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Abstract: In this article, we investigate the market efficiency of global stock markets using the
multifractal detrended fluctuation analysis methodology and analyze the results by dividing them
into developed, emerging, and frontier groups. The static analysis results reveal that financially
advanced countries, such as Switzerland, the UK, and the US, have more efficient stock markets than
other countries. Rolling window analysis shows that global issues dominate the developed country
group, while emerging markets are vulnerable to foreign capital movements and political risks. In
the frontier group, intensive domestic market issues vary, making it difficult to distinguish similar
dynamics. Our findings have important implications for international investors and policymakers.
International investors can establish investment strategies based on the degree of market efficiency of
individual stock markets. Policymakers in countries with significant fluctuations in market efficiency
should consider implementing new regulations to enhance market efficiency. Overall, this study
provides valuable insights into the market efficiency of global stock markets and highlights the need
for careful consideration by international investors and policymakers.

Keywords: global market efficiency; multifractal detrended fluctuation analysis; developed markets;
emerging markets; frontier markets

1. Introduction

The efficient market hypothesis (EMH) posits that information in the stock market
is promptly incorporated into stock prices. According to this theory, current stock prices
already encompass all available information. Consequently, stock prices are subject to
random movements and cannot be deemed undervalued or overvalued. Fama divides the
efficient market hypothesis into three hypotheses based on the range of related information.
A weak-form efficient market is a market that reflects historical information in the current
price, and excess profits can be obtained if current or future information is used. The semi-
strong-form efficient market reflects current information in addition to past information
and can generate excess profits if future information is obtained. The strong-form efficient
market hypothesis states that all market participants know all information, including future
undisclosed information, and that no information analysis can generate excess profits.

Determining the specific efficient market hypothesis that governs the stock market
holds significant implications for comprehending the information reflected in current stock
prices. This understanding plays a vital role in effective risk management by facilitating the
prediction of future stock price fluctuations. Furthermore, it facilitates effective resource
allocation, leveraging the prevailing market prices for efficient growth. In cases where the
market does not strictly adhere to a strong-form efficient market, valuable insights can
be gained to guide decision making concerning the specific information and information
analysis methods necessary for obtaining excess profits.
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As market efficiency is important, many studies have been conducted on this topic.
For example, Horta et al. [1] showed that financial crises significantly influenced most stock
markets, and that markets lost efficiency during the subprime crisis. Hull and McGroarty [2]
investigated the relationship between efficiency and market development. Rizvi et al. [3]
revealed a relatively high efficiency ranking in developed markets in the short term and a
medium efficiency ranking in the long term. Charfeddine and Khediri [4] researched the
weak-form efficiency of the Gulf Cooperation Council stock markets, and concluded that
while the GCC market has different degrees of efficiency over time, it is also improving over
time. Ali et al. [5] compared the efficiency of conventional stock markets and their Islamic
counterparts, and the result was that developed markets were relatively more efficient.

Two main methodologies have been employed to investigate the EMH. The first ap-
proach utilizes the Hurst–Mandelbrot–Walis R/S statistics, a statistical methodology. Based
on this method, Horta et al. [1] discovered that stock price increments in the pre-crisis era
align more closely with the random walk paradigm compared to the post-crisis period. Sim-
ilarly, Hull and McGroarty [2] noted that more advanced emerging markets display lower
levels of long-term persistence. The second methodology employed is the multifractal
detrended fluctuation analysis (MF-DFA). By using the MF-DFA approach, Rizvi et al. [3]
emphasized the efficient performance of Islamic markets during crises, while Horta et al. [1]
suggested deviations that are indicative of long memory and reverting patterns. Charfed-
dine and Khediri [4] ranked Qatar as the most efficient market, while Bahrain and Oman
were considered less efficient. Furthermore, Ali et al. [5] provided rankings of the effi-
ciency of stock markets in non-Islamic, BRICS, and developed countries, as well as their
corresponding Islamic counterparts.

This study investigated the efficiency of the stock markets of several countries around
the world. Market efficiency was calculated using stock indices from 60 countries, and the
results were analyzed by dividing them into developed, emergent, and frontier groups
(MSCI market classification, https://https://www.msci.com/our-solutions/indexes/acwi
accessed on 1 May 2023). We describe the stock index data in Section 3.

We employed the MF-DFA method to calculate market efficiency. Recently, this method
has been widely used in research on the market efficiency hypothesis and multifractality of fi-
nancial assets (e.g., Miloş et al. [6], Choi [7], Yin and Wang [8], Pak and Choi [9], Gaio et al. [10]).
Furthermore, we performed both static and rolling window analyses in order to assess
the market efficiency of global stock markets. Through this method, we analyzed market
efficiency for the entire sample period and time-varying market efficiency.

This study contributes to the financial literature in two ways. First, the market effi-
ciency of various countries around the world shows some differences between the devel-
oped, emerging, and frontier groups. Rather than focusing on individual countries, this
research adopted a group perspective to analyze stock market efficiency. While studies
on market efficiency in developed countries have been extensively reported, the atten-
tion given to emerging and frontier countries has been relatively limited. Previous re-
search on emerging or frontier countries has primarily compared and analyzed market
efficiencies among individual countries or a small number of countries (e.g., Caraiani [11],
Arshad et al. [12], Aslam et al. [13], and Nargunam and Lahiri [14]). In contrast, this study
aims to overcome these limitations by incorporating as many stock markets as possible,
spanning developed, emerging, and frontier countries. This approach provides a compara-
tive advantage in terms of the number of stock markets considered compared to previous
studies (e.g., Rizvi et al. [3], Ali et al. [5], Lee et al. [15], and Aslam et al. [16]).

Second, we methodologically investigated how market efficiency in individual coun-
tries changes over time using rolling window analysis. In particular, we analyzed and
compared the degree of response of individual markets to systematic risks, such as the
2008 global financial crisis and COVID-19 pandemic, while several studies have examined
the impact of the COVID-19 pandemic on stock market efficiency (e.g., Aslam et al. [17],
Mensi et al. [18], and Saâdaoui [19]), the range of stock markets considered in these stud-
ies was narrower than that of our research. By employing rolling window analysis, this
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study provides valuable insights into the evolving nature of market efficiency in individual
countries over time.

Overall, this study contributes to the financial literature by examining stock market
efficiency from a group perspective and incorporating a wide range of stock markets from
developed, emerging, and frontier countries. Furthermore, it enhances the understanding
of how market efficiency changes within individual countries over time by investigating
their responsiveness to systematic risks. The findings of this study have implications for
investors, policymakers, and researchers seeking to comprehend and navigate the dynamics
of global financial markets.

The remainder of this paper is organized as follows. In the following section, we
introduce previous studies on market efficiency. Section 3 describes global stock market
data and provides a preliminary statistical analysis. In Section 4, we briefly review the
MF-DFA method. Section 5 presents the results of static and rolling window analyses.
Section 6 presents the summary and concluding remarks.

2. Literature Review

2.1. Global Stock Markets

Many studies have compared national stock market efficiencies. Studies on efficiency
suggest that most developed markets are more efficient than emerging markets. Lim [20]
defined the sequence of efficiency of the US, Korea, Taiwan, Japan, Thailand, Philippines,
Brazil, Mexico, India, Indonesia, Malaysia, Chile, and Argentina, with emerging and
developed markets using H-statistic. The relationship between market efficiency and
market development was investigated by Hull and McGroarty [2]. Their study employed
the Hurst–Mandelbrot–Walis R/S statistic and the Jarque–Bera test to analyze markets
categorized as either advanced or secondary. The findings indicated that advanced markets
demonstrate higher levels of efficiency in comparison to secondary markets. Using MF-
DFA, Rizvi et al. [3] showed that developed markets (e.g., the US, Japan, and Hong Kong)
are more efficient, excluding Malaysia, Indonesia, and Turkey, which have Islamic and
developed markets (e.g., Bahrain, Bangladesh, and Egypt). Further, Ali et al. [5] revealed
that developed markets are the most efficient, followed by BRICS markets. In addition,
every Islamic stock market, except Russia, Jordan, and Pakistan, is more efficient than its
conventional counterparts, such as Turkey, the USA, and China. Anagnostidis et al. [21]
investigated the effects of the 2008 financial crisis on Eurozone stock markets, using GHE
(generalized Hurst exponent). They classified them into three groups according to how
adversely they were affected by the crisis.

2.2. Time-Varying Market Efficiency

Several studies have investigated the evolution of market efficiency over time. For ex-
ample, Rizvi and Arshad [22], using MF-DFA, examined the efficiency of East Asian stock
markets during booms and busts. The study concluded that economic booms affected each
market differently, with a decrease in efficiency during recession periods and an increase
during boom periods. Interestingly, only Singapore’s market efficiency increased during
these events. In another comprehensive examination of financial crises, Horta et al. [1]
studied the impact of the 2008 and 2010 crises on stock markets. Their findings indicated
the presence of market efficiency dynamics and financial contagion during these periods.
Moreover, the study observed that developed markets were minimally affected by financial
crises, while less-developed markets experienced significant impact.

Many studies have been conducted to examine the fluctuations in market efficiency
levels. Smith [23] studied European emerging and developed stock markets and used
variance ratio tests of the martingale hypothesis. They revealed that each country has
different levels of efficiency; the most efficient market is Turkey and the least efficient
markets are Malta and Ukraine. They also suggested that the global financial crisis had
little effect on weak-form efficiency markets, such as Greece and Russia. Furthermore,
according to the changing efficiency over time, the relative efficiency also changes. While
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the market with the largest improvement is Romania, that with the smallest improvement
is Croatia. Sensoy [24] showed that the MENA stock markets have different levels of long-
term dependence by using the rolling window technique. They also suggested that the
most efficient markets, such as Turkey and Israel, reduce the capital costs of less-efficient
markets, such as Iran and the UAE.

3. Data Description

In our analysis, we utilized a range of global stock indices to capture market per-
formance. Specifically, we considered stock price indices from 23 developed markets,
22 emerging markets, and 15 frontier markets. The data for these indices were sourced
from Reuters, providing a comprehensive view of market trends and movements. Our
analysis covered the period from January 2007 to June 2022, allowing us to examine the
performance of these markets over a substantial time period. We display the log returns
of the global stock indices in three groups in Figures 1–3. Furthermore, Table 1 shows the
summary statistics for the log returns of global stock indices. Based on the information
provided in the above table, it can be observed that all three groups exhibit a bias towards
the left side of the distribution. This indicates that the data do not follow a normal distribu-
tion. However, Vietnam is biased toward the right, showing lower-than-average profits.
The average kurtosis is 19, 76, 84 (rounded from the first decimal place) for each group,
and the emerging and frontier groups are greatly affected by extreme values, showing
relatively unstable returns. In particular, Turkey has a value of 1239.4757 in the emerging
group and Iceland has a value of 838.6851 among the frontier group, which is extreme
within the group.

Table 1. Descriptive statistics of global stock indices in three groups. ‡ indicates rejection of the null
hypothesis at the 1% significance level. Note: Skew., Kurt., and J.-B. refer to skewness, kurtosis, and
Jarque–Bera statistics, respectively.

Group Country Mean Std.Dev. Skew. Kurt. J.-B.

Developed

Austria −0.0003 0.0286 −2.23 23.97 34,312.3 ‡

Australia 0.0001 0.0181 −1.37 14.29 12,225.4 ‡

Belgium −0.0001 0.0227 −2.49 33.61 66,593.6 ‡

Canada 0.0003 0.0186 −3.59 54.18 172,326.9 ‡

Switzerland 0.0001 0.0178 −0.89 8.43 4291.6 ‡

Germany 0.0005 0.0236 −1.46 13.40 10,865.4 ‡

Denmark 0.0008 0.0207 −1.45 17.40 17,969.6 ‡

Spain −0.0004 0.0243 −0.64 5.78 2030.5 ‡

Finland 0.0001 0.0229 −1.01 8.93 4844.8 ‡

France 0.0001 0.0228 −1.2 10.69 6959.5 ‡

United Kingdom 0.0001 0.0193 −1.54 19.23 21,893.2 ‡

Hong Kong 0.0001 0.0250 −0.33 7.19 3015.5 ‡

Ireland −0.0002 0.0267 −1.98 19.56 23,003.4 ‡

Israel 0.0005 0.0182 −1.35 11.96 8688.4 ‡

Italy −0.0005 0.0262 −0.99 7.53 3508.5 ‡

Japan 0.0003 0.0234 −1.13 11.26 7612.8 ‡

Netherlands 0.0002 0.0223 −2.58 33.46 66,148.6 ‡

Norway 0.0004 0.0254 −2.58 36.18 77,071.1 ‡

New Zealand 0.0007 0.0135 −1.35 17.00 17,098.1 ‡

Portugal −0.0004 0.0230 −0.90 7.33 3295.8 ‡

Sweden 0.0005 0.0212 −1.45 12.99 10,230.5 ‡

Singapore 0.0001 0.0197 −1.36 26.08 39,688.4 ‡

United States 0.0007 0.0195 −2.44 30.52 55,108.3 ‡

Emerging
Brazil 0.0006 0.0275 −1.35 16.90 16,904.2 ‡

Chile 0.0005 0.0208 −1.51 21.89 28,191.9 ‡

China 0.0010 0.0381 −0.84 6.52 2622.6 ‡
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Table 1. Cont.

Group Country Mean Std.Dev. Skew. Kurt. J.-B.

Czech Republic −0.0001 0.0225 −2.11 24.99 37,082.7 ‡

Egypt 0.0002 0.0285 −0.85 9.12 4970.4 ‡

Greece −0.0012 0.0352 −0.56 5.68 1941.4 ‡

Indonesia 0.0010 0.0225 −1.31 19.56 22,467.4 ‡

India 0.0010 0.0243 −1.46 19.31 22,025.8 ‡

South Korea 0.0004 0.0216 −2.00 23.92 33,942.8 ‡

Mexico 0.0004 0.0191 −0.62 9.94 5792.5 ‡

Malaysia 0.0002 0.0144 −1.60 19.73 23,069.1 ‡

Peru 0.0003 0.0277 −1.07 20.70 25,000.7 ‡

Philippines 0.0005 0.0231 −1.83 30.66 55,014.2 ‡

Poland −0.0004 0.0251 −1.33 11.32 7812.2 ‡

Qatar 0.0004 0.0229 −0.10 12.68 9282.7 ‡

Saudi Arabia 0.0003 0.0219 −1.30 11.51 8030.4 ‡

Thailand 0.0007 0.0209 −1.87 24.35 35,040.5 ‡

Turkey −0.0020 0.1294 −34.34 1239.47 88,866,224 ‡

Taiwan 0.0005 0.0219 −1.00 13.11 10,152.5 ‡

U.A.E. −0.0002 0.0286 −0.91 19.27 21,636.1 ‡

South Africa −0.0002 0.0371 −1.29 24.93 36,242.1 ‡

Frontier

Bahrain −0.0001 0.0103 −1.06 9.22 5171.3 ‡

Estonia 0.0005 0.0196 −1.32 18.41 19,949.7 ‡

Croatia −0.0003 0.0196 −1.19 23.81 33,047.3 ‡

Iceland −0.0007 0.0433 −25.71 818.68 38,803,863 ‡

Jordan −0.0009 0.0236 −4.71 103.63 624,502.1 ‡

Kenya −0.0010 0.0181 −1.39 17.91 18,944.9 ‡

Lithuania 0.0004 0.0185 −1.55 36.21 76,200.1 ‡

Morocco 0.0001 0.0151 −2.14 34.50 69,721.5 ‡

Mauritius 0.0004 0.0149 −2.33 66.04 252,860.5 ‡

Oman −0.0002 0.0164 −0.41 14.93 12,911.4 ‡

Romania 0.0003 0.0254 −1.41 14.45 12,514.1 ‡

Serbia −0.0005 0.0234 −0.92 28.09 45,734.8 ‡

Slovenia −0.0002 0.0250 −0.45 101.78 597,553.8 ‡

Tunisia 0.0008 0.0102 −1.82 22.05 28,837.1 ‡

Vietnam 0.0002 0.0269 0.01 7.56 3302.1 ‡

Larger kurtosis values tend to increase J-B statistics. The following are the top five
countries in each group: Canada, Norway, Belgium, the Netherlands, and the US in the
developed group; Turkey, the Philippines, the Czech Republic, South Africa, and Thailand
in the emerging group; and Iceland, Jordan, Slovenia, Mauritius, and Lithuania in the
frontier group.

Comparing the Jarque–Bera statistics for each group, there are very large outliers
such as Turkey, where the median is 1225.4, emerging is 22,025.8, and frontier is 30,942.2,
showing that developed countries are relatively trying to follow the normal distribution,
making the most stable return. Spain has the smallest value which can be considered stable,
followed by Hong Kong.
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(a) Austria (b) Australia (c)Belgium (d) Canada

(e) Switzerland (f) Germany (g) Denmark (h) Spain

(i) Finland (j) France (k) United Kingdom (l) Hong Kong

(m) Ireland (n) Israel (o) Italy (p) Japan

(q) Netherlands (r) Norway (s) New Zealand (t) Portugal

(u) Sweden (v) Singapore (w) United States

Figure 1. The log return time series for all the indices in developed countries.
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(a) Brazil (b) Chile (c) China (d) Czech Republic

(e) Egypt (f) Greece (g)Hungary (h) Indonesia

(i) India (j) Korea (k) Mexico (l) Malaysia

(m) Peru (n) Philippines (o) Poland (p) Qatar

(q) Saudi Arabia (r) Thailand (s) Turkey (t) Taiwan

(u) United Arab Emirates (v) South Africa

Figure 2. The log return time series for all the indices in emerging countries.
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(a) Bahrain (b) Estonia (c) Croatia

(d) Iceland (e) Jordan (f) Kenya

(g) Lithuania (h) Morocco (i) Mauritius

(j) Oman (k) Romania (l) Serbia

(m) Slovenia (n) Tunisia (o) Vietnam

Figure 3. The log return time series for all the indices in frontier countries.

4. Multifractal Detrended Fluctuation Analysis

The multifractal detrended fluctuation analysis (MF-DFA) method was used to assess
the multifractal characteristics of the financial time series and rank market efficiency. It can
be executed in five steps, as outlined by [25] and summarized by [26].

Let {xk, k = 1, · · · , N} be a time series, where N is its length.

• Step 1. Determine the profile Y(i)(i = 1, 2, · · · , N)

Y(i) =
i

∑
k=1

(x(k)− x̄), (1)

8
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where

x̄ =
N

∑
k=1

x(k)/N. (2)

• Step 2. Divide the profile {Y(i)}(i = 1, 2, · · · , N) into Ns ≡ int(N/s) non-overlapping
segments of equal length s. To ensure that the entire sample is covered, the same
procedure is repeated starting from the end of the sample. By doing so, a total of 2Ns
segments are obtained:

{Y[(ν− 1)s + i]}s
i=1, ν = 1, 2, . . . , Ns (3)

{Y[N − (ν− Ns)s + i]}s
i=1, ν = Ns + 1, Ns + 2, . . . , 2Ns. (4)

• Step 3. Calculate the local trend for each of the 2Ns segments. To estimate the local
trend in each segment, a least-squares fitting polynomial is used. Once the local trend
has been determined, the variance is calculated accordingly.

F2(s, ν) =

{
1
s ∑s

i=1
{

Y[(ν− 1)s + i]− Ŷm
ν (i)

}2, ν = 1, 2, . . . , Ns
1
s ∑s

i=1
{

Y[N − (ν− Ns)s + i]− Ŷm
ν (i)

}2, ν = Ns + 1, Ns + 2, . . . , 2Ns.
(5)

The fitting polynomial with order m in segment ν is denoted as Ŷm
ν (i). Typically,

a linear (m = 1), quadratic (m = 2), or cubic (m = 3) polynomial is used to estimate
the local trend in each segment, as reported in previous studies ([27–29]). However,
in this study, in order to avoid overfitting and simplify the calculation process, a linear
polynomial (m = 1) is employed, as suggested in [30,31].

• Step 4. Average over all the segments. Then, we obtain the q-th order fluctuation function:

Fq(s) =

⎧⎨⎩
[

1
2Ns

∑2Ns
ν=1
(

F2(s, ν)
)q/2
]1/q

, q �= 0

exp
[

1
4Ns

∑2Ns
ν=1 ln

(
F2(s, ν)

)]
q = 0.

(6)

• Step 5. Determine the scaling behavior of the fluctuation functions. To determine if
a long-range power law correlation exists, the log–log plots of Fq(s) are compared
for each value of q. If the series exhibits long-range power law correlation, Fq(s)
will increase as s becomes large. The power law relationship can be expressed in the
following form.

Fq(s) ∝ sh(q), (7)

where h(q) represents the generalized Hurst exponent. Equation (7) can be written as
Fq(s) = a · sh(q) + b. After taking the logarithms of both sides,

log
(

Fq(s)
)
= h(q) · log (s) + c, (8)

where c is a constant.

The value of the exponent h(q) depends on q. If h(q) is independent of q, then the
time series is monofractal; otherwise, it is multifractal. When q = 2, h(2) is equivalent
to the Hurst exponent ([32]); thus, h(q) is referred to as the generalized Hurst exponent.
h(2) = 0.5 indicates that the time series are uncorrelated and follow a random walk process,
suggesting that the market is weakly efficient ([32,33]). If 0.5 < h(2), the time series is
long-range dependent, meaning that an increase (decrease) is more likely to be followed by
another increase (decrease). By contrast, h(2) < 0.5 indicates a non-persistent series, where
an increase (decrease) is more likely to be followed by a decrease (increase).
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According to Reference [25], the relationship between h(q) and multifractal scaling
exponent τ(q) can be expressed as follows:

τ(q) = qh(q)− 1. (9)

To estimate multifractality, a Legendre transform was used to convert q and τ(q) into
α and f (α), respectively, using the following equations:

α =
d
dq

τ(q), f (α) = α(q)q− τ(q), (10)

where f (α) is the multifractal or singularity spectrum and α is the singularity strength.
In addition, a definition of the width of the multifractal spectrum Δα is provided

in References [34–36].

Δα = max(α)−min(α). (11)

A wider multifractal spectrum implies a higher degree of multifractality. The next
section presents the empirical results pertaining to the multifractality of the average return
series for all sectors.

5. Empirical Results

This section provides a static and rolling window analysis of the market efficiencies of
the three groups.

5.1. Static Analysis

Figures 4–6 show the log−log plots of Fq(s) compared with s for all average sector
return series during the GFC and COVID-19 pandemic for q = −10,−9, . . . , 9, 10 corre-
sponding to the curve from the bottom to the top when the polynomial order m = 1.

The Hurst exponent H(q) for developed, emerging, and frontier countries is shown in
Figures 7–9. As shown, the generalized Hurst exponent of the index return series decreases
as q increases from −10 to 10, indicating that the return series of all markets have clear
multifractal characteristics. For q = 2, the generalized Hurst exponent h(q) is equal to the
Hurst exponent. Most Hurst exponents differed from 0.5, providing evidence against the
presence of the random-walk behavior. Furthermore, the Hurst exponents of all markets in
the frontier group are greater than 0.5. In other words, the average return series for all the
markets in the frontier group are persistent. In particular, the stock markets of Switzerland,
the United Kingdom, and the United States have Hurst exponents close to 0.5, indicating
that their stock markets are close to the efficiency market.

We rank the efficiency of each stock market using the measure Δα in Table 2. Table 2
lists the efficiency rankings of the three groups. Although the rankings changed according to
these two criteria, the higher and lower ranks remained the same. Furthermore, Figures 10–12
plot the multifractal spectra of all the index returns. In several subfigures, a phenomenon
called knotting phenomena occurs, in which the curve is twisted near the peak of the curve.
This phenomenon can be attributed to several factors, including the scaling range, irregular
fluctuation functions observed at large scales, and the non-monotonic behavior exhibited by
the estimated generalized Hurst index function according to previous studies (Jiang et al. [27],
Zhou et al. [37], Gao et al. [38]).

According to Table 2, within the developed group, the stock market of Hong Kong is
the most efficient, while the stock market of Italy is the least efficient. Within the emerging
group, Taiwan and Turkey have the most- and least-efficient stock markets, respectively.
Within the emerging group, Oman and Jordan have the most- and least-efficient stock
markets, respectively, in the frontier group. Among all countries, Taiwan and Turkey have
the highest and lowest stock market efficiencies, respectively.
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(a) Austria (b) Australia (c) Belgium (d) Canada (e) Switzerland

(f) Germany (g) Denmark (h) Spain (i) Finland (j) France

(k) United Kingdom (l) Hong Kong (m) Ireland (n) Israel (o) Italy

(p) Japan (q) Netherlands (r) Norway (s) New Zealand (t) Portugal

(u) Sweden (v) Singapore (w) United States

Figure 4. The curve of the multifractal fluctuation function Fq(s) compared to s in a log–log plot of
the average return for all the indices in developed countries.
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(a) Brazil (b) Chile (c) China (d) Czech Republic

(e) Egypt (f) Greece (g) Hungary (h) Indonesia

(i) India (j) Korea (k) Mexico (l) Malaysia

(m) Peru (n) Philippines (o) Poland (p) Qatar

(q) Saudi Arabia (r) Thailand (s) Turkey (t) Taiwan

(u) United Arab Emirates (v) South Africa

Figure 5. The curve of the multifractal fluctuation function Fq(s) compared to s in a log–log plot of
the average return for all the indices in emerging countries.
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(a) Bahrain (b) Estonia (c) Croatia

(d) Iceland (e) Jordan (f) Kenya

(g) Lithuania (h) Morocco (i) Mauritius

(j) Oman (k) Romania (l) Serbia

(m) Slovenia (n) Tunisia (o) Vietnam

Figure 6. The curve of the multifractal fluctuation function Fq(s) compared to s in a log–log plot of
the average return for all the indices in frontier countries.
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(a) Austria (b) Australia (c) Belgium (d) Canada

(e) Switzerland (f) Germany (g) Denmark (h) Spain

(i) Finland (j) France (k) United Kingdom (l) Hong Kong

(m) Ireland (n) Israel (o) Italy (p) Japan

(q) Netherlands (r) Norway (s) New Zealand (t) Portugal

(u) Sweden (v) Singapore (w) United States

Figure 7. Generalized Hurst exponents h(q) of the index return in developed countries.
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(a) Brazil (b) Chile (c) China (d) Czech Republic

(e) Egypt (f) Greece (g) Hungary (h) Indonesia

(i) India (j) Korea (k) Mexico (l) Malaysia

(m) Peru (n) Philippines (o) Poland (p) Qatar

(q) Saudi Arabia (r) Thailand (s) Turkey (t) Taiwan

(u) United Arab Emirates (v) South Africa

Figure 8. Generalized Hurst exponents h(q) of the index return in emerging countries.
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(a) Bahrain (b) Estonia (c) Croatia

(d) Iceland (e) Jordan (f) Kenya

(g) Lithuania (h) Morocco (i) Mauritius

(j) Oman (k) Romania (l) Serbia

(m) Slovenia (n) Tunisia (o) Vietnam

Figure 9. Generalized Hurst exponents h(q) of the index return in frontier countries.

16



Fractal Fract. 2023, 7, 478

(a) Austria (b) Australia (c) Belgium (d) Canada

(e) Switzerland (f) Germany (g) Denmark (h) Spain

(i) Finland (j) France (k) United Kingdom (l) Hong Kong

(m) Ireland (n) Israel (o) Italy (p) Japan

(q) Netherlands (r) Norway (s) New Zealand (t) Portugal

(u) Sweden (v) Singapore (w) United States

Figure 10. The multifractal spectra of each index return in developed countries.
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(a) Brazil (b) Chile (c) China (d) Czech Republic

(e) Egypt (f) Greece (g) Hungary (h) Indonesia

(i) India (j) Korea (k) Mexico (l) Malaysia

(m) Peru (n) Philippines (o) Poland (p) Qatar

(q) Saudi Arabia (r) Thailand (s) Turkey (t) Taiwan

(u) United Arab Emirates (v) South Africa

Figure 11. The multifractal spectra of each index return in emerging countries.
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(a) Bahrain (b) Estonia (c) Croatia

(d) Iceland (e) Jordan (f) Kenya

(g) Lithuania (h) Morocco (i) Mauritius

(j) Oman (k) Romania (l) Serbia

(m) Slovenia (n) Tunisia (o) Vietnam

Figure 12. The multifractal spectra of each index return in frontier countries.

Since the static analysis does not reflect changes in the market efficiency of a stock
market over time, we investigate the dynamics of market efficiency using the rolling
window analysis in the following section.
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Table 2. The width of the multifractal spectrum Δα for the developed, emerging, and frontier groups.

Developed Emerging Frontier

Country Δα Country Δα Country Δα

Austria 0.5278 Brazil 0.404 Bahrain 0.3762
Australia 0.4531 Chile 0.6333 Estoina 0.4434
Belgium 0.4315 China 0.4274 Croatia 0.4039
Canada 0.5514 Czech Republic 0.4204 Iceland 0.5567

Switzerland 0.4183 Egypt 0.4296 Jordan 0.7454
Germany 0.4921 Greece 0.5321 Kenya 0.6379
Denmark 0.3635 Hungary 0.6306 Lithuania 0.2978

Spain 0.5384 Indonesia 0.4228 Morocco 0.6059
Finland 0.3852 India 0.3645 Mauritius 0.6464
France 0.5453 Korea 0.3497 Oman 0.2073

United Kingdom 0.443 Mexico 0.3681 Romania 0.2951
Hong Kong 0.3024 Malaysia 0.3257 Serbia 0.2197

Ireland 0.3125 Peru 0.4241 Slovenia 0.2665
Israel 0.3101 Philippines 0.4638 Tunisia 0.5804
Italy 0.684 Poland 0.3303 Vietnam 0.3494

Japan 0.5402 Qatar 0.4415
Netherlands 0.3639 Saudi Arabia 0.5248

Norway 0.3343 Thailand 0.5434
New Zealand 0.5209 Turkey 1.0386

Portugal 0.4261 Taiwan 0.1773

Sweden 0.4222 United Arab
Emirates 0.3078

Singapore 0.3291 South Africa 0.3442
United States 0.4544

5.2. Rolling Window Analysis

In this section, we provide the dynamics of Δα for each stock-index return using rolling
window analysis. This approach has been used in several studies on MF-DFA methods
(Wang et al. [39], Sensoy and Tabak [40], Gajardo and Kristjanpoller [41],
and Aloui et al. [42]). In this study, we chose a window length of 400 days to include
the GFC period in our calculation and avoid severe fluctuations. In particular, we test
the robustness of our spillover analysis results by comparing different rolling window
sizes (300, 400, and 500 days). Figures A1–A3 display the Δα time series for each rolling
window length. In the subfigure, the Δα shows a similar fluctuation pattern under each
variation of rolling window length. Therefore, our choice of widow size is reasonable for
our investigation.

Figures 13–15 illustrate the dynamics of Δα for the three groups. We summarize the
key features by developed, emerging, and frontier groups as follows.

The fluctuations in the efficiencies of developed markets differ from country to country;
however, they generally exhibit similar patterns. The key characteristics of these markets
can be summarized as follows:

First, developed markets are highly sensitive to global issues. The dynamics of market
efficiency often change rapidly, as observed during significant events such as the 2008
global financial crisis and the 2020 COVID-19 pandemic. The United States, with its large
stock market and diverse range of market participants, is particularly susceptible to various
issues. Notable changes in market efficiency were observed during events such as the
2010 European fiscal crisis and the 2018 US–China trade dispute. The United Kingdom,
on the other hand, is influenced by changes in the energy industry and the financial sector
(“15 February: Energy Firms Furthermore, Banks Lead Buoyant Market”, Forbes; “UK
stocks close higher following Truss energy plan”, “Miners and energy stocks help FTSE 100
end volatile week higher”, Reuters).
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(a) Austria (b) Australia (c) Belgium (d) Canada

(e) Switzerland (f) Germany (g) Denmark (h) Spain

(i) Finland (j) France (k) United Kingdom (l) Hong Kong

(m) Ireland (n) Israel (o) Italy (p) Japan

(q) Netherlands (r) Norway (s) New Zealand (t) Portugal

(u) Sweden (v) Singapore (w) United States

Figure 13. The dynamics of Δα using a rolling window for developed countries. The window length
is 400 days.
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(a) Brazil (b) Chile (c) China (d) Czech Republic

(e) Egypt (f) Greece (g) Hungary (h) Indonesia

(i) India (j) Korea (k) Mexico (l) Malaysia

(m) Peru (n) Philippines (o) Poland (p) Qatar

(q) Saudi Arabia (r) Thailand (s) Turkey (t) Taiwan

(u) United Arab Emirates (v) South Africa

Figure 14. The dynamics of Δα using a rolling window for emerging countries. The window length
is 400 days.
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(a) Bahrain (b) Estonia (c) Croatia

(d) Iceland (e) Jordan (f) Kenya

(g) Lithuania (h) Morocco (i) Mauritius

(j) Oman (k) Romania (l) Serbia

(m) Slovenia (n) Tunisia (o) Vietnam

Figure 15. The dynamics of Δα using a rolling window for frontier countries. The window length is
400 days.

Second, each developed country has its own unique factors that strongly influence its
stock market dynamics. For instance, Japan is greatly affected by exchange rate and interest
rate fluctuations due to its economic policy, as demonstrated during the 2013 Abenomics
(Fukuda [43]) and the 2016 Negative Interest Rate and Yield Curve Control initiatives
(Kawamoto et al. [44]).

Third, similar dynamics can be observed based on trade relations between countries,
governance, and institutions. For example, countries within the North American Free Trade
Agreement (NAFTA) such as Canada and the United States exhibit comparable patterns.
Similarly, European countries within the EU share certain dynamics, and countries like
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England, Australia, and New Zealand, belonging to the Commonwealth of Nations, may
display similar market behavior. Emerging markets exhibit similar trends to developed
markets, but the dynamics of market efficiency within individual countries in this group
show significant variations. Several factors contribute to these variations:

First, financial policies play a crucial role in shaping market efficiency dynamics.
China, for example, has strict trading regulations and limited foreign investment, resulting
in relatively low fluctuations in market dynamics during events such as the COVID-19 pan-
demic. Previous studies have also highlighted these observations (Hu et al. [45], Petry [46]).
Similarly, in Egypt, stock returns are significantly influenced by EGP/USD exchange rates,
which are impacted by various exchange rate systems (Ahmed [47]).

Second, compared to developed markets, emerging markets are more influenced
by foreign capital. For instance, South Korea tends to follow foreign investment trends
(Kim and Jo [48]), which greatly affect corporate dividend policies to attract foreign in-
stitutional investors (Kang et al. [49]). In Taiwan, stocks with high foreign ownership
outperform those with low foreign ownership (Huang and Shiu [50]). In India, there is a
positive relationship between foreign direct investment, foreign institutional investment,
and stock market indices (Nagpal [51]).

Third, geopolitical and political risks are prevalent in this group. The risk of war
exists in several regions, including South Korea, North Korea, Taiwan, and China. Conflicts
also frequently occur in the Middle East and South America. Furthermore, significant
fluctuations in market dynamics were observed during events such as the 2011 Egyptian
Revolution and the 2013 military coup in Egypt.

Frontier markets often exhibit unique characteristics compared to developed and
emerging markets, making it challenging to identify similar dynamics within the group.
These distinctions arise due to the following factors:

First, frontier markets tend to experience significant impacts from crises, resulting in
high levels of risk compared to other markets. Although it is difficult to pinpoint specific
periods of rapid fluctuations beyond the 2008 financial crisis and the 2020 COVID-19 pan-
demic, it is worth noting that Iceland was greatly affected by the crisis (Reuters, “Iceland’s
biggest taken over and all shares halted”).

Second, frontier markets are heavily influenced by specific industrial and regional
issues. The key factors that affect their stock markets and subsequent dynamic fluctuations
vary widely, largely due to their reliance on domestic markets. (Meziani [52]).

6. Discussion and Concluding Remarks

We investigated the market efficiency of each stock market using global stock market
index data. To this end, we used the MF-DFA methodology and conducted static and
rolling window analyses. We analyzed the results by categorizing them under developed,
emerging, and frontier groups.

According to the static analysis results, Switzerland, the UK, and the US, known
as financially advanced countries, have more efficient stock markets than other coun-
tries. Based on the several previous studies (Lim and Brooks [53], Ali et al. [5], and
Bouoiyour et al. [54]), it has been observed that stock markets in developed countries

demonstrate a higher degree of efficiency when compared to their emerging counterparts.
This efficiency gap can be attributed to the incomplete nature of financial systems in emerging
economies (Mookerjee and Yu [55], Islam et al. [56]), in contrast to the more advanced counter-
parts. On the other hand, advanced countries have relatively efficient stock markets, which
can be explained by factors such as robust economic growth rates, larger market sizes, and the
presence of open financial markets (Zunino et al. [57], Tongurai and Vithessonthi [58]). In order
to minimize the disparity in stock market efficiency between developed and emerging coun-
tries, scholars have put forth proposals for laws pertaining to foreign investment, financial
liberalization, and de-politicization (Vo [59], Rejeb and Boughrara [60], Goodell et al. [61]).

The notable findings of the rolling window analysis are as follows: First, markets
cannot be insulated from global issues such as the 2008 financial crisis and the COVID-19
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pandemic. These issues dominate, particularly in the developed country group, including
the United States and the United Kingdom. Asian countries in this group, such as Japan,
are impacted differently due to their strong domestic markets. Similar dynamics are also
found in countries that are part of international trade blocs, such as NAFTA, the EU,
and the Commonwealth. Second, emerging markets are vulnerable to foreign capital
movement, and financial policies related to foreign investment heavily influence them.
This is evident in the cases of China and Egypt, for example. Emerging markets also
tend to follow foreign investment trends, as observed in South Korea, Taiwan, and India.
Additionally, geopolitical risk is a critical issue, including the risk of war in South Korea,
North Korea, Taiwan, and China, as well as frequent conflicts in the Middle East, South
America, and Egypt. Third, distinguishing similar dynamics within the frontier group
is difficult due to the varying intensive domestic market issues. Some frontier markets
have been significantly affected by global issues, as was the case in Iceland during the 2008
financial crisis. Therefore, investment in frontier group markets should be approached with
careful consideration compared to the other groups.

These findings have important implications for international investors and policymak-
ers. First, international investors can establish investment strategies based on the degree of
efficiency of individual stock markets. In other words, data on long-term memory and the
degree of persistence over time can be utilized by global investors to gain an edge in the
market and achieve above-average returns. However, the efficient nature of stock markets
implies that consistently outperforming it through individual stock selection or timing
is challenging. Therefore, investors may opt for a passive investment approach, such as
investing in index funds that strive to match the market’s performance. Second, while the
efficient market hypothesis assumes that the market is self-regulating and does not require
government intervention, discovering market inefficiencies may require more regulations
to safeguard investors and preserve market stability. Consequently, policymakers in coun-
tries with significant variations in market efficiency should consider implementing new
regulations to enhance market efficiency.

As an additional research topic, we propose to analyze the market efficiency of the
three groups of countries from a behavioral finance perspective. The efficient market
hypothesis assumes that all investors have access to the same information and make rational
decisions based on this information. However, behavioral finance research has shown
that investors often make irrational decisions based on emotions, biases, and heuristics.
Therefore, the proposed research can help inform our understanding of how individual
markets function and investors make decisions. Furthermore, we suggest employing
clustering analysis for Δα time series data. This approach can help identify distinct patterns
in Δα movements within each country or confirm the similarity of these patterns through
cluster analysis. By conducting such future studies, we can enhance the robustness of our
findings and gain further insights from this research.
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Appendix A

Table A1. The stock index for each country.

Developed Emerging Frontier

Country Index Country Index Country Index

Austria Austrian Traded
Index Brazil IBOVESPA Bahrain Bahrain BHSEASI

Australia S&P/ASX 200 Chile S&P/CLX Estoina Tallinn SE General
Belgium BEL 20 China CSI 300 Croatia CROBEX

Canda S&P/TSX Czech Republic PX Iceland OMX Iceland
All-Share

Switzerland SMI Egypt EGX 30 Jordan MSCI JORDAN US

Germany DAX Greece FTSE Athex Large
Cap Kenya Kenya NSE 20

Denmark OMX Copenhagen
25 Hungary BUMIX Lituania Vilnius SE General

Spain IBEX 35 Indonesia IDX Morocco Morocco MASI
Finland OMX Helsinki 25 India NIFTY 50 Mauritius Semdex
France CAC 40 Korea KOSPI Oman Oman MSM

United Kingdom UK 100 Mexico S&P/BMV IPC Romania BET
Hong Kong Hang Senng Malaysia KLCI Serbia Belex 15

Ireland ISEQ 20 Peru S&P Lima General Slovenia SLOVENIAN
BLUE CHIP

Israel TA 125 Philippines PSEi Tunisia Tunindex
Italy Italy 40 Poland WIG 20 Vietnam VNI

Japan Nikkei 225 Qatar QE General
Netherlands AEX Saudi Arabia Tadawul All Share

Norway OBX Price Thailand SET
New Zealand S&P/NZX 50 Turkey BIST 100

Portugal PSI Taiwan TSEC Taiwan 50

Sweden OMX Stockholm 30 United Arab
Emirates DFM General

Singapore FTSE Singapore South Africa iShares MSCI
South Africa

United States S&P 500
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(a) Austria (b) Australia (c) Belgium (d) Canada

(e) Switzerland (f) Germany (g) Denmark (h) Spain

(i) Finland (j) France (k) United Kingdom (l) Hong Kong

(m) Ireland (n) Israel (o) Italy (p) Japan

(q) Netherlands (r)Norway (s) New Zealand (t) Portugal

(u) Sweden (v) Singapore (w) United States

Figure A1. The dynamics of Δα using a rolling window for developed countries with the window
length (300, 400, 500 days).
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(a) Brazil (b) Chile (c) China (d) Czech Republic

(e) Egypt (f) Greece (g) Hungary (h) Indonesia

(i) India (j) Korea (k) Mexico (l) Malaysia

(m) Peru (n) Philippines (o) Poland (p) Qatar

(q) Saudi Arabia (r) Thailand (s) Turkey (t) Taiwan

(u) United Arab Emirates (v) South Africa

Figure A2. The dynamics of Δα using a rolling window for emerging countries with the window
length (300, 400, 500 days).
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(a) Bahrain (b) Estonia (c) Croatia

(d) Iceland (e) Jordan (f) Kenya

(g) Lithuania (h) Morocco (i) Mauritius

(j) Oman (k) Romania (l) Serbia

(m) Slovenia (n) Tunisia (o) Vietnam

Figure A3. The dynamics of Δα using a rolling window for frontier countries with the window length
(300, 400, 500 days).
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6. Miloş, L.R.; Haţiegan, C.; Miloş, M.C.; Barna, F.M.; Bot,oc, C. Multifractal detrended fluctuation analysis (MF-DFA) of stock
market indexes. Empirical evidence from seven central and eastern European markets. Sustainability 2020, 12, 535. [CrossRef]

7. Choi, S.Y. Analysis of stock market efficiency during crisis periods in the US stock market: Differences between the global
financial crisis and COVID-19 pandemic. Phys. A Stat. Mech. Its Appl. 2021, 574, 125988. [CrossRef]

8. Yin, T.; Wang, Y. Market efficiency and nonlinear analysis of soybean futures. Sustainability 2021, 13, 518. [CrossRef]
9. Pak, D.; Choi, S.Y. Economic Policy Uncertainty and Sectoral Trading Volume in the US Stock Market: Evidence from the

COVID-19 Crisis. Complexity 2022, 2022, 2248731 . [CrossRef]
10. Gaio, L.E.; Stefanelli, N.O.; Júnior, T.P.; Bonacim, C.A.G.; Gatsios, R.C. The impact of the Russia-Ukraine conflict on market

efficiency: Evidence for the developed stock market. Financ. Res. Lett. 2022, 50, 103302. [CrossRef]
11. Caraiani, P. Evidence of multifractality from emerging European stock markets. PLoS ONE 2012, 7, e40693. [CrossRef] [PubMed]
12. Arshad, S.; Rizvi, S.A.R.; Ghani, G.M.; Duasa, J. Investigating stock market efficiency: A look at OIC member countries. Res. Int.

Bus. Financ. 2016, 36, 402–413. [CrossRef]
13. Aslam, F.; Ferreira, P.; Mohti, W. Investigating efficiency of frontier stock markets using multifractal detrended fluctuation

analysis. Int. J. Emerg. Mark. 2021, ahead of print.
14. Nargunam, R.; Lahiri, A. Persistence in daily returns of stocks with highest market capitalization in the Indian market. Digit.

Financ. 2022, 4, 341–374. [CrossRef]
15. Lee, M.; Song, J.W.; Kim, S.; Chang, W. Asymmetric market efficiency using the index-based asymmetric-MFDFA. Phys. A Stat.

Mech. Its Appl. 2018, 512, 1278–1294. [CrossRef]
16. Aslam, F.; Latif, S.; Ferreira, P. Investigating long-range dependence of emerging Asian stock markets using multifractal detrended

fluctuation analysis. Symmetry 2020, 12, 1157. [CrossRef]
17. Aslam, F.; Ferreira, P.; Ali, H.; Kauser, S. Herding behavior during the COVID-19 pandemic: A comparison between Asian and

European stock markets based on intraday multifractality. Eurasian Econ. Rev. 2021, 12, 333–359. [CrossRef]
18. Mensi, W.; Yousaf, I.; Vo, X.V.; Kang, S.H. Multifractality during upside/downside trends in the MENA stock markets: The effects

of the global financial crisis, oil crash and COVID-19 pandemic. Int. J. Emerg. Mark. 2022, ahead of print.
19. Saâdaoui, F. Skewed multifractal scaling of stock markets during the COVID-19 pandemic. Chaos Solitons Fractals 2023, 170, 113372.

[CrossRef]
20. Lim, K.P. Ranking market efficiency for stock markets: A nonlinear perspective. Phys. A Stat. Mech. Its Appl. 2007, 376, 445–454.

[CrossRef]
21. Anagnostidis, P.; Varsakelis, C.; Emmanouilides, C.J. Has the 2008 financial crisis affected stock market efficiency? The case of

Eurozone. Phys. A Stat. Mech. Its Appl. 2016, 447, 116–128. [CrossRef]
22. Rizvi, S.A.R.; Arshad, S. Investigating the efficiency of East Asian stock markets through booms and busts. Pac. Sci. Rev. 2014,

16, 275–279. [CrossRef]
23. Smith, G. The changing and relative efficiency of European emerging stock markets. Eur. J. Financ. 2012, 18, 689–708. [CrossRef]
24. Sensoy, A. Generalized Hurst exponent approach to efficiency in MENA markets. Phys. A Stat. Mech. Its Appl. 2013,

392, 5019–5026. [CrossRef]
25. Kantelhardt, J.W.; Zschiegner, S.A.; Koscielny-Bunde, E.; Havlin, S.; Bunde, A.; Stanley, H.E. Multifractal detrended fluctuation

analysis of nonstationary time series. Phys. A Stat. Mech. Its Appl. 2002, 316, 87–114. [CrossRef]
26. Wang, F.; Ye, X.; Wu, C. Multifractal characteristics analysis of crude oil futures prices fluctuation in China. Phys. A Stat. Mech. Its

Appl. 2019, 533, 122021. [CrossRef]
27. Jiang, Z.Q.; Chen, W.; Zhou, W.X. Detrended fluctuation analysis of intertrade durations. Phys. A Stat. Mech. Its Appl. 2009,

388, 433–440. [CrossRef]
28. Qian, X.Y.; Gu, G.F.; Zhou, W.X. Modified detrended fluctuation analysis based on empirical mode decomposition for the

characterization of anti-persistent processes. Phys. A Stat. Mech. Its Appl. 2011, 390, 4388–4395. [CrossRef]
29. Han, C.; Wang, Y.; Xu, Y. Efficiency and multifractality analysis of the Chinese stock market: Evidence from stock indices before

and after the 2015 stock market crash. Sustainability 2019, 11, 1699. [CrossRef]
30. Lashermes, B.; Abry, P.; Chainais, P. New insights into the estimation of scaling exponents. Int. J. Wavelets Multiresolut. Inf.

Process. 2004, 2, 497–523. [CrossRef]
31. Ning, Y.; Wang, Y.; Su, C.w. How did China’s foreign exchange reform affect the efficiency of foreign exchange market? Phys. A

Stat. Mech. Its Appl. 2017, 483, 219–226. [CrossRef]
32. Calvet, L.; Fisher, A. Multifractality in asset returns: Theory and evidence. Rev. Econ. Stat. 2002, 84, 381–406. [CrossRef]
33. Alvarez-Ramirez, J.; Cisneros, M.; Ibarra-Valdez, C.; Soriano, A. Multifractal Hurst analysis of crude oil prices. Phys. A Stat.

Mech. Its Appl. 2002, 313, 651–670. [CrossRef]
34. Wang, Y.; Wu, C.; Pan, Z. Multifractal detrending moving average analysis on the US Dollar exchange rates. Phys. A Stat. Mech.

Its Appl. 2011, 390, 3512–3523. [CrossRef]
35. da Silva Filho, A.C.; Maganini, N.D.; de Almeida, E.F. Multifractal analysis of Bitcoin market. Phys. A Stat. Mech. Its Appl. 2018,

512, 954–967. [CrossRef]

30



Fractal Fract. 2023, 7, 478

36. Ruan, Q.; Zhang, S.; Lv, D.; Lu, X. Financial liberalization and stock market cross-correlation: MF-DCCA analysis based on
Shanghai-Hong Kong Stock Connect. Phys. A Stat. Mech. Its Appl. 2018, 491, 779–791. [CrossRef]

37. Zhou, W.; Dang, Y.; Gu, R. Efficiency and multifractality analysis of CSI 300 based on multifractal detrending moving average
algorithm. Phys. A Stat. Mech. Its Appl. 2013, 392, 1429–1438. [CrossRef]

38. Gao, X.L.; Shao, Y.H.; Yang, Y.H.; Zhou, W.X. Do the global grain spot markets exhibit multifractal nature? Chaos Solitons Fractals
2022, 164, 112663. [CrossRef]

39. Wang, Y.; Wei, Y.; Wu, C. Analysis of the efficiency and multifractality of gold markets based on multifractal detrended fluctuation
analysis. Phys. A Stat. Mech. Its Appl. 2011, 390, 817–827. [CrossRef]

40. Sensoy, A.; Tabak, B.M. Time-varying long term memory in the European Union stock markets. Phys. A Stat. Mech. Its Appl. 2015,
436, 147–158. [CrossRef]

41. Gajardo, G.; Kristjanpoller, W. Asymmetric multifractal cross-correlations and time varying features between Latin-American
stock market indices and crude oil market. Chaos Solitons Fractals 2017, 104, 121–128. [CrossRef]

42. Aloui, C.; Shahzad, S.J.H.; Jammazi, R. Dynamic efficiency of European credit sectors: A rolling-window multifractal detrended
fluctuation analysis. Phys. A Stat. Mech. Its Appl. 2018, 506, 337–349. [CrossRef]

43. Fukuda, S.i. Abenomics: Why was it so successful in changing market expectations? J. Jpn. Int. Econ. 2015, 37, 1–20. [CrossRef]
44. Kawamoto, T.; Nakazawa, T.; Kishaba, Y.; Matsumura, K.; Nakajima, J. Estimating the macroeconomic effects of Japan’s

expansionary monetary policy under Quantitative and Qualitative Monetary Easing during 2013–2020. Econ. Anal. Policy 2023,
78, 208-224. [CrossRef]

45. Hu, G.X.; Pan, J.; Wang, J. Chinese Capital Market: An Empirical Overview; NBER: Cambridge, MA, USA, 2018.
46. Petry, J. Same same, but different: Varieties of capital markets, Chinese state capitalism and the global financial order. Compet.

Change 2021, 25, 605–630. [CrossRef]
47. Ahmed, W.M. Asymmetric impact of exchange rate changes on stock returns: Evidence of two de facto regimes. Rev. Account.

Financ. 2020, 19, 147–173. [CrossRef]
48. Kim, Y.; Jo, G.J. The impact of foreign investors on the stock price of Korean enterprises during the global financial crisis.

Sustainability 2019, 11, 1576. [CrossRef]
49. Kang, S.; Sul, W.; Kim, S. Impact of foreign institutional investors on dividend policy in Korea: A stock market perspective. J.

Financ. Manag. Anal. 2010, 23, 10–26.
50. Huang, R.D.; Shiu, C.Y. Local effects of foreign ownership in an emerging financial market: Evidence from qualified foreign

institutional investors in Taiwan. Financ. Manag. 2009, 38, 567–602. [CrossRef]
51. Nagpal, P. An empirical study on impact of flow of FDI & FII on Indian stock market. SSRN 2016, 3, 19–25.
52. Meziani, A.S. Frontier Markets: Understanding the Risks. J. Beta Invest. Strateg. 2020, 11, 43–56. [CrossRef]
53. Lim, K.P.; Brooks, R.D. The Evolving and Relative Efficiencies of Stock Markets: Empirical Evidence from Rolling Bicorrelation Test

Statistics; SSRN: Rochester, NY, USA, 2006.
54. Bouoiyour, J.; Selmi, R.; Wohar, M.E. Are Islamic stock markets efficient? A multifractal detrended fluctuation analysis. Financ.

Res. Lett. 2018, 26, 100–105. [CrossRef]
55. Mookerjee, R.; Yu, Q. An empirical analysis of the equity markets in China. Rev. Financ. Econ. 1999, 8, 41–60. [CrossRef]
56. Islam, S.M.; Watanapalachaikul, S.; Clark, C. Some tests of the efficiency of the emerging financial markets: An analysis of the

Thai stock market. J. Emerg. Mark. Financ. 2007, 6, 291–302. [CrossRef]
57. Zunino, L.; Bariviera, A.F.; Guercio, M.B.; Martinez, L.B.; Rosso, O.A. On the efficiency of sovereign bond markets. Phys. A Stat.

Mech. Its Appl. 2012, 391, 4342–4349. [CrossRef]
58. Tongurai, J.; Vithessonthi, C. Financial Openness and Financial Market Development. J. Multinatl. Financ. Manag. 2023,

67, 100782. [CrossRef]
59. Vo, X.V. Do foreign investors promote stock price efficiency in emerging markets? Int. Rev. Financ. 2019, 19, 223–235. [CrossRef]
60. Rejeb, A.B.; Boughrara, A. Financial liberalization and stock markets efficiency: New evidence from emerging economies. Emerg.

