2022. The negative values represent deformation, with a moving
trend against the sensors. It can be observed that most of the Dandu ancient landslide is in
a stable state. However, significant deformations have been observed at the front edge of
the landslide, specifically in zone II-1 and zone III, over the past five years. The highest
deformation rate is observed in Zone III, with an approximate rate of 45 mm/y. Zone II-1
shows a deformation rate of approximately 25 mm/y. In contrast, the deformations in
zone I and zone II-2 were relatively small, both less than 10 mm/y. These deformation
characteristics, observed through InSAR monitoring, align well with the findings from
field investigations (Figure 7). The reactivation of ancient landslides exhibits multiple
periods and multiple zones of deformation, with lower-order sequences showing higher
deformation rates and poorer stability (Figures 8 and 10).

Figure 10. Deformation rate map of the Dandu landslide monitored by SBAS-InSAR from 2018
to 2022.

The analysis of the Dandu landslide involved selecting profile B-B’ along the main
sliding direction (Figure 10). A profile map of the deformation rate was then generated
(Figure 11). The results indicate that the deformation rate varies significantly along the
sliding direction. The high values, represented by negative values, are primarily con-
centrated at the front edge of the landslide. This observation suggests that the landslide
predominantly exhibits overall tensile sliding.

To further investigate the dynamic behavior of the landslide in response to seasonal
changes, we selected three points (labeled 1, 2, and 3) in Zones I, II-1, and III of the landslide
(Figures 10 and 11). These points were then subjected to time series analysis using the
finite-difference formula to determine the velocity of their movements.

vi = (di + 1 − di)/(ti + 1 − ti) (2)

In Equation (2), vi represents the velocity of point P, at time ti, and di and di+1 represent
the cumulative displacements of the points at times ti and ti+1, respectively.
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Figure 11. Deformation rate along the B-B′ profile (B-B′ profile in Figure 10).

The findings indicate that the maximum cumulative displacements observed at points
1, 2, and 3 between 2018 and 2022 were approximately 220 mm, 100 mm, and 20 mm, respec-
tively. These points exhibited movement patterns that followed annual cycles consistently
throughout the years.

The sliding motion initiated an acceleration phase with the onset of rainy seasons
and significantly decelerated during dry seasons (Figure 12). A substantial amount of
deformation was observed from mid-June to mid-December, while minimal displacements
occurred during the dry season from mid-December to mid-June. These observations
suggest that seasonal rainfall plays a significant role in triggering the reactivation and
deformation of the Dandu landslide.

Based on the data presented in Figure 12b, it can be observed that even though the
wet season consistently begins in mid-May each year, the acceleration of the landslide does
not occur until a few weeks later, typically in early June. However, the specific time lag
varies from year to year. The maximum recorded time lags are 24 days, 30 days, 34 days,
and 26 days for the years 2018, 2019, 2020, and 2022, respectively (Figure 12b). It should
be noted that no significant acceleration was observed in 2021. While it is possible that
displacements may occur before the satellites capture the deformation, considering the
minimum revisit period of Sentinel-1A datasets, which is 12 days, it can be inferred that
the range of time lags fell between 12–24 days, 18–30 days, 22–34 days, and 14–26 days for
the years 2018, 2019, 2020, and 2022, respectively.

4.3. Shear Strength of the Slip Zone

The ring shear tests showed that the stress–displacement curves exhibit significant
strain-softening characteristics (Figure 13a,b). Shear stress can quickly reach its peak value
(usually at 10 mm displacement) with relatively small displacements and then gradually
decline to the residual state. Under saturated conditions, the shear strength decreased
significantly compared to that under natural conditions (Figure 13c,d). Specifically, the peak
internal friction angle decreased from 15.1◦ to 9.5◦, a reduction of 37%. The peak cohesion
also decreased from 33.4 kPa to 12.1 kPa, a reduction of 64%. Similarly, the residual internal
friction angle decreased from 9.5◦ to 6.8◦, a reduction of 28%, and the residual cohesion
decreased from 14.2 kPa to 8.0 kPa, a reduction of 44%. In the saturated state, the shear
surface was smoother (Figure 14), indicating that the presence of water not only softened the
slip zone, thereby reducing the shear strength, but also promoted the directional arrangement
of particles, leading to a reduction in the roughness of the shear surface. The smoother shear
surface contributed to lowering the shear strength of the slip zone.
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Figure 12. Relationship between landslide displacement and precipitation: (a) the gray line at
the bottom represents daily precipitation, and the blue line represents accumulated precipitation;
(b) relationship among landslide cumulative deformation, deformation rate, and time at point 1;
(c) relationship among landslide cumulative deformation, deformation rate, and time at point 2; and
(d) relationship among landslide cumulative deformation, deformation rate, and time at point 3. The
positions of points 1, 2, and 3 are shown in Figure 8.
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Figure 13. Shear stress against shear displacement curves and shear strength failure envelopes for
the slip zone of the Dandu landslide: (a) shear stress against shear displacement curves; initial water
content was 10%; (b) shear stress against shear displacement curves; saturated water content was
approximately 21%; (c) shear strength failure envelopes; initial water content was 10%; and (d) shear
strength failure envelopes; saturated water content was approximately 21%.

Figure 14. Shear surface characteristics: (a) the initial water content was 10%; (b) the saturated water
content was approximately 21%.

