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Preface

Medical data science, including the traditional science of statistics, contributes to the

development and application of tools that are used for the design, analysis, and interpretation of

empirical medical studies. The storage capacity of digital data and the technological advances

achieved over recent decades have contributed to the proliferation of new analytical methods in

medicine. The value of using these methods as a diagnostic and prognostic tool has steadily

increased. Nevertheless, classical statistical approaches can often provide effective answers to

important questions. The development of new data analysis methods for medical and related

applications depends on the innovative use of biomedical technology, computer algorithms, statistical

inference theory, a good understanding of clinical and epidemiological research questions, and an

understanding of the importance of statistical software. The broader introduction and expansion

of the new analysis tool for a medical audience might require this method to solve a data analysis

problem where basic statistical methods have been neither useful nor applicable. The aim of

this reprint is to emphasize the practical aspects of novel data analysis methods and to provide

insights into the challenges in biostatistics, epidemiology, clinical medicine, and biomedicine. These

contributions cover meta-analysis, the assessment of clinical outcomes, machine learning, medical

diagnostics, and genomic factors. Each article is self-contained and may be read independently in

line with the needs of the reader. The reprint comprises essential reading for postgraduate students as

well as researchers from medicine and other scientific fields where statistical data analysis is central.

Pentti Nieminen

Editor
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Article

Comparing ANOVA and PowerShap Feature Selection Methods
via Shapley Additive Explanations of Models of Mental
Workload Built with the Theta and Alpha EEG Band Ratios

Bujar Raufi † and Luca Longo *,†

Artificial Intelligence and Cognitive Load Research Lab, Technological University Dublin, Grangegorman Lower,
D07 H6K8 Dublin, Ireland; bujar.raufi@tudublin.ie
* Correspondence: luca.longo@tudublin.ie
† These authors contributed equally to this work.

Abstract: Background: Creating models to differentiate self-reported mental workload perceptions
is challenging and requires machine learning to identify features from EEG signals. EEG band ratios
quantify human activity, but limited research on mental workload assessment exists. This study
evaluates the use of theta-to-alpha and alpha-to-theta EEG band ratio features to distinguish human
self-reported perceptions of mental workload. Methods: In this study, EEG data from 48 participants
were analyzed while engaged in resting and task-intensive activities. Multiple mental workload
indices were developed using different EEG channel clusters and band ratios. ANOVA’s F-score and
PowerSHAP were used to extract the statistical features. At the same time, models were built and
tested using techniques such as Logistic Regression, Gradient Boosting, and Random Forest. These
models were then explained using Shapley Additive Explanations. Results: Based on the results,
using PowerSHAP to select features led to improved model performance, exhibiting an accuracy
exceeding 90% across three mental workload indexes. In contrast, statistical techniques for model
building indicated poorer results across all mental workload indexes. Moreover, using Shapley
values to evaluate feature contributions to the model output, it was noted that features rated low in
importance by both ANOVA F-score and PowerSHAP measures played the most substantial role in
determining the model output. Conclusions: Using models with Shapley values can reduce data
complexity and improve the training of better discriminative models for perceived human mental
workload. However, the outcomes can sometimes be unclear due to variations in the significance of
features during the selection process and their actual impact on the model output.

Keywords: model explainability; mental workload; statistical feature selection; Shapley-based fea-
ture selection; alpha and theta EEG band ratios; machine learning

1. Introduction

In many practical machine learning tasks, including interpretability [1,2], data valua-
tion [3], feature selection [4,5], ensemble pruning [6], federated learning [7] and universal
explainability [8,9], measuring the achievement of a data attribute is a central issue. Al-
though we heavily rely on machine learning models to perform various tasks, we rarely
question the validity of the decisions made by the learning algorithms used to build them.
This raises legitimate questions concerning the importance of a feature during the model
learning process, the value of an individual data point in a dataset during learning, which
models are more valuable during an ensemble learning procedure, which vote is more im-
portant, and why. While different methods exist to address these questions, the transferable
utility cooperative game approach is a more general and holistic way to tackle them, with
its most popular method being based on Shapley values [10]. Cooperative game theory
aims to evaluate the value of coalitions that players can form. Shapley values effectively
divide a cooperative game’s overall value or payoff between its players. They assess a

BioMedInformatics 2024, 4, 853–876. https://doi.org/10.3390/biomedinformatics4010048 https://www.mdpi.com/journal/biomedinformatics
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player’s average marginal contribution to all potential coalitions they could be a part of
and are calculated by averaging their marginal contributions across all possible coalition
formations. Over the years, several enhancements have been made to Shapley values, such
as enhancing efficiency, symmetry and fairness [11]. When considering machine learning
and corporate game theory, each feature is treated as a player in a game, and the Shapley
value of a feature represents its contribution to the model’s overall prediction accuracy. To
calculate Shapley values, one must consider all possible feature subsets and compute each
feature’s marginal contribution to the prediction accuracy. Although this process can be
computationally intensive, recent algorithm and computing power advancements have
made it viable for larger and more complex datasets.

Shapley values are widely used in machine learning to explain how individual features
or variables contribute to a model’s final prediction. Each feature is assigned a numerical
value representing its impact on the output, resulting in a clear and understandable ex-
planation of the model’s behaviour. This information is invaluable for identifying critical
features, improving model performance, and building trust and accountability in machine
learning models [1,12,13]. Using Shapley values in machine learning offers a significant
advantage as they support an unbiased way of interpreting the behaviour of various learnt
models [14]. Additionally, Shapley values can be utilized to explain the predictions of
black-box models, which are typically challenging to interpret using other methods [15].
Some examples of how Shapley values are applied in machine learning include:

1. Feature selection: Identifying the most significant features and eliminating any irrele-
vant or redundant ones is crucial for creating precise and efficient models, especially
in datasets with numerous dimensions [5,16].

2. Model comparison: Comparing the performance of various models and pinpointing
their strengths and weaknesses can aid in selecting the most suitable model for a
particular task and identifying areas for enhancement [17].

3. Bias detection: Identify any potential features that may result in bias or discrimination
in the model’s predictions. It is imperative to take immediate action to address this
bias and improve the model’s fairness [9].

4. Explainable AI: It is important to clearly and unequivocally explain how the model behaves
to establish trust and accountability in automated decision-making systems [1,8,18].

Calculating Shapley values for extensive datasets is computationally expensive, ren-
dering its use in practical situations difficult. Studies have examined these difficulties and
drawbacks in machine learning [19,20]. Moreover, understanding and interpreting Shapley
values can be subjective and influenced by the selection of the model’s starting point,
potentially affecting the outcomes [1,21]. Algorithm design and computing power have
recently made significant progress, broadening their applications and creating new research
opportunities in this field. Shapley values can serve as a useful tool for evaluating intricate
classification models. For instance, they can be applied to the models for distinguishing
between the self-reported perceptions of mental workload via electroencephalographic
activity. Research has shown that EEG band ratios, particularly those in the theta and
alpha bands, are linked to various mental workload states [22,23]. Studies support the
idea that these measures could be used as indicators of workload [24,25], and as a result,
they could be incorporated into various machine-learned models to discriminate the self-
reported perceptions of mental workload [26]. There have been numerous proposals for
machine learning models aiming to distinguish the self-reported perceptions of mental
workload [25–28]. However, mental workload research using EEG data in the area of model
explainability with the use of Shapley values is currently limited.

This paper investigates the impact of Shapley-based feature selection methods in
comparison to statistical feature selection methods on the capability of machine learning
models to distinguish the self-reported perceptions of mental workload using alpha-to-
theta and theta-to-alpha ratios extracted from EEG data. The formulated research question

is: What is the difference in performance between these two methods? The innovative
aspect of the paper resides in the fact that, by integrating explainability in feature selection
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methods, it is possible to unveil a potential new dimension for understanding the complex
relationship between EEG band ratios and self-reported mental workload levels. This
innovation would empower the machine learning models to make accurate predictions and
provide invaluable insights into the specific EEG features that drive these predictions to
human stakeholders. As a result, this might enhance the transparency and interpretability
of these models, enabling researchers and clinicians to decipher the intricate neurological
processes underpinning mental workload variations with a higher level of precision and
clarity than existing research works. With the fusion of feature selection methods and model
explainability with EEG band ratio data, it is possible to introduce a potential research
path in comprehending cognitive states, paving the way for more targeted interventions,
data-driven discoveries, and a deeper comprehension of mental workload dynamics. This
paper is a step towards that direction.

The remainder of this paper is organised as follows: Section 2 provides the background
concepts on alpha-to-theta and theta-to-alpha EEG band ratios as well as statistical and
Shapley-based feature extraction on EEG data; Section 3 outlines the experiment design
for feature extraction from EEG band-ratios using Shapley values and its comparison with
the traditional statistical ANOVA method; Section 4 presents the result, while Section 5
critically discusses them. Eventually, Section 6 highlights the contribution to the body of
knowledge and presents future directions of research.

2. Related Work

This section will thoroughly define Shapley values and examine their significant
impact on machine learning. Furthermore, mental workload and its assessment methods
will be precisely defined. Lastly, statistical and Shapley-based feature selection methods
will be exhaustively explored.

2.1. Shapley Values in Machine Learning

To accurately define the Shapley values in collaborative game theory, it is crucial
to have a thorough grasp of the fundamental formalisms and definitions involved. The
definitions provided below are important in that regard [6,10].

Player sets and coalitions: Let us consider the machine learning features as being
players in a cooperative game provided by a finite set: F = {1, 2, 3,. . . , n}. We denote a
non-empty subset N ⊆ F as a coalition and F as grand coalition.

Cooperative game: A cooperative game between features is represented by the pair
(F , υ). Here, υ : 2F → � is a coalition function that assigns a real value to each feature
coalition. It is worth noting that υ(∅) = 0 is also necessary to consider the function a
collaborative game.

Feasible pay-off vector sets: In a cooperative game (F , υ), the set of feasible payoff
vectors is defined as Z(F , υ), which consists of all vectors z ∈ �F that satisfy the condition
∑i∈F zi ≤ υ(F ).

Solution concepts and vectors: When dealing with collaborative games, a solution
concept Φ is a way of mapping a subset Φ(F , υ) ⊆ Z((F , υ)) to a specific game (F , υ). In
order for a solution vector φ(F , υ) ∈ �F to be considered a solution to the cooperative
game (F , υ), it must satisfy the solution concept Φ, meaning that φ(F , υ) ∈ Φ(F , υ). A
single-valued solution concept would exist if, for every (F , υ), the set Φ(F , υ) only contains
one element.

Feature set permutations: We can refer to the set of all permutations on a given set
F as Π(F ). Within this set, there exists a specific subset of permutations represented by
π ∈ Π(F ), where πi denotes the position of feature i within the permutation π.

The predecessor set: of a feature i ∈ F in a permutation π is a coalition of the form:
Pπ

i = {j ∈ F|πj < πi}.
Assuming the given permutation of three features is π = (3, 2, 1), the predecessor set

for this permutation would be: Pπ
1 = (3, 2) for the first feature, Pπ

2 = (3) for the second
feature, and Pπ

3 = ∅ for the third feature.
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Given these definitions, we can now define the Shapley values as:

φs
i =

1
Π(F ) ∑

π∈Π(F )

[υ(Pπ
i ∪ {i})− υ(Pπ

i )] (1)

where the expression inside the sum represents the ith features marginal contribution
within permutation π. According to the equation, the Shapley value for a feature is the
average marginal contribution of that feature to the predecessor set’s value, calculated
across all possible permutations of the feature set.

2.2. The Concept of Mental Workload

Mental workload is crucial for studying human performance and is applied in various
fields, such as medicine [29], education [30], web-design [31], and transportation [32],
among others. The concept of mental workload is complex and has multiple levels, which
can be difficult to define. It is often confused with cognitive effort [33], leading to ambi-
guities in its definition. This multifaceted complexity makes it challenging to understand
the concept entirely. There are numerous interpretations of mental workload, as stated in
the research by Hancock [34]. However, a recent comprehensive definition incorporating
various perspectives is that Mental Workload (MWL) reflects the level of engagement of a limited
pool of resources during the cognitive processing of a primary task over time. This is influenced by
both external stochastic environmental and situational factors, as well as the internal characteristics
of the human operator, and it is necessary for managing static task demands through dedicated effort
and attention [35]. Based on the Multiple Resource Theory (MRT), this definition states that
resources have a limited capacity and using multiple resources simultaneously can lead to
reduced performance and increased mental workload. The theory suggests that resource
selection and allocation depend on task demands, individual differences and context. To
optimize the use of multiple resources, task design and training can minimize the mental
workload and improve resource allocation and coordination, as outlined in Wickens’ work
on the subject.

Numerous techniques are utilized to measure mental workload [34]. One method
uses subjective measures, which involves collecting feedback from individuals who have
interacted with a task and system. This feedback is typically obtained through post-
task surveys or questionnaires. Some common subjective measurement approaches are
the NASA Task Load Index (NASATLX), the Workload profile (WP), and the Subjective
Workload Assessment Technique (SWAT). Another method is task performance measures,
which includes primary and secondary task measures. This method objectively measures
an individual’s performance related to a task. Examples of such measures include the time
completion of a task, reaction time to secondary tasks, number of errors on the primary
task and tracking and analyzing different actions performed by a user during a primary
task. Lastly, physiological measures are based on analyzing the physiological responses of
the human body. Examples of such measures include EEG (electroencephalogram), MEG
(magnetoencephalogram), Brain Metabolism, Endogenous Eye blinks, Pupil diameter, heart
rate measures, or electrodermal responses.

“EEG band ratios” refer to comparing power or amplitude between two frequency
bands present in an electroencephalographic (EEG) signal. These ratios are widely utilized
in neuroscience research to study brain activity during various states, including sleep,
attention, alertness, emotion, and mental workload. In particular, the alpha and theta
bands are frequently studied in the context of mental workload due to research indicating
a correlation between these bands and increased mental workload. Specifically, an increase
in the theta power band in the frontal brain region and a decrease in the alpha power in
the parietal region is associated with increased mental workload [36]. Measuring mental
workload through EEG band ratios and correlating objective brain activity (alpha-to-theta
and theta-to-alpha) with the subjective self-reports of workload is difficult due to the
disparity between the measures. It is crucial to investigate the convergence of measures

4
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between objective brain activity and the self-reported perception of mental workload [37].
Eventually, various analytical models of cognitive load have been built, with inductive and
deductive techniques [35]. For example, Machine Learning has been used in conjunction
with EEG data to inductively model cognitive load in a self-supervised way, without human
intervention in selecting features [38]. Similarly, mental workload is represented and
assessed via defeasible reasoning as a non-monotonic knowledge-representation technique
that allows one to embed the deductive knowledge of a human reasoner together in a
model [39,40]

2.3. Feature Selection with Statistical and Shapley-Based Methods

Various inductive data-driven techniques have been employed in mental workload
modeling. However, one of the challenges is to create a group of independent features that
can be mapped inductively to a target feature, which is typically a person’s subjective per-
ception of workload or a physiological measure of bodily activation. In Machine Learning,
various methods are available to automatically select the most pertinent, descriptive and
distinguishing features from a larger set of features for solving classification or regression
tasks. These techniques are briefly described in the following sub-section.

2.3.1. Traditional Statistical Feature Selection Methods

Feature selection methods in statistics help pick out the most significant features
from a large pool of available features. This process reduces the data’s complexity while
retaining as much important information as possible. A preferred approach is the mu-
tual information-based feature selection, which assesses the dependence between the fea-
tures and the target variable [41]. The mutual information score assesses the significance
of features and chooses the most important K features. It is an effective and efficient
method for both categorical and continuous variables. Another widely used method
for selecting statistical features is the chi-square test. It determines the relationship be-
tween categorical variables and chooses the features that are most likely to be related to
the target variable. This test calculates the chi-square statistic for each feature and sorts
them based on their p-values. The features with lower p-values are more significant to
the target variable. This method is effective in selecting features that are highly corre-
lated with the target variable [42]. Another statistical method for feature selection is the
ANOVA F-test. It is specifically used for choosing features with continuous variables
and calculates the disparity between the means of the variables for the distinct categories
of the target variable [43]. The ANOVA F-test evaluates features by their F-statistic or
F-score. This ratio measures the difference in variance between groups and within groups.
Features with a high F-statistic or F-score significantly impact the target variable when
chosen. This method is effective for non-skewed data.

2.3.2. Shapley Values and Their Application as a Feature Selection Method

In the Shapley-based feature selection method, machine learning model input features
are treated as players, while the model’s performance is considered the payoff. The
Shapley values quantify the contribution of each feature to the model’s performance on a
given set of data points [44]. The features can be ranked, selected, or removed based on
these values. To define the Shapley values in machine learning, we consider the feature
set F = {1,. . . , n} and S ⊆ F . We also define the train and test feature vector sets as
Xtrain

S = {xtrain
i |i ∈ S} and Xtest

S = {xtest
i |i ∈ S}. We use fs(· ) to represent a machine

learning model trained using Xtrain
S as input. The payoff is υ(S)) = g(y, ŷS ), where g(· )

is a goodness of fit function, y is the ground truth, and yS = fS (Xtest
S ) is the predicted

target. The Shapley values were widely used as a feature selection method across various
contexts and applications [16,45]. It is important to note that both the ANOVA F-score
and Shapley-based feature selection methods have been utilized to analyze EEG data.
These selection methods have been applied and compared in various situations, such
as the diagnosis of Parkinson’s disease [46], recognizing emotions [47], detecting sleep
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apnea and depression [48,49], and diagnosing schizophrenia [50]. Although there is a
considerable amount of research comparing the ANOVA F-score and Shapley-based feature
selection methods in different problem scenarios, there is limited research on comparing
these feature selection methods for measuring the mental workload physiologically using
EEG band ratios. Considering the highly subjective nature of assessing mental workload
conditions using machine learning, explaining the relevance of these features is of the
utmost importance. In this regard, limited work is seen, for example, on brain state
classification using EEG [51] or the cross-sectional classification of mental workload using
eye tracking features [52].

3. Materials and Methods

To tackle the research question laid out in Section 1, a research hypothesis has
been developed:

Hypothesis 1. IF high-level EEG features are selected using the Shapley-value-based method.
Then, the resulting machine learning model will demonstrate higher performance in discriminating
the self-reported perceptions of mental workload compared to models that use statistical feature
selection methods.

This study follows the processing pipeline presented in [25], but with some modifica-
tions in the subsequent sections. The research hypotheses were tested through comparative
empirical research, and more details can be found in Figure 1 and the following subsections.

Figure 1. A step–by–step illustration for classifying self-reported mental workload perception using
mental workload indexes created through the EEG analysis of the alpha and theta bands. (A) Signal
denoising process. (B) Select electrodes from the frontal cortical areas for the theta band and the
parietal cortical areas for the alpha band and group them to create electrode clusters. (C) Calculate
the mental workload indexes using the alpha-to-theta and theta-to-alpha band ratios. (D) Extract
high-level features from the mental workload indexes. (E) Use ANOVA F-Score and PowerSHAP
to select the best features. (F) Train a machine learning model for classifying self-reported mental
workload perception. (G) Evaluate the model. (H) Explain the model for hypothesis testing.

3.1. Dataset

The STEW (Simultaneous Task EEG Workload) dataset was selected for an experiment.
This dataset consists of raw EEG data collected from 48 subjects through 14 channels [53].
Two experimental conditions were studied: the rest state and a multitasking cognitive
processing speed test called SIMKAP. The Emotiv EPOC EEG headset was used to record
the data, with a sampling frequency of 128 Hz. The recordings included 19,200 data samples
across the 14 channels. After each task, the subjects rated their perceived mental workload
on a scale of 1–9, which was used to determine whether there was an increase in cognitive
load during the SIMKAP test compared to the rest state.

6
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3.2. EEG Data Pre-Processing

Before analyzing the raw EEG data, removing noise through a denoising pipeline
is important. This process is illustrated in point (A) of Figure 1 and follows Makoto’s
pre-processing pipeline [54]. The pipeline involves re-referencing channel data to average
reference, high-pass filtering each channel at 1 Hz, and using Independent Component
Analysis (ICA) for artefact removal. ICA separates the EEG signal sources into 14 indepen-
dent components for each subject. To remove artefacts, 14 components are generated and
it is checked whether the values are outside the “z-score±3” range [55], which are then
considered artefacts and set to zero. The remaining “good” components are converted back
to the original neural EEG signal using inverse ICA.

3.3. Computing EEG Band Ratios from the Theta and Alpha Bands as Indicators of Objective
Mental Workload

The study utilized a baseline of frontal and parietal electrodes based on the 10–20 interna-
tional system. These were cross-referenced with electrode availability from the Emotiv EPOC
EEG headset. Due to the limited availability of electrodes, three frontal and one parietal cluster
were created using specific combinations of electrodes and channel aggregation approaches.
The channel clusters are depicted in Table 1 and marked as point (B) in Figure 1.

Table 1. Clusters and electrode combinations from the available electrodes in the frontal and parietal
cortical regions.

Cluster Notation Band Electrodes

c1− θ Theta AF3, AF4, F3, F4, F7, and F8
c2− θ Theta F3 and F4
c3− θ Theta F3, F4, F7, and F8
c− α Alpha P7 and P8

The rationale for using the three selections from the theta band (c1− θ, c2− θ, and
c3− θ) was to use the symmetrical and iterative enlargement of the electrode numbers on
the frontal brain region to provide better coverage. We utilized the average power spectral
density (PSD) values from the alpha band in cluster c− α, and the average PSD values from
the theta band in clusters c1− θ, c2− θ, and c3− θ [23] to calculate the alpha-to-theta and
theta-to-alpha ratios. We strategically selected different clusters from frontal and parietal
electrodes, as depicted in Table 1 and point (C) in Figure 1, to acquire three alpha-to-theta
and three theta-to-alpha ratios, resulting in six mental workload indexes. These indexes
were then utilized for feature extraction, selection, and model training. Henceforth, we will
refer to these indexes as our mental workload indexes given in Equation (2)

MWLindexes{at1, at2, at3, ta1, ta2, ta3} (2)

where: at − 1 = c−α
c1−θ , at − 2 = c−α

c2−θ , at − 3 = c−α
c3−θ , ta − 1 = c1−θ

c−α , ta − 2 = c2−θ
c−α and

ta− 3 = c3−θ
c−α

3.4. Feature Selection Using Statistical and Shapley-Based Methods

The rationale behind selecting statistical and Shapley-based feature selection methods
for our study lies in their efficiency and easy interpretability. Table 2 outlines the comparison
of feature selection methods outlined in our study against four other methods (Recursive
Feature Elimination (RFE), Least Absolute Shrinkage, and Selection Operator (LASSO),
Random Forest Feature Importance and Principal Component Analysis (PCA)) in terms of
interpretability, assumptions, scalability, robustness, and performance.
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Table 2. Comparison of statistical and Shapley-based feature selection methods compared to
other methods.

Feature
Selection
Method

Method Type
Interpret-
Ability

Assumptions Scalability Robustness Performance

ANOVA
F-Score Statistical Easy to

interpret
Linearity
assumed Efficient

Susceptible to
outliers and
non-normal
distributions

Effective in
identifying
significant
differences

between groups

PowerSHAP Shapley-based Variable
interpretability

No
assumptions

Computationally
expensive

More robust to
outliers and
non-linear

relationships

Can capture
complex

interactions and
nonlinear

relationships

RFE Heuristic Moderate
May overlook

complex
interactions

Model
complexity
dependent

Sensitive to
noise

Performance
based on

underlying
model

LASSO Regularization Moderate Linearity
assumed Efficient

May shrink
coefficients too

fast during
regularization

Effective on a
sparse set of

features

Random forest
feature

importance
Ensemble Moderate

Assumes no
interactions

between
features

Efficient Handles
outliers well

Captures
nonlinear

relationships

PCA Dimensionality
reduction Challenging

Assumes
linearity,

orthogonality
Efficient Loss of

interpretability

Captures
variance that is
not specific to

target

From the aforementioned table, the research strength assumptions of the study can be
summarized around the following points:

• By applying the statistical (ANOVA F-score) and Shapley-based (PowerSHAP) meth-
ods, the research tends to demonstrate a comprehensive approach to feature selection,
closely matching the type of data we explore (EEG) and model complexities that arise
from it, thus providing a methodological diversity to the study.

• Whilst Shapley-based feature selection and model interpretability may vary, including
ANOVA F-score ensures that at least one method in the study provides straightforward
interpretability, which is expected to enhance the comprehensibility of the findings.

• The study also tends to benefit from the robustness to outliers and nonlinear relation-
ships of Shapley-based feature selection methods, while still leveraging the efficiency
and performance of ANOVA F-score in identifying significant feature differences.

• Comparing Shapley-based feature selection methods with other common feature
selection techniques, the research aims to showcase a broad understanding of the
importance of feature selection in Mental Workload Studies using EEG, offering
insights into the strengths and limitations of various feature selection approaches in
the context of model explainability.

3.4.1. Statistical Feature Selection Methods

It is important to extract high-level features from MWL indexes to discover unique
properties that may not be detectable by solely considering the indexes. Time Series
Feature Extraction Library (TSFEL) (https://tsfel.readthedocs.io/en/latest/index.html
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accessed on 15 December 2023) is a tool that can extract high-level features from the MWL
indexes described in Equation (2). TSFEL provides a variety of statistical properties that
can be extracted from different types of data, including frequency and temporal data,
and presented as point (D) in Figure 1. Initially, a large number of features are taken
into consideration, and feature reduction is performed using statistical and Shapley-based
feature selection methods, as explained in Section 2.3.1 and illustrated as point (E) in
Figure 1. The “SelectKBest” feature selection algorithm is used for statistical feature
selection, which ranks features based on the ANOVA F-score between a feature vector and
a class label. Through an iterative process of supervised model performance evaluation [25],
the optimal number of retained features is determined to be seven.

3.4.2. Shapley-Value-Based Feature Selection Methods

The Shapley-based feature selection method utilizes the “Powershap” algorithm [56].
Powershap is designed to identify features that have a greater impact on predictions than
random features. The algorithm comprises the Explain and the Core Powershap components.
In the Explain component, multiple models are created using different random features, and
the average effect of all features is explained using Shapley values. In the Core Powershap
component, the effects of the original features are statistically compared to the random
feature, allowing for the selection of more informative features.

To evaluate the correlation and minimize multicollinearity, attention is given to the
Pearson correlation between features selected with both the ANOVA F-score and Power-
SHAP. Multicollinearity reduction is critical to maintaining the predictive power of each
feature. Highly correlated features can negatively impact the model and not contribute to
further training. Therefore, a correlation threshold of ±0.5 is recommended for optimal
model performance [57].

3.5. Model Training

The modeling and training process aims to develop classification models that can
differentiate self-reported mental workload scores from independent features selected using
statistical (SelectKBest with ANOVA-F score) and Shapley-based (Powershap) selection
methods. This is illustrated under point (F) in Figure 1. Instead of task load conditions,
mental workload self-assessment scores are selected as the target feature because they
provide a more reliable indicator of user experience. Different task load conditions can
result in varying levels of cognitive load, and mental workload can be influenced by factors
such as prior knowledge, motivation, time of day, fatigue, and stress [34]. The target
feature range is divided into two levels of mental workload, “suboptimal MWL” and
“super optimal MWL”, based on the parabolic relationship between mental workload and
performance [30]. Scores ranging from 1 to 4 were grouped as “suboptimal MWL” while
scores from 6 to 9 were categorized as “super optimal MWL”. Scores of 5, indicating a
neutral mental workload experience, were disregarded as they could potentially complicate
the distinction between “suboptimal/super optimal”. This approach simplified the model
training into a binary classification problem. In this study, we utilized three techniques
for learning classification models: Logistic Regression (L-R), Gradient Boosting (GB), and
Random Forest (RF), which have been previously used in research involving longer EEG
recordings [58]. Logistic regression and Gradient Boosting are error-based methods and
are well suited for binary classification tasks, which is the focus of our study. On the other
hand, Random Forest is an information-based ensemble learning technique that can identify
important features by calculating their information gains during model training across
multiple decision trees. We utilized separate training processes to train each classification
model. These training processes involved selecting features using statistical methods like
SelectKBest with ANOVA-F score and Shapley-based methods like PowerSHAP. Since
our study used a small dataset of only 48 subjects, we employed a repeated Monte Carlo
sampling for model training and validation, following this order:
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1. For model training, a randomised 70% of subjects are chosen from both the “subopti-
mal MWL” and “super optimal MWL” categories, which are dependent features.

2. The remaining 30% of the data is reserved for model testing.
3. To capture the probability density of the target variable, the above splits are repeated

100 times to observe random training data.

To ensure the validity and robustness of the comparisons between different models
and techniques a separated training, evaluation and explanation runs is performed for
every Monte Carlo run. Figure 2 illustrates this process.

Figure 2. A step–by–step illustration of the model training procedure, evaluation and explanation for
each feature selection method.

From the figure, it can bee seen that, for each feature selection methods, we put the
selected features separately to the machine learning pipeline consisted of the steps such
as: data preprocessing by scaling the data using the standard scaling method; a random
70/30 train test split across 100 iterations; model evaluation with accuracy, recall, precision
and f1-score measurements and model explanation for each iteration during Monte Carlo
sampling process. Finally, an averaging accuracy across 100 iterations represents the final
model accuracy. The Shapley values across 100 repetitions are used to interpret the feature
contributions to the model output for each of the machine learning techniques utilized (L-R,
GB, and RF).

To overcome the issue of a small dataset, we implemented a synthetic data generation
strategy using deep learning with GANs (Generative Adversarial Networks) [59]. We
ensured the quality of the synthetic data was similar to that of the original training set
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by analyzing a synthetic quality score metric. This scoring metric assessed the Field
Correlation Stability, Deep Structure Stability, and Field Distribution Stability [25] to provide
an overall quality score. We used the same training process for the original and combined
(original + synthetic) data with the same Monte Carlo sampling. To train the models,
we randomly selected 70% of the subjects and used the remaining 30% for testing, with
100 iterations. During model training, we utilized Z-score normalization to minimize
the mean and maximize the standard deviation. This approach allowed us to transform
extreme values in the dataset into values that were no longer significant outliers, thus
reducing their impact.

3.6. Model Explainability and Evaluation

The SHAP method is used to explain the model’s output. This method attributes
the importance of each feature to the model’s predictions through Shapley values. SHAP
calculates the contribution of each feature by considering all possible feature combinations
and comparing the predictions with and without that feature. Considering their interactions
allows for a more accurate attribution of importance to each feature. The SHAP values can
be visualized through various SHAP plots, which depict the contribution of each feature to
the model’s predictions for a specific instance. Usually, these plots show features that either
increase or decrease the target value. Overall, SHAP helps to interpret a machine learning
model’s output by explaining each feature’s importance to the predictions. This can be
useful in understanding the model’s behavior and identifying areas for improvement. This
research study uses evaluation metrics to measure how well-trained models perform when
faced with new data. The metrics used include True Positives (tp), True Negatives (tn),
False Positives (fp), and False Negatives (fn). These metrics calculate the model’s accuracy,
precision, recall, and f1-score. Using these metrics, the researchers can assess how well the
models can distinguish the self-reported perceptions of mental workload. The best model
minimizes either fp or tn, but this comes at a cost to the other metric. In this sense, the
f1-score is also useful as it considers both precision and recall since it represents the
harmonic mean between them. The evaluation of the model performance using these
metrics was applied to the SelectKbest algorithm with the ANOVA-F score and Shapley-
based feature selection methods using PowerSHAP with Logistic Regression (L-R), Gradient
Boosting (GB), and Random Forest (RF).

4. Results

4.1. EEG Artifact Removal

For every one of the 48 subjects, both the “Rest” and “Simkap” task load conditions
have their raw EEG signal undergo artefact removal separately. On average, between one
and two ICA components are removed from the EEG data for both conditions according
to the methodology outlined in [25,55]. These components are zeroed out, and the EEG
multi-channel data are reconstructed through inverse ICA. Since most subjects had at least
one bad component removed, it is reasonable to assume that some artefact was eliminated
from the EEG signal, allowing for further computations of the alpha and theta bands [60].

4.2. Evaluation of Feature Selection

TSFEL extracted 210 (the complete list of features can be found in https://www.
frontiersin.org/articles/10.3389/fninf.2022.861967/full#supplementary-material (accessed
on 15 December 2023)) high-level features from the objective mental workload indexes
across the frequency and temporal domains. ANOVA F-score and PowerSHAP impact
values are calculated for each feature, and the ones with the highest values are kept for
model training. To use the SelectKBest algorithm, an initial number of features is required,
as mentioned in the design Section 3.4.1.

Therefore, we use an iterative approach to gradually include features during model
training and evaluate the model’s accuracy at each iteration. This process of optimal feature
selection is performed on data from the original dataset, identifying seven optimal features
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as displayed in Figure 3 [25]. As a result, we retain the seven highest-ranked features
with the highest ANOVA F-score values from SelectKbest and the seven highest feature
impact from Shapley values retrieved from PowerSHAP with Logistic Regression (L-R),
Gradient Boosting (GB), and Random Forest (RF) for the training process. Additionally,
Pearson correlation among features shows a mild correlation between features as depicted
in Figure 3, as grouped by task conditions (“Rest” and “Simkap”).

Figure 3. Pearson correlation of features selected with SelectKBest and PowerSHAP for the case of
at-2 mental workload index.

4.3. Training Set Evaluation across Indexes

The “curse of dimensionality” issue arose due to the low number of training instances
compared to the independent features. During the initial model evaluation with test data,
the average accuracy was only 60%. The classifiers’ learning curves indicated that the
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model was underfitting and could not generalize from test data. To overcome the bias
caused by the small variance in data, synthetic data generation was used to train more
accurate models. The study utilized the initial dataset of 48 subjects, with 150 data points
(2.5 min of EEG activity divided into 150 segments of 1 s) for each of the indexes designed
in Equation (2). Two synthetic datasets were generated, one for the “Rest” and “Simkap”
task load conditions, respectively, to preserve the original dataset’s characteristics. The
findings indicated a synthetic quality score of more than 87% for all the chosen objectives
and continuous mental workload indexes, demonstrating excellent quality and similarity to
other research studies [61]. As a result, data were synthesized for an additional 180 subjects,
generating 150 data points each for every mental workload index. Therefore, the final
dataset includes both original and synthesized data, with 228 subjects and 150 data points
for each mental workload index as defined in Equation (2). Figure 4 displays the quality
scores for synthetic data for “Rest” and “Simkap” conditions, respectively.

Figure 4. Quality scores of synthetic data for “rest” and “Simkap” task load conditions.

4.4. Model Explainability and Validation

Figure 5 showcases the classifiers’ performance and the evaluation metrics for all
mental workload objective indexes. The dashed red line depicts the threshold for below
and above-average model performance, set at 90%.

Figure 5. Model performance for features selected with ANOVA F-score and PowerSHAP methods.

Based on the figure data analysis, it is evident that the Shapley-based feature selection
methods utilizing PowerSHAP with Logistic Regression (L-R) and Gradient Boosting (GB)
demonstrated an exceptional performance for the mental workload index at-3. Further-
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more, the PowerSHAP feature selection techniques utilized for theta-to-alpha ratio indexes
ta-2 and ta-3 have shown an above-average performance of 90% when trained with Lin-
ear Regression and Gradient Boosting. However, the PowerSHAP features trained with
Random Forest performance seems below the average threshold. On the other hand, the
statistical feature selection method has shown a below-average performance of 90% across
all mental workload objective indexes. To better analyze the results and see the model
performance of the aforementioned ratios for both feature selection methods, Figure 6
outlines the density plots of the model training with Monte Carlo sampling provided
in Section 3.5.

Figure 6. Density plots of model performance for features selected with ANOVA F-score and
PowerSHAP methods. The comparison is made between ANOVA F-Score against PowerSHAP with
L-R, GB, and RF, respectively.

Figure 6 shows a better performance of the PowerSHAP feature selection methods for
the mental workload indexes at-3, ta-2, and ta-3. Furthermore, the mental workload index
at-1 very clearly shows the best performance of the powerSHAP feature selection method
compared to ANOVA F-score, even though the model’s overall performance is below the
mean threshold of 90%, as given in Figure 5. Table 3 showcases the two-tailed t-test results
for model performance accuracy between ANOVA F-score and Shapley-based Powershap
feature selection methods across all workload objective indexes.

We analyzed the effect size of the density plots using Cohen’s d to determine the
significance levels presented in Table 3. Cohen’s d is a standardized measurement used
to determine the difference between the means of two groups. It is utilized to compare a
sample from PowerSHAP feature selection methods with the ANOVA feature selection
method to validate the significance levels in Table 3. Cohen’s d is an appropriate effect size
alongside t-tests and ANOVA analyses. Table 3 shows medium and large effect sizes for the
at-2, ta-2, and ta-3 mental workload indexes. Furthermore, very strong effect sizes are seen
in at-1, even though the model performance for that index is under the threshold of 90%. To
comprehensively analyze the models, we will thoroughly examine the significant feature
selection methods outlined in Table 3. Furthermore, we will examine the top-performing
indexes as per Figure 5, particularly at-3, ta-2, and ta-3. To better understand the crucial
features and their characteristics, Table 4 provides a detailed overview of these features
and their descriptions as they apply to our analysis.
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Table 3. The two-tailed t-test performed against feature selection methods applied to accuracy
evaluation metrics. The t-test is performed between ANOVA F-Score against PowerSHAP with L-R,
GB and RF, respectively. Values for t-statistics, p-value, and Cohen’s d (d) are given for every machine
learning model across mental workload indexes. The (†) indicates the significant results within the
threshold confidence value of α = 0.05

Workload Index
Logistic Regression (L−R) Gradient Boosting (GB) Random Forest (RF)
t-

Stat.
p-Value (d) t-Stat. p-Value (d)

t-
Stat.

p-Value (d)

at-1
−9.20 5.01 × 10−17 † 1.309 −10.29 3.45 × 10−20 † 1.154 −9.63 2.88 × 10−18 † 1.26
−8.16 3.76 × 10−14 † 1.45 −9.52 5.85 × 10−18 † 1.34 −10.49 9.06 × 10−21 † 1.61
−8.92 2.98 × 10−16 † 1.36 −11.40 1.72 × 10−23 † 1.48 −10.28 2.40 × 10−20 † 1.46

at-2
−8.05 7.39 × 10−14 † 1.14 −5.90 1.50 × 10−8 † 0.15 −0.68 0.49 0.61
−1.08 0.27 0.83 −5.28 3.24 × 10−7 † 0.74 −2.47 0.01 † 0.50
−4.33 2.36 × 10−5 † 0.09 −3.53 0.0004 † 0.35 −3.39 0.0008 † 0.48

at-3
2.84 0.004 † −0.40 −2.95 0.003 † −0.32 −2.79 0.005 † 0.13
2.28 0.02 † 0.42 −0.95 0.34 0.13 1.12 0.26 0.52
0.93 0.35 0.39 −3.68 0.0002 † −0.15 −1.16 0.24 0.16

ta-1
−0.66 0.50 0.09 1.27 0.20 −0.23 5.66 5.24 × 10−8 † −0.26
1.66 0.09 −0.18 0.45 0.64 −0.06 3.98 9.60 × 10−5 † 0.05
1.86 0.06 −0.80 −0.36 0.71 0.56 3.20 0.001 † 0.45

ta-2
2.90 0.004 † −0.41 1.11 0.26 −0.58 3.78 0.0002 † −0.22
4.16 4.48 × 10−5 † −0.15 4.10 5.86 × 10−5 † −0.58 0.47 0.63 −0.33
1.61 0.10 † −0.53 2.35 0.01 † −0.06 −0.29 0.76 0.04

ta-3
−3.02 0.002 † 0.42 −1.17 0.24 0.89 −2.29 0.02 † 0.52
−6.29 1.96 × 10−9 0.16 −5.25 3.83 × 10−7 † 0.74 −1.76 0.07 0.46
−3.73 0.0002 † 0.32 −3.27 0.001 † 0.44 −0.77 0.44 0.10

Table 4. A list of important EEG features alongside their respective descriptions.

Feature Name Feature Description

Histogram_8 Histogram 8 of the EEG signal (nine histogram features are extracted).
Histogram_9 Histogram 9 of the EEG signal (nine histogram features are extracted).
LPCC_3 Linear prediction cepstrum coefficients.
MFCC_2 The MEL cepstral coefficient 2 (ten MFCC coefficients are extracted).
MFCC_10 The MEL cepstral coefficient 10 (ten MFCC coefficients are extracted).
Wavelet absolute mean Continuous wavelet transform absolute mean value of EEG signal.
Fundamental frequency Fundamental frequency of the EEG signal.
Entropy Entropy of the EEG signal using the Shannon Entropy method.

Figure 7 in the at-3 workload index clearly illustrates the importance of features as
determined by feature selection methods. In addition, Figure 8 confidently presents the
model explainability of feature importance through Shapley values in the form of beeswarm
plots generated from the test set.

Figure 7. Feature importances selected from ANOVA F-score and PowerSHAP for the case of at-3.
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Figure 8. Shapley values on feature impact on model output selected with ANOVA F-score and
PowerSHAP and trained with L-R, GB, and RF for the case of at-3.

Figures 7 and 8 revealed an interesting observation. During the feature selection
process using ANOVA f-score, “Histogram_9” and “Histogram_8” had the highest f-score
value, suggesting they were the most important features. However, upon examining
the model’s feature contributions using Shapley values, “Histogram_8”, “Fundamen-
tal_frequency” and “LPCC_3” were the top four critical features. It is quite observable
that “Histogram_9”, which was the top ranking feature with ANOVA f-score selection
method, when explained by SHAP, rank as the least contributing feature across all train-
ing methods (L-R, GB, and RF). When using PowerSHAP with L-R for feature selection,
“spectral entropy” and “Entropy” features appear as the most important ones when se-
lected using PowerSHAP with L-R. However, Shapley values retired with Shapley additive
explanations showed “LPCC_9”, “LPCC_3”, “MFCC_9”, and “Fundamental_frequency”
that contributed the most to the model’s output. When features are analyzed for the
cases of feature selection methods using PowerSHAP with both Gradient Boosting (GB)
and Random Forest (RF), we observe “FFT Mean Coefficient_52”, “MFCC_10”, “EDCF
Percentile_0”, and “Vawelet absolute mean_1” as the most important features. However,
the model explainability provided with SHAP, brings the least important features from
the feature selection method as the highest contributing ones. Features like “MFCC_4”,
“Wavelet absolute mean_0”, and “LPCC_9” are the least ranked ones from the feature
selection method; however, they appear as the most contributing ones appearing in the
top two of most contributing features. Figure 9 shows the feature importance for the ta-2
workload index, and Figure 10 illustrates the model’s explainability in terms of feature
importance through the Shapley values generated from the test set in beeswarm plots.

Figure 9. Feature importances selected from ANOVA F-score and PowerSHAP for the case of ta-2.
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Figure 10. Shapley values on feature impact on model output selected with ANOVA F-score and
PowerSHAP and trained with L-R, GB, and RF for the case of ta-2.

When analyzing the ta-2 mental workload index, we found that “Histogram_9” and
“Histogram_8” were the most important features during ANOVA F-score feature selection.
However, when explaining the contribution of features to the model output, “MFCC_10”
and “LPCC_3” (Linear Prediction Cepstral Coefficients 3) also have the greatest impact
along “Histogram_8”. In the case of features selected with PowerSHAP+L-R and trained
with L-R, GB, and RF, “MFCC_2”, “LPCC_6”, and “LPCC_9” (MEL Cepstral Coefficients
2 and Linear Prediction Cepstral Coefficients 6 and 9) are the most important features,
despite being ranked relatively low in importance during feature selection. Another crucial
observation is that highly ranked features during feature selection, like “Spectral Entropy”
and “Entropy”, are at the bottom of features that contribute to model output when explained
with Shapley values. For features selected with PowerSHAP + GB and PowerSHAP + RF
and trained with L-R, GB, and RF, the “LPCC_9” and “MFCC_2” features were found to be
the most important for model explainability with test data. Even though “LPCC_3” and
“LPCC_9” were ranked at the bottom in both cases, they were among the top three features
contributing to the model output during model training and explainability with Shapley
values. In reference to the ta-3 workload index, Figure 11 shows the feature importance as
determined by feature selection methods.

Figure 11. Feature importances selected from ANOVA F-score and PowerSHAP for the case of ta-3.

The Shapley values generated from the test set are presented as beeswarm plots in
Figure 12, depicting the model explainability of feature importance.
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Figure 12. Shapley values on feature impact on model output selected with ANOVA F-score and
PowerSHAP and trained with L-R, GB, and RF for the case of ta-3.

For the theta-to-alpha (ta-3) workload index, the feature MFCC_10 (MEL cepstral
coefficients 10) is ranked at the bottom during feature selection using all statistical and
Shapley-based feature selection methods. However, upon analyzing the Shapley value for
their impact on the model output, it was found that this feature had the highest contribution
across the board in all models explained with Shapley Additive Explanations.

5. Discussion

The findings presented in this paper suggest that using Shapley-value-based methods
for model training leads to better performance than using statistical methods with an
ANOVA F-score. This is particularly evident in the mental workload indexes at-3, ta-2, and
ta-3. Additionally, the results from Table 3 demonstrate a statistically significant difference
between ANOVA F-score and PowerSHAP methods, confirming the hypothesis outlined
in Section 3 that high-level EEG features selected using the Shapley-based method have a
greater impact on model performance for discriminating the self-reported perception of
mental workload than statistical methods. When we analyze model explainability using
SHAP, we notice an intriguing observation by comparing the features selected through
both methods. When presented with testing data, the less important features tend to
impact the model output significantly. Features such as “Wavelet absolute mean_0”,
“Wavelet absolute mean_1”, and “Fundamental frequency”, statistical histogram features
like “Histogram_8” and “Linear" and MEL cepstral coefficients (“LPCC_3”, “LPCC_6”,
“LPCC_9”, and “MFCC_10”) contribute the most to the model output in all trained and
evaluated models. In Figure 13, we can compare the ranked features from feature selection
methods (ANOVA F-score and PowerSHAP) and their respective contribution to the model
output. The feature importance is normalized between the [0 . . . 1] range, where zero
indicates a low impact of the feature on training, and one indicates a high impact.

Looking at Figure 13, we can observe a discrepancy between the features selected
through the ANOVA F-score, namely “Histogram_8” and “MFCC_10”, and those that
contribute the most to the model output. Interestingly, the high-ranked features from
ANOVA F-score appear to be the least important in model explainability and vice versa.
This trend is also visible in the “linear and MEL cepstral coefficients” (“LPCC_3”, “LPCC_9”,
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and “MFCC_10”) for both feature selection methods and their respective feature importance
for model explainability.

Figure 13. Comparison of feature importance across feature selection methods (ANOVA F-score and
PowerSHAP with L-R, GB. and RF) and their Shapley value contribution on model input (L-R, GB,
and RF).

The importance of Shapley values in model explainability is highlighted in the research.
It is observed that people tend to trust the model explainability provided by Shapley values.
This claim is based on the following points:

1. Methods based on Shapley values are not tied to any specific machine learning model
and can be used with linear and nonlinear models, decision trees, and neural networks.
These methods are effective, as they avoid common mistakes such as using a “one-
size-fits-all” approach to interpretability, poor model generalization, over-reliance on
complex models for explainability, and neglecting feature dependence [62]. On the
other hand, statistical feature selection methods often require a particular model or
make assumptions about data distribution.

2. When working with complex datasets, Shapley-based methods are crucial as they
consider the interaction between features. On the other hand, statistical feature
selection techniques like correlation-based feature selection only consider pairwise
correlations between features and may overlook significant interactions.

3. Regarding ranking features, Shapley-based methods are more reliable because small
changes do not easily influence them in the data or model. On the other hand,
statistical feature selection methods may yield different results depending on the
particular data sample or model being utilized.

4. Methods based on Shapley values are useful in clearly understanding each feature’s
importance. This is because it highlights the contribution of a feature to the prediction,
making it easy to explain to domain experts. On the other hand, statistical feature
selection methods may require an easily interpretable feature importance measure.

Even though Shapley-based feature selection methods are more effective than statisti-
cal methods, there are still some open research questions and inconclusive explanations
regarding contradictory results. This is because the feature importance in the selection
method may differ from the feature importance of the model output provided by SHAP.
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Some researchers argue that using Shapley values for feature importance in machine learn-
ing models can lead to mathematical problems which may increase complexity and the
need for causal reasoning. Moreover, Shapley values should be able to explain their re-
sults in a way that aligns with human-centric goals of explainability [63]. One particular
study suggests that using model averaging directly for feature selection requires caution,
as the average performance of a feature across all submodels may not reflect its specific
performance in the optimal submodels. To ensure the selection of all features based on their
optimal submodel contributions, it is best to select all features explicitly [44]. Furthermore,
the authors demonstrate this claim with examples outlined through sets of axioms like
efficiency, additivity, and balanced contributions. It is possible that the contradictions
between feature selection methods and feature contributions, as seen in Figure 13, could
be attributed to the direct averaging of features during Shapley Additive Explanations
(SHAP) and the Monte Carlo simulation used during training. However, further research is
necessary to confirm this hypothesis.

6. Conclusions

The paper outlined the need for a more comprehensive understanding of the per-
formance and interpretability of different feature selection methods in machine learning
models that discriminate self-reported perceptions of mental workload using EEG band
ratios. This research issue is tackled through a comparative empirical study using a six-step
process pipeline as outlined in Section 3. Logistic Regression (L-R), Gradient Boosting (GB),
and Random Forest (RF) learning techniques were employed to train the models, with a
focus on utilizing Shapley-based and ANOVA F-score feature selection methods. To ensure
model explainability, we utilized Shapley Additive Explanations.

According to the analysis, it was discovered that feature selection methods that utilize
Shapley values can improve model performance and partially explain how the model can
distinguish between different mental workload perceptions using EEG data. These meth-
ods can identify the most crucial features and their corresponding impact on the model’s
predictions, thereby providing valuable insights into the factors contributing to successfully
identifying mental workload perceptions through machine learning. In identifying the most
impactful features contributing to model output, the study uncovered unexpected contra-
dictions between the Shapley-based feature selection methods (PowerSHAP and ANOVA
F-score) and the Shapley Additive Explanation (SHAP) method. It is important to note that
possible explanations for these contradictions are hypothesized in Section 5, and further
research will be necessary to validate these claims. Although the paper demonstrated that
Shapley-based methods outperform traditional statistical approaches, it should be noted
that Shapley-based feature selection methods can often lead to complex and inconclusive
interpretations. This is due to the complex interplay between the perceived importance
of features during the selection process and their actual significance in shaping the final
output of the model. However, these conflicting outcomes provide valuable insights into
the intricate dynamics of feature importance and model behavior. Therefore, it is essential
to acknowledge these potential disparities when working with feature selection, as it can
lead to a more comprehensive understanding of the model’s inner workings and pave the
way for refined methodologies that harness the true power of Shapley-based techniques.

It is important to note that this research has limitations in terms of the feature selection
methods used to explain the models. This study focuses on statistical (ANOVA-F-score)
and game theoretic (PowerSHAP) approaches. However, there are other selection methods
based on explainable AI, such as wrapper-based selectors like Boruta, selection methods
based on regression models or random forest, iterative dataset weighting, and targeted
replacement values. The rationale behind using statistical and Shapley-based methods
is that they have been proven to effectively select essential features and discard non-
contributing ones, which not only maintains or improves classification accuracy, but also
reduces the execution time in machine learning models, making the Shapley-based feature
selection effective and efficient [64]. Additionally, Shapley values are relatively consistent
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across selected machine learning models, making the analysis of model explainability
more straightforward. It is also essential to acknowledge that the explanations may vary
depending on the model’s outcome and application, as outlined in this study.

In future investigations, researchers can thoroughly examine the properties of these
features to construct models that can precisely evaluate the model’s accuracy. More research
will elaborate on how the alpha-to-theta and theta-to-alpha ratio indexes can be employed
to explain the model’s efficiency regarding the following concerns. The first is a further
confirmation of the findings of this study, aiming at replicating the experiment using
additional publicly available datasets. The second is to enhance the explainability of
models utilizing additional additive methods, such as LIME, DeepLIFT, and Layer-wise
relevance estimation, in addition to the traditional Shapley value estimation.
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Abstract: Electronic Health Records (EHR) provide a vast amount of patient data that are relevant to
predicting clinical outcomes. The inherent presence of missing values poses challenges to building
performant machine learning models. This paper aims to investigate the effect of various imputation
methods on the National Institutes of Health’s All of Us dataset, a dataset containing a high degree
of data missingness. We apply several imputation techniques such as mean substitution, constant
filling, and multiple imputation on the same dataset for the task of diabetes prediction. We find that
imputing values causes heteroskedastic performance for machine learning models with increased
data missingness. That is, the more missing values a patient has for their tests, the higher variance
there is on a diabetes model AUROC, F1, precision, recall, and accuracy scores. This highlights a
critical challenge in using EHR data for predictive modeling. This work highlights the need for future
research to develop methodologies to mitigate the effects of missing data and heteroskedasticity in
EHR-based predictive models.

Keywords: algorithmic fairness; electronic health records; data missingness; data imputation; dia-
betes

1. Introduction

Diabetes is a health condition characterized by chronic hyperglycemia and resulting
from issues with insulin secretion and action [1]. The onset of diabetes increases the
risk for a number of health complications such as cardiovascular disease, kidney disease,
retinopathy, and neuropathy [2,3]. The longer one has diabetes, the more complications
are likely to occur [4]. Diabetes affects 464 million people in the world as of 2021, and
it is predicted to increase to 638 million by 2045 [5]. Diabetes disproportionately affects
minority populations [4,6].

Diabetes has also been studied using machine learning [7–9]. Oikonomou et al. [10]
provide a comprehensive overview of how machine learning has been applied to precision
diabetes care, particularly in cardiovascular risk prediction among diabetic patients. Their
work underscores the significant potential of machine learning in transforming diabetes care
by leveraging large datasets to identify risk factors and predict outcomes with high accuracy.

In recent years, the application of machine learning to electronic health records (EHR)
has emerged as a promising tool for enhancing our understanding of diabetes and improv-
ing prediction models for its management. The integration of machine learning with EHR
data offers a new frontier in diabetic research. Prior studies have shown that machine learn-
ing models can effectively predict the progression to pre-diabetes and type 2 diabetes using
EHR data, emphasizing the role of established risk factors and identifying novel factors
for further research [11]. Cahn et al. highlighted the use of machine learning models to
improve the prediction of incident diabetes utilizing patient data from EHR, underscoring
the potential for targeted interventions [12]. Additionally, leveraging large health records
datasets has enabled significant progress in diabetes forecasting using machine learning,
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as demonstrated by research conducted using the health records of patients in Ontario,
Canada [13]. This approach not only offers predictive insights, but also helps identify
critical features contributing to diabetes onset.

Building upon this line of research, we study the prediction of diabetes using EHR data
from the National Institutes of Health (NIH)’s All of Us (AoU) dataset. The program is a
result of the Precision Medicine Initiative Cohort Program [14]. The cohort consists of over
1 million volunteers who contributed their biospecimen samples (such as blood and urine),
physical measurements, and extensive surveys on health and lifestyle [15]. The overarching
goal of All of Us is to advance precision medicine—a personalized approach to disease
prevention and treatment that considers individual differences in lifestyle, environment, and
biology. This approach is intended to overcome the limitations of a one-size-fits-all model
in health care by factoring individual variation. The All of Us Research Program stands
out for its commitment to diversity, striving to include participants from various racial and
ethnic backgrounds, age groups, geographic regions, and health statuses to ensure the dataset
reflects the broad diversity of the U.S. population [16]. By harnessing the power of big data
and emphasizing inclusivity and participant engagement, the All of Us Research Program
aspires to revolutionize our understanding of health and pave the way for more effective,
personalized healthcare solutions.

We focus, in particular, on measuring the effect of data missingness on the prediction
of health outcomes such as diabetes using All of Us data. We apply several data imputation
techniques and measure their effect on various model performance metrics. This charac-
terization of data missingness on large EHR datasets can inform future efforts that apply
imputation strategies to such data.

2. Materials and Methods

2.1. Dataset

We used the National Institutes of Health (NIH) All of Us dataset. We selected
47 features from Abegaz et al.’s work [17]. We list them in Table 1 alongside the proportion
of missing values per feature. For each measurement type, we created two features: one for
the average reading and another for the number of times the feature is read.

Table 1. Model input features and missingness proportion for the total dataset for training and
testing subsets.

Total Training Testing

Age 0.000000 0.000000 0.000000
Median income 0.000000 0.000000 0.000000
Deprivation index 0.000000 0.000000 0.000000
Chloride 0.091448 0.091257 0.092210
Bicarbonate 0.653057 0.653368 0.651811
Alanine aminotransferase 0.144202 0.143750 0.146010
Albumin 0.138477 0.137825 0.141085
Alkaline phosphatase 0.140681 0.140218 0.142532
Anion gap 0.222889 0.222680 0.223723
Aspartate aminotransferase 0.145162 0.144927 0.146102
Basophils 0.155516 0.154991 0.157613
Bilirubin 0.159603 0.159277 0.160906
Height 0.006870 0.006940 0.006586
Weight 0.008790 0.008826 0.008649
Calcium 0.094230 0.093851 0.095750
Carbon dioxide 0.177928 0.177490 0.179681
HDL 0.331019 0.330497 0.333108
LDL 0.351579 0.350987 0.353944
Creatinine 0.083538 0.083301 0.084485
Eosinophil 0.151078 0.150606 0.152965
Erythrocytes 0.104615 0.104277 0.105968
Heart rate 0.008975 0.008941 0.009110
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Table 1. Cont.

Total Training Testing

Leukocyte 0.089564 0.089203 0.091010
Lymphocytes 0.144079 0.143765 0.145333
MCH 0.139400 0.139079 0.140685
MCHC 0.140034 0.139695 0.141393
MCV 0.169126 0.168842 0.170263
Monocytes 0.146879 0.146420 0.148718
Neutrophils 0.143371 0.142896 0.145271
Platelets 0.115707 0.115226 0.117633
Potassium 0.103088 0.102984 0.103506
Respiratory rate 0.310053 0.308913 0.314610
Sodium 0.092913 0.092681 0.093841
Triglyceride 0.339421 0.339068 0.340833
Urea nitrogen 0.112839 0.112733 0.113262
Vomiting 0.000000 0.000000 0.000000
Myocardial infarction 0.000000 0.000000 0.000000
Arthritis 0.000000 0.000000 0.000000
Polyuria 0.000000 0.000000 0.000000
Aspirin 0.098970 0.098952 0.099043
Beta blockers 0.098970 0.098952 0.099043
Steroids 0.098970 0.098952 0.099043
Acetaminophen 0.098970 0.098952 0.099043
Statin 0.098970 0.098952 0.099043
Opioids 0.098970 0.098952 0.099043
Nicotine 0.098970 0.098952 0.099043
Paraesthesia 0.098970 0.098952 0.099043

The total size of the dataset is 162,453, with 56,655 positive and 105,798 negative
data points. The stratified train/test split is 80/20, yielding 129,962 training patients of
whom 45,324 are positive and 84,638 are negative, and 32,491 test patients consisting of
11,331 positive and 21,160 negative patients.

2.2. Modeling

To increase uniformity for ease of comparison while maintaining a robust search for
well-performing models, we employed Autosklearn2.0 [18,19]. This meta-model has a
search space consisting of every model within Scikit-Learn and subsequently searches over
hyperparameter space per model. The training is conducted on four CPUs, 26 GB of RAM,
3 h of training time, 6572 MB of memory per job, log loss as the objective function, and no
limit to the number of models on disk.

We compare the following six imputation methods alongside an oversampling prepro-
cessing step.

No Imputation: This method involves not performing any imputation on the dataset,
leaving the missing values as they are. In this approach, the model chosen must inherently
be capable of handling missing data. Techniques such as decision trees or certain ensemble
methods can often process datasets with missing values directly. This method is based
on the assumption that the model can interpret and manage the missingness in the data
without any explicit intervention.

Automatic Imputation (via Autosklearn): This approach employs Autosklearn, an
automated machine learning tool, to determine the best imputation method for the dataset.
Autosklearn explores various imputation strategies as part of its preprocessing pipeline
and selects the one that optimizes model performance. This method leverages the power of
automated machine learning to identify the most effective imputation technique, which
could range from simple strategies like mean or median substitution to more complex ones,
based on the characteristics of the data.
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Constant Fill: In this approach, missing values are filled with a constant value. This
constant could be a number outside the normal range of values (such as −1) to differentiate
imputed values from real ones. The advantage of this method is its simplicity and the clear
demarcation it provides, which can be helpful in certain analytical contexts.

Mean Substitution: Mean substitution involves replacing missing values in a dataset
with the mean value of the respective column. This method assumes that the missing values
are randomly distributed and that the mean is a representative statistic for the missing
data. It is a straightforward approach but may not always be suitable, particularly in cases
where the data distribution is skewed or the mean is not a good representation of the
central tendency.

Median Substitution: Similar to mean substitution, median substitution replaces
missing values with the median of the respective column. This method is particularly
useful in datasets where the distribution is skewed or there are outliers, as the median is
less affected by extreme values than the mean. It is a robust approach that can provide a
better central tendency estimate in certain types of data distributions.

Multiple Imputation with Bayesian Ridge: This is a more sophisticated approach
where multiple imputation is performed using Bayesian Ridge regression. In this method,
missing values are estimated based on observed data, with the Bayesian Ridge regression
model used to predict the missing values. Specifically, one begins by denoting one column
of the training input f and the other columns X f . A Bayesian Ridge regression model is
then fitted on (X f , f ). This is conducted for every feature and can be repeated so that in
the next round, the previous rounds’ predictions can be used to make better predictions of
the missing value. In this paper, we use 15 imputation rounds. The number of imputation
rounds, 15, is chosen arbitrarily. The higher the number, the more accurate the imputation
should be. For a dataset as large as All of Us, we chose to keep it lower. This technique
considers the uncertainty in the imputation process by creating several imputed datasets
and combining the results, leading to more accurate and reliable imputation compared to
single imputation methods.

Each of these imputation methods has its strengths and weaknesses and is suitable for
different types of datasets and missing data patterns. The choice of imputation method can
significantly impact the performance of the subsequent analysis or machine learning models.

Random oversampling is a technique used to address class imbalance in a dataset,
particularly in situations where the dataset has a disproportionate number of instances in
different classes. This imbalance can lead to biased or inaccurate model performance, as
the model may tend to favor the majority class.

In random oversampling, the idea is to balance the dataset by increasing the size of
the underrepresented class (minority class). This is accomplished by randomly duplicating
instances from the minority class until the number of instances in both the minority and
majority classes is approximately equal. This method creates additional samples from the
minority class not by generating new samples but by resampling from the existing samples.

In total, there are 12 different models to test with the same underlying classifier.

2.3. Model Evaluation

Model performance is a catch-all term to describe the plethora of different metrics used
to compare a model’s predictions to the actual outcome. We can summarize the comparison
of a classification model’s predictions as compared to the number of actual classes in a
confusion matrix.

We use the following abbreviations in the definitions of our performance metrics:
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TP = True Positive

FN = False Negative

FP = False Positive

TN = True Negative

P = Positive = TP + FN

N = Negative = FP + TN

We have the corresponding normalized quantities associated with the above counts:

TPR = True Positive Rate = TP/P

FNR = False Negative Rate = FN/P

FPR = False Positive Rate = FP/N

TNR = True Negative Rate = TN/N

We may now define four of the five metrics:

Balanced Accuracy =
1
2

(
TP

TP + FN
+

TN
TN + FP

)
Precision =

TP
TP + FP

Recall =
TP

TP + FN

F1 =
2TP

2TP + FP + FN

The final of the five metrics consists of the probability output of a model. Given an
input, a model has a probability associated with the class and a threshold such that inputs
with a probability larger than the threshold are predicted to be a member of the class. There
are certain points on this curve that we know the values for.

If the threshold is set to 0, then the model predicts all inputs as positive. Thus, the
true positive rate is 1 and the false positive rate is 1. If the threshold is set to 1, then the
model predicts all inputs as negative. Thus, the true positive rate is 0 and the false positive
rate is 0. This defines a curve in the space with coordinates (FPR, TPR) parameterized
by the probability threshold with endpoints (0, 0) and (1, 1). This curve is called the
Receiver Operating Characteristic (ROC) curve, and its integral is called the Area Under the
ROC (AUROC).

2.4. Model Fairness Evaluation

Given the standard metrics above, we can consider some fairness metrics that are mea-
sured as discrepancies of some performance metric between members of a privileged group
and the remaining groups. In this dataset, there are two primary sensitive attributes that fall
into this regime: gender and race. In order to define these differences, we must introduce
new notation. The exact notation will differ based on the source [20–23]. The quantities
below will be numerically equivalent to those in the previous literature while remaining
consistent with the notation used in this paper. Let μS denote the metric μ on the subset S
within the data. For example, FPRP will denote the False Positive Rate on the privileged
group, whereas FPRU will denote the False Positive Rate on the unprivileged group. We let
yi represent the test result for patient i and ŷi represent the model’s prediction for patient i.
The final fairness metric shown below is described in detail by Speicher et al. [24].
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Average Odds Difference =
1
2
[(FPRU − FPRP) + (TPRP − TPRU)]

Average Odds Error =
1
2
[|FPRU − FPRP|+ |TPRU − TPRP|]

Class Imbalance =
(PU + NU)− (PP + NP)

P + N
Equal Opportunity Difference = TPRU − TPRP

Statistical Parity Difference = (TPRU + FPRU)− (TPRP + FPRP)

Between Group Generalized Entropy Error =
1

2n

n

∑
i=1

⎡⎣( ŷi − yi + 1
1
n (∑

n
i=1 ŷi − yi + 1)

)2

− 1

⎤⎦
2.5. Measuring the Effect of Data Missingness

We are interested in measuring the effect on the model’s performance as the number of
missing features varies. One expects that a higher number of missing features would lead
to lower overall performance. Since the number of missing features is a large range, we can
study the trend by fitting an ordinary least squares line between the performance versus the
number of missing features. Our procedure is as follows:

1. Given a model fitted on the training data:
2. Select a subset of the testing data with a specified number of missing features.
3. Evaluate the model’s performance on that subset.
4. Plot the performance versus the number of missing features.
5. Evaluate the F-test for the slope of the line and the Breuch–Pagan test for the het-

eroskedasticity of the residuals around the line.

3. Results

3.1. Data Missingness

We constructed a simple (but interpretable) linear regression model that predicts the
number of missing features given race and gender. The coefficients are shown in Table 2.
We observe that race and gender are predictors of missingness.

Table 2. Linear regression coefficients.

Sensitive Attribute Coefficient

Female −0.54
Male 0.39
Gender Other 0.14
Black 1.31
White −1.34
Middle Eastern 0.48
Asian −0.09
Race Other −0.35

3.2. Model Performance

Figures 1 and 2 outline each imputation method’s overall performance on the dataset
when stratified by different sensitive attributes. For each imputation method, we measured
the AUROC, balanced accuracy, F1, precision, and recall on the total population, each
gender category, each racial category, and across the different missing feature bucketed
groups. We then reran the analysis with an extra step of oversampling to balance the
dataset for the number of people with diabetes.

Figures 3 and 4 compare the fairness metrics, average odds difference, average odds
error, between-group generalized entropy error, class imbalance, equal opportunity differ-
ence, mean difference, and statistical parity difference. These are fairness metrics, which
means that for a sensitive attribute, we denote one group to be privileged and one to be
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unprivileged. We evaluated the imputation methods on the model discrepancy across
groups. Since there is no obvious privileged group for the missing feature sub-populations,
we only compared gender (with male being the privileged group) and race (with white being
the privileged group).

3.3. Effect of Data Missingness

We next seek to understand the effect of data missingness. In the previous section,
the 0.2-quantile missing feature sub-populations had their AUROC, balanced accuracy, F1,
precision, and recall tabulated. We may visualize how the models perform more easily by
plotting the models performance as a grouped bar chart, both without (Figure 5) and with
(Figure 6) oversampling.

Figure 1. Performance of the models, with the columns denoting the specific metric, across the
evaluated sub-population (left label) and the imputation method (right label). The color denotes the
magnitude of the metric, warmer colors indicating higher performance. The text color is adjusted to
be readable given the background color.
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We plotted the line of best fit for each machine learning metric as a function of the
number of missing features and across imputation strategies, both without oversampling
(Figure 7, Table 3) and with oversampling (Figure 8, Table 4). We observed a statistically
significant negative slope in all of the performance metrics and models except for the
following imputation methods using balanced accuracy: impute mean, impute naive,
impute median, impute ridge. Furthermore, any model apart from “No Imputation” and
“Auto Impute” demonstrated statistically significant heteroskedasticity.

Figure 2. Performance of the models when oversampling, with the columns denoting the specific
metric, across the evaluated sub-population (left label) and the imputation method (right label). The
color denotes the magnitude of the metric, warmer colors indicating higher performance.
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Figure 3. Performance of the models, with the columns denoting the specific metric, across the
evaluated sub-population (left label) and the imputation method (right label).
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Figure 4. Performance of the models when oversampling, with the columns denoting the specific
metric, across the evaluated sub-population (left label) and the imputation method (right label). The
color denotes the magnitude of the metric, with warmer colors indicating better performance. The
text color is adjusted to be readable given the background color.
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Figure 5. Machine learning performance exhibited by different imputation methods grouped by
0.2 quantiles.

Figure 6. Machine learning performance exhibited by different imputation methods using an over-
sampling preprocessing step grouped by 0.2 quantiles.

Table 3. Tabular representation of Figure 7. We display the Y-intercept and slope of the lines of best
fit for the estimator performance on a given metric. The F-Test p-value gives the probability of the
null hypothesis that the line of best fit has a slope of zero. The Breusch–Pagan p-value, which gives
the probability that the error of the line has constant variance, is also given.

Estimator Metric Y-Intercept Slope
F-Test Breusch–Pagan
p-Value p-Value

No Imputation

Balanced Accuracy 0.938288 −0.014331 0.000000 0.372675
Precision 1.038484 −0.015907 0.000000 0.683840
Recall 0.688205 −0.010770 0.000000 0.380535
F1 0.805173 −0.012496 0.000000 0.934875
AUROC 0.938288 −0.014331 0.000000 0.372675

Auto Impute

Balanced Accuracy 0.962040 −0.014739 0.000000 0.352425
Precision 1.023924 −0.015765 0.000000 0.681243
Recall 0.742006 −0.011667 0.000000 0.657899
F1 0.844082 −0.013165 0.000000 0.760720
AUROC 0.962040 −0.014739 0.000000 0.352425
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Table 3. Cont.