Mark. Rev. 2013, 17, 186–208. [CrossRef]
61. Goodell, J.W.; Li, M.; Liu, D.; Peng, H. Depoliticization and market efficiency: Evidence from China. Financ. Res. Lett. 2022,

47, 102712. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

31



Citation: Wang, L.; Lee, R.S.T. Stock

Index Return Volatility Forecast via

Excitatory and Inhibitory Neuronal

Synapse Unit with Modified

MF-ADCCA. Fractal Fract. 2023, 7,

292. https://doi.org/10.3390/

fractalfract7040292

Academic Editors: Bruce Henry and

Leung Lung Chan

Received: 9 March 2023

Revised: 21 March 2023

Accepted: 24 March 2023

Published: 28 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fractal and fractional

Article

Stock Index Return Volatility Forecast via Excitatory and
Inhibitory Neuronal Synapse Unit with Modified MF-ADCCA

Luochao Wang and Raymond S. T. Lee *

Department of Computer Science, Beijing Normal University-Hong Kong Baptist University United International
College, Zhuhai 519000, China
* Correspondence: raymondshtlee@uic.edu.cn

Abstract: Financial prediction persists a strenuous task in Fintech research. This paper introduces
a multifractal asymmetric detrended cross-correlation analysis (MF-ADCCA)-based deep learning
forecasting model to predict a succeeding day log return via excitatory and inhibitory neuronal
synapse unit (EINS) using asymmetric Hurst exponent as input features, with return and volatility
increment of Shanghai Stock Exchanges Composite Index (SSECI) from 2014 to 2020 as proxies
for analysis. Experimental results revealed that multifractal elements by MF-ADCCA method as
input features are applicable to time series forecasting in deep learning than multifractal detrended
fluctuation analysis (MF-DFA) method. Further, the proposed biologically inspired EINS model
achieved satisfactory performances in effectiveness and reliability in time series prediction compared
with prevalent recurrent neural networks (RNNs) such as LSTM and GRU. The contributions of
this paper are to (1) introduce a moving-window MF-ADCCA method to obtain asymmetric Hurst
exponent sequences used directly as an input feature for deep learning prediction and (2) evaluate
performances of various asymmetric multifractal approaches for deep learning time series forecasting.

Keywords: stock prediction; asymmetry Hurst exponent; deep learning; multifractal; neural networks

1. Introduction

Financial trends fluctuations have amassed complexities by rapid global markets
development in the recent decades. Time series prediction is a strenuous task since it
contains chaotic, fuzzy, and incomplete information [1]. The focus of this paper is to
interpret the financial fluctuation patterns and to predict their future trends.

Financial researchers often used statistical and econometric methods to construct
prediction models by studying the characteristics and operating rules to assess and forecast
volatility before the advent of machine learning algorithms. They indicated that financial
market is a synthetical object with nonlinear multifractal characteristics [2,3], where mul-
tiscale properties and nonlinear evolution can be quantitatively analyzed by self-similar
behavior of multifractal theory. These multifractal analysis techniques include rescaled
range analysis (R/S) [4], detrended fluctuation analysis (DFA) [5], and multifractal de-
trended fluctuation analysis (MF-DFA) [6]. To compare, DFA can eliminate estimates of
long-term relationships and increase credibility than rescaled range analysis, whereas
multifractal detrended cross-correlation analysis (MF-DCCA) [7] is proposed to combine
MF-DFA and DCCA [8] identifying the cross-correlation between two non-stationary data
to quantify multifractal characteristics of the correlation. MF-DCCA method has extended
to numerous research [9,10] such as multifractal asymmetric detrended cross-correlation
analysis (MF-ADCCA) [11] studying asymmetric cross-correlations of non-stationary time
series by integrating MF-DCCA with asymmetric DFA [12] to address its predicting upward
(or downward) trend of cross-correlation characteristic limitation in time series. It studied
the scaling features of cross-correlation between finance market stability and real estate
price changes [13], in cryptocurrency markets research [14], and in gold futures market’s
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price-volume correlation [15] indicating that MF-ADCCA is effective to complex nonlinear
dynamics.

The generalized Hurst exponent (H) is an econophysics concept to describe time
series features and evaluate their complexities as a quantitative metric to study time series
long-range dependence by various multifractal analysis approaches. A time series is
characterized by anti-persistent behavior when 0 < H < 0.5, which means that the data
are uncorrelated temporally. In this case, the relative tendency shows the potential for
an enormous reversal signal and continuity. When 0.5 < H < 1, the relative tendency is
characterized by persistent behavior, its current trend continuity is likely in time series
contrary to the previous case. If H = 0.5, the time series is expected to be neither anti-
persistent nor persistent but is characterized by a negatively correlated dataset with any
definable behavior. Hence, the generalized Hurst exponent is valuable for quantifying time
series tendency.

Although asymmetric Hurst exponents can provide probabilistic trend assessments
to express the likelihood of a continuous trend, but cannot provide a precise forecast of
future values as they are sensitive to non-stationary or precipitous data changes in time
series behaviors [16–18]. Deep learning methods for financial prediction has gradually
become the core direction of fintech research in recent years [19,20]. Recurrent neural
networks (RNNs) are mostly used time series prediction models for long-range time series
dependence with their unique memory mechanisms to generate the current state by using
the hidden state of previous time step as input to store past information [21]. Nevertheless,
vanishing and exploding gradients problems occurred when the network parameters
are trained repetitively in model training process inducing RNNs inability to guarantee
generality and reliability of the prediction model. A biologically motivated recurrent unit
based on neuronal synaptic activity mechanism and chaotic behaviors called excitatory
and inhibitory neural synapse unit (EINS) is proposed by the author’s previous research to
address these problems.

Additionally, a novel deep learning model is introduced to forecast absolute return
of SXP500 Index by combining RNNs and asymmetric fractality exponent (A-MFDFA)
to explore asymmetric multifractal elements [22]. Experimental results indicated that
asymmetric Hurst exponents improved deep learning approaches for absolute return
prediction accuracy and robustness in volatile financial markets, but A-MFDFA method
only analyzed multifractal characteristics of single non-stationary time series inducing the
loss of cross-correlation information in financial factors. MF-ADCCA is a comprehensive
technique to consider asymmetric structure and multifractal scaling features between two
time series to improve complex nonlinear financial dynamics understanding, which is more
appropriate than A-MFDFA as an input feature in financial forecasting.

Hence, this paper focuses on predicting financial time series via EINS using asym-
metric Hurst exponent based on MF-ADCCA. First, it used a moving-window method
to modify MF-ADCCA so that times series of past T days can obtain asymmetric Hurst
exponent of the day. Second, MF-ADCCA is to estimate asymmetric multifractal features
of cross-correlations between price fluctuations and realized volatility of Shanghai Stock
Exchanges Composite Index (SSECI). Third, the succeeding day log return is predicted by
EINS using asymmetric Hurst exponent based on MF-ADCCA and log return of past T days
as input. Then, the predictive capacities of MF-ADCCA are examined and compared with
MF-DFA-based RNNs model (delete and to be mentioned in results section-Experimental
results showed that MF-ADCCA predictive capacities outperformed MF-DFA in deep
learning financial forecasting tasks, and EINS model achieved satisfactory performances for
effectiveness and reliability in time series prediction compared to RNNs such as LSTM [23]
and GRU [24]).

This paper is organized as follows: Section 2 introduces a moving-window MF-
ADCCA method and EINS; Section 3 presents the financial time series analyzed by MF-
ADCCA and deep learning forecasting experiment implementation; Section 4 discusses the
experimental results followed by conclusion in Section 5.
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2. Materials and Methods

2.1. Multifractal Asymmetric Detrended Cross-Correlation Analysis (MF-ADCCA)

This subsection introduces MF-ADCCA method used in time series prediction experi-
ment to measure the asymmetric cross-correlations between two non-stationary time series
{xt : t = 1, . . . ., N } and {yt : t = 1, . . . ., N }, and examine the aggregated index to present
a positive or a negative increment [11] summarized as follows:

Step 1: Construct profile of the original time series as

X(k) =
k

∑
t=1

(xt − x), t = 1, . . . , N, (1)

Y(k) =
k

∑
t=1

(yt − y), t = 1, . . . , N, (2)

where x and y are average values over the entire return series respectively. The index proxy
series is calculated by I(k) = I(k− 1) exp(xk) for k = 1, . . . , N with I(0) = 1 to assess
positive and negative trend of the index.

Step 2: Divide profiles X(k), Y(k), and index proxy I(k) into NS = �N/s� non-
overlapping segments of length s. Repeat the division from other end of the series to
consider the whole profile for a total of 2NS segments for each series.

Step 3: Calculate detrended covariance for each 2NS segment as

f 2(s, v) =
1
s

s

∑
i=1

∣∣∣X((v− 1)s + i)− X̃v(i)
∣∣∣∣∣∣Y((v− 1)s + i)− Ỹv(i)

∣∣∣ (3)

for v = 1, . . . , N, and

f 2(s, v) =
1
s

s

∑
i=1

∣∣∣X(N − (v− Ns)s + i)− X̃v(i)
∣∣∣∣∣∣Y(N − (v− Ns)s + i)− Ỹv(i)

∣∣∣ (4)

for v = 1, . . . , 2NS. By fitting a least-square degree-2 polynomial X̃v and Ỹv, calculate
profiles local trend and applied to detrend X(k) and Y(k) respectively. Further, the local
asymmetric direction of the index is determined by assessing the least-square linear fit
Ĩv(i) = aIv + bIv i(i = 1, . . . , s) for each segment, where the sign of slope bIv is to discriminate
the index trend. If bIv > 0, the index trend has a positive trend, or a negative trend if
otherwise.

Step 4: Calculate directional q-order average fluctuation functions as

F+
q (s)|=

{
1

M+

2Ns
∑

v=1

1+sgn(bIv )
2

[
f 2(s, v)

]q/2
}1/q

,

F−q (s)|=
{

1
M−

2Ns
∑

v=1

1−sgn(bIv )
2

[
f 2(s, v)

]q/2
}1/q

,

q �= 0 (5)

and

F+
0 (s) = exp

{
1

2M+

2Ns
∑

v=1

1+sgn(bIv )
2 In

[
f 2(s, v)

]}
,

F−0 (s) = exp
{

1
2M−

2Ns
∑

v=1

1−sgn(bIv )
2 In

[
f 2(s, v)

]}
,
q = 0 (6)

where M+ = ∑2Ns
v=1

1+sgnb(Iv)
2 and M− = ∑2Ns

v=1
1+sgnb(Iv)

2 are subseries numbers with positive
and negative tendencies in which bIv �= 0 for v = 1, . . . , 2NS, thus M+ + M− = 2NS.
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Step 5: Calculate q-order fluctuation functions for overall trend as

Fq(s) =

{
1

2Ns

2Ns

∑
v=1

[
f 2(s, v)

] q
2

} 1
q

, q = 0 (7)

and

F0(s) = exp

{
1

4Ns

2Ns

∑
v=1

In
[

f 2(s, v)
]}

, q �= 0 (8)

Step 6: Calculate generalized Hurst exponents as

F+
q (s) ∼ sh+xy(q), F−q (s) ∼ sh−xy(q), and Fq(s) ∼ shxy(q) (9)

when q-order fluctuation functions follow a power-law of forms F+
q (s) ∼ sh+xy(q), F−q (s) ∼

sh−xy(q), and Fq(s) ∼ shxy(q), the two non-stationary series present long-range power-law
cross-correlated features. Scaling exponent hxy(q), known as generalized Hurst exponent,
is used to express the long-range power-law correlation features that can be calculated by
fitting a log-log linear regression, while h+xy(q) and h−xy(q) are used to measure the positive
and negative increments. To avoid errors and preserve estimation validity, this paper used
a scale range from smin = max(20, N/100) to smax = min(20smin, N/10) and 100 points in
the regression [14].

If 0 < hxy(q) < 0.5, the two series present an anti-persistent cross-correlation indicat-
ing that one series is likely to be followed by a fluctuation opposite to the current trend
in the other series. If 0.5 < hxy(q) < 1, the two series present persistent cross-correlation
indicating that one series is likely to be followed by a fluctuation similar to the current trend
in the other series. When hxy(q) = 0.5, the two series have neither obvious cross-correlations
nor any correlation.

The order q represents to various volatility magnitudes degree assessed. If 0 < q,
scaling exponents present larger or smaller fluctuations behavior. Additionally, if hxy(q) is
independent of q, a series is multifractal. It is noted that the Hurst exponent of target series
can be calculated by setting q = 2. Since the generalized Hurst exponents series calculated
by MF-ADCCA cannot be used directly as input feature for deep learning forecasting, a
moving-window method is used to modify MF-ADCCA by calculating asymmetric Hurst
exponent value of the day using past T days data depicted in Algorithm 1.

Algorithm 1. Algorithm to Moving-window MF-ADCCA Method.

Input: Time Series: Xt; < Size (w ∗ l) >
Time Series: Yt; < Size (w ∗ l) >
Days Scaling: T;
Step: t;

Output: Asymmetric generalized Hurst exponents;
Function Moving-window MF-ADCCA (Xt, Yt, T, t)
Initialize Hurst ← A rray[0, . . . Nw−T+1] , Hurst+ ← A rray[0, . . . Nw−T+1],

Hurst− ← A rray[0, . . . Nw−T+1]
for i in range (0, Nw−T+1, step) do

Series A ← Xt[i, . . . i + T]
Series B ← Yt[i, . . . i + T]

Hurst, , Hurst+, Hurst− ← MF− ADCCA(Series A, Series B)
Hurst[i] ← Hurst
Hurst+

[i] ← Hurst+

Hurst−
[i] ← Hurst−

return Hurst, , Hurst+, Hurst−
End function
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2.2. Excitatory and Inhibitory Neuronal Synapse Unit (EINS)

This section explains an EINS illustrated in Figure 1. It is a biologically inspired
neural network model with synaptic activity mechanism to simulate the neurodynamics
of spike alternation and neurotransmitter transmission within neurons during memory
behavior [25–27]. The design is based on memristive synapse-coupled bi-neuron networks
structure enabling the model to have the same memory mechanisms as human brain [28–30].
A single EINS unit is expressed as follows:

D(t + 1) = Tanh [x(t + 1)Wd− Bd ] (10)

E(t + 1) = Sigmoid[A(t)Wea + E(t)Wee− I(t)Wei + D(t + 1)Wed− Be] (11)

I(t + 1) = Sigmoid[A(t)Wia− E(t)Wie + I(t)Wii + D(t + 1)Wid− Bi] (12)

A(t + 1) = [E(t + 1)− I(t + 1)]e−kD2(t+1) + D(t + 1) (13)

where x(t+1) denotes the external stimulation at each time step; D(t + 1), E(t + 1), I(t + 1),
A(t + 1) denote the neuronal dendrite layer, excitatory neurotransmitter state layer, in-
hibitory neurotransmitter state layer, and the neuronal axon layer, respectively; Wea, Wee,
Wei, Wed, and Be express weights and bias of neuronal axon, excitatory neurotransmitter
state, inhibitory neurotransmitter state, neuronal dendrite, and excitatory state layer in
the excitatory state layer E(t + 1) respectively; similarly, Wia, Wie, Wii, Wid, and Bi are
weights and bias of corresponding terms in the inhibitory state layer, I(t + 1).

Figure 1. Diagram of EINS unit.

It showed that the dendrite layer receives external input and sends processed results to
the hidden state with previous state values. The updated hidden state values are preserved
in the hidden state to be learnt in subsequent time steps. Further, the proposed unit outputs
the learnt result via an axon layer using the neurodynamic mechanism of memristive
synapse-coupled bi-neuron networks and sends it to the next hidden state. Its model is
depicted in Algorithm 2.
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Algorithm 2. Algorithm to Excitatory and Inhibitory Neural Synapse Model.

Input: Time Series: Tt; < Size (batch, time step, input size) >
Input Size: I; Hidden Size: H; Output Size: O;
Step: t;

Output: Prediction Result: Tt+1;
Procedure EINS (n, p, i, j, θ0)
Initialize Et ← 0; It ← 0 ; At ← 0 ; θ ← θ0 ; i ← 0 ; j ← 0 .
for Xi in Tt do

Dt ← tanh
(
XiWI∗H

d − bH
d
)

Et ← δ
(

At−1WH∗H
ea + Et−1WH∗H

ee − It−1WH∗H
ei + DtWH∗H

ed − bH
e
)

It ← δ
(

At−1WH∗H
ia − Et−1WH∗H

ie + It−1WH∗H
ii + DtWH∗H

id − bH
i
)

At ← (Et − It)	 exp−k∗D2
t + Dt

Tt+1 ←
(

AtWH∗O
O − bO

O
)

return Tt+1
End for

While j < p do

Update θ by running training algorithm for n steps
i ← i + n
Tt+1 ← ValidationSetError(θ)
if Tt+1 < Tvalid then

j ← 0
θ∗ ← θ

i∗ ← i
else

j ← j + 1
End if

End while

return θ∗ and save the trained EINS model weights
End Procedure

RNNs memory mechanisms rely on preserving past information in hidden layer, their
training encounters vanishing and exploding gradients problems occurred due to these
trainable parameters are repetitively applied to the hidden state. The proposed experimen-
tal model used chaotic property of memristive synapse-coupled bi-neuron networks to
mitigate them and explore the feasibility of combining biologically inspired approach with
deep learning algorithms.

3. Data and Experiments

3.1. Data Description

The data are a log return series extracted by Shanghai Stock Exchanges Composite
Index (SSECI). The experiment introduced a deep learning forecasting model with asym-
metric multifractal characteristics, using close prices from 2014 to 2020 for calculation as
depicted in Figure 2. The log return rt is calculated by:

rt = ln pt − ln pt−1 (14)

where pt is daily close price on day t; rt is the log return on day t. The log return series of
SSECI from 2014–2020 is illustrated in Figure 3. Additionally, the volatility increments from
this period are another proxy for MF-ADCCA analysis given by:

vt = ln σ̂t − ln σ̂t−1 (15)

where σ̂t =
√

BPVt, and BPVt represent the realized bipower variation [31] given by:

BRVt = ∑
t
|rt||rt+1| (16)
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Figure 2. The graph of SSECI close price from 2014 to 2020.

Figure 3. The graph of SSECI log return from 2014 to 2020.

Figure 4 illustrated the volatility increments (volatility changes) of SSECI. The data
length of volatility increments series is 2177 similar to log return series. Augmented Dickey–
Fuller (ADF) test [32], Kwiatkowski–Philips–Schmidt–Shin (KPSS) test [33], and Jarque-Bera
statistic tests are implemented to examine statistical characteristics of two proxy series.
The descriptive statistics information of the log return and volatility increments of SSECI
are listed in Table 1. It showed that the mean values of return increments and volatility
increments are close to 0 indicating that these series are self-regression equilibrium. The
absolute value of return increments is larger than volatility increments indicating that
the return increments have greater asymmetry. Further, Jarque-Bera statistic test result
showed that all series are not null hypothesis of Gaussian distribution at 1% significance
level. It is noted that the null hypothesis of unit root existence in ADF test is rejected at 1%
significance level, and KPSS tests showed that the null hypothesis of stationarity is rejected
at 1% significance level.
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Figure 4. The graph of SSECI volatility increments from 2014 to 2020.

Table 1. Descriptive statistics for log return and volatility increments of SSECI.

Mean Max Min Std Skew Kurt J-Bera 1 ADF 2 KPSS 3

rt 4.6× 10−5 5.6× 10−3 −8.9× 10−2 1.3× 10−2 −0.953 6.695 4372.8 * −9.148 * 8.27× 10−2 *
vt 2.1× 10−4 3.7987 −3.7436 0.8384 7.8× 10−3 1.0185 93.18 * −15.769 * 7.88× 10−2 *

1 denotes Jarque-Bera statistic tests; 2 denotes Augmented Dickey–Fuller test; 3 denotes Kwiatkowski–Philips–
Schmidt–Shin (KPSS) test; * represents 1% significance level. Note: (1) The ADF test uses null to express the
existence of a unit root; (2) the KPSS test uses the null to express stationary.

The log return series and volatility increment series are used as proxies for MF-ADCCA
analysis. Figures 5 and 6 illustrated up-trend Hurst exponents (h+xy(2)) and up-trend Hurst
exponents (h−xy(2)) of SSECI log returns based on the moving-window of MF-ADCCA
analysis accordingly.

Figure 5. The graph of up-trend Hurst exponent index of SSECI.
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Figure 6. The graph of down-trend Hurst exponent index of SSECI.

3.2. Experiments

The succeeding day log return of SSECI using past days log return with asymmetric
Hurst exponents for experiment implementation are illustrated in Figure 7. The imple-
mentation code is written in Python 3.9 using Pytorch library on a hardware environment
with Intel CPU Xeon@2.00 GHz, GPU Tesla V100, 12 GB RAM, and Windows 11 operating
system. First, a moving-window MF-ADCCA is used to estimate the asymmetric Hurst
exponent of Shanghai Stock Exchanges Composite Index (SSECI) and log return series
volatility increments series are used as proxies. Second, the succeeding day log return
of SSECI is predicted by EINS using asymmetric Hurst exponent based on the moving-
window MF-ADCCA. Third, RNNs predictive capacities with MF-ADCCA are examined
and compared with MF-DFA-based RNNs model such as LSTM and GRU. All datasets are
normalized to the range from −1 to 1 with Min-Max normalized method prior feeding into
the network as expressed by:

yi =
xi − xmean

max
1≤i≤n

{
xj
}− min

1≤i≤n

{
xj
} (17)

where yi is the normalized value, xi is a data in the dataset, xmean is the mean value of sample
set, max

1≤i≤n

{
xj
}

is the minimum data while min
1≤i≤n

{
xj
}

is the maximal data in the dataset. Each

dataset is divided into three parts with the same train-valid-test split rate—80% is used for
models’ training, 10% for validation, and the remaining for performance testing.

Figure 7. Flowchart of time series prediction implementation.

The experiment used a four-layer deep learning model structure for time series forecast
two recurrent layers connected by two fully connected layers as illustrated in Figure 8, and
used hyper-parameters to examine RNNs predictive capacities with MF-ADCCA as listed
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in Table 2. Further, three regression indicators including mean square error (MSE), mean
absolute error (MAE), and coefficient of determination (R2) are used to evaluate models’
performances as given by:

MSE =
1
N

N

∑
i=1

(ỹi
t − yi

t)
2

(18)

MAE =
1
N

N

∑
i=1

∣∣∣ỹi
t − ỹi

t

∣∣∣ (19)

R2 = 1− ∑N
i=1
(
yi

t − ỹi
t
)
)

∑N
i=1

(
yi

t − ỹi
t

) (20)

where yi
t, yi

t, and ỹi
t represent the actual, the mean, and the predicted value of test set

respectively; N is the total samples number indicating that the lower MSE and MAE
values represent more accurate prediction results. Further, the closer R2 value to 1 represent
the model robustness to fit dataset and prediction performance.

Figure 8. Model structure for time series prediction.

Table 2. Hyper-parameters setting list.

Hyper-Parameters Settings

Hidden neurons 128,256
Time Horizons 32,128
Learning rate 1× 10−3

Dropout rate 0.2
Epochs 100

Optimizer Adam
Error function Mean squared error

4. Results and Discussion

The experimental forecast results are listed in Table 3. They showed that MF-DFA
asymmetric Hurst exponents achieved predictive capacities for forecasting time series
with RNNs [19]. In particular, the performance of up-trend Hurst exponents (h+xy(2))
and up-trend Hurst exponents (h−xy(2)) for deep learning forecasting outperformed the
generalized Hurst exponent (hxy(2)). They are used as benchmarks to compare with
MF-ADCCA asymmetric Hurst exponents to examine predictive capacities of various
asymmetric multifractal analysis approaches.

41



Fractal Fract. 2023, 7, 292

Table 3. Forecasting performance with various hyper-parameters (note: best results highlighted in
BOLD).

Multifractal Model MSE MAE R2

Hidden neurons = 128, Time horizons = 32, Learning rate = 1× 10−3

MF-DFA
EINS 0.02584 0.11069 −0.01746
LSTM 0.02704 0.11351 −0.06485
GRU 0.02769 0.11494 −0.09042

MF-ADCCA
EINS 0.02549 0.10999 −0.00398
LSTM 0.02577 0.11091 −0.01469
GRU 0.02580 0.11130 −0.01605

Hidden neurons = 128, Time Horizons = 128, Learning rate = 1× 10−3

MF-DFA
EINS 0.02324 0.10689 −0.00691
LSTM 0.02337 0.10810 −0.01262
GRU 0.02354 0.10885 −0.02011

MF-ADCCA
EINS 0.02372 0.10770 −0.02798
LSTM 0.02507 0.11252 −0.08636
GRU 0.02496 0.11118 −0.08178

Hidden neurons = 256, Time Horizons = 32, Learning rate = 1× 10−3

MF-DFA
EINS 0.02582 0.11069 −0.01666
LSTM 0.02727 0.11501 −0.07390
GRU 0.02699 0.11419 −0.06298

MF-ADCCA
EINS 0.02532 0.11003 0.00296
LSTM 0.02704 0.11489 −0.06500
GRU 0.02593 0.11145 −0.02102

Hidden neurons = 256, Time Horizons = 128, Learning rate = 1× 10−3

MF-DFA EINS 0.02366 0.10756 −0.02516
LSTM 0.02467 0.11103 −0.06923
GRU 0.02774 0.11885 −0.20226

MF-ADCCA EINS 0.02335 0.10705 −0.01197
LSTM 0.02419 0.10989 −0.04810
GRU 0.02418 0.11025 −0.04761

They also showed that three evaluation metrics values MSE, MAE, and R2 of MF-
ADCCA-based forecasting models outperformed MF-DFA under corresponding hyper-
parameters. However, the multifractal elements obtained by MF-ADCCA method lacked
stability when fitted into deep learning model due to proxy design diversities. Hence,
it is recommended to use indicators related to financial technical analysis as proxies for
MF-ADCCA method since prerequisite fintech knowledge is essential. It is noted that the
improvement in MF-ADCCA performance to multiple proxies mechanism allowed to retain
more time series’ past information indicating that asymmetric multifractal elements by MF-
ADCCA method as input features are applicable to time series forecasting in deep learning.

For deep neural network prediction performance, it examined the feasibility of combin-
ing neuroscience and brain science into deep learning algorithms. The results showed that
EINS prediction error is lower than LSTM and GRU under corresponding hyper-parameters
as its architecture and information flow are based on memristive synapse-coupled bi-neuron
networks to simulate synapse activity mechanisms during electric signals exchange and
chemical transmitters between neurons. It has a deep neural network model with neuro-
dynamics of spike alternation and neuro-transmitter transmission within neurons during
memory indicating that EINS is a significant comparison method for effectiveness and
reliability in time series prediction.
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5. Conclusions

This paper focused not only on predicting financial time series via EINS with asym-
metric Hurst exponent based on MF-ADCCA, but also examined the predictive capacities
of various asymmetric multifractal approaches in deep learning. The log return and volatil-
ity increment of Shanghai Stock Exchanges Composite Index (SSECI) from 2014 to 2020
are used as proxies for MF-ADCCA analysis. It used a moving-window MF-ADCCA to
estimate the asymmetric Hurst exponent, and a succeeding day log return predicted by
EINS using asymmetric Hurst exponent based on moving-window MF-ADCCA with log
return of past T days as input to examine MF-ADCCA predictive capacity in deep learning
to compare with MF-DFA-based RNNs model. A four-layer deep learning model structure
is constructed for time series forecast where two recurrent layers are connected by two
fully connected layers. Further, mean square error (MSE), mean absolute error (MAE), and
coefficient of determination (R2) are used to evaluate the models’ performances. The results
showed that MF-ADCCA outperformed MF-DFA in deep learning financial forecasting
tasks. Further, the biologically inspired EINS model achieved satisfactory performances for
effectiveness and reliability in time series prediction as compared with prevalent RNNs
such as LSTM and GRU.

The contributions of this paper are to (1) introduce a moving-window MF-ADCCA
method to calculate asymmetric Hurst exponent of the day using times series of the past T
days by setting q = 2 to obtain asymmetric Hurst exponent sequences that can be directly
used as an input feature for deep learning prediction and (2) evaluate various asymmetric
multifractal approaches performances for deep learning time series forecasting.

Future research will focus on other financial markets such as cryptocurrency markets,
gold markets, and other state-of-the-art multifractal methods as benchmarks.

Author Contributions: Conceptualization, R.S.T.L.; methodology, L.W.; software, L.W.; validation,
L.W.; formal analysis, L.W.; investigation, L.W.; resources, L.W.; data curation, L.W.; writing—original
draft preparation, L.W.; writing—review and editing, R.S.T.L.; visualization, L.W.; supervision,
R.S.T.L.; project administration, R.S.T.L.; funding acquisition, R.S.T.L. All authors have read and
agreed to the published version of the manuscript.

Funding: This paper was supported by Research Grant R202008 of Beijing Normal University-
Hong Kong Baptist University United International College (UIC), Key Laboratory for Artificial
Intelligence and Multi-Model Data Processing of Department of Education of Guangdong Province,
Guangdong Province F1 project grant on Curriculum Development and Teaching Enhancement on
Quantum Finance course UICR0400050-21CTL and by the Guangdong Provincial Key Laboratory
of Interdisciplinary Research and Application for Data Science, BNU-HKBU United International
College (2022B1212010006).

Informed Consent Statement: This research article describing a study do not involve humans.

Data Availability Statement: The program source and financial dataset can be accessed from
https://github.com/JeffRody/MF-ADCCA-Deep-Learning-time-series-forecasting, accessed on
2 March 2023.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zhang, L.; Wang, F.; Xu, B.; Chi, W.; Wang, Q.; Sun, T. Prediction of stock prices based on LM-BP neural network and the
estimation of overfitting point by RDCI. Neural Comput. Appl. 2018, 30, 1425–1444. [CrossRef]

2. Liu, G.; Yu, C.P.; Shiu, S.N.; Shih, I.T. The Efficient Market Hypothesis and the Fractal Market Hypothesis: Interfluves, Fusions,
and Evolutions. Sage Open 2022, 12, 21582440221082137. [CrossRef]

3. Arashi, M.; Rounaghi, M.M. Analysis of market efficiency and fractal feature of NASDAQ stock exchange: Time series modeling
and forecasting of stock index using ARMA-GARCH model. Futur. Bus. J. 2022, 8, 14. [CrossRef]

4. Hurst, H.E. Long-term storage capacity of reservoirs. Trans. Am. Soc. Civ. Eng. 1951, 116, 770–799. [CrossRef]
5. Peters, E.E. Fractal Market Analysis: Applying Chaos Theory to Investment and Economics; John Wiley & Sons: Hoboken, NJ, USA,

1994; Volume 24.

43



Fractal Fract. 2023, 7, 292

6. Kantelhardt, J.W.; Zschiegner, S.A.; Koscielny-Bunde, E.; Havlin, S.; Bunde, A.; Stanley, H. Multifractal detrended fluctuation
analysis of nonstationary time series. Phys. A Stat. Mech. Its Appl. 2002, 316, 87–114. [CrossRef]

7. Zhou, W.-X. Multifractal detrended cross-correlation analysis for two nonstationary signals. Phys. Rev. E 2008, 77, 066211.
[CrossRef]

8. Podobnik, B.; Stanley, H.E. Detrended Cross-Correlation Analysis: A New Method for Analyzing Two Nonstationary Time Series.
Phys. Rev. Lett. 2008, 100, 084102. [CrossRef]

9. Cao, G.; Zhang, M.; Li, Q. Volatility-constrained multifractal detrended cross-correlation analysis: Cross-correlation among
Mainland China, US, and Hong Kong stock markets. Phys. A Stat. Mech. Its Appl. 2017, 472, 67–76. [CrossRef]

10. Yuan, X.; Sun, Y.; Lu, X. SHIBOR Fluctuations and Stock Market Liquidity: An MF-DCCA Approach. Emerg. Mark. Financ. Trade
2022, 58, 2050–2065. [CrossRef]

11. Cao, G.; Cao, J.; Xu, L.; He, L. Detrended cross-correlation analysis approach for assessing asymmetric multifractal detrended
cross-correlations and their application to the Chinese financial market. Phys. A Stat. Mech. Its Appl. 2014, 393, 460–469. [CrossRef]

12. Alvarez-Ramirez, J.; Rodriguez, E.; Echeverria, J.C. A DFA approach for assessing asymmetric correlations. Phys. A Stat. Mech. Its
Appl. 2009, 388, 2263–2270. [CrossRef]

13. Liu, C.; Zheng, Y.; Zhao, Q.; Wang, C. Financial stability and real estate price fluctuation in China. Phys. A Stat. Mech. Its Appl.
2020, 540, 122980. [CrossRef]

14. Kakinaka, S.; Umeno, K. Exploring asymmetric multifractal cross-correlations of price-volatility and asymmetric volatility
dynamics in cryptocurrency markets. Phys. A Stat. Mech. its Appl. 2021, 581, 126237. [CrossRef]

15. Guo, Y.; Yu, Z.; Yu, C.; Cheng, H.; Chen, W.; Zhang, H. Asymmetric multifractal features of the price–volume correlation in
China’s gold futures market based on MF-ADCCA. Res. Int. Bus. Financ. 2021, 58, 101495. [CrossRef]

16. Yuan, Y.; Zhang, T. Forecasting stock market in high and low volatility periods: A modified multifractal volatility approach. Chaos
Solitons Fractals 2020, 140, 110252. [CrossRef]

17. Hu, H.; Zhao, C.; Li, J.; Huang, Y. Stock Prediction Model Based on Mixed Fractional Brownian Motion and Improved Fractional-
Order Particle Swarm Optimization Algorithm. Fractal Fract. 2022, 6, 560. [CrossRef]

18. Cao, G.; Han, Y.; Li, Q.; Xu, W. Asymmetric MF-DCCA method based on risk conduction and its application in the Chinese and
foreign stock markets. Phys. A Stat. Mech. Its Appl. 2017, 468, 119–130. [CrossRef]

19. Jaiswal, R.; Jha, G.K.; Kumar, R.R.; Choudhary, K. Deep long short-term memory based model for agricultural price forecasting.
Neural Comput. Appl. 2022, 34, 4661–4676. [CrossRef]

20. Lee, M.-C.; Chang, J.-W.; Yeh, S.-C.; Chia, T.-L.; Liao, J.-S.; Chen, X.-M. Applying attention-based BiLSTM and technical indicators
in the design and performance analysis of stock trading strategies. Neural Comput. Appl. 2022, 34, 13267–13279. [CrossRef]
[PubMed]

21. Chandar, S.; Sankar, C.; Vorontsov, E.; Kahou, S.E.; Bengio, Y. Towards non-saturating recurrent units for modelling long-term
dependencies. Proc. AAAI Conf. Artif. Intell. 2019, 33, 3280–3287. [CrossRef]

22. Cho, P.; Lee, M. Forecasting the Volatility of the Stock Index with Deep Learning Using Asymmetric Hurst Exponents. Fractal
Fract. 2022, 6, 394. [CrossRef]

23. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
24. Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv

2014, arXiv:1412.3555.
25. Cifelli, P.; Ruffolo, G.; De Felice, E.; Alfano, V.; van Vliet, E.A.; Aronica, E.; Palma, E. Phytocannabinoids in Neurological Diseases:

Could They Restore a Physiological GABAergic Transmission? Int. J. Mol. Sci. 2020, 21, 723. [CrossRef] [PubMed]
26. Xu, Y.; Jia, Y.; Ma, J.; Alsaedi, A.; Ahmad, B. Synchronization between neurons coupled by memristor. Chaos Solitons Fractals 2017,

104, 435–442. [CrossRef]
27. Zhang, J.; Liao, X. Synchronization and chaos in coupled memristor-based FitzHugh-Nagumo circuits with memristor synapse.

Aeu-Int. J. Electron. Commun. 2017, 75, 82–90. [CrossRef]
28. Lee, R.S.T. Chaotic Type-2 Transient-Fuzzy Deep Neuro-Oscillatory Network (CT2TFDNN) for Worldwide Financial Prediction.

IEEE Trans. Fuzzy Syst. 2019, 28, 731–745. [CrossRef]
29. Njitacke, Z.T.; Doubla, I.S.; Kengne, J.; Cheukem, A. Coexistence of firing patterns and its control in two neurons coupled through

an asymmetric electrical synapse. Chaos: Interdiscip. J. Nonlinear Sci. 2020, 30, 023101. [CrossRef]
30. Lee, R.S.T. Chaotic interval type-2 fuzzy neuro-oscillatory network (CIT2-FNON) for Worldwide 129 financial products prediction.

Int. J. Fuzzy Syst. 2019, 21, 2223–2244. [CrossRef]
31. Barndorff-Nielsen, O.E.; Shephard, N. Power and bipower variation with stochastic volatility and jumps. J. Financ. Econom. 2004,

2, 1–37. [CrossRef]

44



Fractal Fract. 2023, 7, 292

32. Dickey, D.A.; Fuller, W.A. Distribution of the estimators for autoregressive time series with a unit root. J. Am. Stat. Assoc. 1979,
74, 427–431.

33. Kwiatkowski, D.; Phillips, P.C.B.; Schmidt, P.; Shin, Y. Testing the null hypothesis of stationarity against the alternative of a unit
root: How sure are we that economic time series have a unit root? J. Econom. 1992, 54, 159–178. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

45



Citation: Li, Y. Multifractal

Characteristics of China’s Stock

Market and Slump’s Fractal

Prediction. Fractal Fract. 2022, 6, 499.

https://doi.org/10.3390/

fractalfract6090499

Academic Editors: Carlo Cattani and

Leung Lung Chan

Received: 10 June 2022

Accepted: 1 September 2022

Published: 5 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fractal and fractional

Article

Multifractal Characteristics of China’s Stock Market and
Slump’s Fractal Prediction

Yong Li

Business School, China University of Political Science and Law, Beijing 100085, China; yongli@cupl.edu.cn

Abstract: It is necessary to quantitatively describe or illustrate the characteristics of abnormal stock
price fluctuations in order to prevent and control financial risks. This paper studies the fractal struc-
ture of China’s stock market by calculating the fractal dimension and scaling behavior on the timeline
of its eight big slumps, the results show that the slumps have multifractal characteristics, which are
correlated with the policy intervention, institutional arrangements, and investors’ rationality. The
empirical findings are a perfect match with the anomalous features of the stock prices. The fractal
dimensions of the eight stock collapses are between 0.84 and 0.98. The fractal dimension distribution
of the slumps is sensitive to market conditions and the active degree of speculative trading. The
more mature market conditions and the more risk-averse investors correspond to the higher fractal
dimension and the fall which is less deep. Therefore, the fractal characteristics could reflect the
evolution characteristics of the stock market and investment philosophy. The parameter set calculated
in this paper could be used as an effective tool to foresee the slumps on the horizon.

Keywords: China’s stock market; stock market slump; multifractality

1. Introduction

An effective way to evaluate and predict financial stability on-time is by studying the
characteristics of the stock market and its operation rules. Many empirical studies have
proved that the stock market is a complex fractal object [1–4], its nonlinear evolution and
multi-scale characteristics can be described quantitatively using the self-similar behavior
analysis method of multi-fractal theory. Many valuable research results have been obtained
on the fluctuations of various types of financial markets [5–9]. Many scholars verified that
the Chinese stock market has nonlinear multifractal characteristics. Chen et al. constructed
an indicator of extremes and predicted the financial extremes from the complex network
perspective based on 12 kinds of worldwide stock indices [10]. Zhuang et al. used the
Multifractal Detrended Fluctuation Analysis (MF-DFA) method and generalized Hurst
exponents to evaluate ten important Chinese sectoral stock indices and revealed that they
have different degrees of multifractality [11]. Du and Ning found that the Shanghai stock
market has weak multifractal features and there are long-range power-law correlations
between the index series [12]. Chen et al. verified the multifractal walk of the Chinese stock
market, and established a stock price prediction model combining the wavelet, genetic
algorithm, and neural network, according to the local scale characteristics and multi-scale
correlation of the multifractal process [13]. Li proposed that the temporal spectrum of the
dominant fractal dimension α0 could be used to characterize stock market fluctuations,
and that the spectrum parameter set (α0, Δα,−B) could distinguish the bubble from the
normal fluctuation status well [14]. Li et al. found the degree of the marketization of the
stock market has a significant impact on the multifractal spectrum of the bubbles of the
Shanghai Stock Exchange Composite Index (SSECI) [15].

Although multifractality, as a nonlinear method, has been used by many scholars to
study high-frequency financial time series to investigate the problems and phenomena
which cannot be explained by traditional economic theory, so far, most of the related
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research remains in the stage of inspecting the multifractal characteristics of financial asset
price volatility. To my knowledge, the dynamic mechanism of the formation of such fractal
characteristics and scaling behavior has not been explored, and the relations between fractal
structure and policy, the stock market institutional arrangement, and investors’ rationality
has not been dug into deeply. In recent years, the research on the stock market fractals
has almost stopped, and the existing research results have not been effectively applied in
the prediction of the stock market crash. The main reason is that the huge fluctuation of
the stock market in China is a policy-induced plunge, and institutional arrangements and
investors’ rationality also affect stock market volatility, and in turn, affect its multifractal
characteristics. Correctly understanding and analyzing the impact of them on stock market
fractal characteristics is of great significance to the slump’s early warning. However, as
mentioned above, there is still a lack of research in this area, which is the focus of this paper.

The organization of the paper is as follows. Section 2 is devoted to identifying slump
episodes and describing the trigger and market conditions of the slumps in China’s stock
market. Section 3 gives the calculation results of the multifractal spectrum of the Chinese
stock market slumps. Section 4 reveals the correlation between multifractals and policies,
market institutional surroundings, and investors’ rationality. Section 5 illustrates the fractal
prediction of the stock market slump. Section 6 summarizes the paper’s conclusions.

2. The Eight Slumps of China’s Stock Market and Their Direct Triggers

The Chinese stock market has experienced eight large ups and downs since its opening.
Since the trading volume and stock market value of the Shanghai Stock Exchange are much
larger than those of the Shenzhen Stock Exchange in the past, the SSECI is used in this
paper to represent the trend of the Chinese stock market.

Although there is no numerically specific definition of a stock market slump, the
term commonly applies to steep double-digit percentage losses in a stock market index
over a period of several days. Here we define a stock market slump as an event when the
SSECI declines relative to the historical maximum for more than 25 percent (the 25% was
selected as the threshold value mainly because it could well distinguish the eight widely
recognized major stock market crashes in China. We have also tried to use other values as
the threshold, e.g. 20%, such that three more shocks are also eligible: 1999 (the SSECI index
from 1756 points on 30 June 31999 down to 1361 on 4 January 2000), 2018 (from 3587 points
on 30 January 2018 to 2440 on 4 January 2019), and 2021 (from 3708 on 21 December 2021
to 3023 on 16 March 2022). However, due to the low steepness of the decline of the three
oscillations, the consistency of the variability of the calculated fractal parameters are not
obvious, especially for Δα. Therefore, only the results of the eight meltdowns selected
using a 25% threshold value are reported here). The beginning of the slump is the date
when the SSECI falls below this threshold level. The time of the trough is the date when
the SSECI reaches its minimum level during the slump. The time of recovery is the first
date when the SSECI reaches 25 percent of the pre-slump maximum level after the slump is
triggered. To avoid counting the same slump twice, additional triggers occurring within
a slump are considered part of the existing slump, instead of being an indicator of a new
slump. The eight slump episodes are identified here by applying an operational version of
this criterion to the data of the SSECI, and their specific time, the extent of the fall, and the
direct triggers are shown in Table 1.
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Table 1 tells us, firstly, that the eight slumps were triggered by different policies, the
slumps in 1993, 2001, and 2007 are mainly due to the accelerated expansion of the secondary
market, the other five slumps are initially due to the measures to alleviate the market
overheating such as raising the deposit reserve ratio, enhancing stamp duty, imposing a
limit on the rise and fall of prices, deleveraging, and so on. Secondly, traders’ mentalities
are gradually becoming more and more rational and mature from the lack of professional
knowledge in the 1990s to the present, and their risk attitudes have changed a lot during this
process. Thirdly, the institutional environment of the primary market has been marching
on from a government-led to market-oriented system. The approval system for securities
issuance has been gradually substituted by an examination registration system.

3. Fractal Characteristics of China’s Stock Market Slumps

Multifractal is a method using a singularity spectrum to quantitatively describe the
distribution of the probability on the whole set caused by different local conditions or
different levels in the evolution process of the fractals, which is a measure of the degree
of irregularity and inhomogeneity of the fractal structure. It can reproduce the financial
transactions with drastic fluctuations in the financial market [2], obtain detailed information
of the different degrees of volatility of financial asset prices on different time scales [5],
provide the probability estimate of market movements, show the nature of market volatil-
ity [7], and thus gain a better understanding of the dynamics of the unpredictable financial
market. The multifractal spectrum is composed of two relations. One is the power function
relationship between the scale T and the subset composed of a series of probabilities μ(T):
μ(T) ∝T · α, α is called the singular exponent and reflects the singularity degree of the
fractal object. The other is the power function relation between the number of boxes M(T)
needed to cover the time series and the scale of T: M(T) ∝T · f(α). Here, f(α) is the multi-
fractal spectrum, which represents the fractal dimension of a subset of the same α value.
There are many methods to calculate the fractal dimension, such as the box dimension [16],
similarity dimension [17], capacity dimension [18], correlation dimension [19], information
dimension [20], perimeter-area dimension [21], etc. The box-counting dimension is one of
the most widely used fractal dimension algorithms. This paper will use this method to
calculate the fractal dimension and multifractal spectrum.

In order to study the changes in the characteristics of the slumps and their evolution
features of the multifractal dimension under different market conditions, we have divided
the sample periods in terms of different trading day time scale, i.e., 132, 64, 32, 16, 8, 4, 2,
and 1 days, for the eight slumps (in order to show the whole picture of the lnMq(T) and lnT
relationship as much as possible, there must be a sufficiently long sample interval. It can be
found that the multifractal spectrum calculated using more than 132 trading days has no
change in the linear relationship between lnMq(T) and lnT. Therefore, here, the multifractal
spectrum of 132 trading data before and after a sharp fall occurred is reported. In this case,
T takes 1/132, 1/64, 1/32, 1/16, 1/8, 1/4, 1/2, and 1), and then calculated the multifractal
dimension in terms of the distribution characteristics of each scale. The detailed calculation
method is exhibited in Appendix A.

For the time series satisfying the multifractal feature, the logarithmic partition function
lnMq(T) and the logarithmic time length lnT should have a good linear relationship.
Figure 1 shows the lnMq(T) ~ lnT curve clusters with different values of q of the eight
slumps. q, a weight factor, denotes the specific gravity of different probability measures for
the partition function Mq(T).

It can be seen from Figure 1 that no matter what value q takes, lnMq(T) ~ lnT has a
good linear relationship and shows scale invariance when |lnT|< 5. This result is strong
evidence of the existence of a multi-scale relationship in the SSECI time series, indicating
that the price fluctuation of each scale obeys the multifractal random walk.

Figure 2 gives the generalized correlation dimensions Dq with different values of q.
Figure 2 illustrates that D0 > D1 > D2 > . . . > D∞ for all eight slumps. It is only

if D0 = D1 = D2 = . . . > D∞ that the fractal is uniform, so the eight slumps all have a
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multifractal structure. As q increases, Dq decreases. When q > 180, Dq changes very little,
so D∞ = D180 is a reasonable consideration.

Singular intensity α and the multifractal spectrum f(α) are calculated according to For-
mulas (A1)–(A3) in the Appendix A. Figure 3 shows the singular spectrum of each slump.
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Figure 1. Cont.
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Figure 1. Curves of lnMq(T) vs. ln(T) with different values of q.
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Figure 2. Cont.
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Figure 2. Generalized correlation dimensions Dq with different values of q.
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Figure 3. The multi-fractal spectra f(α) for the slump records of the SSECI.

The value of α is determined by the information radiated from the dynamic process
of the normalized SSECI, and the range of its value indicates the size of the distribution
range of a singular intensity. The spectrum span of the slumps in 1992, 1993, and 1994
are relatively large, indicating that the amplitude of the SSECI are relatively large at that
time. Strong multifractal characteristics mean more obvious nonlinear fluctuations. In
addition, the asymmetry of the singular spectrum reflects the variation range of the scale
index caused by large or small fluctuations. It can be seen from Figure 3 that the singular
spectra of the 1992 and 2007 slumps are symmetric, indicating that the scale range of the
long range correlation caused by the small or large fluctuation of the SSECI is constant.
For the 2009 and 2015 slumps, the peak of the fractal spectrum is right-biased, and its left
end is significantly lower than the right end, so the α ~ f(α) spectrum belongs to the dense
distribution of buying power dominated, which means higher normalized prices dominate
the multifractal behavior of the SSECI change, and the stock collapse occurs at the time
when the SSECI tends to rise. Apart from the 1993, 1994, 1997, and 2001 slumps, the peak
of the fractal spectrum is left-biased and the right end is significantly lower than the left
end, and the α ~ f(α) spectrum belongs to the sparse distribution of abnormal prices, which
means the lower normalized prices dominate the multifractal behavior of the price change,
and the stock collapse occurs at the time when the SSECI tends to decline.
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For a certain scale, Δα reflects the inhomogeneity degree of the probability distribu-
tion measure on the whole fractal structure and the complexity of the process, and reflects
the amplitude of fluctuation of the SSECI data. The greater Δα is, the more uneven the
uncertainty distribution of the SSECI is, the more violent the data fluctuation is, and the
greater vitality the stock market presents. Δf equals the ratio of the number of peak and
trough positions of the SSECI under the condition that the scale remains unchanged. Δf > 0
indicates that for each group of data, the number of the SSECI reaching the highest point
is more than what it reached at the lowest point. Δf < 0 means that the number of the
SSECI that reached the highest point is less than that which it reached at the lowest point.
R = (α0 − αmin)/(αmax − α0), which is called the deflection coefficient of the multifractal
spectrum and reflects the asymmetry degree of the curves. If R > 1, the vertex of the spec-
trum is skewed to the right, and a larger R corresponds to a more right-oriented deviation.
If R < 1, the vertex of the spectrum deviates to the left, and a smaller R corresponds to
a more left-oriented deviation. If R = 1, the spectrum has a symmetric shape. So, the
three parameters (R, Δα, and Δf (α)) of the multifractal spectrum can perfectly express the
characteristic change of the multifractal spectrum of each stock collapse. Table 2 gives the
Δα, Δf, and R obtained from the multifractals of eight stock collapse processes; here, Δα

and Δf are equal to the differences between α and f(α) when q is 2 and 180, individually.

Table 2. The value of Δα, Δf, and R for the eight slumps.

No. Slumps αmax αmin Δα α0 R f(αmax) f(αmin) Δf

1 26 May 1992 1.2782 0.8401 0.4381 1.0422 0.8564 0.0158 0.0247 −0.0089

2 16 February 1993 1.3423 0.8815 0.4608 1.0159 0.4118 0 0.0501 −0.0501

3 13 September 1994 1.1991 0.8605 0.3386 1.0097 0.7878 0 0.0030 −0.003

4 12 May 1997 1.0834 0.9396 0.1438 0.9998 0.7205 0.0007 0.1013 −0.1006

5 14 June 2001 1.0406 0.9764 0.0642 0.9979 0.5030 0.0754 0.4233 −0.3479

6 16 October 2007 1.0865 0.9003 0.1862 1.0019 1.2022 0.0001 0.0002 −0.0001

7 4 August 2009 1.0683 0.9036 0.1647 1.0014 1.4618 0.2491 0.0002 0.2489

8 12 June 2015 1.0828 0.8900 0.1928 1.0029 1.4146 0.0033 0.0005 0.0028

Note: αmax and αmin are the corresponding values when q = 2 and q = 180. Δα=αmax −αmin; Δf = f(αmax) − f(αmin).

As can be seen from Table 2, the values of Δα for the various slumps are different,
which indicates that the heterogeneity degree of probability measure distribution on the
whole fractal structure and the complexity of the process are also different. The different Δf
represents that each slump occurs in a different upward or downward trend of the SSECI.

4. The Impact of Policies, Market Institutional Conditions, and Investors’ Rationality
on the Stock Market Multifractals

The ups and downs of China’s stock market are affected seriously by policy inter-
vention, investors’ sentiment, and stock market institutional arrangements. Therefore,
its fractal characteristics should also be correlated with them. It can be explored by the
comparative analysis of the fractal dimension of the eight slumps which took place under
different market conditions.

4.1. The “Stock Market Expansion” Policy Leads to a Smaller Fractal Dimension of the
Stock Collapse

As can be seen from Figure 2, the values of fractal dimension D∞ for the eight slumps
are between 0.84–0.98. The smaller the D∞ is, the greater the non-uniformity of the spatial
distribution of speculative trading behavior is, the stronger the vulnerability of the stock
market is, and the deeper the slump declines. The fractal dimension is negatively correlated
with the depth of the slump. However, when the speculative trading activities have
relatively weak non-uniformity in the market trading space, the D∞ is larger. This is
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consistent with the eight slumps of the SSECI. For example, the 1992 slump had the smallest
fractal dimension, D∞ = 0.8446, and the slump lasted for 5 months, with a maximum decline
of 72%; the 2001 slump had the highest fractal dimension, D∞ = 0.9795, and the slump lasted
for 48 months, with a maximum decline of 55%, reflecting the fact that the consistency of the
former speculative transaction is greater than that of the latter. So, the fractal dimension D∞
could represent the concentration degree of stock market bubbles and speculative trading
activities and the consistency degree of stock market trading.

We further observed that the 1993 collapse triggered by the policy of “old eight shares
expansion”, the 2001 collapse triggered by the “reduction of state-owned shares”, and the
2007 collapse triggered by the “lifting the ban of the non-tradable shares”, all of which
were meant to expand the stock market. However, the other five slumps were triggered
by various policies aimed at alleviating the market frenzy, including raising the stamp
duty, imposing limits on the rise or fall of stock price, raising the reserve requirement ratio,
deleveraging, and so on. It can be found that the market expansion policy as a trigger could
makes the collapse more serious under the same fractal dimension, or the fractal dimension
value increases under the same crash intensity.

The reason why the market expansion policies as a trigger bring so strong a slump
effect is that the price of the new expanded share is usually lower than that of the shares
in circulation, but only a small part of the privileged people have the priority to buy it,
which provides opportunity for them to cash out at a high margin. Legally speaking, such
a share expansion is not in line with the spirit of contract. However, it was once considered
to be a financial innovation to serve the state-owned companies’ development in China.
So, as soon as the share expansion is announced, the stock prices will go down, reflecting
shareholders’ resistance and rebellion to such “innovation”.

4.2. The Mature Market Conditions Reduce the Width of the Fractal Spectrum of the Slump

Figure 3 shows that the Δα values of the collapses in 1993, 1994, and 1997 are larger
than those of the last five collapses. The reason for this is because China’s stock market was
in the start-up period before 1997, and the stock market lacked unified laws and regulations
for stock issuance examination and approval management. After 1997, especially with the
promulgation of <the Procedures for Approval of Stock Issuance> by the China Securities
Regulatory Commission (CSRC) on 6 March 2000, the institutional arrangement of the
securities market gradually advanced from being “government-led” to “market-oriented”.

