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Special Issue on Ultrasonic Modeling for Non-Destructive
Testing

Michel Darmon

Université Paris-Saclay, CEA, List, F-91120 Palaiseau, France; michel.darmon@cea.fr

1. Introduction

This Special Issue of Applied Sciences focuses on advancing modeling methods for
the ultrasonic Non-destructive Testing (NDT) of materials. Ultrasonic techniques are
employed for non-destructive purposes to evaluate the properties and damage states of
structures devised for numerous applications (engineering, building materials, medicine,
etc.). The advantages and inconveniences of ultrasonic testing compared to other NDT
methods have been widely reviewed [1]. The coexistence of all the different NDT methods
can allow the inspection of different kinds of structures and damages [2]. The scope of
this Special Issue ranges from ultrasonic wave techniques for classical non-destructive
evaluation, the structural health and condition monitoring of structures, existing or novel
methods for imaging, ultrasonic characterization, non-linear acoustics, acoustic emission,
laser ultrasonics, additive manufacturing, medical applications, and sensors, to, signal and
noise analysis.

The current Special Issue notably aims to explore advances in ultrasonic modeling
methods for understanding or predicting NDT inspections. Different authors present novel
achievements in the understanding and modeling of ultrasonic waves for NDT applications.
High-quality research and review papers on theoretical, practical, and validation aspects
were accepted, leading to a collection of 20 published papers. These are briefly reviewed
here, classified into different topics. A brief overview of the main developments in the field
is recalled in each topic.

2. The Feasibility of Using Innovative NDT Methods on Complex and Various Materials

Ultrasonic NDT methods can investigate different kinds of material properties (me-
chanical, chemical, physical, biological, etc.) with various physical states/compositions
(e.g., solid, liquid, heterogeneous [3], inhomogeneous, complex, and moving media). Ultra-
sonic NDT is broadly used on metals, plastics, composites and ceramics. Ultrasonic testing
has even been used on wooden elements using tomography or acoustic emission [4] and
fabrics [5].

In this Special Issue, the first paper from Malla, Mehrabi et al. reviews the efficiency
of two classical NDT techniques in detecting embedded FRP Reinforcements: Ground-
Penetrating Radar (GPR) and Phased Array Ultrasonic (PAU). GPR can detect GFRP
(Glass–Fiber Reinforced Plastic) bars/strands and CFRP (Carbon–FRP) strands to some
extent, with a detectability potential increasing with the emission center frequency, whereas
PAU can only identify GFRP and CFRP strands.

Liu and Lacidogna proposed a non-destructive method based on the Southwell proce-
dure that considers the temperature effect to evaluate the critical load, critical thickness, and
service life of internally corroded shells under external pressure. The technique appears
more practical than other methods, and its accuracy suits engineering applications.

It is also important to efficiently evaluate the repair of industrial structures. Feng
and Ferri Aliabadi demonstrated the utility of using embedded PZT transducers to detect
damage along the bond line and on the surface of a composite repair patch. The fabrication
of the PZT sensors was validated using electro-mechanical impedance results.

Appl. Sci. 2024, 14, 2008. https://doi.org/10.3390/app14052008 https://www.mdpi.com/journal/applsci1
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Noise reduction in experimental data acquired with an ultrasonic system is also
challenging. Burrascano et al. used the Hammerstein model identification technique based
on swept sine excitation signals to model nonlinear systems. The robustness of the model
parameter estimation in the presence of measured noise was evaluated, and a technical
solution to moderate the noise effects and improve the model parameters estimation
was proposed.

3. Acoustic/Elastic Bulk Waves Propagation and Scattering

The main principles of elastic or ultrasonic wave propagation and scattering in solids
can be found in several classical textbooks [6–9]. Simulating an NDT measurement gen-
erally requires modeling the propagation and scattering of ultrasonic waves from tar-
gets/flaws/damage/interfaces [10]. Developed simulation tools may rely on different
mathematical/physical theories or assumptions; for instance, semi-analytical, numerical,
and hybrid models [11] may be used for direct simulation and model benchmarking to
ensure their confidence level [12,13].

Van der Neut et al. developed a theory to obtain the Green function in a lossless layered
isotropic elastic medium from two-sided data. To that aim, they introduced an alternative
Marchenko equation and two other equations using both reflection and transmission data.

Since the ultrasonic wave propagation field can be seen as spatio-temporal data,
Gantala and Balasubramaniam developed two different spatio-temporal deep learning
(SDL) models that simulate forward and reflected ultrasonic wave propagation in 2D. The
training was ensured by using data obtained from finite element simulations.

In order to simulate the ultrasonic inspection of embedded cracks in 3D configurations,
an experimental and theoretical comparison of 3D models was performed by Darmon,
Toullelan and Dorval: they notably compared the analytical Physical Theory of Diffraction
to a hybrid method in terms of flaw scattering. Based on the spectral finite element method,
the hybrid method can provide a finer prediction in configurations involving small flaws
or head waves (first arrival waves [14] of a complex nature that are complicated to simulate
analytically [15,16]).

For NDT applications, ultrasonic wave generation can involve physics other than
piezoelectricity. In the framework of photoacoustics, Hou, Glorieux, Marsh et al. numeri-
cally investigated the efficiency of laser-excited ultrasounds (surface and bulk elastic waves)
using phased arrays by comparing a finite element method to k-wave simulations and by
varying the array characteristics.

The simulation of the scattering of waves from obstacles in fluids also remains a
significant issue [17]; it requires first- modeling ultrasonic wave propagation in fluids [18].
Schmelt and Twiefel extended the spec-radiation method based on acoustic holography to
consider propagation in multiple fluid layers. This technique was experimentally validated
on a wooden particleboard assumed to behave as a fluid.

Nagaso, Moysan et al. developed a high-performance ultrasonic simulation tool for
inhomogeneous moving fluids. The CFD simulation of a real experiment of liquid metal jet
mixing was performed, and the moving fluid’s temperature (varying in time) served as the
input toa spectral finite element model for wave propagation. The authors showed that an
ultrasonic transmission measurement system can monitor the principal flow fluctuation.

4. Lamb Waves in Plates

Guided waves are increasingly employed for structural health monitoring [19] due
to their ability to propagate over long distances. It has, notably, a wide spectrum of
applications for different materials such as rails or composites [20] for aviation aircraft.

Davey, Assier, and Abrahams proposed a semi-analytical model to asymptotically
derive the reflection of Lamb waves in a semi-infinite elastic waveguide. Their method
deals with singularity at traction-free elastic corners with an internal angle greater than
π by adding into the Lamb mode expansion newly considered corner modes that satisfy
boundary and radiation conditions.

2



Appl. Sci. 2024, 14, 2008

Kazys and Žukauskas proposed to employ ultrasonic linear air-coupled arrays that
are electronically readjusted to optimally excite and receive A0 and S0 guided wave modes
in thin plastic films. The feasibility of such a measurement was evaluated through 2D and
3D guided waves simulations with a single transducer and a linear phased array.

Singh, Bentahar, El Guerjouma et al. modelled the scattering of an incident A0
guided wave mode from an impacted damaged zone (conical-shaped geometry with
decayed elastic stiffness properties) in a quasi-isotropic composite plate. The simulation
was experimentally validated by comparing the scattering directivity, and it enabled the
geometrical characterization of the impact.

Capineri, Bulletti, and Marino-Merlo analyzed errors in the impact location by varying
the number of piezoelectric sensors from four to eight and using the S0 mode in an alu-
minum plate. A good compromise between the number of sensors and the error in impact
localization was obtained with six sensors.

5. Imaging for Medical and Engineering Applications

Inversion theory and artificial intelligence (AI) are growing research domains for imag-
ing/localizing damage. Imaging techniques can classically employ array transducers [21]
for applications in the NDT of materials.

Ultrasonic imaging is also crucial for medical applications [22]. Zhang et al. pro-
posed a new technique to image the human thorax’s acoustic velocity distribution using
ultrasound travel time tomography. A forward model employed shortest-path ray tracing,
and the supervised descent method was applied to a training set, leading to successful
numerical experiments.

Vallee, Chaix et al. investigated the application of the topological energy method to
leaky Lamb waves. To validate the method, measurements were carried out on a single
immersed plate, successively considering—the plate edge and a notch as defects. The two
kinds of flaws were precisely localized using the proposed imaging method.

To design automatic tools for crack characterization, Fradkin, Darmon et al. proposed
a code including a signal-processing module based on a modified total focusing method and
AI modules, leading to a crack characterization report (size, localization, and orientation).
It has been promisingly tested on two similar datasets, including planar notches, both
embedded and surface-breaking.

Xu et al. designed an ice-coupled ultrasonic tomography to image flaws in complex-
shaped parts. Ice-coupling allows for a reduction in the acoustic impedance mismatch,
as compared to the immersion method. Applying the k-space pseudo spectral method,
full matrix capture, and a frequency-domain full waveform inversion (FWI) based on
the L-BFGS method, the ice-coupled ultrasonic FWI technique demonstrated a promising
ability to detect several kinds of flaws in complex parts.
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Abstract: Fiber-Reinforced Polymer (FRP) bars/strands are the most promising alternative to their
steel counterparts for reinforcing concrete elements due to their resistance to corrosion, lighter weight,
higher strength and better durability. However, very limited research has been conducted in relation
to non-destructive testing (NDT) methods that are applicable to damage detection in FRP bars or
the detection of FRP reinforcements embedded in concrete. The ability to assess the condition of
the relatively new and unique FRP reinforcements will increase the confidence of the construction
industry in their use as a reliable substitute for steel reinforcements. This paper investigates the
ability of two of the most commonly used NDT methods, Ground Penetrating Radar (GPR) and
Phased Array Ultrasonic (PAU), in detecting FRP bars/strands embedded in concrete elements. GPR
and PAU tests were performed on two slab specimens reinforced with GFRP (Glass-FRP) bars, the
most commonly used FRP bar, with variations in their depth, size and configuration, and a slab
specimen with different types of available FRP reinforcements. The results show that GPR devices
can detect GFRP bars/strands and CFRP (Carbon-FRP) strands to some extent, and their detectability
increases with the increase in their antenna center frequency. On the contrary, PAU is only capable
of detecting GFRP and CFRP strands. The results of this paper also emphasize the need for further
research and developments related to NDT applications to embedded FRP bars.

Keywords: fiber-reinforced polymer (FRP); ground penetrating radar (GPR); ultrasonic testing (UT);
phased array ultrasonic (PAU); non-destructive testing (NDT); reinforced concrete

1. Introduction

Corrosion of steel reinforcement is one of the main problems in traditional concrete
structures, which severely affect its safety and serviceability. Several corrosion protec-
tion measures, including but not limited to cathodic protection, epoxy-coated bars and
galvanized steel reinforcements have been implemented in the past; however, they have
only managed to delay corrosion rather than eradicating it [1]. The most promising al-
ternatives available that could entirely stop the process of corrosion within concrete is
the use of fiber-reinforced polymer (FRP) bars/strands [2–6]. Depending upon the types
of reinforcing fibers used, the FRP bars/strands can be classified as GFRP (Glass-FRP),
CFPR (Carbon-FRP), BFRP (Basalt-FRP) and AFRP (Aramid-FRP) bars, respectively for
glass, carbon, basalt and aramid fibers. The FRP bars are resistant to all the elements that
leads to corrosion in steel reinforced concrete (RC) structures, such as reduction of pH of
the concrete from carbonation, chloride contamination of the concrete and diffusion of
halides and chemicals [7,8]. The use of FRP bars for reinforcing new structures is even
more preferable because they also have 1.5–2 times higher tensile strength than their steel
counterparts [9–11]. In addition, although the initial cost of FRP bars is higher than that

Appl. Sci. 2023, 13, 4399. https://doi.org/10.3390/app13074399 https://www.mdpi.com/journal/applsci5
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of the conventional steel bars, their life cycle cost analysis indicates that it can be quite
economical in the long term [12]. Given these circumstances, the embedded FRP bar is
gradually becoming a trusted material in civil engineering.

To ensure construction quality and continued structural reliability, the necessity for
innovative non-destructive testing (NDT) methods or research on the feasibility of existing
NDTs becomes more apparent with the rise in use of unique structural materials such as
FRP bars. Although higher durability and performance are associated with the FRP bars
in some respects when compared to steel, concerns still remain regarding damages and
defects in this material, many of them rather unique, such as debonding, delamination and
aging from UV exposure. It is equally important to understand the damages and defects
associated with the use of FRP bars as it is for other structural materials. Further, it is even
more crucial to identify the signs of possible failure of structures reinforced with FRP bars
at the earliest because they are not as ductile as conventional constructions [13] and do not
display any exterior warnings of damage until they break [14].

However, there has only been minimal or non-existing work carried out for assess-
ment of FRP embedded within concrete. The only available comprehensive guide for the
inspection of FRP application in civil engineering is the NCHRP report 564 [15], which is
limited to the inspection of FRP bridge decks. Currently, there is no guide or manual for the
inspection of FRP-reinforced concrete elements [16,17]. This is in most part because of the
lack of research on non-destructive testing and inspection of such elements. Most FRP bars
are undetectable or have low detectability and therefore cannot be effectively located in
the inspection, which makes detection of their damages difficult. The use of FRP material
in highway construction has increased consistently [18–21], but the lack of methods for
condition assessment of FRP-RC has noticeably dampened the proliferation of FRP use.
Bridge owners are not comfortable with products that cannot be detected properly and
whose condition cannot be effectively assessed for maintenance purposes. Hence, there is a
strong need for research on the means and methods of condition assessment of FRP-RC,
the availability of which will have exponential effects in increasing the use of FRP in future
constructions. The main objective of this paper is to determine the feasibility of the most
common NDT methods in detecting embedded FRP bars/strands, which would act as an
initial step for propelling future studies on the nondestructive testing of FRP bars/strands.

Many NDT techniques, such as visual inspection (VT) [9,22], tap testing
(TT) [23–27], impact echo testing (IE) [28–32], microwave testing (MW) [33–38], ground
penetrating radar (GPR) [39–47], ultrasonic testing (UT) or phased array ultrasonic testing
(PAU) [48–55], infrared thermography testing (IR) [56–64], acoustic emission testing
(AE) [65–68], laser testing (LT) [69–75], radiographic testing (RT) [76–81], global structural
response testing [82–87], etc., have been studied for detecting damages in the externally
applied FRP composites. However, the inspection of FRP-reinforced concrete members
are limited to detection of debonding between internal FRP bars and concrete [88,89] or
initiation of breakage in FRP [14,90] rather than the detection of the bars themselves. Hence,
among several available NDTs, this paper aims to determine the feasibility of using com-
mercially available GPR and PAU for detecting embedded FRP bars in concrete as they
are the most common methods in the NDT practice for steel RC elements [16,91,92]. In
2019, Drobiec et al. confirmed that GPR and PAU have limited detectability of non-metallic
reinforcement (FRP reinforcements), but they had only conducted tests on the fiber meshes
of FRPs [93]. However, this paper will further explore the potential of these devices in
detecting the FRP bars and strands used in FRP-reinforced concrete. The results of this
study show that lower frequency GPR devices are able to detect larger FRP bars/strands at
shallower depths with improvements in their detectability with the use of higher antenna
center frequency devices. The results also indicate that PAU devices are only effective for
detecting GFRP and CFRP prestressing strands.
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2. Materials and Methods

In order to determine whether GPR and PAU can detect internal FRP reinforcement,
small-scale concrete slabs were fabricated. Two slab specimens (i.e., labeled as J and L)
were 30 in. wide by 30 in. long and 7 in. deep, and the third specimen (viz. Slab C) was
36 in. wide by 36 in. long and 5 in. deep. The concrete mix used to cast the slab specimens
was the ‘Class II 4500 Bridgedeck’ concrete, as per the Florida Department of Transportation
(FDOT). This class specified a guaranteed compressive strength of 4600 psi (31 MPa). Type
II Cement was used with a water to cementitious material ratio (w/m) of 0.44, and #57 stone
and silica sand was used as coarse and fine aggregate, respectively. To obtain the actual
strength value; concrete cylinders were tested at 28 days according to ASTM C39 [94,95].
An average compressive strength of 31.70 MPa was obtained with a standard deviation of
0.69 MPa (coefficient of variation of 2.2%).

The slab specimens were fabricated, targeting different parameters such as FRP
bars/strands type (GFRP, CFRP, BFRP), bar diameter, bar direction and bar depths. Table 1
shows the identification of the slab specimens by group, highlighting their main param-
eters. Because GFRP bars are the most commonly used FRP reinforcement in concrete
elements, the first two slabs constructed (Slabs C and J) were only reinforced with GFRP
bars of different sizes, at different depths and different configuration (bars in one direction
and bars in two orthogonal directions, i.e., mesh). The concrete cover specified by ACI
CODE-440.11-22 [96] for the concrete members reinforced with GFPR bars ranges from
0.75 in. to 3 in., hence the depth variations in the slab specimens were included to represent
the layers of FRP reinforcement, which could be anywhere within the concrete cover range
specified. Further, the third slab (Slab L) has different types of internal reinforcement
(bars and strands) embedded into it, including one steel bar whose detectability acts as a
control for this research. Having GFRP, CFRP, BFRP and steel bars/strands on the same
slab specimen allows comparison of the detectability of different FRP bar/stands with the
steel bar under the same test conditions.

Table 1. Identification of small-scale concrete slab specimens.

Specimen Group Slab ID Bar Diameter No. of Bars

Slabs with GFRP bars in one
direction Slab C #4 and #6 6

Slabs with GFRP bars in two
directions (mesh) Slab J #6 10

Slab with different FRP bars in
one direction Slab L #3, #5, #8 GFRP bars, #5 CFRP strand, #3

steel bar, #6 GFRP strand, #3, #5 BFRP bars 9

All specimens were fabricated and labeled following the same layout as shown in
Figure 1. Every slab is identified with a letter (C, J and L), and every side has an identifi-
cation number (from 1 to 4). The direction of the measurement will be determined by the
number where the measurement is started to the end of the measurement.

Figure 1. Labeling of slab specimens.
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Table 2 shows the details and dimensions of the specimens. For each specimen,
the distance to edge, depth to surface, bar diameter, bar material and slab depth are
presented based on the convention shown in Figure 1. The formwork for each slab specimen
constructed is shown in Figure 2.

Table 2. Reinforcement/Dimension details of detectability slab specimens.

Slab
ID

Parameter
[Symbol/Units]

Reference
Side

Bar 1 Bar 2 Bar 3 Bar 4 Bar 5 Bar 6 Bar 7 Bar 8 Bar 9 Bar 10

C

Distance to edge
reference (L/in.)

3

3 9 15 21 27 33

Depth to surface (C/in.) 0.75 0.75 1.5 1.5 3 3

Diameter of bar (F/in.) #4 #6 #4 #6 #4 #6

Material of bar (T) Glass

Depth of slab (h/in.) 5.0

J

Distance to edge
reference (L/in.)

3

3.3 8.6 14.5 20.2 25.4

(Bottom mesh)
Depth to surface (C/in.) 3.3 3.3 3.6 3.5 3.8

Diameter of bar (F/in.) #6

Material of bar (T) Glass

Depth of slab (h/in.) 7.0

Distance to edge
reference (L/in.)

1 (Top Mesh)

3.3 8.6 14.5 20.2 25.4

Depth to surface (C/in.) 2.6 2.6 2.9 2.8 3.1

Diameter of bar (F/in.) #6

Material of bar (T) Glass

Depth of slab (h/in.] 7.0

L

Distance to edge
reference (L/in.)

3

4.3 7.1 10.3 13.1 16.4 18.8 21.6 24.8 27.6

Depth to surface (C/in.) 4.2 3.3 3.6 3.9 3.9 4.0 3.8 4.1 4.0

Diameter of bar (F/in.) #3 #8 #5 #5 #5 #3 #6 #3 #5

Material of bar (T) Glass C-Std * Steel G-Std * Basalt

Depth of slab (h/in.) 7.0

* C-Std. (i.e., CFRP strands) and G-Std (i.e., GFRP strands) are labelled as Bar 5 and Bar 7 in Slab L.

2.1. GPR Tests

Ground penetrating radar (GPR) is a non-destructive testing (NDT) method that is
used to the analyze internal characteristics of structures or elements in real-time. It works
on the principle that electromagnetic waves reflect back when they encounter an interface
between two materials with different dielectric constants [31,39]. GPR functions by emitting
electromagnetic waves (in the form of radio waves) through the test material and then
detecting the waves that bounce back off any discontinuities within the material. These
discontinuities can take various forms, including interfaces between different materials,
such as the concrete-bar interface shown in Figure 3 or the concrete-air/water interfaces
(subsurface defects like voids, cracks, debonding and delamination) [97]. Due to the limited
research on the use of GPR for FRP-reinforced structures, this method has not yet been able
to establish itself as a reliable NDT method. This paper will explore the possibility of using
GPR for FRP bar detection.

In this study, the GPR tests were conducted both as individual line scans along
a straight line and as grid scans over a test area. The line scans were conducted as a
reconnaissance survey or preliminary inspection prior to the detailed grid/area scan to
form a quick idea of what to expect inside the structure, the orientation of reinforcement
or other subsurface features, and the depth of exploration. The GPR line scans conducted
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along a straight line on the surface of the test specimen were used to obtain its cross-section
image through a plane normal to the surface along the direction of the scan. However,
going back and forth between several line scans and interpretating each line scan was time
consuming and labor intensive. Thus, in order to simplify the interpretation of results,
grid scans were also conducted over the surface of the test specimens. Grid scans were
performed simply by taking GPR data along the straight lines of a grid over an area covering
the test specimen, as shown in Figure 4. The grid required for a grid scan was arranged
using a grid mat secured to the surface so that it did not move while taking the GPR data.

 

 

(a) (b) 

 

 

(c) (d) 
 

Figure 2. FRP bars in different slabs: (a,b) Slab C, (c) Slab J, (d) Slab L.
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Figure 3. Reflection of incident wave at concrete–bar interface [98].

 
9  8  7    6   5  4  3  2  

Figure 4. GPR grid scan test setup for Slab L.

The spacing between each scan in the grid were set as 2 in. for this study. The spacing
between the individual lines in the grid determines the resolution of the data collected
and it is termed as grid resolution. The lower the spacing between each line scans in a
grid, the higher the resolution of the data collected. Hence, the images will be clearer,
and it would be easier to interpret the data. Apart from using closely spaced grid lines, a
higher GPR frequency can also be used to increase the resolution. The depth of penetration
and the resolution of a GPR depends upon the frequency of the pulse transmitted into
the material. Lower frequencies allow deeper penetration with lower resolution, whereas
higher frequencies allow detection of small defects (higher resolution) but localized within a
shallower depth [31,93,99,100]. Four different GPR systems with different center frequency
ranges were used in this experiment to determine the effect of GPR frequency on the bar
detectability, as shown in Table 3 and Figure 5. The data acquired from grid scans were
used to give the cross-section image of the test specimen through the plane parallel to the
surface of the specimen along its depth. The cross-sectional image along the depth of the
specimen is termed as a depth slice or time slice image.

Table 3. Technical specifications of the GPR systems used [101–104].

GPR Systems Center Frequency Radar Technology Depth Range Manufacturer

Conquest 100
Enhanced 1000 MHz Monostatic GPR antenna 24 in.

(60 cm)
Sensors and Software,

Canada

C-Thrue radar 2000 MHz Dual polarization antenna for
multi-level detection

31.5 in.
(80 cm) IDS GeoRadar, Italy
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Table 3. Cont.

GPR Systems Center Frequency Radar Technology Depth Range Manufacturer

Proceq GP8800 400–6000 MHz Stepped-frequency
continuous-wave (SFCW) GPR

25.6 in.
(65 cm)

Screening Eagle
Technologies, Switzerland

Proceq GP8000 200–4000 MHz Stepped-frequency
continuous-wave (SFCW) GPR

31.5 in.
(80 cm)

Screening Eagle
Technologies, Switzerland

  
(a) (b) 

  
(c) (d) 

Figure 5. GPR systems used: (a) Conquest 100 Enhanced, (b) C-Thrue radar [105], (c) Proceq
GP8800 [106], (d) Proceq GP8000 [107].

2.2. PAU Tests

Ultrasonic testing (UT) operates on the principle that the incident ultrasonic waves
generated by ultrasonic transducers (which transform electrical or optical signals into
ultrasonic waves and vice versa) will be reflected back when they encounter an interface
between two materials with different acoustic impedances. A phased array ultrasonic
(PAU) is an advancement over the UT technology that can be achieved when several of
these transducers are arranged together into an array and operated at slightly different
times (either electrically or physically) so that the individual waves interact both positively
and negatively, allowing beam focusing and beam steering, as shown in Figure 6 [108]. The
advantages of PAU in comparison to conventional UT include a 5 to 10 times faster scanning
rate, better images due to multiple angles and frequencies, which require less interpretation,
higher resolution, capability of beam focusing, reliability, portability and mobility [109,110].
Unlike conventional UT, PAU testing allows signal focusing at desired locations and angles,
which is advantageous for the testing of composite materials that have an anisotropic
structure, creating challenges in signal evaluation [53,111]. However, PAU is a relatively
new technique compared to the traditional NDTs, and hence the limitations of portable
units of PAU include the uncertainty in its application as it has yet to be completely proven.

Line scan using PAU was performed by moving the array of ultrasonic transducers
in a sideways direction along the desired line of inspection, as shown in Figure 7. Each
scan at individual positions is stitched together to give one continuous line scan, which
is the cross-sectional image through a plane normal to the surface along the direction of
the scan. Similarly, the area scan using PAU was conducted as a stripe scan. The stripe
scan was performed by positioning the array of ultrasonic transducers perpendicular to the
desired line of inspection and then taking scans while moving forward with desired spacing
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between the consecutive scans, as shown in Figure 7. Each individual scan collected during
stripe scan is simply a line scan having a width of measurement equal to that of the PAU
device or the array of transducers. These individual scans along the line of inspection are
stitched together to give a time slice or depth slice view, which can be further processed
into a full 3D iso-surface representation. The depth slice view is simply the cross-section
image parallel to the surface scanned.

 
Figure 6. Phased array with angled wavefront [112].

  
(a) (b) 

30” 

9 8 7 6 5 4 3 2

Figure 7. PAU test setup: (a) Line scan, (b) Stripe scan.

Two different PAU systems were used in this experiment to determine their FRP
bar detection capability, as shown in Table 4 and Figure 8. The MIRA 3D device had
64 ultrasonic transducers located in a 16 × 4 grid at 3 cm spacing (extended 16 rows of
4 transducers each) where the Pundit Live Array Pro had 24 ultrasonic transducers located
in an 8 × 3 grid at 3 cm spacing (8 rows of 3 transducers each).

  
(a) (b) 

Figure 8. PAU systems used: (a) A1040 MIRA 3D (two devices were attached side by side to increase
the number of channels to 16 rows of 4 transducers each) [115], (b) Pundit live array pro.
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Table 4. Technical specifications of the PAU systems used [113–115].

PAU
Systems

Number of Channels Technology Transducer Bandwidth Depth Range Manufacturer

A1040 MIRA 3D 8 × 4 (extendable to
16 × 4, 24 × 4, etc.)

Multi-channel
ultrasonic pulse
echo tomograph

Active dry point
contact (A-DPC)

transducers
10–100 KHz 6.5 ft

(2 m)
ACS-Solutions

GmbH, Germany

Pundit live array
pro

8 × 3 (with upgrade
option to 16 × 3)

Phased array
ultrasonic pulse

echo

Dry-contact
Pundit Array

transducer
15–100 KHz 6.6 ft

(2 m)

Screening Eagle
Technologies,
Switzerland

3. Results

3.1. GPR Tests Results

GPR response or line views traversing perpendicular to bars embedded in each slab
specimens obtained using a 1 GHz GPR device are shown in Figure 9, where the top of the
hyperbolic shape, i.e., inverted U shape, indicates the location of the bar and the shape of
the tails gives a measure of velocity and depth [116]. The background subtraction filter
was used to enhance the hyperbolas from embedded FRP bars. Without the application
of this filter, the top of the hyperbola of the shallow targets (FRP bars close to the top
surface) would have been obscured by the direct wave band that appears at the top surface.
However, using the filter also removed the horizontal band indicating the bottom surface
of the slab, but because the main objective of this research was to detect the FRP bars, the
detection of the bottom surface was deemed not important. Only the line scans conducted
at the centerline of the slabs using the lowest frequency GPR device has been presented in
this paper for the brevity of the results as it would represent the lowest resolution among
the GPR devices used in this study. Further, it should be noted that in order to confirm that
the hyperbolas detected were indeed the FRP bars, but not other internal features (such as
voids), several line scans were performed and checked for repetition of the same pattern of
hyperbolas in each line scan (which indicates the presence of a continuous internal target
such as a reinforcement bar). For Slab C with GFRP bars in one direction, bars at up to
a depth of 1.5 inch were detectable. For Slab J with GFRP bars in two directions (mesh),
the hyperbolas for the bars on both the top and bottom mesh were detectable. The bars
near the edge were shadowed by the hyperbola due to the edge of the slab, which could
have been avoided by leaving an offset from the edge for taking the measurements. The
GPR line scan of Slab L was able to detect carbon strand (Bar 5), steel bar (Bar 6) and GFRP
strand (Bar 7), along with the larger diameter #8 GFRP bar (Bar 2). However, it was not
able to detect other glass (Bars 1, 3, 4) and basalt (Bars 8, 9) bars. The bar detectability of
the line scans conducted using lower frequency device is further summarized in Table 5.

Table 5. Bar detectability in line scans performed using Conquest 100 Enhanced.

Slab ID Bar 1 Bar 2 Bar 3 Bar 4 Bar 5 Bar 6 Bar 7 Bar 8 Bar 9 Bar 10

C � � � � X X - - - -

J � � � � � X � � � �
L X � X X � � � X X -

Note: �= detectable, X = not detectable.

The depth slices obtained for each slab specimen using each GPR device are further
illustrated in Figure 10, where it can be seen that the bar detectability improves as the device
central frequency increases. Although the line scan in Figure 9a shows four hyperbolas
for Bars 1–4, the depth slice in Figure 10a only shows the presence of Bar 2, which is the
larger GFRP bar (#6 GFRP bar) at shallower depth in Slab C. This could be because of
the limitations in vertical resolution due to a lower frequency of the GPR device. Larger
GFRP bars are detectable using lower frequency GPR device at shallower depth, but they
return weaker hyperbolas in comparison to metallic objects. Moreover, the relatively higher
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amplitude of shallower GFRP bars may have dominated and masked the lower amplitude
returns from the GFRP bar that are deeper and smaller in diameter, which could be the
reason only Bar 2 was visible in Figure 10a. However, the depth slices in Figure 10b,c,
obtained using higher frequency GPR devices, are capable of detecting a smaller diameter
bar, even at deeper depths.

 
(a) 

1 2 3 4 6” 

1 4 

 
(b) 

 
(c) 

7 8 9 10 
5 4 3 2 1 

Perpendicular to top mesh Perpendicular to bottom mesh 

6” 

1 2 3 4 

6” 

7 6 5 2 

3 4 

6” 

Figure 9. Line scan results of Conquest 100 Enhanced for different slab specimens: (a) Slab C, (b) Slab
J, (c) Slab L.

In the case of depth slices for Slab J with a top and bottom mesh of GFRP bars, all the
GPR devices could clearly detect the top mesh of #6 GFRP bars at a shallower depth, while
the bottom mesh was only visible for the higher frequency GPRs, as shown in Figure 10d–f.
The inability of lower frequency GPR to show the bottom mesh could be due to the same
reason for not showing deeper GFRP bars in Slab C, as explained previously. In addition to
the higher center frequency of the 2 GHz GPR device, its dual polarization feature further
permits detection on both first and second levels of bars, whereas for the GPR device with
maximum center frequency of 4 GHz and 6 GHz, the ability to detect the bottom mesh is
solely due to the higher resolution, which it can afford because of its higher frequency.

The line scan of Slab L shows that Bar 2 (#8 GFRP bar) is visible as a faded hyperbola
in addition to distinctive hyperbolas of Bars 5, 6 and 7. But again, Bar 2 is not visible in the
depth slice in Figure 10g because GFRP bars return weaker hyperbolas in comparison to
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steel bars (Bar 6) and the high amplitude steel bar dominates and hides the lower amplitude
returns from the GFRP bar. In Figure 10g–i, it can be seen that the strongest detection is
that of the steel bar (Bar 6), followed by the carbon strand (Bar 5) and GFRP strand (Bar 7).
Carbon strands, in addition to having cavities from the twisting shape of exterior wires that
are filled (or not filled) with concrete, they are also electrically conductive, which could
be the reason they are distinctively visible, and the GFRP strands are visible only because
of the cavities within the GFRP twisting wires. Apart from Bars 2, 5, 6 and 7, the higher
frequency GPR was also able to capture other bars, as shown in Figure 10i.

1 GHz  
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0.2 to 6 GHz 
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Figure 10. Depth slices: (a) Slab C using Conquest 100 Enhanced, (b) Slab C using C-Thrue, (c) Slab
C using Proceq GP8800, (d) Slab J using Conquest 100 Enhanced, (e) Slab J using C-Thrue, (f) Slab J
using Proceq GP8800, (g) Slab L using Conquest 100 Enhanced, (h) Slab L using C-Thrue, (i) Slab L
using Proceq GP8000.
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3.2. PAU Tests Results

The results of line scans and the area scans obtained from the PAU testing on each slab
specimen using MIRA 3D and Pundit Live Array Pro devices are shown in Figure 11. It
can be seen that PAU could not detect bars in Slab C and Slab J. However, it was able to
detect carbon strands, steel bars and GFRP strands in Slab L. As ultrasonic testing and PAU
is very sensitive in detecting the presence of (air) voids, their ability for detecting CFRP
and GFRP strands could be attributed to the presence of (air) voids within the twisted FRP
cables of these strands.

Pundit Live Array Pro MIRA 3D 

 

 

(a) (b) 

 

 

(c) (d) 

Bottom surface 

GFRP bars undetectable 

Bottom surface 

GFRP bars undetectable 

 

 

(e) (f) 

5 
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6 6 

5 
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Bottom surface 

Figure 11. PAU test results: (a) Slab C line scan using Pundit, (b) Slab C area scan using MIRA 3D,
(c) Slab J line scan using Pundit, (d) Slab J area scan using MIRA 3D, (e) Slab L line scan and stripe
scan using Pundit, (f) Slab L area scan using MIRA 3D.
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4. Discussion

The GFRP bars that dominate the embedded concrete reinforcement application are
not conductive and have a density similar to concrete. Therefore, the conventional NDT
methods that use electromagnetic and stress waves for the detection of steel bars fail to
detect GFRP bars with the same clarity as steel. As explained earlier in Sections 2.1 and 2.2,
the GPR and PAU devices work on the basis of differences in dielectric constant and acoustic
impedance encountered at an interface. The reflection coefficient of the electromagnetic
wave (for GPR tests) and ultrasonic waves (for PAU tests) passing through concrete when
they encounter air (bottom surface), steel bar and GFRP bars are shown in Table 6. It can
be seen that the concrete–GFRP interface reflection coefficient, i.e., the amount of reflected
energy, is less than 8% for GPR tests and has a very minimal value of 0.04% for PAU tests,
which is the reason why GPR had limited detectability of GFRP bars and PAU was not
able to detect them at all. The dielectric constants and acoustic impedances for average
concrete, air and steel used in Table 6 were obtained from the literature [116–118]. From the
specifications chart provided by the manufacturer of the GFRP bar, the dielectric constant
was determined to be a value of less than 5, and the acoustic impedance was estimated to
be 10.7 × 106 kg/m2 s (from the equation Z =

√
E.ρ, where E = 54.5 GPa is the modulus of

elasticity and ρ = 2.1 g/cm3 is the density of the GFRP bar).

Table 6. Reflection coefficients for GPR and PAU tests.

Interface

Relative Dielectric Constant or
Permittivity, ε

GPR
Reflection

Coefficient, R

Acoustic Impedance
(106 kg/m2 s), Z

PAU Reflection
Coefficient, R

ε1 ε2

√
ε1 −√

ε2√
ε1 +

√
ε2

Z1 Z2
(Z2 − Z1)

2

(Z2 + Z1)
2

Concrete-Air 7 1 45% 9.6 0.000429 99%

Concrete-Steel 7 ∞ 100% 9.6 46.5 43%

Concrete-GFRP 7 <5 <8% 9.6 10.7 0.30%

However, the depth slices of GPR tests obtained using four different devices with
different antenna center frequency demonstrated that the detection of FRP bars becomes
better with the increase in frequency, as shown in Table 7. Apart from the frequencies
playing the major role in the detection of FRP bars, different detectability levels could also
be due to several other factors related to the radar technologies being used in each of the
GPR devices. For example, the 2 GHz GPR device also had a dual polarization feature that
enhances the detection of multilevel bars. The maximum frequency GPR devices used in
this study also had a Stepped Frequency Continuous Wave (SFCW) system. This provides
both the benefits of higher resolution in the detection of shallow targets and the increase in
penetration depth. Moreover, there were some disparities in the results of the line scans
and the grid scans for the lower frequency GPR device as the bars visible in the line scan
were not visible in the depth slices. This could be due to the fact that the depth slices are
produced through the interpolation of a series of line scans, and it would show the bars
with stronger signals, i.e., stronger hyperbola more dominantly in comparison to the bars
with relatively weaker hyperbola. Thus, although it is time consuming, it is recommended
to go through each line scan of a grid while analyzing the results for GPR tests. On the
other hand, it was found that PAU can only detect FRP strands, which could be due to the
presence of (air) voids within the twisted wires of FRP or irregularity of the shape of their
surface in comparison with smooth bars.
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Table 7. Bar detectability in depth slices performed using devices with different center frequency.

Slab ID
Center

Frequency
Bar 1 Bar 2 Bar 3 Bar 4 Bar 5 Bar 6 Bar 7 Bar 8 Bar 9 Bar 10

C

1 GHz X � X X X X - - - -

2 GHz � � � � � � - - - -

0.2 to 6 GHz � � � � � � - - - -

J

1 GHz � � � � � X X X X X

2 GHz � � � � � � � � � �
0.2 to 6 GHz � � � � � � � � � �

L

1 GHz X X X X � � � X X -

2 GHz X � X X � � � X X -

0.2 to 6 GHz � � � � � � � � � -

Note: �= detectable, X = not detectable.

5. Summary and Conclusions

The objective of this research was to determine the feasibility of using commercially
available NDT methods such as GPR and PAU in detecting FRP bars embedded in concrete.
These two NDT methods were tested over several parameters, such as FRP type, bar diam-
eter, bar direction, and bar depths to determine their limitations and detection capabilities.
Detecting the FRP bars embedded in concrete is the first obstacle to be overcome before
being able to detect damages for ensuring their structural safety. Thus, the long-term
objective of this study is to promote the research on NDT methods applicable to embedded
FRP bars, which could help in proliferating their use in the construction industry.

In conclusion, the results of this study show that NDT methods that rely on electro-
magnetic waves such as Ground Penetrating Radar (GPR) become less effective, if not
obsolete for non-metallic/non-conductive embedded bars. However, with the increase in
center frequency of the GPR device, the detectability of FRP bars can be fairly improved.
Similarly, other NDT methods such as Ultrasonic Testing (UT) or Phased Array Ultrasonic
(PAU) that are based on stress waves have some capability for detecting steel reinforcement,
but they perform poorly for the detection of the most commonly used FRP embedded bars
(GFRP bars) but are good for detecting FRP strands.

However, there are some limitations related to the research conducted in this paper,
which can be further explored and incorporated in the future studies related to NDT
methods for the inspection of FRP-reinforced concrete elements. The scope of this study
was limited to the real time test results obtained from post processing tools embedded
within the devices using GPR and PAU, which were originally tuned for the detection of
steel bars in traditional reinforced concrete elements. The detectability of the FRP bars
embedded in concrete can be further verified by the use of advanced post processing
algorithms such as SAFT (synthetic aperture focusing technique) or FMC/TFM (full matrix
capture/total focusing method) in a follow up future study. Similarly, this study is limited
to only three specimens with limited variation in depth of bars up to 3 in., which can
be overcome in future studies by either conducting experimental verification on several
specimens or by conducting numerical simulation analysis with adequate test parameters
to collect more data for a statistically sound validation.
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Featured Application: This work can be potentially valuable to be used as a reference for existing

estimating methods based on NDT.

Abstract: A pressurized spherical shell that is continuously corroded will likely buckle and lose
its stability. There are many analytical and numerical methods to study this problem (critical load,
critical thickness, and service life), but the friendliness (operability) in engineering test applications
is still not ideal. Therefore, in this paper, we propose a new non-destructive method by combining
the Southwell non-destructive procedure with the stable analysis method of corroded spherical thin
shells. When used carefully, it can estimate the critical load (critical thickness) and service life of
these thin shells. Furthermore, its procedure proved to be more practical than existing methods; it
can be easily mastered, applied, and generalized in most engineering tests. When used properly, its
accuracy is acceptable in the field of engineering estimations. In the context of the high demand for
non-destructive analysis in industry, it may be of sufficient potential value to be used as a reference
for existing estimating methods based on NDT data.

Keywords: pressurized spherical shell; corrosion; non-destructive method; critical load; critical
thickness; service life; NDT data

1. Introduction

Due to the increasing use of shell-type structures in spacecrafts, submarines, buildings,
and storage tanks, there has been a corresponding increase in the interest of researchers and
practical engineers in the stability of shells. Hemispherical shells are the most important
structural element in engineering applications because they can resist higher pure internal
pressure loads than any other geometric vessel with the same wall thickness and radius.

In practice, most pressure vessels experience external loads due to hydrostatic pressure
or external shocks-. Therefore, they should be designed to withstand the worst load
combinations without failure. Loads transmitted by cylindrical rigid actuators applied on
top of the sphere are considered common external loads. Therefore, it is important to study
its effect on the initial buckling behaviour of such shells. Meanwhile, corrosion is defined
as the gradual destruction of a material due to chemical reactions within the environment.
The most common type of corrosion is uniform corrosion or general corrosion, which is
distributed almost uniformly over the entire exposed surface. General wear can occur
both with the formation of a fully protective ultra-thin coating of corrosion products and
without an oxide layer. The formation of a blocking passivation film, as well as changes in
the concentration of one or the other reactants, may inhibit when the corrosion rate should
decay exponentially (decline) with time [1–3].
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On the other hand, as with other types of damage (e.g., [4]), corrosion can be enhanced
by the applied load [5]. Experimental data suggests that there is a stress corrosion threshold,
after which mechanical stress accelerates corrosion [5–7]. In this case, the stress changes due
to the reduction in shell thickness, and the changed stress in turn enhances the corrosion
process. In general, for the strength analysis of structural elements under mechano-chemical
corrosion conditions, an initial boundary value problem with unknown evolutionary
boundaries must be solved.

In addition to stress, there are many other effects that can affect the corrosion rate,
such as temperature; it has a great influence on the rate of galvanic corrosion of metals. In
the case of neutral-solution corrosion (oxygen depolarization), elevated temperature has a
favourable effect on the overpotential and oxygen diffusion rate for oxygen depolarization
but leads to a decrease in oxygen solubility. When corrosion (hydrogen depolarization)
occurs in acidic media (such as sea water), the corrosion rate increases exponentially
with increasing temperature due to the reduced hydrogen evolution overpotential. An
Arrhenius-type experimental dependence was observed between corrosion rate and tem-
perature [8]. The effect of temperature on acid corrosion, most commonly in hydrochloric
and sulfuric acid, has been the subject of extensive research [9–22]. In hydrochloric acid,
the effective activation energies for corrosion processes vary from 57.7 to 87.8 kJ mol/L,
where most are concentrated around 60.7 kJ mol/L. In some cases, studies were performed
at only three temperature values using a single experimental method, which increased the
likelihood of erroneous determination of the corrosion activation energy. In this regard,
further research is advisable, as it may provide a reliable comparative basis for discussing
the obtained results.

In summary, we know that temperature has a great influence on corrosion rate, corro-
sion and stress can interact with each other, and finally, they can jointly affect the stability
of the shell. In this regard, we should explore the relationships of temperature, corrosion,
and stress to shell stability. Experimental [23], analytical [24–28], and numerical meth-
ods [29–31] were used to study the buckling of (uniformly compressed hemispherical of
moderate thickness) metal shells using corrosion and temperature. A related study [28]
also demonstrated the high accuracy of these methods. However, in practical engineering
applications, they often lack operability and are less friendly to workers.

Non-destructive estimation methods, such as in the field of pressure vessels, have
been a research hotspot due to their advantages of simple operation, widespread use,
and low cost. As one of the non-destructive methods, the non-destructive approach of
Southwell’s column analysis is now extended to spherical shells, which are subjected
to uniform external pressure [32]. However, there are few non-destructive methods for
estimating the buckling of pressure spherical shells of this type. The paper [33] established
a non-destructive estimation method for a spherical shell under external pressure that
can predict its critical load. It is based on an exact first-order solution of the critical stress
and requires two assumptions: one is that the thickness of the shell does not change; and
the second is that the temperature does not affect the critical buckling of the shell. In any
case, when the shell is in a corrosive environment, the thickness of the shell varies and
the effect of temperature on both the stress and the corrosion rate is unavoidable. No
non-destructive method has been found as of yet to predict the critical loads (stresses) of
the shell under this condition, including the service life. Therefore, in the industry, people
still hope to obtain a new lossless method. This method can predict the critical load (or
stress) and critical thickness of the shell under external pressure from corrosion on the basis
of a higher-order (second-order) exact solution. At the same time, we are also oriented to
predict its useful (remaining) life. For this reason, in this paper, we will analytically extend
the Southwell process method for the non-destructive prediction of critical loads, critical
stresses, and service life of hemispherical shells subjected to uniform external pressure
considering corrosion and ambient temperature through rigorous mathematical derivation.
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2. Problem Description

A model of a spherical shell is considered. It is affected by the external pressure po, and
its inner surface undergoes mechano-chemical corrosion, as shown in Figure 1. Assuming
that the rate of internal corrosion is vo, the corrosion process causes the thickness h of the
shell to change with time t. We adopt the effective stress definition to characterize stress
here, which is commonly used when corrosion is present.

Figure 1. A spherical shell subjected to both external pressure and internal corrosion.

The problem in this paper is to predict (estimate) the critical thickness, critical stress,
and service life of the spherical shell based on non-destructive testing data in a temperature
and corrosive environment. This is essentially a non-destructive estimation problem
involving variable boundary conditions. For clarity, we describe this complex and combined
problem in two steps.

2.1. Before All, It Is Necessary to Solve the Estimation of the Critical Thickness, Critical Stress, and
Service Life of the Shell Based on NDT Data in a Non-Corrosion and
Temperature-Independent Environment

It involves two sub-problems. First, theoretically, we need to obtain the second-
order buckling critical stress for the spherical shell model (see Appendix A), which is the
accurate solution. Then, based on the format of this second-order solution, a test data-based
estimation method for the shell critical stress will be established by introducing an existing
non-destructive method (see [33]).

The mathematical problem involved in obtaining the second-order buckling critical
stress is related to the solution of the following Equations (1)–(4):

dNx

dθ
+
(

Nx − Ny
)
cot θ − Qx + Ny

(
u
R
+

dw
Rdθ

)
− Qx

(
d2w
Rdθ2 +

w
R

)
= 0, (1)

dQx

dθ
+ Qxcot θ + Nx + Ny + pR + Nx

(
d2w
Rdθ2 +

du
Rdθ

)
+ Ny

(
u
R
+

dw
Rdθ

)
cot θ = 0, (2)

dMx

dθ
+
(

Mx − My
)

cot θ − QxR + My

(
u
R
+

dw
Rdθ

)
= 0, (3)

σ =
pR
2h0

(4)

where u is the displacement of the shell element in x direction, v is the displacement in y
direction, w is the displacement in z direction, t0 is the shell thickness, pcr is the classical

26



Appl. Sci. 2023, 13, 4172

buckling pressure, Nx, Ny are the resultant forces, Qx, Qy are the shear forces, Mx, My are
the bending moments, and θ, ψ are the angles of the shell element.

When introducing the non-destructive method, the corresponding mathematical prob-
lem involved is how to express the relationship between non-destructively measurable
quantities (such as: w and w/p at any point on the outer surface of the shell) as an equation
of a straight line. The physical quantity to be estimated (e.g., the critical load pcr of the
shell) needs to appear exactly in the expression of the line slope. Assuming that we can
obtain this equation line by non-destructive testing in the elastic stage, the quantity to be
estimated can be obtained immediately. For example, let us take Equation (12) in which the

equation slope is p2
cr

Em3Δ2 . Then suppose we get the slope by testing and drawing; therefore,
the only unknown quality in it, pcr, can be expressed (obtained) by the slope easily.

Moreover, the assumptions within this non-destructive method are that the shell
deformation is axisymmetric and the compression in the shell is uniform. At the same time,
it does not assume the specific location of buckling and the number of buckling waves, as
shown in Figure 2.

Figure 2. The non-destructive method does not assume the exact location of spherical shell buckling
(e.g., the point M or N) and the number of buckling waves.

2.2. Then, on the Basis of the Previous Step 2.1, We Can Further Solve the Problem of Critical Load
(Stress) and Service Life in an Environment Where Corrosion and Temperature Coexist

The mathematical problem that needs to be solved is similar to that in Section 2.1, but
an extra equation (corrosion kinetic equation) needs to be taken into consideration—the
relationships between the corrosion rate (that is, the derivative of thickness), temperature,
and stress:

dh
dt

= − f (σ, T)
dh
dt

= − f (σ, T) (5)

here, for f (σ, T) we adopt:

f (σ, t) = v0 exp(
Vσ

RTg
) (6)

where h is the thickness of the shell, t is the corrosion time, v0 is the initial corrosion rate,
σ is the stress, T is the temperature, Rg is the molar gas constant, and V is the material
molar volume.
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It is noted that the derivation process of Equation (6) is shown in Appendix B, where
we found that the relationship between corrosion rate and temperature conforms to the
Arrhenius type [5]. Meanwhile, it should be observed that according to the physical
definition of shell buckling, the critical thickness in the case described in this section will
be identical to its expression obtained in Section 2.1.

3. Problem Solving

In order to solve the problems highlighted in this paper (see Section 2), we run the
following two steps to explain our methods.

3.1. First Step: Establish a Non-Destructive Method for Predicting Spherical Shell Life Regardless
of Corrosion and Temperature

From (A50) in Appendix A.1, we rewrite the it as:

2Em
1 − v2 =

p
ϕ

(7)

Here, m is the ratio of the thickness to the radius of the sphere.
We rewrite Equation (A51) in Appendix A.1 as:

p2
cr = Em.Em.m2

(
2√

3(1 − v2)
− mν

1 − v2

)2

, (8)

here, m = h0
R .

Let Δ = 2√
3(1−v2)

− mν
1−v2 , from Equations (7) and (8), we can obtain:

p
φ
=

2Em
1 − v2 =

2p2
cr

Em3(1 − v2)Δ2 (9)

and then
1
φ
=

2Em
1 − v2 =

2p2
cr

pEm3(1 − v2)Δ2 (10)

By substituting Equation (10) into Equation (A69) in Appendix A.2, we get:

w ∼= B′
0(v − 1)

1 + 1−v2

2 . 2p2
cr

pEm3(1−v2)Δ2

(11)

As can be seen from the equations above, we have successfully established the rela-
tionship between the displacement and the pressure of the shell by appropriately rewriting
the form of the second-order critical load and combining the relationship between the
displacement w and the rotation angle ϕ shown in Equation (5).

By cross-multiplying in Equation (11), we can achieve:

w +
p2

cr
Em3Δ2

w
p
= B′

0(v − 1). (12)

Formally, Equation (12) is the equation of a straight line following the Southwell
procedure described in Section 2.1. It has w as one axis and w/p as another. Furthermore,
the expression of the slope of this line contains the unknown critical load pcr. Therefore, the
slope of this line can be gained experimentally, and the critical load can then be obtained.

Let S = p2
cr

Em3Δ2 ; Equation (12) can be rewritten as:

w + S
w
p
= B′

0(v − 1) (13)
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one can get:
pcr = mΔ

√
SEm (14)

By substituting Equation (A53) in Appendix A.1 into Equation (7), we get:

φ =
(h∗)2

√
1−v2

3

Rh
. (15)

Substituting Equation (15) into (A69) in Appendix A, we get:

w + J(wh) = B′
0(v − 1), (16)

where:

J =
R
√

3(1 − v2)

2(h∗)2 , (17)

then we obtain:

h∗ =
√

R 4
√

3(1 − v2)√
2J

. (18)

With the previous steps, we have obtained a non-destructive estimation of the critical
thickness (see Equation (18)) in the same way that we have used to solve the critical load
above (see Equation (14)).

3.2. Second Step: Establish a Non-Destructive Method for Predicting Critical Load, Critical
Thickness, and Service Life of Spherical Shells in the Presence of Corrosion and Temperature

According to the description in Section 2.2, this case requires an additional corrosion-
rate equation than in Section 2.1—see (A77) in Appendix B.

Considering Equation (10), from Equation (A77) we obtain:

dσ

dt
=

2σ2

pR
v0 exp

(
Ec0

(
1 − Ec

T

))
exp
(

Vσ

RgT

)
. (19)

Through performing variable separation on Equation (19) in [t0, t∗], [σ0, σ∗], we get:

σ−2 exp
(
− Vσ

RgT

)
dσ =

2
pR

v0 exp
(

Ec0

(
1 − Ec

T

))
dt, (20)

where, t0 refers to the initial time, t* to the service life, σ0 to the stress at time t0, and σ* to
the critical stress.

Integrating Equation (20), we get:

∫ σ∗

σ0

exp
(
− Vσ

RgT

)
σ−2dσ =

2
pR

v0 exp
(

Ec0

(
1 − Ec

T

)) ∫ t∗

t0

dt. (21)

Considering that Equation (10) establishes consistency, through σ ≡ pR
2h , the service

life t* can be obtained:

t∗ =
h0σ0

υ0

[
−Eco(1 − Ec/T

] ∫ σ∗

σ0
σ−2exp(

−Vσ

RgT
)dσ. (22)

If we still consider Equation (10), Equation (A77) can be transformed into:

dh
dt

= v0 exp
(

Ec0

(
1 − Ec

T

))
exp
(

VpR
2RgTh

)
. (23)
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In order to separate the variables t and h in [t0, t*] and [h0, h*], first we get:

exp
(
− VpR

2RgTh

)
dh = v0 exp

(
Ec0

(
1 − Ec

T

))
dt, (24)

then: ∫ h∗

h0

exp
(
− VpR

2RgTh

)
dh = v0 exp

(
Ec0

(
1 − Ec

T

)) ∫ t∗

t0

dt, (25)

and finally:

t∗ =
1

v0 exp
(

Ec0

(
1 − Ec

T

)) ∫ h∗

h0

exp
(
− VpR

2RgTh

)
dh + t0. (26)

Note that in this section we still have pcr = mΔ
√

SEm, σ∗ = mRΔ
√

SEm
2h0

, and

h∗ =
√

R 4
√

3(1−v2)√
2J .

4. Example Analysis

The whole process described above (including those in Appendices A and B), showed
that the non-destructive method of this paper used mathematical logic rigorously. To
further validate it, we compare its results with those of other methods on this section. Due
to the limitation of NDT data found in literature on these kinds of shells, we compare
our method within a special case in Section 2.1 (without corrosion and temperature) with
another existing method.

The NDT data adopted here is taken from an experiment described in [33]. To maintain
consistency with the experimental model of [33], we also apply internal suction to our FE
model to simulate equivalently the external pressure. The geometric parameters for the
FE model (meeting thin wall hypothesis) are: the radius of shell r = 0.05 m and the wall
thickness h0 = 0.0005 m, yielding a h0/r ratio of 0.01. The mechanical properties are: the
Young modulus E = 650 MPa, Poisson ratio ν = 0.4, and density ρ = 1150 kg/m3.

A 1/8 symmetrical spherical shell model built by the ANSYS software is shown in
Figure 3. The first two buckling modes obtained from the eigenvalue buckling analysis are
shown in Figure 4.

Figure 3. 1/8 symmetrical spherical shell FE model.

First, we calculate the value of p∗ using the described method. The results for w and
w/p are plotted in Figure 5.

Within the plot, it is shown that the fitting line equation for the w and w/p points is:

w + 7.27385 w/p = 16.59268, (27)

therefore, we get S = 7.27385 by Equation (13), and then obtain p∗ = 0.08593 through
Equation (14).
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(a) First mode (b) Second mode 

Figure 4. Buckling modes obtained from the eigenvalue buckling analysis.

Figure 5. Plot of w/p vs. w (R = 50 mm, h = 0.5 mm).

In order to verify the practicality and accuracy of this method, we also calculate the
p∗ value adopting the other five existing methods, including one-order analytical value,
numerical value, two-order analytical value, etc., which are shown in Table 1. The highest
error is produced from the numerical method of [33], while the lowest error is produced
from the lowest eigenvalue method.

Table 1. Critical load of our method comparing with other methods.

Method No. 1st 2nd 3rd 4th 5th 6th

Method name
The lowest

Eigenvalue method

Traditional
one-order analytical

method

Non-destruction Analytical
two-order

method [33]

Numerical
method [33]

Experimental
method [33]Our method

Critical load value p∗ 0.081574 0.08127 0.08593 0.08189 0.08790 0.07800

Formulas

[K] + λi [S]){ψi} = 0.
Here [K],[S] are the
constants, λi is the

buckling load
multiplier, {ψi} is

the buckling mode.

pcr =
2Em2√

3(1−v2)
pcr = mΔ

√
SEm

pcr =
2Em2√

3(1−v2)
−

Em3v
(1−v2)

Ansys FEM
software.

Non-
destructive

Testing

Relative Error 0.03718 0.04193 0.10167 0.04988 0.12692 Reference

Because the error values from our method, when used correctly, are within the range of
the other approaches, its accuracy can be considered acceptable in the field of engineering.
Besides that, compared with other methods, there is no doubt that our method is the most
practical and easiest one to operate in engineering.
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From Table 1, we also note that the experimental values are the smallest relative to any
other method (numerical methods of various orders, analytical methods, etc.). There may
be several reasons to explain this behavior: for example, the roundness of the actual shell
(not ideal), but with geometric imperfections; also, the realistic boundary support is not a
100%-hinged support or a 100%-fixed support either. However, we use the 100%-hinged
support in the numerical model for simplification.

5. Practical Implementation of This Method

This method is friendly to inspectors working for practical projects and easy to im-
plement. Its general steps are as follows: basically, we should apply an external uniform
pressure (or equivalent uniform pressure) p by n times to the shell. Here, p = p0 + Δpi,
i = 1, 2, 3, . . . , n. At the same time, we record the deformation wi after each loading.
Here, the parameter S can be obtained through Equation (13). Then the pcr is obtained by
Equation (14). Then by the same way, we can obtain parameter J by Equation (17), and
accordingly obtain h∗ by Equation (18), and finally obtain t∗ by Equation (26).

6. Conclusions

The highlight of this study is that it proposes a non-destructive method based on
the Southwell procedure to estimate the critical load, critical thickness, and service life of
internally corroded shells under external pressure while considering the temperature’s
effect. Of course, it is also applicable for the shell in special cases, such as industrial
environments without corrosion or temperature.

Based on rigorous theories (shell stability theory, the Southwell plot method, and
corrosion dynamic theory), and following a scientific route from simple to complex, we
derived and acquired our new method step-by-step. We first derived the critical load
and critical thickness of the spherical shell in the absence of corrosion and temperature
using the Southwell procedure method. Second, we derived non-destructive methods for
critical load, critical thickness, and service life prediction under corrosion and temperature
conditions. Third, we compared our method with other methods.

The results show that, if used properly, engineering precision requirements can be met.
Furthermore, when the results are carefully interpreted, this technique provides useful
estimates of elastic buckling loads (critical thickness and service life). The utility of this
approach lies in the fact that it is versatile, simple, and non-destructive. Furthermore, it
does not require any assumptions about the buckling wave number or the precise location
of buckling.

It has to be pointed out that since the service life of a spherical shell is usually very
long (and so is its corrosion process), NDT data for the shells that are regularly detected,
especially those collected regularly during the shell corrosion process, and fully recorded
and published data, has not been found. A very small part of it was found in some data
from experiments, which is employed in this paper in Section 4. This is why the method in
this paper cannot be successfully verified in more working conditions currently. However,
the authors will try to obtain (retrieve data from peer industries) NDT data under more
operating conditions to fully evaluate the non-destructive prediction ability of this method
for the shell service life (such as serving in corrosive and temperature environments) in the
near future.

In summary, the highlight of this method in evaluating critical loads (thickness, life-
time) for shells is that it is non-destructive. Additionally, it is the first time introducing the
Southwell plot method into the stabilization analysis of shells of time-varying thickness.
Its precision meets engineering requirements, and more importantly, it is practice- and
implementation-friendly.
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Notation List

S slope of w vs. w/p line
u displacement of the shell element in x direction
v displacement of the shell element in y direction
w displacement of the shell element in z direction
U0 effect of initial imperfections
V shearing force in straight members in y direction (buckling coefficient to be

determined experimentally)
εx unit elongation or strain in x-direction
εy unit elongation or strain in y-direction
εy unit elongation of middle surface in x-direction
ε2 unit elongation of middle surface in y-direction
μ Poisson’s ratio
χy change of curvature in x-direction
χx change of curvature in y-direction
t0 thickness of the shell
pcr buckling pressure
H( ) mathematical operator
Nx, Ny resultant forces
Qx, Qy shear forces
Mx My bending moments
po outer pressure
vi inner mechano-chemical corrosion rate
t time
h thickness
σ principal stress
σe effective stress
r distance between a point in the shell material and the origin of the coordinate

system/radius of two concentric spheres
ro distance between the point in the outer shell surface and the origin of the coordinate

system
b corrosion inhibition effect
dr radius of two concentric spheres
dθ, dϕ top angles of four wedge-shaped sections
rc midsurface radius
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x thickness to midsurface radius ratio
t* time required for a corroded pressure shell to fail for the first time due to buckling

or yielding
h corresponding thickness of the shell under the critical failure state

Appendix A. Buckling Formulas for Spherical Shells in the Case of Section 2.1

(without Corrosion and Temperature)

Appendix A.1. Derivation of the Second-Order Critical Buckling Load (Stress)

Qp

Figure A1. Hemispherical shells and one-half analysis model.

B

C D

A

Mx

My

Mx

My
Ny

Nx Qx d

d

Figure A2. Hemispherical shell element and corresponding forces.

Using the above derived angles instead of the initial ones, dθ, sin θdψ, and cos θdψ,
the equations of equilibrium of the element ABCD become [33]:

w + 7.27385 w/p = 16.59268, (A1)

dQx

dθ
+ Qxcot θ + Nx + Ny + pR + Nx

(
d2w
Rdθ2 +

du
Rdθ

)
+ Ny

(
u
R
+

dw
Rdθ

)
cot θ = 0, (A2)

dMx

dθ
+
(

Mx − My
)

cot θ − QxR + My

(
u
R
+

dw
Rdθ

)
= 0. (A3)

d

u/a

w/a

wN I-x

N I

N I-x N I
N I

x

x

Figure A3. Meridian of a spherical shell before and after buckling.
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Here, u is the displacement of the shell element in x direction, v is the displacement of
the shell element in y direction, w is the displacement of the shell element in z direction, t0
is the thickness of the shell, pcr is the classical buckling pressure, Nx, Ny are the resultant
forces, Qx, Qy are the shear forces, Mx, My are the bending moments, and θ, ψ are the angles
of the shell element.

If a spherical shell is submitted to a uniform external pressure, there will be a uniform
compression whose magnitude is:

σ =
pR
2h0

. (A4)

Let u,v, and w represent the components of small displacements during buckling from
the compressed spherical form, then Nx and Ny differ little from the uniform compressive
force pR

2 and become:

Nx = − pR
2

+ N′
x, (A5)

Ny = − pR
2

+ N′
y , (A6)

where N′
x and N′

y are the resultant forces due to small displacements u, v, and w.
Due to the stretching of the surface, p becomes p(1 + ε1 + ε2). Therefore, substituting

Equations (A5) and (A6) back into the differential equations of equilibrium (A1), (A2), and
(3), and simplifying and neglecting the small terms, such as the products of N′

x, N′
y, and

Qx with the derivations of u, v, and w, we obtain:

dN′
x

dθ
+
(

N′
x − N′

y

)
cot θ − Qx − 0.5pR

(
u
R
+

dw
Rdθ

)
= 0, (A7)

dQx
dθ + Qxcot θ + N′

x + N′
y

+ pR
(

du
Rdθ +

u
R cot θ − 2w

R

)
− 0.5pR

(
du
dθ + d2w

adθ2

)
+

−0.5pRcot θ
(

u
R + dw

Rdθ

)
= 0,

(A8)

dMx

dθ
+
(

Mx − My
)
cot θ − QxR = 0. (A9)

From Equation (A9) we get:

Qx =
dMx

Rdθ
+
(

Mx − My
)cot θ

R
. (A10)

Substituting Qx into the Equations (A7) and (A8), and considering the following equations:

σx =
E

1 − μ2

(
εx + μεy

)
=

N′
x

h
, (A11)

σy =
E

1 − μ2

(
εy + μεx

)
=

N′
y

h
, (A12)

Mx = D
(
χx + μχy

)
, (A13)

My = D
(
χy + μχx

)
, (A14)

together with:

εx =
∂u
∂x

+
1
2

(
∂w
∂x

)2
, (A15)
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εy =
∂v
∂y

+
1
2

(
∂w
∂y

)2
, (A16)

χx = −∂2w
∂x2 , (A17)

χy = −∂2w
∂y2 , (A18)

Here, εx is the unit elongation or strain in the x-direction, εy is the unit elongation
or strain in the y-direction, ε1 is the unit elongation of middle surface in the x-direction,
ε2 is the unit elongation of middle surface in the y-direction, μ is Poisson’s ratio, χy is the
change of curvature in the x-direction, and χx is the change of curvature in the y-direction.

Then they can be written as:

ε1 =
du

Rdθ
− w

R
, (A19)

ε2 =
u
R

cot θ − w
R

, (A20)

χx =
u
R

cot θ − w
R

, (A21)

χy =
d2w

R2dθ2 +
du

R2dθ
, (A22)

χy =

(
u

R2 +
d2w
R2dθ

)
cot θ, (A23)

And then we get:

N′
x =

Eh0

1 − v2

[
du

Rdθ
− w

R
+ v
(

u
cot θ

R
− w

R

)]
, (A24)

N′
y =

Et0

(1 − v2)R

[
u cot θ − w + v

(
du
dθ

− w
)]

, (A25)

Mx = − D
R2

[
du
dθ

+
d2w
dθ2 + v

(
u +

dw
dθ

)
cot θ

]
, (A26)

My = − D
R2

[(
u +

dw
dθ

)
cot θ + v

(
du
dθ

+
d2w
dθ2

)]
. (A27)

Now, introducing two dimensionless parameters, α and ϕ—which are defined as

α =
D(1−v2)

R2Eh0
= h0

12R2 and ϕ =
pR(1−v2)

2Eh0
—and using the elastic law to express the forces

and moments in terms of u and w, one obtains the differential equations of equilibrium
((A7) and (A8)):

(1 + α)
[

d2u
dθ2 + cot θ du

dθ −
(
v + cot2 θ

)
u
]
− (1 + v) dw

dθ + α
[

d3w
dθ3 + cot θ d2w

dθ2 −
(
v + cot2 θ

) dw
dθ

]
± ϕ
(

u − dw
dθ

)
= 0,

(A28)

(1 + v)
[

du
dθ + u cotθ − 2w

]
+

+α
[

d3u
dθ3 − 2cot θ d2u

dθ2 +
(
1 + v + cot2θ

)( du
dθ + d2w

dθ2

)
− cot θ

(
2 − v + cot2θ

)
(u + 1)− d4w

dθ4

+− 2cot θ d3w
dθ3

]
− ϕ
[
−ucotθ − du

dθ + 4w + cot dw
dθ + d2w

dθ2

]
= 0.

(A29)
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These two equations may be simplified by neglecting, in comparison with unity, the
first term, since the shell is thin, and therefore, the h0

R ratio is very small. Moreover, due
largely to angular displacement χ, we make good use of this situation by introducing an
auxiliary variable u, such that u = − dψ

dθ .
Thus, the expressions in the brackets in Equation (A29) become identical. Then, using

the mathematical operator H, it turns to:

H( ) =
d2(. . .)

dθ2 + cot θ
d(. . .)

dθ
+ 2(. . .), (A30)

d
dθ

[H(ψ) + αH(w)− (1 + v)(ψ + w)− α(1 + v)w − ϕ(ψ + w)] = 0. (A31)

The fourth term, containing the factor, may be neglected in comparison with the third
in Equation (A31). Integrating the Equation (A31) with respect to θ and assuming that the
constant of integration is equal to zero, we obtain:

H(ψ) + αH(w)− (1 + v)(ψ + w)− ϕ(ψ + w) = 0, (A32)

αHH(ψ + w)− (1 + v)H(ψ)− (3 + v)αH(w)
+2(1 + v)(ψ + w)+

+ϕ[−H(ψ) + H(w) + 2(ψ + w)] = 0.
(A33)

Now, any regular function of cosθ in the interval −1 ≤ cosθ ≤ 1 may be expanded in
a series of Legendre functions:

P0(cosθ) = 1,
P1(cos θ) = cosθ,

P2(cosθ) = 0.25(cos2θ + 1),
Pn(cosθ) = 2 1×3×5×...×(2n−1)

2nn! ×
×
[
cosnθ + 1

1 × n
2n−1 cos(n − 2)θ

+ 1×3
1×2 × n(n−1)

(2n−1)(2n−3)cos(n − 4)θ + . . .
]

d2 pn
dθ2 + cot θ

dpn
dθ + n(n + 1)pn = 0,

(A34)

H(Pn) = −λn pn, (A35)

HH(Pn) = λ2
n pn, (A36)

in which λn = n(n + 1)− 2, and n is an integer.
Assuming the general expressions of ψ and w for any symmetrical buckling of spherical

shells, we have:

ψ =
∞

∑
n=0

AnPn (A37)

w =
∞

∑
n=0

BnPn, (A38)

Substituting them back to Equations (A35) and (A36), we can have:

∞

∑
n=0

{An[λn + (1 + v) + ϕ] + Bn[αλn + (1 + v) + ϕ]}Pn = 0, (A39)

∞

∑
n=0

{
An
[
λ2

n + (1 + v)(λn + 2) + ϕ(λn + 2)
]

+Bn
[
αλ2

n + (3 + v)αλn + 2(1 + v)− ϕ(λn − 2)
]}Pn = 0. (A40)
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The Legendre functions form a complete set of functions. Therefore, the two series
cannot vanish identically unless each coefficient vanishes.

From Equation (A29) we can get:

Bn = − An[λn + (1 + v) + ϕ]

αλn + (1 + v) + ϕ
, (A41)

and eliminating Bn from the above set of equations, Equation (A41) can then be written as:

An
[
αλ2

n + (1 + v)(λn + 2)+
]

− An [λn+(1+v)+ϕ]

[αλn+(1+v)+ϕ][αλ2
n+(3+v)αλn+2(1+v)−ϕ(λn−2)]

,
(A42)

An

(
1 − v2

)
λn + αλn

[
λ2

n + 2λn + (1 + v)2
]
− ϕλn[λn + (1 + 3v)] = 0. (A43)

Buckling of the shells becomes possible if these equations, for some value of n, yield
for An and Bn a solution different than zero, which means a trivial solution; in other words,
having a zero determinant of the system of equations. Thus:(

1 − v2
)

λn + αλn

[
λ2

n + 2λn + (1 + v)2
]
− ϕλn[λn + (1 + 3v)] = 0, (A44)

a solution of which is λn = 0, which corresponds to a value of n equals to unity. Substituting
this value of λn into Equation (A40), one obtains:

A1 = −B1. (A45)

Now, for λn �= 0, other than zero:

ϕ =

(
1 − v2)+ α

[
λ2

n + 2λn + (1 + v)2
]

λn + (1 + 3v)
, (A46)

which yields for its minimum, or for dϕ
dλn

after simplification:

λ2
n + 2(1 + 3v)λn −

1 + v2

α
= 0, (A47)

λn = −(1 − 3v)λn +

√
1 − v2

α
, (A48)

ϕmin = 2
√
(1 − v2)α − 6vα, (A49)

ϕ =
pR
(
1 − v2)

2Eh0
, (A50)

and ϕmin yields the first pcr critical load [33]:

pcr =
2Eh2

0 ϕmin

R(1 − v2)
=

2Eh0

R(1 − v2)

[√
1 − v2

3
× h0

R
− vh0

2R2

]
, (A51)

σcr =
pcrR
2h

=
E

1 − v2

[√
1 − v2

3
× h0

R
− vh0

2R2

]
. (A52)

Equation (A51) was derived with the assumption that the shell wall thickness is
specified, whereas the critical value of external pressure Q is the unknown quantity.
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On the contrary, if we assume that the external pressure Q value is specified, then the
shell wall thickness h*, corresponding to the stability loss, will be equal to:

h∗ =
4
√

3(1 − v2)
√

pR√
2E

. (A53)

Appendix A.2. Derive the Relationship between w and ϕ of the Spherical Shell

In 1934, Southwell began using his approach on columns. In this part of the section,
an attempt is made to demonstrate that uniformly compressed spherical shells can also be
analyzed by the Southwell procedure. In the derivation of the formula, as it was done for the
classical theory of buckling shells (see previous part), it is assumed that the displacements
u and w may be expressed as [33]:

ψ =
du
dθ

=
∞

∑
n=0

AnPn, (A54)

w =
∞

∑
n=0

BnPn, (A55)

where Pn is the Legendre functions of the orders n, while An and Bn are the real constants
from before:

ψ0 =
∞

∑
n=0

A′
nPn, (A56)

w0 =
∞

∑
n=0

B′
nPn. (A57)

Additionally, it is assumed that the manufacturing imperfections of ψ0 is equal to
zero. Thus, it is tried only with the direction w.

When the compressive load p is applied to the shell, each point of the middle surface
undergoes elastic displacements u and w, and its normal distance from the reference sphere
then becomes w + w0. It is assumed that w0 is from the order of the elastic deformation,
and then the element of the shell looks like the deformed elements, which are used to
establish the differential equations of the buckling problem. Again, going through the
same procedure, one finds that the terms of those equations belong to two groups (see the
proceeding section). In those terms, which contain the factor ϕ, the quantities u and w
describe the difference in shape between the deformed element and an element of a true
sphere. In these terms, w must now be replaced by w + w0. On the other hand, all terms
that do not have the factor ϕ, can be traced back to terms of the elastic law, and represent
the stress resultants acting on the shell element. Before the application of the load, the shell
is free of stress, and the stress resultants depend only on the elastic displacements u and w.
Consequently, in all these terms, w does not need to be replaced by w + w0, but stays w.

Thus, one arrives at the following set of differential equations:

H(ψ + w) + αH(w)− (1 − v)(ψ + w)− ϕ(ψ + w + w0) = 0, (A58)

αHH(ψ + w)− (1 + v)H(ψ)− (3 + v)αH(w)
+2(1 + v)(ψ + w)+

ϕ[−H(ψ) + H(w + w0) + H(w + w0) + 2(ψ + w + w0)] = 0,
(A59)

in which HH denotes the same operator as before:

H( ) =
d2(. . .)

dθ2 + cotg
d(. . .)

dθ
+ 2(. . .), (A60)
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An(λn + 1 + v + ϕ) + Bn(αλn + 1 + v + ϕ) = −B′
n ϕ, (A61)

An
(
αλ2

n + λn + 2 +vλn + 2v + ϕλn + 2ϕ)
+Bn

(
αλ2

n + 3αλn + vαλn + 2 + 2v
−ϕλn + 2ϕ)
= B′

n ϕ(λn − 2).

(A62)

Thus, the problem is reduced to solving this set of equations. Eliminating An from
the above set of equations:[

α(α − 1)λ3
n + ( ϕα − 2α + ϕ)λ2

n
+
(
vα + v2 + 2ϕv + ϕ + 2ϕ2 − 1 − α − 3vα − v2α + vϕ

−αϕ − vαϕ)λn]Bn = −B′
n ϕ
[
(α + 1)λ2

n + (2v + 2ϕ)λn
]
,

(A63)

Bn = − B′
n ϕλn[(α + 1)λn + 2(v + ϕ)]

[−αλ2
n(1 − α) + (ϕ − 2α + ϕα)λn + v(3ϕ − 2α) + ϕ + v2 − α − 1]λn

, (A64)

After canceling λn, and neglecting the small quantities as α, ϕ, and their products in
comparison with unity, we obtain:

Bn = − B′
n ϕ[λn + 2(v + ϕ)]

−αλ2
n + (ϕ − 2α + ϕα)λn + v2 − 1

. (A65)

Coming back to the definition of the displacement w, one may write the equation
w = ∑∞

n=0 BnPn—or writing it in detail:

w = B0P0 + B1P1 + B2P2 + · · · · · ·
w =

[
B0 + 0.25B2 +

9
64 B4 + · · ·

]
+
[
B1 +

3
8 B3 + · · ·

]
cos θ + [B2 + · · ·] cos 2θ+

(A66)

here λn = n(n + 1)− 2, which is the minimum for n = 1
2 ; therefore, it has the same values

for n equals to minus one and zero. Since n must be an integer, it is chosen as zero, which
yields λ = −2, and corresponds to B0, which is a function of λn, and gets smaller when
λn becomes greater. Thus, it is possible to neglect all the terms and simply write w ∼= B0
since the terms which contain cos θ, cos 2θ . . . are much smaller—so, buckling is usually
expected at the places where θ is large [33]:

w ∼= B′
0 ϕ[−2 + 2(v + ϕ)]

4α + (ϕ − 2α + ϕα)2 + 1 − v2 , (A67)

w ∼= 2B′
0 ϕ(v + ϕ − 1)

2ϕ(1 + ϕ) + 1 − v2 , (A68)

w ∼= B′
0(v − 1)

1 + 1−v2

2ϕ

. (A69)

Appendix B. Deriving the Corrosion Rate of the Spherical Shell as a Function of

Temperature and Stress, Based on the Arrhenius Type

It is assumed that the shell is subjected to the simultaneous action of a constant
external pressure Q and uniform internal corrosion. The rate of the thickness decrease at
each moment of time t is equal to the corrosion rate [5]:

dh
dt

= − f (σ, T)
dh
dt

= − f (σ, T), (A70)
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where f (σ, T) is a sufficiently smooth function of compressive stress σ, defined by Equation
(A2), and the temperature T. The corrosion rate dependence on the stress value, according
to experimental data, can be approximated by exponential function suggested in [1], while
the temperature effect is usually described by the Arrhenius-type law [11]. Combination of
both functions yields the following relation Equation (A73).

Temperature has a great effect on the rate of metal electrochemical corrosion. In the
case of corrosion in a neutral solution (oxygen depolarization), the increase of the corrosion
rate increases exponentially with temperature increase because the hydrogen evolution
overpotential decreases. Experimental dependence of the Arrhenius type is observed
between the corrosion rate and temperature. Using the current density jcorr, we express the
corrosion rate [1]:

jcorr = λ exp(Ea/RgT). (A71)

where Ea is the effective activation energy of the corrosion process in kJ mol−1, Rg is
the molar gas constant in J mol−1 K−1, T is the absolute temperature in K, λ is the pre-
exponential factor, and jcorr is the corrosion current density, A cm−2. Equation (A71)
provides the determination of the effective activation energy of the corrosion process.

When σ = 0, Ea = Eco, we have T = T0, and jcorr = λ exp(Ec0/RgT).
Moreover, when σ �= 0, T = T, and Ea = Ec, we get:

jcorr = λ exp(Ec/RgT). (A72)

Considering f (σ, t) = v0 exp
(

Vσ
RgT

)
[1], and then using linear scale method, we get:

v = v0

exp
(

EC
RgT

)
exp
(

E0
RgT0

) exp
(

Vσ

RgT

)
= v0 exp(Ec0

(
1 − Ec

T

)
) exp

(
Vσ

RgT

)
. (A73)

From the above equation, we know:

dh
dt

= f (σ) , σ ≡ pR
2h

, (A74)

therefore, we can easily get:

dh
dt

=
d
(

pR
2σ

)
dσ

dσ

dt
= − 1

2σ2 pR
dσ

dt
, (A75)

and thus:
dσ

dt
=

2σ2

pR
dh
dt

. (A76)

Finally, we have [5]:

dh
dt

= v0 exp
(

Ec0

(
1 − Ec

T

))
exp
(

Vσ

RgT

)
. (A77)

in which Rg is the molar gas constant, V is the material molar volume, Eco = Eco
RgT0

, and

Ec =
Ec
Eco

.
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Abstract: The bondline integrity of a repair patch to the parent composite laminate is considered
the most important factor in the repair design. A smart repair patch is proposed here to allow for
real-time ultrasonic guided wave monitoring of repaired composites. A diagnostic film with lead
zirconate titanate (PZT) transducers and inkjet-printed wires is embedded into the repair patch
using a cut-out method. The electro-mechanical impedance (EMI) method is used to verify the
integrity of the embedded PZT transducers. The performance of the smart repair patch is assessed
on the external panel with artificial bondline delamination and surface-mounted artificial damage.
The damage index correlation coefficient and delay-and-sum (DAS) algorithm are used for damage
detection and localization. The results show that the developed repair patch can successfully detect
and locate damages.

Keywords: smart repair patch; structural health monitoring (SHM); embedded PZT transducers;
damage detection and localization; delay-and-sum (DAS) algorithm

1. Introduction

Repair of in-service composite parts plays an important role in the sustainability of
composite airframes due to the recent increase in the utilization of composite structures
in modern aircraft. In certain practical cases, the repair of composite structures accord-
ing to the Structural Repair Manual (SRM) can reduce the cost of replacement without
compromising the mechanical of composite structures [1–3]. However, the strength and
durability of the repaired area still need to be considered since the stress transfer at the
interface is under service load with different environmental conditions [4]. The mechanical
properties of the exposed thermosetting adhesives and resin of bonded area will absorb
the moisture, which will affect the durability [5–8]. The defects will be also generated
stress concentrations and initiate cracks when the repaired structure subjected to a cyclic
loading [9–11]. In addition, failures may occur due to inconsistent processing methods
which will degrade the mechanical properties between the repair patch and composite
bondline [4,12].

To meet the requirements of airworthiness certification, repair based on Structural
Health Monitoring (SHM) system can be an effective way to monitor the integrity of the
bonded repair patch for aircrafts [3,8,12,13]. Generally, the smart patch consists of an array
of actuators/sensors. Compared to traditional non-destructive inspection (NDI) techniques,
SHM enables bondline inspection possible without destroying the repaired patch and can
be used to monitor in real-time the bonding area of the repaired part [12,14]. It has been
shown that the smart patch can detect debonding, delamination of composite layers and
damage growth in the repaired area [8].