5. Discussion

5.1. Active Faults Are the Driving Forces for the Formation of Landslide Cracks

Previous studies have claimed that creeping of active faults controls the local stress
field and affects slope stability [43,44]. On the one hand, the field investigation found
that the Xianshui River Fault passes through the middle of the Dandu landslide, and the
horizontal slip rate of this fault has, since the Holocene, reached 10–20 mm/a [34–36]; its
influence on the ancient landslide cannot be ignored. On the other hand, the Xianshui River
Fault is prone to frequent earthquakes, with nine earthquakes of magnitudes of Ms ≥ 7.0
occurring along the fault since 1725. Notable examples include the Ms 7.5 earthquake in
1816 and the Ms 7.6 earthquake in Fuhuo County in 1973 [34–36]. These seismic events
likely contributed to the formation of landslide cracks [45]. Therefore, it can be inferred that
landslide cracks, formed by fault creeping and seismic activity, provide a preponderance of
infiltration paths for rainwater and are key factors in landslide reactivation (Figure 15).

5.2. Pre-Existing Slip Zones Are the Essence of Landslide Reactivation

Ancient landslides tend to reactivate along pre-existing slip zones that have reached
residual states [29,30]. Previous studies have confirmed, via experiments and back analysis,
that when a landslide is reactivated, the initiation strength is essentially equal to the
residual strength of the slip zone [46,47]. The Dandu landslide has been creeping for at least
10 years [48], and long-term creeping has induced a gradual directional alignment of the
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soil particles on the slip surface [31], which will lead to a gradual decrease in shear strength
(Figure 15).

 

Figure 15. A model of ancient landslide reactivation triggered by seasonal rainfall.

5.3. Rainfall Is a Trigger Factor for Landslide Reactivation

Rainfall is a crucial trigger factor for landslide reactivation [49]. The InSAR monitoring
results show that the deformation characteristics of the Dandu landslide respond very well
to the rainy season, although there is some lag. Rainwater infiltrates into the landslide mass
through cracks, which not only generates pore water pressure and reduces the effective
stresses [50] but, more importantly, severely weakens the shear strength of the slip zone.
Field investigations have also revealed the presence of multiple springs in the front portion
of the landslide. Particularly, groundwater was observed flowing along the shear outlets
of the landslide. The dry slip zone was dense and compact, while the water-soaked slip
zone was muddy and exhibited low strength. Ring shear tests further confirmed that the
strength of the slip zone in the Dandu landslide decreased significantly with the increasing
water content.

It was also found that it takes time for rainwater to infiltrate into the slip zone [44,51],
which explains why the response of landslide deformation to rainfall lags by several
weeks. Furthermore, this may also explain why many landslides occur during the dry
season [44,52], approximately a month after the rainy season, on the eastern margin of
the Tibetan Plateau. In the past, it was commonly assumed that these landslides were not
directly related to rainfall [53].

6. Conclusions

Taking the Dandu ancient landslide as a typical case, field surveys, ring shear exper-
iments, and InSAR monitoring were performed to investigate the deformation behavior
and reactivation mechanism. The following conclusions were drawn:

• The reactivation of the Dandu ancient landslides exhibits multiple periods and multi-
ple zones of deformation, with lower-order sequences showing higher deformation
rates and poorer stability. The deformation rates in zones III, II-1, and I were 40 mm/a,
20 mm/a, and less than 10 mm/a, respectively.

• The deformation characteristics of the Dandu landslide respond very well to seasonal
rainfall. The sliding motion starts to accelerate after the rainy season arrives and de-
celerates substantially when the dry season arrives. However, this response generally
lags by several weeks.

• The cracks in the landslide, formed by fault creeping and seismic activity, provide
pathways for rainwater infiltration, ultimately reducing the shear resistance of the slip
zone and causing the reactivation and deformation of the Dandu landslide. Meanwhile,
rainfall infiltration takes time, which is why the response of landslide deformation to
rainfall lags by several weeks.
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Abstract: Heavy rainfall is a major factor for landslide triggering. Here, we present an inventory of
47,523 landslides triggered by two precipitation episodes that occurred in May 2023 in the Emilia-
Romagna and conterminous regions (Italy). The landslides are manually mapped from a visual
interpretation of satellite images and are mainly triggered by the second rainfall episode (16–17 May
2023); the inventory is entirely original, and the mapping is supplemented with field surveys at a few
selected locations. The main goal of this paper is to present the dataset and to investigate the landslide
distribution with respect to triggering (precipitation) and predisposing (land use, lithology, slope and
distance from roads) factors using a statistical approach. The landslides occurred more frequently on
steeper slopes and for the land use categories of “bare rocks and badlands” and woodlands. A weaker
positive correlation is found for the lithological classes: silty and flysch-like units are more prone to
host slope movements. The inventory presented here provides a comprehensive picture of the slope
movements triggered in the study area and represents one of the most numerous rainfall-induced
landslide inventories on a global scale. We claim that the inventory can support the validation
of automatic products and that our results on triggering and predisposing factors can be used for
modeling landslide susceptibility and more broadly for hazard purposes.

Keywords: landslide inventory; heavy rainfall; spatial distribution; Emilia-Romagna region

1. Introduction

Landslides are a movement of rock, earth or debris down a slope [1]. They can be
triggered by several processes, including rainfall, earthquakes and human activities [2].
Heavy rainfall is among the most common triggering mechanisms and may result in
thousands of landslides across a wide region. Landslides represent a major hazard source
and have a relevant societal impact, because they cause heavy direct and indirect costs
(e.g., [3]) on people, buildings, infrastructures and human activities. In Europe, the average
economic loss during 1995–2014 is estimated to be 4.7 billion EUR per year [4]. Landslides
are highly impacting in Italy: [5] describes a dataset covering the period 843-2008, reporting
1562 landslide events that have caused at least 7477 deaths. The human and economic costs
of landslides are expected to increase in the future [6].

In order to assess landslide susceptibility and risk, it is essential to obtain information
on landslide location. In this sense, landslide inventories represent the location either as a
point or polygon and, if known, the date of occurrence and type of slope movement [7];
thus, landslide inventories are a basic prerequisite for hazard assessment [8,9]. Landslide
inventories can be obtained using a variety of methods, including field reconnaissance and
the interpretation of optical or Synthetic Aperture Radar (SAR) images (e.g., [7]); landslides
can be drawn either manually or by semi-automatic and automatic methods [10–13]. The
key goal of the current study is to realize a comprehensive landslide inventory, following a
period of heavy precipitation that hit N Italy in May 2023.