It can be seen that, compared with immature market conditions, relatively mature mar-
ket conditions will reduce the range of price fluctuations, and the span of the corresponding
slump spectrum is narrower, that is, the Δα value is becoming smaller, indicating that the
non-uniformity of the SSECI distribution decline, and the intensity of price fluctuations
near the collapse is lower.

4.3. The Investors’ Rationality Affects the Time of Stock Collapse

From Table 2 and Figure 3, for the 1992, 1993, 1994, 1997, and 2001 slumps, R < 1,
and the α-f(α) spectra all belong to the sparse type, meaning the selling prices dominate
the multifractal behavior of price change, meaning the price has a tendency to go down.
Meanwhile, Δf < 0 indicates that the slumps occur at the position where the selling power
dominates the stock price movement.

For the collapse in 2007, R > 1, and the α ~ f (α) spectrum belongs to an intensive type,
meaning the buying power dominates the multifractal behavior of price change. However,
Δf = −0.0001 < 0, indicating that the rising trend of the SSECI is accompanied by local
turbulence.

For the slumps in 2009 and 2015, R > 1, the α ~ f(α) spectra belong to the intensive
type, indicating that the collapses occur at the position where the buyer power dominates
the multifractal behavior of price change, and the stock price tends to rise. Δf > 0 indicates
that the slumps occur at the position where the buying power dominates the stock price
movement. The larger Δf is, the nearer the SSECI is to peak.
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The rationality of investors could be a good reason for explaining the above phe-
nomenon. Stock traders in China exhibit different characteristics in different periods: the
first generation of traders (who entered the stock market in the early 1990s) entered the
new securities market with some certain blindness, and were attracted only by the myth of
making money during the stock market boom. Most of them lacked professional knowl-
edge, and had weak risk awareness. The second generation (who entered the stock market
in the early 2000s) mastered some trading techniques, most of them were well-educated
and had a certain risk awareness, but still were far from being rational traders. The 3rd
generation (who entered the stock market in the second half of the 2000s) were more ratio-
nal and matured in the investment mentality, and their risk tolerance tended to increase.
The fourth generation (who entered the stock market around and after the 2010s), called
ultra-sophisticated individualists by some scholars, were highly intelligent, unscrupulous,
and manipulated different applications of stock speculation technology in the bull and bear
market. Their risk traits: “Be greedy when others are fearful, and be fearful when others
are greedy”. They wanted to get high investment returns by leveraging up during the stock
market boom, but at the first sign of trouble, they were quick and desperate to get out of
the market, even at any cost. This inevitably led to a stampede on the stock market. Such
traders would be bound to increase volatility in China’s stock market, and could result in
the slump which took place at the position where the buyers’ power still dominated the
price movement (Δf > 0).

5. Fractal Prediction of Stock Market Slump

According to the multifractal analysis in section IV, a percussive anomaly character-
istic exists before and after the largest volatility of the SSECI: when the large volatility
approaches, the opening of the bell-shaped spectrum is obviously widened, its top becomes
round, the spectrum tends to be right (or left)-biased, and the right (or left) end of the
spectrum is significantly lowed. Just after the biggest fluctuations, the opening of the
spectrum will quickly become smaller, and the top of the spectrum will revert back to sharp
from smooth.

In order to illustrate clearly how the desired multifractal parameter changes as it
approaches the point of crisis, we calculated the eight slumps’ multifractal parameters of
crisis phenomena in the moving window mode, when the parameters are calculated for a
part of the time series that slides along it with a certain step. Considering that |lnT| < 5 is
the fractal scale-free range, we here choose 16 trading days as the window width. Figure 4
shows the temporal spectrum of the multifractal spectrum for eight slumps in nine stages
of the SSECI calculated using the method demonstrated in the Appendix A. Stage 5 is the
crash period, Stage 4 and 6 are near the crash period, Stage 3 and 7 are before and after the
large shock period, Stage 2 and 8 are at the beginning and end of the abnormal fluctuations,
and Stage 1 and 9 are the normal periods far from the crash.

As can be seen from Figure 4, the multifractal spectrum curves of the SSECI time series
at each stage of the eight slumps are different in shape, and the spectrum parameters change
significantly, which indicates that the distribution structure of the SSECI fluctuations is
very complex. Comparing the multifractal spectra of the eight slumps at different stages, it
can be found that:

1. When the SSECI fluctuate in a normal state (corresponding to the stage 1 and 2 in
Figure 4), the top of the bell-shaped spectrum is relatively sharp, the opening is
narrow, and the curve is concentrated in a very small range, which indicates that the
stock market is in disorder, and stock price fluctuation is relatively stable.

2. When the SSECI oscillation become larger (corresponding to the stage 3 and unit 4
in Figure 4), the opening of the α ~ f(α) spectrum changes from narrow to wide, the
top becomes round from sharp, the span widens significantly, and the left or right
endpoints drop. The long-term correlation of the stock market system gradually
accumulates under the effect of the cluster effect, and the system approaches the
critical state.
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3. At the biggest oscillation stage (corresponding to the stage 5 in Figure 4), the opening
of the bell-shaped spectrum widens to the maximum and the top becomes the most
round and flat. It shows that the stock price fluctuates very violently at this stage,
which is caused by the turbulence inside the system.

0

0.2

0.4

0.6

0.8

1

1.2

0.85 0.95 1.05 1.15 1.25

f(α)

α(q)

Stage 1 Stage 2
Stage 3 Stage 4
Stage 5

Figure 4. Cont.

59



Fractal Fract. 2022, 6, 499

0

0.2

0.4

0.6

0.8

1

1.2

0.96 0.98 1 1.02 1.04 1.06

f(α)

α(q)

Stage 1 Stage 2
Stage 3 Stage 4
Stage 5

Figure 4. Cont.

60



Fractal Fract. 2022, 6, 499

Figure 4. The temporal spectrum of the multifractal spectrum for eight slumps.

4. At stage 6 and 7 in Figure 4, the sharp swings tend to abate, the span of the α ~ f(α)
spectrum narrows rapidly, and the top becomes slightly round from round. These
characteristics suggest that sustained declines have been followed by a rebound in
stock prices, accompanied by partial declines.

5. At stage 8 and 9 in Figure 4, a certain period of time has passed after the sharp
oscillation, the change of fractal spectra for each slump shows different features.
The spectra of the slumps in 2001, 2007, and 2009 are dominated by the sparse type,
indicating that stock prices mainly fall after a surge. For other slumps, the spectra
have both a sparse and intensive type, indicating that stock prices will rebound to a
certain extent after sustained sharp falls. These activities will evolve over time and
will not end in a short time.

The alternating expansion and contraction of the multifractal spectrum just shows
that the dynamic system of the stock trading is in an extremely unstable state before and
after the sharpest fluctuations. As the slump approaches, the span of the α ~ f(α) spectrum
gradually widens, the top becomes slightly round from sharp, and the value of f(αmin)
(or f(αmax)) drops quickly. When the opening of the spectrum becomes narrower and
the top becomes sharper, it indicates the end of abnormal stock price movements. These
appearances reflect the changes in the complexity of the fractal structure of the SSECI series,
which provide the precursory information with predictive significance for the beginning
and end of the stock slump.

61



Fractal Fract. 2022, 6, 499

6. Conclusions

This paper uses the SSECI daily data to calculate China’s stock market multifractal
parameters, and explores the impact of the policy interventions, institutional conditions,
and the investors’ characteristics on the fractal parameters. We find that the shape of the
multifractal spectrum and the changes of its parameters have certain rules; the policy
interventions, market conditions, and investors’ trading features can obviously influence
the time and intensity of the collapse. The specific conclusions are as follows:

1. The stock market collapse process has self-similar characteristics in a limited scale,
which can be studied and analyzed using multifractal theory;

2. The fractal dimension of stock slumps triggered by the “stock market expansion”
policy is smaller than those of stock slumps triggered by measures to alleviate stock
market overheating such as raising the reserve ratio and stamp duty, deleveraging,
etc., and the non-uniformity of the fractal structure of the former is less than that of
the latter.

3. The maturity of market conditions and the institutional arrangement of the stock
market affect Δα, which represents the intensity of stock price fluctuations. The larger
Δα is, the speedier the stock price rises. The slumps in 1992, 1993, and 1997, with a
relatively deeper drop, correspond to the higher Δα values, while the other five stock
slumps with a relatively smaller drop correspond to the lower Δα values.

4. The rationality of the traders affects the time of stock collapse. The first five slumps
occurred in the status where the seller power dominated the stock price, but the subse-
quent three slumps happened at the position where the buying power dominated the
market prices, which suggests that traders possess “ultra-sophisticated individualists”
characteristics. Their foreknowledge of impending risks brings forward the timing of
stock crashes and enhances the Δα.

5. The temporal spectrum of the α ~ f(α) fractal spectrum has a good precursor property
of collapse. The alternating relaxation and contraction of the multifractal spectrum
just shows that the dynamic system of stock prices is in an extremely unstable state
before and after the sharpest fluctuations. As it approaches the critical state, the span
of the α ~ f(α) spectrum widens quickly, the top becomes round from sharp, and
the value of f(αmin) (or f(αmax)) drops sharply. When the opening of the spectrum
becomes narrower and the top becomes sharper, it indicates the end of the abnormal
stock price movements.

Due to the parameters of the multifractal spectrum being subject to the influence of
policy interventions, institutional arrangement, and investors’ rationality, it is necessary
to take into account their impact when fractal spectrum parameters are used to guide risk
management or to construct risk measure indexes.
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Appendix A. The Method of Calculating Multi-Fractal Parameters

Multi-fractal parameters are composed of fractal sets of several sub-fractal dimensions,
which involve all of the non-integer fractal dimensions considered. Kantelhardt developed
the multifractal detrended volatility analysis (MF-DFA) by extending the one-dimensional
detrended volatility analysis (DFA) method [22]. Although some scholars used the MF-DFA
method to analyze the financial time series and showed that the Chinese stock market had
multifractal characteristics [10,23], Thomas Lux’s research on the New York and German

62



Fractal Fract. 2022, 6, 499

stock markets showed that the MF-DFA method could not diagnose whether multifractals
really existed in the financial data [24]. Therefore, we apply the method of multifractal
statistical physics here, which is a generalization of the box-counting method and has
been used in some of the literature [5,14]. Compared with MF-DFA, the statistical physical
method greatly reduces the computational complexity and has a larger scale invariant
range for irregular multifractals. Applying the multifractal statistical physics to financial
analysis, the steps to solve the multifractal spectrum are as follows:

(1) To cover the one-dimensional time series by the “box” with the scale of T, that is,
divide it into non-overlapping intervals according to the unit time scale T.

(2) Normalize each data, let probability measures μi(T) =
pi

∑ pi
and Σμi = 1; μi is the

sum of the i-th interval data with time scale T and pi is the sum of the stock indices
collected in the i-th interval with scale T.

(3) To calculate the partition function Mq(T) of a multi-fractal system which is defined as
the weighted sum of the probability μi(T) to the q power:

Mq(T) ≡
n

∑
i=1

μ
q
i (T) (A1)

Here, n is the total number of time windows whose time length is T, and q is the real
number in (−∞ ~ +∞).

Different q values denote the specific gravity of different probability measures of μi
for the partition function Mq(T). When q is positive, the larger q is, the greater weight of
the larger value of the probability measure of μi will be. It describes the dense areas. When
q is negative, the greater the absolute value of q is, the greater the weight of the smaller
value of the probability measure μi will be, which is the sparse area.

For the multi-fractal distribution, the partition function has the following scaling
relationship with the time length T:

Mq(T) ∝ Th(q) (A2)

(4) Formula (A2) gives the curve lnMq(T) ~ lnT, if there is a good linear relationship
between lnMq(T) and lnT, the distribution belong to a multi-fractal distribution. The
slope of the curve h(q) can be estimated by the least square regression of the lnM ~ lnT,
fitting to the points in the scale-free interval (namely the linear interval), and lnA is
the residual of the regression.

ln(Mq(T)) = h(q)lnT + lnA (A3)

(5) If the time series studied have multi-fractal properties, the following equation can be
obtained by using the statistical physics method and Legendre transformation:

τ (q) = qh(q) − 1 (A4)

α(q) = dτ(q)/dq = h(q) + qdh(q)/dq (A5)

Δα = αmax − αmin (A6)

f(α) = αq − τ(q) = q(α − h(q)) + 1 (A7)

Δf = f(αmax) − f(αmin) (A8)

Dq =
τ(q)
q− 1

(A9)

Here, τ(q) stands for the mass index, α(q) is the singular index, f(α) is the multi-fractal
spectrum, and Dq is the generalized fractal dimension.
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Appendix B. Notes

1. “August 10 incident”: On August 10, Shenzhen, in the fourth “1992 Stock Subscription
Warrant” lottery. Five million application forms for the subscription of public offers
were issued, and each person could buy 10 application forms with his/her ID card.
All the application forms were sold out in less than half a day, but some people could
not believe that and doubted about whether backdoor buying existed. That evening,
thousands of people who failed to buy the form marched on Shennan Middle Road,
carrying slogans of anti-corruption and justice, and sieged the Shenzhen municipal
government and the People’s Bank of China. The Shenzhen municipal government
spent nearly the whole night coming up with a plan to issue an additional 0.5 million
forms for the subscription of new shares, and the matter was put to rest gradually.
That is called the “August 10 incident”. It triggered a plunge in the Shanghai and
Shenzhen stock markets.

2. “Old eight shares”: From 1990 to 1992, in the initial “experimental phase”, only eight
stocks were listed in Shanghai, the so-called “old eight shares”. They are Shanghai
Shenhua electrician joint company, Shanghai Yuyuan tourist shopping mall CO, LTD,
Shanghai Fila vacuum electronics CO, LTD, Shanghai CO, LTD, Zhejiang phoenix
chemical CO, LTD Company, Shanghai Feile Audio CO, LTD, Shanghai Aiyang
Electronic Equipment CO, LTD, and Shanghai Yanzhong Industrial CO, LTD.

3. The “327 Treasury bond”: “327” is the code name of the Treasury bond futures contract.
It is a 3-year Treasury bond which was issued in 1992 and matured in June 1995. The
total amount of the bond issued was 24 billion Yuan. On 23 February 1995, Shanghai
Wanguo Securities Company illegally traded 327 contracts, and in the last 8 min of
the trading time, a total of 10.56 million selling orders were sold, with a face value of
211.2 billion Yuan of the Treasury bond. In the end, Wanguo lost 1.6 billion Yuan due
to government intervention.

4. “The reduction of state-owned shares”: This means that the state transfered the state-
owned untradeable shares to other shareholders at the market price so that they could
be circulated in the market. Since the number of shares held by the state was so large,
even the state was to sell a small portion of its shares, meaning the market supply
would suddenly increase and share prices would fall.

5. “Deleveraging”: On 13 June 2015, the China Securities Regulatory Commission (CSRC)
issued a statement on Sina Weibo, “Securities companies are prohibited to facilitate
over-the-counter capital allocation activities” and strictly investigated the capital
allocation, causing the stock market to plunge.

6. “Ultra-sophisticated individualists”: The term “Ultra-sophisticated individualists”, as
well as the term “extreme refined individualists”, was first put forward by Professor
Qian Liqun of Peking University when he spoke about the talent cultivation of China’s
university education. He said “They are highly intelligent, secular, sophisticated,
good at performance, know how to cooperate, and are better at using the system to
achieve their goals”. Once this concept was put forward, it not only spread widely
in the Chinese scholar circle, but also became the truest portrayal for some personal
behaviors in real life. Here, it refers to such market traders who make extreme use of
all the modern technology, resources, and system defects to maximize their interests.
It can be said that this is the root of the over-the-counter stock market allocation
system which was played to the extreme in 2015, and also the social root of the slump
of the Chinese stock market in 2015.
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Abstract: Technological innovation, the financial market, and the real economy are mutually pro-
moting and restricting. Considering the interference of market-noise information, this paper applies
the wavelet-denoising method of the soft- and hard-threshold compromise functions to process
the original information so as to eliminate the noise information, and combines multifractal de-
trended cross-correlation analysis with the sliding-window approach, focusing on the change in
the Hurst index and the parameter change in the multifractal spectrum to explore the interaction
in between. The research results show that there is a certain cross-correlation among technological-
innovation, financial-market, and real-economy indices. Firstly, the cross-correlation among them has
significant multifractal characteristics rather than single-fractal characteristics. Secondly, the fractal
characteristics reveal the long memory of the interaction among the three indices. Thirdly, there are
also obvious differences in the degree of local chaos and volatility of the interaction. Fourthly, the
cross-correlation among technological-innovation, financial-market, and real-economy indices has
significant multifractal characteristics rather than single-fractal characteristics. In comparison, the
cross-correlation multifractal characteristics among technological innovation, the financial market,
and the real economy are time-varying, and the cross-correlation multifractal characteristics between
the technological-innovation index and the real-economy index are the most obvious.

Keywords: technological innovation; finance; real economy; multifractal; denoising

1. Introduction

The financial market and the real economy have a mutually reinforcing relationship.
The financial market provides the required financial support for the actual economy’s
development. The real economy serves as the tangible foundation for the growth of the
financial market. Technological innovation empowers the traditional financial market
and provides continuous vitality for the financial market’s transformation and upgrading,
whereas the financial market plays an indispensable role in accelerating entrepreneurial
investment, technology realization, and production promotion. Technological innovation
has stimulated innovative financial products and services to provide more efficient and
convenient financing channels for the development of the real economy, fueled by cutting-
edge technologies such as big data, artificial intelligence, cloud computing, blockchain,
and mobile internet [1]. Technological innovation has increased the availability of financial
services, raised the efficiency of capital distribution in the real economy, and played a key
role in fostering the development of the real economy. Excessive integration and expansion
of the financial market and technological innovation, on the other hand, can easily cause
an imbalance in the financial-industry structure, separate the development of financial
innovation from the real economy, and produce a risk-spillover effect, leading to a gradual
decline in the financial market’s and technological innovation’s ability to serve the real
economy [2].

Modern financial theory has transformed the analysis of this problem from qualitative
to quantitative and has also produced a large number of scientific-analysis methods, such
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as financial-market microstructure theory, behavioral-finance theory, and fractal-market
theory, in terms of the interrelationship between technological-innovation, financial-market,
and real-economy indices. Because financial data frequently exhibit peak and thick tail
features, self-similarity, long memory, and volatility concentration, the fractal-market theory
based on nonlinear dynamic systems can accurately reflect the real condition of the financial
market. Furthermore, fractal-market theory deviates from the original linear research
paradigm by describing the price-fluctuation characteristics of financial markets in greater
depth and detail [3]. Among these, the multifractal theory can express precise information
about financial-asset values at diverse time scales and degrees of volatility [4,5], better
capturing the financial market’s complex nonlinear dynamic characteristics. Therefore, this
research examines the relationship between technical-innovation, financial-market, and
real-economy indices from a multifractal perspective.

2. Literature Review

The impact mechanism of technological innovation and the financial market on the
development of the real economy is mainly manifested in that the financial market acts on
technological innovation and the real economy from three aspects: provision of funds [6],
innovation decentralization [7], and incentive supervision [8]. The financial market has
gathered equity funds for technological innovation and provided financial support for
the development of technological-innovation activities. Advanced technology promotes
the development of the real economy and can effectively improve the innovation level
and production efficiency of enterprises, make the industrial structure more reasonable,
and then promote the development of the real economy. Technological innovation pro-
vides technical means for the development of financial markets, breaks through technical
difficulties in financial markets, and enriches financial products. At the same time, the
innovation-feedback effect brought by technological innovation also improves the financial
system [9].

The interaction between technological innovation, the financial market, and the real
economy has been a hot research topic in academic circles in recent years. Scholars have
published papers about the impact of scientific and technological finance on economic de-
velopment, and most of them believe that the use of industry-finance data or industry stock
indices can roughly reflect the relevant performance between industries [10–12]. Dagar et al.
constructed the technological-innovation-development index and used the GMM two-step
test to draw the conclusion that technological innovation has a significant role in promoting
the upgrading of industrial structure and can promote economic growth [13]. Qi and Li an-
alyzed the stock-price data of listed companies in the manufacturing industry, summarized
the dependency between the real economy and financial technology, and found that the
various industries and technology companies in the real economy were greatly affected
by the stock-price fluctuations of AI, blockchain, and large data-technology companies in
financial technology, showing a positive correlation [14]. Peng and Ke employed the R-vine
Copula approach to successfully examine the risk-spillover impact between financial tech-
nology and the real economy [15]. They chose stock-index samples to fit the residual tail
features of the time series. Furthermore, some scholars use industry data to research and
discover that there is a threshold effect in Fintech, which can support real-economy growth
in the early stages of Fintech development and restrict real-economy growth in the later
stages [16]. Some studies suggest that Fintech can improve the optimization and upgrading
of industrial structure through basic technology innovation and development, hence en-
couraging economic growth [17]. The rise of financial technology has resulted in the pursuit
of capital, with capital flowing to artificial intelligence, blockchain, and other underlying
technologies, in combination with the industrial linkage effect, to drive the upgrading of
industrial structure and thus promote high-quality economic development [18].

The concept of the fractal was first proposed by Mandelbrot, and the definition empha-
sizes the similarity between the whole and the part of the fractal [19]. Peters put forward the
fractal-market hypothesis based on the fractal theory proposed by Mandelbrot. It is based
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on the nonlinear paradigm and believes that the capital market is a complex nonlinear
dynamic system with the characteristics of interactivity and adaptability [20]. The market’s
information flow is frequently unstable, difficult to conform to conventional modeling
assumptions, and frequently volatile. In contrast, the fractal statistical-analysis approach
based on fractal and chaos theory can effectively explain the nonlinear fundamental fea-
tures of the market. This makes it difficult for some standard statistical-analysis methods
to characterize the volatility characteristics of the market.

Fractal-theory research techniques have seen constant innovation and development
in recent years. The rescaled range analysis (R/S), put forth by the hydrologist Hurst, is
particularly well liked in early fractal research [21]. Previous studies have confirmed that
there is long-term autocorrelation in the capital market, which means that the capital market
is not an efficient market [22,23]. However, the R/S analysis method is relatively sensitive
to outliers and dependent on extreme values, so it is mostly used to analyze non-trending
stationary time series, whereas the analysis of non-stationary time series is prone to errors.
In order to study the non-stationary time series with trends, Peng et al. proposed the DFA
analysis method [24]. This method introduces a long-term power–law relationship in time-
series analysis to supplement short-term correlation conditions to avoid the occurrence of
false correlation. The Hurst result calculated by the DFA method is more accurate than that
estimated by the R/S analysis method. Subsequently, scholars introduced a multifractal
on the basis of the DFA method and evolved it into a more applicable MF-DFA analysis
method [25]. Gulich and Zunino conducted a comprehensive and systematic analysis of
the algorithm to determine the parameters in the MF-DFA method and studied the natural
time series to ensure the effectiveness of the algorithm [26]. Unfortunately, this method
can only study the long-term correlation of a single time series. In view of this, the DFA
method has been expanded into a DCCA method that can explore the cross-correlation
between two non-stationary time series [27]. As a result, the DCCA approach has been
steadily used to develop the MF-DCCA approach, which can accurately and quantitatively
examine the multifractal properties of two cross-correlation time series [28]. This method
can be used in the capital market to examine the cross-correlation [29].

The processing of economic or financial time series is the key to empirical analysis. If
a large amount of noise data is directly used, it is very likely to bias the research results.
The existing research results show that using special methods to denoise the time series
can reduce the instability of the time series to a certain extent and ensure that the research
results are more authentic and reliable [30]. In the early days, the moving average was one
of the most widely used denoising methods. Although this method is simple, it is easy
to remove much useful information when denoising [31]. The Fourier-transform filtering
method is another traditional denoising method, but it can only be processed in the whole
time domain and cannot give the change of the signal at the specific node. A small mutation
of the signal is likely to affect the whole analysis result [32]. The wavelet-transform method
is a relatively effective time-frequency denoising-analysis method that can overcome the
shortcomings of the Fourier-transform method [33]. Common wavelet-denoising methods
mainly include modulus maximum-reconstruction denoising and threshold denoising.
Mallat proposed a denoising method based on modulus maxima. Its idea is to remove the
amplitude extreme points that decrease with the increase in scale by observing the change
rule of the modulus maxima of the wavelet transform at different scales and only retain
the amplitude points that increase with the increase in scale so as to achieve the denoising
effect [34]. This method is more suitable for the situation that the signal contains white
noise and has many singular points and can effectively retain the information of singular
points. The wavelet threshold denoising algorithm proposed by Donoho and Johnstone
has been widely used because of its simple operation logic and good denoising effect [35].
In the wavelet-threshold denoising method, the selection of threshold function is also
very important. The previously widely used hard-threshold function and soft-threshold
function have some defects [36]. For example, the hard-threshold function preserves the
points whose absolute value is greater than the threshold value and zeros the points whose
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absolute value is less than the threshold value. This processing causes sudden changes in
the wavelet domain, resulting in local jitter of the results after denoising and discontinuity of
the results. The defect of the soft-threshold function is that the derivative is discontinuous,
and there is a constant deviation between the estimated wavelet coefficients and the
wavelet coefficients of the processed signal. In addition, most de-noising processing has
been successfully applied to various disciplines such as signal analysis, image processing,
and seismic survey. The application of time series in the financial market or economic
market is still in the exploration stage, but it can be expected that wavelet denoising has
certain advantages in processing time-series data.

To sum up, the existing research on the interaction between scientific and technological
innovation, the financial market, and the real economy is mainly focused on their impact,
but few explore the multifractal characteristics between them from the perspective of cross-
correlation. Moreover, most of the research is based on linear methods, and the sample
data selected are based on the direct data of the market, ignoring the impact of noise
information. Therefore, this paper firstly uses the wavelet-threshold denoising method to
eliminate the noise impact in scientific- and technological-innovation, financial-market and
real-economy indices; retain effective fluctuation information; and use the sliding-window
segmentation method (SW) to optimize. Then, with the help of the MF-DCCA method
in the nonlinear field, the cross-correlation fractal features are studied in terms of fractal
multiplicity, long-term memory, similarity, and singularity of the fractal spectrum to better
reveal the complex relationship.

3. Method

3.1. Wavelet-Threshold Denoising Method

The basic principle of wavelet-threshold denoising is to set a threshold to process
high-frequency noise signals. Specifically, useful signals with wavelet coefficients greater
than the threshold are shrunk and retained. The noise of the wavelet coefficient lower than
the threshold value is eliminated. The one-dimensional signal model with noise can be
expressed as [37]:

f (t) = s(t) + n(t) (1)

where f (t) is the signal with noise, s(t) is the effective signal in the original signal, n(t) is
the noise signal, and t is the time variable.

Specifically, the denoising process of wavelet-threshold denoising can be divided
into three steps. Firstly, the signal containing noise is decomposed by a wavelet. The
appropriate wavelet-basis function and decomposition scale for wavelet decomposition is
selected to obtain a set of wavelet coefficients. Secondly, the high-frequency coefficients
of each layer of wavelet decomposition are processed by threshold quantization to obtain
the estimated value of wavelet coefficients. Finally, the wavelet coefficients processed by
threshold quantization are transformed by an inverse wavelet to reconstruct the signal and
obtain the denoised signal.

The proper threshold function will affect the denoising effect. When the signal is
decomposed, the wavelet coefficients need to be threshold processed. The commonly
used threshold functions are divided into hard-threshold function and soft-threshold
function [38]. The mathematical expression of the hard-threshold function is as follows:

ω̂j,k =

⎧⎨⎩ωj,k

∣∣∣ωj,k

∣∣∣ ≥ λ

0
∣∣∣ωj,k

∣∣∣ < λ
(2)

where λ represents the threshold value, the estimated value of the wavelet coefficients is
expressed by ω̂j,k, and the wavelet coefficient of the j-th layer is represented by ωj,k.
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The mathematical expression of the soft-threshold function is as follows:

ω̂j,k =

⎧⎨⎩sign
(

ωj,k

)(∣∣∣ωj,k

∣∣∣− λ
) ∣∣∣ωj,k

∣∣∣ ≥ λ

0
∣∣∣ωj,k

∣∣∣ < λ
(3)

However, the above threshold functions have certain limitations in practical applica-
tions. Therefore, the soft- and hard-threshold compromise function can be introduced to
overcome the discontinuity problem in the hard-threshold function and reduce the constant
deviation in the soft-threshold function. The expression is as follows:

ω̂j,k =

⎧⎨⎩(1− μ)ωj,k + μsign
(

ωj,k

)(∣∣∣ωj,k

∣∣∣− λ
) ∣∣∣ωj,k

∣∣∣ ≥ λ

0
∣∣∣ωj,k

∣∣∣ < λ
(4)

where μ is the weighting factor, and is usually set to 0.5.

λ = σ
√

2lnN (5)

σ =
∑n

k=1

∣∣∣ω̂j,k

∣∣∣
0.6475n

(6)

where σ is the mean square error of the j-th layer wavelet transform.
In the process of denoising, the selection of wavelet function is also very important. At

present, there are dozens of wavelet functions that have been developed and applied. These
wavelet functions are suitable for different situations due to their own characteristics. The
most widely applied are Daubechies wavelet-basis function (dbN), Coiflet wavelet-basis
function (coifN), and Symlets wavelet-basis function (symN). Different wavelet bases have
different degrees of orthogonality, compact support, vanishing moment, and symmetry [39].
After the wavelet function with orthogonality is transformed, the correlation between
wavelet coefficients will not be destroyed by the transformation, so it has high noise-
reduction ability. The wavelet-basis function with compact support has better local noise
resolution and denoising ability when the support width is small. The vanishing moment
can smooth the high-order part of signals when analyzing and processing the time-series
data with strong fluctuations. The symmetric-wavelet function can reduce the distortion of
signal reconstruction to some extent. In addition, it is necessary to consider the appropriate
number of decomposition layers in wavelet denoising.

3.2. Multifractal Detrended Cross-Correlation-Analysis Method
3.2.1. The DCCA Method

In order to study the cross-correlation between two variable sequences, detrended
cross-correlation analysis (DCCA) can be used [27]. This method is based on the detrended
covariance-analysis method, which can filter out the trend components of each order to
eliminate non-stationary influence in the original sequence.

Suppose there are two time series {x(t)} and {y(t)} of length N, t = 1, 2, · · · , N.
The cumulative deviation series of the two original time series can be calculated by the
following formulas:

X(t) =
t

∑
k=1

(x(k)− x), t = 1, 2, · · · , N (7)

Y(t) =
t

∑
k=1

(y(k)− y), t = 1, 2, · · · , N (8)

where x and y are the mean of the sequence, x = 1
N ∑N

t=1 x(t), y = 1
N ∑N

t=1 y(t).
The cumulative-deviation sequence is divided into equal-length subsequences. The

least-square fitting is performed for each subsequence, and the fitting curves X̃v(i) and
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Ỹv(i) are obtained. Then, each subsequence is detrended, and the covariance function of
the detrended subsequence is finally obtained.

For v = 1, 2, · · · , Ns, the local covariance function is:

F2(s, v) =
1
s

s

∑
i=1

{
X[(v− 1)s + i]− X̃v(i)

}
×
{

Y[(v− 1)s + i]− Ỹv(i)
}

(9)

For v = Ns + 1, · · · , 2Ns, the following formula is established:

F2(s, v) =
1
s

s

∑
i=1

{
X[N − (v− Ns)s + i]− X̃v(i)

}
×
{

Y[N − (v− Ns)s + i]− Ỹv(i)
}

(10)

where the preceding Ns subintervals represent the positive segmentation subsequence
of the deviation sequence, and the following Ns subintervals represent the segmentation
subsequence after the reversal of the deviation sequence.

The mean value of the local covariance function of all subintervals is determined to
obtain the fluctuation function described in the following formula:

Fq(s) =
1

2Ns

2Ns

∑
v=1

F2(s, v) (11)

The calculation can be repeated to obtain the fluctuation function under different
scales s. The limitation of the DCCA method is that it can only reveal the single-fractal
characteristics of mutual correlation. However, the existence of multifractal characteris-
tics has gradually become a consensus in the academic community. Therefore, it is not
comprehensive to focus solely on the single-fractal characteristics.

3.2.2. The MF-DCCA Method

The modeling process of the MF-DCCA method and the DCCA method is similar,
and the detrended covariance function of the subsequence is described in the same way.
The difference between the two methods is that the MF-DCCA method takes into account
the different fluctuation order q when calculating the fluctuation function, whereas the
DCCA method only considers the single fluctuation order when calculating the fluctuation
function [28].

The MF-DCCA method takes the mean of the local covariance of all subintervals, and
the q-order fluctuation function can be obtained:

Fq(s) =

{
1

2Ns

2Ns

∑
v=1

[
F2(s, v)

]q/2
}1/q

(12)

In general, q can be any real number that is non-zero. When the value of q is 0, the
following formula can be obtained from L’Hospital’s rule:

F0(s) = exp

{
1

4Ns

2Ns

∑
v=1

[
F2(s, v)

]}
(13)

Then, the fluctuation function Fq(s) corresponding to different scales s is calculated.
If there is a long-range power-law cross-correlation between the two time series, then the
fluctuation function Fq(s) and the time scale s have the following relationship:

Fq(s) ∼ sHxy(q) (14)

Then, the following formula is established:

logFq(s) = Hxy(q)logs + logA (15)
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For each q value, the linear slope obtained by logFq(s) and logs regression is Hxy(q),
which is called the generalized Hurst index. Whether Hxy(q) changes with the change of
fluctuation order q can be used to describe whether the cross-correlation fractal charac-
teristic between two variables is multiplicity. The value of Hxy(q) can reflect whether the
interaction between variables has the characteristics of long memory. For the larger fluctua-
tion order q, Hxy(q) transmits the scaling behavior that the larger fluctuation dominates.
On the contrary, for negative or small fluctuation order q, Hxy(q) transmits the scaling
behavior that small fluctuation dominates. It is worth mentioning that when q is 2, Hxy(2)
is the classical Hurst index.

The relation between the generalized Hurst index Hxy(q) and the multifractal scale
index τ(q) obtained by the MF-DCCA method is as follows:

τ(q) = qHxy(q)− 1 (16)

If τ(q) and q are linear, then the two time series have the characteristics of a single
fractal. Otherwise, they present the characteristics of a multifractal. Through Legendre
transformation, a singular exponent and multifractal spectrum can be obtained.

α = Hxy(q) + qH′xy(q) (17)

f (α) = q
[
α− Hxy(q)

]
+ 1 (18)

Among them, α is the singular index, which is used to describe the degree of singularity
of sequence. f (α) is the multifractal spectrum whose value reflects the fractal dimension
with singular index α. The multifractal spectrum transmits a lot of valuable fluctuation
information. For example, the multifractal intensity can be measured by the width of the
fractal spectrum. The wider the fractal spectrum, the stronger the multifractal intensity of
the correlation between variables.

3.2.3. The Improved MF-DCCA Based on the OSW Method

The traditional MF-DCCA method will inevitably produce fluctuation errors in the
fitting process due to the discontinuity when the cumulative deviation sequence is divided
into subintervals, which may lead to a decline in the accuracy of the scale-index estimation.
In order to minimize the negative impact of data-point discontinuity, it has been considered
that the sliding-window approach can further reduce the generation of fluctuation error [40].
The specific steps of splitting the deviation sequence into subintervals are described below.

The deviation sequence of each original signal can be regarded as consisting of Ns non-
overlapping equal sequences, namely, Ns = int(N/s), and the length of the subsequences
is s. In most cases, the length N of the deviation sequence of each original signal is not
divisible by the length s of the subsequence. In order to make full use of all the data
information, the data sequence is usually recalculated in the reverse direction, so 2Ns
subintervals can be obtained.

In this study, the deviation sequence was divided into subintervals and the continuous
overlapping-sliding-window (OSW) segmentation method was adopted to replace the
original segmentation method. The idea of OSW is to set a fixed window length s, and
then slide back in steps of unit length until the window reaches the end of the time series.
The specific details are shown in Figure 1 below. In this way, the sequence information is
continuous and none of redundant information is left.

The subsequence was divided by the continuous overlapping-sliding-window tech-
nique and the fluctuation analysis was carried out by the MF-DCCA method. The combina-
tion of these two can be called OSW-MF-DCCA, which reveals that the fractal discovery
had certain robustness.
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Figure 1. Details of sliding-window segmentation.

4. Empirical Analysis

4.1. Index Construction and Sample Selection

This study screened and weighted the data of different sectors in the stock market
to construct comprehensive indices that can represent technological innovation, financial
development, and the real economy. The main reason for starting from the original data
in the stock market is that, first, the stock market is more sensitive to the perception of
information, and fluctuations in any industry can be quickly reflected in the stock market.
Second, stock-market data have the advantages of high integrity, strong continuity, and
high frequency, whereas traditional economic data are often difficult to count. Therefore,
the composite index constructed in the form of weighted stock data can largely reflect the
actual situation of the industry.

This paper mainly selected and constructed the technological-innovation index (TI),
financial-market index (FI), and real-economy index (RE) in the stock market to repre-
sent the overall situation of the technological-innovation industry, the financial industry,
and the real-economy industry. In the actual selection of exponents, the TI selected the
representative technology 100 index, which is mainly used to reflect the overall trend of
company stocks with high-tech or independent innovation characteristics and has strong
representation for the technology-innovation industry. The compilation of the FI and the RE
refers to the compilation methods of S&P500 and CSI (China Securities Industry Index). The
financial industry can be divided into the banking industry and the non-banking financial
industry according to the classification basis of the Shenwan primary industry index. The
FI was constructed by weighting the constituent stocks of the banking and non-banking
financial industries. The RE is represented by the nine China securities-industry indices,
which basically cover real-economy fields such as energy, information industry, industrial
manufacturing, medical treatment, consumer goods, and agricultural products. Specifically,
they are China Securities Energy, China Securities Material, China Securities Consumption,
China Securities Optional Consumption, China Securities Information, China Securities
Medicine, China Securities Telecom, China Securities Public Utility, and China Securities
Industry. Through the weighted average of the constituent stocks of the real-economy
industries, the RE was constructed. The data selected in this paper were daily data from
January 2012 to December 2021, and the data were processed by logarithmic difference to
improve the stability of the time series.

4.2. Descriptive Statistical Analysis

This study plotted the index time-series diagram of fluctuations of the TI, FI, and RE,
as shown in Figure 2. In the figure, the horizontal axis represents the beginning of 2012 to
the ending of 2021, and the vertical axis represents the fluctuation range of the data. The
part above 0 represents the positive fluctuations, whereas the part below 0 represents the
negative fluctuations caused by the adverse impact. It was found that the fluctuations of
the TI, FI, and RE were more volatile, and their peaks were mainly concentrated during the
stock-market crash in 2015 and the COVID-19 pandemic that started in 2019. It is worth
noting that there were more obvious volatility aggregations during the two crises, which
may have been caused by short-term noise interference, so the TI, FI, and RE were affected
in a sustained way.
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Figure 2. The fluctuation-sequence charts of the TI, FI, and RE. (a) TI. (b) FI. (c) RE.

The descriptive statistics of the indices for the fundamental characteristics are listed in
Table 1.

Table 1. Descriptive statistical results.

Variable Median Mean Std. Dev. Skewness Kurtosis Jarque–Bera

TI 0.052 0.092 1.865 −0.622 5.850 979.535 *
FI 0.029 −0.047 1.459 −0.132 9.663 4504.348 *
RE 0.046 0.099 1.469 −0.943 9.145 4184.668 *

Note: * is significant at the confidence level of 1%.

It was found that skewness values of the TI, FI, and RE were less than 0, kurtosis
values were greater than 3, and JB statistical values were far greater than the critical value
of 9.210 based on observing Table 1. The distribution of indices presented the characteristics
of peak and thick tails and non-normality, and fractal distribution better described the
distribution of the indices. In addition, the median and mean of the TI, FI, and RE were all
close to 0, which indicates that there were some extreme values in the three indices but that
they still showed the characteristics of fluctuating around zero. The standard deviation of
the TI was larger than that of the RE and FI, indicating that the TI had stronger volatility,
possibly because the TI was more affected by noise.

In summary, the fluctuation-sequence charts and descriptive statistical results of the TI,
FI, and RE show that the fluctuations of the TI, FI, and RE were relatively unstable. Large
fluctuations were often accompanied by larger fluctuations, whereas small fluctuations
were often accompanied by smaller fluctuations, presenting a relatively obvious volatility
aggregation, which may have been due to the interference of noise information. If the
study directly analyzes the original sequences and ignores the impact of exponential
fluctuations, it may lead to a deviation in the research result. Therefore, in order to
accurately analyze the fractal characteristics between the indices, it is necessary to first
decrease the noise information.
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4.3. Denoising Analysis

The time-series data in the financial market and economic market often have nonlinear
characteristics, which may easily lead to the removal of much useful information in the
process of denoising by traditional methods. Therefore, this paper used the wavelet-
threshold denoising method by selecting different wavelet functions, decomposition layers,
and threshold functions to denoise the indices according to the characteristics of the
time series.

In the practical operation of wavelet-threshold denoising, the selection of threshold
function is essential. This paper selected the symN wavelet-basis function, which can
deal with discrete wavelet transformation and has orthogonality and compact support.
Although symN and dbN wavelet-basis function are similar in terms of support length,
continuity, and filter length, symN has better symmetry—that is, to a certain extent, it can
reduce the phase distortion during signal analysis and reconstruction. Generally speaking,
an appropriate vanishing moment is crucial in the analysis of financial or economic time
series, and the mutability of time series makes it necessary to smooth the higher-order
part of the signal. After repeated experiments to compare the denoising effect, the sym6
wavelet-basis function was selected in this paper.

At the same time, in the wavelet-threshold denoising, it is also very important to
choose the appropriate number of decomposition layers. When the number of decom-
position layers is higher, the more real signals will be removed from the signals in the
denoising process. Therefore, in the actual operation of wavelet-threshold denoising, this
paper selected one-layer denoising, which can not only effectively remove the noise infor-
mation but also retain more useful information. More importantly, this paper applied the
soft- and hard-threshold compromise function. It not only overcomes the discontinuity
problem in the hard-threshold function but also reduces the constant deviation in the
soft-threshold function.

The denoising signals of TI, FI, and RE based on the selected wavelet function, the
number of decomposition layers, and the threshold function are shown in Figure 3.

In Figure 3, the fluctuation-aggregation degree of the denoising indices was weakened
and the indices showed a certain stability. The original signals of the TI, FI, and RE
fluctuated sharply during the stock-market crash in 2015 and the COVID-19 pandemic that
started in 2019, and there were a lot of effective signals as well as noises. After using the
wavelet-threshold denoising method, the fluctuation amplitude of signals decreased. In
particular, the fluctuations of the indices during the crisis periods were still more volatile
than that in the stable periods, which is consistent with the crisis circumstance at that time.

 
(a) (b) 

Figure 3. Cont.
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(c) 

Figure 3. Wavelet-threshold denoising results of different indices. (a) TI. (b) FI. (c) RE.

4.4. Fractal-Characteristics Analysis of Interaction Relationship

The improved OSW-MF-DCCA method in this paper can further avoid the pseudo-
fluctuation errors to improve the accuracy of the results. Based on this, this paper focused
on the TI, FI, and RE after wavelet-threshold denoising and quantitatively estimated their
nonlinear cross-correlation relationship and multifractal characteristics via the MF-DCCA
method. Referring to previous studies of scholars [41], the fluctuation order q in this paper
was set in the range of [−10, 10] for practical applications. In addition, Peng and other
scholars pointed out that 5 ≤ s ≤ N/4 is more appropriate in practical applications [24],
and this study referred to their recommended parameter-setting standard. In the calculation
process, the fitting order of this study was set as the first order.

4.4.1. Multifractal Analysis

Fractal theory shows that the relationship between the Hurst value of the interaction
between variables and the fluctuation order q can effectively determine whether the fractal
characteristic is single or multiple. If the Hurst index of the interaction between the two
variables changes significantly with the change in the fluctuation order q, it means that the
fractal characteristic of the interaction between the two variables is multiple. Otherwise,
the interaction between the two is simplex.

In order to observe the interaction among the TI, FI, and RE in a more comprehensive
way, this paper traversed all fluctuation orders. Figure 4 plots the relationship between the
generalized Hurst value of cross-correlation and the fluctuation order q. For the purpose of
comparison, the results of the TI and RE, the FI and RE, and the TI and FI were all plotted
in the same chart, which can be seen in Figure 4a.

It is also worthwhile to pay attention to whether the fractal characteristics change with
time changes. This paper analyzed the time variance of fractal characteristics, specifically
observing the cross-correlation fractal characteristics in different periods and exploring
the dynamic evolution of cross-correlation fractal characteristics from a local perspective.
Firstly, the index data were divided into 10 sub-samples, and then the MF-DCCA method
with sliding window was applied to each sub-sample to explore the cross-correlation fractal
characteristics. The results are shown in Figure 4b–d. More sample data sets will be more
persuasive to explain the research results.

In the case of the total sample, Figure 4a shows the q-H(q) results of the cross-
correlation among the TI, FI, and RE. The Hurst value of cross-correlation changed with
the volatility order q. This indicates that the cross-correlation presented multifractal char-
acteristics rather than single-fractal characteristics. Specifically, with the increase in the
fluctuation order q, the Hurst value of cross-correlation among the TI, FI, and RE monoton-
ically decreased. In contrast, with the change in the fluctuation order q, the Hurst value
of the interaction between the RE and FI was roughly the same as the Hurst value of the
interaction between the FI and TI, and the change range in the Hurst value was almost the
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same. However, the Hurst value of the interaction between the TI and RE underwent a
bigger change. This shows that the multifractal characteristics of the interaction between
TI and RE were more significant than those of other two. Such results also imply that the
interaction between the TI and RE was relatively unstable.
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Figure 4. The q-H(q) results of the TI, FI, and RE. (a) Overall sample. (b) Subsample RE and FI.
(c) Subsample RE and TI. (d) Subsample FI and TI.

In the sub-sample, Figure 4b–d clearly shows the dynamic evolution of the Hurst
value of the interaction among the TI, FI, and RE in different periods. For the RE and
TI, the Hurst value of cross-correlation between them decreased with an increase in the
fluctuation order q in any period. This shows that the cross-correlation fractal characteristic
between the RE and TI was multiple at any time. For the FI and the RE, the Hurst value
of cross-correlation between them in different periods was also not constant, which also
means that they presented significant cross-correlation multifractal characteristics. The
same performance happened in the cross-correlation fractal characteristics between FI
and TI.

4.4.2. Time-Varying Memory Analysis

Studies related to complex dynamics suggest that whether the sequence is autocor-
relation or cross-correlation, there may be a long-memory phenomenon in the process of
fluctuations, which can also be called persistence. Simply put, it is about how long the
impact of past information on the future will last, which can generally be measured by the
value of the Hurst index.

In order to better understand the long-term-memory phenomenon of the interaction
among the TI, FI, and RE, this paper observed the Hurst values of cross-correlation among
the three indices in different periods and different degrees of volatility. Specifically, this
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study separately calculated the mean values of the Hurst indices of the interaction among
TI, FI, and RE with the cases of when the fluctuation order q was greater than 0 and when
the fluctuation order q was less than 0. The specific results are shown in Figure 5.

H
(q
)

Figure 5. Tim-evarying memory analysis of H(q) mean among TI, FI, and RE.

Figure 5 shows the Hurst values of cross-correlation among the TI, FI, and RE under
different fluctuation degrees. Firstly, the mean values of the Hurst indices among the three
indices were significantly higher than 0.5 when the fluctuation order q was considered in
all cases, which indicates that the interaction among the three indices was characterized by
long memory in the overall situation. Secondly, when the volatility order q was less than 0,
the mean values of Hurst indices of cross-correlation among the three indices were also
significantly higher than 0.5 under the fractal characteristics of small fluctuations. Moreover,
the range of Hurst values above 0.5 in the case of small fluctuations was much larger than
that of Hurst values above 0.5 in the overall case, which means that the interaction between
the three indices in the period of small fluctuations had stronger long-term memory. Thirdly,
when the fluctuation order q was greater than 0, that is, in the case of large-fluctuation
fractal characteristics, the mean values of the Hurst indices among the three indices were
significantly lower than 0.5. This indicates that the long-memory characteristics of the
interaction among the three indices were not obvious in the period of big fluctuations
and the interaction had the performance of anti-persistence. In summary, the interaction
between the three had typical characteristics of long memory. However, in part, the long-
term memory of the interaction among the three indices was more significant in the case
of small fluctuations, whereas the interaction among the three indices may have shown
anti-persistence in the case of large fluctuations.

As can be seen from the Hurst indices in the figure, the Hurst value of cross-correlation
among the TI, FI, and RE deviated from 0.5 in 2015–2017 and 2019–2021 and was signifi-
cantly higher than that of other periods. This phenomenon may have had something to
do with the stock-market crash in 2015 and the COVID-19 pandemic that began in 2019.
To be specific, various favorable policies in the early stage of 2015 resulted in irrational
excessive growth of the market and a huge financial bubble. Furthermore, the overall
financial market was depressed in 2015 and later. From another perspective, the change
in Hurst value of the interaction among the TI, FI, and RE presented characteristics of
time lag. Although the stock-market disaster occurred in 2015, the continuous influence
of cross-correlation led to a significant deviation in the Hurst value from 0.5 in 2015 and
the following years. The COVID-19 pandemic spread all over the world in 2019–2021,
leading to a continuous downturn in all industries. During this period, the continuous and

78



Fractal Fract. 2023, 7, 267

anti-continuous cross-correlation among the TI, FI, and RE alternated, which shows that
the cross-correlation multifractal characteristics among the TI, FI, and RE during and after
the crisis were significantly stronger than those in the stable periods.

4.4.3. Singularity Analysis of Fractal Spectrum

The fractal spectrum also contains much information about the correlation of time-
series fluctuations, and the shape of the fractal spectrum indirectly reflects the singularity
and complexity of the fluctuation relationship between different variables. Before describ-
ing the fractal spectrum of cross-correlation among the TI, FI, and RE, the results of scale
index τ(q) on the fluctuation order q are shown in Figure 6. The scale index τ(q) was a
convex function with a strict monotonical increase with respect to fluctuation order q, both
for the total sample and for the subsample. This means that there was an obvious nonlinear
relationship between τ(q) and fluctuation order q. These results again indicate that the
cross-correlation among the TI, FI, and RE had multifractal characteristics.
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Figure 6. The q-τ(q) results of the TI, FI, and RE. (a) Overall sample. (b) Subsample RE and FI.
(c) Subsample RE and TI. (d) Subsample FI and TI.

The shape of the fractal spectrum can also reflect whether the fractal characteristics
are multiple. When the fractal spectrum was expressed as a point, the time series of the
financial market or the economic market was expressed as a single fractal. Otherwise,
when the fractal spectrum did not exist in the form of points, the sequence was shown
to be multifractal. Figure 7 shows the fractal spectrum of cross-correlation among the TI,
FI, and RE. Obviously, no matter the total sample or sub-sample, the fractal spectrum of
cross-correlation among the three indices showed a parabolic shape with a large opening,
which did not exist in the form of points. This further confirms the existence and connec-
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tion of multifractal characteristics among the TI, FI, and RE from the perspective of the
fractal spectrum.
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Figure 7. Multifractal spectrum among the TI, FI, and RE. (a) Overall sample. (b) Subsample RE and
FI. (c) Subsample RE and TI. (d) Subsample FI and TI.

The parameters of the multifractal spectrum also convey information about local fluc-
tuations in many markets, especially the width difference Δα and height difference Δ f (α)
of the multifractal spectrum. The fractal-spectrum analysis of cross-correlation was similar
to that of the single time series. The Δα = αmax − αmin represents the dispersion of the
distribution. The Δα = 0 corresponds to a completely uniform distribution. The larger Δα
indicates that the distribution of the time series was more uneven and the cross-correlation
fluctuations between the indices were more intense. The Δ f (α) = f (αmin)− f (αmax) con-
veys the degree of local fluctuations of cross-correlation. Some studies have also pointed
out that Δ f (α) represents the number of occurrences of the singular index value, reflecting
the proportion of the sequence signals at the peak and trough positions. The higher the
|Δ f (α)| is, the more chaotic the local fluctuations of the cross-correlation are.

Taking the overall sample as an example, the Δα and |Δ f (α)| among the TI, FI, and
RE were calculated and are listed in Table 2. The parameters of the multifractal spectrum
among the TI, FI, and RE were constantly changing, and their corresponding function
densities were inconsistent. In terms of Δα, the Δα of TI-RE was the largest, followed by
the Δα value of FI-TI, and the Δα value of FI-RE was the smallest. The values of Δα prove
that the interactive relation between the RE and TI was more complex and the degree of
multifractal was stronger. On the contrary, the multifractal degree between the RE and FI
was relatively weaker.
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Table 2. Parameters of multifractal spectrum.

Variable αmin αmax Δα f(αmin) f(αmax) |Δf(α)|

RE and FI 0.3890 0.7857 0.3967 0.2521 0.3137 0.0615
RE and TI 0.2830 0.7988 0.5157 0.1637 0.2651 0.1014
FI and TI 0.3744 0.7911 0.4167 0.2746 0.2936 0.0190

In terms of |Δ f (α)|, the |Δ f (α)| value of RE-TI was the largest. This indicates that
the local fluctuations of the cross-correlation between the RE and TI were more volatile,
whereas the |Δ f (α)| value of RE-FI and FI-TI were significantly smaller than that of TI-RE.
This means that the local dislocations of the cross-correlation between the RE and FI as well
as FI and TI were relatively simple.

The fractal-spectrum shape of the FI-RE was very similar to that of FI-TI. The difference
between the value of Δα for FI-RE and that of FI-TI was 0.02, and the difference between
the |Δ f (α)| of FI-RE and that of FI-TI was 0.0425. From the perspective of fractal spectrum,
the change trend of the interaction between the FI and RE was similar to that between the
FI and TI. In comparison, the fractal-spectrum width of TI-RE was more 0.099 that of TI-FI
and FI-RE, and the fractal-spectrum height was also more than 0.0399. These show that the
cross-correlation between TI and RE was unstable and partially chaotic.

In addition, the changes in multifractal-spectrum parameters of cross-correlation
among the TI, FI, and RE in different periods were also explored, including the Δα and
|Δ f (α)|. The results are shown in Figure 8. Consistently, the multifractal spectrum of
cross-correlation among the TI, FI, and RE also had time-varying characteristics. For the TI
and RE, the value of Δα was higher in 2015–2018 and 2020, and the value of |Δ f (α)| was
higher in 2019, 2019, and 2021. For the FI-RE, the value of Δα was higher in 2015–2016
and 2020–2021, and the value of |Δ f (α)| was higher in 2016 and 2020. For the FI-TI, the
value of Δα was also higher in 2015–2016 and 2021, and the value of |Δ f (α)| was higher in
2015–2016 and 2020. The parameter changes of the multifractal spectrum among the TI, FI,
and RE were similar.
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Figure 8. Time-varying analysis of multifractal-spectral parameters. (a) Width difference of fractal
spectrum. (b) Height difference of fractal spectrum.