Piezoelectric lead zirconate titanate (PZT) transducers and fibre Bragg gratings (FBG)
are two main types of sensors commonly utilized for SHM applications. The advantages
of PZT transducers include wide frequency range, low price and small size and good
coupling capacity which are particularly suitable for embedding [15,16]. In addition, they

Appl. Sci. 2022, 12, 4916. https://doi.org/10.3390/app12104916 https://www.mdpi.com/journal/applsci44



Appl. Sci. 2022, 12, 4916

can simultaneously exhibit actuator/sensor behaviours, which allow for both passive and
active detections [17–19]. While FBG sensors are super-light, small size, sensitive, lower
power consumption, immune to electromagnetic interferences/corrosion and have high
bandwidth and multiplexing sensors [15,16,20–23]. By comparing PZT and FBG sensors,
PZT transducers can capture the ‘integrated’ signals in the entire covered area, while FBG
sensors are directional dependent [16]. In addition, PZT transducers are sensitive to both
symmetric (S0) and anti-symmetric (A0) modes, while FBG sensors are less sensitive to the
A0 mode [16]. For damage localization, RAPID (reconstruction algorithm for probabilistic
inspection of defects) [24,25] and delay-and-sum (DAS) [26–28] algorithms are imaging
methods and have been widely used. The RAPID algorithm does not need to acquire the
information of wave modes and group velocity for ultrasonic guided waves (UGW) while
the DAS algorithm only assumes one wave mode exists and little mode conversion exists
when the wave interacts with damage.

Many works were conducted on the SHM system for the smart repair patch. Rito R.L.
et al. [29] numerically and experimentally studied bondline monitoring using a composite
repair patch with embedded FBG sensors. Both experimental and modelling results showed
that the smart repair patch embedded with chirped FBG sensor can be used to monitor
the initial disbond. Lambinet F. et al. used surface-mounted PZT transducers [13] and
hybrid system (surface-mounted PZT transducers + embedded FBG sensors) [12] to conduct
bending fatigue and impact tests for the step-sanded composite repair structures and used
scaling subtraction method and RAPID to detect and locate these damages. In addition,
they [3] also proposed a so-called Minimal Intersection Score (MIS) algorithm to detect
and locate the damage to the smart repair patch under different environmental conditions.
Roth W. et al. [30] numerically and experimentally used a smart patch with phased-array
PZT transducers to monitor the artificial disbond. The Teflon tape was inserted in the edge
between the patch and host composite structure during manufacturing. The results showed
that disbond can be detected by using the electro-mechanical impedance (EMI) method.
Qing X. et al. [31] used the smart patch combined with the SMART layer (Stanford Multi-
Actuator-Receiver Transduction Layer) system to monitor the curing progress and disbond
by using the active sensing SHM technique. Their results showed that the combined
SMART layer system for the smart repair patch can be used to monitor the curing progress
and integrity of the bonding quality of the composite repair structure. Later, Bekas D.
G. et al. [32] used inkjet-printed interdigital sensors to monitor the bondline integrity of
bonded composite joints by using the EMI method. Sánchez-Romate X.F. et al. [33] used
carbon nanotube (CNT) based adhesive films to investigate the crack sensing capabilities
of adhesive film for composite bonded repair. They demonstrated that the use of CNT
adhesive films for the bonded repair composite structures did not affect their mechanical
performance and the electrometrical results showed it can be used for SHM purposes.

Furthermore, Bekas D. G. et al. developed the SHM layer and renamed it as diag-
nostic film [34]. This layer had been shown to reduce the thickness of integrated layers
(25.4 μm) [35] by 50% compared to that of the SMART layer (50.8 μm) [36]. They found
this diagnostic film was effective for thin composites and can be used under extreme
environmental and operational conditions. In the authors’ previous work, a novel embed-
ding technique using this diagnostic film with PZT transducers based on the edge cut-out
method for the composite structure was developed [35]. This technique allowed edge trim-
ming possible without damaging the printed circuits, which met industrial requirements
for the next higher assembly. In addition, the EMI properties and sensing performance of
embedded PZT transducers remain stable up to 1 million loading cycles under fatigue tests,
and reductions of tensile and compressive modulus for the composite coupons remain
acceptable for the worst-case scenario [37]. Earlier, Salmanpour M. S. et al. [38] reported that
the SMART layer did not meet the operational and environmental conditions of regional
aircraft as related to low/high temperatures changes under cyclic loading, while diagnostic
film utilizing inkjet-printed technology performed well in the tests [39]. In addition, the
SMART layer was the most fragile before and during the bonding procedures [38].
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This paper is the first application and assessment of the embedded PZT transducers for
detection of the damage along the bondline and on the surface of a composite repair patch.
In previous work, PZT transducers were installed on the surface of the host structure to
detect damage to the repair patch. This approach as shown in [3,13] required the placement
of many sensors surrounding the entire patch and the guided waves had to travel the entire
length of the patch to detect possible damage. There was also scattering from the edge to
the patch since the guided wave was generated from the host structure and not internally
to the patch as with the approach proposed in this paper. Furthermore, the use of a hybrid
PZT-FBG acquisition system has already been reported in [12]. Hence, a smart repair patch
with developed embedded diagnostic film and PZT transducers is the most innovative
because it reduces the number of sensors.

In this paper, the edge cut-out method is applied to manufacture a smart repair patch
combined with an embedded diagnostic layer and PZT transducers. Then this patch will
bond to the composite host structure together to simulate composite repair. The active
sensing method will be used for SHM purposes. The aim of this paper is to investigate
the monitoring ability of the smart repair patch using the diagnostic film for bondline
inspection of the composite repair structure. First, the EMI method will be used to verify
the bonding properties between PZT transducers and the repair patch. Second, the damage
index (DI) correlation coefficient [40] and the DAS algorithm will be used to detect and
locate the artificial delamination and surface-mounted artificial damage.

2. Experimental Setup

Unidirectional carbon fibre prepregs Hexply® IM7/8552 were used in this experi-
ment. For fabrication of the composite repair patch, the quasi-isotropic stacking sequence
[(0◦/+45◦/−45◦/+90◦)2]s was used for the lay-up and the thickness of the repair patch
was about 2 mm after curing. The KAPTON® film (DuPontLM HM, melting temperature
400 ◦C) with a thickness of 25.4 μm was used as a diagnostic film and DuraActTM PZT
transducers (P-876.K025 – PIC255, Curie temperature: 350 ◦C) were used during the man-
ufacturing. Dimatix printer (DMP-2580) was used to print the circuits on the KAPTON®

film. In addition, thermoplastic film (TPU-Pontocal AG) was used to pre-bond the PZT
transducer to KAPTON® film for diagnostic film preparation. Furthermore, resin film
Hexply® M56 was used during embedding to bond the surface and increase the bonding
properties between the prepreg, KAPTON® films and PZT transducers.

The preparation of the diagnostic film, sensor installation and details of the novel
cut-out method for the embedding were reported in the author’s previous work [35].
PZT transducers needed to be pre-bonded to the printed diagnostic film using two layers
of thermoplastic films for preparing the printed diagnostic film to ensure there is no
delamination between the printed diagnostic film and transducers. Figure 1a shows the
general drawing of the smart repair patch with the configuration of PZT transducers and
Figure 1b shows the schematic of the embedding procedure during lay-up.

  
(a) (b) 

Figure 1. Schematics of (a) general drawing of repair patch and (b) embedding procedure during layup.
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For the embedding, a release film was placed in the middle of the cut-out area shown
in Figure 1b to prevent the bonding of the diagnostic film to the prepregs within the cut-
out area. Then the resin film and a blank diagnostic film were applied on the surface
of the bottom prepregs respectively to prevent the short-circuited of printed circuits due
to the conductivity of carbon fibre prepregs, followed by the resin film, the prepared
KAPTON® film, resin film and main upper prepregs. After that, the exposed area of
prepared KAPTON® films was applied on the surface of the main upper prepregs and the
release film placed on the cut-out area was removed. Finally, cut-out prepregs were applied
to the designated position.

After lay-up and bagging, the patch was cured at 180 ◦C in the autoclave and the
curing cycle was set up according to the prepregs’ datasheet. After curing and trimming,
a connector (RS 514-4408, operating temperature range: −40 ◦C to +85 ◦C) was mounted
on the surface of the repair patch and bonded by a super glue (RS 473-445, operating
temperature range: −50 ◦C to +80 ◦C) to connect circuits and embedded PZT transducers
by conductive epoxy adhesive resin/hardener (RS 186-3616). After the fabrication, the
trimmed repair patch is shown in Figure 2b. For manufacturing the host composite struc-
ture, a quasi-isotropic stacking sequence (0◦/+45◦/−45◦/+90◦)4s was used for the layup
and the size was 300 mm × 260 mm, and the thickness of the host structure was about
4 mm after curing.

Figure 2. Schematics of (a) embedding procedure and (b) trimmed smart repair patch.

After manufacturing, the EMI method was used to evaluate the bonding properties
between the PZT transducer and the repair patch. The EMI method can be used to evaluate
local damage severities, transducers’ fractures, mechanical/electrical properties for the
degradation and integrity of bonding properties [35]. According to the EMI method,
the imaginary part of admittance at a low-frequency range will make the mechanical
impedance of the composite structure close to zero and only the mechanical impedance of
the PZT transducer is considered [41]. Therefore, any slope change in the imaginary part of
admittance at the low-frequency range will determine the integrity of bonding properties
between the host structure and the PZT transducers [35].

In the experiments, a SinePhase Impedance Analyzer (Model 16777K) was used for
measuring the imaginary and real parts of admittance at room temperature. Figure 3
presents EMI results for the imaginary and real parts of admittances for different embedded
PZT transducers. As is shown in Figure 3a, slopes of imaginary parts of the admittance
for all embedded PZT transducers at the low-frequency range do not show an obvious
difference. Hence, the bonding qualities were good for these embedded PZT transducers,
and they can be further used for active sensing SHM purposes.
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Figure 3. The EMI results of (a) imaginary and (b) real part of admittance for different PZT transducers.

3. Damage Detection and Localization

To verify if the smart repair patch embedded with diagnostic film and PZT transducers
can monitor the integrity of the bondline quality, the damage index (DI) correlation coeffi-
cient and delay-and-sum (DAS) algorithm based on active sensing were used to detect and
locate the bondline defects. In this section, two types of defects were studied, which were
artificial delamination and surface-mounted artificial damage. In addition, blue contact
gel was fully applied to the repair patch to bond it with the composite host structure as
baseline signals (as is shown in Figure 4a). Here, the contact gel was used in DolphiCam
C-Scan to improve the coupling on rougher surfaces. The reason for using this contact gel
was that the repair patch could be easily removed at room temperature and used for further
measurements. For simulating delamination and measuring the current signals, the repair
patch was removed and two layers of KAPTON® films were inserted in the designated
positions of the repair patch (shown in Figure 4b). The repair patch was then put back to
the original position as close as possible. To detect the surface-mounted artificial damage, a
weighted blue-tack was placed in designated positions on the surface of the repair patch
and bottom of the host structure as the current signals.

Figure 4. Schematics of (a) artificial delamination and (b) bonding with blue contact gel for the
bonded repair structures.

For measuring guided waves, a National Instrument (NI) PXIe-1073 and an arbitrary
signal generator (NI PXI-5412) were used for signal generation, and a digitizer (NI PXI-5105)
was used to record UGW signals. During the measurements, the time-of-arrival (ToA) of the
A0 mode could not be distinguished at 50 kHz due to the overlap between the crosstalk and
the first wave packet of each measured signal. Therefore, a five-cycle Hanning-windowed
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toneburst signal at 250 kHz [42] was used as the actuation signal. The actuation amplitude
and sampling frequency were 6 V and 100 MHz, respectively. Both baseline and current
signals were measured at room temperature.

3.1. Delamination

Figures 5 and 6 compare the results of damage detections and localizations for two
artificial delamination positions at 250 kHz by using three and four PZT transducers,
respectively. The results show that the DI results using both three and four PZT transducers
can detect the damage. The DAS results show that the artificial delamination can be located
accurately using three PZT transducers but cannot when using four PZT transducers. Two
factors affected the locating results during the measurements. First, the repair patch cannot
be placed in the same position as the baseline status after inserting the KAPTON® films
into bondline positions. In addition, the thickness of the contact gel used to bond the repair
patch and the host structure cannot be kept at the same value since the contact gel will
come back again every time after hardly pushing the repair patch. Both factors would
affect the measured signals. Therefore, using four or more PZT transducers will cause the
inaccuracy of damage localization due to the inconsistency caused by the contact gel.

However, the smart repair patch will be bonded to the host structure permanently by
resin film for the actual situation. First, the repaired structure bonded by the resin film
will make the patch maintain its original position when delamination happened and retain
the same thickness of the bonding area. Furthermore, the selection of the contact glue to
bond the patch and host structure is a compromising way under laboratory conditions
and no alternative material can be found to bond the repaired structure together and peel
them after measuring. Hence, the above two factors would not affect the measuring results
when using four PZT transducers, and it can be confirmed that the DAS results would be
accurate when using four PZT transducers for the actual repair.
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Figure 5. Delamination detection using (a) three PZT transducers and (b) four PZT transducers, and
localization using (c) three PZT transducers and (d) four PZT transducers at 250 kHz for the position
1 (where the “�” is the position for real damage and the “×” is the position for predicted damage).

Figure 6. Cont.
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Figure 6. Delamination detection using (a) three PZT transducers and (b) four PZT transducers, and
localization using (c) three PZT transducers and (d) four PZT transducers at 250 kHz for the position
2 (where the “�” is the position for real damage and the “×” is the position for predicted damage).

3.2. Surface-Mounted Artificial Damage—Surface of the Repair Patch

To simulate the repair patch suffering surface damage, a weighted blue tack was
attached on the surface of the repair patch. Figures 7 and 8 show the results of damage
detection and localization for the surface-mounted artificial damage attached on the surface
of the repair patch. As can be seen in Figures 7 and 8, using both three and four PZT
transducers can detect and locate the damage accurately. In this situation, the blue tack
was removed from the surface of the repair patch only, so the using of contact gel would
not become the factor affecting the accuracy of the localization results.

Figure 7. Detection of surface-mounted artificial damage on the surface of the repair patch using
(a) three PZT transducers and (b) four PZT transducers, and localization using (c) three PZT transducers
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and (d) four PZT transducers at 250 kHz for the position 1 (where the “�” is the position for real
damage and the “×” is the position for predicted damage).

Figure 8. Detection of surface-mounted artificial damage on the surface of the repair patch using
(a) three PZT transducers and (b) four PZT transducers, and localization using (c) three PZT trans-
ducers and (d) four PZT transducers at 250 kHz for the position 2 (where the “�” is the position for
real damage and the “×” is the position for predicted damage).

3.3. Surface-Mounted Artificial Damage—Bottom of the Host Structure

To simulate the host structure suffering damage, a weighted blue tack was attached
on the bottom of the host structure, which was the surface of the opposite side of the
repair patch. Figures 9 and 10 show the damage detection and localization for the surface-
mounted artificial damage attached on the bottom of the host structure. As can be seen
in Figures 9 and 10, using both three and four PZT transducers can detect the damage.
However, the DAS algorithm can locate the damage more accurately using three PZT
transducers than using four PZT transducers. The reason why five PZT transducers were
not used for damage localization is that the repair patch is relatively small and having more
sensors installed generate more noise in the signals. This can be seen with the results from
three and four PZT transducers that the noise in the signal was high enough to mask the
scattering from the damage.
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Figure 9. Detection of surface-mounted artificial damage on the bottom of the host structure using
(a) three PZT transducers and (b) four PZT transducers, and localization using (c) three PZT trans-
ducers and (d) four PZT transducers at 250 kHz for the position 1 (where the “�” is the position for
real damage and the “×” is the position for predicted damage).

Figure 10. Cont.
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Figure 10. Detection of surface-mounted artificial damage on the bottom of the host structure
using (a) three PZT transducers and (b) four PZT transducers, and localization using (c) three PZT
transducers and (d) four PZT transducers at 250 kHz for the position 2 (where the “�” is the position
for real damage and the “×” is the position for predicted damage).

4. Conclusions

This paper developed a smart repair patch using the diagnostic film embedded into
the patch using an edge cut-out method. This film has been verified to perform well under
extreme environmental and operational conditions. Electro-mechanical impedance results
showed that embedded lead zirconate titanate transducers’ bonding qualities were good
after manufacturing. For damage detection and localization, the damage index correlation
coefficient and delay-and-sum algorithm based on the active sensing technique were used.
In addition, blue contact gel was used to bond the repair patch and host structure together
for easier removing the patch and inserting KAPTON® films to create artificial delamination.
Furthermore, the A0 mode at 50 kHz was not applicable due to the overlap between the
crosstalk and the first wave packet of measured signals.

According to the damage index results, the use of a smart repair patch can detect
the artificial delamination and surface-mounted artificial damage at 250 kHz using both
three and four lead zirconate titanate transducers. Furthermore, the smart repair patch
can locate the delamination using three lead zirconate titanate transducers and surface-
mounted artificial damage using four lead zirconate titanate transducers accurately. Since
the resin film was replaced by blue contact gel for simulating the bonding and caused the
inconsistency and uncertainty between the baseline and current signals due to removing
the patch and inserting delamination, so the delay-and-sum results were not accurate when
using four lead zirconate titanate transducers for the S0 mode at 250 kHz. However, the use
of resin film will keep the composite repair structure consistent and it can be confirmed that
using four transducers will locate the delamination accurately using the delay-and-sum
algorithm for actual composite repair. Therefore, the smart repair patch embedded with
the developed diagnostic film and lead zirconate titanate transducers can be used to detect
and locate bondline defects of repaired composite structures based on Structural Health
Monitoring techniques.

Author Contributions: Experimental work, analysis and preparation of the manuscript, T.F.; super-
vision of the research and preparation of the manuscript, M.H.F.A. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding. T. Feng’s scholarship is supported by the
Aviation Industry Corporation of China, Ltd. (AVIC).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

54



Appl. Sci. 2022, 12, 4916

Data Availability Statement: Not applicable.

Acknowledgments: The first author wishes to acknowledge the funding from the Aviation Industry
Corporation of China, Ltd. (AVIC), AVIC General Huanan Aircraft Industry Co., Ltd. and the China
Scholarship Council (No. [2017] 5082).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Flor, F.R.; De Medeiros, R.; Tita, V. Numerical and Experimental Damage Identification in Metal-Composite Bonded Joint. J. Adhes.
2014, 91, 863–882. [CrossRef]

2. Sikdar, S.; Fiborek, P.; Malinowski, P.; Ostachowicz, W. Ultrasonic guided wave propagation in a repaired stiffened composite
panel. In Proceedings of the Health Monitoring of Structural and Biological Systems XIII, Denver, CO, USA, 3–7 March 2019.

3. Lambinet, F.; Khodaei, Z.S. Damage detection & localization on composite patch repair under different environmental effects.
Eng. Res. Express 2020, 2, 045032. [CrossRef]

4. Katnam, K.B.; Comer, A.J.; Roy, D.; da Silva, L.; Young, T. Composite Repair in Wind Turbine Blades: An Overview. J. Adhes. 2015,
91, 113–139. [CrossRef]

5. Spearing, S.M.; Lagace, P.A.; McManus, H.L.N. On the Role of Lengthscale in the Prediction of Failure of Composite Structures:
Assessment and Needs. Appl. Compos. Mater. 1998, 5, 139–149. [CrossRef]

6. Gryzagoridis, J.; Findeis, D. Benchmarking shearographic NDT for composites. Insight-Non-Destr. Test. Cond. Monit. 2008, 50,
249–252. [CrossRef]

7. Katnam, K.B.; Dhôte, J.X.; Young, T.M. Experimental analysis of the bondline stress concentrations to characterize the influence of
adhesive ductility on the composite single lap joint strength. J. Adhes. 2013, 89, 486–506. [CrossRef]

8. Gharib, H. Structural Health Monitoring of Adhesive Bond in Aircraft Repair Patches. Available online: https://
www.researchgate.net/profile/Hossam-Gharib/publication/282121093_A_Review_on_Structural_Health_Monitoring_of_
Adhesive_Bond_in_Aircraft_Repair_Patches/links/56036a9508ae596d2591e664/A-Review-on-Structural-Health-Monitoring-
of-Adhesive-Bond-in-Aircraft-Repair-Patches.pdf (accessed on 20 March 2022).

9. Sherwin, G.R. Non-autoclave processing of advanced composite repairs. Int. J. Adhes. Adhes. 1999, 19, 155–159. [CrossRef]
10. Brostow, W.; Glass, N.M. Cure progress in epoxy systems: Dependence on temperature and time. Mater. Res. Innov. 2003, 7,

125–132. [CrossRef]
11. Katnam, K.; Comer, A.; Stanley, W.; Buggy, M.; Ellingboe, A.; Young, T. Characterising pre-preg and non-crimp-fabric composite

single lap bonded joints. Int. J. Adhes. Adhes. 2011, 31, 679–686. [CrossRef]
12. Lambinet, F.; Khodaei, Z.S. Development of smart bonded composite patch repair solution. AIP Conf. Proc. 2020, 2309, 020009.
13. Lambinet, F.; Khodaei, Z.S.; Aliabadi, F.M. Effectiveness of RAPID and SSM Algorithms on Composite Scarf Repair. Key Eng.

Mater. 2018, 774, 535–540. [CrossRef]
14. Zhu, J.; Wang, Y.; Qing, X. A real-time electromechanical impedance-based active monitoring for composite patch bonded repair

structure. Compos. Struct. 2019, 212, 513–523. [CrossRef]
15. Rocha, H.; Semprimoschnig, C.; Nunes, J.P. Sensors for process and structural health monitoring of aerospace composites: A

review. Eng. Struct. 2021, 237, 112231. [CrossRef]
16. Su, Z.; Ye, L. Identification of Damage Using Lamb Waves: From Fundamentals to Applications; Springer Science & Business Media:

Berlin, Germany, 2009.
17. Giurgiutiu, V.; Zagrai, A.; Bao, J.J. Piezoelectric Wafer Embedded Active Sensors for Aging Aircraft Structural Health Monitoring.

Struct. Health Monit. 2002, 1, 41–61. [CrossRef]
18. Kim, H.S.; Ghoshal, A.; Chattopadhyay, A.; Prosser, W.H. Development of Embedded Sensor Models in Composite Laminates for

Structural Health Monitoring. J. Reinf. Plast. Compos. 2004, 23, 1207–1240. [CrossRef]
19. Dib, G.; Koricho, E.G.; Karpenko, O.; Haq, M.; Udpa, L.; Udpa, S.S. Feasibility of PZT ceramics for impact damage detection in

composite structures. AIP Conf. Proc. 2015, 1650, 1072–1080. [CrossRef]
20. Qiu, Y.; Wang, Q.-B.; Zhao, H.-T.; Chen, J.-A.; Wang, Y.-Y. Review on composite structural health monitoring based on fiber Bragg

grating sensing principle. J. Shanghai Jiaotong Univ. (Science) 2013, 18, 129–139. [CrossRef]
21. Giurgiutiu, V. Structural Health Monitoring of Aerospace Composites; Academic Press: Cambridge, MA, USA, 2015.
22. Güemes, A.; Fernández-López, A.; Díaz-Maroto, P.F.; Lozano, A.; Sierra-Perez, J. Structural health monitoring in composite

structures by fiber-optic sensors. Sensors 2018, 18, 1094. [CrossRef]
23. Jinachandran, S.; Rajan, G. Fibre Bragg Grating Based Acoustic Emission Measurement System for Structural Health Monitoring

Applications. Materials 2021, 14, 897. [CrossRef]
24. Zhao, X.; Gao, H.; Zhang, G.; Ayhan, B.; Yan, F.; Kwan, C.; Rose, J.L. Active health monitoring of an aircraft wing with embedded

piezoelectric sensor/actuator network: I. Defect detection, localization and growth monitoring. Smart Mater. Struct. 2007, 16,
1208–1217. [CrossRef]

25. Aliabadi, M.H.F.; Khodaei, Z.S. Structural Health Monitoring for Advanced Composite Structures; World Scientific Publishing Europe
Ltd.: London, UK, 2017.

55



Appl. Sci. 2022, 12, 4916

26. Güemes, A.; Fernandez-Lopez, A.; Pozo, A.R.; Sierra-Pérez, J. Structural Health Monitoring for Advanced Composite Structures.
J. Compos. Sci. 2020, 4, 13. [CrossRef]

27. Michaels, J.E. Detection, localization and characterization of damage in plates with an in situ array of spatially distributed
ultrasonic sensors. Smart Mater. Struct. 2008, 17, 035035. [CrossRef]

28. Khodaei, Z.S.; Aliabadi, M.H. Assessment of delay-and-sum algorithms for damage detection in aluminium and composite plates.
Smart Mater. Struct. 2014, 23, 075007. [CrossRef]

29. Rito, R.; Crocombe, A.; Ogin, S. Health monitoring of composite patch repairs using CFBG sensors: Experimental study and
numerical modelling. Compos. Part A Appl. Sci. Manuf. 2017, 100, 255–268. [CrossRef]

30. Roth, W.; Giurgiutiu, V. Structural health monitoring of an adhesive disbond through electromechanical impedance spectroscopy.
Int. J. Adhes. Adhes. 2017, 73, 109–117. [CrossRef]

31. Qing, X.; Beard, S.J.; Kumar, A.; Hannum, R. A real-time active smart patch system for monitoring the integrity of bonded repair
on an aircraft structure. Smart Mater. Struct. 2006, 15, N66–N73. [CrossRef]

32. Bekas, D.G.; Sharif-Khodaei, Z.; Baltzis, D.; Aliabadi, M.F.; Paipetis, A.S. Quality assessment and damage detection in nanomodi-
fied adhesively-bonded composite joints using inkjet-printed interdigital sensors. Compos. Struct. 2019, 211, 557–563. [CrossRef]

33. Sánchez-Romate, X.F.; García, C.; Rams, J.; Sánchez, M.; Ureña, A. Structural health monitoring of a CFRP structural bonded
repair by using a carbon nanotube modified adhesive film. Compos. Struct. 2021, 270, 114091. [CrossRef]

34. Bekas, D.G.; Sharif-Khodaei, Z.; Aliabadi, M.F. An Innovative Diagnostic Film for Structural Health Monitoring of Metallic and
Composite Structures. Sensors 2018, 18, 2084. [CrossRef]

35. Feng, T.; Bekas, D.; Aliabadi, M.H.F. Active Health Monitoring of Thick Composite Structures by Embedded and Surface-Mounted
Piezo Diagnostic Layer. Sensors 2020, 20, 3410. [CrossRef]

36. Lin, M.; Chang, F.-K. Composite structures with built-in diagnostics. Mater. Today 1999, 2, 18–22. [CrossRef]
37. Feng, T.; Aliabadi, M.F. Structural Integrity Assessment of Composites Plates with Embedded PZT Transducers for Structural

Health Monitoring. Materials 2021, 14, 6148. [CrossRef]
38. Salmanpour, M.S.; Khodaei, Z.S.; Aliabadi, M.H. Airborne Transducer Integrity under Operational Environment for Structural

Health Monitoring. Sensors 2016, 16, 2110. [CrossRef] [PubMed]
39. Yue, N.; Khodaei, Z.S.; Aliabadi, M.H. Damage detection in large composite stiffened panels based on a novel SHM building

block philosophy. Smart Mater. Struct. 2021, 30, 045004. [CrossRef]
40. Xu, C.; Khodaei, Z.S. A Novel Fabry-Pérot Optical Sensor for Guided Wave Signal Acquisition. Sensors 2020, 20, 1728. [CrossRef]

[PubMed]
41. Park, G.; Farrar, C.R.; Di Scalea, F.L.; Coccia, S. Performance assessment and validation of piezoelectric active-sensors in structural

health monitoring. Smart Mater. Struct. 2006, 15, 1673–1683. [CrossRef]
42. Zou, F.; Benedetti, I.; Aliabadi, M.H. A boundary element model for structural health monitoring using piezoelectric transducers.

Smart Mater. Struct. 2014, 23, 015022. [CrossRef]

56



applied  
sciences

Article

Noise Reduction in the Swept Sine Identification Procedure of
Nonlinear Systems

Pietro Burrascano * and Matteo Ciuffetti

Citation: Burrascano, P.; Ciuffetti, M.

Noise Reduction in the Swept Sine

Identification Procedure of Nonlinear

Systems. Appl. Sci. 2021, 11, 7273.

https://doi.org/10.3390/app11167273

Academic Editor: Dimitrios

G. Aggelis

Received: 25 June 2021

Accepted: 5 August 2021

Published: 7 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Dipartimento di Ingegneria, Università di Perugia, 06125 Perugia, Italy; matteo.ciuffetti@studenti.unipg.it
* Correspondence: pietro.burrascano@unipg.it

Abstract: The Hammerstein model identification technique based on swept sine excitation signals
proved in numerous applications to be particularly effective for the definition of a model for nonlinear
systems. In this paper we address the problem of the robustness of this model parameter estimation
procedure in the presence of noise in the measurement step. The relationship between the different
functions that enter the identification procedure is analyzed to assess how the presence of additive
noise affects model parameters estimation. This analysis allows us to propose an original technique to
mitigate the effects of additive noise in order to improve the accuracy of model parameters estimation.
The different aspects addressed in the paper and the technique for mitigating the effects of noise on the
accuracy of parameter estimation are verified on both synthetic and experimental data acquired with
an ultrasonic system. The results of both simulations and experiments on laboratory data confirm
the correctness of the assumptions made and the effectiveness of the proposed mitigation methodology.

Keywords: nonlinear systems; Hammerstein model; pulse compression; ultrasonic systems

1. Introduction

The behavior of physical systems is very often modeled using linear techniques. In
reality, only in very particular cases physical systems can behave as linear, so if we want to
obtain high quality results when mathematical models of physical systems are involved, it
becomes of remarkable importance to have models that can represent the behavior of the
system also in a non-linear regime.

The modeling of nonlinear dynamical systems is one of the most challenging research
areas in the field of system representation. Much of the research developed in recent years
has increasingly focused on predominantly data-driven approaches, including neural nets
or fuzzy logic [1], methodologies that assume the availability of large amounts of data. The
amount of available data is not always adequate to represent the complexity of the system
and the computing power is sufficient to handle them. For this reason, they continue to be
widely diffused in the white-box approaches and the gray-box approaches, which place
side by side to a number of data-driven only, black box methods: Such techniques integrate
in different measures the information derived from the knowledge of the physics of the
system and information extracted from the data produced by the nonlinear system.

The white-box approaches require an accurate knowledge of the system. These
techniques rely, for example, on wave digital filters [2,3] or differential equations [4] to
obtain an accurate model of the real system.

If one has detailed knowledge of the physical system, these models can be highly
accurate. If it is not possible to adequately represent the overall physical system by
equations, the gray and black-box approaches can be applied, as they require only partial
knowledge of the system or only the knowledge of input and output signals. A partial
knowledge of the physics of the system allows to fractionate it into connected subsystems,
each representable in a simpler way by adopting a gray-box approach [5,6]. Among the
black-box approaches, the methods derived from the Volterra series are in a prominent
position, both in terms of accuracy and historically, having been defined long before the
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neural network-based approaches. Modeling techniques based on this infinite series are
obtained by truncating them to a finite number of terms [7]. It is however important to
note that, even considering a truncation to a low order of the Volterra series, the number
of coefficients required to define the relevant model quickly becomes very large. This
is an important limitation, because it makes it possible in practice to define adequate
models by following this path only in the case where the system shows a degree of
nonlinearity of small entity. This has prompted the development of simplified expansion
models of the Volterra series [8]. Among these, the Hammerstein and Wiener models are
among the most popular. Having available accurate models and effective techniques for
their identification has allowed the successful application of these nonlinear modeling
techniques of physical systems in many engineering fields, notably including acoustics and
nondestructive testing [9–12].

Among the different types of black-box nonlinear models of physical structures, the
parallel Hammerstein model is particularly interesting as it can be shown that the problem
of identifying its parameters reduces to a linear problem, so classical least squares methods
can be used for their estimate [13]. An efficient technique was proposed in recent years
for the identification of the parallel Hammerstein model [14–16]: Its relative simplicity of
implementation, and the excellent results obtained both in laboratory experiments and in
practical applications, make it one among the most competitive techniques for the identi-
fication of the Hammerstein model: A swept sine signal is input to the nonlinear system
to be modelled and the corresponding output is acquired. Processing this output signal
allows to identify the parameters of the model, as will be detailed in the following sections.

An aspect of this technique, which is of great importance in practical applications,
but which has been only partially addressed in the technical literature, is the analysis of
the effects of noise that inevitably adds to the useful signal in the acquisition step of the
identification procedure. The problem has been addressed in some particular cases such as
in [17], where an iterative procedure for the identification of the Hammerstein model is
defined in the particular case in which the noise, added to the useful signal at the output
of the system to be identified, can be modeled as a correlated noise, assumed to be the
output of a digital filter with a zero mean random sequence as input. In [18], a protocol is
proposed to determine the location of the process noise in a Wiener–Hammerstein system
with respect to the static nonlinearity by using a periodic, nonstationary input test signal.
Hypothesizing the location of the process noise is addressed as a preliminary step in order
to improve the successive model identification. In [19], the hypothesis that damage causes
the structure to exhibit a nonlinear response is tested, and thus the use of Nonlinear Model
Based Features is shown to increase classification performance: although the study does
not directly analyze the effects of measurement noise in the model identification phase, it
evaluates the performance degradation of the classification procedure in the presence of
noise added to the measured signals at the output of the system under study. In [20], the
identification of the nonlinear model is considered in the presence of uncertainties: Under
the assumption of stationarity of the system to be modeled, the effect of uncertainties is
reduced by using repetitions of the input swept sine signal, which is repeated several times
in order to excite the system with a pseudo periodic signal; a period synchronized with the
duration of the swept sine signal is adopted to simplify the implementation. Rebillat and
Schoukens in [21] compare two methodologies of identification of the Hammerstein model
by evaluating, for both, specific performance indexes on systems defined as bench test, and
in the presence of noise.

In the present paper we deal with the problem of the accuracy in the identification of
the Hammerstein model using the identification technique based on exponential swept
sine test signals. We consider the presence of noise that is added to the useful signal when
measuring the response of the nonlinear system. In the paper we propose an original
analysis of the link that exists between the environmental noise superimposed on the
measurement result and the uncertainty in the estimation of the kernels that identify the
Hammerstein model in the case that the identification technique is based on exponential
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swept sine signals. This original analysis, besides clarifying the connection between the
presence of measurement noise and the uncertainties in the estimation of the different
parameters characterizing the identification procedure, represents the basis to define a
novel technique, that we propose in the paper, to mitigate the effects of the superimposed
noise on the quality of the estimation of the parameters that identify the model. The
technique we propose is based on the use of lowpass filters, each designed to operate on
one of the kernels, characterizing the different branches of the Hammerstein model.

The different aspects of the uncertainty reduction procedure are verified both on
synthetic data and in an experimental case. The latter is an ultrasonic measurement setup
with transducers operating in air, chosen because the possible effects due to measurement
noise are particularly relevant: The limited impedance matching and the attenuation due
to air propagation make this an experimental setup where the signal-to-noise ratio can
degrade significantly.

The paper is organized as follows: In Section 2, the theoretical aspects of the procedure
are detailed. In Section 3, the experimental tests carried out on both synthetic and real
devices are described. Section 4 discusses the results obtained, draws conclusions, and
indicates possible evolutions of the work.

2. Theoretical Aspects

In this section we will briefly describe some concepts at the basis of the procedure
for reducing the effects of measurement noise in the identification of the Hammerstein
model based on swept sine signals: The procedure for model parameters identification is
first recalled, then the effect of noise on the assessment of model kernels hi(t) is evaluated.
Finally, the frequency bands characterizing the signals involved in the different steps of the
identification procedure are analyzed.

2.1. Model Identification by Swept Sine Excitation

If we assume that a valid representation of the nonlinear system is the Hammerstein
model, a schematic description of which is shown in Figure 1, the input–output relation of
the system will be:

yH(t) = x(t)⊗ h1(t) + x(t)2 ⊗ h2(t) + . . . + x(t)NH ⊗ hNH (t) (1)

where we indicated with the symbol ⊗ the convolution operation. The output yH(t) is the
sum of the powers up to order NH of the input signal x(t), convolved with appropriate
impulsive functions hi(t); such impulsive functions hi(t) are the kernels that identify the
Hammerstein model.

Figure 1. The Hammerstein model. The input x(t) and each of its powers up to order NH pass
through a different linear filter: (x(t))k is convolved with hk(t). The order NH and the kernels hk(t)
completely characterize the model.

Assume the input is a swept sine, i.e., an harmonic signal x(t) = R Cos(φ(t)) of
amplitude R, with instantaneous angular frequency ω(t) = dφ(t)/dt, which varies over
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time. If we represent vectors and matrices by square brackets, we can write for the output
of the Hammerstein model of order NH :

yH(t) =
[
[R Cos(φ(t))]k

]T
⊗ [h(t)] (2)

where [h(t)] is the vector of the different kernels hk(t), k = 1, . . . , NH , and
[
[R Cos(φ(t))]k

]T

is the transpose of the vector of powers of the input signal.
By means of the Chebyshev polynomials of the first kind, we can express the harmonics

Cos(k φ(t)) of the swept sine function Cos(φ(t)), as functions of the powers [R Cos(φ(t))]k

of the input signal [16]:

[Cos(k φ(t))] = [Ac][Cos(φ(t))]k = [Ac][Rc]
−1[R Cos(φ(t))]k (3)

The entries of matrix [Ac] are the coefficients of Chebyshev polynomials of the first
type, and [Rc] is the diagonal matrix in which the index term {i, i} is the i − th power of
the amplitude R. From expression (3), we can derive the expression of [R Cos(φ(t))]k as a
function of the harmonics Cos(k φ(t)) which, substituted in (2), gives:

yH(t) =
[
[Rc][Ac]

−1Cos(k φ(t))
]T

⊗ [h(t)] = [Cos(k φ(t))]T
[
[Rc][Ac]

−1
]T

⊗ [h(t)] =

= [Cos(k φ(t))]T ⊗
([

[Ac]
−1
]T

[Rc]

)
[h(t)] = [Cos(k φ(t))]T ⊗ [g(t)]

(4)

where we considered that [Rc] is a diagonal matrix, and we defined the vector [g(t)]

containing the functions gi(t), i = 1, . . . NH , by means of [g(t)] =
[
[Ac]

−1
]T

[Rc] [h(t)].
A comparison between Equations (2) and (4) tells us that the output yH(t) of the

nonlinear system, obtained when the swept sine signal x(t) = R Cos(φ(t)) is input, can be
expressed either as the sum of the convolutions between the powers of the harmonic signal
itself and the functions in [h(t)], or, alternatively, as the sum of the convolutions between
the harmonics Cos(k φ(t)) of the signal Cos(φ(t)) and the impulsive functions [g(t)]. The
functions [g(t)] are related to the functions [h(t)] through a linear transformation; the

transformation matrix
[
[Ac]

−1
]T

[Rc] depends on the amplitude R of the input signal and
on the matrix [Ac], whose entries are the coefficients of the Chebyshev polynomials of the
first kind.

The identification procedure of the Hammerstein model, and therefore of the functions
[h(t)], is based on this correspondence between the [h(t)] and the [g(t)]: assume that the
harmonic function: x(t) = R Cos(φ(t)) at the input is such to modify its instantaneous
frequency by following an exponential law, i.e., assume that, if T0 is the duration of the
swept sine signal ranging between the frequencies fMIN and fMAX , the angular frequency
is defined by ω(t) = dφ(t)/dt = 2 π fMIN Exp(t/L), where the constant L is defined as
L = T0/ln( fMAX/ fMIN) and describes how quickly the frequency changes over time. It is
easy to verify that the k − th harmonic of the input signal corresponds to a simple shift of
the signal x(t) by the quantity Δtk = L ln(k). In fact, we can write for the instantaneous
frequency f (t):

f (t + Δtk) = fMIN Exp[(t + Δtk)/L] = fMIN Exp[(t + L ln(k))/L] = k fMIN Exp[t/L] = k f (t) (5)

If, moreover, the input signal complies with specific constraints on its instantaneous
phase, as detailed in [15], we can process the output yH(t) with the matched filter, i.e., a
filter whose impulse response ψ(t) is such that its convolution with the exponential swept
sine signal x(t) = R Cos(φ(t)) produces δ̂(t), a band-limited approximation of Dirac’s
delta function δ(t). The output of the matched filter ψ(t) will then be given by:

u(t) = yH(t)⊗ ψ(t) = [cos[kφ(t)]c]
T ⊗ [g(t)]⊗ ψ(t) =

{[
δ̂(t + Δtk)

]T}⊗ [g(t)] (6)
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where the k − th element of the vector
[
δ̂(t + Δtk)

]
is the band-limited approximation of

the Dirac delta function shifted in time by the quantity Δtk = L ln(k) defined above.
The output u(t) of the matched filter, when the signal yH(t) is input, consists therefore

of a sequence of impulsive functions gi(t) starting at the times identified by the shifts
Δtk = L ln(k) related only once the input swept sine signal is defined, to the order k of the
harmonic. If the parameter L is large enough to keep the different gi(t) apart, each of the
gi(t) functions can be obtained by simply extracting an appropriate section in time of the
output signal u(t), starting at a time instant identified by Δti. The duration of the time
window beginning at Δtk depends on the length of the impulse responses hk(t) and can
only be established by trial and error.

Once the [g(t)] functions have been obtained by sectioning the output u(t) of the
matched filter, from the [g(t)] it is possible to derive the [h(t)] functions that identify the
Hammerstein model through a simple linear transformation:

[h(t)] = [Rc]
−1[Ac]

T [g(t)] (7)

Figure 2 shows graphically the processing procedure to obtain the functions [g(t)].

Figure 2. Description of the processing procedure for the identification of the Hammerstein model.

2.2. Noise Power on the Output yH(t) and on Functions g(t) and h(t)

We have seen that the swept sine identification procedure of the Hammerstein model
starts by considering the functions gi(t), obtained by time-windowing at appropriate
positions the response u(t) of the matched filter when its input is yH(t). The response
yH(t) is the one that we have at the output of the nonlinear system under consideration
when it has an exponential swept sine signal as input. From the functions gi(t) obtained
with this procedure, through an appropriate linear transformation we can derive the
functions hi(t) that characterize the Hammerstein model; the coefficients of this linear
transformation are the coefficients of Chebyshev polynomials of the first type. To obtain
the functions hi(t), a combination of the functions gi(t) is performed according to (7). The
combination is performed through coefficients given by matrix [Rc]

−1[Ac]
T . For example,

for a model of order 4, we will have:⎡⎢⎢⎣
h1(t)
h2(t)
h3(t)
h4(t)

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎣
1
R 0 0 0
0 1

R2 0 0
0 0 1

R3 0
0 0 0 1

R4

⎤⎥⎥⎥⎦
⎡⎢⎢⎣

1 0 −3 0
0 2 0 −8
0 0 4 0
0 0 0 8

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎣
1
R 0 −3

R 0
0 2

R2 0 −8
R2

0 0 4
R3 0

0 0 0 8
R4

⎤⎥⎥⎥⎦·
⎡⎢⎢⎣

g1(t)
g2(t)
g3(t)
g4(t)

⎤⎥⎥⎦ (8)

Assume that additive noise, superimposed on the useful signal, affects the acquisition
of the output to the nonlinear system. The ideal output yH(t) of the nonlinear system will
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be superimposed by the noise sequence N(t), supposed to be white Gaussian with power
spectral density PN( f ) = N0/2. The noise-affected output will be yH N(t) = yH(t) + N(t).

According to the identification procedure, the output signal yH N(t) is filtered through
the matched filter ψ(t): the noise sequence N(t) will thus be filtered giving rise, at the
output of the matched filter, to the noise sequence nu(t) superimposed on the signal u(t).
If we say Ψ( f ) is the Fourier transform of the impulse response of the matched filter:
Ψ( f ) = F{ψ(t)}, the power of noise signal nu(t) at the output of the matched filter can be
evaluated by the:

Pnu = σ2
nu =

∞∫
−∞

PN( f ) |Ψ( f )|2d f =
N0

2

∞∫
−∞

|Ψ( f )|2d f (9)

We denote with σ2
nu the variance of noise process nu(t) superimposed on u(t): all

functions gi(t), are extracted from u(t) at different positions, and will be thus affected by
superimposed noise signals ngi (t) whose variance will be σ2

nu for all of them: σ2
ngi

= σ2
nu .

This common variance will be denoted in the following as σ2
g; furthermore, the overall

noise sequence nu(t) has an impulsive-like correlation function; consequently, the noise
sequences ngi (t), extracted at different positions from nu(t), will be uncorrelated with each
other, as they refer to different portions of the overall noise sequence nu(t).

By following this reasoning, it is straightforward to evaluate the variance of noise
sequences nhi (t) superimposed on each one of the hi(t) kernels from the variance of the
noise sequences ngi (t) added to the gi(t): the noise sequences ngi (t) (uncorrelated, all with
zero mean and variance σ2

g) are combined with each other by using the same coefficients
as the gi(t); in the linear combination, the noise amplitudes ngi (t) will be altered according
to the coefficients [Rc]

−1[Ac]
T seen above. The noise sequences ngi (t) are not correlated

with each other, so the variances of noise sequences nhi (t), denoted as σ2
hi

, will then be
obtained by combining the variances σ2

g with coefficients equal to the square of those in

the matrix [Rc]
−1[Ac]

T . We define the matrix [Vc] =
{
[Rc]

−1[Ac]
T
}2

, where by {[.]}2 we
denote the matrix whose terms are the squares of the individual elements of the matrix [.].
If
[
σ2

h
]

and
[
σ2

g
]

are the vectors of σ2
hi

and σ2
g, we have:[

σ2
h

]
=
{
[Rc]

−1[Ac]
T
}2

.
[
σ2

g

]
(10)

In the example of model order NH = 4, remembering that the variances σ2
g are all

equal to each other, the variances σ2
hi

will be obtained via the linear combination:

⎡⎢⎢⎣
σ2

h1
σ2

h2
σ2

h3
σ2

h4

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(
1
R

)2
0

(−3
R
)2

0

0
(

2
R2

)2
0

(
−8
R2

)2

0 0
(

4
R3

)2
0

0 0 0
(

8
R4

)2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
·

⎡⎢⎢⎣
σ2

g
σ2

g
σ2

g
σ2

g

⎤⎥⎥⎦ (11)

2.3. Frequency Band of Functions g(t) and h(t): Noise Reduction on h(t) by Lowpass Filtering

Equation (10) expresses the connection between the variance σ2
g of noise superim-

posed to each function gi(t) and the variance σ2
hk

of noise overlapping the functions hk(t)
in the case where the identification procedure is the one described in the previous sections.

We already mentioned that, under the assumption of stationarity of the system under
measurement [20], proposes to adopt repetitions of the input swept sine signal to reduce
the amount of uncertainties arising from the presence of superimposed noise. In the present
paper we propose a different way to achieve a mitigation of the effects of additive noise.
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The procedure we propose deserves some further consideration about the bandwidths
of the different signals involved. Equation (10) connects the variances of noise processes
superimposed on functions of different types, considered all full-band, i.e., with harmonic
components that can reach the Nyquist frequency. In reality, the different signals whose
variances are combined in (10) relate to different frequency bands: If the excitation signal
x(t) has harmonic components between fMIN and fMAX, the kernel hk(t) present on the
k − th branch of the Hammerstein model will be excited in the frequency band associated
with the k − th power of that signal, that is, in the frequency range between fMIN and k ∗
fMAX , having excluded the DC component, if any; it is, therefore, sufficient to characterize
the kernel hk(t) up to frequency k ∗ fMAX , since it will not be stressed for higher frequencies.
According to the swept sine identification procedure, the kernel hk(t) is obtained through
Equation (7), i.e., through a weighted combination of gi(t) functions, where the i − th
function gi(t) is associated with the i − th harmonic of the input signal, and thus with a
frequency range from i ∗ fMIN to i ∗ fMAX . The combination matrix present in Equation (7)
is an upper triangular matrix, and thus the functions gi(t) that contribute to build the
k − th kernel hk(t) are those with indices ranging from k itself to the value NH i.e., to the
maximum order of the Hammerstein model. Thus, according to Equation (7), to obtain
the functions hk(t) (that we know are defined in the frequency band limited to k ∗ fMAX),
we linearly combine the functions gi(t) whose frequency band is wider than that of the
hk(t) we are seeking. The frequency range of the combination of the gi(t) needed to obtain
hk(t) has an overall harmonic content ranging from k ∗ fMIN to NH ∗ fMAX , so it extends to
frequencies much higher than those we know characterize the hk(t) function we want to
identify. This implies that if we lowpass filter the linear combination of the gi(t) functions
contributing to hk(t), and limit the contributions to the useful band of each hk(t) , i.e., to
k ∗ fMAX, we can sensitively reduce the noise effects without altering the quality of the
identification result.

This filtering operation has to be carried out in a frequency band whose range depends
on the order of the function hk(t) to be identified, so for each kernel hk(t) an ad hoc lowpass
filter will have to be defined.

3. Experimental Results

The experiments reported in this section are aimed at verifying the different aspects
highlighted in the previous section of the paper. A first aspect is the relationship between
the noise superimposed on the gi(t) functions and the noise superimposed on the kernel
hk(t) that identify the Hammerstein model: This aspect is tested in the following Section 3.1.
The subsequent sections are instead aimed at verifying the effectiveness of the technique
of lowpass filtering to mitigate uncertainty in the identification of kernels hk(t) due to the
effects of noise superimposed in the measurement phase: Section 3.2 reports the results
of noise effects mitigation obtained in a simulated experiment, while Section 3.3 reports
the results obtained when measuring real data collected in a measurement bench with
ultrasonic probes operating in air.

3.1. Noise on the gi(t) Versus Noise on the hk(t)
In this section, we verify expression (10), which we have shown is the functional

link between the power of noise superimposed on functions gi(t) and the corresponding
power of noise superimposed on the hk(t) estimated by combining the gi(t). We start with
the simulation of the noise sequence superimposed on functions gi(t) and estimate their
variances; we then operate the linear transformation (7) and obtain the corresponding noise
sequences affecting the hk(t) kernels; in this case too we estimate the variance vector

[
σ2

h
]

characterizing these noise sequences. We thus compare the latter estimates
[
σ2

h
]

with
those obtained by means of Equation (10).

Figure 3 plots the noise sequences: The first line of Figure 3 reports an example of the
noise sequences obtained by truncating at different Δtk the function u(t), in the absence of
input excitations: The value of the noise powers in the four segments, estimated by aver-
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aging over 50 trials, is
[
σ2

g
]
=
[

0.0098 0.0090 0.0101 0.0099
]T . The second row

of Figure 3 shows the noise sequences obtained by the transformation (7). Noise powers,
estimated from the sequences, are

[
σ̂2

h
]
=
[

0.0157 0.0048 0.0006 0.0002
]T .

Figure 3. Correspondence between noise sequences superimposed on g(t) and h(t). Plots (A–D): noise sequences on
g1(t), g2(t), g3(t), g4(t), respectively. Plots (E–H): noise sequences on h1(t), h2(t), h3(t), h4(t), respectively.

We then compare these estimates with the corresponding variance values predicted
by using equation (10), which gives the estimates of the same

[
σ2

h(t)

]
starting from the[

σ2
g
]
: we obtain from (10):

[
ˆ̂σ2

h

]
=
[

0.0154 0.0047 0.0006 0.0002
]T .

The percentage estimate error made adopting (10), evaluated by means of σ2
i_ERR% =

100
(

ˆ̂σ2
hk
− σ̂2

hk

)
/σ̂2

hk
, in the case of the above example gives:[

σ2
ERR%

]
=
[

−1.54% −1.87% 0.0% 0.0%
]T

The low error values confirm that the variance
[
σ2

h
]

of the noise superimposed on
the kernels [h(t)] can be accurately obtained from an estimate of the power of the noise[
σ2

g
]

superimposed on the functions [g(t)] by adopting Equation (10).

3.2. Mitigation of Noise Effects: Simulation Tests

We begin testing the effectiveness of the procedure proposed for mitigating the effects
of noise in a simulation experiment: The importance of performing simulation tests is to
have a complete feedback of the improvement we achieve in the estimation of the kernels
hi(t): Their reference trends are known, since they have been analytically defined to be
included in the synthetic system. Consequently, a direct comparison with the result of
the identification procedure in the presence of noise is possible, and we can quantify the
benefits arising from the proposed mitigation procedure.

We have generated a synthetic nonlinear system of the fourth order, defined according
to the Hammerstein model. In the different branches of the model we adopted as kernels
hi(t), the four functions are represented in Figure 4. They all have typical behavior of the
impulsive response of a filter of the second order and differ for the central frequency and
for the attack delay time, which both increase as the order increases. The values adopted
in our simulations to characterize the four kernels of the synthetic model are reported in
Table 1.
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Figure 4. Kernels hi(t) adopted in the synthetic Hammerstein model of the fourth order. Plots (A–D): reference functions
h1(t), h2(t), h3(t), h4(t), respectively.

Table 1. Values that characterize the four kernels of the synthetic model.

h1(t) h2(t) h3(t) h4(t)

f0 [kHz] 200 400 600 800
Delay [μs] 0.0 2.5 5.0 7.5

For the purpose of verifying the accuracy in model identification, the system is
elicited with an exponential swept sine signal of amplitude R = 1 whose frequency range
fMIN = 40 [kHz] to fMAX = 1600 [kHz] contains the frequency bands that characterize all
the hi(t) kernels.

A Gaussian white noise is added to the response yH(t); the value of its standard
deviation is such that the signal-to-noise ratio (SNR) is brought to the desired level: The
values SNR1 = 10 [dB] and SNR2 = 5 [dB] were considered. Let us say yH N(t) is the noisy
response. It is convolved with the filter matched to the input signal to obtain the output
signal u(t). The functions gi(t) are obtained by taking portions of u(t) at the time instants
Δti. From gi(t), the estimates of the kernels hk(t) are obtained. To verify the effectiveness of
the noise reduction technique, we report both the results of the estimates in the absence of
lowpass filtering and the results obtained after the additional lowpass filtering step of each
of the estimated hk(t) kernels. The impulse response of the FIR (Finite Impulse Response)
filter is defined using a frequency sampling method, starting with the amplitude values
that define the required low-pass amplitude response in the frequency domain.

Figures 5 and 6 show the superposition between the estimated hk(t) kernels and the
corresponding reference trends, respectively, for the case SNR1 = 10 [dB], and for the case
SNR2 = 5 [dB]: The upper row of each figure refers to the estimate without filtering and
the lower row shows the trend of the estimated hk(t) after the additional lowpass filtering
step. The figures clearly show that the lowpass filters defined ad hoc for each order of
the kernel greatly reduce the effects of superimposed noise without deteriorating the time
course of the function we want to estimate.

Figure 5. Cont.
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Figure 5. Estimated hk(t) kernels in the case SNR1 = 10 [dB] (blue lines) and reference kernels (red lines). Plots (A–D):
h1(t), h2(t), h3(t), h4(t) estimates before lowpass filtering and reference. Plots (E–H): h1(t), h2(t), h3(t), h4(t) estimates
after lowpass filtering and reference.

Figure 6. Estimated hk(t) kernels in the case SNR1 = 5 [dB] (blue lines) and reference kernels (red lines). Plots (A–D):
h1(t), h2(t), h3(t), h4(t) estimates before lowpass filtering and reference. Plots (E–H): h1(t), h2(t), h3(t), h4(t) estimates
after lowpass filtering and reference.

In order to give a quantitative evaluation of the improvement effect allowed by the
filtering technique proposed in this paper, we adopted the performance index proposed
in [21]:

PIhk
=

∑Ns
j=0[ĥk [j]−hk [j]]

2

∑Ns
j=0[hk [j]]

2 k = 1, . . . , NH

PI3 = 1
NH

NH
∑

k=1

(
PIhk

)
= 1

NH

NH
∑

k=1

(
∑Ns

j=0[ĥk [j]−hk [j]]
2

∑Ns
j=0[hk [j]]

2

) (12)

where hk[j] is the k− th reference kernel and ĥk[j] is its estimate, Ns is the number of samples
of both the actual and estimated kernels, and NH is the order of the Hammerstein model.

The values of the indices calculated both before and after filtering for the two cases of
signal to noise ratio equal to 10 [dB] and 5 [dB] are shown in Tables 2 and 3.

Table 2. Values [dB] of the performance indexes defined by (12): case of SNR = 10 [dB].

SNR = 10 dB PIh1 PIh2 PIh3 PIh4 PI3

pre filter −7.37 −0.61 −0.58 2.92 −0.12
filtered −14.74 −8.91 −10.76 −4.13 −8.00
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Table 3. Values [dB] of the performance indexes defined by (12): case of SNR = 5 [dB].

SNR = 5 dB PIh1 PIh2 PIh3 PIh4 PI3

pre filter −0.99 2.02 2.80 4.07 2.33
filtered −8.88 −2.78 −4.58 0.10 −2.95

It is evident from the values shown in Tables 2 and 3 that both in the less noisy case
and in the noisier one, the action of filtering is such as to significantly reduce the index
value, and, therefore, improve the signal to noise ratio obtained.

3.3. Mitigation of Noise Effects: Ultrasonic System with in-Air Propagation

A verification of the proposed procedures was also carried out in the case of laboratory-
acquired data. The measurements were performed on an ultrasonic acquisition system
designed for in-air propagation, as shown in Figure 7. The measurement setup consists, in
sequence, of a personal computer (PC) for management and supervision; an HS5 TiePie
handyscope used as a generator of arbitrary waveforms; a Falco-System power amplifier;
a pair of identical non-contact point focused ultrasonic transducers by Ultran, used in
transmission and reception; again the TiePie, used this time as a data logger; and the PC
for data storage. The ultrasonic probes operate at a center frequency of 200 KHz, and
the emitted beam is focused at a single point (F = 10 cm). The probes allow a maximum
input voltage of 150 V. The Falco-System power amplifier was used with an amplification
factor of 50×. The probes, a pair of ULTRAN NCG 200-D25 P100 focused probes, were
mounted in a through-transmission configuration (through air alone) on precision mounts
and placed at a distance of approximately 21 cm, the distance at which the received signal
was maximized.

Figure 7. Schematic representation (A) and image (B) of the Ultrasonic non-contact bench.

The identification step was performed using an exponential swept sine signal of
amplitude R = 1. It was assumed that the system could be usefully characterized by a
swept sine signal of duration 9.3 [ms] operating in the range between 50 kHz and 400 kHz,
sampled at 5 Ms/s. The order adopted for the Hammerstein model was NH = 4. Several
measurements were carried out by slightly modifying the distance of the probes in order
to change the level of useful signal received, and therefore the SNR ratio through slight
defocusing. We report in the following the results of two experiments, which differ only in
the value of the SNR ratio that characterizes them.

Figure 8 shows, in an expanded scale, the trend of the gi(t) functions for the four
orders considered in the case of the lower SNR value (estimated Peak Signal to Noise ratio
on yH N(t) = 20 [dB]).
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Figure 8. Non-contact point focused ultrasonic probes experiment: gi(t) functions for the four orders considered (expanded
representation scale) in the case of the lower SNR value (20 [dB]). Plots (A–D): functions g1(t), g2(t), g3(t), g4(t), respectively.

They were obtained by taking the appropriate sections of the signal at the output to
the matched filter. A first observation concerns the fact that even in the real data case, the
hypothesis seems to be verified—the noise power on the function gi(t) is independent of
the order of the function. The variance of the noise superimposed on the gi(t) functions,
estimated in segments of the output signal u(t) preceding the instants Δtk and averaged
over 50 trials, gives the following values:[

σ2
g

]
=
[

0.47 0.49 0.43 0.44
]T

The corresponding functions hk(t) are shown in Figure 9: In analogy with Figures 6 and 7,
the first line of Figure 9 shows the trend of the functions hk(t) before the lowpass filtering
operation. The second line shows the trends of the same functions after they have been
lowpass filtered: Even at visual inspection, the improvement of the signal on the first three
functions clearly appears, while it is also evident from h4(t), that if the noise level exceeds
the useful signal, the filtering procedure can remove part of the noise, but cannot fully
highlight the trend of the desired function, where present. We observe also in this real data
case, that the filtering operation has not altered the temporal trend of the hk(t) functions,
as far as it is possible to appreciate in cases where the noise level is not excessively high.
The variance of the noise superimposed on the hk(t) functions in the case of the lower
SNR value, estimated in the initial portion of the sequences and averaged over 50 trials,
gives the values reported in Table 4: The positive effect of filtering is evident in all four
orders. Improvements of different magnitudes are apparent for different orders: this will
be discussed in the following section.

Figure 9. Estimated hk(t) kernels in the case of the ultrasonic acquisition system designed for in-air propagation in the
case of the lower SNR value (20 [dB]). Plots (A–D): h1(t), h2(t), h3(t), h4(t) estimates before lowpass filtering. Plots
(E–H): h1(t), h2(t), h3(t), h4(t) estimates after lowpass filtering.
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Table 4. Noise variance estimates on the hk(t) in the absence and presence of low-pass filtering in the
case of the lower SNR value.

h1(t) h2(t) h3(t) h4(t)

No filter 4.69 29.15 5.25 25.95
Low pass filter 3.70 5.31 1.22 11.91

Figure 10 shows, in an expanded scale, the trend of the gi(t) functions for the four
orders considered in the case of the higher SNR value (estimated Peak Signal To Noise
ratio on yH N(t) = 31 [dB]).

Figure 10. Non-contact point focused ultrasonic probes experiment: gi(t) functions for the four orders con-
sidered (expanded representation scale) in the case of the higher SNR value (31 [dB]). Plots (A–D): functions
g1(t), g2(t), g3(t), g4(t), respectively.

The corresponding functions hk(t) are shown in Figure 11, which is organized as in
the case of Figure 9.

Figure 11. Estimated hk(t) kernels in the case of the ultrasonic acquisition system designed for in-air propagation in the
case of the higher SNR value (31 [dB]). Plots (A–D): h1(t), h2(t), h3(t), h4(t) estimates before lowpass filtering. Plots (E–H):
h1(t), h2(t), h3(t), h4(t) estimates after lowpass filtering.

The variance of the noise superimposed on the gi(t) functions in the case of the higher
SNR value, estimated in segments of the output signal u(t) preceding the instants Δtk and
averaged over 50 trials, gives the following values:[

σ2
g

]
=
[

1.28 1.14 1.65 3.81
]T

The variance of the noise superimposed on the hk(t) functions in the case of the higher
SNR value, estimated in the initial portion of the sequences and averaged over 50 trials,
gives the values reported in Table 5: The positive effect of filtering is evident in all four
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orders. Improvements of different magnitude are apparent for different orders: This will
be discussed in the following section.

Table 5. Noise variance estimates on the hk(t) in the absence and presence of low-pass filtering in the
case of the higher SNR value (31 [dB]).

h1(t) h2(t) h3(t) h4(t)

No filter 8.05 68.60 12.21 63.62
Low pass filter 5.84 35.59 7.20 45.04

It can be interesting to compare the results obtained using the method we propose in
the present paper with those obtained using the method proposed in [20]. Table 6 shows
the results obtained by applying, on the same experimental setup, the noise reduction
technique proposed in [20] in the case of 20 repetitions. We first observe that the comparison
assumes the applicability of the method proposed in [20], and thus, that the nonlinear
system is stationary, at least for the duration of the repetitions.

Table 6. Noise variance estimates on the hk(t) in the absence of processing and averaging the
estimates over 20 repetitions; case of the higher SNR value (31 [dB]).

h1(t) h2(t) h3(t) h4(t)

No processing 8.05 68.60 12.21 63.62
20 repetitions 6.05 54.28 8.72 51.36

Table 6 shows that in the cases of the estimation of h1(t) and h3(t), the results obtained
are comparable with those of the method proposed in this paper, but considerably lower
than what should be theoretically expected in the presence of Gaussian white noise.

In the cases of h2(t) and h4(t) estimation, the improvement obtained with the averag-
ing technique is in line with theoretical expectations. This can be explained by analyzing
the trends over time, for example in Figure 11: The residual variability is related to an
oscillation and not to white noise; as shown in [22], this variability of the signal results
directly from the limited bandwidth of δ̂(t), the approximated delta function, and thus
from limitations of the identification technique, and is not associated with random noise;
therefore, it cannot be removed either with filtering techniques such as those proposed
in this paper or by averaging over repetitions of the experiment. If we want to draw
conclusions about the comparison between the two methods, we can say that, where the
noise level is very low, the two methods are equivalent; the method proposed in this work,
in addition to not assuming characteristics of stationarity of the system, allows to obtain
better results in the presence of high noise variance compared to the signal level.

4. Discussion and Conclusions

The various experiments we made were aimed at verifying the different aspects that
had been highlighted theoretically in the paper. The correspondence between the noise
superimposed on the gi(t) functions and the noise superimposed on the hk(t) functions,
estimated from the gi(t) functions, was verified through the tests performed in Section 3.1:
The estimates made on the noise sequences superimposed on the gi(t) functions and the
hk(t) functions showed to be in line with what could be theoretically predicted using
relation (10), confirming the validity of the proposed technique.

The subsequent Sections 3.2 and 3.3 had instead the purpose of verifying the theoretical
hypotheses made on a possible improvement in the estimation of the hk(t) parameters, in
the presence of noise, through a low-pass filtering operation. As a preliminary remark,
since we wanted to consider the time behavior of the hk(t) functions, we chose to perform
low-pass filtering through linear phase FIR filters, each with a specifically defined cutoff
frequency related to the kernel order k, in order to preserve, as far as possible, the time
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course of the hk(t) functions linked to the harmonic contents present in the pass band of
each low-pass filter. Both in the case of synthetic data and in the case of real data it was
possible to find that the filtering operations significantly improve the quality of the estimate
and do not significantly alter the hk(t) functions.

The results in Tables 4 and 5 deserve specific comment. The variance of the noise
superimposed on the functions hk(t), estimated in the initial portion of the sequences and
averaged over 50 trials, gives the values reported in the table: The positive effect of filtering
is evident in all four cases and for both SNR levels, but especially in the cases of order
2 and 4. This effect, so different among the different orders, can be easily explained: In
the calculation of h2(t) and h4(t), the transformation (7) implies a strong emphasis (with
coefficient |8|) of the function g4(t) (the one of highest order NH = 4) and therefore of
the noise associated with it: The high variance value of the noise on h2(t) and h4(t) before
filtering can be ascribed to this aspect. The same function g4(t) is the one associated to
the fourth harmonic, so the corresponding noise components have an harmonic content
that includes high frequencies: They can be easily removed by the low pass filtering
operation. This also explains the strong reduction, as a consequence of filtering, of the
estimated variance.

The very good results we presented encourage us to work on further extensions of the
research activity; we plan to use the techniques proposed in this paper in new experimental
setups for further verifications. In addition, we want to test how these techniques combine
with the filtering techniques proposed in [22] for the elimination of oscillations due to
the band-limited swept sine excitation signal. Extending those techniques to the case of
nonlinear device identification in the presence of noise could bring further improvements
in the Hammerstein model identification step of a nonlinear system.
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Abstract: By solving a Marchenko equation, Green’s functions at an arbitrary (inner) depth level
inside an unknown elastic layered medium can be retrieved from single-sided reflection data, which
are collected at the top of the medium. To date, it has only been possible to obtain an exact solution if
the medium obeyed stringent monotonicity conditions and if all forward-scattered (non-converted
and converted) transmissions between the acquisition level and the inner depth level were known a
priori. We introduce an alternative Marchenko equation by revising the window operators that are
applied in its derivation. We also introduce an auxiliary equation for transmission data, which are
collected at the bottom of the medium, and a coupled equation, which is based on both reflection and
transmission data. We show that the joint system of the Marchenko equation, the auxiliary equation
and the coupled equation can be succesfully inverted when broadband reflection and transmission
data are available. This results in a novel methodology for elastodynamic Green’s function retrieval
from two-sided data. Apart from these data, our approach requires P- and S-wave transmission times
between the inner depth level and the top of the medium, as well as two angle-dependent amplitude
scaling factors, which can be estimated from the data by enforcing energy conservation.

Keywords: Marchenko equation; Green’s function retrieval; elastodynamic wave propagation

1. Introduction

Inversion of the Marchenko equation has proven to be an effective tool for the retrieval
of Green’s functions in an unknown acoustic medium from single-sided reflection data [1,2].
For an introduction to this subject, the numerical implementation of the Marchenko equation,
field data applications and recent developments, see [3–11], respectively. An equivalent
(Marchenko) equation has also been derived for wave propagation in elastic media [12–14].
Inversion of this equation requires a priori knowledge of all forward-scattered (non-converted
and converted) waveforms [15]. Moreover, a unique solution can only be obtained if the
medium obeys stringent monotonicity conditions [16], which are often not met in realistic
scenarios. Once a solution to the Marchenko equation is found, it can be used for various
purposes, such as wavefield retrieval inside an unknown medium [17], the imaging of elastic
medium properties [18] or the suppression of multiple undesired reflections in reflection
data [19].

In this paper, we show that the conditions for elastodynamic Green’s function retrieval
are significantly better when an elastic volume can be accessed from two sides, as is the
case in particular laboratory experiments [20], non-destructive testing [21,22], brain imag-
ing [23,24], transcranial ultrasound focusing [25,26], transcranial photoacoustics [27,28]
and when using auxiliary downhole receivers in seismic data acquisition [29,30]. Although
the underlying representations of our work could be extended to account for lateral varia-
tions [19], the presence of a free surface [31,32] and intrinsic attenuation [33,34], we restrict
ourselves to a layered lossless medium for simplicity.
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In Section 2, we derive a system of forward equations that relate the (multi-component)
focusing function at a specified focal depth zI to observed reflection and transmission
data, which are to be acquired at depths of zU < zI and zL > zI . In Section 3, we show
how the system can be inverted for the focusing function and two unknown amplitude
scaling factors, α and β, which are related to transmission losses of (non-converted) P- and
S-waves, respectively, between depth levels zI and zU. Apart from the recorded (reflection
and transmission) data, our scheme requires two direct arrivals, which are represented by
pulses of unit amplitude, delayed with the (non-converted) P- and S-wave travel times from
zI to zU. In this way, we can apply exact (data-driven) Marchenko redatuming of two-sided
data in a layered elastic medium, which is the main contribution of this paper. The retrieved
focusing functions can be transformed into Green’s functions as if there were virtual P-
or S-wave sources at zI , which could eventually be used for imaging and inversion of the
elastic medium’s properties. We close the paper with a discussion in Section 4.

2. Forward Equations

After providing some preliminaries in Section 2.1, we discuss the causality cones of
multi-component Green’s functions and focusing functions in Section 2.2. We propose
novel window operators for Green’s functions (based on non-converted P-wave travel
times) and focusing functions (based on non-converted S-wave travel times). With the
help of these operators, we derive (reflection-based) Marchenko equations in Section 2.3,
(transmission-based) auxiliary equations in Section 2.4 and (transmission- and reflection-
based) coupled equations in Section 2.5. In Section 2.6, we take these equations together,
leading to a joint system. Finally, we present a relation to convert focusing functions into
Green’s functions in Section 2.7.

2.1. Preliminaries

Let (x, y, z) be an Euclidean coordinate system with the z-axis pointing downwards,
whereas t denotes time. We consider a layered lossless isotropic elastic medium, which is
characterized by P-wave velocity cP(z), S-wave velocity cS(z) and mass density ρ(z). Let
zU and zL be two depth levels, which are located above and below all heterogeneties in the
medium, respectively (hence, constant medium properties are assumed above zU and below
zL). Elastodynamic wave propagation is considered in the (x, z)-plane, where wavefields
are assumed to be constant in the y-direction. All wavefields are decomposed into flux-
normalized up- and downgoing P-, Sv- and Sh-components in the (p, τ)-domain [35–37],
where p is the rayparameter and τ is the intercept time. The Sh-components are decoupled
from the P- and Sv-components and will not be considered in this paper (for notational
convenience, component Sv will be referred to as S).

In Figure 1, we show a layered elastic medium, which will be used throughout our
paper as a running example. For convenience, we have chosen the vertical dimension of the
model to be 1 m. However, all quantities can be rescaled to fit a particular application in,
e.g., ultrasound or seismology applications.More information on the design of the medium
and the parameters that are used for modeling are provided in Appendix A. Our objective
is to retrieve the Green’s responses at zU and zL to a Green’s source at a specified depth level
zI (see the dashed magenta line in Figure 1) from recorded (reflection and transmission)
data. These Green’s functions are represented by the following matrix:

G =

⎛⎜⎜⎝
−G−+

U

−G−−
U

G+−
L

G++
L

⎞⎟⎟⎠. (1)

Here, G−+
U and G−−

U are the upgoing (indicated by the first superscript −) Green’s
functions at zU from a down- and upwards radiating (indicated by the second superscript
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+ or −) virtual source at zI , respectively. These quantities contain distinguished PP-, PS-,
SP- and SS-components and are organized as

G−±
U =

(
G−±

U,PP(p, z, τ) G−±
U,PS(p, z, τ)

G−±
U,SP(p, z, τ) G−±

U,SS(p, z, τ)

)
. (2)

Here, subscripts PP and SP indicate the P- and S-wave responses to a P-wave source,
whereas subscripts PS and SS indicate the P- and S-wave responses to an S-wave source.
Matrices G+−

L and G++
L in Equation (1) represent the downgoing Green’s functions at zL from

an up- and downwards-radiatingvirtual source at zI, and are organized akin to Equation (2).

Figure 1. Example of a layered elastic medium with (a) P-wave velocity cP (in m·s−1), (b) S-wave
velocity cS (in m·s−1) and (c) density ρ (in kg·m−3) as a function of depth z (in m). Above zU = 0 m and
below zL = 1 m, the medium is homogeneous. The dashed magenta line indicates the focusing depth
zI = 0.5 m, where a virtual source is to be constructed.

For the representations of Green’s functions, we make use of so-called focusing func-
tions [13], which are represented by the matrix

F =

⎛⎜⎜⎝
F−

U

ZF+
U

F+
L

ZF−
L

⎞⎟⎟⎠. (3)

Here, F−
U and F+

U are the up- and downgoing focusing functions (organized akin to
Equation (2) at zU . These functions are defined in a fictitious medium where the halfspace
below zI is homogeneous. They focus ‘from above’ at zI and continue as a downgoing
wavefield below this depth level (see [15] for details). Similarly, F+

L and F−
L are the down-

and upgoing focusing functions at zL. These functions are defined in a medium where the
halfspace above zI is homogeneous. These functions focus ‘from below’ at zI and continue
as an upgoing wavefield above this depth level. Finally, Z is an operator that reverses the
signs of p and τ. For example, applying this operator to F+

U yields
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ZF+
U = Z

(
F+

U,PP(p, z, τ) F+
U,PS(p, z, τ)

F+
U,SP(p, z, τ) F+

U,SS(p, z, τ)

)
=

(
F+

U,PP(−p, z,−τ) F+
U,PS(−p, z,−τ)

F+
U,SP(−p, z,−τ) F+

U,SS(−p, z,−τ)

)
. (4)

Our objective is to retrieve the focusing functions and Green’s functions from reflection
and transmission data, to be acquired at zU and zL. Let RU,PP, RU,PS, RU,SP and RU,SS be the PP-,
PS-, SP- and SS-reflection responses at zU (for their definitions, see Appendix B.1). Based
on these recordings, we can construct an operator RU that convolves a wavefield with the
reflection response. When applied to F+

U , this multidimensional convolution is defined as

RUF+
U =

∫ τ

0

(
RU,PP(p, τ − τ′) RU,PS(p, τ − τ′)
RU,SP(p, τ − τ′) RU,SS(p, τ − τ′)

)(
F+

U,PP(p, zU , τ′) F+
U,PS(p, zU , τ′)

F+
U,SP(p, zU , τ′) F+

U,SS(p, zU , τ′)

)
dτ′. (5)

Similar operators RL, TLU and TUL can be constructed for convolution with the reflec-
tion response at zL, the transmission response from zU to zL and the transmission response
from zL to zU , respectively. Apart from RU , RL, TLU , TUL and Z , we make use of two window
operators that will be defined in the following section.

2.2. Causality Cones of Green’s Functions and Focusing Functions

In moderately inhomogeneous acoustic media, the Green’s function and the focusing
function are separated in time, except for a single overlapping event, which is commonly
referred to as the direct wave. In the derivation of the acoustic Marchenko equation, this
observation is exploited by truncating wavefields either before [2,11] or after [38,39] the
direct wave. In elastic media, there can be a multitude of overlapping events, making
the situation significantly more cumbersome [16]. To illustrate this problem, we show the
(symmetrized) causality cones of multi-component Green’s functions and focusing functions
in Figure 2. In particular, we refer the reader to the orange areas, where the Green’s functions
and focusing functions may overlap. Because of this potential overlap, we have designed
two distinct time window operators: one for Green’s functions, which is based on the
(non-converted) direct P-wave travel time τP

d and one for focusing functions, which is based
on the (non-converted) direct S-wave travel time τS

d .
First, we discuss the window operator for Green’s functions, which is based on the

travel time τP
d of the (non-converted) P-wave, propagating from zI outwards. In Figure 2a,

we can see that the Green’s function and its time-reversed counterpart vanish in the interval

(−τP
d , τP

d ). Let G−−
Ud =

(
G−−

Ud,PP 0
0 0

)
and G++

Ld =

(
G++

Ld,PP 0
0 0

)
be the components of G−−

U

and G++
L that reside at the boundary of the interval [−τP

d , τP
d ] (corresponding to the direct

non-converted P-wave transmissions). Now, we can partition the Green’s function that we
defined earlier in Equation (1) as⎛⎜⎜⎝

−G−+
U

−G−−
U

G+−
L

G++
L

⎞⎟⎟⎠
︸ ︷︷ ︸

G

=

⎛⎜⎜⎝
O

−G−−
Ud

O

G++
Ld

⎞⎟⎟⎠
︸ ︷︷ ︸

Gd

+

⎛⎜⎜⎝
−G−+

U

−G−−
Um

G+−
L

G++
Lm

⎞⎟⎟⎠
︸ ︷︷ ︸

Gm

, (6)

where G−−
Um = G−−

U − G−−
Ud and G++

Lm = G++
L − G++

Ld are referred to as the Green’s function
codasand O is a zero matrix. We design a window matrix Θ[P] that removes all data outside
the interval [−τP

d , τP
d ]. When we apply this matrix to the Green’s function in Equation (6), it

follows that ⎛⎜⎜⎜⎝
Θ[P]

U O O O

O Θ[P]
U O O

O O Θ[P]
L O

O O O Θ[P]
L

⎞⎟⎟⎟⎠
︸ ︷︷ ︸

Θ[P]

⎛⎜⎜⎝
−G−+

U

−G−−
U

G+−
L

G++
L

⎞⎟⎟⎠
︸ ︷︷ ︸

G

=

⎛⎜⎜⎝
O

−G−−
Ud

O

G++
Ld

⎞⎟⎟⎠
︸ ︷︷ ︸

Gd

. (7)
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In this formulation, Θ[P]
U and Θ[P]

L are operators that remove all data outside the intervals
[−τP

Ud, τP
Ud] and [−τP

Ld, τP
Ld], respectively. Here, τP

Ud and τP
Ld are the direct P-wave travel times

for propagation from zI to zU and zL, respectively.

Figure 2. Symmetrized causality cone of (a) a Green’s function (G or ZG) and (b) a focusing function
for the medium in Figure 1 at p = 0.2 ms·m−1, with the source/focal depth at zI = 0.5 m (indicated by
the magenta dashed line; the black dashed lines indicate layer boundaries). The blue lines denote the
travel times ±τP

Ud and ±τP
Ld of the direct (non-converted) P-wave transmissions. The red lines denote

the travel times ±τS
Ud and ±τS

Ld of the direct (non-converted) S-wave transmissions. All wavefields
are stricly zero in the gray areas (whereas they may be non-zero in the yellow and orange areas). The
areas where the Green’s functions and focusing functions can overlap are indicated in orange.

We proceed with the window operator for focusing functions, which is based on the
travel time τS

d of the (non-converted) direct S-wave, propagating from zI outwards. As
illustrated in Figure 2b, the focusing functions and their time-reversed counterparts vanish

outside [−τS
d , τS

d ]. Let F+
Ud =

(
0 0
0 F+SS

Ud

)
and F−

Ld =

(
0 0
0 F−SS

Ld

)
be the components of F+

U

and F−
L that reside at the boundary of the interval (−τS

d , τS
d ) (corresponding to the direct

non-converted S-wave transmissions). Now, we may partition the focusing function that
we defined earlier in Equation (3) as⎛⎜⎜⎝

F−
U

ZF+
U

F+
L

ZF−
L

⎞⎟⎟⎠
︸ ︷︷ ︸

F

=

⎛⎜⎜⎝
O

ZF+
Ud

O

ZF−
Ld

⎞⎟⎟⎠
︸ ︷︷ ︸

Fd

+

⎛⎜⎜⎝
F−

U

ZF+
Um

F+
L

ZF−
Lm

⎞⎟⎟⎠
︸ ︷︷ ︸

Fm

, (8)

where F+
Um = F+

U − F+
Ud and F−

Lm = F−
L − F−

Ld are referred to as the focusing function codas. We
design a window matrix Θ(S) that removes all data outside the interval (−τS

d , τS
d ). During

the inversion that will be applied later in this paper, we wish to restrict Fm to the interval
(−τS

d , τS
d ). To enforce this in practice, we replace Fm in Equation (8) with Θ(S)Fm, leading to
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⎛⎜⎜⎝
F−

U

ZF+
U

F+
L

ZF−
L

⎞⎟⎟⎠
︸ ︷︷ ︸

F

=

⎛⎜⎜⎝
O

ZF+
Ud

O

ZF−
Ld

⎞⎟⎟⎠
︸ ︷︷ ︸

Fd

+

⎛⎜⎜⎜⎝
Θ(S)

U O O O

O Θ(S)
U O O

O O Θ(S)
L O

O O O Θ(S)
L

⎞⎟⎟⎟⎠
︸ ︷︷ ︸

Θ(S)

⎛⎜⎜⎝
F−

U

ZF+
Um

F+
L

ZF−
Lm

⎞⎟⎟⎠
︸ ︷︷ ︸

Fm

. (9)

In this formulation, Θ(S)
U and Θ(S)

L are operators that remove all data outside the intervals
(−τS

Ud, τS
Ud) and (−τS

Ld, τS
Ld), respectively. Here, τS

Ud and τS
Ld are the direct S-wave travel times

for propagation from zI to zU and zL, respectively.