Rainfall-triggered landslides have been a focus of scientific inquiry for decades, for
instance, [14] compiled a list of more than 450 references dealing with this topic. The
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availability of landslide inventories following heavy rainfall and storms is rapidly increas-
ing, covering different geographic and climatic settings (e.g., [15–24]). A relatively high
number of inventories are available for Italy, such as the seminal works by [25] on the
Friuli seismic sequence and [26] on rapid snowmelt in Umbria. More recent efforts include
the mapping of landslides triggered by heavy rainfall in the Liguria [15], Umbria [27] and
Marche regions [28,29].

Contrarily to earthquake-induced landslides [30], a unified repository does not exist for
rainfall-triggered landslides; moreover, some scholars claim that the number of inventories
available in digital format is still limited [7,20,23]. One critical limitation in the quick
identification of landslides triggered by precipitation is cloud coverage, which may persist
for a long time in the area affected by storms.

Here, we present an inventory of landslides triggered by heavy rainfall that occurred in
May 2023 in Northern Italy. The area was hit by prolonged rainfall, which caused extensive
flooding and landslides, resulting in 17 deaths, tens of thousands displaced and at least
8.8 billion EUR in losses [31]. The inventory is entirely original and was produced by
manual mapping, interpreting a set of pre- and post-event satellite images, and supple-
mented with a limited field survey. The purpose of our study is to (i) present the dataset of
47,523 mapped landslides, (ii) describe the amount and spatial pattern of precipitation and
(iii) investigate the distribution of landslides with respect to predisposing and triggering
factors. Our results may be compared to other mapping methods (e.g., automatic mapping);
we envisage that our results can be used for hazard purposes, susceptibility modeling or
the characterization of rainfall thresholds. Additionally, we stress that the availability of
sound input data will result in more robust outcomes and provides the grounds for better
informed decisions. In this sense, our dataset provides an additional case history that can
be compared with extant knowledge and contributes to filling eventual data gaps.

This paper is organized as follows: in Section 2, we provide a description of the study
area and of the May 2023 precipitation events; in Section 3, we introduce the materials and
methods used to compile the inventory and investigate the predisposing and triggering
factors; in Section 4, we present the obtained inventory and we analyze the spatial distribu-
tion of landslides with respect to conditioning factors; in Section 5, we compare this case
study with other available data and we discuss the limitations of our approach; and finally,
in Section 6, we draw some conclusions.

2. Regional Setting and the May 2023 Precipitation Events

2.1. The Study Area

Figure 1 shows the Digital Elevation Model (DEM) of the study area, in Northern
Italy, mainly located in the Emilia-Romagna (ER) region. The area of interest (AOI), where
we mapped the rainfall-triggered landslides, covers 5764 km2, with elevations ranging
between 10 and 1400 m asl. The DEM clearly shows a geomorphological boundary between
the plain sector to the NE and the hilly sector of the Northern Apennines to the SW. The
main rivers flow from the SW to the NE and reach either the Po River or the Adriatic
Sea; in the plain, the rivers flow at elevations higher than the surrounding plain. Such
a configuration implies that, following heavy rainfalls, the hilly sector is prone to slope
movements, while the plain suffers from flooding.

In the hills, the slopes are generally gentle, with values in the range of 0–70◦, with a
broad modal peak centered at 10–20◦. From the geological point of view, the chain sector
of the AOI is the result of the tectonic superposition of two large sets that are different
in lithology, structure and paleogeographic origin: an External Umbrian–Tuscan Domain,
mainly outcropping to the SE and composed of turbiditic units, well-bedded marls and
sandstones, and an Internal Ligurian–Emilian Domain, outcropping to the NW, composed
of shales, chaotic melange and flysch-like units [32]. From the lithological point of view,
the AOI is characterized by the outcropping of terrigenous formations with a high clay
content, alternating sandstones marls and siltstones and turbiditic successions, resulting in
a typical landscape characterized by badlands and diffuse slope movements. Lithological
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control on erosion results in aligned cuestas and hogbacks. Where the superimposition of
flysch or sandstones occurs, sub-vertical slopes and mesa-like features are displayed (i.e.,
the so-called “Pietra di Bismantova”; [33]). The Italian inventory of slope movements [34]
includes over 40,000 mapped landslides in the AOI (45% rotational/translational slides
and 30% slow earth flows).

Figure 1. (a) Location of the area enlarged in panels b and c; (b) overview of the study area, the area
of interest (AOI) is represented in red; and (c) simplified regional geological map.

The primary land covers, after the Emilia-Romagna region land use database (last
updated in 2020, following the CORINE land cover classification scheme [35]), include agri-
cultural fields and forested areas for the hillside sector of the AOI, followed by urbanized
land use, mainly located at the foothills or in the plain area.

The mean annual rainfall is in the range 700–1400 mm (the climatic atlas of the Emilia-
Romagna region, [36]), with the values increasing from the NE to SW; autumn represents
the wettest season, followed by a secondary peak in precipitation in the spring.
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2.2. The Rainfall Episodes of May 2023

During May 2023, the ER region experienced prolonged and intense rainfall, mainly
distributed in two episodes, i.e., 1–2 May and 16–17 May. The gauge records (Figure 2,
Table 1) show no significant rainfall in the 30 days preceding the first rainfall episode. At
the beginning of May 2023, rainfall hit the entire AOI, with the cumulative values exceeding
200 mm (e.g., 254 mm at Le Taverne and 243 mm at Trebbio). The hourly intensities were
generally lower than 3–5 mm/h, with few peaks exceeding 15–20 mm/h. This event was
the most intense in a 2-day interval since 1997 and the most intense in the spring season
since 1961 [37]. The geographic distribution of the rainfall is shown in Figure 2a. The
highest values were recorded in the Reno, Lamone and Montone drainage basins; the
precipitation generated an increase in river discharge, reaching hydrometric levels close
to, and locally higher than, the levee levels. Sporadic slope movements were triggered as
well [37].