It is worth noting that the parameter change of the multifractal spectrum also presented
the characteristics of time delay. Although the stock-market crash occurred in 2015, the
value of Δα and |Δ f (α)| among the TI, FI, and RE remained at a higher level in the years
following 2015. Similarly, the COVID-19 pandemic, which began at the end of 2019, kept
the global economy in a sustained downturn, and the value of |Δ f (α)| in 2019 and the
following years also remained at a higher level. It can be concluded that the multifractal-
spectrum parameters of the TI, FI, and RE changed significantly during the crisis periods
and the subsequent periods.
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5. Conclusions

The research results of the denoising analysis show that wavelet-threshold denoising
can remove some noise information of technological-innovation, financial-market, and
real-economy indices to improve the availability of effective information. Compared with
the traditional denoising method, the effect of wavelet-threshold denoising is significantly
more effective. After denoising, the volatility agglomeration of technological-innovation,
financial-market, and real-economy indices was significantly reduced and the stability was
improved. This was helpful for this study to observe a more authentic and reliable fluctuation
relationship among technological-innovation, financial-market, and real-economy indices.

Several valuable findings were obtained from the study of the cross-correlation fractal
between technological-innovation, financial-market, and real-economy indices, which were
mainly manifested in the multiplicity, time-varying memory, and singularity of fractal
characteristics. Firstly, the Hurst value of cross-correlation among technological-innovation,
financial-market, and real-economy indices showed a decreasing trend with the increase
in the fluctuation order. This means that the cross-correlation among them presented
obvious multifractal characteristics rather than single-fractal characteristics. Secondly,
the cross-correlation among technological-innovation, financial-market, and real-economy
indices demonstrated the phenomenon of long memory, that is, the interaction between
them had a long-term correlation in most periods. Locally, when the fluctuation was
small, the cross-correlation among the three indices showed the characteristics of continuity.
In the period of great fluctuation, the cross-correlation between them may have had the
characteristics of anti-persistence, among which the cross-correlation between technological-
innovation and real-economy indices had the strongest anti-persistence. Thirdly, the
shape of the multifractal spectrum among the indices of technological innovation, the
financial market, and the real economy were all parabola-like shapes with the opening
facing down, which confirms the cross-correlation multifractal characteristics from the
perspective of the fractal spectrum. In contrast, the width difference in the cross-correlation
multifractal spectrum between the technological-innovation and real-economy indices was
the largest, which indicates that the interaction between technological innovation and the
real economy was more complex. Similarly, the height difference of the fractal spectrum
between technological-innovation and real-economy indices was also the largest, which
reflects the high degree of local chaos and instability of the interaction between the two.

In addition, it was found that the Hurst value and fractal spectrum of cross-correlation
among the three indices were obviously different in different periods, but the change trend
of the fractal characteristics among the three indices was roughly similar over time. The
fractal characteristics of the crisis events during the period of occurrence and the following
years were significantly strengthened, which indicates that the interaction between the
three indices may have had a certain time delay and continuity.

Based on the study above, the research results are of great significance to investors
and administrative departments. For investors, the conclusions will help them to realize
the nonlinear dependence and potential dynamic mechanism between the three industries
and have a deeper understanding of the linkage relationship and information transmission
among the industries so as to provide investors with a decision-making basis. For eco-
nomic policymakers, the fractal characteristics of interaction can help them understand the
transmission and diffusion of market risks, deeply consider the important factors affecting
the healthy growth of the real economy, and carry out policy regulation and management
in a timely manner.

There are still many areas for in-depth discussion on the interaction between techno-
logical innovation, financial markets, and the real economy. For example, according to
the different multifractal characteristics, how to control the risk diffusion in practice will
be the focus of our future research, and the optimization of parameters also needs to be
explored further.
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Abstract: As one of the main areas of value investing, the stock market attracts the attention of
many investors. Among investors, market index movements are a focus of attention. In this paper,
combining the efficient market hypothesis and the fractal market hypothesis, a stock prediction model
based on mixed fractional Brownian motion (MFBM) and an improved fractional-order particle
swarm optimization algorithm is proposed. First, the MFBM model is constructed by adjusting the
parameters to mix geometric Brownian motion (GBM) and geometric fractional Brownian motion
(GFBM). After that, an improved fractional-order particle swarm optimization algorithm is proposed.
The position and velocity formulas of the fractional-order particle swarm optimization algorithm are
improved using new fractional-order update formulas. The inertia weight in the update formula is
set to be linearly decreasing. The improved fractional-order particle swarm optimization algorithm
is used to optimize the coefficients of the MFBM model. Through experiments, the accuracy and
validity of the prediction model are proven by combining the error analysis. The model with the
improved fractional-order particle swarm optimization algorithm and MFBM is superior to GBM,
GFBM, and MFBM models in stock price prediction.

Keywords: stock forecast; fractional-order particle swarm optimization algorithm; mixed fraction
Brownian motion; Hurst

1. Introduction

Stock market investment, as one of the most profitable financial investments, is favored
by many investors. The forecast of stock price movement has also been the focus of investors’
attention [1,2]. From the establishment of the stock market to date, research on market
forecasting has never stopped [3]. There are many forecasting methods [4]. From the
mathematical finance perspective, there are two main categories. One is the approach based
on the efficient market hypothesis (EMH) [5,6] and the other is based on the fractal market
hypothesis (FMH) [7].

In the 1970s, Fama [8,9] proposed the famous EMH based on the random wandering
model. In EMH, the stock price trend follows the geometric Brownian motion (GBM)
model [10]. EMH argued that every investor in the market was rational. Every stock
price movement in the market is a comprehensive response to asset information. With
prices following a random walk model, it is hard for investors receive a “free lunch” from
the market. However, the efficient market hypothesis is only an ideal state and does
not correspond to reality. Not every investor in the market has a rational mind and the
information that occurs at each point in time is not fully embodied in the price. Some
investors make good profits from the market. Therefore, many investors are skeptical of
the efficient market hypothesis [11]. From the GBM model, GBM also has three conceptual
errors. (1) For the GBM model, future changes are independent of past changes, which is
not consistent with the fundamental characteristics of financial market development [12,13].
(2) The GBM model depicts a normal distribution, but real share prices have a “spike and
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a thick tail” [14]. (3) In stock prices, time series correlation is common everywhere [15].
That is to say, large decreases are usually accompanied by increases in volatility, while
large increases are usually accompanied by decreases in volatility. Therefore, GBM cannot
correctly describe the phenomenon and the laws of stock prices.

With further research, Peters [16] proposed the FMH from a nonlinear perspective
and integrated fractal theory into financial markets. In FMH, stock price changes follow
fractional Brownian motion (FBM) and yield obeys a fractal distribution characterized by
self-similarity and long memory. FMH believes that the structure of the stock market is
fractal and that it has a long memory [17]. The long memory is characterized by the Hurst
value. In 2001, Wu pointed out that capital market price movements were mostly the fractal
time series [18] and they explored the fractal dimension of stock prices using fractal and
chaotic methods. However, Rostek [19,20] thought that there would be arbitrage in applying
fractional Brownian motion to simulate prices under the fractal market assumption.

A better solution is to mix geometric Brownian motion and fractional Brownian motion.
Then, mixed fractional Brownian motion (MFBM) is constructed to describe the process of
asset price change [21]. In terms of the Hurst characteristic index, the standard Brownian
motion is just a particular state of price fluctuations. For example, when the Hurst value is
equal to 1/2, the fractional Brownian motion is converted to standard Brownian motion [22].
For another view of modern financial theory, the EMH and FMH are internally consistent,
and the former is a special case of the latter. The EMH and FMH depict the linear and
non-linear natures of financial markets. The fractal market is the general form and steady
state of the securities market, while the effective market is the special form and biased
state of the securities market. Therefore, the two theories have intrinsic uniformity. EMH
reveals the ideal and special state of financial markets. FMH describes the volatility of
market prices and the laws of market operation, and it provides a higher level of abstraction
and description of financial fields [23]. The combination of EMH and FMH, that is, the
combination of geometric and fractional Brownian to form MFBM, is the best model to
describe asset price changes [24]. The market under the MFBM model not only has no
arbitrage opportunity, but also is complete. It is more suitable for describing the operation
and development of the market.

A perfectly efficient market describes the ideal state of financial markets. The most
mature U.S. financial market is only between a weakly efficient market and a semi-strongly
efficient market. For the Chinese stock market, the limit on ups and downs will keep the
stock market in a relatively flat state, which satisfies the semi-strong EMH. In addition,
the Chinese stock market is highly cyclical (long memory) [25]. Given these facts, this
paper combines EMH and FMH. The price trends of the U.S. and Chinese stock markets are
predicted through mixed fractional Brownian motion to obtain better forecasting results.

In this paper, we analyze stock price forms under the EMH and FMH. Then, MFBM is
constructed by adjusting the parameters to mix GBM with FBM. The drift and diffusion
coefficients in the MFBM model are solved by the maximum likelihood estimation (MLE)
method. Then, the fractional-order particle swarm optimization algorithm is improved. The
drift and diffusion coefficients of the MFBM are optimized by the improved fractional-order
particle swarm optimization algorithm. Finally, the Hurst values are solved by the rescaled
range (R/S) analysis method. The solved Hurst values are optimized by the improved
fractional-order particle swarm optimization algorithm to find the optimal parameters and
analyze the stock price prediction. Three market indices are selected for the Hurst solution
and all results show that the three markets have long memory. The accuracy and validity
of the prediction model are proven by combining the error analysis. The model with the
improved fractional-order particle swarm optimization algorithm and MFBM is superior to
GBM, GFBM, and MFBM in stock price prediction.

The main contributions of this paper are summarized as follows. (1) The parameters
are adjusted to hybridize geometric and fractional Brownian motions. The MFBM model
is constructed and used for stock market forecasting. (2) The fractional-order particle
swarm optimization algorithm is improved. The MFBM model coefficients are optimized
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by the improved fractional-order particle swarm optimization algorithm. New variables
are added to reduce the dependence of the update formula on the order of the fractional
order. Both velocity and position formulas are derived for fractional order at the same time
to improve the convergence speed. (3) The inertia weight factor in the improved fractional-
order particle swarm optimization algorithm sets the linear decreasing principle in this
paper. This reduces oscillations and increases the randomness of the particles. Therefore,
the probability of the population falling into a local optimum is reduced.

The rest of this paper is organized as follows. Section 2 briefly introduces the gener-
alized form of Brownian motion and constructs a stock price prediction model based on
mixed fraction Brownian motion. In Section 3, the improvement process of the fractional-
order particle swarm optimization algorithm is described in detail. Then, the parameters in
the model are solved and optimized separately. In Section 4, three actual stock indices are
selected to verify the validity of the IFPSO-MFBM methodology. The conclusion is given in
Section 5.

2. MFBM Model

The MFBM model is constructed based on FBM and GBM. Then, some Brownian
motion forms are briefly described.

2.1. Geometric Brownian Motion

Geometric Brownian motion is a stochastic equation of motion in continuous time.
Since its trajectory is similar to the stock price trajectory, it is continuous but not derivable,
with independent increments [26]. Therefore, it is often combined with the Black–Scholes
model for stock price simulation in the field of financial mathematics. The stochastic process
of GBM is determined by

dS(t)
S(t)

= μdt + σdB(t), (1)

where S(t) represents the stock price. The dS(t)
S(t) is the logarithmic return on the stock price

and B(t) is the standard Brownian motion (or Wiener process) obeying N(0, t). The drift
percentage μ and the volatility percentage σ are both constants. μ is the mathematical
expectation of the asset price return. σ is the standard deviation of the asset price return.

From an economic point, Equation (1) can be interpreted using the Itô form stochastic
equation, whose solution can be written as a geometric (economic) Brownian motion
defined by

St = S0 exp
{
σB(t) +

(
μ− σ2

2

)
t
}

, (2)

where St is the stock price at time t and S0 is the initial share price.
Although the B–S pricing model is based on the geometric Brownian motion, the

geometric Brownian motion describes share prices that are only appropriate for strong
efficient markets. No market currently has strong efficient market conditions, so the
geometric Brownian motion does not describe real market share prices.

2.2. Fractional Brownian Motion

Fractional Brownian motion is a derivative form of Brownian motion in the fractal
market. There are two main differences between fractional Brownian motion and Brownian
motion. One is that increments in fractional Brownian motion are not independent, whereas
increments in Brownian motion are independent. The other difference is the dimensional
value [27]. Fractional Brownian motion (fractal noise) has a fractional dimensional value.
The value is equal to 1/H; here, H is the Hurst exponent [28]. Brownian motion (white
noise) has a fractional dimensional value of 2. The above properties of fractional Brownian
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motion make it a suitable tool for mathematical finance. The formula for the covariance
function of the FBM is determined by

E
[
BH(t)BH(s)

]
=

1
2

(
|t|2H+|s|2H − |t− s|2H

)
, (3)

The stochastic process of geometric FBM is as follows:

dS(t) = μ(t)S(t)dt + σS(t)dBH(t), (4)

where BH is the fractional Brownian motion. The share price is based on (5) as follows:

S(t) = S0 exp
(
σBH(t) + μt− 1

2
σ2t2H

)
, (5)

Fractional Brownian motion has long memory and is useful for financial market fore-
casting. Theoretically, there would be arbitrage in the model with FBM as the logarithmic
price. In particular, it has been shown that arbitrage opportunities exist when trading in
continuous or in discrete time [29,30].

2.3. Mixed Fractional Brownian Motion

Based on the intrinsic consistency of the EMH and FMH, a mixed fractional Brownian
motion is constructed by adjusting the parameters to hybridize the geometric Brownian
motion with the geometric fractional Brownian motion. The stochastic process of MFBM is
determined by

dS(t) = μ(t)S(t)dt + σS(t)dWH(t), (6)

dWH(t) = ρdBH(t) + (1− ρ)dB(t), ρ ∈ (0, 1), (7)

where ρ is the mixing factor to be adjusted. The drift percentage μ and the volatility
percentage σ are both constants. The B(t)

(
t ∈ R+

)
is a standard Brownian motion. The

BH(t)
(
t ∈ R+

)
is a fractional Brownian motion with a Hurst value of H. These are indepen-

dent of each other. The share price form is as follows:

St = S0 exp { μt + σWH(t)}, (8)

which converts to Itô form as follows:

St = S0 exp {μt + σWH(t)− 1
2
σ2ρ2t2H − 1

2
σ2(1− ρ)2t}, (9)

In the MFBM model, the solution process of BH(t) is as follows:

BH(t) =
∫ 0

t
KH(t, s)dB(s), (10)

KH(t, s) = c(H)
1

sH− 1
2

∫ s

t

uH− 1
2

u− s
3
2−H

du, (11)

c(H) =

√√√√ 2HΓ
( 3

2 −H
)

Γ
(

H + 1
2

)
Γ(2− 2H)

(H− 1
2
), (12)

In (12), KH(t, s) is a definite kernel, c(H) is the normalization constant, and Γ is the
Gamma function, which can be solved according to Euler’s residue formula. The definition
of the Gamma function over the real number field is defined by

Γ(x) =
∫ +∞

0
tx−1e−tdt(x > 0), (13)
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Then, the BH(t) value can be found here. The mixed fractional Brownian motion
removes the arbitrage of fractional Brownian motion and retains its memorability [31]. It
also combines the incremental and smooth characteristics of geometric Brownian motion.

3. IFPSO-MFBM

The MFBM model that is constructed in the previous section contains a large number
of parameters. Therefore, this section focuses on solving and optimizing the model pa-
rameters. Firstly, the fractional-order particle swarm optimization algorithm is improved.
Hurst values in the model are then solved using rescaled range (R/S) analysis. Finally,
the maximum likelihood estimate (MLE) method is used to find the drift and diffusion
coefficients and the coefficients are further optimized using the improved fractional-order
particle swarm optimization algorithm (IFPSO). The flow chart of stock index forecasting,
based on the MFBM model and IFPSO algorithm, is shown in Figure 1.

 

Figure 1. IFPSO-MFBM prediction model flow chart.

3.1. Fractional-Particle Swarm Optimization Algorithm Improvement

The particle swarm optimization (PSO) algorithm originated from the simulation
of the foraging behavior of birds [32]. The PSO algorithm is conceptually simple. It is
easy to implement and converges quickly [33]. It is widely used to solve multi-objective
optimization problems [34]. The standard PSO algorithm velocity and position formula are
defined by

Vk+1
id = w×Vk

id + c1 × r1 ×
(

Pk
id − Xk

id

)
+ c2 × r2 ×

(
Pk

gd − Xk
id

)
, (14)

Xk+1
id = Xk

id + Vk+1
id , (15)
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where k is the number of iterations. Pk
id is the particle position and Vk

id is the particle
velocity. c1 and c2 are acceleration factors. r1 and r2 are random numbers distributed
between (0, 1). w is the inertia weight factor. The weight update equation is computed by

w(k) = wmax − (wmax − wmin)∗k
kmax

, (16)

In the standard PSO algorithm, the particles converge slowly. Therefore, Pires [35]
introduced fractional order calculus into PSO and proposed the fractional order particle
swarm optimization (FOPSO) algorithm. The convergence speed of the algorithm is im-
proved by introducing fractional order integration in the particle swarm velocity equation.
However, the FOPSO algorithm is susceptible to falling into local solutions. When dealing
with complex multi-peaked problems, the FOPSO algorithm tends to the local optimum.
The convergence performance is directly dependent on the fractional order α. When the
value of α increases, the particles converge more slowly. When the value of α decreases, the
population tends to fall into a local optimum. In this paper, we improve the fractional-order
algorithm. The velocity and position equations are derived by fractional order calculus
simultaneously. The inertia weight factor w is set to be linearly decreasing to avoid falling
into a local optimum.

When improving the PSO algorithm, the fractional order Grunwald–Letnikov (G–L)
definition is used. Its α(R) order derivative is approximated in discrete time as follows:

Dαf(x) =
1

Ta ∑r
k=0

(−1)kΓ(α+ 1)f(x− kh)
Γ(k + 1)Γ(α− k + 1)

, (17)

where T is the sampling period and Γ is the Gamma function.
The PSO fractional order improvement process is as follows:
Step 1: A left-right transformation of the standard particle swarm algorithm is made;

then, there is the following equation

Vk+1
id −Vk

id = (w− 1)×Vk
id + c1 × r1 ×

(
Pk

id − Xk
id

)
+ c2 × r2 ×

(
Pk

gd − Xk
id

)
, (18)

where Vk+1
id −Vk

id is the derivative of the discrete state at fractional order α = 1;
Step 2: Assuming a sampling period T = 1, followed by a generalization of Equa-

tion (18) to fractional order differentiation:

Da
[
Vk+1

id

]
= (w− 1)×Vk

id + c1 × r1 ×
(

Pk
id − Xk

id

)
+ c2 × r2 ×

(
Pk

gd − Xk
id

)
; (19)

Step 3: Considering the decreasing relationship between the number of contemporary
particles and the number of particles of previous generations, Equation (19) is kept for
only the first four generations of vectors owing to the memory property of fractional order
calculus. The velocity formulation of the particle swarm algorithm is extended from first
order to arbitrary order through the fractional order G-L definition.

Da
[
Vk+1

id

]
= Vk+1

id − aVk
id −

1
2

a(1− a)V(k−1)
id − 1

6
a(1− a)(2− a)V(k−2)

id − 1
24

a(1− a)(2− a)(3− a)V(k−3)
id ; (20)

Step 4: Combining (19) and (20), the final velocity equation of the fractional-order particle
swarm algorithm with linearly decreasing weight coefficients is obtained

Vk+1
id = (w− 1 + a)Vk

id + 1
2 a(1− a)V(k−1)

id − 1
6 a(1− a)(2− a)V(k−2)

id +
1

24 a(1− a)(2− a)(3− a)V(k−3)
id + c1 × r1 ×

(
Pk

id − Xk
id

)
+ c2 × r2 ×

(
Pk

gd − Xk
id

)
,

(21)

By introducing fractional order differential operators, the current particle swarm
algorithm is made to relate to the particle velocities of previous stages. Therefore, the
algorithm is made to have a memory function;
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Step 5: Then, the same fractional-order improvement is performed for the position
update. The position updating formula of the fractional order particle swarm algorithm
with linearly decreasing weight coefficients is obtained:

Xk+1
id = (w− 1 + a)Vk

id + 1
2 a(1− a)V(k−1)

id − 1
6 a(1− a)(2− a)V(k−2)

id +
1

24 a(1− a)(2− a)(3− a)V(k−3)
id + c1 × r1 ×

(
Pk

id − Xk
id

)
+

c2 × r2 ×
(

Pk
gd − Xk

id

)
+ βXk

id + 1
2β(1− β)Xk−1

id + 1
6β(1− β)(2− β)Xk−2

id

(22)

The positions of the particles of the improved fractional-order particle swarm algo-
rithm (IFPSO) are no longer only influenced by the fractional order α. The introduction of
fractional order β allows the position update to be associated with the previous position.

The IFPSO offers significant improvements in convergence speed, stability, and accu-
racy, and further enhances the ability to find globally optimal solutions.

3.2. R/S Analysis for Hurst Index

When Hurst (the British hydrologist) studied the relationship between water flow
and storage capacity in the Nile reservoir, he found that the relationship could be better
described in terms of fractal Brownian motion [36]. He then proposed the Hurst index.
There are several methods for solving the Hurst exponent [37]. The earliest method
proposed by scholars in the time domain is the R/S estimation method. After that, wavelet
analysis, the variance method, and the mean value method were gradually derived [38].
This paper focuses on solving Hurst values using R/S analysis. The process is as follows:

1. Let a time series {xt}M
t = 1, of length M, be divided into N adjacent subintervals of

length | M
N |;

2. For the subintervals, let the sample mean be eu = 1
N ∑N

i=1 xi + (u− 1) × N(
u = 1, 2, . . . , | M

N |
)

;

3. For a subinterval u, take yu,i = xi + (u− 1) × N − eu(i = 1, 2, . . . , N) such that
zu,i = ∑N

i=1 yu,i. The zu,i is the cumulative return. Here, u = 1, 2, . . . ,| M
N |;

4. Calculate Ru = max1≤N≤NZu,i −min1≤i≤NZu,i as the extreme deviation of the subin-
terval u. Let Su be the standard deviation of the cumulative return for the interval;

5. Calculate the rescaled polar difference Ru/Su for each interval; | M
N | intervals can

obtain | M
N | values (u = 1, 2, . . . ). Take its mean value RN/SN as the rescaled polar

deviation value for an interval of length N;
6. Taking the logarithm of both ends of the RN/SN = bNH equation yields:

log(RN/SN) = HlogN + logby(n); b is a constant and H is the Hurst index;
7. Repeat Steps 1 to 6 for different interval lengths N to obtain different values of RN/SN.

By regression analysis, the slope is the desired H value.

Given a time series Xi, i = 1, 2, . . . , N, calculate the sum of the partial series as
y(n) = ∑n

i=1 Xi and define the sample variance as S2(n); then, one obtains the formula:

S2(n) =
1
n ∑n

i=1 X2
i −

1
n2 y2(n), (23)

The final R/S is calculated by

R
S
(n) =

1
S(n)

[
max0≤t≤n

(
y(t)− t

n
y(t)
)
−min0≤t≤n

(
y(t)− t

n
y(t)
)]

, (24)

When n → ∞ , E[R/S(n)] ∼ CHnH, CH is a constant positive constant, taking the
logarithm of the above Equation (24). A log–log plot is drawn and a straight line is fitted
using least squares regression. The slope of this line is calculated as the Hurst index value
for a given time series.
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3.3. MLE Method for the Drift Coefficient μ and the Diffusion Coefficient σ

The MLE method [39] is chosen to estimate the parameters σ and μ in this paper.
According to the solution of ordinary differential equations, take the logarithm of the left
and right sides of Equation (9) to obtain:

ln(St)− ln(S0) = μt + σWH
t , (25)

Thus, the parameter estimate for Equation (25) is equivalent:

Yt = μt + σWH
t , t ≥ 0, (26)

The time series observation interval is h. The vector t = (h, 2h, . . . , Nh) is used to
represent the observation time point. The observation vectors Y = (Yh, Y2h, . . . , YNh) are
obtained. The MFBM process is WH

t =
(

WH
(h), WH

(2h), . . . , WH
(Nh)

)
. Then, the maximum

likelihood estimates of the drift coefficient μ and the diffusion coefficient σ are derived
from the following steps.

According to the joint density of the multidimensional normal distribution, the MFBM
model has the properties of a Gaussian process. Therefore, the observation vector Y obeys
a multivariate normal distribution. Substitute Y into Equation (26) and then derive the
specific expression for each covariance σ2

H in the discrete covariance matrix ∑H based on
(25) as follows:

σ2
H =

[
E
[
WH

(ih), WH
(jh)

]]
i,j=1,2,...N

=
σ2

2
h2H
(

i2H + j2H−
∣∣∣i− j

∣∣∣2H
)

i,j=1,2,...N
, (27)

The joint probability density function of the multidimensional normal distribution of
Y is defined by

g(Y) =
(

2πσ2
)−N

2 |ΓH|−
1
2 exp

(
− 1

2σ2 (Y− μt)′Γ−1
H (Y− μt)

)
, (28)

where ΓH = 1
2 h2H

(
i2H + j2H−

∣∣∣i− j
∣∣∣2H
)

i,j=1,2,...,N
.

Find the log-likelihood function for the joint probability density function:

lng(Y) = −N
2

ln
(

2πσ2
)
− 1

2
ln|ΓH| − 1

2σ2 (Y− μt)′Γ−1
H (Y− μt), (29)

Find the partial derivatives for μ and σ2 with respect to (26). Set the partial derivatives
equal to 0.

The maximum likelihood estimate of the drift coefficient μ is obtained by taking the
partial derivative of μ as:

μ̀ =
t′Γ−1

H Y

t′Γ−1
H t′

, (30)

Similarly, the maximum likelihood estimate for finding the partial derivative σ2 is as
follows:

σ̀2 =
1
N

(
Y′Γ−1

H Y
)(

t′Γ−1
H t
)
−
(

t′Γ−1
H Y
)2

t′Γ−1
H t

, (31)

3.4. IFPOS Algorithm Optimizing σ, μ, ρ, and H

In this paper, σ, μ, ρ, and H are optimized by the improved fractional PSO algorithm
in Section 3.1. The steps can be summarized as follows:

Step 1: The Hurst of the MFBM model is obtained from known stock market data and
the unknown parameters are determined based on R/S analysis;
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Step 2: Using the maximum likelihood estimation method, the drift coefficient σ

and the diffusion coefficient μ are solved separately to obtain the original values of each
parameter of the model;

Step 3: The IFPSO algorithm is used to continue the optimization of the model param-
eters. The individual extreme value of each particle is set to the current position. According
to the weight update formula, the current inertia weight value is calculated and updated.
The velocity and position of the particle are updated according to the improved particle
velocity and position update formula;

Step 4: The updated fitness value of each particle is calculated according to the fitness
function of the particle. The fitness value of each particle is compared with its individual
extreme value. If the individual extreme value is better than the fitness value, the individual
extreme value is updated. Otherwise, the original fitness value is kept;

Step 5: The updated individual polar values of each particle are compared with the
global polar values. If the individual extreme value is better than the global polar value,
the global polar value is updated. Otherwise, the original global polar value is kept;

Step 6: The optimization search process is broken based on the setting fitness function
and iterations. Then, the final MFBM prediction model is established.

This section focuses on the solution and optimization of three parameters in the MFBM
model. The Hurst value is solved using R/S analysis and the MLE method is used to solve
the drift and diffusion coefficients. Finally, the fractional order particle swarm algorithm is
improved and used to optimize each parameter in the MFBM model.

4. Experiments

Three market indices are selected for research and analysis in this section. They are
the A-share SSE, the Hong Kong Hang Seng index, and the US Dow Jones index. Firstly,
the Hurst values of the three market indices are solved to verify the existence of memory.
Then, the parameters are solved and optimized by the above steps. Finally, the stock
price forecasting results from IFPSO-MFBM, MFBM, FBM, and GBM are compared. The
forecasting effect of the IFPSO-MFBM model is analyzed.

4.1. Model Evaluation Indicators

Three performance indicators are used to evaluate and compare the prediction ef-
fectiveness. They are mean absolute percentage error (MAPE), symmetric mean absolute
percentage error (SMAPE), and coefficient of determination (R2).

MAPE is one of the most popular indicators that can be used to assess predictive
performance. It is given by the following equation:

MAPE =
100%

n ∑n
i=1

∣∣∣∣ R̀i − Ri

Ri

∣∣∣∣, (32)

where R̀i is the predicted value and Ri is the true value.
SMAPE overcomes the asymmetry of MAPE. It is one of the commonly used indicators

to assess predictive performance. Its equation is as follows:

SMAPE =
100%

n ∑n
i=1

∣∣R̀i − Ri
∣∣(

R̀i + Ri
)
/2

, (33)

The benefit of the model is judged according to the value of R2, R2 ∈ (0, 1). If R2 is
closer to 1, it is better for the model fit.

R2 = 1−∑n
i=1

(R̀i − Ri)
2

(Ri − Ri)
2 , (34)

Table 1 shows the interpretation of the results acquired with MAPE and SMAPE.

93



Fractal Fract. 2022, 6, 560

Table 1. Explanation of MAPE and SMAPE evaluation indicators.

MAPE Value SMAPE Value Predictive Performance Evaluation

<10% <10% Highly accurate forecasting
10–20% 10–20% Good forecasting
20–50% 20–50% Reasonable forecasting
>50% >50% Inaccurate forecasting

The physical significance, data units, and orders of magnitude of each attribute in the
selected dataset are different.

4.2. Experimental Data

The required stock price data are obtained from Yahoo Finance’s historical data for the
past five years (https://www.yahoo.com/finance, access date: 6 July 2022.). Three market
indicators are selected for model validation analysis. They are SSE, Hang Seng, and Dow
Jones. The main index data are the opening price, closing price, high price, and low price
of stock.

4.3. Experimental Verification and Analysis

Considering a long memory of fractional Brownian motion, this paper selected as a
market cycle [40] (252 day,) as the observation data set; the prediction is the next ten trading
days of the index trend, that is, 1 July 2019–15 July 2019, based on the past year’s trading
day data predicted from the same data after that. As shown in Figure 2, the experimental
data uses a sliding window (windows = 252) to move backward and forward by 10 trading
day lengths each time, so as to obtain the complete set of predicted data.

1 2 3 ... 250 251 252 1 2 ... 9 10

Training Set Test Set

Figure 2. Comparison of SSE index results of algorithm optimization search.

Here, the prediction performance of the GBM, GFBM, MFBM, and IFPSO-MFBM
models proposed in this paper are compared for stock price trends. The forecasting results
of the four models are analyzed.

4.3.1. SSE Index Data Prediction Analysis

This experiment uses the Chinese A-share SSE index dataset to validate the model
prediction effect. The main data is the daily closing price of the SSE index from 1 July 2019–
1 July 2022.

1. Parameter solving and optimization

The parameters in the MFBM model are solved and optimized according to the steps
in Section 3.

From Figure 3, it can be seen that improved fractional-order particle swarm algorithm
(IFPSO) outperforms the particle swarm algorithm (PSO) in terms of both convergence
speed and merit-seeking effect. The results are shown in Table 2.
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(a)  (b)  

Figure 3. Comparison of SSE index results of algorithm optimization search. (a) PSO, (b) IFPSO.

Table 2. MFBM model parameters and optimization results for the SSE index.

Index Set Parameters R/S MLE IFPSO

SSE

μ - 0.0521 0.1209
σ - 0.1739 0.1221
ρ - - 0.7893
H 0.5214 - 0.5334

Based on the SSE index data, the mean Hurst value of 0.5214 is first obtained by R/S
analysis. Then, we obtain μ̀ = 0.0521 and σ̀ = 0.1739 by the MLE method. Since the value
by the MLE method is not optimal, it is further optimized by the IFPSO algorithm in this
paper to obtain μ = 0.1209, σ = 0.1221, and ρ = 0.789. To reduce the influence of the initial
value, the Hurst value is also optimized using the IFPSO, and H = 0.5334 is finally obtained.
The change in optimization is evident in the data. The final optimization effect is judged by
the magnitude of MAPE, SMAPE, and R2.

The seed is the random seed number of the random model. The experiment takes the
best seed value in the seed (1~200).

2. Comparison of Simulation Results

The parameters of the four models (GBM, GFBM, MFBM, and IFPSO-MFBM) are set
as in Table 3. The experimental comparison images are as follows:

Table 3. Parameters of the SSE in the four models.

Index Set Model Seed μ σ ρ Hurst

SSE

GBM 87 0.0521 0.1739 - -
GFBM 136 0.0521 0.1739 - 0.5214
MFBM 143 0.0521 0.1739 0.5 0.5214

IFPSO−
MFBM 143 0.1209 0.1221 0.7893 0.5334

Figure 4a shows the result of the predictive simulation of the SSE in the GBM. The
main parameters of the model are Seed = 87, u = 0.0521, and σ = 0.1739. Figure 4b is the
result of the predictive simulation of the SSE in the FBM model. The main parameters have
that Seed = 136, u = 0.0521, σ = 0.1739, and H = 0.5214. Figure 4c shows the result of the
predictive simulation of the SSE in MFBM model, with Seed = 143, u = 0.0521, σ = 0.1739,
ρ = 0.5, and H = 0.5214. Figure 4d shows the predictive simulation result of the SSE index
in the optimized IFPSO-MFBM model. The main parameters are Seed = 143, u = 0.1209,
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σ = 0.1221, ρ = 0.7893, and H = 0.5334. The specific error magnitudes can be shown in
Table 4.

  
(a)  (b)  

  
(c)  (d)  

Figure 4. Comparison of the true and predicted values of SSE under the four models. (a) GBM,
(b) GFBM, (c) MFBM, (d) IFPSO-MFBM.

Table 4. Comparative error analysis of SSE index under four models.

Index Set Model MAPE% SMAPE% R2

SSE

GBM 4.3782 4.2857 0.6089
GFBM 3.6379 3.6439 0.7163
MFBM 4.3878 4.4227 0.6247

IFPSO-MFBM 3.3442 3.3262 0.7019

As can be seen, the MFBM model has the largest error in prediction, with a MAPE
of 4.3878%. The optimized IFPSO-MFBM has the smallest error, with a MAPE of 3.3342%.
The IFPSO-MFBM model has a reduced MAPE of 1.0436% compared to the MFBM model.
In addition, the forecasting errors of the SSE index in all four models are less than 10%. It
can be proven that all four models achieve high precision forecasting results.

Based on the forecast results, considering an incremental increase of more than 2% per
10 trading days and a forecast error of less than 1% (i.e., the trend is the same and the error
is less than 1%), the returns obtained are shown in Table 5.

The GBM model return of 17.14%, the GFBM model return of 14.41%, the MBM model
return of 15.45% and the IFPSO-MFBM model return of 28.15% can be seen. All four models
returned greater than 10%, and the MFBM model had the best return
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Table 5. Comparative analysis of SSE index returns under four models.

Index Set Model Returns (1 July 2019–1 July 2022)

SSE

GBM 0.1714
GFBM 0.1441
MFBM 0.1545

IFPSO-MFBM 0.2815

4.3.2. Hang Seng Index Data Prediction Analysis

This experiment uses the Hong Kong Hang Seng index dataset to validate the model
prediction effect. The main data is the daily closing price of the Hang Seng index from 1
July 2019–1 July 2022.

1. Parameter solving and optimization

The parameters in the MFBM model are solved and optimized according to the steps
in Section 3.

From Figure 5, it can be seen that IFPSO outperforms the PSO algorithm in terms of
the merit-seeking effect. The results are shown in the table below.

  
(a)  (b)  

Figure 5. Comparison of Hang Seng index results of algorithm optimization search. (a) PSO,
(b) IFPSO.

As can be seen in Table 6, the mean Hurst value of 0.5651 is first obtained by R/S
analysis. Then, we obtain μ̀ = −0.0677, σ̀ = 0.2318 by the MLE method. This is further
optimized by the IFPSO algorithm in this paper to obtain μ = 0.2631, σ = 0.5820, and
ρ = 0.7496. The Hurst is also optimized using IFPSO and Hurst = 0.6160 is finally obtained.
The change in optimization is evident in the data. The final optimization effect is judged by
the magnitude of MAPE, SMAPE, and R2.

The seed is the random seed number setting of the random model, this experiment
takes the best seed value in the seed (1~200).

Table 6. MFBM model parameters and optimization results for the Hang Seng index.

Index Set Parameters R/S MLE IFPSO

Hang Seng

μ - −0.0677 0.2631
σ - 0.2318 0.5820
ρ - - 0.7496
H 0.5651 - 0.6160
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2. Comparison of Simulation Results

The parameters of the four models (GBM, GFBM, MFBM, and IFPSO-MFBM) are set
as in Table 7; the experimental comparison images are as follows.

Table 7. Parameters of the Hang Seng in the four models.

Index Set Model Seed μ σ ρ Hurst

Hang Seng

GBM 107 −0.0677 0.2318 - -
GFBM 121 −0.0677 0.2318 - 0.5651
MFBM 89 −0.0677 0.2318 0.5 0.5651

IFPSO−MFBM 89 0.2631 0.5820 0.7496 0.6160

Figure 6a shows a plot of the results of the predictive simulation of the Hang Seng in
the GBM. Figure 6b shows a plot of the results of the predictive simulation of the Hang Seng
in the FBM model. Figure 6c shows a plot of the results of the predictive simulation of the
Hang Seng in the MFBM model. Figure 6d shows a plot of the predictive simulation results
of the Hang Seng index in the IFPSO-MFBM model. For the specific error magnitudes, see
the table below.

  

(a)  (b)  

  

(c)  (d)  

Figure 6. Comparison of the true and predicted values of Hang Seng under the four models. (a) GBM,
(b) GFBM, (c) MFBM, (d) IFPSO-MFBM.
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As can be seen from Table 8, the GFBM model has the largest error in prediction, with
a MAPE of 6.5526%. The IFPSO-MFBM has the smallest error, with a MAPE of 4.8857%.
The IFPSO-MFBM model has a reduced MAPE of 1.3307% compared to the MFBM model.
The IFPSO-MFBM after parameter optimization has been improved to a certain extent.
In addition, the forecasting error of the Hang Seng index in all four models are less than
10%. This proves that all four models achieve high precision forecasting results and have a
highly accurate forecasting effect.

Table 8. Comparative error analysis of Hang Seng index under four models.

Index Set Model MAPE% SMAPE% R2

Hang Seng

GBM 5.4472 5.3733 0.4893
GFBM 6.5526 6.5584 0.2990
MFBM 6.2164 6.1092 0.3836

IFPSO-MFBM 4.8857 4.9752 0.5348

Based on the forecast results, the returns obtained are shown in Table 9.

Table 9. Comparative analysis of Hang Seng index returns under four models.

Index Set Model Returns (1 July 2019–1 July 2022)

Hang Seng

GBM 0.1474
GFBM 0.1168
MFBM 0.1173

IFPSO-MFBM 0.2307

The GBM model return of 14.74%, GFBM model return of 11.68%, MBM model return
of 11.73%, and the IFPSO-MFBM model return of 23.07% can be seen. All four models
returned greater than 10%, and the MFBM model had the best return

4.3.3. Dow Jones Index Data Prediction Analysis

This experiment uses the US Dow Jones index dataset to validate the model prediction
effect; the main data is the daily closing price of the Dow Jones index from 1 July 2019–
1 July 2022.

1. Parameter solving and optimization

The parameters in the MFBM model were solved and optimized according to the
parameter solving and optimization process in Part 3.

From Figure 7, it can be seen that IFPSO outperforms the PSO algorithm in terms of
both convergence speed and merit-seeking effect. The results are shown in the table below.

As can be seen in Table 10, the Hurst value of 0.5939 is first obtained by R/S analysis;
then, μ̀ = 0.0804 and σ̀ = 0.2436 were obtained by the MLE method. Since the value obtained
by the MLE method is not optimal. It is further optimized by the IFPSO algorithm in this
paper to obtain μ = 0.0127, σ = 0.2790, and ρ = 0.3983. To reduce the influence of the initial
value, the Hurst is also optimized using IFPSO, and Hurst = 0.5480 is finally obtained. The
change in optimization is evident in the data and the final optimization effect is judged by
the magnitude of MAPE and SMAPE.
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(a)  (b)  

Figure 7. Comparison of Dow Jones results of algorithm optimization search. (a) PSO, (b) IFPSO.

Table 10. MFBM model parameters and optimization results for the Dow Jones index.

Index Set Parameters R/S MLE IFPSO

Dow Jones

μ - 0.0804 0.0127
σ - 0.2436 0.2790
ρ - - 0.3983
H 0.5939 - 0.5480

The seed is the random seed number setting of the random model, this experiment
takes the best seed value in the seed (1~200).

2. Comparison of Simulation Results

The parameters of the four models (GBM, GFBM, MFBM, and IFPSO-MFBM) are set
as in Table 11 and the experimental comparison images are as follows.

Table 11. Parameters of the Dow Jones in the four models.

Index Set Model Seed μ σ ρ Hurst

Dow Jones

GBM 170 0.0804 0.2436 - -
GFBM 188 0.0804 0.2436 - 0.5939
MFBM 52 0.0804 0.2436 0.5 0.5939

IFPSO−MFBM 52 0.0127 0.2790 0.3983 0.5480

Figure 8a shows the result of the predictive simulation of the Dow Jones in the GBM.
Figure 8b shows the result of the predictive simulation of the Dow Jones in the FBM model.
Figure 8c shows the result of the predictive simulation of the Dow Jones in the MFBM
model. Figure 8d shows the predictive simulation result of the Dow Jones index in the
IFPSO-MFBM model. For specific error magnitudes, see the table below.
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(a)  (b)  

  
(c)  (d)  

Figure 8. True vs. predicted values of the Dow Jones index under the four models. (a) GBM,
(b) GFBM, (c) MFBM, (d) IFPSO-MFBM.

As can be seen in Table 12, the GBM model has the largest error in prediction, with a
MAPE of 6.0259%. The IFPSO-MFBM had the smallest error, with a MAPE of 4.4196%. The
IFPSO-MFBM model has a reduced MAPE of 1.0939% compared to the MFBM model. The
IFPSO-MFBM after parameter optimization was improved to a certain extent. In addition,
the R2 of the Dow Jones index in all four models is larger than 0.6, which proves that all
four models have a good forecasting effect.

Table 12. Comparative error analysis of Dow Jones index under four models.

Index Set Model MAPE% SMAPE% R2

Dow Jones

GBM 6.0259 6.1553 0.6816
FBM 4.9502 4.7362 0.7591

MFBM 5.5135 5.3750 0.7113
IFPSO-MFBM 4.4196 4.1912 0.7662

Based on the forecast results, the returns obtained are shown in Table 13.
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Table 13. Comparative analysis of the Dow Jones index returns under four models.

Index Set Model Returns (1 July 2019–1 July 2022)

Dow Jones

GBM 0.1426
GFBM 0.2158
MFBM 0.1033

IFPSO-MFBM 0.3083

The GBM model return of 14.26%, GFBM model return of 21.58%, MBM model return
of 10.33% and the IFPSO-MFBM model return of 30.83% can be seen. All four models
returned greater than 10%, and the MFBM model had the best return

From three experiments, it can be shown that the IFPSO-MFBM has the best result of
the four models. The MAPE is reduced by 0.9203% on average and the returns are greater
than 20%. The IFPSO-MFBM has a more significant improvement.

5. Conclusions

The efficient market hypothesis and the fractal market hypothesis are combined in
this paper to study the stock forecasting problem. Firstly, the shortcomings of geometric
and fractional Brownian motion are analyzed and the MFBM model is constructed. Then
the fractional-order particle swarm optimization algorithm is improved. Last but not least,
the IFPSO-MFBM is proposed to forecast stock price.

For the GBM model, there is a clear error in the price prediction. The graph is normally
distributed, but the real share price follows the “spike and thick tail”, which does not match
the specific form of the share price. The fractional Brownian motion model has arbitrage
and is not a sound mode. The MFBM has memory and eliminates arbitrage, and it enables
better forecasting of stock prices. However, its parameters are not optimal.

Most stock price time series have a long memory in nature. The Hurst index is the
most commonly characterized method. However, in practical applications, R/S analysis
method has some obvious shortcomings for calculating long memory parameters and the
obtained Hurst values are not optimal. Therefore, the Hurst values are further optimized
by IFPSO. Other coefficients are optimized by the improved fractional-order particle swarm
optimization algorithm. The final MFBM model with optimal parameters is obtained,
which is the IFPSO-MFBM model. Through experimental analyses, it can be found that the
IFPSO-MFBM model is superior to GBM, FBM, and MFBM models in stock price prediction.
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Abstract: There is important theoretical and practical significance to scientifically identifying the
systemic importance of banks for effectively preventing and controlling systemic risks in the banking
system. Prevalent identification methods are biased because they only pay attention to measuring the
systemic risk contribution of individual banks to the whole system in order to determine that bank’s
systemic importance. Less attention is paid to the cascade effects of risk spillover among banks.
This study proposes a novel method for measuring the cascade effects of risk spillover of banks
and their contributions to systemic risks by building up a conditional tail risk network of China’s
banking system. Different from previous analyses of systemic risks based on the identification and
risk measurement of systemically important banks (SIBs), this paper focuses on analyzing the risk
spillover effects of non-SIBs and their contributions to systemic risks by building up a conditional tail
risk network of China’s banking system. Our empirical results show that some non-SIBs in China are
more vulnerable to the shocks of systemic risk than SIBs, and that they are more likely to act as key
intermediaries to transmit risk to SIBs, thereby triggering systemic risk. In view of this, we propose
to identify key non-SIBs according to their risk spillover intensity because they are also systemically
important. The market regulators not only need to pay attention to SIBs that are too big to fail, but
also treat seriously the key intermediaries of “risk spillover too strong to fail” in the network in order
to ensure the stability of the banking system.

Keywords: the generalized value at risk (GCoVaR); systemically important banks (SIBs); risk spillover

1. Introduction

After the 2008 financial crisis, strengthening the supervision of systemically important
financial institutions (SIFIs) has become one of the core issues in the financial reform of
various countries. The identification of SIFIs works under the premise of supervision
and is also the focus of regulatory reform. A useful definition of SIFIs was advanced
by Federal Reserve Governor Daniel Tarullo, who said that “Financial institutions are
systemically important if the failure of the firm to meet its obligations to creditors and
customers would have significant adverse consequences for the financial system and the
broader economy.” Although the definition of SIFIs is clear, the methods of identification
are not consistent. International financial regulators and monetary authorities judge SIFIs
mainly based on the indicator-based method. The Macroprudential Group (MPG) of the
Basel Committee on Banking Supervision (BCBS) is responsible for developing indicators
and methods for identifying SIFIs. MPG published a more detailed indicator system on
11 October 2010 [1], and improved it again in November 2022. The indicators usually focus
on describing the scale, the correlation, and the negative externalities of SIFIs. Scholars
often use the market-based method to determine the systemic importance of individual
financial institutions. The existing market-based methods mainly include the marginal
expected Shortfall (MES) [2,3], Shapley Value [4], CoVaR [5], and Extreme Value [6]. These
methods are essentially based on the underlying theoretical position that the bigger a
financial institution is, the greater the breadth of products it provides and the larger scale
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transactions it involves, the higher risk contribution to the financial system it has. These
prevalent identification methods are biased because less attention is paid to the cascade
effects of risk spillover among banks. With the development of the banking industry, the
scale of interbank business has been expanding, and it can be argued that the linkages
between banks are becoming stronger. Without taking into account the cascade effects of
risk spillover between banks, the identification of such SIBs would be inaccurate.

In the case of China’s banking system, the People’s Bank of China (PBC) and the China
Banking and Insurance Regulatory Commission (CBIRC) designated a total of 19 banks as
systemically important banks (SIBs) in 2022, with a focus to deliver additional regulation
to those banks. These 19 SIBs consist of six state-owned commercial banks (Industrial
and Commercial Bank of China, Bank of China, China Construction Bank, Postal Savings
Bank of China, Bank of Communications, and Agricultural Bank of China), nine joint-stock
commercial banks (China Minsheng Bank, China Everbright Bank, Pingan Bank, Huaxia
Bank, China Guangfa Bank, China CITIC Bank, and Shanghai Pudong Development Bank,
China Merchants Bank, and Industrial Bank), and four city commercial banks (Bank of
Ningbo, Bank of Jiangsu, Bank of Shanghai, and Bank of Beijing) (PBC press release,
9 September 2022). Each SIB’s total assets exceed 1500 billion yuan. However, it is found
that the expectation of SIBs being “too big to fail” actually reduces the probability of them
causing systemic risks. Additionally, the non-SIBs, some small-sized banks, with total
assets of about 500 billion yuan or less, often have a greater probability of failure, such
as the recent bankruptcy of Baoshang Bank, Shantou Commercial Bank, Liaoyang Rural
Commercial Bank, and Liaoning Taizihe Rural Bank, causing a considerable degree of
public panic. Are the failures of non-SIBs or small-sized banks irrelevant? Are they really
going to have no effect on systemic risk of the banking sector? This is a practical problem
that urgently needs to be answered.

In this paper, we propose a novel method, which is the algorithm-based identification
of the risk spillover effects of banks, in order to judge the systemic importance of banks
by building up a conditional tail risk network of China’s banking system. We conduct
empirical analysis by using the data of stock prices of 54 listed banks in the Chinese
securities market with a sample period from June 2021 to June 2023 and we adopt the
method proposed in this paper to rank the systemic importance of these banks. Our
empirical results shows that some non-SIBs in China are more vulnerable to the shocks of
systemic risk than SIBs, and that they are more likely to act as key intermediaries for the
transmission of risk to SIBs, in turn triggering systemic risk. In view of this, we propose
to identify key non-SIBs according to their risk spillover intensity because they are also
systemically important. The market regulators not only need to pay attention to SIBs that
are too big to fail, but also seriously consider the key intermediaries of “risk spillover too
strong to fail” in the network in order to ensure the stability of the banking system.

The remaining sections of this paper are as follows. In Section 2, we review the
prevalent modeling methods of risk spillover effects among academia. In Section 3, we
introduce all the technical methods used in this paper, including the GCoVaR method and
the fitting technique. In Section 4, we present the empirical analysis of China’s banking
system and a robustness test for GCoVaR method. Section 5 concludes.

2. Literature Review

The financial system can be regarded as a financial network. The extreme risks of
individual financial institutions would lead to the deterioration of the overall risk of
the financial system through network links, which is the main manifestation of systemic
financial risks. Network modeling is often used to explore such financial risk contagion. In
these network model institutions are nodes, and the connecting edges represent the business
relations between institutions. As an interdisciplinary technology, the complex network
method provides a theoretical framework in order to help people better understand the
internal structure and dynamic behavior of complex systems (Neveu, 2018). By constructing
a network, researchers can not only analyze the network structure and characteristics from
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the perspective of the system, but also analyze the characteristics of important nodes in the
system. The construction of a network requires a connection matrix used to express the
risk contagion and information spillover among nodes. The data used for the calculation
of connection matrix can be roughly divided into two categories. One is inter-institutions’
offered credit or capital flow data. This is based on the specific business connections
between institutions [7–10]. The other is market data, such as stock prices or credit default
swap (CDS) prices of the institutions [11–13]. Based on the increasing availability of data,
stock market data is being more and more widely used. The market data of financial
institutions could reflect investors’ sentiment and is real-time and forward-looking; it
provides an immediate and transparent measure for studying systemic financial risks [14,
15].

The traditional methods used for the calculation of connection matrixes are mainly
the correlation coefficient method [16], probabilistic analysis [17], and the error correction
model [18]. Because these traditional methods are unable to describe the nonlinearity,
dynamics, and asymmetry of risk spillovers, Conditional Value at Risk (CoVaR), introduced
by Adrian and Brunnermeier [5], a method that quantifies the amount of tail risk an
investment portfolio, has been widely used in recent years. Reboredo and Ugolini [19]
analyzed the systemic risks of the European sovereign debt market by using CoVaR method
and believed that this method could better identify the changes of risk spillovers before and
after the Greek debt crisis. Reboredo and Rivera-Castro [20] verified the asymmetric risk
spillover effect of the exchange rates between the Euro and the US Dollar on major global
emerging stock markets by calculating their CoVaR. Warshaw [21] proved the effectiveness
of CoVaR method by measuring the extreme risk spillover effect of the North American
equity market and its changes before and after the subprime crisis.

However, Lopez-Espinosa et al. [22] found empirically that the original CoVaR model,
based on the normal hypothesis, underestimated the systemic financial risks of the U.S.
listed banks. In response, they introduced asymmetric terms to improve the quantile
regression method of CoVaR. Girardi and Ergun [23] also pointed out that CoVaR would
underestimate risks under extreme conditions by studying a network consisted of 74 listed
banks in the United States, and then proposed an improved generalized conditional value
at risk (GCoVaR) method. Their empirical analysis verified that GCoVaR could improve
the stability of the measurements obtained. GCoVaR could consider more distress events
within the tail region, which would more accurately reflect the characteristics of “volatility
clustering, thick tail and nonlinear correlation” of financial markets. Torri et al. [24] believe
that using GCoVaR to measure the risk spillover effect would not only help investors to
manage portfolio risks, but also help market regulators to carry out dynamic monitoring of
financial risks.

As for financial risk contagion, previous studies have mostly focused on the identifi-
cation and risk measurement of systemically important financial institutions [14,15], and
explore ways and tools for preventing and controlling the financial systemic risk based
on systemically important financial institutions [25,26]. However, the financial system is
made up of systemically important financial institutions and non-systemically important
financial institutions, and they both have impacts on the formation and amplification of
financial systemic risks. Mistrulli [27] stated that systemic risk can be characterized as a
negative pecuniary externality exerted by financial institutions, and that any institution’s
risk exposure may evolve into a systemic risk through its interconnectedness within the
financial system. Scholars engaged in correlation research believe that the stronger the
correlation among institutions, the greater the effect of risk contagion, and more easily
to induce systemic risks. However, some scholars suggest that correlation is an effective
way to disperse systemic risks [28]. Georg [29]pointed out that the degree of connection
between institutions and the level of risk contagion have a non-monotonic relationship. A
higher degree of connection between institutions is conducive to risk diversification when
the connection level is low, but when it exceeds a certain threshold, the risk of contagion
would increase rapidly and could lead to large-scale collapse of institutions. Therefore,
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some scholars propose that it should pay attention not only to institutions that are “too big
to fail”, but also to banks that are “too connected to fail” in order to prevent and control
systemic risk [30,31].