2.3. Marchenko Equations

In Appendix B.1, we derive the following system of Green’s function representations
that are based on reflection data:⎛⎜⎜⎝

−G−+
U

−G−−
U

G+−
L

G++
L

⎞⎟⎟⎠
︸ ︷︷ ︸

G

=

⎛⎜⎜⎝
I −RUZ O O

−RUZ I O O

O O I −RLZ
O O −RLZ I

⎞⎟⎟⎠
⎛⎜⎜⎝

F−
U

ZF+
U

F+
L

ZF−
L

⎞⎟⎟⎠
︸ ︷︷ ︸

F

, (10)

where I is a 2 × 2 identity matrix. When we apply the operator Θ[P] to both sides of this
equation, it follows, with the help of Equation (7), that⎛⎜⎜⎝

O

−G−−
Ud

O

G++
Ld

⎞⎟⎟⎠
︸ ︷︷ ︸

Gd

= Θ[P]

⎛⎜⎜⎝
I −RUZ O O

−RUZ I O O

O O I −RLZ
O O −RLZ I

⎞⎟⎟⎠
⎛⎜⎜⎝

F−
U

ZF+
U

F+
L

ZF−
L

⎞⎟⎟⎠
︸ ︷︷ ︸

F

. (11)

Next, we may substitute Equation (9) and rewrite the result as⎛⎜⎜⎜⎝
Θ

[P]
U RUF+

Ud

−G−−
Ud

Θ
[P]
L RLF−

Ld

G++
Ld

⎞⎟⎟⎟⎠
︸ ︷︷ ︸

BMar

= Θ[P]

⎛⎜⎜⎝
I −RUZ O O

−RUZ I O O

O O I −RLZ
O O −RLZ I

⎞⎟⎟⎠Θ(S)

︸ ︷︷ ︸
AMar

⎛⎜⎜⎝
F−

U

ZF+
Um

F+
L

ZF−
Lm

⎞⎟⎟⎠
︸ ︷︷ ︸

Fm

. (12)

Here, we have used the fact that τS
d /∈ [−τP

d , τP
d ], such that Θ[P]

U ZF+
Ud = O and Θ[P]

L ZF−
Ld =

O. We refer to Equation (12) as a system of reflection-based Marchenko equations, which
could be inverted for the unknown components of the focusing function Fm. The block-
diagonal structure of this system reveals that the Marchenko equations at zU and zL are de-
coupled. Operator Θ(S) restricts the unknown focusing function Fm to the interval (−τS

d , τS
d ).

Matrix AMar projects Fm to the interval [−τP
d , τP

d ]. As τP
d < τS

d , this leads to an underdeter-
mined system of equations, which cannot be unconditionally inverted. We illustrate this by
plotting the singular values of AMar in Figure 3a (red curve) for data from the model that we
presented above in Figure 1. In this case, AMar contains 2192 columns but only 928 indepen-
dent rows. To increase the rank of this matrix, we propose to use auxiliary transmission data,
for which we derive a similar system of equations in the following section.
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Figure 3. (a) Singular values of the matrices AMar (size: 928 × 2192), AAux (size: 928 × 2192) and
ACou (size: 16,384 ×2192) for the model in Figure 1 at p = 0.2 ms·m−1. (b) Singular values after
concatenating various combinations of the matrices in (a). All curves have been normalized with
respect to the highest singular value. The dots indicate the lowest singular values in the matrices.

2.4. Auxiliary Equations

In Appendix B.2, we derive the following system of Green’s function representations
that are based on transmission data:⎛⎜⎜⎝

−G−+
U

−G−−
U

G+−
L

G++
L

⎞⎟⎟⎠
︸ ︷︷ ︸

G

=

⎛⎜⎜⎝
O O TULZ O

O O O TULZ
TLUZ O O O

O TLUZ O O

⎞⎟⎟⎠
⎛⎜⎜⎝

F−
U

ZF+
U

F+
L

ZF−
L

⎞⎟⎟⎠
︸ ︷︷ ︸

F

. (13)

When we apply operator Θ[P] to both sides of this equation, it follows, with the help
of Equation (7), that⎛⎜⎜⎝

O

−G−−
Ud

O

G++
Ld

⎞⎟⎟⎠
︸ ︷︷ ︸

Gd

= Θ[P]

⎛⎜⎜⎝
O O TULZ O

O O O TULZ
TLUZ O O O

O TLUZ O O

⎞⎟⎟⎠
⎛⎜⎜⎝

F−
U

ZF+
U

F+
L

ZF−
L

⎞⎟⎟⎠
︸ ︷︷ ︸

F

. (14)

When we substitute Equation (9), we find eventually that⎛⎜⎜⎝
O

−G−−
Ud − Θ[P]

U TULF−
Ld

O

G++
Ld − Θ[P]

L TLUF+
Ud

⎞⎟⎟⎠
︸ ︷︷ ︸

BAux

= Θ[P]

⎛⎜⎜⎝
O O TULZ O

O O O TULZ
TLUZ O O O

O TLUZ O O

⎞⎟⎟⎠Θ(S)

︸ ︷︷ ︸
AAux

⎛⎜⎜⎝
F−

U

ZF+
Um

F+
L

ZF−
Lm

⎞⎟⎟⎠
︸ ︷︷ ︸

Fm

. (15)
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We refer to 15 as a system of auxiliary equations, which can be interpreted as a
transmission-based inverse problem for Fm. In Figure 3a (green curve), we show that the
governing matrix AAux of this problem is rank-deficient (at least for the medium in Figure 1).
Nevertheless, this matrix can provide complementary information to AMar, as illustrated in
Figure 3b (orange curve). In this case, we have concatenated the rows of AMar and AAux,
leading to a matrix of rank > 928. However, the rank is still far below 2192, which is the
number of unknowns for this problem. In the next section, we show how we can improve on
this by coupling reflection and transmission data, leading to yet another system of equations.

2.5. Coupled Equations

It is observed that the Green’s function matrix G can be eliminated from the reflection-
and transmission-based representations by subtracting Equation (13) from Equation (10).
This leads to ⎛⎜⎜⎝

O

O

O

O

⎞⎟⎟⎠
︸ ︷︷ ︸

O

=
1
2

⎛⎜⎜⎝
I −RUZ −TULZ O

−RUZ I O −TULZ
−TLUZ O I −RLZ

O −TLUZ −RLZ I

⎞⎟⎟⎠
⎛⎜⎜⎝

F−
U

ZF+
U

F+
L

ZF−
L

⎞⎟⎟⎠
︸ ︷︷ ︸

F

. (16)

Here, we divided by a factor 2 to achieve a better amplitude balance with the matrices
that were derived in the previous sections. After the substitution of Equation (9), we obtain

1
2

⎛⎜⎜⎝
RUF+

Ud

−ZF+
Ud + TULF−

Ld

RLF−
Ld

−ZF−
Ld + TLUF+

Ud

⎞⎟⎟⎠
︸ ︷︷ ︸

BCou

=
1
2

⎛⎜⎜⎝
I −RUZ −TULZ O

−RUZ I O −TULZ
−TLUZ O I −RLZ

O −TLUZ −RLZ I

⎞⎟⎟⎠Θ(S)

︸ ︷︷ ︸
ACou

⎛⎜⎜⎝
F−

U

ZF+
Um

F+
L

ZF−
Lm

⎞⎟⎟⎠
︸ ︷︷ ︸

Fm

. (17)

We refer to 17 as a system of coupled equations, which can be interpreted as another
inverse problem for Fm. Although we have increased the number of rows signficantly (up
to 16,384 in our running example) by not applying the window operator Θ[P], the matrix
ACou is still rank-deficient, as shown in Figure 3a (blue curve). However, adding the rows of
either AMar or AAux to the rows of ACou results in a full-rank matrix, as illustrated by the
magenta and cyan curves in Figure 3b. An intuitive understanding of this observation is that
the subtraction of Equation (13) from Equation (10) (which was required for the construction
of ACou) has reduced the row space of our system matrix, which can be compensated for by
adding complementary rows from either the Marchenko or auxiliary system.

2.6. Joint System of Equations

Although the concatenation of matrix ACou and either AAux or AMar seems sufficient
by itself to construct a full-rank matrix, we choose to merge all three matrices, leading to
the overall system ⎛⎝BMar

BAux
BCou

⎞⎠
︸ ︷︷ ︸

B

=

⎛⎝AMar
AAux
ACou

⎞⎠
︸ ︷︷ ︸

A

Fm. (18)

As indicated by the black curve in Figure 3b, matrix A has full rank, and hence can
be inverted. When we apply singular-value decomposition A = UΣVt and define the
pseudo-inverse as A‡ = VΣ‡Ut (where Σ‡ contains the reciprocals of all non-zero singular
values), we may now write Fm = A‡B. Akin to the acoustic Marchenko problem, a range of
alternative solvers can be used to compute the pseudo-inverse [40,41].
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2.7. Construction of Green’s Functions from Focusing Functions

Either (the reflection-based) Equation (10) or (the transmission-based) Equation (13)
can be used to convert focusing functions into Green’s functions. Alternatively, we may
take the average of both approaches, leading to⎛⎜⎜⎝

−G−+
U

−G−−
U

G+−
L

G++
L

⎞⎟⎟⎠
︸ ︷︷ ︸

G

=
1
2

⎛⎜⎜⎝
I −RUZ TULZ O

−RUZ I O TULZ
TLUZ O I −RLZ

O TLUZ −RLZ I

⎞⎟⎟⎠
⎛⎜⎜⎝

F−
U

ZF+
U

F+
L

ZF−
L

⎞⎟⎟⎠
︸ ︷︷ ︸

F

. (19)

We use this result later in this paper to construct Green’s functions from (retrieved)
focusing functions.

3. Inversion

In order to construct matrix B in Equation (18), we require a priori knowledge of four
direct arrivals: G−−PP

Ud , G++PP
Ld , F+SS

Ud and F−SS
Ld . In Section 3.1, we show that these arrivals can

be expressed in terms of two travel times, τP
Ud (for P-wave transmission from zI to zU) and τS

Ud

(for S-wave transmission from zI to zU), as well as two amplitude scaling factors, α and β. In
Section 3.2, we present a procedure to estimate these scaling factors. In Section 3.3, we apply
this procedure to retrieve focusing functions and Green’s functions from numerical data.

3.1. Initialization

The direct arrival G−−PP
Ud that is required for the construction of G−−

Ud can be expressed
in terms of a delayed unit pulse δ(τ − τP

Ud) and an amplitude scaling factor, which we
parameterize strategically as −α

1
2 for some (yet-unknown) α. This leads us to obtain

G−−
Ud =

(
G−−PP

Ud 0
0 0

)
= −

(
δ(τ − τP

Ud) 0
0 0

)
︸ ︷︷ ︸

EP
Ud

α
1
2 . (20)

The direct arrival, G++PP
Ld , that is required for the construction of G++

Ld can be related
to G−−PP

Ud by the 1D convolutional model T+PP
LUd (τ) = −

∫ +∞
−∞ G++PP

Ld (τ − τ′)G−−PP
Ud (τ′)dτ′.

Here, T+PP
LUd is the first event of the PP-component of the recorded transmission response

T+
LU from zU to zL. We assume that this event can be isolated from the transmission data by

means of a time gate. Next, we define operator T P
d for the 1D convolution of any signal

with T+PP
LUd . The direct Green’s function at the lower level G++PP

Ld may now be obtained by
applying T P

d to the inverse of −G−−PP
Ud , which can be expressed in our notation as ZEP

Udα−
1
2

(with EP
Ud as defined in Equation (20). This leads to

G++
Ld =

(
G++PP

Ld 0
0 0

)
= T P

d ZEP
Udα−

1
2 . (21)

Similarly, the direct wave F+SS
Ud that is required for the construction of F+

Ud can be ex-
pressed in terms of a time-advanced unit pulse δ(τ + τS

Ud) and an amplitude scaling factor,
which we parameterize strategically as β

1
2 for some (yet-unknown) β. This leads to

F+
Ud =

(
0 0
0 F+SS

Ud

)
=

(
0 0
0 δ(τ + τS

Ud)

)
︸ ︷︷ ︸

ZES
Ud

β
1
2 . (22)

The direct arrival F−SS
Ld that is required for the construction of F−

Ld can be related to F+SS
Ud

by the 1D convolutional model H+SS
LUd (τ) =

∫ +∞
−∞ F−SS

Ld (τ − τ′)F+SS
Ud (τ′)dτ′. Here, H+SS

LUd is
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the first event of the SS-component of the inverse transmission response H+
LU from zU to

zL, which can be obtained via the inversion of IS(τ) =
∫ +∞

∞ T+
LU(τ − τ′)H+

LU(τ
′)dτ′, where

S(τ) =
∫ ∞
−∞ s(τ + τ′)s(τ′)dτ′ is the autocorrelation of the source signal s(τ), as defined in

Appendix A. We assume that H+SS
LUd can be isolated from H+SS

LU by means of a time gate.
Next, we define an operator HS

d for 1D convolution with H+SS
LUd . The direct part of the

focusing function at the lower level F−SS
Ld may now be obtained by applying this operator to

the inverse of F+SS
Ud , which can be expressed in our notation as ES

Udβ− 1
2 (with ES

Ud = ZZES
Ud

as defined in Equation (22). This leads to

F−
Ld =

(
0 0
0 F−SS

Ld

)
= HS

d ES
Udβ− 1

2 . (23)

We assume that the travel times τP
d and τS

d are known. The amplitude scaling factors α
and β can be estimated from the data, as we discuss in the following section.

3.2. Estimation of Amplitude Scaling Factors α and β

In Appendix C, we show that the focusing function matrix F can be written as an
explicit function of τ, α and β, according to⎛⎜⎜⎝

F−
U(τ, α, β)

ZF+
U(τ, α, β)

F+
L (τ, α, β)

ZF−
L (τ, α, β)

⎞⎟⎟⎠
︸ ︷︷ ︸

F(τ,α,β)

=

⎛⎜⎜⎝
kP

U1(τ) kS
U1(τ)

kP
U2(τ) kS

U2(τ)
kP

L1(τ) kS
L1(τ)

kP
L2(τ) kS

L2(τ)

⎞⎟⎟⎠
︸ ︷︷ ︸

K(τ)

(
α 0
0 β

) 1
2

+

⎛⎜⎜⎝
lP

U1(τ) lS
U1(τ)

lP
U2(τ) lS

U2(τ)
lP

L1(τ) lS
L1(τ)

lP
L2(τ) lS

L2(τ)

⎞⎟⎟⎠
︸ ︷︷ ︸

L(τ)

(
α 0
0 β

)− 1
2

. (24)

In this formulation, k(τ) and l(τ) represent 2 × 1 vectors, which can be explicitly com-
puted for each value of τ from the recorded data (see Appendix C for details). To estimate
the amplitude scaling factors α and β, we make use of a relation for energy conservation [42,43],
which has been used earlier for the estimation of amplitude scaling factors in acoustic me-
dia [44]. This criterion can be written as∫ ∞

−∞

[
{F+

U

(
τ + τ′)}tF+

U

(
τ′)− {F−

U

(
τ + τ′)}tF−

U

(
τ′)]dτ′ = IS(τ). (25)

When we substitute the expressions for F±
U (τ, α, β) from (24) into (25), subtract IS(τ)

on both sides and evaluate the result at τ = 0, we find four expressions for α and β (i.e., the
four entries of the 2 × 2 matrix equation). The first of these expressions (corresponding to
the first diagonal entry of the matrix) is independent of β. We multiply this expression by α
and define the left-hand side of the result as hP

U(α). We find that

hP
U(α) =

[∫ ∞

−∞

[
{kP

U2

(
τ′)}tkP

U2

(
τ′)− {kP

U1

(
τ′)}tkP

U1

(
τ′)]dτ′

]
α2

+

[
2
∫ ∞

−∞

[
{kP

U2

(
τ′)}tlP

U2

(
τ′)− {kP

U1

(
τ′)}tlP

U1

(
τ′)]dτ′ − S(0)

]
α

+

[∫ ∞

−∞

[
{lP

U2}t(τ′)lP
U2

(
τ′)− {lP

U1

(
τ′)}tlP

U1

(
τ′)]dτ′

]
= 0.

(26)

In a similar way, the last of our four expressions (corresponding to the last diagonal
entry of the matrix) is independent of α. We multiply this expression by β and define the
left-hand side of the result as hS

U(β). This leads to

82



Appl. Sci. 2022, 12, 7824

hS
U(β) =

[∫ ∞

−∞

[
{kS

U2}t(τ′)kS
U2

(
τ′)− {kS

U1

(
τ′)}tkS

U1

(
τ′)]dτ′

]
β2

+

[
2
∫ ∞

−∞

[
{kS

U2

(
τ′)}tlS

U2

(
τ′)− {kS

U1

(
τ′)}tlS

U1

(
τ′)]dτ′ − S(0)

]
β

+

[∫ ∞

−∞

[
{lS

U2

(
τ′)}tlS

U2

(
τ′)− {lS

U1

(
τ′)}tlS

U1

(
τ′)]dτ′

]
= 0.

(27)

Two more expressions can be obtained by enforcing the energy conservation of the
focusing function FL. We find, akin to Equation (25), that∫ ∞

−∞

[
{F−

L

(
τ + τ′)}tF−

L

(
τ′)− {F+

L

(
τ + τ′)}tF+

L

(
τ′)]dτ′ = IS(τ). (28)

When we substitute the expressions for F±
L (τ, α, β) from Equation (24) into this result

and repeat the abovementioned steps, we arrive at expressions for hP
L(α) and hS

L(β) (which
are equivalent to Equations (26) and (27) with the subscript U replaced by L). The scaling
factors α and β could be found by evaluating the roots of hP

U(α), hP
L(α), hS

U(β) and hS
L(β).

However, we have chosen an alternative approach based on minimizing the cost functions

JP(α) = {hP
U(α)}2 + {hP

L(α)}2, (29)

and
JS(β) = {hS

U(β)}2 + {hS
L(β)}2. (30)

In Figure 4, we show both cost functions as computed from the numerical data of
our running example. We can use Matlab’s fminbnd routine to minimize these functions,
yielding the estimates α ≈ 0.4716 and β ≈ 0.7946 (their true values being 0.4694 and 0.7934,
respectively).

Figure 4. Cost functions (a) JP(α) and (b) JS(β) for our numerical data. The dashed magenta lines denote
the minima, 0.4716 (for α) and 0.7946 (for β), that were found using Matlab’s fminbnd routine. The solid
cyan lines denote the exact values 0.4694 (for α) and 0.7934 (for β), as extracted from the reference data.
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3.3. Results

Now that α and β are resolved, the focusing function can be computed for our running
example with the help of Equation (24). In Figures 5–8 we compare the PP-, SP-, PS- and
SS-components of the retrieved focusing functions with the results of direct modeling. We
observe that all events have been recovered well, where the most significant differences
(which can hardly be observed in the figure) can be attributed to the (small) errors in our
estimates of α and β. Next, we compute the Green’s functions from the retrieved focusing
functions with the help of Equation (19). In Figures 9–12, we compare the PP-, SP-, PS-
and SS-components of the retrieved Green’s functions with the results of direct modeling.
Once more, we report an acceptable match, where the main differences (which can hardly
be observed in the figures) can be attributed to errors in our estimates of α and β.

Figure 5. PP-component of the retrieved focusing functions: (a) F−
U , (b) F+

U , (c) F+
L and (d) F−

L . The
solid black traces were computed via direct modeling. The dashed orange traces were retrieved by

means of our methodology. The blue lines have been drawn at ±
(

τP
d + dτ

2

)
(where dτ = 2 μs denotes

the intercept time sampling) to visualize the interval [−τP
d , τP

d ]. The red lines have been drawn at

±
(

τS
d − dτ

2

)
to visualize the interval (τS

d , τS
d ).
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Figure 6. SP-component of the retrieved focusing functions (organized as in Figure 5).

Figure 7. PS-component of the retrieved focusing functions (organized as in Figure 5).
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Figure 8. SS-component of the retrieved focusing functions (organized as in Figure 5).

Figure 9. PP-component of the retrieved Green’s functions: (a) G−+
U , (b) G−−

U , (c) G+−
L and (d) G++

L .
The solid black traces were computed via direct modeling. The dashed orange traces were retrieved
using our methodology. The blue and red lines have been drawn at τP

d + dτ
2 and τS

d − dτ
2 , respectively.
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Figure 10. SP-component of the retrieved Green’s functions (organized as in Figure 9).

Figure 11. PS-component of the retrieved Green’s functions (organized as in Figure 9).
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Figure 12. SS-component of the retrieved Green’s functions (organized as in Figure 9).

4. Discussion

Our methodology requires knowledge of the intercept times τP
Ud and τS

Ud, whereas
the focal depth zI may be unknown. Hence, we can effectively retrieve Green’s functions
at a desired (intercept) time, even in the absence of velocity information [2]. A velocity
model is only required to convert intercept times into depths, akin to acoustic Marchenko
imaging [45]. An important observation in this context is that the construction of a virtual
P-wave source is intrinsically decoupled from the construction of a virtual S-wave source
in our formalism and both tasks may even be processed independently. Consequently, we
may choose τP

Ud and τS
Ud at mutually different focal depths without affecting the accuracy

of our results. Hence, we may conclude that neither cP(z) and cS(z), nor the ratio cP

cS (z), is
intrinsically required for the application of our methodology.

For our numerical simulations, we have designed a medium such that the arrival
times of all waveforms coincide with exact time samples (see Appendix A). In this way, we
could avoid problems related to discretization. In practical applications, data are recorded
within a finite frequency band only, posing limitations to our resolution, especially in the
presence of thin layers [2]. It has been shown previously that some of these limitations
can be overcome by enforcing energy conservation and minimum-phase conditions in
the single-sided Marchenko equation [16,42,43]. Similar strategies may be applied to the
system of equations that we presented in this paper.

Although our methodology has been derived for a layered lossless medium with
homogeneous halfspaces above zU and below zL, it could potentially be applied to a broader
range of problems. Mild lateral variations of the medium’s properties may be tolerable, akin
to elastodynamic Marchenko imaging of single-sided data [12,18]. The effects of dissipation
might be incorporated by computing all correlation-based reflection and transmission
operators in an effectual medium, akin to the equivalent two-sided acoustic problem [33,34].
Heterogeneities above zU might be accounted for by convolving our representations with
areal sources that take interactions with this part of the medium into account, akin to
Rayleigh–Marchenko redatuming [46,47]. A similar strategy may allow us to account for
heterogeneities below zL.
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The invertibility of matrix A in our formalism is likely to depend on the medium’s
properties, the available bandwidth and the wavefield components that can be emitted and
recorded in practice. For transcranial applications, we may modify the theory [48] or apply
redatuming [49] to account for spherical arrays. Moreover, it might be necessary to place
our transducers in a water layer, which is impenetrable for S-waves. In terms of matrix
algebra, such a configuration induces a projection of our multi-component wavefields to
a reduced domain of P-waves only [50]. It seems plausible that such a projection would
affect the invertibility of A, but this remains to be investigated.

5. Conclusions

We have revised the window operators in the elastodynamic Marchenko equation.
This leads to a system of equations that is intrinsically rank-deficient and hence cannot
be solved without additional constraints. To overcome this issue, we have introduced an
auxiliary equation (based on transmission data) and a coupled equation (based on reflection
and transmission data). By concatenating these equations, we can construct a joint system
for two-sided data that is invertible. Apart from the reflection and transmission data, this
approach requires the direct (non-converted) P- and S-wave transmission times from the
focal level to the upper acquisition array and two amplitude scaling factors, which can
be retrieved by enforcing energy conservation. This leads to a methodology for velocity-
independent true-amplitude Green’s function retrieval in a lossless layered isotropic elastic
medium from two-sided data. The methodology could potentially be extended to account
for mild lateral variations, dissipation, anisotropy and heterogeneities above the upper
acquisition array, as well as below the lower acquisition array.
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Appendix A. Numerical Settings

In this Appendix, we provide more information on the layered elastic medium depicted
in Figure 1. We also provide the parameters that were used to generate numerical data for
the running example that is discussed in the main text. Our model consisted of 41 depth
samples with spacing dz = 25 mm. Data records were generated by modeling at a single ray
parameter p = 0.2 ms·m−1 [36]. Our traces consisted of 2048 (intercept) time samples, which
were sampled with dτ = 2 μs. For the source signal s(τ), we used a discretized delta function,
where the sample at τ = 0 equaled one and all remaining samples were zero. Inspired
by [16], we chose model parameters that generated on-sample data at p = 0.2 ms·m−1. This
was achieved by choosing velocity values as elements of the set

V =

⎧⎨⎩c(n) =

√√√√ (dz)2

(dz)2 p2 + (dτ)2n2
: n ∈ N

⎫⎬⎭. (A1)

In Table A1, we show the specific integers nP and nS that were used for each layer k
of our model, to compute the velocities cP = c(nP) and cS = c(nS) as elements of V. This
procedure ensured that all (primary and multiple) reflections and transmissions arrived
at exact sample values in our records. We also indicate the layer thicknesses Δz, densities
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ρ, as well as the travel times ΔτP =
√
(cP)−2 − p2 · Δz and ΔτS =

√
(cS)−2 − p2 · Δz that

were required for P- and S-waves to traverse each layer when p = 0.2 ms·m−1. We note
that the medium broke the separability conditions of [16] at both zU = 0 and zL = 1 m,
given the focal depth zI = 0.5 m (which is in layer k = 3 in the model). This was due
to the fact that ∑2

k=1

(
ΔτS(k)− ΔτP(k)

)
= 102 μs exceeded both 2ΔτP(3) = 32 μs and

2 min
{

ΔτP(k) : k ∈ {1, 2, 3}
}
= 20 μs, whereas ∑5

k=4

(
ΔτS(k)− ΔτP(k)

)
= 114 μs exceeded

both 2ΔτP(3) = 32 μs and 2 min
{

ΔτP(k) : k ∈ {3, 4, 5}
}
= 16 μs.

Table A1. Parameters used for the model shown in Figure 1.

k nP nS Δz (mm) ρ (kg· m−3) ΔτP (μs) ΔτS (μs)

0 5 10 100 2000 40 80
1 1 4 125 2800 10 40
2 3 7 225 2200 54 126
3 2 5 100 2600 16 40
4 4 9 225 2400 72 162
5 1 4 100 2700 8 32
6 3 7 125 2500 30 70

Appendix B. Derivations

In this Appendix, we derive several representations that were used in the main text.
We conduct these derivations in the (p, z, ω)-domain (which is indicated by a hat), where
ω denotes the angular frequency. We define the Fourier transform of an arbitrary (down-
or upgoing) wavefield P±(p, z, τ) as

P̂±(p, z, ω) =
∫ ∞

−∞
P±(p, z, τ) exp(−jωτ)dτ, (A2)

whereas the associated inverse Fourier transform is given by

P±(p, z, τ) =
1
π

[∫ ∞

0
P̂±(p, z, ω) exp(jωτ)dω

]
. (A3)

Here, it is assumed that the signals are real-valued in the (p, z, τ)-domain and  denotes
the real part. Our derivations are based on two reciprocity theorems for flux-normalized
wave fields, which we present for a source-free volume that is enclosed by depth levels zm

(at the top) and zn (at the bottom). First, we have the reciprocity theorem of the convolution
type [15]

{P̂+
A(−p, zm, ω)}tP̂−

B (p, zm, ω)− {P̂−
A(−p, zm, ω)}tP̂+

B (p, zm, ω)

= {P̂+
A(−p, zn, ω)}tP̂−

B (p, zn, ω)− {P̂−
A(−p, zn)}tP̂+

B (p, zn, ω).
(A4)

Here, P̂+
A and P̂−

A are down- and upgoing wavefields in state A, whereas P̂+
B and P̂−

B

are equivalent wavefields in state B. Furthermore, t denotes matrix transposition. We have
an equivalent reciprocity theorem of the correlation type [15]

{P̂+
A(p, zm, ω)}†P̂+

B (p, zm, ω)− {P̂−
A(p, zm, ω)}†P̂−

B (p, zm, ω)

= {P̂+
A(p, zn, ω)}†P̂+

B (p, zn, ω)− {P̂−
A(p, zn, ω)}†P̂−

B (p, zn, ω),
(A5)

where † denotes the adjoint. In the following, we use Equations (A4) and (A5) to derive
representations that are based on reflection and transmission data.

Appendix B.1. Reflection-Based Representations

First, we derive a convolution-based representation for reflection data at zU . For this
purpose, we set m = U and n = I in Equation (A4). In state A, we use the properties of
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the actual medium and we place a unit source just above zU , such that P̂+
A (p, zU , ω) = I (a

2 × 2 identity matrix), P̂−
A (p, zU , ω) = R̂∪

U(p) (the reflection response ‘from above’ at zU),
P̂+

A (p, zI , ω) = Ĝ++
IU (p) (the downwgoing Green’s function at zI due to a downgoing source

at zU) and P̂−
A (p, zI , ω) = Ĝ−+

IU (p) (the upgoing Green’s function at zI due to a downgo-
ing source at zU). In state B, we truncate the medium at zI and choose a homogeneous
halfspace below this level. For the wavefield in this state, we choose a focusing function
with a focal point at zI , which is purely downgoing below this level [15]. This leads to
P̂+

B (p, zU , ω) = F̂+
UI(p) (the downgoing focusing function at zU), P̂−

B (p, zU , ω) = F̂−
UI(p)

(the upgoing focusing function at zU), P̂+
B (p, zI , ω) = I (the focused field at zI) and

P̂−
B (p, zI , ω) = O. Substitution of these quantities into Equation (A4) yields

− Ĝ−+
UI (p) = F̂−

UI(p)− R̂∪
U(p)F̂+

UI(p), (A6)

where we have used {R̂∪
U(−p)}t = R̂∪

U(p) and {Ĝ−+
IU (−p)}t = Ĝ−+

UI (p) [51]. We can derive
an equivalent correlation-based representation by substituting the same quantities into
Equation (A5), leading to

−{Ĝ−−
UI (−p)}� = F̂+

UI(p)− {R̂∪
U(−p)}�F̂−

UI(p), (A7)

where we have used {R̂∪
U(p)}† = {R̂∪

U(−p)}� and {Ĝ++
IU (p)}† = −{Ĝ−−

UI (−p)}� [51].
Two more representation can be derived for reflection data at zL by choosing m = I and
n = L in Equations (A4) and (A5) and placing a source just below zL. Once again, we
choose the actual medium properties in state A, such that P̂+

A (p, zI , ω) = Ĝ+−
IL (p) (the

downgoing Green’s function at zI due to an upgoing source at zL), P̂−
A (p, zI , ω) = Ĝ−−

IL (p)
(the upgoing Green’s function at zI due to an upgoing source at zL), P̂+

A (p, zL, ω) = −R̂∩
L (p)

(the reflection response ‘from below’ at zL) and P̂−
A (p, zL, ω) = −I (a 2 × 2 identity matrix).

In state B, we truncate the medium at zI and choose a homogeneous halfspace above this
level. For the wavefield in this state, we choose a focusing function with a focal point at zI ,
which is purely upgoing above this level. This leads to P̂+

B (p, zI , ω) = O, P̂−
B (p, zI , ω) = I

(the focused field at zI), P̂+
B (p, zL, ω) = F̂+

LI(p) (the downgoing focusing function at zL) and
P̂−

B (p, zL, ω) = F̂−
LI(p) (the upgoing focusing function at zL). Substitution of these quantities

into Equation (A4) yields

Ĝ+−
LI (p) = F̂+

LI(p)− R̂∩
L (p)F̂−

LI(p), (A8)

where we have used {R̂∩
L (−p)}t = R̂∩

L (p) and {Ĝ+−
IL (−p)}t = Ĝ+−

LI (p) [51]. Alternatively,
we may substitute the quantities into Equation (A5), leading to

{Ĝ++
LI (−p)}� = F̂−

LI(p)− {R̂∩
L (−p)}�F̂+

LI(p), (A9)

where we have used {R̂∩
L (p)}† = {R̂∩

L (−p)}� and {Ĝ−−
IL (p)}† = −{Ĝ++

LI (−p)}� [51]. The
system of Equations (A6)–(A9) can be rewritten as⎛⎜⎜⎝

−Ĝ−+
U (p)

−{Ĝ−−
U (−p)}�

Ĝ+−
L (p)

{Ĝ++
L (−p)}�

⎞⎟⎟⎠ =

⎛⎜⎜⎝
I −R̂∪

U(p) O O

−{R̂∪
U(−p)}� I O O

O O I −R̂∩
L (p)

O O −{R̂∩
L (−p)}� I

⎞⎟⎟⎠
⎛⎜⎜⎝

F̂−
U (p)

F̂+
U (p)

F̂+
L (p)

F̂−
L (p)

⎞⎟⎟⎠, (A10)

where we have dropped subscript I (denoting the focal depth) for notational convenience.
After taking the inverse Fourier transform (as defined in Equation (A3) and applying operator
Z to the second and fourth rows, we obtain Equation (10), presented in the main text.

Appendix B.2. Transmission-Based Representations

We can derive a system of equivalent equations that are based on transmission data.
First, we set m = U and n = I. We choose the actual medium in state A and place a source
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just below zL, leading to P̂+
A (p, zU , ω) = O, P̂−

A (p, zU , ω) = −T̂−
UL(p) (the transmission

response from zL to zU), P̂+
A (p, zI , ω) = Ĝ+−

IL (p) and P̂−
A (p, zI , ω) = Ĝ−−

IL (p). In state B,
we truncate the medium at zI and choose a homogeneous halfspace below this level. For
the wavefield in this state, we choose a focusing function that focuses at zI and is purely
downgoing below this level. This leads to P̂+

B (p, zU , ω) = F̂+
UI(p), P̂−

B (p, zU , ω) = F̂−
UI(p),

P̂+
B (p, zI , ω) = I and P̂−

B (p, zI , ω) = O. Substituting these quantities into Equation (A4)
yields

Ĝ++
LI (p) = T̂+

LU(p)F̂+
UI(p), (A11)

where we have used {T̂−
UL(−p)}t = T̂+

LU(p) and {Ĝ−−
IL (−p)}t = −Ĝ++

LI (p) [51]. We may
substitute the same quantities into Equation (A5), leading to

{Ĝ+−
LI (−p)}� = {T̂+

LU(−p)}�F̂−
UI(p), (A12)

where we have used {T̂−
UL(p)}† = {T̂+

LU(−p)}� and {Ĝ+−
IL (p)}† = {Ĝ+−

LI (−p)}� [51]. We
can derive two more representations by setting m = I and n = L, and placing a source
just above zU . In state A, we use the actual medium properties, leading to: P̂+

A (p, zI , ω) =
Ĝ++

IU (p), P̂−
A (p, zI , ω) = Ĝ−+

IU (p), P̂+
A (p, zL, ω) = T̂+

LU(p) (the transmission response from
zU to zL) and P̂−

A (p, zL, ω) = O. In state B, we truncate the medium at zI and choose a
homogeneous halfspace above this level. For the wavefield in this state, we choose a
focusing function that focuses at zI and is purely upgoing above this level. This leads
to P̂+

B (p, zI , ω) = O, P̂−
B (p, zI , ω) = I, P̂+

B (p, zL, ω) = F̂+
LI(p) and P̂−

B (p, zL, ω) = F̂−
LI(p).

Substituting these quantities into Equation (A4) yields

−Ĝ−−
UI (p) = T̂−

UL(p)F̂−
LI(p), (A13)

where we have used {T̂+
LU(−p)}t = T̂−

UL(p) and {Ĝ++
IU (−p)}t = −Ĝ−−

UI (p) [15]. Alterna-
tively, the quantities can be substituted into Equation (A5), leading to

− {Ĝ−+
UI (−p)}� = {T̂−

UL(−p)}�F̂+
LI(p), (A14)

where we have used {T̂+
LU(p)}†

= {T̂−
UL(−p)}� and {G−+

IU (p)}† = {Ĝ−+
UI (−p)}� [51]. The

system of Equations (A11)–(A14) can be rewritten as⎛⎜⎜⎝
−{Ĝ−+

U (−p)}�
−Ĝ−−

U (p)
{G+−

L (−p)}�
Ĝ++

L (p)

⎞⎟⎟⎠ =

⎛⎜⎜⎝
O O {T̂−

UL(−p)}� O

O O O T̂−
UL(p)

{T̂+
LU(−p)}� O O O

O T̂+
LU(p) O O

⎞⎟⎟⎠
⎛⎜⎜⎝

F̂−
U (p)

F̂+
U (p)

F̂+
L (p)

F̂−
L (p)

⎞⎟⎟⎠, (A15)

where we have dropped the subscript I once again for notational convenience. After taking
the inverse Fourier transform (as defined in Equation (A3) and applying operator Z to the
first and third row, we obtain Equation (13), presented in the main text.

Appendix C. Expression for F as a Function of τ, α and β

In this Appendix, we write F explicitly as a function of τ, α and β. We start with the
substitution of Equations (20)–(23) into the definition of BMar, which is given in the left-hand
side of Equation (12). We write the result as

BMar =

⎛⎜⎜⎝
Θ

[P]
U RUZES

Ud

EP
Ud

O

O

⎞⎟⎟⎠
︸ ︷︷ ︸

MI
Mar

(
α 0
0 β

) 1
2

+

⎛⎜⎜⎝
O

O

Θ
[P]
L RLHS

d ES
Ud

T P
d ZEP

Ud

⎞⎟⎟⎠
︸ ︷︷ ︸

MI I
Mar

(
α 0
0 β

)− 1
2

, (A16)
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where MI
Mar and MI I

Mar have been used to identify the constructed matrices. In a similar
way, we can substitute Equations (20)–(23) into the definition of BAux, which is given in the
left-hand side of Equation (15). This leads to

BAux =

⎛⎜⎜⎝
O

EP
Ud

O

−Θ
[P]
L TLUZES

Ud

⎞⎟⎟⎠
︸ ︷︷ ︸

MI
Aux

(
α 0
0 β

) 1
2

+

⎛⎜⎜⎝
O

−Θ
[P]
U TULHS

d ES
Ud

O

T P
d ZEP

Ud

⎞⎟⎟⎠
︸ ︷︷ ︸

MI I
Aux

(
α 0
0 β

)− 1
2

, (A17)

where MI
Aux and MI I

Aux have been used to identify the constructed matrices. Finally, we may
substitute Equations (22) and (23) into the definition of BCou, which is given in the left-hand
side of Equation (17). This yields

BCou =
1
2

⎛⎜⎜⎝
RUZES

Ud

−ES
Ud

O

TLUZES
Ud

⎞⎟⎟⎠
︸ ︷︷ ︸

MI
Cou

(
α 0
0 β

) 1
2

+
1
2

⎛⎜⎜⎝
O

TULHS
d ES

Ud

RLHS
d ES

Ud

−ZHS
d ES

Ud

⎞⎟⎟⎠
︸ ︷︷ ︸

MI I
Cou

(
α 0
0 β

)− 1
2

, (A18)

where MI
Mar and MI I

Mar have been used to identify the constructed matrices. Next, we
substitute Equations (A16)–(A18) into (18) and apply the pseudo-inverse of A to both sides
of the result. This eventually leads to

Fm = A‡

⎛⎝MI
Mar

MI
Aux

MI
Cou

⎞⎠
︸ ︷︷ ︸

MI

(
α 0
0 β

) 1
2

+ A‡

⎛⎝MI I
Mar

MI I
Aux

MI I
Cou

⎞⎠
︸ ︷︷ ︸

MI I

(
α 0
0 β

)− 1
2

. (A19)

The direct focusing function matrix Fd can be written in a similar form. This is
achieved by substituting Equations (22) and (23) into the definition of Fd, which is given in
the right-hand side of Equation (8). The result can strategically be written as⎛⎜⎜⎝

O

ZF+
Ud

O

ZF−
Ld

⎞⎟⎟⎠
︸ ︷︷ ︸

Fd

=

⎛⎜⎜⎝
O

ES
Ud

O

O

⎞⎟⎟⎠
︸ ︷︷ ︸

DI

(
α 0
0 β

) 1
2

+

⎛⎜⎜⎝
O

O

O

ZHS
d ES

Ud

⎞⎟⎟⎠
︸ ︷︷ ︸

DI I

(
α 0
0 β

)− 1
2

. (A20)

Adding Equations (A19) and (A20) yields

F(τ, α, β) =
(

DI(τ) + A‡(τ)MI(τ)
)

︸ ︷︷ ︸
K(τ)

(
α 0
0 β

) 1
2

+
(

DI I(τ) + A‡(τ)MI I(τ)
)

︸ ︷︷ ︸
L(τ)

(
α 0
0 β

)− 1
2

. (A21)

Here, we have indicated the arguments of all matrices for convenience to emphasize
that we have expressed F explicitly as a function of τ, α and β. Note that K(τ) and L(τ)
are independent ofthe scaling factors and hence can be computed from the recorded data,
τP

d and τS
d . Finally, we can express our result as Equation (24), presented in the main text,

by renaming the quantities that constitute matrices K(τ) and L(τ).
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Abstract: In this paper, we proposed a data-driven spatio-temporal deep learning (SDL) model,
to simulate forward and reflected ultrasonic wave propagation in the 2D geometrical domain, by
implementing the convolutional long short-term memory (ConvLSTM) algorithm. The SDL model
learns underlying wave physics from the spatio-temporal datasets. Two different SDL models
are trained, with the following time-domain finite element (FE) simulation datasets, by applying:
(1) multi-point excitation sources inside the domain and (2) single-point excitation sources on the edge
of the different geometrical domains. The proposed SDL models simulate ultrasonic wave dynamics,
for the forward ultrasonic wave propagation in the different geometrical domains and reflected wave
propagation phenomenon, from the geometrical boundaries such as curved, T-shaped, triangular,
and rectangular domains, with varying frequencies and cycles. The SDL is a reliable model, which
generates simulations faster than the conventional finite element solvers.

Keywords: data-driven modeling; spatio-temporal datasets; ultrasonic wave propagation; deep
learning; RNN; ConvLSTM; finite element

1. Introduction

Ultrasonic wave propagation is used in various applications, including biomedical
imaging [1], nondestructive evaluation [2,3], seismic and geological studies [4], etc. The nu-
merical modeling of the ultrasonic waves is critical, for improving the understanding
of the underlying physics of these applications. The ultrasonic wave propagation phe-
nomenon is widely modeled using Finite Element [5–8], Finite Difference [9], and Finite
Volume [10] techniques. Ultrasonic wave propagation is modeled by the widely used FE
analysis, through solving the partial differential equations on discrete nodes, using iterative
time-steeping schemes. Due to the transient nature of the wave propagation and the three-
dimensional volume in which the ultrasonic wave is modeled, the computational resources
and the time to complete the calculations are often extensive, thus limiting the utilization
of modeling. We can develop a data-driven solver for modelling wave propagation, by
capturing the underlying physics from numerical simulation datasets, as an alternative
approach [11].

In recent years, modern deep-learning techniques, such as long short-term memory
(LSTM) [12,13], have been successful in many domains [14,15]. These techniques are used
in many applications, such as propagating the latent space to the future [16,17], using [18]
the LSTM network to realize gesture recognition, wave propagation [19], automating tumor
segmentation in whole breast [20], and shear wave elastography [21]. Since the ultrasonic
wave propagation prediction is a sequence of spatio-temporal images data, so, typically,
the LSTM approach will not provide and capture the desired results [22]. The convolu-
tional long short-term memory (ConvLSTM) networks, effectively, address the long-range
simulation prediction [23–26]. The ConvLSTM approach uses the convolutional operation
inside the LSTM cell, to pair the temporal state with spatial information. On the other
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hand, the wave propagation simulation solver can be built using a convolutional neural
network (CNN) architecture [27,28]. Another group in the research community is adapting
physics-informed neural networks to solve the partial differential equations [29–31].

In the current work, the authors have developed two separate spatio-temporal deep
learning (SDL) models. In the prior work, [26] shows the modeling forward wave prop-
agation simulation in a 2D domain with different physical settings. The authors, further,
want to generalize the SDL network for modelling forward wave propagation in the dif-
ferent geometrical domains (i.e., other than the trained domains) and reflecting wave
propagation simulation in the different geometrical boundaries. In the first SDL model,
the network algorithm is tuned to incorporate geometrical domain information and trained
using datasets containing numerous ultrasonic wave simulations, with single-point exci-
tation to five-point excitation sources inside the solid medium, without reflection from
the edges. This trained SDL model can be deployed for modelling real-time forward ultra-
sonic wave propagation in the different geometrical shapes. Whereas in the second SDL
model, the learnable hyperparameters are tuned to generate wave propagation, without
changing network architecture. The datasets used for training the second model have three
distinct geometrical domains, with a single-point excitation source applied on the edges.
This trained SDL model can be used to study the reflected wave propagation phenomenon
from different geometrical boundaries, such as curved, T-shaped, triangular, and rectan-
gular domains, with varying frequencies and cycles. Thus, depending on the availability
of the datasets’s structure, we should employ one of these models for generating wave
propagation. These training datasets have spatial and temporal features; hence, algorithms
based on the recurrent neural network (RNN) are treated as the most suitable for modelling
ultrasonic wave propagation simulations [19].

This paper is organized as follows: Section 2 describes the procedure for generating
training datasets, and Section 3 details the SDL model formulation for the wave propa-
gation phenomenon. Section 4 discusses the SDL model implementation and results, to
generalize for different domains. Section 5 brings the summary of the work, along with
concluding remarks.

2. Training Datasets Generation through Finite Element Simulation

To generate wave propagation in solid media using AI algorithms requires large vol-
umes of training datasets. The following section, comprehensively, discusses the methodol-
ogy adopted for generating the FE training datasets.

2.1. Finite Element Modelling of Ultrasonic Wave Propagation in Solid Media

The datasets to train the AI model are created by modelling numerous time-domain
2D FE simulations, by solving the governing partial differential equation, by employing
the commercial FE Abaqus/Explicit (v. 18.0) solver (see ABAQUS User Manual v. 6.11,
Dassault system, Providence, RI, USA). The two-dimensional FE CAD models are created
using carbon steel isotropic material properties, as shown in Figure 1a,b. The mechanical
properties of carbon steel are a mass density of ρ = 7850 kg/m3, Young’s modulus of
E = 200 GPa, and Poisson’s ratio of ν = 0.29. The 2D part is discretized with a four-noded
quadrilateral mesh size of 3.2 × 10−5 mm, which is about 22 elements per wavelength
λshear, for 5 MHz in carbon steel for mesh convergence. A similar approach is followed
from our prior work for modelling [3]. The two cycles of the Hanning-windowed tone burst
signal of 5 MHz frequency are used to trigger an incident wave. To avoid the undesired
reflection from the boundaries’s [32] absorbing, boundary conditions are applied using
the ALID (absorbing layers using increasing damping) method, as shown in Figure 1a.
After completing the simulation, the spatial and temporal scale is adjusted during the post-
processing, to ensure that the necessary temporal and spatial information is captured
in the displacement plots.
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Figure 1. (a) Type-1 datasets: finite-element models: FE models with single to multi-point sources
excitation are triggered in the Y-direction, and an absorbing boundary condition is applied on all
the domain edges, to avoid undesired reflection. (b) Type-2 datasets: finite-element models: FE
models with single-point source excitation are triggered in the Y-direction on the top edge of the model
and a traction-free boundary condition is applied on all other edges.

2.2. Type-1 Datasets Creation: Forward Wave Propagation Simulation

The type-1 training datasets is created by modelling several 2D FE simulations, by
changing the following parameters: (a) the incident wave is triggered in the X-direction
or in the Y-direction inside the domain in each simulation, (b) the excitation point sources
are distributed randomly throughout the domain using a uniform probability distribution,
and (c) the excitation sources vary from single to five-point excitation sources, as shown
in Figure 1a. A total of 1250 simulations are generated for the training, consisting of
250 CAD models, with 35 × 35 mm physical dimensions for each (a) single-point excitation,
(b) two-point excitation, (c) three-point excitation, (d) four-point excitation, and (e) five-
point excitation source, respectively. These displacement plots are saved as frames, with
the time interval of 0.0074 μs, for the total simulation.

2.3. Type-2 Datasets Creation: Reflection Wave Propagation Simulation

For the type-2 training datasets generation, we have created three different geometrical
2D CAD models, as shown in Figure 1b. The overall physical dimension of each model is
40 mm in length and 40 mm in height. A total of 1500 CAD models are created, of which
500 are of the same geometrical shape. The excitation load is applied on the top-edge nodes
of the CAD models, as shown in Figure 1b, and on the remaining edges, a traction-free
boundary condition is applied to allow the sidewall and back wall reflections. After per-
forming each FE simulation, the displacement plots are saved as a sequence of images, with
a time interval of 0.0125 μs.

One FE simulation generation executed using Dual Intel Xeon Platinum 8168 processor
with 48 cores machine (Figure 1b) took 3600 s, using time-domain FE analysis, which is
a time-consuming process. We have introduced the SDL model to overcome this limitation,
which generates wave propagation simulations in minimal time once trained.

3. The Formulation of Spatio-Temporal Deep Learning Model for Ultrasonic
Wave Propagation

The LSTM is a unique RNN structure modeled for addressing vanishing gradients and
learning long-range dependencies in the deep machine learning framework. The LSTM
shown in Figure 2 consists of the following elements: a memory cell Ct, which can accumu-
late, and the forgetthe state being tackled, time step to time step. it, ft, and ot are the input,
forget, and output gate, respectively. The it monitors the flow of new input into the Ct,
the responsibility of ft is to remove irrelevant information from Ct, and the work of ot is
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to send information from Ct to hidden state Ht. The Ht could retain the memory of past
information from the sequence data. Since the nature of the training datasets is in the form
of spatio-temporal sequence images, the LSTM approach suffers from capturing the spatial
features from the 2D images. The ConvLSTM network, effectively, learns the spatial and
temporal features from the sequential images because it uses the convolutional operation
inside the LSTM cell to pair the temporal state with spatial information. The formulation of
the ConvLSTM model is followed from [23].

it = σ(Wxi ∗ Xt + Whi ∗ Ht−1 + Wci ◦ Ct−1 + bi) (1)

ft = σ(Wx f ∗ Xt + Wh f ∗ Ht−1 + Wc f ◦ Ct−1 + b f ) (2)

Ct = ft ◦ Ct−1 + it ◦ Tanh(Wxc ∗ Xt + Whc ∗ Ht−1 + bc) (3)

ot = σ(Wxo ∗ Xt + Who ∗ Ht−1 + Wco ◦ Ct + bo) (4)

Ht = ot ◦ Tanh(Ct) (5)

here, ‘W’ denotes the weights, and ‘b’ represents the network’s biases. The convolutional
operation is marked with ‘∗’ and ‘◦’, representing the Hadamard product.

Figure 2. Typical spatio-temporal deep learning (SDL) model encoder–decoder architecture, for
modelling wave propagation phenomena.

We have used the proposed SDL network for our spatial-temporal sequence generation
problem, as shown in Figure 2, for two types of different training datasets. First, for type-
1 datasets, we have modified the existing ConvLSTM algorithm to fuse the geometrical
information with each hidden dimension output, which is similar to our previous study [26].
So, for the type-2 datasets, we have modified the suitable network parameters, such as
hidden dimensions and kernel size, instead of modifying the network architecture.

These models consist of an encoder and a decoder network, containing a series of
convolutional LSTM cells stacked together, since a single ConvLSTM layer will not capture
the forward and reflected wave dynamics from training datasets, due to the spatial-temporal
nature. Each input data sequence is fed into each encoder ConvLSTM cell, to learn the wave
propagation physics from the datasets. The ConvLSTM layer takes the batch of the 3D
input tensor (length × width × time step) and outputs the hidden state (Ht). Then, the
following input tensor, similarly with Ht, is given input to the next layer of the ConvLSTM
cell. Due to the convolutional operation, the model captures the required features from
the datasets, during the processing into layers of ConvLSTM cells. The encoder, iteratively,
processes input sequences through various ConvLSTM cells and outputs the embedding
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tensor, representing wave propagation. The output of the encoder-embedded tensor is fed
to the decoder network, to produce predicted wave propagation simulations. The outcome
of the decoder cell’s sequence is passed to the 3D CNN layers, with a sigmoid activation
function, to transform into an actual wave propagation prediction.

4. Results and Discussion

The implementation of the SDL model, using type-1 and type-2 training datasets, as
well as testing results, are described in detail in this section.

4.1. SDL Model Implementation on Type-1 Datasets: Forward Wave Propagation Simulation

The proposed SDL network is implemented in PyTorch Lightning, an open-source
Python library (see https://www.pytorchlightning.ai (accessed on 28 March 2022)), by inte-
grating multi-GPU, and trained using simulation-assisted FE datasets of type-1 (Section 2.2).
These training datasets from the FE analysis form a sequence of images in each simulation.
Each simulation contains 675 images, and a mini-batch of 15 images is randomly selected.
A sequence of 5 images is used for input to the network from the mini-batch, and the next
successive 10 images are used to compare the network-predicted output. These images are
in grayscale, with a size of 128 × 128 pixels. The SDL architecture contains the four layers
of an encoder structure, and the four layers of the decoder structure are stacked together.
Each layer contains 256 hidden states, and the convolutional operation is performed on
each input image, with a kernel size of 5 × 5 with the same padding. The geometrical
information from the CAD model is captured in the binary matrix, by assigning ‘1’ for
the inside and ‘0’ for an outside domain, as shown in Figure 2. The binary matrix and
the sequence of frames are used as input to the network. This binary matrix is multiplied
with an output of a hidden state, before updating the next hidden state. In total, 80% of the
simulations are used for training and the remaining for testing the model.

To predict the more accurate simulations from the SDL model, the suitable learnable
parameters and hyperparameters are selected. The hyperparameters are selected before
the training process and cannot be altered, and the weights and basis are learnable parame-
ters that must be updated during training. First, the input datasets are fed and propagated
to compute the output through the network. This predicted output is compared with
the ground truth, to determine the error and, then, calculate the derivative of the error
function, with respect to the network learnable parameters. Now, network weights and
basis are updated to minimize the error; this process is well known as the back-propagation
algorithm. The back-propagation algorithm is suitable for fixed-size input-output pairs
in feed-forward neural networks [33]. However, in the current work, the training datasets
are spatiotemporal, so the back-propagation through time (BPTT) algorithm is employed,
instead of the back-propagation algorithm. The mean square error (MSE) loss function is
minimized during the training process, using the back-propagation through time (BPTT)
algorithm. The MSE loss function used in this network is as follows:

MSE =
1
n

n

∑
t=1

(ŷi − yi)
2 (6)

here, ŷ is the predicted output sequence, y is the ground truth sequence, and n = the number
of instances. While training, the ConvLSTM network, as shown in Figure 2, predicts
the output for one input in each time step. So, the BPTT works by unrolling all input time
steps. Furthermore, each time step has one input time step, one output time step, and a
copy of the network. Then, the error is calculated for every time step and accumulated
for each time step. The network is unrolled back, and learnable parameters are updated.
The network learning rate is set to a constant value of 1.0 × 10−4 in the Adam optimizer
and trained for 150 epochs. The network took a total of 36 h to train, using two NVIDIA
GeForce RTX 3090 GPU processors. The average loss value computed by comparing
network-predicted output with ground truth is used to determine the model learning
efficiency. Figure 3a shows the average loss values over the number of epochs, and training
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loss is determined to be 6.0 × 10−4, whereas testing loss is 2.0 × 10−4. The performance of
the train SDL model is validated, by feeding the remaining 20% of testing datasets of single
to multi-point excitation sources simulations, and the effectiveness of the proposed model
on testing datasets can be referred from our prior work [26].

Figure 3. (a) Spatio-temporal deep learning (SDL) model, for forward wave propagation: training
and testing average loss values over the number of epochs for the type-1 datasets. (b) Spatio-temporal
deep learning (SDL) model, for reflected wave propagation: training and testing average loss values
over the number of epochs for the type-2 datasets.

4.1.1. Evaluation Metric

To assess the efficiency of the SDL model prediction on wave propagation simulation,
we have employed the Mean Absolute Error (MAE), Root Mean Square Error (RMSE),
and Mean Absolute Percentage Error (MAPE), to compute using the equations below:

MAE =
1
n

n

∑
i=1

|Yi − Ȳi| (7)

RMSE =

√
(

1
n
)

n

∑
i=1

(Yi − Ȳi)2 (8)

MAPE =
100%

n

n

∑
i=1

∣∣∣∣Yi − Ȳi
Yi

∣∣∣∣ (9)

here, Yi is the ground truth from FE wave propagation simulation, Ȳi is the predicted from
SDL model generated wave propagation simulation, and n = number of instances.

4.1.2. Ultrasonic Wave Propagation on Different Geometrical Domain Modelling

This section presents the comparative study between the SDL model and FE, to
simulate the forward wave propagation simulations for the different geometrical domains,
shown in Figure 4. So, we have considered two scenarios of different geometrical domains
(i.e., other than the trained domains) with point source excitation to evaluate the trained
SDL model, which is not used during training or testing. The SDL model is, initially, trained
with a single-step short-term prediction during the training process. Then, the model takes
a 5-input image sequence from the training set and predicts the next following consecutive
10-output image sequence. These model-predicted images are fed back to the model’s input,
iteratively, to predict the complete long-term simulation. Then, the SDL model generated
simulation is compared with the actual FE ultrasonic wave propagation simulation.

Figure 4 shows the FE and SDL model simulations over the total simulation time for
geometry-1 and geometry-2. In particular, the top row in Figure 4a shows the FE datasets,
and the bottom row shows the SDL model output datasets at identical time intervals
at t = (0.9 μs, 1.5 μs, 2.2 μs, 2.2 μs, 3.6 μs), for the long-term simulation of geometry-1.
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Similarly, Figure 4b depicts the wave propagation of geometry-2. The proposed SDL model
could capture the constructive and destructive interference at the wavefront interaction
and match the FE simulation. We can conclude that the SDL model-generated simulations
are in good agreement with FE.

(a) FE/SDL simulation comparison for geometry-1

(b) FE/SDL simulation comparison for geometry-2

Figure 4. Forward wave propagation of different geometrical domain: The FE and SDL are modeled
using 5 MHz central frequency and two cycles with a single-point excitation source on different
geometrical domains. The SDL model predicted simulations are qualitatively compared with FE sim-
ulation. (a) Forward wave propagation simulation for geometry-1 and (b) forward wave propagation
simulation for geometry-2, at exact time steps for different time instances.

For quantitative assessment, we have extracted the displacement values at x = 17.5 mm
and y = 0 to 35 mm, in all the frames from Figure 4 (as shown by the vertically dotted
yellow line). Figure 5a,b show the wavefront line scans for both geometry-1 and geometry-2.
The line scans from the SDL model follow the same trend as the FE simulation line scans for
all the frames, but some differences exist in amplitude and TOF. To find out the difference
in amplitude and time of flight between the SDL and FE simulations, from the line scans
in Figure 5 for each modelling scenario, we have used three methods (refer to Section 4.2)
(1) the Mean Absolute Error (MAE), (2) Root Mean Square Error (RMSE), and (3) Mean
Absolute Percentage Error (MAPE), to estimate the error in each frame. Table 1 shows
the summary of the MAE, RMSE, and MAPE on amplitude and TOF error. The maximum
MAE is in order of 10−2, the maximum RMSE is in order of 10−1, and MAPE is 115.9%
on amplitude error, over all the time frames. The maximum MAE is in order of 10−1,
the maximum RMSE is 3.15, and MAPE is 3.34% on TOF error, over all the time frames.
The evaluation finding shows that the proposed SDL model could, efficiently, simulate
ultrasound wave propagation on the different geometrical domains, other than the trained
domain, with good accuracy.
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(a) Line scans between FE/SDL simulation, for geometry-1 at identical time steps

(b) Line scans between FE/SDL simulation, for geometry-2 at identical time steps

Figure 5. Line scans of different geometrical domains: the displacement values are extracted at
x = 15 mm and y = 0 to 30 mm in each frame from the FE, and SDL-generated simulation of
the different geometrical domains for different time instances in Figure 4. (a) The line scans were
extracted from Figure 4a for geometry-1, and (b) the line scans were extracted from Figure 4b
for geometry-2.

Table 1. Forward wave propagation on different geometrical domains datasets: the line scan am-
plitude and time of flight (TOF) differences between SDL and FE are computed using MAE, RMSE,
and MAPE methods on the sequence of images at different time instances in Figure 5.

Line Scan

Datasets of Testing MAE RMSE MAPE (%)

and Different Sequence of Images at Sequence of Images at Sequence of Images at

Geometrical Domain T-1 T-2 T-3 T-4 T-5 T-1 T-2 T-3 T-4 T-5 T-1 T-2 T-3 T-4 T-5

Amplitude Geometry-1 0.00 0.02 0.05 0.04 0.04 0.05 0.12 0.14 0.20 0.24 9.50 25.2 30.6 75.6 92.7
Geometry-2 0.00 0.01 0.06 0.07 0.06 0.07 0.14 0.20 0.21 0.19 115.9 16.4 22.5 34.8 39.6

Time of Flight Geometry-1 0.00 0.17 0.17 0.83 1.42 0.00 0.41 0.41 1.63 3.15 0.00 0.28 0.24 1.62 3.34
Geometry-2 0.29 0.21 0.21 0.21 0.21 0.53 0.46 0.46 0.46 0.46 0.46 0.39 0.46 0.48 0.67
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4.2. SDL Model Implementation on Datasets Type-2: Reflection Wave Propagation Simulation

A similar approach is followed from Section 4.1 to train the SDL model using the type-2
datasets of reflection wave propagation simulation (from Section 2.3). The SDL architecture
consists of six layers of an encoder structure and six layers of a decoder structure; these structures
are stacked together. Each encoder or decoder structure contains 256 hidden dimensions,
and during convolutional operation, a 5 × 5 kernel size and the same padding are used.
The average loss value over the number of epochs is shown in Figure 3b. The average training
loss is determined to be 1.0 × 10−5, the testing loss is 4.0 × 10−5, and the loss value becomes
stabilized with an increase in the number of epochs.

4.2.1. Generalization to Different Geometrical Boundary Modelling: Reflected Wave
Propagation from Boundaries

To generalize the SDL model, we have modeled the ultrasonic wave propagation
in four different geometrical domains: curved, T-shaped, and triangular. The SDL model
predicted simulation is compared with the FE. Figure 6a–c shows the reflected ultrasonic
wave propagation simulation for curved, T-shaped, and triangular domains, respectively.
In each figure, the top row simulations are from the FE, and the bottom row shows the pre-
dicted simulation from the SDL model. During the training process, the proposed SDL
model is trained with straight edge boundaries, but it could generate the simulation for
curved boundaries (Figure 6a) and diagonal boundaries (Figure 6c). The SDL model has
learned the wave interactions at the domain sharp edge and could generate the reflection
wave propagation from the sharp edges (Figure 6b). So, the SDL model accurately predicts
reflection wave propagation from the side and back walls as well as matches with the FE.

(a) FE/SDL simulation comparison for the curved boundary.

(b) FE/SDL simulation comparison for the T-shaped boundary.

Figure 6. Cont.
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(c) FE/SDL simulation comparison for the triangular boundary.

Figure 6. Reflected wave propagation with different geometrical boundaries: FE and SDL models are
used to simulate reflected wave propagation in different geometrical boundaries. The simulations
generated using FE and SDL are compared to each other at identical time steps for different time
instances. These simulations are modeled with an incident wave of 5 MHz frequency with two cycles,
using a single-point excitation source on the top edge. (a) Represents the FE/SDL simulation for
the curved domain, (b) illustrates the FE/SDL wave propagation simulation for the T-shaped domain,
and (c) shows the wave propagation simulation for the triangular domain. For the illustration,
a yellow dashed vertical line is created, manually, in all the frames, to extract the displacement values.

Quantitatively exploring the SDL model prediction on reflected wave propagation,
we have extracted the displacement values along the line at x = 20 mm and y = 0 to
40 mm, from all the geometrical domain frames. Figure 7 shows the wavefront line scans
between the SDL and FE model, for all the geometrical boundaries datasets. The SDL
model-based line scans follow a similar trend to FE simulation-based line scans. To find
out the amplitude and TOF difference between the two methods, we have employed MAE,
RMSE, and MAPE, to calculate the error on each frame. A similar approach is adopted
from Section 4.2. The comparison summary is shown in Table 2 for each frame for each
domain. The maximum MAE is in order of 10−2, the maximum RMSE is in order of 10−1,
and MAPE is 78.7% on amplitude error, over all the time frames. The maximum MAE
is 1.86, the maximum RMSE is 2.56, and MAPE is 5.37% on an error in TOF, between all
the geometrical domains. The SDL model could simulate curved domains (Figure 6a), sharp
corner reflection (Figure 6b), and diagonal boundaries (Figure 6c), even though we have not
used these geometries based datasets while the training process. The SDL model-generated
simulations are reasonably in good agreement with FE simulation.

(a) Line scans between FE/SDL simulation for the curved boundary at identical time steps.

Figure 7. Cont.
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(b) Line scans between FE/SDL simulation for the T-shaped boundary at identical time steps.

(c) Line scans between FE/SDL simulation for the triangular boundary at identical time steps.

Figure 7. Line scans of reflected wave propagation with different geometrical domains: the FE and
SDL modeled simulations are compared, quantitatively, by extracting the displacement values in each
frame at x = 15 mm and y = 0 to 40 mm for different time instances, shown in Figure 6. (a) The line
scans are extracted from Figure 6a for the curved domain, (b) shows the line scans are extracted from
Figure 6b for the T-shaped domain, and (c) represents the line scans extracted from Figure 6c for
the triangular domain.

Table 2. Reflected wave propagation with different geometrical boundaries: the SDL model predicted
simulation is compared with FE simulations. The MAE, RMSE, and MAPE methods are used
for calculating the line-scan amplitude and time of flight (TOF) difference between SDL and FE,
on the sequence of images at different time instances, shown in Figure 7.

Line Scan

Datasets of MAE RMSE MAPE (%)

Different Geometrical Sequence of Images at Sequence of Images at Sequence of Images at

Domain T-1 T-2 T-3 T-4 T-5 T-1 T-2 T-3 T-4 T-5 T-1 T-2 T-3 T-4 T-5

Amplitude
Curved 0.00 0.00 0.00 0.01 0.01 0.00 0.10 0.13 0.06 0.06 0.00 55.9 48.3 36.6 26.6

T-shaped 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.06 0.08 0.18 0.00 0.00 78.7 73.0 74.0
Triangular 0.00 0.01 0.01 0.01 0.00 0.00 0.06 0.07 0.07 0.19 0.00 57.8 67.4 131 71.4

Time of Flight
Curved 0.00 0.50 0.86 0.07 0.29 0.00 1.16 1.51 0.27 0.85 0.00 1.05 1.36 0.20 0.90

T-shaped 0.00 0.00 0.43 0.79 1.86 0.00 0.00 0.76 1.16 2.54 0.00 0.00 1.16 2.10 4.32
Triangular 0.00 1.14 0.23 1.64 0.64 0.00 1.75 0.48 2.56 1.04 0.00 5.37 1.19 5.34 1.98
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Once trained, the SDL model takes approximately 180 s to generate the 1040 frames
in one simulation sequence, for 13 μs total simulation time, with the time interval of
0.0125 μs. The conventional FE solver takes 3600 s, using the same computer proces-
sor. Hence, we can infer that the proposed SDL model could simulate reflected wave
propagation simulation for different geometrical boundaries with reduced computational
requirements than FE simulation.

4.2.2. SDL Model Simulation for Reflected Wave Propagation with Varying Frequencies
and Cycles

To determine the effectiveness of the proposed SDL model, we have modeled the dif-
ferent scenarios of varying excitation frequencies and the varying number of cycles on
rectangular domains with a single-point excitation source on the top edge, to simulate
reflected wave propagation. These datasets are not used during the training or testing of
the network. We have modeled two sets of FE simulations on the rectangular domain, first,
by varying the excitation frequencies of 4 MHz, 5 MHz, and 7 MHz with two cycles of the in-
cident wave, and, second, by modelling with three cycles using 5 MHz frequency. The FE
simulations are performed using a similar approach to Section 2.3. Here, we compare the
SDL modeled simulation with the FE simulation, for different scenarios. Figure 8 shows the
comparison of reflected wave propagation simulation for different excitation frequencies
with two-cycle signal width, and the corresponding displacement values extracted along
the yellow dashed line from Figure 8 for all the frames are shown in Figure 9a,b. Similarly,
Figure 10 shows the comparison of the reflection wave propagation simulation modeled
using a varying number of cycles with a 5 MHz central frequency. The corresponding
displacement values extracted along the yellow dashed line from Figure 10 for all the time
frames are shown in Figure 11a,b. We can observe that the proposed SDL model could
generate reflection wave propagation for varying frequencies and cycles. The SDL simula-
tions are in good agreement with FE simulations. The SDL-model-based line scans follow
a similar trend as the FE simulation; however, amplitude and TOF differences are present
in the line scans as the future time step prediction increases. We have utilized the same met-
rics that we used to evaluate different geometrical boundaries predictions, and the results
are illustrated in Table 3. In this case, we are comparing the MAE, RMSE, and MAPE values
for two different scenarios as follows: (1) the simulation between the frequencies of 4 MHz,
5 MHz, and 7 MHz with two cycles and (2) simulation, with the number of cycles being
two and three, with 5 MHz frequency. We can notice the following conclusion from Table 3:
(1) with an increase in the excitation frequencies other than the training frequency, the MAE,
RMSE, and MAPE values increase, but the overall magnitude is in the order of 10−2 for
MAE and 10−1 for RMSE, while the maximum MAPE is 221% on amplitude. (2) Increasing
the number of cycles, the MAE, RMSE, and MAPE values are increased, but, overall, are
in order of 10−2, for MAE and 10−1 for RMSE, while the maximum MAPE is 447 % on
amplitude. (3) When increasing the number of cycles, the MAE, RMSE, and MAPE values
are increased in amplitude and TOF.

The trend in MAE, RMSE, and MAPE values of amplitude as well as TOF is, closely,
following the increasing function with respect to increasing in future time step prediction.
The apparent trend from Table 3 is that the performance of the SDL model prediction on
reflected wave propagation simulation deteriorates, as the number of future time steps
to be predicted increases. Even if we can observe that from Figures 6, 8, and 10, we can
infer that the results obtained from the SDL model are in reasonably good agreement
with the FE simulation until the t = 4.0 μs frame, for all the domains. Still, there is some
compounding errors that started accumulating time instances afterward. The generation of
accurate waveform amplitude from back-wall reflection depends on the various parameters
in the network architecture, such as the number of hidden layers, kernel size, input–
output frames, etc. However, the best suitable learnable hyperparameters and network
parameters need to be selected, which may require additional computational resources
and time to train the model. The SDL models developed in this work are applicable for
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solving the forward- and reflected-wave propagation in different 2D geometrical domains.
The same approach can be extended for modelling the 3D domain simulation and the wave
phenomenon of scattering effect with defects.

(a) FE/SDL simulation comparison for the 4 MHz central frequency, with two cycles.

(b) FE/SDL simulation comparison for the 7 MHz central frequency, with two cycles.

Figure 8. Reflected wave propagation with varying frequency: the SDL model is used for modelling
reflected wave propagation in a rectangular domain for varying frequencies and two cycles with
a single-point excitation source on the top edge, compared with FE simulation. (a) Shows the wave
propagation simulation for 4 MHz central frequency, and (b) represents the wave propagation
simulation for 7 MHz.

(a) Line scans between FE/SDL simulation with the 4 MHz central frequency, at identical time steps.

Figure 9. Cont.
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(b) Line scans between FE/SDL simulation with the 7 MHz central frequency, at identical time steps.

Figure 9. Line scans of reflected wave propagation with varying frequency: The FE- and SDL-model-
generated simulations are compared, quantitatively, by extracting the displacement values, which are
extracted at x = 15 mm and y = 0 to 40 mm for different time instances, from Figure 8. (a) Represents
the line scans that are extracted from Figure 8a for 4 MHz, and (b) illustrates the line scans that are
extracted from Figure 8b, for 7 MHz in the rectangular domain.

(a) FE/SDL simulation comparison for the 5 MHz central frequency with two cycles.

(b) FE/SDL simulation comparison for the 5 MHz central frequency with three cycles.

Figure 10. Reflected wave propagation with a varying number of cycles: A qualitative comparison
between the FE and SDL simulations modeled in the rectangular domain, with the varying number
of cycles with a 5 MHz central frequency with a single-point excitation source on the top edge.
(a) represents the simulation of two cycles, and (b) illustrates the simulation of three cycles, at
identical time instances.
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(a) Line scans between FE/SDL simulation with the 2-cycles at identical time steps

(b) Line scans between FE/SDL simulation with the 3-cycles at identical time steps

Figure 11. Line scans of reflected wave propagation with a varying number of cycles: The SDL model
predicted simulation with FE simulation to examine quantitatively; the displacement values are
extracted at x = 15 mm and y = 0 to 40 mm for different time instances from Figure 10. (a) Represents
the line scans are extracted from Figure 10a for two cycles, and (b) illustrates the line scans are
extracted from Figure 10b, for three cycles in the rectangular domain.

Table 3. Reflection wave propagation on the rectangular domain with varying frequencies and cycles:
The SDL model line scan amplitude and time of flight (TOF) are compared with FE using MAE,
RMSE, and MAPE methods at different time instances, as shown in Figures 9 and 11.

Line Scan

Datasets of MAE RMSE MAPE (%)

Varying Frequencies Sequence of Images at Sequence of Images at Sequence of Images at

and Cycles T-1 T-2 T-3 T-4 T-5 T-1 T-2 T-3 T-4 T-5 T-1 T-2 T-3 T-4 T-5

Amplitude

5 MHz with 2 cycles 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.19 0.00 0.00 0.00 0.00 50.1
5 MHz with 3 cycles 0.01 0.00 0.02 0.01 0.01 0.23 0.22 0.21 0.05 0.21 118 477 108 99.2 111

4 MHz with 2 cycles 0.00 0.00 0.01 0.02 0.01 0.24 0.12 0.07 0.13 0.28 132 221 24.8 44.7 54.0
7 MHz with 2 cycles 0.00 0.01 0.01 0.01 0.01 0.09 0.15 0.09 0.12 0.11 203 111 87.7 116 135

Time of Flight

5 MHz with 2 cycles 0.00 0.00 0.00 0.00 0.56 0.00 0.00 0.00 0.00 0.88 0.00 0.00 0.00 0.00 1.19
5 MHz with 3 cycles 1.14 1.00 2.86 0.86 1.59 2.03 1.68 5.05 2.72 2.38 3.03 2.39 5.44 2.72 2.95

4 MHz with 2 cycles 0.36 1.50 0.21 0.57 0.79 0.71 2.87 0.46 0.93 1.16 1.51 2.60 0.78 1.19 2.03
7 MHz with 2 cycles 0.36 0.64 0.43 0.50 1.14 0.71 0.96 0.65 0.71 2.45 0.81 1.37 0.93 0.94 5.21
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5. Conclusions

In this work, the data-driven spatio-temporal deep learning (SDL) model is used
to rapidly compute ultrasonic wave propagation for modelling forward and reflected
ultrasonic wave propagation in the different geometrical domains as well as varying fre-
quencies and cycles. The SDL is trained with simulation-assisted FE simulation data. Here,
we have used two types of training datasets to teach two individual SDL models, using
multiple point sources of wave simulation in a single domain and reflected wave propa-
gation from boundaries with different geometries. The SDL can learn representations of
the time-domain ultrasonic wave propagation phenomenon from the training datasets,
thus employing a data-driven approach to understand the underlying physics to build an
AI predictive model to simulate ultrasonic wave propagation and reflection from bound-
aries. The SDL model can be used for modelling forward and reflected ultrasonic wave
propagation simulations, in the different geometrical domains and varying incident wave
parameters, such as frequencies and number of cycles with significantly reduced time
(20×) and computation resources, which compare well with the FE model simulations.
Furthermore, the SDL models have, traditionally, been successfully used for creating con-
ventional 2D wave propagation simulations. Understanding the seismic wave propagation
in the geological structure is complex, due to various geological and geometrical structures,
to take into account that the various numerical methods are used to model seismic wave
propagation in the geological structure but need huge numerical costs and memory storage
for handling larger domains with higher frequencies. However, the proposed SDL model
can be a direct replacement, where time and a high-processor computer are the constraints
for seismic wave propagation simulation. Hence, the SDL model approach may be further
extended for modelling the scattering effects of the defects and virtual source imaging
in nondestructive evaluation and biomedical imaging.
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Featured Application: The proposed models’ validation will enable the proper use of ultrasonic

simulation for designing NDT methods for embedded crack detection and characterization.

Abstract: Ultrasonic Non-Destructive Testing (NDT) methods are broadly used for detection and
characterization/imaging of cracks. Simulation is of great interest for designing such NDT methods.
To model the ultrasonic 3D response of a crack, ultrasonic high frequency asymptotic (semi-analytical)
models (such as the Physical Theory of Diffraction—PTD) are known to provide accurate predictions
for most classical NDT configurations, and 3D numerical models have also emerged more recently.
The aim of this paper is to carry out for the first time an experimental and theoretical comparison of
3D models for ultrasonic NDT of embedded cracks in 3D configurations. Semi-analytical models and
a hybrid 3D FEM strategy—combining high-order spectral Finite Elements Method (FEM) for flaw
scattering and an asymptotic ray model for beam propagation—have been compared. Both numerical
validations and comparisons between simulation and experiments prove the effectiveness of PTD in
numerous configurations but validate and demonstrate the improvement provided by the 3D hybrid
code, notably for small flaws compared to the wavelength and for shear waves.

Keywords: Non-Destructive Testing (NDT); ultrasounds; crack; scattering; numerical models
comparison; experimental validation

1. Introduction

Nowadays, simulation plays a key role in the design and demonstration of perfor-
mances of Non-Destructive Testing (NDT) methods. Conventional ultrasonic inspection
methods have been used for the NDT of cracks for several decades. The analysis of the
echoes generated by cracks, generally specular or diffraction ones, can lead to their de-
tection or imaging. To simulate the ultrasonic response of a crack during an ultrasonic
inspection, system models [1,2] have been devised. Such models consist of modeling the
propagated beam, its interaction with scatterers and the reception by a probe.

Historically, semi-analytical models were first studied to model flaw scattering. Two
classical ones were revisited in elastodynamics from the end of 1970s: the Kirchhoff ap-
proximation (KA) [3] and the Geometrical Theory of Diffraction (GTD) [4], which have
complementary areas of validity. KA enables handling reflections from planar or multi-
faceted cracks, volumetric voids [5] and impedance interfaces [6,7]. GTD is preferred to
KA for simulating scattering by crack edges (notably for TOFD configurations [8,9]) but
fails in the near-incident and specular reflection directions (shadow boundaries). A GTD
solution has also recently been proposed for wedge scattering [10–12]. Several system
models based on KA [3] or GTD [13,14] were conceived first for 2D configurations and
then developed in 3D for KA [1,5] and for GTD [15], then using an incremental Huygens
model [16]. Strategies were then created to take into account both reflection and edge
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diffraction. Recently, an approach based on the Huygens–Fresnel diffraction theory has
been proposed [17] to evaluate the signals diffracted by the edges, but it is equivalent [18]
to KA and limited to 2D time-of-flight diffraction (TOFD) configurations; it also cannot de-
scribe head waves [19,20]. Uniform corrections of GTD which are able to predict a spatially
uniform scattered field has led to recent developments for elastic waves. An elastodynamic
version of the Uniform Asymptotic Theory (UAT) [21] was first proposed [4]; however, the
UAT requires an artificial extension of the scattering surface and additional costly tracing
of fictitious rays reflected on this extended surface. The elastodynamic Uniform Theory
of Diffraction (UTD) [22] has also been established for the scattering from a stress-free
half-plane and represents a good alternative even if leading to small differences with UAT.
Finally, an ultrasonic system model accounting for both reflection and diffraction has been
proposed for 3D crack-like flaws in 3D configurations [23]. It is based on the Physical
Theory of Diffraction (PTD), initially developed in electromagnetism [24] and extended to
elastodynamics [25]. For a half-plane, PTD has been shown to be identical to UAT at the
used leading order. Moreover, the region of the model’s validity has been extended [26] to
cover some transition zones surrounding critical rays, where the shear diffracted waves and
head waves interfere. Important efforts have been made to propose an analytical modelling
of some head waves contributions, notably lateral waves in the TOFD configuration [27,28]:
for planar surfaces, lateral waves are head waves propagating along such surfaces, and
recent advances have been obtained in their modelling [29–33]; for complex or cylindrical
surfaces, lateral waves can include bulk wave contributions [34]. The PTD-based system
model [26] can be considered as the most sophisticated and valid semi-analytical approach
existing at the present date.

Nevertheless, the ultrasonic high frequency asymptotic models, despite providing
accurate predictions in a wide range of situations, have a limited domain of validity
identified through various experimental validation campaigns [35–37]: they can fail at
predicting responses from defects in some complex configurations when creeping and
bulk head waves or caustics occur. In the same way, their precision drops for defects with
characteristic dimension of the order of the wavelength. To overcome these limitations,
the use of hybrid models such as the 2D CIVA ATHENA model [5] combining numerical
and asymptotic methods has been demonstrated as an effective strategy. However, the
computational cost of the numerical solver remains a crucial issue for 3D simulations.
Different numerical codes [38–40] have been devised for simulating flaw scattering but have
limited performances for 3D problems. In this paper, we use a 3D hybrid model [41,42],
coupling FEM (Finite Element Method) for flaw scattering and a ray model for beam
propagation. In this model, the numerical parameters are set automatically, and the use
of high-order spectral elements [43,44] and techniques of domain decomposition ensures
high numerical performance.

A comparison of analytical, semi-analytical and numerical techniques has been per-
formed for 2D/3D ultrasonic field modeling [45]. For flaw scattering simulation, different
analytical approximations (such as GTD, UAT, UTD, KA and PTD) have been compared
for the wedge scattering problem in acoustics [46] or for the rigid half-plane problem in
elastodynamics [25]. When modelling a complete inspection with both beam propagation
and flaw scattering, a comparison between an analytical model (integral equation [47]) and
two numerical (COMSOL FEM and finite differences) models has been recently carried out
in some 2D ultrasonic NDT configurations [48]. A comparison between the semi-analytical
PTD model and the hybrid 2D numerical model CIVA ATHENA model has also been stud-
ied in detail for 2D configurations [26]. Preliminary numerical comparisons between PTD
and the 3D hybrid FEM model have been reported in two simple 2D configurations [42].
To our knowledge, no study has yet compared the most advanced semi-analytical (as PTD)
and numerical 3D crack ultrasonic NDT models in 3D configurations and their results with
experience. The models’ comparison proposed here relate to embedded planar defects
inspected in 3D configurations with a special interest in defect characteristic lengths of the
order of the wavelength for which asymptotic models are no longer valid. The models
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involved are the semi-analytical (GTD, PTD) and the hybrid numerical FEM models. We
also present comparisons between simulations and experiments for the models’ validation.
The analytical and numerical simulation methods are briefly recalled in Section 2 of this
paper; then, numerical (Section 3) and experimental (Section 4) validations are described
for 3D-embedded flaws.