Figure 2. (a) Location of the area enlarged in panels (b,c); (b) rainfall amount during 1–17 May 2023
over the area of interest and location of the rain gauges; in red are labeled the stations depicted in
(d–f); (c) rainfall amount during 16–17 May 2023 and location of the field photographs; (d) plot of
cumulative rainfall for the period April–June 2023; (e) plot of cumulative rainfall for 1–2 May 2023;
and (f) plot of cumulative rainfall for 16–17 May 2023.
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Table 1. Details on the rainfall gauges plotted in Figure 2.

ID Station Municipality Province
Elevation

(m asl)
Longitude Latitude

Hydrographic
Basin

BTO Borgo
Tossignano

Borgo
Tossignano Bologna 98 11.578993 44.27467 Santerno

TAV Le Taverne Fontanelice Bologna 486 11.587499 44.2492 Santerno

ALB Monte
Albano

Casola
Valsenio Ravenna 480 11.6734246 44.22432 Senio

PVE Ponte
Verucchio Verucchio Rimini 116 12.405109 43.9829 Marecchia

TRE Trebbio Modigliana Forlì-Cesena 570 11.8371627 44.13697 Lamone
VER Vergato Vergato Bologna 193 11.113128 44.2878 Reno

An even stronger precipitation event (Minerva storm) occurred on 16–17 May 2023
(Figure 2b); again, the most hit area was the hilly sector of the ER region. The cumulative
values over the 2 days reached 260.8 mm at the Monte Albano gauge and 254.8 at Trebbio.
The cumulative rainfall over the 17-day period (1–17 May 2023) is the highest historical
record for about 65% of the gauge stations in central and eastern ER [38]; the maximum
values reached 609.8 mm at Trebbio and 563.4 mm at Le Taverne (Figure 2c). The high
discharge resulted in extensive floods of the plains and in thousands of landslides in
the hills.

3. Materials and Methods

Figure 3 represents the methodological workflow adopted in this study. The approach
consists of three subsequent phases, namely, (i) building the landslide inventory and
performing the field reconnaissance, (ii) acquiring data on predisposing and triggering
factors and (iii) conducting data analyses. At each step, input data are required, which may
be obtained from external sources (e.g., satellite images and thematic maps) or generated
in the previous steps (e.g., landslide polygons).

Figure 3. Methodological workflow adopted in this study.

3.1. Realization of the Landslide Inventory

The first step of this research is the realization of the landslide inventory, which is based
on a visual inspection of pre- and post-event satellite images in an area of 5764 km2. The
satellite images were acquired by PlanetScope (https://www.planet.com/, last accessed
on 3 November 2023) and were provided under an academic license as ortho-rectified
products; 3 m resolution multiband tiles were used. A screening of the available imagery
was initiated within hours of the 16–17 May precipitation episode, using the Planet website;
for a few days the area was heavily clouded, and the first cloud-free images were available
on 22 May. For the realization of the inventory, the images were accessed through the
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Planet QGIS Plugin; the pre-event imagery refers to the Monthly Global Basemap products
provided by Planet, and the April 2023 Basemap was used. The post-event images were
acquired between 22 May and mid-June 2023. The cloud-free image closer to the event
was used and multitemporal frames were checked in the selected areas (e.g., due to the
presence of shadows or unclear images).

The landslides were manually mapped at a scale of 1:5000 by a single operator in
a time interval of 5 weeks following the rainfall event; the inventory (version 1.0) was
released online on 28 June 2023. The landslides were mapped as polygons encompassing
both the source and deposit areas, because they are not easily discernible in satellite images;
the landslides were mapped as individual polygons as much as possible, trying to avoid
issues related to amalgamation [39].

We realized the field surveys in a limited subset of the AOI on 30 July–1 August
2023; we drove along the main and secondary roads, and we acquired photographic
documentation of the landslides at selected spots along the roads or at scenery points for a
broader view.

We computed the area–frequency distribution of the event inventory following [40].
The probability density for classes of a width equal in logarithmic coordinates is calcu-
lated as:

p =
1
N

∂NL

∂AL
, (1)

where N is the total number of landslides, and NL is the number of landslides with an area
between AL and AL + δAL.

3.2. Predisposing and Triggering Factors

The second step of the research includes the acquisition and preparation of the thematic
data related to the predisposing and triggering factors. We compared the spatial distribution
of the landslides with some descriptors of the local geological and geomorphological setting
and with the spatial distribution of the precipitations during the May 2023 events. We
selected five influencing factors for further analyses, namely, rainfall, slope, land use,
lithology and distance from roads.

We interpolated the pluviometric data published in the ER report [38]. The cumulative
pluviometric data refer to the period 1–17 May 2023 and for the two-day period of 16 and
17 May 2023. We interpolated the point data with a local polynomial interpolator algorithm
(spline interpolation) to grant the representativeness of the data in terms of local trends
and to avoid possible spikes in the data distribution.

For the topographical analyses, we used the 20 m DTM of Italy, released by ISPRA,
and we derived the slope values (in degrees).

We obtained a lithological map of the area from the ER region WebGIS at a 1:50,000 scale.
The geological map has been directly derived from the Italian national geological cartogra-
phy program (CARG Project) and includes a lithological classification of each geological
unit. For the sake of simplicity, we adopted the classification scheme summarized in Table 2.