It can be seen above that most studies in this area are based on the systemically
important financial institutions in order to explore ways to identify and mitigate systemic
risks. Less research has been done specifically on non-systemically important financial
institutions. The mechanism of risk transfer between SIBs and non-SIBs has not been well
understood. In addition, compared with systemically important financial institutions, the
number of non-systemically important financial institutions is large, which is difficult to
focus on in the research process. In view of this, based on the perspective of risk contagion,
this paper measures the risk spillover effect among listed banks in China using the GCoVaR
method and Copula technology, and explores the role of non-SIBs in the formation and
accumulation of systemic risks in the banking sector. Different from the conventional
mode of analyzing systemic risks based on SIBs in previous studies, we focus on analyzing
the role and influence of non-SIBs in China’s banking system from two aspects–the risk
contribution of non-SIBs to systemic risk and the risk impact of the whole banking system
on non-SIBs–in order to test whether or not non-SIBs are unimportant.

3. Methodology

Risk spillover is the transmission of risk from one institution (industry or market) to
another institution (industry or market). This is because financial data, in reality, is usually
not normally distributed, and presents a “peak and thick tail” distribution. The traditional
parametric regression method based on mean estimation cannot accurately reflect the
relationship between different parts of the overall distribution. We consider using the tail
dependence relationship of stock price of related banks to establish connection matrix of
the network of China’s banking system, and the GCoVaR approach to identify risks that
are “extra” parts due to the presence of other banks in distress.

3.1. GCoVaR Model

The traditional method measuring the risk, value at risk (VaR), refers to the maximum
possible loss of a certain bank in a certain period in the future under a certain confidence
level. Let Ri represent the return rate of bank i, then the VaRi of Ri at a significance level α
can be expressed as:

P
(

Ri ≤ VaRi
)

= α, (1)

VaR can only measure the risk of a single bank. Based on this value, conditional value at
risk (CoVaR) proposed by Adrian and Brunnermeier [5] can be used to measure the risk
spillover between different banks. Let Rj represents the return rate of bank j, under the
condition of Ri having an extreme loss VaRi, at the confidence level of β, the extreme loss
of Rj would be CoVaRj|i, the mathematical expression is:

P
(

Rj ≤ CoVaRj|i
∣∣∣Ri = VaRi

)
= β, (2)

According to Girardi and Ergun [23], the GCoVaRj|i is the VaR of bank j conditional
on bank i being at most at its VaR (Ri ≤ VaRi) as opposed to being exactly at its VaR
(Ri = VaRi).

P
(

Rj ≤ GCoVaRj|i
∣∣∣Ri ≤ VaRi

)
= β, (3)

This change allows us to consider more severe distress events of bank i that are farther
along the tail (below its VaR) so as to more accurately reflect the characteristics of financial
time series: “volatility agglomeration, thick tail and nonlinear correlation”. This change also
improves the consistency of risk measurement with respect to the dependence parameter.

1. The risk spillover between bank i and j
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We define the systemic risk contribution of a bank as the change from its GCoVaR in its
benchmark state (defined as a one-standard deviation event) to its GCoVaR under financial
distress, so we can get the risk spillover effect of bank i to bank j when bank i in extreme
distress:

ΔGCoVaRj|i = GCoVaRj|i −MCoVaRj|i, (4)

where MCoVaRj|i represent the financial distress in GCoVaR of bank j when bank i at a
normal state (i.e., α = 0.5), it meets:

P
(

Rj ≤ MCoVaRj|i
∣∣∣Ri ≤ 0.5

)
= β, (5)

Define risk spillover intensity γ, which is the change rate of GCoVaR with respect to
MCoVaR:

γj|i =
GCoVaRj|i −MCoVaRj|i

MCoVaRj|i , (6)

The risk spillover effect is usually bidirectional. Bank i may spill risks to bank j,
and conversely, bank j may spill risks to bank i. In addition to effectively measuring the
extreme risk spillover effect, another advantage of GCoVaR method is that it can measure
the asymmetry of this effect. Let ΔGCoVaRi|j represents the risk spillover of bank j on bank
i, the calculation formula can be similarly derived.

2. The risk contribution of bank i to the financial system

Let GCoVaRindex|i stands for the generalized conditional value at risk of the financial
system suffering from the impact of bank i in distress. Using the same logic above, we have

P
(

Rindex ≤ GCoVaRindex|i
∣∣∣Ri ≤ VaRi

)
= β, (7)

ΔGCoVaRindex|i = GCoVaRindex|i −MCoVaRindex|i, (8)

γindex|i =
GCoVaRindex|i −MCoVaRindex|i

MCoVaRindex|i , (9)

3. The risk spillover of bank i suffered from financial system

Let GCoVaRi|index stands for the generalized conditional value at risk of bank i when
the whole financial system is in trouble. VaRindex is unconditional value at risk of the
financial system. It represents the risk level of the financial system as a whole, we have:

P
(

Rj ≤ GCoVaRi|index
∣∣∣Rindex

t ≤ VaRindex
α,t

)
= β, (10)

ΔGCoVaRi|index = GCoVaRi|index −MCoVaRi|index, (11)

γi|index =
GCoVaRi|index −MCoVaRi|index

MCoVaRi|index
, (12)

3.2. To Measure GCoVaR Based on Copula Model

According to the definition of conditional probability, Equation (3) can be transformed
into:

P
(

Rj ≤ CoVaRj|i, Ri ≤ VaRi
)

= β·P
(

Ri ≤ VaRi
)

= αβ, (13)

It can be seen from Equation (13) that the joint distribution of Rj and Ri need to be
known in order to calculate GCoVaR. A convenient method is to use Copula function
to construct joint distribution of multivariate random variables. Copula function is also
known as link function, which can describe the tail correlation between random variables.
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According to Sklar’s theorem, we can construct the joint distribution of random variables
by treating each one-dimensional distribution of multiple random variables as marginal
distribution. Equation (13) can be written in the following Copula form:

c
(

Fj

(
GCoVaRj|i

)
, Fi

(
VaRi

))
= αβ, (14)

where, c(·,·) is the Copula function, and Fi(·) and Fj(·) are the edge distribution functions
of Ri and Rj, respectively. According to the definition of VaR, Equation (1) means,

Fi

(
VaRi

)
= α, (15)

According to Equations (3) and (14), given the marginal distribution, the form of
Copula connect function, and the confidence level of α and β, the GCoVaRj|i can be solved.
Setting the α to 0.5, the same two equations above can be used to solve for the MCoVaRj|i;
According to Equations (4)–(6), the ΔGCoVaRj|i and γj|i could be calculated to measure the
risk spillover effect of bank i on j. Repeating the above process, we can obtain ΔGCoVaRi|j
and γi|j, the risk spillover effect of bank j on i. The marginal distribution, time-varying
Copula function and its parameter estimation methods are shown in Appendix B.

4. Empirical Analysis

4.1. Sample Selection

In this paper, 54 listed banks are selected to construct the banking system of China.
The selected banks and their total assets are shown in Appendix A. The sample period is
from 1 June 2021 to 30 June 2023. The selection of sample periods is mainly based on the
consideration that they have normal transaction data in the sample period, so as to make
the calculation of value at risk meaningful. All sample data are collected from the Wind
Database (https://www.wind.com.cn/portal/zh/WFT/index.html accessed on 30 June
2023). Additionally, R language software (R-4.0.2) is used for Copula function regression
analysis, and Python 3.5.0 (Networkx 3.1) is used for mapping.

In Figure 1, the size of the nodes are measured by the weighted degree centrality of
nodes. The larger the node’s size is, the nearer to the center the node tends to be in the
network.

Figure 1. Visual representation of conditional tail risk networks for China’s banking system computed
on the periods June 2021–June 2023. Note: The nodes in the figure with background color red are
state-owned banks, with background color yellow are joint-stock commercial banks, with background
color purple are city commercial banks, and with background color green are rural commercial banks.
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4.2. Risk Spillover Effect Analysis
4.2.1. The Risk Spillover Effect between Banks

The risk spillover effect of bank i on j can be calculated by Equations (3)–(6) when bank
i is in distress. Considering that smaller quantile values are often used in risk management
to capture the characteristics of the peak and fat tail of financial time series, here we choose
β = 0.025. Since our research sample includes 54 banks, there should be 1431 different
combinations of banks, and there are 1431 risk spillover intensity measures. Table 1 gives
the results, which are listed in descending order of γj|i. Only the top 30 are listed in order
to save space.

Table 1. The risk spillover from bank i to j (Top 30) and ranking by γj|i.

Bank i Bank j

MCoVaRj|i GCoVaRj|i ΔGCoVaRj|i γj|i (%)
Bank Code

Total Assets
(Billion Yuan)

Bank Code
Total Assets

(Billion Yuan)

1 CDB 652.43 CMBC 6950.23 8.14 12.36 4.22 51.84
2 BSZ 388.07 NJB 1517.08 7.45 11.26 3.81 51.14
3 ZYB 757.48 ZZB 561.64 9.4 13.19 3.79 40.32
4 CRC 1135.93 CHB 547.81 7.73 10.66 2.93 37.90
5 NJB 1517.08 CEB 5368.11 8.13 11.04 2.91 35.79
6 CSB 704.24 CIB 7894.00 9.72 13.16 3.44 35.39
7 CRCB 208.69 HZB 1169.26 8.11 10.8 2.69 33.17
8 JZB 777.99 HRB 598.60 7.45 9.70 2.25 30.20
9 CHB 561.64 SJB 1037.96 7.48 9.66 2.18 29.14

10 JRCB 200.36 JZB 777.99 8.17 10.51 2.34 28.64
11 QRCB 406.81 BQD 459.83 8.2 10.52 2.32 28.29
12 SPDB 7950.22 GYB 590.68 8.73 11.18 2.45 28.06
13 SJB 1037.96 PAB 4468.51 8.87 11.26 2.39 26.94
14 ZRCB 143.82 JSB 2337.89 7.64 9.66 2.02 26.44
15 CRCB 208.69 JSR 139.44 9.26 11.59 2.33 25.16
16 JJB 415.79 JXB 458.69 8.51 10.54 2.03 23.85
17 JSB 2337.89 ZSB 2048.23 9.15 11.33 2.18 23.83
18 GZB 456.40 HXB 6950.23 8.87 10.95 2.08 23.45
19 HSB 1271.70 CBH 3399.82 9.26 11.39 2.13 23.00
20 GYB 590.68 CITIC 1393.52 9.86 12.11 2.25 22.82
21 ZRCB 143.82 NJB 7511.16 9.83 12.00 2.17 22.08
22 JRCB 142.77 WRCB 547.81 9.14 11.13 1.99 21.77
23 JZR 217.66 JJB 415.79 9.78 11.81 2.03 20.76
24 CMBC 6950.23 GSB 342.36 9.36 11.29 1.93 20.62
25 TCC 687.76 BOB 2900.00 9.81 11.83 2.02 20.59
26 NBB 1626.75 JSR 139.44 10.76 12.97 2.21 20.54
27 NJB 1517.08 BSZ 388.07 9.72 11.71 1.99 20.47
28 CMBC 6950.23 CDB 415,79 9.56 11.51 1.95 20.40
29 WRCB 547.81 JRCB 757.48 9.86 11.87 2.01 20.39
30 ABC 28,132.25 CCB 27,205.05 9.62 11.57 1.95 20.27

Note: SIBs are highlighted in bold black.

Table 1 shows that:
First, given bank i and j, the level of GCoVaRj|i is larger than that of MCoVaRj|i.

This suggests that when one bank gets into trouble, other banks are exposed to more
than their own level of risk. As shown in line No. 1 of Table 1, MCoVaRCMBC|CDB = 8.14,
GCoVaRCMBC|CDB = 12.36. Obviously, MCoVaRCMBC|CDB < GCoVaRCMBC|CDB.

Second, GCoVaRj|i �= GCoVaRi|j. The reason is that for GCoVaRj|I, the conditional
event is bank i in distress, while for GCoVaRi|j, the conditional event is bank j in dis-
tress. Different directions of risk shocks might have different effects. Take the Table 1
line No. 2 as an example: when BSZ is in distress, NJB would suffer risk impact of
GCoVaRNJB|BSZ = 11.26; when NJB is in distress, as shown in line No. 27 of Table 1, BSZ
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would suffer risk impact of GCoVaRBSZ|NJB = 11.71; as such, apparently, GCoVaRBSZ|NJB

�= GCoVaRNJB|BSZ

Third, from Table 1 we can find that the non-SIBs’ risk spillover should never be
underestimated. For the first 30 strongest risk spillover effects, sixteen of them are from
non-SIB to non-SIB, eight are from non-SIB to SIBs, two are from SIB to SIB, and four
from SIB to non-SIB. The eight non-SIBs who transmit risk to SIBs should be paid special
attention. We take CDB, a city commercial bank among the non-SIBs, as an example in
order to analyze its risk spillover performance and determine who has the greatest risk
impact on SIB. Table 2 shows the banks affected by the risk impact of CDB and the banks
from which CDB receives risk spillover. As a relatively small sized city commercial bank
with total assets of 652.43 billion yuan, its risk spillovers mainly transmit to other related
city commercial banks (CHB, GZB, WHCB, BQD), joint-stock commercial banks (CMBC,
CIB, CBH, PAB, HXB), and state-owned commercial banks (BOC, BOCOM), and it received
risk spillover from other related city commercial banks (WHCB, SHB, CHB, JZB, JJB, JSB,
HSB, SJB), rural commercial banks (CRC, JRC, JSR, JRCB, JZR), and joint-stock commercial
banks (CMBC).

Table 2. CDB’s risk spillover relations.

No.

CDB Transmits Risk Spillover to

No.

CDB Receives Risk Spillover from

Bank Code
Total Assets

(Billion Yuan)
γi|CDB (%) Bank Code

Total Assets
(Billion Yuan)

γCDB|i (%)

1 CMBC 6950.23 51.84 1 CMBC 6950.23 20.40
2 CIB 7894.00 18.19 2 SHB 2462.14 19.91
3 CBH 1393.52 18.12 3 CRC 1135.93 18.79
4 BOC 24,402.66 14.49 4 JSB 143.82 13.69
5 PAB 4468.514 14.34 5 WHCB 267.602 11.45
6 CRC 1135.93 12.45 6 JSR 2337.89 8.28
7 BOCOM 10,697.62 12.05 7 CHB 561.64 7.64
8 HXB 3399.82 11.77 8 JZB 1169.26 7.32
9 CHB 561.64 7.57 9 JJB 2462.14 6.16
10 GZB 456.40 5.23 10 JRC 200.363 5.09
11 WHCB 267.60 1.56 11 HSB 1271.70 3.37
12 BQD 459.83 1.32 12 SJB 1037.96 1.57

13 JZR 139.44 0.44
14 JRCB 142.77 0.23

Note: SIBs are highlighted in bold black.

For the rural commercial banks among non-SIBs, we take CRC as an example to
analyze its risk spillover performance. As a rural commercial bank, CRC has the highest
risk spillover on other banks. Table 3 shows the banks impacted by CRC’s risk spillover
and the banks from which CRC receives risk spillover. We can see that its risk spillover
mainly affects related city commercial banks (CHB, WHCB, CDB, JZB, JSB, GSB, NBB) and
rural commercial banks (JSR, ZRCB, JZR, GRCB), while it mainly receives risks from other
rural commercial banks (JSR, GRCB, JZR, JRC).
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Table 3. CRC’s risk spillover relations.

No.

CRC Transmits Risk Spillover to

No.

CRC Receives Risk Spillover from

Bank Code
Total Assets

(Billion Yuan)
γi|CRC (%) Bank Code

Total Assets
(Billion Yuan)

γCRC|i (%)

1 CHB 561.64 40.32 1 JSR 139.44 18.79
2 CDB 652.43 19.91 2 GRCB 1027.87 15.22
3 JSR 217.66 13.69 3 JZR 217.66 12.16
4 ZRCB 143.82 7.32 4 JRC 142.77 12.04
5 WHCB 267.60 19.91 5 CHB 561.64 9.25
6 JZB 777.99 4.49 6 CDB 652.43 8.12
7 JZR 217.66 4.34
8 JSB 2337.89 2.45
9 GSB 342.36 1.77
10 GRCB 1027.87 1.52
11 NBB 1626.75 0.22

Note: SIBs are highlighted in bold black.

Fourth, SIBs mainly are state-owned commercial banks and joint-stock commercial
banks. For the state-owned commercial banks among the SIBs, we take CCB as an example.
Table 4 shows the banks affected by CCB’s risk spillover when it is in distress and the banks
impacting CCB by risk spillover. All of them are joint-stock commercial banks and city
commercial banks, except ABC, which ranks No. 1 in risk outflow column and ranks No.
12 in risk inflow column. It should be noted that the same is true for other state-owned
commercial banks’ spillover relations, indicating that the six state-owned commercial banks
are relatively independent from each other and the risk spillover intensity between them is
generally small.

Table 4. CCB’s risk spillover relations.

No.

CCB Transmits Risk Spillover to

No.

CCB Receives Risk Spillover from

Bank Code
Total Assets

(Billion Yuan)
γi|ABC (%) Bank Code

Total Assets
(Billion Yuan)

γABC|i (%)

1 ABC 28,132.25 20.27 1 BOB 2900.01 18.86
2 HXB 3399.82 9.98 2 JSB 2337.89 8.04
3 CIB 7894.00 4.27 3 SJB 1037.96 7.80
4 SHB 2462.14 3.72 4 JJB 415.79 5.99
5 CMBC 6950.23 1.11 5 CHB 561.64 5.45
6 HRB 598.60 0.95 6 SHB 2462.14 5.00
7 CBH 1393.52 0.92 7 JZB 777.99 1.52
8 BOB 2900.01 0.83 8 WHCB 267.60 1.16
9 JSB 2337.89 0.44 9 JSBK 270.94 0.46
10 SJB 1037.96 0.27 10 ZYB 757.48 0.33

11 BSZ 388.07 0.21
12 ABC 28,132.25 0.18
13 HSB 1271.70 0.15
14 XMIB 285.15 0.14
15 XAB 306.39 0.11

Note: SIBs are highlighted in bold black.

For the joint-stock commercial bank among the SIBs, we take CMBC as an example.
Table 5 shows the banks affected by CMBC’s risk spillover when it is in distress and the
banks impacting CMBC by risk spillover. We can see that its risk spillover mainly affects
the related city commercial banks (GSB, CDB, SHB, NJB) and joint-stock and state-owned
commercial banks (ZSB, CBH, CIB, CCB, ABC), while it mainly receives risks from other
joint-stock commercial banks (SPDB, CIB) and city commercial banks (CDB, JSB, SHB, XAB,
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CHB, GYB, JSBK, ZYB, BSZ, HRB, HSB, XMIB, CSB). It should be noted that the same is
true for other joint-stock commercial banks’ spillover relations.

Table 5. CMBC’s risk spillover relations.

No.

CMBC Transmits Risk Spillover to

No.

CMBC Receives Risk Spillover from

Bank Code
Total Assets

(Billion Yuan)
γi|CMBC (%) Bank Code

Total Assets
(Billion Yuan)

γCMBC|i (%)

1 GSB 342.36 20.62 1 CDB 415,79 51.84
2 CDB 415.79 20.40 2 JSB 2337.89 18.04
3 ZSB 2048.23 14.27 3 SHB 1037.96 17.80
4 SHB 2462.14 3.72 4 XAB 415.79 15.29
5 NJB 1517.08 2.44 5 CHB 561.64 11.45
6 CBH 1393.52 0.95 6 SPDB 7950.22 9.20
7 CIB 7894.00 0.92 7 GYB 590.68 7.52
8 CCB 28,132.25 0.83 8 JSBK 270.94 3.16
9 ABC 27,205.05 0.55 9 ZYB 757.48 1.46

10 BSZ 388.07 1.33
11 HRB 598.60 1.18
12 HSB 1271.70 1.15
13 CIB 7894.00 0.78
14 XMIB 285.15 0.51
15 CSB 7042.35 0.48

Note: SIBs are highlighted in bold black.

The above analysis shows that the risk spillover of China’s banking system not only
has characteristics of contagious diffusion within the same level regional or local banks,
but also has a characteristic of hierarchical diffusion, that is, the diffusion from rural
commercial banks to city commercial banks to joint-stock commercial banks and state-
owned commercial banks. The coordination and cooperation between national banks’
branches and local banks often play a key role in such hierarchical diffusion. Non-SIBs
are intended to act as risk transmission intermediaries and transmit risks to SIBs, further
inducing systemic risks of the whole banking sector.

4.2.2. The Risk Spillover Effect from Bank to Banking System

Based on Formulas (7)–(9), the individual bank’s risk contribution to the entire banking
system γindex|i are calculated when the individual bank is in distress. The calculated results
are shown in Figure 2.

Figure 2. Single bank’s contribution to systemic risk γindex|i. Notes: The last digit in parentheses
of the bank code is the bank types, S stands for state-owned bank, J for joint-stock bank, C for city
commercial bank, and R for rural commercial bank.
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As it can be seen from Figure 2, the contributions of banks to systemic risk do not fully
positively correspond to their total assets. e.g., the top three biggest China’s banks based
on total assets in 2022 (ICBC (with total assets 33,345.10 billion yuan), CCB (28,132.25 bil-
lion yuan) and ABC (27,205.05 billion yuan)) have γindex|i 45.88%, 34.7%, 56%, respec-
tively, which are 6th, 17th, and 4th in the ranking of 54 banks’ contribution to systemic
risk, respectively. While the banks with the top three highest values of γindex|i (CMBC
(γindex|CMBC = 75%), NJB (69%) and CEB (63%)) have only 6950.23, 1517.08, and 5368.11 bil-
lion yuan in total assets, respectively, which rank 11th, 20th, and 13th among total assets,
respectively.

4.2.3. The Risk Spillover Effect from Banking System to Individual Banks

Figure 3 shows the calculated results of γi|index based on Equations (10)–(12). It can
be seen that the strongest shocks from the banking system hit non-SIBs rather than SIBs.
Non-SIBs are subject to relatively strong impact by the systematic risks. We find CDB,
ranking second, is not only subject to significant systemic risk impact, but also transmits a
strong risk spillover to SIBs (see Table 2). If a non-SIB is more vulnerable to the shocks of
systemic risk, and it is more likely to transmit risk to SIBs, it will be systemically important
because its risk transmission could increases the accumulation of systemic risk greatly. We
call it a key intermediary or a key non-SIB.

Figure 3. The individual banks’ γi|index. Notes: The last digit in parentheses of the bank code is the
bank types, S stands for state-owned bank, J for joint-stock bank, C for city commercial bank, and R
for rural commercial bank.

As is shown in Figure 3, there is only one SIB -SHB, its γi|index is at the upstream
level, ranks the eighth; nine SIBs’ γi|index are at the middle level, γCEB|index ranks the
11th, γCITIC|index, γBOCOM|index, γCMBC|index, γHXB|index, γBOB|index, γSPDB|index, γNBB|index

and γJSB|index ranks the 21th, 23th to 28th, and 30th; other nine SIBs’ γi|index are at the
lower level; the six state-owned commercial banks are almost unaffected by systemic
risks. That indicates that although the transaction scale and scope of banks are the basic
determining factors of systemic importance, the inter-bank correlation and its risk spillover
characteristics in the network have a more structural influence on their systemic importance
ranking in the financial system.

4.3. A Robustness Test

In order to test the reliability of the GCoVaR method used in this paper, a robustness
test is conducted by using the adjacency information entropy method. This method is also
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a network analysis approach and works well for investigating the direct and indirect con-
nection effects in the network, which helps to reflect the full view of systemic importance
of financial institutions in the financial system (Jamil and Yukongdi, 2020; Allen and Gale,
2000 [32,33]). The basic idea of the adjacency information entropy method is that it regards
each bank as a node in the banking network and computes the adjacency information
entropy of every node by calculating its degree of adjacency. Subsequently, the importance
of each node in the banking network is identified in line with the size of adjacency infor-
mation entropy. We calculate the adjacency information entropy H of each bank for the
54 public offered banks by referring to Equations (A8)–(A13) in Appendix C (For simplicity,
we assume λ = 0.5, means pay equal attention to the in-degree and out-degree). Then,
rankings of banks are obtained and demonstrated in Figure 4. Please refer to Appendix C
for specific calculation procedures.

Figure 4. The individual banks’ the adjacency information entropy. Notes: The last digit in parenthe-
ses of the bank code is the bank types, S stands for state-owned bank, J for joint-stock bank, C for city
commercial bank, and R for rural commercial bank.

The ranking of banks in Figure 4 are basically consistent with that in Figure 2 in terms
of the bank types. For some small and medium-sized city commercial banks e.g., NJB, JSB,
NBB, their risk features are much higher than those of SIBs. It shows that the GCoVaR
method used in this paper is robust and can provide useful measurement of the non-SIBs’
risk spillover effects and rankings of systemically risky banks.

5. Conclusions

In the banking system, banks are closely connected and interact with each other, thus
forming a financial network. Since the individual extreme risks of banks could be reflected
by tail risks, it is necessary to scientifically reveal the correlation mechanism of banks’ tail
risks and its heterogeneous characteristics. There is important theoretical and practical
significance to scientifically identifying the systemic importance of banks for effectively
preventing and controlling systemic risks of banking system.

In this paper, the GCoVaR method is used to measure the risk spillover intensity
between any two banks of China’s banking system. The results show that:

1. Compared with SIBs, the non-SIBs are weaker to resist systemic risk impact. Figure 3
ranks the individual banks based on the intensity of systemic risk impact in descend-
ing order. Most of the SIBs have a stronger ability to withstand the impact of systemic
risks in the banking sector, especially the state-owned SIBs are almost unaffected
by systemic risk in terms of γi|index. On the contrary, non-SIBs are mostly severely
affected by systemic risks.

2. China’s banking risk spillover has characteristics of hierarchical diffusion from rural
commercial banks to city commercial banks to joint-stock commercial banks and
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state-owned commercial banks. It is mainly from non- SIBs that SIBs receive large
risk impacts. It can be seen that in China’s banking system, some non-SIBs, especially
some city commercial banks, are more vulnerable to the shocks of systemic risk than
SIBs, and they are more likely to act as key intermediaries to transmit risk to SIBs,
in turn to trigger systemic risk. So, if the risk prevention and control efforts for the
key intermediary are insufficient, the seemingly small risk shocks are likely to be
transmitted from non-SIBs to SIBs, thus generating the ‘butterfly effect’ of risk shocks
and inducing systemic risks in the banking sector.

In view of this, we propose that the supervisory authority should not only pay close
attention to the SIBs, but also needs to strengthen the identification and regulation of the
key intermediaries in the process of preventing and controlling systemic risks. Taking CDB
(with a total asset of 652.43 billion yuan) as an example, its contribution to the systemic
risk of China’s banking sector is much higher than that of other banks with larger total
assets (see Appendix A). The reason is that total asset size and risk spillover are two
dimensions to determine the importance of banks. That is, in addition to SIBs officially
being designated, it should be based on different perspectives, e.g., risk spillover intensity
to identify and pay attention to the key intermediaries. For these kinds of banks, a dynamic
management scheme should be established for real-time supervision of their transaction
scale and frequency of business operations, and focusing on reducing the possibility and
scope of risk spillover, so as to reduce the systemic risk accumulation. The use of risk
spillover intensity to distinguish key intermediaries will help regulators not only pay
attention to banks that are too big to fail, but also treat seriously the key intermediaries of
“risk spillover too strong to fail” in the financial network, so as to avoid missing real SIBs
and ensure the stability of the banking system.
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Appendix A.

Table A1. Sample of China listed banks in June 2022–June 2023 (total assets for the quarter ending,
30 June 2023).

Institution Code Short Name
Total Assets

(Billion Yuan)
Attributes of

Banks

1 Bank of China BOC 24,402.66

Six state-owned
banks

2 Industrial and Commercial Bank of
China ICBC 33,345.06

3 Bank of Communications BOCOM 10,697.62
4 China Construction Bank CCB 28,132.25
5 Agricultural Bank of China ABC 27,205.05
6 Postal Savings Bank of China PSBC 11,353.26

7 Ping An Bank PAB 4468.51

Ten joint-stock
commercial

banks

8 Shanghai Pudong Development Bank SPDB 7950.22
9 China Minsheng Banking CMBC 6950.23
10 China Merchants Bank CMB 8361.45
11 Hua Xia Bank HXB 3399.82
12 Industrial Bank CIB 7894.00
13 China CITIC Bank CITIC 7511.16
14 China Zheshang Bank ZSB 2048.23
15 China Everbright Bank CEB 5368.11
16 China Bohai Bank Co., Ltd. CBH 1393.52

117



Fractal Fract. 2023, 7, 735

Table A1. Cont.

Institution Code Short Name
Total Assets

(Billion Yuan)
Attributes of

Banks

17 Bank of Ningbo NBN 1626.75

Twenty-eight
city commercial

banks

18 Bank of Nanjing NJB 1517.08
19 Bank of Beijing BOB 2900.01
20 Bank of Jiangsu JSB 2337.89
21 Bank of Guiyang GYB 590.68
22 Bank of Hangzhou HZB 1169.26
23 Bank of Shanghai SHB 2462.14
24 Bank of Jinzhou JZB 777.99
25 Bank of Gansu GSB 342.36
26 Bank of Chendu CDB 652.43
27 Weihai City Commercial Bank WHCB 267.60
28 Xiamen International Bank XMIB 285.15
29 Jin Shang Bank JSBk 270.94
30 Bank of Chongqing CHB 561.64
31 Bank of Changsha CSB 704.24
32 Bank of Qingdao BQD 459.83
33 Zhongyuan Bank ZYB 757.48
34 Bank of Suzhou BSZ 388.07
35 Bank of Xi’an XAB 306.39
36 Bank of Guizhou GZB 456.40
37 Huishang Bank HSB 1271.70
38 Bank of Zhengzhou ZZB 547.81
39 Tianjin City CommercialBank TCC 687.76
40 Bank of Jiujiang JJB 415.79
41 Luzhou City Commercial Bank LCC 118.89
42 Jiangxi Bank JXB 458.69
43 Shengjing Bank SJB 1037.96
44 Harbin Bank HRB 598.60

45 Jiangyin Rural Commercial Bank JRC 142.77

Ten rural
commercial

banks

46 Wuxi Rural Commercial Bank WRCB 180.02
47 Changshu Rural Commercial Bank CRCB 208.69

48 Jiangsu Suzhou Rural Commercial
Bank JSR 139.44

49 Jiutai Rural Commercial Bank JRCB 200.36
50 Chongqing Rural Commercial Bank CRC 1135.93
51 Qingdao Rural Commercial Bank QRCB 406.81
52 Guangzhou Rural commercial Bank GRCB 1027.87
53 Rural Commercial Bank of

Zhangjiagang ZRCB 143.82
54 Jiangsu Zijin Rural Commercial Bank JZR 217.66

Appendix B. Edge Distribution, Time Varying Copula Model and Its Parameter Estimation

Since financial return series often have empirical stylized facts, such as volatility
clustering, price reversals, asymmetric distributions, fat tails, GARCH model can effectively
model time series with conditional heteroscedasticity. Therefore, ARMA(p, q)-GARCH(1,
1) model driven by a generalized error distribution (GED) is chose to fit return series Ri

t

of bank i and Rj
t of bank j, respectively. The mean value equation of this model can be

described by the following ARMA(p, q) process:

Rτ
t = ϕ0 +

p

∑
ρ = 1

ϕjRτ
t−ρ + ετ

t +
q

∑
ρ = 1

θρετ
t−ρ = μτ

t + ετ
t , τ = i, j, (A1)

Here, p and q are non-negative integers. ετ
t = στ

t zτ
t , zτ

t follows the GED distribution
with the mean of 0 and degrees of freedom of υ, and στ

t is the conditional standard deviation,
satisfying the variance equation as follows:

στ
t

2 = ω + α1ετ
t−1 + β1στ

t−1
2, (A2)

Here, ω, α1, and β1 are the parameters to be estimated. In order to ensure the station-
ality of the series, α1 and β1 must satisfy α1 + β1 < 1. After estimating all model parameters
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with maximum likelihood estimation method, the marginal distribution function of the
return series of bank i and bank j can be obtained:

Fτ(Rτ
t ) = P(ετ

t ≤ Rτ
t − μτ

t ) = P
(

zτ
t ≤

Rτ
t − μτ

t
στ

t

)
= GEDυ

(
Rτ

t − μτ
t

στ
t

)
, (A3)

Here, GEDυ(·) is the distribution function of the generalized error distribution, and its
expression is:

GEDυ(x) =

x∫
−∞

Γ
(

3
υ

) 1
2
Γ
(

1
υ

)−1
2

exp

⎧⎪⎨⎪⎩−|x|υ
⎡⎣ Γ
( 3
υ

)
Γ
(

1
υ

)
⎤⎦ υ

2
⎫⎪⎬⎪⎭dx, (A4)

Copula is a function that connects edge distributions to construct joint distributions.
It can capture the nonlinear and asymmetric relations between variables. There are many
forms of Copula function. In order to accurately describe the dependent structure between
bank i and bank j, Gaussian Copula, t-Copula, Clayton Copula and SJC Copula with
different tail characteristics are selected for modeling respectively. By using AIC values of
different models, the Copula function type with the best fitting effect is selected to further
measure generalized CoVaR (GCoVaR).

We use two-stage stepwise estimation method to estimate its parameters, and the
specific steps are as follows:

First, all parameters θ in the margin distribution function of the return series of bank i
and j fitted by ARMA(p, q)-GARCH(1, 1) model are estimated. The estimated values of the
parameters are:

θ̂τ = argmax
T

∑
t = 1

ln f τ
t (R

τ
t ; θτ), τ = i, j, (A5)

Here, T is the sample size, and f τ
t (·) is the density function of the edge distribution.

Second, put the marginal distribution estimated in the first step into the time-varying
Copula model. The maximum likelihood method is also used to estimate all parameters θC
in the time-varying Copula model, the estimated values are:

θ̂c = argmax
T

∑
t = 1

lnct(Fj (R
j
t; θ̂ j), Fi

(
Ri

t; θ̂i
)

; θc), (A6)

where, ct(·, ·) is the time-varying Copula density function.
To estimate the parameters for different time-varying Copula models respectively, and

calculate AIC values of different models. AIC values are calculated as follows:

AIC = 2k− 2
T

∑
t = 1

lnct(Fj (R
j
t; θ̂ j), Fi

(
Ri

t; θ̂i
)

; θc), (A7)

Here, k is the number of model parameters. The smaller AIC value is, the higher fitting
degree model is. Therefore, the time-varying Copula model with the minimum AIC value
is selected as the optimal model, and the GCoVaR between bank i and j is measured on
that.

The following R program are used to give probability density functions of Gaussian
Copula, t-Copula, Clayton Copula, and Gumbel Copula functions respectively, and the
four copula functions are used to synthesize the joint distribution for any distribution, and
their simulated data.
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library(copula)
library(psych)
library(VineCopula)

X_1 <- runif(100, 0, 100)
X_2 <-X_1+ runif(100, 0, 50)

plot(X_1,X_2)
abline(lm(X_2~X_1),col=‘red’,lwd=1)
cor(X_1,X_2,method=‘spearman’)

#u <- pobs(as.matrix(cbind(X_1,X_2)))[,1]
#v <- pobs(as.matrix(cbind(X_1,X_2)))[,2]
#selectedCopula <- BiCopSelect(u,v,familyset=NA)
#selectedCopula

gaussian.cop <- normalCopula(dim=2)
set.seed(500)

m <- pobs(as.matrix(cbind(X_1,X_2)))
fit <- fitCopula(gaussian.cop,m,method=‘ml’)
coef(fit)
rho <- coef(fit)[1]

cor(u,method=‘spearman’)
X_1_mu <- mean(X_1)
X_1_sd <- sd(X_1)
X_2_mu <- mean(X_2)
X_2_sd <- sd(X_2)
copula_dist <- mvdc(copula=normalCopula(rho,dim=2), margins=c(“norm”,”norm”),
paramMargins=list(list(mean=X_1_mu, sd=X_1_sd),
list(mean=X_2_mu, sd=X_2_sd)))
sim <- rMvdc(3965,copula_dist)
plot(X_1,X_2,main=‘relation’)
points(sim[,1],sim[,2],col=‘red’,pch=‘.’)
legend(‘bottomright’,c(‘Observed’,’Simulated’),col=c(‘black’,’red’),pch=21)
#################################################
t.cop <- tCopula(dim=2)
set.seed(500)
m <- pobs(as.matrix(cbind(X_1,X_2)))
fit <- fitCopula(t.cop,m,method=‘ml’)
coef(fit)
rho <- coef(fit)[1]
df <- coef(fit)[2]
persp(tCopula(dim=2,rho,df=df),dCopula)

u <- rCopula(3965,tCopula(dim=2,rho,df=df))
plot(u[,1],u[,2],pch=‘.’,col=‘blue’)
cor(u,method=‘spearman’)
X_1_mu <- mean(X_1)
X_1_sd <- sd(X_1)
X_2_mu <- mean(X_2)
X_2_sd <- sd(X_2)

copula_dist <- mvdc(copula=tCopula(rho,dim=2,df=df), margins=c(“norm”,”norm”),
paramMargins=list(list(mean=X_1_mu, sd=X_1_sd),
list(mean=X_2_mu, sd=X_2_sd)))
sim <- rMvdc(3965,copula_dist)
plot(X_1,X_2,main=‘relation’)
points(sim[,1],sim[,2],col=‘red’,pch=‘.’)
legend(‘bottomright’,c(‘Observed’,’Simulated’),col=c(‘black’,’red’),pch=21)
##############################################################
clayton.cop <- claytonCopula(dim=2)
set.seed(500)
m <- pobs(as.matrix(cbind(X_1,X_2)))
fit <- fitCopula(clayton.cop,m,method=‘ml’)
coef(fit)
alpha <- coef(fit)[1]

persp(claytonCopula(dim=2,alpha),dCopula)

u <- rCopula(3965,claytonCopula(dim=2,alpha))
plot(u[,1],u[,2],pch=‘.’,col=‘blue’)
cor(u,method=‘spearman’)
X_1_mu <- mean(X_1)
X_1_sd <- sd(X_1)
X_2_mu <- mean(X_2)
X_2_sd <- sd(X_2)
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copula_dist <- mvdc(copula=claytonCopula(dim=2,alpha), margins=c(“norm”,”norm”),
paramMargins=list(list(mean=X_1_mu, sd=X_1_sd),
list(mean=X_2_mu, sd=X_2_sd)))
sim <- rMvdc(3965,copula_dist)
plot(X_1,X_2,main=‘relation’)
points(sim[,1],sim[,2],col=‘red’,pch=‘.’)
legend(‘bottomright’,c(‘Observed’,’Simulated’),col=c(‘black’,’red’),pch=21)
#############################################################
gumbel.cop <- gumbelCopula(dim=2)
set.seed(500)
m <- pobs(as.matrix(cbind(X_1,X_2)))
fit <- fitCopula(gumbel.cop,m,method=‘ml’)
coef(fit)
alpha <- coef(fit)[1]

persp(gumbelCopula(dim=2,alpha),dCopula)

u <- rCopula(3965,gumbelCopula(dim=2,alpha))
plot(u[,1],u[,2],pch=‘.’,col=‘blue’)
cor(u,method=‘spearman’)
X_1_mu <- mean(X_1)
X_1_sd <- sd(X_1)
X_2_mu <- mean(X_2)
X_2_sd <- sd(X_2)

copula_dist <- mvdc(copula=gumbelCopula(dim=2,alpha), margins=c(“norm”,”norm”),
paramMargins=list(list(mean=X_1_mu, sd=X_1_sd),
list(mean=X_2_mu, sd=X_2_sd)))
sim <- rMvdc(3965,copula_dist)
plot(X_1,X_2,main=‘relation’)
points(sim[,1],sim[,2],col=‘red’,pch=‘.’)
legend(‘bottomright’,c(‘Observed’,’Simulated’),col=c(‘black’,’red’),pch=21)

Appendix C. Algorithm for the Adjacency Information Entropy of the Bank

Following Hu et al. [34] and Zhao et al. [35], the calculation steps for the adjacency
information entropy of bank j are as follows:

1. calculate the weight (Eji) of effect on bank j by bank i.

Eji =
eji

∑i eji
, (A8)

where eji denotes the extent of the risk connection effect by bank i on bank j, can be
obtained by Granger causality test between the return rate offered by banks’ stocks.

2. calculate the in-degree of bank j (sin
j ), which denotes the risk spillover received by

bank j,
sin

j = ∑
i∈j

Eji, (A9)

where j is the set of banks connected with bank j.
3. calculate the out-degree of bank j (sout

j ), which denotes the risk spillover transmitted
by bank j,

sout
j = ∑

i∈j

Eij, (A10)

4. calculate the total risk spillover of bank j (sj),

sj = λsin
j + (1− λ)sout

j , (A11)

where λ is the relative importance effect coefficient.
5. calculate the adjacency degree (Qi),

Qi = λ ∑
k∈i

sik + (1− λ)∑
k∈i

ski (A12)
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6. calculate the adjacency information entropy of bank j (Hj),

Hj = ∑
i∈j

∣∣∣∣(− sj

Qi
log

sj

Qi

)∣∣∣∣, (A13)
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Abstract: The foreign exchange market comprises the largest global volume, so the pricing of foreign
exchange options has always been a hot issue in the foreign exchange market. This paper treats
the exchange rate as an uncertain process that is described by an uncertain fractional differential
equation, and establishes a new uncertain fractional currency model. The uncertain process is driven
by Liu process, and, with the application of the Mittag-Leffler function, the solution of the fractional
differential equation in a Caputo sense is presented. Then, according to the uncertain fractional
currency model, the pricing formulas of European and American currency options are given. Lastly,
the two numerical examples of European and American currency options are given; the price of
the currency option increased when p changed from 1.0 to 1.1, and prices with different p were all
decreasing functions of exercise price K.

Keywords: fractional differential equation; uncertainty theory; currency model; currency option pricing

1. Introduction

Options originated from the earliest stock trading. Until the 1980s, due to the in-
creasingly fierce exchange rate fluctuations in the international financial market and the
development of international trade, foreign exchange options gradually developed. The
first foreign exchange options were sterling and deutschemark options undertaken by the
Philadelphia Stock Exchange in 1982. From the perspective of trading volume, the foreign
exchange options market has become the deepest and largest global option market with
strong liquidity [1]. Therefore, establishing mathematical models for foreign exchange
options is significant in modern mathematical finance [2].

With the development of foreign exchange options, pricing has become a hot issue
in the financial market. Scholars first use probability theory to solve the pricing problem
of financial markets. However, many real and reliable data are needed in the application
of probability theory, and there are certain obstacles during data collection in real life and
regarding the reliability of data, which means that probability theory may cause loopholes
in practical applications. To solve the above problems, scholars replace probability with the
belief degree of experts in the respective professional field. However, subsequent studies
found that the degree of belief is also not accurate and can be easily influenced by personal
perspectives [3], which can lead to huge deviations in the results.

It was not until 2007 that Liu [4] first put forward the uncertainty theory that the
problem of the irrationality of expert belief degree was solved. Uncertainty theory is a new
branch of mathematics based on four axioms: normalization, duality, subadditivity, and
product axiom. Due to its ability to deal with imprecise information such as subjective
judgment, uncertainty theory boasts a series of major achievements. For more information,
please refer to [5,6]. Liu [5,7] optimized uncertainty theory by using an uncertainty measure,
and gave the definition of uncertain process. In order to study the uncertain calculus of
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uncertain processes, Liu proposed the Liu process [6] in 2009, which is an uncertain process
with stationary independent increment that can more accurately simulate the uncertain
dynamic system.

On this basis, Liu [7] established a differential equation that is driven by an uncertain
process in 2008. Subsequently, many studies have been conducted. Chen and Liu [8] put
forward the existence and uniqueness theorem of solutions under the global Lipschitz
condition. Gao [9] proved that the theorem also holds under the local Lipschitz condition.
Chen and Liu [8] obtained the analytic solutions of linear uncertain differential equations.
Yao and Chen [10] proposed a numerical method to solve uncertain differential equations.

Since stock prices follow the Liu process, Liu [7] introduced the uncertainty theory
into a financial field for the first time and proposed an uncertain stock model. Soon after
that, the European option price formula was derived from Liu’s work. Then, Chen [11]
further derived the American option pricing formula. Peng and Yao [12] proposed another
uncertain stock model and studied the pricing formula of the option. Gao [13] gave the
price formulas of the American barrier option. Chang and Sun [14] proposed a nonlinear
multiperiod portfolio selection model based on uncertainty theory to solve an uncertain
multiperiod portfolio selection problem. Furthermore, in addition to the stock market,
scholars applied the uncertainty model to the other financial fields. Chen and Gao [15]
inserted the uncertainty model into the interest rate market and proposed a pricing formula
for zero coupon bonds. Liu [16] introduced the uncertainty model into the insurance
market field.

Scholars from different countries have performed many studies on using uncertain
differential equations to solve financial problems. However, because the volatility of
financial market is continuous, an uncertain differential equation cannot precisely reflect
this property. Therefore, an uncertain fractional differential equation is more suitable for
financial markets due to its continuity and memory.

Because the assumptions of fractional differential equations are more consistent with
the facts and more reasonable to solve practical problems, many scholars have studied
fractional differential equations. Lakshmikantham et al. [17] expounded the basic theory of
fractional differential equations. Lakshmikantham and Vasundhara Devi [18] elaborated the
details of the theory of fractional differential equations in Banach space. On the basis of the
above theories, Belmekki et al. [19] studied the existence of periodic solutions for nonlinear
fractional differential equations. Kosmatov [20] studied the integral equations and initial
value problems of nonlinear fractional differential equations. Zhang [21] explored the
monotone iterative method for the initial value problem of fractional derivatives. In 2013,
Zhu [22] introduced uncertainty into fractional differential equations for the first time and
gave two forms of UFDEs. Then, Zhu [23] gave the Lipschitz condition and linear growth
conditions, and obtained the existence and uniqueness of UFDE’s solution. Jin et al. [24]
studied the extremal problem of uncertain fractional differential equations. On the basis of
the expected and optimistic values, Lu [25] gave the pricing formulas of the Asian options,
which are driven by an uncertain fractional differential equation.

Foreign exchange options are becoming increasingly important, but there are few
scholars using uncertain fractional differential equations to price foreign exchange options.
Therefore, this paper introduces an uncertain fractional option model and deduces its
pricing formula.

2. Preliminary

2.1. Numerical Methods of the Solution of UFDEs

In this part, we introduce some basic knowledge regarding uncertainty theory and
the results obtained by some scholars. These results include general methods for obtaining
the numerical solutions of UFDEs. This section is a preparation for the later discussion
on option pricing, so it is relatively simple. For more detailed and more comprehensive
knowledge about uncertainty and UDEs, please refer to [5–7].
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Suppose there are two variables, p and Ct. p is a variable with an independent
stationary property that satisfies the following conditions: 0 ≤ n − 1 < p ≤ n. Ct is a
Liu normative process [6] that satisfies the following conditions: (i) If t = 0, then C0 = 0,
and the sampling paths are always Lipschitz-continuous; (ii) the Liu normative process
has a stable and independent increment; (iii) each increment Cs+t − Cs corresponds to a

normal uncertain distribution: Φt(x) =
(

1 + exp
(
− πx√

3t

))−1
, x ∈ � . The expected value

of this normal uncertain distribution is 0, and the variance is t2. In addition, there are two
functions, F and H, which are continuous on [0, T]×R.

Zhu [22] presented two forms of UFDEs: the Riemann–Liouville and Caputo types.
For this article, we just focus on UFDEs of the Caputo type, that is,{

cDpXt = F(t, Xt) + H(t, Xt)
dCt
dt

X(k)
t |t=0= xk, k = 0, 1, . . . , n− 1.

(1)

Lu [26] obtained the result of (1) that satisfies the following integral equation:

Xt =
n−1

∑
k=0

xktk

Γ(k + 1)
+

1
Γ(p)

∫ t

0
(t− s)p−1F(s, Xs)ds

+
1

Γ(p)

∫ t

0
H(s, Xs)(t− s)p−1dCs, (2)

where Γ(p) =
∫ ∞

0 tp−1 exp(−t)dt is the gamma function.
In addition, if F(t, Xt) = AXt + B(t), H(t, Xt) = σ(t), we obtain a special type

of UFDE: {
cDpXt = AXt + B(t) + σ(t) dCt

dt
X(k)

t |t=0= xk, k = 0, 1, . . . , n− 1.
(3)

The Mittag-Leffler function was applied to the solution of (3), and Lu [26] obtained

Xt =
n−1

∑
k=0

xktkEp,(k+1)(Atp) +
∫ t

0
(t− s)p−1Ep,q(A(t− s)p)B(s)ds

+
∫ t

0
(t− s)p−1Ep, q(A(t− s)p)σ(s)dCs. (4)

where Ep,(k+1)(Atp) satisfies the Mittag-Leffler function:

Eα,β(z) =
∞

∑
k=0

zk

Γ(αk + β)

In terms of the properties of the solutions, Zhu [23] reported that the coefficients F(t, x)
and H(t, x) satisfied

1. Lipschitz condition:

|F(t, x)− F(t, y)|+ |H(t, x)− H(t, y)| ≤ L|x− y|, ∀x, y ∈ Rn, t ∈ [0,+∞),

2. linear growth condition:

|F(t, x)|+ |H(t, x)| ≤ L(1 + |x|), ∀x ∈ Rn, t ∈ [0,+∞),

where L is a positive constant, and Xt is sample-continuous. Then, we can find the Xt,
the solution of UFDE (1), which should exist and be unique.
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In order to obtain the numerical solutions of UFDEs, an α-path is introduced into the
solution process. The α-path is a solution to the following equation:{

cDpXα
t = F(t, Xα

t )+ | H(t, Xα
t ) | Φ−1(α)

X(k)
t |t=0= xt, k = 0, 1, . . . , n− 1,

(5)

where 0 < α < 1, Φ−1(α) =
√

3
π ln α

1−α . Equation (5) is the relevant FDE of UFDE (1).
Lu [27] then gave the definition of α-path, which was used to build the relationship

between UFDEs and FDE. Suppose that Xt is the unique solution of (1), and Xα
t is the

α-path of the (1). Then, { M{Xt ≤ Xα
t , ∀t ∈ [0, T]} = α

M{Xt > Xα
t , ∀t ∈ [0, T]} = 1− α

(6)

and the IUD of solution Xt is
Ψ−1

s (α) = Xα
t , (7)

which can be seen in [27].

2.2. Extreme Values for the Solution to UFDE

This section introduces the research on the extremum of uncertain fractional differen-
tial equations. Scholars have carried out relevant studies. Jin and Zhu et al. [24] studied the
extreme value problem for solutions of a class of uncertain fractional differential equations.
On the basis of the definition of α-path, the inverse theorem of uncertain distribution of
extremum is given. The corresponding numerical algorithm was designed, and the validity
of the algorithm is verified by an example.

According to Jin’s work [24], the definition of the extreme value of the uncertain
fractional differential equation is as follows:

Let Xt and Xα
t be the unique solution, and the α-path for the following UFDE:{

cDpXt = F(t, Xt) + H(t, Xt)
dCt
dt

X(k)
t |t=0= xk, k = 0, 1, . . . , n− 1

respectively.
There exists an IUD of supremum sup

0≤t≤s
J(Xt),

Υ−1
s (α) = sup

0≤t≤s
J(Xα

t ), (8)

where J(x) strictly increases. Comparably,

Υ−1
s (α) = sup

0≤t≤s
J(X1−α

t ),

where J(x) strictly decreases.
Simultaneously, there exists an IUD of infimum inf

0≤t≤s
J(Xt),

Υ−1
s (α) = inf

0≤t≤s
J(Xα

t ),

where J(x) strictly increases. Comparably,

Υ−1
s (α) = inf

0≤t≤s
J(X1−α

t ),

where J(x) strictly decreases.
For the specific proof process, please refer to Jin et al. [24].
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2.3. Uncertain Currency Model

As a result of trade, inflation, and other factors, the exchange rate is always changing.
Assuming that the exchange rate follows the geometric Liu process is acceptable. For the
above reasons, Liu [28] introduced the uncertain differential equation into the currency
option pricing model. Assume that Xt is the domestic risk-free currency, Yt is the foreign
risk-free currency, and Zt is the exchange rate, and they are defined as follows:⎧⎪⎨⎪⎩

Xt = X0eut

Yt = Y0evt

Zt = Z0eet+σCt ,
(9)

where u represents the domestic interest rate, and v represents the foreign interest rate.
Here, Zt follows a geometric Liu process with log-drift e and log-diffusion σ.

On the basis of the above assumptions and uncertainty theory, an uncertain currency
model with uncertain exchange rate is given as follows:⎧⎪⎨⎪⎩

dXt = uXtdt
dYt = vYtdt
dZt = eZtdt + σZtdCt.

(10)

Exchange rate Zt has the following inverse uncertainty distribution:

Φ−1
t (α) = Z0 exp(et +

√
3σt
π

ln
α

1− α
).

2.4. Uncertain Fractional Stock Model

In existing studies [16,24,29], scholars attempted to apply the uncertain fractional
differential equation to the stock pricing model. Assume that At represents the bond price,
Bt is the stock price, and r is the constant interest rate. On the basis of the UFDE of the
Caputo type, the stock model with geometric canonical process can be given as follows:⎧⎪⎨⎪⎩

dAt = rAtdt
cDpBt = eBt + σBt

dCt
dt

B(k)(0) = bk, k = 0, 1, . . . , n− 1,
(11)

where e is the stock drift, and σ is the stock diffusion.
According to Equation (4), the UFDE (11) has an α-path:

Bα
t =

n−1

∑
k=0

bktkEp,(k+1)

(
(e+ | σ | Φ−1(α))tp

)
. (12)

Jin et al. [24] performed a detailed study on the pricing of call and put options of
American stocks by using uncertain differential equations; for more details, see Jin et al. [24].

3. European Currency Option Pricing

Since foreign exchange options are a variant of stock options, we discuss the pricing
of European currency options on the basis of the previous stock model. In this section, we
use the uncertain fractional differential equation to obtain the European currency option
pricing formula.
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3.1. Uncertain Fractional Currency Model

On the basis of the hypothesis and conclusions of the uncertain monetary model in
the preliminary data, a novel uncertain fractional currency model with uncertain exchange
rate is defined as follows: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

dXt = uXtdt
dYt = vYtdt
cDpZt = eZt + σZt

dCt
dt

Z(k)(0) = zk, k = 0, 1, . . . , n− 1.