2. Simulation Methods

All the simulation methods used are integrated in the CIVA NDT platform [49] for
simulation [2] and analysis. The semi-analytical models (GTD, PTD) have been widely
described in Refs. [15,26]. The Physical Theory of Diffraction (PTD) combines GTD (ray
theory) and Kirchhoff Approximation (KA—integral method) and applies to arbitrary large
scatterers. PTD [25,26] replaces the Kirchhoff edge diffraction contribution by GTD, the
asymptotical approximation of the edge problem solution. The PTD scattered field is the
sum of the Kirchhoff scattered field and a modified GTD field, whose diffraction coefficient
is the difference between the GTD and Kirchhoff edge diffraction coefficients. Finally, this
summation enables building a PTD total field which is spatially uniform, contrary to GTD,
which leads to several singularities (shadow boundaries).

The 3D hybrid FEM model is a coupling method [42] between an FEM scattering
model with a ray-based asymptotic field model (the CIVA pencil method for field computa-
tion [2]). This hybrid methods consequently consists of simulating the propagation field
until the defect vicinity employing the CIVA pencil method [50] and then the scattering of
this field from the defect thanks to a numerical approach. The flaw’s echographic signal
is finally obtained by the way of the Auld’s reciprocity principle [51], which expresses
it as a combination of fields from the emitter and receiver with and without a scattering
defect. The numerical solver is built upon a “dedicated” high-order spectral finite element
method [43,44], which enables us to address 3D configurations, and second, the constitution
of the numerical parameters are automatically deduced from the inspection configuration.
A theoretical description of the hybrid FEM method is given in Appendix A. Some addi-
tional details (meshing around the defect, numerical scheme, etc.) can be found in [41,52].
Different calculation strategies adopted in the CIVA 2017 release used in this paper depend
on the defect’s location (embedded or surface breaking) and on the sensibility area defined
by the user to reduce the computation time. For breaking flaws, the coupling reciprocity
integral [51] is carried out on both the flaw and component surfaces inside the sensibility
area (in red in Figure 1b).

Figure 1. Different coupling strategies used in the CIVA hybrid FEM model for (a) embedded and
(b) breaking cracks.
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Finally, the simulation methods utilized here both use the same ray-based asymptotic
field model (the CIVA pencil method for field computation [2]) to simulate wave propaga-
tion, but they differ in the method they employ to model flaw scattering. The model based
on GTD or on the Physical Theory of Diffraction (PTD) is a semi-analytical high frequency
model, whereas, for the hybrid CIVA-FEM model, spectral finite elements (using high order
polynomials) are used.

For contact probes, only longitudinal waves are taken into account in the probe by
the simulation, and since a coupling gel is used in experiments to make a bond between
the probe and the specimen, a solid–solid sliding interface model is used for transmission
coefficients at the specimen interface.

3. Numerical Validations of 3D Embedded Flaws Simulations

In a first step prior to this study, numerical validations were performed in a wide range
of classical 2D NDT configurations by comparing simulations from the proposed hybrid
FEM method, the asymptotic PTD model [10] and another coupling method (2D CIVA
ATHENA). Such numerical validations showed that the PTD approach, which has a lower
computation time, breaks downs for small flaw heights compared to the wavelength as
shown in [10]. Preliminary comparisons between PTD and hybrid FEM have been reported
by some of the present authors in two simple 2D configurations [42] and lead to the same
conclusions. The hybrid FEM method appears thus be a solution to overcome the limitation
of analytical models for small flaws.

The proposed 3D hybrid FEM model is evaluated here by comparing numerically
it with existing analytical 3D models as the 3D PTD model. In these validations, crack
inspections in ferritic steel components are simulated using several different configurations:
TOFD [28] configurations, which are usually used to detect and characterize cracks from
their edge diffraction echoes, and pulse echo configurations with various incidences to
study both the reflection (normal incidence) and diffraction (oblique incidence) from the
crack. The influence of the flaw height and extension is also evaluated notably for small
sizes to determine the improvement provided by the FEM model in 3D configurations. For
the simulations, the following mechanical parameters have been considered: longitudinal
and shear sound velocities of 5900 and 3230 m/s and a density of 7.9 g/cm3. All the input
data for simulation are exactly the same for all the used models. These data describe the
inspection configuration [1]: the characteristics of the component, the used probes, the
inspection scanning, the inspected flaws and the simulation settings.

3.1. Longitudinal Waves

P waves are first considered. The first TOFD configuration is described in Figure 2a.
The specimen includes a 5 mm (or 0.5 mm) high rectangular crack with a varying extension
(perpendicular to the plane of Figure 2a). It is inspected using P45 waves in TOFD mode
at 2.25 MHz.

Figure 2. (a) Inspection of a 5 mm high (height represented by a red segment) and varied extent
rectangular crack inspected using P45 waves in TOFD mode at 2.25 MHz; Echo magnitude versus the
flaw extension (b) for the 0.5 mm high crack and (c) for the 5 mm high crack.
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The first numerical comparison of models consists in studying the effect of the flaw
extension on maximal flaw echo amplitude (Figure 2b). For both the 0.5 mm and 5 mm
high cracks, very important differences are observed between the FEM and PTD models in
terms of maximal echo amplitudes. Such differences are more important for the smallest
height. Nonetheless, for the 5 mm height differences are not negligible even for large
extensions for which the echo magnitude tends to stabilise (25 mm is close to the beam
width). For this 5 mm height, the echoes from the top and bottom edge are well dissociated,
and the amplitude noticeably oscillates as a function of the extension for the FEM model.
These oscillations may be due to interference between waves scattered from each edge and
their corners, the latter being better predicted by FEM than by the PTD model. The PTD
model used here relies on the incremental Huygens model to account for the finite edge
extension [16,26,53,54].

The second numerical comparison in the previous P45◦ TOFD configuration (Figure 2a)
consists of studying the effect of the flaw height on maximal flaw echo amplitude for the
25 mm extent crack (extension large enough to include the beam width). The flaws’ heights
from 0.5 to 5 mm are studied, which correspond to adimensional wave number 0.6 < ka < 6.
Again, significant differences are observed in Figure 3a between the FEM and PTD models
in terms of maximal echo amplitudes, especially for the smallest heights. Whereas the echo
amplitude is quite constant versus the height for the PTD, the FEM model predicts higher
amplitudes when the scattered waves are mixed for small heights.

Figure 3. Inspection of a 25 mm extent rectangular crack inspected using P45 waves in TOFD mode
at 2.25 MHz: (a) Echo magnitude versus the flaw height; (b) Ascans simulated both by the 3D FEM
and PTD models for the 5 mm high crack.

By comparing the Ascans simulated by both the 3D FEM and PTD and generated by
the 5 mm high and 25 mm extent rectangular crack (Figure 3b), the two models lead to a
similar prediction from the top edge response, but PTD provides an underestimation for
the bottom edge echo (which yields the maximal amplitude from the flaw). This is due to
the use of P45◦ waves and the presence at the 38◦ inspection angle of a minimum predicted
by GTD for the amplitude of the bottom edge echo versus the angle of observation in TOFD.
As shown in [55], GTD and CIVA ATHENA (hybrid FEM model) both predict a minimum,
but it is much more pronounced with GTD. Consequently, the difference of prediction of
this minimum by the two models explains the gaps obtained in terms of echo magnitude
even for large flaw heights in TOFD P45◦. The FEM model also predicts later contributions,
notably due to the Rayleigh waves propagating on the flaw surfaces.

The previous section concludes that the P45◦ waves TOFD configuration exhibits
differences between PTD and FEM predictions due to the presence of a minimum in
the directivity pattern for a particular observation angle. In the next P60◦ waves TOFD
configuration, the PTD and FEM models are expected to lead to similar results for large
flaws. When comparing the Ascans simulated both by the 3D FEM and PTD models using
inspection at 60◦ still at 2.25 MHz (configuration shown in Figure 4a), the two models
give rise to similar echoes for both the top and bottom edges (Figure 4b). The FEM model
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also predicts later contributions. The amplitude difference between the 3D FEM and PTD
models observed using P45 waves in TOFD is not reproduced for P60 waves.

Figure 4. (a) Inspection of a 25 mm extent rectangular crack of varying height using P60 waves in
TOFD mode at 2.25 MHz. (b) Superimposition of Ascans simulated both by the 3D FEM and PTD for
the echoes generated for the 5 mm high crack. (c) Echo magnitude versus the flaw height.

In the previous configuration with P60 waves at 2.25 MHz, another validation consists
of studying the effect of the flaw height on maximal flaw echo amplitude. The flaws’ heights
from 0.25 to 10 mm are studied, which corresponds to 0.3 < ka < 12. For small heights
(especially for heights less than 1 mm; ka < 1.2), significant differences in terms of echo
magnitude are observed between the two models.

Comparisons of the Ascans simulated by 3D PTD and 3D FEM (Figure 5) show that
according to finite elements, the two different echoes arising from the top and bottom edges
are relatively well dissociated for heights higher than 5 mm (ka > 6). From this height, these
two echoes are very well simulated by PTD, but the later Rayleigh waves are nevertheless
not taken into account in the PTD model. For small heights, important differences are
observed between the two models in terms of waveforms, which is most likely due to
primary edge diffracted waves and secondary diffractions of multiply reflected Rayleigh
waves (not modelled in the PTD model) having close time of flights.

 

Figure 5. Inspection of a 25 mm extent rectangular crack of varied height inspected using P60 waves
in TOFD mode at 2.25 MHz: Ascan versus the flaw height.
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3.2. Shear Waves
3.2.1. Immersion Pulse Echo Mode: S45◦ Waves—Various Incidences on the Flaw

Figure 6a describes the first validation case in the pulse echo mode involving defects
of various heights, a fixed 0.5 mm extension and of an arbitrary tilt angle α. A 12.7 mm di-
ameter immersed transducer positioned 20 mm above the component generates transversal
45◦ waves at 5 MHz.

Figure 6. (a) pulse echo configuration with the SV45◦ wave at 5 MHz of a rectangular defect of
varying height (5 mm here—red segment), 0.5 mm extent and various tilts; (b) α = −45◦, specular
reflection configuration; (c) α = 0◦, classical configuration of a vertical flaw.

The probe is not very divergent, and the flaw is in the area of the maximal field
amplitude (33–40 mm depths). The flaw extension is small (0.5 mm extent), which will
enable us to study the 3D effects of the flaw size in configurations unfavourable to analytical
models such as PTD.

In Figure 7, the 3D FEM and PTD models predict the flaw echo amplitude versus
the tilt angle α for three different flaw heights: 5, 1 and 0.5 mm (ka ~ 2.4 both in height
and extension in the latter case). An improvement consisting in a smoothing of PTD
coefficients near critical angles has been devised and described in [26]: it is referred to as
“PTD3D critical smoothing”. The results referred to as “PTD3D” were obtained without
this treatment, using a GTD code based on previous works [56]. Its response exhibits peaks
around critical angles.

 

Figure 7. A planar component containing an embedded rectangular flaw of 0.5 mm extent and of
height: (a) 5, (b) 1 and (c) 0.5 mm. Comparison of FEM and PTD (standard or with smoothing around
the critical angle) models.

For specular reflection, PTD generally leads to a relatively good approximation and to
simulated results close to that of FEM even for small heights. Nonetheless, for the smallest
height (0.5 mm), the PTD response versus the tilt angle exhibits two local maxima, contrary
to FEM. This suggests that some phenomena are better predicted by the numerical model
than by PTD, possibly due to interferences between the waves reflected from the flaw
surface and those diffracted from the contour.

The difference between PTD and FEM can be significant away from the specular direc-
tion, especially beyond the critical angle. This is due to head waves not being accounted
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for in the PTD model presented here. Consequently, the 3D extension of the flaw can be
assumed to be a source of inaccuracies for the PTD model, possibly due to quantitative
errors in the PTD prediction of corner diffractions.

PTD differs most significantly from the FEM reference—for specular reflection when
the flaw height or extent is small—near and above the critical angle for S waves (head
waves) and small heights.

3.2.2. Contact Pulse Echo Mode: S45◦ Waves—Vertical Flaw

The next numerical comparison case involves the inspection of a vertical rectangular
crack inspected using SV45 waves in pulse echo mode at 2.25 MHz (Figure 8a). The used
probe emitting at 2.25 MHz is a contact circular planar probe of 6.35 mm diameter. The
first numerical comparison consists in studying the effect of the flaw extension on maximal
flaw echo amplitude for the 5 mm high crack (Figure 8b). For small extensions (<4 mm),
some amplitude oscillations occur, probably due to interferences between waves scattered
from both the edges and the corners. Important differences are observed between the FEM
and PTD models in terms of maximal echo amplitudes for all extensions. It is unexpected
that differences are obtained even for large extensions (25 mm ~ beam width) in the case
of a 5 mm high crack corresponding to a large dimensionless factor ka ~ 11.25. In order
to analyze the previous differences, the Ascans simulated by 3D FEM and 3D PTD are
plotted in Figure 9 for the 40 mm extent (the largest extension in Figure 8b) and 5 mm high
rectangular crack both at 2.25 MHz (corresponding to the case studied in previous Figure 8)
and also at 5 MHz. At 5 MHz, the Ascan simulated by 2 D FEM CIVA ATHENA is also
provided. The first echo chronologically observed in Figure 9a,b is obviously the top edge
diffracted wave. Echoes generated by bulk wave diffraction from the bottom edge (after
40.5 μs) and by later waves can be better distinguished at the higher frequency (5 MHz). A
head wave arrives at almost the same time as a wave diffracted from the bottom edge: it
corresponds to the diffraction at the top edge of the incident S wave path into a P creeping
head wave, which is then rediffracted into a bulk S wave at the bottom tip (see Figure 9c),
and its time of flight, which can be theoretically calculated by ray theory, is close to that
of the bottom edge diffraction (as explained later using Table 1). Chronologically, the first
wave arriving after the bottom edge diffracted wave is a bulk diffraction of a Rayleigh
wave. When the beam hits the top tip, a Rayleigh wave (R1) is generated. It propagates
along each crack face towards the opposite tip. Upon reaching the bottom tip, R1 sheds the
bulk S5 wave. The path of this Rayleigh wave then diffracted in the bulk corresponds to
that of the so-called S5 wave, which is due to a secondary diffraction (see its path drawn in
Figure 6 of Ref. [26]).

 

Figure 8. (a) Inspection of rectangular crack using SV45 waves in Pulse Echo mode at 2.25 MHz
(circular planar probe of 6.35 mm diameter), (b) of 5 mm height and varying extension and (c) of a
34 mm extension and varying height.
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Figure 9. Inspection of a 40 mm extent and 5 mm high rectangular crack inspected using SV45
waves in Pulse Echo mode (circular plane probe of 6.35 mm diameter); Ascans simulated by 3D FEM
and 3D PTD: (a) at 2.25 MHz (b) at 5 MHz with also the normalized Ascan modelled by 2D FEM
Civa/Athena. (c) S head waves diffracted from a crack (in blue) under 45◦ incidence: the S wave
shed by the bottom tip irradiated by the P creeping wave coming back to the probe at 45◦ direction
and the S head wave radiated during the propagation of the P creeping wave along the crack surface.

Table 1. Analysis of Ascans simulated by 3D FEM and 3D PTD of the inspection of a 40 mm extent
and 5 mm high rectangular crack using SV45 waves in Pulse Echo mode (circular planar probe of
6.35 mm diameter) at 5 MHz: time of flight of the different waves theoretically calculated using ray
theory or obtained after 3D FEM simulation; PTD amplitude versus 3D FEM (dB).

Top Edge Diffraction Head Wave
Bottom Edge
Diffraction

Secondary Rayleigh
Wave Diffraction

Theoretical time of
flight (μs) 0 1.94 2.19 2.81

FEM simulated time of
flight (μs) 0 Lost in the bottom

edge echo 2.12 2.70

PTD amplitude versus
3D FEM (dB) −0.9 Not calculated by the

PTD model −1.0 Not calculated by the
PTD model

When considering the time of flight of the top edge diffracted wave as the time origin,
the time of flight of the different waves can be theoretically calculated using ray theory and
compared to that obtained after 3D FEM simulation (see Table 1).

The comparison of the times of flight shows that the second echo chronologically
observed corresponds to the bottom edge diffracted wave interfering slightly with the
head wave. Such a head wave is of lower amplitude since it decreases quickly during
its propagation along the flaw surface and since the incidence is not critical (in Figure 9c,
θinc = 45◦ whereas θc = 33◦ for steel). The third echo corresponds to the secondary Rayleigh
wave diffraction S5. PTD predicts correctly the amplitudes of the primary bulk waves
diffracted by the two edges but the PTD model does not simulate the secondary Rayleigh
wave diffraction S5. It is this latter wave which leads to the more important amplitude in
the 3D FEM Ascan.

At the lower frequency of 2.25 MHz, the secondary Rayleigh wave diffraction echo
coalesces with the bottom edge diffracted echo, which explains the difference of simulated
maximal amplitudes between PTD and FEM shown in Figure 8b for large extensions.

After studying the effect of the flaw extension, a second numerical comparison
(Figure 8c) consists of studying the effect of the flaw height on maximal flaw echo amplitude
for the 34 mm extent crack (extension wider than the beam size). For rather small heights
(<8 mm), the FEM model highlights oscillations probably due to interferences between
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waves scattered from the edges, and Rayleigh waves multiply reflected at edges and also to
a lesser extent to multiply reflected head waves. For large heights, a difference of 2 dB is
observed between the two models. The maximal echo amplitude slightly decreases with
height due to the decrease in the field with the increasing distance from the bottom edge.

4. Experimental Validations

In a second step of validation, experimental measurements have been carried out
on ferritic steel components. First, TOFD inspections of large flaws involving 3D effects
(sometimes very important) have been considered.

4.1. Inspection of Large Flaws

Several notches and holes have been fabricated in a planar specimen (Figure 10a). In
order to study the influence of the orientations of both probes and flaws, two 6.35 mm
diameter probes emitting 45◦ P-waves at 2.25 MHz have been positioned in a TOFD
configuration with a 60 mm Probe Center Separation and rotated from the 0◦ skew angle to
the 34◦ skew angle. Figure 10b,c present a typical case of the 11◦ skew.

Figure 10. (a) A planar component containing disoriented backwall breaking flaws and a 2 mm
diameter SDH; the TOFD configuration with the 11◦ probes’ skew: (b) top view and (c) side view
showing the flaw used for simulating the top edge of the 30◦ disoriented notch.

Measurements have been carried out on a rectangular 0◦ flaw and three defects (with
vertical disorientation of 10, 20 and 30◦ for the top edge) and calibrated against a 2 mm
diameter SDH. The resulting experimental B-Scan is shown in Figure 11a. The variation in
the amplitude of the echo from the top tip (equivalent to that of an embedded flaw) with
the vertical disorientation is displayed in Figure 11b. The results simulated by different
models are compared in terms of echo amplitude: (1) an older model based on the so-called
2.5D GTD [5], which involves the projection of the incoming and scattered wave vectors
on the plane normal to the flaw edge and 2D GTD coefficients related to these projections,
(2) 3D PTD model and (3) the hybrid 3D FEM model.

 

Figure 11. (a) Experimental B-scan obtained when scanning the side drilled hole (SDH) and the three
defects (with vertical misorientation of 10◦ to 30◦ for the top edge); (b) validation of the 2.5D GTD,
3D PTD and the hybrid 3D FEM models against the measured echoes from the top tip of misoriented
backwall breaking flaws.

The differences between the 3D PTD model, the hybrid 3D FEM model and experimen-
tal data are less than 1 dB, except for the 30◦ misoriented flaw, for which the signal-to-noise
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ratio is low (see Figure 11b). Note that the 3D PTD-based model provides a slight improve-
ment over the 2.5D GTD model in that configuration.

In the view of studying more important 3D effects, a second experimental validation
has been performed to evaluate the effect of skew flaw angle on edge diffraction amplitude.
Tests have been carried out on a planar rectangular backwall breaking flaw (10 mm high
and 40 mm wide) using a pair of transducers (2.25 MHz, 45◦ longitudinal waves, 6.35 mm
diameter) in contact mode. The probes have been positioned in a TOFD configuration with
a 60 mm Probe Space Center and with flaw skew angle varying from 0◦ to 70◦ (Figure 12a).

Figure 12. (a) TOFD configuration on a skewed backwall breaking crack; (b) top edge diffraction
echoes amplitudes versus skew angle for measure, 2.5D GTD and 3D PTD and FEM simulations.

In Figure 12b, it can be seen that the influence of the skew angle on the measured
diffraction echo amplitudes is minor. The 3D hybrid FEM model leads to a good prediction
with a maximal disagreement of about 2.5 dB with measure; the 3D PTD also effectively
surpasses the older 2.5D GTD model (available in a previous CIVA release), which breaks
down for important skew (>40◦). It can be noticed that the 3D PTD and hybrid 3D FEM
models lead to close results for this configuration involving a flaw of both large height
and extension.

The previous experimental validations have thus confirmed that the 3D hybrid method
provides in the case of a large flaw a prediction in very good agreement with experiments
and also with the other CIVA 3D model (PTD). The hybrid method correctly simulates
larges flaws and 3D configurations.

4.2. Inspection of Small Flaws Compared to the Wavelength

Several measurements have also been carried out to evaluate the models validity on
cracks with a small height with respect to the wavelength.

The component used for the following experimental validations is described in Figure 13.
The thickness of the specimen, which is the depth to be inspected in experiments (see
Figure 14b for an example of inspection configuration), is indicated in red in Figure 13.

The specimen contains the following:

- Four electro-eroded notches (5 mm height × 30 mm extension) and four side-drilled
holes (2 mm diameter × 40 mm extension) which are embedded with respective bottom
ligaments (distance between notch extremity and backwall) of 5, 10, 15 and 20 mm;

- One backwall breaking notch (not considered in the following validation study);
- Four flat bottom holes on the right side.

123



Appl. Sci. 2022, 12, 5078

Figure 13. Specimen used for the following experimental validations.

Figure 14. (a) Photograph of the setup; (b) TOFD inspection configuration using immersion probes:
study of P45 echoes scattered by the flaw surrounded in blue.

The experimental validations presented here concern inspections in immersion of the
notch of the highest ligament 20 mm (surrounded in blue in Figure 14b). We privilege
validation on the flaw with the highest ligament for a better confidence in the measurements,
even though measurements on the other flaws were satisfactory. A 10 mm extent starter hole
was pre-drilled before producing the notch of 30 mm extension by electro erosion. To study
small notch heights with respect to the wavelength, since the flaw height (5 mm) is relatively
important, low frequency transducers (0.5 MHz and 1 MHz) have been employed in
experiments. We controlled the measurements reproducibility with an obtained confidence
interval of the order ±3 dB owing to the low time resolution of the echoes observed at the
low frequencies used (0.5 MHz and 1 MHz). Measurements of side-drilled holes have been
carried out to set the input signal in simulation [2].

4.2.1. Inspections with Compressional (P) Waves

The specimen has been first inspected in a TOFD configuration for which the probes
radiate P45◦ waves. Figure 14a depicts the device, and the inspection configuration is
described in Figure 14b.

The experimental and simulated Bscans obtained using the 1 MHz probes and the
3D hybrid FEM model in simulation for the notch are provided in Figure 15. The Bscans
chronologically display the lateral wave, the echo from the defect and the echo due to
the P waves backwall reflection. At this low frequency (1 MHz), we observe a single echo
arising from the entire flaw. The experimental and simulated results are very similar: the
observed relative amplitudes of all echoes are very well reproduced in simulation. Details
on the simulation of lateral wave or backwall reflection in TOFD can be found in [13]. The
comparison of maximal amplitude for the flaw echo lead to a simulation/experience gap
of −1.6 dB for the 3D hybrid FEM model against −2.2 dB for the 3D PTD model.
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Figure 15. For the TOFD P45◦ waves inspection at 1 MHz: (a) experimental Bscan; (b) Bscan simulated
using the 3D hybrid FEM model in simulation.

The 3D hybrid FEM model provides a slightly better prediction than the analytical
model for small flaws and TOFD P waves at 1 MHz.

4.2.2. Inspections with Shear (S) Waves

Since the numerical validations have shown that differences are more important between
the numerical and analytical models for shear waves, experimental acquisitions employing
transversal waves have also been carried out in pulse-echo and TOFD configurations.

Figure 16a shows the configuration of ultrasonic pulse echo NDT of the embedded
planar electro-eroded slots (depicted in Figure 13). Transducers acting in immersion and
generating oblique transversal waves at 45◦ at 0.5 and 1 MHz have been used. The experi-
mental BScan at 0.5 MHz shown in Figure 16b highlights the emission echo versus time
in blue, the echo from the entry surface, the response of the four slots and the flat bottom
holes. The echogenic signature of the slot include the direct, corner and indirect echoes. All
these echoes can be mixed when the slot backwall ligament is low (two slots at left); in that
case, the corner echo amplitude is higher.

0.5MHz 

Figure 16. (a) Configuration of ultrasonic pulse echo NDT of the embedded planar electro-eroded
slots (depicted in Figure 13); (b) experimental True BScan using the immersion probe at 0.5 MHz. The
entry surface and backwall of the component are indicated in grey. The slot utilized for validation is
shown thanks to the blue arrow, whereas the yellow ellipse indicates the component right corners
and the flat bottom holes.

As seen in Figure 17a, the FEM model leads to the better prediction. The gap between
PTD and FEM reaches 8 dB at 0.5 MHz, PTD losing its effectiveness for small flaw heights
with respect to the wavelength. The prediction of the echo signal also seems better when
using the FEM model (Figure 17b,c).

The previous validation confirms that the FEM-based 3D hybrid model could bring an
interesting contribution to the simulation of small defects compared to the wavelength for
shear waves.

The last experimental validation deals with the S45◦ TOFD inspection of the specimen
at both 0.5 MHz and 1 MHz, whose configuration is schematized in Figure 18a. One can
observe chronologically on the experimental BScan of Figure 18b for the 0.5 MHz case the
lateral wave, the echo due to the specular reflection on the entry surface, the echo from the
defect and the echo due to the S waves reflection on the backwall.
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Figure 17. (a) Disagreements with measurements obtained with the 3D FEM and PTD simulations;
(b) Predicted and measured signals with the 0.5 MHz probe; (c) the same as (b) with normalization
on the maximal amplitude.

 

Figure 18. (a) S45◦ TOFD immersion inspection of several embedded planar electro eroded slots;
(b) experimental BScan obtained when scanning the notches and the flat bottom holes at 0.5 MHz.

The table of Figure 19a presents the comparison with measure of both the 3D hybrid
FEM method and the PTD model simulations of the maximal echo amplitude from the
validation defect. The 3D hybrid FEM gives rise again to a better prediction in amplitude
for the 0.5 MHz case corresponding to the smallest flaw height/wavelength ratio. The
measured and simulated normalized Ascans are presented in Figure 19b at 0.5 MHz. One
can notice the effectiveness of the simulation which models all these waves of very different
natures both in terms of wave forms and of amplitude ratios (notably relatively to the
lateral wave and entry surface echoes for the FEM model).

 

Figure 19. (a) Gap between simulation and experience for the 3D hybrid FEM model and for the 3D
PTD model; (b) Superimposition of the normalized experimental and simulated AScans at 0.5 MHz.

The experimental validation has to be pursued on small flaws notably in 3D configu-
rations, but the first numerical and experimental validations show that the hybrid method
provides a much better prediction than analytical models for small flaws (especially with
shear waves).
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5. Conclusions

An efficient semi-analytical ultrasonic crack measurement model based on the Physical
Theory of Diffraction (PTD) and an original hybrid asymptotic/numerical approach based
on a high-order spectral-like finite element method were recently proposed in the literature.
The numerical comparison of the new 3D hybrid model with semi-analytical models for
3D planar embedded defects has been carried out in this study. It highlights important
differences in terms of echo amplitude and waveforms for small flaw heights or extensions
and the FEM method seems to provide a more physical description in all configurations by
simulating phenomena not or badly accounted for by analytical models as corner diffraction,
Rayleigh and head waves. When the crack extension is large, the overall validity range of
PTD on the flaw half height ka > (ka)max—where ka is the dimensionless wave number—
is wider for P waves ((ka)max ∈ [1, 3] approximately) than for S waves ((ka)max ∈ [5, 10]
approximately). When the crack height is large, a similar criterion (around ka > 5–10) could
be approximately found for the overall PTD validity range with the flaw extension. The
PTD limitations are more noticeable when edge diffraction echoes are predominant with
respect to specular echoes and when head waves occur; PTD can be valid for smaller ka than
those given in the criterion in configurations of specular reflection. The existing PTD code
could be improved by accounting for the secondary diffractions due to Rayleigh waves.

Experimental validations on notches have first confirmed the good prediction provided
by PTD for simulating 3D top edge diffraction of large flaws. Measurements of embedded
slots carried out at low frequency have shown that the proposed 3D hybrid method leads to
a significant improvement for simulating small flaws compared to the wavelength, notably
for shear waves. Similar comparisons have been made for surface-breaking cracks and
should be the object of a complementary future publication. In-progress improvements
and developments of the 3D hybrid method (notably for handling complex-shaped cracks)
also have to be evaluated.
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Appendix A. Hybrid Method Description

In this appendix, a quick description of the hybrid method is given; more theoretical
details can be found in [42,52].

The adopted strategy consists of coupling a semi-analytical propagation model to a
scattering numerical model. The main principle of such coupling is to use the computation
of the incident field from CIVA by applying the beam computation module [50], and
to compute the interaction with the flaw using a dedicated scattering model. The echo-
response from the defect is then given by the Auld’s reciprocity principle [51], which links
healthy (incident field) and damaged (defect scattering) components. Indeed, in the time
domain, the elastodynamic response of a defect is expressed as:

SΓF =
∫

∂BΓF

ytot,E ∗
(
σ.n
)inc, R −

(
σ.n
)tot,E ∗ yinc,RdΓ (A1)

where the involved displacements y and stresses σ are defined below, n refers to the normal
integration surface (surrounding the flaw and depicted in dash blue in Figure A1) and
indices E and R denote two states. E quantities correspond to the ultrasonic fields radiated
by the emitting probe in the presence of the defect and R quantities are linked to the field
radiated by the receiver (used as a fictitious emitter) in healthy components (without flaws).
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Figure A1. The two different states for reciprocity application. For state R, the dashed red line mimics
the absence of the flaw.

The total displacement field is defined as follows for each state as the sum of the
incident and diffracted fields (similar notations/decompositions are employed for the
stresses also involved in Equation (A1)):

ytot,α = yinc,α + ydi f ,α, α ∈ {E, R} (A2)

In the case of cracks, a stress-free boundary condition applies:

σtot,E. n|
Γ
= 0, (A3)

and Equation (A1) reduces to:

SΓF =
∫

ΓF

(
yinc,E + ydi f ,E

)
∗
(
σ.n
)inc, RdΓ (A4)

The two incident fields involved in the previous Equation (A4) are calculated by the
ray-based asymptotic model [50], whereas the diffracted field in state E is obtained by a
numerical model.

In the latter calculation, the input data of the scattering model is obtained in an area of
interest associated with the flaw (around the defect) using the ray-based beam computation
model in the healthy part. The response of the flaw to this incident field is then computed
using the numerical dedicated model (high order spectral finite elements).

The advantages of such an approach are that the flaw response does not disturb the
incident field calculated by the ray method. In practice, the defect should be at sufficient
distance from the component edges to not interact with them. Otherwise, it is necessary to
consider the defect and the component edges in the diffraction pattern.

Computational performances are significantly enhanced by the use of high-order
spectral finite elements [43,44] defined on hexahedral meshes. This numerical method is
widely spread in the community of numerical solutions of transient high-frequency wave
propagation problems since they combine the flexibility of finite element methods and the
performances of standard finite differences by allowing a fully explicit numerical scheme
thanks to a diagonal mass matrix—in the literature, this technique is referred to as the
mass-lumping technique. By using a second-order leap-frog time discretization, a fully
explicit numerical scheme is finally obtained and transparent boundary conditions are
performed using the so-called perfectly matched layer (PML) formulation. Moreover, by
allowing high-order polynomials to represent the solutions, the spectral finite elements
require less discretization points to reach a given precision, which is a major asset when
simulating 3D configurations.

The assumption of embedded crack is utilized to derive an unbounded diffracted
field formulation: ⎧⎨⎩

ρ∂2
t ydi f ,E −∇.σdi f ,E = 0 in BΓF ,
σdi f ,E.n = −σinc,E.n on ΓF,

& transparent boundary conditions on ∂BΓF .
(A5)
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The first equation is the fundamental equation of dynamics; the second one corre-
sponds to the boundary conditions applied to the flaw surfaces and transparent boundary
conditions are used to model an unbounded domain. Finally, the solution to the diffracted
field formulation (A5) is approximated using the numerical model based on high-order
spectral finite elements.
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Abstract: In photoacoustic imaging, the use of arrayed laser sources brings several advantages.
Acoustic waves can be generated with flexible control of wavefronts, bringing functionality such as
ultrasonic beam steering and focusing. The use of arrays reduces the optical intensity while increasing
the strength of the ultrasonic wave, bringing the advantages of improved signal-to-noise ratio (SNR)
while avoiding laser-induced damage. In this paper, we report a numerical model for studying the
generation and shaping of acoustic wavefronts with laser arrays. The propagation of mechanical
waves, photoacoustically generated by thermal expansion, is simulated and discussed in detail. In
addition, a partially delayed distributed array is studied both theoretically and quantitatively. The
developed model for wavefront control through time-delayed laser pulses is shown to be highly
suited for the optimization of laser array generation schemes.

Keywords: photoacoustic imaging; finite element method; laser array; wavefront superposition

1. Introduction

Photoacoustic imaging as a non-invasive detection technology has been widely used
in biomedical imaging [1], nondestructive testing [2], and other fields. Due to the thermoe-
lastic effect [3], when a laser beam irradiates a sample, optical absorption in the material
causes the light energy to initiate thermal expansion, resulting in deformation of the illumi-
nated area and its surroundings. If the illumination is a fast transient pulse or if the light is
modulated periodically, then the material and its surroundings deform correspondingly,
thereby generating an acoustic wave.

In photoacoustic imaging, structural features or defects in the object can be char-
acterized by detecting reflections or other perturbations in the ultrasonic waves. The
spatiotemporal features of the ultrasonic wave are related to those of the incident laser
light, but although an intense beam can generate strong acoustic waves, it may damage
the material. However, laser intensities far below the damage threshold generate acoustic
waves that are relatively weak. The signal-to-noise ratio (SNR) of the reconstructed image
can be quantitatively expressed as

SNR ∼ S × γ × A ×
√

P × M/N (1)

where S is the photo-generated ultrasound intensity, γ is the sensitivity of the detector, A
is the imaging area, P is the number of projections, M is the number of signal averages,
and N is the noise floor of the system [4]. Thus, if the excited ultrasound signal intensity,
which is proportional to the optical energy, is reduced by a factor of K, to recover the SNR,
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averaging over K2 times is needed. Therefore, in order to obtain a higher SNR, researchers
tend to increase the magnitude of the generated photoacoustic signal. In current biomedical
photoacoustic imaging research, to enhance the imaging quality or increase the imaging
depth, the laser pulse energy density used in the experiment is usually higher than the
ANSI specified threshold of 20 mJ/cm2 [5], which can result in ablation of the tissue [6,7].
It is vital to explore methods for generating strong acoustic waves using energy densities
below the laser ablation threshold. To achieve efficient photoacoustic wave generation,
Murray et al. used a continuous wave laser with intensity modulation to excite ultrasound
waves [8], which greatly improved the SNR and simultaneously kept the sample surface
intact. However, this method resulted in the generation of multiple acoustic modes and
reflected waves, and interpretation of the signals was complicated. Huang et al. proposed
a photoacoustic method that uses a laser array instead of a single light source to excite
acoustic waves [9], which increases the intensity of the ultrasonic wave without increasing
the energy density illuminating the sample surface.

Research of Matt Clark’s group demonstrated that waves can be focused and steered
using a spatially distributed laser source, with a spatial light modulator or specially de-
signed computer-generated holograms [10–13]. They also developed a method using
laser-induced phased arrays (LIPAs) to detect defects in metals and provide in-process
monitoring during additive manufacturing (AM) [13,14]. It has also been shown that
temporal control of the elements in a linearly arrayed laser source is an efficient way
to enhance the intensity of the generated acoustic wave or steer the propagation direc-
tion [15–21]. Although wave steering and signal enhancement by controlling the spatial or
temporal distribution of the generated laser source have been demonstrated, the method
for manipulating the wavefront of a laser-generated acoustic wave is still uninvestigated.

The use of acoustic metamaterials to manipulate the wavefront of propagating acoustic
waves from various sources has been proposed and developed. However, it is difficult
to apply these to laser-generated acoustic waves due to the operation bandwidth and the
requirement of the wave to be transmitted through or reflected from the meta-surface.

Beamforming of acoustic waves through array sensors has been widely used to im-
prove the contrast, spatial resolution, and signal-to-noise ratio of ultrasound images. Based
on our understanding of previous research, two categories of techniques are conceptual-
ized as the beamformer approaches, either at the excitation-side and the probing-side of
acoustic waves.

The traditional probe-side beamforming method achieves the purpose of signal en-
hancement by processing the received signal from the perspective of signal acquisition
rather than directly generating stronger acoustic signals from the perspective of excitation.
This is a fatal flaw in extremely absorbent biological tissues.

Traditional probe-side beamformer methods include the delay and sum (DAS) method [22],
the minimum variance (MV) method [23,24], etc. The principle of these methods is to align
the target beams according to the delay time and add them sequentially to enhance the
signal. DAS is independent of echo data, which leads to the main lobe width being too
wide and the side lobes intensity being too high [24]. The minimum variance (MV) method,
e.g., adaptive beam synthesis, calculates a dynamic weight value based on the echo data,
makes full use of the characteristics of the echo signal, reduces the side lobe signal, and
improves the resolution of the image. The basic principle is to minimize the array output
by keeping the gain in the desired direction constant.

For traditional excitation-side forming, Von Ramm et al. achieved beam steering and
enhancement by applying a time delay to each piezoelectric plate in an 8-element line
array [25]. The distance between the line sources is about one wavelength. The delay time
is controlled by the line source spacing and rotation angle.

Shi-Chang Wooh [26] proposed that a larger inter-element spacing can help improve
the directivity of the steered wave, yet only to a certain extent; the grating lobes will be
introduced (or the beam is not steerable) when the inter-element spacing exceeds its critical

133



Appl. Sci. 2021, 11, 9497

value, which is about half the wavelength of the sound wave and controlled by the desired
maximum steering angle.

The traditional excitation-side beamformer can achieve controllable superposition
between different sources, thereby achieving high-degree-of-freedom beam direction con-
trol. In principle, it can also achieve the wavefront formation and control discussed in
this article. However, a systematic study of the process of exciting, shaping, and steering
photoacoustic waves using laser array sources is therefore still essential. The purpose
of this article is to explore whether it is feasible to realize the formation and control of
the wavefront in the process of photoacoustic excitation, as well as the mechanism of its
formation and propagation.

In this paper, the characteristics of surface and bulk waves excited by a laser array
with partial time delay are numerically simulated using the finite element method (FEM).
We verify whether, by applying a time delay between different elements of the laser array,
the photoacoustic wave can be enhanced and whether this enhanced wave still propagates
as a wavefront maintaining its complete shape.

2. Theoretical Model and Simulation

2.1. Numerical Simulation

Both the finite element method (FEM) and finite-difference time-domain (FDTD)
method can be used to model the process of light-excited acoustic waves. In terms of
computational speed, FDTD has a great advantage. However, considering the complexity
of photoacoustic imaging, the FEM method was selected as it is more versatile and rigorous.

Three configurations for exciting photoacoustic waves were simulated, namely single-
pulse single-point excitation (Model 1), single-pulse laser array excitation (Model 2), and
laser array with time-delayed excitation between spots (Model 3). Except for the number
of excitation light sources and the time delay between the spots, other parameters in the
simulation remained unchanged, including the sample size, material, energy density, and
pulse duration.

The modeled sample was a homogeneous, isotropic cylindrical aluminum block with
a height of 4 mm and a radius of 4 mm. The laser array was incident perpendicularly to
the top surface of the cylinder. Material parameters of aluminum from reference [27] were
used for the simulation, with a surface wave sound velocity of 2940 m/s, a transverse wave
sound velocity of 3080 m/s, and a longitudinal wave sound velocity of 6320 m/s. A laser
source was used to generate the ultrasound, with a pulse width of 20 ns, pulse energy of
160 μJ, and energy density of 510 mJ/cm2. The laser spot radius on the sample surface
was 100 μm, and it was assumed that 80% of the light was absorbed. Figure 1 shows the
aluminum cylinder in the Cartesian coordinate system, with three laser spots A, B, and C
focused on the top surface. The simulation used the solid heat transfer module and the
solid mechanics module of COMSOL Multiphysics to simulate in the transient field

Figure 1. Cylindrical aluminum block and the three laser illumination spots A, B, and C on its top
surface.
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Model 1 and Model 2 were used as reference simulations to compare with Model 3.
In Model 1, a single excitation pulse was used to illuminate the single spot “B”. Model
2 was based on Model 1, with excitation spots “A” and “C” added on either side of the
single laser spot B. The size and energy density of these three laser spots were the same as
for Model 1. As shown in Figure 1, through pre-simulation results, the distance between
adjacent laser sources was selected as 0.9 mm, which is about one wavelength of the excited
acoustic wave. Model 3 was based on Model 2 with a time delay imposed on the central
spot B. It can be seen from the geometric properties of the propagation of acoustic waves in
Figure 2a that as the waves propagate, the difference between d1 and d2 becomes smaller.
When the distance between adjacent sources is much smaller than d1, and the wavefront
has traveled sufficiently far, δd = d2 − d1 < ε × v. ε is defined as the allowable time error,
which is chosen to be as same as the simulation time step, i.e., 0.01 μs, v is the velocity of the
excited acoustic waves. During this time, the acoustic wave travels about one-tenth of the
acoustic wavelength. The new merged wavefront due to superposition can be considered
as a continuous wavefront that can propagate in an infinite medium.

Figure 2. (a) Schematic diagram of laser array excitation with no time delay between pulses.
(b) Schematic diagram of laser array excitation with a central pulse (B) delayed.

The distance Y at which the superposed acoustic waves add constructively on the
y-axis can be calculated from

Y2 + L2 = (Y + ε × v)2 (2)

where L is the distance between adjacent sources, and ε × v is the maximum acceptable
error. In Model 2, the distance Y for acoustic waves without a time delay was calculated
to be 13.5 mm, which is larger than the size of the sample. The corresponding traveling
time is about 4.5 μs, calculated from the velocity of the surface acoustic wave. Furthermore,
using this arrangement in practical applications would make it difficult to image features
such as defects or impurities within the sample.

Figure 2b shows the propagation of acoustic waves when excitation of the central
source B is delayed. If the delay in exciting the central source B is δt, the delayed acoustic
wave from B adds constructively to the acoustic waves from the symmetrical sources A
and C at a time t, which can be calculated from

[v × (t + δt)]2 = (v × t)2 + L2 (3)

when the delay time is chosen to be 0.1 μs, constructive wave superposition occurs 0.5 μs
after the first excitation at a distance on the y-axis of about 1.2 mm, which is less than 10%
of the distance without any time delay. When the delay time is increased to 0.2 μs, the time
for constructive superposition is shortened to 0.325 μs with a propagation distance of only
0.375 mm.

135



Appl. Sci. 2021, 11, 9497

To ensure that the superposed propagating waves do not separate again, δd is required
to be always less than the acceptable error value.

δd = d2 − d1 =

√
L2 + [v × (t + t0 − δt)]

2 − v × (t + t0 − δt) < ε × v (4)

where t is the propagation time after constructive interference, t0 is the time that con-
structive interference first occurs, and δt is the delay time. For all times t > 0, δd < ε ×
v, that is, there is no solution when δd ≥ ε × v. We can see that when the delay time is
0.1 or 0.2 μs, the solution of the inequality is an empty set. Therefore, after constructive
superposition occurs, the enhanced wavefront propagates as a complete new wavefront
without separating again. In the results and discussions section, we will confirm that the
enhanced wavefront propagates as a complete wavefront by fitting and reconstructing the
wavefront.

2.2. Solid Heat Transfer

The energy distribution of the laser can be described as

I = I0 × f(r) × g(t) (5)

where I0 is the maximum power density, and f(r) and g(t) are the spatial and temporal
distributions of the laser pulse, respectively.

The thermal conduction equation can be written as

ρCp =
∂T(r, z, t)

∂t
∇k∇T(r, z, t) = Q (6)

where T(r, z, t) represents the temperature distribution at time t; ρ is the material density;
Cp is the thermal capacity of the material; and k is the thermal conductivity.

We consider the excited spot as a heat source loaded at the center of the cylinder
surface. To simplify the simulation and reduce the computation time, we consider other
boundaries of the cylinder as thermally insulated boundaries. The boundary conditions of
the other surfaces can therefore be written as

− k
∂T(r, z, t)

∂z
= 0 (7)

And the boundary conditions of the absorption layer can be written as

− k
∂T(r, z, t)

∂z
= IA(T) (8)

where A(T) is the optical absorptivity of the focus plane [28].

2.3. Solid Mechanics

When the laser pulse is focused on the surface of the sample, a transient displace-
ment field is excited due to thermoelastic expansion. In a homogeneous medium, the
displacement satisfies:

ρ
∂2u

∂t2 = (λ+ 2μ) ∇ (∇ u)− μ ∇ × ∇ × u − α(3λ+ 2μ) ∇ T(r, z, t) (9)

where u is the transient displacement, ρ is the density of the material, α is the thermoelastic
expansion coefficient, and λ and μ are the first-order and second-order Lamé constants,
which are determined by the material-related quantities represented by the strain-stress
relationship. The first-order Lamé constant λ represents the compressibility of the material,
which is equivalent to the bulk elastic modulus or Young’s modulus, and the second-order
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Lamé constant μ represents the shear modulus of the material. The values of λ and μ for
aluminum are 6.10 and 2.49, respectively [29].

3. Results and Discussions

Figure 3 shows the z-direction displacement due to the surface wave propagating in
the xy-plane. Comparing Model 1, Model 2, and Model 3, we can see that a wavefront
showing constructive superposition appears first in Model 3. The color bar used in each
subfigure in Figure 3 is the same, ranging from −1 × 10−6 (dark blue) to 0 (light blue) to
3 × 10−6 mm (red). It can be seen that due to the time delay, the wavefront in Model 3 lags
behind Model 1 and Model 2, but its intensity is significantly enhanced.

Figure 3. Displacement in the z-direction due to the surface wave propagating in the xy-plane at
different times. (a) Model 1; (b) Model 2; (c) Model 3. The corresponding times are 0.6, 0.8, 1, 1.2, and
1.4 μs (from top to bottom).
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In Figure 4, we plot the displacement for the three models at points at which the
distance to the x-axis and y-axis are both 1, 1.5, 2, and 2.5 mm, referred to as point 1, point
2, point 3, and point 4, respectively. It can be seen that the peak displacement for Model 3
is much larger than that for Model 1 and Model 2 because of the constructive superposition
of the acoustic wavefronts. The simulation results agree closely with the theoretical model,
but the noise of Model 3 is larger than that of Model 1 and Model 2, and this problem needs
to be considered in the subsequent data processing.

Figure 4. Displacement in the z-direction as a function of time of Model 1, Model 2, and Model 3 for (a) point 1, (b) point 2,
(c) point 3, and (d) point 4.

MATLAB was used to fit the wavefront data to confirm that the enhanced wavefront
continues to propagate in the form of a constructively superposed wave. A surface com-
posed of points of equal amplitude is considered a wavefront surface. For the purpose
of choosing a fitting method with a simple form and high accuracy, we used second to
fifth-order polynomial fitting with the Zernike polynomial. Rayleigh waves propagate in
the form of cylindrical wavefronts along the free surface of the medium [30], so only the
first three orders were considered when using Zernike polynomials for fitting. The first
three orders of the Zernike polynomial are shown in Table 1.

Due to symmetry, only the region with x > 0 was considered when fitting. Due to
acoustic absorption, the surface wave decays exponentially inside the material. The surface
wave on the z-axis far from the heat source is very weak and can barely be discriminated
from noise, so only data within 0.1 mm of the heat source was used for fitting.

Figure 5 depicts the wavefronts of Model 1, Model 2, and Model 3 fitted by poly-
nomials of different orders. The fitting error is displayed in Table 2. For higher-order
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polynomials, the fitting error is reduced. The results using third-order Zernike polynomial
fitting are similar to third-order polynomial fitting. In both Model 1 and Model 3, fitting us-
ing fourth-order and fifth-order polynomials offers significantly better accuracy compared
with second-order and third-order fitting, and it is recommended to adopt the fourth-order
polynomial fitting as the difference between fourth- and fifth-order polynomial fitting is
marginal. Regardless of the order of fitting for Model 2, the fitting error is larger than
that for Model 1 and Model 3, and the fitted results are also not ideal. It can be seen from
the original data of Model 2 in Figure 5 that weaker wavefronts appear distinct from the
main wavefront. This implies that the use of multiple sources without time delay for
simultaneous excitation not only cannot form a single enhanced wavefront, but the weaker
wavefronts also lead to difficulties in interpreting ultrasonic images and extracting data.

Table 1. First 3 orders of the Zernike polynomial in Cartesian coordinate.

j n Zj

1 1 y
2 1 x
3 2 2xy
4 2 −1 + 2(x2 + y2)
5 2 x2 − y2

6 3 3x2y − y3

7 3 −2y + 3y(x2 + y2)
8 3 −2x + 3x(x2 + y2)
9 3 x3 − 3xy2

For further verification, we conducted numerical calculations based on the parametric
indirect microscopic imaging (PIMI) method [31], which is a method that can optically
visualize the sound field wavefront by measuring the phase retardation and polarization
ellipse orientation angle of the probe light. Linearly polarized light with rotation of its
polarization angle was used as the probe beam incident on the surface of the sample. The
polarization states of the reflected light were perturbed by the surface acoustic wave. By
measuring the reflected light at four different polarization angles, I(0◦), I(90◦), I(45◦), and
I(135◦), the Stokes parameters, the phase delay δ, and the polarization orientation angle ψ

were calculated. The calculated polarization parametric images of the probe beam can be
related to the ultrasonic wave field via the photo-elastic effect [31].

The visualization of the acoustic field is shown in Figure 6. The Stokes parameters
S0, S1, S2, S3 phase delay δ and polarization orientation angle ψ can be obtained from
I(0◦), I(90◦), I(45◦), I(135◦). I(0◦) is the intensity of the linearly horizontal polarized light
component, I(90◦) is the intensity of the linearly vertical polarized light component, I(45◦) is
the intensity of the linearly +45◦ polarized (L+45P) light component (L for linearly and P for
polarization), I(135◦) is the intensity of the linear −45◦ polarized (L−45P) light components.
From Figure 6, we found that S3 and ψ show high sensitivity to the laser-induced surface
acoustic wave, while the wavefront can barely be seen in the phase retardation δ.

As a comparison, the propagation of acoustic waves in the xy-plane induced by three
acoustic emitters at the same locations as the laser array source was simulated using
MATLAB’s k-wave toolbox [32]. The heat sources in Model 1, Model 2, and Model 3 were
replaced by sound sources with the same size, shape, distributions, and delay time. The
simulation area was a square with a side length of 8 mm, and an 800 × 800 mesh was used.
The speed of sound in the medium was taken to be 2940 m/s, the same as the surface wave
sound velocity of aluminum. The uniformly distributed source was defined by the acoustic
pressure, which was assigned a value of −0.1 Pa because thermally induced SAWs have a
negative initial acoustic pressure. The initial frequency of the acoustic signal was specified
as 3.3 MHz, approximately equal to the frequency of the sound wave excited in the FEM
simulation. The input signals of the acoustic sources A, B, and C in Model 3 are shown
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in Figure 7. The input signal for source B has a time delay of 200 ns relative to sources
A and C.

Figure 5. Processed data fitted with 2–5 order polynomials and Zernike polynomials at 1.2 μs. From top to bottom: original
data interpolation results, second, third, fourth, and fifth-order polynomial fitting, Zernike polynomial fitting. (a) Model 1
(single heat source); (b) Model 2 (three heat sources without delay); (c) Model 3 (three heat sources with delay).
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Table 2. Fitting error: SSE (sum of squares for error), R-square, and RMSE (root mean squared error).

Model Fitting Method SSE R-Square RMSE

1

2-order polynomial 99.88 0.9394 0.2551
3-order polynomial 99.07 0.9399 0.2544
4-order polynomial 57.67 0.965 0.1944
5-order polynomial 55.95 0.9656 0.1919

3-order Zernike polynomial 99.84 0.9395 0.2553

2

2-order polynomial 183.5 0.8763 0.2328
3-order polynomial 177.8 0.8802 0.2293
4-order polynomial 170.1 0.8854 0.2245
5-order polynomial 166.2 0.888 0.2221

3-order Zernike polynomial 180.5 0.8783 0.231

3

2-order polynomial 158.2 0.9337 0.2464
3-order polynomial 156.2 0.9345 0.2451
4-order polynomial 68.16 0.9714 0.162
5-order polynomial 65.72 0.9724 0.1593

3-order Zernike polynomial 156.6 0.9343 0.2454

Figure 6. Modeled Stokes parameter images of S0, S1, S2, S3, sinδ, ψ.

Figure 7. The input signals of the acoustic sources A, B, and C.
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The wavefronts for Model 1, Model 2, and Model 3 at different times, shown in
Figure 8, are generally consistent with the sound field distributions simulated by FEM.
Four probes were placed at Points 1, 2, 3, and 4 (at 1, 1.5, 2, and 2.5 mm to both x-axis and
y-axis), the same as in the FEM simulation. Data collected by these probes for Model 1,
Model 2, and Model 3 are plotted in Figure 9. Sensor data of Model 1 (red curve) only has
one peak, probe data of Model 2 (green curve) has three peaks with similar amplitude,
while probe data of Model 3 (blue curve) has two peaks and the second peak is stronger
than the first peak.

Figure 8. Wavefront at different time. (a) Model 1, (b) Model 2, and (c) Model 3 at 0.6, 0.8, 1, 1.2, and
1.4 μs (from top to bottom).
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Figure 9. Sound pressure measured by sensors that were placed at (a) Point 1, (b) Point 2, (c) Point 3, and (d) Point 4.

Figure 10 shows normalized FEM simulation results and k-wave simulation results
separately displayed on the same graph. The simulation results of the two methods have
the same trend, but there are slight differences in details, k-wave simulations are simply
based on a superposition of sound waves, while FEM simulates the complete process of
sound waves generated by thermal expansion. There are also some differences between
the different methods. In Model 1, Model 2, and Model 3, the arrival time of sound waves
at detection points in FEM is earlier than that in k-wave. This is because the starting
point of sound wave propagation in FEM is at the boundary of the heat source (strain
caused by temperature gradient), while the starting point of sound wave propagation in
the k-wave simulation is at the center of the sound source. The propagation distance of
photo-generated acoustic waves in FEM is reduced by half the heat source radius compared
to k-wave, which leads to the sound waves in the FEM simulation at the detection point
arriving earlier.

In addition to the main wave, there are waves that are generated by multi-point
excitation in Models 2 and 3, but these fail to fully participate in the superposition. The
k-wave approach was only used as a comparative simulation to verify the suitability of the
model. The actual photoacoustic process is closer to FEM simulation. Therefore, only the
signal differentiation problem in the FEM model is considered here. Figure 10 shows that
the excited sound wave has only a single peak in the negative direction, which can be used
as the main peak of detection.

In the FEM simulation, there is slight vibration after the sound wave passes. This is
because of the coarsening of edge mesh and the inhomogeneity of mesh division due to the
compromise of calculation time. This kind of slight vibration can be eliminated by refining
the mesh and decreasing the time step.
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Figure 10. Normalized sound pressure field (k-wave) and displacement field (FEM) detected at Point 1 for (a) Model 1,
(b) Model 2, and (c) Model 3.

Simulations of the bulk wave are shown in Figure 11. Clearly, the laser array enhances
the intensity of the bulk wave. As expected, the amplitude of the acoustic wave generated
by the laser array is larger than that generated by a single laser source with the same energy
density. In Figure 11a–c, the difference between the arrival times of the peak of the bulk
wave in Model 1 and Model 2 at Points 5, 6, and 7 (The points on the z-axis that are 1, 2, and
3 mm away from the central heat source B) are 0.22, 0.10, and 0.06 μs, respectively, after the
excitation time. This is because, for detection points further from the excitation source, the
propagation paths of bulk waves originating from spots A and C (symmetrically located
on either side of spot B) gradually approach the propagation path of the wave originating
from spot B. Because there are two sources, the dominant bulk wave propagating along the
z-axis results from a superposition of the waves excited at spots A and C. In Figure 11a,
the smaller peak is the acoustic wave excited by source B. In Figure 11b,c, this peak adds
constructively to the waves excited by A and C, which increases the width of the wave.
Comparing the peak amplitudes of waves at locations 1, 2, and 3 mm from spot B on
the z-axis, it can be seen that the amplitudes of the bulk waves generated in Model 2 are,
respectively, 1.1, 1.9, and 2.4 times of those excited by Model 1. In the far-field, the bulk
wave excited by a distributed laser array is enhanced by a factor of more than 2 compared
to a single spot. This phenomenon is analogous to the mechanism of the widely used
synthetic aperture method for the enhancement of the detection SNR [33].
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Figure 11. Displacement in the z-direction as a function of time for Model 1 (single laser source) and Model 2 (laser array)
at (a) Point 5, (b) Point 6, and (c) Point 7.

Figure 12 shows the attenuation curve, obtaining the amplitude of the z-direction
displacement at six points along the z-axis: 1, 1.5, 2, 2.5, 3, and 3.5 mm away from source B.
It can be seen that the slope of the attenuation curve for Model 1 is steeper than that for
Model 2. This phenomenon arises because the wave has a plane component.

Figure 12. The peak z-direction displacement of the wave for different locations for the cases of
single laser and laser array sources.
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4. Conclusions

This study compares surface and bulk acoustic waves excited by a single laser source,
a laser array composed of three sources without time delay, and a laser array of three
sources with a time delay imposed on the central source. It is shown that for the same
excitation energy density, arrayed photoacoustic excitation leads to surface acoustic waves
that are around four times stronger in particular directions than that of a single source.
Moreover, by applying an appropriate time delay to the center source, the time and distance
required for constructive superposition to form a complete wavefront can be effectively
shortened. The use of the laser array has a significant enhancement on the amplitude
of bulk acoustic waves propagating into the object, analogous to the synthetic aperture
method in ultrasonic detection. In a future study, we will systematically investigate the
characteristics of wave generation by laser array sources with different energy spatial
distributions, temporal profiles, and delays between pulses in order to obtain a better
understanding of the mechanisms of wave generation using laser arrays. Using a laser
array with an appropriate delay time can enhance the intensity of the excited acoustic
signal without damaging the sample, and the excited acoustic wavefront still propagates
in a regular shape with little clutter. This method provides a new way to manipulate
the wavefront and improve the generation efficiency in nondestructive photoacoustic
imaging applications.
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Abstract: The real-time evaluation for non-destructive air-coupled ultrasonic testing of panel mate-
rials is a big task for several industries. To make these tests more and more accurate, efficient and
reliable calculation methods from ultrasonic holography are essential. In the past, we presented the
spec-radiation method as a fast and accurate method for such tasks. The spec-radiation method
calculates the sound field utilizing data from a measurement plane at another parallel or tilted plane,
especially the sound field at the surface of a panel. This can be used to detect flaws. There is a limita-
tion of the current method: using the data on the panel surface limits the accuracy of the detected
flaws. A big step forward could be expected if the sound field in the material were known. As a first
step, we developed the spec-radiation method forward to consider multiple material layers. For now,
we made the major assumption that all layers have fluid-like properties. Hence, transversal waves
were neglected. This extension of the spec-radiation method was validated utilizing an experiment.
We present that flaws in the panel material can be detected with higher accuracy at a similar speed
compared to our former approach.

Keywords: spec-radiation; acoustic holography; non-destructive testing; layered media; flaw detection

1. Introduction

Today’s panel materials industry is dependent on fast, reliable, accurate, and non-
destructive testing to guarantee the materials’ quality. This is because the demands on
the panel material are increasing, while at the same time, material and thus costs must
be saved. This affects a wide range of industries, such as wind turbine manufacturers
(Jasiuniene et al. [1]), the construction industry (Conta et al. [2]), aeronautical applications
(Fahr [3]), the wood-based panel industry (Fang et al. [4]), and many others. Sokolov [5]
used ultrasound for the first time to test a material for defects. Shortly thereafter, Fire-
stone developed the first echo material tester based on the reflection principle, and Trost
developed an ultrasonic forceps based on ultrasonic transmission. After that, the further
development of ultrasonic testing was inevitable (Deutsch et al. [6], Krautkrämer and
Krautkrämer [7]).

Ultrasonic testing can be roughly divided into two groups: contact testing, in which
the transmitter and receiver are in direct contact with the material to be tested, and non-
contact testing, in which the ultrasonic waves are transmitted from a transmitter to the
material via an ambient medium, and from there to the receiver. Ultrasonic testing with
contact to the test object offers the advantage that sound energy can be transmitted eas-
ily with low losses. However, the applied contact force has an influence on the result
(Gyekenyesi et al. [8]). Due to the high difference in impedance between the transmitter
or receiver and the test object, a thin layer of a contact medium is often applied to further
increase the sound energy. This contact medium consists in most cases of water-containing
oils, gels, or fats (Willcox and Downes [9]). However, with some materials, this has the
disadvantage that the contact oil leaves residues on the test object or is even absorbed
by the test object (as is the case with wood-based materials, for example), thus changing
the material properties of the test object (Schafer [10]). These disadvantages led to the
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development of non-contact ultrasonic testing (Fang et al. [4]). Non-contact ultrasonic
testing is especially suitable for objects with higher temperatures in corrosive or other dan-
gerous environments or areas that are difficult to access. It allows large distances from the
structures to be tested (Green [11]), and due to the missing contact force, it cannot influence
the results. Usually, water is used as the ambient medium for contactless ultrasonic testing.
This is because water has good impedance properties with respect to most solid materials
(Jasiuniene et al. [1], Zhang et al. [12], Mitri et al. [13]). For materials such as wood, how-
ever, testing under water is not possible because the material would absorb the water,
change its properties, and/or even be destroyed. Air-coupled ultrasonic testing was de-
veloped for such materials. A major challenge is the large difference in the impedance of
air compared to most solid materials. According to Stößel [14], in carbon-fiber-reinforced
plastic (CFRP) plates, only 0.000004% of an incident wave is transmitted into the material;
the rest is reflected, and only about 0.005% of the energy is transmitted by a piezoceramic
to the air. To be able to use air-coupled ultrasonic testing successfully, the transmitters
are provided with a matching layer. These are connected directly to the vibration gener-
ator (e.g., the piezoceramic) and usually have a characteristic length of a quarter of the
wavelength (λ/4) of the respective material of the matching layer (Chimenti [15], Álvarez
Arenas [16]). The application of modern materials allows the successful use of air-coupled
ultrasound (Hillger et al. [17]). Air-coupled ultrasound is currently used in a wide range
of applications, e.g., for the examination of turbine blades made of glass-fiber-reinforced
plastics (GFRPs) (Raisutis et al. [18]) or wood-based materials (Sanabria et al. [19]), to name
a few.

During the production process of wooden particleboard, delamination, air inclusions,
or insufficiently glued areas can occur (Dunky and Niemz [20]). The first who detected
such flaws in wood by ultrasound were Niemz [21], Bucur and Böhnke [22]. They assessed
whether delamination was present based on the change in the propagation time of the
signal. If the particleboard is to be inspected during production, it usually still has a very
high temperature (>100 ◦C) and vapors escaping, that can lead to receiver damage (Dunky
and Niemz [20]). This means that the receivers must be placed at a large distance (>100 mm)
from the particleboard. These large distances from the wooden particleboard make a direct
detection of flaws very difficult, if not impossible, since the sound waves diffract and
interfere all the way to the receiver (Laybed and Huang [23]).

According to Döring [24], the three best-known methods of presenting the information
from a non-destructive test with air-coupled ultrasound are the A-, B-, and C-scans. An
A-scan is the time-dependent measurement of a single point; a B-scan is a line of A-scans;
a C-scan is a set of multiple B-scans. The C-scan in particular enables good detection of
flaws or delaminations in shape and position, but is also the most time consuming because
a large number of points must be measured.

However, as already mentioned, at greater distances from the test object, it becomes
increasingly difficult to find a clear indicator for flaws due to the diffraction and interfer-
ence of the sound waves. If the transmitter is stationary during the measurements and
only the receiver is moved, tomographic measurements can be performed (Chimenti [15]).
If, in this way, the information of a plane is measured and known, methods of acoustic
holography can be applied to calculate from that plane to another plane directly above
the object under test. The acoustic holography originates from the holography in op-
tics invented by Gabor [25]. Acoustic holography enables the calculation of sound fields
starting from a known plane in the sound field. Due to the coherent properties of ultra-
sonic waves, diffraction-induced inaccuracies can be eliminated in this way (Singh [26]).
An important method of acoustic holography for the detection of flaws is the re-radiation
method (Sanabria et al. [27], Marhenke et al. [28], Marhenke et al. [29], Marhenke et al. [30],
Schmelt et al. [31], Schmelt et al. [32], Schmelt et al. [33]). With the re-radiation method, flaws
in the sub-wavelength range can be identified (Marhenke et al. [28]). Under the assumption
that the solid test object is similar to a fluid and only longitudinal waves can propagate,
a well-interpretable result has already been obtained on the side facing away from the
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receiver (Marhenke et al. [28]), and objects in a sound field have also been determined
(Schmelt et al. [31], Tsysar and Sapozhnikov [34]). The re-radiation method is based on the
Rayleigh–Sommerfeld diffraction integral and thus offers a well-interpretable description
in the spatial domain. Due to the description in the spatial domain, the computation
effort is not low, since several two-dimensional Fourier transformations (FFTs) and inverse
Fourier transformations (iFFTs) have to be performed for the evaluation. The spec-radiation
method (Schmelt and Twiefel [35]) offers the possibility to perform faster computations,
since the data are processed in the spatial frequency domain, so fewer FFTs and iFFTs
have to be performed. The smallest detectable flaws that can be detected theoretically are,
according to Wolf [36], in the size of λ/2 with the re-radiation, as well as the spec-radiation
method. The spec-radiation method is based on the angular spectrum method, which was
first used by Booker and P. C. Clemmow [37] to describe light propagation. Ratcliffe [38],
then it was possible to describe the diffraction of light in the ionosphere with this method.
Boyer et al. [39] then showed that it is possible to apply this method to the propagation of
sound waves, and he was able to identify holes in steel plates with a 5 MHz transmitter.
To characterize the sound field of ultrasonic transmitters, Schafer and Lewin [40] and
de Belleval and Messaoud-Nacer [41] proposed the use of the angular spectrum method.
While Peng et al. [42] used it for object identification, Yan and Hamilton [43] used it for
the analysis of tissue harmonic imaging. A finite-element model based on the angular
spectrum method was built by Aanes et al. [44], and Liu and Waag [45] described the
forward and backward propagation of sound waves using the method. Conta et al. [2]
showed the influence of zero-padding. Matsushima [46] showed the application of the
angular spectrum method in the field of computer holography. Schmelt and Twiefel [35]
utilized it for the spec-radiation method to identify flaws in panel materials. In Schmelt and
Twiefel [47], the spec-radiation method was extended to the calculation of tilted planes in
sound fields, to identify flaws in tilted panels. However, all these applications assume that
the sound waves propagate in one medium, so that there are no layered media considered.

In this publication, we present an extension to the spec-radiation method to calculate
the sound field in layered fluid media. We show this in the first step including the determi-
nation of the particle deflection. The objective of the publication was to obtain an increased
accuracy in the detection of flaws in thicker materials and on the side of the particleboard
facing away from the receiver. For this purpose, it was necessary to calculate this in the
material and thus take into account the occurring diffraction, as well as the reflections and
transmissions. With the extension presented here and the assumptions we made, we then
show, utilizing an experiment with a wooden particleboard, that a flaw on the side opposite
the receiver can be detected with increased accuracy compared to calculation of the sound
field on the top surface of the wooden particleboard.

2. Material and Methods

In this section, the material and methods are represented. In Section 2.1, the spec-
radiation method based on the angular spectrum method is described. The spec-radiation
method is extended to layered fluid media in Section 2.2. The practical implementation is
described in Section 2.3. In Section 2.4, the experimental setup is introduced.

2.1. Spec-Radiation Method

The spec-radiation method is based on the angular spectrum method, and the deriva-
tion described here was mainly based on that of Goodman [48] and Matsushima [46]. Due
to the nature of the spec-radiation method, only harmonic waves were used for the calcula-
tion.

Starting from a source wave field described by p(x, y, z = 0, ω) in a plane, the FFT of
it can be written as follows:

P( fx, fy, z = 0, ω) = Fx,y(p(x, y, z = 0, ω))

=
∫∫ ∞

−∞
p(x, y, z = 0, ω)e−i2π( fx x+ fyy)dxdy.

(1)
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Here, x, y, and z are spatial coordinates. Fx,y is the Fourier transform operator for the
coordinates x and y. p(x, y, z = 0, ω) is the sound pressure wave field at z = 0. ω is the
time-dependent angular frequency; i is the imaginary unit, and fx, fy, and fz are the spatial
frequencies with:

( fx, fy, fz) =

(
kx

2π
,

ky

2π
,

kz

2π

)
. (2)

kx, ky, and kz are the wave numbers in the different spatial dimensions, and therefore, they
are the components of the wave vector. The frequency fz is not independent of the other
spatial frequencies and the wavelength. For the determination of fz, we have to take a
deeper view into the wave vector. The components of the wave vector are dependent on
the following condition:

|k| = 2π

λ
(3)

with k as the wave vector. This means that the spatial frequencies always satisfy:

f 2
x + f 2

y + f 2
z =

(
1
λ

)2
. (4)

By changing Equation (4), it becomes obvious that fz is dependent on the other two
spatial frequencies:

fz( fx, fy, λ) =

√(
1
λ

)2
− f 2

x − f 2
y . (5)

This equation represents the so-called Ewald sphere, and each plane wave is repre-
sented by a point on the surface of the sphere. Another important connection of spatial
frequencies in the description of the propagation of plane waves is the relationship with
the directional cosine of the wave propagation:

fx =
cos(α)

λ

fy =
cos(β)

λ

fz =
cos(γ)

λ

(6)

which means that a point on the Ewald sphere can also be described by three directional
cosines of the propagation angles of the plane wave. To calculate the sound wave field
of another plane, Equation (1) can be multiplied by the propagation function H( fz, z).
P( fx, fy, z, ω) becomes:

P( fx, fy, z, ω) = H( fz, z) Fx,y(p(x, y, z = 0, ω)

= e−i2π fzz
∫∫ ∞

−∞
p(x, y, z = 0, ω)e−i2π( fx x+ fyy)dxdy.

(7)

While computing the equation, it has to be considered that the square root of Equa-
tion (5) can also become complex. Thus, two cases have to be discussed:

f 2
x + f 2

y ≤
(

1
λ

)2
, leads to complex solutions

f 2
x + f 2

y >

(
1
λ

)2
, leads to real solutions.

(8)

In the first case, when the square root of Equation (5) becomes complex, the information
is outside the Ewald sphere and represents exponential decaying evanescent waves. For the
through-transmission technique used in this publication to identify flaws, their contribution
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is rather small, and it was neglected in the further steps. The second case describes the
information that is located directly on the surface of the Ewald sphere. With the propagation
function H( fz, z), it is possible to calculate the sound propagation forward (t ≥ 0) and
backward (t ≤ 0) in time. To transform the sound field back into the spatial domain and
time domain, a 3D iFFT must be applied to Equation (7):

p(x, y, z, t) = F−1
fx , fy ,ω(P( fx, fy, z, ω))

= F−1
fx , fy ,ω(H( fz, z) Fx,y(p(x, y, 0, ω)).

(9)

With this equation, starting from a starting plane, the complete sound field in a
homogeneous fluid volume can now be described.

2.2. Extended Spec-Radiation Method for Layered Fluid Media

The extension is derived for a rather simple case first and is generalized later. There
are two different fluid media layers, as depicted in Figure 1. According to Brekhovskikh
and Godin [49], the layer interface interaction is described by the part of the wave that
has an influence at the interface. Hence, a corresponding impedance has to be defined; we
call it here the specific impedance. The specific impedance for one single plane wave is
calculated by:

Z =
p(x, y, z)
vz(x, y, z)

, (10)

which leads to the well-known formulation:

Z =
cρ

cos (γ)
, (11)

with γ as the propagation direction angle, ρ as the density, and c as the speed of sound.
With this knowledge, the reflection factor:

R =
Z2 − Z1

Z2 + Z1
(12)

and the transmission factor:
T =

2Z2

Z2 + Z1
= 1 + R (13)

are determined. Indices 1 and 2 mark Medium 1 and Medium 2. With the reflection and
transmission factor, the sound wave pressure in both media can be calculated.

Figure 1. Schematic representation of the incident, reflected, and transmitted waves at a fluid–fluid
interface in a semi-infinite volume. Included are the speed of sound c1 and c2, the densities ρ1 and ρ2,
and the wavelengths λ1 and λ2 of the two fluid media.
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If Equation (10) is set up for the spectrum, i.e., in the Fourier domain for a specific ω,
it looks as follows:

ZF =
P( fx, fy, z)
V( fx, fy, z)

. (14)

Here, the index F at the specific impedance indicates that this is the specific impedance
for the Fourier domain In the Fourier domain, the velocity is described by the pressure
with the following equation:

V( fx, fy, z) =
P( fx, fy, z)kz

ωρ
, (15)

as can be found in Möser [50]. This turns Equation (14) into:

ZF =
cρ

λ fz
. (16)

This is now an expression for the impedance that can be used in the spec-radiation
method. When comparing Equations (11) and (16), the relation of Equation (6) is again
recognizable. This means that if λ and fz are known, the cosine of the angle of propagation
is also known. With Equation (16), the reflection factor can be written as:

RF =
ZF,2 − ZF,1

ZF,2 + ZF,1
=

c2ρ2

λ2 fz,2
− c1ρ1

λ1 fz,1
c2ρ2

λ2 fz,2
+

c1ρ1

λ1 fz,1

(17)

and the transmission factor as:

TF =
2ZF,2

ZF,2 + ZF,1
=

2
c2ρ2

λ2 fz,2
c2ρ2

λ2 fz,2
+

c1ρ1

λ1 fz,1

. (18)

The entire sound pressure in Fluid 1 according to Figure 1 is thus the sum of the
incident and the reflected sound waves:

p f 1(x, y, 0 ≤ z < h1, t) =F−1
fx , fy ,ω(H( fz,1, 0 ≤ z+ < h1)Fx,y(p(x, y, z0, ω)))+

F−1
fx , fy ,ω(H( fz,1, 0 ≤ z− < h1)RF,12Fx,y(p(x, y, zh1, ω))).

(19)

Here, z+ indicates that the sound propagation is calculated in the positive z-direction,
and z− indicates that the sound propagation is calculated in the negative z-direction. RF,12
is the reflection factor in the Fourier domain for the interface of Fluids 1 and 2. The sound
pressure in Fluid 2 is:

p f 2(x, y, z ≥ h1, t) =F−1
fx , fy ,ω(H( fz,2, z+ ≥ h1)TF,12Fx,y(p(x, y, zh1, ω))). (20)

Here, TF,12 is the transmission factor at the interface between Fluid 1 and Fluid 2.
To determine the vectorial particle deflection from the scalar sound pressure, the sound
pressure can be converted into the scalar deflection potential:

χ(x, y, z, ω) =
p(x, y, z, ω)

ρω2 . (21)
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From the deflection potential, the vectorial particle deflection can be calculated in the
Fourier domain through:

s = grad(χ(x, y, z, ω)) = F−1
fx , fy

⎛⎝ i2π fxFx,y(χ(x, y, z, ω))
i2π fyFx,y(χ(x, y, z, ω))

Vi2π fz,jFx,y(χ(x, y, z, ω))

⎞⎠. (22)

Here, V is a propagation sign. V = −1 for waves that propagate in the direction of
z > z0 and V = 1 for waves that propagate in the direction of z < z0. fz,j is the spatial
frequency in the propagation direction for Fluid 1 (j = 1) or 2 (j = 2).

In the next section, the practical implementation for the calculation of layered fluid
media is discussed.

2.3. Practical Implementation

To describe the calculation from one interface to the next, the flowchart in Figure 2 is
used. In the first step, the constant known parameters such as the speed of sound, density,
the z-position of the interfaces, and the measured sound pressure must be set.

Figure 2. Flowchart for the practical realization of the spec-radiation method for layered fluid media.

Then, the sound pressure is transformed in the frequency domain. The sound field
generated by the incident wave at the first interface layer is determined by Equation (9)
(spec-radiation method). In the block “Interface j” (with the interface number j = 1, 2, 3,. . . ),
the reflected and transmitted part is calculated. A flowchart of the block “Interface j” is
depicted in Figure 3.

In the block “Interface j”, the first decision is among which frequencies the calculation
has to be performed. For the representation of a harmonic signal, the calculation of a
single frequency can be sufficient, while for the calculation of a single sinusoidal wave,
several frequencies are needed. Here, all frequencies from 1.2 kHz up to 120 kHz were
used. This means that 164 frequency step points were taken into account with the conjugate
complex parts as well. All other frequencies were set to 0. This procedure saves much
computing time. Then, the different wavelengths have to be calculated. Next, the sound
pressure was transformed with a 2D FFT over the spatial coordinates. Any value that
was not on the Ewald sphere was set to 0. Then, the two different spatial frequencies
for the two media at the interface in the propagation direction had to be calculated. In
the next step, the specific impedances and, with the specific impedances, the reflection
and transmission coefficient were determined in the Fourier domain. The propagation
function H was then calculated with the spatial frequency for the medium from the incident
wave. In the following step, the sound pressure of the reflected and transmitted part at the
interface can be calculated. If one is only interested in the sound pressure values, then the
block “Interface j” could be left out. Here also, the deflection potential can be calculated, if

154



Appl. Sci. 2022, 12, 1098

needed, for the reflected and transmitted part. At last, in the block, the question is: Is one
interested in the particle deflection? If so, then the particle deflection could be calculated
from the deflection potentials in the Fourier domain as in Equation (22). Now, the block
can be left alone. It has to be decided whether another interface should be determined or
not. If not, then the generated results can be displayed. If so, then the block “Interface j”
must be executed again. The transmitted wave up to the second interface results from the
transmitted part at the first interface at z = h1. The calculation has to be considered, now
that the transmitted and reflected part starts again at a local z = 0. The incident wave at
Interface 2 is the transmitted part of Interface 1. As at Interface 1, the incident wave is the
start for the transmitted and reflected part, and they start again at a local z = 0. After the
calculation, it must be decided again whether there is another interface layer or not. It must
also be decided whether the reflected sound field should be calculated back to the first
interface. If this is the case, then the procedure from Figure 3 is carried out again, whereby
the incident sound wave is now the reflected part of Interface 2. It was again assumed that
the calculation starts at a local z = 0. For the calculation, the indices at the impedances
were now simply exchanged. Similarly, for the transmission factor H, the spatial frequency
of the second medium was now used, due to the fact that the incident sound wave comes
from the second medium. Depending on how many reflections and transmissions through
different boundary layers are to be performed, this procedure must be repeated.

Figure 3. Flowchart of the block ”Interface j” for the practical realization of the spec-radiation method
for layered fluid media.

2.4. Experimental Setup

This experimental setup (see Figure 4) allows the measurement of a sound field emitted
by an ultrasonic transducer. The original purpose is the detection of flaws in a particleboard;
hence, such a board can be placed in between the sound source and the sensor. Air was
used as the coupling medium between the particleboard and the receiver/transmitter. An
ultrasonic transducer called AT50 from the company Airmar was used as a transmitter. It
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has an active diameter of 45 mm and operates at 50 kHz. The small frequency allows large
distances between the particleboard and the receiver /transmitter. However, the accuracy
is lower than with higher frequencies. In air the wavelength was at 50 kHz approximately
λ = 6.9 mm. Thus, due to the theory for the spec-radiation method, the smallest detectable
size in air was λ/2 = 3.45 mm. An amplitude of 100 V operates the transmitter to send
out a burst of 10 sinusoidal periods with a repeating frequency of 1 Hz. With a distance of
280 mm from the transmitter to the particleboard, the distance was always larger than the
near-field length (approximately 72 mm according to Krautkrämer and Krautkrämer [7]) of
the transmitter in air at this frequency. The transmitter was stationary during the whole
measurement. As a sample, a commercially available wooden medium-density fiberboard
(MDF) was used.

Figure 4. Experimental setup.

The particleboard had a thickness of 25 mm. To determine the longitudinal speed of
sound in the particleboard, a contact through transmission test was carried out with 50 kHz
and was determined to be 450 m/s. The density of the particleboard was 730 kg/m3.
As flaw imitations, pieces of paper were used (Schmelt et al. [32], Schmelt et al. [33],
Schmelt and Twiefel [35], Schmelt and Twiefel [47], Marhenke et al. [30], Marhenke et al. [28])
due to the similar material properties compared to wooden particleboard. Other studies
often use Teflon tape for studying CFRP or GFRP material for the same reason (Fahr [3]).
When the piece of paper was placed with tape underneath the particleboard, a thin air
film was always present, and this film served as the flaw imitation. It caused a similar
impedance change as real air inclusion in the material. The two pieces of paper used as
the flaw imitation were circular with a diameter of ø10 mm and ø6 mm, which is larger
and smaller than the wavelength of 9 mm in the particleboard, but larger than the half-
wavelength. The particleboard was also stationary. As a receiver, a MEMS microphone
(SPU0410LR5H-QB Knowles) was used. Its upper frequency limit is 80 kHz. The receiver
had a constant distance of 177 mm from the particleboard. The receiver could be moved to
obtain the information for C-scans. Therefore, the XYZ-traversing stage from RoboCylinder
with the traverse path of x = 0–400 mm, y = 0–200 mm, and z = 0–200 mm was used.
To control the entire system, a standard computer was used. Via USB, the XYZ stage
was connected to the computer and controlled by a LabView program. With a National
Instruments (NI) system, the transmitter was controlled and the signal of the microphone
recorded. The NI system consisted of a chassis PXIe-1085, with an inserted card for the
communication with the computer (PXIe-8398), a card to record the measurement data
(PXIe-5171R with a maximum sampling frequency of 250 MHz and 8 channels), and a
card (PXIe-5423) as a frequency generator to control the transmitter. For the amplification
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of the control signal of the transmitter, the power amplifier HSA 4052 from the company
NF was used to generate the required amplitude of 100 V. The measured area had a size
of 152 mm × 152 mm with a measurement point distance of 2 mm in x and y. Hence,
76 × 76 points were measured, and the time step was 2 × 10−7 s with a time length of
3.2768 × 10−3 s.