Table 2. Lithological classes.

Lithology Class Description

U1 Competent massive or well-bedded rocks (mainly limestones and
dolostones)

U2 Siltstones, marls and limestones interbedded with marls
U3 Sandstones and sandstones interbedded with marls and siltstones
U4 Conglomerates and breccias
U5 Gypsum (massive or breccia facies)

Land use was downloaded from the ER region WebGIS. This database follows the
CORINE land cover hierarchical classification scheme and was updated in 2020. We
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compared the occurrence of landslides with the main categories of land use as summarized
in Table 3.

Table 3. Land use classes.

Land Use Class Description

L1 Urban (residential and industrial)
L2 Arable land
L3 Agricultural (trees and vineyard)
L4 Meadows
L5 Woods (both evergreen and deciduous)
L6 Bare rocks and badlands
L7 Shrubs
L8 Water (lakes, rivers and swamps)

To estimate the possible influence of the vicinity of roads for landslide triggering, we
used the Open Street map database of roads and streets, including all the road types except
for paths in mountain areas.

3.3. Data Analysis

The last part of our work is dedicated to the statistical analysis of the inventory. As a
first step, we carried out a topological check on the landslide inventory using the “check
validity” QGIS tool to correct auto-intersecting polygons; this check resulted in 14 invalid
polygons (0.03% of the mapped landslides), which were manually corrected. To investigate
the spatial distribution of landslides, we computed the landslide number density (LND)
and landslide area percentage (LAP), which later were statistically analyzed with respect to
predisposing and triggering factors.

The landslide density was calculated by means of the kernel density estimation ap-
proach using a kernel density estimator (KDE) in a GIS environment (e.g., [41,42]). The KDE
calculates the density of point features if a probability density function of event occurrence
(i.e., the kernel shape) is centered at the observation point. The probability diminishes with
increasing distance from the point, reaching zero at the search radius distance (h) from the
point. Only a circular neighborhood is possible.

Following [43], we calculated h according to the following formula:

h = 0.9 × min
(

SD,
IQR
1.34

)
× n−0.2, (2)

where IQR and SD are the interquartile range and the standard deviation, respectively, of
the distances between each observation point and the centroid of the point population; n is
the number of points.

The density at each output raster cell is calculated by adding the values of all the
kernel surfaces where they overlay the raster cell center. We adopted an Epanechnikov
kernel shape [44], namely, a kernel function built as the positive part of a parabola that
minimizes the errors associated to the tails of the estimates [43]. We also produced a density
raster of the calculated KDE density with 100 m cell spacing.

LAP represents the percentage of the territory covered by the rainfall-triggered land-
slides; it was computed on a regular grid of cells having an area of 1 km2.

The quantitative relationship between landslides and predisposing factors affecting
landslides are established by the data-driven Information Value (InfoVAL) method [45–47].
The method allows for the quantified prediction of susceptibility by means of a score (Wi),
calculated according to landslide occurrence on each class and weighed according to the
class distribution over the entire study area:

Wi = ln
Densclassi

Densmapi
, (3)
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where Wi is the score for the i-th class, Densclass is the landslide occurrence for the i-th
class and Densmap is the i-th class occurrence on the whole area. This formula normalizes
the event occurrences over the spatial distribution of each considered class. Positive values
indicate a positive statistical correlation and negative values a negative one, while values
close to zero indicate a random distribution of the data. We applied the InfoVAL method to
the territory of the ER region, where consistent and homogenous information is available.
Emilia-Romagna accounts for 97% of the mapped landslides, so we claim that the obtained
results can be considered representative of the entire dataset.

4. Results

4.1. The Inventory

The dataset contains 47,523 landslides in an area of 5764 km2, corresponding to an
average density of about 8 landslides/km2. Figure 4 shows two examples of multitemporal
satellite images at the localities of Fontanelice and Fognano (for the location, see Figure 2c).
The upper panels (Figure 4a) represent the images acquired before the rainfall episodes,
i.e., on 27 April; the mid-panels (Figure 4b) were acquired after the first rain spell, i.e., on
5 May; and the lower panels (Figure 4c) were acquired a few days after the main rainfall
episode, i.e., on 22–23 May. Finally, Figure 4d presents two field photographs of the sites.

The pre-event images provide an overview of the typical local setting, which includes
a variable proportion of urban areas, agricultural fields, woodlands and outcropping rocks.
From the comparison of the multitemporal images, it is evident that most of the landslides
occurred after the 16–17 May rainfall episode; nevertheless, a few landslides are recog-
nizable on the 5 May images as well (see red circles), mostly related to the reactivation of
pre-existing slope movements. The landslides are not homogeneously distributed but tend
to cluster at specific places, such as along the Santerno River (Fontanelice) or in the wood-
land and cultivated fields N of Fognano. The field photos show the occurrence of closely
spaced slope movements with variable runouts, which scraped off the vegetative cover.

Figure 5 presents the selected examples of the landslides observed in the field and
having variable characteristics in terms of the size, shape, geomorphological setting and
involved materials. The location of the sites is presented in Figure 2c. Figure 5a includes two
slides with long runouts coalescing into a single toe; the crown areas are at the top of a small
hill, while the toe intersects an agricultural field. Figure 5b shows a single slope movement
on the lower part of a steep slope in a vegetated region; in this case, the deposit area lies
at the base of the slope. Figure 5c shows a panoramic view of the multiple landslides
that occurred on the slope beneath the Sorrivoli Castle, a fortress built in the XI century.
Figure 5d shows the trunks and sediments transported by a river course and deposited
at the intersection with a road bridge. Figure 5c,d represent typical interactions between
the landslide events or destabilized material and anthropic activities, infrastructures or
cultural heritage.