Estimator Metric Y-Intercept Slope
F-Test Breusch-Pagan
p-Value p-Value

Impute Mean

Balanced Accuracy 0.744528 −0.000483 0.517161 0.000141
Precision 0.887014 −0.006534 0.000078 0.000000
Recall 0.680919 −0.005709 0.000068 0.001215
F1 0.759957 −0.006277 0.000007 0.000021
AUROC 0.825048 −0.004409 0.000089 0.000099

Impute Naive

Balanced Accuracy 0.736591 −0.000548 0.431844 0.000462
Precision 0.867793 −0.006154 0.000095 0.000001
Recall 0.649528 −0.005119 0.000186 0.005948
F1 0.733024 −0.005788 0.000016 0.000159
AUROC 0.812685 −0.004257 0.000106 0.000334

Impute Median

Balanced Accuracy 0.743865 −0.000620 0.384045 0.000024
Precision 0.890143 −0.006735 0.000025 0.000000
Recall 0.665581 −0.005631 0.000031 0.005150
F1 0.752403 −0.006318 0.000002 0.000065
AUROC 0.824385 −0.004546 0.000030 0.000131

Impute Ridge

Balanced Accuracy 0.695296 0.000247 0.724879 0.000051
Precision 0.875240 −0.006566 0.000036 0.000002
Recall 0.565600 −0.004039 0.002779 0.007240
F1 0.671835 −0.005079 0.000164 0.000335
AUROC 0.775816 −0.003679 0.000605 0.000196

Figure 7. Best fit lines of machine learning metrics as a function of the number of missing features.
The shading is the residual of the best fit line. The best fit line is colored green if we reject the
null hypothesis that the line has a slope of zero. The shading is colored green if we reject the null
hypothesis that the residuals have constant variance.
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Figure 8. Best fit lines of machine learning metrics as a function of the number of missing features.
The shading is the residual of the best fit line. All models contain an oversampling step. The best fit
line is colored green if we reject the null hypothesis that the line has a slope of zero. The shading is
colored green if we reject the null hypothesis that the residuals have constant variance.

Table 4. Tabular representation of Figure 8 displaying the Y-intercept and slope of the lines of best
fit for the estimator performance with oversampling on a given metric. The F-Test p-value, which
gives the probability of the null hypothesis that the line of best fit has a slope of zero, is given. The
Breusch–Pagan p-value, which gives the probability that the error of the line has constant variance, is
also given.

Estimator Metric Y-Intercept Slope
F-Test Breusch–Pagan
p-Value p-Value

No Imputation

Balanced Accuracy 0.929096 −0.014328 0.000000 0.485545
Precision 1.016151 −0.015712 0.000000 0.913311
Recall 0.681390 −0.010974 0.000000 0.125074
F1 0.793971 −0.012573 0.000000 0.761271
AUROC 0.929096 −0.014328 0.000000 0.485545

Auto Impute

Balanced Accuracy 0.927235 −0.014183 0.000000 0.510401
Precision 0.985620 −0.015222 0.000000 0.935550
Recall 0.686184 −0.010758 0.000000 0.247551
F1 0.793458 −0.012372 0.000000 0.783637
AUROC 0.927235 −0.014183 0.000000 0.510401

Impute Mean

Balanced Accuracy 0.726784 −0.000887 0.257000 0.003557
Precision 0.850450 −0.005228 0.000794 0.000000
Recall 0.583068 −0.003841 0.003761 0.017359
F1 0.676989 −0.004579 0.000297 0.000400
AUROC 0.775188 −0.003411 0.001467 0.000415
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Table 4. Cont.

Estimator Metric Y-Intercept Slope
F-Test Breusch–Pagan
p-Value p-Value

Impute Naive

Balanced Accuracy 0.706228 0.000201 0.748666 0.000180
Precision 0.856446 −0.005707 0.000332 0.000000
Recall 0.588463 −0.003621 0.007300 0.003331
F1 0.683514 −0.004533 0.000638 0.000028
AUROC 0.780858 −0.003407 0.001658 0.000215

Impute Median

Balanced Accuracy 0.702667 0.000042 0.943492 0.000159
Precision 0.846575 −0.005729 0.000216 0.000000
Recall 0.597699 −0.004181 0.001187 0.017877
F1 0.691866 −0.005232 0.000011 0.000528
AUROC 0.778030 −0.003616 0.000513 0.000478

Impute Ridge

Balanced Accuracy 0.716799 −0.001077 0.172684 0.003920
Precision 0.854813 −0.006436 0.000026 0.000025
Recall 0.562891 −0.004000 0.002777 0.017178
F1 0.666654 −0.005118 0.000037 0.000330
AUROC 0.763755 −0.003537 0.000880 0.000269

4. Discussion

We observe that imputation methods homogenize the amount of information per
patient. That is, without imputation, the models have a sharp performance loss, whereas
imputation makes the slope less steep at the cost of increasing heteroskedasticity. We
also note that every statistical test agrees between the oversampled and non-oversampled
models. This trend underscores the sensitivity of predictive models to the method of
handling missing data in electronic health records (EHR). The negative slope indicates
that as the degree of imputation increases—implying more data are being estimated rather
than observed—the accuracy, precision, and recall of the models tend to decrease. This
phenomenon can be attributed to the fact that imputation, despite being a necessary process
to address missing data, introduces a level of uncertainty or noise. This noise can distort the
underlying patterns within the data, leading to less reliable predictions from the models.

We are not the first paper to study diabetes prediction using the All of Us dataset. A
paper by Abegaz et al. studied the application of machine learning algorithms to predict
diabetes in the All of Us dataset [17]. Their work presents the AUROC, recall, precision,
and F1 scores stratified by gender of the random forest, XGBoost, logistic regression, and
weighted ensemble models. Our work builds upon those foundations in three ways. First,
we note that all of the models in Abegaz et al.’s work can be found in Scikit-Learn. Hence,
we performed a deep search over all Scikit-learn models to find the best performing ones.
Second, we presented our results for further substrata of the dataset. One of the most
important features of AoU is the diversity of people within the dataset. We highlighted
the five performance metrics on the total testing dataset on each gender, on each race, and
on groups bucketed by the number of missing features. We also presented the models’
performance on a number of fairness measurements when the sub-populations have a clear
privileged group. Third, our largest deviation from the previous work was to show how
the performance of a model changes as one changes the number of missing features.

The model performance in Figures 1 and 2 has been trained for only three hours
(as opposed to the multiday- or multiweek-long training that some deep neural network
solutions provide) and yields modest results. Our best performing model is the “Auto
Impute” model. We may compare the performance of that model to Abegaz et al.’s work.
“Auto Impute” has a higher AUROC, comparable precision, and worse recall and F1. We
note, however, that these are not clinically ready. Further improvements need to be made
in order to prefer this to a HbA1c test for diabetes testing. Since the multiple imputer only
used 15 iterations, the algorithm likely did not stabilize and caused the performance to
drop. We emphasize that the primary objective of our research was not to maximize the
performance of machine learning models applied to AoU data, but instead to study the
effects of data missingness and imputation strategies on model performance.
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Our analysis also highlights the presence of statistically significant heteroskedastic
variance in model performances across imputation methods. Heteroskedasticity, in this
context, refers to the irregular variability in the performance of predictive models, depen-
dent on the amount and pattern of missing data being imputed. This irregular variance
poses a significant challenge in predictive modeling, as it implies that the error terms
(or the differences between predicted and actual values) are not uniformly distributed.
Models thus exhibit different levels of accuracy and reliability depending on the specific
characteristics of the missing data in each patient record.

The presence of heteroskedastic variance can be particularly problematic in clinical
settings. It implies that for some patients, especially those with more extensive or particular
patterns of missing data, the predictions made by the models could be less reliable. This
inconsistency could lead to disparities in clinical decision-making, potentially affecting the
quality of care provided to certain patient groups. Since the “Auto Imputation” model has the
largest Y-intercept and one of the most negative slopes, it might be most beneficial to use the
“Auto Impute” method for patients with few missing values in a clinical setting. For patients
with a lot of missing values, one may use another imputation method with a less steep slope
or perform a cost–benefit analysis of ordering more tests to make the model more performant.

These findings highlight the critical need for developing more robust imputation tech-
niques that can minimize the introduction of noise and ensure uniform model performance
across varying degrees of missing data. It also underscores the importance of considering
the nature and pattern of missing data when applying machine learning models in health-
care settings. Future research should focus on exploring advanced imputation methods,
possibly incorporating domain knowledge or utilizing more sophisticated algorithms, to
mitigate the effects of data missingness on predictive model performance. In conclusion,
while imputation is a necessary step in dealing with incomplete datasets for some models,
our study indicates that current methods have significant limitations.

Addressing these limitations is crucial for the development of reliable and consistent
machine learning models for clinical predictions, ultimately enhancing the quality of patient
care and health outcomes. Our analysis on data missingness revealed that individuals who
are male and persons of color would be disproportionately affected by a loss in performance
with respect to data missingness. This is due to the number of missing features being more
highly correlated with males and non-white people.

Future work can be conducted to ensure the robustness of the findings. A number
of unanswered questions remain, such as: (1) does heteroskedasticity depend on certain
features included in the model over another? (2) Do these findings pertain to more modern
and complex deep learning models? (3) What other forms of data augmentation can
be performed to reduce heteroskedasticity? Another comparison of interest is exploring
whether the testing dataset holds more missing values than the training dataset and how
the performance differs compared to the case of having roughly similar missing values
between training and testing. If the testing dataset does not require many labels, then
hospitals could save time and money by not measuring every missing value.
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Abstract: Background: In recent years, there has been increasing research in the applications of
Artificial Intelligence in the medical industry. Digital pathology has seen great success in introducing
the use of technology in the digitisation and analysis of pathology slides to ease the burden of
work on pathologists. Digitised pathology slides, otherwise known as whole slide images, can be
analysed by pathologists with the same methods used to analyse traditional glass slides. Methods:
The digitisation of pathology slides has also led to the possibility of using these whole slide images to
train machine learning models to detect tumours. Patch-based methods are common in the analysis
of whole slide images as these images are too large to be processed using normal machine learning
methods. However, there is little work exploring the effect that the size of the patches has on the
analysis. A patch-based whole slide image analysis method was implemented and then used to
evaluate and compare the accuracy of the analysis using patches of different sizes. In addition, two
different patch sampling methods are used to test if the optimal patch size is the same for both
methods, as well as a downsampling method where whole slide images of low resolution images
are used to train an analysis model. Results: It was discovered that the most successful method uses
a patch size of 256 × 256 pixels with the informed sampling method, using the location of tumour
regions to sample a balanced dataset. Conclusion: Future work on batch-based analysis of whole
slide images in pathology should take into account our findings when designing new models.

Keywords: WSI; patches; tumour; cancer; deep learning; Camelyon17

1. Introduction

Digital pathology is a relatively new area of pathology wherein specimen slides are
digitised for analysis, minimising the time needed for the diagnostic process of a patient.
These digital tissue samples are called whole slide images (WSIs) and can be utilised
similarly to glass pathology slides in the identification of disease. This technology has the
potential to become routine in clinical pathology settings and has paved the way for the
possibility of automated WSI classification using machine learning architectures.

The main concept behind the automated analysis of WSIs is to imitate the process that
a pathologist ordinarily follows to complete analysis of a WSI. Often, the overarching goal
of the analysis is to identify the presence of tumourous tissue in a WSI. As the nature of the
analysis is to mimic the pathologists’ cognitive process, deep learning methods are best
suited to this task. In particular, deep learning methods have proven vastly superior to
traditional machine learning models in extracting nuanced patterns from highly complex
and high-dimensional data. For example, they have been widely used to learn from
training images how to identify the presence and localize tumorous tissue in a WSI [1].
Unfortunately, due to the size of WSIs (often several gigapixels [2]), it is not possible to
input the raw images into a network. Different methods have been researched to overcome
this, namely downsampling of WSIs and patch extraction [3,4].

The focus of this work is on the patch-based method of WSI analysis. Patch-based
methods involve splitting the WSIs into small patches and extracting a subset of these
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patches to input into a neural network [2,3]. Patch extraction can be performed using
various sampling methods, two of which were implemented as part of this work. The
patch-based method is the commonly preferred alternative to the downsampling method
which retrieves lower resolution versions of the WSI that can be processed as entire images
by a neural network [3,4].

Patch-based methods are common in the classification of WSIs. However, there is little
research into the effect of patch size on the accuracy of the classification. A majority of
the related work uses a relatively small patch size, typically around 256 × 256 pixels [5–7].
This is largely a choice borne out initially out of practical computational constraints and
subsequently adopted for the sake of uniformity, ease of comparison with previous work,
and tradition. No work has examined whether this choice is optimal and indeed any
longer sensible, given the improvements in computational power—the use of small patches
limits the amount of spatial information that is exploited which inevitably affects overall
performance. Hence, the present work aims to implement a patch-based WSI analysis
method in order to evaluate the effect of patch size on the automatic analysis of WSIs.

Four patch sizes were evaluated for the initial random sampling method (256, 384,
512, and 786), and three patch sizes were tested with the informed sampling method (256,
512, and 1024). Figure 1 shows the level of detail present in each of the patch sizes. Only
the largest downsampling factor was used for the downsampling method.

(a) (b) (c) (d) (e)

(f)

Figure 1. A patch from a whole slide image (test_016.tif) at each of the patch sizes evaluated for the paper.
(a) Patch size = 256. (b) Patch size = 384. (c) Patch size = 512. (d) Patch size = 786. (e) Patch size = 1024.
(f) Patch size = 2048.
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2. Related Work

2.1. Introduction to Digital Pathology

Pathology is a field of medicine related to the diagnosis and staging of diseases, in-
cluding cancer. Since the 1800s [8], pathologists have carried out this work by examining
specimen on glass slides using a microscope. However, for the past few decades there has
been increasing research in the digitisation of this process, resulting in the subfield of digital
pathology. This began with the introduction of WSI scanners in the early 2000s [9]. These
scanners produce WSIs, high-resolution images of glass pathology slides which contain
billions of pixels and are around 2 gigabytes in size [10]. The use of WSIs as a replacement
for the traditional glass slides means specimens can be displayed on large screens, viewed
in locations outside the hospital and laboratory environment, and shared between pathol-
ogists and experts. These possibilities help to improve accuracy of diagnosis, allow for
collaboration between medical personnel, and create a flexible work environment [9–11].
Another use of WSIs in digital pathology is for the automation of the analysis of WSIs, using
deep learning. Applying this in a clinical setting would ease the workload of pathologists,
reduce wait times, and standardise the analysis of pathology slides [5]. However, the nature
of WSIs, the size, high morphological variance and artefacts present, prevent the use of
conventional deep learning methods [5].

Research and advancements in digital pathology have positively impacted the health-
care industry; the ability to digitise pathology slides has eliminated the need for costly
storage of glass slides, and allows for remote pathological analysis and faster diagnoses,
without sacrificing any accuracy in the pathologists’ results [12,13]. However, some of the
concerns that occur in the analysis of pathology slides are not solved by the use of WSIs.
The manual analysis of WSIs still remains to be a time-consuming process and there is no
standardisation between pathologist’s analyses or different pathologists’ results. To solve
this, research continues into the automation of WSI classification. By using machine learn-
ing algorithms to aid with the analysis, the time taken for this process can be reduced and
there can be a level of standardisation between outcomes [5,12,14,15]. The computational
analysis of WSIs also has the ability to account for more morphological information than a
human can which leads to a better accuracy of diagnoses [4].

Future advances in digital pathology show a great deal of promise, but progress is
slowed by various barriers, including ethical concerns and regulations [9]. In the near future,
it is likely that this technology will be slowly introduced into the diagnostic process, aiding
pathologists by analysing slides and prioritising those that the algorithm indicates contain
disease [12,16,17]. The introduction of the Grand Challenges has fast-tracked research in
this field, providing datasets and creating an environment for researchers to submit their
work. Recent diagnostic models have shown a great deal of promise, performing better
than pathologists, mimicking a time-pressured environment, in the diagnosis and staging
of disease from imaging [18].

2.2. Analysis of Whole Slide Images

Deep learning algorithms have been successfully used for the classification of WSIs,
producing results similar to that of pathologists. The automation of analysis of WSIs
has many advantages over the traditional manual annotation of glass pathology slides.
However, there are barriers to overcome in achieving a successful implementation for this
process. In recent years, digital pathology research has focused on methods to overcome
these issues, with the most significant being the large size of WSIs and a lack of annotated
training data. The lack of data is due to the annotation process performed by pathologists
being time-consuming and therefore yielding only a small amount of available training data.

Problems with Computational Analysis of Whole Slide Images

WSIs contain billions to trillions of pixels per image and, on average, range from 1 to
4 GB in size [9]. This makes the use of conventional deep learning algorithms computation-
ally expensive and impractical [3–5,12,13,19]. There are two common methods for dealing
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with this issue: downsampling and patch extraction. Downsampling involves scaling down
the WSI until it contains much fewer pixels and can be analysed by a conventional deep
learning algorithm [4,12,20,21]. This method is not desirable as the process results in a
significant loss of fine detail from the image, affecting the classification accuracy [6,15,19,22].
Patch extraction splits the WSI into many small patches that can be analysed individually
by a deep learning algorithm and, using the patch-level classifications, produce a slide-level
classification [4,12]. Patch-based methods usually involve assigning the relevant slide-level
label to all patches in the training data. This can be misleading as some patches from
tumour-containing slides will not contain any diseased tissue themselves, meaning the
model is being given false information [12]. There is also a loss of spatial information using
a patch-based method, the relationship between patches and the global information is lost.
Therefore this method assumes that slide level analysis can be extrapolated from patch-level
information [4]. Despite the loss of spatial information using patch-based methods, this
method is preferable over downsampling as it retains more morphological information and
detail from the WSI [4].

A major bottleneck in the use of deep learning for the analysis of WSIs is the insuffi-
ciency of training data. WSIs have multiple levels at which annotations can be performed;
pixel-level, patch-level, slide-level, lesion-level, and patient-level. Ideally, the training data
for an analysis model will contain patch-level annotations to produce results comparable
to experts [5]. However, manual annotations must be carried out by pathologists which
is an expensive and time-consuming process, particularly at the more detailed pixel- and
patch-levels where the pathologist annotates the exact location of any disease [4,13,22,23].
This impedes the use of fully supervised models using patch-based labelling which has
the advantage of predicting where disease is present in an image [16]. As an alternative,
weakly supervised learning methods are being widely adopted in the analysis of WSIs [13].
These methods use only slide-level annotations, describing if there is any disease present
in a WSI, but not where in the image the disease is [12], to train the model.

The above two problems are the most significant barriers to the computational analysis
of WSIs. However, there are also many smaller issues that must be tackled to build a success-
ful model. Depending on the laboratory, scanner, and a number of other factors, there can
be a significant amount of stain variation between WSIs and various artefacts [7,10,15,24].
Pathologists adapt to ignore these variations and distractions. An AI model is not capable
of doing this which can affect the results of the classification [5]. To counteract the stain
variation, colour normalisation can be applied to the WSIs during pre-processing [7,24],
and the use of, for example, image filters can eliminate artefacts [5]. The extraction of
features for classification can be difficult as WSIs can contain a lot of heterogeneity and there
is sometimes little noticeable difference between disease and normal tissue [15,25]. This
makes it tricky for the model to learn disease patterns and is amplified by the previously
mentioned issue of a lack of WSI annotations as the location of disease is not specified to
the model [22]. There also tends to be significant class imbalance with a benign/normal
tissue class containing many more samples compared to a malignant/disease tissue class.
A reason for this is that all slides, malignant, benign, and other, usually contain some
normal tissue, whereas slides which are labelled as benign contain no disease tissue [13].
This issue can be minimised by, prior to analysis, performing data augmentation which
involves applying different geometric transformations to the images [19]. Other methods
include hard negative mining, where false positives are added to the training data, and
sampling patches using patch-level annotations rather than random sampling; although
these rely on the availability of patch-level annotations [5].

2.3. Patch-Based Whole Slide Image Analysis

Much of the current research in digital pathology focuses on patch-based methods for
the analysis of WSIs, however, the work varies on pre-processing techniques, including
patch extraction, model architecture, and classification. These processes are outlined below.

44



BioMedInformatics 2024, 4

The goal of these techniques is to optimise the accuracy of the model in predicting the
presence of disease; this article will focus on the optimisation of patch size.

1. Pre-processing: Before the data is fed into a model, pre-processing must be applied
first. For patch-based WSI analysis, there are four main steps for pre-processing:

(a) Tissue segmentation detects unwanted areas of WSIs, such as any background
or blurry areas. These areas are irrelevant in the analysis of the tissue and are
usually large regions so take up a significant amount of computational power
to process [10].

(b) Colour normalisation alters the distribution of colour values in an image to
standardise the range of colour used. In the case of WSIs, this ensures that
only relevant colour differences appear between slides. This is essential in
the pre-processing of WSIs as it minimises the stain variation between images
which can lead to bias in the training data and affect the results [7,19].

(c) Patch extraction involves taking square patches, often 256 × 256 pixels in size,
from the WSI for patch-level analysis [5–7]. This step of pre-processing has
many variables that can be optimised; patch size, magnification/resolution
level, sampling method, and whether patches are tiled or overlapping. This is
done due to the large size of WSIs and the limits of computational power to
deal with images of this size.

(d) Data augmentation is the transformation of training data to new training data.
This prevents overfitting and can be used to deal with severe class imbalance.

2. Architecture: Commonly, convolutional neural networks (CNNs) are used for the
analysis of WSIs. Due to the insufficiency of training data, these models are often
weakly supervised. A form of weakly supervised learning that can be used is multiple-
instance learning (MIL). This is suitable for data where a class label is assigned to many
instances, for example a slide label assigned to patches of that slide [13]. Originally,
this algorithm would apply max pooling to the instances, meaning that if disease is
predicted to be in one patch, the whole slide is predicted to be in the disease class [13].

3. Classification: For the analysis of WSIs, there are two classifications, patch-level and
slide-level classification [7]. Predictions for patches are aggregated to produce slide-
level classifications. Heatmaps are often used to display the distribution of results
for the patches in a slide which often correlates with a pathologist’s annotation of
the slide.

2.3.1. Techniques Used in Related Work

Wang et al. [26] use a CNN to make patch-level classifications which are then used to
produce a probability heatmap to predict the slide-level classification. WSI background
is removed to prevent unnecessary computation using a threshold segmentation method
with Otsu’s algorithm. The patches used for classification are extracted at 256 × 256 pixels
at 40×magnification level.

Hou et al. [3] used a CNN for patch-level classification followed by a decision fusion
model. 500 × 500 pixel patches extracted at 20× and 5× magnification levels were used to
train the model. Any patches that included too much unnecessary tissue or blood were
discarded. Three kinds of data augmentation were applied to the patches to prevent over-
fitting. This included rotation and reflection of part of each patch and colour augmentation
to affect the Hematoxylin and Eosin (H&E) stain.

Cruz-Roa et al. [27] downsampled the WSIs by a factor of 16:1 and tiled them into
100 × 100 pixel patches using grid sampling, discarding any patches that were largely
fatty tissue or background. These patches were then converted to YUV colour space and
normalised and then input into a 3-layer CNN which outputs the log likelihoods of the
patch being disease or not. The outputs were transformed to be interpreted as probabilities
and used to form a probability map for each WSI.
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Yue et al. [19] used the Reinhard normalisation to minimise stain variation on the
WSIs. Each WSI is downsampled and normalised before patches of size 224 × 224 pixels
are extracted. The data augmentation techniques, rotations, reflections, Gaussian blur, and
all-channel multiplication, were applied to the data to prevent overfitting and to help with
class imbalance.

Ruan et al. [28] first used a fixed-level threshold segmentation method to remove
background from the WSIs. Patches were sampled using a novel adaptive sampling method
at both the 20× and 40× magnification levels and were chosen to be 256 × 256 pixels.
Sampling at alternative magnification levels was tested and a combination of sampling at
20× and 40×magnification was shown to give the best results.

Rodriguez et al. [7] performed a systematic review of AI used in the analysis of WSIs.
All 26 studies included in the review used patch-based methods, with varied other pre-
processing techniques. A majority used tissue segmentation to remove unwanted regions
of the WSIs, and the most common technique used was a threshold. Colour normalisation
was only used in six of the studies, with techniques of colour deconvolution and simple
normalisation. Data augmentation was widely used with a variety of methods, including
rotations, flipping, and colour augmentations. Most studies used deep learning models for
patch-level classification, with many different methods used for slide-level classification,
with some simply opting for the most common class and others using more complex deep
learning models.

Mohammadi et al. [13] implemented an extended MIL method for multi-class clas-
sification. WSIs are downsampled and the tissue is segmented to eliminate unnecessary
background in the image and converted to HSV colour space. Non-overlapping patches of
size 256 × 256 pixels are taken from only the segmented tissue at magnification level 0.

Fell et al. [16] used a fully supervised CNN to predict the probability of each patch
from a WSI containing disease. The outputs from the CNN were then aggregated to form a
heatmap for the WSI to be used as input to a slide-level classification model. Colour normal-
isation and aggregation were not used in an attempt to increase variation within the data
for generalisation. Background was removed from the thumbnail by applying greyscale
and removing any values over a threshold. Patches were extracted at the highest resolu-
tion level, level 0, and multiple patch sizes were tested for optimisation, 256 × 256 pixels,
512 × 512 pixels, and 1024 × 1024 pixels. The largest patch size, 1024 × 1024 pixels, was
chosen for this model.

2.3.2. Comparison of Patch Sizes

In the reviewed related work, patch sizes range from 100× 100 pixels to 1024 × 1024 pixels.
Bándi et al. [18] reviewed submissions for the Camelyon17 challenge, which used a range of
patch sizes between 256× 256 pixels to 1920× 1920 pixels both at level 0, and found that the
smallest patch size provided enough context and is sufficient for analysis. A smaller patch
size is beneficial if it provides enough information to the model, as, if a patch is too large, it
will encounter the same computational problems that a WSI does. Conversely, some believe,
such as Komura et al. [6] and Khened et al. [23], a larger patch size will result in better
accuracy as smaller patches do not include sufficient context [23]. Similarly, Fell et al. [16]
consulted with pathologists who noted that, for manual annotation, the typical patch size
of 256 × 256 pixels would be too small and so larger patches may imitate the manual
annotation process more closely. However, Deng et al. [15] found that small patches did not
provide sufficient context for analysis, but large patches are too computationally expensive.
Due to the lack of consensus on patch size, more work is needed to definitively find the
optimal patch size.

2.4. Relevant Concepts and Technology

To ensure the reproducibility of WSI analysis methods and standardise the details
included in research papers, a checklist of important details was created by Fell et al. [10].
This is a useful guideline for the implementation of the work and the related section of this
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article. It is important to note not all points are relevant to the work, specifically lesion and
patient classification. The checklist is as follows [10]:

1. The hardware and software platform the system was trained and tested on.
2. The source of the data and how it can be accessed.
3. How the data was split into train, validation, and testing sets.
4. How or if the slides were normalised.
5. How the background and any artefacts were removed from the slides.
6. How patches were extracted from the image and any data augmentation that was applied.
7. How the patches were labelled.
8. How the patch classifier was trained, including technique, architecture, and hyper-

parameters.
9. How the slide classifier was trained, including pre-processing, technique, architecture,

and hyper-parameters.
10. How lesion detection was performed.
11. How the patient classifier was trained, including, pre-processing, technique, architec-

ture, and hyper-parameters.
12. All metrics that are relevant to all the tasks.

Wang et al. [26], the winners of the Camelyon16 challenge evaluated four different
deep-learning architectures for the analysis of WSIs: GoogLeNet, AlexNet, VGG16, and
FaceNet. The patch classification stage was tested using these models and the accuracy of
the classification was measured. The model that produced the best result, and the one used
by Wang et al. for the final results of the analysis, was GoogLeNet which is a CNN based
on the model created by the winners of ImageNet in 2014.

3. Proposed Methodology

3.1. Camelyon16 Winning Paper

The winning paper of the Camelyon16 challenge [26] was the main inspiration for the
structure of the system. The Camelyon16 challenge is the source of the dataset used for the
paper, which consists of a training set of 160 “normal” WSIs and 111 “tumour” WSIs and a
testing set of 129 WSIs.

The overarching methodology of the winning paper is image pre-processing, patch-
level classification, post-processing production of tumour probability heatmaps, and slide-
level classification [26]. The image pre-processing stage involved only tissue segmentation
to remove irrelevant white background from the WSIs and patch extraction. No colour
standardisation or data augmentation was mentioned in the paper. Millions of patches of
size 256 × 256 pixels were randomly extracted from training WSIs and used to train the
model for patch-level classification. The patch-level classification stage results in a model
that can predict if a patch contains any tumours. This model was then applied, in the post-
processing stage, to overlapping patches extracted from a testing WSI, to produce a tumour
probability heatmap corresponding to the image. Finally, features were extracted from the
heatmaps which were then input into the slide-level classification model, a random forest
classifier, to give a probability value for the presence of tumour in the WSI.

3.2. GoogLeNet

During the patch-level classification stage, Wang et al. [26] tested four different deep
learning networks by evaluating the accuracy of the patch classification. The GoogLeNet
network produced the best accuracy out of the four, with 98.4%. As the work uses similar
methods and the same dataset, the GoogLeNet network was chosen to be the patch-level
classification model architecture. GoogLeNet is a pretrained 22-layer deep convolutional
neural network with a minimum image input size of 224 × 224 pixels. The architecture of
the network is shown in Figure 2.
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Inception module

Figure 2. The structure of the GoogLeNet network.
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3.3. System Structure

There are four distinguishable stages in the overall structure of the work: data pre-
processing, patch-level classification, production of tumour probability heatmaps, and
slide-level classification. These processes were all involved in producing the final artefact,
an accurate patch-based WSI analysis method. However, due to the need to train the
machine learning models, the structure of the system used to produce the final artefact
differs from the structure of the final artefact itself. The differences between the systems
can be seen in Figure 3.

Figure 3a shows the process of producing the final artefact. This system first applies
pre-processing to the WSIs from the training dataset to retrieve many normal and tumour
patches. These patches are then used to train the patch classification model. The WSIs from
the testing dataset are then split into patches and, for each WSI, a heatmap is created to
represent the probability of each patch being tumourous, predicted from the previously
trained patch classification model. The slide-level classification is then trained using a
training subset of the heatmaps from which features are extracted.

Figure 3b represents the final artefact. This allows an unseen WSI to be split into
patches, which are then input directly to the post-processing step to produce a tumour
probability heatmap corresponding to the WSI. This heatmap is then input to the slide
classification model, extracting the features of the heatmap to predict the probability that
the slide is tumourous.
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Preprocessing and
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Patch-level classification 
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Figure 3. The structure that produces trained patch-level and slide-level classification models (a) and
the structure that can be used to classify any unknown WSI using the trained models (b).

3.4. Camelyon16 Dataset

The dataset used for the work was the Grand Challenge Camelyon16 dataset of
sentinel lymph node WSIs. This data is freely available to download from the Camelyon16
webpage [29].

The data is split into two folders, training and testing. The training folder contains
the WSIs as .tif files and the lesion annotations as .xml files. There are 160 normal WSIs
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and 111 tumour WSIs for training, and the lesion annotations contain the coordinates of
the tumours in each corresponding tumour WSI. The testing folder contains the WSIs as .tif
files, the lesion annotations as .xml files, and a reference file. There are 129 WSIs to be used
for testing, with the reference file containing the details for each file: the label i.e., normal or
tumour, and the type of tumour. There is a lesion annotation file for each WSI in the test set
that is labelled tumour. Figure 4 shows an example of a normal slide and a tumour slide.

(a) (b)

Figure 4. An example of (a) a normal whole slide image (normal_005.tif), and (b) a tumour whole
slide image (tumor_005.tif), both at the lowest resolution level.

The WSI is stored at multiple different resolution/magnification levels, shown by
Figure 5. The images at different levels can be accessed separately to retrieve the WSI at the
desired resolution. For this work, the WSIs are all retrieved at the highest resolution level,
therefore containing the largest number of pixels possible. This is with the exception of the
downsampling method where the aim is to use images of lower resolution.

(a) (b) (c)

Figure 5. A whole slide image, tumor_050.tif, at three resolution levels: the (a) lowest (file size 75 KB),
(b) medium (file size 966 KB), and (c) highest (file size 14.7 MB). The highest resolution level displayed
here is not the highest possible for the WSI as the file size is too large for the highest resolution image.
These images are all shown scaled down, by a factor of 20, from their actual size.
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3.5. OpenSlide

The WSI .tif files contain multiple versions of the slide image, at different resolutions.
These are stored in a pyramid-like structure which cannot be accessed unless using a
specialised library [29]. The OpenSlide library is a C library that can read WSIs, the Python
binding of the library also includes a Deep Zoom generator. For the work, this library was
chosen as it has functions to read WSIs, get the dimensions of each level of the WSI, and
fetch regions of the WSI at a specified level. The additional Deep Zoom generator also
provides the ability to split the OpenSlide object into tiles of a given size which is ideal for
the aim of this work.

3.6. Pre-Processing

There are four main pre-processing steps for WSI analysis: tissue segmentation, colour
normalisation, patch extraction, and data augmentation. For this work, only two of these
pre-processing steps, tissue segmentation and patch extraction, were implemented. The
decision to not perform colour normalisation was influenced by the Camelyon16 winning
paper [26], which used the same dataset as used for this work. As colour normalisation
is usually performed to remove stain variation within the dataset, and Wang et al. [26]
did not apply colour normalisation, it was decided not to perform any kind of colour
normalisation. Data augmentation was not deemed necessary as it is possible to extract
hundreds of thousands of patches from each image in the dataset. These patches can be
used to form a large training dataset, therefore eliminating the risk of overfitting due to
lack of training data.

The aim of the tissue segmentation stage is to remove any unnecessary areas from the
WSIs. For this paper, this step is focused on removing the background of the images. As
can be seen in Figure 6, a WSI can consist of majority background which is not useful for
the classification model. Without this pre-processing step, many of the patches extracted
from the image may be background and therefore the model would be largely trained on
irrelevant data and predict non-background patches poorly. This would also lead to a great
deal of unnecessary computational time and power spent training the model, as a larger
number of patches per image, and therefore a larger training dataset, would be required to
achieve accurate predictions.

Figure 6. An example of a whole slide image (normal_001.tif), at the lowest resolution level, to
display the amount of white background typical in a whole slide image.

As the aim of the work is to implement a patch-based WSI analysis method, patch
extraction is an essential pre-processing step. For this step, the entire WSIs are first split
into patches. Most WSIs produce hundreds of thousands of patches per image, depending
on the size which is specified when splitting up the WSI. The effect of using different
patch sizes in this step will be investigated later in this report. The patches can also be
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overlapping by a specified number of pixels, which can provide some additional context to
the patches to reduce the loss of spatial information.

The second part of patch extraction is to create a subset of patches from the entire set of
patches, depending on the task. For the post-processing step using WSIs from test data, the
entire patch dataset is used. However, to train the patch classification model, only a sample
of patches from each WSI in the training dataset is used. There are multiple methods that
can be used in patch extraction to choose a sample of patches from an image. In this paper,
two of these methods, random sampling and informed sampling, are implemented and
tested with the varied patch sizes.

For this work, there were two main pre-processing steps implemented: tissue segmen-
tation (background removal) and patch extraction. The background removal pre-processing
was implemented as part of the patch extraction pre-processing. The pre-processing stage
results in the creation of a new dataset of patches and their labels, to be used as input to the
patch-level classification model.

The pre-processing stage begins with the splitting of WSIs into all possible patches
using a provided patch size. The total number of patches that this process results in
varies as the WSIs have different dimensions. To retrieve a subset of patches for the
training dataset, a sampling method must be used. The implementation of two sampling
methods used for this work, random sampling and informed sampling, are described in
Sections 3.6.2 and 3.6.3. A Patch class object is created for each of the patches in the subset
which performs functions including label retrieval, background check, and transformations.

The label retrieval for a patch is dependent on the slide label. For the training data,
the slide label is contained within the filename, either “normal” or “tumour”. If a WSI
has the “normal” slide label, all patches extracted from the WSI are labelled “normal” too.
However, for slides labelled “tumour”, the patch label must be inferred from the lesion
annotations. The lesion annotations are contained in .xml files via the coordinates of the
tumour regions in a slide. These coordinates were collated into tumour regions by creating
polygon objects for each tumour and saving each in a list of tumours for the corresponding
slide. Figure 7 shows an example of the polygons representing tumours in a WSI graphed.
To check if a patch contains tumour, the centre of the patch was found and used to create a
point object. The list of polygons representing tumours was then looped through, and each
one checked if it contained the centre of the patch. If the patch was deemed to be within a
tumour, it was labelled “tumour”, if not it was labelled “normal”.

(a) (b)

Figure 7. (a) A whole slide image containing tumour (tumor_075.tif), with (b) the corresponding
plot of the tumour regions from the lesion annotation file. Note that the whole slide image has been
vertically flipped to match the orientation of the plot; the axis values are the pixel coordinates.

The “normal” and “tumour” labels for the patches were encoded using one hot encod-
ing, with two values, the first representing the “normal” class and the second representing
the “tumour” class. Therefore, a “normal” patch label contains a 1.0 in the first position
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and a 0.0 in the second position, and a “tumour” patch label has a 0.0 in the first position
and a 1.0 in the second position.

3.6.1. Background Removal

The background removal step occurs when the patches are fetched in the sampling
method. A background check was implemented by calculating the mean of the pixel values
in the patch. If this mean is greater than a threshold, the patch is discarded and not added to
the new training dataset. The threshold was determined with the aim of excluding as many
background patches as possible without removing any tissue regions. This was achieved
by comparison of example WSIs and corresponding images showing the pixels that would
be discarded at the threshold. An image with all white pixels would have a mean pixel
value of 256. However, to account for the slight off-white colour of the background of WSIs
and general artefact, it was determined that any threshold above 240 would not remove
significant background region. Therefore, a threshold of 240 was initially tested. However,
this resulted in not all background region being removed, and in some cases none at all, so
the threshold 230 was also tested and compared with 240. An example of this comparison
is shown in Figures 8 and 9. Ultimately, a threshold of 230 was chosen for the background
segmentation as this removed significantly more irrelevant patches for many WSIs, yet still
kept all relevant information. This threshold is independent of patch size, its value being
ultimately driven by image content, rather than size, and the staining protocol, that is the
contrast between tissue and background, etc. An alternative approach would have been to
employ some type of colour normalization prior to thresholding [24] which we decided not
to do so as to avoid introducing a potential confound into our analysis though it should be
noted that the most recent findings in this realm suggest that colour normalization becomes
unnecessary if a sufficient feature extractor is used [30].

(a) (b) (c)

Figure 8. A comparison of a whole slide image (tumor_001.tif) and the detection of white background
areas using different thresholds. The dark blue areas are the background and white are tissue. It is
clear that a threshold of 240 is not strict enough for this image as no region in the image has been
detected as background. From the WSI, it is possible to see that the background of this slide has a
slight off-white colour, explaining why this has not been segmented correctly. (a) The original whole
slide image. (b) Background region detected with threshold = 240. (c) Background region detected
with threshold = 230.
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(a) (b) (c)

Figure 9. A comparison of a whole slide image (tumor_036.tif) and the detection of white background
areas using different thresholds. The dark blue areas are the background and white are tissue. (a) The
original whole slide image. (b) Background region detected with threshold = 240. (c) Background
region detected with threshold = 230.

3.6.2. Random Sampling Method

The random sampling method involves choosing, at random, a given number of
patches from all the possible patches for an image. This random selection is done without
replacement to avoid duplicates in the training data. Random sampling is a simple sampling
method, but it can result in a significantly large class imbalance. When randomly sampling
from a normal slide, all patches will be “normal”, either normal tissue or non-tissue regions.
However, when sampling from a tumour slide, some patches will be tumour, but a large
number are still “normal” patches. This means that the resulting dataset contains a much
larger number of normal patches compared to tumour patches.

The random sampling method retrieves a subset of patches chosen at random. This
was implemented by, for each WSI, iteratively fetching random patch addresses from the set
of patches for the image and adding the corresponding patch to the training dataset. There
is a defined maximum number of patches per image for the sampling method. The iterative
process will continue until this maximum is reached or all patches have been fetched.

3.6.3. Informed Sampling Method

The informed sampling method counteracts the issue of class imbalance from the
random sampling method. This method is more complex than random sampling as it
uses the location of tumours in the slides. Normal slides are processed in the same way
as in random sampling; a given number of patches are chosen randomly, all of which are
“normal”. However, for tumour slides, the patches are sampled based on the location of
the tumours in the slides. A given number of tumour-labelled patches are extracted in
addition to the usual “normal” patches which are still chosen from the tumour slides. By
specifying a similar value for the number of both the tumour and normal patches, a more
balanced dataset can be produced, ensuring a reasonable proportion of the training dataset
is tumour.

The informed sampling method creates a more balanced dataset than the random
sampling method. This method was implemented similarly to the random sampling, except,
for tumour slides, the maximum number of patches is split into a maximum number
for normal patches and a maximum number for tumour patches. The two maximum
values for the tumour slides are chosen to be equal and the sum of them is equal to the
maximum number of patches for the normal slides. The tumour patches are sampled from
a list of patches in tumour regions fetched from the lesion annotation files. The resulting
dataset remains slightly unbalanced, although to a much lesser degree. It is not possible to
completely balance the dataset without using a small number of patches per image as there
is significantly fewer tumour patches compared to normal patches.
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3.7. Patch-Level Classification

The aim of the patch-level classification model is to predict the probability of a patch
containing tumourous tissue. This model takes as input the pre-processed patches sampled
from the training data. It outputs a probability value for both the normal class and the
tumour class. The model is trained and optimised based only on the accuracy of the
patch-level classification. The patch classification is the foundation of the remainder of the
system, therefore it is essential that the model performs well.

As this stage focuses on performing patch-level classifications, rather than slide-level
or lesion-level, the input patches are independent from their original WSIs. Therefore,
the model learns only from the features and morphological information given by a patch
individually. This also means there is no spatial information provided to the model which
is the most significant drawback of patch-based analysis methods.

The patch-level classification stage focuses on the prediction of patch-level labels by
training a neural network. This step was implemented using the GoogLeNet architecture
described in Section 3.2 which was loaded from PyTorch in the PatchAnalysis script. As
this network usually has 1000 output nodes, the number of classes for this problem, two,
normal and tumour, was specified when loading the model.

The input data for the model originates from the pre-processing step. A custom dataset
was created to take the directory of the patch files and create a dataset consisting of a list of
the patch filenames and a list of the patch labels. The __getitem__ function of the dataset
class then fetches the patch, as a tensor, from the file at the given index, alongside the label
for the patch. To train and evaluate the model, the patch dataset was split into train and
validation datasets using a stratified split based on the patch labels to ensure the tumour
patches were evenly distributed between the datasets. The size of the validation dataset
was specified to be 20% of the original dataset. All testing was performed using a separate
test corpus provided as part of the challenge data set.

The version of WSI analysis performed in this work is a binary classification problem.
However, as the GoogLeNet network has been used, which requires a minimum of two
classes, the binary classification is implemented using one hot encoding with a class
representing “normal” and a class representing “tumour”. Therefore, despite this being a
binary problem, the loss function, optimiser, and activation function were chosen based on
the model architecture having two output nodes. Categorical cross entropy loss was chosen
for the loss function as this is commonly used in classification problems with success;
binary cross entropy loss was not possible to use given the one hot encoded outputs. The
Adam optimiser was used due to its ability to adapt well to increase speed and accuracy of
the predictions. The softmax activation function was used to convert the model outputs
to probabilities. This was chosen over the sigmoid function as the classes are mutually
exclusive and the probabilities output from the softmax function sum to one.

3.7.1. Testing

The patch classification model was tested using the validation set, the confusion matrix
for which can be seen in Table 1, and by analysing the graphs for the loss, accuracy and
recall of the predictions to ensure the model was learning properly. Figure 10 shows these
graphs for the trained model with a patch size of 256; also see the summary in Table 2.
From these, it is possible to see the model is predicting well overall and there is low loss.
However, there is some overfitting, specifically for the tumour class as can be seen in
Figure 10c, which was addressed during hyper-parameter testing.

Table 1. Confusion matrix for the patch classification model on the validation set.

Actual

Positive Negative

Predicted
Positive 201 0
Negative 163 7798
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(a) Loss (b) Accuracy

(c) Recall

Figure 10. The loss, accuracy, and recall graphs used for testing the patch classification model. Also
see Table 2 for a numerical summary of the data.

Table 2. The loss, accuracy, and recall values used for testing the patch classification model. To
account for stochastic fluctuations all values are reported for the exact epoch noted, followed by the
average of the values corresponding to epochs in a window centred at the said epoch.

Epoch

25 50 75 100

Train
Accuracy (%) 98.72/98.24 99.34/99.24 99.23/98.82 99.44/99.81

Recall 0.99/0.99 1.0/0.99 1.0/0.99 1.0/1.0
Loss 0.04/0.04 0.01/0.02 0.01/0.02 0.01/0.01

Validation
Accuracy (%) 90.03/94.94 99.03/98.72 99.03/98.72 98.83/98.93

Recall 0.80/0.73 0.63/0.69 0.48/0.54 0.55/0.56
Loss 0.67/0.67 0.83/0.67 1.37/1.13 0.95/1.12

3.7.2. Hyper-Parameter Tuning

The hyper-parameters that were tuned for this model were learning rate, class weights,
patches extracted per image and number of epochs. These parameters were evaluated using
the loss, accuracy, and recall measures for the model’s predictions. All hyper-parameter
tuning was performed on a patch dataset with 100 patches of size 256 × 256 per WSI,
sampled using the random sampling method. Except where otherwise specified, the
hyper-parameters were kept the same for all patch size and sampling method tests.

The learning rate was optimised by testing values on a log scale, from 10−1 to 10−5,
and comparing the loss, accuracy, and recall on the validation set. The results of these
measurements are shown in Figure 11 (also see Table 3). From the accuracy graph, it
is evident that the learning rate affects this metric very little, particularly by the end of
the 100 epochs. Therefore, the final learning rate was chosen based on loss and recall
measurements. From the loss, 10−1 appears to be the best choice, but also gives the lowest
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recall value. Consequently, a learning rate of 10−5 was chosen which also has low loss but
gives a similar recall to other learning rates.g

(a) Loss (b) Accuracy

(c) Recall

Figure 11. The validation loss, accuracy, and recall graphs for a range of learning rates used to find
the best hyper-parameter value. Also see Table 3 for a numerical summary of the data.

Table 3. The validation loss, accuracy, and recall values for a range of learning rates used to find the
best hyper-parameter value. To account for stochastic fluctuations all values are reported for the exact
epoch noted, followed by the average of the values corresponding to epochs in a window centred at
the said epoch.

Epoch

Learning
Rate

25 50 75 100

10−5
Accuracy (%) 98.67/98.67 99.11/99.11 99.20/99.20 99.20/99.20

Recall 0.18/0.30 0.47/0.41 0.37/0.43 0.33/0.31
Loss 0.06/0.05 0.05/0.05 0.06/0.05 0.09/0.08

10−4
Accuracy (%) 99.11/99.11 99.20/99.20 99.38/99.28 99.11/99.11

Recall 0.31/0.35 0.49/0.47 0.43/0.41 0.32/0.28
Loss 0.08/0.07 0.06/0.06 0.07/0.07 0.09/0.11

0.001
Accuracy (%) 98.32/98.67 99.56/99.56 99.38/99.38 99.38/99.38

Recall 0.77/0.61 0.33/0.40 0.51/0.49 0.42/0.42
Loss 0.07/0.06 0.08/0.07 0.07/0.07 0.13/0.13

0.01
Accuracy (%) 99.38/99.38 98.94/98.58 99.47/99.47 99.38/99.38

Recall 0.52/0.39 0.43/0.64 0.23/0.43 0.23/0.40
Loss 0.06/0.07 0.04/0.05 0.12/0.08 0.10/0.09

0.1
Accuracy (%) 99.03/99.03 99.20/99.20 99.03/99.03 99.03/99.03

Recall 0.00/0.00 0.32/0.30 0.00/0.00 0.00/0.00
Loss 0.07/0.05 0.04/0.04 0.05/0.04 0.04/0.04
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From Figure 11, it is clear that the recall values are not ideal given that the aim of the
work is to detect tumours. Therefore, class weights were added to the loss function in an
attempt to improve the recall of the predictions. A comparison of class weights versus no
class weights can be seen in Figure 12. It is obvious from these graphs that using class
weights is much more optimal for this work.

(a) Model without class weights (b) Model with class weights

Figure 12. The recall values for the model without using class weights for the loss function and with
using weights.

Another hyper-parameter that was investigated is the number of patches sampled per
image. The results of this investigation are shown in Figure 13 which shows the validation
loss, accuracy, and recall for 10, 25, 50, 100, and 150 patches per image; a further summary
can be found in Table 4. Many of the values are similar for the various numbers of patches.
However, the largest number of patches per image gave the most stable values. Therefore,
150 patches were sampled from each image for the remainder of the work with the exception
of the 1024 × 1024 patch size, which only had 50 samples from each image due to the large
patch size.

(a) Loss (b) Accuracy

(c) Recall

Figure 13. The loss, accuracy, and recall for the model using various numbers of patches per WSI in
the training set. Also see Table 4 for a numerical summary of the data.
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Table 4. The loss, accuracy, and recall for the model using various numbers of patches per WSI in the
training set. To account for stochastic fluctuations all values are reported for the exact epoch noted,
followed by the average of the values corresponding to epochs in a window centred at the said epoch.

Epoch

No. Patches 25 50 75 100

10
Accuracy (%) 98.23/98.32 99.03/99.03 94.06/94.62 99.03/99.03

Recall 0.33/0.5 0.17/0.17 0.84/0.89 0.33/0.27
Loss 0.76/0.48 1.26/1.38 0.22/0.22 1.27/1.28

25
Accuracy (%) 97.96/98.32 94.42/94.83 88.74/88.74 98.85/98.96

Recall 0.51/0.51 0.73/0.73 0.81/0.85 0.47/0.60
Loss 0.66/0.69 0.36/0.40 0.37/0.41 0.85/0.67

50
Accuracy (%) 92.11/95.83 99.03/98.97 98.85/99.14 98.67/98.75

Recall 0.88/0.78 0.53/0.59 0.64/0.64 0.62/0.60
Loss 0.32/0.39 5.26/2.22 0.70/0.72 0.84/0.80

100
Accuracy (%) 96.19/97.96 99.03/98.29 98.85/94.71 98.49/98.49

Recall 0.77/0.64 0.45/0.64 0.62/0.70 0.71/0.64
Loss 0.38/0.70 1.17/0.84 1.07/0.95 0.84/0.85

150
Accuracy (%) 98.67/94.42 99.03/99.16 98.85/99.14 99.56/99.26

Recall 0.81/0.83 0.65/0.68 0.70/0.71 0.64/0.62
Loss 0.57/0.63 0.92/0.98 0.89/0.88 1.37/1.39

As can be seen from previous hyper-parameter tuning, the maximum epoch value that
was previously used is sufficient for training the model. The accuracy has plateaued and,
based on recall graphs, the model is beginning to overfit for the tumour data. The trained
model used for the production of heatmaps is selected individually for each classification
using the loss, accuracy, and recall graphs to choose the best performing model.

The batch size used varied depending on the patch size as increasing the patch size
led to issues with the CUDA memory so a decrease in batch size was required to run the
patch classification.

3.8. Production of Tumour Probability Map

This stage of the system creates heatmaps that correspond to each WSI in the testing
dataset. The testing data, one WSI at a time, undergoes patch extraction resulting in a set of
all patches from a WSI. The trained patch-level classification model is applied to this set
of patches and predicts, for each patch, the probability that the patch contains tumourous
tissue. The tumour probabilities are then displayed in a heatmap. From the heatmaps, it is
possible to see the correlation between areas of high tumour probability and the location of
tumours in the corresponding WSI. Therefore, if a test WSI is classified as tumour, these
heatmaps can be used to retrieve the location of tumours in the WSI for further analysis by
a pathologist.

The production of the tumour probability heatmaps is a post-processing step which
involves applying the trained model from the previous stage, rather than being a model
itself. The heatmaps produced are split into training and testing data. The training
heatmaps become the input for the second model of the system, and the testing data is
used to test the accuracy of the model and the overall patch-based WSI analysis method.

The production of the tumour probability map from a WSI can be split into two
parts, both of which are implemented in the CreateHeatmap script. The first part involves
splitting the WSI into patches and the second part uses the trained patch-level classification
model to get the predictions for the patches which form the heatmap.
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The model is loaded from a file of the saved trained model produced by the previous
step of the process. The WSI is then loaded and split into patches using the Deep Zoom
generator. The columns and rows that formulate the addresses of the patches are iterated
through and each patch address is added to a list, provided it is not part of the background
of the slide. A custom dataset, AllPatchDataset, is then used to create a dataset with these
patch addresses and the generator. The __getitem__ function in this dataset fetches the
patch at the address given by the index and preprocesses it before returning the patch.

The heatmap data begins as an array of zeros with the dimensions of the number
of columns and rows. This ensures that any background patches that are not in the
dataset are automatically given a value of 0 for the heatmap. For each patch in the dataset,
the probability predictions for the two classes are produced by the trained model. The
probability values for the “normal” class are negated to give values between −1 and 0.
The “tumour” class predictions are untouched. The highest absolute value between the
predictions for each patch is added to the heatmap data in the position given by the column
and row of the address of the patch.

Once the whole dataset has been predicted, the heatmap data is plotted using the
seaborn package and the resulting heatmap is saved as an image into a directory of
heatmaps. Every heatmap is plotted with the same minimum and maximum values
to ensure the colour scale is equal for the next stage of feature extraction and training. A
file containing a list of the probability values is also saved to aid in feature extraction in the
next stage.

Each heatmap is saved with the label of the slide in the filename to be used for the
slide classification. The label for each test WSI is contained within the reference.csv file
from the dataset. This file is read using pandas and, for each WSI, the corresponding label
is fetched from the dataset and added to the heatmap’s filename.

Testing

This post-processing stage was tested by inspecting the resulting heatmaps. The
heatmaps corresponding to both normal and tumour WSIs were compared to check that
the heatmap creation was successful. Different colour maps and formats were also tested
to identify the optimal parameters for the heatmaps. Figure 14 shows an alternative colour
map that was tested prior to deciding to show normal probabilities in addition to tumour
probabilities. This figure also shows a heatmap that only uses classification results rather
than probabilities. Using the classification results did not provide the information required
for the feature extraction that is required for slide classification.

(a) (b)

Figure 14. Two different heatmaps, both using a colourmap which was not used for the final
work, with the left-hand heatmap displaying tumour probabilities and the right-hand heatmap
showing classification predictions. (a) Heatmap using probabilities of tumour. (b) Heatmap using
classification predictions.
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The final style of heatmaps, including colour map, is shown in Figure 15. These
heatmaps were created using the reversed “BuRd” colour map with the scale of probabilities
being between −1 and 1. The regions that are saturations of blue are values between −1
and 0, normal tissue, and the regions that are saturations of red are between 0 and 1,
tumour tissue.

(a) Heatmap for a normal slide (b) Heatmap for tumour slide

Figure 15. Example of a heatmap for a normal whole slide image (test_037.tif) and for a tumour
whole slide image (test_016.tif), where dark blue represents probability of 1 for normal tissue and
dark red represents probability of 1 for tumour tissue.

3.9. Slide-Level Classification

The slide-level classification model is the final step in the classification of WSIs. This
model is trained using features extracted from each of the tumour probability heatmaps,
for example, the percentage of the slide that is tumour, the average probability values, and
the frequency of high probability tumour areas. These features are input to the model
alongside the labels for the corresponding WSIs.

The trained model is tested using extracted features from the heatmaps in the testing
data. The metrics resulting from this testing are used to evaluate the accuracy of the entire
WSI analysis. These measures will be used to evaluate and compare the various patch sizes
and methods used in this work.

The slide-level classification task is the last in the analysis of WSIs. The aim of this
classification is to predict the slide-level label for a WSI from the corresponding heatmap
produced in the previous step. This is implemented with a random forest architecture,
using the sci-kit learn package.

The dataset for the input of the model is the heatmap data. However, as this dataset
consists of images of various sizes, the pre-processing step, feature extraction, must first
be undertaken. Feature extraction is performed to collect features of the images and
data, as numerical values, that can be input into the classifier. The feature extraction
process is detailed in Section 3.9.1. This step is performed within a custom dataset class,
HeatmapDataset. This class takes the path of the heatmap directory, extracts features from
each of the images in the directory, and gets the label for the instance. The input data was
split into training and test sets using a stratified split with a test set size of 0.2. A validation
set was not necessary for this model as no hyper-parameter tuning was performed.

The output for this classification is the final classification result for the analysis of
the WSI. The labels for the slides are one-hot encoded, in the same way as done for the
patch-level classification model. Therefore, the output produced by the model, for each
input, is either [1.0, 0.0] for “normal” or [0.0, 1.0] for “tumour”.
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3.9.1. Feature Extraction

Feature extraction is necessary for this model as the input images, the heatmaps, are
of varying sizes. It is not possible to resize these images to make a dataset of images of the
same dimensions as this would warp the information provided by the heatmap. A feature
extraction process was implemented that extracts 22 statistical and mophological features
from each heatmap image and corresponding probabilities. In choosing these features,
inspiration was taken from both the Camelyon16 winning paper [26] and from Fu et al.
who investigated tumour detection in whole slide images [31].

The first feature extracted is the percentage of tissue that is predicted to be tumour.
This was implemented by getting the sum of positive probabilities, the tumour patches, and
the sum of negative probabilities, the normal patches. The percentage of tumour patches
over the entire tissue region, tumour and normal patches, was then calculated.

The next features are the number of tumour regions and the size of the largest tumour
region in the heatmap. This is implemented by extracting a mask of the tumour regions.
The number of tumour regions found in this mask is the first of these features. Then
the largest continuous area of tumour patches is found and the size calculated in pixels.
Figure 16 shows an example of the mask of the tumour regions in a WSI.

(a) (b)

Figure 16. An example of a mask of the tumour regions in a whole slide image (test_040.tif). (a) The
original whole slide image. (b) The mask of tumour regions.

The remaining extracted features are based on the statistics of the probabilities. The
probability values are split into positive (tumour) probabilities and negative (normal)
probabilities. The absolute value of each of the negative probabilities was taken for ease in
calculations. From both of these sets of probabilities, nine values were calculated from the
data. These values were the mean, median, mode, variance, standard deviation, minimum,
maximum, range, and sum.

Other features were extracted to test for effectiveness, such as the class with the largest
mean and the class with the largest number of patches. However, both of these values were
largely the same for all slides, whether normal or tumour, and so were deemed not useful
to the classifier.

3.9.2. Testing

This stage was tested using two methods. The feature extraction tasks were tested by
printing out the features for various heatmap instances and analysing the values to ensure
they appeared reasonable. The classifier was tested by analysing the accuracy, recall, and
AUC measurements for the predictions to check that the predictions given were reasonable.
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3.10. Testing the Effects of Patch Size

Using the final structure of the work, various patch sizes were tested. The entire
process of patch dataset creation, patch classification, heatmap creation, and finally slide
classification was performed for each patch size. The results of these tests are detailed in
Section 4.1.

3.11. Downsampling Analysis Method

Downsampling is an alternative method used to counteract the problems faced when
analysing WSIs. This can be used alone or in conjunction with patch extraction. As the
original size of a WSI file is too large, downsampling reduces the resolution of the image,
by a downsampling factor, therefore reducing the size of the image.

If the downsampling factor is large enough, the resulting downsampled image can
be input directly into a model to predict the probability of tumour. This removes the need
for splitting the image into patches and can be performed using only one model to predict
the slide-level classification. Another option is using a combination of downsampling and
patch extraction. An image can be moderately downsampled and then patch extraction can
be performed on the downsampled image.

In general, patch-based methods are preferred over downsampling methods. When
the resolution of a WSI is reduced, a significant amount of morphological information and
fine detail can be lost. This can have a detrimental effect on the accuracy of the model and
make the resulting model unusable in genuine clinical scenarios.

The downsampling-based WSI method involves inputting downsampled WSIs into
a model for classification. This does not entail any patch extraction or related steps. The
model used for this method was the GoogLeNet network, as used in the patch-level
classification. As in the patch-level classification, the labels for the slides were one hot
encoded to provide a two output node model as required by the GoogLeNet network.

This method was implemented by first creating a new dataset of the WSIs at the lowest
resolution possible, from the training and testing WSIs. For the training of the model, the
dataset of downsampled training WSIs was then split into training and validation sets
using a stratified split with a validation set size of 0.2. For the testing and evaluation of the
trained model, the set of downsampled testing WSIs was used.

Pre-processing for this method involved downsampling the images, resizing the
images to 256 × 256, transforming to tensors, and normalisation. The downsampling
occurs in the creation of the new dataset, prior to any analysis. When getting the items
in the dataset with the dataloader, the remaining pre-processing steps are applied to the
images. The resizing of the images is far from ideal as some are resized more significantly
than others and so are not very comparable. However, this is necessary as the GoogLeNet
network only accepts datasets of images of equal sizes. The transformation to tensor and
normalisation is also required by the network.

The same loss function, optimiser, learning rate, and activation function as the patch
classification model were used given the use of the same network and input image size.
A few learning rates were tested but this appeared to have little effect on the accuracy of
the model.

The final analysis of the WSIs was implemented by loading the best trained model and
inputting the downsampled test WSIs. The predictions produced were evaluated using the
accuracy and recall metrics.

Testing

This model was tested similarly to the patch-level classification model, using the loss,
accuracy, and recall graphs. Figure 17 contains the corresponding three graphs (also see the
summary in see Table 5) where it can be observed that the model is predicting the slide
label well.
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(a) Loss (b) Accuracy

(c) Recall

Figure 17. The loss, accuracy, and recall graphs used for testing the downsampled slide classification
model. Also see Table 5 for a numerical summary of the data.

Table 5. The loss, accuracy, and recall values used for testing the downsampled slide classification
model. To account for stochastic fluctuations all values are reported for the exact epoch noted,
followed by the average of the values corresponding to epochs in a window centred at the said epoch.

Epoch

25 50 75 100

Train
Accuracy (%) 100.00/100.00 100.00/100.00 100.00/100.00 100.00/100.00

Recall 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0
Loss 0.11/0.11 0.02/0.02 0.01/0.01 0.01/0.01

Validation
Accuracy (%) 59.35/60.00 74.26/74.26 76.04/76.04 74.26/74.26

Recall 0.04/0.13 0.64/0.64 0.64/0.62 0.55/0.55
Loss 0.65/0.65 0.62/0.62 0.63/0.63 0.63/0.63

3.12. Metrics

The metrics used for the evaluation of the models are dependent on the task. There
were three sets of metrics used throughout the work, which consisted of some combination
of the loss, accuracy, recall, and AUC measurements. The performance of the patch-level
classification model was measured using loss, accuracy, and recall. The final slide-level
classification for the patch-based method was evaluated with the accuracy, recall, and AUC
metrics. For this model, AUC is included as this is the primary metric used to evaluate the
model in the Camelyon16 winning paper [26]. In analysing the training, the downsampled
slide classification model, loss, accuracy, and recall were used. The measures used for the
slide classification model, using the downsampled method, were accuracy and recall.
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The loss values used were calculated from the model’s direct output, prior to softmax,
using the cross entropy loss function. For the patch-level classification model, the loss
function was given class weights due to the unbalanced nature of the datasets produced by
random sampling. Cross entropy loss is used when a model’s output is class probabilities.
The calculated loss value will increase if the probabilities of the classes are getting further
from the true values. The equation for calculating cross entropy loss is

H(x) = −(P(“normal”) ∗ log(Q(“normal”) + P(“tumour”) ∗ log(Q(“tumour”))

where P(x) is the true probability of x and Q(x) is the predicted probability of x.
The accuracy of the model is essentially the percentage of correctly predicted labels.

In all instances, the predicted label is calculated by taking the class with largest probability
for each patch/slide. The equation for calculating the accuracy is

accuracy = number of correct predictions/size of dataset ∗ 100

Recall is a measure of the accuracy of only the positive class, the “tumour” class. A
good recall is particularly important for the analysis of WSIs as the misclassification of a
tumour slide could have dire consequences. The observation of recall values is also key for
the randomly sampled datasets due to the significant class imbalance. The equation for
calculating the recall is

recall = number of correctly predicted “tumour”/number of “tumour” in the dataset

The AUC measure is calculated for the slide-level classification to allow comparison
between this model and related work as it is a commonly used metric in WSI analysis
methods. AUC stands for area under the ROC (receiving operator characteristic) curve.
This is calculated by taking the integral of the ROC curve.

For the patch-level classification, and both downsampling models, the accuracy and
recall were calculated manually using these formulae. The slide-level classification used
the scikit-learn metrics to get the accuracy, recall, and AUC.

4. Results and Evaluation

4.1. Results of the Effect of Patch Size

To investigate the effect of patch size, the patch-based WSI analysis method was
performed using a variety of patch sizes with the final classification results recorded for
evaluation. Although not formally evaluated, the patch-level classification accuracy was
close to 100% for all patch sizes for both sampling methods. However, the informed
sampling method gave higher recall values, 90–98%, for the patch sizes tested, compared
to the corresponding patch sizes sampled using random sampling, 60–70%.

Different patch sizes for the random sampling method were tested first, the re-
sults of which can be found in Table 6. The typical patch size used in related work is
256 × 256 pixels, therefore, this was the first patch size tested. It was not possible to de-
crease the patch size by a significant amount from here, as the GoogLeNet network requires
inputs of at least 224 × 224 pixels. While patches with smaller dimensions than this could
be resized to input to the model, this could skew the patch size evaluation. Therefore, it was
decided to double the patch size and observe the effects, testing the patch-based method
using 512 × 512 patches. As can be seen in Table 6, this patch size caused a decrease in the
accuracy of the model, with the tumour slide classification only correct 50% of the time.
Figure 18 shows the heatmaps corresponding to the same test image for these two patch
sizes. It is clear that a lot of detail in the heatmap is lost by increasing the patch size.
Although the heatmap using 512 pixel size patches contains less uncertain predictions,
where the colour of the patch is not at either of the extremes, dark blue for normal and dark
red for tumour.
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Table 6. Results for the random sampling method.

Patch Size (px) Accuracy (%) Recall AUC

256 73 0.60 0.71
384 54 0.30 0.49
512 69 0.50 0.66
786 62 0.60 0.61

(a) Patch size = 256 (b) Patch size = 512

Figure 18. The heatmaps corresponding to a tumourous WSI (test_001.tif), using a patch size of
256 × 256 and 512 × 512.

As there was a decrease in the accuracy, the next patch size attempted was the mean
of the previous two, 384 × 384. This was followed by testing 1.5 times the current largest
patch size, giving a patch size of 786, to evaluate if the downward trend continued. Neither
of these patch sizes yielded a model that proved to be as accurate as the first, 256 patch
size, model. Testing with the 786 × 786 patch size shows that it continues the decrease
that was observed between patch sizes 256 and 512 in two metrics, accuracy and AUC.
However, the recall value for this model is higher than the 512 patch size and equal to the
256 patch size. Given the importance of the recall for this task, a patch size of 786 should
be considered over patches of 512 × 512. Based on the results of the other patch sizes, the
metrics for the 384 patch size test appear to be an anomaly given the significant decrease in
all three measures. Extrapolating from the trend between the remaining three patch sizes,
the random sampling method predicts best when used with a smaller patch size.

Given the trend observed for random sampling, increasing patch size leads to decrease
in accuracy, the informed sampling method was evaluated next. This method was evaluated
with two of the same patch sizes as the random sampling, 256 and 512, and one other, 1024.
The smallest patch size, 256 was tested first as this proved to be the most successful for the
random sampling method. Patches of size 512 × 512 were then tested to see if the same
downward trend applies for this sampling method. This proved to be true, however, rather
than try the same 1.5 times larger patch size as done in the random sampling method,
it was decided to evaluate a more extreme patch size of 1024 × 1024. As can be seen in
Table 7, a decrease in accuracy occurred between patch sizes 512 and 1024. However, the
largest patch size gave the highest recall value, similarly to the random sampling method,
where the largest patch size gave the equal highest recall value. Despite the significance of
the recall for this task, the large decrease in overall accuracy between 256 patch size and
1024 patch size is too severe to ignore in favour of the higher recall.
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Table 7. Results for the informed sampling method.

Patch Size (px) Accuracy (%) Recall AUC

256 81 0.60 0.79
512 65 0.30 0.59

1024 58 0.70 0.60

4.2. Comparison of Methods

For both the random sampling method and informed sampling method, the smallest
patch size tested, 256 × 256, produced the most accurate slide-level predictions. The
informed sampling method proved to be superior to the random sampling method for
this patch size giving an accuracy of 81% compared to 73%. However, the other patch size
tested with both sampling methods, 512 × 512, achieved better results using the random
sampling method, with a significant difference in the recall values, 0.5 for random sampling
and 0.3 for informed sampling.

Here we also note that all of the achieved levels of accuracy could be further increased
by the employment of techniques such as hard negative mining following the standard
training protocol, as a means of reducing false positive errors. Had this been done the
ultimate performance would have been higher, benefiting both from this feedback loop and
the optimal patch size. However since our goal was not to employs all means available
so as to engineer the highest performing systems based on the evaluated architectures but
rather to assess the impact of patch size specifically, we made no such efforts.

The patch-based method and downsampling method can also be compared. The best
patch method gave an accuracy of 81% and a recall of 0.60. The downsampling method
gave significantly lower values, with accuracy at 64% and recall 0.49. This is the expected
result, given the loss of fine detail that occurs in the downsampling of WSIs. However,
given the lack of investigation into the best downsampling factor, this may not be a fair
comparison. It is possible, by finding the optimal downsampling factor, the downsampling
method could prove to be as accurate as the patch-based method.

4.3. Related Work

The Camelyon16 winning paper [26] was used throughout the work as guidance for
the methodology of the system. This paper did not investigate the effect of patch size
but was focused on the optimisation of the accuracy of the WSI analysis model for the
Camelyon16 challenge. The research produced a model with an AUC score of 0.925 using
patches of size 256 × 256. This is significantly higher than the one achieved by this work,
0.79 for the optimal method. However, the aim of this work was focused on the effect
of patch size and used significantly fewer patches for training compared, with Wang et
al. using millions of normal and tumour patches compared to around 40,000 used for
this work.

The most significant related work is the paper by Fell et al. [16] who also did an
investigation into patch size, using a similar methodology to this work and the Camelyon16
winning paper [26]. Three patch sizes were tested, 256, 512, and 1024. Fell et al. found that
the largest patch size, 1024, provided the best model for analysis of the WSIs. This is in
contrast to the findings of this paper, although not entirely when considering the recall
rather than the accuracy. With a patch size of 1024 × 1024 pixels, an accuracy of 90% was
achieved, compared to 81% for this work, and a recall of 97%, compared to 60%. The model
implemented by Fell et al. was evidently very successful in the analysis of WSIs. However,
it is difficult to compare as a dataset of 2909 WSIs was used compared to the dataset of
271 training WSIs and 129 testing WSIs that was used for this work.

67



BioMedInformatics 2024, 4

4.4. Conclusions

The work successfully implemented a patch-based WSI analysis method and evaluated
the effect of patch size, giving an optimal method using a patch size of 256 × 256 sampled
using the informed sampling method. Both a random sampling method and an informed
sampling method, using tumour region location, were implemented allowing for thorough
investigation into the patch sizes using these different methods. Based on the classification
results, the more accurate of the two sampling methods is dependent on the patch size.
However, the optimal patch size/sampling method pair used the informed sampling
method. A basic downsampling method was also tested, allowing for comparison of this
with the patch-based method which was superior as expected from the literature. One
of the significant achievements of the work is the production of the tumour probability
heatmaps for use in identifying the location of tumours in a WSI. At small patch sizes, these
heatmaps give fine detail of probable tumour regions that can be used by pathologists to
aid their analysis and diagnosis of the specimens.