3. Results

3.1. Example with a Three-Layer Model

A three-layer model was selected as an example in this section. This three-layer model
is shown schematically in Figure 5. The excitation was an academic piston transducer with
a diameter of ø40 mm and an amplitude of one. The tilted orientation of 5◦ to the normal
axis was computed with the procedure of Schmelt and Twiefel [47]. It emits pulse-like
sinusoidal waves with a frequency of 50 kHz. The amplitude in the source plane and the
time signal is displayed in Figure 6. The time step of the signal was Δt = 2 × 10−7 s, and
the signal was 0.000819 s long.

Figure 5. Schematic representation of the 3-layer fluid model. Depicted are the incident E1, reflected
Rn,m, and transmitted Tn,m waves at fluid–fluid interfaces. n is the number of interfaces, and m is
the number of interactions (example: R2,3 is the third reflection in the fluid at Interface 2). hn is the
height of the fluid layer; ρn is the density; λn is the wavelength.

Figure 6. (a) Sound pressure amplitude of the tilted academic piston transducer in the plane z = 0 m;
(b) transient pressure signal of the academic piston transducer.
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Fluids 1 and 3 were air with a speed of sound of 343 m/s and a density of 1.2041 kg/m3.
Fluid 2 was water with a speed of sound of 1484 m/s and a density of 997 kg/m3.
Δx = Δy = 2 mm; Δ fx = 1

xmax
; Δ fy = 1

ymax
. The simulation space had a size of

0.6 m × 0.6 m × 0.3 m (length × width × height). A step size in the z-direction of
Δz = 1 mm was used in this example. The first interface was at h1 = 0.1 m, and the second
interface was at h1 + h2 = 0.2 m. To calculate the sound pressure between the interfaces, the
spec-radiation method without the extension as in Section 2.1 can be used. Here, only the
reflected and transmitted parts, as depicted in Figure 5, were calculated. More reflections
and transmission can be calculated, but to demonstrate how the procedure works, only
these parts were determined. The individual layers between the interfaces are shown as
cross-sections in Figure 7, as well as the superpositioned result of the half-3D volume.

Figure 7. Calculated sound fields in the layered fluids and the superposition of the sound fields.

Here, each image was scaled in color to the maximum in the respective image to
make the representation easier to understand. It can be seen that when all the results are
superimposed, only with a color scaling down to −90 dB related to the maximum of the
total volume, after the second interface, the transmittance becomes visible. The influences
of reflection and refraction are also clearly visible. In Medium 2, it can be seen from the
much wider sound field that there was a much larger wavelength present. It can be seen
that from the angle of incidence of 5◦, an angle of approximately 22◦ arose in Medium 2, as
defined by Snell’s law of refraction. Due to Snell’s law, the refraction angle is here:

γ2 = arcsin
(

c2

c1
sin(5◦)

)
≈ 22◦. (23)
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Figure 8 depicts the particle deflection at time t = 0.4 ms in a cross-section of the
calculated volume. In Figure 8, a region between the plane z = 0 m and the second interface
at z = 0.2 m is presented. It can be seen that at this time, the sound waves already reflected
at the first interface. In Medium 2, the much longer wavelength, due to the higher speed
of sound, was also evident. In Figure 8 is an enlarged section of the area depicted. The
oscillation direction of the particles is displayed with vectors. The representation of the
vectors was generated with the MATLAB function “quiver”. The vectors clearly show
that the waves were longitudinal, since the direction of oscillation was in the direction
of propagation.

Figure 8. Particle deflection in a cross-section of the calculated volume of Figure 7 at time 0.4 ms with
an enlarged section to show with vectors that here, there are longitudinal waves propagating.

We demonstrated with this example how the method works, that it is possible to
evaluate the individual components of reflection and transmission, and that by superpo-
sition of all components, a complete sound field can be obtained. We also showed that it
is possible to determine the particle deflection. We also created a video of another exam-
ple of transient sound pressure propagation and included it in the Supplementary Files
(Video S1). Here, using a three-layer model, as shown in Figure 3, the sound propagation
can be observed. The transmitter is in the center of the volume, and only half of the volume
is shown. Medium 1 is only a quarter and Medium 3 is only half as high as Medium 2.
The sound pressure above in the third medium was increased by a factor of 100 because,
otherwise, it would not be visible in this example. Such videos require much memory and
time (some days for this example), because the time history of every point in space has to
be stored and displayed.

3.2. Example with a Three-Layer Model: Perfect Impedance Match

Another academic example is the perfect impedance matching of the individual layers
to each other. With a perfect impedance match, no reflections occur at an interface layer.
However, this requires that the condition:

c1ρ1 = c2ρ2 (24)

be fulfilled.
We present here the three-layer model (see Figure 5) again to demonstrate that the

method presented here also included this special case. The simulation space had the same
geometric dimensions as in the previous Section 3.1. The step sizes in the x-, y-, and
z-directions remained as in the previous Section 3.1, and the same number of reflections
and transmissions were calculated as depicted in Figure 5. The medium up to the first
interface was air with a speed of sound of c1 = 343 m/s and a density of ρ1 = 1.2041 kg/m3.
The second medium had a speed of sound c2 = 2c1 and a density of ρ2 = ρ1

2 . The third
medium had a speed of sound c3 = c1

2 and a density of ρ3 = 2ρ1. Thus, the conditions
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for the three media for perfect impedance matching were fulfilled. The same excitation
signal as in Figure 6b was used, and the transmitter also had the same size and position
as in Figure 6a, with the difference that the transmitter was now tilted by 10◦. As a result
of the calculation and the superposition of all components, Figure 9 was obtained as a
cross-section of the volume for the maximum sound pressure in dB related to the maximum
in the entire volume.

Figure 9. Maximum sound pressure in dB related to the maximum in the entire volume. Perfect
impedance matching of a 3-layer model. The results were evaluated for frequencies up to 250 MHz.

Up to the first interface at z = 0.1 m, the tilted transmitter could be detected well.
Likewise, the near-field could be identified well. A reflection from the interface was, as
expected, not recognizable. After the first interface, the speed of sound in the medium
was twice as high as in the first medium, which can also be recognized very well by the
propagation angle. Here, as it was to be expected according to Snell’s law of refraction, it
was approximately twice as large as the angle of incidence. However, no reflection can be
seen even up to the second interface at z = 0.2 m, from any interface. The sound passed
from Medium 2 to Medium 3 without reflection. Here, due to the fact that the speed of
sound was only a quarter compared to Medium 2, the angle of propagation was also only
about a quarter of what is present in Medium 2.

With this special case, we once again proved the functionality of the spec-radiation method.

3.3. Experimental Application

For the evaluation, the measured area was increased symmetrically by zero-padding
to a size of 256 × 256 points with the measured area inside. With the spec-radiation method,
the sound field on the board surface can be computed. The important frequency is the
exciting frequency. Therefore, the evaluation was performed for a frequency of 50 kHz.

The result of this evaluation is depicted in Figure 10. In both results, the flaw may be
detected, but not accurate in shape and size. This was due to the fact that the sound field
behind the flaw had diffraction and interference patterns that affected the sound field on
the board surface. In (a) is the result of the 10 mm flaw and in (b) the result of the 6 mm
flaw. In the next step, we evaluated the result with the proposed extension, so that the
result was evaluated at the z-position of the flaw in the particleboard.

160



Appl. Sci. 2022, 12, 1098

Figure 10. Evaluation result on the top surface of the wooden particleboard, with (a) 10 mm and
(b) 6 mm under the particleboard. The results were evaluated at a frequency of 50 kHz.

We therefore calculated this through the particleboard. In contrast to the calculation of
the forward propagation, it has to be considered that the start plane was the measuring
plane. This means that the start sound pressure was the transmitted sound pressure
PT( fx, fy, z, ωj). To obtain the incidence sound pressure at the interface, the transmitted
sound pressure has to be divided by TF, so that:

P( fx, fy, z, ωj) =
1

TF
PT( fx, fy, z, ωj). (25)

The result is depicted in Figure 11. In (a), the 10 mm flaw is clearly visible as a circle
with a diameter of 10 mm and the pressure drops stronger than −20 dB. In (b), the flaw
with a diameter of 6 mm is visible more clearly, but is still not perfect. The area is larger
than a circle of 6 mm. This was due to the fact that the 6 mm circle was close to the detection
limit of λ/2 which was, in the wooden particleboard, approximately 4.5 mm. The pressure
drop was not as strong, so that some air between the tape and the particleboard around the
flaw could have raised the area here. The flaw was easier to detect in comparison with the
result at the top surface of the particleboard. The evaluation time took approximately 14 s
per interface layer with the corresponding dataset.

Figure 11. Evaluation result on the lower surface of the wooden particleboard, with (a) 10 mm and
(b) 6 mm under the particleboard. The results were evaluated at a frequency of 50 kHz.
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By calculating many planes from the microphone plane to the flaw plane, the sound
field can also be represented as a cross-section at x = 0 m. This is depicted in Figure 12 for
the ø10 mm flaw. Here, two different scalings of the results were chosen. Everything above
the particleboard (z = 0 m to −0.177 m) was scaled in dB related to the maximum in the
air volume above the particleboard. Everything inside the particleboard (z = −0.178 m to
−0.202 m) was scaled in dB with respect to the maximum inside the particleboard. This
resulted in a matching color scaling of the two areas. If everything would be scaled to the
maximum inside the particleboard, it would no longer be possible to display the entire
sound field in a well-recognizable color, because the sound field above the board would
then be at approximately −55 dB.

Figure 12. Cross-section plane at x = 0 m of the calculated volume with the ø10 mm flaw. The sound
pressure is shown in dB. For the color scaling in the air, the maximum of the sound pressure in the air
volume is taken up to the surface of the particleboard (z = 0 m to −0.177 m). For the color scaling in
the particleboard, the maximum sound pressure in the particleboard (z = −0.178 m to −0.202 m) is
used. If both are now displayed up to −20 dB, the result is a matching color scale. The results were
evaluated at a frequency of 50 kHz.

From this cross-sectional view, it is clear that on the surface of the particleboard
(z = −0.177 m), the flaw could not be clearly detected. What could only be detected there
was a minimum of the sound pressure due to the diffraction of the sound around the flaw,
as can also be seen in Figure 10a. The flaw itself, however, was completely masked by the
diffraction. Only by calculating into the particleboard, the flaw became recognizable by
a sound pressure drop (sound shadow) at y = 0 m. Here, the shadow extended to about
half the thickness of the particleboard and had its largest diameter and strongest sound
pressure drop in the plane of the flaw.

In Figure 13, the cross-sectional plane at x = 0 m is shown for the measurement with
the ø6 mm flaw. There, at the position of approximately y = 0.01 m and z = −0.202 m to
−0.187 m, the sound shadow of the ø6 mm flaw can be seen. Here, it is noticeable that the
sound pressure drop was lower than for the ø10 mm flaw. In this figure, however, it is also
clear that the supposed flaw on the surface of the particleboard in Figure 10b is deceptive.
This is because the position of the flaw in the xy-plane could not be correctly determined
with the evaluation only up to the upper surface of the particleboard, which means that an
evaluation through the particleboard was necessary here.
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Figure 13. Cross-section plane at x = 0 m of the calculated volume with the ø6 mm flaw. The sound
pressure is shown in dB. For the color scaling in the air, the maximum of the sound pressure in the air
volume is taken up to the surface of the particleboard (z = 0 m to −0.177 m). For the color scaling in
the particleboard, the maximum sound pressure in the particleboard (z = −0.178 m to −0.202 m) is
used. If both are now displayed up to −20 dB, the result is a matching color scale. The results were
evaluated at a frequency of 50 kHz.

In Figures 12 and 13, there are lines to be seen, which one might think do not actually
belong there. We highlighted these by way of example in Figure 13 with three arrows. These
were artifacts caused by the calculation due to reflections in the measurement. Because
of the narrow space and the long recording time of the measurement data, sound waves
could reach the XYZ-traversing unit and were reflected from there, thus reaching the
measurement area of the microphone again. In this example shown here, however, the
influence on the identification of the flaws was negligible. However, such phenomena must
always be taken into account in experiments of this kind.

4. Discussion

A new innovative extension for the spec-radiation method was introduced in this
publication. With the spec-radiation method, we showed in the past that the detection
of flaws in wooden particleboard could be performed very fast and reliably. We showed
that the spec-radiation method is faster than comparable methods to detect flaws by
calculating back to the top surface of a panel material (Schmelt and Twiefel [35]). We
also showed that it is possible to calculate directly to the top of a tilted panel material
(Schmelt and Twiefel [47]). Nevertheless, in thicker material, it is not enough to calculate
the sound distribution on the top of the panel material; due to interferences and diffraction,
flaws may be masked. Therefore, the next logical step was to calculate through the material.
With this extension, it was now possible to calculate through different layered fluid media
with the spec-radiation method. A computer with the operating system Windows 10 Pro for
Workstations and 128 GB RAM and 24 cores of the type Intel(R) Xeon(R) Silver 4116 CPU @
2.1 GHz was used for the evaluations made here. We showed on different examples how the
spec-radiation method can be used to simulate and visualize sound propagation. While the
representation of the maximum sound pressure in a three-dimensional volume is no longer
a big challenge, the creation of three-dimensional videos is a challenge for today’s systems.
For the creation of such videos, the transient information of each calculated point in space
must be stored. Subsequently, all information must be called up and displayed at one point
in time in order to save a frame of the video. For the three-layer model shown in Figure 7,
this would be with (time × length × width × height) 4096 × 300 × 300 = 110,592,000,000
data points. With that said, there are still many possibilities for optimization since not
every data point is needed for the visualization. For the detection of flaws, we showed that
we can identify flaws smaller than the wavelength also in the particleboard. Here, however,
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it becomes clear once again that reflections from the environment must always be taken
into account, as they can possibly have a negative influence on the detection of flaws.

5. Conclusions

In conclusion, with this publication, we developed a new innovative extension to the
spec-radiation method. In Section 2, we described in detail both the analytical description
and the practical implementation and presented an experimental setup. We showed how to
calculate the particle deflection potential and the particle deflection with the spec-radiation
method in the Fourier domain. We presented a flowchart model that was used to explain
the practical implementation. In Section 3.1, we first showed on a three-layer model how
the extension of the spec-radiation method presented here can be applied to simulate
the sound propagation from a transmitter. We showed that the particle deflection can
also be represented by vectors and that each reflection or transmission can be considered
individually. By superposing the reflections and transmissions, we showed how the
complete sound field of a 3D volume can be obtained. With a video, we showed that
with this extension, it is also possible to represent the transient three-dimensional sound
pressure field. With the special case of perfect impedance matching, we proved the results
of the method in Section 3.2. In Section 3.3, we showed with an experiment a wooden
particleboard and flaw imitations at the transmitter side that the procedure to detect flaws
with the extended version of the spec-radiation method is possible. We showed that the
flaws were better detectable and characterized in geometry and location by calculating the
sound field through the particleboard in comparison with the result at the top surface of
the particleboard. Therefore, we made the assumption that the particleboard behaves as a
fluid and that only longitudinal waves propagate. We presented the result and explained
the backward propagation through an interface layer. We are confident that this type
of evaluation will help optimize production and quality assurance processes due to the
accurate knowledge that can be gained from the flaws. Due to the very fast evaluation time,
the method has great potential.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/app12031098/s1, Video S1: Transient sound propagation evaluated with the spec-radiation method.

Author Contributions: Conceptualization, A.S.S. and J.T.; methodology, A.S.S.; software, A.S.S.;
validation, A.S.S. and J.T.; formal analysis, A.S.S.; investigation, A.S.S.; resources, A.S.S.; data
curation, A.S.S.; writing—original draft preparation, A.S.S.; writing—review and editing, A.S.S. and
J.T.; visualization, A.S.S.; supervision, J.T.; project administration, J.T.; funding acquisition, J.T. All
authors have read and agreed to the published version of the manuscript.

Funding: The publication of this article was funded by the Open Access Fund of Leibniz Univer-
sität Hannover.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: This research was supported by J. Wallaschek.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

CFRP carbon-fiber-reinforced plastic
GFRP glass-fiber-reinforced plastic
FFT Fourier transformation
iFFT inverse Fourier transformation
MDF medium-density fiberboard
MEMS micro-electro-mechanical systems

164



Appl. Sci. 2022, 12, 1098

References

1. Jasiuniene, E.; Raisutis, R.; Sliteris, R.; Voleiis, A.; Jakas, M. Ultrasonic NDT of wind turbine blades using contact pulse-echo
immersion testing with moving water container. Ultragarsas J. 2008, 63, 28–32.

2. Conta, S.; Santoni, A.; Homb, A. Benchmarking the vibration velocity-based measurement methods to determine the radiated
sound power from floor elements under impact excitation. Appl. Acoust. 2020, 169, 107457. [CrossRef]

3. Fahr, A. Aeronautical Applications of Non-Destructive Testing; DEStech Publications, Inc.: Lancaster, PA, USA, 2014.
4. Fang, Y.; Lin, L.; Feng, H.; Lu, Z.; Emms, G.W. Review of the use of air-coupled ultrasonic technologies for nondestructive testing

of wood and wood products. Comput. Electron. Agric. 2017, 137, 79–87. [CrossRef]
5. Sokolov, S.Y. On the problem of the propagation of ultrasonic oscillations in various bodies. Elek. Nachr. Tech. 1929, 6, 454–460.
6. Deutsch, V.; Platte, M.; Vogt, M. Ultraschallprüfungen; Springer: Berlin/Heidelberg, Germany, 1997. [CrossRef]
7. Krautkrämer, J.; Krautkrämer, H. Werkstoffprüfung mit Ultraschall; Springer: Berlin/Heidelberg, Germany, 1980. [CrossRef]
8. Gyekenyesi, A.L.; Harmon, L.M.; Kautz, H.E. The Effect of Experimental Conditions on Acousto-Ultrasonic Reproducibility. Proc.

SPIE 2002, 4704, 177–186. [CrossRef]
9. Willcox, M.; Downes, G. A Brief Description of NDT Techniques; NDT Equipment Limited: Toronto, ON, Canada, 2003.
10. Schafer, M. The Effect of Experimental Conditions on Acousto-Ultrasonic Reproducibility. In Proceedings of the IEEE Ultrasonics

Symposium—An International Symposium (Cat. No.00CH37121), San Juan, PR, USA, 22–25 October 2000; pp. 771–778. [CrossRef]
11. Green, R.E. Non-contact ultrasonic techniques. Ultrasonics 2004, 42, 9–16. [PubMed]
12. Zhang, Y.; Sidibé, Y.; Maze, G.; Leon, F.; Druaux, F.; Lefebvre, D. Detection of damages in underwater metal plate using acoustic

inverse scattering and image processing methods. Appl. Acoust. 2016, 103, 110–121. [CrossRef]
13. Mitri, F.G.; Greenleaf, J.F.; Fatemi, M. Comparison of continuous-wave (CW) and tone-burst (TB) excitation modes in vibro-

acoustography: Application for the non-destructive imaging of flaws. Appl. Acoust. 2009, 70, 333–336. [CrossRef]
14. Stößel, R. Air-Coupled Ultrasound Inspection as a New Non-Destructive Testing Tool for Quality Assurance. Ph.D. Thesis,

Fakultät für Maschinenbau, Universität Stuttgart, Stuttgart, Germany, 2004. [CrossRef]
15. Chimenti, D.E. Review of air-coupled ultrasonic materials characterization. Ultrasonics 2014, 54, 1804–1816. [CrossRef]
16. Álvarez Arenas, T.E.G. Acoustic Impedance Matching of Piezoelectric Transducers to the Air. IEEE Trans. Ultrason. Ferroelectr.

Freq. Control 2014, 51, 624–633. [CrossRef]
17. Hillger, W.; Bühling, L.; Ilse, D. Review of 30 years ultrasonic systems and developments for the future. In Proceedings of the

11th European Conference on Non-Destructive Testing (ECNDT2014), Prague, Czech Republic, 6–10 October 2014.
18. Raisutis, R.; Jasiuniene, E.; Sliteris, R.; Vladisauskas, A. The review of non-destructive testing techniques suitable for inspection

of the wind turbine blades. Ultragarsas 2008, 63, 26–30.
19. Sanabria, S.; Mueller, C.; Neuenschwander, J.; Niemz, P.; Sennhauser, U. Air-coupled ultrasound as an accurate and reproducible

method for bonding assessment of glued timber. Wood Sci. Technol. 2011, 45, 645–659. [CrossRef]
20. Dunky, D.; Niemz, P. Holzwerkstoffe und Leime; Springer: Berlin/Heidelberg, Germany, 2002. [CrossRef]
21. Niemz, P. Bestimmung von Fehlverklebungen mittels Schallaufzeitmessung. Holz als Roh-und Werkst. 1995, 53, 236. [CrossRef]
22. Bucur, V.; Böhnke, I. Factors affecting ultrasonic measurements in solid wood. Ultrasonics 1994, 32, 385–390. [CrossRef]
23. Laybed, Y.; Huang, L. Ultrasound time-reversal MUSIC imaging with diffraction and attenuation compensation. IEEE Trans.

Ultrason. Ferroelectr. Freq. Control 2012, 59, 2186–2200. [CrossRef]
24. Döring, D. Air-Coupled Ultrasound and Guided Acoustic Waves for Application in Non-Destructive Material Testing. Ph.D.

Thesis, Fakultät Luft-und Raumfahrttechnik der Universität Stuttgart, Stuttgart, Germany, 2011. [CrossRef]
25. Gabor, D. Holography. Science 1972, 177, 299–313. [CrossRef]
26. Singh, V. Acoustical imaging techniques for bone studies. Appl. Acoust. 1989, 27, 119–128. [CrossRef]
27. Sanabria, S.; Marhenke, T.; Furrer, R.; Neuenschwander, J. Calculation of volumetric sound field of pulsed air-coupled ultrasound

transducers based on single-plane measurements. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2018, 65, 72–84. [CrossRef]
[PubMed]

28. Marhenke, T.; Neuenschwander, J.; Furrer, R.; Zolliker, P.; Twiefel, J.; Hasener, J.; Wallaschek, J.; Sanabria, S. Air-coupled
ultrasound time reversal (ACU-TR) for subwavelength non-destructive imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control
2020, 67, 651–663. [CrossRef] [PubMed]

29. Marhenke, T.; Sanabria, S.; Chintada, B.; Furrer, R.; Neuenschwander, J.; Goksel, O. Acoustic field characterization of medical
array transducers based on unfocused transmits and single-plane hydrophone measurements. Sensors 2019, 19, 863. [CrossRef]
[PubMed]

30. Marhenke, T.; Sanabria, S.; Twiefel, J.; Furrer, R.; Neuenschwander, J.; Wallaschek, J. Three dimensional sound field computation
and optimization of the delamination detection based on the re-radiation. In Proceedings of the 12th European Conference on
Non-Destructive Testing (ECNDT 2018), Gothenburg, Sweden, 11–15 June 2018.

31. Schmelt, A.; Marhenke, T.; Twiefel, J. Identifying objects in a 2D-space utilizing a novel combination of a re-radiation based
method and of a difference-image-method. In Proceedings of the 23rd International Congress on Acoustics, Aachen, Germany,
9–13 September 2019.

32. Schmelt, A.; Marhenke, T.; Hasener, J.; Twiefel, J. Investigation and Enhancement of the Detectability of Flaws with a Coarse
Measuring Grid and Air Coupled Ultrasound for NDT of Panel Materials Using the Re-Radiation Method. Appl. Sci. 2020,
10, 1155. [CrossRef]

165



Appl. Sci. 2022, 12, 1098

33. Schmelt, A.; Li, Z.; Marhenke, T.; Twiefel, J. Aussagefähigkeit von Fehlstellenimitaten in der ZfP. In Proceedings of the DAGA
2020—46. Jahrestagung für Akustik, Hannover, Germany, 16–19 March 2020; pp. 1133–1136. ISBN: 978-3-939296-17-1.

34. Tsysar, S.; Sapozhnikov, O. Ultrasonic holography of 3D objects. In Proceedings of the IEEE International Ultrasonics Symposium,
Rome, Italy, 20–23 September 2009; pp. 737–740. [CrossRef]

35. Schmelt, A.; Twiefel, J. The Spec-Radiation Method as a Fast Alternative to the Re-Radiation Method for the Detection of Flaws in
Wooden Particleboards. Appl. Sci. 2020, 10, 6663. [CrossRef]

36. Wolf, E. Three-dimensional structure determination of semi-transparent objects from holographic data. Opt. Commun. 1969,
1, 153–156. [CrossRef]

37. Booker, H.G.; Clemmow, P.C. The concept of an angular spectrum of plane waves, and its relation to that of polar diagram and
aperture distribution. IEEE-Part III Radio Commun. Eng. 1950, 97, 11–17. [CrossRef]

38. Ratcliffe, J.A. Some Aspects of Diffraction Theory and their Application to the Ionosphere. Rep. Prog. Phys. 1956, 19, 188–267.
[CrossRef]

39. Boyer, A.L.; Hirsch, P.M.; Jordan, J.A.; Lesem, L.B.; Van Rooy, D.L. Reconstruction of tultrasonic images by backward propagation.
Proc. Acoust. Hologr. 1970, 3, 333–348. [CrossRef]

40. Schafer, M.E.; Lewin, P.A. Transducer characterization using the angular spectrum method. J. Acoust. Soc. Am. 1989, 85, 2202–2214.
[CrossRef]

41. de Belleval, J.F.; Messaoud-Nacer, N. Ultrasonic transducer beams model, using transient angular spectrum. Rev. Prog. Quant.
Nondestruct. Eval. 1999, 18, 1101–1106. [CrossRef]

42. Peng, H.; Lu, J.; Han, X. High frame rate ultrasonic imaging system based on the angular spectrum principle. Ultrasonics 2006,
44, e97–e99. [CrossRef]

43. Yan, X.; Hamilton, M.F. Angular spectrum decomposition analysis of second harmonic ultrasound propagation and its relation to
tissue harmonic imaging. In Ultrasonic and Advanced Methods for Nondestructive Testing and Material Characterization; e-Journal of
Nondestructive Testing (NDT); World Scientific Publishing: Singapore, 2007; pp. 155–168; ISSN 1435-4934. [CrossRef]

44. Aanes, M.; Lohne, K.D.; Lunde, P.; Vestrheim, M. Ultrasonic beam transmission through a water-immersed plate at oblique
incidence using a piezoelectric source transducer. Finite element-angular spectrum modeling and measurements. In Proceedings
of the 2012 IEEE International Ultrasonics Symposium, Dresden, Germany, 7–10 October 2012; pp. 1972–1977. [CrossRef]

45. Liu, D.L.; Waag, R.C. Propagation and backpropagation for ultrasonic wavefront design. IEEE Trans. Ultrason. Ferroelectr. Freq.
Control 1997, 44, 1–13. [CrossRef]

46. Matsushima, K. Introduction to Computer Holography; Springer: Cham, Switzerland, 2020. [CrossRef]
47. Schmelt, A.; Twiefel, J. Flaw Detection on a Tilted Particleboard by Use of the Spec-Radiation Method. Appl. Sci. 2020, 10, 8513.

[CrossRef]
48. Goodman, J.W. Introduction to Fourier Optics; W. H. Freeman and Company: New York, NY, USA, 2017.
49. Brekhovskikh, L.M.; Godin, O.A. Acoustics of Layered Media I; Springer: Heidelberg, Germany, 2020. [CrossRef]
50. Möser, M. Analyse und Synthese Akustischer Spektren; Springer: Berlin/Heidelberg, Germany, 1988.

166



applied  
sciences

Article

Simulation of Fluid Dynamics Monitoring Using
Ultrasonic Measurements

Masaru Nagaso 1, Joseph Moysan 1,*, Christian Lhuillier 2 and Jean-Philippe Jeannot 2

Citation: Nagaso, M.; Moysan, J.;

Lhuillier, C.; Jeannot, J.-P. Simulation

of Fluid Dynamics Monitoring Using

Ultrasonic Measurements. Appl. Sci.

2021, 11, 7065. https://doi.org/

10.3390/app11157065

Academic Editors: Habil. Michel

Darmon and Marco Scalerandi

Received: 15 June 2021

Accepted: 24 July 2021

Published: 30 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Aix Marseille Univ, CNRS, Centrale Marseille, LMA UMR 7031, 13453 Marseille, France;
nagaso@lma.cnrs-mrs.fr

2 CEA/DES/IRESNE/DTN/STCP/LISM, 13108 St Paul lez Durance, France; christian.lhuillier@cea.fr (C.L.);
jean-philippe.jeannot@cea.fr (J.-P.J.)

* Correspondence: joseph.moysan@univ-amu.fr

Featured Application: Monitoring of liquid metal flows by ultrasounds.

Abstract: The simulation of the propagation of ultrasonic waves in a moving fluid will improve the
efficiency of the ultrasonic flow monitoring and that of the in-service monitoring for various reactors
in several industries. The most recent simulations are mostly limited to 3D representations of the
insonified volume but without really considering the temporal aspect of the flow. The advent of high-
performance computing (HPC) now makes it possible to propose the first 4D simulations, with the
representation of the inspected medium evolving over time. This work is based on a highly accurate
double simulation. A first computational fluid dynamics (CFD) simulation, performed in previous
work, described the fluid medium resulting from the mixing of hot jets in a cold opaque fluid. There
have been many sensor developments over the years in this domain, as ultrasounds are the only
method able to give information in an opaque medium. The correct design of these sensors, as well
as the precise and confident analysis of their measurements, will progress with the development of
the modeling of wave propagation in such a medium. An important parameter to consider is the
flow temperature description, as a temperature gradient in the medium deflects the wave path and
may sometimes cause its division. We develop a 4D wave propagation simulation in a very realistic,
temporally fluctuating medium. A high-performance simulation is proposed in this work to include
an ultrasonic source within the medium and to calculate the wave propagation between a transmitter
and a receiver. The analysis of the wave variations shows that this through-transmission setup can
track the jet mixing time variations. The steps needed to achieve these results are described using the
spectral-element-based numerical tool SPECFEM3D. It is shown that the low-frequency fluctuation
of the liquid metal flow can be observed using ultrasonic measurements.

Keywords: ultrasounds; fluid dynamics; liquid metal; monitoring; nondestructive testing; high-
performance computing

1. Introduction

Flow monitoring is of importance for many applications involving various liquids
and gases. There exist some methods to characterize flows using global measurements
effective in many industrial situations [1]. Many technologies use pressure variations to
deduce flow rate. When the fluid has conductive properties, other technologies use elec-
tromagnetic measurements. In many cases, a precise analysis of the velocity distribution
in the flow is required. When optical paths are possible, a classical solution consists of
making Doppler measurements with particles floating in the fluid. Major developments
in three-dimensional velocity field measurements using the tomographic particle image
velocimetry (PIV) technique have taken place in past years [2]. When the flow is opaque
or when it cannot be optically observed directly, then ultrasonic solutions are often im-
plemented. In the case of liquid metals, the floating particles may be impurities (such as
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metallic inclusions or oxide films), and ultrasonic measurements are also used to analyze
the purity of liquid metal [3,4]. There are also studies in magnetohydrodynamics (MHDs)
where flows, in metallic melts, can be driven by magnetic fields. The study of turbulent
melt flows requires 2D flow mapping at a frame rate of several hertz. Thieme et al. de-
veloped an ultrasound array doppler velocimeter (UADV) using linear arrays of large
piezoelectric elements. They demonstrated they can detect the transition from laminar
flow to turbulent flow [5]. In such media, simultaneously monitoring temperatures in
the flow and the fluid dynamics presents the most difficulties. Zürner et al. proposed
to combine multiple crossing ultrasound beam lines and an array of thermocouples to
realize a 3D characterization of the complex dynamics in a cylindrical convection cell
that is filled with the liquid metal alloy GaInSn [6]. This method makes it possible to
study complex fluid dynamics (Rayleigh–Bénard convection) to understand the transport
processes in several turbulent convection flows such as the geodynamo in the core of the
earth [7] or liquid metal batteries for renewable energy storage [8]. There is also a great
interest in liquid metal plasma-facing components (LM-PFCs) within the framework of
research aiming at developing the next generation of fusion reactors. They are expected to
enhance plasma confinement and withstand large heat and particle fluxes better than solid
components [9,10].

In this work, we are mainly concerned with fast-breeder reactors for which a liquid
metal alloy is used as a coolant fluid. A number of countries, including Japan, India,
Lithuania/Belgium, France, the United States of America and Germany have sought to
develop ultrasonic ranging or imaging devices for liquid-metal-cooled fast reactors [11].
In his report, Griffin provided an extensive review of these devices. These systems are
designed to inspect the reactor core region for the presence of foreign objects prior to
refueling and to detect possible component degradation or damage due to normal operation.
Along with imaging, there are wide-ranging investigations on the use of acoustic or
ultrasonic sensors for liquid-metal-cooled reactors that include active or passive inspections
using acoustic emission and boiling detection methods [11]. In her review of ultrasonic
viewing systems for liquid metal reactors published in 2007, Jasiuniene explained there are
no other physical means but ultrasound that would make it possible to inspect inner reactor
parts submerged in an opaque hot liquid metal [12]. The harsh operating conditions in
liquid metal significantly restrict the possible architecture of the visualization system and
materials. In their review, Tarpara and al. developed solutions for undersodium ultrasonic
viewing for fast-breeder reactors [13]. A major difficulty is obtaining a good wetting of the
transducer to avoid the trapping of gas bubbles, which reduce transmitted energy [14,15].
To improve ultrasonic systems, various designs have been studied using waveguides [16],
arrays of transducers [17], arrays of electromagnetic acoustic transducers (EMATs) [18] or
dedicated acoustic mirrors [19].

In addition to the development of efficient sensors, the future of inspection requires
an increasing knowledge of wave propagation in such media. The flow above a reactor
core is turbulent, with local speeds of several meters per second and velocity gradients
of about several meters per second per centimeter [20]. Therefore, the flow profile and
the fluid turbulence create uncertainties in transit-time measurements for flowmeters [21].
In the case of acoustic thermometry, this could lead to errors in the measurement of
the temperature. The development of all these applications requires modeling efforts to
propose more accurate measurements or new applications. Nondestructive examinations
are usually planned when the flow is steady, but it is also interesting to develop in-service
inspections. In such cases, the liquid metal flow is no longer steady, the flow regime
becomes turbulent and temperature gradients occur. Ultrasonic devices could provide
reactor monitoring and structural health monitoring functions, but signal analysis should
take into account wave propagation in a heterogeneous flow. Modeling wave propagation
should include an accurate flow model. In their work, Massacret and al. [20] investigated
the importance of temperature gradients using a ray-tracing code. They demonstrated that
the beam deviates under the effect of the temperature gradient and may even split when
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the ultrasonic wave travels through several areas with different thermal gradients [22].
For a steady fluid, temperature heterogeneity could be described using stochastic methods,
which randomly generate a fluctuating temperature field using a Gaussian random process.
This method has the great advantage of proposing a simplified model and of not requiring
huge computer resources, but it does not model the real flow well [23]. The signals used
for monitoring often include backward echoes from geometrical parts. The influence of
the edges has been discussed in several studies, including a comparison of diffraction
theories [32] and a comparison with experiments [24].

In this work, a qualitative modeling leap is sought, which must include precise
modeling of the fluid dynamics and 4D modeling of the acoustic wave propagation so
that time is included in the acoustic simulation. The use of high-performance computing
(HPC) is mandatory for such a project. For the flow modeling, we selected the PLAJEST
setup, with the mixing of two hot jets with a cold one in a liquid metal medium [25]. This
setup was completely simulated using computational fluid dynamics tools [26,27]. Thanks
to these CFD data provided by the DES/IRESNE/DM2S/STMF laboratory of the French
Alternative Energies and Atomic Energy Commission (CEA), we can develop a 4D wave
propagation simulation in a very realistic, temporally fluctuating medium, which is the
original objective described in this work.

For the ultrasonic wave simulation, we used the spectral-element numerical tool
SPECFEM3D [28]. In the second section, we present the numerical models for the wave
equation, and we indicate our motivations for choosing the SPECFEM3D code. In Section
2, the CFD data used to reproduce the PLAJEST experiment are detailed, and the frozen-
flow hypothesis is justified. The fourth section describes a huge task of implementing
the modeling of the wave propagation in a heterogeneous medium resulting from the
CFD modeling. It is a very new collaborative work combining CFD simulation and wave
propagation simulation. In the last section, we demonstrate that the temporal temperature
fluctuations could be monitored by ultrasounds. The study is focused on the measurement
of the frequency of these fluctuations, as it would prove the potential of such complete
modeling for giving a 3D description of a heterogeneous flow and for monitoring it in time,
thereby adding a fourth dimension to the simulation.

2. Numerical Models for Wave Equation

There are several ways to calculate wave propagation. For example, the ray-based
method—or ray-tracing method—is one that requires a much smaller amount of computa-
tional resources than other full-wave-based methods. We therefore applied this method
in our former studies [29–32]. Initially, this method considered only the deflection from
Snell’s law; however, nowadays, with the so-called “fat rays” or “pencils” technique, it
may perform ray tracing in inhomogeneous and anisotropic media [33]. However, it is a
trade-off relation between the lightness of numerical resources that the ray-based method
requires and its accuracy, because the accuracy is degraded by the high-frequency or
infinite-frequency approximation that the ray-based method applies [34].

The finite-difference time-domain method (FDTD) is a type of full-wave method [35].
In a finite-difference scheme, the spatial domain is discretized as grid points, which are
usually evenly spaced, and all physical properties are defined at these fixed grid points
or halfway between these grid points. These schemes correspond to spatially staggered
schemes. This becomes a restriction on the placement of physical values and the use of
symmetric differentiation operators, which require fictitious grid points located beyond
the boundary. This causes difficulties for the accurate expressions of material boundaries
and of boundary conditions, especially if the shape has a complex geometry. Several
studies have been conducted on the FDTD methods for various media that include curved
boundaries [36–39], which used an interpolation method based on the distance between a
discretized point and a potentially curved boundary. Unfortunately, they are only partially
satisfactory in terms of accuracy and also make FDTD techniques more complex, thus
partially losing one of their main advantages, which is their simplicity.
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The finite element time-domain method (FETD) is also a full-wave method that
applies the finite element method to spatial decomposition. This method may easily
define a complex geometry in the target computation domain thanks to the matured
utility tools of computer-aided engineering (CAE). In addition, a curved boundary may be
included when using a second-order finite element [40,41]. Compared with the ray-based
method and FDTD, FETD requires larger computation resources, which is usually limiting
when calculating the propagation of a wave in a large domain and with a high-frequency
source wave.

The spectral-element method (SEM) [42–44] is a technique that is similar to FETD
but reduces the limitation of FETD. The main difference is the type of basis function used
for each method. While FETD uses Gauss points for its spatial discretization, SEM uses
higher-order Gauss–Lobatto–Legendre points. SEM uses a modified formulation that leads
to a perfectly diagonal mass matrix [45], and thus it is much more numerically efficient
than FETD.

We therefore selected SEM as the numerical method to model wave propagation in
our target, i.e., liquid sodium flow. We selected a numerical code SPECFEM3D, one of
the most efficiently implemented SEMs for solving wave propagation in many types of
material (elastic, viscoelastic, poroelastic, etc.). SPECFEM3D has already been applied for
many cases and used with several HPC environments, e.g., [46–48].

As we planned to use the frozen-flow hypothesis, i.e., the temperature and density
values are temporally constant while the wave propagates in the calculation domain,
we started from an acoustic wave propagation equation in a static and heterogeneous
medium [49]:

∇2 p − 1
c2

∂2 p
∂t2 = 0. (1)

where ∇ is the Del or nabla operator, t is time, p is pressure and c is sound speed. Instead
of solving this equation directly, SPECFEM3D solves an equation with a second-order time
derivative of scalar potential χ:

p = −χ̈. (2)

The advantage of this implementation is that it automatically suppresses numerical
artifacts that are known for appearing in the displacement formulation [50]. By combining
Equations (2) and (1) and using the acoustic bulk modulus λ = ρc2 with a density ρ:

1
λ

χ̈ =
1
ρ
∇ · ∇χ, (3)

which is the acoustic wave equation that SPECFEM3D actually solves.
Rather than solving wave Equation (3) directly, the “weak form” equation is solved.

It is derived from Equation (3) by multiplying a test function ω, integrating by parts and
using Green’s first identity:

−
∫

Ω

1
ρ
∇χ · ∇ωdΩ +

∫
Γ
(∇χ · n)ωdΓ =

∫
Ω

1
λ

χ̈ωdΩ, (4)

where Γ is the boundary of the domain Ω, and n is an outward normal vector unit along Γ.
In SPECFEM3D, this weak formulation is solved in a discretized form with the contin-

uous Galerkin method. For a further explanation of the discretization, refer to [45,51].
This type of Gaussian integral is well known in the context of finite elements, but in-

stead, SEM uses a generalized Gaussian integration, the so-called Gauss–Lobatto–Legendre
integration, which has the supplemental collocation points at both ends of the discretization
interval. Detailed explanations of such Gauss-type polynomials can be found in [52,53].
Functions on a given spectral element are approximated using the Lagrange polynomial
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with Gauss–Lobatto–Legendre (GLL) points. Figure 1 shows an example of a 2D first-order
finite element and a fourth-order spectral element with a total of 25 GLL points.

Figure 1. An example of 2D first-order finite element (left) and a fourth-order spectral element
(right).

3. Fluid Dynamics Modeling in PLAJEST Experiment and Frozen-Flow Hypothesis

A large benchmark exercise was performed under the auspices of an international
collaboration on thermal hydraulics for sodium-cooled fast-reactor development with par-
ticipation from the Japan Atomic Energy Agency (JAEA), the U.S. Department of Energy
(DOE) and the French Commissariat à l’Énergie Atomique et aux Énergies Alternatives
(CEA). It was based on experiments performed to study the effects of thermal striping,
where three differentially heated jets mix inside a cavity [25]. These experiments were
carried out either in water or in liquid sodium, and velocity and temperature data were
provided. The object of the benchmark was to numerically predict the results of these
experiments and make comparisons with available measured data. For the French part,
the numerical simulations were led using the TrioCFD simulation code (known as Trio_U
by 2015). The large eddy simulation (LES) model was applied for the analyses. A computa-
tional domain reproducing the test sections was created. The discretization of the equations
was based on unstructured staggered meshes and the resolution on a finite-volume ap-
proach. The numerical results were in good agreement with the experiments. Good results
were obtained for the time-averaged fields and the power spectral densities of temperature
fluctuations [27,54,55].

A schematic description of the three jets is drawn in the upper part of Figure 2. Three
jets are mixed, with a cold jet between two hot jets. The three jets have a mean flow speed of
0.51 m/s. Two CFD maps, separated by 1 ms, are represented in this figure. The insonified
area is represented, superimposed on the left map by a rectangular box. The box is centered
at Z = 0.09 m, which corresponds to the most turbulent area. Letters E and R, respectively,
represent the position of the virtual ultrasonic emitter and that of the virtual receiver. This
area is 230 mm long, and the total time for the wave to propagate along this distance is
less than 100 μs, a tenth of the time between the two CFD maps. The emitter and the
receiver correspond to a 1 MHz transducer with a diameter of 0.0254 m (i.e., 1 inch). A
complete study of wave propagation is realized, and pressure time-series data are recorded
on several planes in this volume, but not only in the plane of the virtual receiver (see
Figure 3 thereafter).
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Figure 2. Two maps from the PLAJEST CFD simulation and representation of the insonified volume.

Figure 3. Definition of recorded planes in the insonified area.

When considering how the temperature field modifies the wave propagation (Step 10
in Figure 4), it implies taking into account the temperature-dependent properties of liquid
sodium reported in [56]. Sobolev et al. demonstrated that the density of liquid sodium
varies linearly with the temperature. Within the temperature range between the normal
melting point and the normal boiling point, the density is calculated with :

ρ = 1014 − 0.235 · T (5)

at normal atmospheric pressure, where ρ is the density of sodium, and T is the sodium
temperature in Kelvin degrees. On the other hand, the sound velocity in liquid sodium
decreases monotonically with temperature, because of the decrease in the number of inter-
atomic interactions. In the normal melting–boiling point (371–1155 ◦K) range, the sound
velocity in pure liquid sodium may be described based on this linear relation:

cp = 2723 − 0.531 · T (6)

where cp is the celerity of ultrasonic waves in meters per second.
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Figure 4. Data processing steps for mesh generation and preparation of the heterogeneous medium.

In Figure 5, the difference between the two temperature maps is represented. The
maximum temperature difference is lower than 2 ◦K in 1 ms. Using a simple proportional
rule, it is then possible to consider that the maximum temperature difference during
wave propagation is about 0.2 ◦K. Considering the velocity relation with temperature in
(Equation (6)), it is estimated that there is a very little variation of the liquid metal velocity
and of the local temperature gradient. Furthermore, this little variation occurs in a very
small area in the jets. This leads to the conclusion that wave propagation is very similar
between the two time steps separated by 0.1 ms. Thanks to this complete CFD simulation,
the frozen-flow hypothesis is clearly confirmed in this study.

Figure 5. Temperature differences during 1 ms.

4. Implementation of Wave Propagation Modelling

This thermal–hydraulic data obtained from a calculation with the CFD code “TrioCFD”
was used to completely describe the medium in which ultrasounds propagate. The type of
finite element of the meshes used in the two codes TrioCFD and SPECFEM3D is not the
same, so we needed to perform preprocessing to import the result of CFD into our acoustic
simulation. Figure 4 shows the entire workflow of this process.

Tetrahedral elements with four nodes were used in the CFD calculation with TrioCFD.
The total number of elements was 5,582,706, and the characteristic mesh length was set to
1.40 mm. The first 200 s of their calculation were removed so as to obtain a good stabilization
of the flow state in this CFD calculation. Thus, this calculation eventually provided us with
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200 to 210 s of data of fluctuating flow status with a time step of 1 ms. The total number of
time steps was 10,000. In the result data, temperature field values are defined at the center
of each TrioCFD tetrahedral mesh element, and flow velocity values are defined on the
vertex nodes. These values were to be transferred to our hexahedral mesh for SPECFEM3D.
Interpolation onto each node of the SPECFEM3D hexahedral mesh was performed using
the simulation data management tool called MEDCoupling. MEDCoupling is part of the
pre-/postprocessing platform SALOME (https://www.salome-platform.org/downloads/
current-version) and is also available as a library.

In order to prepare a mesh for SPECFEM3D calculation, we firstly selected a partial
region for wave propagation simulation from the entire PLAJEST simulation model (Step 4
in Figure 4). This extraction of the domain was performed in order to eliminate acoustically
uninteresting parts from the PLAJEST geometry, and this enabled us to reduce the required
amount of computer memory, which is one of the limitations of wave simulations in large
3D models.

After selecting the domain, we built the first-/second-order hexahedral mesh for
SPECFEM3D using the meshing software CUBIT developed by Sandia National Laboratories
(USA) (Step 5).

The actual mesh type that SPECFEM3D uses is not a first- nor second-order hexahedral
mesh but a fourth-order spectral element. Thus, we then performed this conversion as the
final step of mesh preparation (Step 7). In order to speed up this conversion process, we
used the IOSS (IO Systems) library. This library is included in the finite element analysis
supporting software called SEACAS (Sandia National Laboratories).

After finishing the preparation of mesh data, the temperature field transfer was
carried out, i.e., interpolation of temperature values defined at the barycentre of each
tetrahedral finite element to corner nodes of the hexahedral spectral elements (Step 8)
using MEDCoupling. The MEDCoupling mesh-to-node transfer function does not support
HEXA27 (second-order hexahedral finite elements); consequently, if the interpolation target
mesh is of the HEXA27 type, we first split HEXA27 into eight parts of the HEXA8 type (first-
order hexahedral finite elements) and then use the MEDCoupling interpolation function
for those HEXA8 elements.

Then, SPECFEM3D performed the interpolation of these values onto each Gauss–
Lobatto–Legendre point in Step 9.

The flow velocity data were not used for our simulation, as the temperature gradient
has a greater influence on the wave path than the velocity vector field [22].

To determine the element size for the mesh, we used the two conditions: the Courant–
Friedrich–Lewy condition (CFL), described in Equation (7) , and the number of elements
per wavelength:

Cp
Δt

Δxgll
≤ α , (7)

where Δt is the time step, and Δxgll is the minimum interval between two GLL grid points.
An averaged Courant number α = 0.4 was selected. and the wave celerity was defined as the
highest one Cp = 2416.268 m s−1. This celerity was calculated with the lowest temperature
value 274.5 °C in the CFD simulation. In Equation (7), Δxgll is not the mesh size itself;
rather, it is the distance interval between GLL grid points within the spectral elements. This
led us to calculate a mesh size Δx = 8.05 × 10−4 m and a time step of 2.3 × 10−8 s. A total
of 5.000 steps were simulated in order to have a sufficient total physical duration for the
waves to travel through the entire simulation domain. The meshing used in the simulation
thus comprises 3,250,000 spectral elements and a total number of GLL nodes of 215,320,764.
This time step corresponds to a 43.5 MHz sampling frequency, which corresponds to a fine
sampling for the ultrasonic simulated signal.

Figure 6 represents some examples of the preprocesses of temperature field transfer
and mesh generation for SPECEFM3D. The temperature field in the tetrahedral elements of
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TrioCFD is indicated with transparent color on the interpolated field of the hexahedral mesh
for SPECFEM3D. The image on the left side is a close-up on one of these three examples.

Figure 6. Examples of some interpolations of temperature fields from a tetrahedral mesh to a
hexahedral mesh using the MEDCoupling pre-/postprocessing library.

5. Temporal Temperature Fluctuation Measurement by Ultrasounds

The analysis of the temperature fluctuation was performed over a total duration of
approximately 10 s, from 200.000 s to 210.197 s. Because the computation time allocated on
the supercomputers that we used was limited, it was not possible to run the temperature
field interpolation and wave propagation calculation processes for all of these CFD time
steps. Instead, we had to extract several time steps from the temperature field with a wider
time interval from the CFD results. In order to select the minimum time interval to be
used for our acoustic simulation, we exploited the power spectral density (PSD) curve
calculated in Figure 7 [27]. This curve allows knowing the frequency of the temperature
fluctuation at x = −0.015 m (between the left and the central jets), y = 0.09 m (middle point
on the y axis) and z = 0.1 m. This is a normalized PSD calculated by dividing the original
PSD with the maximum PSD value. The peak of this PSD curve is found around 3 Hz and
is in accordance with experimental results, as mentioned by Angeli in [27]. This peak is
lower than 5 Hz. This peak is followed by a slope (Kolmogorov slope).
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Figure 7. Normalized PSD curves of temperature history in the CFD calculation (blue line) at
x = −0.015 m, y = 0.09 m and z = 0.1 m (from STMF laboratory).

In this work, all our simulations were performed on two of the largest supercomputers
in Europe: CURIE (CEA TGCC) and OCCIGEN (CINES), both part of Grand Équipement
National de Calcul Intensif (GENCI). Despite the use of these supercomputers, we knew
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that it would be difficult to perform calculations with a fine temporal step. In order
to be able to follow the fluid dynamics, we wanted to confirm fluid fluctuations at a
3 Hz frequency as seen in PSD curves. We fixed the frequency limit to 5 Hz, then the
Shannon sampling criterion imposed us to use a minimum sampling frequency of 10 Hz).
Temperature fields were thus extracted from the complete volume with a 0.1 s interval.

The computation domain was divided into 256 parts, and parallel calculations were
carried out. The duration of the interpolation of a temperature field from a TrioCFD result
to SPECFEM3D was approximately 20 h using a single CPU at one chosen altitude and
one time step (the insonified area represented in Figure 2). The average duration for an
acoustic simulation was about 26 min, excluding the mesh generation and the interpolation
processes of the temperature fields, which were performed once and for all. Complete
results, signals at each point in the volume, cannot be fully stored on a physical disc because
of the high number of calculations. Thus the data resulting from SPECFEM3D calculations
were recorded for several planes, as described in Figure 3.

To analyze temporal temperature fluctuations within our heterogeneous medium
and then to make the correlation with ultrasonic data, a PSD curve was calculated at
three different points. These three points have the same y and z position (y = 0.09 m
and z = 0.1 m) and a different x position (x = −0.035 m, 0.0 m and 0.035 m). The position
y = 0.09 m corresponds to the middle of the jets along the y axis, and z = 0.1 m corresponds
to an altitude with high turbulence. x = 0.0 m is in the middle of the central jet. x = −0.035 m
and 0.035 m are two positions between the cold jet and the hot jet. These values are
imposed by the initial choice of recorded planes (Figure 3). In these positions, temperature
fluctuations are high but probably less than for positions x = −0.015 m and 0.015 m chosen
by Angeli et al. Figure 8A,B shows the temperature PSD curve of the original CFD results
(every millisecond) at three selected points and the same kind of curves but with only
extracted time steps (every 0.1 s), respectively.

Figure 8. Temperature PSD curves calculated from the CFD data at three different x positions (y =
0.09 m; z = 0.1 m), with two sampling rates.

Using the finer sampling, the peak of the experimental PSD curve is confirmed at 3 Hz
for each position. Using data with a coarser time step gives merely the same results for the
central point, as the peak frequency at 3 Hz is clearly visible. From these comparisons, we
thus verify that the peak frequency of the temperature fluctuation is possibly detected. In
the next step, the idea is to search for this flow indicator using ultrasonic measurements.
The ultrasonic parameters which are selected are the maximum amplitude of the wave
at one point and the corresponding time of flight (TOF). Two examples are shown in
Figure 9. The two points have the same altitude: one point is close to the jet, and the second
one is after the three jets (from the emitter position). The position x = 0.035 m is close to
the jets, and the temperature behavior exhibits clear periodic fluctuation. The position
x = 0.105 m is far from the jets, and the temperature remains constant over the 10 s of the
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CFD simulation, so the corresponding PSD curve gives no frequency information. At the
position x = 0.035 m, among the two PSD calculated with ultrasonic parameters, only those
calculated with the time of flight exhibit a clear 3 Hz peak as for the temperature PSD.
At the position x = 0.105 m, the same observation is performed: the time-of-flight PSD
exhibits a clear 3 Hz peak as for the temperature PSD. This result is very interesting, as it
demonstrates that the history of temperature fluctuations is transported by the ultrasonic
wave and a receiver positioned after the jets is able to analyze the temperature fluctuation.

The idea is further deepened using measurements of time-of-flight PSDs at various
positions along the x-axis. These curves are compared with PSD curves calculated on CFD
data. The resulting curves are presented in Figure 10.

The calculation of the PSDs with the low sampling CFD data (sampling frequency
of 10 Hz) shows that only the PSDs on the positions x = −0.035 m and 0.035 m exhibit
a frequency peak at 3 Hz. On the other hand, as expected, following the hypothesis of
the transport of the fluctuation information by the ultrasonic wave, for positions beyond
x = −0.035 m, all the time-of-flight PSDs contain this information. We also cumulated
(added) all the PSDs calculated at the different points, the PSD curve being defined as a
cumulated temperature PSD curve in Figure 10. The 3 Hz peak emerges clearly with a
secondary peak at 1 Hz. The comparison with the PSD of the TOF at x = 0.105 m shows
that the ultrasonic measurement clearly indicates this peak but does not find the secondary
peak. There is therefore a limit in the sensitivity of the detection of these fluctuations by
an ultrasonic measurement technique, but simulations and results demonstrate that a pair
of transducers positioned in a through-transmission setup would allow the temperature
fluctuation frequency to be registered.

Figure 9. History and PSD analysis for temperature, time of flight and wave amplitude.
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Figure 10. Temperature PSD vs. time-of-flight PSD.

6. Conclusions

We designed an extensive physical and numerical simulation strategy to study the
potential of ultrasonic measurements to monitor turbulent flow. The study was focused on
liquid metal flows for which ultrasonic measurements are the best candidate to monitor
flows. In the case of sodium flow monitoring inside SFR nuclear reactors, it is planned
that transducers will be positioned in the flows. There are not many experiments being
conducted on liquid sodium flows, as they are still very difficult to perform, and there are
not many SFR nuclear reactors in operation worldwide.

One of the main difficulties, when trying to assess measurement performance with-
out using real experiments, lies in simulating ultrasonic propagation in a representative
flow. Our simulation strategy consisted of selecting a high-level CFD simulation of a real
experiment of liquid metal jet mixing. We also drew on previous studies concerning ultra-
sonic wave propagation in liquid sodium to define all physical parameters for the wave
simulation. The novelty of this study consisted in making a wave propagation simulation
for several CFD time steps to validate the potential of ultrasonic measurements to follow
flow fluctuations. Our analysis of flow fluctuation enabled us to prove that the frozen-
flow hypothesis was completely valid in this study. It should be underlined that such a
hypothesis is rarely numerically studied. The study required the development of dedicated
tools to implement the wave propagation modeling on high-performance computers. The
SPECFEM3D code was chosen as the numerical calculation tool for its numerical efficiency
because of matured development for massively parallelized computing on HPCs and the
application of the spectral-element method.

Despite significant computer resources, we had to limit the maximum frequency
observed to 5 Hz in order to be able to complete the study. This limit was enough to
demonstrate that the main flow fluctuation frequency of 3 Hz can be monitored using a
pair of transducers in a through-transmission setup. This demonstration opens the way
for developing more simulations combining CFD simulations and wave propagation for
several time steps so that better ways to monitor fluctuating flows could be developed.
One limitation of these studies is the huge volume of data to be stored to study wave
propagation in detail. This volume could be drastically reduced when transducer positions
are not a parameter of investigation. The advantage of a pair of transducers is that it makes
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it possible to monitor flow between the two transducers. The wave propagates from the
emitter in the flow and, to some extent, transfers the flow history to the receiver.

In this study, the flow history is the fluctuation of the flow temperature. This study
proves that it is now possible to conduct simulations of wave propagation in a more realistic
flow geometry. There is of course still a step to be taken to be able to conduct simulations
in large and long flows.
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Abstract: The classical problem of reflection of Lamb waves from a free edge perpendicular to the
centre line of an elastodynamic plate is studied. It is known that Lamb wave expansions for the
displacement and stress fields poorly represent the irregular behaviour near corners, leading to the
slow convergence of a series of such waves. The form of the irregularity for an elastodynamic corner
is derived asymptotically, and a new solution method, which incorporates this corner behaviour
analytically, is then implemented. Results are presented showing that this new approach represents
the near-field and far-field behaviour very accurately, requiring very modest numbers of Lamb wave
and corner modes. Further, it is revealed that the method can recover the trapped-mode phenomenon
encountered in this configuration at the Lamé frequency and a specific Poisson’s ratio that we find to
be approximately 0.224798.

Keywords: elasticity; plates; Lamb waves; corner behaviour; trapped-mode

1. Introduction

We are interested in the use of guided wave techniques in non-destructive testing,
applied specifically to the problem of hidden tamper detection in an arms control context.
In arms control it is essential to ensure that all parties are in compliance with the terms
of a treaty. A problem arising from this necessity is tamper detection [1]. The competent
authorities wish to ensure that items of interest cannot be accessed for long periods of time
and to this end they are sealed in freight-like containers. However, with sufficient time
and effort any container can be breached, hence we will focus on the problem of making
these containers ‘tamper indicating’. This means that if a container is breached, it should
be impossible to hide the evidence of this from a verification process, even if the breach has
been deliberately concealed. Such a deliberately concealed breach is known as a ‘hidden
tamper’.

We wish to apply a well known, non-destructive testing method to tamper detection,
i.e., that of guided elastic waves. This has been motivated by experimental evidence [2] that
tampers can be detected easily, even by non-specialist technicians, by scanning for mode
conversion of elastic waves. Refraction and reflection of the guided wave, or excitation
of additional modes, may occur due to welds [3], cracks [4], or other inhomogenous
imperfections at the boundary of the tamper; however, we are mainly interested in mode
conversion due to asymmetry introduced by the tamper itself.

In elastic plates, there are two types of modes that propagate, symmetric and anti-
symmetric, and these modes travel at different speeds. For a plate of given thickness and
material properties, the number of cut on (i.e., propagating) symmetric and antisymmetric
modes depends on the frequency, with the lowest antisymmetric mode, A0, moving more
slowly than its symmetric counterpart, S0. When elastic waves are initially generated from
a known source location, the region where the slower modes are present at any given time
is bounded. Any slower modes found outside this region must therefore be caused by
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mode conversion from the faster waves interacting with a hidden tamper. Due to the sym-
metric and antisymmetric nature of the two types of modes, converting between the two
requires some asymmetry around the mid-plane of the plate. An example of how a tamper
could introduce asymmetry is as follows: a section of the container could be removed to
gain internal access, and later replaced by a plate of slightly greater thickness; it could
then be polished flat on the outside wall to hide it from detection. However, it cannot be
polished on the inside wall as the container is sealed, hence there will exist an indentation
or protrusion on the inaccessible inner side; this feature is asymmetric and induces mode
conversion. A schematic diagram of such a hidden tamper is given in Figure 1, which
shows that the tamper is asymmetric about the mid-plane.

Figure 1. An exaggerated diagram showing a ‘hidden tamper’. The tamper is not symmetrically
placed about the mid-plane and will therefore induce mode conversion between the two types of
guided elastic waves.

It has been shown [5] that the stress field near traction-free elastic corners with an
internal angle greater than π are locally singular; in Figure 1, two such corners are present.
This leads us to believe that the corners could have a large effect on the solution of the
problem and their asymmetric positioning about the mid-plane implies that this effect
will include mode conversion. The local stress fields near a traction-free corner of internal
angle less than π are not singular, but are irregular. This means that they are bounded in
the vicinity of the corner, but behave locally as a non-integer power of the distance from
the corner. For sufficiently low frequencies, the wavelengths of the propagating modes
are much longer than the corner lengthscales, therefore the local behaviour around the
corner is unimportant away from it; however, even in such low-frequency regimes, the
behaviour near sharp corners strongly affects the accuracy of methods for determining the
global solution [6]; we shall see that this is true even for irregular, but non-singular, corner
behaviour.

In this article, as a first step towards the tamper model, and as a useful way to
demonstrate the novel solution method, we examine a simpler problem that incorporates
corner behaviour. We will consider the reflection of an incoming time-harmonic, symmetric
wave in a semi-infinite elastic waveguide, as shown in Figure 2. In this problem we have
symmetry about the mid-plane and hence no asymmetric mode conversion; however, it
will allow us to study how sharp corners affect the reflection problem. The corners in
this problem each have an internal angle less than π, which means that the stress field
around them is bounded. This problem may be solved by traditional methods, such as
spectral collocation [7], allowing us to generate solutions to compare against; hence, this
is a good test case to implement and validate our new method to deal with irregular
corner behaviour. In addition to this goal, this canonical problem is also associated with
the important question of the existence of a trapped mode, which in this case occurs at
the Lamé frequency and at a particular value of Poisson’s ratio, which we will discuss in
Section 3.2 [7–9].
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Figure 2. A simple canonical problem, containing two corners with locally irregular behaviour, at the
points of intersection of the traction-free surfaces. A propagating symmetric Lamb wave is incoming
from the right, and we wish to determine the resulting scattered field. The method we introduce will
also work for an incoming asymmetric Lamb wave.

We wish to find the solution to this problem in terms of the in-plane natural modes of
elastic waveguides, as these are the waves that are of experimental interest. These were first
studied by Lamb over one hundred years ago [10] and are still an active area of research due
to their very wide range of applications in areas such as nondestructive testing, seismology,
and vibration control. The two sets of modes (in this article, we may ignore the third set of
modes, the out-of-plane polarized shear waves, which are decoupled from the other two
in the problem of interest) are the faster symmetric and the slower anti-symmetric modes,
the wavenumbers of which satify different dispersion relations. Finding the roots of these
relations is non-trivial, but methods relying on finite-product formulae [11], asympototic
analysis, or projection onto Chebyshev polynomials [7] can be used efficiently to this
end. The solutions to each dispersion relation consist of a single propagating mode that
always exists (the A0 or S0 mode), a finite number of higher propagating modes that cut on
depending on frequency, and an infinite number of evanescent modes.

It has been known for some time [6,12] that the solution to the present canonical
problem in terms of a modal expansion of Lamb waves is slowly convergent near the free
end, and poorly represents the behaviour of the field near the corners. This is essentially
due to the Gibbs phenomenon. There are a variety of numerical treatments that can be
applied in this and other waveguide problems to aid convergence, including the Lanczos
σ-approximation (see, e.g., [13,14]).

Note that difficulties arising from geometric singularities in waveguides when using a
naive modal expansion do not only occur in the elastodynamic case considered presently. In
fact, the corner mode expansion method presented in this paper was first conceived in the
context of easier, scalar, acoustic problems [15]. Moreover, other authors have considered
such problems in, for instance, acoustic waves [16,17], water waves [18,19], horizontal shear
waves [20], and electromagnetic waves [21,22]. Most of these methods take an ingenious
numerical approach relying on the use of an expansion in terms of a carefully chosen family
of orthogonal polynomials (Chebyshev, Gegenbauer, Jacobi, etc.), which can effectively be
used to tackle certain corner singularities and ‘fix’ the naive modal expansions.

In the present work, rather than trying (in vain) to find known special functions with
the required singular behaviour, we let them emerge naturally from the physical problem,
giving rise to what we call the corner modes. This method has the advantage of not
requiring an a priori knowledge of the singularities at hand and can accommodate rather
complicated singular behaviours.

As hinted above, the aim of this paper is to apply a new approach tailored to the
specific physical nature of the irregularity. We will introduce new modes that accurately
represent the irregular behaviour near the corners and add them to the Lamb wave terms,
which well represent the smooth part of the field elsewhere. This paper offers an application
of the new method in the context of elastodynamics, whilst contemporaneous applications
are presented in [15], for acoustic problems, and [23], for a model problem in elastostatics.
However, the present work also requires an interesting additional step. That is, it is
convenient for mathematical purposes to imagine that the plate shown in Figure 2 is infinite
in extent, and has specified traction boundary forcing on the top and bottom faces in x < 0
to ensure that the prescribed boundary conditions on x = 0, |y| ≤ 1/2 are satisfied (i.e.,
that the total normal and shear stresses on x = 0 are zero.) This geometry is illustrated
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in Figure 3, noting that the extension of the plate is a purely virtual construct; however,
from Green’s theorem, it can easily be shown that there will always exist forcing functions,
p(x), q(x), r(x), s(x) that ensure the correct boundary conditions on the actual plate edge,
x = 0.

Figure 3. The construction we use to implement corner modes. The shaded physical plate has traction
free conditions on top and bottom, but the condition on the face x = 0 will be applied later. The
dashed lines denote an extended ‘virtual’ plate where we are imposing tractions on the surfaces
which capture the correct local form of the stresses in the corners.

The remainder of this paper is organised as follows. In Section 2.1, we recast the
problem as an infinite plate, with (as yet unknown) boundary tractions on the faces of the
semi-infinite virtual extension of the plate. We then write the solution to this new problem
in Fourier space. In Section 2.2, we find an asymptotic representation of the new unknown
boundary conditions in terms of the behaviour associated with the corners. Next, we
summarise the known similarity solutions of the stress field associated with a static elastic
corner before going on to implement an asymptotic technique to recover the similarity
solutions for the stresses in an elastodynamic corner. In Section 2.3, we discuss how the
corner behaviour, as determined in Section 2.2, can be expressed as a sum of corner modes.
These new corner modes will enable us to write the field as an expansion of the form

Field = ∑ Lamb Modes + ∑ Corner Modes.

In this representation, the Lamb modes capture well the far field behaviour, which
is of interest experimentally, while the corner modes accurately describe the near field
behaviour, which is important when applying the edge boundary conditions to determine
the reflection coefficients. We then highlight the excellent convergence properties of such
an expansion in Section 3. We present some results obtained by including both corner
and Lamb modes, and illustrate the superiority of our method (compared to the pure
Lamb mode expansion) when it comes to the reconstruction of the stresses on the free
end of the plate and the prediction of the propagating waves reflection coefficients. We
conclude by showing that our new method can predict the trapped-mode appearing at
the Lamé frequency and find the specific value of the Poisson ratio at which it occurs as
approximately ν = 0.224798.

2. Materials and Methods

2.1. A Useful ‘Equivalent’ Problem: A Forced Infinite Elastic Plate
Virtual Plates

As mentioned above, we know from Green’s theorem that the problem shown in
Figure 3, with certain prescribed tractions s(x), p(x), q(x), and r(x), is equivalent, in x ≥ 0,
to the posed semi-infinite free-end model.

We have introduced this auxiliary problem because it has two useful properties that the
original problem does not possess. First, it easily admits solutions in terms of the unknown
tractions by way of Fourier transform, as we will demonstrate. Second, by approximating
the prescribed tractions, it will allow us to find a convenient way of inputting the desired
near-corner behaviour into a modal expansion.

The first step is to solve the equivalent problem in terms of the prescribed tractions.
We begin with the time-harmonic (angular frequency ω) potential forms of the Navier–
Lamé equations, and we non-dimensionalize spatial variables using the thickness of the

185



Appl. Sci. 2022, 12, 6468

plate, h, as a suitable lengthscale. The dimensionless potentials φ and ψ are related to the
dimensionless displacement in the x-direction, u, and in the y-direction, v, by

u =
∂φ

∂x
+

∂ψ

∂y
, (1)

v =
∂φ

∂y
− ∂ψ

∂x
. (2)

the dimensionless potentials are governed by the Helmholtz equations

(∇2 + k2
l )φ = 0, (3)

(∇2 + k2
t )ψ = 0, (4)

where kl and kt are, respectively, the dimensionless free space longitudinal and transverse
wavenumbers for the material, given in terms of the plate density ρ and the Lamé constants
λ and μ, as kl = hk̃l = h

√
ρω2/(λ + 2μ) and kt = hk̃t = h

√
ρω2/μ. One of these

wavenumbers, along with Poisson’s ratio ν = λ/(2λ + 2μ), say, may be used to fully define
our elastic material for a given frequency and plate thickness. However, it is slightly more
convenient to introduce the constant K as the ratio of the transverse wavenumber to the
longitudinal wavenumber, so that K2 = k2

t /k2
l = (2 − 2ν)/(1 − 2ν). The stresses are then

related to the potentials in the usual way by

τxx =K2 ∂2φ

∂x2 + (K2 − 2)
∂2φ

∂y2 + 2
∂2ψ

∂x∂y
, (5)

τxy =2
∂2φ

∂x∂y
+

∂2ψ

∂y2 − ∂2ψ

∂x2 , (6)

τyy =(K2 − 2)
∂2φ

∂x2 + K2 ∂2φ

∂y2 − 2
∂2ψ

∂x∂y
. (7)

We seek solutions to the boundary value problem shown in Figure 3 by use of a Fourier
transform defined by

F(α) =
∫ ∞

−∞
f (x)e−iαxdx, (8)

where α is the spectral variable. The Fourier transformed Helmholtz equations are given by(
∂2

∂y2 + (k2
l − α2)

)
Φ = 0, (9)(

∂2

∂y2 + (k2
t − α2)

)
Ψ = 0, (10)

where the capital letters Φ and Ψ are the Fourier transforms of φ and ψ, respectively. The
general solutions to these equations are given by

Φ(α, y) = A cos(βly) + B sin(βly), (11)

Ψ(α, y) = C cos(βty) + D sin(βty), (12)

where we have defined

β2
l = (k2

l − α2), (13)

β2
t = (k2

t − α2). (14)
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the stresses in Fourier space are denoted by T, and are given by

Txx(α, y) = −α2K2Φ + (K2 − 2)
∂2Φ
∂y2 + 2iα

∂Ψ
∂y

, (15a)

Txy(α, y) = 2iα
∂Φ
∂y

+
∂2Ψ
∂y2 + α2Ψ, (15b)

Tyy(α, y) = −α2(K2 − 2)Φ + K2 ∂2Φ
∂y2 − 2iα

∂Ψ
∂y

. (15c)

the Fourier transformed boundary conditions are Tyy(α, 1/2) = P+(α), Txy(α, 1/2) =
S+(α), Tyy(α,−1/2) = R+(α), and Txy(α,−1/2) = Q+(α), where

Txy(α, 1/2) = S+(α) =
∫ 0

−∞
s(x)e−iαxdx, (16)

etc., and the superscript ‘+’ (‘−’) notation denotes a ‘plus’ (’minus’) function, that is, a
function that is analytic in the upper (lower) half of the complex α-plane. Note that, from
the theory of half-range Fourier transforms [24], we know that such well-behaved functions
are analytic in the upper or lower half space of the α-plane.

We may use the symmetry of the general solutions to simplify the boundary con-
ditions. Using the linear combination of boundary conditions given by Txy(α, 1/2) −
Txy(α,−1/2) = S+(α) − Q+(α) and Tyy(α, 1/2) + Tyy(α,−1/2) = P+(α) + R+(α), we
find that the unknown coefficients A and D can be found by solving a system decoupled
from the system governing B and C. The solutions for A and D are known as the symmetric
part and must satisfy the linear system given by⎡⎣(α2 − β2

t ) cos
(

βl
2

)
−2iαβt cos

(
βt
2

)
−2iαβl sin

(
βl
2

)
(α2 − β2

t ) sin
(

βt
2

)⎤⎦⎡⎣A

D

⎤⎦ =
1
2

⎡⎣P+(α) + R+(α)

S+(α)− Q+(α)

⎤⎦. (17)

for the antisymmetric part, we use the combination of conditions given by Txy(α, 1/2) +
Txy(α,−1/2) = S+(α) + Q+(α) and Tyy(α, 1/2)− Tyy(α,−1/2) = P+(α)− R+(α). This
generates the linear system given by⎡⎣(α2 − β2

t ) sin
(

βl
2

)
2iαβt sin

(
βt
2

)
2iαβl cos

(
βl
2

)
(α2 − β2

t ) cos
(

βt
2

)⎤⎦⎡⎣B

C

⎤⎦ =
1
2

⎡⎣P+(α)− R+(α)

S+(α) + Q+(α)

⎤⎦. (18)

In linear theory, the symmetric and antisymmetric solutions do not interact at a sym-
metric boundary. Therefore, if we assume a symmetric incoming wave, the contributions
from the antisymmetric Lamb waves must be zero. This implies that Q+(α) = −S+(α) and
R+(α) = P+(α). Similarly for the antisymmetric case, the symmetric waves must be zero,
which requires Q+(α) = S+(α) and R+(α) = −P+(α).

We will present the method for symmetric waves here; the antisymmetric case follows
similarly. By taking the inverse of the first matrix in (17), we find that A and D are functions
of α given by

A(α) =
(α2 − β2

t ) sin
(

βt
2

)
P+(α) + 2αiβt cos

(
βt
2

)
S+(α)

Ds(α)
, (19)

D(α) =
2αiβl sin

(
βl
2

)
P+(α) + (α2 − β2

t ) cos
(

βl
2

)
S+(α)

Ds(α)
, (20)

where

Ds(α) = (α2 − β2
t )

2 cos
(

βl
2

)
sin
(

βt

2

)
+ 4α2βl βt cos

(
βt

2

)
sin
(

βl
2

)
(21)
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is the determinant of the matrix to be inverted in (17). The relation Ds(α) = 0 is known
as the dispersion relation for symmetric Lamb waves. We may now use the expressions
for A and D to find the transformed potentials and stresses. The symmetric part of the
transformed potentials are given by

Φ(α, y) =
(α2 − β2

t ) sin
(

βt
2

)
P+(α) + 2iαβt cos

(
βt
2

)
S+(α)

Ds(α)
cos(βly), (22)

Ψ(α, y) =
2iαβl sin

(
βl
2

)
P+(α) + (α2 − β2

t ) cos
(

βl
2

)
S+(α)

Ds(α)
sin(βty). (23)

From the potentials, we find the transformed stresses to be

Txx(α, y) =
F1(α, y)S+(α) + F2(α, y)P+(α)

Ds(α)
, (24)

Txy(α, y) =
G1(α, y)S+(α) + G2(α, y)P+(α)

Ds(α)
, (25)

where Ds, F1, F2, G1, and G2 are analytic functions given by (21),

F1(α, y) = 2iαβt

((
α2 − β2

t

)
cos
(

βl
2

)
cos(βty)− cos

(
βt

2

)(
K2α2 + (K2 − 2)β2

l

)
cos(βly)

)
, (26)

F2(α, y) = −
(

α2 − β2
t

)
sin
(

βt

2

)(
K2α2 + (K2 − 2)β2

l

)
cos(βly)− 4α2βl βt sin

(
βl
2

)
cos(βty), (27)

G1(α, y) =
(

α2 − β2
t

)2
cos
(

βl
2

)
sin(βty) + 4α2βl βt cos

(
βt

2

)
sin(βly) (28)

and

G2(α, y) =
(

α2 − β2
t

)(
2iαβl sin

(
βl
2

)
sin(βty)− 2iαβl sin

(
βt

2

)
sin(βly)

)
. (29)

The solution for the Potentials (22) and (23), or stresses (24) and (25), fully describes
the problem in terms of the Fourier transforms of the unknown functions s, p, q, and r.
Whilst we do not know these functions exactly, we can approximate them from knowledge
of their behaviour near a corner, which we will examine in Section 2.2.

2.2. Similarity Solutions in the Corner of an Elastic Body

We now seek to establish the form of the unknown boundary conditions on the virtual
extension of the plate. To do this, let us consider the physical problem local to a corner
of an elastic wedge. We know that, near a corner, these conditions will be formed of
regular contributions from the Lamb waves and irregular contributions from the similarity
solutions associated with this corner. As the Lamb waves have zero traction on the virtual
boundaries, the conditions will be dominated by the similarity solutions, the derivation of
which will be the subject of this section. In doing so, we will directly obtain the behaviour
that the Lamb wave representation has trouble capturing.

The corners in this model problem both have the same internal angle, π/2; however,
there is little extra complexity in presenting the solutions for arbitrary internal angle; hence
this is what will be presented here. Figure 4 shows an infinite arbitrary-angled traction-free
corner. We consider the two traction-free edges to meet at an angle ξ (where ξ is the interior
angle). We introduce a planar polar coordinate system with ρ = 0 at the corner and with
the line θ = 0 as the bisector of the angle ξ. Choosing the bisector as the θ = 0 coordinate
curve allows us to consider two families of solutions (symmetric and antisymmetric in
θ) separately, which simplifies the algebra. The normal vector to each edge lies in the θ
direction, therefore the traction-free conditions are τθθ |±ξ/2 = 0 and τρθ |±ξ/2 = 0.
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Figure 4. A general traction-free elastic corner. The elastic body is the shaded area extending to
infinity.

2.2.1. Elastostatic Expansion

It has been known for over 50 years that static deformations (eigensolutions) in a
two-dimensional corner of an elastic material can be found by use of an Airy stress function,
an approach that is well understood for similar problems (see, e.g., [25]). We shall examine
this briefly here, and then move on to the more-relevant elastodynamic case afterwards.
Following [5], we pose an Airy stress function of the form χ(ρ, θ) = ργm+1Θ(θ), where
γm ∈ C, from which we can recover the stresses as

τρθ =− ∂

∂ρ

(
1
ρ

∂χ

∂θ

)
, τθθ =

∂2χ

∂ρ2 . (30)

Then, Navier’s equation is satisfied, and compatibility yields ∇4χ = 0, which requires
that the θ dependence is of the form

Θ(θ) = c1 cos((γm + 1)θ) + c2 sin((γm + 1)θ) + c3 cos((γm − 1)θ) + c4 sin((γm − 1)θ). (31)

We now apply the boundary conditions, and use the symmetry properties of the θ
dependence as given in (31) to simplify the problem. We do this by considering the linear
combinations of conditions given by τρθ |ξ/2 ± τρθ |−ξ/2 = 0 and τθθ |ξ/2 ± τθθ |−ξ/2 = 0,
which yield two decoupled linear systems of equations given by[

cos((γm + 1)ξ/2) cos((γm − 1)ξ/2)
(γm + 1) sin((γm + 1)ξ/2) (γm − 1) sin((γm − 1)ξ/2)

][
c1
c3

]
=

[
0
0

]
, (32)[

sin((γm + 1)ξ/2) sin((γm − 1)ξ/2)
(γm + 1) cos((γm + 1)ξ/2) (γm − 1) cos((γm − 1)ξ/2)

][
c2
c4

]
=

[
0
0

]
. (33)

In order for these conditions to possess non-trivial solutions to the homogeneous
problem, the determinants must be equal to zero, which yields constraints on the corner
exponents:

sin(γmξ)± γm sin(ξ) = 0. (34)

In (34), a positive sign corresponds to the determinant of the first system (32) and an
Airy stress function symmetric around θ = 0, while the negative sign corresponds to the
determinant of the second system (33) and an Airy stress function antisymmetric about
θ = 0. In order for the solutions to be physical, we must also have finite displacements,
which limits the solutions to those where [γm] > 0.

The roots of (34), which can easily be found numerically, are labelled γm and ordered
according to the size of the real parts, and also by imaginary parts when two roots have the
same real part. For each solution of the compatibility condition (34) we find a non-trivial
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solution to the homogeneous problem with a single unknown constant; we can therefore
write a general similarity solution as the series

τρθ =
M

∑
m=1

ηm f0(γm, θ)ργm−1, (35)

τθθ =
M

∑
m=1

ηmg0(γm, θ)ργm−1, (36)

for arbitrary number of terms M. Here f0 and g0 are known functions and ηm are arbitrary
unknown constants, each associated with the mth similarity solution.

2.2.2. Elastodynamic Expansion

We now wish to consider the local problem relevant to this study, i.e., the local dynamic
(irregular) behaviour in the vicinity of a corner of the form shown in Figure 4. That is, we
want to find (eigen-)solutions to the dynamic Navier-Lamé equation in this corner domain
with traction-free boundary conditions. We begin by noting that in the limit where the
distance to the corner becomes small, ρ → 0, the dynamic terms become small. This implies
that the leading-order contributions in the elastodynamic case should correspond to the
similarity solutions obtained in the static case.

In this section, we will show that for any given L > 0, the asymptotic expansions of
the elastodynamic stresses τρθ and τθθ as ρ → 0 are given by

τρθ =
M(L)

∑
m=1

ηmfm(ρ, θ; L) + o(ρL) and τθθ =
M(L)

∑
m=1

ηmgm(ρ, θ; L) + o(ρL), (37)

where M(L) is the largest positive integer m such that [γm − 1] < L, and

fm(ρ, θ; L) =
Lm(L)

∑
�=0

f�(γm, θ)ργm−1+2� and gm(ρ, θ; L) =
Lm(L)

∑
�=0

g�(γm, θ)ργm−1+2�, (38)

where Lm(L) is the largest integer � such that [γm − 1 + 2�] < L and the functions f� and
g� are known exactly. Hence, the only unknowns in the expansions (37) are the coefficients
ηm. Note that for this expansion to be formally correct, we need to choose a L > 0 that is
not equal to the real part of any of the static roots γm.