The dataset is entirely original, and the shapefiles (coordinate system WGS84 UTM
32N) can be publicly accessed at https://zenodo.org/record/8102429 (last accessed 1
October 2023). We computed the LND and LAP values on a regular grid of cells having a
dimension of 1 km2. Figure 6 allows for appreciating the uneven spatial distribution of the
landslides: the highest LND and LAP values are indeed located in a small portion in the
central part of the AOI and decrease moving outwards. The maximum LND values reach
129 landslides/km2, while the maximum LAP values reach around 30%.

The landslide polygons cover an area of 40.9 km2, which represent 0.71% of the AOI;
the largest mapped failure has an area of 98,000 m2, while the average area is 860 m2. The
probability density of the dataset is presented in Figure 6c: the curve is characterized by
the typical pattern of other landslide–area distributions, namely, a negative power law fit
for medium to large landslides and a positive power law fit for small to medium landslides.
The two limbs of the curve are separated by a rollover, which in our case is located at a
size of 120–150 m2. The exponent of the negative power law is −2.22, which is in broad
agreement with other inventories worldwide [18,23,26,48].

316



Remote Sens. 2024, 16, 122

Figure 4. Selected examples of multitemporal Planet images at Fontanelice (left column) and Fognano
(right column): (a) images acquired on 27 April 2023, before the rainfall events; (b) images acquired
on 5 May 2023, after the first spell of heavy rain, red circles show the location of a few landslides
triggered by the first rain episode; (c) images acquired on 22–23 May 2023, after the rainfall episodes,
yellow dots are the location of field pictures; and (d) panoramic photographs of the two regions
(photo shot by M. F. Ferrario on 30 July and 1 August 2023, respectively).
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Figure 5. Field photos documenting some of the slope movements and related effects: (a) coalescing
landslides in agricultural fields; (b) landslide on vegetated steep slopes, the material accumulates at
the base of the slope; (c) interaction between landslides and cultural heritage (Sorrivoli Castle); and
(d) material accumulated beneath a bridge pillar, enhancing the derived damage. All the photographs
were shot by M. F. Ferrario between 30 July and 1 August 2023.

Figure 6. (a) Distribution of landslide number density (LND) values; (b) distribution of landslide
area percentage (LAP) values; and (c) plot of the probability density as a function of landslide area.
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4.2. Predisposing and Triggering Factors

We selected four predisposing factors for the subsequent analysis; one is related to the
topography (i.e., slope) and one to the geologic setting (lithology), while the remaining two
factors are the land use and distance from roads, which account for the anthropic territorial
modifications. Figures 7 and 8 show the maps of the four factors, while the categories used
to classify the lithology and land use are presented in Tables 2 and 3, respectively. The plots
in the upper-right corner of Figures 6 and 7 show the repartition among the different units:
the overall AOI is represented by the blue columns, while the orange dots represent the
proportion of landslide centroids falling within each unit.

Figure 7. Maps of slope values (a) and lithology (b) in the AOI. Graphs in upper-right corner represent
the repartition of the landscape (blue bars) and landslide centroids (dots) in the different classes.
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Figure 8. Maps of land use (a) and distance from roads (b) in the AOI. Graphs in upper-right
corner represent the repartition of the landscape (blue bars) and landslide centroids (dots) in the
different classes.

Figure 7a presents the role of the slope, which has been categorized into units of 10◦
width. Categories 0–10◦ and 10–20◦ share an almost equal amount of the AOI (38% each),
but the landslide centroids peak in the 10–20◦ class, with a value of 37%. The steeper slopes
are less diffuse in the AOI, but the landslide centroids are over-represented, especially in
the 20–30◦ and 30–40◦ classes.
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Figure 7b presents the role of lithology, which has been categorized into five units (see
Table 2). The most represented unit in the AOI comprises “siltstones, marls and limestones
interbedded with marls”; it covers 57% of the AOI, and 67% of the landslide centroids lie
within Unit 2. Overall, the abundance of landslides for each unit follows the lithological
repartition in the AOI.

Figure 8a presents the role of land use, which has been categorized into eight units
(see Table 3). The most represented unit in the AOI is L5 (i.e., woods, 36%), followed by
L2 (arable land, 28%). When considering landslide centroids, more than half (56%) lie in
Unit L5, pointing toward a strong influence of this land use category. Unit L6, bare rocks
and badlands, accounts for only 2.2% of the AOI but includes 9% of the landslides, again
suggesting that it may be a strong predisposing condition. On the contrary, Unit L1 (urban
areas) covers 14% of the AOI, but only 2% of the landslides are located in Unit L1, probably
because urban areas lie on flat regions and/or landslides are more difficult to identify in
satellite imagery.

Figure 8b presents the role of the distance from roads, which has been categorized into
units of 200 m width. The AOI shows an exponential decrease with distance: 86% of the
AOI lies at less than 400 m from a road, testifying to the high density of infrastructures and
thus the exposed assets. The distribution of landslide centroids mimics the AOI repartition,
because the most represented class is within 200 m from a road (51%).

Precipitation is the triggering factor of this large amount of mass movements. A
comparative analysis between the landslide KDE value and the corresponding precipitation,
occurring at the same location, provides some additional insights. We considered both the
distribution of the cumulative precipitations that occurred during the whole rainfall period
(1–17 May 2023; Figure 9a) and the precipitations that occurred during the second rainfall
event alone (16–17 May 2023; Figure 9b). Even considering a quite scattered distribution of
the datapoints, it is apparent that there is a good positive correlation between the amount
of rainfall and the spatial density of landslides. In particular, if we consider the 16–17 May
2023 event alone, the graph points to a threshold value for the inception of landslides of ca.
120 mm over the considered period.

Figure 9. Density of datapoints contoured on a scatterplot showing the KDE value (number of
events/km2) compared with the corresponding value of precipitations recorded during 1–17 May (a)
and during 16–17 May alone (b).