(13)

Exchange rate Zt has the following inverse uncertainty distribution:

Ψ−1
s (α) = Zα

t =
n−1

∑
k=0

zktkEp,(k+1)

(
(e+ | σ | Φ−1(α))tp

)
. (14)

3.2. Option Pricing Model

In the process of option pricing, the most important link is to ensure the balance of
profits between buyer and seller. Let us consider a European currency option with contract
price f and exercise price K. In this section, K is a preagreed exchange rate. Suppose one
is a buyer of the above European currency option who purchased the European currency
option contract for f at time t = 0. Then, when the option is executed at T (the European
option can only be executed at option expiry date T), one obtains (ZT − K)+ as the return.
Thus, one can easily calculate their expected return as a buyer at time t = 0:

− f + exp(−uT)E[(ZT − K)+], (15)

which is equal to the present value of the return E[(ZT − K)+] minus the option contract
price f paid at time t = 0, where the value of return at present is influenced by domestic
interest rate u because we use domestic risk-free currency as settlement currency. Hence,
exp(−uT) can be viewed as the discount rate.

Now let us switch the identity, assuming one is the seller of the above European
currency option who sold the European currency option contract for f at time t = 0. At this
point, there is an income f . Then, when the contract is executed at time T (the European
option only can be executed at option expiry date T), one pays (1− k/ZT)

+. As a result,
one can easily calculate their expected return as a trader at T:

f − Z0 exp(−vT)E[(1− K/ZT)
+], (16)

which is equal to the income obtained by the seller selling the option at time t = 0, the price
of option f , minus the present value of potential loss E[(1− K/ZT)

+] at time T, where the
discount rate is written as exp(−vT) because, to a seller, the settlement currency is foreign
risk-free currency. However, the calculating unit of f is domestic risk-free currency. Then,
exchange rate Z0 (at t = 0) is used to calculate the value that has the same unit of f .

To obtain a fair price for a currency option, the expected return of the buyer and seller
should be equal. Thus, Equations (15) and (16) need to be equal, that is,

− f + exp(−uT)E[(ZT − K)+] = f − Z0 exp(−vT)E[(1− K/ZT)
+].

On the basis of the above discussion, it can be concluded that the price of a European
currency option with option expiry time T and strike price K is

f =
1
2
(
exp(−uT)E[(ZT − K)+] + Z0 exp(−vT)E[(1− K/ZT)

+]
)
, (17)

which was defined by Liu et al. [28] in 2015.
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In order to obtain the option price of uncertain fractional differential equation mon-
etary Model (13), we need to give the formula for value f . Assuming that the option in
Model (13) is a European currency option with option expiry time T and strike price K, the
price of the European currency option is then given in the following theorem.

Theorem 1. Assume that a European currency option for uncertain fractional currency Model (13)
has a strike price K and an option expiry date T. Then, the European currency option price is

f =
1
2

exp(−uT)
∫ 1

0

(
n−1

∑
k=0

zkTkEp,(k+1)

(
(e+ | σ | Φ−1(α))Tp

)
− K

)+

dα

+
1
2

Z0 exp(−vT)
∫ 1

0

(
1− K/

(
n−1

∑
k=0

zkTkEp,(k+1)

(
(e+ | σ | Φ−1(α))Tp

)))+

dα.

where Ep,(k+1)
(
(e+ | σ | Φ−1(α))Tp) satisfies the Mittag-Leffler function, and zk = Zt

(k)(0)
represent the derivatives of exchange rate at t = 0.

Proof. For European options, the execution date is a fixed time T. When ZT increases,
(ZT − K)+ and (1− K/ZT)

+ also increase. In other words, (ZT − K)+ and (1− K/ZT)
+

are increasing functions of ZT . Thus, they all had inverse uncertainty distribution.
According to Equation (14), the inverse uncertainty distribution of (ZT − K)+ is

Φ−1(α) =

(
n−1

∑
k=0

zkTkEp,(k+1)

(
(e+ | σ | Φ−1(α))Tp

)
− K

)+

.

The inverse uncertainty distribution of (1− K/ZT)
+ is

Ψ−1(α) =

(
1− K/

(
n−1

∑
k=0

zkTkEp,(k+1)

(
(e+ | σ | Φ−1(α))Tp

)))+

.

To sum up, since f = f1 + f2, the European currency option pricing formula is
proved.

Remark 1. If p = 1, it is obvious that the inverse uncertainty distribution of (ZT − K)+ and
(1− K/ZT)

+ can be rewritten as

Φ−1(α) =

(
Z0 exp

(
eT +

√
3σT
π

ln
α

1− α

)
− K

)+

and

Ψ−1(α) =

(
1− K

/
Z0 exp

(
eT +

√
3σT
π

ln
α

1− α

))+

,

respectively, which are consistent with the results in Liu et al. [28] for UDEs.

4. American Currency Option Pricing

The greatest difference between European and American currency options is the
exercise time. Comparatively speaking, the American option is more flexible in time than
the European option is. In Section 3, we discussed the pricing of European currency options.
In this section, we use the uncertain fractional differential equation to obtain the pricing
formula of American currency options.
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Option Pricing Model

Let us consider an American currency option with contract price of f and exercise price
K. Suppose that one is a buyer of the above American currency option who purchased the
American currency option contract for f at time t = 0. Then, when the option is executed
during its life (the American option can be executed at any time before option expiry date
T), one obtains sup

0≤s≤T
exp(−rs)(Zs − K)+ as return. Thus, one can easily calculate their

expected return as a buyer at time t = s:

− f + E[ sup
0≤s≤T

exp(−rs)(Zs − K)+], (18)

which is equal to the present value of the return sup
0≤s≤T

exp(−us)(Zs−K)+ minus the option

contract price f paid at time t = 0. exp(−vs) can be viewed as a discount rate, whose
reason is similar to that in European currency option pricing model.

Similarly, now let us switch the identity, assuming that one is the seller of the above
American currency option who sold the American currency option contract for f at time
t0. At this point, there is an income f . Then, when the contract is executed during its life
(the American option can be executed at any time before option expiry date T), one pays
sup

0≤s≤T
Z0 exp(−rs)(1− K/Zs)+. As a result, one can easily calculate their expected return

at t = s:
f − E[ sup

0≤s≤T
Z0 exp(−vs)(1− K/Zs)

+], (19)

which is equal to the income obtained by the bank selling the option at time t0 minus the
present value of potential loss sup

0≤s≤T
Z0 exp(−rs)(1− K/Zs)+ at time t = s.

A fair option price needs to render the expected return of the buyer and the seller
equal at time t = 0 (before the beginning of the option). Thus, Equations (18) and (19) need
to be equal, that is,

− f + E[ sup
0≤s≤T

exp(−us)(Zs − K)+] = f − E[ sup
0≤s≤T

Z0 exp(−vs)(1− K/Zs)
+].

On the basis of the above discussion, it can be concluded that the price of an American
currency option, the option expiry date T (during the whole life of the currency option, the
option can be executed) and the strike price K is

f =
1
2
(E[ sup

0≤s≤T
exp(−us)(Zs − K)+] + E[ sup

0≤s≤T
Z0 exp(−vs)(1− K/Zs)

+]. (20)

which was also defined by Liu et al. [28] in 2015.
In order to obtain the option price of uncertain fractional differential equation mon-

etary Model (13), we need to give the formula for value f . Assuming that the option in
Model (13) is an American currency option with option expiry date T and strike price K,
the price of the American currency option is given in the following theorem.

Theorem 2. Assume that an American currency option for uncertain fractional currency Model (13)
has a strike price K and an option expiry date T. Then, the American currency option price is

f =
1
2

∫ 1

0
sup

0≤s≤T
exp(−us)

(
n−1

∑
k=0

zkskEp,(k+1)

(
(e+ | σ | Φ−1(α))sp

)
− K

)+

dα

+
1
2

∫ 1

0
sup

0≤s≤T
Z0 exp(−vs)

(
1− K/

(
n−1

∑
k=0

zkskEp,(k+1)

(
(e+ | σ | Φ−1(α))sp

)))+

dα.
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Proof. When Zs increases, sup
0≤s≤T

exp(−us)(Zs − K)+ and sup
0≤s≤T

Z0 exp(−vs)(1− K/Zs)+

also increase. In other words, sup
0≤s≤T

exp(−us)(Zs−K)+ and sup
0≤s≤T

Z0 exp(−vs)(1−K/Zs)+

are increasing functions of Zs.
According to Equation (8), they all have inverse uncertainty distribution. The inverse

uncertainty distribution of sup
0≤s≤T

exp(−us)(Zs − K)+ is

Φ−1(α) = sup
0≤s≤T

exp(−us)

(
n−1

∑
k=0

zkskEp,(k+1)

(
(e+ | σ | Φ−1(α))sp

)
− K

)+

.

The inverse uncertainty distribution of sup
0≤s≤T

Z0 exp(−vs)(1− K/Zs)+ is

Ψ−1(α) = sup
0≤s≤T

Z0 exp(−vs)

(
1− K/

(
n−1

∑
k=0

zkskEp,(k+1)

(
(e+ | σ | Φ−1(α))sp

)))+

.

To sum up, since f = f1 + f2, the American currency option pricing formula is
proven.

Remark 2. If p = 1, it is obvious that the inverse uncertainty distribution of sup
0≤s≤T

exp(−us)

(Zs − K)+ and sup
0≤s≤T

Z0 exp(−vs)(1− K/Zs)+ can be rewritten as

Φ−1(α) = sup
0≤s≤T

exp(−us)

(
Z0 exp

(
es +

√
3σs
π

ln
α

1− α

)
− K

)+

and

Ψ−1(α) = sup
0≤s≤T

Z0 exp(−vs)

(
1− K

/
Z0 exp

(
es +

√
3σs
π

ln
α

1− α

))+

,

respectively, which are consistent with the results in Liu et al. [28] for UDEs.

5. Numerical Calculation

5.1. European Currency Option Pricing

Example 1. Assume that uncertain fractional currency Model (13) has u = 6%, v = 3%, e = 0.05,
σ = 0.3, and initial exchange rate Z0 = 4.2, p ∈ (0, 2]. Consider the European currency option
with expiration date T = 2 and a striking price K = 4.5.

In this numerical example, the two currencies are RMB and SGD, and the initial
exchange rate Z0 was changed a little. These two currencies and the financial markets in
both countries were considered to be stable enough, so the parameters in the example are
reasonable. In addition, z1 = 0.7861 represents the derivative of exchange rate at t = 0.

In order to simplify the calculation and reduce the computing time, a numerical
calculation was adopted for the integral calculation in numerical examples. Numerical
integration can solve most real-life problems, and its error acceptable. For this example,
we used the compound trapezoid formula whose interval value was 0.001. Let p =
0.1, 0.2, . . . , 1.9, 2.0, and we obtained the following European currency option price f .

As shown in Table 1, the price of the European currency option increased with an
increase in p in (0, 0.8], and decreased with an increase in p in (0.8, 1] and (1.1, 2]. The price
jumped when p changes from 1.0 to 1.1 because of the initial value of Z′(0). Such a jump
is similar to the results obtained by Lu [26]. Obviously, different initial values may cause
different values of price f .
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With the setting of u = 6%, v = 3%, e = 0.05, σ = 0.3, Z0 = 4.2, T = 2, and K = 4.5, we
obtained Table 1, which shows the variation in price f with different p, including its jump.
The compound Simpson formula is another numerical method to calculate numerical
integration, and its algebraic precision is better than that of the compound trapezoid
formula. We then changed the numerical method, using the compound Simpson formula
whose value was also 0.001. Then, we obtained the following European currency option
price f̃ in Table 2.

Table 1. Price of the European option with different p (compound Trapezoid formula).

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

f 0.7090 0.8147 0.8900 0.9420 0.9765 0.9977 1.0086 1.0113 1.0075 0.9986

p 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

f 1.7737 1.7489 1.7223 1.6943 1.6654 1.6357 1.6055 1.5750 1.5444 1.5138

Table 2. Price of the European option with different p (compound Simpson formula).

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

f̃ 0.7089 0.8146 0.8899 0.9419 0.9765 0.9977 1.0085 1.0112 1.0075 0.9985

p 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

f̃ 1.7736 1.7488 1.7222 1.6943 1.6653 1.6357 1.6055 1.5750 1.5444 1.5138

With the change in the method of numerical integration, we obtained another series of
price f̃ . From Table 2, we can intuitively observe that the prices of option changed little,
and some were the same in both tables. There existed a round-off error among computer
calculations, the methodical errors of the two numerical methods were small enough to be
ignored. Calculating

∣∣ f̃ − f
∣∣ then generated Figure 1.

Figure 1. The deviation value of prices
∣∣ f̃ − f

∣∣ between two formulas with different p.

As is shown in Figure 1, most of the deviation values of prices were smaller than 10−4

and becoming smaller. The values of f in the table were saved as four-digit decimals, so
the change in the numerical integration formula made little difference.

Remark 3. Though the compound Simpson formula has better algebraic precision, the application
of the compound trapezoid formula is more appropriate because of the shorter computing time and it
being easy for code writing.

Now, we discuss the European currency option price with a constant p and different
K, considering that K in [3.5, 5.5] and p = 0.9, 1.1, 1.9. With the comparison of the two
numerical methods above, we used the compound trapezoid formula to calculate numerical
integration and obtain f . Then, we could generate Figure 2.

As is illustrated in Figure 2, for different p, price f was a decreasing function of K,
and its decrease was nonlinear. Such a conclusion could also be obtained by observing the
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structure of Function (17). While K increased, the values of (ZT − K)+ and (1− K/ZT)
+

decreased or were equal to 0.

Figure 2. The price of the option with different K in [3.5, 5.5] while p is constant.

Remark 4. The price of European currency option f in this paper was a decreasing function of K,
while other parameters were constant, which is similar to the result in Liu et al. [28] for UDEs.

Now, we discuss the European currency option price with p = 1.9 and K = 4.5,
considering the variation of the price while u and v changed in [0.02, 0.07]. With the
comparison of the two numerical methods above, we used the compound trapezoid formula
to calculate numerical integration and obtain f . Then, we could generate Figure 3.

Figure 3. The price of the option with different u, v in [3.5, 5.5] while p = 1.9, K = 4.5.
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As is shown in Figure 3, price f was a decreasing function of both u and v. In
Function (17), taking derivatives in u and v, the decrease was nonlinear. In addition, as u
and v increased simultaneously, the value of price f decreased.

Remark 5. The price of European currency option f in this paper was a decreasing function of both
u and v, while other parameters were constant, which is similar to the result in Liu et al. [28] for
UDEs.

5.2. American Currency Option Pricing

Example 2. We assumed that uncertain fractional currency Model (13) had u = 6%, v = 3%,
e = 0.05, σ = 0.3, and the initial exchange rate Z0 = 4.2, p ∈ (0, 2), and considered the American
currency option with expiration date T = 2 and striking price K = 4.5.

In this numerical example, similar to the previous example, the two currencies were
RMB and SGD, and the initial exchange rate Z0 was changed a little. These two currencies
and the financial markets in both countries were considered to be stable enough, so the
parameters in the example were reasonable. As in the previous example, z1 = 0.7861
represents the derivative of the exchange rate at t = 0.

Due to the particularity of the American currency option whose price is influenced
by the maximal Zs, s ∈ [0, T], we viewed Zs as a discrete instead of a continuous case. It
could also be reasonable to set the interval to be small enough and reduce the computing
time. To solve the problem in this example, we divided the whole time T into 100 equal
intervals. Hence, our work turned to calculating the maximum of these 100 values to obtain
American currency option price f .

Similar to the previous example, we used the compound trapezoid and Simpson
formulas whose interval values were both 0.001 to compute the integral of α over (0, 1). We
first used the compound trapezoid formula to calculate American currency option price f ;
results are shown in Table 3.

Table 3. Price of the American option with different p (compound trapezoid formula).

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

f 0.7090 0.8147 0.8900 0.9420 0.9765 0.9977 1.0086 1.0113 1.0075 0.9986

p 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

f 1.7737 1.7489 1.7223 1.6947 1.6665 1.6380 1.6094 1.5810 1.5529 1.5253

As is shown in Table 3, the price of the American currency option increased with the
increase in p in (0, 0.8], and decreased with the increase in p in (0.8, 1] and (1.1, 2]. The
price jumped when p changed from 1.0 to 1.1 because of the initial value of Z′(0), similar
to the price function of the European currency option. Such a jump is similar to that in the
results obtained by Lu [26]. Obviously, different initial values may cause different values of
price f .

Meanwhile, the value of prices were the same as that of the European currency option
when p ≤ 1. That is to say, with the setting of u = 6%, v = 3%, e = 0.05, σ = 0.3, p ≤ 1,
and initial exchange rate Z0 = 4.2, American currency option price f was an increasing
function of time s.

Now, we change the method of numerical integration. With the use of the compound
Simpson formula, we obtained the American currency option price f in Table 4.
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Table 4. Price of the American option with different p (compound Simpson formula).

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

f 0.7089 0.8146 0.8899 0.9419 0.9765 0.9977 1.0085 1.0112 1.0075 0.9985

p 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

f 1.7736 1.7488 1.7223 1.6947 1.6665 1.6379 1.6094 1.5810 1.5529 1.5253

With the change in the method of numerical integration, we obtain another series of
price f̃ . From Table 4, we can intuitively observe that the prices of option changed little,
and some were the same in the two tables. Similar to the previous part, we calculated∣∣ f̃ − f

∣∣ and generated Figure 4.

Figure 4. The deviation value of prices
∣∣ f̃ − f

∣∣ between two formulas with different p.

As is shown in Figure 4, most of the deviation values of prices were smaller than 10−4

and becoming smaller. For the same reason, we still chose the compound trapezoid formula
instead of the compound Simpson formula.

Remark 6. Similar to Remark 3, though the compound Simpson formula has better algebraic
precision, the application of the compound trapezoid formula is more appropriate because of the
shorter computing time and it being easy for code writing.

Now, we discuss the American currency option price with a constant p and different K,
considering that K was [3.5, 5.5] and p = 0.9, 1.1, 1.9. With the comparison of two numerical
methods above, we used the compound trapezoid formula to calculate the numerical
integration and obtain f . Then, we could generate Figure 5.

As is illustrated in Figure 5, for the different p, price f was a decreasing function of K,
and its decrease was nonlinear. Such a conclusion could also be obtained by observing the
structure of Function (20). While K increased, the values of sup

0≤s≤T
exp(−us)(Zs − K)+ and

sup
0≤s≤T

Z0 exp(−vs)(1− K/Zs)+ decreased or were equal to 0.

Remark 7. Similar to Remark 4, the price of American currency option f in this paper was a
decreasing function of K, while other parameters were constant, which is similar to the result in Liu
et al. [28] for UDEs.

Now, we discuss the American currency option price with p = 1.9 and K = 4.5,
considering variation in the price while u and v were changed in [0.02, 0.07]. With the
comparison of the two numerical methods above, we used the compound trapezoid formula
to calculate the numerical integration and obtain f . Then, we could generate Figure 6.
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Figure 5. Price of the option with different K in [3.5, 5.5] while p is constant.

Figure 6. The price of the option with different u, v in [3.5, 5.5] while p = 1.9, K = 4.5.

As is shown in Figure 6, price f was a decreasing function of both u and v. In
Function (20), taking derivatives in u and v, the decrease was nonlinear. In addition, as u
and v increased simultaneously, the value of price f decreased.
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Remark 8. The price of American currency option f in this paper was a decreasing function of
both u and v, while other parameters were constant, which is similar to the result in Liu et al. [28]
for UDEs.

6. Conclusions

In this paper, two option pricing formulas were given that use the Mittag-Leffler
function to solve fractional differential equations in the Caputo sense. Moreover, the
exchange rate of two currencies Zt is driven by geometric Liu process. An uncertain
fractional currency model was presented, and the option pricing formulas were proposed.
Both option prices (European and American currency options) of that model had the same
monotonicity as that in previous works that price f (for both the European and American
currency options) was a decreasing function of exercise price K and interest rates u and v.
Lastly, two given numerical examples illustrated the prices of the currency options under
different p(p ∈ (0, 2]). Future work could modify the price function with the parameters
of log-drift e and log-diffusion σ, and examine the relationship between the price jump
and its decrease while some parameters are constant. Moreover, the interpretations for the
decrease in mathematical and practical meaning in real life can be another future direction.
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Abstract: The Black–Scholes option pricing model is one of the most significant achievements in
modern investment science. However, many factors are constantly fluctuating in the actual financial
market option pricing, such as risk-free interest rate, stock price, option underlying price, and
security price volatility may be inaccurate in the real world. Therefore, it is of great practical
significance to study the fractional fuzzy option pricing model. In this paper, we proposed a
reliable approximation method, the Elzaki transform homotopy perturbation method (ETHPM)
based on granular differentiability, to solve the fuzzy time-fractional Black–Scholes European option
pricing equations. Firstly, the fuzzy function is converted to a real number function based on the
horizontal membership function (HMF). Secondly, the specific steps of the ETHPM are given to
solve the fuzzy time-fractional Black–Scholes European option pricing equations. Finally, some
examples demonstrate that the new approach is simple, efficient, and accurate. In addition, the fuzzy
approximation solutions have been visualized at the end of this paper.

Keywords: homotopy perturbation method; Elaki transform; fractional Black–Scholes equation;
granular differentiability

1. Introduction

Option pricing is a major subject in financial investing and a significant component of
contemporary financial theory research. Not only has the development of option pricing
theory facilitated financial derivative innovation, but also the flow and growth of financial
markets. How to reasonably price options is a serious problem facing investors during the
forming and developing of international derivative financial markets. The Black–Scholes
model [1] is one of the most influential mathematical models in the financial sector. In 1973,
Fisher Black and Myron Scholes established an option pricing model by using non-arbitrage
pricing theory. Soon after, the Chicago Board Options Exchange applied the Black–Scholes
model into practical problems by programing it with computer. Their study results laid
new foundation for option pricing theory and also gave significant instructions on the
application and management of financial derivative instruments, for which they received
th Nobel Memorial Prize in Economic Sciences in 1997. By using computers and advanced
communication technology, it is possible to express complex option pricing equation in a
function.

The Black–Scholes equation is a partial differential equation depicting options’ price
changes. However, this model needs to be improved due to the huge differences between its
ideal hypothesis and the actual financial markets [2–4]. In the perspective of mathematics, a
fractional Black–Scholes equation is more accurate than an integer order equation to reflect
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the middle process of price changes. In finance, some researchers believe that asset prices
have long-term relativity [5], which indicates that the price of an item at a specific point is
related to both the present price and the price from a long time ago. Decision makers can
make decisions based on past market experiences [6]. A fractional Black–Scholes equation
can depict the long-term relativity in behavioral finance [7,8]. In recent decades, fractional
derivatives have drawn the attention of mathematicians and physicists [9]. Fractional
derivatives have over 20 different kinds of definitions, including the most commonly used
ones, such as Riemann–Liouville’s, Caputo’s, Jumare’s, Conformable’s, etc. The theories
of fractional calculus have been widely studied and applied in many fields, including
economics, sociology, computer science, biology, material science, etc. [10]. Many scholars
applied the fractional calculus model to the modeling of natural phenomenon. Fractional
calculus has its own characteristics, such as memorizing and inheriting. Therefore, frac-
tional calculus equations are highly suitable for describing complex systems with heredity
and memorization features. Examples include the anthrax disease model in animals [11],
the mathematical model for COVID-19 transmission [12,13], the fractional-order epidemic
model for childhood diseases [14] and hearing loss in children caused by the mumps
virus model [15]. However, it is extremely difficult to find the accurate result of fractional
differential equations (FDE). Thus, people turned to approximate analytical solutions for
solving FDE. Therefore, some approximation methods have been applied to solve FDE.

The uncertain factors in the actual financial market are inevitable, while fuzzy analysis
can draw the uncertain phenomenon into an algorithmic system. In reality, massive
problems provide uncertainties from different angles. Integrating the fuzzy phenomenon
into FDE can result in fuzzy FDE. This kind of mixed equation can describe option pricing
models under the uncertain circumstances of financial markets. The following are the
study results of solving fuzzy derivative equations: Puri and Ralescu introduced Hukuhara
differentiability (H-differentiability) of fuzzy functions in 1983; Bede and Stefanini came
up with general Hukuhara differentiability (gH-differentiability) of fuzzy functions in
2013. Moreover, FDE would lead to two different geometric-meaning types of solutions
under this differentiability. Mazandarani and others [16–18] introduced how to gain fuzzy-
number derivatives by using granular differentiability (gr-differentiability) and horizontal
membership function and how to solve fuzzy differential equations in 2018. In the research
of fuzzy differential equations, gr-differentiability has the following advantages [18]:

1. An FDE has only one solution so as to avoid the multiplicity of solutions drawback.
2. It avoids the doubling property problem for solving each FDE, which means solving

just one individual differential equation.
3. This method does not lead to the unnatural behavior in modeling (UBM) phenomenon.

The Homotopy Perturbation Method (HPM) [19] is a new type of asymptotic numeri-
cal algorithm developed with the foundation of artificial parameter perturbation method in
recent years. HPM, which combines homotopy theory and the perturbation method, is pro-
posed by He [20]. Because homotopy perturbation is utilized to solve nonlinear differential
equations and integral equations, it is considered to be very accurate and not overly difficult
to calculate. Currently, HPM has been widely applied in solving all kinds of fractional
partial differential equations and fractional integral equations [21–26]. The main charac-
ter of fractional derivatives is their non-limitation. Relatively, the numerical simulation
process of fractional equations has a massive amount of calculations. However, the com-
putational efficiency of the option pricing model has an impact on the actual application
effect, and a longer calculation time will lead to the deviation of option pricing results [27].
We added fractional Elzaki transformation, an advanced Laplace and Sumudu transform,
into the HPM algorithm, then combined HPM and Elzaki transform together [28–30]. This
approach makes the calculation more uncomplicated and more efficient.

Actual option pricing is affected by the following factors, such as the risk preference
of investors, the market environment, and regional economic policies [31]. Due to the
uncertainty of these factors, we describe these factors by using fuzzy information, while
some use random information. The fuzzy options could better consider the above uncertain
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factors at a comprehensive level to improve option pricing accuracy. Thus, studying fuzzy
option pricing is meaningful.

The remainder of this article is laid out as follows: In Section 2, some fundamental
definitions involved in fractional derivatives and fuzzy differentiation are introduced.
In Section 3, the ETHPM steps are presented. In Section 4, some examples are provided to
illustrate the application results. In Section 5, the conclusion of our research is presented.

2. Preliminaries

This section presents some necessary definitions and theorems that will be used later.
Throughout this paper, the set of all real numbers is denoted by R, the set of complex
numbers is denoted by C, and the set of all the fuzzy numbers on R by E.

Definition 1 ([32]). A real function f (x), x > 0, is said to be in the space Cμ, μ ∈ R if there
exists a real number p > μ, such that f (x) = xph(x), where h(x) ∈ [0, ∞) and it is said to be in
space Cm

μ if f (m) ∈ Cμ, m ∈ N.

Definition 2 ([32]). The Riemann–Liouville fractional integral operator of order α > 0, of a
function f ∈ Cm, is defined as

Jα f (t) =

⎧⎨⎩
1

Γ(α)

∫ t
0

f (s)
(t−s)1−α ds = 1

Γ(α) tα−1 ∗ f (t) α > 0, t > 0,

f (t) α = 0,
(1)

where tα−1 ∗ f (t) is the convolution product of tα−1 and f (t) .

For the Riemann–Liouville fractional integral, we have

1. Jαtβ = Γ(β+1)
Γ(β+α+1) tα+β, β > −1,

2. Jα(λ f (t) + μg(t)) = λJα f (t) + μJαg(t),

where λ and μ are real constants.
This paper utilizes the Caputo derivative condition, which is defined as follows.

Definition 3 ([33,34]). Let f (t) : [0,+∞)→ R be a function, and n be the upper positive integer
of α(α > 0). The Caputo fractional derivative is defined by

Dα f (t) =
1

Γ(n− α)

∫ t

0

f (n)(s)
(t− s)α+1−n ds,

n− 1 < α ≤ n, n ∈ N.
(2)

For the Caputo derivative, we have

1. Dα Jα f (t) = f (t),

2. JαDα f (t) = f (t)−∑n−1
i=0 y(i)(0) ti

i! ,

3. Dαtβ =

{ Γ(β+1)
Γ(β+1−α)

tβ−α β ≥ α

0 β < α
,

4. Dαc = 0,

5. Dα(λ f (t) + μg(t)) = λDα f (t) + μDαg(t),

where λ, μ and c are real constants.
The derivative of conformable fractional derivative is defined as follows.
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Definition 4 ([35]). Given a function f : [0, ∞)→ R. Then the conformable derivative of f order
α ∈ (0, 1] is defined by

CFDα∗( f )(t) = lim
ε→0

f
(
t + εt1−α

)− f (t)
ε

, (3)

for all t > 0.

Definition 5 ([35,36]). Let f be n-times differentiable at t. Then the conformable derivative of f
order α is defined as

CFDα∗( f (t)) = lim
ε→0

f (�α�−1)
(

t + εt(�α�−α)
)
− f (�α�−1)(t)

ε
, (4)

for all t > 0, α ∈ (n, n + 1]. Here �α� is the smallest integer greater than or equal to α.

Theorem 1 ([35]). Let f be n-times differentiable at t. Then

CFDα∗( f (t)) = t�α�−α f �α�(t), (5)

for all t > 0, α ∈ (n, n + 1].

Definition 6 ([37]). The single parameter and the two parameters variants of the Mittag–Leffler
function are denoted by Eα(t) and Eα,β(t), respectively, which are relevant for their connection with
fractional calculus, and are defined as

Eα(t) =
∞

∑
j=0

tj

Γ(αj + 1)
, α > 0, t ∈ C, (6)

Eα,β(t) =
∞

∑
j=0

tj

Γ(αj + β)
, α, β > 0, t ∈ C. (7)

Based on the HMF, Mazandarani proposed the concepts of relative distance measure
(RDM) and granular differentiability.

Definition 7 ([16,17]). For a fuzzy number ũ : [a, b] → [0, 1] with parametric form
[u]μ = [uμ, ūμ], uμ is a bounded non-decreasing left continuous function in (0,1], and it is
right continuous at μ = 0, ūμ is a bounded non-increasing left continuous function in (0,1],
and it is right continuous at μ = 0, uμ ≤ ūμ. The HMF ugr : [0, 1] × [0, 1] → [a, b]
with x = ugr(μ, αu) = uμ + (ūμ − uμ)αu stands for the granule of information included in
x ∈ [a, b], μ ∈ [0, 1] is the membership degree of x in ũ(x), αu ∈ [0, 1] is called RDM.

Note 1 [16,17]. We can also denote the HMF of ũ ∈ E by H(ũ) � ugr(μ, αu), In particular,
if ũ = (a, b, c), a ≤ b ≤ c is a triangular fuzzy number, then the HMF of ũ is H(ũ) =
a + (b− a)μ + (1− μ)(c− a)αu.
Note 2 [16]. The μ -level sets of ũ ∈ E which are the span of the information granule can be
obtained by using

H−1(ugr(μ, αu)) = [ũ]μ =

[
inf
β≥μ

min
αu

ugr(β, αu), sup
β≥μ

max
αu

ugr(β, αu)

]
. (8)

In Figure 1, the picture shows the triangular fuzzy number ũ = (1, 2, 9).
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Figure 1. The fuzzy number ũ = (1, 2, 9).

Definition 8 ([16]). The fuzzy-valued function f̃ : [a, b]→ E is said to be granular differentiable

(gr-differentiable for short) at a point t0 ∈ [a, b] if there exists an element dgr f̃ (t0)
dt ∈ E such that the

following limit

lim
Δt→0

f̃ (t0 + Δt)�gr f̃ (t0)

Δt
=

dgr f̃ (t0)

dt
, (9)

exists for Δt sufficiently near 0. dgr f̃ (t0)
dt is called gr-derivative of fuzzy-valued function f̃ at the

point t0. If the gr-derivative exists for all points t ∈ [a, b] ⊆ R, we say that f̃ is gr-differentiable on
[a, b] ⊆ R. We use C1(U,E) to denote the space of all continuously gr-differentiable fuzzy-valued
functions on U ⊆ R.

Theorem 2 ([16]). The fuzzy function f̃ : [a, b] ⊆ R→ E is gr-differentiable at the point t ∈ [a, b]
if and only if its HMF is differentiable with respect to t at that point. Moreover,

H
(

d f̃ (t)
dt

)
=

∂ f gr
(

t, μ, α f

)
∂t

. (10)

The definition and properties of the Elzaki transform are as follows.

Definition 9 ([29]). Elzaki transform, a new transform, defining for function of exponential order
we consider functions in the set A, defined by

A = f (t) : ∃M, k1, k2 > 0, | f (t)| < Me
|t|
kj , i f t ∈ (−1)j × [0, ∞). (11)

For a given function in the set, the constant G must be finite number, k1, k2 may be
finite or infinite. The Elzaki transform which is defined by the integral equation.

E[ f (t)] = T(v) = v
∫ ∞

0
f (t)e

−t
v dt, t ≥ 0, k1 ≤ v ≤ k2. (12)
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The following results can be obtained from the definition and simple calculations.

1. E[tn] = n!vn+2,

2. E[ f ′(t)] = T(v)
v − v f (0),

3. E[ f ′′(t)] = T(v)
v2 − f (0)− v f ′(0),

4. E[ f (n)(t)] = T(v)
vn −∑n−1

k=0 v2−n+k f (k)(0),
5. E[tα] =

∫ ∞
0 e−vttαdt = vα+1Γ(α + 1), R(α) > 0.

Theorem 3 ([30]). If T(v) is Elzaki transform of f (t), one can consider the following Elzaki
transform of the Riemann–Liouville derivative

E[Dα f (t)] = v−α[T(v)−
n

∑
k=1

vα−k+2[Dα−k f (0)]], −1 < n− 1 ≤ α < n. (13)

Definition 10 ([30]). The Elzaki transform of the Caputo fractional derivative by using Theorem 3
is defined as follows

E[Dα f (t)] = v−αE[ f (t)]−
m−1

∑
k=0

v2−α+k f (k)(0), (14)

where m− 1 < α < m.

3. Elzaki Transform Homotopy Perturbation Method (ETHPM)

Consider the following fractional differential equations to explain the core steps of
this method

Dα
t ũ(x, t) = L(ũ(x, t)) +N (ũ(x, t)) + f̃ (x, t), (15)

with initial condition

Dk
t ũ(x, 0) = g̃k, k = 0, . . . , n− 1, (16)

where Dα
t is the fractional derivative, L is a linear operator, N is a nonlinear differential

operator, and f̃ is a known fuzzy function.

Step 1. By using the HMF for Equation (15), we get

Dα
tH[ũ(x, t)]=L[H(ũ(x, t))]+N [H(ũ(x, t))]+H[ f̃ (x, t)], (17)

with the initial condition

H[ũ(x, 0)] = ugr(μ, αc, x, 0). (18)

Step 2. After using the Elzaki transform of the Equation (17), we obtain

E[Dα
tH[ũ(x, t)]]=E

[
L[H(ũ(x, t))]+N [H(ũ(x, t))]+H[ f̃ (x, t)]

]
. (19)

Applying Equation (14), we obtain

E[H[ũ(x, t)]]=vαE[L[H[ũ(x, t)]]+N [H[ũ(x, t)]]] +H[g̃(x, t)]. (20)

Step 3. By applying the inverse Elzaki transform for the Equation (20), we get

H[ũ(x, t)]= H[G̃(x, t)] +E−1[vαE[L[H[ũ(x, t)]]+N [H[ũ(x, t)]]]], (21)
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where H[G̃(x, t)] is the result of the integration of the initial condition and the known
functionsH[ f̃ (x, t)].

Step 4. Now, we construct the following homotopy equation

H[ũ(x, t)] =
∞

∑
n=0

pnH[ũn(x, t)]. (22)

In order to make the calculation of the equation simple, we use the He polynomial

N [H[ũ(x, t)]] =
∞

∑
n=0

pnHn[H(ũ)], (23)

where Hn[H(ũ)] stands for He’s polynomial in nature,

HnH[(ũ0, ũ1, ũ2 . . . ũn)] =
1
n!

∂n

∂pn

[
N
(

∞

∑
i=0

piH[ũi(x, t)]

)]
p=0

, n = 0, 1, 2, · · · . (24)

Equation (21) can be written as

∞

∑
n=0

pnH[ũn(x, t)] = H[G̃(x, t)] + p

[
E−1

[
vαE

[
L
(

∞

∑
n=0

pnH[ũn(x, t)]

)]

+vαE

[
N
(

∞

∑
n=0

pnHn[H(ũ)]

)]]]
.

(25)

Comparing the coefficient of like powers of p, we obtain

p0 : H[ũ0(x, t)] = H[G̃(x, t)],

p1 : H[ũ1(x, t)] = E−1[vαE[L[H[ũ0(x, t)]] + H0(H(ũ))]],

p2 : H[ũ2(x, t)] = E−1[vαE[L[H[ũ1(x, t)]] + H1(H(ũ))]],

p3 : H[ũ3(x, t)] = E−1[vαE[L[H[ũ2(x, t)]] + H2(H(ũ))]],
...

pn : H[ũn(x, t)] = E−1[vαE[L[H[ũn−1(x, t)]] + Hn−1(H(ũ))]].

(26)

The result is as follows

H[ũ(x, t)] = lim
p→1

H[ũn(x, t)] = H[ũ0(x, t)] +H[ũ1(x, t)] +H[ũ2(x, t)] + · · · . (27)

Remark 1. The value of |R̃es(x, t)| describes the difference between the precise solution and approx-
imate solution. Normally, the precise value of |R̃es(x, t)| is zero for any α ∈ (0, 1]. The definition of
|R̃es(x, t)| is as follows

max|R̃es(x, t)| = max
μ∈[0,1],αc∈[0,1]

|Dα
t [u

gr(μ, αc, x, t)]−L[ugr(μ, αc, x, t)]

−N [ugr(μ, αc, x, t)]− f gr(μ, αc, x, t)|.
(28)

4. Illustrative Examples

We use the Elzaki transform homotopy perturbation method [38] (ETHPM), homotopy
perturbation method [39] (HPM), residual power series method [40] (RPSM) and the
conformable fractional Adomian decomposition method [41] (CFADM) respectively to
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calculate the following three examples. Literature [38–41] mainly studied the problems of
the deterministic fractional Black–Scholes equations. We use these methods to recalculate
the fuzzy fractional Black–Scholes equation under the concept of granular differentiability.

Example 1. Consider the fractional Black–Scholes equation

∂αũ
∂tα

=
∂2ũ
∂x2 + (k− 1)

∂ũ
∂x
− kũ, (29)

with the initial condition

ũ(x, 0) = c̃ max(ex − 1, 0), (30)

c̃ = (0, 1, 2). (31)

By using the HMF, we have

∂αH[ũ(x, t)]
∂tα

=
∂2H[ũ(x, t)]

∂x2 + (k− 1)
∂H[ũ(x, t)]

∂x
− kH[ũ(x, t)], (32)

H[ũ(x, 0)] = [μ + 2(1− μ)αc]max(ex − 1, 0), (33)

for each μ, αc ∈ [0, 1] and

H[ũ(x, t)] = ugr(μ, αc, x, t). (34)

Firstly, the ETHPM is used to solving the Example 1.

After using the Elzaki transform for the Equation (30), we get

E[
∂αH[ũ(x, t)]

∂tα
] = E[

∂2H[ũ(x, t)]
∂x2 + (k− 1)

∂H[ũ(x, t)]
∂x

− kH[ũ(x, t)]]. (35)

By using the Elzaki transform’s differential property, we obtain

v−α[E[H[ũ(x, t)]]− v2H[ũ(x, 0)]] = E[
∂2H[ũ(x, t)]

∂x2

+ (k− 1)
∂H[ũ(x, t)]

∂x
− kH[ũ(x, t)]],

(36)

and,

E[H[ũ(x, t)]] = vα[E[
∂2H[ũ(x, t)]

∂x2 + (k− 1)
∂H[ũ(x, t)]

∂x

− kH[ũ(x, t)]]] + v2H[ũ(x, 0)].

(37)

By applying the inverse Elzaki transform for the Equation (35), we get

H[ũ(x, t)] = E−1[vα[E[
∂2H[ũ(x, t)]

∂x2 + (k− 1)
∂H[ũ(x, t)]

∂x

− kH[ũ(x, t)]]]] +H[ũ(x, 0)],

(38)

∞

∑
n=0

pnH[ũn(x, t)] = H[ũ(x, 0)] + pE−1

[
vαE[

∞

∑
n=0

pnH[Ψ̃n(x, t)]]

]
, (39)

where

H[Ψ̃n(x, t)] = H[
∂2ũn(x, t)

∂x2 + (k− 1)
∂ũn(x, t)

∂x
− kũn(x, t)]. (40)
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After comparing the similar power coefficients of p, the following results can be obtained

p0 : H[ũ0(x, t)] = [μ + 2(1− μ)αc]max(ex − 1, 0),

p1 : H[ũ1(x, t)] = E−1
[
vαE
[
H
[
Ψ̃0(x, t)

]]]
= [μ + 2(1− μ)αc][− (−ktα)

Γ(α + 1)
max(ex, 0)

+
(−ktα)

Γ(α + 1)
max(ex − 1, 0)],

p2 : H[ũ2(x, t)] = E−1
[
vαE
[
H
[
Ψ̃1(x, t)

]]]
= [μ + 2(1− μ)αc][− (−ktα)2

Γ(2α + 1)
max(ex, 0)

+
(−ktα)2

Γ(2α + 1)
max(ex − 1, 0)],

...

pn : H[ũn(x, t)] = E−1
[
vαE
[
H
[
Ψ̃n−1(x, t)

]]]
= [μ + 2(1− μ)αc][− (−ktα)n

Γ(nα + 1)
max(ex, 0)

+
(−ktα)n

Γ(nα + 1)
max(ex − 1, 0)].

(41)

As a result, the exact solutionH[ũ(x, t)] is given by

ugr(μ, αc, x, t) = H[ũ(x, t)]

=
∞

∑
n=0

pnH[ũn(x, t)]

= [μ + 2(1− μ)αc][max(ex, 0)(1− Eα(−ktα))

+ max(ex − 1, 0)Eα(−ktα)],

(42)

H−1[ugr(μ, αc, x, t)] = [μ, 2− μ][max(ex, 0)(1− Eα(−ktα))

+ max(ex − 1, 0)Eα(−ktα)].
(43)

The trigonometric fuzzy number form of the exact solution is as follow

ũ(x, t) = ∪
μ
[μ, 2− μ][max(ex, 0)(1− Eα(−ktα))

+ max(ex − 1, 0)Eα(−ktα)]

= (0, 1, 2)[max(ex, 0)(1− Eα(−ktα))

+ max(ex − 1, 0)Eα(−ktα)].

(44)
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Secondly, the HPM is used to solving the Example 1.

Dα
t

[
∞

∑
n=0

pnH[ũn(x, t)]

]
= p

[
∞

∑
n=0

pnH[Ψ̃n(x, t)]

]
, (45)

where

H[Ψ̃n(x, t)] = H[
∂2ũn(x, t)

∂x2 + (k− 1)
∂ũn(x, t)

∂x
− kũn(x, t)], (46)

∞

∑
n=0

pnH[ũn(x, t)] = H[ũ(x, 0)] + Jα

[
p

[
∞

∑
n=0

pnH[Ψ̃n(x, t)]

]]
. (47)

After comparing the similar power coefficients of p, the following results can be obtained

p0 : H[ũ0(x, t)] = [μ + 2(1− μ)αc]max(ex − 1, 0),

p1 : H[ũ1(x, t)] = Jα
[
H
[
Ψ̃0(x, t)

]]
= [μ + 2(1− μ)αc][− (−ktα)

Γ(α + 1)
max(ex, 0)

+
(−ktα)

Γ(α + 1)
max(ex − 1, 0)],

p2 : H[ũ2(x, t)] = Jα
[
H
[
Ψ̃1(x, t)

]]
= [μ + 2(1− μ)αc][− (−ktα)2

Γ(2α + 1)
max(ex, 0)

+
(−ktα)2

Γ(2α + 1)
max(ex − 1, 0)],

...

pn : H[ũn(x, t)] = Jα
[
H
[
Ψ̃n−1(x, t)

]]
= [μ + 2(1− μ)αc][− (−ktα)n

Γ(nα + 1)
max(ex, 0)

+
(−ktα)n

Γ(nα + 1)
max(ex − 1, 0)].

(48)

So, we have

ũ(x, t) = ∪
μ
[μ, 2− μ][max(ex, 0)(1− Eα(−ktα))

+ max(ex − 1, 0)Eα(−ktα)]

= (0, 1, 2)[max(ex, 0)(1− Eα(−ktα))

+ max(ex − 1, 0)Eα(−ktα)].

(49)

Thirdly, the RPSM is used to solving the Example 1.

H[ũ(x, t)] =
∞

∑
n=0

H[ f̃n(x)]
tαn

Γ(1 + nα)
, (50)

H[ũi(x, t)] =
i

∑
n=0

H[ f̃n(x)]
tnα

Γ(1 + nα)
, (51)
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H[ f̃0(x)] = H[ũ0(x, t)] = [μ + 2(1− μ)αc]max(ex − 1, 0). (52)

The ith residual function as follows

Resgr
i (x, t, μ, αc) =

∂αH[ũi(x, t)]
∂tα

− ∂2H[ũi(x, t)]
∂x2 − (k− 1)

∂H[ũi(x, t)]
∂x

+ kH[ũi(x, t)], (53)

D(i−1)α
t Resgr

i (x, 0, μ, αc) = 0. (54)

Then, we obtain

Resgr
1 (x, t, μ, αc) =

∂αH[ũ1(x, t)]
∂tα

− ∂2H[ũ1(x, t)]
∂x2 − (k− 1)

∂H[ũ1(x, t)]
∂x

+ kH[ũ1(x, t)]

= f gr
1 (x, μ, αc)− D2

x[ f gr
0 (x, μ, αc)]− D2

x[ f gr
1 (x, μ, αc)]

tα

Γ(α + 1)

− (k− 1)
(

Dx[ f gr
0 (x, μ, αc)] + Dx[ f gr

1 (x, μ, αc)]
tα

Γ(α + 1)

)
+ k
(

f gr
0 (x, μ, αc) + f gr

1 (x, μ, αc)
tα

Γ(α + 1)

)
.

(55)

Thereby, from Resgr
1 (x, 0, μ, αc) = 0, we obtain

f gr
1 (x, μ, αc) = [μ + 2(1− μ)αc][k max(ex, 0)− k max(ex − 1, 0)], (56)

H[ũ1(x, t)]= [μ + 2(1−μ)αc]

[
max(ex−1, 0)+[max(ex−1, 0)−max(ex, 0)]

(−ktα)

Γ(α + 1)

]
. (57)

Resgr
2 (x, t, μ, αc) =

∂αH[ũ2(x, t)]
∂tα

− ∂2H[ũ2(x, t)]
∂x2 − (k− 1)

∂H[ũ2(x, t)]
∂x

+ kH[ũ2(x, t)]

= f gr
1 (x, μ, αc) + f gr

2 (x, μ, αc)
tα

Γ(α + 1)

− D2
x[ f gr

0 (x, μ, αc)]− D2
x[ f gr

1 (x, μ, αc)]
tα

Γ(α + 1)
− D2

x[ f gr
2 (x, μ, αc)]

t2α

Γ(2α + 1)

− (k− 1)
[

Dx[ f gr
0 (x, μ, αc)] + Dx[ f gr

1 (x, μ, αc)]
tα

Γ(α + 1)
+ Dx[ f gr

2 (x, μ, αc)]
t2α

Γ(2α + 1)

]

+ k
(

f gr
0 (x, μ, αc) + f gr

1 (x, μ, αc)
tα

Γ(α + 1)
+ f gr

2 (x, μ, αc)
t2α

Γ(2α + 1)

)
.

(58)

And, from Dα
x Resgr

2 (x, 0, μ, αc) = 0, we get

f gr
2 (x, μ, αc) = [μ + 2(1− μ)αc][−k2 max(ex, 0) + k2 max(ex − 1, 0)], (59)

H[ũ2(x, t)]= [μ + 2(1−μ)αc]

[
max(ex−1, 0) +[max(ex−1, 0)−max(ex, 0)][

(−ktα)

Γ(α + 1)
+

(−ktα)2

Γ(2α + 1)
]

]
. (60)

Continuing this way, we can get the exact solution
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ũ(x, t) = ∪
μ
[μ, 2− μ][max(ex, 0)(1− Eα(−ktα))

+ max(ex − 1, 0)Eα(−ktα)]

= (0, 1, 2)[max(ex, 0)(1− Eα(−ktα))

+ max(ex − 1, 0)Eα(−ktα)].

(61)

Finally, the CFADM is used to solving the Example 1.

Assume that Lα = CFDα∗ = ∂α

∂tα is a linear operator

CFDα∗H[ũ(x, t)] =
∂2H[ũ(x, t)]

∂x2 + (k− 1)
∂H[ũ(x, t)]

∂x
− kH[ũ(x, t)], (62)

t1−α∂tH[ũ(x, t)] =
∂2H[ũ(x, t)]

∂x2 + (k− 1)
∂H[ũ(x, t)]

∂x
− kH[ũ(x, t)]. (63)

From L−1
α =

∫ t
0

1
ζ1−α (.)dζ, we get

H[ũ(x, t)] = H[ũ(x, 0)] + L−1
α

[
∂2H[ũ(x, t)]

∂x2 + (k− 1)
∂H[ũ(x, t)]

∂x
− kH, [ũ(x, t)]

]
, (64)

H[ũ(x, t)] =
∞

∑
n=0

H[ũn(x, t)]. (65)

In the Adomian decomposition method, we assume that the nonlinear operator may
be decomposed into an infinite polynomial series, then

N [H[ũ(x, t)]] =
∞

∑
n=0

An, (66)

where An[H(ũ)] are Adomian polynomials, which are defined as

AnH[(ũ0, ũ1, ũ2 . . . ũn)] =
1
n!

dn

dλn

[
N
(

n

∑
i=0

λiH[ũi(x, t)]

)]
λ=0

, n = 0, 1, 2, · · · . (67)

So, from An[H(ũ)], we get

H[ũ0(x, t)] = [μ + 2(1− μ)αc]max(ex − 1, 0),

H[ũ1(x, t)] = L−1
α

[
∂2H[ũ0(x, t)]

∂x2 + (k− 1)
∂H[ũ0(x, t)]

∂x
− kH[ũ0(x, t)]

]
= [μ + 2(1−μ)αc][max(ex−1, 0)−max(ex, 0)]

−ktα

α
,

H[ũ2(x, t)] = L−1
α

[
∂2H[ũ1(x, t)]

∂x2 + (k− 1)
∂H[ũ1(x, t)]

∂x
− kH[ũ1(x, t)]

]
= [μ + 2(1−μ)αc][max(ex−1, 0)−max(ex, 0)]

(−ktα)2

2!α2 ,

H[ũ3(x, t)] = L−1
α

[
∂2H[ũ2(x, t)]

∂x2 + (k− 1)
∂H[ũ2(x, t)]

∂x
− kH[ũ2(x, t)]

]
= [μ + 2(1−μ)αc][max(ex−1, 0)−max(ex, 0)]

(−ktα)3

3!α3 ,

...
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H[ũn(x, t)] = L−1
α

[
∂2H[ũn−1(x, t)]

∂x2 + (k− 1)
∂H[ũn−1(x, t)]

∂x
− kH[ũn−1(x, t)]

]
= [μ + 2(1−μ)αc][max(ex−1, 0)−max(ex, 0)]

(−ktα)n

n!αn ,

ũ(x, t) = ∪
μ
[μ, 2− μ][max(ex, 0)(1− e−

kt
α ))

+ max(ex − 1, 0)e−
kt
α )]

= (0, 1, 2)[max(ex, 0)(1− e−
kt
α ))

+ max(ex − 1, 0)e−
kt
α )].

(68)

In Tables 1–3, we show the H[ũ(x, t)] and max|R̃es(x, t)| of ETHPM, HPM, RPSM,
and CFADM between different values of x and t when the fractions α = 0.5, 0.75, 1,
parameter k = 2, respectively. Although the approximate solutions for ETHPM, HPM, and
RPSM are the same, HPM requires fractional integration and RPSM requires fractional
differentiation, which are computationally more complex. In contrast, the ETHPM doesn’t
require fractional integration or differentiation and the ETHPM has a smaller max|R̃es(x, t)|
than the CFADM.

Remark 2. In Example 1, the value of max|R̃es(x, t)| doesn’t vary with x because when x > 0,

H[ũ(x, t)] =
∞

∑
n=0

H[ũn(x, t)]

= [μ + 2(1− μ)αc]
[
ex − 1− (

(−ktα)

Γ(α + 1)
+

(−ktα)2

Γ(2α + 1)
+ ... +

(−ktα)n

Γ(nα + 1)
)
]
,

max|R̃es(x, t)|= max
μ∈[0,1],αc∈[0,1]

∣∣∣∂αH[ũ(x, t)]
∂tα

− ∂2H[ũ(x, t)]
∂x2 −(k−1)

∂H[ũ(x, t)]
∂x

+kH[ũ(x, t)]
∣∣∣

= max
μ∈[0,1],αc∈[0,1]

∣∣∣[μ + 2(1− μ)αc]
[ 1

Γ(1− α)

∞

∑
n=1

[
− (−k)n

Γ(nα + 1)

∫ t

0

snα

(t− s)α
ds
]

− ex − (k− 1)ex + k[ex − 1−
∞

∑
n=1

(
(−ktα)n

Γ(nα + 1)
)]
]∣∣∣

= max
μ∈[0,1],αc∈[0,1]

∣∣∣[μ + 2(1− μ)αc]
[ 1

Γ(1− α)

∞

∑
n=1

[
− (−k)n

Γ(nα + 1)

∫ t

0

snα

(t− s)α
ds
]

− k[1 +
∞

∑
n=1

(
(−ktα)n

Γ(nα + 1)
)]
]∣∣∣,

where the x terms are cancelled out.

Remark 3. The advantages of the ETHPM are as follows

1. Compared with the HPM

HPM requires fractional integration operations. The numerical integration operated by
fractional integration needs linearization and discretization. Thus, this operation causes errors,
and its higher complexity requires a giant storage cell in a computer. The results of ETHPM and
HPM are the same, but after the Elzaki transform, fractional integration is not necessary. ETHPM
is more suitable to be achieved by computer programming.
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2. Compared with the RPSM

RPSM needs to operate the residuals through fractional differentiation. However, computers
have insufficient processing power to operate the fractional differentiation due to its massive calcula-
tion requirement and high complexity. ETHPM doesn’t need a fractional differentiation operation,
which reduces the complexity and the amount of computation.

3. Compared with the CFADM

It is most intuitive that the value of max|R̃es(x, t)| of ETHPM is smaller, while CFADM also
requires fractional integration operation.

Table 1. H[ũ(x, t)] and max|R̃es(x, t)| by ETHPM, HPM, RPSM, CFADM for α = 0.5, k = 2.