In order to justify this expansion, we again use the Helmholtz decomposition, but this
time non-dimensionalised on the longitudinal dimensional wavenumber,
k̃l =

√
ρω2/(λ + 2μ), as there is no natural lengthscale for an infinite wedge. We again

write the displacements in terms of potentials, as in (1) and (2), but here the Navier–Lamé
equations reduce to

∇2φ + φ = 0 and ∇2ψ + K2ψ = 0, (39)

where, as before, K2 = k̃2
t /k̃2

l = (2 − 2ν)/(1 − 2ν).
Using separation of variables, we find that the non-dimensional potentials φm and ψm

corresponding to a given static root γm, which solve (39), are given by

φm(ρ, θ) = ∑
��0

J�m(�)(ρ)[a�m(�) cos(�m(�)θ) + b�m(�) sin(�m(�)θ)], (40)

ψm(ρ, θ) = ∑
��0

J�m(�)(Kρ)[c�m(�) cos(�m(�)θ) + d�m(�) sin(�m(�)θ)], (41)

where, for convenience, we have introduced the reduced index

�m(�) = γm − 1 + 2�, (42)
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and J�m(�) is the Bessel function of the first kind of order �m(�). The unknown coefficients
a�m(�), b�m(�), c�m(�), and d�m(�) will be determined by imposing traction-free boundary
conditions.

The normal and shear stresses in polar coordinates, τm
ρθ and τm

θθ , may now be written
in terms of these potentials as

τm
ρθ(ρ, θ) = 2

(
− 1

ρ2
∂φm

∂θ
+

1
ρ

∂2φm

∂ρ∂θ

)
− 2

∂2ψm

∂ρ2 − K2ψm

τm
θθ(ρ, θ) = −2

∂2φm

∂ρ2 − K2φm − 2
(
− 1

ρ2
∂ψm

∂θ
+

1
ρ

∂2ψm

∂ρ∂θ

)
,

and traction-free conditions for the corner under consideration are
τm

ρθ(ρ,±ξ/2) = τm
θθ(ρ,±ξ/2) = 0. It is convenient to rewrite these conditions as

τm
ρθ(ρ, ξ/2)− τm

ρθ(ρ,−ξ/2) = 0, τm
θθ(ρ, ξ/2) + τm

θθ(ρ,−ξ/2) = 0, (43)

τm
ρθ(ρ, ξ/2) + τm

ρθ(ρ,−ξ/2) = 0, τm
θθ(ρ, ξ/2)− τm

θθ(ρ,−ξ/2) = 0. (44)

Note that the conditions (43) only involve the unknowns a�m(�) and d�m(�), while the
conditions (44) only involve the unknowns b�m(�) and c�m(�).

Let us now, for brevity, consider a root γm that is associated with a symmetric Airy
stress functions, i.e., a root of (34) with the + sign. The case of an anti-symmetric root can
be dealt with similarly. It will be helpful to introduce the quantity Cm

� , defined for � � 0 by

Cm
� = a�m(�) + K�m(�)d�m(�). (45)

Rewriting the Bessel functions as series expansions about ρ = 0, and collecting the
terms of order ργm−3 in (43) (to do so, one only needs to consider the terms with � = 0 in
(40) and (41)), we obtain

sin(�m(0)ξ/2)Cm
0 = 0 and cos(�m(0)ξ/2)Cm

0 = 0, (46)

implying that Cm
0 = 0, and giving an explicit link between a�m(0) and d�m(0). Note that this

implies that, as expected from the static case, our expansion does not actually have any
terms of order ργm−3.

Using the relationship Cm
0 = 0, and collecting this time the terms of order ργm−1 in (43)

(to do so, one only needs to consider the terms with � = 0 and 1 in (40) and (41)), we obtain

−d�m(0)K
�m(0)(K2 − 1)�m(0) cos(�m(0)ξ/2)− Cm

1 sin(�m(1)ξ/2) = 0, (47)

d�m(0)K
�m(0)(K2 − 1)�m(1) sin(�m(0)ξ/2)− Cm

1 cos(�m(1)ξ/2) = 0. (48)

This is a linear system of two equations for the two unknowns d�m(0) and Cm
1 , whose

associated determinant can be shown to be sin(γmξ) + γm sin(ξ), which is known to be
equal to zero given our choice of γm. Hence, this system admits non trivial solutions that
take the form of an explicit expression for d�m(0) in terms of Cm

1 . Note that we recover here
the static behaviour of Section 2.2.1.

Let us now collect the terms of order ργm+1 in (43) (to do so, one only needs to consider
the terms with � = 0, 1 and 2 in (40) and (41)). This leads to two independent linear
equations for the three unknowns a�m(1), d�m(1) and Cm

2 . This system is always solvable in
terms of the single constant Cm

2 .
The process of increasing the order is now algorithmic. In a consistent expansion of the

stresses up to and including the order ρ�m(�) for � � 1, all the unknown coefficients a�m(1,...,�),
and b�m(1,...,�) are known exactly in terms of a single unknown constant Cm

�+1. If we now
follow exactly the same process, but for the boundary conditions (44), we will find that the
coefficients b�m(�) and c�m(�) are all equal to zero. Hence, whatever the asymptotic order
we want to reach (determined by a choice of L > 0), the consistent expansion obtained
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for the potentials corresponding to each static root γm only involves a single unknown
coefficient. This is why we can reconstruct the stresses as in (37) and (38), where the f� and
g� functions are known exactly. The exact form of these functions is found by an automatic
implementation of the asymptotic procedure described above, which was implemented by
the authors using the mathematical software package Mathematica.

2.3. Expressing the Virtual Forcing in Terms of Corner Modes

In Section 2.1, we found a Fourier-space solution in terms of functions describing the
stress fields on the surfaces of the virtual extension to the plate. These functions can now be
expressed in terms of the similarity solutions found in Section 2.2. Further, in this section
we will use this information to introduce new modes that will prove extremely helpful in
efficiently solving the present boundary value problem illustrated in Figure 2.

2.3.1. Inverse Transformation of the Forced Plate

We can now approximate the unknown functions from Section 2.1, s, p, q, and r, as
a series of the similarity solutions associated with a corner of angle ξ = π/2, found in
Section 2.2, which we can extend mathematically beyond the physical corner. We use polar
coordinates consistent with that defined in Figure 4, i.e., angles are measured from the
respective corner bisectors as shown in Figure 5. Hence, the virtual upper boundary is
defined by θ = −3π/4, whereas θ = 3π/4 corresponds to the virtual lower boundary on
the lines y = ±1/2, x < 0, and ρ = −x, so we can express the forcing terms in Cartesian
form, which yield approximations, correct up to order o((−x)L), as

τxy|y= 1
2 & x<0 = s(x) ≈

M(L)

∑
m=1

ηmfm

(
−x,−3π

4
; L
)

, (49)

τyy|y= 1
2 & x<0 = p(x) ≈

M(L)

∑
m=1

ηmgm

(
−x,−3π

4
; L
)

, (50)

τxy|y=− 1
2 & x<0 = q(x) ≈

M(L)

∑
m=1

ηmfm

(
−x,

3π

4
; L
)

, (51)

τyy|y=− 1
2 & x<0 = r(x) ≈

M(L)

∑
m=1

ηmgm

(
−x,

3π

4
; L
)

. (52)

The solutions in Section 2.1 were found in terms of the Fourier transform of these
virtual conditions, which we write as

S+(α) =
∫ 0

−∞
s(x)e−iαxdx ≈

M(L)

∑
m=1

∫ 0

−∞
ηmfm

(
−x,−3π

4
; L
)

e−iαxdx =
M(L)

∑
m=1

ηmF
+
m

(
α,

−3π

4
; L
)

, (53)

P+(α) =
∫ 0

−∞
p(x)e−iαxdx ≈

M(L)

∑
m=1

∫ 0

−∞
ηmgm

(
−x,−3π

4
; L
)

e−iαxdx =
M(L)

∑
m=1

ηmG
+
m

(
α,

−3π

4
; L
)

, (54)

Q+(α) =
∫ 0

−∞
q(x)e−iαxdx ≈

M(L)

∑
m=1

∫ 0

−∞
ηmfm

(
−x,

3π

4
; L
)

e−iαxdx =
M(L)

∑
m=1

ηmF
+
m

(
α,

3π

4
; L
)

, (55)

R+(α) =
∫ 0

−∞
r(x)e−iαxdx ≈

M(L)

∑
m=1

∫ 0

−∞
ηmgm

(
−x,

3π

4
; L
)

e−iαxdx =
M(L)

∑
m=1

ηmG
+
m

(
α,

3π

4
; L
)

, (56)

where the transforms can be determined analytically.
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Figure 5. Location of the virtual surfaces in terms of the local corner coordinate system for each
corner.

Combining the transforms of the virtual boundary conditions (53)–(56) and expres-
sions for the stresses (24) and (25), we now have a complete solution in Fourier space,
given in terms of an infinite series of similarity solutions, which have, built-in, the irregular
corner behaviour. To find the expressions for the potentials and stresses in physical space,
we use the inverse Fourier transform defined by

f (x) =
1

2π

∫ ∞

−∞
F(α)eiαxdα. (57)

We know that the integrands of the solution in this form will only contains pole-type
singularities, not branch-cuts, and so we can evaluate these in x � 0 using Cauchy’s residue
theorem, by deforming the contour up to a finite imaginary part of α, along the contour C1,
say, as shown in Figure 6. Note that it is straightforward to show that the contributions
from the contours at ±∞ are zero. So, for example, we evaluate τxy as

τxy(x, y) =
1

2π

∫
C

Txy(α, y)eiαxdα = i
N

∑
n=1

Res
α=αn

(
Txy(α, y)eiαx

)
+

1
2π

∫
C1

Txy(α, y)eiαxdα, (58)

where αn is the nth pole that lies between the real line and the contour C1. From the defini-
tion of Txy in (25), these poles are only those associated with the Lamb wave dispersion
relation Ds(α) = 0, as S+(α) and P+(α) are, by definition, known to be analytic in this
region. Note that the original contour C is indented as shown in Figure 6 to include only
the modes that obey the outgoing radiation condition for x > 0.

Figure 6. Phase portrait of the function βt(α)/Ds(α) for ν = 0.3, kt = 2 (left) and kt = 8 (right). It
shows the location of the poles coinciding with the symmetric modes arising from the dispersion
relation (21). The contours C and C1 extend horizontally to infinity. It can be shown that the functions
decay for large |α| and so the contribution of the contours connecting C and C1 at infinity can be
neglected. The contours are chosen to take only the rightward propagating and/or decaying modes.
The total number of poles between the two contours is what we call N. On the left plot, N = 4, and 1
of the 4 modes is propagating, while on the right plot N = 12, and 3 of the 12 modes are propagating.

From (58), we observe that to obtain the stress field we may take the residue contri-
butions from a discrete set of poles and add an integral contribution evaluated along the
uplifted contour C1. We begin by examining the residues. We determine the poles, located
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at αn, of the Lamb wave dispersion relation using the polynomial approximant method
proposed by Chapman and Sorokin [11], and we also note that except when modes are
cutting on or off all the poles are simple. We therefore find that the residues correspond to
Lamb wave contributions, which can be evaluated as

Res
α=αn

(
Txy(α, y)

)
=

G1(αn, y)S+(αn) + G2(αn, y)P+(αn)

D′
s(αn)

, (59)

where the ′ denotes a derivative with respect to the argument, and we know that D′
s(αn) is

non zero. Whilst this expression is easy to evaluate, we only know the behaviours of the
imposed functions asymptotically for large |α| i.e., small |x|. We specified the behaviour on
the virtual plates via the functions s(x) and p(x); their forms were chosen so that they gave
the requisite behaviour near the corner using the asymptotic method set out in Section 2.2.
From the properties of the Fourier transform we therefore know the forms of S+(α) and
P+(α) for large |α|. Hence, as the location of the poles (zeros of the Lamb wave dispersion
relation) can lie relatively close to the origin, the values of S+(αn) and P+(αn) found in
terms of corner modes will not be accurate. Hence, instead of evaluating them in this way,
we will leave them as unknown constants for each αn. Putting these into the expressions
for the stresses, (24) and (25), allows us to write the nth Lamb mode term as

τn
xx = ζntl

x(αn, x, y), (60)

τn
xy = ζntl

y(αn, x, y), (61)

defined up to the as-yet unknown constant ζn. Note that there is only one constant for each
Lamb mode because G1(αn, y) and G2(αn, y) reduce to the same function in y at any root of
Ds(αn) = 0.

We now evaluate the integral along the contour C1. In contrast to the evaluation of
the residue terms, we must choose this contour such that |α| is large and hence S+(α)
and P+(α) will be known accurately in terms of a series expansion that captures the local
behaviour of the fields near the top corner. The stresses associated with the corner modes
can be expressed by substituting (53) and (54) into (22) and (23), and taking the inverse
Fourier transform (57). This yields for τxy

∫
C1

Txy(α, y)eiαxdα ≈
∫
C1

G1(α, y)∑
M(L)
m=1 ηmF

+
m
(
α, −3π

4 ; L
)
+ G2(α, y)∑

M(L)
m=1 ηmG

+
m
(
α, −3π

4 ; L
)

Ds(α)
eiαxdα

=
M(L)

∑
m=1

ηm

∫
C1

G1(α, y)F+
m
(
α, −3π

4 ; L
)
+ G2(α, y)G+

m
(
α, −3π

4 ; L
)

Ds(α)
eiαxdα. (62)

Everything inside each integral is known and, hence, for a given x and y, these can be
evaluated numerically to give a mode associated with the asymptotic behaviour of the mth
similarity solution of the corner.

We can write the mth corner mode stress terms as

τm
xx = ηm

∫
C1

F1(α, y)F+
m
(
α, −3π

4 ; L
)
+ F2(α, y)G+

m
(
α, −3π

4 ; L
)

Ds(α)
eiαxdα = ηmtc

x(C1, γm, x, y; L), (63)

τm
xy = ηm

∫
C1

G1(α, y)F+
m
(
α, −3π

4 ; L
)
+ G2(α, y)G+

m
(
α, −3π

4 ; L
)

Ds(α)
eiαxdα = ηmtc

y(C1, γm, x, y; L), (64)

so that the outgoing scattered stress field, expressed as a modal expansion in two types of
modes, Lamb modes and corner modes, is
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τsca
xx (x, y) =

N

∑
n=1

ζntl
x(αn, x, y) +

M

∑
m=1

ηmtc
x(C1(N), γm, x, y; L), (65)

τsca
xy (x, y) =

N

∑
n=1

ζntl
y(αn, x, y) +

M

∑
m=1

ηmtc
y(C1(N), γm, x, y; L). (66)

Here, C1(N) is a contour that passes above the first N roots of the dispersion relation
and below all others in the upper half plane. We note that both the evanescent Lamb modes
and all the corner modes have exponentially decaying behaviour for large x > 0 and hence
far away from the edge only the propagating Lamb modes are important; however, these
decaying terms are required in order to accurately satisfy the boundary conditions on x = 0,
as we will discuss in the next section.

2.3.2. Satisfaction of the Free-End Boundary Conditions by Collocation

We now wish to determine the unknown coefficients in the modal expansion, i.e., the
Lamb mode constants ζn and the corner mode constants ηm. To do so, we need to satisfy
the boundary conditions on x = 0, where the tractions of the total field must be zero; this
implies that our scattered field must satisfy

τsca
xx (0, y) =

N

∑
n=1

ζntl
x(αn, 0, y) +

M

∑
m=1

ηmtc
x(C1(N), γm, 0, y; L) =− τinc

xx (0, y), (67a)

τsca
xy (0, y) =

N

∑
n=1

ζntl
y(αn, 0, y) +

M

∑
m=1

ηmtc
y(C1(N), γm, 0, y; L) =− τinc

xy (0, y), (67b)

where a superscript inc denotes the incoming wave. We need (N + M)/2 collocation points,
on which we will enforce the two boundary conditions (67a) and (67b) exactly. This yields
a linear system of (N + M) equations that can be solved to find the (N + M) unknown
coefficients ζn and ηm.

The locations of the collocation points were found by trial and error, determining the
best by inspection of the reconstructions. The optimally-positioned collocation points were
found to vary, depending on which modal expansion we take.

For expansions involving just Lamb modes (M = 0), the ideal points lie away from the
corner, as these modes poorly represent the field near these points of irregularity. Therefore,
we chose to use linear spacing for the N/2 collocation points in this case. If, instead, we
chose a Chebyshev distribution of collocation points for the pure Lamb expansion, the
convergence of the method would become very poor indeed.

When using an expansion including corner modes, the best points to take are those
nearer to the corner; hence the optimal results were found by employing Chebyshev points.
With corner modes included, we also have a choice of the number of Lamb modes N and
the number of corner modes M, to use; we generally found that the best results are obtained
when M is large and N is small, although N must always be large enough to include all the
propagating modes.

It should be noted that the corner expansion method, unlike the pure Lamb mode
expansion, seems to be very stable with respect to the choice of collocation points. Indeed,
if, instead of a Chebyshev distribution, we used a linear distribution as in the pure Lamb
case, then the results are only marginally worse. This may be expected as, effectively, once
we have removed the corner singularities thanks to our corner modes, the remaining part
of the field to be approximated is very regular indeed. We should also note at this stage
that this novel expansion also worked well when choosing more collocation points than
actually needed and solving the overdetermined system via a least squares approach.

A discussion on how the two different approaches (pure Lamb and with the corner
expansion) behave and compare as N and M increase will be given in the following section;
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we will show that, as expected, the corner mode expansion method has much better
convergence properties than the pure Lamb approach.

3. Results

From the work presented in Section 2.1, we have posed a combined modal expansion
solution: we have the usual Lamb modes, which accurately represent wave propagation
within the plate, and we have introduced a new set of modes that accurately represent the
local corner behaviour; the latter were found in Section 2.2. In this section, we will present
the results obtained by numerically solving for the coefficients in the boundary conditions,
(67a) and (67b), using collocation methods.

3.1. Reconstructions

The figures presented in this section show the tractions along the end face of the plate,
as we wish to compare how well the different modal expansions recover the specified
boundary conditions. The scattered stress field (65) and (66) on x = 0 should be equal
to the negative of that for the incoming wave, as there is zero overall traction on the end
face (see (67a) and (67b)). Note that we only need to consider the vertical end face, as the
conditions at the top and bottom of the plate are automatically satisfied for each and every
mode.

In Figure 7, we choose the wavenumber kt = 4 and the Poisson ratio ν = 0.3, and vary
only the number of modes. The plots show the scattered field stresses, i.e., Equations (65)
and (66), where the coefficients were found by collocation forced by the incident propagat-
ing symmetric Lamb wave (this is the only propagating mode for this value of kt). This
is plotted against the negative of the incoming wave in Figure 7a,b; for an exact solution,
these would be identical. Also plotted, in Figure 7c,d, are the total normal and shear stress
fields (i.e., due to both the incoming and outgoing waves) in order to demonstrate how
well the results approximate the zero traction conditions on the face.

The results in Figure 7 compare the behaviour of four modal expansions; one is a
standard Lamb wave expansion without corner modes that we deem to have converged
and gives acceptable results in terms of conservation of energy and errors in the boundary
conditions. The other results are with varying numbers of corner modes. It should be
noted that, in the pure Lamb wave expansion, we need a considerable number of modes
to ensure convergence; this means that the condition number of the collocation matrix
is large in that case, demanding that high precision calculations be used to obtain good
results. We note that the results show that we need significantly fewer total modes with our
new expansion, i.e., even with a small number of corner modes, we can represent the near
field behaviour with extremely small errors. We can therefore deduce that these modes are
correctly capturing the key behaviour of the irregular fields near the corners.

We also plot the error in traction reconstructions associated with a variety of wavenum-
bers, which is equivalent to changing the forcing frequency; higher kt corresponds to higher
frequencies where there are more propagating modes. In practice, it is found that higher
frequency problems require greater numbers of Lamb modes to ensure convergence with
the same accuracy. The plots in Figure 8 show, again, the tractions along the face x = 0, this
time considering three different values of kt.
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(a) Reconstruction of the stress τsca
xx . (b) Reconstruction of the stress τsca

xy .
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Figure 7. The reconstructions of the stress fields using N symmetric Lamb modes and M corner
modes. The curves correspond to: an expansion containing only Lamb waves, with N = 80 ( ); a
mixed expansion with N = 2 and M = 4 ( ); an expansion with N = 2 and M = 8 ( ); and an
expansion with N = 2 and M = 12 ( ). Subfigures (a,b) are the reconstructions of the scattered
stress fields along the traction-free face. The negative of the incoming stress fields, which should
lie on the same line, are plotted as ( ) for comparison. Subfigures (c,d) show the errors of the
reconstructions of the total stress fields (sum of the incoming field and the outgoing field). In this
example, kt = 4 and ν = 0.3.
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(b) Imaginary part of the error of τxy.

Figure 8. A set of results showing the accuracy of the zero traction boundary condition for a variety
of frequencies kt for fixed Poisson ratio ν = 0.3. The maximum values of the incoming field for both
tractions are order one. There is one propagating mode apiece for kt = 2 and 4, and three propagating
modes when kt = 8. The number of modes in each plot was chosen to maintain the same order of
magnitude accuracy: for kt = 2, N = 2 and M = 2; for kt = 4, N = 4 and M = 4; and for kt = 8,
N = 10 and M = 12.

As an additional illustration of the superiority of our method compared to the pure
Lamb mode approach, we study the convergence of the reflection coefficients (and the
energy) in the challenging case of kt = 8, for which there are three propagating modes. The
results are summarised in Figure 9. We show that, even with only M = 4 corner modes, our
method displays results that are more than two orders of magnitude better than the pure
Lamb mode approach with the maximum number of Lamb modes considered (N = 80).
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We also show that increasing the number of corner modes to the modest value of M = 10,
we gain an accuracy of O(10−8), which would be extremely challenging to obtain by the
pure Lamb mode approach, even with a very large number N of Lamb modes.

Figure 9. For kt = 8 and ν = 0.3 (the most challenging case of Figure 8), we illustrate the convergence
of the energy and of the reflection coefficients of the three propagating modes. We display the
absolute error between the computed reflection coefficients and a reference value, i.e., that obtained
for N = 10 and M = 12, and the reference value for the energy is 1. The continuous lines correspond
to the pure Lamb mode approach (M = 0) as the number N of Lamb modes increases. The dashed
lines correspond to our new approach for a fixed number N = 10 of Lamb modes as the number M
of corner modes increases.

3.2. Trapped Modes

The works of [7–9] discuss the existence of trapped modes in the context described
here. At the Lamé frequency kt =

√
2π, the propagating mode becomes orthogonal to the

evanescent Lamb modes. In this case, the single propagating mode travelling leftwards
can be trivially combined with the corresponding rightwards travelling mode to satisfy
the traction-free condition, and hence the coefficients on all other modes are trivially zero.
However, it has been observed that for two particular values of the Poisson ratio, ν∗ = 0
and ν∗ ≈ 0.2248, there also exist a combination of evanescent Lamb modes that sum to
satisfy the traction-free boundary conditions. In the case of ν∗ = 0, this trapped mode
has formally been proven to exist; however, for ν∗ ≈ 0.2248, its existence has only been
established numerically.

Our modal expansion, which includes the new corner modes, can easily be employed
to accurately determine the value of Poisson’s ratio for the latter trapped mode solution. We
search for a homogeneous solution of the problem solely in terms of the modes which decay
as x → ∞. In order to find the homogeneous solution, we construct a collocation matrix
as before, with the propagating mode term removed, for a given ν at the Lamé frequency.
We then vary ν and observe where the value of the determinant nearly vanishes. Figure 10
shows the resulting absolute values of the determinant, normalised on the magnitude at
ν = 0.22479 for ease of comparison, found when using this process for a range of numbers
of corner modes. This clearly demonstrates that the modal expansion presented in this
paper does find this trapped mode and that, for M > 6, its value has converged to six
significant figures, at ν ≈ 0.224798.
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Figure 10. The absolute value of the determinant of the collocation matrix, excluding the propagating
mode, for different numbers of corner modes. The respective lines correspond to four Lamb modes
and M = 4 ( ), M = 6 ( ), M = 8 ( ), and M = 10 ( ) corner modes. The dotted lines
are the projected values of the determinant, found by extending the curves on either side of zero;
this aids the determination of location of zero. The value of Poisson’s ratio at which the determinant
vanishes can be seen to have converged, once M = 6 or larger, to ν ≈ 0.224798.

4. Discussion

In this article, we have asymptotically determined the form of the similarity solutions
that are associated with the behaviour close to a corner in a semi-infinite elastodynamic
thick plate. We recognized that the irregular corner behaviour causes difficulties for Lamb
mode expansion techniques and so, to overcome this, we have introduced a new method
for constructing corner modes that not only accurately capture the behaviour near the
corner, but that also satisfy the plate boundary and radiation conditions. Additionally,
because these modes are found using the same Fourier transform approach as for the Lamb
waves, adding them does not result in an over-complete representation of the field.

As found in the results Section 3, our numerical work shows that including the corner
modes into the expansion allows us to accurately capture the near-field behaviour, and
as a consequence we need include far fewer modes to achieve comparable or superior
results. Therefore, we believe that these corner mode solutions can be utilised in a wide
variety of Lamb wave or other, scattering problems for which standard plate or duct wave
modal expansion techniques converge slowly [15,23]. We have also demonstrated that,
by considering these extra modes, we can more accurately capture the trapped-mode
behaviour associated with this configuration; this allows us to quantify the Poisson’s ratio
with more precision than other extant methods, yielding the new result ν ≈ 0.224798 at
which this trapped-mode occurs. This result has recently been confirmed in a private
communication with Lawrie [26], who has approached the localised mode problem in a
quite distinct way to the present work or to that described in [7–9].
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Featured Application: The developed new method will enable us to perform contactless air-

coupled NDT of composite structures possessing a complex geometry.

Abstract: Ultrasonic-guided waves are widely used for the non-destructive testing and material
characterization of plates and thin films. In the case of thin plastic polyvinyl chloride (PVC), films up
to 3.2 MHz with only two Lamb wave modes, antisymmetrical A0 and symmetrical S0, may propagate.
At frequencies lower that 240 kHz, the velocity of the A0 mode becomes slower than the ultrasonic
velocity in air which makes excitation and reception of such mode complicated. For excitation of both
modes, we propose instead a single air-coupled ultrasonic transducer to use linear air-coupled arrays,
which can be electronically readjusted to optimally excite and receive the A0 and S0 guided wave
modes. The objective of this article was the numerical investigation of feasibility to excite different
types of ultrasonic-guided waves, such as S0 and A0 modes in thin plastic films with the same
electronically readjusted linear phased array. Three-dimensional and two-dimensional simulations of
A0 and S0 Lamb wave modes using a single ultrasonic transducer and a linear phased array were
performed. The obtained results clearly demonstrate feasibility to excite efficiently different guided
wave modes in thin plastic films with readjusted phased array.

Keywords: air-coupled ultrasonic; Lamb waves; finite element modeling; plastic films

1. Introduction

Ultrasonic-guided wave-based inspection techniques are very promising for non-
destructed testing (NDT) and structural health monitoring (SHM) and are the primary
techniques for long-range damage detection and characterization of plate-like structures.
The guided Lamb waves propagate within the interior of the objects under investigation.
The Lamb wave’s fundamental A0 and S0 modes are widely used as they can be relatively
easy to excite and are sensitive to various types of defects, which are found especially in
composite materials.

Contemporary technologies include the employing of thin films and composite plate
materials. There is a special class of widely used, very thin (~0.1 mm) materials—plastic
tapes and films such as clear polyvinyl chloride films [1]. Polyvinyl, also known as poly
(vinyl chloride) or PVC, is the third-most widely produced synthetic plastic. The production
of polyvinyl chloride films in Europe reaches five million tons annually [2]. During the
manufacturing of PVC films, various defects such as wrinkles, holes, rough surfaces, and
thickness variations can arise.

Ultrasonic methods using guided waves enable the investigation of key elastic prop-
erties of materials that cannot be assessed by merely using other methods, for example
excitation by lasers [3,4], electrostatic excitation methods [3], or electromagnetic acoustic
transducers [5,6]. These guided waves are currently used for the non-destructive testing
and evaluation (NDT) of thin film type materials [7]. Usually, they are excited when the
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vibrations of an acoustic transducer are transferred to the investigated item by direct con-
tact via a coupling liquid. The contact liquids are impossible to use in many cases, as the
investigated item may be contaminated, damaged or otherwise negatively affected [8,9].
This is relevant in the cases of thin films or composite structures. Some defects are detected
by optical methods, but some defects such as holes and especially thickness variations can
be better found by ultrasonic methods using guided waves [10–12]. Therefore, air-coupled
ultrasonic investigation using guided waves can be a very attractive technique for the
investigation of such type of materials.

The attenuation of ultrasonic waves in air and in the object under investigation in-
creases with the frequency. The loss of ultrasonic signals may be reduced by generating
guided waves while using lower frequencies [13–15].

At lower frequencies, the velocity of the ultrasonic-guided waves in thin films may be-
come lower than the ultrasound velocity in air, which complicates excitation and reception
of ultrasonic signals by air-coupled methods [16,17]. Therefore, it is appropriate to develop
novel air-coupled ultrasonic measurement methods based on the excitation and reception
of guided waves for a study of such objects. Special problems arise in the case of excitation
and reception of symmetrically guided wave modes, which require fundamentally new
methods of excitation and reception.

The guided waves in thin film type materials may be excited via air gap in two
different ways depending on the ratio of propagation velocities of ultrasonic waves in
the material and air. When the phase velocity of the guided waves in the object is bigger
than the ultrasound velocity in air, then the optimal incident angle of the ultrasonic wave
incident from air onto the plate exists at which the biggest amplitude of guided wave is
obtained. The propagating guided wave in a thin film then radiates a leaky wave into air,
which may be used for air-coupled reception. This mode is commonly applied for detecting
defects inside thin plates and film type materials as the leakage increases at the defective
zone [18–20].

In our previous investigations, we analyzed application of air-coupled linear phased
ultrasonic arrays for excitation and reception of only the slow fundamental antisymmetric
A0 mode, in the frequency range in which the velocity of this mode is slower than the ultra-
sound velocity in air [16,17]. For the analysis of propagation of the ultrasonic wave through
the air gap, the impulse response method was used [16]. Propagation of the A0 mode in a
plastic film was calculated by the analytic time harmonic solution method [14,16,17].

However, exploitation of the symmetric S0 mode enables not only detection of various
defects, but also evaluation of elastic properties of the item under a test [20]. For exam-
ple, simultaneously excited S0 and A0 guided wave modes enabled the measurement of
thickness and Young’s modulus of thin PVC films [21]. For practical applications, it would
be very attractive to use it for the same ultrasonic air-coupled transducer or array. To our
knowledge, a detailed analysis of the performance of such methods is still missing [21]. For
this purpose, we propose instead a single ultrasonic transducer to use linear air-coupled
arrays, which can be electronically readjusted to optimally excite and receive the required
guided wave modes. For the solution of this problem, we used a numerical simulation
based on the application of finite element modelling.

The objective of this article was a numerical investigation of feasibility to excite
different types of ultrasonic-guided waves, such as symmetrical S0 and asymmetrical A0
modes in thin plastic films with the same electronically readjusted linear phased array.

First, we simulated propagation of two fundamental A0 and S0 Lamb wave modes in
thin plastic films using a single ultrasonic transducer. Second, to improve the excitation of
the S0 mode, a linear phased array was proposed for use. Calculations were performed
using finite element methods (FEM). FEM has many advantages such as [22]: it allows
solving acoustic contact problems, to model bodies made of different materials; a curvilinear
region can be approximated by means of finite elements of smaller dimensions, which
enables the increase of modelling accuracy [23]. FEA’s main advantage is that it produces
a much more detailed set of results than experimental investigations and is often quicker
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and less expensive. Fundamentally, instead of tackling a big problem directly, we divided
it into smaller and more easily solvable problems to attain a unique result for the system
as a whole. The discrete model approximates the behavior of the real physical structure.
However, provided that the discretization mesh is dense enough, the approximation is
sufficient to accurately model reality [24–26].

The numerical modelling was performed using the commercially available finite el-
ement software, Abaqus. Two numerous calculation methods, 3D and 2D, were used.
Numerous calculations showed that the 2D technique significantly improves the computa-
tional efficiency compared to the 3D technique [27–29].

The paper consists of four sections. In Section 2, the numerical simulation of propa-
gation of A0 and S0 guided wave modes in thin PVC plastic film is presented. The finite
elements modeling results of A0 and S0 guided wave modes are described in Section 3. In
Section 4, conclusions and discussion of the obtained results are given.

2. Finite Elements Models

Propagation of the guided A0 and S0 mode in the PVC film sample was simulated
by the ABAQUS software package (Dassault Systemes, Johnston, Rhode Island, United
States of America). The ABAQUS program was chosen for its high level of detail, manual
design of the work piece, possibility of configuring the materials, and the very fine control
of mesh; however, the ABAQUS program has no support for any materials and takes time
to “setup” simulations as the user must manually set many simulation parameters. For
the modelling of propagation of A0 and S0 modes in thin plastic films, two 2D and 3D
calculation methods were chosen [30–33].

Modeling of elastic wave propagation was carried out by solving the following equa-
tion:

[M]
{ ..

U
}
+ [C]

{ .
U
}
+ [K]{U} = {F(t)}, (1)

where [M] is the structural mass matrix, [C] is the element damping matrix, [K] is the
structural stiffness matrix, {U} is the displacement vector, and {F} is the load vector. The
Abaqus Explicit software uses a central difference method to integrate the equation of
motion in time [25,34]:

{Ut+Δt} =
[
M̂
]−1
[
{F(t)} −

(
[K]− 2

Δt2 [M]

)
{Ut} −

[
M̃
]
{Ut−Δt}

]
, (2)

where Δt is the time step and

[
M̂
]
=

1
Δt2 [M] +

1
2Δt

[C], (3)

[
M̃
]
=

1
Δt2 [M]− 1

2Δt
[C]. (4)

Three-dimensional models are in practice limited to small size models and low frequen-
cies due to the required computational power to numerically solve the wave’s propagation
tasks. They also require relatively time-consuming post processing before the results can
be obtained. However, there is a significant difference in the computational time between
two-dimensional (2D) FE models and more accurate 3D models.

First of all, a 3D method was used to simulate the propagation of guided waves excited
by one element with the excitation zone of 5 × 1 mm, the center of which is at x, y = 0. The
calculations were performed for polyvinyl chloride (PVC, London, UK). Dimensions of the
PVC sample selected for simulation were 240 × 240 mm. For reduction of the computational
time, only a quarter of the film with symmetry boundary conditions was modeled by the
3D method. The modeled structure of one excitation zone is shown in Figure 1a. The
simulation step in the time domain was set dt = 1 μs. The strip-like piezoelectric element
radiates an ultrasonic wave, which propagates via the small air gap and excites a guided
wave in the thin plastic film. The excitation was introduced as the uniformly distributed
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1 N 150 kHz force impulse in the transmitter area. The frequency of 150 kHz was selected
because at such a frequency only the only two modes, symmetrical S0 and antisymmetrical
A0, may propagate.

 
(a) 

 
(b) 

Figure 1. A model of the PVC sample used for the simulation: (a) for the 3D simulation; (b) for the
2D simulation.

Second, a 2D method was performed simulating an A0 and S0 guided wave modes
excitation zone of 1 mm. This schematic diagram with one excitation zone is presented in
Figure 1b. The excitation zone is placed x = 50 mm, y = 0 mm from the coordinate origin t
at x, y = 0.

In Table 1, some properties corresponding to the computational efficiency of the 3D
and 2D methods are compared, which show that the 2D simulation method has a high
speed and needs a relatively smaller memory than the 3D method.
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Table 1. Advantages and disadvantages of the simulation methods.

Advantages and Disadvantages of Simulation Methods

2D Simulation 3D Simulation

The length of the simulated
PVC film 300 mm quarter of the film

120 mm × 120 mm

Finite element size 15 μm 65 μm

The simulation step in the
time domain 40 ns 1 μs

Numbers of elements in the
model 180,000 6,816,600

Calculation time ~20 min ~5 h

Data size ~15 GB ~120 GB

Calculation computer recourses:
Processor—Intel (R) Core (TM) i7—2700K CPU @ 3.50 GHz 3.50 GHz;
Installed RAM—32.0 GB;
System type—64-bit operating system, ×64-based processor.

The 3D model is very complicated and has some disadvantages: a large amount of data
is required as input for the mesh used in terms of nodal connectivity and other parameters
depending on the problem, and requires longer execution time. Our 3D model data is about
120 GB, with numbers of elements in the model being over 6 million, a calculation time
of about 5 h, and where it is impossible to see the S0 guided wave mode. For this reason,
other simulation results were obtained by the 2D modeling method. In the 2D simulation
method, we used a finite element size of 15 μm in the model, which is ~4.2 times smaller
than in the 3D model and the length of the PVC film is 2.5 times longer than the 3D model.

The values of the phase and group velocities of the A0 and S0 guided waves modes in
PVC film were calculated using the Semi Analytical Finite Element (SAFE) method. The
parameters of the clear PVC thin film used for calculations are presented in Table 2 [35].

Table 2. Parameters of PVC thin film.

Parameter Value

Density ρ = 1400 kg/m3

Young’s modulus E = 2.937 GPa
Poisson’s coefficient ν = 0.42

The calculated phase and group velocities versus frequency are shown in Figure 2.
From the simulation results it follows that even in the frequency range up to 3.2 MHz,
only two modes, symmetrical S0 and antisymmetrical A0, may propagate. For numerical
simulations the frequency of the excitation signal 150 kHz was selected because at such a
frequency only those two modes may propagate. The ultrasound phase velocity of the A0
mode at the frequency is 232 m/s and the group velocity is 448 m/s are presented by red
and blue colors in Figure 2. The ultrasound phase and group velocities of the S0 mode do
not depend on a frequency and are 1595 m/s. In Figure 2 they are indicated by a solid red
horizontal line. The ultrasound velocity in air of 343 m/s is presented by a dotted line in
Figure 2. Please note that the phase velocity of the A0 mode is slower than the ultrasound
velocity in air up to 240 kHz, therefore its air-coupled excitation by a classical method using
deflected ultrasonic transducer looks impossible. However, we shall demonstrate that it is
possible using a linear air-coupled array. The waveform and the spectrum of the excitation
force are shown in Figures 3 and 4. In the Figures 3 and 4 n.u. represents normalized units.
The excitation frequency is f = 150 kHz, and the numbers of periods is n = 3.
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Figure 2. Calculated dispersion curves of PVC thin film.

Figure 3. Excitation signal.
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Figure 4. Spectrum of the excitation signal.

The simulation results obtained by the 2D and 3D FEM methods are presented in the
following Section 3.

3. Finite Elements Modeling Results

3.1. Single Transducer Model

The main idea of the performed numerical investigation was to analyze possibilities
to excite not one but a few guided wave modes possessing very different propagation
velocities and distributions of displacements with the same linear phased array. For such
purpose symmetrical S0 and antisymmetrical A0 modes fit very well. The biggest challenge
is the excitation of the S0 mode, as in this mode, the in-plane displacement component
is much bigger than the off-plane component, e.g., normal to the surface of the film. For
excitation of those guided waves we shall use a linear air-coupled array consisting of eight
strip-like elements with radiating apertures of 5 × 1 mm.

The model of the thin PVC film was meshed using shell elements and the propagation
of guided waves was first simulated by the 3D method. The thickness of the PVC film was
l = 135 μm. The dimension of the finite elements was 62.5 μm, the numbers of elements in
the model were 6 816 600 and only a quarter of the film with symmetry boundary conditions
was modelled. Such a dimension is close to 1/20th of the S0 wavelength λ = 10.6 mm at the
analyzed 150 kHz frequency.

In order to evaluate the influence of ultrasonic field spreading due to a diffraction
in the plane of the film, calculations by the 3D method were performed for a single array
element with a rectangular aperture with dimensions 5 × 1 mm. The air-coupled ultrasonic
transducer usually is placed very close to the film surface, for example 1 mm. In such
case the simulation of the propagation of ultrasonic wave through the air gap can be
replaced by the force acting on the surface of the film. This force is uniformly distributed
in the rectangular area corresponding to the radiating aperture 5 × 1 mm of the array
single element.

The simulated spatial distributions of the particle velocity y component at the time
instant t = 200 μs is shown in Figure 5a. The B scan of this in-plane particle velocity
component along y axis is presented in Figure 5b. The waves are more strongly radiated
along the y axis direction due to directivity properties of the excitation zone.

In the B scan (Figure 5b) we have the signals measured at many positions along the
same direction, the phase velocity can also be estimated by taking two signals measured
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at neighboring positions and estimating the propagation time of a particular phase point
between those positions.

 
(a) 

(b) 

Figure 5. Simulation of guided waves in the thin plastic film excited by a single element by the 3D
method: (a) spatial distributions of the particle velocity of magnitude (X, Y and Z components) at the
time instant t = 200 μs; (b) the B scan of the y component in-plane particle velocity.
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Such an estimation gives the group velocity 424 m/s, what allows concluding that
a single array element excites mainly a strong A0 mode in the thin film. There are very
weak traces of the S0 mode propagating with the velocity 1540 m/s, however they look
so weak that are not suitable for any measurements. This 3D simulation was performed
using shell elements; therefore, we decided to check if the simulation by 2D FEM exploiting
conventional finite elements allows for the revealing of a better S0 mode. On the other
hand, the 2D FEM requires a smaller number of elements and much shorter simulation
time (Table 1).

The schematic diagram with one excitation zone is shown in Figure 1b. The length
of the simulated PVC film is 300 mm. The excitation zone was placed at the 50 mm from
the origin of the coordinates. The B scan of the in-plane particle velocity component in the
PVC film obtained by 2D simulation is presented in Figure 6. The ultrasonic pulses of the
in-plane particle velocity at two different distances from the excitation zone (x = 50 mm,
y = 0 mm) are shown in Figure 7a,b.

In order to identify what mode (or modes) is actually excited by a single array element
the propagation velocity of the waves shown in Figure 5a should be evaluated. The phase
velocities are usually found from the distances Δdph and Δdgr, which are covered by a
particular phase point during the time intervals Δtph and Δtgr:

cph =
Δdph

Δtph
. (5)

cgr =
Δdgr

Δtgr
. (6)

In the presented B scan we can see better the excited fast S0 mode. The S0 and A0
modes reflected from the boundaries of the sample are also seen.

(a) 

Figure 6. Cont.
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(b) 

Figure 6. (a) The B scan of the in-plane x component particle velocity; (b) zoom of the B scan in Figure
6a (yellow rectangule).

(a) 

Figure 7. Cont.
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(b) 

Figure 7. Ultrasonic pulses of the in-plane x component of the S0 mode at two different distances
from the excitation zone: (a) 210 mm; (b) 300 mm.

The ultrasound velocities of the waves shown in the B scan were calculated by Equa-
tions (5) and (6) and compared with the velocities of the guided waves modes obtained by
the Semi Analytical Finite Element method (Figure 2). It is possible to conclude that there is
a strong A0 mode propagating with the group velocity cgr = 464 m/s and the phase velocity
cph = 233 m/s. The zoomed B scan of A0 phase mode is presented in Figure 6b. The S0 wave
mode propagating at the phase velocity of cph = 1584 m/s can also be seen in Figure 6a.

The ultrasonic pulses of the particle velocities at two different distances x = 210 mm
and x = 300 mm are shown in Figure 7a,b. At the distance 210 mm (Figure 7b), two pulses
are seen. The first pulse is the directly propagating pulse and the second is the pulse
reflected from the edge of the PVC sample. Please note a lower amplitude of the S0 pulse at
the distance x = 210 mm. From the results obtained it follows that a single element with the
width 1 mm excites not only A0 but also S0 mode.

3.2. Linear Array Model

Therefore, we decided to check if it was feasible to excite S0 mode by a properly
phased linear array placed close to the film surface. For this purpose, we proposed a
single ultrasonic transducer to use linear air-coupled arrays, which can be electronically
readjusted to optimally excite and receive the required guided wave modes. This linear
air-coupled array can improve the excitation of S0 mode. Numerical investigation was
performed simulating the excitation of the S0 guided wave mode by a planar linear array.
The schematic diagram is presented in Figure 8. The array consists of eight strip-like
elements of 1 mm width. All spacings between elements should theoretically be equal to
λS0 /2 = 5.3 mm. For the excitation of the S0 modes, the linear air-coupled array elements
are excited successively with the time delay necessary for this mode to propagate the
distance between the adjacent elements. The delay time between elements is Δτ = 3.3 μs
and calculated by the following Equation (7):

Δτ =

λS0
2

cSph( f , l)
. (7)

where λS0 is the wavelength of the S0 mode, l is the thickness of the thin PVC film, and f is
the frequency. In such case each strip-like piezoelectric element of the linear array excites
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the S0 mode in phase, thus increasing the amplitude of the propagating guided wave. The
B scan of the x component in-plane particle velocity of the array is presented in Figure 9.

Figure 8. Simulation of excitation of guided waves by a linear phased array film.

For identification of the excited Lamb wave modes shown in Figure 9, we calculated
propagation velocities of the simulated modes similar to the single element case and
compared them with velocities determined by the Semi Analytical Finite Element method
(Figure 2). From the numerical simulation, it follows that the A0 mode propagates with
a group velocity cgr = 459 m/s; the A0 phase velocity is cph = 244 m/s. The S0 mode
propagates with the phase velocity of cph = 1591 m/s (Figure 9). The ultrasonic pulses at
three different distances from the excitation zone (x = 50 mm, y = 0 mm) are presented in
Figure 10a–c. The first pulse in those figures is the S0 mode, the second pulse corresponds
to the A0 mode. The ultrasound velocities of the ultrasonic pulses at two different distances
from the excitation zone (Figure 10b,c) are calculated by Equations (5) and (6). The obtained
S0 mode phase velocity in this case is cph = 1551 m/s, which is very close to the velocity
obtained by the Semi Analytical Finite Element method.

Figure 9. The B scan x component in-plane particle velocity in the thin PVC film.
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(a) 

(b) 

Figure 10. Cont.
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(c) 

Figure 10. Ultrasonic pulses at two different distances from the excitation zone: (a) 120 mm,
(b) 210 mm, (c) 300 mm.

The particle velocity amplitude at the excitation zone (x = 50 mm, y = 0 mm) is 0.05 m/s.
The array excitation zone is presented in Figure 8. The planar linear array improves the
excitation of S0 mode eight times in comparison to when the excitation zone is 1 mm.

Although the amplitude of the A0 mode is bigger than the S0 mode at longer distances,
both modes may be exploited for simultaneous measurements because they arrive at
different time instants.

For the excitation of the A0 mode at 150 kHz frequency we proposed to use the same
phased array with spacings between array elements equal to λS0 /2 = 5.3 mm, however,
with introduced delays between the excitation instants of the array elements necessary for
the excitation of the A0 mode:

Δτ =

λS0
2

cAph( f , l)
. (8)

The delay time between elements in this case is Δτ = 22.8 μs. The linear air-coupled
array elements become excited successively with the time delay necessary for this mode to
propagate the distance between the adjacent elements.

The B scan of the y component off-plane particle velocity of the array is presented
in Figure 11. The A0 mode is more strongly radiated along the y-axis direction. The start
excitation point of the linear air-coupled array is shifted 50 mm from the origin of the
coordinates x = 0 mm, y = 0 mm. Each element of the array excites two A0 mode waves,
propagating forward and backward (Figure 11).
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Figure 11. The B scan of the off-plane particle velocity (y component) in the thin PVC film.

The waveforms of the ultrasonic signals at different distances, 75 mm, 110 mm, and
125 mm are shown in Figure 12. The distances are indicated in Figure 11 by the horizontal
dashed lines. The forward propagating A0 mode is properly phased, which results in a
single ultrasonic pulse at distances longer than the length of the phased array. Contrarily,
the backward propagating wave is not phased and, in this case, the backward wave is
propagating not a single ultrasonic pulse, but a series of ultrasonic pulses generated by
each element of the array which are shown in the B scan by parallel beams.

It is necessary to point out that in the A0 mode the off-plane particle velocity compo-
nent prevails; therefore, it is presented in Figures 11 and 12. From the results presented it
follows that there is only a strong A0 mode excited, which was confirmed by calculating
phase and group velocities from the simulated waveforms and comparing them with the
corresponding velocities obtained by the Semi Analytic Finite Element method (Figure 2).

The phase and group velocities obtained from the numerical simulation results at the
frequency 150 kHz are as follows: group velocity cgr = 458 m/s and phase velocity cph = 248
m/s. For comparison, the phase and group velocities of the A0 mode calculated by the Semi
Analytic Finite Element method are cgr = 448 m/s and cph = 232 m/s, which are very close
to the results obtained from the numerical simulations. This means that by the proposed
excitation method, only a strong A0 mode is excited in a thin PVC film.

215



Appl. Sci. 2022, 12, 849

 
(a) 

(b) 

Figure 12. Cont.
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(c) 

Figure 12. Ultrasonic pulses of the off-plane y component of the particle velocity at three different
distances from the excitation zone: (a) 75 mm, (b) 110 mm, (c) 125 mm.

4. Conclusions and Discussion

There are some tasks in which applications of a few different guided waves enable us
to obtain more information about structures under a test. For example, the measurement of
phase velocities of symmetrical S0 and antisymmetrical A0 guided wave modes allowed us
to determine the thickness and Young‘s modulus of thin PVC films [21]. The main problem
is how to excite such modes in thin films especially using air-coupled methods.

The performed numerical modelling by 2D and 3D finite element methods showed
that for such purpose, a contactless linear phased array might be successfully exploited. It
was shown that the most serious problem is the excitation of the symmetrical S0 mode, as
in this mode the biggest challenge is the in-plane displacement component, which is almost
impossible to excite by a single ultrasonic transducer. For a solution of this problem, we
proposed using a linear phased array where the elements of which are excited by electric
signals with properly selected delays. The delays of the excitation instants between adjacent
elements are equal to the propagation time of the S0 mode.

For the excitation of the A0 mode we proposed using the same phased array, except
the delays between adjacent elements of the array in this case were equal to the propagation
time of the antisymmetrical A0 mode. In our case, at the frequency 150 kHz this delay was
Δτ = 22.8 μs, e.g., 6.9 times longer than the delay for the excitation of the S0 mode.

The obtained results clearly demonstrate feasibility to excite efficiently different guided
wave modes with very different phase velocities using the proposed method based on an
electric readjustment of the same phased array.
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Abstract: The present paper deals with an effort to model impact damage in 3D-FE simulation. In
this work, we studied the scattering behavior of an incident A0 guided wave mode propagating
towards an impacted damaged zone created within a quasi-isotropic composite plate. Besides,
barely visible impact damage of the desired energy was created and imaged using ultrasonic bulk
waves in order to measure the size of the damage. The 3D-FE frequency domain model is then used
to simulate the scattering of an incident guided wave at a frequency below an A1 cut-off with a
wavelength comparable to the size of the damaged zone. The damage inside the plate is modeled as
a conical-shaped geometry with decayed elastic stiffness properties. The model was first validated by
comparing the directivity of the scattered fields for the A0 Lamb mode predicted numerically with the
experimental measurements. The modeling of the impact zone with conical-shape geometry showed
that the scattering directivity of the displacement field depends significantly on the size (depth
and width) of the conical damage created during the point-impact of the composite with potential
applications allowing the determination of the geometric characteristics of the impacted areas.

Keywords: guided waves; CFRC composite plate; impact point damage; 3D-FE modeling

1. Introduction

There is a rapid increase in the use of carbon-fiber-reinforced composite materials
in the aerospace industry over the last decade [1,2]. The main advantage includes low
weight, high static and fatigue strength, and the possibility to manufacture large integral
shell structures. In present time, commercial aircraft contain such composites for primary
and secondary wing and fuselage components. However, the main drawback of carbon
fiber/epoxy is that these are inherently brittle and usually exhibit a linear elastic response
up to failure with little or no plasticity. This makes composite structures very vulnerable to
impact damage and must therefore satisfy certification procedures for high-velocity impact
from runway debris or bird strike. Impact damage is considered to be a serious damage
mechanism in composite structures, which limits performance and reliability for further
use. The problem with impact damage is that it may not be visible from the surface of the
material, and even so, small scratches at the surface may hide severe damages underneath
the impacted surface. Indeed, the impact generates a shock wave whose mechanical energy
propagates deep inside the material, thus causing different types of damage along its path.
Generally, impact damage occurs during in-service applications or as a result of handling
during manufacturing. Very common examples of impact events include tool drops during
the manufacturing, preparation or storage of the structure, or during in-service use, e.g.,
birds’ collisions for aeronautic components, hail impact, volcanic ash, runway debris
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etc. Meanwhile, it is also well known that mechanical properties of composite materials
can be severely degraded by the initiation and propagation of structural damages (fiber
breakage, delamination, matrix cracking, etc.), which may appear during the components’
life cycles [1]. Since impacts can locally cause crack-like defects, they also may lead to
local decays in material properties, i.e., in the vicinity of the impacted zone [1,3–5]. It is
therefore necessary to reliably detect and evaluate impact damages, as well as their effects
on residual resistance of the structure.

The use of non-destructive techniques to evaluate defects, such as the ones based on
ultrasonic waves, is therefore suitable because the tested component remains available
either for tests, as mentioned above, or for reuse in the whole structure. In particular,
ultrasonic guided waves are very advantageous because they can finely interrogate the
whole thickness of the material and be used for imaging internal hidden defects when
appropriate post-processing is applied. Several authors have worked on locating the point
of impact in composite plates [5–8]. Fromme and Rouge [9] investigated the directivity
of the A0 Lamb mode scattered at a crack-like notch defect in an isotropic plate. Moreau
et al. [10,11] analytically and numerically discussed the scattering of guided waves partly
through thickness and/or flat bottom cavities with irregular shapes in plates. Caminero
et al. [12] studied the sensitivity of phased array techniques to detect internal damage
caused by impacts at different energy levels on unidirectional and multidirectional lami-
nates depending on the stacking sequence. The problem of impact damage evolution and
penetration within thick-section composites was investigated by Gama and Gillespie [13]
using explicit finite element (FE) analysis in 3D. Various studies on modeling guided waves
in composite plates have been performed by Veidt and his coworkers [14]. Agreement
between modelling and experimental data is, in general, achieved for the signals, which
are less affected by the damage scattered waves. This is mainly due to the complexity of
the involved phenomena during the scattering of ultrasonic guided waves in the presence
of point impact damage in composites [15].

Analytical solutions corresponding to Lamb waves scattering in the presence of de-
lamination do not exist for composite laminates due to their multilayer characteristics [16].
Within the framework of a plane strain assumption, the reflection of the fundamental
symmetric (S0) Lamb wave from a delamination in unidirectional and cross-ply laminates
showed that S0 Lamb wave cannot be used to detect the delamination at locations with
zero shear stress [17]. On the other hand, the use of a 2D method to study the reflection
characteristics of S0 and A0 Lamb waves from a delamination showed that the A0 Lamb
wave is sensitive to delamination at all through-thickness locations [18]. However, it should
be noticed that the wave scattering mechanism depends on the involved guided mode as
well as on the depth and size of the damage zone. In the case of a delamination, various
investigations have shown that A0 and S0 modes propagate individually in the two regions
separated by delamination and then interact with each other after exiting the delamination
area [19,20]. However, the scattering of guided waves in the case of an impact damage is
different from the one corresponding to a delamination created along the full width of the
composite laminates. Indeed, Cantwell et al. [21] found that in thin composite specimens,
the damage is initiated in the bottom layers, whereas in thick specimens, the damage is
initiated in the top layers. As a result of the stresses induced by the hemispherical impactor,
fiber breakage is expected in the top plies. The impact damage in the bottom layers is
mainly dominated by delamination due to bending stresses, which does not cover the
whole thickness of the composite [22,23]. For a given impact energy, the delamination
area is expected to be proportional to the bending stiffness mismatching coefficient be-
tween the matrix and reinforcements. Therefore, high mismatching coefficients are to
be expected when the difference between young’s moduli in the fiber and matrix direc-
tions is important [24]. Scatter amplitudes and scatter directivity distributions depend
on the delamination size to wavelength ratio and the through-thickness location of the
delamination damage. This effect is often studied by bonding masses to the surface of
composite laminates in order to simulate delamination damage [16]. Different techniques
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and approaches have been used in order to model the propagation of ultrasonic guided
waves within impacted composite plates. Zhang et al. proposed a modelling that com-
bines low-velocity impact damage with the analysis of guided wave propagation, where
delamination and matrix cracking are both directly meshed in the guided-wave model [25].
However, different types of damage could be created when composites are submitted to a
low velocity impact. Indeed, impact damages in CFRP structures include delamination,
shear cracks, transverse cracks, etc., which makes the precise modelling of all these micro-
damages difficult [26–28]. The complexity of the multiple scattering phenomena, local
resonances, etc., makes the use of a physical approach important and more realistic. Indeed,
the effective medium approximation offers a good opportunity to simplify the modeling of
complex media, where the inhomogeneous medium can be considered as homogeneous
with effective properties. An application of the homogenization approach in the case of a
strongly scattering medium can be found in the following references [29–32].

This work investigates the directivity pattern of the scattered field of incident A0
guided wave by the impact damage and provide much more material and a more in-
depth study in connection with new experimental results to our previous contribution [33].
Unlike most of the studies in the literature, the damage zone considered in this paper is not
across the full width of the laminates. Therefore, the three-dimensional (3D) characteristics
of the damage zone are presented and used in a 3D frequency domain finite element
model [34] to simulate the scattering phenomenon of fundamental incident A0 Lamb mode
sent towards the damaged zone. The latter has been modeled as a right, circular, conical-
shaped geometry with decayed material stiffness properties. Instead of only studying
the backward and/or forward scattering [35], the present work investigates the scattering
characteristics in different directions, where the frequency of the incident Lamb mode is
chosen below A1 cut-off. It is found that in composite plates, the directivity of scattered A0
mode depends on the defect diameter to wavelength ratio, and on the through thickness of
the conical damage as well. The numerically predicted scattered wave fields are compared
with experiment measurements showing good agreement. Finally, the numerical finite-
element-based-scattering characteristics is discussed for different geometrical parameters
with a view towards modeling impact damage using conical-shape geometry with decay
material properties.

2. Composite Plate and Material Characterization

The CFRC composite plate sample consists of 20 plain weave pattern laminas of
0.3 mm thickness each oriented in [45/0/0/45/0/45/0/45/0/45]S directions. The average
thickness of the 50 × 50 cm2 composite plate is approximately 6.2 mm. The homogenized
elastic moduli are optimized by matching them with the experimental group velocities of
A0 and S0 Lamb modes for a given set of frequencies and the through thickness ultrasonic
bulk wave velocities. The schematic of the composite plate as well as the measurement
directions of the excited Lamb waves are shown in Figure 1. The homogenized composite
plate is transversely isotropic (quasi-isotropic) with Y-axis as axis of symmetry. The A0
and S0 Lamb wave velocities are measured around the emitter (shown in red dot) along
different angular positions and in a straight line from the emitter (shown in green and blue
dots respectively) in XZ-plane. Velocities were found to be unchanged for all directions in
the considered frequency range, namely 10 kHz–150 kHz. Under the transversely isotropic
condition, the inversion method was performed by fitting the analytic group velocity
dispersion curve with the experimental group velocities corresponding to A0, S0 and SH0
modes as well as bulk ultrasonic waves generated around the abovementioned frequency
domain. The density ρ of the plate is first measured as 1.55 ± 0.05 g/cm3. The elastic
constant C22 (along Y-axis) is obtained by measuring the longitudinal wave velocity along
Y-axis where VL = 2860 ± 10 m/s, which gives C22 = V2

L ∗ ρ = 12.6 GPa. The measured
shear wave velocity propagating along Y-axis and vibrating in Z-axis is found to be equal
to VT = 1550 ± 10 m/s giving the elastic constant C44 = V2

T ∗ ρ = 3.72 GPa. The group
velocity related to SH0 wave is found to be equal to 3300 ± 100 m/s. The value of the
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constant C13 is then adjusted in the dispersion curve to achieve the same velocity, where
C13 is found to be equal to 17.8 GPa. On the other hand, the group velocity of S0 Lamb
mode at 100 kHz is 5700 ± 100 m/s and the one corresponding to A0 mode at 40 kHz is
1500 ± 100 m/s. The speed of A0 mode primary depends on the constant C44, which is
obtained using the abovementioned shear wave velocity VT. The speed of S0 mode (at
100 kHz) depends on the constants C11 and C12, whose optimization is essential to the
constant C55, where C55 = 1/2 * (C11-C13) in the case of a transversely isotropic symmetry.
The constants C11, C12 (or C23) are optimized using the S0 wave velocity. It is observed that
a linear increase of C11 (keeping other constants fixed) will result in a linear increase in
the group velocity of S0 mode while a linear increase of C12 (or C23) will result in a linear
decrease in the group velocity of S0 mode (keeping other constants fixed). The change
in C12 from 2 GPa to 10 GPa results in a linear decrease from 5800 to 5000 m/s in the
group velocity of S0. The values of C11 and C12 are adjusted to fit the measured velocity of
5700 m/s. The optimized values of the stiffness tensor are given in Table 1.

Table 1. Homogenized elastic properties of the carbon fiber reinforced composite plate.

ρ (g/cm3) C11 (GPa) C22 (GPa) C33 (GPa) C12 (GPa) C13 (GPa) C23 (GPa) C44 (GPa) C55 (GPa) C66 (GPa)

1.55 ± 0.05 52.4 ± 2% 12.6 ± 2% 52.4 ± 2% 3.1 ± 2% 17.8 ± 2% 3.1 ± 2% 3.7 ± 2% 17.3 ± 2% 3.7 ± 2%

Transmiter
Receiver positions 

90°

270°

0°
180°

X

Y

Z

Figure 1. Schematic for measuring group velocities of A0 and S0 Lamb wave modes.

Frequency dispersion curves corresponding to phase velocities are computed using
the semi-analytic finite element (SAFE) method for the composite plate using the optimized
elastic constants given in Table 1 and shown in Figure 2. Finally, we note that the attenuation
is determined by measuring the amplitude variation for a given propagation distance in the
far field. Measurements have shown that for the same propagation distance, the amplitudes
of the considered fundamental Lamb modes decrease by approximately ~12% regardless
of the direction of propagation, which corresponds to ~0.13 Np/m.
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Figure 2. Optimized phase velocity dispersion curves corresponding to 6.2 mm-thick composite plate.

3. Impact Damage Setup and Ultrasonic C-Scan

A controlled laboratory experiment is performed to create point impact damage on
the given sample plate as shown in Figure 3. The impact tests are carried out using an
Imatek IM10 ITS drop tower with a capacity of 4000 Joules according to the ISO standard
[ISO standard 6603-2, 2000]. The test is carried out using a falling mass in the form of
a trolley with a mass of 8 kg fitted with a hemispherical impactor with a diameter of
20 mm. The composite plate is fixed inside a metallic part with an open area for impact. An
anti-bouncing device is implemented to avoid a second shock, which could further damage
the structure at a random energy. In order to obtain the desired energy, the drop height
is changed. The specimen is placed in a compressed air clamping system on a circular
support with an internal diameter of 40 mm and an external diameter of 60 mm in order
to hold the specimen during the impact. The quantities measured, using sensors, are the
impact force as well as the displacement of the falling mass. Then, the energies, initial (Ei),
absorbed (Eabs) and restored (Er), are post-processed thanks to the displacement–time and
effort–displacement graphs. Preliminary impact tests were carried out on similar composite
plates in order to create a non-visible damage. We have found that 40 J of impact energy is
sufficient to damage the plate without penetrating through, where damage is not visible
on the impact side and barely visible on the other side.
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Figure 3. Experiment setup for controlled impact damage of energy equal to 40 Joule.

Immersion c-scan ultrasonic images are obtained using 5 MHz longitudinal pulses
propagating through the composite plate. The ultrasonic c-scan image is obtained using a
pulse-echo configuration, where gates 1 and 3 correspond to the front and back wall echoes
as presented in Figure 4a. The c-scan image shown in Figure 4b is performed on the basis of
the change in the back-wall amplitude of the ultrasonic wave, which drops in the presence
of damage. Indeed, the defect area appearing in blue color indicates that the 40-joules
point-impact test creates a damaged area of ~30 mm diameter around the impact point. In
the literature, the conical-shape cavity has been found in different contributions during
the impact tests performed on composites. Indeed, the overall damage pattern through
the thickness in composite materials follows a conical shape as found by [35–37]. The
size of the defect region as well as the involved damage mechanisms depend on the used
impactors (hemispherical, conical, etc.) and on the composite characteristics as well. The
use of hemispherical impactors was found to produce larger delamination areas compared
to a conical impactor in laminates [23]. For instance, Lee et al. [38] showed that the different
impactor shapes produced different damage mechanisms, which directly affect the energy
absorption characteristics of the material. This result was also confirmed by Zhou et al. [39].
Using a metallographic microscope, Shyr et al. found that the structure of the fibers affects
the delamination pattern and size [40]. Since the composite studied is transverse-isotropic,
we can reasonably suppose, on the basis of the presented ultrasonic c-scan imaging as
well, that the structure of the fibers in our case affect the delamination in an isotropic way.
The 3D finite elements (3D-FE) model will then reasonably consider a damage area with a
conical geometry and the same diameter, the value of which is equal to 30 mm according
to the c-scan image.
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(a) 

(b) 

Figure 4. (a) A-Scan signals corresponding to the reflection of a longitudinal ultrasonic wave at the
defect position of the impacted CFRC plate; (b) C- Scan image based on the A-scans performed at
intact and damaged regions of the CFRC plate. The amplitude of the back-wall echo is strongly
decreasing in the damaged area. The damage was found to be ~30 mm wide.

4. Impact Damage Shape and Modeling in 3D-FE Model

Due to point impact damage and based on the ultrasonic imaging, the composite
plate is seriously micro-cracked inside the impact damaged zone. In order to model the
damage zone in 3D-FE model, we can reasonably assume that a uniform point impact in
the quasi-isotropic plate would produce a damage zone, the shape of which would be
a right circular cone due to the impact conditions and the transversely isotropic nature
of the plate. Damage in composites is a collection of various types of cracks of different
characteristics (matrix voids, delamination, broken fibers, etc.), depending on the applied
stress and the composite architecture. At the time when the strength can be clearly defined
in metals (ex. unstable growth of a crack at the origin of the brittle fracture), failure in
composite materials is still an active research topic, which often generates lively debates in
the scientific community [41].
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The development of a simple modeling method can be proposed when the wave-
length of a Lamb wave is at least one order of magnitude greater than the microscopic
defects created within the composite. In such a case, the homogenization procedure of the
elastic properties can be expressed through a degradation of the elastic properties. In the
literature [42], it has been observed that a decay of 80% in the elastic properties is quite
representative of a severely cracked and delaminated zone, in terms of wave scattering. The
choice of 80% decay in the material stiffness rather than other smaller values is motivated
by the fact that the damaged zone in FE model is considered as a homogeneous medium
with mass density equal to that of undamaged material (unchanged thickness), although it
would likely be a heterogeneous region made of cracks, voids and delamination, which are
known to be efficient scatterers of elastic waves. In the present FE model, we considered an
80% decrease in the material stiffness properties within the cracked zone, which is modeled
as a right circular cone with height (h) and diameter (2 r). Finally, note that it was not
possible through the ultrasonic imaging experiment to see how deep the damage occurred
penetrating the plate through the thickness from the above surface. However, as the impact
did not penetrate through the whole thickness, and for comparison with experimental data,
the undamaged thickness below the conical damage is considered to be ~1 mm from the
bottom surface of composite plate. Finally, we note that the effect of the damage depth on
the scattering of the A0 mode will be presented in the present contribution.

5. 3D FE Model and Schematic of the Problem

To simulate the dynamic response of the viscoelastic composite plate in 3D, a com-
mercially available numerical analysis package Comsol Multiphysics [43] based on the
Finite Element method is used. Preliminary tests on guided waves dispersion curves
were performed using the abovementioned software and revealed that all simulations
matched well with the theory and also agreed fairly well with experiments [44]. In the
proposed simulations, the PDE mode in coefficient form is used to model the composite
plate, and Neumann boundary conditions have been applied on all faces of the plate. At
the interface between the conical damage zone and the composite plate, the continuity of
stress and displacement is used to solve the numerical model. Besides, one external routine
is developed for computing normal displacement fields at the midplane around the point
impact zone in a circular region at 360 different angular positions. The equation of the
dynamic equilibrium for orthotropic viscoelastic material, with nine complex moduli, is
written and solved in the Fourier domain in the 3D FE model as: [13]

3

∑
j, k,l=1

Cikjl

[
∂2uj

∂xk∂xl

]
+ ρω2ui = 0, i = 1, 2, 3, (1)

where ui is the Fourier transform of the components of the displacement vector u, with
i = 1, 2, 3, representing the direction of the coordinate axis as shown in Figure 5. Here Cikjl
is the component of the complex stiffness tensor, ρ is the material density and ω is the
angular frequency. The above partial differential equations (PDE) have been written in the
following form as: [13]

∇(c∇u)− au = 0 (2)

where c is a 3 × 3 matrix. For an orthotropic material, the axis of symmetry coincides with
the coordinate axis, and this matrix is composed of the following sub-matrices ckl, k, l = 1, 2,
3 as shown is Equation (3): [13]
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c11 =

⎛⎝ C11 0 0
0 C66 0
0 0 C55

⎞⎠, c12 =

⎛⎝ 0 C12 0
C66 0 0
0 0 0

⎞⎠, c13 =

⎛⎝ 0 0 C13
0 0 0

C55 0 0

⎞⎠,

c21 =

⎛⎝ 0 C66 0
C21 0 0
0 0 0

⎞⎠, c22 =

⎛⎝ C66 0 0
0 C22 0
0 0 C44

⎞⎠, c23 =

⎛⎝ 0 0 0
0 0 C23
0 C44 0

⎞⎠,

c31 =

⎛⎝ 0 0 C55
0 0 0

C31 0 0

⎞⎠,c32 =

⎛⎝ 0 0 0
0 0 C44
0 C32 0

⎞⎠, c33 =

⎛⎝ C55 0 0
0 C44 0
0 0 C33

⎞⎠,

(3)

The expression of ‘a’ is written as:

a =

⎛⎝ −ρω2 0 0
0 −ρω2 0
0 0 −ρω2

⎞⎠ (4)

where Cij are the elastic moduli. As the 3D-FE model consists of modeling the propagation
in the frequency domain, absorbing regions are used all around the plate to avoid undesired
reflections. The absorbing regions (AR) in the 3D model are defined by a gradual increase
of damping properties as explained in [45], where its formula is written as,

CAR
ij = C′

ij

(
1 + i ∗

(
Ra
La

)3
)
+ i ∗ C′′

ij , Cij = C′
ij + iC′′

ij (5)

Here, ‘Ra’ and ‘La’ are the interval and length of absorbing region respectively. The
size of the AR used in this FE model is 1.5 λMAX, where λMAX is the maximum wavelength
for all modes existing in the plate in the studied frequency range. The full schematic of the
3D-FE model is shown in Figures 5 and 6. According to this configuration, the schematics
of the laboratory experiment are shown in Figure 7. Since the frequency of the incident
Lamb wave mode is chosen below the A1 cut-off, λMAX is the wavelength of the S0 mode
at the frequency of interest.

Figure 5. Schematic of the 3D-finite element model.
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Figure 6. Schematic of the considered positions of excitation and reception in the model and experiments.

Figure 7. Schematic of the experimental setup for measuring the out-of-plane amplitude of the A0 mode.

It is observed in the phase velocity dispersion curves in Figure 2 that the higher wave
mode A1 starts to appear right after 120 kHz. Accordingly, the excitation frequency of
100 kHz is chosen to avoid the appearance of higher-order Lamb modes. At 100 kHz, the
wavelengths of A0 and S0 modes are equal to 13.9 mm and 57.7 mm, respectively. Therefore,
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the size of the AR is considered equal to 87 mm (≈1.5 × 57.7) all around the four sides of
the 3D-FE model.

6. Interaction of A0 Mode with Impact Damage and Comparison between Numerical
Predictions and Experiment

To compute the scattered displacement field of the incident A0 mode sent towards the
impacted zone, two different 3D-FE models are developed. At first, a 3D-FE model, taken
as a reference, consisting of an undamaged plate, is solved to compute the incident wave
field corresponding to the A0 mode. The second 3D FE model, which takes into account
the conical defect representing impact damage, is solved to compute the total wave field of
the incident A0 mode. The incident field computed from the first model is then subtracted
from the total wave field computed from the second model to obtain the complex scattered
wave field of incident A0 mode. In both undamaged and damaged cases, the dimensions
of 3D-FE models are equal to 300 mm × 300 mm × 6.2 mm. The excitation of the pure A0
mode is achieved by giving the unit normal stress at a single frequency (in out of phase
manner) using two circular regions, with diameters equal to 13 mm, placed on the opposite
sides of the plate and centered at points (110, 0, 110) and (110, 6.2, 110) as shown in Figure 6.
The reference model contains 724,365 tetrahedral mesh elements with 3,132,252 degrees of
freedom that makes at least four elements per wavelength along the thickness of the plate
and at least four elements along the XZ plane insuring good convergence and accuracy of
the FE solution. For the validation of the FE model with the experiment, the model is first
solved for a Gaussian profile sinusoidal signal with seven cycles centered at a frequency of
100 kHz by inserting its respective complex Fourier amplitudes as normal stresses on both
sides of the plate for 63 different frequencies running between 76 kHz and 123 kHz. After
solving the FE model using a linear solver with Lagrange quadratic elements and applying
Neumann boundary conditions, the excitation and reception of signals are performed
using the inverse Fourier transform of the normal components of the displacement at (110,
6.2, 110) and (210, 6.2, 210), respectively. These two points are separated by a distance of
142 mm. The reconstructed signals of excitation and reception predicted by the FE model
are shown in red in Figure 8. Some angular signals around the center at (150, 6.2, 150) are
also reconstructed and are shown in Figure 9. The latter figure shows that the amplitude at
225◦ is the highest and that the ones corresponding to the symmetrical positions at (180◦

and 270◦) and (0◦ and 90◦) have lower amplitudes and are equivalent. Since our study only
deals with the scattering of amplitude, all 3D-FE models are solved for a single excitation
frequency of 100 kHz to save computation time and cost. The amplitude of the incident
A0 mode, i.e., the normal component of the displacement vector ‘vinci’, is monitored at
the mid plane (at y = 3.1 mm), where 360 positions around a circle centered at (150, 3.1,
150) with a radius equal to 20 mm are considered. The center position corresponding to
excitation and the center of the monitoring circle causes an incident angle of 225◦ in such
an arrangement of the sensors as shown earlier in Figure 6. The numerically computed
normalized incident field in the absolute value (shown in solid line) is shown in Figure 10.
In the second FE model (damaged case), impact damage is introduced as a right circular
cone with a diameter of 30 mm and a depth of 5.2 mm eep, with 80% decayed material
stiffness. The top tip of the conical geometry is situated at (150, 6.2, 150) and at a depth
reaching 5.2 mm through the thickness of the plate. In the presence of impact damage, the
3D-FE model contains 794,937 tetrahedral mesh elements in total with 3,419,892 degrees
of freedom. The maximum mesh element size inside and around the impact zone is set
to 1 mm while the remaining area is set to be at least 4 mm per wavelength. The model
is solved for the same incident frequency of 100 kHz using the same linear solver with
Lagrange quadratic elements and applying Neumann boundary conditions. The total field
(i.e., the normal component of the displacement vector ‘vtot’) from the 3D-FE model is
monitored at the mid plane around the same circular path at 360 positions at a distance of
20 mm from the center of the damaged zone. The numerically calculated normalized total
field in absolute value (shown in solid line) is shown in Figure 11. The amplitude of the
scattered A0 wave ‘vscat’ around the impacted zone is calculated as the absolute difference
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of the complex magnitudes (vscat = |vtot–vinc|) at each point between the reference and the
damaged state for all 360 monitored points around the circle. The normalized absolute
difference of the scattered A0 mode is shown in Figure 12.

Figure 8. Comparison between reconstructed signal from the FE model and experimental measure-
ments for two positions 142 mm apart.

Figure 9. Reconstructed signal from the FE model at some angular positions 20 mm away from the
center of impact damage.
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Figure 10. Experimental measurements and numerical predictions of the incident A0 mode propagat-
ing in the intact CFRC plate.

Figure 11. Experimental measurements (dashed) and numerical predictions (solid) of the total
displacement field of A0 mode propagating in the impacted CFRC plate.
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Figure 12. Directivity pattern of the scattered field of the A0 mode deduced from total displacement
fields on intact and damaged CFRC plates (See Figures 10 and 11).

The laboratory experimental setup (shown in Figure 7) for measuring the incident and
total fields of the incident A0 mode includes the same Gaussian profile sinusoidal signal
with seven cycles centered at a frequency of 100 kHz (the same as that used in the FE model)
where excitation and reception are performed via two identical transducers (PanametricsTM

V106). Acoustic field amplitudes are monitored at 32 different positions around the circle
for intact and damaged plates. A LabviewTM code is programmed along with MatlabTM

to store and process the experimental measurements. The transmitter is attached to the
composite plate with the help of a thermal resin. It is very difficult to generate a pure A0
mode in the laboratory. Indeed, when a pulse is sent towards the transmitter to generate
the A0 mode, a small portion of the S0 mode (shown inside the dotted circle in Figure 8)
is also being excited. With S0 being three times faster than A0, one can easily choose the
propagating distance to avoid any overlapping between the generated modes. Furthermore,
the ratio of amplitudes between S0 to A0 is around 4%, which suggests neglecting the S0
contribution, in accordance with the literature [25]. Therefore, the received mode will be
almost a pure A0 mode with negligible interference of the S0 mode. A comparison between
the reconstructed signals from the FE model and the experimental measurements (shown
in red color) for same distance of 142 mm is shown in Figure 8. Indeed, by considering
12% attenuation into the 3D-FE model, the simulated amplitudes are found to be in good
agreement with the experimental amplitudes for the A0 mode. We also note a difference in
simulated and experimental signals between ~225 μs and ~250 μs. The latter could be a
consequence of the homogenization of the elastic properties corresponding to the different
layers of the composite, which appears more clearly in the case of small wavelengths i.e.,
A0 mode. However, these minor discrepancies have a very limited effect on the estimation
of the amplitude of the A0 mode as it can be observed in Figure 8. For the undamaged
plate, the measured incident amplitudes (blue circles) are normalized and compared with
the simulated normalized incident amplitudes (solid line) as shown in Figure 10. The latter
shows that the scattered field remains symmetrical in terms of directivity and amplitude
with respect to the direction 225◦. For the damaged plate, the total displacement field is
measured at the same 32 points to make the comparison possible. The normalized measured
amplitude of the total field (blue circles) and simulated total field amplitudes (solid line)
are shown in Figure 11. The directivity behavior of the measured total displacement fields
is similar to simulations using the 3D-FE model. The A0 scattered wavefield clearly shows
the impact-induced damage area where the amplitude in the damaged area is considerably
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higher than in the intact area. Furthermore, the A0 scattered wavefield is also direction
dependent. The existing slight difference between simulated and measured total fields
may be due to the considered geometrical and stiffness properties of the damaged zone in
the 3D-FE model, which can be slightly different from the ones of the real impacted plate.
However, one should note that the small discrepancy in the forward directions between
simulated and experimental data has already been observed and was attributed to bonding
considerations between the layers [14]. Nevertheless, the symmetry of the directivity along
45◦–225◦ in measured total field amplitudes reinforces the hypothesis of a homogeneous
distribution of the elastic properties as predicted numerically inside the conical damage.
Furthermore, the scattered field is obtained by considering the absolute difference between
the total and the incident wave fields. The numerically calculated normalized amplitude of
scattered A0 is shown in Figure 12. It is noted that the maximum scattered amplitude is
towards the 45◦ direction i.e., in the direction of the incident A0 mode. It is also found that
there exist two positions near 30◦ and 60◦, where the amplitude of the scattered A0 mode
is very small as compared to the 45◦ direction. The scattered field is symmetric along the
225◦–45◦ direction, which corresponds to the direction of the wave vector of the generated
guided wave.

7. Influence of the Damage Depth and Size on the Scattering Directivity Pattern

This section deals with the numerical study to observe the effect of the geometrical
size of conical damage on the scattered wave fields in the case of an incident A0 mode.
For this purpose, two different studies have been performed. The first study considers
the effect of the through-thickness variation (depth of the cone) on the scattered fields of
the incident A0 mode while fixing the diameter at 30 mm in order to conform with the
impact test presented earlier. Four different models with different depths of damaged
zones equal to 1/4, 1/2, 3/4 and 1 of the total thickness, i.e., 1.55, 3.1, 4.65 and 6.2 mm, are
considered in the 3D-FE models, respectively. The schematic of the different depths is
shown in Figure 13a. The four different models are solved for the same incident A0 mode
(100 kHz) using the same properties of the FE model as explained earlier in Section 5. The
normalized scattered field corresponding to the A0 mode is shown in Figure 13b in the case
of the abovementioned depths. In all four cases of through-thickness depths, it is observed
that there is a negligible amplitude scattered between 120◦ and 330◦ angles towards the
anticlockwise direction. For the first three cases of through-thickness depth equal to 1/4, 1/2

and 3/4, the maximum scattered amplitude is towards the 45◦ direction and the extent of the
scattered field gets narrow for increasing through-thickness depths of the conical damage.
It is also noted that with the increase in through-thickness depth, side lobes start to appear
in the scattered displacement field amplitudes and increases with the increase in depth.
In the case of all through-thickness depth i.e., for depth equal to 6.2 mm, the side lobes
have more scattered amplitude towards 80◦ and 10◦ directions. In this case, the maximum
scattered amplitude is not towards the 45◦ direction but is oriented toward the side lobe
directions. In all four cases, the directivity diagrams are found to be almost symmetrical
along the 225◦– 45◦ direction due to the isotropic nature of the plate in the XZ plane (and
symmetrical geometry of the damage). The variation of amplitude of the scattered A0
mode with through-thickness depths of the conical damaged zone in the direction of 45◦ is
shown in Figure 14. The amplitude increases with the increase of depth until half the total
through-thickness and then starts decreasing and decreases to the minimum value at all
through-thickness depths. With this scattered field information for a fixed diameter of the
damaged zone, one can gain an idea about the depth of the conical damage zone inside the
composite plate. According to the literature, the micro-cracks due to impact damage (ex.
matrix cracks) mainly contribute to the scattering of the wavefield in the damage region.
The delamination reshapes the wavefield in the damaged and undamaged regions. In
particular, it was found that the contribution of the delamination in the scattered wavefield
is ~50% higher than the one corresponding to the matrix cracks [25].
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(a) 

 
(b) 

Figure 13. Effect of the conical depths: (a) Schematics of four different through-thickness depths (1.65 mm: red, 3.1 mm:
black, 4.65 mm: green and 6.2 mm: blue), (b) normalized scattered amplitudes A0 mode for different depths.