The analysis of the frequency distribution of the landslide KDE value for each land
use and lithology class highlights how the landslides concentrate or not in certain zones
(Figure 10). A lithological control on landslide occurrence is apparent only for conglomerate-
like units (class U4), inhibiting the massive landsliding, and flysch-like units (class U2) that,
on the contrary, look to host a higher landslide density.
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Figure 10. Statistics of the KDE value recorded for each of the classes of lithology (a) and land use (b),
considered as possible predisposing factors (see Tables 2 and 3 for class codes); on the boxplots, the
average (white line), 1 standard deviation (boxes), and 2 standard deviations (whiskers) are reported.

As for the land use, agricultural land (class L3) and woodland (class L5) are correlated
to an average higher KDE value, also considering a quite broad distribution of values.
On the other hand, urban areas (class L1), on average, are the only ones less affected
by landsliding.

Finally, if we check the relative representation of the land use and lithology classes,
and the reciprocal exchange of events among those classes (Figure 11), we can appreciate
that, overall, most landslides belong to woodland (class L5) over flysch-like units (class
U5), with most of the remaining landslides from the woodland distributed between the
sandstones (class U3) and limestone (class U1) units. Flysch-like units are also associated
with a considerable number of events that happened on arable land (class L2) and shrubs
(class L7).

Figure 11. Stream plot summarizing the distribution of the datapoints among all the possible
combinations of land use and lithology classes (see Tables 2 and 3 for class codes).
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Another considerable number of events belong to bare lands (L6) on sandstones (U3)
and to woodland (class L5) on limestones (class U1).

4.3. InfoVAL Analysis

From the calculated InfoVAL index (Table 4), it is apparent that lithology has a moder-
ate effect on predisposing the slopes to landsliding: positive Wi values are associated with
silty and flysch-like units, but only small positive correlations can be supposed. On the
other hand, sandstones represent a more stable terrain over which landsliding is inhibited.
The land use classes predisposing landsliding are woods and shrubs, with a striking high
value associated with bare rocks and badlands. The slope classes are particularly indicative
of a susceptibility between 20◦ and 40◦ and for extremely high values (60–80◦).

Table 4. Summary of the considered classes as possible predisposing factors and calculated InfoVAL
index (Wi).

Predictor Class InfoVAL Index (Wi)

Lithology
U1: Competent massive or
well-bedded rocks (mainly
limestones and dolostones)

0.09

U2: Siltstones, marls and
limestones interbedded with

marls
0.14

U3: Sandstones and
sandstones interbedded with

marls and siltstones
−0.41

U4: Conglomerates and
breccias −0.48

U5: Gypsum (massive or
breccia facies) 0.08

Land use L1: Urban (residential and
industrial) −1.60

L2: Arable land −0.67
L3: Agricultural (trees and

shrubs) −0.53

L4: Meadows −0.23
L5: Woods (both evergreen

and deciduous) 0.56

L6: Bare rock and badlands 1.57
L7: Shrubs 0.45

L8: Water (lakes, rivers and
swamps) 0.22

Slope (◦) 0–10 −0.31
10–20 0.13
20–30 0.62
30–40 0.71
40–50 0.60
50–60 0.44
60–70 0.79
70–80 2.16
80–90 -

Distance from roads (m) 0–200 −0.07
200–400 0.46
400–600 0.56
600–800 0.40
800–1000 0.19

1000–1200 −0.24
1200–1400 −0.81
1400–1600 −0.46
1600–1800 −0.70
1800–2000 −0.14
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Finally, the distance from roads is somehow indicating an augmented hazard in the
range of 200–800 m. The majority of landslides mapped in our study lie within 200 m from
a road. This result is consistent with those obtained by [28], who realized an inventory of
1687 landslides triggered by a rainfall episode that occurred in the Umbria and Marche
regions on 15 September 2022. They found that 60% of the mapped landslides lie within
50 m from the roads, and the percentage grows to 89% within 200 m from the roads.
It is important to note that the methods of [28] are different from the ones used here:
indeed, they realized the extensive reconnaissance field surveys by driving along main and
secondary roads and stopping at every landslide or scenery point.

5. Discussion

5.1. Comparison with Other Case Studies

The inventory presented in this study includes 47,523 landslides, thus representing
one of the most numerous event inventories on a global scale. Here, we compare the figures
of the Emilia-Romagna inventory with other case histories available in the literature to
look for common patterns or, on the contrary, peculiarity in the case study presented here.
Comparative studies have been realized on a dataset of 16 inventories pertaining to events
that occurred between 2002 and 2019 [18,23]. The events cover a variety of precipitation
patterns (cyclones, typhoons, local storms and prolonged intense rainfall) and geographic
settings (Central and South America, East Africa, India and East Asia). The total event
rainfall ranges between 45 and 2500 mm. A strong influence on the triggered landslides is
played by the total storm rainfall, while topographic parameters (e.g., slope) have a lower
impact [18]. Overall, a non-linear increase in total landsliding is observed with respect to
total rainfall. The number of triggered landslides also scales with the total rainfall amount,
although the scatter is higher; this latter point can be due to the fact that the inventories
were delineated on images with a different resolution [18].

As a comparison, we recall that the rainfall in the Emilia-Romagna region reached
254 mm on 1–2 May 2023 and 260 mm on 16–17 May 2023, while the cumulated rainfall
over the entire period (1–17 May 2023) was about 570 mm. These figures suggest that the
case study presented here is consistent with the literature data.