ETHPM HPM RPSM CFADM

x t H[ũ(x, t)] max|R̃es(x, t)| H[ũ(x, t)] max|R̃es(x, t)| H[ũ(x, t)] max|R̃es(x, t)| H[ũ(x, t)] max|R̃es(x, t)|

0.2

0.1 [μ + 2(1−
μ)αc]0.72536 1.69448 [μ + 2(1−

μ)αc]0.72536 1.69448 [μ + 2(1−
μ)αc]0.72536 1.69448 [μ + 2(1−

μ)αc]1.02362 1.34924

0.2 [μ + 2(1−
μ)αc]0.96892 0.42818 [μ + 2(1−

μ)αc]0.96892 0.42818 [μ + 2(1−
μ)αc]0.96892 0.42818 [μ + 2(1−

μ)αc]1.36431 3.81622

0.3 [μ + 2(1−
μ)αc]1.24634 1.03090 [μ + 2(1−

μ)αc]1.24634 1.03090 [μ + 2(1−
μ)αc]1.24634 1.03090 [μ + 2(1−

μ)αc]1.76501 7.01085

0.4 [μ + 2(1−
μ)αc]1.57115 2.75655 [μ + 2(1−

μ)αc]1.57115 2.75655 [μ + 2(1−
μ)αc]1.57115 2.75655 [μ + 2(1−

μ)αc]2.24970 10.79391

0.5 [μ + 2(1−
μ)αc]1.94486 4.76615 [μ + 2(1−

μ)αc]1.94486 4.76615 [μ + 2(1−
μ)αc]1.94486 4.76615 [μ + 2(1−

μ)αc]2.82107 15.08494

0.4

0.1 [μ + 2(1−
μ)αc]0.99578 1.69448 [μ + 2(1−

μ)αc]0.99578 1.69448 [μ + 2(1−
μ)αc]0.99578 1.69448 [μ + 2(1−

μ)αc]1.29405 1.34924

0.2 [μ + 2(1−
μ)αc]1.23935 0.42818 [μ + 2(1−

μ)αc]1.23935 0.42818 [μ + 2(1−
μ)αc]1.23935 0.42818 [μ + 2(1−

μ)αc]1.63473 3.81622

0.3 [μ + 2(1−
μ)αc]1.51676 1.03090 [μ + 2(1−

μ)αc]1.51676 1.03090 [μ + 2(1−
μ)αc]1.51676 1.03090 [μ + 2(1−

μ)αc]2.03543 7.01085

0.4 [μ + 2(1−
μ)αc]1.84158 2.75655 [μ + 2(1−

μ)αc]1.84158 2.75655 [μ + 2(1−
μ)αc]1.84158 2.75655 [μ + 2(1−

μ)αc]2.52012 10.79391

0.5 [μ + 2(1−
μ)αc]2.21529 4.76615 [μ + 2(1−

μ)αc]2.21529 4.76615 [μ + 2(1−
μ)αc]2.21529 4.76615 [μ + 2(1−

μ)αc]3.09149 15.08494

0.6

0.1 [μ + 2(1−
μ)αc]1.32608 1.69448 [μ + 2(1−

μ)αc]1.32608 1.69448 [μ + 2(1−
μ)αc]1.32608 1.69448 [μ + 2(1−

μ)αc]1.62434 1.34924

0.2 [μ + 2(1−
μ)αc]1.56964 0.42818 [μ + 2(1−

μ)αc]1.56964 0.42818 [μ + 2(1−
μ)αc]1.56964 0.42818 [μ + 2(1−

μ)αc]1.96503 3.81622

0.3 [μ + 2(1−
μ)αc]1.84706 1.03090 [μ + 2(1−

μ)αc]1.84706 1.03090 [μ + 2(1−
μ)αc]1.84706 1.03090 [μ + 2(1−

μ)αc]2.36572 7.01085

0.4 [μ + 2(1−
μ)αc]2.17187 2.75655 [μ + 2(1−

μ)αc]2.17187 2.75655 [μ + 2(1−
μ)αc]2.17187 2.75655 [μ + 2(1−

μ)αc]2.85042 10.79391

0.5 [μ + 2(1−
μ)αc]2.54558 4.76615 [μ + 2(1−

μ)αc]2.54558 4.76615 [μ + 2(1−
μ)αc]2.54558 4.76615 [μ + 2(1−

μ)αc]3.42178 15.08494
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Table 2. H[ũ(x, t)] and max|R̃es(x, t)| by ETHPM, HPM, RPSM, CFADM for α = 0.75, k = 2.

ETHPM HPM RPSM CFADM

x t H[ũ(x, t)] max|R̃es(x, t)| H[ũ(x, t)] max|R̃es(x, t)| H[ũ(x, t)] max|R̃es(x, t)| H[ũ(x, t)] max|R̃es(x, t)|

0.2

0.1 [μ + 2(1−
μ)αc]0.53087 2.43534 [μ + 2(1−

μ)αc]0.53087 2.43534 [μ + 2(1−
μ)αc]0.53087 2.43534 [μ + 2(1−

μ)αc]0.60095 0.07109

0.2 [μ + 2(1−
μ)αc]0.68703 1.54889 [μ + 2(1−

μ)αc]0.68703 1.54889 [μ + 2(1−
μ)αc]0.68703 1.54889 [μ + 2(1−

μ)αc]0.78545 0.33817

0.3 [μ + 2(1−
μ)αc]0.81811 0.78071 [μ + 2(1−

μ)αc]0.81811 0.78071 [μ + 2(1−
μ)αc]0.81811 0.78071 [μ + 2(1−

μ)αc]0.9286 0.84205

0.4 [μ + 2(1−
μ)αc]0.95402 0.01695 [μ + 2(1−

μ)αc]0.95402 0.01695 [μ + 2(1−
μ)αc]0.95402 0.01695 [μ + 2(1−

μ)αc]1.06532 1.60861

0.5 [μ + 2(1−
μ)αc]1.11121 0.93152 [μ + 2(1−

μ)αc]1.11121 0.93152 [μ + 2(1−
μ)αc]1.11121 0.93152 [μ + 2(1−

μ)αc]1.21435 2.65765

0.4

0.1 [μ + 2(1−
μ)αc]0.80130 2.43534 [μ + 2(1−

μ)αc]0.80130 2.43534 [μ + 2(1−
μ)αc]0.80130 2.43534 [μ + 2(1−

μ)αc]0.87137 0.07109

0.2 [μ + 2(1−
μ)αc]0.95745 1.54889 [μ + 2(1−

μ)αc]0.95745 1.54889 [μ + 2(1−
μ)αc]0.95745 1.54889 [μ + 2(1−

μ)αc]1.05587 0.33817

0.3 [μ + 2(1−
μ)αc]1.08854 0.78071 [μ + 2(1−

μ)αc]1.08854 0.78071 [μ + 2(1−
μ)αc]1.08854 0.78071 [μ + 2(1−

μ)αc]1.19906 0.84205

0.4 [μ + 2(1−
μ)αc]1.22445 0.01695 [μ + 2(1−

μ)αc]1.22445 0.01695 [μ + 2(1−
μ)αc]1.22445 0.01695 [μ + 2(1−

μ)αc]1.33575 1.60861

0.5 [μ + 2(1−
μ)αc]1.38163 0.93152 [μ + 2(1−

μ)αc]1.38163 0.93152 [μ + 2(1−
μ)αc]1.38163 0.93152 [μ + 2(1−

μ)αc]1.48477 2.65765

0.6

0.1 [μ + 2(1−
μ)αc]1.13159 2.43534 [μ + 2(1−

μ)αc]1.13159 2.43534 [μ + 2(1−
μ)αc]1.13159 2.43534 [μ + 2(1−

μ)αc]1.20166 0.07109

0.2 [μ + 2(1−
μ)αc]1.28774 1.54889 [μ + 2(1−

μ)αc]1.28774 1.54889 [μ + 2(1−
μ)αc]1.28774 1.54889 [μ + 2(1−

μ)αc]1.38616 0.33817

0.3 [μ + 2(1−
μ)αc]1.41883 0.78071 [μ + 2(1−

μ)αc]1.41883 0.78071 [μ + 2(1−
μ)αc]1.41883 0.78071 [μ + 2(1−

μ)αc]1.52935 0.84205

0.4 [μ + 2(1−
μ)αc]1.55474 0.01695 [μ + 2(1−

μ)αc]1.55474 0.01695 [μ + 2(1−
μ)αc]1.55474 0.01695 [μ + 2(1−

μ)αc]1.66604 1.60861

0.5 [μ + 2(1−
μ)αc]1.71193 0.93152 [μ + 2(1−

μ)αc]1.71193 0.93152 [μ + 2(1−
μ)αc]1.71193 0.93152 [μ + 2(1−

μ)αc]1.81506 2.65765

Remark 4. In Tables 1–3,H[ũ(x, t)] is converted into trigonometric fuzzy number form as follows

H[ũ(x, t)] = ugr(μ, αc, x, t),

H−1[ugr(μ, αc, x, t)] =

[
inf
β≥μ

min
αc

ugr(β, αc, x, t), sup
β≥μ

max
αc

ugr(β, αc, x, t)

]

= [μ, 2− μ][max(ex, 0)(1− Eα(−ktα))

+ max(ex − 1, 0)Eα(−ktα)],

(69)

154



Fractal Fract. 2022, 6, 286

when k = 2, by using the μ-level sets representation theorem, we have

ũ(0.2, 0.1) = ∪
μ
[μ, 2− μ][max(ex, 0)(1− Eα(−ktα))

+ max(ex − 1, 0)Eα(−ktα)]

= (0, 1, 2)0.40274.

(70)

Table 3. H[ũ(x, t)] and max|R̃es(x, t)| by ETHPM, HPM, RPSM, CFADM for α = 1, k = 2.

ETHPM HPM RPSM CFADM

x t H[ũ(x, t)] max|R̃es(x, t)| H[ũ(x, t)] max|R̃es(x, t)| H[ũ(x, t)] max|R̃es(x, t)| H[ũ(x, t)] max|R̃es(x, t)|

0.2

0.1 [μ + 2(1−
μ)αc]0.40274 0.00534 [μ + 2(1−

μ)αc]0.40274 0.00534 [μ + 2(1−
μ)αc]0.40274 0.00534 [μ + 2(1−

μ)αc]0.40274 0.00534

0.2 [μ + 2(1−
μ)αc]0.55207 0.04267 [μ + 2(1−

μ)αc]0.55207 0.04267 [μ + 2(1−
μ)αc]0.55207 0.04267 [μ + 2(1−

μ)αc]0.55207 0.04267

0.3 [μ + 2(1−
μ)αc]0.67740 0.14400 [μ + 2(1−

μ)αc]0.67740 0.14400 [μ + 2(1−
μ)αc]0.67740 0.14400 [μ + 2(1−

μ)αc]0.67740 0.14400

0.4 [μ + 2(1−
μ)αc]0.78674 0.34133 [μ + 2(1−

μ)αc]0.78674 0.34133 [μ + 2(1−
μ)αc]0.78674 0.34133 [μ + 2(1−

μ)αc]0.78674 0.34133

0.5 [μ + 2(1−
μ)αc]0.88807 0.66667 [μ + 2(1−

μ)αc]0.88807 0.66667 [μ + 2(1−
μ)αc]0.88807 0.66667 [μ + 2(1−

μ)αc]0.88807 0.66667

0.4

0.1 [μ + 2(1−
μ)αc]0.67316 0.00534 [μ + 2(1−

μ)αc]0.67316 0.00534 [μ + 2(1−
μ)αc]0.67316 0.00534 [μ + 2(1−

μ)αc]0.67316 0.00534

0.2 [μ + 2(1−
μ)αc]0.82249 0.04267 [μ + 2(1−

μ)αc]0.82249 0.04267 [μ + 2(1−
μ)αc]0.82249 0.04267 [μ + 2(1−

μ)αc]0.82249 0.04267

0.3 [μ + 2(1−
μ)αc]0.94782 0.14400 [μ + 2(1−

μ)αc]0.94782 0.14400 [μ + 2(1−
μ)αc]0.94782 0.14400 [μ + 2(1−

μ)αc]0.94782 0.14400

0.4 [μ + 2(1−
μ)αc]1.05716 0.34133 [μ + 2(1−

μ)αc]1.05716 0.34133 [μ + 2(1−
μ)αc]1.05716 0.34133 [μ + 2(1−

μ)αc]1.05716 0.34133

0.5 [μ + 2(1−
μ)αc]1.15849 0.66667 [μ + 2(1−

μ)αc]1.15849 0.66667 [μ + 2(1−
μ)αc]1.15849 0.66667 [μ + 2(1−

μ)αc]1.15849 0.66667

0.6

0.1 [μ + 2(1−
μ)αc]1.00345 0.00534 [μ + 2(1−

μ)αc]1.00345 0.00534 [μ + 2(1−
μ)αc]1.00345 0.00534 [μ + 2(1−

μ)αc]1.00345 0.00534

0.2 [μ + 2(1−
μ)αc]1.15279 0.04267 [μ + 2(1−

μ)αc]1.15279 0.04267 [μ + 2(1−
μ)αc]1.15279 0.04267 [μ + 2(1−

μ)αc]1.15279 0.04267

0.3 [μ + 2(1−
μ)αc]1.27812 0.14400 [μ + 2(1−

μ)αc]1.27812 0.14400 [μ + 2(1−
μ)αc]1.27812 0.14400 [μ + 2(1−

μ)αc]1.27812 0.14400

0.4 [μ + 2(1−
μ)αc]1.38745 0.34133 [μ + 2(1−

μ)αc]1.38745 0.34133 [μ + 2(1−
μ)αc]1.38745 0.34133 [μ + 2(1−

μ)αc]1.38745 0.34133

0.5 [μ + 2(1−
μ)αc]1.48879 0.66667 [μ + 2(1−

μ)αc]1.48879 0.66667 [μ + 2(1−
μ)αc]1.48879 0.66667 [μ + 2(1−

μ)αc]1.48879 0.66667

In Figure 2, the picture shows the fuzzy approximate solution ũ(x, t) of the Black–
Scholes equation at the fractional parameter α = 1 and the auxiliary parameters k = 2,
μ = 0.5.
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Figure 2. The fuzzy approximate solution ũ(x, t) of Example 1.

Example 2. Consider the generalized Black–Scholes equation

∂αũ
∂tα

+ 0.08(2 + sin x)2x2 ∂2ũ
∂x2 + 0.06x

∂ũ
∂x
− 0.06ũ = 0, (71)

with the initial condition

ũ(x, 0) = c̃ max
(

x− 25e−0.06, 0
)

, (72)

c̃ = (0, 1, 2). (73)

From Definitions 7 and 8, we have

∂αH[ũ(x, t)]
∂tα

= −0.08(2 + sin x)2x2 ∂2H[ũ(x, t)]
∂x2

− 0.06x
∂H[ũ(x, t)]

∂x
+ 0.06H[ũ(x, t)],

(74)

and,

H[ũ(x, 0)] = [μ + 2(1− μ)αc]max
(

x− 25e−0.06, 0
)

, (75)

for each μ, αc ∈ [0, 1] and

H[ũ(x, t)] = ugr(μ, αc, x, t). (76)

Firstly, the ETHPM is used to solving the Example 2.

After using the Elzaki transform for the Equation (74), we get

E
[

∂αH[ũ(x, t)]
∂tα

]
= E[−0.08(2 + sin x)2x2 ∂2H[ũ(x, t)]

∂x2

− 0.06x
∂H[ũ(x, t)]

∂x
+ 0.06H[ũ(x, t)]].

(77)

Using the properties of the Elzaki transform, we get
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v−α[E[H[ũ(x, t)]− v2H[ũ(x, 0)]]]

= E[−0.08(2 + sin x)2x2 ∂2H[ũ(x, t)]
∂x2

− 0.06x
∂H[ũ(x, t)]

∂x
+ 0.06H[ũ(x, t)]],

(78)

E[H[ũ(x, t)]] = vα[E[−0.08(2 + sin x)2x2 ∂2H[ũ(x, t)]
∂x2

− 0.06x
∂H[ũ(x, t)]

∂x
+ 0.06H[ũ(x, t)]]] + v2H[ũ(x, 0)].

(79)

By applying the inverse Elzaki transform for the Equation (79), we get

H[ũ(x, t)] = E−1[vα[E[−0.08(2 + sin x)2x2 ∂2H[ũ(x, t)]
∂x2

− 0.06x
∂H[ũ(x, t)]

∂x
+ 0.06H[ũ(x, t)]]]] +H[ũ(x, 0)],

(80)

∞

∑
n=0

pnH[ũn(x, t)] = H[ũ(x, 0)] + pE−1

[
vαE[

∞

∑
n=0

pnH[Ψ̃n(x, t)]]

]
, (81)

where

H[Ψ̃n(x, t)] = H[−0.08(2 + sin x)2x2 ∂2ũn(x, t)
∂x2

− 0.06x
∂ũn(x, t)

∂x
+ 0.06ũn(x, t)].

(82)

After comparing the similar power coefficients of p, the following results can be obtained

p0 : H[ũ0(x, t)] = [μ + 2(1− μ)αc]max
(

x− 25e−0.06, 0
)

,

p1 : H[ũ1(x, t)] = E−1
[
vαE
[
H
[
Ψ̃0(x, t)

]]]
= [μ + 2(1− μ)αc][−x

0.06tα

Γ(α + 1)

+
0.06tα

Γ(α + 1)
max

(
x− 25e−0.06, 0

)
],

p2 : H[ũ2(x, t)] = E−1
[
vαE
[
H
[
Ψ̃1(x, t)

]]]
= [μ + 2(1− μ)αc][−x

(0.06tα)2

Γ(2α + 1)

+
(0.06tα)2

Γ(2α + 1)
max

(
x− 25e−0.06, 0

)
],

...

pn : H[ũn(x, t)] = E−1
[
vαE
[
H
[
Ψ̃n−1(x, t)

]]]
= [μ + 2(1− μ)αc][−x

(0.06tα)n

Γ(nα + 1)

+
(0.06tα)n

Γ(nα + 1)
max

(
x− 25e−0.06, 0

)
].

(83)
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So that the solutionH[ũ(x, t)] of the problem is given by

ugr(μ, αc, x, t) = H[ũ(x, t)]

=
∞

∑
n=0

pnH[ũn(x, t)]

= [μ + 2(1− μ)αc][x(1− Eα(0.06tα))

+ max
(

x− 25e−0.06, 0
)

Eα(0.06tα)],

(84)

H−1[ugr(μ, αc, x, t)] = [μ, 2− μ][x(1− Eα(0.06tα))

+ max
(

x− 25e−0.06, 0
)

Eα(0.06tα)].
(85)

By using the μ-level sets representation theorem, we have

ũ(x, t) = ∪
μ
[μ, 2− μ][x(1− Eα(0.06tα))

+ max
(

x− 25e−0.06, 0
)

Eα(0.06tα)]

= (0, 1, 2)[x(1− Eα(0.06tα))

+ max
(

x− 25e−0.06, 0
)

Eα(0.06tα)].

(86)

Secondly, the HPM is used to solving the Example 2.

Dα
t

[
∞

∑
n=0

pnH[ũn(x, t)]

]
= p

[
∞

∑
n=0

pnH[Ψ̃n(x, t)]

]
, (87)

where

H[Ψ̃n(x, t)] = H[−0.08(2 + sin x)2x2 ∂2H[ũ(x, t)]
∂x2

− 0.06x
∂H[ũ(x, t)]

∂x
+ 0.06H[ũ(x, t)],

(88)

∞

∑
n=0

pnH[ũn(x, t)] = H[ũ(x, 0)] + Jα

[
p

[
∞

∑
n=0

pnH[Ψ̃n(x, t)]

]]
. (89)

After comparing the similar power coefficients of p, the following results can be obtained

p0 : H[ũ0(x, t)] = [μ + 2(1− μ)αc]max
(

x− 25e−0.06, 0
)

,

p1 : H[ũ1(x, t)] = Jα
[
H
[
Ψ̃0(x, t)

]]
= [μ + 2(1− μ)αc][−x

0.06tα

Γ(α + 1)

+
0.06tα

Γ(α + 1)
max

(
x− 25e−0.06, 0

)
],
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p2 : H[ũ2(x, t)] = Jα
[
H
[
Ψ̃1(x, t)

]]
= [μ + 2(1− μ)αc][−x

(0.06tα)2

Γ(2α + 1)

+
(0.06tα)2

Γ(2α + 1)
max

(
x− 25e−0.06, 0

)
],

...

pn : H[ũn(x, t)] = Jα
[
H
[
Ψ̃n−1(x, t)

]]
= [μ + 2(1− μ)αc][−x

(0.06tα)n

Γ(nα + 1)

+
(0.06tα)n

Γ(nα + 1)
max

(
x− 25e−0.06, 0

)
].

(90)

So,we have

ũ(x, t) = ∪
μ
[μ, 2− μ][x(1− Eα(0.06tα))

+ max
(

x− 25e−0.06, 0
)

Eα(0.06tα)]

= (0, 1, 2)[x(1− Eα(0.06tα))

+ max
(

x− 25e−0.06, 0
)

Eα(0.06tα)].

(91)

Thirdly, the RPSM is used to solving the Example 2.

H[ũ(x, t)] =
∞

∑
n=0

H[ f̃n(x)]
tαn

Γ(1 + nα)
, (92)

H[ũi(x, t)] =
i

∑
n=0

H[ f̃n(x)]
tnα

Γ(1 + nα)
, (93)

H[ f̃0(x)] = H[ũ0(x, t)] = [μ + 2(1− μ)αc]max
(

x− 25e−0.06, 0
)

. (94)

The ith residual function can be written as

Resgr
i (x, t, μ, αc)=

∂αH[ũi(x, t)]
∂tα

+0.08(2+sin x)2x2 ∂2H[ũi(x, t)]
∂x2 +0.06x

∂H[ũi(x, t)]
∂x

−0.06H[ũi(x, t)], (95)

D(i−1)α
t Resgr

i (x, 0, μ, αc) = 0. (96)

Then, we obtain

Resgr
1 (x, t, μ, αc) =

∂αH[ũ1(x, t)]
∂tα

+ 0.08(2 + sin x)2x2 ∂2H[ũ1(x, t)]
∂x2 + 0.06x

∂H[ũ1(x, t)]
∂x

− 0.06H[ũ1(x, t)]

= f gr
1 (x, μ, αc) + 0.08(2 + sin x)2x2

[
D2

x[ f gr
0 (x, μ, αc)] + D2

x[ f gr
1 (x, μ, αc)]

tα

Γ(α + 1)

]
+ 0.06x

(
Dx[ f gr

0 (x, μ, αc)] + Dx[ f gr
1 (x, μ, αc)]

tα

Γ(α + 1)

)
− 0.06

(
f gr
0 (x, μ, αc) + f gr

1 (x, μ, αc)
tα

Γ(α + 1)

)
.

(97)

By calculating Resgr
1 (x, 0, μ, αc) = 0, we obtain
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f gr
1 (x, μ, αc) = [μ + 2(1− μ)αc]

[
0.06 max

(
x− 25e−0.06, 0

)
− 0.06x

]
, (98)

H[ũ1(x, t)]= [μ + 2(1−μ)αc]

[
max

(
x− 25e−0.06, 0

)
+[0.06 max

(
x− 25e−0.06, 0

)
− 0.06x]

tα

Γ(α + 1)

]
. (99)

Resgr
2 (x, t, μ, αc) =

∂αH[ũ2(x, t)]
∂tα

+ 0.08(2 + sin x)2x2 ∂2H[ũ2(x, t)]
∂x2 + 0.06x

∂H[ũ2(x, t)]
∂x

− 0.06H[ũ2(x, t)]

= f gr
1 (x, μ, αc) + f gr

2 (x, μ, αc)
tα

Γ(α + 1)

+ 0.08(2 + sin x)2x2
[

D2
x[ f gr

0 (x, μ, αc)] + D2
x[ f gr

1 (x, μ, αc)]
tα

Γ(α + 1)
+ D2

x[ f gr
2 (x, μ, αc)]

t2α

Γ(2α + 1)

]
+ 0.06x

[
Dx[ f gr

0 (x, μ, αc)] + Dx[ f gr
1 (x, μ, αc)]

tα

Γ(α + 1)
+ Dx[ f gr

2 (x, μ, αc)]
t2α

Γ(2α + 1)

]
− 0.06

(
f gr
0 (x, μ, αc) + f gr

1 (x, μ, αc)
tα

Γ(α + 1)
+ f gr

2 (x, μ, αc)
t2α

Γ(2α + 1)

)
.

(100)

By calculating Dα
x Resgr

2 (x, 0, μ, αc) = 0, we obtain

f gr
2 (x, μ, αc) = [μ + 2(1− μ)αc]0.062

[
max

(
x− 25e−0.06, 0

)
− x
]
, (101)

H[ũ2(x, t)]= [μ + 2(1−μ)αc]

[
max

(
x− 25e−0.06, 0

)
+[max

(
x− 25e−0.06, 0

)
−x][

(0.06tα)

Γ(α + 1)
+

(0.06tα)2

Γ(2α + 1)
]

]
. (102)

Continuing this way, one may find the values of f gr
3 (x, μ, αc), f gr

4 (x, μ, αc), . . . , we obtain

ũ(x, t) = ∪
μ
[μ, 2− μ][x(1− Eα(0.06tα))

+ max
(

x− 25e−0.06, 0
)

Eα(0.06tα)]

= (0, 1, 2)[x(1− Eα(0.06tα))

+ max
(

x− 25e−0.06, 0
)

Eα(0.06tα)].

(103)

Finally, the CFADM is used to solving the Example 2.

Let Lα = CFDα∗ = ∂α

∂tα be a linear operator

CFDα∗H[ũ(x, t)]=−0.08(2+sin x)2x2 ∂2H[ũ(x, t)]
∂x2 −0.06x

∂H[ũ(x, t)]
∂x

+0.06H[ũ(x, t)], (104)

t1−α∂tH[ũ(x, t)]=−0.08(2+sin x)2x2 ∂2H[ũ(x, t)]
∂x2 −0.06x

∂H[ũ(x, t)]
∂x

+0.06H[ũ(x, t)]. (105)

By the inverse of operator Lα which is L−1
α =

∫ t
0

1
ζ1−α (.)dζ, we get

H[ũ(x, t)] = H[ũ(x, 0)]− L−1
α

[
0.08(2+sin x)2x2 ∂2H[ũ(x, t)]

∂x2 +0.06x
∂H[ũ(x, t)]

∂x
−0.06H[ũ(x, t)]

]
, (106)

H[ũ(x, t)] =
∞

∑
n=0

H[ũn(x, t)]. (107)
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The nonlinear operator can also be decomposed into an infinite polynomial series
using the Adomian decomposition method

N [H[ũ(x, t)]] =
∞

∑
n=0

An, (108)

where An[H(ũ)] are Adomian polynomials, which are defined as

AnH[(ũ0, ũ1, ũ2 . . . ũn)] =
1
n!

dn

dλn

[
N
(

n

∑
i=0

λiH[ũi(x, t)]

)]
λ=0

, n = 0, 1, 2, · · · . (109)

So, by using the Adomian decomposition method in conformable sense, we get

H[ũ0(x, t)] = [μ + 2(1− μ)αc]max
(

x− 25e−0.06, 0
)

,

H[ũ1(x, t)] = −L−1
α

[
0.08(2+sin x)2x2 ∂2H[ũ0(x, t)]

∂x2 +0.06x
∂H[ũ0(x, t)]

∂x
−0.06H[ũ0(x, t)]

]
= [μ + 2(1−μ)αc]

[
max

(
x− 25e−0.06, 0

)
− x
]0.06tα

α
,

H[ũ2(x, t)] = −L−1
α

[
0.08(2+sin x)2x2 ∂2H[ũ1(x, t)]

∂x2 +0.06x
∂H[ũ1(x, t)]

∂x
−0.06H[ũ1(x, t)]

]
= [μ + 2(1−μ)αc]

[
max

(
x− 25e−0.06, 0

)
− x
] (0.06tα)2

2!α2 ,

H[ũ3(x, t)] = −L−1
α

[
0.08(2+sin x)2x2 ∂2H[ũ2(x, t)]

∂x2 +0.06x
∂H[ũ2(x, t)]

∂x
−0.06H[ũ2(x, t)]

]
= [μ + 2(1−μ)αc]

[
max

(
x− 25e−0.06, 0

)
− x
] (0.06tα)3

3!α3 ,

...

H[ũn(x, t)]=−L−1
α

[
0.08(2+sin x)2x2 ∂2H[ũn−1(x, t)]

∂x2 +0.06x
∂H[ũn−1(x, t)]

∂x
−0.06H[ũn−1(x, t)]

]
= [μ + 2(1−μ)αc]

[
max

(
x− 25e−0.06, 0

)
− x
] (0.06tα)n

n!αn .

ũ(x, t) = ∪
μ
[μ, 2− μ][x(1− e

0.06t
α )) + max

(
x− 25e−0.06, 0

)
e

0.06t
α )]

= (0, 1, 2)[x(1− e
0.06t

α )) + max
(

x− 25e−0.06, 0
)

e
0.06t

α )].
(110)

In Tables 4–6, we show theH[ũ(x, t)] and max|R̃es(x, t)| of ETHPM, HPM, RPSM, and
CFADM between different values of x and t when the fractions α = 0.5, 0.75, 1, respectively.
It is easy to see in the table that the value of max|R̃es(x, t)| increases with t when α, x is
fixed and the value of max|R̃es(x, t)| increases with x when α, t is fixed.

In Figure 3, the picture shows the fuzzy approximate solution ũ(x, t) of the Black–
Scholes equation at the fractional parameter α = 1 and the auxiliary parameter μ = 0.5.
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Table 4. H[ũ(x, t)] and max|R̃es(x, t)| by ETHPM, HPM, RPSM, CFADM for α = 0.5.

ETHPM HPM RPSM CFADM

x t H[ũ(x, t)] max|R̃es(x, t)| H[ũ(x, t)] max|R̃es(x, t)| H[ũ(x, t)] max|R̃es(x, t)| H[ũ(x, t)] max|R̃es(x, t)|

0.2

0.1 −[μ + 2(1−
μ)αc]0.00435 0.00243 −[μ + 2(1−

μ)αc]0.00435 0.00243 −[μ + 2(1−
μ)αc]0.00435 0.00243 −[μ + 2(1−

μ)αc]0.00774 0.02493

0.2 −[μ + 2(1−
μ)αc]0.00620 0.00490 −[μ + 2(1−

μ)αc]0.00620 0.00490 −[μ + 2(1−
μ)αc]0.00620 0.00490 −[μ + 2(1−

μ)αc]0.01103 0.02532

0.3 −[μ + 2(1−
μ)αc]0.00764 0.00738 −[μ + 2(1−

μ)αc]0.00764 0.00738 −[μ + 2(1−
μ)αc]0.00764 0.00738 −[μ + 2(1−

μ)αc]0.01359 0.02563

0.4 −[μ + 2(1−
μ)αc]0.00886 0.00988 −[μ + 2(1−

μ)αc]0.00886 0.00988 −[μ + 2(1−
μ)αc]0.00886 0.00988 −[μ + 2(1−

μ)αc]0.01577 0.02589

0.5 −[μ + 2(1−
μ)αc]0.00995 0.01240 −[μ + 2(1−

μ)αc]0.00995 0.01240 −[μ + 2(1−
μ)αc]0.00995 0.01240 −[μ + 2(1−

μ)αc]0.01771 0.02612

0.4

0.1 −[μ + 2(1−
μ)αc]0.00871 0.00486 −[μ + 2(1−

μ)αc]0.00871 0.00486 −[μ + 2(1−
μ)αc]0.00871 0.00486 −[μ + 2(1−

μ)αc]0.01547 0.04986

0.2 −[μ + 2(1−
μ)αc]0.01240 0.00980 −[μ + 2(1−

μ)αc]0.01240 0.00980 −[μ + 2(1−
μ)αc]0.01240 0.00980 −[μ + 2(1−

μ)αc]0.02205 0.05065

0.3 −[μ + 2(1−
μ)αc]0.01528 0.01476 −[μ + 2(1−

μ)αc]0.01528 0.01476 −[μ + 2(1−
μ)αc]0.01528 0.01476 −[μ + 2(1−

μ)αc]0.02717 0.05126

0.4 −[μ + 2(1−
μ)αc]0.01772 0.01976 −[μ + 2(1−

μ)αc]0.01772 0.01976 −[μ + 2(1−
μ)αc]0.01772 0.01976 −[μ + 2(1−

μ)αc]0.03154 0.05178

0.5 −[μ + 2(1−
μ)αc]0.01989 0.02478 −[μ + 2(1−

μ)αc]0.01989 0.02478 −[μ + 2(1−
μ)αc]0.01989 0.02478 −[μ + 2(1−

μ)αc]0.03542 0.05225

0.6

0.1 −[μ + 2(1−
μ)αc]0.01306 0.00730 −[μ + 2(1−

μ)αc]0.01306 0.00730 −[μ + 2(1−
μ)αc]0.01306 0.00730 −[μ + 2(1−

μ)αc]0.02321 0.07478

0.2 −[μ + 2(1−
μ)αc]0.01861 0.01470 −[μ + 2(1−

μ)αc]0.01861 0.01470 −[μ + 2(1−
μ)αc]0.01861 0.01470 −[μ + 2(1−

μ)αc]0.03308 0.07597

0.3 −[μ + 2(1−
μ)αc]0.02291 0.02214 −[μ + 2(1−

μ)αc]0.02291 0.02214 −[μ + 2(1−
μ)αc]0.02291 0.02214 −[μ + 2(1−

μ)αc]0.04076 0.07689

0.4 −[μ + 2(1−
μ)αc]0.02658 0.02964 −[μ + 2(1−

μ)αc]0.02658 0.02964 −[μ + 2(1−
μ)αc]0.02658 0.02964 −[μ + 2(1−

μ)αc]0.04731 0.07767

0.5 −[μ + 2(1−
μ)αc]0.02984 0.03718 −[μ + 2(1−

μ)αc]0.02984 0.03718 −[μ + 2(1−
μ)αc]0.02984 0.03718 −[μ + 2(1−

μ)αc]0.05313 0.07837

Table 5. H[ũ(x, t)] and max|R̃es(x, t)| by ETHPM, HPM, RPSM, CFADM for α = 0.75.

ETHPM HPM RPSM CFADM

x t H[ũ(x, t)] max|R̃es(x, t)| H[ũ(x, t)] max|R̃es(x, t)| H[ũ(x, t)] max|R̃es(x, t)| H[ũ(x, t)] max|R̃es(x, t)|

0.2

0.1 −[μ + 2(1−
μ)αc]0.00234 0.00242 −[μ + 2(1−

μ)αc]0.00234 0.00242 −[μ + 2(1−
μ)αc]0.00234 0.00242 −[μ + 2(1−

μ)αc]0.00287 0.02434

0.2 −[μ + 2(1−
μ)αc]0.00395 0.00486 −[μ + 2(1−

μ)αc]0.00395 0.00486 −[μ + 2(1−
μ)αc]0.00395 0.00486 −[μ + 2(1−

μ)αc]0.00484 0.02458
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Table 5. Cont.

ETHPM HPM RPSM CFADM

0.3 −[μ + 2(1−
μ)αc]0.00538 0.00732 −[μ + 2(1−

μ)αc]0.00538 0.00732 −[μ + 2(1−
μ)αc]0.00538 0.00732 −[μ + 2(1−

μ)αc]0.00659 0.02479

0.4 −[μ + 2(1−
μ)αc]0.00671 0.00978 −[μ + 2(1−

μ)αc]0.00671 0.00978 −[μ + 2(1−
μ)αc]0.00671 0.00978 −[μ + 2(1−

μ)αc]0.00821 0.02499

0.5 −[μ + 2(1−
μ)αc]0.00796 0.01226 −[μ + 2(1−

μ)αc]0.00796 0.01226 −[μ + 2(1−
μ)αc]0.00796 0.01226 −[μ + 2(1−

μ)αc]0.00974 0.02517

0.4

0.1 −[μ + 2(1−
μ)αc]0.00468 0.00484 −[μ + 2(1−

μ)αc]0.00468 0.00484 −[μ + 2(1−
μ)αc]0.00468 0.00484 −[μ + 2(1−

μ)αc]0.00573 0.04869

0.2 −[μ + 2(1−
μ)αc]0.00791 0.00970 −[μ + 2(1−

μ)αc]0.00791 0.00970 −[μ + 2(1−
μ)αc]0.00791 0.00970 −[μ + 2(1−

μ)αc]0.00964 0.04916

0.3 −[μ + 2(1−
μ)αc]0.01077 0.01462 −[μ + 2(1−

μ)αc]0.01077 0.01462 −[μ + 2(1−
μ)αc]0.01077 0.01462 −[μ + 2(1−

μ)αc]0.01318 0.04958

0.4 −[μ + 2(1−
μ)αc]0.01341 0.01956 −[μ + 2(1−

μ)αc]0.01341 0.01956 −[μ + 2(1−
μ)αc]0.01341 0.01956 −[μ + 2(1−

μ)αc]0.01642 0.04997

0.5 −[μ + 2(1−
μ)αc]0.01592 0.02454 −[μ + 2(1−

μ)αc]0.01592 0.02454 −[μ + 2(1−
μ)αc]0.01592 0.02454 −[μ + 2(1−

μ)αc]0.01949 0.05034

0.6

0.1 −[μ + 2(1−
μ)αc]0.00702 0.00724 −[μ + 2(1−

μ)αc]0.00702 0.00724 −[μ + 2(1−
μ)αc]0.00702 0.00724 −[μ + 2(1−

μ)αc]0.00860 0.07303

0.2 −[μ + 2(1−
μ)αc]0.01186 0.01456 −[μ + 2(1−

μ)αc]0.01186 0.01456 −[μ + 2(1−
μ)αc]0.01186 0.01456 −[μ + 2(1−

μ)αc]0.01453 0.07374

0.3 −[μ + 2(1−
μ)αc]0.01615 0.02194 −[μ + 2(1−

μ)αc]0.01615 0.02194 −[μ + 2(1−
μ)αc]0.01615 0.02194 −[μ + 2(1−

μ)αc]0.01978 0.07437

0.4 −[μ + 2(1−
μ)αc]0.02012 0.02934 −[μ + 2(1−

μ)αc]0.02012 0.02934 −[μ + 2(1−
μ)αc]0.02012 0.02934 −[μ + 2(1−

μ)αc]0.02463 0.07496

0.5 −[μ + 2(1−
μ)αc]0.02388 0.03682 −[μ + 2(1−

μ)αc]0.02388 0.03682 −[μ + 2(1−
μ)αc]0.02388 0.03682 −[μ + 2(1−

μ)αc]0.02923 0.07551

Table 6. H[ũ(x, t)] and max|R̃es(x, t)| by ETHPM, HPM, RPSM, CFADM for α = 1.

ETHPM HPM RPSM CFADM

x t H[ũ(x, t)] max|R̃es(x, t)| H[ũ(x, t)] max|R̃es(x, t)| H[ũ(x, t)] max|R̃es(x, t)| H[ũ(x, t)] max|R̃es(x, t)|

0.2

0.1 −[μ + 2(1−
μ)αc]0.00120 0.02414 −[μ + 2(1−

μ)αc]0.00120 0.02414 −[μ + 2(1−
μ)αc]0.00120 0.02414 −[μ + 2(1−

μ)αc]0.00120 0.02414

0.2 −[μ + 2(1−
μ)αc]0.00241 0.02429 −[μ + 2(1−

μ)αc]0.00241 0.02429 −[μ + 2(1−
μ)αc]0.00241 0.02429 −[μ + 2(1−

μ)αc]0.00241 0.02429

0.3 −[μ + 2(1−
μ)αc]0.00363 0.02444 −[μ + 2(1−

μ)αc]0.00363 0.02444 −[μ + 2(1−
μ)αc]0.00363 0.02444 −[μ + 2(1−

μ)αc]0.00363 0.02444

0.4 −[μ + 2(1−
μ)αc]0.00486 0.02458 −[μ + 2(1−

μ)αc]0.00486 0.02458 −[μ + 2(1−
μ)αc]0.00486 0.02458 −[μ + 2(1−

μ)αc]0.00486 0.02458

0.5 −[μ + 2(1−
μ)αc]0.00609 0.02473 −[μ + 2(1−

μ)αc]0.00609 0.02473 −[μ + 2(1−
μ)αc]0.00609 0.02473 −[μ + 2(1−

μ)αc]0.00609 0.02473
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Table 6. Cont.

ETHPM HPM RPSM CFADM

0.4

0.1 −[μ + 2(1−
μ)αc]0.00241 0.04829 −[μ + 2(1−

μ)αc]0.00241 0.04829 −[μ + 2(1−
μ)αc]0.00241 0.04829 −[μ + 2(1−

μ)αc]0.00241 0.04829

0.2 −[μ + 2(1−
μ)αc]0.00483 0.04858 −[μ + 2(1−

μ)αc]0.00483 0.04858 −[μ + 2(1−
μ)αc]0.00483 0.04858 −[μ + 2(1−

μ)αc]0.00483 0.04858

0.3 −[μ + 2(1−
μ)αc]0.00727 0.04887 −[μ + 2(1−

μ)αc]0.00727 0.04887 −[μ + 2(1−
μ)αc]0.00727 0.04887 −[μ + 2(1−

μ)αc]0.00727 0.04887

0.4 −[μ + 2(1−
μ)αc]0.00972 0.04917 −[μ + 2(1−

μ)αc]0.00972 0.04917 −[μ + 2(1−
μ)αc]0.00972 0.04917 −[μ + 2(1−

μ)αc]0.00972 0.04917

0.5 −[μ + 2(1−
μ)αc]0.01218 0.04946 −[μ + 2(1−

μ)αc]0.01218 0.04946 −[μ + 2(1−
μ)αc]0.01218 0.04946 −[μ + 2(1−

μ)αc]0.01218 0.04946

0.6

0.1 −[μ + 2(1−
μ)αc]0.00361 0.07243 −[μ + 2(1−

μ)αc]0.00361 0.07243 −[μ + 2(1−
μ)αc]0.00361 0.07243 −[μ + 2(1−

μ)αc]0.00361 0.07243

0.2 −[μ + 2(1−
μ)αc]0.00724 0.07287 −[μ + 2(1−

μ)αc]0.00724 0.07287 −[μ + 2(1−
μ)αc]0.00724 0.07287 −[μ + 2(1−

μ)αc]0.00724 0.07287

0.3 −[μ + 2(1−
μ)αc]0.01090 0.07331 −[μ + 2(1−

μ)αc]0.01090 0.07331 −[μ + 2(1−
μ)αc]0.01090 0.07331 −[μ + 2(1−

μ)αc]0.01090 0.07331

0.4 −[μ + 2(1−
μ)αc]0.01457 0.07375 −[μ + 2(1−

μ)αc]0.01457 0.07375 −[μ + 2(1−
μ)αc]0.01457 0.07375 −[μ + 2(1−

μ)αc]0.01457 0.07375

0.5 −[μ + 2(1−
μ)αc]0.01827 0.07419 −[μ + 2(1−

μ)αc]0.01827 0.07419 −[μ + 2(1−
μ)αc]0.01827 0.07419 −[μ + 2(1−

μ)αc]0.01827 0.07419

Example 3. Consider the following fractional Black–Scholes option pricing equation

∂αũ
∂tα

+
σ2

2
x2 ∂2ũ

∂x2 + (r− τ)x
∂ũ
∂x
− rũ = 0, (111)

with the initial condition

ũ(x, 0) = c̃ max(Ax− B, 0), (112)

c̃ = (0, 1, 2), (113)

From Definitions 7 and 8, we have

∂αH[ũ(x, t)]
∂tα

= −σ2

2
x2 ∂2H[ũ(x, t)]

∂x2

− (r− τ)x
∂H[ũ(x, t)]

∂x
+ rH[ũ(x, t)],

(114)

and,

H[ũ(x, 0)] = [μ + 2(1− μ)αc]max(Ax− B, 0), (115)

for each μ, αc ∈ [0, 1] and

H[ũ(x, t)] = ugr(μ, αc, x, t). (116)
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Figure 3. The fuzzy approximate solution ũ(x, t) of Example 2.

Firstly, the ETHPM is used to solving the Example 3.

After using the Elzaki transform for the Equation (114), we get

E
[

∂αH[ũ(x, t)]
∂tα

]
= E[−σ2

2
x2 ∂2H[ũ(x, t)]

∂x2

− (r− τ)x
∂H[ũ(x, t)]

∂x
+ rH[ũ(x, t)]].

(117)

Using the properties of the Elzaki transform, we get

v−α[E[H[ũ(x, t)]− v2H[ũ(x, 0)]]]

= E[−σ2

2
x2 ∂2H[ũ(x, t)]

∂x2

− (r− τ)x
∂H[ũ(x, t)]

∂x
+ rH[ũ(x, t)]],

(118)

E[H[ũ(x, t)]] = vα[E[−σ2

2
x2 ∂2H[ũ(x, t)]

∂x2

− (r− τ)x
∂H[ũ(x, t)]

∂x
+ rH[ũ(x, t)]]] + v2H[ũ(x, 0)].

(119)

By applying the inverse Elzaki transform for the Equation (119), we get

H[ũ(x, t)] = E−1[vα[E[−σ2

2
x2 ∂2H[ũ(x, t)]

∂x2

− (r− τ)x
∂H[ũ(x, t)]

∂x
+ rH[ũ(x, t)]]]] +H[ũ(x, 0)],

(120)

∞

∑
n=0

pnH[ũn(x, t)] = H[ũ(x, 0)] + pE−1

[
vαE[

∞

∑
n=0

pnH[Ψ̃n(x, t)]]

]
, (121)
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where

H[Ψ̃n(x, t)] = H[−σ2

2
x2 ∂2ũn(x, t)

∂x2

− (r− τ)x
∂ũn(x, t)

∂x
+ rũn(x, t)].

(122)

After comparing the similar power coefficients of p, the following results can be obtained

p0 : H[ũ0(x, t)] = [μ + 2(1− μ)αc]max(Ax− B, 0),

p1 : H[ũ1(x, t)] = E−1
[
vαE
[
H
[
Ψ̃0(x, t)

]]]
= [μ + 2(1− μ)αc][−x max(A, 0)

(r− τ)tα

Γ(α + 1)

+
(rtα)

Γ(α + 1)
max(Ax− B, 0)],

p2 : H[ũ2(x, t)] = E−1
[
vαE
[
H
[
Ψ̃1(x, t)

]]]
= [μ + 2(1− μ)αc][−x max(A, 0)

(r2 − τ2)(tα)2

Γ(2α + 1)

+
(rtα)2

Γ(2α + 1)
max(Ax− B, 0)],

...

pn : H[ũn(x, t)] = E−1
[
vαE
[
H
[
Ψ̃n−1(x, t)

]]]
= [μ + 2(1− μ)αc][−x max(A, 0)

(rn − τn)(tα)n

Γ(nα + 1)

+
(rtα)n

Γ(nα + 1)
max(Ax− B, 0)].

(123)

So that the solutionH[ũ(x, t)] of the problem is given by

ugr(μ, αc, x, t) = H[ũ(x, t)]

=
∞

∑
n=0

pnH[ũn(x, t)]

= [μ + 2(1− μ)αc][max(Ax− B, 0)Eα(rtα)

−max(A, 0)[Eα(rtα)− Eα(τtα)]],

(124)

H−1[ugr(μ, αc, x, t)] = [μ, 2− μ][max(Ax− B, 0)Eα(rtα)

−max(A, 0)[Eα(rtα)− Eα(τtα)]].
(125)

By using the μ-level sets representation theorem, we have

ũ(x, t) = ∪
μ
[μ, 2− μ][max(Ax− B, 0)Eα(rtα)

−max(A, 0)[Eα(rtα)− Eα(τtα)]]

= (0, 1, 2)[max(Ax− B, 0)Eα(rtα)

−max(A, 0)[Eα(rtα)− Eα(τtα)]].

(126)
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Secondly, the HPM is used to solving the Example 3.

Dα
t

[
∞

∑
n=0

pnH[ũn(x, t)]

]
= p

[
∞

∑
n=0

pnH[Ψ̃n(x, t)]

]
, (127)

where

H[Ψ̃n(x, t)] = H[−σ2

2
x2 ∂2H[ũ(x, t)]

∂x2

− (r− τ)x
∂H[ũ(x, t)]

∂x
+ rH[ũ(x, t)],

(128)

∞

∑
n=0

pnH[ũn(x, t)] = H[ũ(x, 0)] + Jα

[
p

[
∞

∑
n=0

pnH[Ψ̃n(x, t)]

]]
. (129)

After comparing the similar power coefficients of p, the following results can be obtained

p0 : H[ũ0(x, t)] = [μ + 2(1− μ)αc]max(Ax− B, 0),

p1 : H[ũ1(x, t)] = Jα
[
H
[
Ψ̃0(x, t)

]]
= [μ + 2(1− μ)αc][−x max(A, 0)

(r− τ)tα

Γ(α + 1)

+
(rtα)

Γ(α + 1)
max(Ax− B, 0)],

p2 : H[ũ2(x, t)] = Jα
[
H
[
Ψ̃1(x, t)

]]
= [μ + 2(1− μ)αc][−x max(A, 0)

(r2 − τ2)(tα)2

Γ(2α + 1)

+
(rtα)2

Γ(2α + 1)
max(Ax− B, 0)],

...

pn : H[ũn(x, t)] = Jα
[
H
[
Ψ̃n−1(x, t)

]]
= [μ + 2(1− μ)αc][−x max(A, 0)

(rn − τn)(tα)n

Γ(nα + 1)

+
(rtα)n

Γ(nα + 1)
max(Ax− B, 0)].

(130)

So, we have

ũ(x, t) = ∪
μ
[μ, 2− μ][max(Ax− B, 0)Eα(rtα)

−max(A, 0)[Eα(rtα)− Eα(τtα)]]

= (0, 1, 2)[max(Ax− B, 0)Eα(rtα)

−max(A, 0)[Eα(rtα)− Eα(τtα)]].

(131)

Thirdly, the RPSM is used to solving the Example 3.

H[ũ(x, t)] =
∞

∑
n=0

H[ f̃n(x)]
tαn

Γ(1 + nα)
, (132)
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H[ũi(x, t)] =
i

∑
n=0

H[ f̃n(x)]
tnα

Γ(1 + nα)
, (133)

H[ f̃0(x)] = H[ũ0(x, t)] = [μ + 2(1− μ)αc]max(Ax− B, 0). (134)

The ith residual function as follows,

Resgr
i (x, t, μ, αc)=

∂αH[ũi(x, t)]
∂tα

+
σ2

2
x2 ∂2H[ũi(x, t)]

∂x2 +(r− τ)x
∂H[ũi(x, t)]

∂x
−rH[ũi(x, t)], (135)

D(i−1)α
t Resgr

i (x, 0, μ, αc) = 0. (136)

Then, we obtain

Resgr
1 (x, t, μ, αc) =

∂αH[ũ1(x, t)]
∂tα

+
σ2

2
x2 ∂2H[ũ1(x, t)]

∂x2 +(r− τ)x
∂H[ũ1(x, t)]

∂x
−rH[ũ1(x, t)]

= f gr
1 (x, μ, αc) +

σ2

2
x2
[

D2
x[ f gr

0 (x, μ, αc)] + D2
x[ f gr

1 (x, μ, αc)]
tα

Γ(α + 1)

]
+ (r− τ)x

(
Dx[ f gr

0 (x, μ, αc)] + Dx[ f gr
1 (x, μ, αc)]

tα

Γ(α + 1)

)
− r
(

f gr
0 (x, μ, αc) + f gr

1 (x, μ, αc)
tα

Γ(α + 1)

)
.

(137)

By calculating Resgr
1 (x, 0, μ, αc) = 0, we obtain

f gr
1 (x, μ, αc) = [μ + 2(1− μ)αc][r max(Ax− B, 0)− (r− τ)x max(A, 0)], (138)

H[ũ1(x, t)]= [μ + 2(1−μ)αc]

[
max(Ax− B, 0)+[r max(Ax− B, 0)− (r− τ)x max(A, 0)]

tα

Γ(α + 1)

]
. (139)

Resgr
2 (x, t, μ, αc) =

∂αH[ũ2(x, t)]
∂tα

+
σ2

2
x2 ∂2H[ũ2(x, t)]

∂x2 +(r− τ)x
∂H[ũ2(x, t)]

∂x
−rH[ũ2(x, t)]

= f gr
1 (x, μ, αc) + f gr

2 (x, μ, αc)
tα

Γ(α + 1)

+
σ2

2
x2
[

D2
x[ f gr

0 (x, μ, αc)] + D2
x[ f gr

1 (x, μ, αc)]
tα

Γ(α + 1)
+ D2

x[ f gr
2 (x, μ, αc)]

t2α

Γ(2α + 1)

]

+ (r− τ)x
[

Dx[ f gr
0 (x, μ, αc)] + Dx[ f gr

1 (x, μ, αc)]
tα

Γ(α + 1)
+ Dx[ f gr

2 (x, μ, αc)]
t2α

Γ(2α + 1)

]

− r
(

f gr
0 (x, μ, αc) + f gr

1 (x, μ, αc)
tα

Γ(α + 1)
+ f gr

2 (x, μ, αc)
t2α

Γ(2α + 1)

)
.

(140)

By calculating Dα
x Resgr

2 (x, 0, μ, αc) = 0, we obtain

f gr
2 (x, μ, αc) = [μ + 2(1− μ)αc]

[
r2 max(Ax− B, 0)− (r2 − τ2)x max(A, 0)

]
, (141)

H[ũ2(x, t)]= [μ + 2(1−μ)αc][max(Ax− B, 0) +[r max(Ax− B, 0)− (r− τ)x max(A, 0)]
tα

Γ(α + 1)

+ [r2 max(Ax− B, 0)− (r2 − τ2)x max(A, 0)]
t2α

Γ(2α + 1)
].

(142)
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Continuing this way, one may find the values of f gr
3 (x, μ, αc), f gr

4 (x, μ, αc), . . . , we obtain

ũ(x, t) = ∪
μ
[μ, 2− μ][max(Ax− B, 0)Eα(rtα)

−max(A, 0)[Eα(rtα)− Eα(τtα)]]

= (0, 1, 2)[max(Ax− B, 0)Eα(rtα)

−max(A, 0)[Eα(rtα)− Eα(τtα)]].

(143)

Finally, the CFADM is used to solving the Example 3.