235



Appl. Sci. 2021, 11, 7276

Figure 14. Effect of the through thickness of the conical defect on the scattered A0 mode towards the
45◦ direction.

In the second case, the effect of the aspect ratio (2 r/λ) on the scattered wave fields is
studied, where r is the radius of the cone and λ is the wavelength of the A0 mode. The
study is performed by taking a through-thickness depth equal to 5.2 mm. Four different
3D-FE models with aspect ratios equal to 1/2, 1, 3/2 and 2, respectively, have been solved.
The schematic for different aspect ratios is shown in Figure 15a. The numerically calculated
normalized scattered field for different aspect ratios is shown in Figure 15b. In all four
cases, the maximum scattered amplitude of A0 mode is towards the 45◦ direction. It is
observed that as the aspect ratio increases, the extent of scattered wave fields gets narrow
in size. For an aspect ratio equal to 1/2 (shown in solid line), the angles of the minimum
scattered amplitude are near ~120◦ and ~330◦. For the case of an aspect ratio equal to 2,
the angles of minimum scattered amplitudes are near ~20◦ and ~ 70◦. Except for the aspect
ratio of 1/2, the scattered field along the direction 120◦ towards 330◦ (in anticlockwise
manner) is negligible. The size of the extent of the scattered field can give information
about the size of the base of the conical defect. From the scattering directivity pattern, one
can have an idea about the base size of the conical damage inside the composite plate,
once the through-thickness depth is known. Finally, the variation of amplitude of the
scattered A0 mode with respect to aspect ratios in the direction of 45◦ is shown in Figure 16.
It is observed that with the increase in aspect ratio, the amplitude of scattered field also
increases. In real experiments, it is naturally expected that the increase of the impact energy
will simultaneously increase the depth and width of the damage area. According to the
literature, as the damage area increases, the delamination and matrix crack contributions
in the scattered wavefield will then increase with the same proportions in most directions.
The contribution of the delamination is expected to be more important and the wavefield
possesses a larger amplitude on the transmission side than in the reflection side [16,25,46].
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Figure 15. Effect of aspect ratios (2 r/λ): (a) Schematics for four different aspect ratios (0.5: red, 1:
green, 1.5: black, 2: blue), (b) normalized scattered amplitude of A0 mode.
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Figure 16. Variation of amplitude of scattered A0 mode with respect to aspect ratio (2 r/λ) towards
45◦ direction.

8. Conclusions

In this paper, we have explored the possibility of modeling impact damages as a
conical shape geometry with decayed stiffness properties in a homogeneous CFRC plate.
This work is mainly motivated by the fact that scattering characteristics of Lamb waves in
composites are more complicated than the scattering at defects in isotropic plates. The de-
veloped 3-dimensional finite element method allowed to determine the scattering pattern
of an incident A0 Lamb wave in intact and impacted CFRC plates, where the excitation
frequency was set below the A1 cut-off frequency. Besides, the numerically predicted scat-
tered displacement fields were compared with the experimental measurements performed
on CFRC plates with the same characteristics. A comparison between reconstructed signals
from the FE model and experimental measurements allowed us to validate the model
and to study the effect of different geometrical configurations (through-thickness depths
and diameters of the base) of a conical damaged zone on the scattering diagrams. Results
revealed that scattering directivity of the displacement field significantly depends on the
depth and width of the conical damage created during the point-impact of the composite.
Indeed, on the basis of the results, the scattering amplitude is maximum when the aspect
ratio is beyond one and the depth of the impact damage is half the thickness of the com-
posite. However, the detection of impact damage with a small aspect ratio and a relatively
small depth (~0.3 or ~0.4) seems to be more difficult. The scattering physical insight at the
impact-damaged area provided by the above-presented results can be used to optimize the
monitoring of composite structures by improving the transducers’ location in connection
with the involved Lamb mode(s). This work also showed that the study of backward scat-
tering is not always possible. Indeed, results revealed that backward scattering is smaller
in amplitude than the forward scattering and its amplitude is only important in the case of
a small aspect ratio. Finally, we note that the post-impact damage study performed herein
can be extended to include uncertainties related to the structural and mechanical properties
of the composite. Indeed, the uncertainties we have taken into account are essentially
related to the velocities (position and time of flight). Under the transversely isotropic
condition, the optimized elastic constants as well as their uncertainties are determined by
fitting the analytic group velocity dispersion curve with the experimental velocities. At the
wavelength scale, the considered elastic constants include the average properties of the
constituents of the composite as well as the defects therein such as micro-porosities, etc.
This can affect the results obtained when the wave propagates in certain directions, espe-
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cially those where the defects are most present. However, we note that taking uncertainties
into account in the modeling is beyond the scope of this work. Indeed, the main objective
of this contribution is to study the interaction of the A0 mode with a conical impact defect.
Taking into account uncertainties is extremely expensive, computationally, in view of the
large number of required analyses and requires the development of a specific study [46,47].
Indeed, the complex structure of composites and their manufacturing processes create dif-
ferent sources such as fiber waviness, ply wrinkling, machine tolerance, etc., which can be
at the origin of uncertainty [48,49]. The statistical nature and distribution of imperfections
in composites requires therefore the development of simulations, which are able to take into
account the complexity of the material and perform calculations in reasonable times [50].
In that sense, Monte Carlo sampling methods are often used in different configurations
aiming at reducing the calculation time while performing the uncertainty propagation
analysis [47,51]. Other techniques based, for instance, on a metamodel approach [52,53]
or a unified uncertain analysis approach [54] or else [55–58] can also be used. At present,
there is still a need to develop an exact solution in the case of insufficient input data to
determine the influence of uncertain elastic elements on the propagation of guided elastic
waves, especially in the presence of damage in light of the work of Peng et al. based on
the use of data-driven polynomial chaos expansion [59]. Indeed, a generalization and/or
extension of our approach depends on such a development in order to perform reliable
quantitative detection of damage created by impacts in isotropic and anisotropic composite
structures with complex geometries.
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Abstract: The work presents a structural health monitoring (SHM) electronic system with real-time
acquisition and processing for the determination of impact location in laminate. The novelty of this
work is the quantitative evaluation of impact location errors using the Lamb wave guided mode
S0, captured and processed in real-time by up to eight piezoelectric sensors. The differential time
of arrival is used to minimize an error function for the position estimation. The impact energy is
correlated to the amplitudes of the antisymmetric (A0) mode and the electronic design is described to
avoid saturation for signal acquisition. The same electronic system is designed to acquire symmetric
(S0) low level signals by adequate gain, bandwidth, and signal-to-noise ratio. Such signals propagate
into a 1.4 mm thick aluminum laminate at the group velocity of 5150 m/s with frequency components
above 270 kHz, and can be discriminated from the A0 mode to calculate accurately the differential
arrival time. The results show that the localization error stabilizes at a value comparable with the
wavelength of the S0 mode by increasing the number of sensors up to six, and then remains constant
at up to eight sensors. This suggests that a compromise can be found between sensor density and
localization error.

Keywords: real-time electronics; structural health monitoring; Lamb wave; piezoelectric sensors;
impact localization; ultrasonic guided waves

1. Introduction

Structural health monitoring (SHM) has been the subject of different studies in the
non-destructive testing (NDT) field aiming to identify the location of an impact point
using piezoelectric sensors. Many plate-like geometries made in fiber-reinforced composite
(CFRP) or aluminum—commonly used in aerospace structures—are suitable to support
the guided propagation of ultrasound-guided waves over long distances; for plate-like
structures a few mm thick we refer to extensional and flexural modes of Lamb waves. The
possibility of identifying damage on a structure by piezoelectric sensor systems allows for
the determination of its integrity, thus reducing downtime and maintenance costs. SHM is
important because, by continuous monitoring, it permits real-time detection of damage
in a structure, particularly of safety-critical components typical of the application of such
compounds in aircrafts [1–5]. A real-time SHM system with a network of passive sensors
was proposed to detect low- and high-impact events. For each event, the conversion of
kinetic energy into propagating ultrasonic guided waves occurs and acoustic emission (AE)
localization methods can be applied using piezoelectric transducers. Once a localization is
performed, the SHM system can be switched to the active mode operation to investigate a
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restricted area around the estimated impact position. An array of sensors and real-time
multichannel electronic processing are the enabling technologies for the application of
SHM in aerospace, energy conversion, transportation, and automotive industries.

In the literature, different strategies for locating impact positions using Lamb waves
were investigated with reference to the extraction of the differential time of arrival (DToA).
Tobias in [6] used a triangulation technique; Ciampa and Meo in [7] evaluated the DToA
with an algorithm based on continuous wavelet transform (CWT); Shukri Mohd et al.
in [8] used a method based on wavelet transform analysis and modal location (WTML)
with four sensors; Shenxin Yin et al. in [9] used eight sensors bonded in a Z-shaped
arrangement. While CWT allows more sophisticated signal processing for the separation
of the flexural and extensional dispersive modes, in a multisensory system with several
nodes simpler solutions—like the first arrival signal detection with threshold method or
short-time Fourier transform (STFT)—must also be considered. The latter requires less
computational resources than CWT but does not permit the trade-off between the arrival
time and spectral content.

For complex three-dimensional structures, analysis of the DToA, relative to propaga-
tion along multiple paths, is not straightforward and is thus difficult to determine with
analytical models. In these cases, multiple sensors and artificial intelligence (AI) are often
used; for example, the system based on neural networks presented by Worden et al. [10]
used up to 17 sensors. Carrino et al. [11,12] proposed an innovative method based on
nonlinear Lamb waves for locating disbonds in single-lap joints that uses PZT signals
processed with a baseline-free algorithm and the localization of artificial defects placed
inside the area, delimited by four PZT sensors.

Other strategies for locating impact positions, without knowledge of the characteristics
of the material under test, are also reported in [13,14]. In a previous work, Kundu et al. [14]
presented a study that considered different shapes of the wave front generated during
an acoustic event and developed a methodology to localize the acoustic source in an
anisotropic plate from those wave front shapes: an elliptical wave front shape-based
technique was developed first, followed by the development of a parametric curve-based
technique for non-elliptical wave front shapes. This methodology does not assume a
straight-line wave propagation path and can predict the source location without any
knowledge of the elastic properties of the material; however, this study reported only
a theoretical approach without the development of a real-time system to validate the
proposed technique.

In [15], the authors of this work presented a guided-wave ultrasound SHM system
based on linear arrays of interdigital piezopolymer transducers bonded to a composite
pressure vessel for spacecrafts. In that system, interdigital transducers were adopted
to perform both damage assessment and impact detection/localization using a simple
fixed-threshold technique. In a related research development [16], the authors presented a
novel approach to estimate the DToA between the impact response signals collected by a
triplet of sensors, overcoming the limitations of classical methods that rely on amplitude
thresholds calibrated for a specific sensor type. Finally, in [17] is proposed a simple
laboratory procedure based on a set-up with a pair of sensors that are symmetrically
placed with respect to the impact point to estimate the uncertainty of the DToA and the
propagation velocity.

In this work we have upgraded the real-time electronic system reported in [15] that
allows for the accommodation of analog front-end electronic characteristics thanks to its
modular design; different sensor types (piezoceramic, piezocomposites, and piezopoly-
mers) need custom analog front-ends (AFE) to match their electrical impedance, sensitivity,
and bandwidth. In this work, we designed and implemented 16 new receiver boards
to collect information of the propagated extensional S0 mode Lamb waves thanks to the
improved bandwidth, adjustable gain, and signal-to-noise ratio. This new feature allowed
us to overcome the limitation of using information for the localization carried by the higher
level, but slower, A0 mode. The detection of small amplitude (mV-10 mV) S0 mode signal
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with threshold method simplifies the electronic design with benefits also to power con-
sumption and rapid event detection. As observed in [18,19], A0 mode propagates on longer
paths with low attenuation but at lower propagation velocity and exhibits dispersion
phenomena in the low-frequency range. Such characteristics complicate the interpretation
of the impact-generated signals, especially considering large structures and multiple reflec-
tions from boundary, where in many cases S0 is preferred. Moreover, the importance of
sensor networks for aircraft SHM was reported in [20], considering the large dimensions
and the trade-off between system performance, reliability, and cost.

The study presented in this paper differs from previously cited works because the aim
was not to present the best method or technique for locating impact positions, but to report
the analysis of errors on impact localization (see Section 2) using real-time electronics;
this paper also evaluates the influence of the number of passive PZT sensors used (see
Section 3) on the position error. The real-time electronics can also acquire multiple impacts
on the same point for statistical analysis. We present the results of experimental tests with
low-energy impact on a 1.4 mm thick aluminum plate using Physik Instrumente P-876.SP1
piezoceramic transducers, varying the number of channels from four to eight. The signals
were then used to find the minimum of a cost function for the localization of the impact and,
therefore, the evaluation of the positioning error relative to the size of the investigation area
and the number of passive channels used. Finally, to help the reader in finding selected
topics we include, a list of acronyms used in this paper.

2. Impact Detection and Localization

Considering a plate-like structure, a point impact on the surface will determine a
mechanical response in the form of elastic waves of various natures propagating outward
from the point of contact. Our work focused on detecting low-energy impacts (from 35
to 600 mJ) that did not result in permanent damage to the aluminum plate. Low-energy
impacts are of interest for laboratory testing of system prototypes because they are non-
destructive, while larger energy (>1 J) impacts are used for real-life SHM applications. The
implication of sensor choice, regarding sensitivity and impact energy, is discussed in the
next section.

In general, it is possible to detect the location of an impact event by measuring the
DToAs of the elastic response wave front to a set of three or more sensors with knowledge
of their position (xi, yi) on a planar structure. Using these data, the impact location can
be numerically triangulated. Our system estimated the DToA of impact-generated elastic
waves using a simple amplitude threshold thanks to the remarkable (better than 70 dB)
signal-to-noise ratio (SNR) of the analog front-end.

The developed system performed impact detection by running in passive (listening)
mode, i.e., by continuously sampling the transducer signals in a circular buffer, while
waiting for a triggering event (a threshold-crossing) to occur. This threshold level (six times
the root-mean-square noise level) had to be verified during the experimental tests to avoid
spurious triggering, while maintaining a good sensitivity to low-energy impacts. As the
data acquisition hardware detected an impact threshold-crossing event, it immediately
froze the circular buffer and transferred the data to the acquisition system.

We defined a region of interest (ROI) of the aluminum plate equal to 250 mm × 240 mm
(see Figure 1). This area was divided into a uniform grid of points spaced 1 mm apart
with coordinates (xp, yp) for the subsequent analysis. For each of those points, the impact
localization algorithm processed the received signals to extract the differential DToAs and
calculated the value of the error function E(xp, yp) [15–17]. Once the error function (1) was
calculated for the whole grid, the impact point was assigned by the absolute minimum
error value criterion. The error function E(xp, yp) presents a minimum and has a mono-
tonic behavior. In such cases, one can extrapolate a best-guess position of the impact by
calculating the centroid of the points having a value within 1% of the absolute minimum.
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The choice to use a grid of points spaced 1 mm apart was a good compromise between
the accuracy of estimation of the impact point and the necessity to elaborate signals in
real-time and immediately show the results on a PC display.
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Here NT is the total number of installed sensors whose positions are defined by the
coordinates Pi = (xi, yi) and Pj = (xj, yj). The corresponding measured time of flights for
each sensor are ti and tj, respectively.

Figure 1. The 1.4 mm thick aluminum plate with 8-sensor arrangement (red squares). The picture
also indicates the ROI (yellow area) and the area outside the ROI (black area) that corresponds to the
aluminum laminate’s dimensions.

3. Experimental Set-Up and Electronic Equipment

This section describes the electronic system designed for SHM application using
multiple sensors in passive mode. The system can also be switched automatically to active
mode for damage assessment using interdigital transducers as reported in [15].

3.1. Electronic Instrument Design for SHM Evaluation

The main architecture and design of the electronic instrument developed as part of
this work has been presented in [21]. The instrument consists of a 16-channel device fully
programmable in active or passive modes of operation. One of the main characteristics
of this electronic system is the real-time acquisition and processing of ultrasonic signals
received by 16 channels, which is an advantage in research of sensor layouts with more
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than 3 or 4 channels; the latter being quite a common experimental situation made available
with use of a digital oscilloscope.

For the passive operation mode treated in this work, we designed 16 new receiver
boards that easily replaced the previous ones thanks to the modular architecture of the
system. A block-scheme of the new board is shown in Figure 2. The input attenuator
is a fundamental block to adjust for different sensor sensitivities and impact energies.
For example, impacts with 10 to 100 mJ of energy can be monitored with the 6.5 mm
PVDF circular type (see [16,17]), producing voltage signals in the range of 100 mV to
1 V, while the highest sensitivity of piezoceramic sensors, such as the Physik Instrumente
P-876.SP1, allows monitoring of signals up to 300 mVpp from the low-energy impact
hammer or free-falling sphere typically used during non-destructive laboratory tests. The
piezoceramic material of these types of sensors has a high electromechanical coupling
factor and high sensitivity.

Figure 2. (Left) Piezoceramic sensor PI_876.SP1. Piezopolymer (PVDF) sensor protected by a white
adhesive label and electrical connections on a PCB. (Right) Circular element of 6.45 mm diameter
shown by the red circle on the CAD drawing.

The two different types of piezoelectric sensors used are shown in Figure 2, and their
signal output amplitude was measured by direct connection to a digital oscilloscope; the
comparison of the amplitudes is reported in Figure 3 for different impact energies from 0 to
45 mJ. In Figure 3, we can observe different energy values, U = m × g × h, corresponding
to the same value of mass, m, and acceleration due to gravity, g, of the impacting steel
sphere: these different values were obtained according to the above relationship by varying
the falling height, h.

These amplitudes are relative to the peak amplitude of the large A0 mode which is
generated by the impact and has low-frequency components, typically below 50 kHz as
predicted by Ross in [22]. The data reported in Figure 3 are important in making a decision
as to the programmable threshold value depending on the expected impact energy. In this
way, the real-time electronics capture the signals with a predefined minimum energy and,
thanks to the programmed pre-trigger time, the signal trace also contains the information
of signals preceding the large A0 mode. This is a relevant feature of the electronic system
because higher frequency components of the A0 and S0 propagate at higher velocities, as
explained in Section 4.

The electronic analog front-end (AFE) (see Figure 4) is mainly composed of a pro-
grammable input attenuator (from 0 to −20 dB), a unity gain buffer based on an LF347 op
amp, a non-inverting amplifier with voltage gain of 25 dB based on an LM6172 op amp,
and a band pass filter (BPF). The BPF is designed to obtain an active (op amp LM6172)
second-order Bessel HPF with the cut-off frequency (fc1) equal to 270 kHz at −3 dB, and
a passive first-order LPF with the cut-off frequency (fc2) equal to 800 kHz at −3 dB. The
last filtering block was inserted to limit the in-band noise; the noise measurements of the
output of the analog chain with a standard 50-ohm input impedance for two different
prototype boards are reported in Table 1.
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Figure 3. Peak voltage from impacts on the aluminum laminate generated by steel balls with mass
ranging from 2 to 8.5 g in free-fall. The sensitivity of the two different sensors (see Figure 2) can
be compared by the output voltages: the PVDF sensor amplitudes were multiplied by a constant
factor, 20, to allow for comparison with the trend of the PZT amplitude. We can observe the good
correlation between impact energy and output voltage.

 

Figure 4. The block-scheme of the new design of the receiver board.

Table 1. Vrms output noise of the front-end channel with input impedance 50 Ω and attenuator
selected at 0 dB.

Vrmsout Front-End #1 Vrmsout Front-End #2

Zin = 50 Ω 1 m V 1 m V
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These values are adequate considering the low-voltage analog-to-digital converter
(ADC) has 12-bit resolution and an input dynamic of 3.3 V present on the electronic
platform. Moreover, we observed that the programmable attenuator is necessary to limit
the input signals in the AFE chain to avoid saturation and to protect the first amplifier from
large signals exceeding the allowable common mode range at the operating frequency.

The main difference, with respect to the previous version [21], is the versatility of the
receiver, which can be programmed to receive ultrasonic impact signals that in general
include S0 and A0 modes. This makes it possible to receive higher frequencies, up to
270 kHz, with high signal-to-noise ratio (10 dB), to analyze S0 Lamb modes that propagate
at higher velocities, with respect to A0 modes, and with lower amplitude.

An example of the output signal after the analog processing stage is shown in Figure 5.
The fast S0 mode and the high-frequency component of the A0 mode are now present in the
signal. The early S0 mode signal is used later for the calculation of DToAs for the impact
localization by triangulation algorithm.

 
Figure 5. Comparison between original signal and filtered signal with high-pass second-order filter,
with cut-off frequency 270 kHz followed by a 25-dB gain amplifier (see Figure 4). The signals were
normalized and the distance between the impact point and the sensor was 10 cm. The two ultrasonic-
guided modes A0 (marked by blue box) and S0 (marked by red oval) are well discriminated with
high SNR.

3.2. Experimental Set-Up

In Figure 6 (right), the main blocks and connection of the SHM system are described.
The main characteristics of the data acquisition system are listed below.
Programmable parameters:

• VGA gain from 54 to 90 dB to adjust for different sensor sensitivities
• High voltage, up to 100 V, for active mode operation
• Square wave burst (1–16 cycles), up to 500 kHz, for active mode operation

Data acquisition system characteristics:

• 12-bit resolution
• 16 channels at 20 MSps
• Storage: 1 MS per channel

The main components of the block diagram for the data acquisition system are the:

(1) sensor layout installed on the plate-like structure, coordinate reference system, and
impact point markers (#1, #2, #3, #4, #5, etc.),

(2) signal-conditioning electronics,
(3) multichannel VGA with ADC evaluation module (Texas Instruments AFE5851EVM,

Dallas, TX, USA), and
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(4) Spartan-6 FPGA evaluation card (Xilinx SP605).

The experimental set-up adopted is reported in Figure 6 (left), where only 8 out of
16 channels were programmed for passive monitoring of impacts. Figure 6 (left) shows
the low-energy hammer impactor in the center of the aluminum plate where the eight
piezoelectric sensor arrangement was placed. The eight sensors were placed along the
perimeter of the ROI (see Figure 1) and their arrangement is shown in the experimental
results section below.

The high number of sensors were also able to reveal impacts outside the ROI, up to
the full size of the aluminum plate. The four edges of the aluminum plate were covered
by colored play dough (see the colored edges in Figure 6) to avoid spurious reflections
of the ultrasonic signal due to the edges. This simple method turned out to be necessary
to manage boundary reflection due to the free edges of the plate for estimation of impact
position carried out outside of the ROI. The problem concerning multiple reflections from
the plate edges can also be addressed by selecting a time according to the geometry of the
plate-like structure [17]. More clever algorithms exploit, also, the information retrieved by
multiple reflections from boundaries to minimize the number of sensors installed on the
structure [23].

 
 

Figure 6. Experimental set-up with the eight piezoceramic transducers attached with a bi-adhesive tape to a 1.4 mm
aluminum plate, shown in the bottom of the figure, and the real-time electronic acquisition system, shown in the top. In the
center of the plate, the low-energy hammer impactor is visible. The figure also shows the colored play dough covering
the edges of the aluminum plate; this method was adopted to attenuate the signals received from multipath. Reproduced
from [24].

The next section reports the analysis of different errors obtained for different impact
points (inside and outside the ROI) and for different numbers of channels used to find the
minimum of function (1).

4. Experimental Results

The new custom real-time acquisition system was tested in a series of low-energy
impact loading experiments so as to not damage the laminate. The aim of those experiments
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was to verify the actual capabilities of the SHM system (i.e., the localization accuracy)
processing signals acquired from different numbers of sensors.

The fundamental symmetric (S0) and anti-symmetric (A0) group velocity dispersion
curves for an aluminum plate with thickness of 1.4 mm are shown in Figure 7. These curves
were obtained with the LAMB MATLAB toolbox GMM calculator. From Figure 7 we can
evaluate the propagation velocity of the S0 mode. This value was used to solve Equation (1).
For our experiments we considered the propagation velocity v = 5150 m/s, corresponding
to a frequency of fS0 = 650 kHz, which falls into a frequency range where the dispersive
behavior of S0 mode is negligible but still retains a small wavelength v/fS0 = 8 mm.

 

Figure 7. Viewgraph showing the calculated S0 and A0 group velocity dispersion curves for an
aluminum plate with thickness of 1.4 mm.

We performed three impacts: impact P1 with position xi = 190 mm, yi = 150 mm,
performed inside the ROI, delimited by sensors; impact P2 with position xi = 193 mm,
yi = 32 mm, performed outside the ROI; and impact P3 with position xi = 200 mm,
yi = 40 mm, performed outside the ROI.

In Figures 8–13 we report the results for impacts inside and outside the ROI.
In detail, Figure 8 shows the performance of the acquisition system detecting impact

point P1 and processing the signal acquired by only four sensors: Rx1, Rx3, Rx5, and Rx7,
whereas Figure 9 shows the result obtained by detecting impact point P1 and processing the
signal acquired by all eight sensors (Rx1–Rx8). The estimated position of the impact point
obtained by processing signals acquired by only four sensors (P1′-1 point) is also reported
in Figure 8, whereas Figure 6 shows the estimated position of the impact point obtained by
processing signals acquired by all sensors (P1′-2 point). To evaluate the trade-off between
sensor density of an SHM system and error in impact localization, we processed the signal
acquired by six sensors Rx1, Rx2, Rx3, Rx5, Rx6, and Rx7, and the estimated position of the
impact point (P1′-3 point) is reported in Figure 10.
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Figure 8. Position of impact P1 (red circle) inside the ROI with coordinates xi = 190 mm, yi = 150 mm.
The detected impact position P1′-1 (red star) with coordinates xp = 196 mm, yp = 134 mm was
obtained by processing the ultrasonic signals acquired by only four sensors (Rx1, Rx3, Rx5, and Rx7).
Reproduced from [24].

 

Figure 9. Position of impact P1 (red circle) inside the ROI with coordinates xi = 190 mm, yi = 150 mm.
The detected impact position P1′-2 (red star) with coordinates xp = 192 mm, yp = 141 mm was obtained
by processing the ultrasonic signals acquired by all sensors (Rx1–Rx8). Reproduced from [24].
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Figure 10. Position of impact P1 (red circle) inside the ROI with coordinates xi = 190 mm, yi = 150 mm.
The detected impact position P1′-3 (red star) with coordinates xp = 196 mm, yp = 142 mm was obtained
by processing the ultrasonic signals acquired by six sensors (Rx1, Rx2, Rx3, Rx5, Rx6, and Rx7).

Figure 11. Zoom of results shown in Figures 8–10. The illustration reports the real impact point P1
(red circle), the detected impact points P1′-1, P1′-2, and P1′-3 (red stars) together with the points 1%
above the minimum of the error function (blue dots). Reproduced from [24].

Results shown in Figures 8–10 are summarized in Figure 11.
In general, the installation of sensors is based on several constraints imposed by the

target structure, while the impact event position is more unpredictable. It is, therefore,
worthwhile analyzing impacts outside of the ROI. The full size of the area of the aluminum
plate (500 mm × 500 mm) was divided into a uniform grid of points spaced 1 mm apart
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with coordinates (xp, yp). Figures 12 and 13 show the results obtained by processing the
signals acquired from all sensors in the cases of impacts P2 and P3 outside of the ROI.

From Figures 8–11 we can observe that the accuracy of the localization of the impact
coordinates is better using eight sensors, compared with using four sensors, but the analysis
with six sensors could be a good compromise between sensor density and the error obtained
in impact localization. With the eight sensor analysis the localization error was 2 mm for
the x-axis and 9 mm for the y-axis, whereas when processing signals acquired by six sensors
the error was 6 mm for the x-axis and 8 mm for the y-axis.

 

Figure 12. Position of impact P2 (red circle) outside the ROI. The detected impact position P2′ (red
star) with coordinates xp = 202 mm, yp = 22 mm was obtained by processing signals acquired by all
sensors. Reproduced from [24].

Figure 13. Position of impact P3 (red circle) outside the ROI. The detected impact position P3′ (red
star) with coordinates xp = 205 mm, yp = 32 mm was obtained by processing signals acquired by all
eight sensors.
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Figures 12 and 13 demonstrate the ability of the electronic system to reveal, also,
impacts outside the ROI with a good accuracy: in both cases, the error in the evaluation of
x-axis and y-axis impact point coordinates was less than 10 mm.

Another observation concerns the placement of sensors. In several real applications, it
is not possible to install the sensors on the vertices of regular geometric shapes (squares,
circles, hexagons, etc.) and thus positions are decided according to these, and other,
constraints. From Figures 8–13 we can observe the position of the eight sensors that are
symmetrical along the x-axis (Rx1, Rx3, Rx4, Rx5, Rx7, and Rx8) but non-symmetric along
the y-axis (Rx2 and Rx6): these results demonstrate that the calculated impact point is
well-identified even in cases of non-symmetric positions of sensors.

The resulting estimates of the three impacts P1, P2, and P3 are summarized in
Tables 2–4, respectively. The errors of the impact localization are reported in as a per-
centage with respect to the dimension of the monitored area, i.e., 500 mm.

Table 2. Estimated impact positions obtained for impact P1′ with coordinates xi = 190 mm,
yi = 150 mm.

Predicted
Impact

Estimated
Position

Positioning Error Error = Positioning Error/500 mm %

P1′-1 x = 196 mm
y = 134 mm

6 mm (x-axis)
16 mm (y-axis)

1.2%
3.2%

P1′-2 x = 192 mm
y = 141 mm

2 mm (x-axis)
9 mm (y-axis)

0.4%
1.8%

P1′-3 x = 196 mm
y = 142 mm

6 mm (x-axis)
8 mm (y-axis)

1.2%
1.6%

Table 3. Estimated impact position obtained for impact P2′ with coordinates xi = 193 mm, yi = 32 mm.

Predicted
Impact

Estimated
Position

Positioning Error Error = Positioning Error/500 mm %

P2′ x = 202 mm
y = 22 mm

9 mm (x-axis)
10 mm (y-axis)

1.8%
2.0%

Table 4. Estimated impact position obtained for impact P3′ with coordinates xi = 200 mm, yi = 40 mm.

Predicted Impact Estimated Position Positioning Error Error %

P3′ x = 205 mm
y = 32 mm

5 mm (x-axis)
8 mm (y-axis)

1.0%
1.6%

5. Discussion and Final Remarks

This study presents an analysis of errors in impact location with different numbers
of channels (from 4 to 8), connected to piezoelectric sensors on an aluminum plate and
front-end electronics capable of detecting the early arrival signals of the S0 mode. Impacts
were carried out inside and outside of the defined ROI of the plate. To neglect the boundary
reflections of the ultrasonic signal due to the free edges of the plate, an adhesive rubber
was used with the aim of simulating a semi-infinite space outside the area delimited by
the sensors. The DToA were obtained by the threshold method with real-time electronics.
The results of the experiments explained well the compromise between sensor density of
an SHM system and errors in impact location: the best accuracy was obtained with eight
sensors, covering an area of 500 mm × 500 mm in the aluminum laminate, but a good
compromise between sensor density and the error in impact localization was detected when
the acquired signal was processed by six sensors—obtaining an error comparable with the
assumed wavelength of the S0 mode equal to 8 mm. We found that the error was below
3.2% and slightly better for the x-coordinate, which is probably due to a systematic error in
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sensor reference coordinates. The main benefit of the AFE designed for this application
is the possibility to select the best signal processing chain to avoid input saturation, with
large energy impacts generating 1 to 10 Vpp amplitudes and retaining high SNR, in excess
of 72 dB, in the 270–800 kHz bandwidth. We also point out that a certain redundancy in
the number of sensors is always useful when considering the possible failure of single
channels. Finally, thanks to the programmable configuration of up to 16 channels, this
criteria for the selection of optimal sensor density will be investigated also on CFRP plates
with the same sensor layout to account for the variability of velocity in composite laminates
in different directions.
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Abstract: The change of acoustic velocity in the human thorax reflects the functional status of the
respiratory system. Imaging the thorax’s acoustic velocity distribution can be used to monitor the
respiratory system. In this paper, the feasibility of imaging the human thorax using ultrasound
traveltime tomography with a supervised descent method (SDM) is studied. The forward modeling
is computed using the shortest path ray tracing (SPR) method. The training model is composed of
homogeneous acoustic velocity background and a high-velocity rectangular block moving in the
domain of interest (DoI). The average descent direction is learned from the training set. Numerical
experiments are conducted to verify the method’s feasibility. Normal thorax model experiment proves
that SDM traveltime tomography can efficiently reconstruct thorax acoustic velocity distribution.
Numerical experiments based on synthetic thorax model of pleural effusion and pneumothorax
show that SDM traveltime tomography has good generalization ability and can detect the change of
acoustic velocity in human thorax. This method might be helpful for the diagnosis and evaluation of
respiratory diseases.

Keywords: thorax imaging; ultrasound traveltime tomography; supervised descent method

1. Introduction

Ultrasound imaging is widely used in industrial and biomedical imaging. Industrial
imaging is important in nondestructive evaluation (NDE) [1]. It can be used to evaluate the
health of material [2–5]. The information of liquid flow can also be obtained by ultrasound
imaging [6–8]. In the medical field, ultrasound imaging is widely used for its low-cost,
portability, radiationless, and real-time compared with other imaging methods, such as
computed tomography (CT) and magnetic resonance imaging (MRI). Ultrasound is applied
to imaging heart [9–11], liver [12,13], brain [14–16] and many other human parts [17].
In most cases, ultrasound imaging is realized by transmitting ultrasound at megahertz into
the human body and analyzing the reflected signal. However, this workflow is hard to
implement in thorax imaging, because complex reflection and refraction occur at the lung-
pleura interface and among the millions of alveoli inside the lungs, resulting in both chaotic
and low-energy reflected signal [18]. In addition, the high frequency will cause severe
attenuation, resulting in the reflected signal’s low signal-to-noise ratio (SNR). Current
thorax imaging methods include X-ray [19], CT [20], MRI [21], and electrical impedance
tomography (EIT) [22]. Microwave thorax imaging is still in the research stage [23]. These
methods all have limitations. The radiation from CT and X-rays is harmful to human health.
The equipment of MRI is not portable and its imaging quality is not that good because of
the air in the lung. The resolution of EIT and microwave imaging is relatively low.

Though the reflected signal can hardly be used for thorax imaging, it contains informa-
tion about the thorax state. B-lines are suggested to originate as ring-down artifacts from
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irregularities at the lung–pleura interface, which contains information inside the thorax
and correlates with a variety of respiratory diseases [24]. However, the results obtained
from B-lines remain qualitative, subjective, and suboptimal [25]. In addition, information
in the frequency domain can be used to diagnose pulmonary fibrosis quantitatively [25].
Ultrasound can also be used to monitor the states of the respiratory system, see [26–28].
In addition to reflected signal, transmission signal can be applied to thorax examination.
Transmission signal is the signal that propagates through the human thorax. Acoustic
wave can permeate human thorax as long as the frequency is low enough. According to
Rueter et al. [29], the propagation of acoustic wave in human thorax shows three distinct
bands according to frequency. Sound of frequency around 1 kHz can propagate in human
thorax at velocity of 30–50 m/s. At this band, the thorax model is established and verified
by simulations and experiments, see [30,31]. The feasibility of diagnosing pulmonary dis-
eases using sound at this band is also researched, see [32,33]. Sound of frequency between
1 and 10 kHz is hard to permeate thorax. Ultrasound with frequency between 10 kHz
and 750 kHz can permeate human thorax at velocity of about 1500 m/s. An ultrasound
at this band permits monitoring of the human respiratory system. The transmission ultra-
sound signal can be analyzed directly for diagnosing lung diseases, see [34,35]. In addition,
the transmission ultrasound signal can be used to conduct traveltime tomography. This
method is successfully implemented on breast imaging, see [36,37]. So far, to the best
knowledge of the authors, traveltime tomography for thorax has not been well studied.

Ultrasound traveltime tomography reconstructs the acoustic velocity distribution
from the measured time of the signal traveling from transmitter to receiver. This method
is widely used in geophysics. It is robust at low SNR situations [38,39] and can miti-
gate the challenge aroused by the complexity of ultrasound propagation in complicated
media [40,41]. The acoustic velocity is sensitive to the contents of gas, liquid, and their
distribution, because their acoustic velocity differs a lot. Thus, it is possible to measure the
amount of gas and fluid in the thorax by reconstructing the acoustic velocity distribution,
which is crucial in the diagnosis of many diseases [42,43].

Machine learning techniques develop quickly in recent years and it has been widely
used in inverse problems. One of the reasons for its popularity is that, through the training
process, lots of work can be completed offline, which makes the online predicting process
simple and efficient. Supervised descent method is one of these techniques, which is
firstly used in face alignment [44]. The average descent direction of the cost function is
learned from the training process and used to update the model in the online predicting
process. The time-consuming matrix inversion in traditional gradient-based method is no
longer needed. Previous studies show that SDM performs well in imaging, such as 2D
magnetotelluric imaging [45], microwave thorax imaging [46], EIT thorax imaging [47],
and corrosion imaging [48].

In this paper, we study the feasibility of imaging human thorax using ultrasound
traveltime tomography with SDM. Numerical experiments based on normal thorax model
and synthetic patient thorax model are conducted. The remaining of the paper is organized
as follows. In Section 2, the overview of the forward modeling is described. In Section 3,
details of traveltime tomography with SDM are discussed. In Section 4, our method is
compared with the traditional gradient-based inversion method and its ability to detect the
change of acoustic velocity distribution is tested.

2. Forward Modeling for Computing Traveltime

Forward modeling computes traveltime between the transducer T and the receiver R
with the given acoustic velocity distribution. The traveltime can be computed as

t =
∫ R

T

1
v(x)

dl (1)

where v is the velocity, x is the position, and dl is the differential length [49]. This non-linear
function can be solved by the shortest path ray tracing (SPR) method based on Fermat’s
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principle. Fermat’s principle says that the ultrasonic wave travels along the path that takes
the shortest time. SPR converts computing traveltime into finding single-source shortest
path in a graph, which can be solved by the Dijkstra algorithm. According to [50], SPR
divides the DoI into rectangular elements. Acoustic velocity is defined on the element,
which means the velocity in an element is a constant. Nodes are defined on the boundary
of elements. Two nodes are connected only when they belong to the same element and are
not located on the same element boundary. Figure 1 is an example. The area is divided into
2 × 2 = 4 elements, see the dashed squares. Three nodes lie on one edge of the elements.
The solid lines are the connections between nodes.

Figure 1. Example of element and possible ray path. Dashed lines: element boundaries. Solid lines:
node connections.

The weight of the connection between two nodes is defined as the quotient of their
distance and the velocity of the element they belong to. With nodes, connections and
weight of connections, an undirected graph is established. Assume t and r is the closest
nodes to T and R. Naturally, the shortest path between T and R is the path with the lowest
weight between t and r, and the traveltime is the path’s weight. The forward modeling can
be formulated as:

d = F(m) (2)

where d is the traveltime data, m is the model including distributions of acoustic velocity
and positions of the transducers. With the acoustic velocity distribution, the graph can
be constructed. Then, the transducers are assigned to the nodes that are closest to them
and the traveltime between them can be calculated by F(·), which is the operator of
forward modeling. F(·) calculates traveltime for each transmitter–receiver pair using
Dijkstra algorithm.

3. Traveltime Tomography with SDM

3.1. Formulations of Inverse Problem with SDM

Solving the inverse problem is an optimization process to find the best m that mini-
mizes the loss function. The loss function of this problem is defined as

L(m) = ‖dobs − F(m)‖2 (3)
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where dobs is the real traveltime data. The Gauss–Newton method can be used to solve this
optimization problem [51]. The update of the model can be calculated as

Δm =
(

JT J
)−1

JT(dobs − F(m)) = K(dobs − F(m)) = KΔd (4)

where J is the Jacobian matrix of F(m) and K =
(

JT J
)−1

JT is a mapping from Δd to Δm.
The element of Jacobian matrix Jik tells us the change in the ith data point (traveltime)
due to a unit change in the kth model parameter (acoustic velocity). In this problem, Jik
is non-zero only when the ith path goes through the kth element, and it has an analytical
form as

Jik = − sik

v2
k

(5)

where sik is the length of the ith path within the kth element. v2
k is the acoustic velocity

of the kth element. The update direction K contains the local information of F near m.
The calculation of K is the key step in Gauss–Newton method, which is also the most
time-consuming step, because the calculation of J and matrix inversion take a lot of time.
SDM introduces an alternative approach to compute K in a shorter time.

In SDM, K is calculated offline in advance. From Equation (4), the optimization of
Equation (3) can be converted to minimize the following function:

S = ‖Δm − KΔdobs‖2 (6)

The size of Δm and m is nele × 1, where nele is the number of elements in the grid,
which is also the number of unknowns to be solved. The size of dobs is nd × 1, where nd is
the number of traveltime data we use. The size of K is nele × nd.

We assume that the real model m is in the space expanded by N reference models
mi

prior(i = 1, 2, · · · , N). The corresponding traveltime is di
prior. Then, an average update

direction K̃ is calculated by minimizing

STr(K̃) = N

∑
i=1

∥∥∥Δmi
prior − K̃Δdi

prior

∥∥∥2
(7)

where
Δmi

prior = mi
prior − m0 (8)

Δdi
prior = di

prior − d0 (9)

and m0 is an initial guess of the real model m and d0 = F(m0). The process of computing
K̃ offline is called training.

3.2. Offline Training Process

In the training process, the initial model m0 is chosen as homogeneous background.
The training set Mprior contains N training models. Equation (7) can be written in matrix
form as

STr(K̃) = ∥∥∥ΔM − ΔDK̃T
∥∥∥2

(10)

where

Mprior =

⎡⎢⎢⎢⎢⎢⎣
m1

prior
T

m2
prior

T

...
mN

prior
T

⎤⎥⎥⎥⎥⎥⎦, M0 =

⎡⎢⎢⎢⎣
m0

T

m0
T

...
m0

T

⎤⎥⎥⎥⎦, ΔM = Mprior − M0 (11)
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and

Dprior =

⎡⎢⎢⎢⎢⎢⎣
d1

prior
T

d2
prior

T

...
dN

prior
T

⎤⎥⎥⎥⎥⎥⎦, D0 =

⎡⎢⎢⎢⎣
d0

T

d0
T

...
d0

T

⎤⎥⎥⎥⎦, ΔD = Dprior − D0 (12)

Here, the size of ΔM is N × nele and the size of ΔD is N × nd. K̃ is a nele × nd matrix.
Because forward modeling of traveltime tomography is non-linear, it takes several

iterations to minimize STr and learn K̃. The prediction also computes in a iterative way [52].
Thus, in the kth training iteration we have

STr
k
(
K̃
)
=
∥∥∥ΔMk − ΔDkK̃T

k

∥∥∥2
(13)

where
ΔMk = Mprior − Mk (14)

ΔDk = Dprior − Dk = Dprior − F(Mk) (15)

To minimize Equation (13), pseudo-inverse can be applied as

K̃T
k =

(
ΔDT

k ΔDk

)−1
(ΔDT

k ΔMk) (16)

With the update direction K̃, the model in the (k + 1)th iteration is

Mk+1 = Mk + ΔDkK̃T
k (17)

In practice, the difference between D and Dprior decreases rapidly. To stablize the
training process, a regularization procedure is introduced [46]. Equation (16) becomes

K̃T
k =

(
ΔDT

k ΔDk + αI
)−1

(ΔDT
k ΔMk) (18)

where α is proportional to the largest singular value of ΔDk and I is the identity matrix.
Normalized model misfit is checked every iteration for validating training, which

defined as

RmsM(Mk) =
‖ΔMk‖∥∥Mprior

∥∥ (19)

3.3. Online Predicting Process

The online predicting process is to minimize the following function after offline training:

SPr(Δm) =
∥∥Δm − K̃Δdobs

∥∥2 (20)

With the model update direction K̃ obtained from offline training process, we can
directly minimize Equation (20) as follows:

mk+1 = mk + K̃(dobs − F(mk)) (21)

However, traveltime tomography is a ill-posed problem. The result obtained from
Equation (21) might have artifacts. Here, Tikhonov regularization is applied to mitigate the
ill-posedness [53]. New objective function can be written as

SPr
R (mk+1) = P(mk+1) + αvRv(mk+1) + αhRh(mk+1) (22)

where
P(mk+1) =

∥∥mk+1 − mk − K̃k(dobs − F(mk))
∥∥2 (23)

261



Appl. Sci. 2022, 12, 6763

Rv(mk+1) =
‖dobs − F(mk)‖

‖dobs‖
∫

Ω

(
|∇vmk+1|2 + δ2

k

)
dr (24)

Rh(mk+1) =
‖dobs − F(mk)‖

‖dobs‖
∫

Ω

(
|∇hmk+1|2 + δ2

k

)
dr (25)

δ2
k =

‖dobs − F(mk)‖2

‖dobs‖2Δ̂
(26)

Rv and Rh are regularization terms along vertical and horizontal direction and they are
proportional to the data misfit. Δ̂ is a positive real parameter related to the mesh size [54].
At the begining of the inversion, the data misfit is large and the regularization terms are
strong, which prevents the appearing of extreme values and helps to converge to a better
model. As the iteration goes on, the data misfit decreases and the model is closed to the
local optimal model, regularization terms becomes weak and the model converges faster.

Equation (22) can be minimized directly as follow:

∂SPr
R (mk+1)

∂mk+1
= 0 (27)

We have
mk+1 = A−1

k+1bk+1 (28)

where

Ak+1 = I +
‖dobs − F(mk)‖

‖dobs‖
(

αv∇T
v ∇v + αh∇T

h ∇h

)
(29)

bk+1 = mk + K̃k(dobs − F(mk)) (30)

Equation (28) is used to update the model every iteration during the inversion.

4. Numerical Experiments

In this section, details of the test domain and thorax model, settings of the training
set and various numerical experiments will be discussed. In numerical experiments, our
method is tested on a normal thorax model and synthetic thorax model of patients with
respiratory diseases. It is also compared with the traditional gradient-based method on
normal thorax model. All the numerical experiments are carried out with MATLAB R2020a
on the same computer with Intel i5-6500 CPU, 32GB RAM.

4.1. Description of the Test Domain and Forward Modeling

The size of the test domain is 28.5 cm in length and 19 cm in width, and we divide
it into 57 × 38 elements with length of 5 mm. The thorax model is shown in Figure 2,
containing lung, heart, rib, spine, etc. [55]. The acoustic velocity of each tissue can be
checked in [56]. The velocity of primary tissues in the thorax model is shown in Table 1.
The blue background area is set to be water. The 22 black points mark the positions of the
transducer. The transducer is labeled counterclockwise and the top-middle transducer in
Figure 2 is the first one. Each transducer serves as the transmitter in turn and others serve
as receivers. Totally 22 × 21 = 462 sets of traveltime data are obtained.

Table 1. The acoustic velocity of primary tissues in the thorax model.

Tissue Acoustic Velocity (m/s)

Heart 1561
Lung (deflated) 1500

Bone (cancellous) 2117.5
Bone Marrow (yellow) 1371.9
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Figure 2. The thorax model in [55], containing lung, heart, rib, spine, etc. It is 28.5 cm in length and
19 cm in width. The blue background is set to be water. The black points around the thorax are where
the transducers placed. The transducer is labeled counterclockwise and the top-middle transducer is
the No. 1 transducer.

The number of nodes nnodes on each edge of the element during the offline training
process and online predicting process is chosen to be 3. nnodes will influence the accuracy of
the forward modeling and the time it takes. Increasing the number of nodes will improve
the accuracy but at the same time increase the computation time. We calculate the traveltime
data with nnodes = 1, 2, . . . , 7. The computation time for the forward modeling is shown in
Figure 3a. We choose the traveltime obtained with nnodes = 7 as the standard and calculate
the relative error. Here, we plot the relative error of the traveltime data obtained from
transmitter No. 6 in Figure 3b.

(a) (b)

Figure 3. (a) Computation time of the forward modeling versus nnodes. (b) The relative error of the
traveltime data from transmitter No.6. The standard is the traveltime data obtained with nnodes = 7.

When nnodes = 3, the relative error of each data point is almost smaller than 0.01, which
is small enough. If we keep increasing nnodes, the decrease in the relative error is small,
while the increase in the computation time is large. The computation time of nnodes = 4
is almost twice as long as nnodes = 3. In consideration of both efficiency and accuracy,
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we choose nnodes = 3. In addition, in order to avoid inverse crime, the traveltime data
used for inversion in the following numerical experiments computed by SPR method is
obtained from the grid with nnodes = 5, because increasing nnodes is equivalent to using a
higher-resolution grid for forward modeling.

The distribution of the traveltime data obtained from normal thorax is shown in
Figure 4. Maximum traveltime data are less than 180 μs. The median is 101.58 μs and
its position is marked by the red line. To further avoid inverse crime, zero-mean white
Gaussian noise with σ = 2 μs is added to the data.

Figure 4. The distribution of 462 traveltime data. Maximum traveltime data is less than 180 μs.
The red line marks the position of the median, which is 101.58 μs.

Then, we compare the traveltime data obtained from SPR method with the data
obtained from k-Wave simulation [57]. We check tissues’ density and attenuation coefficient
in [56]. The thorax model is upsampled to 114 × 76 and put into a 128 × 128 domain with
grid size of 2.5 mm. The timestep is set to be 0.25 μs and the simulation lasts for 500 μs.
Gaussian waveform input signal is assigned to the transmitter and the rest transducers
serve as receivers. We apply the Akaike information criteria (AIC) method to extract
traveltime from the received waveform [58]. The transmitted waveform from transmitter
No. 9 and the received waveform from receiver No.15 are shown in Figure 5. The position
of the marker is calculated using AIC method. The distance between the two positions
indicates the traveltime of the signal, which is 155.75 μs. The computed traveltime using
the SPR method with nnodes = 3 is 155.99 μs, which agrees well with the k-Wave simulation.
The absolute value of the difference between the traveltime data computed by the SPR
method and the k-Wave simulation is shown in Figure 6. Most are smaller than 2.5 μs,
which verifies that the SPR method is accurate and can be used to compute traveltime in
thorax imaging.
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Figure 5. The transmitted waveform and the received waveform from transmitter No. 9 and receiver
No. 15. The blue line is the received waveform corresponding to the left blue scale. The yellow line
is the transmitted waveform corresponding to the right yellow scale. The position of the marker is
calculated using AIC method, which marks the waveform is received/transmitted. The difference of
the two positions is the traveltime of the signal, which is 155.75 μs.

Figure 6. The absolute value of the traveltime data difference between SPR method with nnodes = 3
and k-Wave simulation. Colorbar: 0–4.5 μs.

4.2. Details of the Training Set and the Training Process

When using the traditional gradient-based method to solve the traveltime tomography
problem, the key step is computing the Jacobian matrix and the inverse of the Hessian
matrix. However, only elements traversed by paths can be sensed in the traditional method.
Usually, only few elements are traversed, which means the Hessian is generally sparse and
hard to invert. In a traditional method, computing the inverse of Hessian needs the help
of regularization and is time-consuming. To solve these problems, information of all the
elements is added to the training set and the average descent direction is learned offline,
which makes the online predicting fast and stable.

The training set is composed of a homogeneous low-velocity background (1500 m/s)
and a high-velocity rectangular block (2200 m/s). The block has two sizes (4 × 8 and 8 × 4).
The block moves one element at a time and covers the whole DoI (38 × 57) to make sure
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that all the elements in the DoI are sensed. When moving to the edge of the DoI, the part of
the block out of the region is cut. Totally (38 + 7)× (57 + 3) + (38 + 3)× (57 + 7) = 5324
training models are generated. One of the training models is shown in Figure 7. Thus,
the training process learns the sensitivity of traveltime with respect to velocity, which is
inherently embedded with the prior knowledge on spatial correlations of velocity.

Figure 7. Example of the training model. Red Block: high-velocity block (2200 m/s). Blue region:
low-velocity (1500 m/s) background.

During the training process, the initial model is set to be a homogeneous background
with velocity of 1500 m/s. The maximum training step is set to be 5 for convenience.
The predicting process will also last for 5 iterations and use the same initial value. The nor-
malized model misfit is shown in Figure 8.

Figure 8. The normalized model misfit versus the No. of iterations in the training stage.

4.3. Numerical Experiments

In this section, all the simulated traveltime data are added with zero-mean white
Gaussian noise with σ = 2 μs. The initial value of the inversion is a homogeneous
background with acoustic velocity of 1500 m/s. The maximum iteration number is 5.

4.3.1. Comparison with Traditional Gradient-Based Method

The performance of SDM inversion is compared with traditional Gauss–Newton
inversion. The ground truth is the thorax model shown in Figure 2. The results of the two
methods are shown in Figure 9. We conduct inversion based on SPR method traveltime
data and k-wave simulation traveltime data.
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For inversion based on SPR method data, see Figure 9a,b. SDM finishes the inversion
in 49.9 s. Although the Gauss–Newton method takes 102.9 s. SDM takes only half of the
time the traditional method takes. In addition, from the results we find that the acoustic
velocity distribution computed by SDM has fewer artifacts around the thorax and more
precise tissue boundaries for ribs. The edges of lungs, ribs, and spine are clear. Heart
and lungs are hard to distinguish because their acoustic velocity is close. However, both
methods cannot correctly reconstruct the acoustic velocity of marrow because few paths
traverse this region. According to Fermat’s Principle, the wave will propagate along the
path that takes the shortest time. The acoustic velocity of the marrow is significantly smaller
than the spine around it, which means path would like to propagate in the spine rather than
the marrow and result in low sensitivity of the marrow region. This example verifies the
feasibility of imaging human thorax using ultrasound traveltime tomography with SDM. It
also shows the strong generalization ability of SDM because little prior information on the
shape of the thorax is added to the training set. The training model contains no structure
information of thorax but only a rectangular high-velocity block and a homogeneous
background. For inversion based on k-Wave simulation traveltime data, see Figure 9c,d,
the results are similar to the inversion based on SPR method data, which further verifies the
modeling and inversion algorithm. The traveltime data used in the following numerical
experiment is all computed by SRP method with nnodes = 5.

(a) (b)

(c) (d)

Figure 9. The inversion results of SDM inversion and Gauss–Newton inversion based on different
traveltime data. (a) SDM inversion based on SPR method traveltime data, (b) Gauss–Newton
inversion based on SPR method traveltime data, (c) SDM inversion based on k-Wave simulation
traveltime data, (d) Gauss–Newton inversion based on k-Wave simulation traveltime data. Colorbar:
1200–2200 m/s. As a result (a), SDM takes 49.9 s to finish the inversion. As a result (b), the Gauss–
Newton method takes 102.9 s.

A better initial model would help the inversion. The new initial model is obtained by
smoothing the true model with a Gauss filter, see Figure 10a. The result of SDM inversion
is shown in Figure 10b. Comparing the new result with the result shown in Figure 9a, we
found that the area of the heart, marrow, and bones is better reconstructed. In the future,
the initial model can be derived from CT or other imaging modalities.
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(a) (b)

Figure 10. The new initial model and the resulf of SDM inversion. (a) The new initial model. (b) The
result of SDM inversion. Colorbar: 1200–2200 m/s.

The inversion results cannot be improved by adding more transducers nor using a
higher-resolution grid. We increase the number of transducers and the new array with
40 transducers is shown in Figure 11a. We also prepare a new grid whose size is 57 × 86.
We conduct reconstruction on the same normal thorax model with previous array and new
grid, new array and previous grid, and new array and new grid. New training sets are
constructed for each task using the previous method. The inversion results are shown in
Figure 11b–d. Compared with the inversion results shown in Figure 9b, no significant
improvement can be seen. The reason the results have not improved might be that this
traveltime tomography problem is too ill-posed. The current method cannot obtain the
model out of the local minima. In addition, more transducers and higher-resolution grid
will increase the time of inversion. The computation time of these three results is 132.9 s,
160.1 s, and 407.9 s, which are much longer than the previous 49.9 s.

(a) (b)

(c) (d)

Figure 11. The new transucer array and the SDM inversion results with different array and different
grid. (a) The new transducer array with 40 transducers, (b) inversion result with previous array and
new grid, (c) inversion result with new array and previous grid, (d) inversion result with new array
and new grid. Colorbar: 1200–2200 m/s.
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4.3.2. SDM Traveltime Inversion of Thorax on Different States

Some respiratory system diseases might change the amount of gas and fluid in the
thorax, which will cause changes in acoustic velocity because acoustic velocity in air is
significantly smaller than in water. In this section, SDM traveltime tomography will be
used to test whether these changes can be detected. Here, we take pleural effusion and
pneumothorax as examples. Patients with pleural effusion tend to have more fluid in the
thorax [59]. Although patients with pneumothorax will have more gas in the thorax [60].

Firstly, a pleural effusion patient’s thorax acoustic velocity distribution is reconstructed,
see the first column of Figure 12. We assume that the acoustic velocity of lungs when
breathing in air will decrease to 1200 m/s (lower than average tissue acoustic velocity of
1540 m/s and higher than air acoustic velocity of 340 m/s). We suppose that the velocity
distribution of a pleural effusion patient when breathing in air is like Figure 12a. The lower
part of the left lung is the pleural effusion area. We suppose that the velocity of this
area is 1540 m/s, same as the average tissue acoustic velocity. We want to reconstruct
this high-velocity area near the low-velocity area through SDM traveltime tomography.
The reconstruction result is shown in Figure 12c. The reconstruction result shows that
both lungs’ boundaries are clear and the left lung is smaller than the right one because the
effusion area’s velocity is higher than the normal lung area. For comparison, the result of
the Gauss–Newton method is shown in Figure 12e, which has more artifacts. This example
verifies that the change of acoustic velocity resulting from pleural effusion can be detected
by SDM traveltime inversion.

Then, thorax acoustic velocity distribution of a pneumothorax patient is reconstructed,
see the second column of Figure 12. We suppose that the velocity distribution of a pneu-
mothorax patient when breathing out air is like Figure 12b. We suppose that the pneu-
mothorax area is also located in the lower-left part of the thorax. The acoustic velocity
of the pneumothorax area is assumed to be 1200 m/s, the same as the normal thorax
region when breathing in air. In this example, a low-velocity region among high-velocity
region will be reconstructed. The reconstruction result is shown in Figure 12d. The result
shows that the boundaries of both lungs are clear and the pneumothorax area is recon-
structed. The lower part of the left lung is darker than the lower part of the right lung.
For comparison, the result of the Gauss–Newton method is shown in Figure 12f, where
the boundary between normal area and pneumothorax area is not clear. This example
verifies that the change of acoustic velocity resulting from pneumothorax can be detected
by SDM traveltime inversion. In addition, the generalization ability of the method can also
be demonstrated in these experiments. The learned descent direction can be applied to
thorax under different conditions.

(a) (b)

Figure 12. Cont.
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(c) (d)

(e) (f)

Figure 12. Thorax acoustic velocity distribution of a pleural effusion patient breathing in air and a
pneumothorax patient breathing out air and the corresponding reconstruction results. (a) Thorax
acoustic velocity distribution of a pleural effusion patient when breathing in air. (b) Thorax acoustic
velocity distribution of a pneumothorax patient when breathing out air. (c) SDM inversion result of
the thorax model (a). (d) SDM inversion result of the thorax model (b). (e) Gauss–Newton inversion
result of the thorax model (a). (f) Gauss–Newton inversion result of the thorax model (b). Colorbar:
1200–2200 m/s.

5. Conclusions

In this paper, we verify the feasibility of imaging the human thorax using ultrasound
traveltime tomography with SDM and detecting the change of acoustic velocity distribu-
tion resulting from respiratory diseases. A training set containing training models with
homogeneous background and a high-velocity block covering the whole DoI is introduced.
The average descent direction is learned from the training set and all elements in the DoI
are sensed. Thanks to the offline training process, the online predicting process is fast
and stable. In numerical experiments, SDM traveltime inversion is compared with the
traditional gradient-based method on a normal thorax model. A slightly better result is
obtained in half the time as the Gauss–Newton method, which means SDM traveltime
inversion can be used to image human thorax efficiently. Then, we test its ability to detect
the change in acoustic velocity distribution resulting from respiratory diseases. Thorax
velocity distribution of pleural effusion and pneumothorax is assumed and inversed by our
method. The results show that the synthetic change in acoustic velocity distribution can be
detected. SDM also shows good generalization ability. No prior information about thorax
structure is added to the training set and the learned descent direction can be applied to
inverse thorax at different states. Computing the acoustic velocity distribution can help
to monitor human respiratory system, as the acoustic velocity is closely related to tissues’
physical properties. In conclusion, ultrasound traveltime tomography with SDM can be
used to image human thorax and detect the change in thorax acoustic velocity distribution
efficiently. It might be helpful for the diagnosis and quantitative evaluation of respiratory
diseases and the localization of the lesion area.
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Abstract: Leaky Lamb waves are proven effective to carry out nondestructive testing especially on
parallel and immersed plates. To detect and localize defects in such a set, this work associates for the
first time the topological energy method and leaky Lamb waves. This methodology is applied in a
single immersed plate to validate its application. Firstly, Lamb mode A1 is generated in the plate, and
the reflected waves on the defect are measured. A first case is examined where the edge is considered
as a defect to be localized. Then, measurements are taken on a plate where a notch is machined. The
measurements are time reversed and reinjected in a finite-element simulation. The results are then
correlated with the direct problem of the topological energy method that is also simulated. In both
cases, the defects are precisely localized on the energy images. This work is the preliminary step to
an application of the topological energy method to a set of two parallel and immersed plates where
the research defect is located in the second plate.

Keywords: ultrasound; immersed guided waves; topological energy method; nondestructive testing

1. Introduction

Ultrasonic methods are proven to be particularly relevant within the inspection and
monitoring of sodium-cooled fast reactors (SFR) due to opacity and the oxidizing property
of liquid sodium that prevents optical inspection and the immersion of conventional
ultrasonic transducers. Thus, it has been shown previously that nondestructive testing
from the outside of the main vessel allows generating and propagating guided waves in
the internal structures, similar to a layered structure (parallel steel plates) immersed in
liquid [1,2]. The context implies a main restriction: the only available access to position the
transducers is the outside face of the first plate.

These immersed guided waves, called leaky Lamb waves, have been widely studied
in the literature [3–6] and applied to damage detection in plate-like structures [7,8]. In 1917,
Sir Horace Lamb investigated the theory of vibration of thin plates and rods [4]. Later,
Merkulov and Viktorov studied the vibration of immersed plates in depth [5,6]. The Lamb
waves are called “leaky” because of the re-emission of bulk waves in the surrounding fluid.
Attenuation due to the leakage is mostly preponderant versus the intrinsic attenuation due
to the material [6]. The latter is then not taken into account in this work. This re-emission
in the fluid propagates towards the second plate and generates Lamb waves in it.

In order to perform nondestructive testing, the knowledge of the behavior of the Lamb
waves is essential. Multiple Lamb modes may coexist and propagate simultaneously at
different group and phase velocities. Velocities and attenuations are frequency dependent
so that a broadband signal presents a dispersive behavior. The dispersion leads to a spread
of the wave packets during the propagation [9]. Nevertheless, by selecting a mode and a
frequency range where the group velocity is quite constant, the dispersion can be limited.
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The selection of the mode can be done by imposing an incidence to the generated acoustic
beam through a wedge or a delay law if a linear array transducer is used [10].

Several imaging methods involving Lamb waves are proven effective. For example, a
classical B-scan may provide an image of a defect assuming the knowledge of the propagat-
ing mode and its velocity in a single plate or in the second plate of the layered structure [2].
Other linear methods using delay-and-sum can also be applied, such as the Synthetic Aper-
ture Focusing Technique (SAFT) [11–13], the Total Focusing Method (TFM) [14,15] and their
adaptation to Lamb waves, Lamb-SAFT [16] to take into account the dispersive behavior of
the Lamb waves, and the sparse-TFM [17] to carry out short range inspection. However,
those techniques are focused on the time travel of a single mode and do not use information
of the mode conversion that may occur at the reflection on a defect, such as a crack [18,19].
Later on, time-reversal techniques were introduced [20–24] to optimize the resolution of
a reconstructed image of an inspected medium. For example, the DORT (Decomposition
of the Time-Reversal Operator) method [21] is a selective detection of scatterers using
the eigenvectors of the time-reversal operator, extracted from the full-matrix capture of a
linear array of transducers. Each significant eigenvector is associated with a scatterer in the
inspected medium, and the associated signal can be retropropagated independently in a
numerical medium to locate the scatterer. This operation is made possible because of the
completeness of the fundamental Lamb modes as proven by Kirrmann [3]. Meanwhile, the
topological energy method [22,24–28] requires the numerical solution of only two problems:
the direct problem where the experimental source is generated in the healthy corresponding
structure and the adjoint problem where the source is the time-reversed difference between
the ultrasonic field measured on the transducers of the inspected medium and the reference
medium. This time-reversed source can be interpreted as the time-reversed signature of
the defects and could provide data of very good quality.

This method has already been applied on Lamb waves in the literature. For example,
Rodriguez et al. applied it to the inspection of a free anisotropic plate by a monomodal
inspection. The transducers are located on the edge of the plate, and several defects are
detected [29]. Further works of Sun et al. showed the efficiency of the topological imaging
method towards other methods, notably the TFM [27]. Thus, this method is applicable and
efficient in cases of free single plates. But no work was found concerning the leaky Lamb
waves in a set of immersed plates.

The topological energy method was preferred in this work because the adjoint field
and the time reversal phenomenon allow maintaining a good sensibility and a great
localization. Moreover, it involves fewer simulations that can become very time consuming.
The topological energy method is also more versatile regarding the complex geometry
of two parallel and immersed plates, in particular considering the multiple reflections
between the two plates. This work is the first step towards this final issue, and the purpose
here is to prove the applicability and efficiency of this method to detect and localize a defect
in a single immersed plate using experimental data, where the transducers are set in the
fluid above one face of the plate only. The use of leaky Lamb waves associated with the
topological energy method constitutes an innovative work in view of the existing literature.

Firstly, the generation and propagation of leaky Lamb waves in parallel and immersed
plates are pointed out. Dispersion equations that apply to the Lamb wave propagation
are solved numerically and discussed. Then, the topological energy imaging method is
applied in order to detect and to localize two kinds of defects: the edge of the plate (repre-
sentative of a through-crack) and a notch close to the edge. The mode A1 is experimentally
generated, and a phased array system acquires the ultrasonic signature of the defect. After-
wards, the two propagation problems are solved numerically. Results eventually show the
reconstructed images based on the experimental datasets in two cases.

2. Theoretical Background of the Leaky Lamb Wave Propagation and Generation

Lamb waves were first discovered by Sir Horace Lamb in 1917 [4]. Lamb waves are
comparable to resonances resulting from the superposition of longitudinal and shear waves
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in thin plates. In free plates, Lamb waves can travel long distances that allow them to
be a useful tool for long-range inspection. The Lamb modes can be separated into two
categories: symmetrical (S) and antisymmetric (A). This denomination is based on the
symmetrical nature of the displacement profile parallel to the surface of the plate. An
infinite number of harmonics of the symmetrical and antisymmetric modes exist [6]. When
a fluid surrounds the plate, a leaky attenuation appears as explained by Merkulov [5]. The
energy of the Lamb waves is converted into compressional waves in the liquid as shown
in Figure 1. Each Lamb wave mode is associated with an angle of re-emission (and by
reciprocity to an angle of incidence, as explained later).

Figure 1. Generation of a compressional wave in the liquid by a leaky Lamb wave in the plate [30].

The dispersion equations that govern respectively symmetrical and antisymmetric
leaky Lamb wave modes are recalled [6]:
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where i is the imaginary unit. e is the thickness of the plate. p2 = k2
L − k2, q2 = k2

T − k2,
kL = 2π f

cL
, kT = 2π f

cT
, k0 = 2π f

c0
, k (the wave number) and f (the frequency) are the solutions.

kL and kT are respectively the longitudinal and transversal wave numbers in the plate. cL
and cT are respectively the speed of the longitudinal and transversal wave in the plate.
c0 is the speed of waves in the fluid. ρ is the density of the plate, and ρ0 is the density of
the fluid.

One can notice that the real part of the equations corresponds to the dispersion equa-
tions of a free plate [4]. The imaginary part corresponds to the fluid–structure interaction
and is proportional to the ratio ρ0/ρ. The wave number solution of these equations is a
complex number k = k′ + ik′′ . Its real part k′ represents the propagative properties of the
wave, and its imaginary part k′′ represents the leaky attenuation by re-emission in the fluid.

The duets (k, f ) solutions of the dispersion equations are plotted in Figure 2a regard-
ing the real part of k and in Figure 2b regarding the imaginary part of k.

In this work, the plate is 7.8 mm thick and made of stainless steel. The density
of the plate is ρ = 7950 kg·m−3, and the celerities of the longitudinal and transver-
sal waves are respectively cL = 5738 m·s−1 and cT = 3143 m·s−1. The density of the
water is ρ f = 1000 kg·m−3, and the velocity of the compressional wave in the water is
c0 = 1490 m·s−1. On the one hand, a normalization on the frequency is performed because
the dispersion equations are invariant regarding the product frequency × thickness. On
the other hand, the wave number and the attenuation are inversely proportional to the
thickness, and a normalization is also performed.
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(a) (b) 

Figure 2. (a) Wave number of leaky Lamb waves normalized by the plate thickness; (b) Attenuation
of leaky Lamb waves, as a function of the product frequency × thickness.

At a given frequency × thickness, several modes may coexist and propagate at the
same time. For example, in Figure 2a, at 2 MHz·mm, the modes A0, S0, and A1 may
propagate together. One can note in Figure 2b that the modes A0 and S0 present a high
attenuation, whereas the mode A1 presents a lower leakage by re-emission.

The phase velocity of the modes is evaluated using the real part of the wave numbers
cp = 2π f

k′ . The group velocity cg is derived from the phase velocity:

cg(ω) = cp(ω)2
[
cp(ω)− ω

dcp(ω)
dω

]−1
, where ω = 2π f . Both phase and group veloci-

ties are plotted respectively in Figure 3a,b. A real signal is never purely monochromatic. Its
spectrum is defined by a band. That is why group velocities are of interest. In the example
given by Figure 3b around 2 MHz·mm, the modes have different group velocities. On
the bandwidth, the group velocity of the mode A0 is rather constant, whereas the group
velocity of the mode S0 varies by up to 100%. This highlights the dispersive property of the
Lamb wave, described in detail in [9].

 
(a) (b) 

Figure 3. (a) Phase velocity of leaky Lamb waves; (b) Group velocity of leaky Lamb waves, as a
function of the product frequency × thickness. Arrow indicates the bandwidth of a real 2 MHz·mm
signal and highlights the dispersion phenomenon in the propagation of the Lamb waves.

By reciprocity of the re-emission shown in Figure 1, Lamb waves can be generated in
an immersed plate by a steered incident beam. The acoustic wave propagates in the fluid
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to the plate, where a reflected wave and a transmitted wave appear [31]. One can find the
angles θ that maximize the transmitted wave in the plate [32]. Those angles tie in with the
angles that can be found using Snell’s law, and the phase velocity of each mode is

c0

sin(θi)
=

cp

sin(θLamb)
(3)

where θi is the beam incidence angle in the fluid, θLamb = π
2 in the plate. c0 is the

wave velocity in the fluid. cp is the phase velocity of the aimed mode at a given product
frequency × thickness. The beam angles in the case of our experiments are plotted in
Figure 4. For example, at 2 MHz·mm, the A1 mode can be generated by an incident wave
with an angle of 10◦.

Figure 4. Beam incidence angle needed to generate Lamb modes in an immersed plate.

3. Imaging Method and Configuration

3.1. Topological Energy Imaging Computation

The topological energy imaging method comes from the optimization for inverse
problems [33] and was first introduced by Dominguez [22]. This method is defined as
a minimization problem of the mathematical distance between an unknown inspected
medium and a simulated reference medium. One can assume that the reference undamaged
medium has the same material properties as the damaged unknown one. In our case,
the simulation is achievable and workable using a finite-element model with Comsol
Multiphysics®.

The principle of the method is to minimize a cost function defined as the distance
between the two media so that the reference medium, by inserting defects at the right
locations, converges to the unknown one. The mathematical proofs are not presented in
this paper and can be found in [22,33]. Nevertheless, a summary of the steps needed in
the application of the topological energy method to obtain a map of the unknown medium
is proposed (Figure 5 illustrates the steps in the application of the topological imaging
method in a general case of bulk waves in a homogeneous material):

1. Measurement in the experimental unknown medium of the acoustic field pexp

(→
r , t
)

,
t ∈ [0, T] on the surface Γmes.

2. Numerical resolution in the reference medium of the direct problem by emitting the

same initial signal. Thus, measurement of the acoustic field pre f

(→
r , t
)

, t ∈ [0, T] in
the whole medium, and especially on the surface Γmes.

3. Numerical resolution in the reference medium of the adjoint problem. The source
term of the adjoint problem is defined as the time reversal of the difference between

278



Appl. Sci. 2022, 12, 228

pexp

(→
r , t
)

and pre f

(→
r , t
)

. The acoustic field padj

(→
r , T − t

)
, t ∈ [0, T] is then mea-

sured in the whole medium and on the surface Γmes.
4. Evaluation of the topological gradient defined by the limit conditions of the problem

and the material properties, and pre f and padj that are respectively the solutions of the
direct and the adjoint problem.

Figure 5. Diagram of the general principle of the topological imaging method in an isotropic
medium [34]. Reproduced with permission from E. Lubeigt.

As said previously, the topological imaging method consists of an optimization; the
optimization is iterative and can become very time consuming. A Fast Topological Imaging
Method (FTIM) is used in [22,29] to overcome this problem and gives reliable results. Only
the first iteration of the algorithm is computed. The result of this method is an image of the
medium and is given for each point

→
r by:

ET
(→

r
)
=
∫ ∣∣∣pre f

(→
r , t
)∣∣∣2∣∣∣padj

(→
r , t
)∣∣∣2dt (4)
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In this equation, the square of the acoustic fields is used to enhance the high value of
the topological energy on the final image.

This Fast Topological Imaging Method is used here.
One can interpret the topological energy as a temporal correlation between two sim-

ulated wave fields (direct and adjoint). The direct field corresponds to the propagation
of the waves in the undamaged medium. The adjoint problem corresponds to the field
induced by the backward propagation of the acoustic signature of the difference between
the reference medium and the experimental medium (with defects). The topological energy
between those fields takes maximum value at the location of the defects, where the two
fields coincide.

3.2. Experimental Setup

The considered plate is made of stainless steel and is immersed in water (schematic
configuration and picture of the experimental setup are represented in Figure 6). Its
thickness and length are defined by e = 7.8 mm and L = 70 cm. A linear phased array
transducer with 16 elements that defines the surface Γmes parallel to the plate, is used as a
transmitter–receiver sensor. The central frequency is f = 320 kHz. The pitch of the linear
array is p = 3 mm.

Figure 6. (a) Geometry of the experimental setup; (b) Experimental setup.

A delay law is applied to the linear array that imposes the beam angle at the emission,
and thus the Lamb wave mode is generated in the plate. The linear array is positioned very
close to the plate (d = 0.5 mm) to lower successive reflections between the linear array
and the plate that would lead to the generation of multiple Lamb waves in the experience.
The topological energy is calculated inside the plate that implies the use of the horizontal
u
(→

r , t
)

or vertical v
(→

r , t
)

displacements in the calculation of the latter.
In an initial stage, a plate without any defect is studied. The objective is the detection

of the edge of the plate at L = 70 cm. Then, the application of the method on a second plate
containing a notch at Xnotch = 52 cm is carried out.

The measurements are performed with a Sonaxis® ultrasonic linear array composed of
sixteen 1.8 mm wide elements and a Lecoeur® OPEN system. The experimental acquisition
and the simulations are done for a beam angle θi = 12.6◦ that corresponds to the mode A1.
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The emitted signal is a ten-period sinus signal filtered by a Hanning window in order to
lower the dispersion phenomenon. The mode A1 has been chosen because it presents a low
attenuation along the propagation so that it is easily detectable. The linear array transducer
is set at 40 cm of the left edge of the plate.

3.3. Finite-Element Simulation

In this section, the finite-element model is exposed—necessary for the implementation
of the topological energy method—and developed with Comsol Multiphysics® and the
postprocessing techniques in order to analyze the experimental signals.

As illustrated in Figure 7, the plate is immersed in the water. Perfectly Matched Layers
(PMLs) are set to simulate an infinite domain, especially at the right end of the plate to
simulate the flawless infinite plate and around the domain to avoid reflections on the
calculation boundaries. In the experimentation, the tank edges are far enough apart to
avoid reflected waves in the studied time interval.

 

Figure 7. Sketch of the simulation under COMSOL Multiphysics®.

Segments that represent each element of the transducer define the linear phased array.
This simple definition leads to a surface wave in the water in the numerical model that is
not observed in the experimental propagation. That is why a thin absorbent layer in the
upper part of the water is introduced to cancel this numerical surface wave.

The mesh is described by triangular elements. The maximum size of the elements is
given by λmin/8 in the plate and the water, where λmin represents the smallest wavelength
that can exist in the considered bandwidth.

4. Results and Discussion

Two kinds of defects are studied and discussed: the edge of the plate that approxi-
mates the behavior of a vertical through-crack and a machined mid-thickness notch. They
allow evaluating the methodology in two typical calibrating situations in NDT when
searching cracks.

4.1. Edge Plate Detection

Leaky Lamb waves reflect on the edge of the plate and propagate back toward the
transducer. The experimental temporal signals are extracted from each element of the
linear array, and each line in Figure 8a is the envelope of the signal acquired on an element.
The signals are then processed with 2D Fast Fourier Transform (2D-FFT) to transform the
space–time domain (x, t) into a wavenumber-frequency (k, f) representation as shown in
Figure 8b. This transformation allows measuring the real part of the wavenumber, the
leaky attenuation, and the phase velocity of the Lamb wave. Superimposing the theoretical
dispersion curves allows verifying the nature of the Lamb wave mode involved in the
propagation. The emitted wave packet propagates along the x-axis and is reflected by the
right edge of the plate. The wavenumber in Figure 8b is negative because of the propagation
of the reflected wave along the decreasing x-axis.
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(a) (b) 

Figure 8. (a) Envelope of the experimental signals recorded by each element of the linear array—(x,t)
representation; (b) 2D-FFT of the signals marked by the white lines—(k,f) representation.

One can verify that the reflected mode corresponds to the initial propagative A1 mode:
no conversion has occurred.

The selected wave packet for following the time reversal process is chosen as the more
energetic one in the negative wavenumbers that corresponds to a reflective wave. Consid-
ering the mode A1 at this product frequency × thickness, the horizontal displacement has
more amplitude than the vertical displacements. Thus, the topological energy is calculated
using u

(→
r , t
)

at each point of the plate.
In this particular case, the computation of the source in the adjoint problem is different

as described previously in Section 3. One can assume that in the reference medium in
the direct problem, the plate is infinite, and there are no reflected waves (uref = 0). Thus,
the calculation of the source of the adjoint problem is straightforward: the wave packet
delimited by the white lines in Figure 8a corresponds to the signal that will be time reversed
and reinjected in the adjoint problem. The topological energy is then computed using the
horizontal displacements u

(→
r , t
)

in the zone of interest (represented in Figure 6), and
the result is plotted in Figure 9. One can note that the distribution of the maximum of
topological energy in the thickness of the plate follows the displacement profile of the
considered mode.

The maximum of the topological energy occurs at x = 70.2 cm. The results are in good
agreement with the real location of the edge (x = 70 cm). Indeed, the difference with the
real location of the edge is under the uncertainty based on the regular grid used in the
postprocessing (Δxgrid = 0.61 cm). At this location, the fields in the direct and the adjoint
problems cross and lead to the highest value of the topological energy (Figure 10b). On
the contrary, the correlation between the fields before and after the edge is much lower
(examples on Figure 10a,c).
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(b) 

(a) 

Figure 9. (a) Topological image in the zone of interest of the simulated plate; (b) Normalized sum of
the topological energy at each position along the plate.

(a) 

(b) 

(c) 

Figure 10. Horizontal displacements of the direct and adjoint problems at (a) x = 56.12 cm; y = 0 cm;
(b) x = 70.2 cm; y = 0 cm; and (c) x = 80 cm; y = 0 cm.

One can notice the decrease in the amplitude of the direct problem along the propaga-
tion and the increase in the amplitude of the adjoint problem due to the leaky attenuation.
To improve the contrast of the topological image, an idea would be to compensate the
attenuation knowing the attenuation coefficient of the mode involved. Indeed, such a
compensation can only work in a purely monomodal propagation. The compensation
cannot be done if at least two modes propagate.

4.2. Notch Detection

The second studied case is the detection of a notch machined with depth e/2 (see
Figure 6) in a plate that has the same physical properties and thickness as previously. The
notch is located at x = 52 cm. The emitted signal is the same as previously. One can observe
two wave packets on the spatial time representation on the signals plotted in Figure 11a.
The selected wave packet for the time reversal is chosen again as the most energetic one. It
corresponds to the reflection on the notch.
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(a) (b) 

Figure 11. (a) Envelope of the signals recorded by each element of the linear array—(x,t) representa-
tion; (b) 2D-FFT of the first wave packet—(k,f) representation.

The topological energy is computed using the horizontal displacements u
(→

r , t
)

in the
region of interest, and the results are plotted in Figure 12. The maximum of the topological
energy occurs at x = 52.86 cm. The error of the location is higher than the uncertainty due
to the regular grid (Δxgrid = 0.61 cm), but the difference remains lower than the wavelength
of the mode A1 at 320 kHz, λ = 2.13 cm. So, the result is considered acceptable.

(b) 

(a) 

Figure 12. (a) Topological image in the region of interest of the simulated plate. (b) Normalized sum
of the topological energy at each position along the plate.

The second wave packet shown in Figure 11a can also be time reversed and studied. In
this case, the maximum of the topological energy plotted in Figure 13 occurs at x = 70.71 cm
and corresponds to the edge of the plate. A local maximum is also present at x = 50.51 cm
and is linked to the notch.
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(b) 

(a) 

Figure 13. (a) Topological image in the region of interest of the simulated plate; (b) Normalized sum
of the topological energy at each position along the plate.

One can thus assume that the second wave packet contains information about both
defects (notch and edge). Further investigations have shown that two modes coexist: the S0
and A1 modes. The A1 mode comes from the initial A1 mode that reflects on the edge. The
S0 mode comes from the mode conversion that takes place at the reflection at the notch.