4.5. Future Work

Primarily, future work should continue the investigation into the effect of patch sizes
to include larger patch sizes, and investigate more the informed sampling method. The
tertiary objective to evaluate various downsampling factors for the downsampling method
was not completed. This is another possible area for future work, however, due to the
larger success of the patch-based method, this would be a low priority for further research.
There is also a significant number of other factors that can be investigated in future work to
try to optimise the accuracy of the patch-based WSI analysis method. Two factors that are
already in use in related work are overlapping of patches and sampling patches at different
magnification levels.

In the Camelyon16 winning paper [26], overlapping patches are used in the production
of the tumour probability heatmaps, although it is not specified how many pixels the
patches overlap by. This warrants further investigation, exploring the use of overlapping
patches in the production of the tumour probability heatmaps, and the effect of different
numbers of overlapping pixels. The DeepZoomGenerator used in this work has an overlap
parameter which could be used for this work. This could also be extended to experiment
with overlapping patches in the training of the patch-classification model.

Some work, reviewed in Section 2, e.g., Hou et al. [3] and Ruan et al. [28], chose to
sample patches at differing magnification levels. Ruan et al. investigated different magnifi-
cation levels as, when pathologists analyse slides, they alter the magnification level of the
microscope throughout, and found sampling at a mixture of 20× and 40×magnification
levels yielded the best results. However, more research could be done on different magnifi-
cation level combinations alongside an optimal patch size. The same theory could also be
applied to patch sizes, using a combination of patches sampled at different sizes. From the
results of this work, with the largest patch size giving the best recall and the smallest the
best accuracy, this could be beneficial to the accuracy of the classification and is therefore
worth investigating.

Lastly, as noted in Section 4.1, the smallest patch size considered in our analysis was
256× 256 pixels, which was a choice driven primarily by the constraint on input size of
GoogLeNet. Considering that we found an overall benefit in the use of smaller patches, in
future it is worth extending our work in this direction and any model constraints of the
aforementioned kind circumvented by upscaling small input.
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5. Dimitriou, N.; Arandjelović, O.; Caie, P.D. Deep learning for whole slide image analysis: An overview. Front. Med. 2019, 6, 264.
[CrossRef]

6. Komura, D.; Ishikawa, S. Machine learning methods for histopathological image analysis. Comput. Struct. Biotechnol. J. 2018,
16, 34–42. [CrossRef] [PubMed]

7. Rodriguez, J.P.M.; Rodriguez, R.; Silva, V.W.K.; Kitamura, F.C.; Corradi, G.C.A.; de Marchi, A.C.B.; Rieder, R. Artificial intelligence
as a tool for diagnosis in digital pathology whole slide images: A systematic review. J. Pathol. Inform. 2022, 13, 100138. [CrossRef]

8. Jamaluddin, M.F.; Fauzi, M.F.A.; Abas, F.S. Tumor detection and whole slide classification of H&E lymph node images using
convolutional neural network. In Proceedings of the IEEE International Conference on Signal and Image Processing Applications,
Kuching, Malaysia, 12–14 September 2017; pp. 90–95.

9. Pantanowitz, L.; Sharma, A.; Carter, A.B.; Kurc, T.; Sussman, A.; Saltz, J. Twenty years of digital pathology: An overview of the
road travelled, what is on the horizon, and the emergence of vendor-neutral archives. J. Pathol. Inform. 2018, 9, 40. [CrossRef]
[PubMed]
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Abstract: (1) Background: Parkinson’s disease (PD) is a progressively worsening neurodegenerative
disorder affecting movement, mental well-being, sleep, and pain. While no cure exists, treatments like
hyperbaric oxygen therapy (HBOT) offer potential relief. However, the molecular biology perspective,
especially when intertwined with machine learning dynamics, remains underexplored. (2) Methods:
We employed machine learning techniques to analyze single-cell RNA-seq data from human PD
cell samples. This approach aimed to identify pivotal genes associated with PD and understand
their relationship with HBOT. (3) Results: Our analysis indicated genes such as MAP2, CAP2, and
WSB1, among others, as being crucially linked with Parkinson’s disease (PD) and showed their
significant correlation with Hyperbaric oxygen therapy (HBOT) indicatively. This suggests that
certain genomic factors might influence the efficacy of HBOT in PD treatment. (4) Conclusions: HBOT
presents promising therapeutic potential for Parkinson’s disease, with certain genomic factors playing
a pivotal role in its efficacy. Our findings emphasize the need for further machine learning-driven
research harnessing diverse omics data to better understand and treat PD.

Keywords: Parkinson’s disease; hyperbaric oxygen therapy; machine learning; genomic factors;
single-cell RNA-seq

1. Introduction

The Parkinson’s disease is characterized by a spectrum of symptoms that can differ in
nature and intensity, making the prediction of treatment outcomes challenging [1]. Interest-
ingly, the therapeutic potential of hyperbaric oxygen therapy (HBOT) for Parkinson’s was
sometimes identified in an unanticipated manner [2]. For example, a diabetic patient un-
dergoing HBOT for a foot ulcer unexpectedly reported a marked alleviation in Parkinson’s
symptoms. Animal studies consistently indicate that HBOT exhibits anti-inflammatory
properties [3], which could be beneficial in addressing the inflammatory conditions ob-
served in the substantia nigra region of the brain in Parkinson’s patients. Anecdotal
evidence further suggests that some Parkinson’s patients, even those with advanced stages
of the disease, have shown significant improvements after HBOT sessions.

The realm of hyperbaric oxygen therapy (HBOT) in treating neurodegenerative dis-
eases [4], particularly Parkinson’s disease (PD), is burgeoning with potential. As we delve
deeper into this field, a multitude of studies have emerged, shedding light on the transfor-
mative effects of HBOT on neuronal health, motor function, and overall quality of life for
patients. For instance, recent research has illuminated the capacity of HBOT to target spe-
cific brain circuits, enhance neurotrophic factors, and even modulate epigenetic pathways,
offering a beacon of hope for those grappling with the debilitating effects of PD.

For instance, research has demonstrated that HBOT can significantly increase the
number of TH-positive neurons in MPTP-treated mice, enhancing the neurotrophic factor
BDNF while reducing apoptotic signaling and attenuating inflammatory mediators in
the midbrain [5]. This treatment also promotes mitochondrial biogenesis and improves
locomotor activity and grip strength in these mice.
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Further insights [6] highlighted the potential of HBOT in targeting specific brain
circuits involved in “Kinesia Paradoxa”, including the noradrenergic system, basal ganglia,
and the cerebellum circuit. This study presented evidence supporting the “Norepinephrine
Hypothesis”, suggesting a role for HBOT in increasing norepinephrine levels, which could
restore motor deficits in Parkinson’s disease patients. When considering the combination
of treatments, the research indicates that combining donepezil with HBOT and functional
rehabilitation training can significantly enhance therapeutic effectiveness in Parkinson’s
disease dementia (PDD) patients. This combination not only improves cognitive function,
self-care ability, and quality of life but also significantly reduces inflammatory markers like
serum IL-1β and IL-6 [7].

In a broader context, the potential of HBOT as a therapeutic intervention for neurode-
generative diseases has been explored, with findings emphasizing its promising effects in
conditions associated with neurodegeneration and functional impairments. A special focus
has been given to the role of epigenetics in these effects [8]. Lastly, in a study focused on
spinocerebellar ataxias (SCAs), HBOT was found to attenuate motor coordination and cog-
nitive impairment in SCA17 mice, with effects persisting for about a month post-treatment.
SCA17 is a rare subtype of SCAs (spinocerebellar ataxias), notable for its association with a
myriad of neurological symptoms including motor coordination and cognitive impairments,
often leading to a substantial reduction in the quality of life of affected individuals.

This neuroprotective effect of HBOT might be attributed to the promotion of BDNF
production and the reduction of neuroinflammation [9].

Despite the promising strides made in this domain, the field is still in its infancy. The
intricacies of HBOT’s impact on the human brain, especially in the context of neurodegener-
ative diseases, remain vast and largely uncharted. While the preliminary results are indeed
encouraging, they underscore the pressing need for more comprehensive, large-scale stud-
ies. Only through rigorous research, meticulous analysis, and collaborative efforts can we
truly harness the full potential of HBOT and pave the way for groundbreaking therapeutic
interventions in the future.

On the other hand, machine learning (ML) methodologies have been extensively
applied to enhance the understanding and management of Parkinson’s disease (PD). A
comprehensive review of the literature reveals the utilization of ML models in conjunction
with Internet of Things technologies, such as smart devices and various sensors, to optimize
predictions and estimations regarding different aspects of PD [10]. These models are trained
on data acquired via these technologies and address a myriad of PD-related problems,
offering insights into the most effective algorithms and commonly addressed issues in PD
management. Another study provides an extensive overview of the application of ML in
categorizing PD, emphasizing the use of diverse data modalities and artificial intelligence
techniques to facilitate informed and systematic clinical decision-making [11]. These
studies collectively underscore the pivotal role of ML in advancing diagnostic processes
and therapeutic interventions for PD, highlighting its potential in contributing to more
nuanced and effective approaches in PD treatment and management.

The exploration of hyperbaric oxygen therapy (HBOT) in the context of Parkinson’s
disease (PD) has predominantly been rooted in traditional research methodologies [12].
Notably absent from this landscape is the integration of modern machine learning (ML)
frameworks, which have the potential to revolutionize our understanding of the disease’s
intricacies [13]. While several studies have explored molecular biology to understand
underlying mechanisms, many have not fully utilized advanced computational methods.
Our endeavor represents a pioneering effort in this direction. By employing an ML ap-
proach, we aim to meticulously examine the behavior of key genes implicated in PD. This
innovative methodology allows us to unravel the intricate relationships between these
genes and the therapeutic effects of HBOT, offering a fresh perspective and potentially
groundbreaking insights into the treatment of PD.
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2. Materials and Methods

2.1. Dataset

In our study, we utilized single-cell RNA sequencing (scRNA-seq) data derived from
the work of [14]. This dataset offers a comprehensive expression profiling of human induced
pluripotent stem cell (iPSC)-derived midbrain dopaminergic neurons. These neurons were
sourced from both Parkinson’s disease patients and healthy controls. Novak and her team
employed scRNA-seq to delve into the expression profiles of these neurons, aiming to
uncover the underlying molecular networks associated with Parkinson’s disease pathology.
Their findings hint at a core molecular network linked to the disease, presenting a valuable
resource for further exploration of this debilitating neurological disorder.

The scRNA-seq dataset under consideration comprises a total of 4495 cells, which are
profiled for their expression across 18,098 genes. This extensive gene coverage ensures a
comprehensive view of the transcriptional landscape of each individual cell, allowing for a
detailed understanding of cellular heterogeneity and potential differences between the two
conditions. The dataset is categorized into two distinct tags or conditions such as “Control”
and “PD”. The distribution of cells across these conditions is slightly imbalanced. The
“Control” group consists of 2518 cells, which constitutes approximately 56% of the total
cells. On the other hand, the “PD” group has 1977 cells, making up the remaining 44% of the
dataset. This discrepancy in cell numbers between the two conditions should be taken into
account during downstream analyses, especially when comparing gene expression patterns
or inferring statistical significance. The presence of nearly 2000 cells in the “PD” group,
despite being fewer than the “Control”, still offers a substantial sample size for robust
analysis. Given the depth of genes profiled, this dataset is poised to provide significant
insights into the molecular differences and similarities between normal (Control) cells and
those affected by Parkinson’s Disease.

2.2. Hybrid Feature Selection Methodology

To ensure a comprehensive and robust feature selection, we devised a hybrid method-
ology that synergizes the strengths of both traditional differential gene expression (DEG)
analysis and machine learning techniques. The DEG analysis offers a foundational under-
standing by pinpointing genes that exhibit significant expression differences, serving as an
initial filter in the identification of potential key players. On the other hand, the variable
importance (VI) from machine learning provides a data-driven perspective, highlighting
genes that are most influential in predictive modeling. Building on these insights, we
incorporated an ensemble voting scheme to establish a more robust gene ranking. This
approach not only consolidates the insights from both methodologies but also prioritizes
genes that are strongly associated with PD.

2.2.1. Differential Gene Expression Analysis

We initiated our feature selection process by applying the Wilcoxon test [15]. This
non-parametric statistical test was used to identify genes that were differentially expressed
between the PD and healthy cell samples. The Wilcoxon test, or Mann–Whitney U test, is a
non-parametric method comparing the medians of two independent samples by ranking
all observations and summing the ranks separately for each group to determine statis-
tical significance. If R1 and R2 are the sum of ranks for the first and second groups,
respectively, and n1 and n2 are the sizes of the two groups, the test statistic U is given by
U = n1n2 +

n1(n1+1)
2 − R1. The Wilcoxon test is particularly useful when the data does not

meet the assumptions of a t-test, such as when the data is not normally distributed. The
outcome of the Wilcoxon test provided us with a ranked list of genes, organized based on
their significance levels. We considered genes with a p-value of less than 0.05 as statistically
significant. This threshold value of p < 0.05 is a conventional criterion in statistical hypothe-
sis testing that helps in minimizing the Type I error, ensuring that the identified genes are
truly differentially expressed and not due to random chance.
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2.2.2. Machine Learning-Based Feature Selection Analysis

Regarding the machine learning-based feature selection, we used the XGBoost 2.0
Algorithm [16]. It is a gradient boosting framework, to further refine our feature selection.
By training the model on our dataset, we extracted the variable importance scores for
each gene. This allowed us to generate a second ranked list of genes, this time based
on their importance in the predictive model. code. More specifically, XGBoost offers a
robust mechanism to assess the importance of features in a predictive model through its
variable importance (VI) metric. The VI in XGBoost is primarily derived from the number
of times a feature is used to split the data across all trees, and the improvement it brings
to the model, typically measured as the gain. Mathematically, if fi represents a feature
and G( fi) denotes the gain brought by fi when used in splits, the importance I( fi) of the
feature is proportional to the sum of gains over all splits where fi is used: I( fi) ∝ ∑ G( fi).
This aggregated measure provides a ranking of features based on their contribution to the
model’s predictive power, allowing for the identification of the most influential predictors
in the dataset. In our implementation of the XGBoost algorithm, we used a learning rate
(eta) of 0.01, a max depth of 6, a subsample of 0.8, a colsample_bytree of 0.8, and built
1000 trees as the number of estimators.

2.2.3. Hybrid Ensemble Genes Ranking

To combine the insights from both the Wilcoxon test and the XGBoost algorithm, we
utilized the Borda count, a consensus-based ensemble voting scheme [17]. By taking the
two ranked gene lists from the previous steps, the Borda count method allowed us to derive
a more robust and consolidated ranking. This combined ranking leverages the dynamics
of both statistical testing and machine learning, ensuring a comprehensive selection of
features that are both statistically significant and relevant for predictive modeling. The
Borda count operates on the principle of assigning points to items (in this case, genes) based
on their rank. For a given gene list of n genes, the top-ranked gene receives n points, the
next receives n− 1 points, and so on, with the last-ranked gene receiving 1 point.

Let us denote the ranking from the Wilcoxon test as RW and from the XGBoost algo-
rithm as RX . For a particular gene gi, its Borda count score B(gi) is computed as:

B(gi) = n− RW(gi) + 1 + n− RX(gi) + 1,

where RW(gi) and RX(gi) represent the ranks of gene gigi in the Wilcoxon and XGBoost
rankings, respectively. After computing the Borda count scores for all genes, we can then
rank them based on these scores to derive a consolidated ranking. This ensemble approach
ensures that genes which are both statistically significant (from the Wilcoxon test) and
important for predictive modeling (from XGBoost) receive higher ranks, providing a more
robust and comprehensive feature selection.

3. Results and Discussion

We ended up with a combined list of genes (Table S1) that are strongly related to PD
and decided to explore closely at the top 100 genes since it’s been demonstrated that in
scRNA-seq, typically only a few dozen to a couple of hundred genes play a pivotal role in
the dataset [18]. Also, focusing on the top 100 genes facilitated a more in-depth exploration
of their biological functions, interactions, and roles in the context of the study, allowing for
more meaningful interpretations and conclusions.

Also, by concentrating on the top genes, we’re likely capturing the most important
ones that have the biggest impact on PD. A key part of our study was to see how these
genes are related to HBOT. This is important because if we know which genes are affected
by this therapy, it could help doctors treat PD more effectively in the future.

Our study had three four parts. First, we examine the classification performance
using the 100 key genes regarding differentiating healthy samples from Parkinson’s disease
samples. Furthermore, we looked at how HBOT affects each of the top 100 genes one by
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one. This helped us figure out which specific genes might be good targets for treatment.
Next, we checked how our chosen genes fit into bigger groups of genes and how they might
be linked to other diseases or treatments. This gave us a better idea of the bigger picture
and how these genes work in the body. Lastly, we used a simple visual tool zooming out of
the genes to show how our top genes are connected to each other along with the associated
gene ontologies.

3.1. Classification Performance of Leading Genes

We investigated the role of specific genes in understanding the difference between
healthy cells and those affected by Parkinson’s disease. After we had our list of 100 genes,
we used a tool called PyCaret to see how well we could separate or tell apart the healthy cells
from the PD ones using only these genes (Figure 1). PyCaret offers a variety of classifiers
for comparison in its classification module, such as logistic regression, K nearest neighbor
(KNN), naive bayes, decision tree, random forest, gradient boosting machines, support
vector machines (SVM), linear discriminant analysis (LDA), quadratic discriminant analysis
(QDA), ridge classifier, extreme gradient boosting (XGBoost), light gradient boosting
machine (LightGBM), catboost, adaboost, extra trees, stochastic gradient descent (SGD),
and dummy classifier.

 

Figure 1. Comprehensive classification performance of the top 100 genes. The figure displays the
outcomes from 15 well-known classifiers, evaluated based on 7 performance measures alongside
their execution time. This analysis underscores the efficacy of our selected genes in distinguishing
between PD and healthy samples across diverse machine learning models.

The primary contribution of this task lies in its comprehensive examination of the
performance of multiple classifiers in discerning between Parkinson’s Disease and healthy
cell states using the identified key genes. By leveraging a diverse set of classifiers, ranging
from logistic regression to more complex models like CatBoost and Gradient Boosting
Machines, we were able to gauge the robustness and reliability of these key genes as
discriminative features. This approach not only underscores the significance of the selected
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genes but also provides a holistic view of their potential in different machine learning
paradigms. The ability of these genes to consistently separate PD from healthy samples
across various classifiers reinforces their importance in the realm of Parkinson’s Disease
research. This task, therefore, serves as a foundational step in understanding the potential
of these genes as biomarkers and offers a blueprint for future studies aiming to harness the
power of machine learning in biomedical research.

Our results were pretty clear. By using the top 100 genes we identified, the tool was
able to clearly tell the difference between healthy and PD cells. This means that these
genes are really important and can be key players in understanding Parkinson’s Disease. In
simple words, our study shows that with the right genes, we can easily spot the difference
between a healthy cell and one that is affected by PD.

3.2. Gene-Based Analysis

The 100 genes derived from our analysis were individually examined to determine
their established or potential links with Parkinson’s disease and the impacts of HBOT. This
targeted approach was designed to elucidate the molecular underpinnings that might be
at play in the therapeutic response of Parkinson’s patients to HBOT, providing a deeper
understanding of the disease mechanism and potential intervention points. Furthermore,
the distribution and the associations among the top 10 genes is illustrated in Figure 2
showing their potential in our framework.

Figure 2. Comparative analysis of the 10 dominant genes. On the left, a violin plot illustrates the
distribution of expression levels for each gene, highlighting their prominence in our framework. On
the right, a heatmap showcases the correlation patterns among these genes, providing insights into
their interrelated dynamics.

More specifically, TXNIP (Thioredoxin Interacting Protein) plays a pivotal role in the
regulation of cellular redox balance [19]. By binding to thioredoxin, a primary antioxidant
protein, TXNIP inhibits its antioxidant function, potentially leading to heightened oxidative
stress within cells. This interaction becomes particularly relevant in the context of hyper-
baric oxygen therapy (HBOT). Given that HBOT involves the administration of oxygen
at elevated pressures, there’s an inherent increase in the production of reactive oxygen
species (ROS). As oxidative stress is a recognized factor in the pathogenesis of Parkinson’s
Disease, the modulation of this stress, potentially influenced by TXNIP, might be crucial in
determining cellular responses to HBOT and its therapeutic implications for PD.

The ELAVL4 (ELAV Like RNA Binding Protein 4) gene, a member of the ELAVL
family of RNA-binding proteins, is predominantly expressed in neurons [20]. Its primary
function revolves around stabilizing mRNA, a process integral to neuronal differentia-
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tion and maintenance. In the realm of HBOT, where there’s a proposed neuroprotective
effect primarily through enhanced oxygen delivery to hypoxic tissues, ELAVL4’s role in
neuronal maintenance becomes significant. Neurons, when exposed to increased oxygen
levels during HBOT, might leverage the stabilizing influence of ELAVL4, underscoring
its potential importance. Furthermore, in neurodegenerative conditions like Parkinson’s,
where neuronal health is paramount, genes like ELAVL4 that bolster neuronal function
could offer insights into disease progression and therapeutic responses.

Lastly, XBP1 (X-Box Binding Protein 1), a transcription factor, is activated as part of
the unfolded protein response (UPR) [21]. The UPR is a cellular mechanism triggered by
the accumulation of unfolded or misfolded proteins within the endoplasmic reticulum (ER).
The relevance of XBP1 in HBOT stems from the therapy’s potential to induce oxidative
modifications to proteins, which can lead to their misfolding. As the UPR aims to restore
cellular function in the face of such protein stress, XBP1 might be a key player in this
restoration process. This becomes even more pertinent in Parkinson’s Disease, where
protein misfolding and aggregation are hallmark features. The potential activation of the
UPR, and by extension the role of XBP1, could shed light on how Parkinsonian brain cells
respond to both protein aggregation and treatments like HBOT.

3.3. Enrichment Analysis in Gene Ontologies, Disease and Pharmaceutical Terms

We conducted an enrichment analysis on the leading genes to ascertain if there was
a notable overlap with predefined gene sets from established ontologies (Figure 3). We
employed the EnrichR platform [22] to analyze our gene set in the context of GO cellular
component processes, pathway maps, drug descriptors, and disease terms. EnrichR is a
comprehensive web-based and mobile application that offers a range of gene-set libraries,
a unique ranking method for enriched terms, and diverse visualization techniques for
results presentation. The platform encompasses 35 gene-set libraries, accounting for a
total of 31,026 gene-sets that span the entire human and mouse genome and proteome.
Typically, each gene-set contains approximately 350 genes, leading to over six million
interconnections between terms and genes. For the enrichment analysis, EnrichR utilizes
the Fisher exact test, a standard method prevalent in many enrichment analysis tools. This
test, based on a binomial distribution, evaluates the likelihood of a gene’s association with
a particular set, assuming independence.

 

Figure 3. Enrichment Analysis of the Top 100 Genes. This figure presents the association of our
selected genes with various gene ontology (GO) terms, disease annotations, and pharmaceutical
implications. Longer bars indicate greater statistical significance, highlighting the genes’ multifaceted
roles and potential therapeutic significance in the broader biological and medical context.

77



BioMedInformatics 2024, 4

Enrichment analysis in KEGG pathway terms reveals several intriguing pathways.
Indicatively, the “NGF-stimulated Transcription R-HSA-9031628” pathway suggests a role
in neurotrophic factor signaling, which is crucial for neuronal survival and has been im-
plicated in Parkinson’s disease [23]. Neurotrophic factors could potentially be modulated
by HBOT, leading to neuroprotective effects. Additionally, the “Serotonin and Melatonin
Biosynthesis R-HSA-209931” pathway is noteworthy, given that serotoninergic system
dysfunction is often observed in Parkinson’s disease, and HBOT might influence neuro-
transmitter levels or their biosynthetic pathways. Both pathways provide valuable insights
into the potential mechanisms through which HBOT could exert therapeutic effects in
Parkinson’s disease.

Upon examining the GO cellular component terms, several cellular structures and
complexes emerge as potentially relevant. Specifically, the term “Axon (GO:0030424)” is
of particular interest, as axonal degeneration is a hallmark of Parkinson’s disease, and
any therapeutic intervention, including HBOT, that can influence axonal health could be
beneficial. Similarly, “Neuron Projection (GO:0043005)” is another term that stands out,
given that the integrity of neuronal projections is vital for proper neuronal communication,
and its disruption is observed in Parkinson’s disease [24]. HBOT’s potential to modulate or
protect these neuronal structures could provide a mechanistic insight into its therapeutic
effects in the context of Parkinson’s disease.

Regarding the drug terms, certain drugs emerge as potentially relevant in the con-
text of Parkinson’s disease and HBOT. Notably, epinephrine (adrenaline) plays a role in
the autonomic nervous system and its dysregulation is observed in Parkinson’s disease.
The potential modulation of epinephrine levels or its pathways by HBOT could provide
insights into its therapeutic effects. Several disease conditions stand out in the context
of Parkinson’s disease and HBOT. “Neuroblastoma” is particularly noteworthy, as it is a
neural tumor that could provide insights into the neural mechanisms potentially influenced
by HBOT. Additionally, “Glioma,” another type of brain tumor, is of interest, given that
any therapeutic intervention, including HBOT, that can influence neural health or growth
mechanisms could be beneficial in understanding its broader implications for neurological
conditions like Parkinson’s disease.

These findings not only elucidate the potential biological processes influenced by the
dominant genes separating PD from healthy states but also offer a preliminary understand-
ing of how HBOT might interact with these processes. Further studies could dive deeper
into these associations, paving the way for targeted therapeutic strategies in PD.

3.4. Graph-Based Analysis—Interconnectivity and Associations

In our graph-based analysis (Figure 4), we focused on understanding the relationships
between genes and their associated gene ontologies, which describe their roles in molecular
functions and broader biological processes. A key aspect of this was examining gene-
gene interactions using protein-protein interaction (PPI) networks. These PPI networks
provide a structured representation of how proteins, and by extension the genes that code
for them, interact within a cell. By mapping our selected genes onto these networks, we
gained insights into potential functional relationships that these genes might have with
one another.

Alongside this, we aimed to determine how our genes fit within larger biological
contexts. To do this, we conducted an enrichment analysis, which checks if certain biological
categories or functions are more common among our selected genes than would be expected
by chance [25]. It uses the standard hypergeometric distribution test, also known as the
Fisher exact test, for this purpose, a widely accepted statistical method in gene enrichment
analysis. By comparing our gene set to reference sets, this test helped us identify specific
biological processes or molecular functions that our genes are likely involved in.
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Figure 4. Interconnectivity Graph of the Top 100 Genes. This visualization depicts the Protein–protein
Interaction (PPI) associations among our significant genes, emphasizing their interconnected roles.
Additionally, key gene ontologies are highlighted as hubs, demonstrating their central role in bridging
multiple significant genes and underscoring their biological importance.

In our exploration of the potential molecular interplay between hyperbaric oxygen
therapy (HBOT) and Parkinson’s disease (PD), the graph-based analysis has revealed
several noteworthy findings. The central observation is the pronounced role of the “Protein
Binding” term. Acting as a hub, this term suggests a nexus of interactions, with several
genes like MAP2, CAP2, and WSB1 being pivotal [26–28]. The hub-like nature of “Protein
Binding” implies that these genes might be central to many protein–protein interactions,
potentially modulating a variety of cellular processes that could be influenced by HBOT in
the context of PD [29].

Among these genes, for instance, MAP2 is known for its role in stabilizing micro-
tubules [30], which are essential for maintaining cell structure and facilitating intracellular
transport. Any modulation in its activity could impact neuronal health and function, mak-
ing it a potential target of interest in PD and its response to HBOT. Furthermore, other gene
ontology (GO) terms that stood out include “axon guidance” [31], “negative regulation of
neuron differentiation” [32], and “positive regulation of transcription by RNA polymerase
II” [33]. The presence of “axon guidance” is particularly intriguing, as it plays a crucial
role in the proper formation of neural circuits. Disruptions in this process could contribute
to neurodegenerative conditions like PD. The regulation of neuron differentiation and
transcription further suggests that HBOT might influence the broader landscape of gene
expression and neuronal development in PD.

In considering the translational potential of our findings, it is pivotal to acknowledge
the prospective clinical implications. The identified genomic correlations with hyperbaric
oxygen therapy (HBOT) in Parkinson’s disease (PD) suggest avenues for the development
of personalized and optimized treatment strategies, potentially enhancing therapeutic
outcomes and patient quality of life. These genomic insights could inform the creation
of targeted therapies and predictive models, allowing for individualized treatment plans
based on specific genomic profiles. However, the realization of these clinical applications
necessitates rigorous validation through clinical trials, collaborative integration into clinical
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workflows, adherence to ethical and regulatory standards, and comprehensive educational
outreach to stakeholders about the benefits and limitations of such interventions.

Our study, while offering significant insights, is subject to several limitations. The
single-cell RNA-seq data utilized may not fully capture the intricate cellular heterogeneity
inherent to Parkinson’s disease due to its inherent resolution and depth limitations, and the
public datasets employed may harbor biases stemming from variations in sample collection,
processing, and sequencing technologies across different studies. Additionally, the machine
learning techniques applied in our analysis are susceptible to biases from the training
data, model assumptions, and algorithmic constraints, potentially impacting the reliability
of our identified gene correlations. Furthermore, the generalizability of our findings is
constrained, necessitating validation in diverse and larger Parkinson’s disease populations
to confirm their universal applicability and clinical relevance.

4. Conclusions

Our comprehensive study, integrating both traditional and machine learning method-
ologies, has shed light on the intricate molecular landscape underpinning Parkinson’s
disease (PD) and its potential modulation by hyperbaric oxygen therapy (HBOT). By syn-
ergizing differential gene expression analysis with machine learning techniques, we’ve
identified pivotal genes, such as MAP2, SLIT2, CAP2, DDC, WSB1, and MYOF, that play
significant roles in PD and may be influenced by HBOT. The pronounced role of the
“Protein Binding” term, acting as a hub in our analysis, underscores the importance of
protein–protein interactions in understanding the therapeutic potential of HBOT in PD.

Furthermore, our exploration into gene ontologies and pathways, such as “axon guid-
ance” and “negative regulation of neuron differentiation,” has provided insights into the
broader biological processes that might be at play. The enrichment analysis, leveraging the
Fisher exact test, has highlighted potential biological pathways and drug interactions that
could be pivotal in understanding the therapeutic mechanisms of HBOT in PD. In essence,
our findings emphasize the intricate interplay of genes, pathways, and cellular processes
in PD and how they might be modulated by HBOT. This research not only offers a deeper
understanding of the molecular mechanisms of PD but also paves the way for future studies
aiming to optimize therapeutic strategies for this debilitating neurodegenerative disorder.
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Abstract: The Kaplan–Meier (KM) estimator is widely used in medical research to estimate the
survival function from lifetime data. KM estimation is a powerful tool to evaluate clinical trials
due to simple computational requirements, its use of a logrank hypothesis test, and the ability to
censor patients. However, KM estimation has several constraints and fails to generalize to ordinal
variables of clinical interest, such as toxicity and ECOG performance. We devised weighted trajectory
analysis (WTA) to combine the advantages of KM estimation with the ability to visualize and compare
treatment groups for ordinal variables and fluctuating outcomes. To assess statistical significance, we
developed a new hypothesis test analogous to the logrank test. We demonstrated the functionality of
WTA through 1000-fold clinical trial simulations of unique stochastic models of chemotherapy toxicity
and schizophrenia disease course. With increments in sample size and hazard ratio, we compared
the performance of WTA to KM estimation and the generalized estimating equation (GEE). WTA
generally required half the sample size to achieve comparable power to KM estimation; advantages
over the GEE included its robust nonparametric approach and summary plot. We also applied
WTA to real clinical data: the toxicity outcomes of melanoma patients receiving immunotherapy
and the disease progression of patients with metastatic breast cancer receiving ramucirumab. The
application of WTA demonstrated that using traditional methods such as KM estimation can lead to
both type I and II errors by failing to model illness trajectory. This article outlines a novel method
for clinical outcome assessment that extends the advantages of Kaplan–Meier estimates to ordinal
outcome variables.

Keywords: weighted trajectory analysis; Kaplan–Meier estimator; clinical outcome assessment; logrank
test; ordinal variables

1. Introduction

The Kaplan–Meier (KM) estimator [1], also referred to as the product-limit estimator,
is widely used in medical research to estimate the survival function from lifetime data.
KM estimation is a nonparametric approach for time-to-event data, which are often not
normally distributed. To generate the KM estimates, the time-to-event and the status of each
subject at the last observed timepoint are needed [2]. The event of interest may be death
from any cause when we are determining overall survival and death due to a specific cause
for cause-specific survival. KM estimates are frequently used in oncology and other medical
disciplines. KM estimation is used to compare two or more treatment arms in clinical trials
using the logrank test [3]. Patients that exit the trial without having experienced the event
of interest at the last follow up are censored and omitted from further estimates.

The relatively simple computational requirements for KM estimation provide a pow-
erful method to estimate time-to-event data. However, the advantages of KM estimation
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in clinical research cannot be extended to important ordinal outcomes, such as toxicity
grade and Eastern Cooperative Oncology Group (ECOG) performance status [4]. Ordinal
outcome variables are ubiquitous in medicine in the measurement of patient health status
over time, but no statistical methods exist that combine censoring, graphical comparison of
trajectories, and hypothesis testing for these variables. Often, ordinal clinical outcomes are
collapsed to binary definitions to facilitate the use of KM estimation; this causes informa-
tion loss, introduces an arbitrary cutpoint, and may lead to inaccurate conclusions. New
methods are required to map the trajectory of ordinal outcomes and compare treatment
arms in clinical trials.

The KM method has three conditions that limit its generalizability to other variables
of interest in clinical research:

1. Binary Condition

The event must be binary in nature or coded into binary form (0 for non-occurrence,
1 for occurrence). It is not possible to capture grades or stages of severity. For example,
death is naturally binary (0 for alive, 1 for dead), but an outcome variable such as
toxicity (measured in grades from zero to four) must be coded into binary form by
setting a threshold for event occurrence, such as arbitrarily defining an event as any
toxicity exceeding grade two;

2. Descent Condition

Event occurrence always produces a drop in the KM curve (a consequence of plotting
probability). It is not possible to track the trajectory of conditions that can both im-
prove and worsen over time. For example, patients experiencing rising toxicity due to
chemotherapy require additional interventions to tolerate therapy. The interventions
may initially improve symptoms and reduce toxicity grade but fail to sustain benefits
in subsequent treatment cycles. For a KM estimate following the above example, this
complex trajectory would be simplified to an event occurrence the first time toxicity
increases beyond grade two;

3. Finality Condition

Once a patient experiences the event of interest, they are omitted from any subsequent
analysis.

Weighted trajectory analysis (WTA) is a method that combines the simplicity and
practicality of KM estimation with the ability to compare treatment groups for ordinal
variables and bidirectional outcomes. Trajectories are presented using plots that track
health status for treatment arms over time. WTA permits the censoring of patients that exit
the study. To determine statistical significance, we developed a “weighted” logrank test.

In Section 2, we describe the methodology and theory of KM estimation and WTA,
along with their respective hypothesis tests, and provide a computational approach to
WTA that is robust with smaller datasets. We also outline GEE longitudinal analysis prior
to its use as an additional comparator against WTA in subsequent simulation studies. In
Sections 3 and 4, we describe unique simulation studies with chemotherapy toxicity grade
and schizophrenia symptom stage as the variables of interest, respectively. In Section 5, we
apply WTA to real clinical datasets: first, with the toxicity outcomes of melanoma patients
receiving different immunotherapy protocols and, second, with tumor response outcomes
of patients with metastatic breast cancer receiving an anti-angiogenic drug. Finally, we
discuss the results and implications of both our simulations and real-world analyses in
Section 6.

2. Methodology and Theory

2.1. Kaplan–Meier Estimator

The goal of the Kaplan–Meier (KM) estimator is to estimate a population survival
curve from a sample with incomplete time-to-event observations [1]. “Survival” times
need not relate to death but can refer to any event of interest, such as local recurrence or
stroke. The event in this instance is a binary variable, meaning that samples have either
experienced the event up to a given time point or not. The times to failure for each subject
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are thus characterized by two variables: (1) serial time and (2) outcome of event occurrence
or censorship.

Suppose that t0 < t1 < t2 < . . . < tK are the K distinct failure times observed in the
sample. We write nj and dj as the number of patients at risk and number of events at time
tj, respectively, where j = 1, 2, . . . , K. Note that the patients who are lost to follow up or
withdraw from the trial before experiencing the event of interest (i.e., censored samples)
are taken out of the risk set at the subsequent time points.

The KM estimate at time tj, Ŝ(tj), is calculated as the cumulative survival probability
up to and including time tj,

S(tk) =
k

∏
j=1

(
1−

dj

nj

)
, (1)

where S(t) = 1 for t < t1. The Kaplan–Meier curve is plotted as a stepwise function
representing the change in survival probability over time.

To compare treatment arms, multiple survival functions are plotted together, enabling
the comparison of differences in survival experience between groups. Treatment options
can be compared using metrics such as median survival and hazard ratios. The logrank test
is used to assess if the differences are statistically significant: this test and its modification
for WTA are discussed in Sections 2.4 and 2.5, respectively.

2.2. Weighted Trajectory Analysis

Weighted trajectory analysis (WTA) is a modification of KM estimation that provides
the following advantages:

• Assesses outcomes defined by various ordinal grades (or stages) of clinical severity;
• Permits continued analysis of participants following changes in the variable of interest;
• Demonstrates the ability of an intervention to both prevent the exacerbation of out-

comes and improve recovery, as well as the time course of these effects.

Several properties of KM curves crucial for clinical trial evaluation are incorporated
within WTA. The test is nonparametric and provides the ability to censor patients that
withdraw or are lost to follow up. Outcomes for various treatment arms can be assessed
using a summary plot that depicts all patients in serial time. The test for significance is
a modification of the logrank test described by Peto et al., which is the standard method
for comparing KM survival curves [3]. The logrank test is described in Section 2.4 and the
weighted logrank test follows in Section 2.5. As the analytical form of the test is a conser-
vative estimate that operates under the normal approximation, a more computationally
intensive simulated approach is outlined in Section 2.6.

In WTA, an event is a change in grade or stage or, more generally, a severity score. The
severity score must be ordinal but can have an arbitrary range of severity that depends on
the variable of interest (for example, I–IV for heart failure class [5]). Unlike KM estimation,
an event does not omit the patient from subsequent analysis. Both increases and decreases
in variables of interest are captured as events. Participants can enter trajectory analysis at
any starting stage, though inferences on trial results are most powerful if treatment arms
are randomized to the same median starting stage.

Redefining the event allows clinical assessment of the overall trajectory of a group
of patients, mapping both deterioration and improvement in health status over time.
Graphically, the staircase representing survival in the Kaplan–Meier estimator always
descends. The WTA staircase can both descend and rise over time to capture the dynamics
of a patient’s clinical status.

Variables of interest can include any ordinal outcome variables with a defined, finite
range. Examples include ECOG performance [4] and Common Terminology Criteria for
Adverse Events (CTCAE) toxicity scores [6], both with ordinal scoring that ranges from 0
to 5.
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For this reason, a binary variable such as death (0, alive vs. 1, dead) is not an appropri-
ate variable of interest. In this circumstance, the range of the ordinal variable is set to 1,
and the modified significance test reduces to the standard logrank test. Conversely, ECOG
performance is an appropriate variable of interest given that it is ordinal with a defined
range and can both improve and worsen over time. In WTA, a higher score in the variable
of interest generally represents poorer health status. Variables that follow the opposite
trend can be adapted to WTA by simply reversing the polarity of the ordinal scale.

Censoring in WTA is similar to KM estimation. Patient loss to follow up and with-
drawal requires censoring, but patients may experience several events prior to being
censored. Censoring is represented on the plot using a Wye symbol ( ). The number
of patients remaining within the study is tabulated below the plot at evenly spaced time
intervals for each treatment arm.

Table 1 directly compares KM estimation and WTA based on core features.

Table 1. Feature comparison between the Kaplan–Meier estimator and weighted trajectory analysis.

Feature Kaplan–Meier Estimator Weighted Trajectory Analysis

Event
Outcome with binary coding. A patient must
begin at “0” and is removed from analysis
following an event (“1”)

An event is a change in clinical severity and
does not remove a patient from further
analysis. Must be discrete with a finite range
that depends on the variable of interest

Variable of interest
Death, metastases, local recurrence, stroke, and
more. Can include variables outside of medicine,
such as postgraduate employment

Graded/staged outcomes: ECOG
performance, toxicities, NYHA heart failure
class, questionnaire scores, and more; also
includes variables outside of medicine

Trajectory Survival function always decreases Bidirectional: severity function can decrease
or increase

Censoring Removes patients from subsequent analysis (for
withdrawal, discharge, loss to follow up, etc.)

Test for significance Logrank test Weighted logrank test

Y-axis Survival probability Weighted health status

X-axis Time (discrete: days, weeks, months, etc.)

Y-intercept 1.0 Between 0 and 1.0, inclusive

Weighted Trajectory Analysis, while retaining the serial time and censoring functionality of the Kaplan-Meier
estimator, facilitates ordinal variables of interest and defines events as changes in severity that do not omit patients
from subsequent analysis. In addition, the “weighted health status” is not a survival probability but rather a
normalized aggregate score that dynamically falls with greater disease burden and increases with recovery.

2.3. Mathematical Overview of Weighted Trajectory Analysis

Weighted trajectory analysis plots the health status of treatment arms as a function
of time. Time values must be discrete but can correspond to days, weeks, months, or any
chosen interval. For each time value on the x-axis, there is a corresponding score on the
y-axis: a weighted health status. The higher the weighted health status, the healthier the
group is. This score is scaled by the initial size of the treatment arm to facilitate simple
comparison of groups with unequal size.

Consider a group of n patients with toxicity grades ranging from grade zero (asymp-
tomatic/mild toxicity) to grade five (death related to an adverse event). The weighted
health status at time point j is denoted by Uj, where j = 0, 1, . . . , z. For each treatment arm,
Uj has a maximum value of 1 and a minimum value of 0. Suppose we begin a trial with
all patients having no disease burden at grade zero: Uj = U0 = 1. A trial with the highest
possible morbidity requires all patients to experience grade five toxicity (death): at this
point, Uj will drop to 0.

86



BioMedInformatics 2023, 3

We let gi,j represent the severity score for the ith patient at time j, i = 1, . . . , n. The
severity score is identical to their ordinal score for the variable of interest. If the range of the
ordinal variable of interest does not have 0 as one extreme end, all values must be shifted
to set 0 as the starting score (the polarity may also be reversed so that 0 represents peak
health status). All patients begin the trial at grade zero, which reflects gi,0 = 0. If a patient
labeled with index 50 has a grade-three injury at the seventh time point, their severity score
g50,7 = 3.

Scaling for the WTA curve is performed through normalizing to a minimum of 0 and
a maximum of 1 by using the initial weight of the treatment arm. This weight, w0, is the
product of the starting patient count n0 and the range of the ordinal variable of interest r:

w0 = n0r. (2)

Suppose the initial size of the group, n0, is 100 patients. The range r for the ordinal
variable (toxicity grade) is 5. Then, w0 is 500. The value of the weight changes over time
due to patient censoring reflected by a drop in nj. The general equation for wj is provided
in Section 2.5 and is used in the weighted logrank test. However, for scaling and plotting
U, only the initial weight of a given treatment arm, w0, is required.

The initial value U0 is a perfect score of 1.

U0 = 1 (3)

Subsequent values of U deviate based on observed event occurrences dj. We define
event occurrence as a change in the variable of interest for a given patient i at time j:

di,j = gi,j+1 − gi,j. (4)

Therefore, the observed event score for a group of n patients is defined as

dj =
n

∑
i=1

di,j =
n

∑
i=1

(gi,j+1 − gi,j), (5)

with patients censored following time j not contributing to the sum. Events and resulting
changes in treatment arm trajectory are always scaled by w0. Using this event definition,
Uj can be calculated iteratively from U0:

Uj+1 = Uj −
dj

w0
, j = 0, 1, 2 . . . (6)

Alternatively, Uj for any given time point can be computed as follows:

Uj = 1−

j−1

∑
j=0

dj

w0
, jεZ+. (7)

Values for dj at a given time point can be negative, and these represent cases in which
the treatment arm improved in overall health status. From Equations (6) and (7), it follows
that a negative value of dj produces an increase in the weighted health status Uj.

2.4. The Logrank Test

We present here the standard formula of the logrank test statistic.

• Let t1 < t2 < . . . < tK be K distinct failure times observed in the data;
• nA

j is the number of patients in group A at risk at tj, where j = 1, 2, . . ., K;

• nB
j is the number of patients in group B at risk at tj, where j = 1, 2, . . ., K;
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• nj = nA
j + nB

j is the total number of patients at risk at tj, where j = 1, 2, . . ., K;

• dA
j is the number of patients who experienced the (binary) event in group A at tj;

• dB
j is the number of patients who experienced the (binary) event in group B at tj;

• dj = dA
j + dB

j is the total number of patients who experienced the (binary) event at tj;

• SA(t) and SB(t) are the survival functions for group A and B, respectively.

The information at tj can be summarized in a 2 × 2 table.

Observed to fail at tj At risk at tj
Group A dA

j nA
j − dA

j nA
j

Group B dB
j nB

j − dB
j nB

j
dj nj − dj nj

Under the null hypothesis H0 : SA(t) = SB(t), dA
j follows a hypergeometric distribution

conditional on the margins (nA
j , nB

j , dj, nj − dj). The expectation and variance of dA
j take

the form

eA
j = E

(
dA

j

)
= nA

j
dj

nj
(8)

Vj = Var
(

dA
j

)
=

nA
j nB

j (nj − dj)

n2
j (nj − 1)

dj. (9)

Define the observed aggregated number of failures in group A as

OA =
K

∑
j=1

dA
j . (10)

The expected aggregated number of failures in group A is thus

E
(

OA
)
= EA =

K

∑
j=1

eA
j . (11)

The contributions from each tj are independent and, thus, the variance of OA is

Var
(

OA
)
= V =

K

∑
j=1

Vj. (12)

Under the null hypothesis H0 : SA(t) = SB(t), the logrank test statistic shows

Z =
OA − EA
√

V
=

∑K
j=1(d

A
j − eA

j )√
∑K

j=1 Vj

∼N(0, 1). (13)

This is an asymptotic result derived from the central limit theorem (CLT). Note that
replacing OA and EA with OB and EB leads to the exact same p-value.

The extension to ordinal events in the following section is based on this Z test statistic.

2.5. The Weighted Logrank Test—Analytical Method

We define an event as a change in the severity score of a given condition. Let gA
i,j be

the severity score for the ith individual in group A at time tj, where i = 1, 2, . . ., nA
j and

j = 1, 2, . . ., K. Define dA
i,j as the change in the severity score from time tj+1 to tj.

dA
i,j = gA

i,j+1 − gA
i,j, j = 1, 2, K− 1. (14)

88



BioMedInformatics 2023, 3

Without loss of generality, we consider a severity score ranging from stage zero to
stage four. As a result, dA

i,j has a total of nine possible values (−4,−3,−2,−1, 0, 1, 2, 3, 4) if
the observation of this person is uncensored at tj+1.

• Let L be the total number of possible values taken by the change variable dA
i,j. When a

severity score takes values from 0 to 4, L = 9;
• Let W be the ordered non-decreasing list of the L possible change values. When a

severity score takes values from 0 to 4, W = (−4,−3,−2,−1, 0, 1, 2, 3, 4);
• Let wl be the lth element of W;
• Let dA,l

j be the number of subjects in group A at tj whose change values equal wl :

dA,l
j =

nA
j

∑
i=1

dA
i,j I(d

A
i,j = wl) (15)

where I
(

dA
i,j = wl

)
= 1 when dA

i,j = wl and 0 otherwise;

• Let dB,l
j be the number of subjects in group B at tj whose change values equal wl ;

• d(l)j = dA,l
j + dB,l

j is the total number of patients whose change values equal wl at tj.

The information at tj, j = 1, 2, . . ., K− 1 can be summarized in a 2 × 10 table:

Observed
values of
di,j (wl)

−4 −3 −2 −1 0 1 2 3 4 At risk
at tj

Group A dA,1
j dA,2

j dA,3
j dA,4

j dA,5
j dA,6

j dA,7
j dA,8

j dA,9
j

nA
j −

∑L
l=1 dA,l

j

nA
j

Group B dB,1
j dB,2

j dB,3
j dB,4

j dB,5
j dB,6

j dB,7
j dB,8

j dB,9
j

nB
j −

∑L
l=1 dB,l

j

nB
j

d(1)j d(2)j d(3)j d(4)j d(5)j d(6)j d(7)j d(8)j d(9)j

nj −
∑L

l=1 d(l)j

nj

Under the null hypothesis H0 : SA(t) = SB(t),
(

dA,1
j , dA,2

j , dA,3
j , . . ., dA,L

j

)
follows a multi-

variate hypergeometric distribution conditional on the margins
(

nA
j , nB

j ,
{

d(l)j

}L

l=1
, nj −∑l d(l)j

)
.

We can show that the mean and variance of dA,l
j , where l∈{1, 2, . . ., L}, are

eA,l
j � E

(
dA,l

j

)
= nA

j

d(l)j

nj
(16)

σj,ll � Var
(

dA,l
j

)
=

nA
j nB

j (nj − d(l)j )

n2
j (nj − 1)

d(l)j . (17)

For distinct l, q∈{1, 2, . . ., L}, we can derive the covariance of dA,l
j and dA,q

j

σj,lq � Cov
(

dA,l
j , dA,q

j

)
= −

nA
j nB

j

n2
j (nj − 1)

d(l)j d(q)j , l �=q. (18)

These moment results are derived from the definition of multivariate hypergeometric
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distribution. To account for the direction and the magnitude of the change variable, we
define the observed weighted changes as

Ow
j =

L

∑
l=1

wld
A,l
j . (19)

When a severity score is defined as a range from 0 to 4, the weight wl takes the values
of (−4,−3,−2,−1, 0, 1, 2, 3, 4) for l = 1, 2, . . ., 9.. The expected value of Oj can be written as

Ew
j =

L

∑
l=1

wle
A,l
j . (20)

When the event is coded as a binary outcome, this weighted change Ow
j is reduced

to the eA
j defined above. Using the results in Equations (17) and (18), we can write the

variance of the weighted score Ow
j as

Vw
j = Var

(
Ow

j

)
=

L

∑
l=1

L

∑
q=1

wlwqσj,lq, (21)

where σj,lq is defined in Equation (18) when l �= q and in Equation (17) when l = q.
Similarly, we can aggregate the observed/expected weighted changes across all K

time points and define a Z test statistic. The weighted logrank test statistic is defined as

Z =
∑K

j=1

(
Ow

j − Ew
j

)
√

∑K
j=1 Vw

j

, (22)

which follows the standard normal distribution N(0, 1), under the null hypothesis
H0 : SA(t) = SB(t). Equivalently,

Z2 =

[
∑K

j=1

(
Ow

j − Ew
j

)]2
∑K

j=1 Vw
j

∼χ2
1; (23)

i.e., the square of the Z test statistic follows a chi-square distribution with one degree
of freedom.

The asymptotic result in Equation (22) is based on the assumption that the total
number of distinct failure times recorded in the pooled samples (i.e., K) is sufficiently
large. For smaller trials with shorter follow-up periods, this analytical method can provide
conservative conclusions and result in type II errors below the designated significance
level, as demonstrated in Section 3.3. To complement the analytical method, we also
propose a bootstrap-based approach for calculating p-values, which, despite requiring
greater computational effort, remains accurate and sensitive independent of trial sizes.

2.6. The Weighted Logrank Test—Computational Method

A completed trial can be analyzed either instantly with the analytical approach or
through rigorous simulations in a more sensitive computational approach. Compared to the
design phase, the advantage of a completed trial is the wealth of collected data. Multistate
Markov modeling (MSM), available in the msm package in R, provides a powerful method
to compute transition intensities of an inputted dataset through maximum likelihood
estimation. The steps to analyze a complete trial are as follows:

1. Determine transition probabilities using msm to load into n-fold simulations blind to
treatment assignment;

2. Generate a distribution of the null hypothesis using the test statistic (Equation (23));
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3. Calculate a test statistic from the clinical data and then determine a p-value by com-
parison to the distribution of the null hypothesis.

Software with built-in tools to facilitate analytical and computational methods to
streamline the use of WTA for investigators is in production.

2.7. GEE Longitudinal Analysis

The generalized estimating equation (GEE) (Liang and Zegar 1986) is a widely used
regression-based tool for analyzing longitudinal data [7]. We compare the performance
of our weighted trajectory approach to the GEE method. In the GEE method, we model
the severity scores as outcomes and the treatment group as the covariate. We specify the
autoregressive correlation structure to account for the dependence among the severity
measures from the same patient. We use an identity mean-variance link function and
leave the scale parameter unspecified. The significance test for the association between
patients’ severity score and treatment status is carried out using a Wald test statistic with
the sandwich variance estimator.

A major advantage of the GEE over likelihood-based methods (e.g., multi-state models)
is that the joint distribution of longitudinal outcomes does not have to be fully specified.
Therefore, if the mean structure is accurately specified, the mean parameters (e.g., the
treatment effect in our case) can be consistently estimated, regardless of whether or not the
covariance structure is correctly characterized. Our weighted logrank test is more robust
than the GEE because it is a nonparametric test and does not make any assumptions about
the survival outcomes. In addition, a visual representation of the survival trajectory over
time is naturally accompanied by our proposed test statistic, which tracks the number of
changes in the severity score over time. On the other hand, the GEE enables simultaneous
modeling of multiple covariates, while our approach focuses on comparison between
two treatment groups. In the following simulation studies, we directly compared the
performance of the GEE and WTA.

3. Simulation Study One—Toxicity

In our first clinical trial simulation study, we demonstrate the functionality of WTA
and present its advantages over KM analysis. We establish the strength of our novel
method through a rigorous power comparison between KM estimation, the GEE, and both
analytical and simulated approaches to WTA.

The design was a phase III comparison of toxicity outcomes from chemotherapy be-
tween two treatment arms (control and treatment, 1:1 allocation). The variable of interest
was CTCAE toxicity: grades range from one (mild/no toxicity) to five (death from toxic-
ity) [6]. For example, the grades of oral mucositis are: (1) asymptomatic/mild, (2) moderate
pain or ulcer that does not interfere with oral intake, (3) severe pain interfering with oral
intake, (4) life threatening consequences indicating urgent intervention, and (5) death. For
the purposes of WTA, the ordinal range of 1–5 was shifted to 0–4, with censoring thus
taking place at grade four.

The simulation study was generated using Python 3.7 [8]. Study simulations are
a stochastic process in which randomly generated numbers are programmed to mirror
fluctuating toxicities experienced by groups of patients undergoing chemotherapy cycles
with daily measurements of treatment toxicity. Each instance of the simulation requires a
specified hazard ratio and sample size prior to the stochastic generation of toxicity. Table 2
provides a snapshot of the results for a single simulated clinical trial.
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Table 2. A snapshot of the final results of a simulated chemotherapy toxicity-grade trial.

Patient ID Treatment Arm Duration 0 1 2 3 4 5 6 7 8 9 10

1 1 10 0 0 0 0 0 0 1 1 1 0
2 1 10 0 0 0 0 0 1 1 1 1 1
3 0 11 0 0 0 0 0 0 0 0 0 0 0
4 1 6 0 0 0 0 0 0
5 0 13 0 0 0 0 0 0 0 0 0 1 1
6 1 9 0 0 0 0 0 0 0 0 0
7 0 18 0 0 0 0 0 0 1 1 1 2 2
8 1 6 0 0 0 0 0 0
9 1 29 0 0 0 0 0 0 0 0 0 1 0
10 0 4 0 0 0 0

Treatment arms zero and one represent the control and treatment groups, respectively. Numbered columns indicate
sequential days within the trial starting at day zero. Duration indicates the number of days the patient was
hospitalized.

Each patient (represented by an ID number) has a risk of developing treatment toxicity
over time. This risk is determined by their treatment group and the numbers of days they
have spent in the study. The values within Table 2 were assigned as follows:

1. Treatment group: randomly assigned as zero or one with the constraint of having an
equal number of patients allocated to each group;

2. Duration: the number of days a patient remains within the trial was programmed as a
random value within a uniform distribution of 0 to 50 days;

3. Toxicity grade: computed for each patient on a daily basis for the extent of their
assigned duration. To model the trajectory of toxicity grade over time, we made the
following simplifying assumptions:

(a) On any given day, patients can rise or fall by a single toxicity grade;
(b) Transitions in toxicity grade are random, but a larger hazard ratio suggests a

greater chance of exacerbation and lower chance of recovery;
(c) A patient is censored once their pre-assigned duration within the trial has elapsed

or they reach maximum toxicity, in this case representing death, whichever
occurs first.

A hazard ratio for control:treatment was modeled for the control group to have a
higher toxicity burden through time compared to the treatment group (the value was
programmed as 1.0 or higher). For the control group, the probability of exacerbation was a
base probability of 0.10 multiplied by the hazard ratio. If exacerbation did not occur and
the current stage was above the minimum, the probability of recovery would be a base
probability of 0.05 divided by the hazard ratio. Patients in the treatment group fluctuated
based on base probabilities alone. Once a patient reached the maximum toxicity or their
maximum assigned duration, they were censored.

3.1. Kaplan–Meier Estimator: Toxicity Trial

We performed Kaplan–Meier estimation using the Python 3.7 library “lifelines” [9].
This library was used to plot survival probabilities and conduct logrank tests. Results were
validated by assessing the source code for accuracy and making a direct comparison to
results from SPSS v26 (IBM Corp., Armonk, NY, USA) [10].

To permit comparison to KM estimation, all patients began the trial at stage zero,
which represented grade-one toxicity. An “event” was considered exacerbation to the next
stage. Following event occurrence, patients were removed from analysis. Censoring is
represented by a Wye symbol ( ).

A single toxicity comparison trial was conducted with the following parameters:
200 patients (1:1 treatment allocation at 100 patients/arm) and a 1.25:1 hazard ratio for
control:treatment. Figure 1 depicts the corresponding Kaplan–Meier plot.
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Figure 1. The Kaplan Meier estimator plot for a randomly generated chemotherapy toxicity trial of
300 patients with 1:1 allocation. An event was considered the onset of chemotherapy toxicity (beyond
stage zero) and patients were censored once their assigned duration had been reached. The hazard
ratio between treatment arms was 1.25:1.

The outcome for a logrank test conducted with this trial was p = 0.411; the result was
not statistically significant. The Kaplan–Meier method was not sufficiently sensitive to
distinguish between treatment arms for this simulated trial; high grades of toxicity may
have differed between the groups, but standard time-to-event statistics failed to capture
the complex trajectory of morbidity.

Next, we analyze and report an identical drug trial using weighted trajectory analysis.

3.2. Weighted Trajectory Analysis: Simulated Trial

The WTA was performed as described in Section 2.3 on an identical trial dataset of
200 patients. Censoring is represented by a Wye symbol ( ) and occurred for each patient
once they were no longer followed for toxicity grade. This took places under two conditions:
either the assigned duration for the patient had been reached or the patient had suffered
fatal toxicity. Figure 2 provides the plot of the WTA.

Note the change in x-axis range, the number of patients at risk, and the trajectory of
health status: patients were followed for the full course of toxicity and both declines and
improvements were mapped. As compared to the KM plot, the treatment arms in this trial
were visually distinct across all time points, demonstrating a reduced disease burden for
the treatment group, a difference sustained across time. By approximately day 30, a minor
proportion of the original patients within the trial remained, and the delta between groups
plateaued. Much like KM plot interpretation, the clinical significance of each trajectory
dropped after a substantial fraction of patients had been censored.

Using the “weighted” logrank test, p = 0.005. WTA is a more powerful and more
clinically relevant statistic for this dataset due to its ability to track toxicity severity across all
grades. As KM estimation failed to reject the null hypothesis despite clinically meaningful
group differences, a type II error occurred. The improved sensitivity of WTA prevented
such an error from taking place.
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Figure 2. The weighted trajectory analysis plot for a randomly generated chemotherapy toxicity
trial of 300 patients with 1:1 allocation. The weighted health status of both groups dropped due to
increasing morbidity from chemotherapy toxicity following randomization. The hazard ratio between
treatment arms was 1.25:1.

3.3. Thousandfold Power Comparison—KM Estimation vs. WTA

The trial analyzed in Sections 3.2 and 3.3 was a single instance of randomly generated
data; the improved performance of WTA compared to KM estimation may have occurred
by chance. To accurately compare the ability of the tests to distinguish between treatment
arms, we ran 1000-fold analyses across increments in sample size from 20 to 300 and hazard
ratio from 1.0 to 1.5. For each trial, a p-value was computed using both KM estimation and
WTA. The fraction of tests that were significant (at α < 0.05) represents the power of the test
(correctly rejecting the null hypothesis that the two groups are the same).

Figure 3 demonstrates that WTA had a consistently higher power than KM estima-
tion: it permitted comparable analyses with a smaller sample size. Given that trial data
were randomly generated, the plots were not perfectly smooth but followed the expected
logarithmic shape of power as a function of sample size.

For the simulated clinical trial at a 1.3 hazard ratio, WTA was able to reach 80% power
at 180 patients while KM estimation required well over 300 patients. At a 1.4 hazard ratio,
WTA required about 100 patients for 80% power while KM estimation required about 300.
Across many hazard ratios, WTA required less than half the sample size to achieve a power
equivalent to KM estimation. Note that the power of the KM method for these clinical trials
at a 1.5 hazard ratio mirrored the power of WTA at a 1.3 hazard ratio.

In this simulated example, weighted trajectory analysis demonstrated greater sen-
sitivity than Kaplan–Meier estimation to a dataset with ordinal severity scoring. With a
greater likelihood of correctly rejecting the null hypothesis, the novel method reduced type
II errors.
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Figure 3. Thousandfold simulations of power as a function of sample size for both KM estimation
and WTA across several hazard ratios. WTA demonstrated consistently higher power, reflecting a
smaller sample size requirement during trial design. The type I error rate of WTA was approximately
0.025, indicating the method was conservative. The type I error approached 0.05 within the limit of
larger trials with more distinct failure times.

3.4. Thousandfold Power Comparison—KM Estimation, WTA (Analytic and Computational), GEE

To demonstrate the differences between the analytical and computational approach
with WTA (and reference these against standard approaches with KM estimation and the
GEE), we ran 1000-fold analyses under 9 unique conditions at sample sizes of 100, 200, and
300 across hazard ratios of 1.0, 1.2, and 1.4. For each trial, a p-value was generated for all
four of the KM estimation, WTA (analytical approach), WTA (simulated approach), and
GEE longitudinal analysis using their respective hypothesis tests. The fraction of tests that
were significant (at α < 0.05) represented the power of the test (correctly rejecting the null
hypothesis that the two groups were the same).

Figure 4 demonstrates that the analytical approach with WTA is less sensitive and less
powerful than the computational approach. This is expected considering its computational
effort and independence with regard to trial size. Importantly, the analytical approach
provides conservative results: in this stochastic model, the type I error hovered at around
half of the 0.05 standard met by KM estimation, the GEE, and the computational approach
with WTA. In the second simulation study, the explanation for this discrepancy became
evident; the analytical approach is based on a normal approximation that becomes more
precise with a larger number of distinct failure times and longer follow up. As the second
simulation study met these criteria, the simulated type I error correspondingly became
closer to the 0.05 standard, the asymptotic limit.

GEE longitudinal analysis was found to be consistently weaker than both methods
of WTA. This remained true in the second simulation study. The discrepancy was likely
a trade-off related to the parametric nature of each test: WTA is nonparametric and does
not require any assumptions about survival outcomes. The GEE is semi-parametric, which
is less robust, but permits simultaneous modeling of multiple covariates as opposed to a
sole comparison across treatment groups. As per this simulation study at a hazard ratio of
1.4, the analytical WTA met the 80% power standard for clinical trial design at 100 patients;
the GEE required over 150 patients and KM estimation required 300. The most accurate
method, the computational WTA, required fewer than 100 patients.
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Figure 4. Chemotherapy toxicity simulation study: 1000-fold simulations of power as a function of
sample size for KM estimation, the GEE, and WTA in both its analytical and computational forms.
WTA outperformed KM estimation and the GEE with consistently higher power and, thus, a smaller
sample size requirement. In addition, the computational approach with WTA outperformed the ana-
lytical approach in return for a more time- and resource-intensive methodology. The computational
approach also met a standard type I error rate of 0.05 that was robust to changes in trial size.

4. Simulation Study Two—Schizophrenia

The first simulation study highlighted the functionality of WTA under restrictive and
common trial conditions to permit analysis with KM estimation. However, some trials or
datasets outside of medicine optimally analyzed using WTA may involve more extreme
input parameters. Longer durations of patient participation and larger fluctuations within
the data would also grant sensitivity to the analytical approach in Section 2.5. Accordingly,
we developed a second simulation study to demonstrate the flexibility of WTA—in this case,
solely in analytic form—and compared its power to the versatile GEE longitudinal analysis.

The design was a phase III comparison of antipsychotic efficacy in the management
of schizophrenia. Compared to most chronic medical illnesses, psychiatric illness often
demonstrates a more tumultuous course, with periods that may be completely asymp-
tomatic interspersed with episodes of debilitating disease burden. Schizophrenia combines
this generalization with a progressive disease course and often incomplete recovery fol-
lowing acute decompensations of the primary disorder or substance-induced episodes
of psychosis.
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As before, there were two treatment arms (control and treatment, 1:1 allocation). The
variable of interest was symptom severity stage: stages ranged from zero (absence of
symptoms) to six (life-threatening illness due to severe disease burden and neurocognitive
decline). Patients entered the trial at stage two, which represented a symptom burden below
the full threshold for a psychotic episode; in our scenario, these patients were recruited for
the trial due to a positive symptom screen as opposed to emergency psychiatric admission
typical of greater symptom severity. Measurement intervals represented months as opposed
to days, which permitted larger transitions between stages in a single time interval, though
loaded probabilities favor smaller transitions near extreme ends of the severity scale.
Patients were enrolled into the trial for a randomized duration chosen from a uniform
distribution between 36 and 84 months; they were censored when they reached the assigned
duration or sooner if they reached stage six. The mechanics of the study otherwise mirrored
simulation study one.

Thousandfold Power Comparison—WTA vs. GEE

Once again, we ran 1000-fold analyses under 9 unique conditions at sample sizes
of 100, 200, and 300 across hazard ratios of 1.0, 1.2, and 1.4. For each trial, a p-value
was generated for both WTA (analytical approach) and GEE longitudinal analysis using
their respective hypothesis tests. The fraction of tests that were significant (at α < 0.05)
represented the power of the test (correctly rejecting the null hypothesis that the two groups
were the same).

Figure 5 demonstrates that, under a vastly different stochastic model compared to
the first simulation study, WTA once again outperformed the GEE. The type I error of
WTA shifted to an average of 0.037, closer to 0.05 as the trial had increased follow up and
failure times, which better satisfied the normal approximation underlying the method. This
longer trial with more complex fluctuations in disease severity exhibited a higher power at
identical hazard ratios and sample sizes compared to the previous study.

Figure 5. Schizophrenia disease course simulation study: 1000-fold simulations of power as a function
of sample size for the GEE and WTA in its analytical form. WTA again outperformed the GEE and
demonstrated a type I error rate of 0.037, closer to the 0.05 standard due to the larger size of each trial.
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5. Illustrative Real-World Example

5.1. Immune Checkpoint Inhibitor Therapy for Melanoma

Immune checkpoint inhibitors (ICIs) have transformed the treatment landscape for
melanoma [11]. Inhibitors targeting cytotoxic T lymphocyte antigen-4 (CTLA-4) and
programmed death-1 (PD-1) produce a response in a large fraction of cancer patients. These
responses are often durable and some are even curative. The use of anti-CTLA-4 and
anti-PD-1 in combination has demonstrated the highest rate of durable responses among
melanoma treatment protocols. In prescribing a treatment plan, the promising response
rates must be balanced with concerns about toxicity outcomes. Toxic effects associated with
ICIs are immune-related in nature, may impact any organ, and remain a major challenge in
clinical care.

Published data comparing therapy protocols suggest that the use of combination CTLA-
4/PD-1 therapy results in significantly higher immune-related toxicity when compared to
monotherapy regimens [12]. These results may limit the use of combination therapy for
patients with melanoma and remain a barrier to the development of new combinations.

However, when treatment outcomes are compared over a longer time horizon, the
discrepancy in immune-related toxicities seen between patients treated with combination
versus monotherapy disappears. Those patients treated with combination therapy do
experience greater toxicity during active treatment but, because the large majority of
toxicities are reversible, the health status of patients treated with combination therapy
improves with time. Longitudinally, patients treated with combination immunotherapy
receive fewer actual treatment infusions; however, the treatment response rate is higher
and long-term survival comparable [13]. Put simply, the combination of CTLA-4- and
PD-1-directed immunotherapy has greater efficacy despite a significantly shorter duration
of therapy, and despite an initial increase in immune-related toxicities, the health status
of patients who respond to therapy is excellent. The key limitation of existing statistical
methods used to evaluate toxicity outcomes is the failure to capture improvement and
accurately map changes through time.

The hypothesis that long-term health status is comparable between patients treated
with combination versus monotherapy ICIs can be tested using weighted trajectory analysis.
Rather than using percent incidence to inform treatment decisions (see Figure 6), WTA
can enable clinicians to assess the time course of toxicity. The more detailed and sensitive
mapping of toxicity outcomes can enable clinicians to more accurately translate patient
data into standards for treatment.

In this example, retrospective toxicity data were used to compare monotherapy (anti-
PD-1) with combination therapy (anti-PD-1 + anti-CTLA-4). Increases in alanine amino-
transferase (ALT) levels indicate transient, immune-related hepatitis and were recorded for
195 melanoma patients on either protocol over 180 days. The increase in ALT from baseline
was graded according to the National Cancer Institute Common Terminology Criteria for
Adverse Events, version 5.0 [6]. The baseline ALT scores were assigned a toxicity of 0 by
definition. This enabled comparison between KM estimation and WTA.
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Figure 6. The incidence of treatment-related toxicities associated with an increase in alanine amino-
transferase (ALT) for patients receiving anti-PD-1 therapy and combination therapy. Toxicities were
graded using CTCAE v5.0 [6]. Data from Table 3 from the study by Larkin et al. (2015) [12].

5.1.1. Kaplan–Meier Estimator: Anti-PD-1 vs. Combination Therapy

To perform KM estimation, the occurrence of any nonzero toxicity score was con-
sidered an event. The KM estimation results in Figure 7 demonstrated that patients on
combination therapy had a greater risk of experiencing nonzero toxicity over 100 days
compared to the monotherapy group. This difference between groups was statistically
significant with a p-value < 0.001.

Figure 7. The Kaplan–Meier estimator plot for immunotherapy-related toxicities associated with an
increase in ALT. An event was considered the onset of a nonzero toxicity grade.
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5.1.2. Weighted Trajectory Analysis: Anti-PD-1 vs. Combination Therapy

The WTA results are depicted in Figure 8. The anti-PD-1 group had a steady accumu-
lation of toxicity-related events, while the combination group featured a faster decline that
plateaued at approximately 60 days. However, the trajectory of the combination group
recovered, and by 160 days, the two trajectories nearly converged. As immune-related
toxicities are often reversible, the ability to model both exacerbation and recovery provides
a more accurate picture of clinical outcomes.