Figure 12a presents the number of landslides versus the total rainfall amount for the
dataset by [23], while Figure 12b presents the empirical relationship between the total
rainfall and the landslide area presented by [18]. We supplemented the graph with three
Italian case histories [15,27,28] and with the inventory presented in this study. It is quite
evident that the Emilia-Romagna case history plots well above previous investigated events.
Several factors may account for such a difference, including (i) the fact that the case study
presented here was particularly effective in triggering landslides, or (ii) there is an issue of
completeness in the landslide mapping, or (iii) there is some fundamental difference in the
considered events or methodological assumptions. We prefer the former two hypotheses,
because some of the inventories in the literature were derived from the same kind of
satellite imagery and with comparable methods; the frequency–area distribution of the
Emilia-Romagna inventory has a rollover at ca. 120–150 m2, while the inventories have
rollovers ranging between 102 and 103 m2, suggesting that our inventory contains a larger
number of small landslides.
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Figure 12. (a) Number of landslides versus total rainfall (mm), global data after [23], Italian cases
after [15,27,28]; (b) total landslide area versus total rainfall, global data after [18], Italian cases
after [15,27,28].

5.2. Limitations of the Inventory

Here, we highlight some critical aspects and limitations of our study, related either to
the methodological mapping and analytical choices, or actual limitations in the input data.

In the first days after the 16–17 May rainfall episode, persistent cloud cover hampered
the identification of landslides; the inventory is thus based on multitemporal images
acquired on different dates. The high revisit time of the Planet images allows for closely
bracketing the time of occurrence of the landslides. Figure 2d shows that no significant
rainfall occurred after the 16–17 May episode; nevertheless, we cannot rule out that some
slope movements may have been triggered a few days after the rainfall episode. The same
reasoning applies to landslides that may have occurred in the first half of May (i.e., after
the 1–2 May rainfall): Figure 4 shows that most of the movements have been triggered after
the 16–17 May rainfall, but some landslides may have been mobilized before that episode.
Overall, our inventory has to be intended as the cumulative effect of both the 1–2 and 16–17
May rainfall spells.

The inventory was released on 28 June 2023, i.e., 1.5 months after the main triggering
event; in this sense, our inventory can be assimilated to rapid response products (e.g., [49]).
Some operative choices represent a trade-off between the rapidity of execution and data
quality/resolution, for instance, the mapping was realized at a 1:5000 scale and should be
consulted at most at the same scale; a side effect is that our mapping is not recommended
for higher resolution susceptibility studies, unless a field verification is undertaken. We
underline that our inventory is one of the few that have been publicly released; to our
knowledge only one other inventory has been published to date, realized through automatic
mapping from Sentinel-1 images ([50]; publication date 1 June 2023).
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The investigated AOI is 5764 km2 wide, meaning that the inventory does not entirely
cover the area hit by rainfall. However, we argue that the inventory effectively captures the
worst hit area and represents a significant snapshot of the event.

We expect that our inventory may contain a certain number of false positives, especially
in agricultural fields, built-up areas or close to riverbanks; indeed, in the post-event imagery,
such areas show spectral characteristics similar to landslide areas (e.g., [10,11]). We also
expect some completeness issues (false negatives) in the vicinity of roads and river networks:
our limited field surveys allow us to ascertain the occurrence of a high number of slope
movements affecting the road network. Figure 13 presents some representative cases of
field photos and satellite images: the two areas shown in Figure 13a,b lie about 1 km apart
on Province Road SP610 in the Castel del Rio Municipality. In the first case (Figure 13a,c,d),
the slope movement is clearly visible in the satellite image and is included in the inventory;
the landslide intercepts the road and flows down, reaching the Santerno River course. In
the second case (Figure 13b,e), a small slope movement occurred along the road bank;
this landslide is not visible in the 3 m resolution Planet image and thus is not included
in our inventory. The latter example suggests that the abundance of slope movements
within 200 m from roads (see Figure 8b) may be underestimated. The high influence of a
dense road network as a predisposing factor for landslides has been already pointed out in
previous studies (e.g., [51]).

Figure 13. Satellite images and field photographs of landslides impacting the road network along
Province Road SP610 in the Castel del Rio Municipality: (a,b) Planet images acquired on 23 May,
yellow dots are the locations where pictures were taken; (c,d) field photos of a landslide impacting the
road, the deposit area lies in proximity of Santerno River; and (e) field photo of a smaller landslide,
not recognizable on satellite imagery. All the photographs were shot by M. F. Ferrario on 30 July 2023.
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Finally, we highlight that very limited field verification has been realized so far and no
systematic evaluation of the reliability and accuracy of the inventory has been carried out.
Indeed, the quality and reliability of the inventory control the overall quality of derivative
products, such as the susceptibility and risk assessment [52,53]. Such aspects are beyond
the scope of this paper but should be addressed whether the inventory presented here is
used as input data for further studies.

6. Conclusions

In this paper, we present an inventory of 47,523 landslides triggered by heavy rainfall
that occurred in May 2023 in the Emilia-Romagna and conterminous regions (Italy). A first
precipitation episode occurred on 1–2 May 2023 and a second one on 16–17 May; the latter
was responsible for most of the observed landslides.

The inventory was realized by a visual inspection of the pre- and post-event satellite
imagery with a resolution of 3 m. The adopted methods are standard practice, and our effort
is devoted to filling the data gap existing for the investigated triggering event. A limited
field survey at selected locations was conducted to validate the inventory. We statistically
investigate the relationship between landslide density and triggering (precipitation) and
predisposing factors using the InfoVAL method. A strong influence is due to steep slopes
and some land use categories (bare rocks and badlands, and woodlands), while a weaker
positive correlation is found with respect to lithology because a higher landslide density is
obtained for silty and flysch-like units.

The inventory presented here is one of the most numerous on a global scale and we
argue that it can support the validation of other products, for instance, that are obtained
through automatic mapping methods. The statistical results on triggering and predisposing
factors may be useful for susceptibility assessment and land planning (e.g., landslide
zoning) or the derivation of empirical rainfall thresholds for landslide triggering.
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