The results obtained with the A1 mode on the edge and on the notch are reliable. The
A1 mode has a low attenuation along the propagation at the studied frequency × thickness
fe = 2.496 MHz·mm (Figure 2). Another mode, S0 or A0, would have leaked in the
surrounded fluid before any reflected signal returned on the transducers. Lowly attenuated
modes are preferred for a long-range inspection in a single plate. Nevertheless, considering
the final aim of the work, that being the research of a defect in the second plate in a set of
two parallel and immersed plates, the highly attenuated modes may be considered in order
to maximize the energy incident to the second plate. This assumption will be studied in a
future work.

The results presented in this paper are in good agreement with the results of Rodriguez et al.,
which is the most similar work found in the literature in a free isotropic plate [25] and a
free anisotropic plate [29]. The locations of the defects are found to be good and accurate.
Nevertheless, it has to be pointed out that those studies are not properly comparable. The
emitter’s positioning differs, and since the plates in Rodriguez’s studies are free, the Lamb
waves do not leak into the surrounding medium.

5. Conclusions and Perspectives

The theory of leaky Lamb waves was discussed in the first part. Dispersive and
multimodal behaviors were highlighted by solving the dispersion equations and plotting
the duets solution (k, f). The selective generation of a Lamb wave mode was explained.
Then, the main steps of the topological energy method were outlined. Two problems had
to be solved: the direct one and the adjoint one. The time reversal process in the adjoint
problem allowed us to overcome the complexity induced by the dispersion and to sustain
a good sensibility. To validate the process in a simple case, we performed experimental
measurements on a plate without any defects. The detection and the localization of the
edge were reached. In this configuration, we could assume that a through-crack has the
same effect as the edge and could be detected. Then, measurements were performed on
a plate with a machined half-thickness notch. By retropropagating separately the two
wave packets acquired, both the notch and the edge were detected and localized. The
mode conversion that occurs at the reflection on the notch provides more information than
expected. That could lead to the detection and localization of cracks in the plate.

This work shows the applicability of the topological energy method on a single im-
mersed plate. It constitutes the first step of the topological energy method implementation
in a set of parallel and immersed plates with the goal of detecting and localizing a defect in
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the second and then the third plates. The transducers were positioned in the fluid above
the upper face of the first plate, and the multiple reflections between the two plates had
to be studied. The topological energy method appears to be a reliable method to filter
those reflections in the calculation of the source term of the adjoint problem in order to
retropropagate only the diffracted signal by the defect in the second plate.
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Abstract: Crack characterization is one of the central tasks of NDT&E (the Non-destructive Testing
and Evaluation) of industrial components and structures. These days data necessary for carrying out
this task are often collected using ultrasonic phased arrays. Many ultrasonic phased array inspections
are automated but interpretation of the data they produce is not. This paper offers an approach
to designing an explainable AI (Augmented Intelligence) to meet this challenge. It describes a
C code called AutoNDE, which comprises a signal-processing module based on a modified total
focusing method that creates a sequence of two-dimensional images of an evaluated specimen;
an image-processing module, which filters and enhances these images; and an explainable AI
module—a decision tree, which selects images of possible cracks, groups those of them that appear
to represent the same crack and produces for each group a possible inspection report for perusal by a
human inspector. AutoNDE has been trained on 16 datasets collected in a laboratory by imaging steel
specimens with large smooth planar notches, both embedded and surface-breaking. It has been tested
on two other similar datasets. The paper presents results of this training and testing and describes in
detail an approach to dealing with the main source of error in ultrasonic data—undulations in the
specimens’ surfaces.

Keywords: Non-destructive Testing/Evaluation (NDT/NDE); ultrasonic imaging and inversion;
ultrasonic characterization; explainable Augmented Intelligence

1. Introduction

The aim of this paper is to address a challenge of developing an explainable AI for
semi-automatic crack characterization, with a view to its ultimate deployment in ultrasonic
units for NDT&E (the Non-destructive Testing and Evaluation) of industrial components
and structures. Since the most advanced units are phased arrays of ultrasonic transducers
all the experimental data used to train and test the AI discussed below have been collected
using linear arrays of this nature. Moreover, the experiments have been designed to
emulate cracks and inspection surfaces typically encountered in walls of nuclear reactors.
It is particularly important to minimize human involvement in interpretation of NDT data
in nuclear industry: With the new nuclear build already under way, NDT practitioners
anticipate a severe shortage of suitably qualified and experienced personnel. Also there is
pressure in industry for both speeding up the inspections and increasing their reliability.
Interestingly, even though ultrasonic inspections have been conducted for decades, a study
conducted by TWI (The Welding Institute) a few years ago has demonstrated that although
their reliability is high it is not as high as many believe or wish it to be [1]. The most
surprising outcome of the study was the fact that human inspectors experienced the
greatest difficulty when characterizing large planar cracks. A less surprising finding was
that the most difficult cracks to identify were those normal to inspection surface—the
responses of their tips are known to be weak. A desire to respond to this study has been
another rationale for the work reported here.

Appl. Sci. 2021, 11, 10867. https://doi.org/10.3390/app112210867 https://www.mdpi.com/journal/applsci288
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In order to carry out crack characterization NDT inspectors rely mostly on TOFD
(Time of Flight Diffraction) configurations, in which the most prominent features are the
diffraction spots surrounding crack tips. By contrast the approaches pursued by those
who work towards automating crack characterization often rely on specular reflections.
There have been attempts to develop general but time-consuming model-based data
processing algorithms, see e.g., [2,3] as well as pure signal processing approaches, such as
CS (Compressed Sensing) algorithms [4]. The approach meeting a practical need best seems
to be TFM (Total Focusing Method) based on FMC (Full Matrix Capture) [5,6]. Briefly,
every element of the Full Matrix is an A-scan (a sequence of ultrasonic pulses) received
by an array transducer after this or another array transducer fires a single pulse. TFM
uses this matrix to create images that lend themselves to a relatively easy interpretation by
both human and artificial intelligence. However, TFM images are often contaminated by
noise and various strategies have been offered to modify the TFM algorithm to eliminate
false indications [7,8] and reduce noise [8–10], enabling real-time imaging with portable
NDT devices [8,11]. Researchers also began to explore application of machine learning to
NDT [12–15]. However, at present, standard machine learning approaches have limited
value: Firstly, most researchers have no access to big data such approaches require and
even a few laboratory datasets used below have required a considerable effort and expense
to collect. Secondly, standard approaches often lead to results that are unexplainable, and a
highly regulated branch of industry, such as NDT of nuclear reactors is unlikely to adopt
results of this nature. In this paper we present an alternative: a code that combines a signal
processing algorithm based on a simple modification of the TFM with the well-known
image processing algorithms as well as a decision tree. The latter is an AI module, which
mimics thought processes followed by human inspectors in writing standard inspection
reports. The code has been designed to deal with the scatter from large planar cracks,
whether specular reflections from crack surfaces or echoes from crack tips.

We demonstrate the efficacy of the approach using laboratory data. To collect such
data engineers manufacture test blocks to contain flaws with known characteristics and
use the the NDT procedure they want to investigate to establish whether it can gener-
ate reasonable estimates of these characteristics [1]. The paper is organized as follows:
in Section 2 we describe the relevant experiments; in Section 3 we present our composite
signal/image processing/AI algorithm for crack characterization and in Section 4 we
present results of its training on 16 datasets and testing on two. Since it is known that in
many industrial situations the main source of error is undulations in component surfaces,
one of the test blocks has been deliberately chosen to have a qualitatively different surface
to the test block used for the AI training. In the last section we discuss our findings and
present recommendations.

2. The Experimental Set-Up

This paper builds on the original feasibility study reported in [16], with the experimen-
tal set-up presented in Figure 1. The RF (radio-frequency) data used there were collected
by DPS (Doosan Power Systems) engineers with a demonstrator multiplexed to an 128
element IMASONIC linear transducer array with the pitch De = 0.8 mm, the central pulse
frequency f = 5 MHz and sampling frequency fs = 50 MHz. The specimen probed was
a steel block, 30 mm thick, 200 mm wide and 350 mm long, with four surface-breaking
notches and four further notches buried underneath the notched surface. Four notches out
of eight were non-tilted and four, tilted at 110◦ to the surface. The longitudinal speed in
steel varies with composition. In the steel used in this experiment it was cl = 5.89 km/s.

The experiments have been performed in immersion, with the water temperature of
22 ◦C, so that the speed in water was cw = 1.48 km/s. The water path standoff distance was
about 13 mm. A typical input pulse (a pulse transmitted by a transducer) is presented in
Figure 2a, and a typical A-scan (a train of pulses received at a transducer), in Figure 2b.
The full matrix of A-scans, [Akln, k, l, = 1, 2, . . . , K, n = 1, . . . , N] has been collected, where
the first index denotes the transmitter, second—the receiver and third—the time sample.

289



Appl. Sci. 2021, 11, 10867

Both transmitters and receivers are numbered from the left. Let us introduce tk,x,l , the time
of travel from transmitter k to receiver l through one of the evenly spread nodes x = (x, z)
and signal Akl(t) ≈ Akln|n=�t/Δt�, where Δt is the time increment defined by the sampling
frequency; �t/Δt� = floor (t/Δt). In order to reduce the processing burden [17], instead of
A-scans AutoNDE uses their Hilbert transform,

h(Akl)(t) =
1
π

p.v.
∫ Akl(τ)

t − τ
dτ. (1)
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Figure 1. A schematic of the DPS experiment.

 

  1 
 
  
   
 0 
 
 
 
-1 

 0      200      400      600 800      
                 n, samples 

A
, a

rb
itr

ar
y 

un
its

 

 0        200       400      600  800  
                      n, samples 

 

(a)                                      (b)                    

Figure 2. (a) A typical input pulse A_n; and (b) a typical A-scan A_n.

Note that the A-scan in Figure 2b is A82,82,n. Taking into account that the offset was
n = 743 the first pulse is the echo of the pulse transmitted by element 82 arriving back to
this element from the point x1 on the upper surface of the specimen and the second pulse
is the echo arriving back from point x2 on the backwall. The distance d between x1 and x2
can be calculated using the standard formula d = 0.5 n cl/fs, where n is the number of time
samples between arrivals of two pulses.

3. The AutoNDE Code for Semi-Automatic Crack Characterization

The original version of the code described in [16] was written in LabView and con-
tained only a rudimentary AI module. In this paper we present a more advanced version
written in C. Its flowchart is presented in Figure 3.
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Figure 3. A flowchart of AutoNDE.

Let us describe the submodules presented there in more detail:

3.1. Signal Processing

The submodules of the Signal Processing module are used to create 2D images of the
tested specimen:

1. SurfaceProfiling effects profiling by (1) locating for each array element the surface
point directly underneath and (2) interpolating the acquired surface points using
polynomial regression. The first step is performed by convolving h(A)(NΔt − t),
the Hilbert transform of the time inverse of the input pulse with the corresponding
pulse scattered by the surface. Only A-scans received by the same transducers that
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transmitted them are utilized. Hence the maximum number of surface points collected
during the first step is K. The regression model used in interpolation is

z = X b + e, (2)

where the response vector z, the parameter vector b, the design matrix X and the error
vector e are given, respectively, by

z =

⎡⎢⎢⎣
z1
z2
. . .
zJ

⎤⎥⎥⎦, X =

⎡⎢⎢⎣
1 x1 x2

1 . . . xp
p

1 x2 x2
2 . . . xp

2
. . . . . . . . . . . . . . .

1 xJ x2
J . . . xp

J

⎤⎥⎥⎦, b =

⎡⎢⎢⎣
b1
b2
. . .
bp

⎤⎥⎥⎦, e =

⎡⎢⎢⎣
e1
e2
. . .
eJ

⎤⎥⎥⎦ (3)

• Originally, the polynomial degree to produce good results with the DPS data has been
found by trial and error to be p = 8.

• In the latest version of AutoNDE the degree p is selected automatically. There is a
number of approaches recommended for this purpose in the literature on machine
learning. We have found that the most common of those, the bias-variance trade-off
leads to ill-conditioned the Vandermonde matrix XTX and overfitting of the DPS
data. Since for all DPS datasets SurfaceProfiling acquires surface points whose location
error is random it is reasonable to assume that their underlying error distribution is
normal. Therefore, we attempted and found satisfactory a method that involves the
Wald test [18] based on the t-statistic of the leading coefficient.

• In order to apply this method we first estimate pmax and qmax, where pmax is the
highest polynomial degree that can be reliably estimated from the available data and
qmax is the maximum number of digits of accuracy on top of what would be lost
to the numerical method due to loss of precision from arithmetic methods [19]. A
well-known rule-of-thumb suggests that pmax = J/5 and the training of AutoNDE
on the DPS data suggests that for realistic random surface undulations used in this
experiment qmax = 6.

• The suggested method utilizes the algorithm presented in Figure 4. Note that since
all Xj2 values are non-zero and distinct for every p = p’ all Vandermonde matrices
XTX are invertible [20]. Note too that the t-statistic is normally applied to assess
significance of regression parameters, while here tp′ is used to test the null hypothesis
that the leading coefficient bp′ = 0. It follows that the algorithm selects the polynomial
of the highest significant degree. The threshold tp = 1.96 assures that if the error
in location of surface points has a normal distribution, the null hypothesis that the
leading coefficient is zero can be rejected at the 95% significance level.

The spline method has been tried too but was found to be too sensitive to the choice
of smoothing parameters and thus not amenable to automation

2. Meshing of the specimen is performed by specifying a regular grid of evenly spaced
rows and columns, covering the portion of the specimen, which lies underneath the
probe. The meshing module also specifies the region of interest. If the measurements
are taken only when the crack is located more or less underneath the array center
the region of interest is reduced to the central region underneath the probe. Any
reduction of the region of interest speeds up the crack characterization process.

3. RayTracing starts by issuing a fan of rays from each array element. The central angle of
each fan is −90◦ to the x-axis, the optimal vertex angle has been found to be 60◦ and
the optimal difference between the angles of neighboring rays, 0.057◦. These values
effect a trade-off between the code accuracy and speed. For each ray the RayTracing
submodule locates the point where it hits the upper surface, finds the refracted ray
issuing from this point (in the current version no shadowing is accounted for) and
calculates the time it takes the ray to reach each row in the region of interest. In the
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present version of AutoNDE mode conversion is allowed as well as one reflection
from the backwall.
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Figure 4. An algorithm for automatic identification of the interpolating polynomial.
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4. IntensityFunctionGenerating utilizes the matrix A of A-scans to generate the inten-
sity function

I(x) = |∑
k,l

h(Akl)(tk,x,l)| (4)

where time tk,x,l is the moment of time the corresponding pulse is at its peak. In the standard
TFM (Total Focusing Method) the summation in (4) is carried out over the whole probe.
In addition to TFM we use an MTFM (a Modified TFM), a signal processing approach
developed by trial and error to produce not just one image for one position of the probe
as in TFM but a series of images m: Inside each such image, each vertical segment x is
scanned with a “partial probe” [k + Dm,k + Dm + L], k < K − Dm − L when Dm > 0 (a blue
colored portion of the transducer array in Figure 5 or [ k + Dm − L, k + Dm], k > L − Dm
when Dm < 0, where the transducer element k = �x/De� or k = �x/De�, respectively. Here
�x/De� = ceil(x/De). This allows us to use the same amount of information to image each
vertical segment of the specimen, except for the segments close to the array ends. However,
as a rule, the end portions of the array lie outside the region of interest. The approach
often filters out the “blinding” surface reflections and enhances images of diffraction spots.
Both the TFM and MTFM images are produced using the normalized version of intensity
function, I1(x) = 256 I(x)/max

x
I(x). Each image is stored in the standard way, using

256 different intensities, the highest indicated by red color and the lowest, by blue.

Figure 5. A schematic of MTFM.

3.2. Image Processing

The image processing module is used to select those MTFM images, which lend
themselves to easy interpretation. The basis for selection is a priori knowledge that the crack
to be characterized is large and plane. Therefore the crack image is expected to contain a
straight segment, which is a specular reflection from the crack, or else two diffraction spots
surrounding the crack tips. Sometimes only one crack tip can be picked up. AutoNDE
differentiates the possible diffraction spots from the possible specular features by size,
allowing for some overlap.

The ImageProcessing module of AutoNDE uses a variety of intensity thresholds.
As mentioned above, the maximum intensity is 256. Thresholding is a standard tool
in image processing, which is used to filter out noise. During the AutoNDE training,
in most cases 125 has been found to produce the best results. However, some significant
weak features could only be picked up at lower thresholds, while some noise could be
filtered out only at thresholds that are higher. For this reason, AutoNDE normally utilizes
three thresholds, 65, 125 and 185.

AutoNDE analyse the resulting images using OpenCV (Open Source Computer Vision
Library) functions [21]. Two submodules are involved, FindSpecAndDiffFeatures and BlobDe-
tector.

1. FindSpecAndDiffFeatures relies on the OpenCV FindContour function to select two
types of features, large (longer than 7 mm) and small (between 1 mm and 7 mm long).
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If one of the features is 7 mm or slightly smaller and there are several other small
features smaller than 3 mm in extent the small features are neglected and the larger
one is treated as a specular reflection.

2. The BlobDetector relies on the OpenCV DetectBlob function to filter blobs by size
between 80 and 160 pixels. The BlobDetector is particularly useful when dealing with
surface-breaking cracks, because in these situations the probe often picks up only one
crack tip. When only one blob is picked up the final crack characterization can be
made only by a human inspector. In cases like this the AutoNDE flags the situation by
putting the question mark after every defect characteristic and estimate of the report
quality (the definition of quality is given below). All the feature and blob parameters
mentioned above have been chosen by trial and error to maximize the number of true
positives and minimize the number of false positives selected by the code.

3.3. Explainable AI

The AI module of AutoNDE is a decision tree, which selects images that appear to
contain defects, characterizes these defects and then groups similar images. Note that by
their nature, decision trees produce explainable results: all the reasoning can be traced.
The decision tree comprises the following submodules:

1. ImageSelection submodule selects images containing one or two blobs (bright spots),
two small contour selected features, one large feature or maybe, one blob and one
small feature. If a blob and a contour selected feature are detected at the same location
it is the feature parameters that are used to characterize the potential diffraction spot.
If one of the contour selected features is slightly bigger than 7 mm it is still treated as
a possible diffraction spot.

2. DefectCharacterization carries out calculations of the extent (notch length in the imaged
plane), depth (the smallest of distances between notch tips and specimen surfaces) and
orientation (the angle the notch makes in the imaged plane with the mean specimen
surface) of the detected planar defect. The calculations are based on parameters of the
bounding boxes, which the FindContour OpenCV function draws around the objects
or else on parameters of blobs detected by the DetectBlob function. Planar cracks
are expected to produce two types of images, specular reflections and TOFD (Time
of Diffraction) images, which contain two diffraction spots surrounding notch tips.
When the image contains one large feature (interpreted as a specular notch image),
the extent is calculated as the longest box side; the depth, as the shortest distance
between box vertices and specimen surfaces; and orientation as orientation of box’s
longest side. For TOFD, the extent is calculated as the largest distance between vertices
of their bounding boxes; the depth, as the shortest distance between vertices of these
boxes and specimen surfaces; and orientation, as orientation of the line connecting
the gravity centers of the boxes. If only two small features are identified the code
draws a straight yellow line connecting their gravity centers.

3. ImageGrouping checks whether each selected image appears to be similar to the pivot
image in the group g = 1, 2, . . . , G, that is contains a notch with a similar extent E and
orientation O at a similar location C (so that the coordinates of the gravity centers of
the notches are similar). The pivot is the image with the smallest Dm in the group.
If the image is similar to the pivot it is added to the group; otherwise, it is used
as a pivot for the next group. The crack parameters are referred to below as v = E,
O, C, respectively. For each group a preliminary report is compiled, describing the
weighted averages vg.

vg =
∑

Mg
m=1 ŵg,mvg,m

M̂g
, ŵg,m = we,g,m·wo,g,m·wl,g,m·wadd, (5)

wv,g,m = w
(
Δvg,m, tv

)
.
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Above M̂g =
Mg

∑
m=1

ŵg,m is a modified number of images in group g, with Mg—the

number of images in group; Δvg,m =
∣∣vg,m − vg,0

∣∣ is the deviation of parameter vg,m in
the group g and image m from the corresponding parameter vg,0 in the pivot image (in
case of the gravity center location, this deviation is the distance between centers); tv is
the acceptable threshold for this deviation; and the weighting function, which smoothes
transition over this threshold is

w(u, U) =

{
1, if u < U

e−( u
U −1)2

, otherwise,
(6)

see Figure 6. The following thresholds have been established by trial and error:

te = tl = 2.1 mm, to = 21
◦
. (7)

1 

 

  

Figure 6. Modification weights.

The weight wadd is used to taper off the probability of almost horizontal cracks situated
very close to the top surface or backwall. The quality of the resulting group report is
assessed by using the subjective probability (rounded up to the nearest multiple of 10),

Qg = max

{
10%, min

[
90%, 100%

M̂g

M̂

]}
, (8)

where M̂ =
G
∑

g=1
M̂g is the sum of modified numbers of images in all G groups identified.

Thus, one of the advantages of MTFM is the fact that various images it produces allow
AutoNDE to assess the quality of crack characterization.

4. GroupMerging employs similar principles to ImageGrouping, working with group
averages instead of individual crack characteristics. Group merging is performed
first for each intensity threshold: the first of all groups on the list is chosen as a pivot,
the next group on the list is merged with it if the extents of their defects differ by
no more than 2.1 mm; the distance between the gravity centers of these defects is
no more than 2.5 mm; and their orientations differ by no more 21◦. The remaining
groups form a new list and the merging process is repeated. For a given intensity
threshold, only groups detected by the same method (FindContour or BlobDetector)
can be merged. No such restriction is used when merging groups identified using
different intensity thresholds. Otherwise, this last merging is performed using the
same principles as above but with deviations in extents and distances allowed to
reach 3 mm.

5. ReportGenerating reports the group(s) with the maximum probability. If more than
one group with the maximum probability is reported the final choice has to be made
by the human inspector on scrutinizing the TFM image.

4. Training AutoNDE

The AutoNDE was trained using sixteen datasets produced by DPS (Doosan Power
Systems) and then tested on one dataset collected by AMEC and one, by CEA (The French
Commission for Atomic and Alternative Energies).
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4.1. Training AutoNDE on DPS Data

It has been established by trial and error that the best images of the specimen used in
DPS experiment (see Figure 1) could be obtained by specifying its thickness as 29.5 mm and
distance from the probe to the specimen, as 12.5 mm. In other words, it has been established
that the 0.5 mm difference in these parameters has a significant effect on the image quality.
The number of array elements and length of A-scan have been already specified above as K
= 128 and N = 800. The optimal length of the “partial probe” has been established by trial
and error to be 25 elements, covering the aperture of 20 mm. This aperture is large with
respect to the typical length of the longitudinal wave: Given the longitudinal speed within
the steel specimen of 5.89 km/s and the central pulse frequency of 5 MHz, this typical
length is 1 mm. Similarly, it has been found that enough information could be collected
with 25 images, Dm varying between 0 to 24 array elements. No interpretable images were
produced for larger values of Dm. Finally, whatever the dataset, quality results have been
obtained for the same region of interest. This has been chosen as the central region, roughly
20% of the area underneath the probe, symmetrical with respect to the probe center. The
resulting estimates of notch characteristics are compared to their known experimental
values in Table 1. The experimental values were established using standard approaches
used in experiments of this nature, see, e.g., [1].

Table 1. The DPS data set: Estimated (est) and experimental (exp) crack characteristics. The crack
position is specified as distance between the notch and left edge of the specimen. The “hc” stands for
Human Choice and indicates that the estimates are chosen by a human and not the AI.

Inspection Surface/
Approximate Notch Depth/
Notch Distance from Edge

Report
Quality/Comments

Defect Parameters

Extent,
in mm Est/Exp

Orientation,
in deg Est/Exp

Depth, in
mm Est/Exp

Flatside/Buried/24 mm 60% 9/10 105/110 8/5

Flatside/Buried/62 mm 40% 6/5 105/110 5/5

Flatside/Buried/113 mm 40% 12/10 90/90 5/5

Flatside/Buried/149 mm 20%hc 5/5 85/90 6/5

Flatside/Breaking/25 mm 60% 6/5 80/90 0/0

Flatside/Breaking/64 mm 90% 11/10 90/90 0/0

Flatside/Breaking/113 mm 60% 7/5 100/110 0/0

Flatside/Breaking/150 mm 90% 12/10 110/110 1/0

Notchside/Buried/24 mm 60% 11/10 110/110 5/5

Notchside/Buried/62 mm 70% 6/5 110/110 5/5

Notchside/Buried/113 mm 30% 12/10 90/90 4/5

Notchside/Buried/149 mm 30% 5/5 80/90 3/5

Notchside/Breaking/25 mm 40% 5/5 100/90 1/0

Notchside/Breaking/70 mm 30%hc 8/10 90/90 2/0

Notchside/Breaking/113 mm 30% 5/5 115/110 1/0

Notchside/Breaking/155 mm 50% 8/10 115/110 2/0

Table 1 shows that depths of the notches in DPS data could be estimated with the
error of up to 2 mm (in one instance, 3 mm), and orientations—with the error of 5–10◦.
We note here that assuming the inspection surface plane would produce similar estimates
for most of the notches but the second entry would be 7 mm in extent, located at 1 mm
depth, oriented at 75◦ and the fourth entry would be 7 mm in extent, located at 0 mm depth,
oriented at 125◦. It follows that results are more reliable when small surface undulations
are taken into account.

Typical MTFM images are presented in Figure 7: both Figure 7a,b contain three bright
spots, with the two brightest ones joined by a thin yellow line. However, while the top spot
is bright in both images, in Figure 7a the brightest lower spot is found at a distance of 4 mm
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from the backwall, while in Figure 7b the brightest spot lies on the backwall. We know that
both bright spots in Figure 7a represent diffraction spots surrounding tips of the planar
notch, while the lowest bright spot in Figure 7b is spurious, probably due to a defect in the
backwall: The noise is similar to the signal and inside any given image the code cannot
always distinguish between the two. However, in this case most MTFM images allow it
to make the correct choice. This leads to a reasonable entry for the correponding notch in
Table 1. The accompanying AutoNDE inspection report is presented in Figure 8.

 

40                           100  
 , mm 
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-12.5 
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m

 

40                        100   , mm 

(a)                                      (b)        

Figure 7. DPS data set: the buried notch located 113 mm from the left edge, imaged from the flat
side. MTFM images have been obtained with intensity threshold = 185 and Dm = (a) 24; (b) 21. Key:
E—notch extent, D—notch depth and O—notch orientation. The portion of the image to the left of
the region of interest is cut off.
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,
GROUP-1: 
---------------- 
Number of images in group = 11 
DM(s) in groups: 14 17 24 22 23 24 -20 
A possible planar defect is detected. 
Defect depth = 5 mm 
Defect extent = 12 mm 
Defect orientation = 90 deg 
Report Quality = 40% (the group displays the shooting star effect) 

Upper surface (interpolated using the polynomial degree 9) 

POSSIBLE INSPECTION REPORT 
************************************************************************ 
Folder: FSBuried113mm 
 
TFM image 

Figure 8. Inspection report for buried notch located 113 mm from the left edge. Key (here and below):
dots–surface points acquired by SurfaceProfiling; line interpo lating polynomial.

Note that unlike MTFM images in Figure 7, the TFM image in Figure 8 contains bright
reflections from both top surface and backwall and the portion of the image to the left
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of the region of interest is not cut off. Unlike with MTFM images the diffraction spots
surrounding notch tips are very faint. The presence of the TFM image in the report allows
a human inspector to make an immediate assessment of the validity of the AI conclusions.
Note too that the upper surface points presented in the second figure of this report have
been obtained using the Profiling submodule and solid line is the interpolating polynomial.
Finally, the order of DMs listed in the report indicates that the first four interpretable
images have been obtained with the intensity threshold of 65, the next four—with the
intensity threshold of 125, and the last two—with the intensity threshold of 185.

As mentioned above, when an AutoNDE report lists several possibilities, it is for a
human inspector to select the most probable. Let us illustrate this by the report for the
surface-breaking notch situated 113 mm from the left edge of the specimen and inspected
from the notched side. The corresponding AutoNDE report can be seen in Figure 9.
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42.0 

x, mm 
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, m
m

 
, m

m

12.1 
 
 

12.5   

,x, mm

0                                60                             120
GROUP-1: 
---------------- 
Number of images in group = 3 
DM(s) in groups: -12 -13 -11 
A possible planar defect is detected. 
Defect depth = 3 mm 
Defect extent = 19 mm 
Defect orientation = 30 deg 
Report Quality = 30% 

GROUP-2: 
---------------- 
Number of images in group = 10 
DM(s) in groups: 3 4 6 10 22 15 17 18 20 21 
A possible planar defect is detected. 
Defect depth = 1 mm 
Defect extent = 5 mm 
Defect orientation = 115 deg 
Report Quality = 30% (the group displays the shooting star effect) 

Upper surface (interpolated using the polynomial degree 9) 

POSSIBLE INSPECTION REPORT 
************************************************************************ 
Folder: NSBreaking113mm 
 
TFM image 

Figure 9. Inspection report for the surface-breaking notch located 113 mm from the left edge.

The presence of Group 1 is due to the fact that some MTFM images pick up two spuri-
ous spots, see Figure 10a. Group 2 contains slightly skewed specular images, see Figure 10b.
We emphasize here that all TFM images obtained with DPS data contain either clear diffrac-
tion spots as above or else clear specular images, see Figure 11. While the present version
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of AutoNDE has not been trained to mask the images of upper and lower surfaces this
will be done in future. It would then become possible to characterize these images without
employing MTFM. Thus, the main advantage of MTFM is the fact that unlike TFM it allows
to produce many images instead of one, allowing to estimate the quality of a notch image
by how often it is reproduced.
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Figure 10. The DPS data set: the surface-breaking notch located 113 mm from the left edge, im-
aged from the notched side. MTFM images have been obtained with (a) intensity threshold = 125,
Dm = −11, and (b) intensity threshold = 185, Dm = 15. Key as in Figure 7.
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Figure 11. The DPS data set: the TFM image of the surface-breaking notch (circled) located 70 mm
from the left edge, imaged from the notched side. Key as in Figure 7.

Typical run times involved in creating Table 1 under the Ubuntu 64-bit operating
system on the VMware workstation 16.x with an i7-1165G7 @ 2.80 GHz and 16 GB of Ram
are presented in Table 2.

Table 2. Maximum run times (in seconds) involved in creating Table 1.

Reading Data Profiling Raytracing Creating an Image I/O Handling Total

1.5 2 2 1.5 4 12

4.2. Testing AutoNDE on AMEC Data

AutoNDE has been tested on a data set collected by AMEC engineers using a 64 el-
ement phased transducer array with the pitch De = 0.63 mm and sampling frequency
fs = 25 MHz, placed in direct contact with a 55.5 mm deep steel specimen. The geometry
of the experiment, input pulse and typical A-scans are similar to the ones in the DPS
experiment and are not reproduced.

The standard TFM image of the AMEC specimen is presented in Figure 12a. It con-
tains two diffraction spots, but they are too faint to be identified by the current version
of AutoNDE. The code picks the diffraction spots up only when we cut off minimum
20% of the specimen thickness from the bottom of the image, see Figure 12b. The latter
displays the following estimates of the crack characteristics: extent—4 mm, depth—16
mm, orientation —100◦. The necessity to reduce the region of interest appears to be due to
the defect in the backwall, which produces a response that is too bright. After the region
of interest is cropped as described, AutoNDE produces the report reproduced in Figure
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13. The parameters of the manufactured notch are as follows: extent—5 mm, depth—16
mm, orientation—101◦. We can see that the AutoNDE estimates are of the same quality as
estimates obtained with the DPS data.
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(a)                       (b)                   

Figure 12. The AMEC data set. (a) The standard TFM image of the full specimen; (b) an MTFM
image, with 20% thickness cut off the bottom, intensity threshold = 125, Dm = 3.
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POSSIBLE INSPECTION REPORT 
************************************************************************ 
Folder: AMEC 
 
TFM image 

Upper surface (interpolated using the polynomial degree 0) 

GROUP - 1: 
---------------- 
Number of images in group = 6 
DM(s) in groups: 3 4 5 6 7 8 
A possible planar defect is detected. 
Defect depth = 16 mm 
Defect extent = 6 mm 
Defect orientation = 100 deg 
Report Quality = 40% 

6
 0                        40    

Figure 13. The inspection report for the AMEC dataset.

4.3. Testing AutoNDE on CEA Data

AutoNDE has been also tested on a data set collected by CEA engineers using a 64
element phased transducer array, with the pitch De = 0.6 mm and sampling frequency
fs = 50 MHz, imaging in immersion a 42 mm deep steel specimen. The geometry of the
experiment is presented in Figure 14, the input and typical A-scans are similar to the ones
in the DPS experiment and are not reproduced.
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water 

phased array 

steel  block 

Figure 14. A schematic of the CEA experiment.

The set-up is more challenging than the one used in the DPS experiments: both the top
surface and blackwall are more indulated and there is a backwall breaking flaw, creating
additional response, see Figures 15b and 16a. The numerical experiments conducted with
CIVA [22] (a commercial package for analyzing and simulating NDT [23–28], in particular,
NDT of components with irregular surfaces [7,8,28,29]) showed that the notch fabricated
for the purposes of this experiment was best imaged using the half-skip LTT mode, with
the L (longitudinal) transmitted pulse converting at the backwall to the T (transverse) pulse
and then reflecting from the notch, so that the received pulse is also T, see Figure 16a.

Note that the CEA experiment was designed to investigate the effect of highly un-
dulated surfaces, with the distribution of undulations different to normal. Both types
of surfaces, those reproduced in the CEA experiment and those reproduced in the DPS
experiment are realistic, but our analysis confirmed that they have to be modeled differ-
ently, The CIVA code was provided with precise descriptions of both the inspection surface
and backwall obtained with a flexible probe. AutoNDE relied instead on a rather crude
Profiling submodule described above. Moreover, the offset of 2095 samples in A-scans
obtained with the 64 element transducer array was too high, eliminating reflections from
the higher portions of the inspection surface. For this reason, the quality of the Profiling
output was very low. A trial and error approach was used to establish that the best results
could be obtained when the upper surface was assumed to be plane and the backwall
was represented by a parabola, cf. Figure 15a,b with the surfaces in the AutoNDE report
presented in Figure 17.
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Figure 15. CEA experimental specimen. (a) The upper surface and (b) the backwall.
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Figure 16. CEA data set. The backwall notch imaged with a 64 element transducer array, using the half-skip LTT mode as
processed by (a) CIVA and AutoNDE, (b) employing the standard TFM algo-rithm and (c) MTFM (intensity threshold = 185
and Dm = −8).
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This report was obtained using the partial probe of 33 transducerelements, that is of
19.8 mm aperture. All other parameter values were the same as described in the previous
sections. Inspecting the TFM image confirms that the second group provides a more reliable
characterization of the 12 mm surface-breaking notch normal to the backwall. The depth is
overestimated due to distortions introduced by crude of the surfaces.
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GROUP-1: 
---------------- 
Number of images in group = 8 
DM(s) in groups: 16 17 18 19 23 24 25 26 
A possible planar defect is detected. 
Defect depth = 1 mm 
Defect extent = 8 mm 
Defect orientation = 110 deg 
Report Quality = 20% 

GROUP-2: 
---------------- 
Number of images in group = 7 
DM(s) in groups: -31 -4 -5 -6 -7 -8 -9 
A possible planar defect is detected. 
Defect depth = 7 mm 
Defect extent = 12 mm 
Defect orientation = 95 deg 
Report Quality = 20% 
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Figure 17. The inspection report for the CEA dataset.
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5. Conclusions

A novel code containing a decision tree, that is, an explainable AI has been designed
and developed for characterizing single large planar cracks. For the component surfaces
whose undulation errors can be described using a normal distribution, we developed a
method for automatic estimation of the degree of the interpolating polynomial. The code
has been trained on 16 experimental data sets and tested on two. The inspection surface
and backwall used in training had realistic small undulations whose distribuation could be
considered normal. One test dataset was collected using a specimen with plane surfaces
and another, a specimen with surfaces whose undulations were smooth and large and
could not be described using a normal distribution.

It has been demonstrated that every type of material and inspection configuration
requires preliminary investigation to establish not only how to model the surfaces but also
most appropriate values of such hyperparameters as the component thickness, distance to
the probe and portion of the image to be analyzed. Numerous other parameters described
in this paper have been optimized manually. Remarkably, they perform well on all datasets
described in the paper. It is important to realize that in some configurations only one crack
tip can be picked up and in others no crack localization is possible.

Once suitable parameters and limitations are established the code can be used to
generate possible inspection reports. These contain an assessment of their own quality
based on the subjective probability of the report being correct. The probabiltiy is calculated
by analysing a variety of images (rather than one) produced by a particular modification of
the TFM offered in this paper. It is expected that the human inspectors would still have
to examine the AutoNDE reports, particularly the TFM images they contain, to ascertain
whether they agree with the preliminary conclusions made by the AI module.

Despite the initial success reported here, just like any other artificial intelligence
system, the code can be guaranteed to analyze well only the type of data used for its
training, so that, say, the random undulations of the component surface follow the same
probability distribution as in the training data set. Also, so far AutoNDE has been trained to
process only the regions of interest, which contain one crack or else several cracks parallel to
the inspection surface. It is clear that many more data sets are required for testing AutoNDE
before it is accepted by the NDT community as a practical tool. To widen the AutoNDE
applicability we have plans to automate the choice of the hyperparameters described above
too. It is also clear that other methodologies have to be developed for modeling surfaces
with undulations that do not obey a normal distribution. Notwithstanding these challenges,
AutoNDE shows a great promise, demonstrating feasibility of an explainable AI, suitable
for applications in industrial NDE, increasing its accuracy and efficiency.

Author Contributions: Conceptualization, methodology, validation, writing, supervision, project
administration, funding acquisition, L.F.; software, S.U.A. and L.F.; data interpretation, review and
editing, M.D. All authors have read and agreed to the published version of the manuscript.

Funding: The research was supported by the Innovate UK grants nos. 131671, 132928 and 2553 as
well as the EURIKA/Innovate UK grant no 106151.

Data Availability Statement: Restrictions apply to the availability of these data. Data was obtained from
Doosan Power Systems, AMEC and CEA are available from L.F. with the permission of these organisations.

Acknowledgments: The authors are grateful to the Innovate UK monitoring officers Tom Harris
and Chris Marshall for their critical feedback and constant support and to the colleagues from the
Ultrasonics and NDT group, Bristol University for providing the AMEC data and Sébastien Robert
for the CEA data acquisition. They are also grateful to Nicolas Pignet, who undertook translation of
the original LabView code into C when a second year ENSEIRB-MATMECA engineering student
seconded under the Internship Agreement to Sound Mathematics Ltd., funded by a European Union
Erasmus grant. Finally the authors would like to thank anonymous reviewers for many helpful
suggestions on improving the presentation of the paper.

Conflicts of Interest: The authors declare no conflict of interest.

304



Appl. Sci. 2021, 11, 10867

References

1. Schneider, C.; Bird, C. Reliability of Manually Applied Phased Array Inspection. In Proceedings of the 4th European-American
Workshop on Reliability NDE, Berlin, Germany, 24–26 June 2009.

2. Hunter, A.J.; Drinkwater, B.W.; Wilcox, P.D. Least-squares estimation of imaging parameters for an ultrasonic array using known
geometric image features. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2011, 58, 414–426. [CrossRef]

3. Marengo, E.A.; Gruber, F.K.; Simonetti, F. Time-Reversal MUSIC Imaging of Extended Targets. IEEE Trans. Image Process. 2007, 16,
1967–1984. [CrossRef] [PubMed]

4. Champagnat, F.; Goussard, Y.; Idier, J. Unsupervised deconvolution of sparse spike trains using stochastic approximation. IEEE
Trans. Signal Process. 1996, 44, 2988–2998. [CrossRef]

5. Holmes, C.; Drinkwater, B.W.; Wilcox, P. Advanced post-processing for scanned ultrasonic arrays: Application to defect detection
and classification in non-destructive evaluation. Ultrasonics 2008, 48, 636–642. [CrossRef] [PubMed]

6. Hunter, A.J.; Drinkwater, B.W.; Wilcox, P. The wavenumber algorithm for full-matrix imaging using an ultrasonic array. IEEE
Trans. Ultrason. Ferroelectr. Freq. Control. 2008, 55, 2450–2462. [CrossRef] [PubMed]

7. Iakovleva, E.; Chatillon, S.; Bredif, P.; Mahaut, S. Multi-mode TFM imaging with artifacts filtering using CIVA UT forwards
models. AIP Conf. Proc. 2014, 1581, 72–79. [CrossRef]

8. Le Jeune, L.; Robert, S.; Villaverde, E.L.; Prada, C. Plane Wave Imaging for ultrasonic non-destructive testing: Generalization to
multimodal imaging. Ultrasonics 2016, 64, 128–138. [CrossRef]

9. Bannouf, S.; Robert, S.; Casula, O.; Prada, C. Noise filtering in the total focusing method by decomposition of the time reversal
operator and the virtual array approach. AIP Conf. Proc. 2013, 1511, 857–864. [CrossRef]

10. Villaverde, E.L.; Robert, S.; Prada, C. Ultrasonic imaging of defects in coarse-grained steels with the decomposition of the time
reversal operator. J. Acoust. Soc. Am. 2016, 140, 541–550. [CrossRef]

11. Robert, S.; Casula, O.; Roy, O.; Neau, G. Real-time nondestructive testing of composite aeronautical structures with a self-adaptive
ultrasonic technique. Meas. Sci. Technol. 2013, 24, 074011. [CrossRef]

12. Pyle, R.J.; Rhodri, L.T.; Bevan, R.R.; Hughes, R.K.; Rachev, A.A.S.A.; Wilcox, P.D. Deep Learning for Ultrasonic Crack Characteri-
zation in NDE. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2021, 68, 1854–1865. [CrossRef] [PubMed]

13. Bai, L.; Le Bourdais, F.; Miorelli, R.; Calmon, P.; Velichko, A.; Drinkwater, B.W. Ultrasonic Defect Characterization Using the
Scattering Matrix: A Performance Comparison Study of Bayesian Inversion and Machine Learning Schemas. IEEE Trans. Ultrason.
Ferroelectr. Freq. Control. 2021, 68, 3143–3155. [CrossRef] [PubMed]

14. Shipway, N.; Huthwaite, P.; Lowe, M.; Barden, T. Using ResNets to perform automated defect detection for Fluorescent Penetrant
Inspection. NDT E Int. 2021, 119, 102400. [CrossRef]

15. Nageswaran, C. The Snooker Algorithm for Ultrasonic Imaging of Fatigue Cracks in order touse Parameter-Spaces to Aid
Machine Learning. Preprints 2021, 2021070269. [CrossRef]

16. Fradkin, L.; Zernov, V.; Elston, G.; Taneja, R.; Bell, I.; Lines, D.; Wharrie, J.; Fitzgerald, P.J. Towards semi-automated crack
characterisation. J. Phys. Conf. Ser. 2013, 457, 012008. [CrossRef]

17. Badeau, N.; Painchaud-April, G.; Le Duff, A. Use of the Total Focusing Method with the Envelope Feature. Available
online: https://www.olympus-ims.com/en/resources/white-papers/use-of-the-total-focusing-method-with-the-envelope-
feature/ (accessed on 1 November 2021).

18. Fahrmeir, L.; Kneib, T.; Lang, S.; Marx, B. Regression: Models, Methods and Applications; Springer: Berlin, Germany, 2013.
19. Cheney, W.; Kincaid, D. Numerical Mathematics and Computing, 7th ed.; BROOKS/COLE Sengale Learning: Boston, MA, USA, 2013.
20. Macon, B.; Spitzbart, X. Inverses of Vandermonde Matrices. Am. Math. Mon. 1958, 65, 95–100. [CrossRef]
21. Home—OpenCV. Available online: https://opencv.org (accessed on 1 November 2021).
22. Available online: http://www.extende.com/ (accessed on 1 November 2021).
23. Mahaut, S.; Chatillon, S.; Darmon, M.; Leymarie, N.; Raillon, R.; Calmon, P. An Overview of Ultrasonic Beam Propagation and

Flaw Scattering Models in the Civa Software. AIP Conf. Proc. 2010, 1211, 2133–2140.
24. Toullelan, G.; Raillon, R.; Chatillon, S. Results of the 2013 UT modeling benchmark obtained with models implemented in CIVA.

AIP Conf. Proc. 2014, 1581, 2093–2100. [CrossRef]
25. Raillon-Picot, R.; Toullelan, G.; Darmon, M.; Calmon, P.; Lonné, S. Validation of CIVA Ultrasonic Simulation in Canonical

Configurations. In Proceedings of the 18th World Conference on Non-destructive Testing (WCNDT), Durban, South Africa,
16–20 April 2012.

26. Raillon, R.; Bey, S.; Dubois, A.; Mahaut, S.; Darmon, M. Results of the 2010 Ut Modeling Benchmark Obtained with Civa:
Responses of Backwall And Surface Breaking Notches. AIP Conf. Proc. 2011, 1335, 1777–1784. [CrossRef]

27. Raillon, R.; Bey, S.; Dubois, A.; Mahaut, S.; Darmon, M. Results of the 2009 Ut Modeling Benchmark Obtained with Civa:
Responses of Notches, Side-drilled Holes and Flat-bottom Holes of Various Sizes. AIP Conf. Proc. 2010, 1211, 2157–2164.
[CrossRef]

28. Ferrand, A.; Darmon, M.; Chatillon, S.; Deschamps, M. Modeling of ray paths of head waves on irregular interfaces in TOFD
inspection for NDE. Ultrasonics 2014, 54, 1851–1860. [CrossRef] [PubMed]

29. Darmon, M.; Dorval, V.; Baqué, F. Acoustic Scattering Models from Rough Surfaces: A Brief Review and Recent Advances. Appl.
Sci. 2020, 10, 8305. [CrossRef]

305



Citation: Fradkin, L.; Uskuplu

Altinbasak, S.; Darmon, M.

Correction: Fradkin et al. Towards

Explainable Augmented Intelligence

(AI) for Crack Characterization. Appl.

Sci. 2021, 11, 10867. Appl. Sci. 2022,

12, 1043. https://doi.org/10.3390/

app12031043

Received: 27 December 2021

Accepted: 4 January 2022

Published: 20 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Correction

Correction: Fradkin et al. Towards Explainable Augmented
Intelligence (AI) for Crack Characterization. Appl. Sci. 2021, 11,
10867

Larissa Fradkin 1,*, Sevda Uskuplu Altinbasak 1,† and Michel Darmon 2

1 Sound Mathematics Ltd., 11 Mulberry Close, Cambridge CB4 2AS, UK; sevda.uskuplu@gmail.com
2 Université Paris-Saclay, CEA, List, F-91120 Palaiseau, France; Michel.DARMON@cea.fr
* Correspondence: l.fradkin@soundmathematics.com
† Current Address: ARM, 110 Fulbourn Road, Cambridge CB1 9NJ, UK.

Error in Figure

The authors wish to make the following corrections to their paper [1]:
In the original article, there was a mistake in Figure 5 as published. The “x” was not in

the correct place. The corrected Figure 5 appears below.

The authors also wish to replace all figures with higher clarity versions and make sure
that Figure 6 does not look unnaturally enlarged.

Text Correction

Corrections have been made as follows:
In Section 3.1, the authors wish to change the phrase “an approach” on line 7 of

paragraph 4 (page 5) to “a method”; change the word “it” on the first line of paragraph 5
(page 5) to “this method”; change the word “Wald test” on the first line of paragraph 6
(page 5) to “method”; add the sentence “The spline method has been tried too but was
found to be too sensitive to the choice of smoothing parameters and thus not amenable to
automation.” after paragraph 6 (page 5); replace the word “Finally” with “Both” on line 14
of paragraph 9 (page 7).

In Section 3.2, the authors wish to replace “The code” on line 5 of paragraph 1 (page 7)
to a more detailed word “AutoNDE”; modify the phrase “we normally consider” in
paragraph 2 (page 7) to “AutoNDE normally ultilizes”; modify the typo “We analyse” to
“AutoNDE analyze” in paragraph 3 (page 7).

In Section 3.3, the authors wish to change the word “us” on the last line of point 3
(page 9) to “AutoNDE”; replace the word “defect” on line 2 of point 4 (page 9) to “crack”.

In Section 4.1 (page 10), the authors wish to add the phrase “by trial and error” after
the word “established” on line 7 of paragraph 1; add the phrase “whatever the dataset”
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after the word “Finally” on line 12 of paragraph 1; replace the word “These” with “The
experimental values” on line 16 of paragraph 1.

In Section 4.2 (page 13), the authors wish to replace the word “technicians” on the first
line of paragraph 1 with “engineers”; add the word “minimum” before “20%” on line 3 of
paragraph 2.

In Section 4.3, the authors wish to replace the sentence “(The French Alternative
Energies and Atomic Energy Commission)” on the first line of paragraph 1 (page 14) to
“engineers”; replace all words “signal” in paragraph 2 (page 15) with “pulse”.

In Section 5 (page 17), the authors wish to move up the last sentence in paragraph
1 to line 2 as the second sentence. The sentence is “For the component surfaces whose
undulation errors can be described using a normal distribution, we developed a method
for automatic estimation of the degree of the interpolating polynomial”.

The authors apologize for any inconvenience caused and state that the scientific
conclusions are unaffected.
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Featured Application: Nondestructive testing and structural health monitoring for complex-shaped

parts with a high resolution.

Abstract: Ultrasonic methods have been extensively developed in nondestructive testing for various
materials and components. However, accurately extracting quantitative information about defects
still remains challenging, especially for complex structures. Although the immersion technique is
commonly used for complex-shaped parts, the large mismatch of acoustic impedance between water
and metal prevents effective ultrasonic transmission and leads to a low signal-to-noise ratio(SNR).
In this paper, a quantitative imaging method is proposed for complex-shaped parts based on an
ice-coupled full waveform inversion (FWI) method. Numerical experiments were carried out to
quantitatively inspect the various defects in a turbine blade. Firstly, the k-space pseudospectral
method was applied to simulate ice-coupled ultrasonic testing for the turbine blade. The recorded
full wavefields were then applied for a frequency-domain FWI based on the Limited-memory
Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) method. With a carefully selected iterative number
and frequency, a successive-frequency FWI can well detect half wavelength defects. Extended studies
on an open notch with different orientations and multiple adjacent defects proved its capability to
detect different types of defects. Finally, an uncertainty analysis was conducted with inaccurate
initial velocity models with a relative error of ±2%, demonstrating its robustness even with a certain
inaccuracy. This study demonstrates that the proposed method has a high potential to inspect
complex-shaped structures with an excellent resolution.

Keywords: ice-coupled ultrasonic testing; full waveform inversion; complex structure; defect detection

1. Introduction

Rapid development in the fields of computer technology, manufacturing techniques
and materials science makes the geometry of key components more complex. For example,
instead of an assembly of a disk and removable blades, the integratedbladed disk (BLISK)
technology has been widely applied in the aeroengine design due to the merits of a light
weight, high aerodynamic efficiency, excellent fatigue resistance and high efficiency of fuel
consumption [1]. Recently, such monocoque components have been conveniently designed
and fabricated by the emerging additive manufacturing (AM), also known as 3D printing
technology. Although AM has an excellent ability to manufacture complex-shaped parts
with an optimal structure design, the quality of manufactured products may be influenced
by buckling, residual stress and internal defects during the cooling process [2]. Moreover,
there is a higher tendency to bring in defects in complex-shaped parts due to a much greater
surface area. Therefore, to guarantee the safety of these key components, special attention
should be paid to the quantitative nondestructive testing (NDT) of complex-shaped parts.
X-ray computed tomography (XCT) is widely used to inspect such parts in an industrial
application. Although XCT possesses a high sensitivity to volumetric defects such as gas
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pores and inclusions, it is insensitive to planar defects such as cracks and delamination [3].
In addition, a high energy X-ray source is required for thick metals, resulting in radiation
hazards and expensive equipment.

On the other hand, ultrasound plays an irreplaceable role in NDT with the advantages
of a large penetration depth, large area coverage and high sensitivity to both internal and
surface defects. Both a single transducer with a scanning system and a transducer array
have been widely applied to develop methods to visualize ultrasonic results with various
imaging algorithms. Synthetic imaging methods including a common source method
(CSM) [4,5], a synthetic aperture focusing technique (SAFT) and a total focusing method
(TFM) [6,7] have been well developed to produce high resolution images for the objects
below the measurement based on the wave reflections. However, when the surface of the
tested object is uneven or irregular, the deployment of contact transducers will be difficult
and poor coupling will lead to inaccurate or false detection. Currently, there are three
common schemes to tackle this issue. The first method is to integrate the transducer with a
wedge or “shoe” to match the surface to allow direct contact. This method is indeed simple
but a wedge is only suitable for one specific surface. When the surface profile is varying or
too complex, this method is difficult or even impossible to apply. The second method is to
use flexible transducers [8], which show a greater compatibility than wedges. However,
a few potential defects may go undetected in the dead zone because of the near field.
The third method is to place the tested object into a water-filled chamber and the water
acts as an acoustic couplant [9]. As a whole water-filled regular structure, objects with
highly curved surfaces can be inspected. However, there is a large difference of acoustic
impedance between the water and metal materials that hinders ultrasonic energy from
effectively penetrating into the tested metal object. Thus, the performance is limited for
metal parts with complex shapes.

Recently, to bridge the gap between the immersion method and the contact method,
Simonetti et al. proposed a cryo-ultrasonic method to inspect complex-shaped parts, which
were encased in ice with a cylinder container [10]. As the longitudinal wave speed of ice is
about 2.5 times that of water, the acoustic impedance mismatch with the metal material
can be greatly reduced so that the transmission energy will significantly increase. Their
preliminary results demonstrated its superiority compared with the immersion method.
Furthermore, they presented experimental schemes to avoid the formation of crack and bub-
ble nucleation when water is freezing [11]. To reconstruct the internal complex structure of
such an ice-encased part, traditional focusing imaging methods are no longer suitable. Fo-
cusing imaging can precisely localize the defects but it is difficult to obtain the information
of the shape and appearance. Moreover, these methods ignore multiple reflection signals
and are unable to obtain the information of lower and side surfaces. Simonetti et al. applied
a diffraction mitigation technique to carry out ultrasonic imaging/tomography [10,11].
However, the performance of diffraction tomography is limited due to its assumption of
the first-order diffraction. It can achieve a better resolution than ray tomography but it is
only suitable for low-contrast defects. Therefore, to quantitatively evaluate real defects
with arbitrary forms in complex-shaped structures, a full wavefield containing all of the
possible linear and higher-order diffraction effects should be considered in the tomography.

To solve the inversion problem with a recorded full wavefield, full waveform inversion
(FWI) tomography was firstly derived in geophysics for seismic wave imaging [12–15]. The
FWI is performed via an iterative minimization of the misfit between an experimentally
measured wavefield and a numerically calculated wavefield generated with a forward
model. Based on a certain optimization algorithm, the estimated model of the tested
object is iteratively updated. The iteration process will end when the convergence cri-
terion is satisfied; then, the final model is the approximation of the tested object. FWI
automatically considers higher-order scattering effects; thus, it has been widely studied
in medical applications for breast cancer screening and diagnosis [16], bone quantitative
imaging [17] and delamination detection in civil infrastructures [18,19]. Recently, FWI has
also been applied in guided wave technology to quantify corrosion defects in plate-like
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structures [20,21]. In this article, a frequency-domain FWI is introduced as an imaging
algorithm for the quantitative defect detection in a complex structure combined with
ice-coupled ultrasonic testing.

The rest of this paper is structured as follows. In Section 2, the fundamental theory
of FWI including forward modelling and the successive-frequency FWI procedure will be
briefly introduced. The numerical experiment setup and data calibration of the ice-coupled
ultrasonic testing for turbine blades are then illustrated in Section 3. The reconstructed
results for various defects are shown and discussed in Section 4. Finally, concluding
remarks are drawn in Section 5.

2. Theory of Full Waveform Inversion

A detailed description of the FWI algorithm can be found in the literature [13,15]; thus,
only the key techniques and steps are briefly introduced here. Generally, FWI imaging can
be regarded as a composition of three segments: forward modeling to generate calculated
data by solving a wave equation, the computation of the gradient and Hessian matrix of
the misfit function and updating the model with a suitable optimization method.

2.1. Forward Modelling for Ultrasonic Wave Propagation

Reliable forward modelling for wave propagation is a primary prerequisite for ultra-
sonic FWI tomography. Ultrasonic wave propagation in solids is typically described by
an elastic wave equation [22]. To boost the whole efficiency of FWI, the scalar acoustic
wave equation is usually used to approximate the ultrasonic wave propagation [17]. The
formalism of a 2D acoustic wave equation in a frequency-domain is expressed as:

(∇2 + ω2m2)ψ(r, ω) = −s(r, ω) (1)

where ∇2 = ∂2

∂x2 + ∂2

∂z2 = ∂2
x + ∂2

z is the Laplace operator, ω is the angular frequency,
m = 1/c is the slowness, c is the wave speed, r= (x, z) is the spatial position in the Cartesian
coordinate system and ψ(r, ω) is the displacement wavefield. s(r, ω) = s(ω)δ(r − rs) is the
excitation signal where s(ω) refers to the Fourier transform of the source, δ(r − rs) denotes
the Dirac function and rs is the excitation position.

The finite difference technique is the most common method to solve partial differ-
ential equations [23,24] and is applied in forward modelling here. In order to simplify
the denotation, Equation (1) can be expressed by the matrix equation Fψ = s, where
F = ∇2 + ω2m2 is a l × l complex-valued impedance matrix, which is related to the fre-
quency, material properties, discrete format and boundary conditions. ψ and s are l × 1
column vectors at the nodal points of the discrete grid.

To reduce the computation cost, the LU factorization is utilized to solve the wavefield ψ:

LUψ = s (2)

where L and U denote the lower and upper triangular matrices from the LU factorization.
As the solution is reusable for different sources to solve the forward problem, multiple
source problems can be handled efficiently [25]. To alleviate the computation burden
and avoid reflection interference, a perfectly matched layer (PML) boundary condition is
applied around the computational domain to absorb outgoing waves in a similar configu-
ration as done in [26].

2.2. Full Waveform Inversion

The aim of inversion is to find a model parameter m = [m1, m2, . . . , mnxnz ]
t in the

model space to reduce the residual between the calculated and measured data. A least-
square norm is chosen to define this misfit as the object function:

min
m

E(m) =
1
2
‖ Pr(ψ)− d ‖2=

1
2
(Δdt) ∗ Δd (3)
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where Pr is the sampling operator to extract the wavefield at the receivers from the forward
model. ψ = {ψi}, i = (1, 2, . . . , nr) and d = {di}, i = (1, 2, . . . , nr) are the calculated and
measured data vectors, respectively. Δd = {Pr(ψi)− di}, i = (1, 2, . . . , nr) is the residual
vector. The superscript t is the vector or matrix transposed and ∗ is the complex conjugate
to convert the object function to real numbers.

Various optimization algorithms can be applied to minimize the object function E(m).
First and foremost, the gradient of E(m) should be defined with respect to the model
parameters such as density, wave speed and attenuation. It offers the direction to iteratively
update the vector space to minimize the misfit [27]. Based on Taylor’s theorem, we have:

E(m + δm) ≈ E(m) + g · δm +
1
2

δmt · H · δm = P(δm) (4)

where g = ∂E(m)
∂m = e(JtΔd∗) is the gradient with a size of l × 1. J = [

∂ψp(mq)
∂mq

], p =

(1, 2, . . . , nr); q = (1, 2, . . . , nxnz) is the nr × l order Fréchet derivative matrix and e

denotes the real part of the complex value. H = ∂2E(m)
∂m2 is the Hessian matrix. To minimize

the object function E(m), let dP(δm)
d(δm)

= g + Hδm be zero then δm = −H−1 · g. Therefore,
the model can be updated as:

mk+1 = mk − εH−1g (5)

where ε is the step length. When only the first-order derivative is considered, the corre-
sponding method is called the steepest descent method. It is a straightforward way, but
its convergence rate is so slow that it limits the application for large-scale problems [17].
To boost the convergence, the second-order derivative should be taken into consideration.
However, the computation amount and storage space increase sharply because of the
calculation of the inverse Hessian matrix H−1. To handle this problem, quasi-Newton
methods have been developed to approximate the Hessian matrix. The limited-memory
Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) method is one of the most popular methods.
This method calculates the approximation of the inverse Hessian matrix by a limited num-
ber (nlim) of the gradient-difference and model-difference vectors associated with the nlim
latest iteration (nlim is generally defined between 3 and 20) [28].

At every iteration n̂lim = min{nlilm, k − 1}, correction pairs {αi,βi}, i = k − n̂lim, k −
n̂lim + 1, . . . , k − 1 are stored, where αi = mi+1 − mi, βi = gi+1 − gi. Let γi = 1

βt
iαi

,

ηi = (I − γiβiα
t
i), B = H−1, if k + 1 <= l, then

Bk = ηk−1
tBk−1ηk−1 + γk−1αk−1αk−1

t

= ηt
k−1η

t
k−2 . . .ηt

0B0
kη0 . . .ηk−2ηk−1 + ηt

k−1η
t
k−2 . . .ηt

1γ0α0α
t
0η1 . . .ηk−2ηk−1 + . . . + ηt

k−1γk−2αk−2α
t
k−2ηk−1 + γk−1αk−1α

t
k−1

(6)

If k + 1 > l, the iterative expression is given by:
Bk = ηk−1

tBk−1ηk−1 +γk−1αk−1αk−1
t

= ηt
k−1η

t
k−2 . . .ηt

k−l B0
k
ηk−l . . .ηk−2ηk−1 +ηt

k−1η
t
k−2 . . .ηt

k−l+1γk−lαk−lα
t
k−lηk−l+1 . . .ηk−2ηk−1 . . . +ηt

k−1γk−2αk−2α
t
k−2ηk−1 +γk−1αk−1α

t
k−1

(7)

In practical cases, the initial guess of B0
k can be computed by B0

k = βk
tαk

||βk||22 I, where I is

the identity matrix [28]. With the approximation of the inverse Hessian matrix, it is easy to
update the model with Equation (5). When proper convergence criteria or the maximum
iteration numbers are set, the final model can be obtained as the inversion results.

311



Appl. Sci. 2021, 11, 4433

The flow chart of the FWI algorithm is illustrated in Figure 1. When only one frequency
is applied to the update model, no external loop is needed to perform and this method is
called monochromatic inversion. In actual ultrasonic testing, the ultrasonic signal contains
not just a single frequency. When several frequencies are used simultaneously during
the inversion, the robustness will be improved but it comes at the cost of an increased
computational time. In this case, they can be classified as a successive-frequency inversion
and a simultaneous multi-frequency inversion. In this research, the successive-frequency
inversion is applied, as shown in Figure 1.

Figure 1. Workflow of the ultrasonic full waveform inversion algorithm.

3. Numerical Experiments on a Turbine Blade

To verify the feasibility and performance of the proposed ice-coupled ultrasonic
FWI tomography to evaluate the defects in complex-shaped parts, a series of numerical
experiments were conducted. The turbine blade is a typical safety-critical component in
the aerospace industry with a complex geometry, as shown in Figure 2a. In conventional
ultrasonic testing, phased array ultrasonic transducers can only be placed to directly
contact smooth surfaces at the upper part. It makes the defects at the lower part difficult to
inspect, such as the red circles in Figure 2a. To inspect the defects at different positions, the
transducer should be moved to different positions, shown as the red line. This complex
object was applied in this study. To save computational costs and storage space, only 2D
tomography was carried out for a typical cross section of the turbine blade in this study, as
shown in Figure 2b. To facilitate the fast acquisition of a full ultrasonic wavefield for FWI
tomography, an acoustic model rather than an elastic model was adopted here to simulate
the process of ice-coupled ultrasonic testing because the acoustic model is commonly
employed in ultrasonic NDT research [21,29]. All of the wave phenomena including
multiple reflections from the ice-steel interface and the wave-defect interaction can be
revealed in such a model. It is necessary to note that in a real case shear waves could exist
in a solid due to mode conversion at the interface and defects. Numerical experiments were
carried out to optimize the key parameters such as the frequency selection and iteration
number to quantitatively detect different types and numbers of defects in a turbine blade.

312



Appl. Sci. 2021, 11, 4433

Figure 2. (a) Photo of a turbine blade and (b) typical cross section.

3.1. Simulation of Ice-Coupled Ultrasonic Testing in a Turbine Blade

In this study, an open-source code k-wave toolbox was applied to conduct the nu-
merical simulation of ice-coupled ultrasonic testing to record the full wavefield [30]. This
toolbox solves the acoustic wave equation based on a k-space pseudospectral method.
Compared with the conventional finite difference method, the memory and computational
cost were reduced dramatically.

The turbine blade was encased by ice as shown in Figure 2b. The material properties
of the turbine blade and ice are shown in Table 1 [11]. The size of the whole model was
185 mm × 85 mm. A series of ultrasonic transducers were deployed evenly around the
turbine blade. Considering that the length of the specimen in the horizontal direction was
approximately half that of the vertical direction, 6 transducers were arranged at the top
and bottom sides and 12 transducers at the left and right sides, shown in Figure 3. Such
an arrangement of transducers can reduce the transducer number and assure the imaging
quality. At four corners, the spacing of two adjacent transducers was set as d1 = d2 = 5 mm.
The PML boundary was set around the calculation domain to absorb outgoing waves and
avoid reflection. To avoid uncertain factors further from the absorbing layer, all transducers
were shifted inward from all sides by 1 mm. It was an effective simplification to simulate
the wave propagation in a large domain because the reflections from the boundaries beyond
the area of interest could be excluded by applying appropriate time gates to the recorded
signals. The spacing of the transducers was dx = 14.6 mm in a horizontal direction and
dz = 15.73 mm in a vertical direction.

Table 1. Acoustic properties of the turbine blade and ice [11].

Mass Density ρ (kg/m3) Wave Speed c (m/s)

Steel 7800 5875

Ice (at −5 ◦C) 917 4000
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Figure 3. Configuration of the ultrasonic transducer array.

The ultrasonic wave was excited with the following signal:

R(t) = [1 − 2π2 f 2
c (t − t0)

2]e−π2 f 2
c (t−t0)

2
(8)

where fc was the center frequency and t0 referred to the time delay. As the theoretical reso-
lution of the FWI is a half wavelength [20,21], an ultrasonic wave with a center frequency
of 1 MHz was applied to inspect a defect as small as 3 mm in the turbine blade. When
fc = 1MHz and t0 = 1.5/ fc, this excitation waveform and the corresponding amplitude
spectrum are depicted in Figure 4. It could be seen that the dominant energy (above the
value of a −6 dB drop from the maximum amplitude) was within the effective frequency
band of 0.48 MHz–1.6 MHz. A quadrilateral mesh was applied to discretize the spatial
domain and the mesh size was carefully chosen to satisfy the Courant–Friedrichs–Lewy
(CFL) condition. The mesh size was chosen as Lelement = 0.2 mm in both directions for
an accurate acoustic wave calculation up to a frequency of 2 MHz (about 10 elements per
minimum wavelength) [31]. To ensure numerical stability, the time step should be chosen
carefully according to the smallest element and the wave speed. Here, time step was set as
Δt = 0.5Lelement/cmax, where cmax was the wave speed in the steel.

Figure 4. Excitation signal ( fc = 1 MHz and t0 = 1.5/ fc). (a) Waveform in the time domain and (b) the corresponding
normalized amplitude spectrum.
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The resolution and sensitivity of tomography strongly depend upon ‘ray density’ [32].
For this reason, a full matrix capture (FMC) technique was adopted to perform the ultra-
sonic data acquisition, which collected complete datasets including all transmitter-receiver
combinations. Therefore, each transducer was excited successively and all transducers
recorded the ultrasonic signals simultaneously. Finally, the resulting wavefield consisted of
Nrec × Nsrc = 1296 waveforms. In a k-wave simulation, a series of Nsrc = 36 simulations
should be performed independently to obtain this full wavefield. These calculations could
be practically and conveniently distributed via the different processors of a cluster. Thus, a
parallelization scheme was adopted to accelerate the simulation. The sampling frequency
was set to be approximately 60 MHz to satisfy the Nyquist theorem. The total time in the
simulation was set as 110 μs to guarantee that the receiver at one corner could receive the
reflected signal from the opposite corner.

3.2. Data Calibration

As the inversion procedure was performed in the frequency-domain, the recorded full
wavefield should be transformed into the frequency-domain by utilizing a fast Fourier trans-
form (FFT). It should be noted that all full waveform datasets were transformed directly
and there was no need to identify and truncate direct waves collected by the receivers.

To obtain an accurate inversion result, the frequency components of the observed or
recorded data must match those of the calculated data from the forward model. There was
some inevitable deviation of the amplitude and phase spectrum between the recorded data
and the calculated data. This deviation may bring a few errors into the inversion procedure.
Therefore, a prior data calibration should be performed to match the recorded data and
calculated data with an intact specimen. The correction factors for amplitude and phase
were defined as [21]:

Qamp =
abs( f f t(ψ0))

abs( f f t(dobs,0))
(9)

and:
Qpha = arg( f f t(ψ0))− arg( f f t(dobs,0)) (10)

where abs() represented the modulus of a complex value, arg() denoted the phase of a
complex value and f f t() was the fast Fourier transform. ψ0 and dobs,0 were the calculated
and observed data for the intact specimen. With these two factors, the recorded amplitude
and phase were firstly calibrated for the following inversion process.

4. Results and Discussion

4.1. Single Internal Defect

At first, a single internal defect was embedded in a turbine blade to perform data
processing and a parametric study of ultrasonic FWI tomography. For simplicity, a circular
hole with a diameter of 3 mm was located at (40,120). In the first simulation, an ultrasonic
wave was excited with the first transducer located at (1,6). The corresponding wave
propagations at different time slots are shown in Figure 5. From the simulated wavefield,
the ultrasonic wave reflected at the ice-steel interface and diffracted with the defect. At
t = 6 μs, the incident wave began to reach the edge of the blade. The reflection from the
ice-steel interface can be seen in Figure 5b, indicated by a red arrow. The transmitted
wave and several interface waves propagated inside the blade. When t = 21 μs, the
direct wave arrived at the receiving transducers as shown in Figure 5c. At t = 26 μs,
the propagating waves interacted with the defect, generating diffracted waves, which
can be seen in Figure 5d. Finally, the ultrasonic wavefield was recorded by all of the
36 transducers. Without a loss of generality, the waveform recorded by the 19th receiver
placed at (84,6) and its normalized amplitude spectrum are shown in Figure 6. The
first wave package was the direct wave from the 1st transducer to the 19th transducer.
In addition, there were two more waves due to the reflection at the boundary and the
diffraction from the internal defects. The path of the diffraction wave from the defect is
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depicted in Figure 5d with blue dashed lines. The corresponding time-of-flight was about
26 μs. Thus, the second wave package was the diffracted wave from the defect, followed
by multiple waves reflected from the lower boundary of the blade. All of the reflections
from the ice-steel interface and the diffraction signal from the defect can be seen in the
A-scan signal in Figure 6a. Due to the complex geometry of the turbine blade, reflection
signals from the boundaries were complicated and the energy was very high, making the
diffracted wave from the internal defect difficult to identify. Moreover, compared with the
excitation, the amplitude spectrum was distorted to a certain degree due to the existence of
wave scattering phenomena, as shown in Figure 6b. Nevertheless, the recorded signal still
contained information at frequencies around 1 MHz with a large bandwidth.

Figure 5. Ultrasonic wave propagation excited with the 1st transducer at different time slots: (a) t = 6 μs; (b) = 8 μs;
(c) = 21 μs; (d) = 26 μs.
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Figure 6. The recorded signal of the 19th transducer excited with the 1st transducer. (a) The A-scan waveform and (b) the
corresponding amplitude spectrum.

The number of iterations is one of the key parameters in the inversion process. With
the increase of iterations, the accuracy of the inversion result will be improved but the
computing time will increase linearly. Therefore, it is important to determine the number
of iterations to balance the accuracy and the computation cost. The variation of the misfit
function, as described by Equation (3), as a function of iterations is given in Figure 7.
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Obviously, the misfit monotonically decreases as the iterative number increases. After
20 iterations, the misfit was small enough (lower than 1%), indicating that the accuracy of
the inversion result was high enough. The FWI tomographs for the different iterations are
also shown in Figure 8. When the iteration was set to as few as k = 5, the quality of the
FWI image was poor and the defect was difficult to observe. After 10 iterations, the defect
became clearly visible but the detailed information of the reconstructed defect changed.
When the number of iterations was larger than 20, the inversion results became stable.
Hence, the number of iterations was set as 20 for the following studies. Although the
inversion result converged after 20 iterations, there was still a remarkable noise in the
final result.

Figure 7. The evolution of the objective function with the number of iterations.

Figure 8. (a) True model with a 3 mm circular hole and tomographs with different iterations: (b) k = 5; (c) k = 10; (d) k = 20;
(e) k = 40.

To improve the overall accuracy of the inversion, information of different frequencies
should be taken into consideration. A lower frequency has a better tolerance for a relatively
large-scale structure while a higher frequency should be considered for a small substruc-
ture [15]. Therefore, successive inversions with a moving frequency from low to high were
applied to mitigate the nonlinearity of the inversion problem, resulting in a more robust
result than a monochromatic inversion. In this study, a frequency group of seven discrete
frequencies from 400 kHz to 1600 kHz were adopted because the excited and received
signals showed an effective bandwidth of 480 kHz−1600 kHz, as shown in Figure 6b.
Figure 9 shows the reconstructed tomographs when the inversion finished at frequencies
of 0.4 MHz, 0.6 MHz, 0.8 MHz, 1 MHz, 1.2 MHz, 1.4 MHz and 1.6 MHz, respectively.
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Compared with the monochromatic inversion of 1 MHz, the overall noise was reduced
based on the successive inversion of low frequencies. It could be seen that with the increase
of the frequency of successive inversions, the accuracy of the 3 mm diameter circular hole
was improved. The cross sections through the defect along the horizontal and vertical
direction are presented in Figure 10. The FWI results showed a good agreement with the
profile of the true defect in both directions. To quantitatively evaluate the reconstruction
accuracy, the relative error of the full width at half maximum (FWHM) along the two direc-
tions along with their root mean square (RMS) error were considered. Therefore, the three

indicators were defined as EV = FWHMV
Dde f

, EH = FWHMH
Dde f

and ERMS =

√
E2

V+E2
H

2 , where
Dde f denoted the diameter of the circular defect. Figure 11 shows the variations of the
relative errors of the FWHM and their RMS error as a function of the successive-frequency
inversions for circular holes with different diameters. Generally, the errors decreased as
the successive-frequency increased and almost converged after the frequency of 1 MHz.
It meant that successive-frequency inversion could indeed improve the accuracy of FWI
tomography. Especially for the 3 mm diameter defect, the relative errors sharply decreased
from 28.3% to 8.5%. When the defects were larger than 3 mm, the relative errors decreased
to smaller than 2%. The relatively large error for the 3 mm diameter defect was due to
the fact that 3 mm is close to half of the interrogating wavelength at 1 MHz, which is
the theoretical resolution of the FWI [22]. However, the final error was smaller than 8%,
indicating that a successive-frequency FWI could obtain an accurate tomograph for internal
defects and the resolution approached a half wavelength.

Figure 9. Tomographs of the 3 mm circular hole based on successive-frequency inversions at: (a) 0.4 MHz; (b) 0.6 MHz; (c)
0.8 MHz; (d) 1 MHz; (e) 1.2 MHz; (f) 1.4 MHz; (g) 1.6 MHz.
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(a) (b) 

Figure 10. Cross sections of the reconstruction of the 3 mm diameter circular hole along the (a) horizontal and (b) vertical
direction.

Figure 11. The variation of relative errors of the FWHM as a function of successive-frequency inversions for circular holes:
(a) 3 mm; (b) 4 mm; (c) 5 mm; (d) 6 mm.
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4.2. Open Notch Crack

In addition to the internal defects, a turbine blade also tends to suffer from surface
cracks. Therefore, investigations were also conducted to evaluate the surface cracks based
on the proposed method. Open notches with different orientations were introduced
to mimic the surface crack. The size of the notch was set as a constant at 5 mm long
and 2 mm wide. Only the influence of the orientation was studied and three directions
(θ = 0◦, 45◦, 90◦) were investigated here. To investigate the capability of FWI to detect open
notch defects with different angles, three numerical experiments were conducted. The
transducer configuration and inversion scheme remained the same as those in the previous
cases. The FWI tomographs of the three notches are shown in Figure 12a,c,e. Generally, the
successive-frequency FWI was able to reconstruct the surface crack with a high resolution.
Similarly, to quantitatively evaluate the accuracy, relative errors defined as the profiles
along the width and length were represented as ES and EL. The trends of the FWHM errors
with a successive-frequency are presented in Figure 12b,d,f. EL decreased significantly
when the frequency was smaller than 1 MHz and converged to around 10%. However,
different from the result of the circular defect in Section 4.1, ES was generally much smaller
than EL and it increased with the successive-frequency. The reason might lie in the fact
that ultrasound is much more capable of reconstructing the plane defects. Moreover, when
the orientation of the crack was 45◦, the final error was slightly higher than the other two
cases. It implied that the alignment of the transducer network probably introduced some
inaccuracy into the FWI results.

  

(a) (b) 

  

(c) (d) 

Figure 12. Cont.
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(e) (f) 

Figure 12. Inversion results for open notch cracks. Tomograph and error variation for (a,b) the
horizontal notch, (c,d) the inclined notch at 45◦ and (e,f) the vertical notch.

4.3. Multiple Defects

In practical engineering applications, a component probably contains multiple defects
simultaneously. It should be pointed out that it is a difficult problem for an accurate
inspection because multiple scattering will occur if the distance of the two defects is closed.
Hence, three circular defects with different sizes were considered, as shown in Figure 13a.
A central defect (marked as #1 defect) was located at (40,120) with a diameter of 3 mm. The
second one with a diameter of 4 mm (marked as #2 defect) was horizontally shifted by
6 mm from #1 defect and the third one with a diameter of 5 mm (marked as #3 defect) was
vertically shifted by 6 mm from #1 defect.

Figure 13. (a) True model and (b) FWI tomograph of three defects.

Similarly, a successive-frequency FWI was applied and the reconstructed defects
are shown as Figure 13b. From the tomograph, these three circular defects were clearly
discernable despite complex wave scattering due to the presence of the three adjacent
defects. Furthermore, both vertical and horizontal profiles were compared with the true
model as shown in Figure 14. The good agreement proved that the proposed method was
capable of accurately detecting multiple defects in complex parts.
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Figure 14. Cross sections (a) through #1 and #2 defects and (b) through #3 defect along the horizontal direction. Cross
sections (c) through #1 and #3 defects and (d) through #2 defect along the vertical direction.

In addition, it is much more common that different types of defects might exist in the
structure at the same time. In order to extend this study to more practical applications,
an additional case study was also carried out to evaluate the structure with coexisting
circular holes and cracks. Here, the circular holes were set as the same as Figure 13a and
an incline notch of 45◦ was considered. The inversion results are presented in Figure 15.
The FWI tomograph clearly showed the notch crack and the disperse holes. Moreover,
due to the fact that the crack was relatively distant from the dispersed circular holes, the
cross section profiles were very close to the results with only holes or cracks. The good
agreement demonstrated that the proposed method was able to inspect different types of
defects at the same time with a satisfactory accuracy.
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Figure 15. (a) FWI tomograph of three circular holes and a notch defect. Cross section (b) through the incline notch along the
width direction, (c) through #1 and #2 defects along the horizontal direction and (d) through #3 defect along the horizontal
direction. The positions are depicted in (a) with red dashed lines.

4.4. Uncertainty Analysis

Although a successive-frequency FWI shows a high accuracy in quantitative defect
evaluation in a complex structure, an accurate or reliable initial model is very important
for FWI. In previous studies, the exact wave speed was applied in the initial model for
the inversion process. However, accurate material properties are not always available and
might vary with the practical environments. Therefore, an uncertainty analysis should
be conducted to assess the robustness of the proposed method. Here, two initial models
with a −2% and +2% error for the velocity of the turbine blade were considered. Without a
loss of generality, an internal defect with a diameter of 4 mm, slightly larger than the half
wavelength, was introduced for FWI.

The tomograph results are shown in Figure 16a,c. In both cases, this defect could
be accurately reconstructed. Compared with Figure 9 in Section 4.1, the reconstruction
results showed more background noise. From the comparison of the vertical and horizontal
profiles, as shown in Figure 16b,d, the RMS error of the FWHM was 5.42% for the −2%
error in the initial model and 8.23% for the +2% error in the initial model. Compared with
the relative error, which was smaller than 2% in Section 4.1, the inaccuracy of the initial
model increased the relative error for the inversion. Vice versa, accurate parameters for the
initial model could improve the final result. Nevertheless, the overall error was smaller
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than 10% and it was acceptable for the practical application in NDT even with a slight
variation in the initial model.

Figure 16. Inversion results with an inaccurate initial model. (a) Tomograph and (b) horizontal profile for an initial model
with a −2% error. (c) Tomograph and (d) horizontal profile for an initial model with a +2% error.

5. Conclusions

In this paper, an ice-coupled ultrasonic tomography based on successive-frequency
full waveform inversion technology was proposed to quantitively inspect the defects in
complex-shaped parts. An ice-coupled ultrasound was able to treat the complex-shaped
part as a regular structure and sharply reduced the mismatch of acoustic impedance
compared with the immersion method. A series of numerical experiments were carried out
to demonstrate the feasibility of the proposed method to quantitatively inspect the defects
in a turbine blade. Firstly, the k-space pseudospectral method was applied to simulate ice-
coupled ultrasonic testing for the turbine blade. A full matrix capture was then performed
to record the ultrasonic signals with an evenly deployed transducer array. After data
calibration, the recorded full wavefield was applied for a frequency-domain full waveform
inversion based on the L-BFGS method. A single circular defect was applied to validate the
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proposed method and determine the iterative number and frequency. Compared with the
monochromatic inversion, successive-frequency FWI could obtain more accurate results
and the resolution approached a half wavelength. When the defects were larger than a
half wavelength, the relative error was smaller than 2%. Extended studies on open notch
cracks with different orientations and multiple adjacent defects proved that the proposed
method was able to quantitatively detect various types of defects. Finally, inaccurate initial
velocity models with a relative error of ±2% were also investigated. Despite the relative
error increasing slightly, the proposed method was able to reconstruct the defects even
with a certain inaccuracy. The results demonstrated that the ice-coupled ultrasonic FWI
method has a high potential to quantitatively inspect complex-shaped structures with an
excellent resolution.

It should be noted that a mode conversion in a practical ultrasonic test was not
considered in this paper. In the future, an elastic wave equation should be considered
in the forward model during the inversion process to obtain more accurate results and a
practical experiment will be conducted.
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