Figure 8. Weighted trajectory analysis plot for immunotherapy-related toxicities associated with an
increase in ALT. The weighted health status of the combination group initially diverged from the
anti-PD-1 group but subsequent recovery led to similar longitudinal outcomes.

The weighted logrank test had a p-value of 0.936, which was not statistically significant.
The ability of recovery events to be captured within the weighted logrank hypothesis test
demonstrates that differences in toxicity outcomes between these groups are misrepresented
by prevalence data and the use of time-to-event curves, like in Kaplan–Meier estimation.
The absence of significant differences in more robust analysis suggests incidence data
provide an incomplete picture of toxicity outcomes, leading to a false rejection of the
null hypothesis. In the simulated example examining the development of toxicity to
chemotherapy, WTA avoided a type II error. In this real-world example, the use of WTA
avoided a type I error.

5.2. Rose/Trio-012 Trial

Treatment using agents that disrupt tumor angiogenesis (the process of generating new
blood vessels) have shown clinical benefits with colorectal cancer, renal cell carcinoma, and
several gynecological cancers. The ROSE/TRIO-012 trial sought to evaluate ramucirumab,
an anti-angiogenic drug, for the treatment of metastatic breast cancer [14]. Investigators
compared ramucirumab to a placebo when added to standard docetaxel chemotherapy.

Many phase III trials within oncology are evaluated using Kaplan–Meier estimates and
additional metrics based on the Response Evaluation Criteria in Solid Tumors (RECIST) [15].
In ROSE/TRIO-012, KM estimation was performed to determine progression-free survival,
in which disease progression and death were considered events, and overall survival,
where death alone was an event. The RECIST framework (Table 3) was used to determine
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overall response metrics. These metrics reflected patients whose cancer improved through
the course of the trial (objective response rate (ORR)) and patients who did not experience
progressive disease or death (disease control rate (DCR)).

The ORR and DCR are defined as follows:

ORR = CR + PR (24)

DCR = CR + PR + SD (25)

Table 3. RECIST 1.1 criteria definitions.

Treatment Outcome Definition

Complete response (CR) Disappearance of all target lesions. Any pathological lymph nodes (whether target or non-target)
must show reduction in short axis to <10 mm

Partial response (PR) At least a 30% decrease in the sum of diameters of target lesions, taking as reference the baseline
sum diameters

Progressive disease (PD)

At least a 20% increase in the sum of diameters of target lesions, taking as reference the smallest
sum in the study (this includes the baseline sum that is the smallest in the study). In addition to the
relative increase of 20%, the sum must also demonstrate an absolute increase of at least 5 mm
(note: the appearance of one or more new lesions is also considered progression)

Stable disease (SD) Neither sufficient shrinkage to qualify as PR nor sufficient increase to qualify as PD, taking as
reference the smallest sum of diameters in the study

Response Evaluation Criteria in Solid Tumours (RECIST) version 1.1 offers a standardized definition for endpoints in
clinical trials that evaluate changes in tumour burden secondary to cancer therapeutics [15].

Together, the several endpoints provide a detailed picture of patient outcomes fol-
lowing randomization. However, the individual metrics take time to interpret and can
sometimes provide conflicting signals regarding trial success. ROSE/TRIO-012 provides
an example: although investigator-assessed PFS (p = 0.077) was insignificant at p < 0.05,
endpoints, including ORR and DCR, were significantly higher in the ramucirumab group.
The final verdict on the trial was that it failed to meaningfully improve important clinical
outcomes—a decision based solely on the absence of significance in investigator-assessed
PFS, the trial’s primary endpoint. Had trial success been defined as a composite of several
endpoints, the investigators may have concluded that ramucirumab conferred a significant
benefit to the patients within the study. Currently, ramucirumab is not approved for use in
the treatment of metastatic breast cancer.

The ability to combine the RECIST framework with mortality in a single plot would
allow oncologists to rapidly interpret the totality of results of a clinical trial. A judgment
on trial success can remain tied to the significance of a primary objective, but this objective
should capture a wide array of important patient outcomes. In this example, ROSE/TRIO-
012 trial results from Mackey et al.’s 2014 paper [14] were compared to weighted trajectory
analysis with the original data.

5.2.1. Kaplan–Meier: Ramucirumab vs. Placebo + Docetaxel

Figure 2A,C from Mackey et al.’s 2014 paper are depicted in Figure 9. Respectively,
they represent progression-free survival (the primary endpoint) and overall survival, both
using standard Kaplan–Meier techniques. Upon inspection, progression-free survival appears
slightly higher within the ramucirumab group. The logrank p-value of 0.077 did not indicate
statistical significance. As PFS was the primary endpoint, the intervention was deemed
unsuccessful. Overall survival outcomes were no different between groups (p = 0.915).
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Figure 9. Figure 2A,C from Mackey et al.’s 2014 paper comparing ramucirumab to a placebo added
to standard docetaxel chemotherapy [14]. The figures provide patient outcomes using KM estimates
of progression-free survival (PFS) and overall survival (OS), respectively.

5.2.2. RECIST Endpoints: Ramucirumab vs. Placebo + Docetaxel

Conflicting signals about the efficacy of ramucirumab arise when analyzing sec-
ondary endpoints. ORR and DCR were significantly higher in the ramucirumab arm
(44.7% vs. 37.9%, p = 0.027; 86.4% vs. 81.3%, p = 0.022).

ORR and DCR provide no time-to-event information. The goal of combining RECIST
metrics with KM estimation is to generate a complete picture of patient outcomes. However,
by omitting information on time and severity, respectively, the distinct methods may
disagree on intervention efficacy. The whole is less than the sum of its parts.

The existing solution to this apparent conflict was a decision made by the investigators
prior to the study to select a single metric as the primary objective to determine success.
This both focuses and simplifies any conversation about study outcomes. Had this pri-
mary objective been ORR, the conclusion of the study would have supported the use of
ramucirumab for these patients.

5.2.3. Weighted Trajectory Analysis: Ramucirumab vs. Placebo in Addition to Docetaxel

We used weighted trajectory analysis to combine the RECIST framework with mortal-
ity to depict comprehensive time-to-event outcomes. To perform the method, we employed
the ordinal severity scoring framework in Table 4.
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Table 4. RECIST 1.1 mapped to ordinal severity scores.

Outcome Score

Complete response (CR) 0
Partial response (PR) 1
Stable disease (SD) 2
Progressive disease (PD) 3
Death 4

Response Evaluation Criteria in Solid Tumours (RECIST) version 1.1 [15] adapted to Weighted Trajectory Analysis
using ordinal severity scores. By convention, a score of zero is assigned to the lowest illness burden (complete
response) and the maximum score to the highest illness burden (death).

The starting point of each patient at the time of randomization was stable disease (SD),
a score of 2. At the ends of the ordinal scale were complete response (CR, the best outcome)
and death (the worst outcome). Patients were censored upon withdrawal or loss to follow
up or directly following death.

Using the original ROSE/TRIO-012 dataset and the ordinal framework above, we
generated Figure 10. Censoring is indicated using vertical tick marks.

Figure 10. Weighted trajectory analysis of the original ROSE/TRIO-012 dataset using an ordinal scale
that merges RECIST criteria with mortality. The trajectory of patient outcomes demonstrates that
partial and complete response initially outweighed progressive disease and mortality for the first few
chemotherapy cycles. Following this peak, patient prognosis was generally poor, as both treatment
arms experienced growing disease burden and death.

This plot provides a comprehensive view of all patient outcomes for the full study
duration. A few months into the trial, we see the peak in weighted health status for both
groups. This occurred at 68 days for the placebo group and 76 days for the ramucirumab
group. At this phase, some patients had experienced partial or complete response. Follow-
ing this peak was a gradual descent that represented progressively increasing morbidity and
death across both groups. The trajectories were strikingly similar, with the ramucirumab
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group experiencing slightly better outcomes throughout the study. The difference was not
statistically significant (p = 0.587). This corroborates the current regulatory standard that
ramucirumab should not be approved for the treatment of metastatic breast cancer.

With the WTA plot alone, investigators can easily interpret the time course of disease
response. Patients likely to respond or recover generally do so following the first two
chemotherapy cycles. After three months, the prognosis is poor: both treatment arms are
characterized by progressive disease and death.

6. Discussion

WTA was created to (a) evaluate phase III clinical trials that assess outcomes defined
by various ordinal grades (or stages) of severity; (b) permit continued analysis of partici-
pants following changes in the variable of interest; and (c) demonstrate the ability of an
intervention to both prevent the exacerbation of outcomes and improve recovery and the
time course of these effects. Its development was inspired by a pressure injury study—a
disease process characterized by several stages of severity—for which Kaplan–Meier esti-
mates would fail to capture the complete trajectory. Despite its limitations, KM estimation
provides crucial advantages, such as patient censoring, rapid interpretation of survival
plots, and a simple hypothesis test. To this end, we sought to create a statistical method
that built on the foundations of Kaplan–Meier analysis but would overcome the inherent
limitations of the technique.

We built the WTA toolkit based on expansion and extension of the Kaplan–Meier
methodology. We adapted KM estimation to support analysis of ordinal variables by
redefining events as changes in disease scores rather than assigning “1” and omitting the
patient from further analysis. We adapted KM estimation to permit fluctuating outcomes
(worsening and improvement of the ordinal outcome) by plotting a novel weighted health
status as opposed to probability. We retained the ability to censor patients at the time
of non-informative status. These changes warranted a novel significance test, for which
we developed a modification of Peto et al.’s logrank test [3] This analytical approach is
rather conservative in its type I error rates for smaller trials, but the rate approaches 0.05
within the limit of massive trials with many distinct failure times. Thus, we developed a
computational approach that is more resource-intensive but remains precise and accurate
independent of trial size.

In order to explore and demonstrate the utility of WTA, we applied WTA to two randomized
clinical trial simulation studies. The first clinical setting was chemotherapy toxicity, a trial
in which the variable of interest ranged from one to five (shifted to zero to four), stage
transitions were singular and started at zero, and up to 50 discrete time points were
measured for each patient. The second setting was schizophrenia disease course, a more
complex trial in which the variable of interested ranged from zero to six, stage transitions
were often multiple and started at two, and up to 84 discrete time points were measured
for each patient. We performed sensitivity and power comparisons across both sample
size and hazard ratio. Through 1000-fold validation, WTA showed greater sensitivity and
power, often requiring fewer than half the patients for comparable power to KM estimation.
WTA also showed increased power compared to the GEE, likely secondary to its more
robust nonparametric methodology compared to the semi-parametric GEE, at the cost of
the GEE’s ability to model covariate effects. This demonstrates that designing a phase III
clinical trial using our novel method as the primary endpoint can substantially lower cost,
duration, and the risk of type II errors.

We also applied WTA to real-world clinical trial data. The first application was
the assessment of time-dependent toxicity grades in melanoma patients receiving one
of two immunotherapy treatment regimens. Although toxicities are generally reported
in oncology trials as the worst grade experienced by each individual patient, this fails to
capture those toxicities that resolve with treatment modification or targeted intervention. As
such, the published literature suggests the prohibitive toxicity of the most effective therapy,
while practitioners’ experience is that high-grade toxicities are often transient and treatable.
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The WTA we conducted confirmed that treatment-related toxicities of combination therapy
resolved to rates close to that seen with less effective monotherapy regimens. The second
application was the re-evaluation of a published phase III registration trial of an anti-
angiogenic drug for the treatment of metastatic breast cancer. Although this study failed to
demonstrate statistically significant improvement in the pre-defined primary endpoint, a
number of secondary endpoints suggested the possibility of meaningful clinical benefit from
the antiangiogenic therapy. By using an ordinal scale to describe the spectrum of clinical
outcomes after therapy, spanning complete disease response, partial response, disease
stability, disease progression, and death, WTA demonstrated that, although patients derived
a modest benefit from antiangiogenic therapy when compared to control therapy, the
difference was neither clinically nor statistically significant. The resulting graph captured
the full clinical course of patients in a single figure. This result underscores that WTA did
not inappropriately provide an overly sensitive analytic tool and justifies the regulatory
stance that the intervention did not warrant approval for the market. Overall, the novel
method affords greater specificity and reduces the likelihood of type I errors.

In aggregate, we feel the strengths of the weighted trajectory analysis statistic are its
ability to capture detailed trajectory outcomes in a simple summary plot, its greater power,
and its ability to map exacerbation and improvement. These strengths are built upon key
advantages that make KM estimation a favored tool for clinical trial evaluation: namely,
the ability to censor patients and compare treatment arms using a simple hypothesis test.
WTA-dependent trial design can substantially reduce sample size requirements, increasing
the practicality and lowering the cost of phase III clinical trials. However, we acknowledge
several limitations of this method. WTA does not facilitate Cox regression analysis or
generate the equivalent of a hazard ratio. WTA is a new technique and does not yet have
a clinical or regulatory track record. WTA relies on the assumption of non-informative
censoring, and investigation into alternative approaches to censoring, such as inverse-
probability-of-censoring weighting (IPCW), remains important future work [16]. Lastly,
WTA requires an assumption that the change between adjacent ordinal severities is equally
important independent of the levels transitioned by applying a direct numerical weight.
This conversion is not always medically appropriate: taking the example of pressure
injuries, a transition from stage zero to one may necessitate a topical ointment, whereas a
transition from stage three to four may warrant surgical repair. Thus, the method relies
on a simplifying assumption and future research will be conducted to evaluate nonlinear
scoring systems. For multi-stage systems, this method remains more precise than collapsing
scores to binary systems in order to use KM estimation. Alternative statistical methods,
such as multi-state modeling, are recommended to elicit the transition intensities of each
unique level as necessary. To encourage the evaluation and improvement of WTA, software
is in development to permit biostatisticians to further test and apply WTA and potentially
expand its utility.

In summary, we report the development and validation of a flexible new analytic
tool for analysis of clinical datasets that permits high-sensitivity assessment of ordinal
time-dependent outcomes. We see multiple clinical applications and have successfully
applied the new tool in the analysis of both simulated and real-world studies with complex
illness trajectories. Future directions with weighted trajectory analysis include the addition
of confidence intervals to group trajectories, the addition of nonlinear weights to mirror
disease burden, exploration of alternative censoring assumptions, and a regression method
analogous to the Cox model.
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Abstract: Transmembrane proteins (TMPs) are a class of essential proteins for biological and thera-
peutic purposes. Despite an increasing number of structures, the gap with the number of available
sequences remains impressive. The choice of a dedicated function to select the most probable/relevant
model among hundreds is a specific problem of TMPs. Indeed, the majority of approaches are mostly
focused on globular proteins. We developed an alternative methodology to evaluate the quality of
TMP structural models. HPMScore took into account sequence and local structural information using
the unsupervised learning approach called hybrid protein model. The methodology was extensively
evaluated on very different TMP all-α proteins. Structural models with different qualities were
generated, from good to bad quality. HPMScore performed better than DOPE in recognizing good
comparative models over more degenerated models, with a Top 1 of 46.9% against DOPE 40.1%, both
giving the same result in 13.0%. When the alignments used are higher than 35%, HPM is the best for
52%, against 36% for DOPE (12% for both). These encouraging results need further improvement
particularly when the sequence identity falls below 35%. An area of enhancement would be to train
on a larger training set. A dedicated web server has been implemented and provided to the scientific
community. It can be used with structural models generated from comparative modeling to deep
learning approaches.

Keywords: structural models; protein structures; membrane bilayer; DOPE; Modeller; AlphaFold2

1. Introduction

Protein structure knowledge allows the atomistic understanding of biological mech-
anisms. Nonetheless, most of the available protein structures in the Protein DataBank
(PDB) [1] are globular. Indeed, despite their great functional importance, e.g., 20% of all
human proteins [2], transmembrane proteins (TMPs) represent less than 0.7% of the PDB (at
8 December 2020). They are implicated in a large series of pathologies [3] and are targeted
by more than 60% of current drug [4]. Thus, methods to propose efficient structural models
of TMPs are of high importance [5,6].

Although the number of templates was limited, comparative modeling methods have
been applied to TMPs de novo, and now, deep learning protein structure predictions are
used with the most recent developments [7,8]. Whatever the approach, the major challenge
is to detect the structural model with the closest conformation to the native structure,
which is accomplished by the so-called model quality assessment programs (MQAPs). By
definition, free energy potentials would theoretically allow this selection. Physics-based
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potentials taken from molecular mechanics [9,10] might be considered. It was actually
proposed by Feig’s group [11], which calculated the energy of models as a sum of the force
field conformational energy of the membrane protein plus the interaction energy of the
protein with an implicit model of membrane environment. A web server (not available
at the present time) was developed to calculate what is designated as memscore. As
stated by the authors, the strategy was rather good for decoy close to the native state but
further improvements are required for models further from the native state. Thus, even
by accounting the membrane environment, force-field-based scoring functions are not the
most efficient ones in practice because most of them are not calibrated on free energies.

The statistical potentials derived from experimentally determined protein structures
remain the most efficient ones. MQAPs can be divided into different approaches; the most
important ones take into account the local 3D environment of the protein structures. Briefly
speaking, the scoring is based on the counting of the observed contacts and compared
to a reference. However, although based on the same spirit and the same datasets, the
formalism of the scoring function itself may be very different (see [12]). In this field,
the most widely used was discrete optimized protein energy, or DOPE [13], which was
implemented in the Modeller software [14,15]. It is mainly based on the distance between
atoms in the analyzed models compared to the ones observed in the dataset of reference.
Prosa [16] and its latest incarnation Prosa-web [17] are based on a classical potential of
mean force; the output provided by Prosa-web was interesting as it compared the quality
of the structural models in regard to a large dataset of X-ray and NMR structures. Verify3D
proposed a slightly different view by considering the compatibility of the model (3D) with
its sequence (1D) by looking at the environment (secondary structure, hydrophobicity, etc.)
as seen in known structures [18,19]. Since this first generation, different improvements
have been introduced; they consisted of adding different parameters, such as the residue
distance, solvent accessibility and secondary structure content [20–23]. The weighting of
these parameters was optimized with artificial neural networks, support vector machines or
machine learning approaches [24–27]. Consequently, they were in general more dependent
on the training procedure and on the training set than classical approaches.

TMPs structural models have often been assessed using this approach. However,
these MQAPs were often optimized on water-soluble proteins that bathe in a homogenous
environment. In the case of TMPs, the situation is more complex because they are in
contact with two very distinct environments; a water environment for the soluble part of
the protein and the lipid environment for the membrane embedded region, and even a third
one corresponding to the membrane interface. This also corresponds to a striking difference
in the amino acid distribution of TMPs [28]. Thus, to make sure these specificities were
taken into account, the IQ method was proposed. It is based on the analysis of four types of
inter-residue interactions within the transmembrane domains [29]. The ProQM approach
used support vector machines trained on contacts, solvent-accessible surface, secondary
structure, topology of TM region, Z-coordinate, and evolutionary information [30,31]. It
was sensitive to the side-chain positioning.

MEMEMBED is a dedicated statistical potential that considers the membrane depth
of residues [32]. More recently, MAIDEN proposed an interesting and innovative de-
velopment, computing the interatomic distance between all 20 standard residue types,
focusing on intramembrane residues [33,34]. QMEANBrane is a more simple approach
also using the delineation of a theoretical membrane region to focus on the transmembrane
region [35]. It was only tested on a GPCR, while MAIDEN was tested on the most diverse
set of protein folds.

In the RosettaMembrane/RosettaMP approach [36–38], a specific function for TMP
has been established in a Rosetta way, namely the force field is a linear combination of
a Lennard–Jones potential to model the VDW interactions, a backbone torsional term, a
knowledge-based pair interaction term for the electrostatic interactions, reference energies
to normalize the overall amino acid composition, an implicit atomic solvation term, and an
orientation-dependent hydrogen bonding term [39]. This development is highly dependent
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on the specific generation of the models by Rosetta. All these scoring functions can only
compare a set of equivalent structural models, but not different sequences. AlphaFold2 has its
own quality schema evaluation, called pLDDT, for “predicted local distance difference test”,
which is a per-residue confidence metric [40]. pLDDT is not a score for comparing models but
rather a local confidence measure of regions of the structural models [40]; it appears worse for
qualifying regions in membrane protein compared to those in globular proteins [8,41–44].

In a previous study [45], we learnt and analyzed the sequence–structure relationship of
TMPs with an unsupervised learning approach, called the hybrid protein model (HPM) [46,47].
HPM was also shown to be efficient in analyzing globular proteins, e.g., building of over-
lapping local structural prototypes [48–50] or the prediction [51–53] of flexibility. HPM was
used to analyze protein fragments present in a non-redundant databank of all-α transmem-
brane proteins. The method has many advantages, which are: (i) A simultaneous learning
of sequence (polarity, volume, and hydrophobicity) and structures (ϕ and ψ dihedral angles)
properties, e.g., distribution of amino acids associated with different local conformations;
(ii) Unsupervised learning due to the given descriptors (sequence and structure), i.e., without
any a priori; and (iii) The learning of the overlapping of protein fragments, taking into
account the sequentiality (or continuity) essential in proteins, i.e., without any constraints.
After a fine-tuning of learning parameters, the sequence–structure relationship was ana-
lyzed in light of a structural alphabet, called protein blocks [54,55], underlining two helical
regions with very different hydrophobic patterns, identifying groups with properties spe-
cific to extremities of helices, or to loops, or to helices. Moreover, some groups showed
preferential localizations for the periphery of the membrane or inside the membrane. This
can be used for annotation as channel/non-channel, but also for the assessment of the
quality of structures and structural models.

In this study, we have generated a large set of structural models ranging from very
good to poor models for a various number of folds. The models were evaluated using
classical root mean square deviation (rmsd) and GDT_TS. The latter is the most classical
reference metric for comparing diverse structural models [56]. Its interest is to limit the
influence of poorly modeled substructures for the protein considered. We also used the
famous DOPE scores [13], as using them is one of the most classical approaches to selecting
protein structural models though comparative/homology modeling.

In some aspects, the HPM approach can be related to the Verify3D methodology, which
encompasses sequence, structure, and environment properties to evaluate the compatibility
of a given sequence with a given 3D structure. The Verify3D approach was never dedicated
to TMPs. HPM does not need, as is true of other approaches, to localize helical regions
and take into account the connecting loops. We then compared the discrimination of the
quality of the models using HPMScore values compared to DOPE scores, and we propose a
dedicated webserver HPMScore (https://www.dsimb.inserm.fr/dsimb_tools/hpmscore/
index.php, accessed on 1 March 2023).

2. Materials and Methods

2.1. Protein Structure Dataset

The membrane protein dataset was derived from the HOMEP dataset [57]. This set
of proteins is composed of 76 membrane proteins, separated in 23 categories, depend-
ing on their biological function (https://zenodo.org/record/2646540#.Y7b99C3pNTY,
accessed on 1 March 2023). This dataset was completed by 13 GPCR structures. The entire
dataset is composed of 89 proteins. The protein structures composed of all-α transmem-
brane domain were taken from the PDB [1]. For analysis purposes, the number of TM
domains and their boundaries over the whole protein sequence were predicted using
the PPM web server or directly imported from the orientation of protein in a membrane
(OPM) database [58,59]. We defined three main categories of protein structures according
to the transmembrane content: large (more than 40% of amino acids associated with the
transmembrane domain), medium (40%< and >15%), and few (>15%). Please notice that
HOMEP was later expanded in EncoMPASS [60].
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2.2. Generation of Alternative Structural Models

We have generated a large set of structural models ranging from good quality to
bad, i.e., to mimic what often happens in daily research. For a given protein, the original
sequence from the PDB was extracted and duplicated to create an ideal alignment where
the template and the target sequence are initially identical. The alignment was further
processed to reproduce point mutations or gap insertions using two strategies. First, we
created a similar sequence by randomly picking an amino acid position and exchanging
it with another position. This procedure kept the amino acid composition, but varied the
sequence identity with the template sequence. The procedure was repeated until a target
percentage of identity was obtained or a maximum number of iterations was reached.
This iteration number was set arbitrarily at twice the length of the amino acid sequence
to save time. The second strategy consisted of perturbing the alignment by random gap
modifications, up to 5 random gaps of length between 1 and 8, either on the parent sequence
or on its children. Once the alignment was produced, its overall percentage of identity was
calculated using BioPerl [61]. The structural models for each alignment were created using
Modeller v9.18 [14,15] (the entire process of generation and evaluation of structural models
is presented in Figure A1).

2.3. Assessment Scores

DOPE scores [13] are directly provided by Modeller [14,15]. HPM scores [45] are
determined as follows: (i) The protein structures are cut into fragments of length L (L = 13,
as obtained in [45] and recommended from previous studies [46,47,54], see next paragraph);
(ii) Each fragment is translated in terms of polarity, volume, and hydrophobicity for their
sequence and in the cosine and sine functions of their dihedral angles for their structure;
(iii) The fragment and its local environment are then compared to each position of the opti-
mal HPM matrix (determined in [45]); (iv) The maximal score provides the best matching
between this position and the HPM matrix that reflects our current knowledge of TMP
sequence–structure relationship. The HPMScore value is the sum of all these maximum
scores. For further analyses, local DOPE and local HPMScore values were also investigated
per domain, i.e., transmembrane region or not, using the segments defined as membranous
in OPM [58,59].

From a practical point of view, HPM depends on its total length and the length of the
fragments presented. These two parameters were tested in [45] to end with a total length of
100 and fragments of L = 13 positions. With several simulations, these two choices made
it possible to have a sufficient occurrence number at each position, and also two distinct
types of helices. Then, with these parameters, 100 independent simulations were carried
out with a high learning rate similar to the self-organizing maps (SOM) type [62,63]; this
high value limits the importance of initializing. The most central HPM (with a minimum
distance from all the others) was then taken up as a new initial HPM for a new training.
Here, the learning coefficient was quite limited to fix the optimal HPM. These two stages
have a strong analogy with the two main phases of learning the SOMS, i.e., diffusion
then specialization.

2.4. Data Analyses

The 3D structure representation is generated using the PyMOL software (http://
www.pymol.org, accessed on 1 March 2023) [64]. The protein superimposition was carried
out using the iPBA software [65] based on the protein block description [54]. RMSD
was computed using profit [66], through the iPBA software. In the following step, the
computation of the GDT_TS and PBscore alignment was performed [65]. TMalign was also
used for comparison [67]. The GDT_TS value is a reference metric for comparing diverse
structural models [56]. It weights close to large local RMSD variations to limit the influence
of poorly modeled substructures for the protein considered. An ideal GDT_TS value is 100
for a “perfect” match between the model and the experimental structure; the worst value is 0.
For each experiment, the best model is defined by the highest GDT_TS in regard to the true
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3D structure. It is named “G-model” in the following. Most of the analyses were carried out
using the Python language and R software [68]. We have made available a companion website
that contains a large number of analyses (https://clipperton.ufip.univ-nantes.fr/hpmeval/,
accessed on 1 March 2023). The analyses can be viewed at the level of the whole dataset, but
also by a single protein and by protein type. Various data analyses have been performed.
The most classic is the calculation of the Top 1, Top 5, and Top 10. The metric is simple
and corresponds to the number of times that for the same simulation, the HPM or DOPE
method allow you to select the best model. For Top 1, it is a direct comparison, while for
Top 5 and Top 10, it is the best as selected by DOPE and/or HPM within their best 5 and
10 scores. The only specificity of these results is that sometimes DOPE and HPM can select
the same result (hence, the category HPM and DOPE).

2.5. Scripting and Web Server of HPMScore

The original code of HPMScore was developed with the use of a local PDB reader coded
in C language that generated a flat file with all the information (sequence in terms of polarity,
volume, and hydrophobicity, and structure in terms of ϕ and ψ dihedral angles). The latter
is used by the HPM program (also coded in C language) that performs the evaluation. A
dedicated web server that encompasses all these properties is made available to the scientific
community. It provides a simple interface with a nice visualization (https://www.dsimb.
inserm.fr/dsimb_tools/hpmscore/index.php, accessed on 1 March 2023).

3. Results

3.1. Generation of a Set of Structural Models for Sequences with Various Sequence Identities
with Templates

The assessment of protein model quality is essential to guide computational biologists
to select the best structure for further evaluation and analysis. The main idea was to
simulate a large sampling of structural models derived from TMP resolved structures,
ranging from sequences close to the sequence of a known structure to sequences far from
any structural template sequences leading to very poor models, as it may occur. To mimic
the drift of protein sequences through evolution, the initial protein sequence of each protein
model was subjected to permutations or mutations to reach a given percentage of identity.

For example, a 100amino-acid-length protein sequence will attain 99% of sequence
identity if one mutation is virtually performed, or 98% with a permutation since two
positions are exchanged between different amino acids. This degenerated sequence and
the original protein structure is then used as inputs for Modeller [14] for producing 3D
models of the “drifted” protein. We will detail below how the models are assessed using
our original method, HPMScore [45] and DOPE [13].

From the dataset of 89 proteins, a total of 29,571 alignments were generated, which cor-
respond to an average value of 332 degenerated alignments per protein. This value depends
on the protein length. The distribution of scrambled sequences ranked by sequence identity
is shown in Figure 1. The average sequence identity is 38.9% (for a median of 32.55%) and
reaches a peak for the 10–15% interval with more than 3500 alignments available. As the
generation of sequences with very low identity percentages (<10%) can be time-consuming,
we limited the number of sequence generation, which resulted in a drop in this category.
This distribution, which looks roughly as an extreme value distribution, shows that it is
easier to generate sequences with low sequence identity than with high sequence identity.
It also underlines the interest of categorizing 3 main classes of alignments: good for a
sequence identities higher than 75% (3682 sequences), bad for sequence identities less than
35% (15,786 sequences), and medium for the sequences between them (10,102 sequences).
For each alignment, 25 models were built using Modeller [49].

Thus, a particularly large number of structural models of very different quality have
been proposed, allowing a broad view of all the different types of protein folding of TMPs.
This approach allows the evaluation of HPMScore and its comparison with DOPE.
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Figure 1. Distribution of sequence alignments. This histogram provides the distribution of sequence
alignments percentage identity (%) between the true sequence and the simulated ones. A simulated
sequence is classified as a good sequence if the sequence shares 75% or more sequence identity with
the reference (in blue), as medium for a sequence identity above 30% and below 75% (grey), and as
bad in other cases (<30%, in tan).

3.2. HPM Selects Better Models Than DOPE

To determine which model is the closest to the experimental structure, GDT_TS
values [56] were computed for all models proposed from the degenerated sequences. In
ideal situations, we should observe a correlation between the scoring functions and the
GDT_TS values. Consequently, we addressed two questions: (i) What is the capacity of
each scoring function to rank the model with the highest GDT_TS score first? and (ii) What
is the quality of the best model (Rank 1) defined by each scoring function? For the first
question, we found that both DOPE and HPM can identify the absolute G-model (the one
with the highest GDT_TS) with a very limited prediction rate of 7.4% for HPM and 3.7%
for DOPE. Although the capacity of each scoring function to identify the absolute G-model
is limited, HPM appears slightly more efficient than DOPE.

This result still stands when addressing the second question, i.e., the quality of the
model ranked best by each method. Indeed, the first model ranked by HPM has a lower
GDT_TS score in 46.9% of cases compared to 40.1% for DOPE, and both select the same in
13.0% of the cases (see Table 1(A)). If the first 5 HPM or DOPE best scores are considered,
HPM still outperforms DOPE (48.4% vs. 44.0%), and this situation stands true even if
the first 10 models are considered (48.4% vs. 45.5%). This average lower sensitivity of
DOPE may be attributed to a more important weight of loop regions in the scoring function.
In contrast, when only transmembrane segments are taken into account (see Table 1(B)),
DOPE slightly outperforms HPM (47.2% vs. 45.6%) only if the best model is considered.
Indeed, when more models are considered (Top 5 or 10 models selected by each method),
the differences between the two scoring functions are small but systematically in favor of
HPM (46.8% vs. 46.4%, and 47.0% vs. 46.3%, respectively).
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Table 1. Relative performance of HPM vs. DOPE. The percentages of best models, i.e., best GDT_TS
found by HPM, DOPE or both within TOP 1, TOP 5 and TOP 10 results, are provided. (A) For the
complete structure. (B) Only on transmembrane segments.

(A)

Scoring Method/Models Considered for Ranking TOP 1 TOP 5 TOP 10

DOPE 40.1% 44.0% 45.5%
HPM 46.9% 48.4% 48.4%

HPM and DOPE 13.0% 7.6% 6.1%

(B)

Scoring Method/Models Considered for Ranking TOP 1 TOP 5 TOP 10

DOPE 47.4% 46.4% 46.3%
HPM 45.6% 46.8% 47.0%

HPM and DOPE 7.0% 6.8% 6.7%

In a second step, we examined the influence of the sequence identity on the capacity
of identifying the best model and the quality of the ranked models for each method (see
Table 2). For models produced with medium sequence identity (35–75% of sequence
identity), or with high sequence identity, i.e., good sequence alignment (75–100%), the
quality of the best ranked model by HPM largely outperforms the quality of the best ranked
model by DOPE, with about 52% for models in both medium and good categories detected
by HPMScore, 36% detected using DOPE, and 12% where both models find the same
model. For sequences below 35% of sequence identity, considered as poor alignments,
DOPE (43.8%) performs slightly better than HPM (42.6%), and both methods find the best
model in 13.6% of alignments.

Table 2. Relative performance of HPM vs. DOPE. The percentages of best models, i.e., the best
GDT_TS, found by HPM, DOPE or both when the sequence percentage id of the reference model is
taken into account, are provided.

Scoring Method/%
Sequence Identity Range

Poor Alignments
(0–35%)

Average Alignments
(35–75%)

Good Alignments
(75–100%)

Sequence count 15,786 10,102 3682
DOPE 43.8% 35.5% 36.8%
HPM 42.6% 51.8% 52.6%

HPM and DOPE 13.6% 12.7% 10.6%

In summary, for target sequences with a sequence identity compatible with compara-
tive modeling (>35%), HPM is on average more effective than DOPE. When the sequence
identity decreases, the differences between the two scoring schemas are much lower, and
slightly in favor of the DOPE scoring function. Please note that for poor alignment quality,
it is difficult to be sure that the aliasing is properly preserved. It is certain that a significant
number of cases are not correct TMPs.

Figure 2 illustrates an example of the putative metal-chelate type ABC transporter
(PDB ID 2NQ2) and the relationship between the generated alignments, the HPMScore
value of the corresponding structural models, and the structural approximation (evaluated
here by the GDT_TS). The protein is a homodimer, each monomer being composed of a
large transmembrane domain containing eight TM helices and an intracellular domain
composed of α-helices mainly and a few β-sheets (Figure 2a). Only Chain A has been
evaluated, since Chain B is similar. Figure 2b shows the dependence of the HPM score
with the percentage of identity of the target sequences with the template sequences. Since
the HPM score is equivalent to a distance, the lower the HPMScore value, the better it is.
Figure 2b clearly illustrates the nice correlation between the HPMScore and the sequence
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identity. Figure 2c shows that the quality of the models (evaluated with the GDT_TS score)
is obtained after a strong randomization of the sequence alignment. This figure points
out that even with a low sequence identity, the GDT_TS score can be very high, which
means that it is possible to keep a native fold. It is clear, however, that the better the
alignment, the lower the standard deviation of the category (good, medium, and bad).
Figure 2d highlights the correlation between scores from HPMScore and GDT_TS scores. It
is clear that for the lowest HPMScore values (associated with good quality alignments), the
structural approximation is the best. Moreover, the HPMScore is able to distinguish the
best ones from the worst.

Figure 2. Example of putative metal-chelate type ABC transporter (PDB ID 2NQ2). (a) Three-dimensional
visualization, (b) sequence identity of the alignments (%) vs. HPM scores (103), (c) GDT_TS vs. sequence
identity of the alignments (%), and (d) GDT vs. HPM scores (103). (b–d) good alignment (green),
intermediate alignment (blue) and bad alignment (red).

Hence, the example in Figure 2 shows the complexity of proposing structural models
of different quality, but also how essential it is. TMPs are more often difficult cases than
simple ones. The analysis of Top 1 to Top 10 shows that the HPMScore allows on average a
better selection of models. The analysis of the alignments compatible with the comparative
modeling (average and good quality) shows that the HPMScore gives a better selection in
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52% of the cases, 12% are common with DOPE, and DOPE performed better in 36% of the
cases. The difference is clear.

3.3. Assessment of Protein Model Quality

After evaluating how HPM correlates with a robust global measure, such as the
GDT_TS, we go further in the evaluation of the quality of the models ranked by HPM and
DOPE, respectively. An example of the models obtained for medium sequence identity
to the reference protein (38%) is presented in Figure 3. The best model according to HPM
is more compact and possesses slightly more secondary structures than the model with
the best DOPE score. A closer inspection reveals a more consistent architecture of the
seven transmembrane segments, a better orientation of the third intracytoplasmic loop
characteristic of GPCR proteins, and the conservation of the extracellular loop involved as
a lid for the ligand binding pocket. Overall, both models are of poor quality and would not
be considered as sufficient for further use as support models, but the HPM-selected models
are better candidates for further modeling studies.

Figure 3. Comparison of models identified using HPM or DOPE. Cartoon representation of the
models selected by HPM ((a), in cyan) or DOPE ((b), in pink) for a degenerated sequence of 38.8%
sequence identity with the human M2 muscarinic acetylcholine receptor (PDB ID 3UON). The
HPM-selected model is more compact than the DOPE-selected model.

All analyses for all proteins have been made available on the companion site (https://
clipperton.ufip.univ-nantes.fr/hpmeval/, accessed on 1 March 2023). The analyses can be
viewed at the level of the whole dataset, but also by single protein and by protein type.

3.4. Web Server Usage and Example

The web server can be accessed at the following url: https://www.dsimb.inserm.fr/
dsimb_tools/hpmscore/index.php, accessed on 1 March 2023). The main page gives a
small introduction and a direct access to the section for uploading the structural models
(see Figure 4). Two options are possible that consist of: (i) Analyzing models one by one
(see Figure 4B); or (ii) A set of models uploaded from an archive (see Figure 4A). Please
note that structural models must be provided in a classical PDB format, as generated
by Modeller [14], Robetta [69], RoseTTAfold [70], AlphaFold2 [40], I-Tasser and other
classical approaches.
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Figure 4. HPMScore homepage. Two options are provided to upload the structural models: (A) all
files being in an unique archive or (B) added one by one. Links to the different pages are shown on
the top of the page (C) this page, (D) a description of the methodology, (E) a dedicated example and
(F) the contact page.

At the top, links to access other pages are found on all pages. The first page is the
Home page (see Figure 4C), followed by a page of explanation of the HPM methodology
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(see Figure 4D), a concrete example of usage and analysis (see Figure 4E), and finally, the
last page contains the contacts of the people involved in this research (see Figure 4F).

When the files have been loaded, the program launches an intermediate note page
stating ‘Please wait while HPMScore is computed’. Each job is associated with a temporary
directory, which will be kept for two months.

The results page (see Figure 5) is divided into six main parts. The example proposed
here can be found on the website, and corresponds to a putative Halorhodopsin with no
known structure and less than 40% sequence identity to related ones, i.e., a classical case of
structural modeling.

Figure 5. HPMScore results. The page results have been split in two columns. (A) The list of the
different models ranging from best (smallest HPM score) to worst is provided; (B) A histogram of
these HPM scores is provided; (C) A local plot of HPM score is shown for the best model (it can be
found in the archive files for the other models); (D) Two orientations of the best structural models
colored with the local HPM score are provided with an extra one within the protein surface; (E) An
interactive visualization; and (F) Links to the different files and archive. The example shown here is
provided on the website and corresponds to a Halorhodopsin far away from other related sequences
and structures.

The first section lists the structural models by HPM score in descending order (the
best being the first, see Figure 5A). Then, a histogram shows the distribution of the HPM
scores of the different models (see Figure 5B). This information allows the user to carry
out analyses, for example, to compare the best and the worst model, or other ranking
questions. HPM, like DOPE score or Verify3D and PROSA, computes a local score, it uses
an overlapping sequence window of 13 residues. The third section provides this information
for the first model with a plot (see Figure 5C). It could allow comparing alternative proposed
conformations. The fourth part shows the 3D model in two orientations (and an extra one
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with the surface) thanks to the software PyMOL. The structural model is colored according
to the quality considered by the HPM score (see Figure 5D). The user can directly interact
with the structural model (see Figure 5E). An essential point is the availability of an archive
summarizing all this information (see Figure 5F), which can be downloaded locally. It
contains all the information detailed here, but also provided for every model not shown on
the website. Structural models are provided with an HPM score. It is possible to observe
them with visualization software, such as the PyMOL software. All of this information
makes it easy to choose the model that seems the most relevant, knowing the difficulty of
this type of question for transmembrane proteins.

Thus, the HPMScore webserver allows the specialist and the neophyte (it has been
particularly used in several training sessions) to evaluate models in a simple way. It then
allows visualizing the areas considered as the most successful. The specialist can also use it
to go further in comparative modeling by combining multiple models according to their
local HPMScore values.

3.5. Use with Structural Models Coming from Different Approaches

We have assessed the interest of our approach based on comparative modeling, while
new approaches of interest exist (see Figure 6). We have so built a 3D structural model of
the putative Halorhodopsin used in Figure 5 with the threading approach Phyre [71] and
deep learning approaches RoseTTAfold [70], ESMFold [72], and AlphaFold2 [40]. Other
approaches were tested but they cannot provide complete models.

Figure 6. Comparison of different structural models coming from different methodologies for a
Halorhodopsin. (a) The list of the different methodologies is provided, (b) the corresponding HPM
score histogram with (c) the visualization of different structural models from Modeller, RoseTTAfold,
Phyre, ESMFold, and AlphaFold2. Please notice that PDB files of RoseTTAfold have been saved in
proper PDB format with PyMOL.
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We have only added the best Modeller results. This works well and shows the diversity
and difficulty of proposing TMP structural models. HPMScore values are distant, so the
lower the better. Hence, AlphaFold2 [40] is very far away (and close to ESMFold) with
the highest HPMScore values. Phyre is the intermediate when our supervised Modeller is
the one associated with the lowest (best) HPMScore value. Interestingly, RoseTTAfold is
not too far away but has a wrong local topology. This last example clearly underlines the
interest of HPMScore, which is a specific development for protein of high pharmaceutical
interest. Structure models were evaluated on a large scale with a very large set of model
quality showing its stability. The HPM scoring function, performing on average better than
DOPE, is the reference scoring function in the Modeller suite [14] (that can be used to rank
models made from other approaches).

This example highlights the importance of having an external and simple tool to test
results from different tools, even in this period of Deep Learning with AlphaFold2 and
related methods.

4. Discussion

The modeling of TMPs has existed for a long time, even when the number of structures
was very limited [7,73]. To analyze the properties of TMPs, the first step has long been the
prediction of the transmembrane segments. PHDtm was the first method linking artificial
neural networks (ANNs) and evolutionary data [74,75]. PsiPred [76,77] is a widely used
platform for secondary structure prediction, which uses position-specific scoring matrices
(PSSMs) with ANN [78]. Although this approach is hardly specific to TMPs, it has shown
good results. Initially, the addition of hydrophobicity scales to the prediction of secondary
structures gave better results [79,80]. An impressive number of methods were proposed,
such as MEMSAT [81,82], HTP [83], DAS [83], SOSUI [84], HMMTOP [85,86], TMHMM
1.0 [87], PRED-TMR [88], OCTOPUS [89], TOPCONS [90,91], MINNOU [92], SVMtm [93],
TUPS [94], Localizome [95], MemBrain [96], AllesTM [97], TMPSS [98], and TMbed [99].
The most recent approaches also take into account other features, such as the regions of the
protein that actually face the membrane, the cytosolic or extracellular sides, and the motifs
responsible for the interactions [97,100–102].

These approaches do not provide 3D structural models but they provide interesting
behaviors. The first and most common proposition of TMP structural models is homol-
ogy modeling with Modeller [14] and SwissModel [103]. Based on sequence alignment
with a structural template, it remains essential in the TMP area. Some methods have
been developed specifically for TMP. For instance, MEMOIR (membrane protein modeling
pipeline) [104], and MEDELLER [105], which proposed only high-quality regions and did
not complete others. Threading was used in TMFoldWeb [106], a web implementation of
TMFoldRec [107]. Rosetta had interestingly incorporated a specific membrane-specific ver-
sion of the original Rosetta energy function, which considers the membrane environment as
an additional variable next to amino acid identity, inter-residue distances, and density [108].
It was included in RosettaMP [98]. In fact, all structural modeling methods, e.g., Phyre [71],
Modeller [14], SwissModel [103], RoseTTAfold [70], ESMFold [72], and AlphaFold2 [40]
can be used for TMPs (see Section 3.5).

However, a quasi-systematic bias is the use of score functions related to globular
proteins and not to transmembrane proteins, such as DOPE. Independent tools, such as
Verify3D [18] or Prosa II [16,17], are based on data that mainly emphasize globular proteins
largely over-represented in PDB globular proteins compared to TMPs.

It is worth noting some studies of interest. Postic and collaborators have, thus, set
up an empirical energy function for the structural assessment of protein transmembrane
domains [33]. This statistical potential quantifies the interatomic distance between residues
located in the lipid bilayer. Following a leave-one-out cross-validation procedure, they
show that their method outperforms statistical potentials in discriminating correct from
incorrect membrane protein models. The approach must be locally installed. Studer and
coworkers proposed an equivalent method named QMEANBrane [35] derived from the
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original QMEAN scoring function [20,109]. It is integrated in the SwissModel environment
but cannot be used with external models [103]. More recently, AlphaFold2 had proposed its
pLDDT scores [40] associated with the quality of the proposed structural models. However,
it cannot be used with results from other approaches. It seems so interesting to see if the
HPMScore could be interesting for the scientific community.

Our work can easily raise three questions: (i) Which proteins can be used? (ii) Which
structural models can be generated? and (iii) How can the results be assessed?.

Transmembrane proteins are difficult to obtain experimentally. In 2000, only one
structure was in the protein data bank. Thanks to new methodologies, their number had
greatly increased. Now, 1561 unique PTM structures can be found, for all-α and all-β
TMPs, as stated by mpstruct [110,111] (https://blanco.biomol.uci.edu/mpstruc/#news,
accessed on 17 January 2023). However, the number of different folds had not really
increased, and redundancies exist. We have kept the HOMEP dataset as we know it very
well and represent correctly the different known TMP folds.

From this dataset, we need to generate a series of structural models. Different ap-
proaches have been proposed to generate decoys that deviated from the real structure. As
no dataset was available, we generated our own. To do this, we decided to make point
mutations, insertions, and deletions to move further and further away from the real struc-
ture. Of course, this does not represent a directed (or rather degenerated) evolution [112],
but it does allow for an important sampling of conformational space. The conservation
of the membrane part plays on a weaker amino acid alphabet [113] than the one we used.
Figure 2c shows how complex this is. Even with a 25% alignment, it is possible to have
GDT_TS ranging from 10 to 90.

Finally, we have analyzed the results with RMSD [114], PBscore [65], and GDT_TS [56].
They all provide the same trends. Top 1, Top 5 and Top 10 underline the interest of the
HPMScore to select the best models. As discussed before, we are in the idea of comparative
modeling, i.e., for sequence alignment higher than 35%; the HPMScore gives a better
selection in 52% of the cases, 12% are common with DOPE, and DOPE is associated with it
in 36% of the cases. Figure 7 shows a visualization of the quality of the prediction by a slice
of 5% of sequence identity. A regression is performed for the HPM results of DOPE and
cases where both give the same result. The direction of the lines highlights the superiority
of HPM. This evaluation unequivocally demonstrates the value of the approach. A Welsh
test on the question of whether HPM is better than a DOPE score alone (data in Figure 7)
gave a significant positive answer (0.01). A rather complex point to apprehend is the
variability of the results simply by protein. The generation of unsupervised alternative
alignments gives very different results depending on the topology of the protein, its amino
acid composition or the impacts of insertions–deletions.

Lastly, we should remember that the HPMScore is built on the HPM matrix, fully
described in [45]. The HPM strategy is based on a learning process combining sequence
and structural properties, which depends on a few parameters.

In the present work, we kept the optimal HPM matrix finely tuned after an extensive
grid search of the parameters and trained on 52 PDB files. Despite its small size, this dataset
contains most of the representative folds of α-helical TM protein. Given the good results
with the present version of the HPM matrix, we may reasonably expect improvement with
new training on a larger dataset that includes 3D structures solved since. This will be the
subject of a forthcoming study. For convenience, we have made available an additional
website (https://clipperton.ufip.univ-nantes.fr/hpmeval/, accessed on 1 March 2023) with
a large number of analyses, which highlights this complexity.

The HPMScore web server allows a simple and efficient use; we used it regularly (and
also for courses). The example presented with results from very different predictive tools
clearly demonstrates the usability of the methodology.
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Figure 7. Evaluation summary. Per bins of 5% of sequence identity has shown the best results with
HPMScore (red), DOPE (black) or both (blue). On the upper part, the number of evaluated models
is given.

5. Conclusions

When one wants to produce a model and evaluate its quality, it is important to under-
stand how the scoring procedure will indicate the overall quality of the model. Most of
the proposed structural models have been created using comparative modeling [7], while
AlphaFold2 can provide an interesting alternative [41,115,116]. In our study, we first simu-
lated the evolutionary drift in protein sequence between homologous proteins by creating
degenerated sequences using amino acids mutations or permutations. For each resulting
sequence, we modeled the putative target protein from the template protein where the 3D
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structure was available. We then assessed the performance of our new method against
the reference DOPE function, reportedly very effective for membrane proteins. Our new
scoring function is based on the hybrid protein model approach, trained on a set of repre-
sentative membrane proteins. It is widely accepted that membrane proteins are difficult to
model since the amino acids forming the transmembrane segments are densely packed due
to the hydrophobic environment and the lipid compaction surrounding the protein, whilst
the extra- and intra-cellular amino acids are exposed to a more hydrophilic medium.

This study is interesting as the HPMScore is a non-classical approach, and was tested
with the greatest number of different TMPs and the largest number of generated models.
Moreover, Top 1 was used, but also Top 5 and Top 10; sequence identity rate influence was
evaluated and even the analysis of the transmembrane region was assessed. It is, therefore,
a systematic large-scale study.

A server is up for model validation. It can take as input a single model or a large
number of models coming from various prediction methods. Interestingly, it can be used to
select models and to analyze them at residue level (and so potentially combine different
structural models).
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Appendix A

Figure A1. Study principle. (a) From a real structure taken from the protein data bank, (b) its
sequence is extracted, an original alignment at 100% is performed, (c) then different changes are
made to create alignments with decreasing sequence identity, (d) each alignment is used to generate
structural models, (e) these models are superimpose with the true structural allowing to compute
GDT_TS and RMSD.
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Abstract: Feature selection is a common step in data preprocessing that precedes machine learning
to reduce data space and the computational cost of processing or obtaining the data. Filtering out
uninformative variables is also important for knowledge discovery. By reducing the data space to only
those components that are informative to the class structure, feature selection can simplify models
so that they can be more easily interpreted by researchers in the field, reminiscent of explainable
artificial intelligence. Knowledge discovery in complex data thus benefits from feature selection that
aims to understand feature sets in the thematic context from which the data set originates. However,
a single variable selected from a very small number of variables that are technically sufficient for AI
training may make little immediate thematic sense, whereas the additional consideration of a variable
discarded during feature selection could make scientific discovery very explicit. In this report, we
propose an approach to explainable feature selection (XFS) based on a systematic reconsideration of
unselected features. The difference between the respective classifications when training the algorithms
with the selected features or with the unselected features provides a valid estimate of whether the
relevant features in a data set have been selected and uninformative or trivial information was filtered
out. It is shown that revisiting originally unselected variables in multivariate data sets allows for the
detection of pathologies and errors in the feature selection that occasionally resulted in the failure to
identify the most appropriate variables.

Keywords: data science; machine-learning; digital medicine; artificial intelligence

1. Introduction

Feature selection (for an overview, see e.g., [1]), is a frequent step of data preprocessing
preceding machine-learning to reduce the data space and the computational load to process
it, or the costs to acquire relevant data. Feature selection thus filters the information
contained in a data set and removes uninformative variables, considering that machine
learning algorithms need examples of the relevant structures in an empirical data set.
Filtering out uninformative variables is also relevant to knowledge discovery. By reducing
the data space to its components informative for the class structure, feature selection
can simplify models to make them easier to interpret by field researchers, addressing
explainable artificial intelligence (XAI) [2].

Too much information represented in many variables can prevent field experts from
grasping the main mechanistic processes underlying a class structure in a data set. This
is consistent with an observation more than half a century old that human intelligibility
is limited, with a proposed optimum of 7 ± 2 [3]. On the other hand, too few features
resulting from rigorous selection may be sufficient for successful classification by the AI,
but insufficient for field experts to understand the key processes underlying the structure in
the data. For example, of two highly correlated variables, one may be technically better for
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the AI to function and is therefore selected, but the other would make sense in the context
of the actual research topic. Few selected variables may be functioning for an algorithm.
However, they may provide a fragmented picture of the underlying process. The additional
consideration of variables that were discarded during feature selection could make the
scientific result very clear.

Knowledge discovery in complex data thus appears to potentially benefit from feature
selection aimed at understandable feature sets in the topical research context from which
the data set originates. Knowledge discovery via feature selection for classifiers is based
on the idea that if an algorithm can be trained to assign a case to the correct class, the data
contains a structure relevant to the class structure, and the variables that the algorithm
needs to successfully perform its task are the class-relevant variables or features in the
actual data set. However, the interpretation of a feature set in a specific research context
may vary depending on whether it can be stated that only the selected features, but not
the unselected features, provide a the information necessary for correct class assignment.
This would allow the variables not selected to be discarded as uninteresting, and the
result of the analysis will be that the process studied is characterized by the variables
selected, which may represent scientific progress. For example, if the variables contained
genetic information, then the selected features will give a clear indication of the genetic
background of the biological process under study. A rigorous feature selection process that
provides the minimum amount of information required by an AI for classification might
have discarded variables that also provide class-relevant information, only to a lesser extent
than the selected variables. In this case, the interpretation of the feature set in the topical
context may differ from the one above, i.e., it cannot be claimed that the background mech-
anisms of the process of interest has been comprehensively captured when interpreting the
selected features.

Thus, while usually the interest in the variables omitted during feature selection
vanishes, they may still contain relevant information for the topical interpretation unless
proven otherwise. Specific attempts on this topic are so far limited, such as highlighting
that extracting a subset of the most important features could help researchers understand
the biological processes underlying the disease [4]. Therefore, this report shows that
classification performance obtained with the unselected features can be used to improve
the interpretation of feature sets. The evaluation of classification performance with both
the selected and unselected features provides an indication of whether informative features
have been left aside. This information can critically affect the interpretation of a feature set
if the selection process was conducted with the goal of knowledge discovery. Therefore,
this report proposes an explainable feature selection (XFS) approach based on a systematic
reconsideration of the unselected features.

2. Methods

2.1. Algorithm

Three criteria are proposed that a set of features should satisfy in order to both capture
the background mechanisms of the process in terms of the explainable feature selection
(XFS) and to have identified the most appropriate variables for the class assignment.

1. Classification performance of algorithms trained with the selected features should be
satisfactory, which is routinely checked. Ideally, it should not drop significantly from
the performance obtained with all features. The classification performance must be at
least better than chance, including the lower bound of the 95% confidence interval
of classification performance measures, which should be higher than the level of
guessing of the class assignment.

2. Classification performance with the selected features should be better than classifica-
tion performance when the training is conducted with the unselected features. This
is not routinely checked. The difference between the respective classifications when
training the algorithms with the selected features and when training the algorithm
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with the unselected features should be positive, e.g., with a lower bound of the 95%
confidence interval > 0.

3. If the difference in point 2 above is not satisfactorily greater than zero, but the classi-
fier trained with the full set of features has satisfactory accuracy, then the unselected
features should be reconsidered. If variables are omitted that are very strongly corre-
lated with selected features, an assessment should be triggered of whether correlated
variables might add relevant information that improves the (domain expert’s) in-
terpretation of the feature set. In a new feature selection pass, the features already
selected from the first pass are omitted. The final feature set is then the union of the
two feature sets, provided that the second pass did not fail criterion 1.

2.2. Evaluations
2.2.1. Quantification of Feature Importance

Several different methods of feature selection have been proposed. Overviews on
feature selection methods are available in the literature, e.g., [1,5]. Feature selection meth-
ods [1] are typically presented in three classes: filter, wrapper and embedded methods.
Filter methods suppress the least interesting variables, where interestingness is typically
measured as a correlation to the variable to predict [6]. In wrapper methods, subsets
of variables are evaluated for an overview, see for example [7]. Ensemble methods try
to combine wrapper and filter methods [8]. Implementations include “brute force” ap-
proaches limited only by computational power, and various unsupervised and supervised
methods. Supervised methods aim at identifying the variable importance via classification
performance. Among supervised methods, both univariate and multivariate methods
are available in which informative features can be obtained by, for example, recursive
feature elimination or sequential feature selection. Particular implementations include the
regression-based least absolute shrinkage and selection operators (LASSO [9]), or make use
of usually well-performing machine learning methods such as random forests [10,11] and
combine them with statistical tests as in the “Boruta” method [12].

Among popular multivariate supervised methods figures selecting features based on
the variable importance in random forests classifiers. This can be obtained via permutation
weighting [11] from out-of-bag (OOB) cases as the decrease in classification accuracy when
the respective feature is omitted from the class assignment, as implemented in the R
package “randomForest” (https://cran.r-project.org/package=randomForest (accessed on
3 September 2022) [13]), and callable via “importance=TRUE” in the random forest model
constructor and “type=1” in the “importance()” read out function. Of note, the default
method of the mentioned R libary, which measures how effective the feature is at reducing
theuncertainty when constructing decision trees based on the mean reduction in impurity
(or “Gini importance”), was not used because its use has been discouraged, as it has been
demonstrated to occasionally produce biased results with inflated importance of numerical
features not predictive for unseen data [14,15].

2.2.2. Computation of the Set Size of the Selected Features

Most feature selection methods, including the OOB permutation importance used in
the present analyses, do not immediately provide a decision of how many “best” features
to select but just a measure of the importance of each feature. Therefore, the size k of the
final feature set is often determined arbitrarily.

Typically, feature importance has a highly skewed distribution, i.e., a few variables
have high importance, but many have a low importance. This kind of distribution can be
addressed with the computed ABC analysis (cABC) [16]. This is an item categorization
method that aims to identify the most relevant items by dividing a set of non-negative
numeric elements into subsets named “A”, “B” and “C”, such that subset “A” contains
the “important few” items while subset “C” contains the “trivial many” items [17]. The
algorithmic computation of the set sizes from the data has been described in detail previ-
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ously [16]. Combining random forests with cABC analysis for feature selection has recently
been proposed [18].

2.3. Experimental Setup

Programming was performed in the R language [19] using the R software pack-
age [20], version 4.2.1 for Linux, available free of charge from the Comprehensive R
Archive Network (CRAN) at https://CRAN.R-project.org/ (accessed on 3 September
2022). Experiments were performed on 1 – 64 cores/threads on an AMD Ryzen Thread-
ripper 3970X (Advanced Micro Devices, Inc., Santa Clara, CA, USA) computer with
256 GB random access memory (RAM) running Ubuntu Linux 22.04.1 LTS (Canonical,
London, UK)). The main R packages used for the experiments were “randomForest”
(https://cran.r-project.org/package=randomForest (accessed on 3 September 2022) [13]),
“caret” (https://cran.r-project.org/package=caret (accessed on 3 September 2022) [21] and
our package “ABCanalysis” (https://cran.r-project.org/package=ABCanalysis, (accessed
on 3 September 2022) [16]). The computational requirements could be met by parallel
processing using the “parallel” library included in the R base environment.

Twenty percent of the original data was separated as a validation data set, which was not
further touched during feature selection. To obtain a representative subsample, our R package
“opdisDownsampling” (https://cran.r-project.org/package=opdisDownsampling (accessed
on 3 September 2022)) was used for this task. The package selects from 10,000–100,000 random
samples the one in which the distributions of the variables are most similar to those of the
original data. The details of this sampling procedure have been described previously [22].

Random forests were tuned with respect to hyperparameters, as reported previ-
ously [23], in order to ensure that the performance of the classifier during feature selection
and classification was optimized for the actual data sets. Specifically, tuning was performed
via a grid search and using a 100-fold cross-validation precluding each feature selection
run. For example, tuning the hyperparameters indicated that for the iris data set (see next
chapter) the classifier should be run with ntree = 1100 trees,

√
nvariables = 2 features per

tree and nodesize = 4. For the wine properties data set (see next chapter), the respective
hyperparameter settings were ntree = 100, nvariables = 1, nodesize = 1.

All feature selection experiments were performed in a 1,000 cross-validation scenario.
In each run, from the 80% of the full data sets available for this task after having separated
the 20% validation sample (see above), 2/3 were randomly drawn as training data subset
using Monte Carlo resampling [24] implemented in the R library “sampling” (https://cran.
r-project.org/package=sampling (accessed on 3 September 2022) [25]). The permutation
variable importance was calculated directly using the OOB samples created during training
with these 2/3 randomly drawn cases.

After feature selection, classification performance was evaluated after training random
forests with 2/3 randomly drawn cases from the 80% of the data using only the selected
or unselected features, and classification performance was tested with random samples
of 80% of the 20% validation sample that were not touched during feature selection or
classifier training. Classification performance was measured using balanced accuracy [26]
implemented in the R library “caret”.

2.4. Data Sets
2.4.1. Iris Flower Data Example

The iris flower data set set [27,28] contains measurements of the four variables, sepal
length and width or petal length and width in centimeters, for 50 flowers of each of the
three species, Iris setosa, versicolor, and virginica, providing a 150× 4 data matrix. The data
set was expanded by repeating variables to obtain very strongly correlated variables, or
by adding variables as their permuted versions to obtain nonsense variables or by adding
trivial information using the class information as the variable. Previous analyses indicated
that petal dimensions were the most informative for species separation [29].
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2.4.2. Wine Quality Data Set

A second data set was a wine data set from https://www.kaggle.com/datasets/
shelvigarg/wine-quality-dataset (accessed 2 November 2022). It contains physicochemical
properties of a collection of white and red wines and consists of 4898 samples of white
wine and 1599 samples of red wine. Eleven variables on chemical properties are solid
acidity, volatile acidity, citric acidity, residual sugar, chlorides, free sulfur dioxide, total
sulfur dioxide, density, pH, sulfates, and alcohol. A 12th variable, quality, contains the
median of at least three ratings from wine experts who ranked the wine quality of each
sample between 0 (very poor) and 10 (very good). The wine data set was used for method
development in feature selection for regression problems [30,31]. This provided the relevant
features to be identified in the present analysis. Fuzzy techniques were used to identify
the variables that had the greatest causal relationship with wine quality: Alcohol, fixed
acidity, free sulfur dioxide, residual sugar and volatile acidity, while citric acid and sulfates
were also variables that show a causal relationship with wine quality, but not in the same
strength as the previous ones [31]. For the present experiments, the regression problem
with the normally distributed wine quality variable was transferred into a classification
problem via a median split into "low" and "high" quality wines.

3. Results

3.1. Iris Flower Data Set

Several modifications of the iris data set were assessed, including (i) the omission of
very strongly correlated variables, (ii) the addition of more variables that are perfectly cor-
related with the existing variables, (iii) the addition of nonsense variables, (iv) the addition
of perfect class discriminators, i.e., of the class membership as a variable. Experiments
using these modifications allowed for four main conclusions, which are highlighted under
the following subheadings.

3.1.1. Default Feature Selection Often Suffices and Removing Strongly Correlated Variables
Is Not Necessary

In the iris data set, feature selection identified the two petal dimensions as the most
informative for the training of a random forests classifier (Figure 1A(a–c)). Training with
these two variables allowed the algorithm to classify the validation data set better than
training with the unselected features, i.e., sepal dimensions, as indicated by the 95%
confidence interval of the differences in the balanced accuracy located to the right of the zero
difference. The median classification performance was even slightly better than when all
variables were used for training. Reconsidering the unselected variables in a second round
of feature selection added the sepal length to the set of selected features. However, the
positive difference in classification performance between selected and unselected features
had already indicated that this was unnecessary, and indeed the now larger feature set did
not provide a better basis for training the classifier than the two variables selected first.

The petal dimensions were correlated very strongly [32] at a rank correlation [33]
coefficient of ρ > 0.9. Petal width was selected as their prototype. In the feature selection
among the remaining three variables (Figure 1), it was selected in the first round, while
sepal length was added in a second round. However, both sets provided a poorer basis for
random forest training than the sets obtained from the full data set without the removal
of very strongly correlated variables (see above). The balanced accuracy of the class
assignment was not better than with the full data set. When the four variables of the iris
data set were added again to the data set (Figure 1 feature selection among the now eight
variables remained unaffected and consistent by first referring to the petal dimensions and
adding the sepal length in a second round.
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Figure 1. Feature selection and classification performance evaluation with different feature sets in
the iris data set [28]. The graph is divided into subgraphs a–c from top to bottom. Experiments
were performed (a) with the original data, (b) with the iris data set omitting one highly correlated
variable, and (c) with the data set adding all variables twice. Each subgraph is organized in three
further subgraphs, showing from top to bottom (i) the results when using the features selected in the
default feature selection, (ii) the features added when performing a second feature selection on the
unselected features from the first selection, and (iii) when training the algorithm with the full feature
set. The boxes show the 25th, 50th (blue vertical line), and 75th percentiles of balanced accuracies
obtained in 1000 repeated runs with a random selection of 67% from the training data set and 80%
from a validation data set separated from the data set before feature selection. Whiskers span the
95% confidence interval from the 2.5th to the 97.5th percentiles. (A): Balanced accuracy obtained
with a random forests classifier trained with (i) the selected features, (ii) the unselected features,
and (iii) the unselected features that were not highly correlated with the selected features, with the
correlation threshold set at a very strong correlation of ρ > 0.9. (B): Difference in balanced accuracy
when algorithms were trained with the selected versus unselected features. (C): Selected features
(blue) and unselected features (white). Features excluded from the experiments due to very strong
correlation are shown in gray.

3.1.2. Reconsidering Unselected Features Captures Information When Bad or Trivial
Features Were Initially Selected

If the data set contained a variable that is the class membership information, either by
mistake or by accidental coincidence, the feature selection will identify that the variable is
sufficient to train a perfect classifier (Figure 2) However, there are reasons that renamed
class information, or variables identical to class information by any reason, can be a banality
in the specific research domain from which the data set originates, and reconsidering the
unselected features leads to petal dimension selection as described above, which allows the
selected features to be interpreted in the current research field context.
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Figure 2. Feature selection and classification performance evaluation with different feature sets in
the iris data set [28]. The graph is divided into subgraphs a–b from top to bottom. Experiments were
performed (a) with the original data but sepal length was defined to be selected in a first run of feature
selection, (b) with the iris data set where the class information was added as a numerical variable. Each
subgraph is organized in three further subgraphs, showing from top to bottom (i) the results when
using the features selected in the default feature selection, (ii) the features added when performing a
second feature selection on the unselected features from the first selection, and (iii) when training the
algorithm with the full feature set. The boxes show the 25th, 50th (blue vertical line), and 75th percentiles
of balanced accuracies obtained in 1000 repeated runs with a random selection of 67% from the training
data set and 80% from a validation data set separated from the data set before feature selection. Whiskers
span the 95% confidence interval from the 2.5th to the 97.5th percentiles. (A): Balanced accuracy obtained
with a random forests classifier trained with (i) the selected features, (ii) the unselected features, and
(iii) the unselected features that were not highly correlated with the selected features, with the correlation
threshold set at a very strong correlation of ρ > 0.9. (B): Difference in balanced accuracy when algorithms
were trained with the selected versus unselected features. (C): Selected features (blue) and unselected
features (white).

3.1.3. Reconsidering Unselected Features Does Not Tend to Add Uninformative Variables

When permuted versions of the four variables were added to the data set (Figure 3),
none of them were selected in either the first or second round of feature selection. In the
extreme case, when all variables were permuted (Figure 3 the unsuitability of the then
seemingly random selection could be observed immediately from the poor performance of
the trained classifiers, with confidence intervals of balanced accuracy 50%. In this case, the
difference around zero between the performance of classifiers trained with selected and
unselected features clearly indicated that no relevant information had been overlooked in
the feature selection.
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Figure 3. Feature selection and classification performance evaluation with different feature sets in
the iris data set [28]. The graph is divided into subgraphs a - b from top to bottom. Experiments
were performed (a) with doubling each variable and randomly permuting all variables, (b) doubling
the data set and randomly permuting the second version of each variable while leaving the first
versions in their original stage. Each subgraph is organized in three further subgraphs, showing from
top to bottom (i) the results when using the features selected in the default feature selection, (ii) the
features added when performing a second feature selection on the unselected features from the first
selection, and (iii) when training the algorithm with the full feature set. The boxes show the 25th, 50th
(blue vertical line), and 75th percentiles of balanced accuracies obtained in 1000 repeated runs with
a random selection of 67% from the training data set and 80% from a validation data set separated
from the data set before feature selection. Whiskers span the 95% confidence interval from the 2.5th
to the 97.5th percentiles. (A): Balanced accuracy obtained with a random forests classifier trained
with (i) the selected features, (ii) the unselected features, and (iii) the unselected features that were
not highly correlated with the selected features, with the correlation threshold set at a very strong
correlation of ρ > 0.9. (B): Difference in balanced accuracy when algorithms were trained with the
selected versus unselected features. (C): Selected features (blue) and unselected features (white).

3.1.4. Reconsidering Unselected Features Indicates Relevant Information That May Have
Been Missed in The Knowledge Discovery Process

Assembling the data set from similarly informative variables by just repeating the petal
width 12 times led to an arbitrary selection of some of the same features (Figure 4), since
all features are similarly informative and there is no better feature pick. The classification
accuracy was satisfactory because feature selection came at no cost, allowing similar
accuracy as when training was conducted with all features. However, training the classifier
with the selected features was no better than with the unselected features, and the difference
between the balanced accuracies was zero. This clearly indicated an error in feature
selection and a need to re-examine the feature set, since it cannot be assumed that the
best features were selected from the set of variables. While this may be irrelevant for
training classifiers, it is likely relevant for knowledge discovery. Examination of the data
set, as indicated by the zero-difference signal, would likely prevent biased interpretation of
the selected features that would have gone unnoticed without assessing the classification
performance with unselected features.
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Figure 4. Feature selection and classification performance evaluation with different feature sets in
the iris data set [28]. Experiments were performed only on petal width, added 12 times to the data
set. The graph is organized in three subgraphs, showing from top to bottom (i) the results when
using the features selected in the default feature selection, (ii) the features added when performing a
second feature selection on the unselected features from the first selection, and (iii) when training
the algorithm with the full feature set. The boxes show the 25th, 50th (blue vertical line), and
75th percentiles of balanced accuracies obtained in 1000 repeated runs with a random selection
of 67% from the training data set and 80% from a validation data set separated from the data set
before feature selection. Whiskers span the 95% confidence interval from the 2.5th to the 97.5th
percentiles. (A): Balanced accuracy obtained with a random forests classifier trained with (i) the
selected features, (ii) the unselected features, and (iii) the unselected features that were not highly
correlated with the selected features, with the correlation threshold set at a very strong correlation of
ρ > 0.9. (B): Difference in balanced accuracy when algorithms were trained with the selected versus
unselected features. (C): Selected features (blue) and unselected features (white).

3.2. Wine Quality Data Set
Comparison Of Classification Performance with Selected and Unselected Features Can
Reveal Feature Selection Problems

When not re-tuning the hyperparameters for the actual data set, feature selection
using random forest permutation importance identified alcohol, free sulfur dioxide, and
volatile acidity as the best variables for training the algorithm to discriminate between low-
and high-quality wines (Figure 5). All of them were included in the result of the fuzzy
logic techniques-based identification of relevant predictors of wine quality [31]. Moreover,
these are also the variables that were found to be important predictors of wine quality
for both wine types in a regression analysis, where red and white wines were evaluated
separately [30]. This could have been accepted as a satisfactory result.

However, evaluation of the classification performance obtained when the unselected
features were used for training demonstrated that a negative difference (Figure 5A(b)), i.e.,
it was not better than with the full feature set and, importantly, also not better than with
the unselected features. This was indicated by the inclusion of the value zero in the 95%
confidence intervals of the differences between the classification performance measures
obtained with the selected features versus the full feature set or the non-selected features
(Figure 5A(a,b)). The median difference in balanced class assignment accuracy was even
smaller than for the unselected characteristics, although it was not significant because the
95% bootstrap confidence interval included the difference of zero.

Following the re-tuning of the random forests for the wine quality data set
(see Section 2), the feature selection in the first round already resulted in a larger fea-
ture set that was closer to those identified in [30,31] and provided better classification
results than the unselected features. This was further improved in the second round when
the selected features. The resulting combined feature set thus met both the criterion of
achieving classification performance as high as with all features and of selecting those
features known from independent evaluations to be relevant to the target.
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Figure 5. Feature selection and classification performance evaluation with different feature sets
in the wine quality data set from https://www.kaggle.com/datasets/shelvigarg/wine-quality-
dataset (accessed 2 November 2022). The graph is divided into subgraphs a–b from top to bottom.
Experiments were performed (a) with non-tuned (a) and tuned (b) hyperparameters. The two
subgraphs show from top to bottom (i) the results when using the features selected in the default
feature selection, (ii) the features added when performing a second feature selection on the unselected
features from the first selection, and (iii) when training the algorithm with the full feature set. The
boxes show the 25th, 50th (blue vertical line), and 75th percentiles of balanced accuracies obtained
in 1,000 repeated runs with a random selection of 67% from the training data set and 80% from
a validation data set separated from the data set before feature selection. Whiskers span the 95%
confidence interval from the 2.5th to the 97.5th percentiles. (A): Balanced accuracy obtained with a
random forests classifier trained with (i) the selected features, (ii) the unselected features, and (iii) the
unselected features that were not highly correlated with the selected features, with the correlation
threshold set at a very strong correlation of ρ > 0.9. (B): Difference in balanced accuracy when
algorithms were trained with the selected versus unselected features. (C): Selected features (blue)
and unselected features (white).

4. Discussion

This report addresses a typical problem in the analysis of multivariate biomedical
data, usually consisting of a set of individuals (cases) belonging to a particular diagnosis
(class) and for which multiple measurements have been made (multivariate data). The
first question that arises is whether there is any structure in these measurements that is
relevant to the class structure and can be used to diagnose (classify) the subjects. To answer
this question, a powerful machine-learned classifier can be trained on a subset of the data.
If this classifier is able to classify the cases not used in learning (OOB data) such that
this classification is close to the true class membership (e.g., a medical diagnosis), this
indicates that there is structure in the multivariate data that supports the class structure.
This structure could be used to assign future cases to the correct class, e.g., to make an
(almost) accurate medical diagnosis for a person about whom the same type of information
is available as that on which the algorithm was trained.

However, there are several pitfalls in this context. For example, the diagnosis may
be accidentally coded in one or more variables. A typical example is the inclusion of a
patient number in the data that contains a numeric code that already indicates the diagnosis.
Then, the algorithm is trained on trivial information and is rather useless on future data.
Other pitfalls include the problem of correlations and dealing with strongly correlated
data. Filtering out correlated variables before machine learning fixes technical sensitivities
of algorithms to avoid redundant information. However, this is not necessarily ideal
for knowledge discovery. It also requires setting an arbitrary threshold above which the
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variables are considered highly correlated. A prototypical variable formally selected as
the most strongly correlated feature of a group of features may be topically uninformative.
On the other hand, selecting a topically meaningful prototype variable may disrupt the
data-driven approach to information extraction because it introduces prior assumptions.
Intermediate or latent variables computed from the original ones, such as projections onto
principal component planes, may be difficult to interpret.

The basic idea presented here is to use the classifier not only for the selected features
but also for the unselected features. If the performance of the classifier used is the same for
both sets of features, there is no gain in information if only the selected features are used.
Moreover, the selected features cannot be claimed to capture the nature of the mechanisms
underlying the class structure of the data set. The selected features qualify for valid topical
interpretation, if the performance of the classifier is better for the selected features. This is
the case if the difference between the performance measures obtained when the algorithm
was trained with either the selected features or the unselected features is positive and its
95% confidence interval in cross-validation runs does not include the difference of zero. In
such a case, the feature selection can also be considered successful for knowledge discovery
or explainable AI. The selected features qualify for valid topical interpretation.

Thus, this report emphasizes that there can be two different goals for feature selection
(Figure 6). First, the technical goal of looking for the smallest number of features with which
an algorithm can be trained to classify the data with sufficient accuracy (“technical feature
selection” (TFS)). Second, the goal of knowledge discovery or XAI, where the features
required for successful AI training are also interpreted in the topical context of the research
data. In this scenario, the set of features must allow the, e.g., medical, field expert to
understand how a machine system for class assignment, e.g., diagnosis, proceeds in order
to arrive at a sufficiently accurate diagnosis. (“explainable feature selection” (XFS)). This
might require more features than are technically necessary for a successful classification to
enable a logical chain of reasoning that explains the class assignment within the particular
research area. Thus, there can be different solutions for feature selection depending on the
topical context and final aim of the analysis. The proposed approach facilitates explainable
AI [2] because experts in the field will better understand an AI’s decision if the key features
on which the decision is based make sense to them in the context of their expertise, rather
than simply accepting that the “black box” algorithm can use the information to make a
diagnosis, to remain in the medical example.

Moreover, as demonstrated with the wine quality data set, the proposed method
implicitly provides a signal for pathologies in feature selection that might escape attention
without the reexamination of the unselected features. In machine learning reports, usually
only the performance of the classifiers trained with the selected features is compared to the
performance obtained when all variables were used for training. Given that feature selection
methods can produce biased results [14,15], the proposed method provides a signal to
identify missing informative variables and ensure that the most appropriate features were
indeed selected for classifier training. To ensure that the best features were selected, the
classifier performance when the unselected features were used for training should also be
reported. There are valid reasons why performances may not be different, e.g., strongly
correlated variables across selected and unselected features. However, this can be easily
identified and interpreted to provide a complete picture of the information contained
in the selected features compared to all variables. Moreover, the present example with
the wine quality data set reemphasizes that random forests benefit from hyperparameter
tuning, despite the suggestions to the contrary cited above and consistent with a recent
case, published separately [23].
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Figure 6. Flowchart showing the proposed feature selection workflow, with a distinction of the
final goal into (i) “technical feature selection” (TFS), where the goal can be defined as training a
powerful classifier, and (ii) “explainable feature selection” (XFS), where the goal can be defined that
the selected features should be interpretable by a domain expert. Based on the evaluation of whether
the entire input data space has a structure that matches the class structure of the output data space,
for TFS the selected features are sufficient if the classifier computes the classification with the same
accuracy as with all features in the data set. However, relevant information that makes the feature
sets interpretable by the expert in the field may be lost in the process. For XFS, the selected features
should therefore be interpretable by an expert in the field, i.e., they should contain relevant variables
that provide information about the processes underlying the class structure. This can be facilitated
by including the initially unselected features in the interpretation, as proposed in this report, or
alternatively by reducing the data set to a bare informative minimum.

Limitations of the present assessments include the limited choice of machine-learning
methods. While the proposed method should be generally suitable for the machine learning-
based feature selection, here it was tested only with the OOB permutation feature impor-
tance of random forests. In addition, only one measure of classification performance was
used, namely balanced accuracy. In the present experiments, the area under the receiver
operating characteristic [34] was calculated in parallel, but it did not provide any additional
insight, but merely repeated the observations based on the balanced accuracy, and there-
fore, for brevity, it is not included in the report. It is advisable to test the utility of further
classification performance measures in the present XFS context separately when needed.

It should be noted that the present evaluations did not aim at benchmarking feature
selection procedures for classification problems, but mainly at the importance of re-testing
unselected features before declaring a machine learning-based analysis of a data set com-
plete. In a review of feature selection methods for bioinformatics, especially for disease risk
prediction [4], a classification was proposed according to which the approach proposed
in the present report, especially to consider the unselected features, would belong to the
class of feature selection algorithms that are independent of the details of the particular
classifier algorithm. The other methods, on the other hand, depend on the details of the
classifier algorithm. In particular, the approach presented here does not depend on the
details of a particular feature selection algorithm or on a particular method for computing
feature importance. In [35], different methods for evaluating the performance of different
algorithms are compared with the result that none of them has a clear advantage. Moreover,
the present experiments were conducted with classification problems. The re-evaluation of
unselected features in regression problems has not been explicitly addressed. This would
require the specification of modified signals, since balanced accuracy addresses classifi-
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cation, while an analogous measure must be found for regression before extending the
currently proposed method to regression problems.

5. Conclusions

This work is particularly concerned with the features that are discarded by feature
selection algorithms. When a classification task is attempted with such features omitted,
there are two possible outcomes: The task fails or the task is possible even with the features
not considered. If the task fails with the features not considered, then the conclusion is valid
that the feature selection has chosen the best features for the task. If the classification is still
possible, then either other features can be selected or the feature selection algorithm is not
working correctly. If the algorithm is working correctly, then feature set can be extended to
features that well describe the data generation process from an expert’s point of view. Thus,
the present proposal makes a distinction between whether the feature set can be described
as containing relevant information for class assignment or whether as containing the only
relevant information for class assignment. The former allows the unselected features to
be included in the mechanistic interpretation, while the latter excludes them, i.e., adds a
logical “NOT” to the argument in the sense of “these features are relevant, but not those”.
Thus, we propose, in line with [4], that extracting a subset of the most relevant features
(through feature selection) could help researchers to understand the biological process(es)
that underlie the disease.

Reconsideration of originally unselected items in multivariate data sets is proposed
as a method to enhance the topical interpretation of variables emerging from feature
selection aimed at knowledge discovery or explainable machine learning. This can be
useful to filter out uninformative or trivial information or to add relevant topical infor-
mation from variables originally overlooked in the feature selection. In addition, it can
help to detect pathologies and errors in the feature selection that occasionally fail to iden-
tify the most appropriate variables. The method is generic to feature selection methods
based on the supervised machine learning-based and can be implemented in the feature
selection workflows.
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Abstract: Despite the great progress in its early diagnosis and treatment, colon adenocarcinoma
(COAD) is still poses important issues to clinical management. Therefore, the identification of
novel biomarkers or therapeutic targets for this disease is important. Using UALCAN, the top
25 upregulated and downregulated genes in COAD were identified. Then, a Kaplan–Meier plotter
was employed for these genes for survival analysis, revealing the correlation with overall survival
rate only for MMP3 (Matrix Metallopeptidase 3) and TESC (Tescalcin). Despite this, the mRNA
expression levels were not correlated with the tumor stages or nodal metastatic status. MMP3 and
TESC are relevant targets in COAD that should be additionally validated as biomarkers for early
diagnosis and prevention. Ingenuity Pathway Analysis revealed the top relevant network linked to
Post-Translational Modification, Protein Degradation, and Protein Synthesis, where MMP3 was at the
core of the network. Another important network was related to cell cycle regulation, TESC being a
component of this. We should also not underestimate the complex regulatory mechanisms mediated
by the interplay of the multiple other regulatory molecules, emphasizing the interconnection with
molecules related to invasion and migration involved in COAD, that might serve as the basis for the
development of new biomarkers and therapeutic targets.

Keywords: colon adenocarcinoma; bioinformatic analysis; MMP3 and TESC

1. Introduction

Although great improvements have been made in the management of colon cancer, it
still represents an unmet clinical need, especially in the late stages of the disease, where
the limited response to therapy and an important alteration in quality of life threaten
patients’ outcomes. Colon adenocarcinoma (COAD) is a common malignant tumor of the
digestive tract, with an incidence of 37.7% with 114,515 new cases and a 13.4% mortality
rate with 576,858 deaths reported by Globocan in 2021 [1,2]. In most cases, this cancer is
asymptomatic until late stages, with widely available screening programs only in developed
countries. Meanwhile, a reduced reported screening rate in low and middle-income
countries is reflected by increasing mortality for these patients [3].

Treatments in advanced stages, which are often accompanied by metastasis or locally
advanced disease, face limitations in regards to systemic chemotherapy and radiotherapy
due to high toxicity, while surgical removal is a viable option mostly for earlier stages [1].
With such a high number of deaths annually, it is vital to search among the many altered
molecules from cancer tissue, some of them with yet unknown roles, to identify more
effective molecular actors and to investigate their potential role in colon cancer, thus
possibly improving patient survival [4].
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Multiple molecular alterations occur during COAD development and progression,
impacting the patient’s prognosis [5–7]. Their identification and study will improve disease
management [8–11]. In the last few years, several molecular signatures have been validated
as being correlated with prognostic and prediction significance [5,8,12,13].

Bioinformatic analysis of omics data has been widely used to explore the pathogenesis of
human diseases [14]. The Cancer Genome Atlas (TCGA) is a comprehensive database where
the molecular profiles and clinical parameters of 34 different tumor types on multiple levels
(level of expression for coding and non-coding genes, mutational status, methylation patterns,
or proteomic/metabolomic profile) are included [15]. The use of datasets from TCGA expands
the opportunities for data mining and can provide a deeper understanding of cancer biology
and tumor-specific vulnerabilities [16]. Previous studies concerning COAD gene expression
profiling identified genes with an altered expression level [16–18]. These findings allow for
the discovery of potential new molecules that may lead to a significantly more accurate
diagnosis if found in the early stages, better patient stratification, and the development of
new targeted therapies [19].

The more in-depth the studies are extended, the more the extracted information can
define new potential molecules that can help the improvement of colon adenocarcinoma
management. To identify potentially powerful “actors” in COAD progression, we chose
to investigate the pathways and interaction networks associated with the most altered
identified genes in COAD (top 25 upregulated coding genes and top 25 down-regulated
coding genes, based on the UALCAN database (http://ualcan.path.uab.edu, 12 August
2022) using Ingenuity Pathway Analysis from Qiagen (IPA). The UALCAN portal has been
widely used since its release in 2017 and has received immense praise and popularity. IPA
is used to identify the interactions among the altered genes and integrate and identify the
most relevant pathways associated with COAD.

This study aimed to identify the potential candidate genes in COAD and to further
uncover their roles in this pathology. Among the top 25 up and 25 down-regulated genes,
we explored two specific genes involved in several mechanisms from early stage to late
stage colon adenocarcinomas, specifically the MMP3 and TESC genes, the only two genes
among these top up and down-regulated genes that were correlated with overall survival
rates (according to STARBASE).

The TESC (tescalcin) gene codifies for a protein with an intracytoplasmic localization
that is expressed in several cancer types. It was recently proposed as a target for colon cancer
therapy. MMP3 is known to be located intracellularly and is involved in the degradation of
collagen, possessing the molecular functions of a hydrolase, metalloprotease, and protease.
It is also involved in the epithelial to mesenchymal transition. In our study, the genes’
level of expression was correlated with the overall survival rate. Both genes are still not
often studied in this cancer type; therefore, due to their statistical power in overall survival,
we investigated the bioinformatics data related to them. For validation, we used another
cohort of patients found in the COLONOMICs project [20]. In addition, these data should
be further validated in additional patient cohorts on biological samples from both tumor
tissue and plasma. This part was not the purpose of our study at this time.

2. Materials and Methods

2.1. Study Design

A flow chart of the study design with datasets and analysis for COAD is shown in
Figure 1.

2.2. Data Mining of TCGA Data Set in COAD

The bioinformatics portal UALCAN (http://ualcan.path.uab.edu, accessed on 8 June
2022) used TCGA level 3 RNA-sequencing and clinical data from COAD. This database was
used to access the altered gene expression pattern [21]. The COAD cohort is represented
by 286 primary COAD tumors and 41 adjacent normal tissue to some of the samples,
comparing cancer tissue samples with normal tissue samples. UALCAN lists genes that
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show high differential expression among normal and tumor samples in the form of an
interactive heatmap. The database delivers a graphical representation of the expression
profile as a heatmap with the top 25 altered genes or as a box plot for individual genes;
the expression level of the searched gene is normalized as transcript per million reads,
and the p-value < 0.01 is considered to be significant. In UALCAN, the difference among
the groups is performed using a t-test using a PERL script with the Comprehensive Perl
Archive Network (CPAN) module “Statistics: t-test” [21].

Figure 1. Flow diagram of the study design. Initial data sets from TCGA colon adenocarcinoma
patients were analyzed using the UALCAN portal (comprising data from 286 tumor samples and
41 adjacent tissue), then survival analyses were performed for the top 25 upregulated and down-
regulated genes using the STARBASE-TCGA data set (474 tumor samples and 41 adjacent tissue).
The selected genes MMP3 and TESC (based on survival analysis-STARBASE) were validated on the
Colonomics database, which contains a different set of patients than TCGA. Our data from two dif-
ferent patient cohorts showed that both genes can be found in all stages of colon adenocarcinoma
patients, that their association with overall survival is significant, and that their protein profiling
confirms the mRNA level of expression in UALCAN-CPTAC. These initial data suggest that they
could be indicators of colon adenocarcinoma and, due to their link with overall survival, can become
therapeutic targets. Further validation on patients’ needs to be performed for data consistency.
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2.3. Inclusion and Exclusion Criteria

To perform the bioinformatics analysis, we selected only patients with colon adenocar-
cinoma. A total of 286 patients with COAD were found in the UALCAN database, with
41 matched pairs of normal adjacent tissue according to the following table. We collected
data from all 286 patients, who were of both sexes, with tumors at all stages, including
lymph node involvement data. The exclusion criteria were patients with rectal cancer. Data
of the patients included in our bioinformatics analysis are summarized in Table 1.

Table 1. UALCAN patient’s characteristics.

Demographics
COAD

Tumor (n = 286) Normal (n = 41)

Age—Range (years) 31–90

Gender
F 127
M 156

Unknown 3

Histological subtype
Adenocarcinoma 243

Mucinous adenocarcinoma 37
Unknown 3

Tumor stage

I 45
II 110
III 80
IV 39

Unknown 2

Nodal metastasis
status

N0 166
N1 70
N2 47

Unknown 3

For the evaluation of the significance of differences in expression levels between
normal and primary tumors, or tumor subgroups based on clinicopathological features,
Welch’s t-test estimations were used (* p≤ 0.05, ** p≤ 0.01, *** p≤ 0.001, **** p≤ 0.0001) [22].

The UALCAN database was used for the identification of the top 25 upregulated
and top 25 downregulated genes. Additionally, UALCAN was used for the graphical
representation of protein expression levels for the same transcripts. Data from The Cancer
Omics Atlas (TCOA) repository database provides information about gene expression,
somatic mutations, miRNA expression, and protein expression data based on an individual
molecule or a specific cancer type [23]. We used it for the downloaded top 25 upregulated
and top 25 down-regulated genes in COAD for analysis and mechanistic insights.

2.4. Survival Analysis STARBASE Database

The StarBase database (https://starbase.sysu.edu.cn/panGeneCoExp.php#, accessed
on 14 June 2022) is a portal that can facilitate tumor subgroups’ gene expression and
survival analyses, providing easy access to publicly available cancer transcriptome data
contained by TCGA [24]. We evaluated the COAD patients’ survival related to the top
25 upregulated and top 25 downregulated genes. The genes’ names were keyed into the
STARBASE database, and Kaplan–Meier survival plots, hazard ratio (HR), 95% confidence
interval (CI), and log-rank p values were displayed directly on the web page; a log-rank
p < 0.05 was considered statistically significant.
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2.5. Pearson Correlation Analysis for Gene Expression Data

Data from survival analysis revealed the MMP3 and TESC coding genes that were
further used for correlation analysis in COAD, using the STARBASE database [24,25]. A
Pearson correlation coefficient r > 0.40, which was set as a cutoff, and a p-value ≤ 0.05
were considered statistically significant (https://starbase.sysu.edu.cn/panGeneCoExp.php,
accessed on 12 June 2022).

2.6. Genetic Alterations Using cBioPortal

The frequency of gene alterations (amplification, deep deletion, and missense muta-
tions) in cancer can be assessed by using cBioPortal (http://www.cbioportal.org, accessed
on 2 August 2022). cBioportal is an interactive open-source platform that provides large-
scale cancer genomics datasets [26].

2.7. MMP3 with TESC in COAD Protein Expression Levels

UALCAN also provides a protein expression analysis option for COAD, based on
data available from the Clinical Proteomic Tumor Analysis Consortium (CPTAC, http:
//ualcan.path.uab.edu/analysis-prot.html accessed on 10 June 2022) [27].

2.8. Validation of MMP3 and TESC Expression Level with the Colonomics Database

Colonomics is a web resource for analyzing biomarkers of diagnosis and progno-
sis in colorectal cancer (https://www.colonomics.org/expression-browser/, accessed on
9 August 2022). It can be used to generate plots of the gene expression profiles based on
a patient cohort of 98 paired adjacent mucosa and tumor tissues from colorectal cancer
patients and 50 colon mucosa from healthy donors; the patient’s characteristics have been
described previously by Sanz-Pamplona et al., 2014 [18]; p-value < 0.01 is considered to
be significant.

2.9. Pathway Analysis in COAD

Functional annotation was performed using Ingenuity Pathway Analysis (IPA, https://
digitalinsights.qiagen.com/products-overview/discovery-insights-portfolio/analysis-and-
visualization/qiagen-ipa/, accessed on 2 August 2022) applying predefined pathways and
functional categories of the Ingenuity Knowledge Base [28]. The “Core Analysis’ function
included in IPA was used to interpret the top 25 upregulated and top 25 downregulated
genes in COAD, downloaded from TCOA. After the analysis, the generated networks
were arranged by a score in order of significance using the Ingenuity Knowledge Base.
The significance of the bio functions and the canonical pathways were judged based on
the Fisher Exact test p-value; being grouped into Disease and Disorders; Molecular and
Cellular Functions; and Physiological System Development and Function. Additionally, the
implication in canonical pathways was considered and ranked by the ratio value (number
of molecules in a particular pathway that has the cut criteria, divided by the total number
of molecules of the pathway). IPA generates networks for the altered signature in COAD
that are correlated with previously identified associations between genes or proteins but
independently of established canonical pathways. Moreover, these networks are linked to
functions based on the molecules involved.

2.10. Multi-Cancer View of MMP3 and TESC in Cancer

Additional multi-cancer view graphical representations for MMP3 and TESC of the
expression levels were downloaded from TIMER2.0 (http://timer.cistrome.org, accessed
on 1 June 2022) [29,30].
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3. Results

3.1. Altered Gene Expression Pattern in COAD Based on TCGA Dataset

A total number of 628 altered genes with an altered expression level (363 overexpressed and
265 downregulated genes), using as a cut-off value a fold change of±2 and a p-value≤ 0.05 (TCGA
patient cohort linked to the TCOA online tool) was found [5]. Gene expression analysis
using TCGA data portal analysis with the UALCAN database for COAD permits emphasis
on the top 25 upregulated and top 25 downregulated genes, displayed as a heatmap in
Figure 2 and Table S1. The Log2(fold change) and p-value are based on the analysis done
using TCOA online tool.

Figure 2. Heatmap showing patterns of most altered genes in COAD. (A) Heatmap graphical
representation of the top 25 overexpressed genes, (B) top 25 under expressed genes in COAD versus
adjacent normal tissue, data available from the TCGA dataset, generated by web-portal UALCAN.
The expression level of genes in COAD is represented as a log2(TPM+ 1) scale.

3.2. Significance of the MMP3 and TESC in COAD

Among the top 25 upregulated and top 25 downregulated genes in COAD, two
genes (MMP3 and TESC) were correlated with overall survival (OS) in COAD. Both genes
are upregulated in COAD. The prognostic values of MMP3 and TESC mRNA in COAD
evaluated by STARBASE online databases are displayed in Figure 3; we found that the
expression of MMP3 and low expression of TESC suggest an unfavorable prognosis for
patients with COAD.
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Figure 3. Expression levels and prognostic value of MMP3 and TESC in COAD. (A) the expression
level for MMP3, graphical representation using UALCAN based on COAD TGCA data set; statistical
significance was evaluated using Welch’s t-test (UALCAN interface), **** p ≤ 0.0001. (B) expression
level for TESC, graphical representation using UALCAN based on the COAD TGCA data set; statisti-
cal significance was evaluated using Welch’s t-test (UALCAN interface), **** p ≤ 0.0001. (C) High
expression of MMP3 indicates a better OS in COAD, using Kaplan-Meier Plotter database); (D) High
expression of TESC indicates a better OS. Graphical representation of Kaplan-Meier Plotter was done
using the STARBASE database). This can be explained by a lower number of patients with lymph
node-positive/metastasis in the entire cohort.

No direct correlation between TESC and MMP3 (r = 0.004 and a p value = 0.925) has
been revealed, as can be observed in Figure 4.
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Figure 4. Pearson correlation between MMP3 and TESC expression in COAD samples (n = 471) using
the STARBASE database.

3.3. MMP3 and TESC mRNA Expression and Cancer Stages and Lymph Node-Positive/Metastatic
Status in COAD

The mRNA expression levels of MMP3 and TESC in tumor tissue were much higher
compared to normal tissues. The relationship between the mRNA expression levels of
MMP3 and TESC and the tumor stage of COAD patients was analyzed based on the
UALCAN database (Figure 5). As shown in Figure 6, the mRNA expressions of MMP3 and
TESC are statistically significant across all tumor stages and lymph node status of COAD.
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Figure 5. The relationship between MMP3 and TESC mRNA expression and cancer stages (UALCAN).
Cancer stages include COAD from stage 1 to stage 4. Statistical significance was evaluated using
Welch’s t-test (UALCAN interface), **** p ≤ 0.0001.

Figure 6. The relationship between MMP3 and TESC mRNA expression and status (UAL-
CAN) in COAD. Statistical significance was evaluated using Welch’s t-test (UALCAN interface),
**** p ≤ 0.0001.

3.4. MMP3 and TESC Mutational Signature in COAD Evaluated Using cBioPortal

The application of cBioPortal was for the evaluated mutational signature to show the
mutational frequency of the selected genes (MMP3, TESC compared with TP53, which
was identified to be highly mutated in COAD [5]) in the COAD TCGA cohort. The data is
presented in Figure 7.
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Figure 7. Analysis of genomic alterations in the identified hub genes and their correlations with
survival prognosis in COAD using cBioPortal. (A) In the genomic alterations representation of the
hub genes in the selected TCGA dataset of COAD, each column represents a patient. Localization
and frequency of all mutations for (B) TP53, (C) MMP3, (D) TESC, (E) MMP3 expression level in
COAD based on TP53 mutation status; statistical significance was evaluated using Welch’s t-test
(UALCAN interface), **** p ≤ 0.0001, (F) TESC expression level in COAD based on TP53 mutation
status; statistical significance was evaluated using Welch’s t-test (UALCAN interface), **** p ≤ 0.0001.

3.5. Validation of MMP3 and TESC with the Colonomics Patient Cohort

As represented in Figure 8, expression levels of two genes, MMP3 and TESC, were
validated in an additional transcriptomic dataset, consisting of 98 paired adjacent mucosa
and tumor tissues from colorectal cancer patients and 50 colon mucosa from healthy donors.
Compared with normal mucosa or normal adjacent tissue, expression levels of MMP3 and
TESC were significantly increased in colon cancer.

3.6. MMP3 and TESC Protein Expression Levels

Additional analysis was performed to validate the mRNA expression levels for MMP3
and TESC at the protein level (Figure 9), revealing an overexpression at the protein level.
The data is in agreement with those from the mRNA level.
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Figure 8. Validation of the MMP3 and TESC with the Colonomics patient cohort, p < 0.05 was
considered statistically significant.

Figure 9. MMP3 and TESC protein expression in COAD samples (comprising data from 100 normal
adjacent tissue and 97 primary COAD tumors) using the CPTAC-UALCAN platform. Statistical
significance was evaluated using Welch’s t-test (UALCAN interface), *** p < 0.001 and **** p < 0.0001.
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3.7. IPA Network Analysis

The main canonical pathways generated using IPA based on the top 25 upregulated
and downregulated genes in COAD are related to Granulocyte Adhesion and Diapedesis,
Leukocyte Extravasation Signaling, Agranulocyte Adhesion, and Diapedesis or Inhibition
of Matrix Metalloproteases (Figure 10A). Using the same data set for analysis, the top
associated networks were generated, as displayed in Table 2. The network N1 (related to
Post-Translational Modification, Protein Degradation, and Protein Synthesis) is displayed
in Figure 10B, revealing the MMPs as a core element of this network. Additional graphical
representation of the N4 network (related to Cell Cycle, Cancer, and Neurological Disease),
revealing TESC’s direct relationship with HIT and HRAS, as displayed in Figure 10B.
Additional valuable data related to the prognostic value and main target molecules for the
altered genes are displayed in Table 2. Additional IPA regulator networks are presented in
Figure 11, and the Top Molecular and Cellular Functions generated using IPA are displayed
in Table S2.

Figure 10. Mechanistic insights in COAD were generated based on the top 25 upregulated and
downregulated genes generated using IPA. (A) Canonical pathways identified by IPA (B) Top-ranked
enriched network, related to Post-Translational Modification, Protein Degradation, Protein Synthesis.
(C) Network related to Cell Cycle, Cancer, and Neurological Disease. Red: significantly increased
expression level; green: significantly decreased expression level. The regulators are colored by
their predicted activation state: activated (orange) or inhibited (blue). Darker colors indicate higher
absolute Z-scores. MMP3 and TESC are highlighted with blue circles.
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Table 2. Top associated networks were generated using IPA, based on the altered signature on COAD.

ID Associated Network Score

N1

Post-Translational
Modification, Protein
Degradation, Protein

Synthesis

32

N2

Developmental Disorder,
Ophthalmic Disease,

Organismal Injury and
Abnormalities

29

N3

Hereditary Disorder,
Ophthalmic Disease,

Organismal Injury and
Abnormalities

29

N4 Cell Cycle, Cancer,
Neurological Disease 18

Figure 11. IPA regulator effect networks analysis of the top 25 upregulated and top 25 downregulated
genes in COAD. Upstream regulators are located at the top of the network, target genes are in
the middle of the network (orange color), and predicted disease or function in the bottom of the
network. (A) TNF target molecule, network related to invasion of tissue and growth of epithelial
tissue; (B) ERBB2 target molecule, related to the migration of cells. The data are generated using the
Regulator Effects module in IPA. The MMP3 gene is highlighted with a blue circle.

4. Discussion

The initiation and progression of COAD involve important alterations at the tran-
scriptomic level [18,31]. The TCGA cohort is an open-access database, comprising 34 types
of cancer tissue and normal tissue. In our study, we extracted the top 25 upregulated
and top 25 downregulated coding genes in COAD to assess their prediction of the overall
survival rate. For further analysis, we selected two key genes involved in epithelial to
mesenchymal transition and angiogenesis (MMP3) and a potential oncotarget (TESC), for
which the previous data found in the literature correlated with our findings. Both genes,
MMP3 and TESC, were correlated with overall survival rate according to the Starbase
online tool. We compared the level of expression of these two genes with other cancers
where they appear with a dysregulated expression compared to normal epithelial cells of
the colon. A pan-cancer view of the expression levels for MMP3 and TESC downloaded
from UALCAN displays interesting aspects related to these genes in solid cancer (Figure 12).
MMP3 was found to have a prognostic role in pancreatic cancer and cervical cancer, while
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TESC showed no prognostic role in investigated cancers. TESC was also proposed as an
oncotarget. Furthermore, TESC was investigated in a patient’s cohort by Kang et al., reveal-
ing that the cases with overexpression of TESC are related to reduced survival compared
to the cases displaying high expression value; this study proposes TESC as a potential
diagnostic marker in colorectal cancer, due to a high difference in the expression level
between normal tissue and tumor tissue. The authors show inhibition of TESC decreases
cell survival in vitro conditions [32].

Figure 12. Multi-cancer view of the expression levels and survival analysis for MMP3 and TESC
downloaded from TIMER2.0. (A) Multi-cancer view of the expression levels of MMP3. (B) Multi-
cancer view of the expression levels for TESC. (C) Multi-cancer view of the correlation between
overall survival with MMP3 and TESC (* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001).

The matrix metalloproteinases (MMPs) family consists of at least 24 calcium-dependent,
zinc-containing endopeptidases. The pattern of these proteins in cancer is dependent on
the MMP variant and the type of cancer [33,34]. MMPs belong to a large group of proteases
capable of breaking all components of the extracellular matrix, being involved in all steps
of tumorigenesis, cancer invasion, and metastasis [35–42]. MMP3, along with CXCL1, is
considered an important stromal protein marker of the dysplasia–carcinoma transition in
sporadic colorectal cancer [43]. Moreover, MMP3 is one of the colorectal cancer biomarkers
related to the inflammatory microenvironment [44].

In several cancer types, MMP3 is considered a biomarker alone or in combination
with other molecules [14,19,37,38,41,42,45–48]. Tumor cells typically express a high level of
different MMPs [33,37,38]. As previously shown, MMP1, -3, -7, -9, -10, -11, -12, and -14 are
upregulated in COAD samples [38,39]. Expression levels of MMP-1, -2, -7, -9, and -13 were
observed to be related to worse outcomes; meanwhile, in the case of MMP-12, expression
was observed to have a protective role [37].

MMP3, coding stromelysin-1, is upregulated in colon cancers [33] and its expression
level affects the survival of patients with colon adenocarcinoma [14], also confirmed by the
TCGA data presented in Figure 2. MMP3 has an important role in COAD tumor growth
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and metastasis [33]. Another study revealed that C/EBPβ upregulation was correlated
with MMP3 expression and it is associated with metastatic status in colorectal cancer [49].
IPA data has revealed MMP3 to be involved in cellular movement along with other altered
genes in COAD.

The prognostic value of MMP3 shows a divergence between different databases. This
is possible because the cellular source of a specific MMP might have an impact on the
biological outcome related to its expression [19,50].

TESC (Tescalcin) regulates the activities of the Na+/H+ exchanger and is related to
the activation of the extracellular signal-regulated kinase (ERK) cascade to the expression
of transcription factors that control cell growth and differentiation [51]. TESC is altered
in several cancers [51]; TESC expression promotes the invasive and metastatic effects of
colorectal cancer [52]. TESC was observed to be overexpressed in tumor tissue, as it was
shown based on TCGA data, but also in serum from colorectal cancer patients, underlining
its oncogenic role in this pathology [52], with prognostic significance in several other cancer
types such as hepatocellular carcinoma [53] and gastric cancer [54]. TESC is overexpressed
in colorectal cancer (CRC), but not in normal mucosa and premalignant dysplastic lesions,
the high expression levels being related to an increased cell proliferation rate, invasiveness,
and metastatic features [32,52,55]. TESC is presented as a potential oncotarget in colon
adenocarcinoma, as revealed in data found by Kand et al., who indicated that depletion of
TESC in this cancer type results in decreased tumor growth [32].

The genomic landscapes result from a combination of multiple overlapping muta-
tional processes, making their deconvolution from genomic data a difficult challenge [56].
According to the analysis using cBioportal, based on TCGA data (Figure 7), we can observe
that MMP3 and TESC have a low mutation rate, versus TP53, which has a higher mutation
rate in COAD, as we observed in a previous study [5]. Additionally, in colorectal cancers,
the presence of specific MMP3 polymorphisms was observed [57].

Alteration of genes involved in post-translational modification, protein degradation,
and protein synthesis can lead to important structural alterations in existing proteins that
participate in multiple biological processes [58]. Additionally, studies related to these
alterations will have an important role in the immune recognition of tumor therapy [58].

The limitation of the present study is related to the type of analysis based on con-
clusions drawn from bioinformatics and analysis of previous experimental results. Even
so, data generated by bioinformatics tools have an important advantage for cancer with a
high number of cases, as all platforms collect a higher number of samples associated with
clinical data and pathological data. In addition, analytical methods such as IPA applied in
the present study revealed an important role in Post-Translational Modification, Protein
Degradation, and Protein Synthesis in COAD, where an important element of this network
is MMP3, a gene correlated with overall survival. Another important network was related
to the cell cycle, with the TESC gene being a key component of this network. Our studies
provide the clue that bioinformatics strategies could identify key genes associated with the
pathogenesis of COAD, which can be exploited as biomarker candidates or therapeutic
targets. However, these data alone do not provide sufficient insights into patient prognosis
or treatment. Therefore, other molecular data should be considered in combination with
our candidate genes for further understanding of COAD and to improve patient care.

5. Conclusions

An analysis of the top 25 upregulated and downregulated genes that were screened
for the prediction of the overall survival rate in COAD was performed. Thus, we were able
to identify two key genes (MMP3 and TESC) that may be associated with the prognosis of
patients with COAD. Additional validation of the expression levels for MMP3 and TESC
on the colonomics data set was subsequently performed. Additional validation studies
in the large patient cohort will decipher the role of the two genes and will bring novel
insights regarding stage correlation with expression level and hallmarks of cancer where
these genes could serve as potential biomarkers and oncotargets. At the time when this
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study was performed, limited information about both genes was provided by studies done
on patients with colon adenocarcinoma, leaving a lot of space for validation or discoveries
about their potential value in different cancers.

IPA network analysis revealed further insights into the MMP3 and TESC profiles and
provides a basis to investigate the regulatory mechanisms involved in COAD research,
particularly in the context of the tumor microenvironment.

Supplementary Materials: The following supporting information can be downloaded at: https:
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50. Piskór, B.M.; Przylipiak, A.; Dąbrowska, E.; Niczyporuk, M.; Ławicki, S. Matrilysins and Stromelysins in Pathogenesis and
Diagnostics of Cancers. Cancer Manag. Res. 2020, 12, 10949–10964. [CrossRef]

51. Kolobynina, K.G.; Solovyova, V.V.; Levay, K.; Rizvanov, A.A.; Slepak, V.Z. Emerging roles of the single EF-hand Ca2+ sensor
tescalcin in the regulation of gene expression, cell growth and differentiation. J. Cell Sci. 2016, 129, 3533–3540. [CrossRef]

52. Kang, J.; Kang, Y.H.; Oh, B.M.; Uhm, T.G.; Park, S.Y.; Kim, T.W.; Han, S.R.; Lee, S.J.; Lee, Y.; Lee, H.G. Tescalcin expression
contributes to invasive and metastatic activity in colorectal cancer. Tumour. Biol. 2016, 37, 13843–13853. [CrossRef]

53. Zhou, Z.-G.; Chen, J.-B.; Zhang, R.-X.; Ye, L.; Wang, J.-C.; Pan, Y.-X.; Wang, X.-H.; Li, W.-X.; Zhang, Y.-J.; Xu, L.; et al. Tescalcin is
an unfavorable prognosis factor that regulats cell proliferation and survival in hepatocellular carcinoma patients. Cancer Commun.
2020, 40, 355–369. [CrossRef] [PubMed]

54. Kim, T.W.; Han, S.R.; Kim, J.T.; Yoo, S.M.; Lee, M.S.; Lee, S.H.; Kang, Y.H.; Lee, H.G. Differential expression of tescalcin by
modification of promoter methylation controls cell survival in gastric cancer cells. Oncol. Rep. 2019, 41, 3464–3474. [CrossRef]
[PubMed]

55. Lee, J.H.; Choi, S.I.; Kim, R.K.; Cho, E.W.; Kim, I.G. Tescalcin/c-Src/IGF1Rβ-mediated STAT3 activation enhances cancer stemness
and radioresistant properties through ALDH1. Sci. Rep. 2018, 8, 10711. [CrossRef]
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Abstract: Genomic data enable the development of new biomarkers in diagnostic laboratories.
Examples include data from gene expression analyses or metagenomics. Artificial intelligence can
help to analyze these data. However, diagnostic laboratories face various technical and regulatory
challenges to harness these data. Existing software for genomic data is usually designed for research
and does not meet the requirements for use as a diagnostic tool. To address these challenges, we
recently proposed a conceptual architecture called “GenDAI”. An initial evaluation of “GenDAI” was
conducted in collaboration with a small laboratory in the form of a preliminary study. The results of
this pre-study highlight the requirement for and feasibility of the approach. The pre-study also yields
detailed technical and regulatory requirements, use cases from laboratory practice, and a prototype
called “PlateFlow” for exploring user interface concepts.

Keywords: laboratory diagnostics; requirements engineering; genomics; gene expression; metagenomics;
medical diagnostics

1. Introduction

The field of biology that focuses on the genetic material of organisms is known as
genomics. The goal of genomics is to understand the function, mechanisms, and regulation
of genes and other genomic elements. This includes, for example, understanding the com-
plex relationship between the genome, the expression of individual genes, environmental
factors, and the resulting physiological and pathophysiological states of a cell or organism
as a whole.

Once these relationships are discovered, they can be used in laboratory diagnostics to
identify pathophysiological conditions and potentially improve patient care. Two examples
are gene expression analysis and metagenomic analysis. The former is used to measure
the activity of certain genes, while the latter is used to analyze the genomes of a patient’s
microbiota (e.g., the gut microbiota). Medical laboratories must constantly evolve and
adapt to bring new insights into clinical practice. This includes generating, transforming,
combining, and evaluating data to deliver individualized diagnostic results.

Genomic applications often generate large quantities of data [1], which presents
processing and analysis challenges. For example, human genome sequencing regularly
generates hundreds of gigabytes of raw data for a single sample. It is foreseeable that the
total quantity of data will continue to increase as new technologies are developed and ex-
isting technologies are used more extensively. The type of data generated in these genomic
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applications is also quite heterogeneous and they sometimes need to be combined with
other available data in the context of personalized medicine. This combination of volume
(of data), velocity (of increase in data), and variety, identifies genomic applications as a Big
Data problem [2]. Big Data application requirements often exceed the limits of individual
machines and thus depend on architectures that are scalable across machine boundaries.

Artificial intelligence (AI) can identify patterns in such large data sets. In particular,
“deep learning” [3] has proven to be a powerful technique for detecting even complex
relationships in data. It has found application in a number of complex problems, such as
phenotype prediction and regulatory genomics [4]. Due to its increased computational
power, this technique can process large quantities of data. At the same time, deep learning
often requires less data preprocessing than other approaches. For AI to support data
analysis, several other challenges must be addressed, such as model selection, feature
engineering, model explainability, and reproducibility, which are exacerbated by high
dimensionality and a relatively small number of samples, often referred to as the “curse
of dimensionality” [5]. In laboratory diagnostics, too, the number of samples available
for AI methods is usually limited, since obtaining a larger number of samples is often
complex and expensive. AI is also applied beyond analysis [5,6]. Examples include its use
for dimensionality reduction in the visualization of high-dimensional data or clustering of
similar sequences [7].

Regardless of the application area, the explainability of AI models is a further challenge.
Powerful methods such as deep learning often represent a “black box”, where it is unclear
according to the criteria through which the model arrives at a certain decision. This is
not only a purely technical challenge, but also a regulatory challenge in which legislators
and regulators must create clear criteria according to which the use of AI in laboratory
diagnostics is permitted. Initial proposals in this regard were published, for example,
in 2020 by the Joint Research Center (JRC) of the European Commission [8]. In this report,
transparency, reliability, and data protection are named as core criteria against which AI
models must be measured.

In the context of laboratory diagnostics, genomic applications and AI face additional
regulatory and technical challenges. Applicable standards and regulations such as ISO
standards (including ISO 13485 [9], ISO 15189 [10], and IEC 62304 [11]) and the European
Union’s In Vitro Diagnostics Regulation (IVDR) [12] require that instruments used in
diagnostics, as well as software, be certified and meet numerous criteria.

“Health institutions”, defined in the IVDR as “. . . an organization the primary purpose
of which is the care or treatment of patients or the promotion of public health” [12], have
the privilege of using so-called “Laboratory-Developed Tests (LDTs)” [13]. For these tests,
the laboratory takes full responsibility for validation and IVDR compliance. These tests
may require the application of laboratory-developed software to convert raw data into
reportable results. Taking responsibility for conformity with IVDR requirements means
that the health institution has to establish and document that the LDT complies with
the essential safety and performance requirements as specified in Annex I of the IVDR.
Moreover, the institution has to establish and operate a Quality Management System
(QMS) [10], including a Risk Management System (RMS) [13], Post-Market Surveillance
(PMS), and Post-Marketing Performance Follow-Up (PMPF) for the respective LDTs. PMS
and PMPF are intended to make sure that new scientific findings or technical developments
are recognized, taken into account, and—when appropriate—implemented even after the
tests have been introduced. This is to ensure that the performance of diagnostic tests always
reflects the current state of the art. For software used in conjunction with LDTs, the same
requirements apply as this software was not approved by the manufacturer for diagnostic
purposes. It may thus be termed “RUO software” (Research Use Only).

However, because RUO applications have not been optimized for laboratory diagnos-
tics, they may be difficult to integrate into the laboratory workflow, reducing efficiency and
thus increasing costs. An example of this is software that is based on the concept of projects
or individual experiments rather than automating repetitive tasks. Another example is data
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transfer between the RUO software and other parts of the solution, such as the compliance
systems mentioned earlier.

Whether the required software is being developed from scratch or existing software
is being repurposed for the task, careful analysis of the requirements for such software
must be undertaken to ensure that a solution complies with all applicable regulations,
supports laboratory use cases, integrates with other relevant systems, and does all this in
an efficient manner, automating processes where possible to reduce the possibility of errors
and overall costs. Due to these numerous aspects, involving different areas such as biology,
informatics, and regulations, requirements engineering for laboratory diagnostic software
is challenging.

In summary, challenges arise from the constant advancement of science and technology,
the quantity and type of data, the use of machine learning to process these data, regulations
governing the laboratory process, and the identification and analysis of requirements for
laboratory diagnostic software. Combining genomic applications with AI and applying
them in the context of laboratory diagnostics has potential for improved diagnostics,
but only if the above challenges can be overcome (Figure 1).

Clinical 
Diagnosticscs

Artificial 
Intelligence

Genomics

Problem
Area

Figure 1. Problem area adressed in this paper, © 2021 IEEE. Reprinted, with permission, from
Krause et al. [14].

Towards this goal, we recently introduced [14] a conceptual model called “GenDAI”
(GENomic applications for laboratory Diagnostics supported by Artificial Intelligence).
This extended paper discusses the rationale behind GenDAI in more detail and provides
an initial evaluation of the model with the help of a recently conducted pre-study. The
remainder of the paper discusses existing conceptual models that were developed before
“GenDAI”. “GenDAI” is then introduced as a new conceptual model that was developed
to comprehensively cover the outlined challenges and the use cases in laboratory diag-
nostics. Finally, we discuss the pre-study, exploring detailed regulatory and technical
requirements for the future implementation of our conceptual model and providing a
preliminary evaluation of the concept and ideas behind “GenDAI”.

2. State of the Art

Bioinformatics software solutions exist to support the analysis of instrument data
generated by genomic applications. These solutions can be broadly classified into (i) generic
bioinformatics data processing solutions and (ii) application-specific solutions. Generic
solutions are developed to support all types of bioinformatics problems and are typically
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characterized by a flexible workflow approach, where individual tasks are connected as
needed to achieve the intended goal. The flexible workflow concepts can better adapt to
the constant progress in science and technology, as individual components can be replaced
without altering other components of the system. Their disadvantage is that they are more
difficult to set up and use than application-specific standard solutions since the latter can
optimize the user experience for specific, relevant use cases.

An example of a generic workflow-based solution is the Galaxy project [15], which has
several thousand tools that can be used as tasks in a workflow. It provides a multi-user web
interface and is scalable to many concurrent compute nodes. It is available on free public
servers, but can also be installed locally. With public servers, there are limitations on the
available tools and the maximum amount of resources that can be consumed. Application-
specific solutions are inherently less flexible. In the case of metagenomics, these include,
for example, MG-RAST [16], MGnify (formerly EBI Metagenomics) [17], and QIIME 2 [18].
A popular and feature-rich solution for gene expression analysis is qBase+ [19,20].

The solutions in both categories have in common that they do not use AI to improve
user interaction, e.g., by suggesting appropriate analysis methods or visualizations. Al-
though, in some cases, machine learning algorithms are used in certain analysis steps
of these products, this is also rarely enacted [5]. To overcome these and other problems,
a conceptual architecture for the specific use case of rumen microbiome analysis was in-
troduced in [6] (Figure 2). It was designed from the beginning to enable the use of AI in
all relevant domains. It has a distributed architecture with a workflow engine and task
scheduler at its core. To incorporate AI into all aspects of the solution, it was built on the
AI2VIS4BigData reference model [21]. Recently, it has also been extended for the use case
of human metagenome analysis [5]. As the name implies, AI2VIS4BigData also targets the
challenges associated with Big Data processing. While some of the previously mentioned
tools, particularly in the context of metagenomics, support the analysis of large data sets
through parallel processing and streaming mechanisms, they do not fully address the
challenge, as the actual analysis is only one of several steps in a Big Data process.

Another challenge with biomedical software solutions is the difficulty of using most
products in laboratory diagnostics due to strict regulatory requirements. Although this
use case is explicitly mentioned in the AI2VIS4BigData conceptual architecture for metage-
nomics, the assessment is very preliminary and does not take into account the applicable
standards, such as the ISO standards mentioned above [9–11], and the recent regulation
introduced by the IVDR in the European Union [12]. For the use case of gene expression
analysis (Figure 3), a model was presented in [22] that is more focused on these regulatory
issues and the specific needs of laboratory diagnostics. It is based on the CRISP4BigData
reference model [23] (Figure 4). Unfortunately, it was not specifically designed for use
with AI and is also limited to the use case of gene expression analysis. To our knowledge,
there is no conceptual model that could serve as a template to support large-scale (in
terms of Big Data), AI-driven genomic applications specifically tailored to high-throughput
laboratory diagnostics.
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Figure 2. A conceptual architecture for AI and Big Data supporting metagenomics research [6].
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Figure 4. CRISP4BigData reference model [23].

3. Conceptual Model

We propose GenDAI (Figure 5) as a new model that combines the AI-driven nature of
the AI2VIS4BigData conceptual architecture for metagenomics with the CRISP4BigData-
based model for gene expression diagnostics. GenDAI incorporates elements from both of
these earlier models.
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Figure 5. GenDAI conceptual model, © 2021 IEEE. Reprinted, with permission [14].

The general structure of the model is based on the CRISP4BigData reference model,
with different phases for “data collection, management, and curation”, “analytics”, “inter-
action and perception”, and “insight and effectuation”. It also follows a three-layer design,
with the user interface at the top and a persistence layer at the bottom. In the middle of
Figure 5, the data flow through the system is shown as a series of generic processing steps.
These steps are mapped by CRISP4BigData and are more granular than their phases.

Unlike the model based on AI2VIS4BigData, there is no explicit, conceptual “AI layer”.
Instead, the AI components are integrated into their respective phases, simplifying the
model in this respect. This change also helps to emphasize the data flow between phases.
Even if the specific use of AI is ultimately subject to the respective implementation, the goal
of GenDAI is to define interfaces at which AI can be used by clearly naming the individual
components and their interaction. Technically, the fundamentally modular approach of
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GenDAI supports the flexible replacement of individual components by components with
AI support as soon as they have been clinically evaluated and accepted.

Explicit references to specific genomic applications such as metagenomics or gene ex-
pression analysis have been removed from the model or generalized so that the model can
be used for other applications. The importance of regulatory requirements was enhanced
in respect to both models by including (i) the compliance officer as an explicit actor, (ii) reg-
ulatory policies as a possible data artifact, and (iii) “long-term evaluation”, as an explicit
requirement for use in laboratory diagnostics. When analysis is performed using an LDT,
part of this long-term evaluation is tracking the LDT within a Quality Management System
(QMS), Risk Management System (RMS), and continuous performance evaluation during
the entire life cycle of the test. These have been explicitly added as part of the “continuous
product and service improvement” topic within the “insight and effectuation” phase.

Looking at the different phases in detail, the first phase, “data collection, management,
and curation”, concerns all aspects related to data input. In addition to instrument or patient
data for analysis, this also includes additional data such as reference data, scientific publi-
cations, or applicable policies. These data have been linked to relevant actors and they are
considered together as part of the “business understanding” step of CRISP4BigData. This
phase also includes the “data preparation” and “data enrichment” steps of CRISP4BigData.
However, as a slight deviation from the reference model, the “data enrichment” step has
also been pulled into the “analytics” phase, as we believe that with the increasing use of AI
and deep learning, data enrichment is often closely related to and dependent on analytics
itself. The user interface for this first phase will provide ways to manage import sources,
instruments, and (imported) data.

The “analytics” phase includes components required for the actual data analysis,
as well as components that manage, organize, and schedule these analytic processes. Ex-
amples included in Figure 5 are a workflow engine to orchestrate tasks and data flow,
a scheduler to distribute work among compute nodes, and a service registry to manage
the list of available tasks and methods. These analysis methods were grouped into three
different categories. In addition to statistical methods or classical machine learning ap-
proaches, deep learning is included as a separate category to highlight its potential for
improved diagnostics. Following the “analysis” step, another important step in the phase
is “evaluation”. For laboratory diagnostics, it is crucial that the results are checked for
plausibility and interpreted. Here, we see potential for future applications of AI to help
with both of these challenges.

The third phase, “interaction and perception”, concerns the creation of result visual-
izations. These can be automatically generated reports sent from the lab to the responsible
physician, but also visualizations created on demand. For the latter, AI can help to select
appropriate visualizations and create them. “Insight and effectuation” in the context of
laboratory diagnostics is a phase that focuses on long-term results and meta-analyses rather
than single results. Examples include performance evaluation of diagnostic tests performed,
as well as risk management systems and quality management systems, which in many
cases are required by regulation.

“Persistence” can be considered as both a layer and a phase, because the data are
retained and archived after the analysis is complete. However, here, we will consider
it a layer because it interacts with all other phases to store intermediate results and can
also serve as a data source for initial data import. It should be noted that CRISP4BigData
includes a phase called “knowledge-based support”, which includes “retention and archiv-
ing” as a step, in addition to “knowledge generation and management”. We believe that
“persistence” is a better term for the heterogeneous types of data managed by the system.
However, we retain both steps in the form of data categories in the model. Within the
persistence layer are several logical data stores for different data types. The data lake stores,
e.g., raw, unprocessed data originating from an instrument. Structured data, on the other
hand, may contain, e.g., (interim) results, audit data, or configuration data. A connector
for a Laboratory Information Management System (LIMS) is also included, which serves
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as an interface to an existing system into which the solution is to be integrated. As a final
category, “knowledge-based support” contains knowledge-based data that are independent
of individual results. This includes entities such as reference data or taxonomies. They can
also be used by AI methods to extract relevant, context-specific information.

In summary, the three core ideas that make up GenDAI are “artificial intelligence”
to support end-users in all steps and aspects of the application, “laboratory diagnostics”
as a core target market with distinct challenges, and a focus on “genomics” with all
its applications.

4. Evaluation and Requirement Engineering

As an initial evaluation of the conceptual model as a valid basis for future implemen-
tations, a pre-study was conducted. The pre-study determined the detailed technical and
legal requirements of the planned solution. For this, we partnered with a small medical
laboratory of ImmBioMed GmbH & Co. KG in Heidelberg, Germany, which provided
insights into detailed use cases and processes. The laboratory was selected because it offers
various tests for genomic parameters, and the company ImmBioMed also offers consulting
services for other laboratories and thus has great experience in the field of laboratory
processes. However, as this is only a single laboratory, this evaluation can necessarily
only be preliminary. As a practical application for evaluation, we used gene expression
analysis of cytokine-dependent genes, which can be an important diagnostic indicator for
inflammatory or antiviral defense reactions [24].

Requirements were gathered using a structured approach based on the research frame-
work of Nunamaker et al. [25]. Methods utilized in the approach included a literature
review, transcribed interviews, on-site visits, use case modeling, market analysis, and cog-
nitive walkthroughs. A particular focus of the pre-study was the execution of already
developed tests as opposed to the development of new tests. In this area, the use cases
mapped in Figure 6 were examined in more detail. These use cases can be assigned to the
four user stereotypes, “Lab Biologist”, “Data Analyst”, “Clinical Pathologist”, and “QM and
Compliance Officer”. The evaluation was conducted by matching the identified challenges
in the current process and requirements for future solutions with the “GenDAI” model,
to determine if and how the model addresses this challenge or requirement. Hence, it is a
qualitative approach. Quantification, e.g., in the form of a target benchmark, did not seem
appropriate at this time due to the complexity of the various requirements and the early
stage of the evaluation. A prototype called “PlateFlow” was used to evaluate user interface
concepts with a cognitive walkthrough.

The preliminary study revealed that there are several points in the current laboratory
workflow where processes could be more automated. For example, data have to be trans-
ferred manually between different systems several times. Due to different data formats
and lack of import/export interfaces, this transfer is sometimes conducted by manual entry.
Such manual transfer requires special attention and measures, such as a 4-eyes principle to
avoid or detect incorrect entries. These, and similar manual steps, cost time and increase
throughput times. This confirms the need for GenDAI’s holistic approach, where the entire
process is mapped and integrated. Table 1 shows an overview of the use cases and an
assessment of the automation potential (low/medium/high) in the laboratory studied.

Table 1. Estimated potential for automatization of use cases.

Use Case Potential Limitations
Low Med. High

U1. Prepare Test x
U1.1. Program Cycler x Cycler Capabilities
U2. Execute Test x x
U2.1. Document Test Protocol x User Input
U2.2. Quality Control x
U2.3. Store Results x
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Table 1. Cont.

Use Case Potential Limitations
Low Med. High

U3. Retrieve Results x
U3.1. Quality Control x
U4. Determine Gene Expression Level x
U4.1. Calculate (Δ)ΔCq x
U4.2. Apply Formulas x
U4.3. Store Analysis Results x
U5. Prepare Findings Report x x
U5.1. Summarize Results x
U5.2. Summarize interpretation x Plausibility Checks
U6. Run Metaanalysis x
U6.1. Inter-Run QC x Not Formalized
U7. Create Findings Report x x
U7.1. Verify Report x Legal Responsibility
U7.2. Submit Report x
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<<include>>

<<include>>
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Figure 6. Use cases analyzed in laboratory.
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The interviews also confirmed the notion that laboratories are in an ongoing process
of improving existing tests and developing new tests. In addition, there are evolving
requirements from the regulatory area. These changes can also have an impact on the
IT-supported processes, which is why the software and systems used need to be flexible or
adaptable enough to meet changing requirements. In GenDAI, this need is underscored
by the use of individual interchangeable and extensible components and by a flexible
overarching workflow.

The market analysis revealed that most of the tools were outdated or did not offer
all the analysis and processing functions needed. Moreover, none of the tools examined
were specifically designed to meet the needs of medical laboratories. For example, the tools
did not meet the necessary regulatory requirements, did not cover the complete workflow,
and their user interface was also designed more for scientific research or the development of
new tests, rather than the efficient processing of tests already developed. This also confirms
the need for a new solution specifically designed for laboratory processes. Table 2 shows an
overview of the different software tools for gene expression analysis that were evaluated,
including their basic functionalities and last update date. Table 2 is a summary of the results
given in Krause et al. [26], which were, in turn, based on the results of Pabinger et al. [27].
A “+” symbolizes the presence of a feature, a “+” the absence. Features whose existence
could not be reliably determined have been marked as “nd” (not determined).

Table 2. qPCR software evaluation. Summarized from Krause et al. [26], Pabinger et al. [27].
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CAmpER + nd nd + − − − + nd − − + − 2009
Cy0 Method − − − + − − − − − − − − + 2010
DART-PCR − − − + − + − + + − − + − 2002
Deconvolution − − − − − − + − − − − − + 2010
ExpressionSuite Software − + − + − + − + + − + + + 2019
Factor-qPCR − − − − − + − − − − − − + 2020
GenEx + − + − − + + + + + + + + 2019
geNorm − − + − − − − − − − − − − 2018
LinRegPCR + − − + − − + − + − − + + 2021
LRE Analysis − − − − − − + − − − − − + 2012
LRE Analyzer − − − − − − + − − − − + + 2014
MAKERGAUL − − − + − − + − − − − − + 2013
PCR-Miner + − − + − − − − − − − − + 2011
PIPE-T − − − − − + + + + + + + − 2019
pyQPCR + − − − + + − + − + − + + 2012
Q-Gene + − − − − + − + − − − + − 2002
qBase + − + − + + − + + − + + + 2007
qbase+ + − + − + + + + + − + + + 2017
qCalculator + − − − − + − + − + − + − 2004
QPCR + − − + + + − + − + + + + 2013
qPCR-DAMS − − − − − + + + − + − − + 2006
RealTime StatMiner − − + − + + − + + + + + + 2014
REST − − − − + + − + − − + + + 2009
SARS − nd nd − − + − + nd − + − + 2011
SoFAR + + − + − − − − − − − + − 2003
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In order to validate possible operating concepts for a solution, the PlateFlow proof-of-
concept prototype was developed as part of the pre-study, which allows relevant analyses
to be performed from the raw data and the results to be summarized in a report. Figure 7
shows one of the screens of PlateFlow. PlateFlow was evaluated through a cognitive walk-
through, which resulted in positive feedback regarding the scope of functions. In addition,
the need to further evaluate usability in future development was highlighted.

Figure 7. “PlateFlow” prototype user interface.

5. Conclusions and Future Work

The use of AI-assisted genomic applications has the potential to improve laboratory
diagnostics. However, regulatory and other challenges currently hinder greater innova-
tion in this area. There is a need for a software platform for genomic applications in
laboratory diagnostics that leverages AI whilst providing the necessary foundation for
regulatory compliance.

Here, we have presented GenDAI as one possible solution. It combines the knowledge
of previous architectural models developed for specific genomic applications in different
focus areas. Unlike these previous models, GenDAI is independent of specific genomic ap-
plications. Unlike the AI2VIS4BigData-based model, it considers the specific requirements
of laboratory diagnostics to a much greater extent. Unlike the CRISP4BigData-based model,
the integration of AI is also an essential feature of the model. GenDAI thus represents an
improvement over both models.

A pre-study in cooperation with a small laboratory enabled a first practical evaluation
of the concepts. Part of the preliminary study included the creation of use cases, evaluation
of existing software components, requirement engineering, and development of the Plate-
Flow prototype. The remaining challenges include further practical validation of the model
for additional use cases and in other laboratories, a technical architecture, implementation
of missing components, and, ultimately, certification of the solution for clinical diagnostics.

Author Contributions: Conceptualization, T.K. and M.H.; investigation, T.K. and E.J.;
writing—original draft preparation, T.K. and E.J.; writing—review and editing, S.B., P.M.K., M.K.
and M.H.; visualization, T.K. and E.J.; supervision, M.K. and M.H.; project administration, T.K. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

170



Biomedinformatics 2022, 2

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Stephens, Z.D.; Lee, S.Y.; Faghri, F.; Campbell, R.H.; Zhai, C.; Efron, M.J.; Iyer, R.; Schatz, M.C.; Sinha, S.; Robinson, G.E. Big Data:
Astronomical or Genomical? PLoS Biol. 2015, 13, e1002195,

2. Abawajy, J. Comprehensive analysis of big data variety landscape. Int. J. Parallel Emergent Distrib. Syst. 2015, 30, 5–14. [CrossRef]
3. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
4. Zou, J.; Huss, M.; Abid, A.; Mohammadi, P.; Torkamani, A.; Telenti, A. A primer on deep learning in genomics. Nat. Genet. 2019,

51, 12–18.
5. Krause, T.; Wassan, J.T.; Mc Kevitt, P.; Wang, H.; Zheng, H.; Hemmje, M.L. Analyzing Large Microbiome Datasets Using Machine

Learning and Big Data. BioMedInformatics 2021, 1, 138–165. [CrossRef]
6. Reis, T.; Krause, T.; Bornschlegl, M.X.; Hemmje, M.L. A Conceptual Architecture for AI-based Big Data Analysis and Visualization

Supporting Metagenomics Research. In Proceedings of the Collaborative European Research Conference (CERC 2020), Belfast,
UK, 10–11 September 2020; Afli, H., Bleimann, U., Burkhardt, D., Loew, R., Regier, S., Stengel, I., Wang, H., Zheng, H., Eds.; CEUR
Workshop Proceedings; CERC: New Delhi, India, 2020; pp. 264–272.

7. Soueidan, H.; Nikolski, M. Machine learning for metagenomics: Methods and tools. arXiv 2015, arXiv:1510.06621.
8. Hamon, R.; Junklewitz, H.; Sanchez, I. Robustness and Explainability of Artificial Intelligence; EUR, Publications Office of the

European Union: Luxembourg, 2020; Volume 30040.
9. Standard ISO 13485:2016; Medical Devices—Quality Management Systems—Requirements for Regulatory Purposes. ISO

International Organization for Standardization: Geneva, Switzerland, 2016.
10. Standard ISO 15189:2012; Medical Laboratories—Requirements for Quality and Competence. ISO International Organization for

Standardization: Geneva, Switzerland, 2012.
11. Standard IEC 62304:2006; Medical Device Software—Software Life Cycle Processes. IEC International Electrotechnical Commission:

Geneva, Switzerland, 2006.
12. The European Parliament; The Council of the European Union. In Vitro Diagnostic Regulation; European Commission: Brussels,

Belgium, 2017.
13. Spitzenberger, F.; Patel, J.; Gebuhr, I.; Kruttwig, K.; Safi, A.; Meisel, C. Laboratory-Developed Tests: Design of a Regulatory

Strategy in Compliance with the International State-of-the-Art and the Regulation (EU) 2017/746 (EU IVDR In Vitro Diagnostic
Medical Device Regulation). Ther. Innov. Regul. Sci. 2021, 56, 47–64.

14. Krause, T.; Jolkver, E.; Bruchhaus, S.; Kramer, M.; Hemmje, M.L. GenDAI—AI-Assisted Laboratory Diagnostics for Genomic
Applications. In Proceedings of the 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Houston, TX,
USA, 9–12 December 2021. [CrossRef]

15. Afgan, E.; Baker, D.; Batut, B.; van den Beek, M.; Bouvier, D.; Čech, M.; Chilton, J.; Clements, D.; Coraor, N.; Grüning, B.A.; et al.
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Abstract: Biophotogrammetric methods for postural analysis have shown effectiveness in the clinical
practice because they do not expose individuals to radiation. Furthermore, valid statements can be
made about postural weaknesses. Usually, such measurements are collected via markers attached to
the subject’s body, which can provide conclusions about the current posture. The craniovertebral
angle (CVA) is one of the recognized measurements used for the analysis of human head–neck
postures. This study presents a novel method to automate the detection of the landmarks that are
required to determine the CVA in RGBs. Different image processing methods are applied together
with a neuronal network Openpose to find significant landmarks in a photograph. A prominent
key body point is the spinous process of the cervical vertebra C7, which is often visible on the skin.
Another visual landmark needed for the calculation of the CVA is the ear tragus. The methods
proposed for the automated detection of the C7 spinous process and ear tragus are described and
evaluated using a custom dataset. The results indicate the reliability of the proposed detection
approach, particularly head postures.

Keywords: automated detection; craniovertebral angle; neuronal network; Openpose; RGB;
C7; tragus

1. Introduction

The number of smart device users is increasing every year. The year 2013 recorded
a total of more than 4.01 billion smartphone users, which increased to 5.07 billion users
in 2019 [1]. It is forecast that the subscriptions associated with smartphones will continue
to rise and will reach 7.7 billion in 2027 [2,3]. Moreover, tablet computer usage has in-
creased dramatically in recent years, in terms of both the number of users and the type of
applications [4].

With such increased use of smart devices, the number of people who report neck
pain has also risen. Scientific studies show that more and more physiological and muscu-
loskeletal complaints are being reported that can be traced to the use of smart devices [5–8].
The bent body position that is often taken when using a smart device can lead to an abnor-
mal head posture and also affects the postural apparatus and thus the spinal structures.
To investigate these effects on the human body, researchers evaluate the biomechanics
of the head–neck system and the associated impairments such as dizziness or headaches
associated with a variety of conditions.

In order to quantify these postural alterations, the neck flexion and forward head
position (FHP) can be determined with the help of, e.g., the craniovertebral angle (CVA),
head tilt angle (HTA), and shoulder angle (SHA).

The research in [9–11] showed that prolonged smartphone use has a direct effect on
the HTA, SHA, and FHP as determined by the CVA.

Biomedinformatics 2022, 2, 318–331. https://doi.org/10.3390/biomedinformatics2020020 https://www.mdpi.com/journal/biomedinformatics
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In order to gain insights into the tendency towards scoliosis, the naked dorsal surface
of 98 volunteers was scanned with Microsoft Kinect to determine the shoulder angle [12].
The position of the C7 spinous process was estimated using the method of pixel-shade
difference. The method used to determine the C7 spinous process was not presented in
detail, and it was not checked for validity. The aim of the study presented in [13] was the
assessment of the relative angles between vertebral adjacent segments during gait using
IMUs. The proposed method proved the usability of inertial sensors for the assessment of
spinal posture. Statistically significant differences were shown with regard to the influence
of gender, speed, and imposed cadence. In addition to the analysis of the head position,
Ormos et al. [14,15] measured the range of motion of the cervical spine using a goniometer
and determined the isometric strength of the neck muscles with a dynamometer for flexion,
extension, and head tilt on both sides. People with FHP showed a lower pressure pain
threshold (PPT) in all locations except for the upper trapezius and scalenus medius muscles.
They also showed less extension and right-rotation range of motion. The objectives of the
study in [16,17] were to quantify the neck posture using CVA and fatigue in neck muscles.
Both studies used markers attached to the participant’s tragus and C7 to measure the CVA.

Furthermore, different studies investigated the relation between a bent posture and
neck pain, headache, and spinal deformations. For example, Ref. [18] investigated the
effects of smartphone use for less than and more than four hours per day between two
groups. They found a significant difference in forward head angle and the intensity of neck
pain after prolonged use of smartphones. To explore the working mechanism of manual
therapy, Ref. [19] investigated whether aspects of cervical spine function, such as cervical
ROM, neck flexor endurance, and FHP, were mediators of the effect of manual therapy on
headache frequency. The effect whereby FHP causes spinal deformation, which increases
scapula deformation, lordosis of the cervical vertebra, and kyphosis of the upper thoracic
vertebra, was confirmed by [20,21]. The craniocervical angle was manually measured on
the basis of markers using a lateral digital photograph with a digital camera. In addition,
the authors of [22] quantified neck postures using electrogoniometers. It was observed
that the ergonomic loads were increased when compact and slate computers were used,
especially when used in non-traditional work environments.

The study by [23] is a prospective, cross-sectional, observational investigation, evalu-
ating 3D quantitative standing posture proprioceptive perception through an instinctive
self-correction maneuver in nonspecific chronic and sub-acute patients with lower back
pain. To measure the subjects’ 3D whole-skeleton pose, a non-ionizing 3D optoelectronic
stereophotogrammetric approach with 27 passive retro-reflective markers was used.

The methods reported in the previous publications are based on marker-based ap-
proaches or semi-automatic recording, or they need additional recording devices to de-
termine the body position. To the best of our knowledge, no markerless, fully-automatic
detection method for head and neck angles in a single RGB image exists. Therefore, the fo-
cus of our study was to propose a fully automated approach to analyze cervical spine
posture using RGB images, without using additional markers as landmarks, to detect de-
fined key points such as the tragus of the ear or the spinous process of C7. By means of this
automatic landmark detection method, the craniovertebral angle (CVA) is an established
indicator of the severity of forward head position [10,15,16,24–26], is determined.

2. Materials and Methods

The CVA [27,28] is determined using lateral view images of the head–neck postures as
the angle formed between the horizontal and a line drawn from the midpoint of the ear
tragus to the point on the skin overlying the tip of the spinous process of the seventh cervical
vertebra, C7 (see Figure 1). In order to automatically calculate the CVA, two anatomical
landmarks, i.e., the ear tragus and the spinous process of C7, must be detected first.
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Figure 1. Image of a subject with flexed head position: (a) craniovertebral angle α was defined as the
angle formed between the line drawn from the tragus of the ear to the skin tip location of the spinous
process C7 and the horizontal line (b).

2.1. Determination of Spinous Process

The spinous process of the seventh human vertebra is an important landmark in the
analysis of head–neck postures. When lowering or stretching the head forward, the spinous
process of C7 forms a clear bulge in the skin on the back of the neck. In order to find a 2D
pixel position of the skin tip of the spinous process in a single RGB image, a method based
on the approximation of the line to the neck contour is proposed.

Openpose is a neural network that can recognize the 2D positions of landmarks on
the human body and facial structures in an RGB image. In the context of this study,
Openpose was used to determine a region of interest (RoI) surrounding the landmarks in
the neck region. The proposed method, depicted in Figure 2, is to take a photograph of
the subject and extract 18 key body points using the real-time skeleton detection model
of Openpose [29] on it. The determination of the RoI is an essential part of the proposed
approach. If the neck curvature is outside of the RoI, the C7 spinous process cannot be
detected. Otherwise, if the RoI was too large, the image filters applied in the further
steps could extract too many features in the background, which could lead to errors in the
landmark detection.

Figure 2. Determination of the position of the skin bulging through the C7 spinous process in an RGB
image: based on 2D body key points (marked red) detected in the image, the RoI was determined.
Using computer vision methods, corner detection was performed. The 2D position of the spinous
process of C7 was estimated through the line (marked yellow) approximated to the neck curvature.
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The RoI was calculated based on the 2D coordinates of the selected body parts in the
Openpose output such as the x and y pixel positions of the nose and the ear (see Figure 3):

upperle f t = nosex +
earx−nosex

2 , nosey +
eary−nosey

2 , (1)

upperright = earx + (earx − nosex), eary + (eary − nosey), (2)

lowerle f t = upperle f tx − ((eary − nosey) · 2), upperle f ty + ((earx − nosex) · 2), (3)

lowerright = upperrightx − ((eary − nosey) · 2), upperrighty + ((earx − nosex) · 2). (4)

The input image was cropped to only the relevant area where the neck curvature and
C7 spinous process bulge were visible, and at the same time, the area of the background
was kept as small as possible.

Figure 3. Body positions of the nose (marked black) and ear (marked white), which are used for the
determination of RoI, are extracted using a pre-trained Openpose model (a). For the separation of
the body from the background, color segmentation (b) is applied to the image. Then the body is
marked white and the background black (c). In the binary image, the 2D corner-point coordinates
are detected. For each of the corner points (marked red) and its neighbor, a straight line (marked
blue) is generated. Subsequently, the number of corner points lying on each line is determined and
compared. The line with the most corner points located on it is selected as the approximation line of
the neck contour (green line). (Note: for clarity, not all lines are visualized in the image) (d). In order
to calculate the position of the intersection, points (marked red) between the approximation line
(marked green) and the neck contour (black) are used (e). The C7 spinous process is located in the
middle of the adjacent intersection points with the maximum distance from each other.

Before computer vision methods for the edge extraction could be applied to the image,
a color segmentation was used in order to separate the human body from the background.
A color interval was first determined in the HSV color space. The output of this step is
shown in Figure 3b. In the next step, the binary image was created (see Figure 3c). All pixels
whose color value was inside the color interval of the skin were set as white, and every
other pixel was set as black. This binary image was then passed to the Sobel operator [30]
to select prominent contours in the RoI. The Sobel filter is a classical edge detector, which is
commonly used in image processing. It extracts edges by performing the gradient on the
image and emphasizes edges in the vertical or horizontal direction. A binary image favors
the use of the Sobel filter. When using an RGB image instead, results can vary widely due to
different lighting and color values. Using a binarized image, the Sobel operator can easily
find the edges between the person and the background, since factors such as light and
shadow are no longer taken into account. For a better interpretation of the edge detector
results, corner points were calculated on each found contour using the Harris operator [31].
The 2D coordinates of the calculated corners points were then used to determine a straight
line that approximated the neck contour. In order to determine this approximation line,
the corner points found were first sorted according to their y-coordinate. For each corner
point and its successor, a straight line was calculated. We then checked how many other
corner points lay on each of the lines. Finally, the line with the most corner points was
chosen to be the approximation line for the neck contour. The reason that the number
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of corner points on the line was also taken as a criterion was that the number of corner
points on the neck contour was always significantly higher than the number of vertices on,
for example, hair contours.

Once the approximation line was determined, its intersection points with the neck
contour were calculated utilizing the edges extracted by the Sobel operator in the neck
region. In Figure 3e, it is shown that the estimated position of the C7 spinous process
is located between two adjacent intersection points with a distance greater than a pre-
defined threshold.

2.2. Estimation of the Ear Tragus

The ear tragus was the second most important reference point for the CVA determina-
tion. The pipeline for the calculation of the ear tragus position was similar to the method
proposed in Section 2.1 for the detection of C7. The RoI with the ear tragus was determined
using the same pre-trained Openpose model as the RoI used for the C7 spinous process.
However, in this case, rather than the neck contour, the ear should be mainly visible. For the
RoI extraction, the Euclidean distance distNE between the nose’s key point and the ear was
calculated. The vertices of the RoI were determined in such a way that the ear was located
in the center:

upperle f t = earx − distNE
2 , eary − distNE

2 (5)

upperright = earx +
distNE

2 , eary − distNE
2 (6)

lowerle f t = earx − distNE
2 , eary +

distNE
2 (7)

lowerright = earx +
distNE

2 , eary +
distNE

2 . (8)

For the localization of the ear tragus, the ear contour was first detected by approximat-
ing an ellipse model on the outer shape of the ear, and then the pixel intensities inside the
selected ellipse were analyzed. For this purpose, the Canny algorithm [32] was applied to
the ear’s RoI in order to detect edges. The Canny edge detector was chosen since the ear
had many complex structures that could be missed by the Sobel operator. Afterward, the
edges that were close to each other were connected to the contours, which were used to fit
an ellipse to the ear’s outer boundaries. The ellipses were generated in such a way that
they maximally surrounded the found contours in the image (see Figure 4). In the last step,
the ellipse whose center was the closest to the ear landmark point found by Openpose was
selected to build a bounding ellipse of the outer ear contours.

Figure 4. Estimation of the ear tragus in the lateral-view image of the subject: in the first step, image
pre-processing was performed, which includes the extraction of the RoI (marked by red frame) based
on the Openpose output. In the further processing steps, image features such as edges and contours
were detected in the RoI. An ellipse was associated with each contour. The ellipse positioned closest
to the Openpose ear point was then selected. Intensities were analyzed inside of the chosen ellipse.
The ear tragus was estimated to be located in the direction of the smallest distance from the ear
channel to the ear border represented through an ellipse.
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In the next step, the area inside the ear ellipse was analyzed. The goal was to find
the region with the darkest pixels, since this is where the auditory canal is most likely
to be found. To do so, the minimum intensity value of all points within the ellipse was
determined. The position of the ear tragus can be derived by applying an edge detector in
the direction of the closest distance to the bounding ellipse that surrounds the ear.

2.3. Data Acquisition

In order to validate the proposed method for the automated calculation of the CVA in
RGB images, a custom dataset was generated with a total of 79 subjects, of whom 45 were
male and 34 were female.

For each test participant, the following additional data, required for the CVA analysis,
were collected: demographic data such as age and gender, spinal disorders, and average
daily duration of smartphone usage. Their mean age was 26.6 years, with the youngest
person being 21 years old and the oldest being 61 years old. The height of the test subjects
ranged from 163 cm to 196 cm. Of the 79 participants, 6 had been diagnosed with cervical
spine disorders. The estimated daily duration of smartphones usage among the test subjects
was 3.16 h on average, in a range from 0.3 h to 7 h.

The images in the dataset showed each subject performing four head–neck postures:
straight neck, maximal head flexion, forward head posture, and head-down position (see
Figure 5). The dataset resulted in a total of 316 images. The aim of the recorded dataset was
twofold: on the one hand, the validation of the proposed methods for the detection of the
anatomical points needed for calculation of the CVA and, on the other hand, the analysis of
the CVA in four different head–neck positions.the CVA in four different head neck positions.

Figure 5. Sample images of different head–neck postures: straight-neck (a), forward-head (b), and
head-down position during smartphone use (c) and maximal head flexion (d).

The images were recorded with a widely available Microsoft Kinect v2 3D camera,
which captured 2D RGB images, as well as the depth data with a separate depth sensor [33].
The resolution of the RGB camera was 1920× 1080 pixels, and the depth sensor had a
resolution of 512× 424 pixels. The camera and the data recorded in the dataset are depicted
in Figure 6a. Although the dataset was intended for the evaluation of the automated
calculation of the craniocervical angle in a single RGB image, depth maps were captured
for each RGB frame and can be used for future research projects.

The photographs were taken in sitting positions in a left lateral view with the same
background. For each recording, the camera was located at a distance of 1.3 m away from
the subject on a tripod at a height of 1.2 m from the floor. In particular, to be able to
determine the position of C7’s skin bulge, the area of the neck bulge through C7 should
not be covered by clothing or hair. The participants were asked to wear suitable clothing
to keep the region of the head and neck uncovered and tie their hair back. In addition,
all participants looked in the same direction and followed the instructions given to the
participants before recording. Some of the subjects were asked to cover their neck, and
48 images were obtained, which could be used to validate whether the method could
correctly predict the negative classes or not.
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Figure 6. Microsoft Kinect v2 camera with included sensors (a) and illustration of three modalities
captured in the the dataset (b): RGB image, depth map, and 3D point cloud.

The labeling of the captured photographs was performed by three experts on the 2D
data. The experts were asked to mark the posterior position of the C7 spinous process,
the ear tragus, and the ear lobula (see Figure 7). In this study, two points, the C7 spinous
process and the ear tragus, were used for analysis and validation. In order to evaluate the
quality of the annotation performed by the experts, inter-rater reliability (IRR) [34,35] was
chosen as a validation metric. To calculate the IRR for three ratings, Krippendorff’s αK
coefficient [35] was applied, which measures the extent of the agreement between multiple
raters. A αK value that approaches 1.0 indicates high confidence in the labeling accuracy
and results in the high-quality dataset. The calculated reliability coefficient for the given
data showed a high inter-rater agreement with an αK of 0.991186.

Figure 7. Labeled sample images of recorded head–neck postures: straight posture (a), maximal flexed
head (b), using smartphone (c), and forward head position (d). The C7 spinous process is marked
green, the ear tragus is blue, and the ear lobula is shown in red.

3. Results

In order to validate the performance of the proposed methods, the general detection
accuracy was determined by calculating the ratio of the correct outcomes to all possible
method responses:

acc =
TP + TN

TP + FP + FN + TN
, (9)

where TP denotes true positive, TN denotes true negative, FP denotes false positive, and
FN denotes false negative predictions. The detection accuracy for two detected anatomical
points is shown in Table 1.

Table 1. Detection accuracy determined for C7 spinous process and ear tragus.

C7 Spinous Process Ear Tragus

Detection accuracy (acc) 80% 83%
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The performance of the proposed detection methods was analyzed by considering
the detected and observed values of the x and y coordinates for the chosen landmarks.
The relationships of the observed and detected x and y coordinates for the C7 spinous
process and ear tragus are visualized in Figure 8. From the presented diagrams, it can be
seen that the proposed detection approaches performed well for the most of the images in
the dataset. In general, the detected points are aligned to the line of the optimal fit in all of
the sub-plots.

Figure 8. Comparison of the observed and detected values of the 2D coordinate of C7 spinous
process and ear tragus. Values of x and y coordinates for the corresponding anatomical landmarks
are visualized in the separate sub-plots. The line for the optimal fit is marked in red in each diagram.

By comparing the determined points for the C7 spinous process to the detected points
of the ear tragus, it can be seen that the detection of the ear tragus provided more accurate
results. In some datapoints, the detector for the C7 spinous process computed a slightly
higher y coordinate value compared to its ground truth. However, the proposed method
for ear tragus detection showed a relatively small number of incorrect outcomes.

In order to quantify the performance of the proposed detectors, PRESS statistics
were calculated for each coordinate of the corresponding landmark points by using the
following equation:

PRESScoordinate =
N

∑
i=1

(vcoordinate,i − v̂coordinate,i)
2, (10)
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where vi is the observed value of the corresponding coordinate, v̂i is its predicted value,
and N is the number of images in the dataset. Additionally, the coefficient of determination
R2 was calculated:

R2
coordinate =

PRESS

∑N
i=1(vcoordinate,i − vcoordinate,i)

2 , (11)

The results of the PRESS statistics are presented in Table 2. High values of R2
x and R2

y
for the C7 spinous process and ear tragus indicate strong correlation between predicted
datapoints and the corresponding ground truth. While comparing proposed detection
approaches for the C7 spinous process and for the ear tragus much lower PRESS statistics
are shown for the ear tragus demonstrating high predictive ability of this method.

Table 2. PRESS statistics and coefficient of determination R2 calculated for x and y coordinates of C7
spinous process and ear tragus.

Measure C7 Spinous Process Ear Tragus

PRESSx 68,760.81 11,094.77
PRESSy 80,683.63 13,316.21

R2
x 0.99 0.99

R2
y 0.99 0.99

To assess the success of the methods graphically, the residuals for the x and y coordi-
nates of the determined landmarks are depicted in the scatter-plots in Figure 9. The upper
sub-plots representing residual values for the determined point of the C7 spinous process
show that most residuals for the x and y coordinates are distributed symmetrically between
20 px and −20 px, and the only exceptions are a few outliers, which demonstrate a differ-
ence of up to 80 px from the ground truth value in the x coordinate and up to −60 px in the
y coordinate. The residual datapoints for ear tragus detection are located mostly between
0 px and 5 px for both coordinates of the calculated landmark. However, in the validation
dataset used, some incorrect detections were performed by the ear tragus detector, which
are shown as outliers in the corresponding diagram. The minimum residual of the x
coordinate was −36 px, while the minimum residual for the y coordinate was −22 px.

Considering the detection error of the proposed methods, the mean distance error
ē between the predicted point pi and the corresponding ground truth p̂i point for each
posture class was determined. The mean distance error was calculated by applying the
Euclidean distance in each of the images i:

ēclass =
1
N

√√√√ N

∑
i=1

(pclass,i − p̂class,i)
2, (12)

where N is the total number of images in the dataset. The results of the mean detection
errors and of the standard deviation of the detection for the C7 spinous process and ear
tragus are depicted in Figure 10. It can be seen that the smallest detection error was
indicated for the posture class smartphone use, where ēC7 for the C7 spinous process was
15.75 ± 12.06 px, and ēear was 6.7 ± 7.4 px for the ear tragus and maximal flexed where
we observed the values of 14.18 ± 8.03 px for the C7 spinous process and 7.02 ± 7.07 px
for the ear tragus. For the C7 spinous process, the maximum mean distance error of
22.01 ± 18.06 px was calculated for the straight posture. The highest mean distance error for
the ear tragus detection of 9.27± 7.34 px was indicated in the posture class of head forward.

The overall mean distance error for the detection of the C7 spinous process ēc7 was
calculated to be 18.07 ± 13.67 px, and the overall mean distance error for the ear tragus ēear
was 7.96 ± 7.45 px.
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Figure 9. Residuals calculated for x and y coordinates of the detected landmarks: the zero-line is
marked in red, the points for the x coordinates are marked in blue, and the green points represent
residuals for the y coordinate.

Figure 10. Mean distance error calculated for the detected landmarks. The distance error together with
standard deviation is visualized separately for each posture class.
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Figure 11 shows sample images from the recorded validation dataset and detected
landmark points for the C7 spinous process as well as for the ear tragus. For the subject
depicted in Figure 11a, the determined point of the C7 spinous process is slightly offset
from the observed point in the horizontal direction.

Figure 11. Sample predictions for different postures: minor deviation between the predicted and
labeled points for the C7 spinous process and the ear tragus (a), the wrongly detected ear tragus
(b), the found point for the ear tragus is located on the outer ear border (c), good prediction sample
(d), the found position of the C7 spinous process with the slight deviation from the corresponding
ground truth point (e). Green marks the positions of the C7 spinous process and blue indicates the
ear tragus annotated by experts; predicted positions are marked using red for the ear tragus and
orange for the C7 spinous process.

A higher displacement can be seen for the tragus point in Figure 11b. It is falsely
positioned outside of the ear border, in contrast to the detection in Figure 11c, where
it is still localized in the ear region, but in the wrong position. Moreover, as shown in
Figure 11b, the detector estimated the position of the C7 spinous process over the skin tip.
An example of a small shift for both the tragus point and the C7 spinous process point is
shown in Figure 11d. There is also the possibility that one of the two key points is found
well, but there are deviations for the other. While the key point of the ear tragus is well
estimated, the key point for the C7 spinous process is localized in the middle of the neck
(Figure 11e).

There is also a possibility that one of the two key points may be found successfully
while the other landmark is miscalculated, such as the case shown in Figure 11e, where the
point of the C7 spinous process is detected in the middle of the neck and the ear tragus is
located correctly.

4. Discussion

The CVA is an important characteristic in head–neck postural assessment. However,
the automatic detection of the head–neck landmarks, such as the C7 spinous process and
ear tragus, which are required for the calculation of the CVA, is a challenging task.

The methods proposed in this study utilize image filters in order to detect landmarks
required for CVA calculation in a single RGB image. In the first step of the proposed
approach, the RoI was extracted based on the output from a body pose prediction model.
For the localization of the C7 spinous process, line approximation was applied to the neck
curvature. The intersection points between the neck contour and the approximation line
were extracted in the subsequent step, and the distance for each pair of adjacent intersection
points was calculated. Finally, the position of the C7 spinous process was determined as
the midpoint of the vector built from the intersection points with the maximum distance.

For the ear tragus detection, the ear RoI was first extracted similarly to that of the C7
spinous process. Using a classical edge detector, the contours were extracted inside the RoI.
From the extracted contours, an ellipse was fitted to contour of the ear. The ear tragus was
then determined by analyzing the intensities inside the associated ellipse.

In general, the presented results demonstrated the capability of the developed method
to detect the desired landmarks in an RGB image. The detector for the C7 spinous process
as well as for the ear tragus showed the best performance for the subjects performing
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the smartphone use and maximal flexed postures. In these postures the bulge of the C7
spinous process was prominently expressed on the skin for most of the subjects, so the
values of the detected C7 spinous process points remained within the error-tolerance range.
The ear tragus detection showed good prediction results in the images of these postures
as well. In some rare cases, the ear detector falsely located the position of the ear tragus
shifted to the left side of the determined RoI, as shown in Figure 11b. The reason for this
miscalculation was the incorrect estimation of the ear contour. In this case, multiple edges
in the hair region given by the Sobel filter were taken into account during the determination
of the ear contours. Subsequently, the wrong ellipse was associated with the ear, and the
ear tragus was found in the wrong position. In future work, we can overcome this issue by
filtering the hair region out from the edge detection.

From the high values of the PRESS statistics as well as from the graphical representa-
tion of the residuals, relatively large deviations between the detected and labeled points of
the C7 spinous process could be observed for some datapoints. Furthermore, based on the
mean detection error, it can be stated that the most mismatched points were found for the
subjects performing the straight head and forward head postures. In general, the morpho-
logical conditions of humans are subject to high natural variance. While in one person the
spinous process of the C7 vertebra might be clearly visible, it may hardly be seen in another
subject. In addition, when the head is held upright or positioned forward, the spinous
process generally does not stand out as prominently as when the head is bent.

5. Conclusions

This study aimed to present and evaluate a novel approach for the automated detection
of the body landmarks, namely the C7 spinous process and the ear tragus, required for the
determination of the CVA. The proposed methods take a single RGB image and localize
the 2D position in pixel coordinates for the desired key points using simple but effective
computer vision methods. Both detection methods utilize the Sobel edge detector for their
core calculations.

The proposed detectors demonstrated robust detection results for the smartphone
use and maximal flexed posture groups; however, they showed some discrepancy in the
detection of the straight and forward head posture classes. In order to improve the detection
of the C7 spinous process in these particular poses, machine learning approaches can be
used. In these approaches, the models learn to localize the pre-defined landmarks in the
image from the data provided.

A limitation of the method is that the background where the person is recorded needs
to be homogeneous. Otherwise, the color segmentation can detect some false-positive
regions. Another limitation of this approach is that landmark occlusion is not considered in
the method; i.e., landmarks covered by hair or clothing cannot be determined. To overcome
this problem in the future, a machine learning model will be trained using the recorded
dataset in order to detect the C7 spinous process.

Another future task is to extend the current method’s implementation to the automatic
determination and analysis of CVAs for different postures and compare them with the data
recorded in the dataset.

A particularly attractive feature of this method is that the current posture can be
automatically deduced without attaching additional physical markers. This rules out the
possibility that a changed posture, which is caused by potentially interfering markers,
will unknowingly influence the actual posture and thus falsify the measurement results.
Especially when using physical markers during movement, there is the possibility that
these markers will move away from their initial positions and shift with the skin. This
implies that the unintentionally changed local position of the markers can lead to incorrect
positions of joints.

Furthermore, markerless analysis of the head–neck postures can be beneficial in
different experimental scenarios, especially if a study with specific vulnerable participants
needs to be carried out. The proposed methods are a promising approach that can be

184



Biomedinformatics 2022, 2

extended to include the detection of other prominent landmarks on the human body.
Therefore, this approach could also be of interdisciplinary interest—for example, to dentists,
physical therapists, speech therapists, and other professionals, since it may assist them in
their clinical practice and in the context of scientific research.

All of the presented results so far relate to detection in 2D pixel space. However, using
depth maps recorded in the dataset, a projection of the detected points in the 3D world is
possible. This will be addressed in future works.
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Abstract: Objective: The interpretation of time series data collected in free-living has gained impor-
tance in chronic disease management. Some data are collected objectively from sensors and some are
estimated and entered by the individual. In type 1 diabetes (T1D), blood glucose concentration (BGC)
data measured by continuous glucose monitoring (CGM) systems and insulin doses administered can
be used to detect the occurrences of meals and physical activities and generate the personal daily liv-
ing patterns for use in automated insulin delivery (AID). Methods: Two challenges in time-series data
collected in daily living are addressed: data quality improvement and the detection of unannounced
disturbances of BGC. CGM data have missing values for varying periods of time and outliers. People
may neglect reporting their meal and physical activity information. In this work, novel methods for
preprocessing real-world data collected from people with T1D and the detection of meal and exercise
events are presented. Four recurrent neural network (RNN) models are investigated to detect the
occurrences of meals and physical activities disjointly or concurrently. Results: RNNs with long
short-term memory (LSTM) with 1D convolution layers and bidirectional LSTM with 1D convolution
layers have average accuracy scores of 92.32% and 92.29%, and outperform other RNN models. The
F1 scores for each individual range from 96.06% to 91.41% for these two RNNs. Conclusions: RNNs
with LSTM and 1D convolution layers and bidirectional LSTM with 1D convolution layers provide
accurate personalized information about the daily routines of individuals. Significance: Capturing
daily behavior patterns enables more accurate future BGC predictions in AID systems and improves
BGC regulation.

Keywords: recurrent neural networks; event detection; data preprocessing; outlier removal; type 1
diabetes

1. Introduction

Time series data are widely used in many fields, and various data-driven modeling
techniques are developed to represent the dynamic characteristics of systems and forecast
the future behavior. The growing research in artificial intelligence has provided powerful
machine learning (ML) techniques to contribute to data-driven model development. Real-
world data provide several challenges to modeling and forecasting, such as missing values
and outliers. Such imperfections in data can reduce the accuracy of ML and the models
developed. This necessitates data preprocessing for the imputation of missing values,
down- and up-sampling, and data reconciliation. Data preprocessing is a laborious and
time-consuming effort since big data are usually stacked on a large scale [1]. When models
are used for forecasting, the accuracy of forecasts improve if the effects of future possible
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disturbances based on behavior patterns extracted from historical data are incorporated
in the forecasts. This paper focuses on these two problems and investigates the benefits
of preprocessing the real-world data and the performance of different recurrent neural
network (RNN) models for detecting various events that affect blood glucose concentration
(BGC) in people with type 1 diabetes (T1D). The behavior patterns detected are used for
more accurate predictions of future BGC variations, which can be used for warnings and
for increasing the effectiveness of automated insulin delivery (AID) systems.

Time series data captured in daily living of people with chronic conditions have many
of these challenges to modeling, detection, and forecasting. Focusing on people with
T1D, the medical objective is to forecast the BGC of a person with T1D and prevent the
excursion of BGC outside a “desired range” (70–180 mg/dL) to reduce the probability of
hypo- and hyperglycemia events. In recent years, the number of people with diabetes has
grown rapidly around the world, reaching pandemic levels [2,3]. Advances in continuous
glucose monitoring (CGM) systems, insulin pump and insulin pen technologies, and in
novel insulin formulations has enabled many powerful treatment options [4–9]. The current
treatment options available to people with T1D range from manual insulin injections to AID.
Manual injection (insulin bolus) doses are computed based on the person’s characteristics
and the properties of the meal consumed. Current AID systems necessitate the manual
entry of meal information to give insulin boluses for mitigating the effects of meal on the
BGC. A manual adjustment of the basal insulin dose and increasing the BGC target level
and/or consumption of snacks are the options to mitigate the effects of physical activity.
Some people may forget to make these manual entries and a system that can nudge them to
provide appropriate information can reduce the extreme excursions in BGC. Commercially
available AID systems are hybrid closed-loop systems, and they require these manual
entries by the user. AID systems, also called artificial pancreas (AP), consist of a CGM, an
insulin pump, and a closed-loop control algorithm that manipulates the insulin infusion rate
delivered by the pump based on the recent CGM values reported [10–23]. More advanced
AID systems that use a multivariable approach [10,24–26] use additional inputs from
wearable devices (such as wristbands) to automatically detect the occurrence of physical
activity and incorporate this information to the automated control algorithms for a fully
automated AID system [27]. Most AID systems use model predictive control techniques
that predict future BGC values in making their insulin dosing decisions. Knowing the habits
of the individual AID user improves the control decisions since the prediction accuracy
of the future BGC trajectories can explicitly incorporate the future potential disturbances
to the BGC, such as meals and physical activities, that will occur with high likelihood
during the future BGC prediction window [24,26]. Consequently, the detection of meal and
physical activity events from historical free-living data of a person with T1D will provide
useful information for decision making by both the individual and by the AID system.

CGM systems report subcutaneous glucose concentration to infer BGC with a sampling
rate of 5 min. Self-reported meal and physical activity data are often based on diary entries.
Physical activity data can also be captured by wearable devices. The variables reported by
wearable devices may have artifacts, noise, missing values, and outliers. The data used in
this work include only CGM values, insulin dosing information, and diary entries of meals
and physical activities.

Analyzing long-term data of people with T1D indicates that individuals tend to
repeat daily habitual behaviors. Figure 1 illustrates the probability of physical activity
and meal (indicated as carbohydrate intake) events, either simultaneously or disjointly,
for 15 months of self-reported CGM, meal, insulin pump, and physical activity data of
individuals with T1D. Major factors affecting BGC variations usually occur at specific time
windows and conditions, and some combinations of events are mutually exclusive. For
example, insulin-bolusing and physical activity are less likely to occur simultaneously
or during hypoglycemia episodes, since people do not exercise when their BGC is low.
People may have different patterns of behavior during the work week versus weekends or
holidays. Predicting the probabilities of exercise, meal consumption, and their concurrent

188



Biomedinformatics 2022, 2

occurrence based on historical data using ML can provide important information on the
behavior patterns for making medical therapy decisions in diabetes.

Figure 1. The probabilities of meal and physical activity events during one day obtained by analyzing
15 months of the pump–CGM sensor, meal, and physical activity data collected from a randomly
selected person with T1D.

Motivated by the above considerations, this work develops a framework for predict-
ing the probabilities of meal and physical activity events, including their independent
and simultaneous occurrences. A framework is built to handle the inconsistencies and
complexities of real-world data, including missing data, outlier removal, feature extraction,
and data augmentation. Four different recurrent neural network (RNN) models are de-
veloped and evaluated for estimating the probability of events causing large variations in
BGC. The advent of deep neural networks (NNs) and their advances have paved the way
for processing and analyzing various types of information, namely: time-series, spatial,
and time-series–spatial data. Long short-term memory (LSTM) NN models are specific
sub-categories of recurrent NNs introduced to reduce the computational burden of storing
information over extended time intervals [28,29]. LSTMs take advantage of nonlinear
dynamic modeling without knowing time-dependency information in the data. Moreover,
their multi-step-ahead prediction capability makes them an appropriate choice for detecting
upcoming events and disturbances that can deteriorate the accuracy of model predictions.

The main contributions of this work are the development of NN models capable of
estimating the occurrences of meals and physical activities without requiring additional
bio-signals from wearable devices, and the integration of convolution layers with LSTM
that enable the NN to accurately estimate the output from glucose–insulin input data. The
proposed RNN models can be integrated with the control algorithm of an AID system to
enhance its performance by readjusting the conservativeness and aggressiveness of the
AID system.

The remainder of this paper is organized as follows: the next section provides a short
description of the data collected from people with T1D. The preprocessing step, including
outlier removal, data imputation, and feature extraction is presented in Section 3. Section 4
presents various RNN configurations used in this study. A case study with real-world data
and a discussion of the results are presented in Section 5 and Section 6, respectively. Finally,
Section 6 provides the conclusions.
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2. Free-Living, Self-Reported Dataset of People with T1D

A total of 300 self-collected T1D datasets were made available for research, and each
dataset represents a unique individual. Among all of the datasets, 50 T1D datasets include
CGM-sensor–insulin-pump recordings and exercise information such as the time, type, and
duration of physical activity recorded from either open or closed-loop insulin-pump–sensor
data. Meal information is reported as the amount of carbohydrates (CHO) consumed in the
meal as estimated by the subject. An over or underestimation of CHO in meals is common.

The subjects with T1D selected for this study used insulin-pump–CGM-sensor ther-
apy for up to two years, and some of them have lived with diabetes for more than fifty
years. Tables 1 and 2 summarize the demographic information of the selected subjects
and the definition of the variables collected, respectively. Separate RNN models were
developed for each person in order to capture personalized patterns of meal consumption
and physical activity.

Table 1. The general demographic information of 11 subjects with T1D and the durations of
recorded samples.

Subject Gender Age Duration of Data 1 Missing Samples (%) Max Gap Size 2

1 M 36 283 days 12.36% 273
2 M 33 368 days 7.11% 71
3 F 72 280 days 1.10% 28
4 M 43 468 days 10.03% 435
5 F 52 655 days 4.91% 233
6 F 26 206 days 14.45% 107
7 M 51 278 days 6.12% 34
8 - 41 390 days 8.87% 177
9 - 42 279 days 19.70% 311
10 M 27 695 days 14.32% 571
11 F 35 413 days 8.97% 147

1 The duration of data is calculated after imputation of missing data and counting gaps between samples.
2 Number of samples, sampling time 5 min.

Table 2. The name and the definition of measured variables.

Variable/Symbol Definition Units

Continuous glucose monitoring values sampledCGM every five minutes mmol/L

Smbg Self-monitored BGC for sensor mmol/Lcalibration
Rate (InsBasal) The basal insulin rate unit/h

Bolus (InsBolus) The actual delivered amount of normal bolus insulin unit
Format:Time UTC time stamp yyyy-mm-yy hh:mm:ss

The actual duration of a suspend, basal, orDuration dual/square bolus milliseconds

Activity.name The type of physical activity -
Activity.duration (AD) The duration of a physical activity milliseconds

Distance.value (DV) The value of the distance traveled miles
Energy.value (EV) The amount of energy spent during activity kilocalories

Nutrition.carbohydrate The carbohydrates entered in a health
(CHO) kit food entry grams

3. Data Preprocessing

This is a computational study for the development of detection and classification of
infrequent events (eating, exercising) that affect the main variable of interest in people
with diabetes: their blood glucose concentrations. It is based on data collected from
patients in free living; hence, it contains many windows of data with missing values and
outliers. Using real-world data for developing models usually has numerous challenges:
(i) the datasets can be noisy and incomplete; (ii) there may be duplicate CGM samples in
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some of the datasets; (iii) inconsistencies exist in the sampling rate of CGM and insulin
values; (iv) gaps in the time and date can be found due to insulin pump or CGM sensor
disconnection. Therefore, the datasets need to be preprocessed before using them for model
development.

3.1. Sample Imputation

Estimating missing data is an important step before analyzing the data [30]. Missing
data are substituted with reasonable estimates (imputation) [31]. In dealing with time-series
data such as CGM, observations are sorted according to their chronological order. Therefore,
the variable “Time”, described in Table 2, is converted to “Unix time-stamp”, samples are
sorted in ascending order of “Unix time-stamp”, and gaps without observations are filled
with pump–sensor samples labeled as “missing values”.

Administered basal insulin is a piecewise constant variable and its amount is calculated
by the AID system or by predefined insulin injection scenarios. Applying a simple forward
or backward imputation for basal insulin with gaps in duration lasting a maximum of two
hours gives reasonable reconstructed values for the missing observations. Gaps lasting
more than two hours in missing recordings are imputed with basal insulin values recorded
in the previous day at the same time, knowing that insulin injection scenarios usually
follow a daily pattern [32].

The variable “Bolus” is a sparse variable (usually nonzero only at times of meals) and
its missing samples were imputed with the median imputation approach, considering that
the bolus injection policy is infrequently altered. Similarly, missing recordings of variables
“Nutrition.carbohydrate”, “Smbg”, “Duration”, “Activity.duration”, and “Distance.value”
were imputed with the median strategy. A multivariate strategy that uses CGM, total
injected insulin, “Nutrition.carbohydrate”, the “Energy.value”, and “Activity.duration”
was employed to impute missing CGM values.

This choice of variables has to do with the dynamic relationship between CGM and
the amount of carbohydrate intake, the duration and the intensity of physical activity, and
the total injected insulin. Estimates of missing CGM samples were obtained by performing
probabilistic principal component analysis (PPCA) on the lagged matrices of the CGM data.
PPCA is an extension of principal component analysis, where the Gaussian conditional
distribution of the latent variables is assumed [33]. This formulation of the PPCA facilitates
tackling the problem of missing values in the data through the maximum likelihood estima-
tion of the mean and variance of the original data. Before performing PPCA on the feature
variables, the lagged array of each feature variable, Xk,j, k ∈ {CGM, Ins, CHO, EV, AD}, at
the jth sampling index was constructed from the past two hours of observations as:

Xk,j =
[
Xk,j, Xk,j−1 . . . Xk,j−24

]
1×25, k ∈ {CGM, Ins, CHO, EV, AD}

Xj = [X1,j, . . . ,Xk,j . . . ,XM,j]
T , X =

[
X1, . . . , XN

]
M×N

(1)

For an observed set of feature variables Xj, let Tj = [T1,j, . . . , Tq,j]
T be its q-dimensional

(q ≤ M) Gaussian latent transform [34] such that

Xi,j = WiTj + μi + εi,j (2)

where Wi = [Wi,1, . . . , Wi,q] ∈ Rq and μ = [μ1, . . . , μM]T ∈ RM represent the ith row of the
loading matrix W ∈ RM×q and mean value of the data. εi,j ∈ R is also the measurement
noise with the probability distribution

p(εi,j|σ2) = N (εi,j|0, σ2) . (3)
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Based on the Gaussian distribution assumption of Tj and the Gaussian probability
distribution of εi,j, one can deduce that⎧⎪⎨⎪⎩

p(Tj) = N (Tj|0, Iq)

p(Xi,j|μi, Wi, σ2) = N (Xi,j|μi, WiWT
i + σ2)

p(Xi,j|Tj, μi, Wi, σ2) = N (Xi,j|WiTj + μi, σ2)

. (4)

The joint probability distribution p(Xi,j, Tj, μi, Wi, σ2) can be derived from (4) and
Bayes’ joint probability rule as

p(Xi,j, Tj, μi, Wi, σ2) =
1

(2πσ2)
M
2

exp
(Xi,j −WiTj − μi)

2

−2σ2
1

(2π)
q
2

exp
−T T

j Tj

2
(5)

Define the set η = {(i, j)|1 ≤ i ≤ M, 1 ≤ j ≤ N, Xi,j �= NaN}. The log-likelihood of
the joint multivariate Gaussian probability distribution of (5) is calculated over all available
observations as

ln(p(Xi,j, Tj|μi, Wi, σ2)) = ∑ ∑
i,j∈η

[ln(p(Xi,j|Tj, μi, Wi, σ2)) + lnp(Tj)]

= ∑ ∑
i,j∈η

−M
2

ln(2πσ2)− q
2

ln(2π)−
(Xi,j −WiTj − μi)

2

2σ2 −
T T

j Tj

2

(6)

where the log-likelihood (6) is defined for all available observations Xi,j, i, j ∈ η. By
applying the expectation operation with respect to the posterior probability distribution
over all latent variables Tj, j ∈ ηi, where ηi = {j|1 ≤ j ≤ N, Xi,j �= NaN}, (6) becomes

E{L} =−∑ ∑
i,j∈η

M
2

ln(σ2) +
1
2
E{T T

j Tj}+
1

2σ2 (Xi,j − μi)
2

− 1
σ2 E{T

T
j }WT

i (Xi,j − μi) +
1

2σ2 E{T
T

j Tj}WiWT
i

(7)

Maximizing (7) is feasible by setting all partial derivatives ∂E{L}
∂σ2 , ∂E{L}

∂μ2
i

, and ∂E{L}
∂W2

i
, i =

1, . . . , M, j = 1, . . . , N to zero [34].

CvarTj =
σ2

(σ2 Iq + ∑i∈ηj
WiWT

i )

μTj =
CvarTj

σ2 ∑
i∈ηj

WT
i (Xi,j − μi)

μi =
1
|ηi| ∑

j∈ηi

[Xi,j −WiμTj ]

Wi =
1

∑j∈ηi
[μTj μ

T
Tj
+ CvarTj ]

∑
j∈ηi

μTj(Xi,j − μi)

σ2 =
1
|η| ∑

i,j∈η

[(Xi,j −WiμTj − μi)
2 + WiCvarTjW

T
i ]

(8)

Parameters μi, σ2, and Wi in (8) are updated recursively until they converge to their
final values. The final estimation of missing CGM samples is obtained by performing a
diagonal averaging of the reconstructed lagged matrix X̂ ∈ RM×N over rows/columns
filled with CGM values. Long gaps in CGM recordings might exist in the data, and
imputing their values causes problems in accuracy and reliability. Therefore, CGM gaps

192



Biomedinformatics 2022, 2

of no more than twenty-five consecutive missing samples (approximately two hours) are
imputed by PPCA.

3.2. Outlier Removal

Signal reconciliation and outlier removal are necessary to avoid misleading interpre-
tation of data and biased results, and to improve the quality of CGM observations. As a
simple outlier removal approach for a variable with Gaussian distribution, observations
outside ±2.72 standard deviations from the mean, known as inner Tukey fences, can be
labeled as outliers and extreme values [35]. The probability distribution of the CGM data
shows a skewed distribution compared to the Gaussian probability distribution. Thus,
labeling samples as outliers only based on their probability of occurrence is not the proper
way of removing extreme values from the CGM data since it can cause a loss of useful CGM
information, specifically during hypoglycemia (CGM < 70 mg/dL) and hyperglycemia
(CGM > 180 mg/dL) events. As another alternative, extreme values and spikes in the
CGM data can be labeled from the prior knowledge and by utilizing other feature variables,
namely: “Smbg”, “Nutrition.carbohydrate”, “Bolus”, and “Activity.duration”. Algorithm 1
is proposed to remove outliers from CGM values. Usually, BGC is slightly different from
the recordings of the CGM signal because of the delay between BGC and the subcutaneous
glucose concentration measured by the CGM device and sensor noise. The noisy signal can
deteriorate the performance of data-driven models. Therefore, Algorithm 2, which is based
on eigendecomposition of the Hankel matrix of CGM values, is used to reduce the noise in
the CGM recordings.

Algorithm 1 Outlier rejection from CGM readings

1: procedure OUTLIERREJECTION(CGM,Smbg,CHO,AD,InsBolus)
2: for i = 1 : N do � Removing samples outside of the calibration range
3: if CGMk > 400 mg/dL or CGMk < 0 mg/dL then
4: CGMk ← NaN
5: end if
6: end for
7: for i = 2 : N do
8: ΔCGMk ← CGMk − CGMk−1
9: if ΔCGMk > 30 mg/dL & all ({CHOk, . . . , CHOk−9} == 0) then

10: CGMk ← NaN
11: end if
12: if ΔCGMk < 30 mg/dL & all ({InsBolus,k, . . . , InsBolus,k−6} == 0) then
13: CGMk ← NaN
14: end if
15: if ΔCGMk < 30 mg/dL & all ({ADk, . . . , ADk−6} == 0) then
16: CGMk ← NaN
17: end if
18: if Smbgk �= NaN & CGMk �= NaN & abs(Smbgk − CGMk) > 18 mg/dL then
19: CGMk ← NaN
20: end if
21: end for
22: return CGM
23: end procedure
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Algorithm 2 Smoothing CGM recordings

1: procedure CGMDENOISING(CGM) � Smoothing CGM recordings
2: Qi = [CGMd, . . . , CGMd+qi−1] � Qi ∈ Rqi is ith consecutive CGM recordings
3: qi ← |Qi|, pi ← f loor

( qi
2
)
, wi ← qi − pi + 1

4: [Ui, Si, Vi] = SVD(Ai) � Ai ∈ Rwi×pi is the Hankel matrix made of Qi
5: Ŝi ← zeros(pi, pi)

6: η ← cumsum([s1,...,spi ])
sum([s1,...,spi ])

� sj > 0 are eigenvalues of Si in descending order

7: for j=1:pi do
8: if ηj > 0.95 then

9: Ŝi(j, j)← 0
10: else
11: Ŝi(j, j)← Si(j, j)
12: end if
13: end for
14: Âi = UiŜiVT

i

15: Q̂i ← Diagonalaveraging
(

Âi

)
� Q̂i =

[
CĜMd, . . . , CĜMd+qi−1

]
16: return CĜM
17: end procedure

3.3. Feature Extraction

Converting raw data into informative feature variables or extracting new features is an
essential step of data preprocessing. In this study, four groups of feature variables, including
frequency domain, statistical domain, nonlinear domain, and model-based features, were
calculated and added to each dataset to enhance the prediction power of models. The
summarized description of each group of features and the number of past samples required
for their calculation are listed in Table 3.

A qualitative trend analysis of variables can extract different patterns caused by
external factors within a specified time [36,37]. A pairwise multiplication of the sign and
magnitude of the first and second derivatives of CGM values indicates the carbohydrate
intake [38,39], exogenous insulin injection, and physical activity. Therefore, the first and
second derivatives of CGM values, calculated by the fourth-order backward difference
method, were added as feature variables. The sign and magnitude product of the first
and second derivatives of CGM, their covariance, Pearson correlation coefficient, and
Gaussian kernel similarity were extracted. Statistical feature variables, e.g., mean, standard
deviation, variance, skewness, etc., were obtained from the specified time window of CGM
values. Similar to the first and second derivatives of CGM values, a set of feature variables,
including covariance and correlation coefficients, from pairs of CGM values and derivatives
was extracted and augmented to the data.

As a result of the daily repetition in the trends of CGM and glycemic events and the
longer time window of CGM values, samples collected during the last twenty-four hours
were used for frequency-domain feature extraction. Therefore, magnitudes and frequencies
of the top three dominant peaks in the power spectrum of CGM values, conveying past
long-term variation of the BGC, were included in the set of feature maps.
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Table 3. The type and definition of the extracted feature variables and the length of time window
required for their calculations.

No. of Required
Domain Feature Description

Samples

First derivative calculated by 4th backward differences 5
Time Second derivative calculated by 4th backward differences 6

Sign-product of the 1st and the 2nd derivatives 6
Nonlinear Magnitude-product of the 1st and the 2nd derivatives 6

Statistical measures, namely mean, variance, median, etc.,
of windowed CGM values 24

Pair-wise covariance and correlation coefficient between CGM
Statistical

and its 1st and 2nd derivatives 24

The magnitudes and frequencies of three dominant peaks inFrequency
the power spectrum of CGM 288

Model-based Plasma insulin concentration (PIC) and gut absorption rate (Ug) [40,41]. 1

The plasma insulin concentration (PIC) is another feature variable that informs about
the carbohydrate intake information and exogenous insulin administration. PIC accounts
for the accumulation of subcutaneously injected insulin within the bloodstream, which
is gradually consumed by the body to enable the absorption of carbohydrates released
from the gastrointestinal track to various cells and tissues. Usually, dynamic physiological
models are used to describe and model the glucose and insulin concentration dynamics in
diabetes. The main idea of estimating PIC from physiological models stems from predicting
the intermediate state variables of physiological models by designing a state observer and
utilizing the total infused insulin and carbohydrate intake as model inputs, and CGM
values as the output of the model [40–42]. In this work, the estimation of the PIC and
glucose appearance rate were obtained from a physiological model known as Hovorka’s
model [43]. Equation (9) presents this nonlinear physiological (compartment) model:

dS1(t)
dt

= Ins(t)− S1(t)
tmax,I

dS2(t)
dt

=
S1(t)
tmax,I

− S2(t)
tmax,I

dI(t)
dt

=
S2(t)

tmax,IVI
− Ke I(t)

dx1(t)
dt

= kb,1 I(t)− ka,1x1(t)

dx2(t)
dt

= kb,2 I(t)− ka,2x2(t)

dx3(t)
dt

= kb,3 I(t)− ka,3x3(t)

dQ1(t)
dt

= Ug(t)− Fc
0,1(t)− FR(t)− x1(t)Q1(t) + k12Q2(t) + EGP0(1− x3(t))

dQ2(t)
dt

= x1(t)Q1(t)− (k12 + x2(t))Q2(t)

dGsub(t)
dt

=
1
τ

(
Q1(t)

Vg
− Gsub(t)

)

(9)

Model (9) comprises four sub-models, describing the action of insulin on glucose
dynamics, the insulin absorption dynamics, plasma–interstitial-tissue glucose concentration
dynamics, and the blood glucose dynamics.The state variables of (9), the nominal values of
the parameters, and their units are listed in Table 4 [43].
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Table 4. The description of variables and parameters and the nominal values of parameters in
Hovorka’s model [43].

Variable/Parameter Description Value/Unit

Two-compartment chain representing absorptionS1(t), S2(t) of subcutaneously administered short-acting insulin mU

Ins(t) Subcutaneously infused insulin mU min−1

I(t) Plasma insulin concentration (PIC) mU L−1

x1(t) The remote effect of insulin on glucose distribution min−1

x2(t) The remote effect of insulin on glucose disposal min−1

The remote effect of insulin onx3(t) endogenous glucose production (EGP) min−1

Q1(t) The mass of glucose in accessible compartments mmol
Q2(t) The mass of glucose in non-accessible compartments mmol

Gsub(t) Measurable subcutaneous glucose concentration mmol L−1

UG(t) Gut absorption rate mmol min−1

Ke The fractional elimination rate of PIC 0.138 min−1

ka,1 0.006 min−1

ka,2 0.06 min−1

ka,3

The deactivation rate constants
0.03 min−1

S f
ID The sensitivity of insulin disposal 0.00082 L min−1 mU−1

S f
IT The sensitivity of insulin distribution 0.00512 L min−1 mU−1

S f
IE The sensitivity of EGP 0.052 L mU−1

kb,1 ka,1 × S f
IT

kb,2 ka,2 × S f
ID

kb,3

The activation rate constants
ka,3 × S f

IE
EGP extrapolated to 0.0161

EGP0 zero insulin concentration mmol kg−1 min−1

The transfer rate constant from the non-accessiblek12 to the accessible compartment 0.066 min−1

The time constant of subcutaneous
τ glucose concentration dynamic min

The glucose distribution volumeVg in the accessible compartment 0.16× BW(L)

The insulin distribution volumeVI in the accessible compartment 0.12× BW(L)

The renal glucose clearance above
FR(t) the glucose threshold of 9 mmol L−1

{
0.003(Gsub − 9), Gsub ≥ 9

0, Gsub < 9
0.0097

F01 Non-insulin-dependent glucose flux mmol kg−1 min−1

The total non-insulin-dependentFc
0,1(t) glucose flux (mmol min−1)

{
F01, Gsub ≥ 4.5

F01(Gsub/4.5), Gsub < 4.5

Body weight has a significant effect on the variations in the PIC and other state
variables as it is used for determining the amount of exogenous insulin to be infused.
Although estimating body weight as an augmented state variable of the insulin-CGM model
is an effective strategy to cope with the problem of unavailable demographic information,
estimating body weight from the total amount of daily administered insulin is a more
reliable approach. As reported in various studies, the total daily injected insulin can have a
range of 0.4–1.0 units kg−1 day−1 [44–46]. A fair estimation of body weight can be obtained
by calculating the most common amount of injected basal/bolus insulin for each subject
and using a conversion factor of 0.5 units kg−1 day−1 as a rule of thumb to estimate the
body weight.

The insulin–glucose dynamics (9) in discrete-time format are given by

X′k+1 = f ′(X′k, Uk) + Gkωk, ωk ≈ N(0, Q)

Y′k = h′(X′k) + νk, νk ≈ N(0, R)
(10)

where X′k = [S1,k, S2,k, Ik, x1,k, x2,kx3,k, Q1,k, Q2,k, Gsub,k, tmax,I,k, ke,k, UG,k] ∈ Rnx denotes the
extended state variables and Uk is the total injected exogenous insulin. Symbols ωk and
νk denote zero-mean Gaussian random process and measurement noises (respectively),
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representing any other uncertainty and model mismatch that are not taken into account.
Further, Q ∈ Rnx×nx and R ∈ R represent the positive definite system uncertainty and
measurement noise covariance matrices, respectively.

Tracking the dynamics of the internal state variables of the model (10) is feasible by
using a class of sequential Monte Carlo algorithms known as particle filters. A generic
form of the particle filter algorithm proposed by [47] with an efficient adaptive Metropolis–
Hastings resampling strategy developed in [48] was employed to predict the trajectory of
the PIC and other state variables. In order to avoid any misleading state estimations, each
state variable was subjected to a constraint to maintain all estimations within meaningful
intervals [41].

3.4. Feature Selection and Dimensionality Reduction

Reducing the number of redundant feature variables lowers the computational burden
of their extraction and hinders over-parameterized modeling. In this work, a two-step
feature selection procedure was used to obtain the optimal subset of feature variables that
boost the efficiency of the classifier the most. In the first step, the deviance statistic test
was performed to filter out features with low significance (p-value > 0.05). In the second
step, the training split of all datasets was used in the wrapper feature selection strategy
to maximize the accuracy of the classifier in estimating the glycemic events. A sequential
floating forward selection (SFFS) approach [49] was applied on a random forest estimator
with thirty decision tree classifiers with a maximum depth of six layers to sort out features
with the most predictive power in descending order. Consequently, the top twenty feature
variables with the highest contribution to the classification accuracy enhancement were
used for model development.

4. Detection and Classification Methods

Detecting the occurrence of events causing large glycemic variations requires solv-
ing a supervised classification problem. Hence, all samples required labeling using the
information provided in the datasets, specifically using variables “Activity.duration” and
“Nutrition.carbohydrate”. In order to determine the index sets of each class, let N be the
total number of samples and T(k) = ceil

(
AD(k)/(3× 105)

)
be the sample duration of

physical activity at each sampling time k. Define sets of sample indexes as:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Label.Index{1,1} := {i|k ≤ i ≤ k + T(k)− 1, k = 1, . . . , N, T(k) �= 0,
Nutrition.carbohydrate(j) �= 0, j = k + 1, . . . , k + T(k)}

Label.Index{0,1} := {i|k ≤ i ≤ k + T(k)− 1, k = 1, . . . , N, T(k) �= 0,
Nutrition.carbohydrate(j) = 0, j = k + 1, . . . , k + T(k)}

Label.Index{1,0} := {k|1 ≤ k ≤ N, T(k) = 0, Nutrition.carbohydrate(k) �= 0}
Label.Index{0,0} := {k|1 ≤ k ≤ N, T(k) = 0, Nutrition.carbohydrate(k) = 0}

(11)

The label indexes defined by (11) corresponds to classes “Meal and Exercise”, “no
Meal but Exercise”, “no Exercise but Meal”, “neither Meal nor Exercise”, respectively.

Four different configurations of the RNN models were studied to assess the accuracy
and performance of each in estimating the joint probability of the carbohydrate intake and
physical activity. All four models used 24 past samples of the selected feature variables, and
event estimations were performed one sample backward. Estimating the co-occurrences
of the external disturbances should be performed at least one step backward as the effect
of disturbance variables needs to be seen first, before parameter adjustment and event
prediction can be made.

Since the imputation of gaps with a high number of consecutive missing values ad-
versely affects the prediction of meal–exercise classes, all remaining samples with missing
values after the data imputation step were excluded from parameter optimization. Exclud-
ing missing values inside the input tensor can be carried out either by using a placeholder
for missing samples and filtering samples through masking layer or by manually removing
incomplete samples.
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Each recurrent NN models used in this study encompasses a type of LSTM units [50]
(see Figure 2) to capture the time-dependent patterns in the data. The first NN model
consists of a masking layer to filter out unimputed samples, followed by a LSTM layer,
two dense layers, and a softmax layer to estimate the probability of each class. The LSTM
and dense layers undergo training with dropout and parameter regularization strategies
to avoid the drastic growth of hyperparameters. Additionally, the recurrent information
stream in the LSTM layer was randomly ignored in the calculation at each run. At each layer
of the network, the magnitude of both weights and intercept coefficients was penalized by
adding a L1 regularizer term to the loss function. The rectified linear unit (ReLu) activation
function was chosen as a nonlinear component in all layers. The input variables of the
regular LSTM network will have the shape of N×m× L, which denotes the size of samples,
the size of lagged samples, and the number of feature variables, respectively.

(a)

(b)

(c)

Figure 2. Structures of a regular LSTM unit (a), a Bi-LSTM unit (b), and schematic demonstration of a
2D ConvLSTM cell (c) [50].
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The second model encompasses a series of two 1D convolution layers, each one
followed by a max pool layer for downsampling feature maps. The output of the second
max pool layer was flattened to achieve a time-series extracted feature to feed to to the
LSTM layer. A dense layer after LSTM was added to the model and the joint probability of
events was estimated by calculating the output of the softmax layer. Like the first RNN
model, the ReLU activation function was employed in all layers to capture the nonlinearity
in the data. A L1 regularization method was applied to all hyperparameters of the model.
Adding convolution layers with repeated operations to an RNN model paves the way for
extracting features for the sequence regression or classification problem. This approach
has shown a breakthrough in visual time-series prediction from the sequence of images or
videos for various problems, such as activity recognition, textual description, and audio
and word sequence prediction [51,52]. Time-distributed convolution layers scan and elicit
features from each block of the sequence of the data [53]. Therefore, each sample was
reshaped into m× n× L, with n = 1 blocks at each sample.

The third classifier has a 2D convolutional LSTM (ConvLSTM) layer, one dropout
layer, two dense layers, and a softmax layer for the probability estimation of each class
from the sequences of data. A two-dimensional ConvLSTM structure was designed to
capture both temporal and spatial correlation in the data, moving pictures in particular, by
employing a convolution operation in both input-to-state and state-to-state transitions [50].
In comparison to a regular LSTM cell, ConvLSTMs perform the convolution operation by
an internal multiplication of inputs and hidden states into kernel filter matrices (Figure 2c).
Similar to previously discussed models, the L1 regularization constraint and ReLU activa-
tion function were considered in constructing the ConvLSTM model. A two-dimensional
ConvLSTM import sample of spatiotemporal data in the format of m× s× n× L, where
s = 1 and n = 1, stands for the size of the rows and columns of each tensor, and L = 20 is
the number of channels/features on the data [54].

Finally, the last model comprises two 1D convolution layers, two max pooling layers,
a flatten layer, a bidirectional LSTM (Bi-LSTM) layer, a dense layer, and a soft max layer
to predict classes. Bi-LSTM units capture the dependency in the sequence of the data in
two directions. Hence, as a comparison to a regular LSTM memory unit, Bi-LSTM requires
reversely duplicating the same LSTM unit and employing a merging strategy to calculate
the output of the cell [55]. The use of this approach was primarily observed in speech
recognition tasks, where, instead of real-time interpretation, the whole sequence of the data
was analyzed and its superior performance over the regular LSTM was justified [56]. The
joint estimation of glycemic events was made one step backward. Therefore, the whole
sequence of features were recorded first, and the use of an RNN model with Bi-LSTM units
for the detection of unannounced disturbances was quite justifiable. The tensor of input
data is similar to LSTM with 1D convolutional layers. Figure 2 is the schematic diagram of
a regular LSTM, a Bi-LSTM, and a ConvLSTM unit.

Figure 3 depicts the structure of the four RNN models to estimate the probability of
meal consumption, physical activity, and their concurrent occurrence. The main difference
between models (a) and (b) in Figure 3 is the convolution and max-pooling layers added
before the LSTM layer to extract features map from time series data. Although adding
convolutional blocks to an RNN model increases the number of learnable parameters,
including weights, biases, and kernel filters, calculating temporal feature maps from input
data better discriminates the target classes.
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(a) (b)

(c) (d)

Figure 3. Systematic structures of the different RNN models included in the study: (a) LSTM NN
model, (b) LSTM with 1D convolutional layers, (c) 2D ConvLSTM NN model, and (d) Bi-LSTM
with 1D convolutional layers. Color dictionary: Yellow: tensor of data, Orange: Masking to exclude
missing samples, Magenta: Relu activation, Light blue: LSTM layer, Red: dropout, Grey: dense layer,
Green: softmax activation, Blue: flatten layer, Purple: max pool layer, Dark green: kernel filter, Light
red: the matrix of intermediate states.

5. Case Study

Eleven datasets containing CGM-sensor–insulin-pump, physical activity, and carbo-
hydrate intake information were selected randomly from subject records for a case study.
Data imputation and reconciliation, RNN training, and an evaluation of the results were
conducted individually for each subject. Hence, the RNN models were personalized, using
only that person’s data. All datasets were preprocessed by the procedure elaborated on in
the data preprocessing section and feature variables were rescaled to have zero-mean and
unit variance. Stratified six-fold cross-validation was applied to 87.5% of samples of each
dataset to reduce the variance of predictions. Weight values proportional to the inversion
of class sizes were assigned to the corresponding samples to avoid biased predictions
caused by imbalanced samples in each class. In order to better assess the performance of
each model and to avoid the effects of randomization in the initialization step of the back
propagation algorithm, each model was trained five times with different random seeds.
Hyperparameters of all models were obtained through an adaptive moment estimation
(Adam) optimization algorithm, and 2% of the training sample size was chosen as the size
of the training batches. In model training with different random seeds, the number of
adjustable parameters, including weights, biases, the size and number of filter kernels, and
the learning rate remained constant.

One difficulty associated with convolution layers in models (b) and (d) is the opti-
mization of the hyperparameters of the convolutional layers. Usually, RNN models with
convolution layers require a relatively high computation time. As a solution, learning
rates with small values are preferred for networks with convolutional layers since they
lead to a more optimal solution compared to large learning weights, which may result in
non-optimality and instability.
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The data preprocessing part of the work was conducted in a Matlab 2019a environment,
and Keras/Keras-gpu 2.3.1 were used to construct and train all RNN models. Keras is
a high-class API library with Tensorflow as the backend; all are available in the Python
environment. We used two computational resources for data preparations and model
training. Table 5 provides the details of hardware resources.

Table 5. Hardware specifications.

Data Preprocessing Task Model Training Task

CPU Model Intel i9 9900 k Intel i7 8700 k
CPU Frequency 3.6–5.0 GHz 3.7–4.7 GHz

Threads 16 12
RAM Capacity 64 GB (DDR IV) 32 GB (DDR IV)

Graphics Processor RTX 2080 Ti × 2 GTX 1050 Ti (GDDR5)
Graphics Memory 11 GB 4 GB
Clock Frequency 1545–1750 MHz 1290–1392 MHz

Cuda Kernels 4352 768

6. Discussion of Results

Each classifier was evaluated by testing a 12.5% split of all sensor and insulin pump
recordings for each subject, corresponding to 3–12 weeks of data for a subject. The average
and the standard deviation of performance indexes are reported in Table 6. The lowest per-
formance indexes were achieved by 2D ConvLSTM models. Bi-LSTM with 1D convolution
layer RNN models achieve the highest accuracy for six subjects out of eleven, and LSTM
with 1D convolution RNN for three subjects. Bi-LSTM with 1D convolution layer RNN
models outperformed other models for four subjects, with weighted F1 scores ranging
from 91.41–96.26%. Similarly, LSTM models with 1D convolution layers achieved the
highest weighted F1 score for another four subjects, with score values within 93.65–96.06%.
Glycemic events for the rest of the three subjects showed to be better predicted by regular
LSTM models, with a weighted F1 score between 93.31–95.18%. This indicates that 1D
convolution improves both the accuracy and F1 scores for most of the subjects. Based on
the number of adjustable parameters for the four different RNN models used for a specific
subject, LSTMs are the most computational demanding blocks in the model. To assess the
computational load of developing the various RNN models, we compared the number of
learnable parameters (details provided in Supplementary Materials). These values can be
highly informative, as the number of dropouts in each model and the number of learnable
parameters at each epoch (iteration) are invariant.

A comparison between 1D conv-LSTM and 1D-Bi-LSTM for one randomly selected
subject shows that the number of learnable parameters increases by at least 54%, mainly
stemming from an extra embedded LSTM in the bidirectional layer (Table S1). While
comparing adjustable parameters may not be the most accurate way of determining the
computational loads for training the models, they provide a good reference to compare the
computational burden of different RNN models.

Figure 4 displays a random day selected from the test data to compare the effectiveness
of each RNN model in detecting meal and exercise disturbances. Among four possible real-
izations for the occurrence of events, detecting joint events, Class1,1, is more challenging as
it usually shows overlaps with Class0,1 and Class1,0. Another reason for the lower detection
is the lack of enough information on Class1,1, knowing that people would usually rather
have a small snack before and after exercise sessions over having a rescue carbohydrate
during physical activity. Furthermore, the AID systems used by subjects automatically
record only CGM and insulin infusion values, and meal and physical activity sessions need
to be manually entered to the device, which is, at times, an action that may be forgotten by
the subject. Meal consumption and physical activity are two prominent disturbances that
disrupt BGC regulation, but their opposite effect on BGC makes the prediction of Class1,1
less critical than each of meal intake or only physical activity classes.
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Table 6. The average performance indexes of LSTM, LSTM with 1D convolution layers, 2D Con-
vLSTM, and Bi-LSTM with 1D convolution layers RNN models for the event detection problem.
Standard deviations are given in parentheses and values with bold notation denote the highest
performance indexes.

Subject No./Model Total Accuracy (%) Weighted Recall (%)
Weighted Precision

(%)
Weighted F1

Score (%)

92.03 (0.37) 92.03 (0.37) 94.59 (0.29) 93.06 (0.30)
94.61 (0.15) 94.61 (0.15) 97.67 (0.20) 96.06 (0.13)
89.89 (0.27) 89.89 (0.27) 94.36 (0.16) 91.73 (0.13)1

⎧⎪⎪⎨⎪⎪⎩
LSTM

LSTM(1D Convolution)
2D ConvLSTM

Bi− LSTM(1D Convolution) 94.72 (0.31) 94.72 (0.31) 96.85 (0.34) 95.68 (0.29)
93.17 (0.21) 93.17 (0.21) 96.17 (0.09) 94.37 (0.10)
94.69 (0.33) 94.69 (0.33) 96.58 (0.20) 95.31 (0.16)
91.29 (0.38) 91.29 (0.38) 95.90 (0.20) 93.20 (0.17)2

⎧⎪⎪⎨⎪⎪⎩
LSTM

LSTM(1D Convolution)
2D ConvLSTM

Bi− LSTM(1D Convolution) 93.56 (0.21) 93.56 (0.21) 96.99 (0.25) 95.17 (0.11)
89.93 (0.22) 89.93 (0.22) 93.98 (0.24) 91.38 (0.22)
88.98 (0.28) 88.98 (0.28) 93.53 (0.09) 90.61 (0.22)
88.40 (0.25) 88.40 (0.25) 93.13 (0.12) 90.21 (0.11)3

⎧⎪⎪⎨⎪⎪⎩
LSTM

LSTM(1D Convolution)
2D ConvLSTM

Bi− LSTM(1D Convolution) 89.98 (0.17) 89.98 (0.17) 93.87 (0.05) 91.41 (0.10)
92.55 (0.27) 92.55 (0.27) 95.49 (0.09) 93.48 (0.17)
94.67 (0.31) 94.67 (0.31) 96.62 (0.17) 95.34 (0.22)
88.87 (0.33) 88.87 (0.33) 94.61 (0.16) 90.93 (0.16)4

⎧⎪⎪⎨⎪⎪⎩
LSTM

LSTM(1D Convolution)
2D ConvLSTM

Bi− LSTM(1D Convolution) 94.49 (0.28) 94.49 (0.28) 96.47 (0.25) 95.13 (0.15)
94.41 (0.21) 94.41 (0.21) 96.46 (0.10) 95.18 (0.13)
91.65 (0.26) 91.65 (0.26) 96.16 (0.12) 93.38 (0.22)
89.81 (0.18) 89.81 (0.18) 95.62 (0.10) 92.02 (0.17)5

⎧⎪⎪⎨⎪⎪⎩
LSTM

LSTM(1D Convolution)
2D ConvLSTM

Bi− LSTM(1D Convolution) 92.66 (0.21) 92.66 (0.21) 96.93 (0.28) 94.73 (0.20)
94.50 (0.27) 94.50 (0.27) 95.15 (0.22) 94.78 (0.15)
95.67 (0.26) 95.67 (0.26) 96.69 (0.09) 95.04 (0.14)
91.10 (0.25) 91.10 (0.25) 94.37 (0.10) 92.60 (0.16)6

⎧⎪⎪⎨⎪⎪⎩
LSTM

LSTM(1D Convolution)
2D ConvLSTM

Bi− LSTM(1D Convolution) 95.86 (0.17) 95.86 (0.17) 96.72 (0.21) 96.26 (0.11)
91.81 (0.22) 91.81 (0.22) 95.43 (0.22) 93.31 (0.16)
89.85 (0.22) 89.85 (0.22) 94.19 (0.17) 91.68 (0.14)
87.47 (0.27) 87.47 (0.27) 99.83 (0.22) 93.15 (0.18)7

⎧⎪⎪⎨⎪⎪⎩
LSTM

LSTM(1D Convolution)
2D ConvLSTM

Bi− LSTM(1D Convolution) 90.03 (0.24) 90.03 (0.24) 95.01 (0.16) 92.32 (0.17)
89.19 (0.22) 89.19 (0.22) 99.68(0.27) 94.13 (0.16)
90.99 (0.18) 90.99 (0.18) 97.68 (0.19) 94.11 (0.20)
83.92 (0.28) 83.92 (0.28) 94.60 (0.33) 88.73 (0.12)8

⎧⎪⎪⎨⎪⎪⎩
LSTM

LSTM(1D Convolution)
2D ConvLSTM

Bi− LSTM(1D Convolution) 91.42 (0.30) 91.42 (0.30) 95.17 (0.37) 93.12 (0.12)
92.70 (0.18) 92.70 (0.18) 96.53 (0.28) 94.10 (0.12)
93.10 (0.32) 93.10 (0.32) 95.70 (0.31) 94.10 (0.30)
91.56 (0.34) 91.56 (0.34) 94.81 (0.30) 93.10 (0.31)9

⎧⎪⎪⎨⎪⎪⎩
LSTM

LSTM(1D Convolution)
2D ConvLSTM

Bi− LSTM(1D Convolution) 93.33 (0.27) 93.33 (0.27) 97.24 (0.21) 95.21 (0.22)
89.30 (0.34) 89.30 (0.34) 95.57 (0.08) 91.73 (0.22)
91.89 (0.25) 91.89 (0.25) 96.14 (0.08) 93.65 (0.12)
85.87 (0.27) 85.87 (0.27) 95.69 (0.08) 89.73 (0.22)10

⎧⎪⎪⎨⎪⎪⎩
LSTM

LSTM(1D Convolution)
2D ConvLSTM

Bi− LSTM(1D Convolution) 89.51 (0.25) 89.51 (0.25) 96.11 (0.03) 92.30 (0.17)
87.17 (0.44) 87.17 (0.44) 92.26 (0.12) 89.10 (0.23)
89.41 (0.35) 89.41 (0.35) 94.39 (0.06) 91.19 (0.23)
86.90 (0.29) 86.90 (0.29) 94.84 (0.21) 90.05 (0.25)11

⎧⎪⎪⎨⎪⎪⎩
LSTM

LSTM(1D Convolution)
2D ConvLSTM

Bi− LSTM(1D Convolution) 89.62 (0.15) 89.62 (0.15) 96.51 (0.13) 92.64 (0.14)

The confusion matrices of the classification results for one of the subjects (No. 2) are
summarized in Table 7. As can be observed from Figure 4 and Table 7, detecting Class0,1
(physical activity) is more challenging in comparison to the carbohydrate intake (Class1,0)
and Class0,0 (no meal or exercise). One reason for this difficulty is the lack of biosignal
information, such as 3D accelerometer, blood volume pulse, and heart rate data. Some
erroneous detections, such as confusing meals and exercise, are dangerous, since meals
necessitate an insulin bolus while exercise lowers BGC, and the elimination of insulin
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infusion and/or increase in target BGC are needed. RNNs with LSTM and 1D convolution
layers provide the best overall performance in minimizing such confusions: two meals
events are classified as exercise (0.003%) and eight exercise events are classified as meals
(0.125%).

Figure 4. One-step-backward predicted Meal and Exercise events for one randomly selected dataset
(Subject 2).Vertical green bars represent correctly predicted classes. Vertical red bars denote incorrectly
predicted classes, and their actual labels are shown by blue bars. Class Dictionary: Class0,0: “neither
Meal nor Exercise”, Class0,1: “only Exercise”, Class1,0: “only Meal”, Class1,1: “Meal and Exercise”.

Two limitations of the study are the quality and accuracy of data collected in free living
and the variables that are measured. As stated in the Introduction and Data Preprocessing
sections, the missing data in the time series of CGM readings is one limitation that we ad-
dressed by developing data preprocessing techniques. The second limitation is the number
of variables that are measured. In this data set, there are only CGM and insulin pump
data and the voluntary information provided by the patients about meal consumption
and exercising. This information is usually incomplete (sometimes people may forget
or have no time to enter this information). These events can be captured objectively by
other measurements from wearable devices. Such data were not available in this data set
and limited the accuracy of the results, especially when the meal and exercise occurred
concurrently.

The proportion of correctly detected exercise and meal events to all actual exercise and
meal events for all subjects reveals that a series of convolution–max-pooling layers could
elicit informative feature maps for classification efficiently. Although augmented features,
such as the first and second derivatives of CGM and PIC, enhance the prediction power
of the NN models, the secondary feature maps, extracted from all primary features, show
to be a better fit for this classification problem. In addition, repeated 1D kernel filters in
convolution layers better suit the time-series nature of the data, as opposed to extracting
feature maps by utilizing 2D convolution filters on the data.
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Table 7. Confusion matrices calculated from the predicted and actual classes of testing samples
collected from Subject 2.

Actual Actual

Class{0,0} Class{0,1} Class{1,0} Class{1,1} Class{0,0} Class{0,1} Class{1,0} Class{1,1}

Class{0,0} 11,154 12 46 2 Class{0,0} 11,297 14 8 1

Class{0,1} 310 598 2 0 Class{0,1} 274 596 2 2

Class{1,0} 263 21 593 1 Class{1,0} 311 8 655 1

P
re

d
ic

te
d

Class{1,1} 217 5 27 6 P
re

d
ic

te
d

Class{1,1} 62 18 3 5

(a) LSTM (b) LSTM (1D Convolution)

Actual Actual

Class{0,0} Class{0,1} Class{1,0} Class{1,1} Class{0,0} Class{0,1} Class{1,0} Class{1,1}

Class{0,0} 10,984 14 29 1 Class{0,0} 11,324 14 29 1

Class{0,1} 560 574 16 2 Class{0,1} 110 537 16 2

Class{1,0} 157 6 541 2 Class{1,0} 257 6 538 2

P
re

d
ic

te
d

Class{1,1} 243 42 82 4 P
re

d
ic

te
d

Class{1,1} 253 79 85 4

(c) 2D ConvLSTM (d) Bi-LSTM (1D Convolution)

7. Conclusions

This work focuses on developing RNN models for detection and classification tasks
using time series data containing missing and erroneous values. The first modeling issue
arose from the quality of the recorded data in free living. An outlier rejection algorithm
was developed based on multivariable statistical analysis and signal denoising by decom-
position of the Hankel matrix of CGM recordings. A multivariate approach based on PPCA
for CGM sample imputation was used to keep the harmony and relationship among the
variables. The second issue addressed is the detection of events that affect the behavior of
dynamic systems and the classification of these events. Four different RNN models were
developed to detect meal and exercise events in the daily lives of individuals with T1D.
The results indicate that models with 1D convolution layers can classify events better than
regular LSTM RNN and 2D ConvLSTM RNN models, with very low confusion between
the events that may cause dangerous situations by prompting erroneous interventions,
such as giving insulin boluses during exercise.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biomedinformatics2020019/s1, File S1: Assessing the computa-
tional load of training the RNN models.
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Abstract: Background: Nowadays, much research deals with the application of the automated meta-
analysis of clinical trials through appropriate machine learning tools to extract the results that can
then be applied in daily clinical practice. Methods: The author performed a systematic search of the
literature from 27 September 2022–22 November 2022 in PUBMED, in the first 6 pages of Google
Scholar and in the online catalog, the Systematic Review Toolbox. Moreover, a second search of
the literature was performed from 7 January 2023–20 January 2023 in the first 10 pages of Google
Scholar and in the Semantic Google Scholar. Results: 38 approaches in 39 articles met the criteria
and were included in this overview. These articles describe in detail machine learning approaches,
methods, and tools that have been or can potentially be applied to the meta-analysis of clinical
trials. Nevertheless, while the other tasks of a systematic review have significantly developed, the
automation of meta-analyses is still far from being able to significantly support and facilitate the
work of researchers, freeing them from manual, difficult and time-consuming work. Conclusions:
The evaluation of automated meta-analysis results is presented in some studies. Their approaches
show positive and promising results.

Keywords: machine learning; clinical trials; RCT; automated meta-analysis; deep learning; automation

1. Introduction

Today clinical trials are considered as an established experimental clinical tool suitable
not only for evaluating the effectiveness of interventions, but also for supporting the
conduct of an adequately designed systematic review [1]. In addition, meta-analysis is a
systematic review of a focused topic in the literature that provides a quantitative estimate
of the effect of a therapeutic intervention or exposure [2]. This effect is inferred from
outputs usually from more than one previously published clinical trial. A meta-analysis is
necessary for making correct medical decisions (such as prognosis, diagnosis, treatment,
recording side effects in taking drugs, etc.). It is the prevailing method applied in clinical
trials for generating qualitative and quantitative evidence and conclusions. Meta-analysis
and synthesis of the results of clinical trials are gaining rapid momentum in the research
to generate quantitative information [3]. Thus, clinical trials are at the forefront of clinical
decision support.

In parallel, since in the present time the volume of clinical studies is increasing ex-
ponentially, automating their processing by applying machine learning (ML) is a great
challenge and a dominant research topic.

The automation in the management of clinical studies refers to dealing with the in-
dividual processes related to the search, collection, selection, and extraction of results. In
detail these tasks are the following: Design Systematic Search, Run Systematic Search,
Deduplicate, Obtain full texts, Snowballing, Screen abstracts, Data extraction and Text Min-
ing Tool, Automated bias assessments, Automated Meta-Analysis, Summarize/Synthesis
of data (analysis), Write up, and Data Miner/Analysis of Data for General-Purpose [4].

More specifically, the meta-analysis is a systematic approach for understanding a
phenomenon by analyzing the results of many previously published experimental studies.

Biomedinformatics 2023, 3, 115–140. https://doi.org/10.3390/biomedinformatics3010009 https://www.mdpi.com/journal/biomedinformatics
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Unfortunately, the conventional meta-analysis requires a great deal of human effort, is
labor-intensive, and vulnerable to human bias [2,5].

The task of the automated meta-analysis and synthesis of data is the part of their
management in which the least research has been done in terms of their mechanical
processing and automation [4].

The authors of many studies [6–11] demonstrated the feasibility and acceptance of
semi-automated and automated meta-analyses yielding promising results. The outcomes of
these studies suggest that automated meta-analysis through machine learning approaches
reduces the time required for a meta-analysis without altering the expert confidence in
methodological and scientific rigor. Moreover, these results suggest acceptance for risk
assessment and improve the quality of reporting.

In this direction, the author of this article deals with the application of automated
meta-analysis of clinical trials through appropriate machine learning tools to extract the
results that can then be applied in daily clinical practice.

In addition, deep learning methods and tools as a subcategory of ML, are also included
in this study. Deep learning based on learning data representations are part of the larger
family of machine learning algorithms that use multiple layers to progressively extract
higher-level features from the raw input [12].

The novelty of this overview is that until yet very few review articles have been
published which describe all these mentioned frameworks, techniques, and tools alongside
their applications in a complete and effective way in order to contribute to their further
development and improvement.

Thus, initially, the author searched for relevant work and described it in detail below
in Section 3.1.

More specifically, the author in this article performed an overview exploring the
applied state-of-the-art ML methods, approaches, frameworks, and tools in automating the
meta-analysis and synthesis of data extracted from clinical trials.

The main research questions were as follows:

• RQ1. What are the trends and key characteristics of studies showing automation in
the meta-analysis and synthesis of clinical trial data.

• RQ2. What are the most common technologies, methods, tools, and software used in
the meta-analysis and synthesis of data extracted from clinical trials.

• RQ3. What are the impacts that derive from the usage of the automation in the
meta-analysis in clinical trials.

• RQ4. What are the challenges, guidelines, and obstacles to be addressed and what
studies and research are proposed to achieve automation and maximum and reliable
application of clinical trial results in daily medical practices.

The rest of this study is organized as follows: Section 2 discusses other relevant studies.
Section 3 presents the materials and methods of this study. Section 4 summarizes the results.
Section 5 discusses the key issues arising from this study. Section 6 concludes the study
and presents future directions.

2. Related Work

There are many studies in the field of the management of studies and clinical trials
and the extraction of their knowledge [4,13–16] but only a limited number deal with the
automation of the meta-analysis task.

Wang et al. [12] conducted a review and assessment of 18 common deep learning
frameworks and libraries (Caffe, Caffe2, Tensorflow, Theano including Keras Lasagnes
and Blocks, MXNet, CNTK, Torch, PyTorch, Pylearn2, Scikit-learn, Matlab including Mat-
convNet Matlab deep learning and Deep learning toolbox, Chainer, Deeplearning4j) and
introduced a large number of benchmarking data.

In order to provide a basis for comparing and selecting between software tools that
support Systematic reviews, the authors of [17] performed a feature-by-feature comparison
of Systematic reviews tools.

209



Biomedinformatics 2023, 3

Finally, the Systematic Review Toolbox [9] is an online catalog of tools that support
various tasks within the systematic review and wider evidence synthesis process. The
updated version of the Systematic Review Toolbox was launched on 13 May 2022, with
235 software tools and 112 guidance documents included.

3. Materials and Methods

3.1. Study Design

In this study design the author used the overview approach [18]. An overview is a
generic term used for “any summary of the literature” [19] that attempts to survey the
literature and describe its characteristics. As such, it can be used for many different types
of literature review, with differing degrees of systematicity. Overviews can provide a broad
and often comprehensive summation of a topic area and, as such, have value for those
coming to a subject for the first time [20]. They are also important in cases where either a
subject is not yet mature and well-known enough to be treated with a thorough systematic
review or there is not the necessary time to perform it.

Additionally, the forward and backward snowball method is used [21]. It has been
proposed that in reviews of complex or heterogeneous evidence in the field of health
services research, “snowball” methods of forward (citation) and backwards (reference)
searching are powerful. This method allows researchers using the references and citations
of an article to find specific literature on an issue quickly and easily.

3.2. Literature Search and Study Selection

The author performed a systematic search of the literature from 27 September 2022–
22 November 2022 in PUBMED (http://www.pubmed.org, accessed on 27 December
2022), in the first 6 pages of Google Scholar and in the online catalog: Systematic Review
Toolbox (http://www.systematicreviewtools.com/, accessed on 28 December 2022) using
combinations of search strings (“automated meta-analysis” AND “trials”). Moreover, a
second search of the literature was performed from 7 January 2023–20 January 2023 in the
first 10 pages of Google Scholar and in the Semantic Google Scholar using combinations of
search strings (“automated meta-analysis” OR “automatic meta-analysis”).

The author did not find records in clinical trials.gov, or in the COCHRANE library.
In addition, forward and reverse citation searches (snowball method) were performed

for specific studies to ensure inclusion of the most relevant studies. Snowballing was
undertaken, starting from the included citations and from the references of each article.

Restrictions are related to the language (only English articles are included).
In addition, studies involving tools and techniques for image management (e.g., [22–27])

were out of the scope of this study and excluded.

3.3. Data Screening

The data were screened in a two-stage review process (Figure 1) that the author
performed, (a) initially excluding assignments based on the titles and their abstracts, and
(b) then the remaining assignments were screened based on the reading of the full text of
the article.

One researcher reviewed the articles.
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Figure 1. The flow diagram of the literature search.

3.4. Data Extraction and Analyses

The following data were extracted from the included studies:

• Bibliographic elements of the included articles:

� Name of the studies’ object
� Reference
� Title
� Year
� Author(s)
� Journal

• Characteristics of the studies’ object:

� Name studies’ object
� Domain
� Type
� (Not)Free/(Not)Open
� Source Code
� Method/Language

4. Results

There were 38 approaches in 39 articles that met the criteria and were included in this
overview (Table 1).

These articles describe in detail ML approaches, methods, and tools that have been or
can potentially be applied to the meta-analysis of clinical trials.

All articles in the review range from the years 2010–2023, most of which were identified
during the years 2016–2022. (There were 3 articles in 2016, 4 in 2017, 6 in 2018, 4 in 2019, 2
in 2020, 5 in 2021, and 7 in 2022) (Table 1).

The dominant technologies used for the development and application of the automated
meta-analysis are Python and R programming languages. Some studies also used Java,
Excel, and either C++ or another version of it (i.e., C, ANSI C++, C++11). More rarely were
found CUDA, Docker environment, Lua, and LuaJIT. In addition, some studies combined
the use of several different technologies to achieve their goals (Table 2).
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The research for automation of meta-analyses in some studies is specialized to han-
dle strictly specialized issues such as the biomedical domain (5 articles), evidence-based
medicine (6 articles), genomics and molecular genetics (1 article), and medical (5 articles)
and metabolomic domain (1 article) (Table 2).

According to the findings of this overview, the types of research most frequently en-
countered to achieve automated meta-analysis are: the development and implementation of
appropriate tools (13 studies), the development and implementation of software (5 studies),
and the development of appropriate models and methods (7 studies). More analytically this
overview basically identified four types of applications related to supporting or developing
an automated meta-analysis. These are the following:

A Framework or Tool: this category includes the development of an integrated frame-
work or the development of a specific tool to support automated meta-analysis. Most of
the studies included in this review fall into this category.

A Package or Software: this category includes the development of package software
to support automated meta-analysis.

A Model, Method, or Approach: this category includes the development of models
and/or methods in the field of automated meta-analysis.

A Web application: This category includes web-based applications that implement
automated meta-analyses and are either already implemented or may potentially be imple-
mented in the future in clinical studies as well.

Some of the applications may be included in more than one category. Moreover, some
of them can be a complete implementation and include all of the above. More analytically,
it is worth noting that 2 studies ([10,52]) fully and comprehensively deal with the topic
under discussion here by presenting an integrated modeling and application framework
(Table 2).

Below are briefly described the applications found in this overview as classified based
on the above four categories.

4.1. Framework/Tool (Includes 16 Studies)

• Amazon SageMaker [30,31]

Description: Amazon SageMaker Studio is the first integrated development environ-
ment in the cloud for machine learning and is designed to integrate the following machine
learning workflows: data preparation, feature engineering, statistical bias detection, auto-
mated machine learning, training, hosting, ML explainability, monitoring, and machine
learning operations in one environment.

Features: The features available in Amazon SageMaker Studio include the following
issues: build, train, and deploy machine learning models quickly using Amazon SageMaker;
analyze, detect, and receive alerts relating to various business problems using machine
learning algorithms and techniques; improve productivity by training and fine-tuning
machine learning models in production.

Inputs: datasets; csv files; models.
Outputs: models; Python script; data flow; data.

• Caffe2 [32]

Caffe2 is Facebook’s in-house production framework for training and deploying large-
scale machine learning models. Caffe2 is a deep learning framework that provides an
easy and straightforward way for you to experiment with deep learning and leverage
community contributions of new models and algorithms.

Features: Caffe2 focuses on several key features required by products: performance,
cross-platform support, and coverage for fundamental machine learning algorithms and
multi-layer perceptions. The design involves a modular approach, where a unified graph
representation is shared among all backend implementations.

Inputs: Python and C++ files; models.
Outputs: everything.
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• CINeMA [33]

Description: the Confidence in Network Meta-Analysis (CINeMA) approach is broadly
based on the GRADE (Grading of Recommendations Assessment, Development and Eval-
uation) framework, with several conceptual and semantic differences [5]. It covers the
following domains: (i) within-study bias, (ii) reporting bias, (iii) indirectness, (iv) impreci-
sion, (v) heterogeneity, and (vi) incoherence. The reviewer’s input is required at the study
level. Then, CINeMA assigns judgments at three levels (no concerns, some concerns, or ma-
jor concerns) to each domain. Judgments across domains can be summarized to obtain four
levels of confidence (very low, low, moderate, or high) for each relative treatment effect.

Features: the CINeMA framework has been implemented in a freely available, user-
friendly web application aiming to facilitate the evaluation of confidence in the results
from network meta-analysis. The web application applies the Salanti approach and is
programmed in JavaScript, uses Docker, and is linked with R; in particular, packages meta
and netmeta are used, and an R package to calculate the contribution of studies in network
meta-analysis treatment effects.

Inputs: csv files.
Outputs: outputs a downloadable report with a summary of the evaluations.

• OpenNN [43]

Description: OpenNN is a software library that implements neural networks, a major
area of deep learning research.

Features: OpenNN includes: a multilayer perceptron software implementation; many
examples; unit testing.

Inputs: C++ code.
Outputs: data; plots.

• Pymeta [44]

Description: Pymeta is an online meta-analysis tool, as a web-based application it is
created and supported with PythonMeta, a Python package of meta-analysis.

Features: performs: combining effect measures (OR, RR, RD for count data and MD,
SMD for continuous data); heterogeneity testing (the Q/Chi-square test); subgroup analysis;
cumulative meta-analysis; and sensitivity analysis (one or two factors).

Inputs: Python code.
Outputs: data; plots; bar-lines.

• PythonMeta [45]

Description: PythonMeta package performs the meta-analysis on an open-access
dataset from COCHRANE..

Features: meta-analysis package by and for the Python language. This module was
designed to perform some evidence-based medicine (EBM) tasks, such as: combining
effect measures (OR, RR, RD, MD, SMD), heterogeneity testing (the Q/Chi-squared test),
subgroup analysis, and plots (forest, funnel, etc.).

Inputs: dataset from COCHRANE.
Outputs: data; plots.

• PyTorch [46]

Description: PyTorch is a deep learning research platform that provides maximum
flexibility and speed.

Features: PyTorch is a library that consists of the following components: torch which
is a Tensor library with strong GPU support; torch.autograd which is a tape-based auto-
matic differentiation library; torch.jit which is a compilation stack; torch.nn which is a
neural networks library deeply integrated with autograd designed for maximum flexibil-
ity; torch.multiprocessing which is Python multiprocessing useful for data loading and
Hogwild training; torch.utils which is a DataLoader; and other utility functions.

Inputs: Python code.
Outputs: data; plots.
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• scikit-learn [47]

Description: Scikit-learn is a Python library.
Features: it includes functions that are integral to the machine learning pipeline such

as data preprocessing steps, data resampling techniques, evaluation parameters, and search
interfaces for tuning/optimizing an algorithm’s performance.

Inputs: datasets.
Outputs: data; plots.

• ShinyMDE [48]

Description: ShinyMDE supports an automated meta-analysis of gene expression data
facilitating screening and downloading the results.

The tool handles processed and raw data generated from the most widely used data
platforms. In addition, the tool provides users with an option of choosing the method of
their choice from the list for meta-analysis.

Features: ShinyMDE consists of a web interface, a standalone version to work remotely,
and a database holding GPL files. The general workflow of the ShinyMDE system visualizes
the steps of the meta-analysis, which is carried out automatically once a user submits the
data and selects the necessary parameters.

Inputs: CSV and txt files.
Outputs: data; web.

• Spark ML [49]

Description: Spark is a unified analytics engine for large-scale data processing. The
package spark.ml aims to provide a uniform set of high-level APIs that help users create
and tune practical machine learning pipelines.

Features: Spark provides high-level APIs in Scala, Java, Python, and R, and an opti-
mized engine that supports general computation graphs for data analysis. It also supports
a rich set of higher-level tools including Spark SQL for SQL and DataFrames, pandas API
on Spark for pandas workloads, MLlib for machine learning, GraphX for graph processing,
and Structured Streaming for stream processing.

Inputs: Java and Python code.
Outputs: data results; plots.

• TensorFlow [50]

Description: TensorFlow 2 is an end-to-end, open-source machine learning platform
which operates as an infrastructure layer for differentiable programming.

Features: It combines the following key abilities: efficiently executing low-level tensor
operations on the CPU, GPU, or TPU; computing the gradient of arbitrary differentiable
expressions; scaling computation to many devices; and exporting programs (“graphs”) to
external runtimes such as servers, browsers, and mobile and embedded devices.

Inputs: Python and C++ code.
Outputs: data; graphs; and plots.

• Torch [51]

Description: Torch is not in active development. The functionality provided by the
C backend of Torch, which are the TH, THNN, THC, and THCUNN libraries, is actively
extended and re-written in the ATen C++11 (which is a new version of C++) library
(https://github.com/pytorch/pytorch/tree/master/aten, accessed on 30 December 2022).
ATen exposes all operators you would expect from torch7, nn, cutorch, and cunn directly
in C++11 and includes additional support for sparse tensors and distributed operations.
Thus, Torch is the main package in Torch7 where data structures for multi-dimensional
tensors and mathematical operations over these are defined. Moreover, it provides many
utilities for accessing files, serializing objects of arbitrary types, and other useful utilities.

Features: Torch includes the following libraries: Tensor Library, File I/O Interface
Library, and Useful Utilities. Moreover, Torch7 is a versatile numeric computing framework
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and machine learning library that extends Lua. Its goal is to provide a flexible environ-
ment to design and train learning machines. Flexibility is obtained via Lua, an extremely
lightweight scripting language. Torch7 can easily be interfaced to third-party software
thanks to Lua’s light interface.

Inputs: code; scripts.
Outputs: data results; plots.

• NeuroSynth [54]

Description: In this article the authors describe and validate an automated brain
mapping framework that uses text mining, meta-analysis, and machine learning techniques
to generate a large database of mappings between neural and cognitive states.

Features: in this article the authors describe and validate a framework for the brain
mapping, NeuroSynth, that takes an instrumental step towards automated large-scale
synthesis of the neuroimaging literature. NeuroSynth combines text mining, meta-analysis,
and machine learning techniques (naïve Bayes classification) to generate probabilistic
mappings between cognitive and neural states.

Inputs: data.
Outputs: data; plots.

• Automated meta-analysis of the ERP literature [58]

Description: event-related potentials (ERP) are a common signal of analysis in medicine
experiments, with a large existing literature of ERP-related work. This work uses auto-
mated literature collection and the text-mining of research articles to summarize the ERP
literature, examining patterns and associations within and between components.

Features: all code for this project is written in the Python programming language
and uses the LISC [63] Python tool to collect and analyze scientific literature. The data is
collected from Pubmed, a database of biomedical literature. From there, the authors use
text-mining and word co-occurrence analyses to derive data-driven summaries for each
ERP, as well as to compare across these profiles to summarize patterns across the literature.

Inputs: Python code.
Outputs: data; plots.

• CancerMA [59]

Description: CancerMA is an online, integrated bioinformatic pipeline for automated
identification of novel candidate cancer markers/targets. CancerMA operates by means
of meta-analyzing expression profiles of user-defined sets of biologically significant and
related genes across a manually curated database of 80 publicly available cancer microarray
datasets covering 13 cancer types. A simple-to-use web interface allows experts to initiate
new analyses as well as to view and retrieve the meta-analysis results.

Features: CancerMA consists of a web interface, a set of pipelined analyses, and two
relational databases, one holding the analysis data for each user and another one holding
the gene annotation data.

Inputs: R code and data.
Outputs: data; plots.

• CancerEST [60]

Description: CancerEST was developed as a user-friendly and intuitive tool to compute
cancer marker/target potential as well as to obtain comprehensive expression profiles and
information about the tissue specificity for genes of interest to biologists/clinicians. The
CancerEST web interface for viewing the analysis results consists of three sections: the
overview, the information, and the results section. The overview section provides basic
information about the submitted job and a brief explanation on how to interpret the results.

Features: CancerEST consists of a web interface, pipelined analyses, and three rela-
tional databases; one holding the analysis data, one holding the Unigene data, and another
one holding the gene annotation data.

Inputs: R code and data.
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Outputs: data; plots.

4.2. Package/Software (Includes 7 Studies)

• Amamida R Package [29]

Description: the Amanida R package allows a meta-analysis of metabolomics data,
combining the results of different studies addressing the same question. The Amanida
package contains a collection of functions for computing a meta-analysis in R only using
significance and effect size. It covers the lack of data provided on metabolomic studies.
Amanida also computes qualitative meta-analysis.

Features: Amanida is a meta-analysis approach using only the most reported statistical
parameters in this field: P-value and fold-change. The P-values are combined via Fisher’s
method and fold-changes by averaging, both weighted by the study size.

Inputs: supported files are csv, xls/xlsx, and txt.
Outputs: the Amanida package includes several visualization options: a volcano plot

for quantitative results, a vote plot for total regulation behaviors for each compound, and
an explore plot of the vote-counting results.

• dmetar [34]

Description: the dmetar package using the meta, metafor, netmeta, and meta-SEM
packages as a base is provided as a companion to the R package to support more functions
that improve the workflow of a meta-analysis.

Features: dmetar provides tools for various stages of the systematic review process,
e.g., visualizing the risk of bias, standard inverse variance meta-analysis, network meta-
analysis, three-level meta-analysis, and exploration of the between-study heterogeneity.

Inputs: R code.
Outputs: data results.

• DTA MA (Diagnostic Test Accuracy Meta-Analysis) (MetaDTA) [35]

Description: MetaDTA is an online interactive application for conducting the meta-
analysis of diagnostic test accuracy studies (DTA), requiring no specialist software for the
user to install, but leveraging established analysis routines (specifically the lme4 package
in R).

Features: the application allows users to upload their own data, customize SROC
plots, obtain statistics such as sensitivity and specificity, and conduct sensitivity analyses.
All plots and tables are downloadable.

The tool is interactive and uses an intuitive “point and click” interface and presents
results in visually intuitive and appealing ways. It is hoped that this tool will assist those
in conducting a DTA meta-analysis who are not statistical experts, and, in turn, increase
the relevance of published meta-analyses, and in the long term contribute to improved
healthcare decision making as a result.

Inputs: csv files.
Outputs: data results; plots.

• Keras [36]

Description: Keras is a library that provides highly powerful and abstract building
blocks to build deep learning networks. It is a deep learning API written in Python, running
on top of the machine learning platform TensorFlow. It was developed with a focus on
enabling fast experimentation.

Features: Keras supports both CPU and GPU computation and is a great tool for
quickly prototyping ideas. It reduces the developer’s cognitive load to free him up to focus
on the parts of the problem that really matter. It also adopts the principle of the progressive
disclosure of complexity. Finally, it provides industry-strength performance and scalability.

Inputs: Python code.
Outputs: data results.

• Meta-Essentials [37]
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Description: this is a free excel tool for meta-analysis that facilitates the integration
and synthesis of effect sizes from different studies.

Features: Meta-Essentials automatically calculates effect sizes from a wide range
of statistics and can be used for a wide range of meta-analysis applications, including
subgroup analysis, moderator analysis, and publication bias analysis.

Inputs: xls files.
Outputs: xls files.

• metafor [38]

Description: The metafor package is a free and open-source add-on for conducting
meta-analyses with the statistical software environment R.

Features: the package consists of a collection of functions that allow the user to
calculate various effect sizes or outcome measures, fit equal-, fixed-, random-, and mixed-
effects models to such data, carry out moderator and meta-regression analyses, and create
various types of meta-analytical plots.

Inputs: R code.
Outputs: data results; plots.

• MetaXL [41]

Description: MetaXL is an add-in for meta-analysis in Microsoft Excel for Windows.
It supports all major meta-analysis methods, plus, uniquely, the inverse variance hetero-
geneity and quality effects models. Starting with v4.0, it also implements a powerful,
yet easy-to-use way to perform network meta-analyses. Output is in table and graphical
formats.

Features: MetaXL employs almost the same meta-analysis methods that can be ac-
cessed in general statistical packages and in dedicated meta-analysis software.

Inputs: Excel files.
Outputs: Excel files.

4.3. Model/Method/Approach (Includes 10 Studies)

• A Logic of the Meta-Analysis approach [28]

Description: in this position paper, the authors propose, the first as far as is known, an
approach for automated reasoning in meta-analyses.

Features: thus, they considered the first steps towards a logic for performing auto-
mated meta-analysis based on a finite class of confidence intervals and subset relationships
as background knowledge.

Inputs: A machine learning problem.
Outputs: The solution of the problem.

• Causal Learning Perspective [5]

Description: this work demonstrates the efficacy of using causal models to process
the outputs of natural language processing (NLP)-based data extraction and achieve the
goal of meta-analysis. In this article the authors initially extract information from scien-
tific publications written in natural language. Sequently, from a novel causal learning
perspective, they then propose to frame automated meta-analysis—based on the input of
the first step—as a multiple causal inference problem where the summary effect is obtained
through intervention.

Features: the authors of this article worked toward automating meta-analysis with a
focus on controlling for risks of bias. Thus, they proposed the Multiple Causal inference
for automated Meta-Analysis (MCMA). MCMA employs existing NLP systems for the
extraction of risks of bias and therapeutic association, which are then used to estimate
the summary therapeutic association across several Randomized Clinical Trials (RCTs).
More analytically, from this perspective, the authors suggest to frame automated meta-
analysis—based on the input of the first step—as a multiple causal inference problem
where the summary effect is obtained through intervention. Built upon existent efforts for
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automating the primary steps of the meta-analysis, the proposed approach achieves the
goal of automated meta-analysis and largely reduces the human effort involved.

Inputs: free text and data.
Outputs: data; plots.

• DIAeT [11]

Description: DIAeT (Dynamic Interactive Argumentation Trees) is a method of syn-
thesizing the evidence available in clinical trials in an ad-hoc and on-demand manner that
automatically organizes such evidence into a hierarchical argument that recommends a
treatment as superior to another based on a series of key dimensions corresponding to the
clinical points of interest.

Features: the DIAeT method is an argumentation-based method that contributes to
supporting the synthesis of clinical trial evidence. A limitation of the method is that it relies
on a manually populated knowledge base. This problem can be addressed by applying
natural language processing methods to extract relevant information from publications.
The method has been implemented as a web tool.

Inputs: SPARQL queries.
Outputs: results on the web.

• metamisc [40]

Description: the metamisc package includes the meta-analysis of diagnostic and
prognostic modeling studies. In addition, it summarizes estimations of prognostic factors,
diagnostic test accuracy, and prediction model performance. Finally, it validates, updates,
and combines published prediction models. It also develops new prediction models with
data from multiple studies.

Features: This R package deals with the incomplete availability of study-specific
results (performance estimates and their precision), and produces summary estimates of
the c-statistic and the observed: the expected ratio and the calibration slope. Furthermore,
it tackles the implementation of frequentist and Bayesian meta-analysis methods and
proposes novel empirically based prior distributions to improve the estimation of between-
study heterogeneity in small samples.

Inputs: R code.
Outputs: data results.

• Comprehensive gene expression meta-analysis [53]

Description: this approach plans a comprehensive gene expression meta-analysis
that labels novel immune signatures in patients with rheumatoid arthritis. This pattern
suggests meta-analysis to recognize novel gene signatures that take care of providing
mechanistic visions into disease initiation, progression, and the development of better
therapeutic attacks.

Features: the aim of the meta-analysis method was firstly to extract the intersected
genes, then to exclude genes with inconsistent expression, and finally to test them for
significance. The weighted Z-method was used to combine the individual q-values of
each gene [64] and was implemented using an R package (https://github.com/bhklab/
survcomp, accessed on 28 December 2022), [65].

The meta-analysis algorithm was implemented using R.
Inputs: R code.
Outputs: data.

• Text-mining the neurosynth corpus (NeuroSynth #2) [55]

Description: in this work the authors demonstrate that an unsupervised study of
the NeuroSynth text corpus using Deep Boltzmann Machines (DBMs) can be effectively
employed to learn the distribution of the text corpus. The results of this study show some
of the clusters obtained when k-means clustering is applied to word embeddings obtained
from the DBM model. The clusters display clear semantic context.
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Features: a two-layer DBM was employed consisting of a visible layer of multinomial
visible units followed by two binary hidden layers. During pre-training and model selection,
DBMs were trained. Briefly, annealed importance sampling was employed to estimate the
partition function for each DBM. Thus, the proposed DBM model can be used to obtain
both word as well as document embeddings in a high-dimensional vector space.

Inputs: data.
Outputs: data; plots.

• Social brain (NeuroSynth #3) [56]

Description: how the human brain processes social information is an increasingly
researched topic in psychology and neuroscience, advancing our understanding of basic hu-
man cognition and psychopathologies. In this study, the authors investigated whether these
brain regions are evoked by the mere presence of social information using an automated
meta-analysis and confirmatory data from an independent study. Results of 1000 pub-
lished fMRI studies containing the keyword of “social” were subject to an automated
meta-analysis. The social/non-social contrast in the independent study showed a strong
resemblance to the NeuroSynth map. The Region Of Interest (ROI) analyses revealed that a
social effect was credible in most of the NeuroSynth regions in the independent dataset.

Features: the first part of the analyses of this study aimed to identify the brain regions
that have shown significant activation in published fMRI studies with a prominent social
element in the literature. Using the keyword “social” yielded 1000 published fMRI studies
to include in an automated meta-analysis on neurosynth.org. The authors used the reverse
inference map of the results of the automated meta-analysis, which represent z-scores
corresponding to the likelihood that the term “social” is used in a study given the presence
of the reported activation. The significant brain regions showing up in the reverse inference
map represent those that are more likely to be reported in “social” studies than in “non-
social” studies.

Inputs: data.
Outputs: data; plots.

• MetaCyto [57]

Description: the authors of this article developed MetaCyto for the automated meta-
analysis of flow cytometry and mass spectrometry (CyTOF) data.

Features: by combining clustering methods with a scanning method, MetaCyto can
identify commonly labeled subsets of cells, thereby enabling meta-analysis. Thus, the
application of MetaCyto to a set of cytometric studies allowed for the identification of cell
populations that show differences in abundance between demographic groups.

Inputs: R package.
Outputs: data; plots.

• Research Method Classification [61]

Description: this research work presents a prototype that applies deep transfer learning
to predict the research methods in scientific publications, which facilitates an automatic
discovery of crucial research information from large numbers of publications. The current
state-of-the-art for classification of research methods uses Support Vector Models (SVMs).

This article provides the following research contributions: (a) developing an artifact
that uses deep transfer learning and outperforms the state-of-the-art of research method
classification, (b) using full papers and classifying them into predefined research methods,
and (c) demonstrating the performance based on an extensive Information Systems corpus.

Features: the proposed approach outperforms state-of-the-art research method classifi-
cation that deploys the Support Vector Model (SVM). The proposed deep transfer learning
models can lead to a better recognition of research methods than shallower word em-
bedding approaches such as word2vec or GloVe. The results illustrate the potential of
establishing semi-automated methods for meta-analysis.

Inputs: free text and data.
Outputs: data.
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• AUTOMETA [62]

Description: the proposed system for automating meta-analysis employs existing
natural language processing methods for identifying Participants, Intervention, Control,
and Outcome (PICO) elements. This system can perform advanced meta-analyses by
parsing numeric outcomes to identify the number of patients having certain outcomes. In
this study, the authors used the BERT-based approach which is a general-purpose language
model trained on a large dataset and uses an attention mechanism that learns contextual
relations between words in a text.

Features: the proposed system consists of four major components: crawling PubMed
articles, NLP module, creating structured data, and aggregation and visualization. First,
a user queries the PubMed database and related articles are returned. Abstracts are
then extracted from the articles and passed to the NLP module for preprocessing and
extraction of PICO elements. The extracted data are then converted into a structured form.
It also parses numeric texts to identify the number of patients having certain outcomes.
Identification of the number of patients having certain outcomes is important for statistical
analysis to determine the effectiveness of an intervention.

Inputs: free text and data.
Outputs: data.

4.4. Web Application and Integrated Systems (Includes 5 Studies)

• Automated meta-analysis of biomedical texts [10]

Description: in this research article the authors present the results of the automated
analysis of the data extracted from abstracts of scientific articles available in PubMed. These
results demonstrate the associations between types of tumors and the most used methods
for their cell-based immunotherapy.

Features: the proposed method automates the meta-analysis by standardizing the
process in a series of steps. In summary, the following are mentioned: (a) crawling abstracts
from Pubmed via the Scrapy based web-crawler, (b) rich linguistic features extraction
by using the ISANLP framework which is a Python library to obtain the morphology,
syntax parsing, and semantic role labeling features [66], (c) combining tumor and cell
dictionaries and morphology-based rules to extract entity candidates from the abstracts,
d) using syntactic relations and constructing all their possible combinations and applying
models (e.g., UMLS Metathesaurus, MetaMap [67] Fasttext model [68]) to map the terms,
(e) using syntactic relations and semantic roles to reveal the links between entities and their
roles in the sentence, (f) applying a pre-trained sequence-labeling machine learning model
to filter uninformative entity candidates, and g) computing co-occurrence statistics and
mining associative rules for the extracted entities [69,70] to obtain stable combinations of
tumors, therapy, and cell types. We used the Eclat algorithm [71] because of its scalability.

Inputs: biomedical texts; abstracts of scientific articles available in PubMed; Python code.
Outputs: data; plots.

• MetaInsight [39]

Description: MetaInsight is a new tool that is freely available and that conducts
network meta-analysis (NMA) via the web.

Features: MetaInsight is a web-based tool allowing users with only standard internet
browser software to be able to conduct NMAs using an intuitive “point and click” interface
and present the results using visual plots.

Inputs: .csv files.
Outputs: data results; plots.

• Nested-Knowledge [72]

Description: Nested Knowledge offers a comprehensive software platform for system-
atic literature review and meta-analysis.
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Features: the software is composed of two parts which work in tandem. Search, screen,
tag, and extract data with AutoLit, and visualize, analyze, publish, and share insights
with Synthesis.

Inputs: RIS files.
Outputs: data results; plots; RIS or nBIB files.

• netmeta [42]

Description: an R package for frequentist meta-analysis, this has a comprehensive set
of functions providing a lot of methods for network meta-analysis.

Features: this package supports a comprehensive set of functions providing frequen-
tist methods for network meta-analysis such as: the frequentist network meta-analysis;
the net heat plot and design-based decomposition of Cochran’s Q; the measurements of
characterizing the flow of evidence between two treatments; the ranking of treatments
based on the frequentist analogue of SUCRA; the partial order of treatment rankings and
the Hasse diagram; and the contribution matrix, etc.

Inputs: R code.
Outputs: data results.

• Whyis [52]

Description: Whyis is the first framework for creating custom provenance-driven
knowledge graphs. Whyis knowledge graphs are based on nanopublications, which
simplify and standardize the production of structured, provenance-supported knowledge
in knowledge graphs.

To create probabilistic knowledge graphs, Whyis [52] implements a method of auto-
mated meta-analysis. The authors refined the methods used in [73] by using Stouffer’s
Z-Method [64].

Features: Whyis is written in Python using the Flask framework. The RDF database
used by default is Fuseki. Whyis uses the SPARQL Query, Update, and Graph Store HTTP
Protocol. Storage is provided using the FileDepot Python library to provide the file-based
persistence of nanopublications and uploaded files. Whyis also relies on Celery which is a
task queuing system that can be scaled by adding more task workers on remote machines.
Thus, knowledge graph developers create their knowledge graphs by generating a Python
module that contains the configuration, templates, and code adapted to their purposes.

Inputs: Python code and script modules.
Outputs: Views; data; plots.

5. Discussion

5.1. Purpose of This Study

The aim of this article is to discover the most modern and complete tools used to
automate the conduct of meta-analyses of clinical trials. In this way, it will contribute, on
the one hand, to the identification and promotion of the most suitable candidates, and on
the other hand, to the development of research in this field.

5.2. Benefits Arising from Automated Meta-Analysis

The evaluation of automated meta-analysis results is presented in some
studies [5,9–11,29,37]. Their approaches show positive and promising results in the feasi-
bility, acceptance, reliability, and time consumption. More analytically, the most important
benefits are the ability to process large data sets in shorter times without altering expert
confidence in the methodological and scientific rigor [6].

5.3. Comparison of Systems and Tools Currently Available

Built upon existent efforts for automating the basic steps of meta-analysis, the pro-
posed approaches achieve the goal of automated meta-analysis and largely reduce the
human effort involved [5].
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However, although important steps have been taken to date, currently there is no
application that can fully replace the human effort in conducting a systematic review to
draw conclusions from clinical trials. Thus, while the other tasks of a systematic review
have significantly developed, the automation of meta-analyses is still far from being able
to significantly support and facilitate the work of researchers, freeing them from manual,
difficult, and time-consuming work.

At the same time, it is worth noting that most of the tools are either open source or
some are freely available (Table 2). Therefore, the strengthening of research in this field
should be important in the immediate future.

The benefits of automating meta-analysis are expected to be particularly important
in all areas of evidence-based medicine and especially in cutting edge areas of medical
research such as gene therapy and cancer treatment.

5.4. Limitations of This Study

In addition, this overview has some methodological limitations. Initially the author
had difficulty in identifying suitable articles. This limitation was partially addressed using
snowballing methods. Secondly, the author included articles written only in English.

6. Conclusions and Future Directions

ML is the fastest growing field in computer science, and Health Informatics is amongst
the greatest application challenges, providing significant benefits in improved medical
prognosis, diagnosis, and pharmaceutical development [74].

Meta-analysis is a systematic approach for understanding a wonder by resolving
the results of many previously published exploratory studies. It is used mainly to ex-
tract knowledge and decisions about the summary effect of situations, interventions, and
treatments in medicine. Unfortunately, meta-analysis involves excellent human exertion,
rendering a process that is extremely inefficient and vulnerable to human bias. To overcome
these issues, many researchers are studying and proposing architectures, methods, and
tools to automate meta-analysis [5]. The researchers’ main goal is to provide a system
for automating the meta-analysis process as much as possible to reduce the time taken in
conducting a meta-analysis [62].

Moreover, the development and application of ML in the meta-analysis of clinical
trials is a promising approach to implement more effective daily clinical practices.

However, extensive future studies are needed to validate the performance of ML tools
in their application domain.
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Abstract: Protein three-dimensional structural analysis using artificial intelligence is attracting
attention in various fields, such as the estimation of vaccine structure and stability. In particular,
when using the spike protein in vaccines, the major issues in the construction of SARS-CoV-2
vaccines are their weak abilities to attack the virus and elicit immunity for a short period. Structural
information about new viruses is essential for understanding their properties and creating effective
vaccines. However, determining the structure of a protein through experiments is a lengthy and
laborious process. Therefore, a new computational approach accelerated the elucidation process
and made predictions more accurate. Using advanced machine learning technology called deep
neural networks, it has become possible to predict protein structures directly from protein and gene
sequences. We summarize the advances in antiviral therapy with the SARS-CoV-2 vaccine and
extracellular vesicles via computational analysis.

Keywords: SARS-CoV-2 vaccines; deep learning; spike protein; ACE2; CpG DNA

1. Introduction

Vaccines for the new coronavirus disease (COVID-19) are on track around the world,
but it is still difficult to predict when this pandemic will end. Furthermore, the possibility
of achieving “herd immunity” that if a sufficient proportion of people develop immunity
to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is beginning to be
considered unlikely. This thinking reflects the complexity and difficulty of responding to a
pandemic and does not deny the fact that vaccination is beneficial. As more people in the
population acquire immunity, another problem arises. A higher percentage of people who
acquire immunity creates selective pressure, favoring mutant strains that can infect those
who acquire immunity. Furthermore, new SARS-CoV-2 variants emerge that are highly
contagious and are resistant to vaccine, and once acquired immunity is attenuated. Thus,
antibodies induced by current vaccines are ‘strain-specific’ and cannot respond to antigenic
mutation of virus strains, and it is necessary to activate antibodies that match the latest
epidemic strains. By vaccinating as many as possible as soon as possible, it is possible to
prevent new variants from gaining footholds. However, it is almost inevitable that vaccines
will create new selective pressure and lead to the emergence of mutant strains, so it is
necessary to develop infrastructure and processes to monitor this. In this way, vaccines
are a double-edged sword that can immunize many people and create many new patients.
Furthermore, the persistence of induced antibodies is not as good as that of live vaccines,
such as the measles vaccine [1,2]. It will also be important to clarify how long immunity
from vaccines lasts and whether booster vaccinations are necessary after vaccination.
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Additionally, considerable attention has been focused on antibodies that acquire ‘cross-
reactivity’ by targeting epitopes that are difficult to mutate to improve the strain specificity
of vaccines [3–7]. Because this cross-reactive antibody is a rare antibody that is difficult to
induce with current vaccines, structural analysis has clarified the binding sites and B cell
epitopes of monoclonal cross-reactive antibodies, and it has become possible to produce
vaccines with artificially increased antigenicity to facilitate the induction of these antibodies
through structural biology approaches, such as epitope-focused vaccines [8,9]. Although
vaccine formulations based on this strategy have shown steady efficacy in animal models,
clinical studies have suggested that the persistence of induced cross-reactive antibodies
may be even lower than that of normal antibodies. Therefore, in the future, it will be
necessary to devise ways to increase the amount and persistence of antibodies induced. To
develop vaccines that are both safe and effective, it is important to understand the in vivo
infection mechanisms of the virus. The amount and persistence of antibodies induced
by influenza vaccines are largely dependent on the amount and quality of helper signals
supplied by activated T cells to B cells [10,11]. Therefore, vaccine antigens must bind
to T cell antigen receptors in addition to binding to antibodies, which are B cell antigen
receptors that elicit helper signals from T cells [12–20]. Because T-cell epitopes consist
of peptides of 20 amino acids or less, antigenicity is mainly determined by the primary
amino acid sequence [21,22]. On the other hand, by mutating the part that binds to the
antibody made by the vaccine, the virus can escape from the antibody while maintaining
the ability to invade cells. At the time, a new vaccine containing the mutated part will
be needed. In such a case, although there is a protein property prediction that predicts a
change in stability for a single amino acid mutation from the amino acid sequence of the
protein, not only the static structure but also the dynamic structure greatly contributes
to the expression of protein function. Therefore, the molecular dynamics (MD) method
has come to be used frequently as a means of analyzing the dynamic structure of proteins
by simulation, but the amount of trajectory, molecular motion, obtained as a result of
MD simulation is enormous. Moreover, since it is time-series data, in silico technology,
including machine learning or deep learning is actively applied. Then, using the learning
results, pseudo-MD is performed for single amino acid mutants of the protein without
performing MD simulation calculation, which takes a long time, similar results, such as
trajectory etc. can be obtained. Therefore, it is relatively easy to predict antigenicity using
the bioinformatics tools. In this review, we summarize the applications of in silico analysis
including deep learning for SARS-CoV-2 vaccine.

2. Anti-Virus Therapy via Vaccine

Two strategies are available for the development of antiviral drugs: (1) suppress the
life cycle of the virus in the host cell and (2) control the runaway of the host immune
system [23–44]. Three-dimensional (3D) protein structure information is extremely useful
in searching for drug candidates that inhibit the functions of viral proteins based on strategy
(1) [45,46]. Therefore, it is necessary to develop therapeutic drugs and vaccines as soon as
possible; therapeutic drugs and vaccines against COVID-19 are underway. SARS-CoV-2
is classified as a single-stranded positive-strand RNA virus, and its genome size is ap-
proximately 30,000 bases, encoding 11 open reading frames and genes (Figure 1A) [47–57].
Each gene contains one non-structural protein (orf1ab) and four structural proteins (spike
(S) protein, envelope (E), membrane (M), and nucleocapsid (N) protein) and encodes six
accessory proteins (ORF3a, ORF6, ORF7a, ORF7b, ORF8, and ORF10) (Figure 1B) [58–64].
After translation, orf1ab is cleaved by the papain-like protease (nsp3, PL-pro) and the main
protease (M-pro) that it encodes and is divided into 16 proteins (Nsp1 to Nsp16) [65–67].
SARS-CoV-2 is similar to SARS coronavirus (SARS-CoV), the pathogen of the severe acute
respiratory syndrome (SARS), with approximately 80% genome sequence identity, and
many encoded proteins are highly conserved [68,69]. Homology of the amino acid se-
quence of the SARS-CoV-2 protein revealed that 17 of the 26 proteins had structurally
known proteins with significant sequence similarity, of which 16, excluding nsp4, had
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SARS-CoV protein conformations. Many SARS-CoV-2 proteins have postulated conforma-
tional models in the form of homo- or hetero- multimers [70,71]. For example, M-pro is a
homodimer, nsp10 is a heterodimer with exonuclease (ExoN), respectively, and 2-O’-ribose
methyltransferase (2oMT), and a model of inhibitor complex is assumed [72–75]. In ad-
dition, the S protein forms a homotrimer, and a complex model of the receptor-binding
domain (RBD) and human angiotensin-converting enzyme 2 (ACE2) is assumed [76–95].
Virtual screening is an in silico analysis method for identifying drug candidates, which
are compounds that bind to specific sites on viral proteins, based on 3D structural models.
Typically, this method defines the site at which the drug molecule is bound to the 3D
structure of the target protein. Compound library molecules are comprehensively docked
on a computer, and candidate compounds are extracted by evaluating bond stability using
evaluation functions, such as the energy function [96,97]. Although significant seed-up has
been achieved using parallel computing and machine learning, it is not easy to apply in
situations where the target protein or compound library has not been narrowed down. A
ligand bound to a target protein homologue in a known complex structure is highly likely
to contain a pharmacophore, where a structural feature is specifically recognized by the
site where the compound is bound, such as the ligand-binding site. If there is an approved
drug with a structure similar to that of the ligand that can be reasonably docked to the
structural model, the molecule is expected to become a therapeutic drug candidate. Three
of the SARS-CoV-2 protein models, the M-pro homodimer, S protein-ACE2 complex, and
2oMT-nsp10 heterodimer, have ligand molecules bound to the template structure [98–101].
M-pro is an essential enzyme for viral protein production and is considered a promising
drug target for SARS-CoV-2. Therefore, complex structures with many peptidomimetic in-
hibitors have been analyzed; however, no existing drug molecules showing high similarity
to these known ligands have been found. This suggests that the M-pro of SARS-CoV-2 is a
cysteine protease, whereas many of the targets of existing antiviral protease inhibitors, such
as the HIV protease, are aspartate or zinc proteases [23,102–104]. Moreover, carfilzomib,
which showed the highest similarity among known ligands, is an irreversible inhibitor
of proteasome and approved for the clinical treatment of multiple myeloma or Walden
Strom’s macroglobulinemia [105–107]. The target of carfilzomib is a threonine protease
with a nucleophilic attacking group: Thr; however, it also reacts with the nucleophilic
attacking group Cys of M-pro. Because the S protein on the virus surface uses human
angiotensin-converting enzyme 2 (ACE2) as a receptor when infecting host cells, the S
protein-ACE2 binding site is an important target. ACE2 is a homologue, with 44% amino
acid sequence identity, of ACE, which is a major target of anti-hypertensive ACE-inhibitor
complex structures [108]. Approved drugs analogous to these inhibitors were found to be
lisinopril, enalaprilat, and captopril, all of which are antihypertensive drugs.

However, these molecules were bound at a position different from the S protein-ACE2
interaction site; therefore, they could not directly inhibit the interaction with the S protein.
Clinical trials of antibody drugs targeting the receptor-binding domain (RGD) as antigens
are currently being conducted for drugs that target the S protein [109,110]. As a low-
molecular-weight drug targeting the site, catharanthine, a component derived from Tamasaki
Tsutsurugi, which has been approved as a treatment for alopecia areata and leukopenia,
inhibits S protein-ACE2 interaction and suppresses SARS-CoV-2 infection [111,112]. This
finding suggests the possibility of developing a drug to prevent COVID-19 infection by
expanding catharanthine. The 2oMT-nsp10 complex is an enzyme that modifies the methyl
group on the 5′-terminal cap structure of viral RNA. The cap structure protects viral RNA
from degradation by the host and is essential for synthesizing its proteins using the host’s
translational machinery [113]. Several existing drugs were discovered from the 2oMT
ligand complex structure of SARS-CoV, which was used as the template for the model,
and antiviral activity was reported in in vitro experiments. Additionally, the adenosine A1
receptor agonists tecadenoson, serodenosone, and travodenosone are expected to target
2oMT, of which tecadenoson and travodenosone have passed phase I clinical trials, and
their safety has been confirmed [114]. In addition, there should be a guanylyl transferase
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that adds a cap structure to the 5′ end of the viral RNA molecule, but the protein that
plays that role is currently unknown; if it is identified in the future, it can become a drug
discovery target [115].

Figure 1. Schematic structure of SARS-CoV-2. (A) The genomic organization of SARS-CoV-2. Upper
line indicates genomic scale. Sixteen non-structural proteins, four structural proteins, and eleven
accessory factors were represented. (B) Schematic diagram of the SARS-CoV-2 virus. The four
structural proteins, including S, M, N and E proteins are shown.
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Since protein interactions between humans and viruses play a crucial role in viral
infections, their identification will lead to elucidation of viral infection mechanisms and
discovery of targets for antiviral drugs. However, since biological experiments for this
identification require a huge amount of time and cost, the prediction of the interaction by
in silico analysis is expected. Conventional computer prediction method of the protein
interaction is docking simulation using molecular dynamics method based on protein 3D-
structure information, which examines the shape of the key and the keyhole of the protein
and uses computer simulation to find the conditions that the key fits into the keyhole.
However, it is difficult to elucidate the 3D-structure information, and the application of
the molecular dynamics method for mutant viruses is limited. On the other hand, high-
throughput experimental methods make it easy to obtain amino acid sequence information
of viral proteins. By applying a deep learning model that predicts the future from time
series data and taking the amino acid sequence of a protein as a flow of context, it is possible
to extract 3D features of keys and keyholes from the order patterns of long-chain amino
acid sequences. Thus, COVID-19 runaway of the host immune system is investigated by
AI-based analytical approaches [116,117].

3. SARS-CoV-2 Vaccine with Extracellular Vesicles

Furthermore, modified extracellular vesicles (EV), i.e., vesicles with a heterogeneous
lipid bilayer structure that are secreted from almost all living cells, are roughly divided into
three types: exosomes, macrovesicles, and apoptotic bodies, based on differences in intra-
cellular production mechanisms, loaded with an antibody consisting only of a heavy chain,
which is a type of low-molecular-weight antibody against the spike protein of SARS-CoV-2,
and IFN-b, a cytokine with antiviral effect, which inhibits the SARS-CoV-2 pseudo-virus de-
rived from infecting cells and can induce the cells into an antiviral state [118]. In particular,
exosomes are expected as new preventive and therapeutic strategies that exhibit antiviral
activity. As the new coronavirus establishes infection by binding the SARS-CoV-2 spike
protein to ACE2 on cells, blocking the spike protein with antibodies to render it incapable
of binding to ACE2 is an important strategy for preventing SARS-CoV-2 infection and
aggravation. Anti-spike neutralizing antibodies are expected to be therapeutic agents for
COVID-19. Although the SARS-CoV-2 vaccine also promotes antibody production against
the spike protein, among mutant strains, such as the Omicron strain, some strains that
reduce the infection prevention effect of the SARS-CoV-2 vaccine have appeared [119–124].
Therefore, it is difficult to completely prevent SARS-CoV-2 infection and aggravation using
the anti-spike neutralizing antibody alone. A large number of modified EV-mounted fusion
proteins consisting of IFN-b, which induces an antiviral state in cells, an antibody com-
prising only heavy chains, which is a type of low-molecular-weight anti-spike antibody,
and MFG-E8 protein, which can bind to EVs, showed significant anti-inhibitory effects on
SARS-CoV-2 pseudo virus infectivity [118].

In addition, two mRNA vaccines have been developed against SARS-CoV-2, designed
to induce systemic immunity via intramuscular injection [125–146]. However, it is necessary
to develop a cold chain for real-world inoculation. Therefore, it has been reported that
the vaccine is administered directly to the lungs, not via intramuscular injection, and
EVs secreted from lung spheroid cells (LSC) are used as carriers [147,148]. The receptor
binding domain (RBD) is more tightly retained in both muscle-lined respiratory airways
and lung parenchyma than in liposome-based vaccines by inhaling LSC-EV virus-like
particles (VLPs) modified with the RBD of the recombinant SARS-CoV-2 spike protein.
In mice, this vaccine induces lung CD4+/CD8+ T cells with RBD-specific IgG antibodies,
mucosal IgA responses, and a Th1-like cytokine expression profile, leading to the removal
of the challenged SARS-CoV-2 pseudo virus [149]. In hamsters, two doses of this vaccine
attenuated severe pneumonia and reduced inflammatory infiltrates after the SARS-CoV-
2 challenge. RBD-modified LSC-EV vaccines (RBD-EVs) induce mucosal and systemic
immunity in the lungs.
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4. Vaccination Process and Nuclei Acids

Plasmid DNA (pDNA) is a safe and highly productive vector for DNA vaccines and
gene therapies [150,151]. Antigen-presenting cells, such as macrophages and dendritic
cells, which play an important role in the immune response and defense against foreign
substances, recognize pDNA administered to the body as a ‘foreign substance’, and have a
significant effect on its pharmacokinetics and gene expression. Therefore, it is important to
optimize the gene expression profile obtained by pDNA administration for each target dis-
ease. DNA derived from bacteria, including pDNA, has a high frequency of unmethylated
CpG sequences, known as CpG motifs. When mammalian macrophages and dendritic cells
take them up, they are recognized as danger signals via intracellular toll-like receptor 9
(TLR9), and immune activation reactions, such as the production of various inflammatory
cytokines, are induced [152–155]. Inflammatory cytokines are responsible for reducing gene
expression in target cells owing to their cytotoxic effects. However, in the case of cancer
treatment, in addition to the effects of transgenes, immune activation by inflammatory
cytokine production can be expected, and the immune response to pDNA is thought to
have complex effects on therapeutic efficacy. However, the mechanism of cellular uptake
and activity of pDNA in macrophages and dendritic cells has not been fully elucidated.
In particular, in the case of complexes with cationic carriers, which are commonly used to
increase gene expression, immune activation by a mechanism different from cell activation
by CpG motifs has been suggested, but the details are unknown. Non-parenchymal cells
in the liver are significantly involved in the pharmacokinetics of pDNA, and this cellular
uptake involves a mechanism similar to that of scavenger receptors, which specifically
recognize the conformation of polyanions. In addition, a similar uptake mechanism exists
in dendritic cells [156]. In contrast, by complexing DNA with cationic liposomes, cytokines
are produced from macrophages

Regardless of the presence or absence of CpG motifs [157]. TLR9 is not involved in
this CpG motif-independent phenomenon in mouse-derived macrophages, and a similar
CpG motif-independent activation occurs in mouse dendritic cells as well as in human-
derived cells. Furthermore, cell activation is highly dependent on the type of liposomes
used for complex formation. In contrast, mouse peritoneal macrophages and RAW264.7, a
cultured macrophage cell line, differ significantly in DNA uptake and cytokine production
between the two cell groups. Because peritoneal macrophages efficiently take up naked
pDNA but produce few cytokines, inhibition of TLR9 recognition by DNA binding fac-
tors is envisioned. Th1-type cytokine production induced by CpG DNA administration
exhibits effective therapeutic effects against cancer and allergic diseases [158]. Y-shaped
DNA is constructed by combining three short DNA strands with partially complementary
sequences, and this unique structure induces cytokine production more efficiently than
identical double-stranded DNA.

Chemokines are secretory proteins that promote cell migration and contribute to in-
flammatory reactions by attracting leukocytes. In addition, CXCL14, a chemokine, binds to
CpG DNA and significantly enhances the induction of innate immunity and inflammatory
responses through its uptake by dendritic cells (Figure 2) [159]. Furthermore, CXCL4, the
CXC-type chemokine CXCL14, has functions similar to those of CXCL14 and enhances CpG
DNA-induced dendritic cell activation [160]. CXCL14 has both CpG DNA and cell surface
receptor-binding domains, and uptake of the CXCL14/CpG DNA complex into dendritic
cells via the clathrin-dependent endocytosis pathway is required for the enhancement of
CpG DNA activity [161]. In addition, by simulating the binding of CXCL14/CpG DNA,
multiple amino acids on the N-terminal and C-terminal sides of CXCL14 act cooperatively
to stabilize binding. Thus, the activation of dendritic cells by CXCL14 and CpG DNA
is expected to function as a vaccine adjuvant to enhance vaccine efficacy [162]. Further
elucidation of the cooperative action of CXCL14 and CpG DNA may lead to the develop-
ment of more efficient cancer immunopotentiators and vaccine adjuvants. However, the
immunological mechanisms of action of DNA vaccines, which are next-generation vaccines
under development against infectious diseases, such as influenza, cancer, and allergies, are
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still not well understood. In contrast, the right-handed double-helical structure of DNA
acts as an endogenous adjuvant for vaccines by activating the innate immune system via
tank-binding kinase 1 (TBK1) in cells, and signals for activating the innate immune system
are essential for the efficacy in DNA vaccines [163]. Among the effects of DNA vaccines,
activation of TBK1-dependent innate immunity in immune cells, such as dendritic cells,
is important for antibody production. Activation of TBK1 in non-immune cells, such as
muscle cells, that take up DNA is important for the activation of cell-mediated immunity by
T cells. In other words, the effects of DNA vaccines involve a pathway that induces type I in-
terferon without being mediated by TLRs. Although the innate immunostimulatory action
of nucleic acids is due to a special base sequence, CpG motif, often found in pathogens, such
as bacteria and viruses, mediated by TLR9, it was shown that the right-handed structure of
double-stranded DNA found in both viruses and host cells has a strong TLR-independent
ability to produce interferon. Furthermore, innate immune activations in both immune and
nonimmune cells interact with each other.

Figure 2. Molecular pathways of inflammation induced by CXCL14 and CpG-DNA. CXCL14:
chemokine (C-X-C motif) ligand 14, TLR9: toll-like receptor 9, TRAF6:TNF receptor-associated factor
6, MyD88: myeloid differentiation primary response gene 88, NEMO: NF-κB essential modulator, IκB:
inhibitor kappa B, IKK: IκB kinase, p50: NF-κB p50, p65: NF-κB p65, IPS-1: IFN-inducing β promoter
stimulator-1, TBK1: TANK-binding kinase 1, IRF: interferon regulatory factor, IFN: interferon, IRAK:
IL-1 receptor associated kinase, IL-6: interleukin-6, IL-1b: interleukin-1b, TNF-α: tumor necrosis
factor α.

5. Construction of Vaccine and Protein Structure in Silico Analysis

The methodology of analyzing the results of experiments using the information science
method is the same as that of bioinformatics and computational biology and is a pioneering
study that utilizes bioinformatics in virology (Figure 3) [164–170]. There are ethical issues
with artificial intelligence (AI), but it has the potential to revolutionize science and solve
some of the most complex problems facing modern biology. In particular, it is expected
to predict the structure of unknown proteins, solve the mysteries of cells, and quickly
elucidate diseases that affect cells. However, determining the structure of a protein through
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experiments is a lengthy and laborious process. Structural information about new viruses
is essential for understanding their properties and for creating effective vaccines. Thus,
researchers have accelerated the unravelling process and made predictions more accurate
with a new computational approach. With the remarkable development of AI, it is now
possible to predict the 3D structure of complex proteins with a high degree of accuracy. The
AI system AlphaFold2 has accomplished a feat of identified several protein structures that
make up the previously little-known novel SARS-CoV-2 within a fairly short time [171].
Thus, the tireless efforts of scientists and international collaboration, combined with cutting-
edge AI technologies, such as AlphaFold2, have enabled a rapid response to the pandemic.
AlphaFold2 uses advanced machine learning techniques, called deep learning neural
networks, to predict protein structures directly from protein gene sequences [172–177].
In addition, AI must first learn the sequences and structures of approximately 100,000
known proteins from the experimental data published in the scientific community. This
has made it possible to predict the 3D models of any protein with high accuracy. Because
protein structure is related to protein function, it is important to clarify protein function
and is essential and even more important information. There are several methods for
experimentally determining protein structures, such as NMR and X-ray crystallography,
but they are both time-consuming and expensive [178]. Therefore, researchers have been
actively researching to predict 3D structures for some time, and many modelling methods
have been devised [173,179–182]. There are various modelling techniques, and with regard
to comparative modelling, different proteins used as templates yield different results;
thus, a variety of predicted 3D structures can be obtained. However, it is necessary to
choose the most natural structure among the predicted 3D structures. Herein, ‘natural
structure-like’ implies that the structure is highly similar to the natural structure, and this
is called the model quality assessment program (MQAP) [183]. Many MQAPs comprise
single or multiple statistical potential functions that express natural structure-likeness, and
prediction models with machine learning based on explicitly created feature values have
also been proposed [184]. This statistical potential function is a statistically constructed
potential function based on the distribution of structural features from the natural structures
known in the Protein Data Bank and has been devised many times. Many of these statistical
potential functions mainly capture the interactions between two bodies, such as the original
pairs and residue pairs. However, because proteins have a 3D structure, it is difficult
to capture their features. Therefore, although many-body potential functions have been
devised, they are not as accurate as existing two-body functions. This is because the problem
becomes more complicated, and the number of parameters increases in the case of many
bodies. Therefore, to capture the interactions between many bodies, a new method that
differs from the conventional method of creating a statistical potential function is required.

Figure 3. Schematic procedure of vaccine design by bioinformatics of virus characterizations.
Structural information and biological activity of viruses can automatically extract the molecular
futures by AI.
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Convolutional neural networks (CNN), which are neural networks with convolutional
layers, have been successfully applied in many fields [185]. A 3D CNN, which is an
extension of this to 3D, has been used for motion recognition and object recognition in the
past, but it is also beginning to be used for the analysis of the 3D structures of proteins.
Among them, 3D-CNN achieved better accuracy than existing methods that used machine
learning with explicit feature values, suggesting the effectiveness of 3D-CNN in analyzing
3D structures of proteins. Based on this, it was expected that 3D-CNN would be effective in
the MQAP field. Therefore, to develop a method for evaluating the predicted 3D structure
that captures the interaction between many bodies, a method for evaluating the predicted
conformation that analyses the local environment of a protein using 3D-CNN and outputs
the overall score of the protein as the average of the evaluations of the local environment
was developed. Consequently, the validity of evaluating the local structure of proteins
using a 3D-CNN was suggested [184–189].

In addition, many studies have been conducted to predict the local and secondary struc-
tures of proteins from amino acid sequence information using machine learning [190–194].
The secondary structure can be classified into two types: α-helix and β-sheet (Table 1).
The alpha-helix is a right-handed helical structure with an average of 3.6 residues per
cycle. In this helical structure, all the amino acids form hydrogen bounds with amino acids
residues to maintain an energetically stable structure. In contrast, the beta-strand contains
a series of amino acids in a straight line. This secondary structure prediction is defined
as a classification problem called sequence labelling, which predicts secondary structures
from information, such as amino acid sequences. Furthermore, a secondary structure
prediction model using a deep neural network (DNN) has been proposed, and it has been
reported that highly accurate predictions can be made [195–197]. Conversely, a DNN is
a nonlinear function involving a large number of parameters ranging from thousands
to millions [198,199]. As the inside is a black box, it is unclear whether the prediction is
based on biologically plausible features, and the prediction results for unknown proteins
cannot be guaranteed. DNN can be input from both ends of the amino acid sequence using
bidirectional LSTM with a convolution layer and bidirectional LSTM layer [200–202]. The
output layer of the DNN had the same number of neurons as the number of classes to
be discriminated. Given an input vector x0 ∈ R c, we find the largest output value SI of
each neuron l = {L, B, E, G, I, H, S, T, NoSeq} in the output layer. Then, the label argmaxlSl
corresponding to that neuron was selected as the prediction result. At this time, saliency,
which is a characteristic of the spatial arrangement of visual stimuli that induces bottom-up
attention, is defined as the value of the partial differential with respect to the input x, as
shown in Equation (1):

(Saliency) = maxc|∂Sl /∂x| x0| (1)

Table 1. Secondary structure of amino acids.

No. Name

1 irregular
2 beta-bridge
3 beta-strand
4 3qo-helix
5 pai-helix
6 alpha-helix
7 bend
8 beta-turn

Saliency represents the result of a type of sensitivity analysis [203–206]. For example,
consider the case of obtaining saliency for neurons in the output layer corresponding to an
α-helix, where saliency indicates the part of the input that should be changed locally to
fire the neuron in the output layer corresponding to the α-helix. For example, a large value
at a certain position in the amino acid sequence on saliency indicates that changing the
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input at that position has a large effect on the output. By using saliency, when predicting
the secondary structure label Lx of a certain position x, it is possible to determine which
amino acid, feature value, at the surrounding position contributes greatly. For example,
it is expected that the effect tends to approach zero at positions that are not related to the
prediction, such as positions far enough away. If these results are consistent with what
is known biologically, a trained DNN can be considered to capture biologically plausible
features. In particular, for the α-helix and β-strand, which have high prediction accuracy,
visualization with saliency is important to determine what type of amino acid exists at a
position three or four residues away when predicting whether the secondary structure at a
certain position in an amino acid sequence is an α-helix, because the α-helix has a right-
handed helical structure with an average of 3.6 residues. Conversely, the β-strand has a
structure in which amino acids are linked in a straight chain, and when making predictions,
the relationship with amino acids that are close to each other is important. When the DNN
acquires the correct prediction model, the saliency values at positions three or four residues
away are higher when predicting the α-helix than when predicting the β-strand. This
saliency is a method to obtain the value corresponding to each feature quantity of each
input for each output neuron. In β-strand prediction, the saliency value gradually decreases
as the distance between the sequences increases. Conversely, regarding α-helix prediction,
the saliency value did not decrease from the first residue, that is, from the next amino
acid to the third residue, which is consistent with the α-helix cycle length of 3.6 residues.
However, when a DNN that predicts the secondary structure is visualized using saliency,
a large amount of saliency is created. For human interpretation, it is necessary to obtain
statistics from that saliency, and design the types of statistics to obtain. Therefore, activation
maximization has been proposed in addition to saliency as a visualization method for
DNN. By using these alternative visualization methods, we may extract insights without
explicitly designing the statistics. Moreover, it is reported some AI-based prediction systems
of protein structure with high-performance [207–220]. However, there are issues about
time-consumption, high-throughput, or versatility, etc.

Research on the structures of such proteins and their associated functions has been
applied to vaccine development. In particular, simulating the ‘spike protein’ present on the
surface of SARS-CoV-2 and clarifying the molecular mechanism that causes the structural
change of the spike protein necessary for viral infection will lead to the establishment of
infection prevention and treatment methods.

6. Conclusions

By more accurately predicting the distance between the beta carbon of each amino acid
residue and the beta carbon of another amino acid residue, it is possible to more accurately
predict the formation of 3D structures from the amino acid sequences of proteins. Running
computer simulations related to SARS-CoV-2 vaccine development can dramatically accel-
erate the design process and may further aid drug discovery to improve diagnostic and
therapeutic outcomes.
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Abstract: The lack of consistent presentation of results in published studies on the association between
a quantitative explanatory variable and a quantitative dependent variable has been a long-term issue
in evaluating the reported findings. Studies are analyzed and reported in a variety of ways. The
main purpose of this review is to illustrate the procedures in summarizing and synthesizing research
results from multivariate models with a quantitative outcome variable. The review summarizes
the application of the standardized regression coefficient as an effect size index in the context of
meta-analysis and describe how it can be estimated and converted from data presented in original
research articles. An example of synthesis is provided using research articles on the association
between childhood body mass index and carotid intima-media thickness in adult life. Finally, the
paper shares practical recommendations for meta-analysts wanting to use the standardized regression
coefficient in pooling findings.

Keywords: standardized regression coefficient; statistics; meta-analysis; research synthesis; data
presentation; carotid intima-media thickness; overweight; childhood

1. Introduction

Systematic reviews and meta-analyses are used to synthesize the available evidence
for a given question in several scientific disciplines [1,2]. A review of the original articles
and research synthesis extends our knowledge through the combination and comparison
of the original studies. A major problem in analyzing, evaluating and summarizing
the reported findings of studies on the association between a quantitative explanatory
variable and a quantitative dependent variable is that the results are analyzed and reported
in many ways [3–5]. When using a systematic literature review with a meta-analytical
approach to learn from combined studies, we are dependent on the research methodology
and reporting of the underlying studies. When the reviewed research articles contain
inadequate statistical reporting of applied research methods and poor data presentation,
the pooling of the findings will be even more difficult for the meta-analyst.

Among studies measuring the relationship between an explanatory factor and a re-
sponse variable, some use correlation coefficients, some apply multivariable regression
methods, and some studies compare mean values [5,6]. In addition, different measurement
methods are used to assess the explanatory factors in the original studies. The quality of
data presentation also varies. Detailed descriptive statistics of the variables under study
are not given in all articles, and necessary measures of variation (standard errors) for
coefficients of associations are not directly provided. Multivariable relationships present
additional special challenges to meta-analysis because the statistics of interest depend on
the other variables that are included in the multivariable analysis. Pooling these studies
often requires data transformations and additional computations and estimations of effect
sizes [1,7]. Thus, a coherent synthesis of studies analyzing the relation of an explanatory
variable with a continuous outcome variable is challenging.
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The measure used to represent the study findings in a meta-analysis is called an effect-
size statistic. Several effect sizes have been proposed to synthesize results from multivari-
able regression models [8]. These include the unstandardized regression coefficient (b) and
correlation coefficient (r). One effect-size approach is based on standardized regression
coefficients. By definition, a standardized regression coefficient β (also called a beta weight)
represents the estimated number of standard deviations of change in the outcome variable
for one standard deviation unit change in the explanatory or predictor variable, while
controlling for other predictors. The synthesis of standardized regression coefficients has
received attention over the last few decades because standardized regression coefficients
are effect sizes commonly used in various domains [4,9–11]. Examples of applied disci-
plines include public-health and environmental research [12–14], psychology [15,16], and
educational sciences [17,18].

As an example of using the standardized regression coefficient, I perform a meta-
analysis to evaluate the association of childhood obesity and carotid intima-media thickness
(cIMT) in adult life. Obesity induces multiple metabolic abnormalities that contribute to
the pathogenesis of atherosclerosis and cardiovascular disease [19,20]. The carotid artery
intima-media thickness is a marker of cardiovascular disease risk [21]. Thus, it is important
to quantify the impact of childhood and adolescent body mass index (BMI) on common
cIMT measurement in adulthood.

In this review, I first provide a description of the standardized regression coefficient (β)
as an effect-size index. This is followed by a brief literature review of studies using these
coefficients in different domains during the last ten years. An example is presented to
illustrate the use of the meta-analysis technique for combining regression coefficients to
synthesize findings from multivariable studies. The next chapter provides formulas to
convert different statistics and effect sizes to standardized regression coefficients. After this,
I discuss issues regarding the use of the standardized regression coefficient for combining
effects. The main purposes of this paper are to point out the complexities and potential
problems in a critical review of the association between a quantitative response variable
and one primary quantitative explanatory variable, and to present a practical effect-size
approach based on standardized regression coefficients.

2. Standardized Regression Coefficient as an Effect-Size Index in Meta-Analysis

Multivariable linear-regression models are used to analyze the associations between
one quantitative dependent variable and several explanatory variables. The unstandardized
regression coefficient (b) estimated from the linear-regression model is an easy-to-interpret
statistic to describe how the explanatory variable affects the values of the outcome variable.
These coefficients are usually provided with their standard errors (SEs) or confidence inter-
vals (CIs) in articles reporting findings from regression models [22,23]. The unstandardized
regression coefficient b describes the effect of changing the explanatory variable by one
unit, and hence its size depends on the scale used to measure the explanatory variable.
However, the main explanatory characteristic is often measured using different methods
and metrics in the reviewed studies. Thus, the direct pooling of unstandardized regression
coefficients is not meaningful across studies. To pool the effects of explanatory variables
measured with different scales, we must express them in a comparable manner. In such
a case, the standardized regression coefficient β may offer an option to synthetize the
findings [5,17]. The β coefficient is the estimate resulting from an analysis carried out on
variables that have been standardized so that their standard deviations (and variances)
are equal to one [22,23]. Therefore, the standardized coefficient refers to how many stan-
dard deviations the response or outcome variable will change per a standard deviation
increase in the explanatory or predictor variable. Thus, the standardized coefficient β can
be regarded as an attempt to make regression coefficients more comparable, and can be
used as an effect-size estimate when the exposure levels in original studies are measured in
different units of measurement.
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The statistical significance of the standardized regression coefficient can be tested using
the t-test of the null hypothesis H0: β = 0, or in substantive terms, no systematic relationship
between the predictor and outcome. A p-value higher than 0.05 supports the null hypothesis
that there is no association. A confidence interval for the coefficient β provides information
about the range of the β. A positive (negative) β-value supports the hypothesis that a high
exposure level increases (decreases) the response. When the confidence interval does not
include 0, then the association between the explanatory variable and outcome variable is
considered statistically significant, in accordance with the p-value of the t-test <0.05.

When considering effect sizes, a natural question to ask is what constitutes a large,
medium, and small effect size. Cohen’s [24] guidelines for the classification of effect sizes
are widely cited in scientific reports. For a coefficient β, effect sizes between 0.10–0.29 are
said to be only small, effect sizes between 0.30–0.49 are medium, and effect sizes of 0.50 or
greater are large [24,25].

An essential feature of the quantitative meta-analysis is its ability to compare the
magnitude of effects across studies, which requires the use of a single effect-size metric for
measuring these effects. Using the standardized regression coefficient β as the common
effect-size measure involves extracting the findings of reviewed studies expressed as
unstandardized regression coefficients, correlation coefficients or mean differences. These
statistics are then re-expressed as standardized regression coefficients and their standard
errors. This process includes several conversions, calculations, and approximations. The
different approaches are summarized in Section 5.

In a meta-analysis, the findings (and effect sizes) are pooled from reviewed studies.
However, every observed effect size is not equal with regard to the reliability of the
information it carries [1]. Therefore, each effect-size value must be weighted by a term that
represents its precision. An optimal approach is to use the inverse of the squared standard
error of the effect-size value as a weight. Thus, larger studies, which have smaller standard
errors, are given more weight than smaller studies, which have larger standard errors. The
formula for computing the associated standard error must also be identified. To obtain
the summary effect of all the reviewed studies, the weighted average effect size can be
computed using the following formula:

M =
∑k

i=1 wiβi

∑k
i=1 wi

,

where k = number studies, βi is the standard regression coefficient from study I, SE(βi)
is the standard error of βi, and wi is the inverse of (SE(βi))2. The variance (SE(βi))2 can
be calculated using the fixed-effects or random-effects model [1,26]. This version of the
meta-analysis procedure is commonly referred to as the generic inverse-approach [27]. The
approach is implemented in all standard software packages for meta-analysis.

Meta-analyses typically report the summary effect size M with a measure of precision
(SE or CI) and a p-value in a figure. This figure, the forest plot, displays the effect estimates
and confidence intervals for individual studies as well as the summary effect. Figure 1
provides two examples of forest plots. Following Cohen’s guidelines [24] and substantive
empirical reviews [25,28], for the absolute (non-negative) value of the pooled effect size |M|,
a value of 0.10–0.19 is a small effect size, a pooled value of 0.20–0.29 is classified as a medium
effect size, and a pooled value of 0.30 or greater is a large effect size.
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(A) 

(B) 

Figure 1. Forest plots for the association between childhood (A) and adolescent (B) and adult cIMT.
Total number of individuals was 5796 in childhood and 11,859 in adolescent in the meta-analysis.
(A) Childhood. (B) Adolescent.

3. Literature Review of Applications

In the following sub-chapters, I provide examples of meta-analytical studies where the
use of the standardized regression coefficient served as a useful tool for synthesizing the
results of numerous studies on a particular topic. Unfortunately, I also found meta-analyses
where the coefficients r, b and β were confused [29–31].

256



Biomedinformatics 2022, 2

3.1. Public Health

In environmental and public-health research, several outcomes and explanatory fac-
tors are often measured by different methods and units of measurement. Dzhambov and
co-workers [13] studied whether green spaces and general greenery in the living envi-
ronment of pregnant women were associated with the birth weight of their infants and
what the direction of that effect was. They performed meta-analyses on eight published
studies exploring the association of residential greenness and birth weight. The majority
of the studies used multivariable linear regression to determine the effect of residential
greenery on birthweight adjustments for personal covariates. In the original studies, dif-
ferent indicators were chosen as a proxy for residential greenness. Thus, the standardized
regression coefficient offers one solution to pool the findings. The reported pooled β was
0.001 (95% CI = −0.001 to 0.003), showing a non-significant association between greenness
and birth weight. The authors noted that the findings were similar when the correlation
coefficient was used as an effect-size index.

Keenan A. Ramsay and her co-authors [32] presented in their meta-analysis that higher
physical activity (PA) and lower sedentary behavior (SB) are associated with greater skeletal
muscle strength and muscle power in older adults. Articles were included in the meta-
analyses if the associations between PA or SB measures and hand grip strength or the chair
stand test were expressed as adjusted standardized regression coefficients (β) and their
95% CI or SE, or when these could be calculated. They identified considerable heterogeneity
in the study design, the definitions of measures of outcome and explanatory variables,
and the statistical analyses used to present the associations. This posed methodological
challenges to comparing and synthesizing the results.

In healthy individuals and people with chronic pain, an inverse association between
physical-activity level and pain has been reported (e.g., more activity and less pain).
Jones et al. [33] examined the relation between aerobic capacity and pain in healthy individ-
uals and people with fibromyalgia. They collated their new data with data from previous
original studies in healthy individuals. To pool the findings identified by the literature
search, standardized regression coefficients and their standard errors were calculated. This
involved converting the results of analyses using the correlation, linear regression, or effect
sizes of differences between groups and converting these to standardized β coefficients
with their standard errors. Then, 95% confidence intervals of the βs were calculated for
presentation of the data on forest plots. Interestingly, the authors noted that a pooled effect
size for these studies was not calculated, because they presented several effect sizes between
various measures of pain and explanatory variables estimated from the same studies. Thus,
the findings do not provide independent estimates of an effect. The presented forest plots
(standardized β coefficients with their 95% confidence intervals) of findings from studies
illustrate clearly that the associations between physical fitness and pain are generally small
and are highly variable within and across studies [33].

In 2020, Wang et al. [14] published a well-constructed quantitative summary of prenatal
lead (Pb) exposure on birth weight. Because the quantitative variables from each reviewed
article were reported using different metrics and different measures of association, they
used standardized regression coefficients to allow a combination of findings from the
reviewed studies. The pooling of findings was conducted separately for maternal blood
and cord blood as measures of exposure variables. In addition, the analyses were restricted
to unadjusted findings and to studies that adjusted for potential confounders. There was
a significant negative association between prenatal Pb exposure and birth weight. In the
unadjusted studies, birth-weight reduction was weakly associated with elevated lead levels
in maternal blood (pooled β = −0.094, 95% CI = −0.157 to −0.030) and cord blood (pooled
β = −0.120, 95% CI = −0.239 to −0.001). When restricted to the adjusted studies, these
associations were weaker.

The study by Nicholas Burrows and his co-authors [34] reported meta-analyses of
studies that examined correlations between pain from knee osteoarthritis and physical
activity or fitness. The effect sizes from the evaluated original studies were converted
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to standardized regression coefficients in order to be included on the forest plots and
to estimate the pooled standardized coefficient. Data from their own new study were
also included in the meta-analysis. From the 33 included studies, 13 provided data for
the analysis of the associations between pain and physical activity, and 21 provided data
for the associations between pain and fitness. The extracted physical-activity variables
were either questionnaire-based measures of activity or objectively measured activity
using pedometers or accelerometers. Separate meta-analyses were performed for muscle
strength, muscle power, and aerobic capacity. Statistically significant pooled βs were found
between objectively measured physical activity and pain severity. The more physically
active individuals reported less pain at a baseline measurement, and across the seven-day
period of physical-activity measurement.

McLaughlin et al. [35] reviewed studies related to the association between engage-
ment with a physical-activity digital health intervention and physical-activity outcomes.
A variety of different methods of association were used across the included studies. For
the clearly reported meta-analysis, authors were required to transform several estimates
into one consistent effect index. A standardized regression coefficient was chosen as the
effect index. Many included studies reported more than one association. For meta-analyses,
they used hierarchical selection criteria to select a single association from each study for
inclusion in the pooled synthesis. When a study did not provide sufficient data required
for meta-analysis (i.e., information to calculate an effect estimate and measure of vari-
ability of the effect estimate), the authors excluded this study from the meta-analysis. A
meta-analysis of 11 included studies indicated a very small but statistically significant posi-
tive association between digital health engagement and physical activity (pooled β = 0.08,
95% CI = 0.01 to 0.14).

3.2. Psychology

Charlie Rioux and co-authors [16] published an interesting study where βs were used
to represent the effect size of the interaction between temperament and family variables on
substance use or externalizing behaviors while controlling for the other variables included
in the tested model of the various studies. The authors searched for studies examining
the interactions between temperament and the family environment on the outcome vari-
ables. Analyses of the interactions between two explanatory variables can be conducted
using ANOVA techniques or with multiple regression models. The interpretation of the
interactions is difficult because different patterns of interaction among temperament and
family variables may have different implications. Due to issues with interaction terms
and differences in measurements, the researchers were cautious and did not report pooled
effect sizes. However, the reported individual effect sizes and their interpretation in the
text still provide useful information about the possible interaction between the analyzed
explanatory variables.

Kaitlin Woolley and Ayelet Fishbach [36] examined the relationship between imme-
diate versus delayed rewards and persistence in long-term goals (e.g., healthy eating,
exercising). The authors conducted five different intervention studies to examine the asso-
ciations. In each study, they conducted a regression analysis to estimate the associations
and reported βs. Finally, they pooled the βs using a meta-analytic approach to estimate
an overall pattern across the five studies. In summary, whereas delayed rewards may
motivate goal setting and the intentions to pursue long-term goals, a meta-analysis of their
studies found that immediate rewards are more strongly associated with actual persistence
in a long-term goal. The effect of immediate rewards on persistence, controlling for delayed
rewards, was considered to be of medium size and statistically significant, (pooled β = 0.35,
95% CI = 0.28 to 0.42, p < 0.001).

Choi et al. [37] used a similar approach to Wooley and Fishbach [36] and combined
the findings from five different studies using β as the effect size. In each sub-study, they
examined predictors of success in different achievement domains using regression models.
By conducting meta-analyses, they explored the overall pattern across the studies. Their
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findings indicate that self-control is predictive of success in achievement-related domains
(β = 0.27, 95% CI = 0.21 to 0.32), while emotional well-being is predictive of success in
relationship-related domains (β = 0.36, 95% CI = 0.29 to 0.43).

Two meta-analyses have examined the pain-related factors in individuals with chronic
musculoskeletal pain [38,39]. In both studies, standardized regression coefficients and their
95% confidence intervals were calculated for the pooled results. Reviewed studies were
excluded from these analyses if they did not provide sufficient information for computing
the SE of the regression coefficient. Greater levels of fear of pain, pain-related anxiety,
and fear-avoidance beliefs were significantly associated with greater pain intensity and
disability [38]. In addition, higher levels of overly negative thoughts in response to pain or
pain-related cues were associated with more pain intensity and disability levels [39]. The
authors comment that an important observation in their reviews was that despite the very
large number of studies that have been performed to evaluate the associations between
pain-related factors and both pain and disability, the quality of the studies tended to be
very low. These included issues in statistical analyses and reporting. These shortcomings
made it difficult to carry out meta-analyses.

3.3. Other Sub-Fields

The paper by Yong Jei Lee and collaborators [40] is an example from criminology. The
aim of their work was to show how many standard deviations in the number of crimes will
change per a standard-deviation increase (or decrease) in the police-force size variable in
the USA. They pooled standardized regression coefficients from 62 studies to estimate the
overall effect size. The estimated pooled effect size was −0.030 (95% CI = −0.078 to 0.019).
The nonsignificant and tiny mean effect size between police-force size and crime suggests
that simply increasing police-force size may not help reduce crime, and if it does, then it
does not reduce crime by much.

Meta-regression can be used in a meta-analysis to assess the relationship between
study-level covariates and effect size [1]. Sanghee Park [41] applied meta-regression to
study the effect of various study characteristics on the observed association between gender
representation in the workforce and public-organization performance using the pooled β
as an effect-size index in 72 studies published between 1999 and 2017. Several covariates
explained the variations in the reported βs. Unfortunately, the message of Park’s article is
hampered by an inadequate linkage between meta-regression theory and the reporting of
the applied field of meta-analysis.

Yahui Tian and Jijun Yao [18] applied meta-analysis to analyze a total of 20 effect sizes
from 11 articles on the impact of Chinese school resource investment on student perfor-
mance. They found that the overall impact of school resources on student performance
is significant (pooled β = 0.093, 95% CI = 0.039 to 0.147). Since the standard regression
coefficient was used as the effect size in this study, an increase of one standard deviation in
school resource investment will increase student performance by 0.093 standard points. It
should be noted that combining the effects of human, material and financial resources to an
overall amount of resource investment in each study required multiple computational steps.

Standardized regression coefficients have also been applied in economics research.
A paper published by Araujo et al. in 2020 provides a comprehensive synthesis of the
evidence on macroprudential policies [42]. Drawing from 58 empirical studies, authors
summarized the effects of macroprudential policy on several outcomes (e.g., credit, house-
hold credit, and house prices). The economic literature does not have a standard definition
of the variables used to measure the effects of macroprudential policy. Enhancing the
comparability of the effects across studies required the standardization approach to the
regression coefficient between the macroprudential-policy variable and the corresponding
outcome variable. The paper then used a meta-analysis framework to quantitatively syn-
thesize estimated βs. In addition, meta-regression was used to examine how the βs varied
with the study characteristics. Relying on β as an effect size in meta-analysis techniques,
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this paper demonstrated that on average, macroprudential-policy tools have statistically
significant effects on credit.

4. Meta-Analysis Example

4.1. Research Question

With the rise in childhood obesity to epidemic portions across the world in the past
few decades, many studies have sought to find out the long-term effects of childhood
obesity on adulthood diseases [20]. The carotid artery intima-media thickness measured
by ultrasound imaging represents a marker of preclinical atherosclerosis [43]. It correlates
with vascular risk factors, associates with the severity of coronary artery disease, and
predicts the likelihood of cardiovascular events in population groups. Several longitudinal
cohort studies have tried to assess the relationship between childhood BMI or obesity and
adulthood cIMT. The studies have shown conflicting results with some showing a positive
association [43–47] while the other showing no significant association [48,49]. A systematic
review [50], a pooled data analysis [51], and a meta-analysis [30] have also been conducted
to assess these associations and have found qualitative positive associations between
the two. Two of these studies [50,51] did not quantify the relationship, and the study of
Ajala et al. [30] includes errors in pooling different effect-size metrics. With my example, I
aim to clarify and quantify the association between childhood obesity and adulthood cIMT
by combining evidence from the available studies.

4.2. Material and Methods
4.2.1. Search Strategy

A literature search was carried out using Medline and Scopus from the year of incep-
tion to April 2022 with no language restrictions. The search strategy used a combination
of medical subject headings and keywords to identify publications. The following search
terms were used for the childhood-exposure variable: body mass index; BMI; child*; ado-
lescen*; pediatric*; paediatric*. I combined these search terms with the search terms for
the outcome variable: carotid intima-media thickness; intima-media thickness; carotid
atherosclero*; carotid intima media; intimal-medial thickness; subclinical atherosclero*. Ad-
ditional search terms were added to the aforementioned terms: prospective; retrospective;
longitudinal; cohort; lifetime; long term; follow-up.

4.2.2. Screening of Studies

The following criteria were used for the inclusion or exclusion of studies:

(a) Type of study: prospective/retrospective longitudinal
(b) Exposure: body mass index (BMI)
(c) Age at measurement of body mass index: 2–19 years (childhood: 2–9 years; adoles-

cence: 10–19 years)
(d) Outcome: carotid intima-media thickness measured in adult (≥20 years)
(e) Length of follow-up: at least 5 years
(f) Mode of ascertainment of exposure and outcome: all measurements taken by health

professionals or trained investigators or from medical records.

Interventional studies, review articles and studies with selective groups, e.g., preterm
babies, low- or high-birth-weight infants, obese children, etc. were excluded. In addition,
studies using the categorized outcome variable cIMT and reporting odds ratios (ORs) or
relative risks (RRs) were not included in this meta-analysis.

4.2.3. Data Synthesis and Analysis

The effect sizes extracted from the original studies included correlation coefficients,
mean differences, and unstandardized and standardized regression coefficients measuring
the relationship between childhood and adolescent BMI and adult cIMT. Results from
both unadjusted and adjusted analyses were included if they were included in the original
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studies. Since BMI was measured in childhood or adolescence, most studies used a BMI
variable standardized by age and sex.

I performed a meta-analysis to estimate the pooled effect of childhood and adolescent
BMI on adult cIMT. In this analysis, standardized regression coefficients were used as
effect-size estimates because different measurement methods and metrics were used across
the original studies. Some studies provided the association between childhood BMI and
adolescent BMI with maximum cIMT, whereas the other studies reported the association
with mean cIMT measurements. Furthermore, childhood and adolescent BMI measure-
ments were age- and sex-standardized using different growth charts. In these articles, the
standard deviation of BMI (SD(BMI)) was equal to 1. If original studies presented correla-
tion coefficients or unstandardized regression coefficients, then these were transformed to
standardized regression coefficients using the formulas presented in Section 5.

4.3. Results

A total of 17 articles analyzing individuals from 16 different longitudinal cohort studies
met the inclusion criteria and were included in the systematic review.

Table 1 reports the main characteristics of the 17 longitudinal studies included in this
systematic review and meta-analysis. Sample sizes varied between 112 and 2628. Outcome
(cIMT) was most frequently measured in individuals who were aged between 20–50 years.

Table 1. Characteristics of studies included in the meta-analysis.

Study and Year of
Publication

Country of
Study

BMI Measured Sample Size
Baseline Age

(Years)
Final Age

(Years)

Childhood Adolescent

Ceponiene 2015 [52] Lithuania � 380 12–13 48–49
Davis 2001 [44] United States � 725 8–18 33–42

Du 2018 [53] United States � 1052 9.8 (3.2) a 23–43
Ferreira 2004 [54] Netherlands � 159 13–16 36.5 (0.6) a

Freedman 2004 [55] United States � � 513 4–17 23–40
Hao 2018 [56] United States � 626 10–18 24 b

Hosseinpanah 2021 [57] Iran � 1295 10.9 (4.0) 29.8 (4.0) a

Huynh 2013 [58] Australia � 2328 7–15 26–36

Johnson 2014 [59] United
Kingdom � 1273 15 60–64

Juonala 2006 [60] Finland � 1081 3–9 24–30
Khalil 2013 [46] India � � 600 2, 11 33–38

Lee 2008 [61] South Korea � 256 16 25
Oren 2003 [47] Netherlands � 750 12–16 27–30

Raitakari 2003 [43] Finland � 1170 12–18 33–39
Terzis 2012 [49] Greece � 106 12–17 40.5 (1.1) a

Wright 2001 [62] United
Kingdom � � 412 9, 13 50

Yan 2017 [63] China � 1252 6–18 27–42
a Mean (SD), b median.

Table 2 shows the effect sizes and computations applied to obtain the standardized
regression coefficient β with standard error SE(β) for each evaluated study. Only 3 articles
from the 17 included studies directly reported β-value estimated by linear-regression
modeling [45,50,58]. These were used as the effect sizes in the meta-analysis. The standard
error of β or b was not reported in several of the reviewed articles. In two studies, the
authors were contacted to obtain SE(β) for their study [54,62]. In other studies, SE(β)
was obtained from a confidence interval, or from a reported p-value or t-value of Wald’s
test statistic.
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Table 2. Reported effect sizes and computations applied to obtain the standardized regression
coefficient β with standard error SE(β) for each evaluated study. The numbers in columns refer to
sub-sections of Chapter 5 where detailed formulas are provided.

Reported Effect
Size

Obtaining β and SE(β)
Combining within

a Study
Estimating SD

Other
Computations

Ceponiene [52] b 5.3.3 5.4 5.6.4
Davis [44] r 5.2.2 5.4

Du [53] b 5.2.3 5.6.4 5.7.1
Ferreira [54] β 5.7.2 5.7.2

Freedman [55] r 5.2.2 5.5
Hao [56] b 5.2.5 5.7.3

Hosseinpanah
[57] b 5.2.5 5.6.4

Huynh [58] b 5.3.3 5.6.4
Johnson [59] b 5.3.3 5.4 and 5.5 5.6.2 5.7.1
Juonala [60] r 5.2.2 5.4
Khalil [46] b 5.3.3 5.6.4

Lee [61] b 5.3.2 5.4 5.6.4 5.7.3
Oren [47] b 5.3.3 5.6.4

Raitakari [43] b 5.2.3
Terzis [49] β 5.3.2
Wright [62] β 5.7.2 5.4 5.7.2

Yan [63] r 5.2.2 5.4

β = standardized regression coefficient, r = correlation coefficient, b = unstandardized regression coefficient,
SD = standard deviation of cIMT or BMI.

A total of six studies reported effect sizes separately for males and females and one
for age groups. Two studies analyzed data with repeated measurements where BMI was
measured more than once at different age phases on the same children. For these studies I
calculated composite effect sizes.

Standard deviations of BMI and cIMT were needed for the calculations of β and
SE(β). In most of the studies SD(BMI) was 1. SD(cIMT) was not available in several of
the evaluated articles. I applied the available data in eight articles to obtain the required
standard deviation.

Tables 3 and 4 show the estimated β effect sizes from the cohorts included in the
meta-analysis. The first analysis included the studies in which the age at the assessment of
BMI of the individuals was in childhood (Table 3, Figure 1, Childhood BMI). A 1 SD increase
in childhood BMI leads to an increase of 0.047 SD (95% CI = 0.019 to 0.074; p = 0.001) in
adult cIMT. Although statistically significant, this effect can be considered very small or
negligible. The pooled standard deviation of cIMT among all the individuals included in
this meta-analysis was 0.103. Using the Formula (8) of relationship between coefficients
b and β from Section 5.7.1, a 1 SD increase in childhood BMI leads to an increase in adult
cIMT by 0.047 × 0.103 = 0.005 mm (95% CI = 0.002 to 0.008 mm).

The second meta-analysis included studies where the individuals were in their ado-
lescence at the time of the assessment of BMI (Table 4, Figure 1, Adolescent BMI). A 1
SD increase in adolescent BMI leads to a 0.127 SD (95% CI = 0.080 to 0.175; p < 0.001) or
0.127 × 0.103 = 0.013 mm (95% CI = 0.008 to 0.018 mm) increase in adult cIMT. According to
this effect size, the relationship between the adolescent BMI and adult cIMT was small.
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Table 3. Observed standardized regression coefficient β with standard error SE(β) and 95% confidence
interval, sample size and weight in pooled analysis from seven studies estimating the relationship
between childhood BMI and adult cIMT.

β SE(β)
Lower

Limit of
95% CI

Upper
Limit of
95% CI

Sample
Size

Weight
(%)

Du 2018 0.054 0.024 0.007 0.101 1052 34.5
Freedman 2004 0.100 0.063 −0.023 0.223 246 5.0
Johnson 2014 0.029 0.031 −0.032 0.090 1273 20.7
Juonala 2006 0.056 0.030 −0.003 0.115 1078 22.1
Khalil 2013 0.047 0.040 −0.031 0.125 600 12.4
Wright 2001 −0.018 0.061 −0.138 0.102 274 5.3

Combined effect 0.047 0.014 0.019 0.074 4523

Table 4. Observed standardized regression coefficient β with standard error SE(β) and 95% confidence
interval, sample size and weight in pooled analysis from 15 studies estimating the relationship
between adolescent BMI and adult cIMT.

β SE(β)
Lower

Limit of
95% CI

Upper
Limit of
95% CI

Sample
Size

Weight
(%)

Ceponie 2015 0.085 0.046 −0.005 0.175 380 6.5
Davis 2001 0.138 0.036 0.067 0.209 725 7.2

Ferreira 2004 0.194 0.082 0.033 0.355 161 4.3
Freedman 2004 0.184 0.048 0.090 0.278 825 6.4

Hao 2018 0.243 0.025 0.194 0.292 496 7.8
Hosseinpanah 2021 0.184 0.036 0.113 0.255 1295 7.2

Huynh 2013 0.052 0.022 0.021 0.103 2328 8.0
Johnson 2014 0.033 0.033 −0.032 0.098 1273 7.3
Khalil 2013 0.047 0.040 −0.031 0.125 600 6.9

Lee 2006 0.189 0.059 0.073 .0305 256 5.7
Oren 2003 0.046 0.010 0.026 0.066 750 8.4

Raitakari 2003 0.090 0.030 0.031 0.149 1170 7.5
Terzis 2012 0.098 0.095 −0.088 0.284 106 3.7
Wright 2001 0.062 0.064 −0.063 0.187 242 5.4

Yan 2017 0.266 0.026 0.215 0.317 1252 7.7
Combined effect 0.127 0.024 0.080 0.175 11859

5. Detailed Description of Computations and Conversions

5.1. General

Often, evaluators confront the problem of different statistical methods and strategies
being used to analyze the relationship between the response and explanatory variables [1,5,7].
The studies address the same broad question, and the reviewers want to include them in
a meta-analysis. They need to convert the reported findings to a common index before they
can proceed. The results expressed as linear-regression coefficients, correlation coefficients
or mean differences can be re-expressed as standardized regression coefficients. This chap-
ter provides formulas and procedures for computing standardized regression coefficients
with standard errors from a variety of reported statistical data.

Studies vary in the usage of statistics to summarize the basic characteristics, sometimes
using medians rather than means and sometimes using standard errors, confidence inter-
vals, interquartile ranges and ranges to report variation. They also vary in the reporting
of linear-regression models, sometimes reporting unstandardized or standardized regres-
sion coefficients, standard errors, or confidence intervals for coefficients, sometimes only
p-values or models estimated in sub-groups. Inadequate data presentation and reporting
problems are common in scientific articles in the evaluated articles [5,64].
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In the literature review of the published meta-analysis using β as the effect size
(Section 3) and in my meta-analysis example (Section 4), I noticed that authors often
confuse the unstandardized b and the standardized β coefficients in the description of their
methods and in reported regression analysis tables. In addition, different symbols are used
for these statistics in textbooks and statistical software. In healthcare and medicine, you
can recognize a reporting error only if you are familiar both with the statistical methods
used and the field under study. Interpreting the clinical meaning of the finding should
reveal possible errors. For example, something is wrong if the article reports a standardized
regression coefficient of 4.187.

To perform a meta-analysis of continuous data using β as an effect-size index, re-
searchers seek values of β and SE(β) from these numbers. Software procedures for perform-
ing meta-analyses using generic inverse-variance weighted averages take input data in the
form of these estimates from each study [1,27].

When β and SE(β) are not directly available from the included article, procedures to
estimate them from other reported data can be used. These calculations and conversions
often require the standard deviation (SD) for response and explanatory variables. In several
evaluated articles these are not given. In those articles they can be approximated using
various methods depending on the data available in the article. In the following sections
I describe how to calculate the standardized regression coefficient effect-size measure β
and its standard error SE(β) in different research approaches and reporting styles of the
original studies.

5.2. Obtaining Standardized Regression Coefficients
5.2.1. Coefficient β Reported from a Linear-Regression Model

In an included article, when the standardized regression coefficient β for the explana-
tory variable is reported from the estimated linear-regression model, it can be used directly
as an effect size. An unadjusted or adjusted β can be selected depending on the purpose of
the meta-analysis. If the standard error of the β is not reported, then it should be calculated
from the other available information; see Section 5.3. Often models are estimated in sub-
groups, e.g., males and females separately. In these cases, effect sizes should be combined;
see Section 5.4.

5.2.2. Correlation Coefficient r Reported

A study may only report a regression coefficient between the outcome and explanatory
variables. In such a situation, the standardized regression coefficient is equal to the Pearson
correlation coefficient r between the variables. If the Spearman correlation coefficient is
reported, then it can used as an approximation of r and β. Basically, a Spearman coefficient
is a Pearson correlation coefficient calculated with the ranks of the values of each of the
two variables instead of their actual values. SE(β) can be obtained using the formula

SE(β) =
1− r2
√

n− 1
(1)

where r is the reported correlation coefficient and n is the sample size [1,7].

5.2.3. Unstandardized Regression Coefficient b Reported

If a study has estimated a simple linear regression Y = a + b X or multivariable linear-
regression model to report the regression coefficient b between response Y and explanatory
variable X, then the β-value can be obtained by applying the formula

β =
SD(X)

SD(Y)
b (2)

where SD(Y) is the standard deviation of response variable and SD(X) is the standard
deviation of the exposure measure used in the study [5,23]. When SD(X) or SD(Y) are not
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provided, the methods described in Section 5.6 can be used to calculate these statistics from
other available data.

The standard error for β is obtained as follows:

SE(β) =
SD(X)

SD(Y)
SE(b). (3)

5.2.4. Mean Values of Outcome Variable Reported between Two Exposure Groups

When mean values of the response variable are compared between two groups (low-
and high-exposure groups), the following statistics are usually given:

n1 = sample size in group 1 and n2 = sample size in group 2,
M1 = mean value of response Y in group 1 and M2 = mean value in group 2
SD1= standard deviation of Y in group 1 and SD2 standard deviation in group 2
SD(Y) = full sample standard deviation oy outcome variable Y.

Now
b = M1 −M2

and the standard deviation of the dichotomous variable X is

SD(X) =

√
n1 n2

(n1 + n2)
2

Using Equation (2) the standardized regression coefficient β can be obtained by apply-
ing the formula

β =

√
n1 n2

(n1 + n2)
2

b
SD(Y)

=

√
n1 n2

(n1 + n2)
2

(M1 −M2)

SD(Y)
.

When SD(Y) is not reported in the article, it can be calculated using the formula

SD(Y) =

√
(n1 − 1)SD2

1 + (n2 − 1)SD2
2 +

n1 n2
n1+n2

(M1 −M2 )
2

n1 + n2 − 1
.

From Formula (3) the standard error of β is given by

SE(β) =
SD(X)

SD(Y)
SE(b) =

√
n1 n2

(n1 + n2)
2

SE(b)
SD(Y)

.

SE(b) can be obtained from the confidence interval of b (=M1 −M2), or from the t-value
or p-value of the t-test statistic to test the hypothesis M1 −M2 = 0. If these are not given,
then the SE(b) can be estimated by

SE(b) = SE(M1 −M2) = SDpooled(Y)

√
1
n1

+
1
n2

,

where the statistic

SDpooled(Y) =

√
(n1 − 1)SD2

1 + (n2 − 1)SD2
2

n1 + n2 − 2
(4)

is usually known as the pooled standard deviation of the outcome variable Y.
An alternative method is to covert the mean difference effect-size statistic

d = (M1 −M2)/SDpooled(Y)

265



Biomedinformatics 2022, 2

to the regression coefficient r [1,5,7]. This approach is not derived from the general relation-
ship between b and β as described by Formula (2).

5.2.5. Mean Values of Outcome Variable Reported between More Than Two
Exposure Groups

In some articles, authors have categorized using cut-off values of the explanatory
variable X to more than two groups with different ordered exposure levels, e.g., low,
medium, high levels. Researchers have reported the mean response values by these groups
and used an analysis of variance to compare the statistical significance of the mean values
between these groups. A similar approach is to use dummy variables (indicator variables) in
multivariable linear-regression modeling to indicate the groups of categorized explanatory
levels and report the mean differences between these groups.

In the case of a categorized explanatory variable, a simple linear-regression line can
be used to estimate the β coefficient. In this approach, the group means of the outcome
variable Y are set as the dependent variable, and the selected values (contrasts) denoting the
levels of the explanatory variable X are the explanatory variable in the regression line [65].
Usually, values of 0, 1, 2, 3, . . . k are selected as contrast values when the explanatory
variable is categorized to k ordered groups. The β coefficient with SE(β) can be obtained
as follows:

β =
SD(contrast)

SD(Y)
bc

and

SE(β) =
SD(contrast)

SD(Y)
SE(bc),

where SD(contrast) is the standard deviation of the selected contrast values, SD(Y) is
standard deviation of the outcome variable Y, and bc is the regression slope (regression
coefficient of contrast values). This approach is also known as the linear trend test, and bc
can be interpreted as the effect size for the trend between the exposure categories.

5.3. Obtaining Standard Error of Regression Coefficient from t-Value, p-Value or
Confidence Interval

The standard error of the unstandardized (b) or standardized (β) regression coefficient
can be obtained from a model output (if reported), from a reported confidence interval,
from a t-statistic or a p-value to test the statistical significance of the coefficient or contacting
authors of the original article. In addition, in an unadjusted analysis, SE(β) can be obtained
by applying Formula (1) from Section 5.2.2 for the standard error of the Pearson correlation
coefficient r. I describe first how a t-statistic can be obtained from a p-value, then how SE
can be obtained from a t-statistic, and finally how a confidence interval can be used to
calculate SE. Meta-analysists may select the appropriate steps in this process according to
what results are available to them.

5.3.1. Standard Error from t-Value

The t-statistic tests the hypotheses that a regression coefficient (b or β) equals to 0.
The t-value is the ratio of the estimated regression coefficient to the standard error of
the coefficient, i.e., t = b/SE(b) or t = β/SE(β). Thus, the standard error of the regression
coefficient b and β can be obtained by applying the formulas

SE(b) =
∣∣∣∣ bt
∣∣∣∣

and

SE(β) =

∣∣∣∣ βt
∣∣∣∣

where t is the observed value of the t-test to test the null hypothesis H0: b = 0 (or β = 0).
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5.3.2. Standard Error from p-Value

When only actual p-values obtained from t-tests are quoted, the corresponding t-value
may be obtained from the t-distribution with n − k − 1 degrees of freedom, where n is
the sample size and k is the number of explanatory variables in the regression model [65].
Standard statistical programs include a function to calculate the corresponding t-value.
Difficulties are encountered when levels of significance are reported (such as p < 0.05 or
even NS (‘not significant’, which usually implies p > 0.05) rather than actual p-values. A
conservative approach would be to take the p-value at the upper limit (e.g., for p < 0.05 take
p = 0.05, for p < 0.01 take p = 0.01, and for p < 0.001 take p = 0.001). However, this is not a
solution for results that are reported as p = NS, or p > 0.05.

5.3.3. Standard Error from Confidence Interval

If a 95% confidence interval is available for b or β, then the standard error SE can be
calculated as:

SE = (upper limit− lower limit)/3.92 .

where upper limit and lower limit refer to the 95% confidence interval of the regression
coefficient. For 90% confidence intervals 3.92 should be replaced by 3.29, and for 99%
confidence intervals it should be replaced by 5.15.

5.4. Pooling Betas from Two or More Independent Sub-Groups

In this section I consider cases where studies report data for two sub-groups of par-
ticipants. For example, a study might report effect sizes separately for males and females.
The defining feature here is that the sub-groups are independent of each other, so that
each provides unique information. For this reason, it is possible to treat each sub-group as
though it were a separate study [1]. This is one option to include the reported data into the
meta-analysis. A second option is to compute a composite effect size for each study and
use this in the meta-analysis. I consider this option in the following.

Let:

β1 = standardized regression coefficient among females,
β2 = standardized regression coefficient among males,
SE(β1) = SE of β1,
SE(β2) = SE of β2,
W1 = 1/(SE(β1))2 weight for females,
W2 = 1/(SE(β2))2 weight for males.

The combined effect of βp and SE(βp) can be obtained as follows:

βp = (W1 β1 + W2 β2)/(W1 + W2)

SE
(

βp
)
=

√
1

W1 + W2
.

If the number of sub-groups is more than two, then the above formulas can be extended
to the situation of several independent groups [1].

5.5. Pooling Effect Sizes Measured in More Than One Time Point

Some studies may report findings where the outcome variable or the explanatory
variable was measured more than once at different time points on the same participants.
For example, in assessing the effect of BMI on cIMT, in one article BMI was measured at
ages 3 and 9 years for the same children, and the effect on cIMT was reported separately for
BMI at age 3 years and BMI at age 9 years. In another article, BMI was measured only at age
9 years, but cIMT was measured during adulthood twice, at ages 30 and 50 years. The effect
size β was reported separately for each adult age, but both measures were based on the
same members of the cohort. This study design is also known as repeated measurements.
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The effect sizes are not measured at independent groups but come from the same group of
children or adolescents. Measurements at different time points are positively correlated.
If the non-independent information is ignored in the combining of βs and their standard
errors, then this will underestimate the standard error of the summary effect [66]. The
procedure proposed by Bornstein et al. [1] can be used to combine the estimated βs across
age phases (time points). This approach allows one to address the problem of repeated
measurements, since the formula for the SE of combined effect sizes will take into account
the correlation among the repeated measurements.

Let βj refer to the standardized regression coefficient estimated at the j time point (age
phase), j = 1, 2, . . . , m. Thus, m represents the number of different time points. Let the
variance of coefficient βj be Vj = (SE(βj))2. The composite effect size βct and the variance
V(βct) = (SE(βct))2 can be computed as

βct =
1
m

(
m

∑
j=1

β j

)

and

V(βct) =

(
1
m

)2
(

m

∑
j=1

Vj + ∑
j �=k

(
rjk

√
Vj
√

Vk

))
, (5)

where rjk is the correlation between effect sizes βj and βk. Thus, the standard error of bct is

SE(βct) =
√

V(βct) .

If the variances Vj are all equal to V and the correlations are all equal to r, then
Formula (5) of V(βct) simplifies to

V(βct) =
1
m

V(1 + (m− 1)r).

The composite effect size of two correlated effect sizes (m = 2) is

βc2 =
1
2
(β1 + β2)

and variance
V(βc2) =

1
4

(
V1 + V2 + 2r

√
V1
√

V2

)
.

5.6. Estimating SD of Reponse and Explonatory Variables

To calculate β and SE(β) from b and SE(b) using Formulas (2) and (3), the full-sample
SD for Y and X are needed. Sometimes they are not available from the evaluated article.
However, for the standard deviations there is an approximate or direct algebraic relation-
ship with other measures of variation, so that it is possible to obtain the required statistic
even if it is not published in the article.

5.6.1. SD from Ranges

If minimum and maximum values of response variable are given, then they can be used
to estimate standard deviation. Ranges (maximum–minimum) are very unstable and, unlike
other measures of variation, increase when the sample size increases. They describe the
extremes of observed outcomes rather than the average variation. One common approach
has been to make use of the fact that, with normally distributed data, 95% of values will
lie within 2 SD of either side of the mean. The standard deviation SD may therefore
be estimated to be approximately one-quarter of the typical range of data values, i.e.,
(maximum- minimum)/4. This method may not work well in practice when the sample size
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is large (n > 70) [67,68]. To overcome this problem, the following improved range rule of
thumb is often used

SD(Y) =
(maximum−minimum)

6
.

Alternative methods have been proposed to estimate SDs from ranges [67–69].

5.6.2. SD from Interquartile Range

An interquartile range is defined as the difference between the upper quartile and lower
quartile (75th and 25th percentiles) of the analyzed variable. It describes where the central
50% of participants’ outcomes lie. When sample sizes are large and the distribution of the
outcome is similar to the normal distribution, the width of the interquartile range will be
approximately 1.35 SD. Thus

SD(Y) =
(upper quartile− lower quartile)

1.349
.

Wan and colleagues [68] provided a sample-size-dependent extension to the formula
for approximating the SD using the interquartile range.

5.6.3. SD from SE

If the standard error SE(Y) of the response variable Y is reported, then SD(Y) is given by

SD(Y) =
√

nSE(Y), (6)

where n is the sample size.
If SE(Y) is not given, then it can be estimated from the confidence interval for the mean

value of response Y. Then by (6)

SE(Y) =
√

n (upper limit− lower limit)
3.92

where upper limit and lower limit refer to the 95% confidence interval for the mean value
of Y.

5.6.4. Pooling Groups to Obtain SD

Sometimes it is necessary to combine two reported sub-groups into a single group to
obtain the full-sample SD of Y or X. For example, a study may report results separately for
men and women. The following formula can be used to combine standard deviations into
a full sample SD:

SD f ull sample =

√
(n1 − 1)SD2

1 + (n2 − 1)SD2
2 +

n1 n2
n1+n2

(M1 −M2 )
2

n1 + n2 − 1
(7)

where n1 and n2 are sample sizes, SD1 and SD2 are standard deviations, and M1 and M2
are mean values of groups 1 and 2.

Note that the rather complex-looking Formula (7) for the SD produces the SD of
outcome measurements as if the combined group had never been divided into two. This SD
is different from the usual pooled SD in (4) that is used to compute a confidence interval for
a mean difference or as the denominator in computing the standardized mean difference.
The pooled SD provides a within-sub-group SD rather than an SD for the combined group,
and thus provides an underestimate of the desired SD.

When there are more than two groups to combine, the simplest strategy is to apply the
above Formula (7) sequentially (i.e., combine Group 1 and Group 2 to create Group ‘1 + 2’,
then combine Group ‘1 + 2’ and Group 3 to create Group ‘1 + 2 + 3’, and so on).
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There are also other methods to estimate the full-sample standard deviation of a vari-
able when findings are reported only in sub-groups [70]. However, these more complex
calculation formulas need additional information that is not necessarily available.

5.7. Other Topics
5.7.1. Interpretation with the Unit of Measurement of the Outcome Variable

The results represented by the standardized coefficient β can also be expressed in terms
of the original measurement unit of the outcome variable. By Equation (2) the standardized
regression coefficient β represents how many standard deviation units the outcome variable
Y will change per a standard deviation increase in the explanatory variable X. If SD(X)
equals to one, then Equation (2) gives

b =
SD(Y)
SD(X)

β = SD(Y)β (8)

If we know the standard deviation of the outcome variable Y, then we can estimate how
much variable Y will change per one standard deviation change in the explanatory variable.
For example, in the previous chapter, the outcome variable was cIMT and the predictor
factor was childhood or adolescent BMI. A positive β-value equal to 0.08 demonstrates
that a one-standard-deviation increase in childhood BMI leads to a cIMT increase (in mm)
equal to the standard deviation SD(cIMT) of cIMT multiplied by 0.08. Further, if the pooled
SD of cIMT from all the included studies is 0.10 mm, then we obtain a cIMT increase (in
mm) of β SD(cIMT) = 0.08 × 0.10 mm = 0.008 mm per one-standard-deviation increase in
childhood BMI.

5.7.2. Log-Transformed Data

The standardized regression coefficient can be used as an effect-size index to pool both
raw and log-transformed outcomes (or explanatory variables). The standardized regression
coefficient does not estimate effects on the original scales of variables but refers to the
standard deviations of the variables.

When an original study involves an outcome variable with a skewed distribution, the
reported data can sometimes be a mixture of results presented on the raw scale and results
presented on the logarithmic scale [71]. A common approach to dealing with skewed
outcome data is to take a logarithmic transformation of each observation and to conduct
the regression modeling using log-transformed values. However, for ease of interpretation,
basic characteristics are often reported using the initial unit of measurement (raw scale).
When the estimated regression coefficient b and SE(b) are estimated for the log-transformed
variable (lnY), then we need SD(lnY) to calculate the standardized regression coefficient
(and SE) for the (lnY).

To obtain the approximate standard deviation of the outcome variable Y on the log-
transformed scale, the following formula can be used:

SD(lnY) =

√
ln(1 +

SD2
Y

M2
Y
) ,

where SDY is the reported standard deviation and MY is the mean value of variable Y [71].

5.7.3. Contacting Authors

Missing data and clarification about the statistics required for the meta-analysis could
be sought from the authors of the original studies. Although challenging, obtaining
additional data through author contacts can enable reviewers to synthesize data more
readily and completely. Authors of more recent studies are more likely to be located and
provide data compared to authors of older studies [72]. Contacting authors may be time-
consuming, not only for meta-analysists but also for the study authors. They need to locate
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the data before being able to provide the statistics. However, when needed, authors of
studies with missing or discrepant data should be contacted.

5.7.4. Imputing Missing Statistics

Missing SEs of the effect size or standard deviations of the main variables are a com-
mon feature of meta-analyses of continuous outcome data. When none of the methods
described in the previous sections allow the calculation of the SEs or SDs from the study
report (and the information is not available from the authors), then a meta-analysist may
be forced to impute (‘fill in’) the missing data if they are not to exclude the study from the
meta-analysis [73,74].

There are several obvious advantages to imputing the missing data compared to a meta-
analysis using only the studies with reported statistics. Imputing allows the inclusion of
more studies, thus reducing the overall standard error of the estimate of the effect size,
compared to using only studies reporting information [74]. The simplest imputation is to
borrow the missing value of a statistic from one or more other studies. If several candidate
SDs are available, reviewing researchers should decide whether to use their average, the
highest, a ‘reasonably high’ value, or some other strategy. Choosing a higher SD down-
weights a study and yields a wider confidence interval. Thus, choosing a higher SD will
bias the result towards a lack of effect.

6. Discussion

Many original studies addressing the same research question are relatively small and
differ in their statistical content for various reasons. It is important to have practicable
research methods to pool findings from different studies to quantify the relationships
between predictor variables and outcomes. This article summarizes the procedures of
applying the standardized regression coefficient β for the synthesis of an association
between a quantitative dependent variable and one focal explanatory factor when the
measurement methods and controlling of other potential covariates varies between the
reviewed studies. I described how it is possible to use β as a workable effect-size statistic
that can be applied to the research findings of interest. I applied this method in a systematic
review of studies to provide evidence for the relationship between childhood and adulthood
BMI and cIMT in adult life using effect sizes that were continuous variables.

6.1. Issues Regarding the Conduction of Standardized Regression Coefficient

There are issues in combining and analyzing the standardized regression coefficients.
These potential problems are related to the variation of the variables to be controlled,
multiple conversions of effect sizes and data presentation in the original studies. Riley
et al. [75] gives the following detailed list of challenges for the meta-analysis of multivari-
able findings:

(a) Different types of effect measures (e.g., correlation coefficients, regression coefficients,
risk ratios, odd ratios and mean differences), which are not necessarily comparable.

(b) Estimates without standard errors, which is a problem because meta-analysis methods
typically weight each study by their standard error.

(c) Estimates relating to various time points of the outcome occurrence or measurement.
(d) Different methods of measurement for explanatory variables and outcomes.
(e) Various sets of adjustment factors.
(f) Different approaches to handling continuous explanatory variables (e.g., categoriza-

tion, linear, non-linear trends, log-transforms), including the choice of cut point value
when dichotomizing continuous values into “high” and “normal” groups.

In addition, shortcomings in the reporting of the included publications makes meta-
analysis challenging.
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6.1.1. Different Adjusted Covariates

Several researchers have discussed the problem that the covariates in multiple re-
gression models can vary across studies [9,10,76,77]. In the original studies, multivariable
regression models have been used to estimate the independent effect of the main explana-
tory variable on a response variable when confounding factors are controlled. It is ideal,
but highly unlikely, that the estimated effect sizes from different studies are adjusted for the
same confounding factors (covariates) [75]. In the synthesis of standardized regression coef-
ficients, pooling the independent effects of the focal explanatory variable is still important
to obtain an estimate of the association between the explanatory and outcome variables. If
adjustment factors are omitted, then the observed effects could be too optimistic. Estimates
adjusted for a different set of covariates creates difficulty in interpreting meta-analysis
results. To overcome this issue, Riley et al. [75] recommended considering meta-analysis
only on those estimates that are adjusted for at least a predefined minimum core set of
established covariates. This core set of covariates for the outcome can be defined in consul-
tation with experts. In addition, separate meta-analyses could be performed for unadjusted
and adjusted prognostic effect estimates. Even when control variables and other predictors
differ between studies, the pooling of βs still provide useful information about the size
of the effect. Generally, meta-analysis results will be most interpretable, and therefore
useful, when a separate meta-analysis is undertaken for groups of “similar” prognostic
variables. However, it is evident that enhancements to the associated synthesis method-
ologies are urgently needed. Becker and Wu described existing methods of analysis and
presented a multivariate generalized least-squares approach to the synthesis of regression
coefficients [9]. Yoneoka and Henmi [78] extended this approach and proposed a synthesis
methodology for regression results under different covariate sets by using a generalized
least-squares method that includes bias-correction terms. However, the combination will
be exponentially complex as the number of covariates increases.

6.1.2. Several Transformations and Conversions

Converting reported effect sizes from estimated regression models to β coefficients
requires several transformations, and on some occasions, data imputation or manipulation
of the statistical information available in a report. Converting from a reported effect size to
a β coefficient may not go smoothly. The data conversion begins with the extraction of the
information from an original article. This can be frustrating if the article fails to report the
statistics required in the formulas for computing the β-values. In addition, understanding
the analysis approach and methods used in the original article may sometimes be difficult.

However, effect-size transformation provides an opportunity to make a study available
for meta-analysis. Data transformation facilitates the compatibility between studies with
same research question. The question of whether or not it is appropriate to combine effect
sizes from studies that used different statistical methods or metrics must be considered on
a case-by-case basis. It only makes sense to compute a summary effect from studies that
we assess to be comparable in a meaningful way. If it would be comfortable to combine
these studies if they had used the same method, then the fact that they used different
methods or metrics should not be an obstacle [1]. Although not without concerns, this
approach produces reasonably similar results from other methods [9]. The decision to
use these conversions is often better than the alternative, which is to simply omit studies
that happened to use an alternative measure effect size. This would involve the loss of
information, and possibly result in a biased sample of studies.

6.1.3. Insufficient Reported Data

One obstacle in conducting a meta-analysis is insufficiently reported data in evaluated
articles to compute effect-size estimates. Detailed descriptive statistics of the variables
under study are not given in all articles, and standard errors for regression coefficients are
not always available [5]. In some cases, the incomplete reporting of statistics in the studies
limits or prevents the use of these studies in the systematic review [4].
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The validity and practical utility of observational research critically depends on good
study design, appropriate analysis methods and high-quality reporting and data presen-
tation [79,80]. In reviewed studies, the reporting of observational findings often exhibits
serious shortcomings [80]. An efficient way to help readers to extract the necessary data is
to develop guidance documents of data presentation that are disseminated to the research
community at large. We need a much more structured framework in scientific reporting,
which emphasizes that today’s scientific evidence is based on the synthesis of studies re-
porting findings with similar effect-size indices [64]. Especially, the reporting of estimated
multivariable regression models needs attachments such as tables and figures reporting
descriptive statistics about the distributions of the response variables and explanatory
variables. This would help other researchers to utilize the results in their approaches to
summarize and meta-analyze the magnitude of the effects.

In the future, this issue could be even more pronounced with the application of
machine-learning methods. Machine-learning methods do not provide effect sizes (indices)
that can be combined or that are interpretable for clinicians.

6.2. Meta-Analysis of Association between BMI and cIMT

In the illustrative meta-analysis study, I aimed to provide evidence for the relationship
between childhood and adulthood BMI and cIMT in adult life using the β coefficient
as the effect-size index. This approach helped us to quantify the relationship. Findings
from my meta-analysis indicate that elevated childhood and adult BMI is associated with
only a modest increase in carotid intima-media thickness in adult life. Adolescent BMI
had a marginally stronger relation with adult cIMT than childhood BMI. In general, the
results are consistent with those of previous systematic reviews [30,50,51]. However, these
previous reviews used different approaches and different effect sizes that were not entirely
suitable for the research problem.

The quantification of the associations made in my study showed that these significant
effect sizes reflect only a modest increase in cIMT. These small increases in cIMT might be
difficult to equate to true clinical significance. One explanation for these small increases in
cIMT might be the younger age of most of the participants at the time of the evaluation of
cIMT. Longer follow-ups might be necessary to demonstrate the utility of these findings.

There were some limitations in this study. First, BMI is not an ideal measure of obesity
and caution must be used while interpreting these results. However, BMI remains to be the
most basic and the most commonly used tool for the assessment of obesity due to the ease
of measurement, the ease of interpretation of the results, and its low expense. While tests
like dual-energy X-ray absorptiometry, computed tomography and magnetic resonance
imaging are the gold standards for assessing regional obesity, their use is limited by their
high cost, lack of availability, and non-portable, required equipment for use in routine
clinical practice. In the presence of these constraints, BMI has remained a valuable tool
for the assessment of obesity in clinics, hospitals, and in large epidemiological studies.
Second, multiple transformations of effect sizes for some studies were needed to translate
them into one common effect size. A comparison of the effect sizes produced by different
statistical techniques is a challenge for readers and especially those wanting to carry out
a meta-analysis [Nieminen 2013]. However, it is often informative to translate the effect-size
results from the original studies to one effect-size index to reveal the pooled effects.

7. Conclusions

Statistical methods used in studies should not be the basis for the inclusion of the
studies in a meta-analysis. The same research question can be analyzed with different
statistical methods. Measurements methods, data transformations, descriptive statistics,
and statistical inference methods may vary between studies. In addition, authors may
focus on reporting in different ways. This reflects the reality when reviewing published
research articles and trying to summarize the findings from observational studies. The
proposed approach based on standardized regression coefficients provides a workable
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effect-size index that can be applied to the systematic review of diverse multivariable
studies with quantitative outcomes. I applied this method in a meta-analysis providing
evidence that BMI in childhood and adult have a minimal effect on adult cIMT. As the
observed effect sizes are very low, they are unlikely to correlate with clinically significant
differences. In addition, from the public-health point of view, the small effect sizes suggest
that the introduction of interventions to reduce obesity in childhood might not have a high
impact on the subsequent cIMT measurements in young-adult life.
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Abstract: Digital information storage capacity and biomedical technology advancements in recent
decades have stimulated the maturity and popularization of “big data” in medicine. The value of
utilizing big data as a diagnostic and prognostic tool has continued to rise given its potential to provide
accurate and insightful predictions of future health events and probable outcomes for individuals and
populations, which may aid early identification of disease and timely treatment interventions. Whilst
the implementation of big data methods for this purpose is more well-established in specialties such
as oncology, cardiology, ophthalmology, and dermatology, big data use in nephrology and specifically
chronic kidney disease (CKD) remains relatively novel at present. Nevertheless, increased efforts
in the application of big data in CKD have been observed over recent years, with aims to achieve
a more personalized approach to treatment for individuals and improved CKD screening strategies
for the general population. Considering recent developments, we provide a focused perspective on
the current state of big data and its application in CKD and nephrology, with hope that its ongoing
evolution and revolution will gradually identify more solutions to improve strategies for CKD
prevention and optimize the care of patients with CKD.

Keywords: big data; machine learning; nephrology; chronic kidney disease; prediction models;
outcomes; personalized medicine; primary prevention; treatment

In 1965, Gordon Moore described Moore’s law, which rightfully predicted the ex-
ponential growth of computational capacity. Subsequently, the cost of 1 MB of storage
has dropped from USD 1331 to less than USD 0.01 in the past 5 decades [1]. The drastic
improvement in digital information storage capacity over the past few decades has led
to a propagation in the size and number of available datasets. The result of these ad-
vancements is “big data”—colossal and complex data sets that are impossible to process
with traditional methods. Big data can be defined by the three Vs—volume, velocity, and
variety—initially described in 2001 by Doug Laney. Veracity and value were later added
on to form the ‘five Vs’ in describing big data. The value of big data does not simply
reside in its sheer volume, but rather from the analytical processes which can uncover and
explore hidden patterns and correlations, and provide better insight and accuracy in the
prediction of future events. Predicting potential trajectories in healthcare is imperative
as it will aid governing bodies to decide upon longstanding investments and implement
effective health policies.

Chronic Kidney Disease (CKD) is a progressive non-communicable disease that affects
>10% of the general population worldwide, with 843.6 million individuals being in CKD
stages 1–5 [2]. The Global Burden of Disease Studies show that CKD has surfaced as one of
the leading causes of worldwide mortality since 1990 [3], and that all-age mortality rate
related to CKD rose by 41.5% between 1990 and 2017. In that period, CKD also climbed in
rank among the leading causes of death, from 17th in 1990 to 12th in 2017 [4]. Based on
a study forecasting life expectancy, Kyle et al.’s model predicted that by 2040, deaths related
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to CKD diagnosis will rise to 2.2 million per year in a best-case scenario and even further
to 4 million in the worst-case scenario [5]. The cost involved in the care for CKD patients is
getting higher—many patients have other comorbidities that necessitate multidisciplinary
team care, risk of medical complications that require hospitalisation, and the potential
need for dialysis when they reach end-stage kidney disease, which drives up the cost
significantly. In the United States alone, the spending for Medicare beneficiaries with
kidney disease by 2015 was close to USD 100 billion [6]. Given the immense cost of looking
after CKD patients, it is therefore not surprising that there is a huge variation between
disability-adjusted life years (DALYs) caused by CKD, more so in countries which are in
the lower socio-demographic index quintiles [7].

In comparison to kidney disease, the use of big data in medicine has been more
well-established for conditions such as skin cancer and diabetic retinopathy, where over
hundreds of thousands of clinical images are fed into data-driven models which are then
used for the classification and detection of the aforementioned conditions based on deep
convolutional neural networks [8,9]. Another example of big data analysis being success-
fully utilized is in cardiology, with Loghmanpour et al. [10] demonstrating the superiority
of the Bayesian network—a graphical model that is ideal for predicting probable rela-
tionships between two events—against the pre-existing traditional risk prediction model
in predicting right ventricular failure following left ventricular assist device therapy. In
oncology, Jang et al. [11] have also built an extensive clinical and genomic information
system from several public databases that aim to aid clinicians in improving diagnostic
decision-making, risk assessment, and providing targeted and precise treatment. However,
a review of PubMed citations over the previous 2 decades still demonstrates that nephrol-
ogy is lagging behind other specialties in terms of big data research [12]. In an analysis by
Joshi et al. [13], radiology and cardiology were shown to be two of the specialties which
showed a drastic increase in the numbers of United States Food and Drug Administration
(FDA)-approved machine learning medical devices in the past decade, with the former
taking up to 75% of the total amount. Interestingly, there were no nephrology-related
machine learning medical devices listed on the FDA website at the time this review was
written [14].

There have been increased efforts in the application of big data in CKD (Table 1).
Having the ability to predict patient outcomes is essential to achieve targeted preventive
medicine. Using traditional regression models based on large cohort studies, Tangri
et al. [15] were able to formulate an equation to predict the progression of CKD patients
towards end-stage kidney disease. A machine learning algorithm was developed by
Ravizza et al. [16] to predict and quantify the risk of CKD progression using real-world
data, demonstrating similar or even better predictive accuracy compared to using clinical
trial data. Sandokii et al. [17] and Inaguma et al. [18] also replicated successful studies in
using machine learning algorithms to identify risk factors and variables in AKI and CKD
progression, respectively. A prediction model for end-stage renal disease in primary IgA
nephropathy with a 91% success rate was developed by Schena et al. [19]. By applying
deep learning techniques to a large data set of 703,872 patients, Tomasev et al. [20] were
able to generate a model which had 90.2% accuracy in predicting AKIs requiring dialysis
within 90 days.

Inaguma et al. [18] also replicated a similar machine learning algorithm to predict
the risk factors for CKD progression. The examples above would not have been possible
without pre-existing epidemiological big data. Epidemiological big datasets can come
from national registries, surveillance programmes, and electronic health records. For
example, the United States Renal Data System (USRDS) is a national surveillance system
that compiles and evaluates demographic and clinical information for patients diagnosed
with CKD [21]. Similar surveillance projects have also been replicated in Ireland and
Canada, which are useful for identifying and describing the prevalence of CKD and
improving the care for CKD patients [22,23]. The China Kidney Disease Network (CK-NET)
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is set up to integrate and analyse data from China’s national database, covering 39 million
inpatient electronic records [24].

Developments in biomedical technology over recent years have led to a decrease in
the costs of performing high throughput sequencing—also known as next-generation se-
quencing (NGS)—as well as other biomedical technologies in parallel. This has stimulated
an abundance of research efforts focusing on genome-wide association studies (GWAS) and
other omics data, such as proteomics (quantification of protein), metabolomics (quantifica-
tion of metabolites), and transcriptomics (measurement of RNA transcripts), just to name
a few. In nephrology, these multi-omics studies paved the way to building “biobanks”, such
as that of NEPTUNE (Nephrotic Syndrome STudy Network), ERCB (European Renal cDNA
Bank), EURenOmics, C-PROBE (Clinical Phenotyping and Resource Biobank), PKU-IgAN,
TRIDENT (for diabetic nephropathy), CureGN (for glomerulopathies), the National Insti-
tute of Diabetes and Digestive and Kidney Diseases (NIDDK), and the Kidney Precision
Medicine Project (KPMP) [12,25,26]. When combined with machine learning methods, they
can provide clinicians with a deeper understanding of the complexity of molecular events
and the pathogenesis of kidney diseases and thus lead to the development of a more precise
treatment strategy [12,25,26].

The use of electronic notes and images coupled with artificial intelligence technology
has been considered in nephrology research. This has resulted in the design of algorithms
that could detect risk factors and identify different stages of CKD from electronic health
records [27]. By feeding a convolutional neural network (CNN) with virtual slides of biopsy
samples obtained from the Academia and Industry Collaboration for Digital Pathology
(AIDPATH) kidney database, Pedraza et al. [28] were also able to demonstrate the en-
couraging application of artificial intelligence technology at a histopathological level, in
which the algorithm they developed was able to achieve a level of accuracy up to 99.5% in
differentiating between glomerular and non-glomerular samples. A deep learning frame-
work that could analyse and grade digitized kidney biopsies for fibrosis was generated
by using deidentified whole slide images obtained from the Kidney Precision Medicine
Project (KPMP) [29].

Table 1. Completed and ongoing research studies relating to the application of big data in chronic
kidney disease.

Research Study
(Author(s), Journal, Country of Publication, Year of

Publication if Specific Details Available)
Summary of Findings and Conclusions

Tangri et al. [15], JAMA, Canada, 2011

• Development and validation of prediction models
included 3449 patients and 4942 patients, respectively,
from 2 independent Canadian cohorts

• A model using routine lab tests can accurately predict the
risk of kidney failure in chronic kidney disease patients

Ravizza et al. [16], Nature Medicine, Switzerland, 2019

• Data from 417,912 individual electronic health records
were used for the study

• Predictive analytic algorithms taught using real world data
were shown to be equivalent, if not more accurate, than
those taught using clinical trial data

Inaguma et al. [18], PLoS One, Japan, 2020

• Machine-learning-based model included 118,584 patients
obtained from an electronic medical records system

• Increased urine tendency was found to be a risk factor for
rapid decline in kidney function
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Table 1. Cont.

Research Study
(Author(s), Journal, Country of Publication, Year of

Publication if Specific Details Available)
Summary of Findings and Conclusions

Pedraza et al. [28], Medical Image Understanding and Analysis,
2017

• Digital/virtual slides were obtained from the AIDPATH
(Academia and Industry Collaboration for Digital
Pathology) kidney database—a compilation of kidney
tissue cohorts from institutions and labs around Europe

• Accuracy of convolutional neural networks was observed
at 99.95% in differentiating glomerular and
non-glomerular samples

Shang et al. [27], NPJ Digital Medicine, United States, 2021

• An algorithm with a 95% positive predictive value in
identifying CKD cases in Electronic Health Records (EHR)

• The algorithm was validated in EHR from more than
5 institutions and over 1.3 million patients from the
Columbia Clinical Data Warehouse

NEPTUNE (Nephrotic Syndrome STudy Network)
United States, study due for completion in 2024

• Established to collect long-term observational data with
corresponding biological specimens from 1200 patients
with nephrotic syndrome across 44 separate institutions in
North America

ERCB (European Renal cDNA Bank) database study
Germany, ongoing

• A consortium of more than 2600 anonymized kidney
biopsies with matching genomic analysis developed from
the collaboration of multiple kidney research centres
across Europe

EURenOmics database
Germany, 2012–2017

Multiple Publications
Refer to https://eurenomics.eu/publications/index.html,

accessed on 1 February 2023.

• A consortium built with data from more than
15,000 patients to study the pathogenesis of rare
nephropathies and to explore new treatment therapies

C-PROBE (Clinical Phenotyping and Resource Biobank)
United States, study due for completion in 2025

• Prospective observational study aiming to collect clinical
phenotyping of up to 1600 kidney disease patients,
laboratory, and histopathology samples

TRIDENT (Transformative Research in diabetic nephropathy)
United States, study due for completion in 2023

• Prospective observational study aiming to collect
laboratory and histopathology samples combined with
high-throughput genomic analysis for patients with
diabetic nephropathy

CureGN database study
United States and Europe, ongoing

• A multi-centre international consortium of both children
and adults with glomerular disease aiming to identify and
understand epidemiology, genetics, biomarkers, and
patient-related outcomes

Ultimately, potential applications of big data and big data analysis in nephrology
are promising, but various limitations and challenges remain. It would make sense that
with more information, we would be able to identify previously unrecognized patterns,
though this may also provide misleading concepts between causality and correlation. A lot
of primary kidney diseases are rare diseases, and the lack of data can sometimes limit
the development of accurate prediction models. A relatively smaller funding budget for
nephrology research in general compared to other medical specialties has been observed
historically, with less clinical trials being conducted in nephrology compared to specialties
such as cardiology [30,31]. This may be a hindering factor for the application of big data
and big data analysis in nephrology, given a considerable number of clinical trials exclude
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patients with CKD as well [32]. It is encouraging that greater efforts have been made by
international nephrology societies (e.g., the International Society of Nephrology Advancing
Clinical Trials Group) to address these issues over recent years, with initiatives to garner
increased industry funding, government support, and patient participation. Another key
issue with big data, not only limited to nephrology, is that of ‘veracity’—which is the
reliability of the collected data—as large retrospective cohort data can suffer from biases,
and the data from clinical trials is sometimes not representative of what occurs within
the real world [33]. In the current climate where patient privacy is considered invaluable
for patients, families, and the clinical team, restrictions and regulations surrounding the
collection of health data from wearables, implantable devices, and smartphones remains
an issue that needs to be overcome. Protecting patient confidentiality is of the utmost
importance and not to be disregarded.

In summary, it appears that the utility of big data in CKD and nephrology research,
and integration in clinical practice, is undergoing an evolutionary phase, albeit at a slower
pace when compared to other conditions and specialties. The revolutionary aspect of
this should take place at an operator level where the users of big data—data scientists,
statisticians, health informatics experts, and clinicians—need to gain the skills and direction
to effectively translate the findings from big data analysis into clinical practice. At a global
health level, we will also need to continuously brainstorm strategies on how best to combine
information from big data acquired across various demographics, and search for optimal
pathways in utilizing information from big data analysis to prevent CKD and improve
CKD outcomes for individuals and populations.
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