Let Lα = CFDα∗ = ∂α

∂tα be a linear operator

CFDα∗H[ũ(x, t)]=−σ2

2
x2 ∂2H[ũ(x, t)]

∂x2 −(r− τ)x
∂H[ũ(x, t)]

∂x
+rH[ũ(x, t)], (144)

t1−α∂tH[ũ(x, t)]=−σ2

2
x2 ∂2H[ũ(x, t)]

∂x2 −(r− τ)x
∂H[ũ(x, t)]

∂x
+rH[ũ(x, t)]. (145)

By the inverse of operator Lα which is L−1
α =

∫ t
0

1
ζ1−α (.)dζ, we get

H[ũ(x, t)] = H[ũ(x, 0)]− L−1
α

[
σ2

2
x2 ∂2H[ũ(x, t)]

∂x2 +(r− τ)x
∂H[ũ(x, t)]

∂x
−rH[ũ(x, t)]

]
, (146)

H[ũ(x, t)] =
∞

∑
n=0

H[ũn(x, t)]. (147)

Also assumed in the Adomian decomposition method is that the nonlinear operator
may be decomposed into an infinite polynomial series

N [H[ũ(x, t)]] =
∞

∑
n=0

An, (148)

where An[H(ũ)] are Adomian polynomials, which are defined as

AnH[(ũ0, ũ1, ũ2 . . . ũn)] =
1
n!

dn

dλn

[
N
(

n

∑
i=0

λiH[ũi(x, t)]

)]
λ=0

, n = 0, 1, 2, · · · . (149)

So, by using the Adomian decomposition method in conformable sense, we get

H[ũ0(x, t)] = [μ + 2(1− μ)αc]max(Ax− B, 0),

H[ũ1(x, t)] = −L−1
α

[
σ2

2
x2 ∂2H[ũ0(x, t)]

∂x2 +(r− τ)x
∂H[ũ0(x, t)]

∂x
−rH[ũ0(x, t)]

]

= [μ + 2(1−μ)αc][r max(Ax− B, 0)− (r− τ)x max(A, 0)]
tα

α
,

H[ũ2(x, t)] = −L−1
α

[
σ2

2
x2 ∂2H[ũ1(x, t)]

∂x2 +(r− τ)x
∂H[ũ1(x, t)]

∂x
−rH[ũ1(x, t)]

]

= [μ + 2(1−μ)αc][r2 max(Ax− B, 0)− (r2 − τ2)x max(A, 0)]
(tα)2

2!α2 ,
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H[ũ3(x, t)] = −L−1
α

[
σ2

2
x2 ∂2H[ũ2(x, t)]

∂x2 +(r− τ)x
∂H[ũ2(x, t)]

∂x
−rH[ũ2(x, t)]

]

= [μ + 2(1−μ)αc][r3 max(Ax− B, 0)− (r3 − τ3)x max(A, 0)]
(tα)3

3!α3 ,

...

H[ũn(x, t)] = −L−1
α

[
σ2

2
x2 ∂2H[ũn−1(x, t)]

∂x2 +(r− τ)x
∂H[ũn−1(x, t)]

∂x
−rH[ũn−1(x, t)]

]

= [μ + 2(1−μ)αc][rn max(Ax− B, 0)− (rn − τn)x max(A, 0)]
(tα)n

n!αn .

ũ(x, t) = ∪
μ
[μ, 2− μ][max(Ax− B, 0)e

rt
α

−max(A, 0)(e
rt
α − e

τt
α )]

= (0, 1, 2)[max(Ax− B, 0)e
rt
α

−max(A, 0)(e
rt
α − e

τt
α )].

(150)

In Tables 7–9, we show theH[ũ(x, t)] and max|R̃es(x, t)| of ETHPM, HPM, RPSM, and
CFADM between different values of x and t when the fractions α = 0.5, 0.75, 1 and the
parameters τ = 0.2, r = 0.25, A = 1, B = 10, respectively. It is easy to see in the table that
the value of max|R̃es(x, t)| increases with t when α, x is fixed, the value of max|R̃es(x, t)|
increases with x when α, t is fixed and the value of max|R̃es(x, t)| increases with α when x,
t is fixed.

In Figure 4, the picture shows the fuzzy approximate solution ũ(x, t) of the Black–
Scholes equation at the fractional parameter α = 1 and the auxiliary parameters μ = 0.5,
τ = 0.2, r = 0.25, A = 1, B = 10.
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Figure 4. The fuzzy approximate solution ũ(x, t) of Example 3.
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Table 7. H[ũ(x, t)] and max|R̃es(x, t)| by ETHPM, HPM, RPSM, CFADM for α = 0.5, τ = 0.2,
r = 0.25, A = 1, B = 10.

ETHPM HPM RPSM CFADM

x t H[ũ(x, t)] max|R̃es(x, t)| H[ũ(x, t)] max|R̃es(x, t)| H[ũ(x, t)] max|R̃es(x, t)| H[ũ(x, t)] max|R̃es(x, t)|

0.2

0.1 −[μ + 2(1−
μ)αc]0.00405 0.00061 −[μ + 2(1−

μ)αc]0.00405 0.00061 −[μ + 2(1−
μ)αc]0.00405 0.00061 −[μ + 2(1−

μ)αc]0.00729 0.02339

0.2 −[μ + 2(1−
μ)αc]0.00605 0.00225 −[μ + 2(1−

μ)αc]0.00605 0.00225 −[μ + 2(1−
μ)αc]0.00605 0.00225 −[μ + 2(1−

μ)αc]0.01093 0.02490

0.3 −[μ + 2(1−
μ)αc]0.00772 0.00416 −[μ + 2(1−

μ)αc]0.00772 0.00416 −[μ + 2(1−
μ)αc]0.00772 0.00416 −[μ + 2(1−

μ)αc]0.01399 0.02609

0.4 −[μ + 2(1−
μ)αc]0.00923 0.00627 −[μ + 2(1−

μ)αc]0.00923 0.00627 −[μ + 2(1−
μ)αc]0.00923 0.00627 −[μ + 2(1−

μ)αc]0.01676 0.02712

0.5 −[μ + 2(1−
μ)αc]0.01063 0.00852 −[μ + 2(1−

μ)αc]0.01063 0.00852 −[μ + 2(1−
μ)αc]0.01063 0.00852 −[μ + 2(1−

μ)αc]0.01936 0.02803

0.4

0.1 −[μ + 2(1−
μ)αc]0.00811 0.00122 −[μ + 2(1−

μ)αc]0.00811 0.00122 −[μ + 2(1−
μ)αc]0.00811 0.00122 −[μ + 2(1−

μ)αc]0.01458 0.04677

0.2 −[μ + 2(1−
μ)αc]0.01210 0.00449 −[μ + 2(1−

μ)αc]0.01210 0.00449 −[μ + 2(1−
μ)αc]0.01210 0.00449 −[μ + 2(1−

μ)αc]0.02185 0.04980

0.3 −[μ + 2(1−
μ)αc]0.01544 0.00832 −[μ + 2(1−

μ)αc]0.01544 0.00832 −[μ + 2(1−
μ)αc]0.01544 0.00832 −[μ + 2(1−

μ)αc]0.02798 0.05219

0.4 −[μ + 2(1−
μ)αc]0.01845 0.01253 −[μ + 2(1−

μ)αc]0.01845 0.01253 −[μ + 2(1−
μ)αc]0.01845 0.01253 −[μ + 2(1−

μ)αc]0.03353 0.05424

0.5 −[μ + 2(1−
μ)αc]0.02127 0.01704 −[μ + 2(1−

μ)αc]0.02127 0.01704 −[μ + 2(1−
μ)αc]0.02127 0.01704 −[μ + 2(1−

μ)αc]0.04191 0.06780

0.6

0.1 −[μ + 2(1−
μ)αc]0.01216 0.00182 −[μ + 2(1−

μ)αc]0.01216 0.00182 −[μ + 2(1−
μ)αc]0.01216 0.00182 −[μ + 2(1−

μ)αc]0.02187 0.07016

0.2 −[μ + 2(1−
μ)αc]0.01815 0.00674 −[μ + 2(1−

μ)αc]0.01815 0.00674 −[μ + 2(1−
μ)αc]0.01815 0.00674 −[μ + 2(1−

μ)αc]0.03278 0.07470

0.3 −[μ + 2(1−
μ)αc]0.02316 0.01249 −[μ + 2(1−

μ)αc]0.02316 0.01249 −[μ + 2(1−
μ)αc]0.02316 0.01249 −[μ + 2(1−

μ)αc]0.04197 0.07828

0.4 −[μ + 2(1−
μ)αc]0.02768 0.01880 −[μ + 2(1−

μ)αc]0.02768 0.01880 −[μ + 2(1−
μ)αc]0.02768 0.01880 −[μ + 2(1−

μ)αc]0.05029 0.08136

0.5 −[μ + 2(1−
μ)αc]0.03190 0.02556 −[μ + 2(1−

μ)αc]0.03190 0.02556 −[μ + 2(1−
μ)αc]0.03190 0.02556 −[μ + 2(1−

μ)αc]0.05808 0.08410

Table 8. H[ũ(x, t)] and max|R̃es(x, t)| by ETHPM, HPM, RPSM, CFADM for α = 0.75, τ = 0.2,
r = 0.25, A = 1, B = 10.

ETHPM HPM RPSM CFADM

x t H[ũ(x, t)] max|R̃es(x, t)| H[ũ(x, t)] max|R̃es(x, t)| H[ũ(x, t)] max|R̃es(x, t)| H[ũ(x, t)] max|R̃es(x, t)|

0.2 0.1 −[μ + 2(1−
μ)αc]0.00205 0.00128 −[μ + 2(1−

μ)αc]0.00205 0.00128 −[μ + 2(1−
μ)αc]0.00205 0.00128 −[μ + 2(1−

μ)αc]0.00250 0.02122
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Table 8. Cont.

ETHPM HPM RPSM CFADM

0.2 −[μ + 2(1−
μ)αc]0.00357 0.00292 −[μ + 2(1−

μ)αc]0.00357 0.00292 −[μ + 2(1−
μ)αc]0.00357 0.00292 −[μ + 2(1−

μ)αc]0.00436 0.02209

0.3 −[μ + 2(1−
μ)αc]0.00501 0.00472 −[μ + 2(1−

μ)αc]0.00501 0.00472 −[μ + 2(1−
μ)αc]0.00501 0.00472 −[μ + 2(1−

μ)αc]0.00610 0.02287

0.4 −[μ + 2(1−
μ)αc]0.00641 0.00666 −[μ + 2(1−

μ)αc]0.00641 0.00666 −[μ + 2(1−
μ)αc]0.00641 0.00666 −[μ + 2(1−

μ)αc]0.00779 0.02360

0.5 −[μ + 2(1−
μ)αc]0.00779 0.00871 −[μ + 2(1−

μ)αc]0.00779 0.00871 −[μ + 2(1−
μ)αc]0.00779 0.00871 −[μ + 2(1−

μ)αc]0.00947 0.02431

0.4

0.1 −[μ + 2(1−
μ)αc]0.00409 0.00257 −[μ + 2(1−

μ)αc]0.00409 0.00257 −[μ + 2(1−
μ)αc]0.00409 0.00257 −[μ + 2(1−

μ)αc]0.00500 0.04244

0.2 −[μ + 2(1−
μ)αc]0.00715 0.00584 −[μ + 2(1−

μ)αc]0.00715 0.00584 −[μ + 2(1−
μ)αc]0.00715 0.00584 −[μ + 2(1−

μ)αc]0.00872 0.04417

0.3 −[μ + 2(1−
μ)αc]0.01001 0.00945 −[μ + 2(1−

μ)αc]0.01001 0.00945 −[μ + 2(1−
μ)αc]0.01001 0.00945 −[μ + 2(1−

μ)αc]0.01220 0.04574

0.4 −[μ + 2(1−
μ)αc]0.01281 0.01331 −[μ + 2(1−

μ)αc]0.01281 0.01331 −[μ + 2(1−
μ)αc]0.01281 0.01331 −[μ + 2(1−

μ)αc]0.01559 0.04721

0.5 −[μ + 2(1−
μ)αc]0.01558 0.01742 −[μ + 2(1−

μ)αc]0.01558 0.01742 −[μ + 2(1−
μ)αc]0.01558 0.01742 −[μ + 2(1−

μ)αc]0.01894 0.04861

0.6

0.1 −[μ + 2(1−
μ)αc]0.00614 0.00385 −[μ + 2(1−

μ)αc]0.00614 0.00385 −[μ + 2(1−
μ)αc]0.00614 0.00385 −[μ + 2(1−

μ)αc]0.00750 0.06366

0.2 −[μ + 2(1−
μ)αc]0.01072 0.00877 −[μ + 2(1−

μ)αc]0.01072 0.00877 −[μ + 2(1−
μ)αc]0.01072 0.00877 −[μ + 2(1−

μ)αc]0.01308 0.06626

0.3 −[μ + 2(1−
μ)αc]0.01502 0.01417 −[μ + 2(1−

μ)αc]0.01502 0.01417 −[μ + 2(1−
μ)αc]0.01502 0.01417 −[μ + 2(1−

μ)αc]0.01831 0.06861

0.4 −[μ + 2(1−
μ)αc]0.01922 0.01997 −[μ + 2(1−

μ)αc]0.01922 0.01997 −[μ + 2(1−
μ)αc]0.01922 0.01997 −[μ + 2(1−

μ)αc]0.02338 0.07081

0.5 −[μ + 2(1−
μ)αc]0.02338 0.02613 −[μ + 2(1−

μ)αc]0.02338 0.02613 −[μ + 2(1−
μ)αc]0.02338 0.02613 −[μ + 2(1−

μ)αc]0.02841 0.07292

Table 9. H[ũ(x, t)] and max|R̃es(x, t)| by ETHPM, HPM, RPSM, CFADM for α = 1, τ = 0.2,
r = 0.25, A = 1, B = 10.

ETHPM HPM RPSM CFADM

x t H[ũ(x, t)] max|R̃es(x, t)| H[ũ(x, t)] max|R̃es(x, t)| H[ũ(x, t)] max|R̃es(x, t)| H[ũ(x, t)] max|R̃es(x, t)|

0.2

0.1 −[μ + 2(1−
μ)αc]0.00102 0.02051 −[μ + 2(1−

μ)αc]0.00102 0.02051 −[μ + 2(1−
μ)αc]0.00102 0.02051 −[μ + 2(1−

μ)αc]0.00102 0.02051

0.2 −[μ + 2(1−
μ)αc]0.00209 0.02102 −[μ + 2(1−

μ)αc]0.00209 0.02102 −[μ + 2(1−
μ)αc]0.00209 0.02102 −[μ + 2(1−

μ)αc]0.00209 0.02102

0.3 −[μ + 2(1−
μ)αc]0.00321 0.02155 −[μ + 2(1−

μ)αc]0.00321 0.02155 −[μ + 2(1−
μ)αc]0.00321 0.02155 −[μ + 2(1−

μ)αc]0.00321 0.02155
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Table 9. Cont.

ETHPM HPM RPSM CFADM

0.4 −[μ + 2(1−
μ)αc]0.00438 0.02209 −[μ + 2(1−

μ)αc]0.00438 0.02209 −[μ + 2(1−
μ)αc]0.00438 0.02209 −[μ + 2(1−

μ)αc]0.00438 0.02209

0.5 −[μ + 2(1−
μ)αc]0.00559 0.02264 −[μ + 2(1−

μ)αc]0.00559 0.02264 −[μ + 2(1−
μ)αc]0.00559 0.02264 −[μ + 2(1−

μ)αc]0.00559 0.02264

0.4

0.1 −[μ + 2(1−
μ)αc]0.00205 0.04101 −[μ + 2(1−

μ)αc]0.00205 0.04101 −[μ + 2(1−
μ)αc]0.00205 0.04101 −[μ + 2(1−

μ)αc]0.00205 0.04101

0.2 −[μ + 2(1−
μ)αc]0.00418 0.04205 −[μ + 2(1−

μ)αc]0.00418 0.04205 −[μ + 2(1−
μ)αc]0.00418 0.04205 −[μ + 2(1−

μ)αc]0.00418 0.04205

0.3 −[μ + 2(1−
μ)αc]0.00642 0.04311 −[μ + 2(1−

μ)αc]0.00642 0.04311 −[μ + 2(1−
μ)αc]0.00642 0.04311 −[μ + 2(1−

μ)αc]0.00642 0.04311

0.4 −[μ + 2(1−
μ)αc]0.00875 0.04419 −[μ + 2(1−

μ)αc]0.00875 0.04419 −[μ + 2(1−
μ)αc]0.00875 0.04419 −[μ + 2(1−

μ)αc]0.00875 0.04419

0.5 −[μ + 2(1−
μ)αc]0.01119 0.04529 −[μ + 2(1−

μ)αc]0.01119 0.04529 −[μ + 2(1−
μ)αc]0.01119 0.04529 −[μ + 2(1−

μ)αc]0.01894 0.04861

0.6

0.1 −[μ + 2(1−
μ)αc]0.00307 0.06152 −[μ + 2(1−

μ)αc]0.00307 0.06152 −[μ + 2(1−
μ)αc]0.00307 0.06152 −[μ + 2(1−

μ)αc]0.00307 0.06152

0.2 −[μ + 2(1−
μ)αc]0.00628 0.06307 −[μ + 2(1−

μ)αc]0.00628 0.06307 −[μ + 2(1−
μ)αc]0.00628 0.06307 −[μ + 2(1−

μ)αc]0.00628 0.06307

0.3 −[μ + 2(1−
μ)αc]0.00963 0.06466 −[μ + 2(1−

μ)αc]0.00963 0.06466 −[μ + 2(1−
μ)αc]0.00963 0.06466 −[μ + 2(1−

μ)αc]0.00963 0.06466

0.4 −[μ + 2(1−
μ)αc]0.01313 0.06628 −[μ + 2(1−

μ)αc]0.01313 0.06628 −[μ + 2(1−
μ)αc]0.01313 0.06628 −[μ + 2(1−

μ)αc]0.01313 0.06628

0.5 −[μ + 2(1−
μ)αc]0.01678 0.06793 −[μ + 2(1−

μ)αc]0.01678 0.06793 −[μ + 2(1−
μ)αc]0.01678 0.06793 −[μ + 2(1−

μ)αc]0.01678 0.06793

5. Conclusions

In this research, we handled the approximate solution of the fuzzy time-fractional
Black–Scholes’ European option pricing equation by using the homotopy transforming
method under gr-differentiability circumstances. According to the comparative analysis of
the four methods, it can be seen that ETHPM doesn’t require fractional differentiation or
integration operations, which reduces the complexity and the amount of computation. Our
method is better suited to computer programming implementations.
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Abstract: In this paper, we use the finite difference methods to explore step-down Equity Linked
Securities (ELS) options under the fractional Black-Scholes model. We establish Crank-Nicolson
scheme under one asset and study the impact of Hurst exponent (H) on return of repayment under
fixed stock price. We also explore the impact of stock price on return of repayment under different H.
Through numerical experiments, it is found that the return of repayment of options is related to H,
and the result of difference scheme will increase with the increase of H. In the case of two assets, we
establish implicit scheme, and in the case of three assets, we use operator splitting method (OSM)
method to establish semi-implicit scheme. We get the result that the H also influences the return
of repayment in two and three assets. We also conduct Greeks analysis. Through Greeks analysis,
we find that the long-term correlation of stocks has a huge impact on investment gains or losses.
Therefore, we take historical volatility (fractal exponents) into account which can significantly reduce
risk and increase revenue for investors.

Keywords: fractional Black-Scholes model; ELS; finite difference scheme

1. Introduction

Options originated in the United States and European markets in the late 18th century,
but it was not until the 1970s that options trading developed rapidly with the unification
and standardization of the trading of options contracts. In recent decades, with the repaid
development of economy, the investment risk of financial market is also increasing, and
investors are gradually keen to invest in options with hedging, management and analysis
function. Therefore, more and more new options have emerged, which not only enrich
the financial market, but also meet the needs of a large number of investors to avoid risks.
Equity Linked Securities (ELS) is a kind of hybrid debt securities. As one of the most
popular derivatives in structured financial instrument, its annual issuance scale exceeds
5 trillion US dollars. Step-down ELS option contains knocks-in and knock-out and the
option price will gradually decrease with time. In addition, ELS option products can be
based on an underlying asset, such as the Shanghai 50 index. It can also be based on two
or three basic assets at the same time, such as Shanghai 50 index, Kospi 200 index, Hang
Seng index, etc. Chen and Kensinger [1] studied the pricing of American ELS options and
found that the variable interest paid by ELS is related to the performance of S & P 500 stock
market index. Baubonis et al. [2] used numerical algorithm to price ELS options. After that,
Kim et al. [3] used a new finite difference method to solve the three assets pricing problem
based on the operator splitting method which is used by Jeong et al. [4].
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Bachelier [5] established many bond price motion models under Brown motion to
describe the price return of stock. Because of the negative value of the results obtained from
the Brownian motion, Sumuelson [6] proposed a geometric Brownian motion model. Since
the 1970s, Black and Scholes [7] gave European call option pricing formula, the research
results of options have been increasing, but the results of option pricing research are mainly
obtained under the geometric Brownian motion. But in reality, the changes of the target asset
price described by the traditional geometric Brownian motion are not necessarily satisfied
with the normal, independent increment and continuous path. Mandelbrot and Ness [8]
proved that the distribution of capital market income is not symmetrical and does not
obey normal distribution. Therefore, some scholars have focused on the study of options
under fractional Brownian motion [9,10] or improve reaserch methods [11]. Peter [12]
considered that the characteristics of fractional Brownian motion, such as long memory,
thick tail and self similarity, can describe the changes of asset prices in financial markets,
and puts forward the fractal market hypothesis. Seidler [13] had proved in his paper that
the logarithmic return of financial assets has the characteristics of asymmetry, peak and
thick tail, capital market mutation or reversal, deviation and so on. But compared with
the traditional Brownian motion, the fractional Brownian motion can well describe these
characteristics. At the same time, many financial products in financial market have fractal
structure [14–17]. Necula [18] studied European option under fractional Brownian motion
and gave the corresponding pricing formula. Liu and Yang [19] studied the European
option on dividend-paying stock under fractional Brownian motion which is a new option
form. Murwaningtyas et al. [20] studied the European option pricing problem under
mixed fractional Brownian motion which includes fractional and geometric, and took the
method based on Fourier transformation and quasi conditional expectation to solve the
problem. Finally, them gave a formula to calculate the European call option. Jian Wang
et al. [21] used Monte Carlo method to study ELS options under fractional Brownian
motion and compared the results with those of ELS options and actual results under
traditional geometric Brownian motion. Ali et al. [22] developed new group iterative
schemes for the numerical solution of two-dimensional anomalous fractional sub-diffusion
equation subject to specific initial and Dirichlet boundary conditions. Oderinu et al. [23]
considered the nature of these time-fractional differential equations are in sense of Caputo.
Nikan et al. [24] addressed the solution of the Rayleigh–Stokes problem for an edge in
a generalized Oldroyd-B fluid using fractional derivatives and the radial basis function-
generated finite difference (RBF-FD) method. Golbabai et al. [25] considered a partial
integro-differential equation (PIDE) problem with a free boundary. Golbabai et al. [26]
provided methods for accurate modeling of anomalous diffusion and transport dynamics
in determined multifaceted systems. Golbabai et al. [27] investigated the pricing of
double barrier options when the price change of the underlying is considered as a fractal
transmission system. Golbabai et al. [28] managed to determine the numerical solution of
the time fractional Black–Scholes model (TFBSM) by using a truly mesh-free scheme. Nikan
et al. [29] proposed an efficient and modified local mesh-less method for the numerical
simulation of the TFBSE.

The results of fractional Brownian motion are more close to the actual results. It also
shows that the asymmetry, peak thick tail and bias of fractional Brownian motion are more
in line with the actual situation. Therefore, we consider the finite difference method to
study ELS option under fractional Brownian motion. In order to better observe the financial
market, issues must be considered in actual operations. At present, under the environment
of the rapid economic development, various financial markets gradually become active,
and the demand for investment continues to increase. The resource allocation has become
very important. According to the efficiency and risk characteristics of the markets, investors
can better price assets, optimize the risk control and perfect their investment portfolios
more reasonably with the model we proposed. The efficiency of the market can be used
in the pricing of assets and the allocation of resources. Its importance is self-evident in
the financial market. Notice that the financial market is not simple linear, it has a complex
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structure inside, and the fractal market hypothesis can describe the nonlinear structure
inside the market. Therefore our model can identify the market much more accurately and
can benefit investors profoundly.

The structure and content of this paper are as follows. In Section 2, we give the
definition of fractional Brownian motion and establish the mathematical model of fractional
step-down ELS. In Section 3, we establish a finite difference scheme for the mathematical
model, and carry out numerical experiments in Section 4. Finally, we give the experimental
conclusion in Section 5.

2. Fractional Step-Down ELS Model

ELS is a structured product which includes two processes of knock-in and knock-out.
Its trading principle is based on financial assets. The return of ELS depends on three forms:
early redemption, final redemption and maturity redemption. For one asset, if the price
date of the asset at the first exercise is higher than the predetermined exercise price, ELS will
give the specified exercise price for early redemption, and the contract will be terminated.
Otherwise, the contract will continue to be judged until the next expiration date. If the
contract fails to be redeemed in advance when it matures, the return on investment depends
on whether the contract meets the knock-in-barrier. When the underlying asset does not
reach the knock-in-barrier, ELS gives a fixed value return determined by the fictitious
interest rate as the maturity redemption. Otherwise, the final redemption will be made at
the asset price on the maturity date.

The trading mechanism of fractional step-down ELS is the same as ELS, only in the
holding stage, it meets the conditions of fractional Black-Scholes model. Step-down ELS
option means option price gradually decreases with time. Next, we introduce fractional
Brownian motion and establish fractional step-down ELS model under different assets, and
give the corresponding parameters.

2.1. Fractional Brownian Motion

We suppose that the random process {B(t), t ≥ 0} is Brownian motion, then fractional
Brownian motion is to modify B(t) in Brownian motion to BH(t) with parameter Hurst
exponent (H). H is the earliest statistical measure proposed by Hu and Oksendal [30]
applied to fractal analysis. In time series analysis, using H as a measure, we can see how
a time series has a long memory and moves irregularly. In fractional Brownian motion,
a larger H value indicates a stronger fluctuation trend. Now we define the following:
let (Ω, F, P) be a probability space and H be a constant on (0, 1). If the one dimensional
Gaussian process satisfies:

• BH
0 = E

[
BH

t
]
, for any t > 0.

• E
(

BH
t BH

s
)
= 1

2

{
t2H + s2H − |t− s|2H

}
, for any t, s > 0.

The Gaussian process BH
t is called fractional Brownian motion with H. E is the

mathematical expectation of probability measure p. The function of BH
t is:

p
(

BH
t − BH

0 ≤ x
)
=

1√
2πt2H

∫ S

−∞
exp
(
− S2

2t2H

)
dS, ∀t ≥ 0. (1)

At the same time, there are two important properties of fractional Brownian motion.

1. Fractional Brownian motion has self-similarity. For any H ∈ (0, 1) and α > 0, BH
αt and

αBH
t have the same finite-dimensional distribution.

2. When H = 0.5, it is the standard Brownian motion. When H > 0.5, BH
t has a long-term

dependence. When 0 < H < 0.5, BH
t has anti persistence.

If the underlying asset price S(t) satisfies:

dS(t) = μ(t)S(t) + σ(t)S(t)dBH
t . (2)
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Then S(t) is said to obey geometric fractional Brownian motion. μ(t) and σ(t) rep-
resent the forecast return and volatility of the risk asset price respectively. Under the
risk neutral measure, μ replaces with risk-free rate r. Equation (2) can be changed to
Equation (3):

dS(t) = r(t)S(t) + σ(t)S(t)dBH
t . (3)

If r(t) = r and σ(t) = σ are constants, then Equation (3) can be changed to Equation (4):

dS(t) = rS(t) + σS(t)dBH
t . (4)

We call the underlying asset price S(t) is an Itô type fractional Black-Scholes market
when it satisfies the usual Black-Scholes model conditions and obeys geometric fractional
Brownian motion. Hu and Oksendal [30] proved that the market is complete and there is
no arbitrage.

2.2. Fractional Step-Down ELS Model of One Asset

We first give the main parameters of fractional step-down ELS option under one asset
through Table 1.

Table 1. Parasmeters of fractional step-down ELS.

Hurst Exponent Strike Price Underlying Asset Price

H K S

Maturity Knock-in-barrier Dummy

T D d

Numer of observation dates Face value Strike date

n F δ

Volatility Risk-free rate Coupon rate

σ r β

In the holding stage, the asset satisfies the fractional Black-Scholes model, therefore,
the change of asset satisfies the fractional Black-Scholes partial differential equation (PDE).
Through establishing hedge techniques and Itô fractional formula, we can get the fractional
Black-Schoels PDE.

∂V
∂t

+ HΔt2H−1S2σ2 ∂2V
∂S2 + rS

∂V
∂S
− rV = 0. (5)

In Equation (5), V = V(S, t) represents the return of repayment and Δt represents
time step of T. φ(S) represents V when t = T. To transform the backward-in-time in PDE
into forward-in-time, we take τ = T − t and obtain the PDE with initial value problem.{

∂V
∂τ = HΔt2H−1S2σ2 ∂2V

∂S2 + rS ∂V
∂S − rV, τ ∈ (0, T), S ∈ [0,+∞),

V(S, 0) = φ(S).
(6)

In the exercise stage, its judging form is the same as that of ELS. We assume that there
are n strike prices, n coupon rates and n strike dates. At the same time, we set S(t) to
represent the value of the underlying asset at time t, S(0) is the price at the initial time, and
the above corresponding symbols are:

K1 ≥ K2 ≥ . . . ≥ Kn, β1 ≤ β2 ≤ . . . ≤ βn, δ1 ≤ δ2 ≤ . . . ≤ δn.
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It is worth noting that when comparing with the execution price, we use the ratio of
the underlying asset price to the initial price. Therefore, judgment conditions of exercise
stage can be expressed as follows.

V(S, t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

F(1 + β1), i f S(t1) ≥ K1,
F(1 + β2), i f K2 ≤ S(t2) ≤ K1, D ≤ S(t1) ≤ K1,
. . . . . .
F(1 + βn), i f Kn ≤ S(tn) ≤ . . . ≤ K1, . . . D ≤ S(tn−1) ≤ Kn−1,
F(1 + d), otherwise.

2.3. Fractional Step-Down ELS Model of Two Assets

In two assets, we let x and y denote the price of two underlying assets and H in x
direction and y direction are expressed as Hx and Hy. The symbols of other parameters
remain unchanged. In the holding stage, for (x, y) ∈ Φ, t ∈ [0, T], the return of repayment
V(x, y, t) follows fraction Black-Scholes partial differential equation (PDE):

Vt + rxVx + ryVy + HxΔt2Hx−1σ2
x x2Vxx

+HyΔt2Hy−1σ2
y y2Vyy +

(
Hx + Hy

)
ΔtHx+Hy−1ρxyσxσyVxy − rV = 0.

In this equation, σx, σy represent the volatility of x and y respectively and ρxy represents
the correlation value between x and y. We also take τ = T − t and ϑ(x, y) represents V
when t = T. We obtain the PDE with initial value problem.⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Vτ = rxVx + ryVy + HxΔt2Hx−1σ2
x x2Vxx

+HyΔt2Hy−1σ2
y y2Vyy+(

Hx + Hy
)
ΔtHx+Hy−1ρxyσxσyxyVxy − rV, (x, y, τ) ∈ Φ times [0, T],

V(x, y, 0) = ϑ(x, y).

(7)

In the exercise stage, the fractional step-down ELS of two assets is different from
that of one asset. The base price of two assets’ fractional step-down ELS is expressed by
the minimum value of two underlying assets. If the minimum value is larger than or
equal to the strike price at the strike date, the contract will be terminated. If the early
redemption fails on the maturity date, the return depends on whether the minimum
value of the two underlying assets reaches the knock-in-barrier. Therefore, We take ui =
min{x(ti), y(ti), i = 1, 2, . . . , n} and judgment conditions of exercise stage can be expressed
as follows.

V(x, y, t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

F(1 + β1), i f u1 ≥ K1,
F(1 + β2), i f K2 ≤ u2 ≤ K1, D ≤ u1 ≤ K1,
. . . . . .
F(1 + βn), i f Kn ≤ un ≤ Kn−1 ≤ . . . ≤ K1,. . . , D ≤ un−1 ≤ Kn−1,
F(1 + d), otherwise.

2.4. Fractional Step-Down ELS Model of Three Assets

In three assets, we let x, y and z denote the price of three underlying assets and H in
direction of x, y and z are expressed as Hx, Hy and Hz. The symbols of other parameters
remain unchanged. In the holding stage, for (x, y, z) ∈ Ψ, t ∈ [0, T], the return of repayment
V(x, y, z, t) follows fractional Black-Scholes PDE:

Vt + rxVx + ryVy + rzVz

+HxΔt2Hx−1σ2
x x2Vxx + HyΔt2Hy−1σ2

y y2Vyy
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+HzΔt2Hz−1σ2
z z2Vzz +

(
Hx + Hy

)
ΔtHx+Hy−1ρxyσxσyxyVxy

+
(

Hy + Hz
)
ΔtHy+Hz−1ρyzσyσzyzVyz

+(Hx + Hz)ΔtHx+Hz−1ρxzσxσzxzVxz − rV = 0.

In this equation, σx, σy, σz represent the volatility of x, y and z respectively. ρxy, ρyz, ρzx
represent the correlation value between two subscript assets variables. We also take
τ = T − t and ψ(x, y, z) represents V when t = T. We obtain the PDE with initial value
problem. ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Vτ = rxVx + ryVy + rzVz

+HxΔt2Hx−1σ2
x x2Vxx + HyΔt2Hy−1σ2

y y2Vyy

+HzΔt2Hz−1σ2
z z2Vzz +

(
Hx + Hy

)
ΔtHx+Hy−1ρxyσxσyxyVxy

+
(

Hy + Hz
)
ΔtHy+Hz−1ρyzσyσzyzVyz

+(Hx + Hz)ΔtHx+Hz−1ρxzσxσzxzVxz − rV = 0,
(x, y, z, τ) ∈ Ψ times [0, T],
V(x, y, z, 0) = ψ(x, y, z).

(8)

In the exercise stage, the fractional step-down ELS of three assets is similar to that
of two assets. The base price of two assets’ fractional step-down ELS is expressed by the
minimum value of three underlying assets. Therefore, judgment conditions of exercise
stage can be expressed as follows.

V(x, y, z, t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

F(1 + β1), i f l1 ≥ K1,
F(1 + β2), i f K2 ≤ l2 ≤ K1, D ≤ l1 ≤ K1,
. . . . . .
F(1 + βn), i f Kn ≤ l1 ≤ Kn−1 ≤ . . . ≤ K1,. . . ,D ≤ l1 ≤ Kn−1,
F(1 + d), otherwise,

where, li = min{x(ti), y(ti), z(ti), i = 1, 2, . . . , n}.

3. Numerical Method

In the holding stage of fractional step-down ELS option. The chang of its return
satisfies the fractional Black-Scholes equation. We consider using the finite difference
method to solve the initial problem. We establish Crank-Nicolson scheme under one asset
and establish implicit scheme under two assets, and in the case of three assets, we use
operator splitting method (OSM) method to establish semi-implicit scheme. We also take
the judgment condition of the exercise stage and Dirichlet zero boundary as its boundary
conditions. On the one asset and two assets, Crank-Nicolson scheme and implicit scheme
are unconditionally stable and convergent [31]. On the three asset, OSM method is also
proved to be convergent and stable by reference [3,4,32].

3.1. One Underlying Asset

We grid on area Σ : {0 ≤ S ≤ Smax, 0 ≤ t ≤ T}. From t = 0 to t = T, we divide the
option price into several equal intervals. We take Δt = T

Nt
, ΔS = Smax−Smin

NS
, Δt represents

the time step of T, ΔS represents the price step of S.
There are Nt + 1 time periods and Ns + 1 option price: 0, Δt, 2Δt. . .T and 0, ΔS, . . . , Smax.

In this grid, V(i, j)denotes the corresponding time iΔt and option price: jΔS = Sj, where
i = 0, . . . , Nt, j = 0, . . . , NS. We take Vi

j = V(i, j) to express the return at point Sj. For
Equation (6), we consider the Crank-Nicolson scheme.

Vi+1
j −Vi

j
Δt = 1

2 (HΔt2H−1σ2S2
j

Vi
j+1−2Vi

j +Vi
j−1

ΔS2

181



Fractal Fract. 2023, 7, 126

+rSj
Vi

j+1−Vi
j−1

2ΔS − rVi
j ) +

1
2 (HΔt2H−1σ2S2

j
Vi+1

j+1−2Vi+1
j +Vi+1

j−1
ΔS2

+rSj
Vi+1

j+1−Vi+1
j−1

2ΔS − rVi+1
j ).

After sorting out the above difference scheme and adding zero Dirichilet boundary
condition at S = 0 and nonlinear boundary condition at t = T, we can observe the equation
as follows:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

αjVi+1
j−1 + BjVi+1

j + γjVi+1
j+1 =

Vi
j

Δt + HΔt2H−1σ2S2
j

Vi+1
j+1−2Vi+1

j +Vi+1
j−1

2ΔS2

+rSj
Vi+1

j+1−Vi+1
j−1

4ΔS − r
2 Vi+1

j , 1 ≤ j ≤ NS − 1, 0 ≤ i ≤ Nt − 1,

VT
j = φ

(
Sj
)
, 0 ≤ j ≤ NS,

Vi
Smax

= Vi
0 = V0

j = 0, 0 ≤ i ≤ Nt, 0 ≤ j ≤ Ns.

(9)

and

αj =
rSj

4ΔS
−

HΔt2H−1σ2S2
j

2ΔS2 ,

Bj =
1
�t

+ HΔt2H−1σ2
S2

j

ΔS2 +
r
2

,

γj = −
rSj

4ΔS
−

HΔt2H−1σ2S2
j

2ΔS2 .

In the system of Equation (9), like ELS option, fractional ELS option has different
returns whether the underlying asset occurs knock-in-barrier event. And the boundary
conditions at VT

j = φ
(
Sj
)

are also different.
When knock-in-barrier event occurs, φ

(
Sj
)

can be expressed as:

φ
(
Sj
)
=

⎧⎪⎨⎪⎩
Sj, i f Sj ≤ D,
F(1 + d), i f D ≤ Sj ≤ K1,
F(1 + β1), i f K1 ≤ Sj.

When knock-in-barrier event doesn’t occur, φ
(
Sj
)

can be expressed as:

φ
(
Sj
)
=

⎧⎪⎨⎪⎩
Sj, i f Sj ≤ D,
Sj, i f D ≤ Sj ≤ K1,
F(1 + d), otherwise.

3.2. Two Underlying Assets

For region Φ times [0, T] = {0 ≤ y ≤ ymax, 0 ≤ x ≤ xmax, 0 ≤ t ≤ T}, we grid it. From
t = 0 to t = T, we divide the option price into several equal intervals. We take Δt = T

Nt
,

Δx = xmax
Nx

, Δy = ymax
Ny

, Δt represents the time step of T, Δx, Δy represent the price step of x
and y. There are Nt + 1 time periods, Nx + 1 option price of x and Ny + 1 option price of y.
These are expressed as:

0, Δt, 2Δt. . . T; 0, Δx, . . . , xmax and 0, Δy, . . . , ymax.

In this grid, V(i, j, k) denotes the corresponding time iΔt and option price of x and
y: jΔx = xj, kΔy = yk, where i = 0, . . . , Nt; j = 0, . . . , Nx; k = 0, . . . , Ny. We take
Vi

j,k = V(i, j, k) to express the return of repayment at point (j, k). For Equation (7), we
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consider the following difference scheme to establish implicit scheme. We also use zero
Dirichilet boundary conditions at x = 0, y = 0 and nonlinear boundary condition at t = T.

Vt =
Vi+1 −Vi

Δt
, Vx =

Vj+1 −Vj−1

2Δx
, Vxx =

Vj+1 − 2Vj + Vj−1

Δx2 ,

Vxy =
1

4ΔxΔy

(
Vj+1,k+1 −Vj−1,k+1 −Vj+1,k−1 + Vj−1,k+1

)
,

Vi+1
jk −Vi

jk

Δt
= rxj

Vi+1
j+1,k −Vi+1

j−1,k

2Δx
+ ryk

Vi+1
j,k+1 −Vi+1

j,k−1

2Δy

+HxΔt2Hx−1σ2
x x2

j

Vi+1
j+1,k − 2Vi+1

j,k + Vi+1
j−1,k

Δx2

+HyΔt2Hy−1σ2
y y2

k

Vi+1
j,k+1 − 2Vi+1

j,k + Vi+1
j,k−1

Δy2

+
(

Hx + Hy
)
ΔtHx+Hy−1ρxyσxσyxjyk

Vi+1
j+1,k+1 −Vi+1

j−1,k+1 −Vi+1
j+1,k−1 + Vi+1

j−1,k−1

4ΔxΔy

−rVi+1
j,k .

After sorting out the above difference scheme and adding zero Dirichilet boundary
condition at point (x, y) = (0, 0) and nonlinear boundary condition at t = T, we can
observe the equation as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

gx
j Vi+1

j−1,k + qx
j Vi+1

j,k + wx
j Vi+1

j+1,k

+gy
k Vi+1

j,k−1 + qy
kVi+1

j,k + wy
kVi+1

j,k+1 =
Vi

j,k
Δt + ςi+1

j,k ,

1 ≤ j ≤ Nx − 1, 0 ≤ i ≤ Nt − 1, 1 ≤ k ≤ Ny − 1,
VT

j,k = ϑ
(
xj, yk, 0

)
, 0 ≤ j ≤ Nx, 0 ≤ k ≤ Ny,

Vi
xmax ,k = Vi

j,ymax
= Vi

0 = V0
j,k = 0,

0 ≤ i ≤ Nt, 0 ≤ j ≤ Nx, 0 ≤ k ≤ Ny,

(10)

where,

gx
j =

rxj

4Δx
−

HxΔt2Hx−1σ2
x x2

j

2Δx2 , gy
k =

ryk
4Δy

− HyΔt2Hy−1σ2
y y2

k

2Δy2 ,

qx
j =

1
Δt

+ HxΔt2Hx−1σ2
x

x2
j

Δx2 +
r
2

, qy
k =

1
Δt

+ HyΔt2Hy−1σ2
y

y2
k

Δy2 +
r
2

,

wx
j = − rxj

4Δx
−

HxΔt2Hx−1σ2
x x2

j

2Δx2 , wy
k = − ryk

4Δy
− HyΔt2Hy−1σ2

y y2
k

2Δy2 ,

ςi+1
j,k =

(
Hx + Hy

)
ΔtHx+Hy−1ρxyxyσxσy

(
Vi+1

j+1,k+1 −Vi+1
j−1,k+1 −Vi+1

j+1,k−1 + Vi+1
j−1,k−1

)
4ΔxΔy

.

It is similar to one asset, VT
j,k = ϑ

(
xj, yk, T

)
can also be divided into two situations.

When knock-in-barrier event occurs, VT
j,k = ϑ

(
xj, yk, T

)
can be expressed as:

ϑ
(
xj, yk, T

)
=

⎧⎪⎨⎪⎩
min
{

xj, yk
}

, i f min
{

xj, yk
} ≤ D,

F(1 + d), i f D ≤ min
{

xj, yk
} ≤ K1,

F(1 + β1), i f K1 ≤ min
{

xj, yk
}

.

When knock-in-barrier event doesn’t occur, VT
jk = ϑ

(
xj, yk, 0

)
can be expressed as:
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ϑ
(
xj, yk, T

)
=

⎧⎪⎨⎪⎩
min
{

xj, yk
}

, i f min
{

xj, yk
} ≤ D,

min
{

xj, yk
}

, i f D ≤ min
{

xj, yk
} ≤ K1,

F(1 + d), otherwise.

3.3. Three Underlying Assets

We grid region Ψ times [0, T] = {0 ≤ x ≤ xmax, 0 ≤ y ≤ ymax, 0 ≤ z ≤ zmax, 0 ≤ t ≤ T}
uniformly. From t = 0 to t = T, we divide the option price into several equal intervals. We
take Δt = T

Nt
, Δx = xmax

Nx
, Δy = ymax

Ny
, Δz = zmax

Nz
, Δt represents the time step of T, Δx, Δy

and Δz represent the price step of x, y and z. There are Nt + 1 time periods, Nx + 1 option
price of x, Ny + 1 option price of y and Nz + 1 option price of z. These are expressed as:

0, Δt, 2Δt. . . T; 0, Δx, . . . , xmax; 0, Δy, . . . , ymax and 0, Δz, 2Δz, . . . , zmax.

In this grid, V(i, j, k, m) denotes the corresponding time iΔt and option price of
x, y and z: jΔx = xj, kΔy = yk and mΔz = zm, where i = 0, . . . , Nt; j = 0, . . . , Nx;
k = 0, . . . , Ny; m = 0, . . . , Nz. We take Vi

j,k,m = V(i, j, k, m) to express the return of repay-
ment at point (j, k, m). We also consider using zero Dirichilet boundary conditions at x = 0,
y = 0 and z = 0. As for t = T, we employ nonlinear boundary condition. We also use OSM
method [4,31,32] which is the most extensive to establish semi-implicit scheme. And the
reference [3,4,32] have proved that this method is convergent.

Vi+1
j,k,m −Vi

j,k,m

Δt
= (γxV)

i+ 1
3

j,k,m + (γyV)
i+ 2

3
j,k,m + (γzV)i+1

j,k,m. (11)

In Equation (11), we define difference operators γx, γy and γz as follows:

(γxV)
i+ 1

3
j,k,m = Hxt2Hx−1UxxVi+ 1

3
j,k,m + rxjUxVi+ 1

3
j,k,m +

1
3

((
Hx + Hy

)
ΔtHx+Hy−1σxσyxjykUxyVi

j,k,m

+
(

Hz + Hy
)
ΔtHz+Hy−1σyσzykzmUyzVi

j,k,m

+(Hx + Hz)ΔtHx+Hz−1σzσxzmxjUzxVi
j,k,m)− rVi+ 1

3
j,k,m

)
,

(γyV)
i+ 2

3
j,k,m = Hyt2Hy−1UyyVi+ 2

3
j,k,m + rykUyVi+ 2

3
j,k,m +

1
3

((
Hx + Hy

)
ΔtHx+Hy−1σxσyxjykUxyVi+ 1

3
j,k,m

+
(

Hz + Hy
)
ΔtHz+Hy−1σyσzykzmUyzVi+ 1

3
j,k,m

+(Hx + Hz)ΔtHx+Hz−1σzσxzmxjUzxVi+ 1
3

j,k,m)− rVi+ 2
3

j,k,m

)
,

(γzV)i+1
j,k,m = HzΔt2Hz−1UzzVi+1

j,k,m + rzmUzVi+1
j,k,m +

1
3

((
Hx + Hy

)
ΔtHx+Hy−1σxσyxjykUxyVi+ 2

3
j,k,m

+
(

Hz + Hy
)
ΔtHz+Hy−1σyσzykzmUyzVi+ 2

3
j,k,m

+(Hx + Hz)ΔtHx+Hz−1σzσxzmxjUzxVi+ 2
3

j,k,m)− rVi+1
j,k,m

)
.

We take the following difference scheme for Equation (11),

UxVj,k,m = 1
2Δx

(
Vj+1,k,m −Vj−1,k,m

)
,

UxxVj,k,m = 1
Δx2

(
Vj−1,k,m − 2Vj,k,m + Vj+1,k,m

)
,

UxyVj,k,m = 1
4ΔxΔy

(
Vj+1,k+1,m −Vj−1,k+1,m −Vj+1,k−1,m + Vj−1,k−1,m

)
.
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Vi+ 1
3

j,k,m −Vi
j,k,m

Δt
= (γxV)

i+ 1
3

j,k,m, (12)

Vi+ 2
3

j,k,m −Vi+ 1
3

j,k,m

Δt
= (γyV)

i+ 2
3

j,k,m, (13)

Vi+1
j,k,m −Vi+ 2

3
j,k,m

Δt
= (γzV)i+1

j,k,m. (14)

We give Vi
jkm and rewrite the Equation (12) as follows:

ajV
i+ 1

3
j−1,k,m + bjV

i+ 1
3

j,k,m + cjV
i+ 1

3
j+1,k,m = f j,k,m, for j = 1, . . . , Nx,

where,

aj = −
2HxΔt2Hx−1σ2

x x2
j + rxjΔxΔt

2Δx2 ,

β j =
2HxΔt2Hx−1σ2

x x2
j

Δx2 +
1

Δt
,

cj =
−2Hxt2Hx−1σ2

x x2
j − rxjΔx

2Δx2 ,

f j,k,m =
1
3
(

Hx + Hy
)
tHx+Hy−1ρxyσxσyxjykUxyVi

j,k,m

+
1
3
(

Hz + Hy
)
tHz+Hy−1ρyzσzσyzmykUyzVi

j,k,m

+
1
3
(Hx + Hz)tHx+Hz−1ρxzσxσzxjzmUxzVi

j,k,m)−
1

Δt
Vi

j,k,m.

It is similar to the direction of y and z. By the reference of Kim et al. [3], we can get the
solution method for the finite difference scheme.

Similar to two assets and one asset, VT
j,k,m = ψ

(
xj, yk, zm, T

)
can also be divided into

two situations.
When knock-in-barrier event occurs, VT

j,k,m = ψ
(
xj, yk, zm, T

)
can be expressed as:

ψ
(
xj, yk, zm, T

)
=

⎧⎪⎨⎪⎩
min
{

xj, yk, zm
}

, i f min
{

xj, yk, zm
} ≤ D,

F(1 + d), i f D ≤ min
{

xj, yk, zm
} ≤ K1,

F(1 + β1), otherwise.

When knock-in-barrier event doesn’t occur, VT
j,k,m = ψ

(
xj, yk, zm, T

)
can be expressed as:

ψ
(
xj, yk, zm, T

)
=

⎧⎪⎨⎪⎩
min
{

xj, yk, zm
}

, i f min
{

xj, yk, zm
} ≤ D,

min
{

xj, yk, zm
}

, i f D ≤ min
{

xj, yk, zm
} ≤ K1,

F(1 + d), otherwise.

4. Numerical Experiments

All the computations are processed by using Matlab R2022a on an Rog Strix Intel(R)
Core(TM) i9-12950HX CPU constructed in Chongqing, China 2.30 GHz processor.

In Section 3, we establish different finite difference schemes for one, two and three
assets. We let kv be the return of repayment without knock-in-barrier, v be the return of
repayment with knock-in-barrier and error represents |kv− v|. Now we assign values to
parameters and then take numerical experiments.
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4.1. One Underlying Asset

First, we research the relationship between H and v as well as kv at a fixed point S
under different values of H. We take values of H at equal intervals from 0.1 to 0.9 for
20 groups. We take n = 4 and take S from 0 to 200 for 21 groups. For other parameters, our
values are as follows:

σ = 0.3, r = 0.03, NS = 20, T = 1, Nt = 100, Δt = T
Nt

= 0.01,

δ1 = Nt
4 , δ2 = Nt

2 , δ3 = 3Nt
4 , δ4 = Nt + 2,

K1 = 90, K2 = 85, K3 = 80, K4 = 75,
β1 = 0.055, β2 = 0.11, β3 = 0.165, β4 = 0.22, D = 50, d = 0.16.

K1 to K4, β1 to β4 and δ1to δ4 represent the strike price in strike date and the corre-
sponding coupon rate. We can get the corresponding figures at point S = 70 as follows.

In Figure 1, we can obtain that whether the knock-in-barrier is triggered or not, the
change of H value will affect the return of repayment. Therefore, we explore the relationship
between the option price S and the return of repayment v and kv and the error between
each other under a specific H value. Next, we take the specific H values of 0.3, 0.5, 0.7 and
don’t change the values of other parameters. We get the figures of S and v, S and kv and
figures of error between S and |kv− v|. These figures are as shown below.

0 0.5 1
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60
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70

75

80
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kv

kv

Figure 1. The effect of different H on v and kv when S = 70.

In Figures 2–4, (a), (b), (c) in turn represent the result figures obtained when H values
are 0.3, 0.5 and 0.7. In Figures 2 and 3, we obtained that the change of v and kv with H is
mainly in the range of S value from 50 to 100, which includes strike price and knock-in-
barrier. With the increase of H value, the value of v and kv corresponding to S value on 50
to 100 will also increase. It can also be confirmed from Figure 4 that with the increase of H
value, the maximum value of the error between v and kv also increases, and the range of
the changed wave is about 50 to 100. Next, we explore whether the change of H value in
different dimensions will also affect v and kv.
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Figure 2. (a) denotes v for different S when H = 0.3, (b) denotes v for different S when H = 0.5 and
(c) denotes v for different S when H = 0.7.
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Figure 3. (a) denotes kv for different S when H = 0.3, (b) denotes kv for different S when H = 0.5
and (c) denotes kv for different S when H = 0.7.
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Figure 4. (a) denotes |kv− v| for different S when H = 0.3, (b) denotes |kv− v| for different S when
H = 0.5 and (c) denotes |kv− v| for different S when H = 0.7.

4.2. Two Underlying Assets

The same as one underlying asset, we first research the relationship between Hx, Hy
and v as well as kv at a fixed point (x, y) under different values of Hx and Hy. We take
values of Hx and Hy at equal intervals from 0.1 to 0.9 for 20 groups. We take n = 4 and take
x and y from 0 to 300 for 31 groups. For other parameters, our values are as follow:

σx = σy = 0.3, r = 0.03, Nx = Ny = 30, Δx = Δy = 10, T = 1, Nt = 100, Δt = T
Nt

= 0.01,

δ1 = Nt
4 , δ2 = Nt

2 , δ3 = 3Nt
4 , δ4 = Nt + 2, ρxy = 0.5, K1 = 90, K2 = 85, K3 = 80, K4 = 75,

β1 = 0.055, β2 = 0.11, β3 = 0.165, β4 = 0.22, D = 50, d = 0.16.

K1 to K4, β1 to β4 and δ1 to δ4 represent the strike price in strike date and the cor-
responding coupon rate. We can get the corresponding figures at a fixed point (x, y) =
(100, 100) as follows.

In Figure 5, we can observe that the change of Hx, Hy will also affect v and kv in
the case of fixed point (x, y). With the increase of Hx and Hy, the values of v and kv
are also increasing. Therefore, we explore the relationship of x, y and v, x, y and kv.
Next, we take the specific Hx, Hy values of 0.3, 0.5, 0.7 at the same time, and change
Nx = Ny = 150, Δx = Δy = 2. We take x and y from 0 to 300 for 151 groups. Then, we
don’t change the values of other parameters. We get the figures of x, y and v, x, y and
kv. At the same time, we obtain the error figures of x, y and |kv− v|. These figures are as
shown in the Figures 6–8 below.
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Figure 5. The effect of different Hx and Hy on v and kv when (x, y) = (100, 100).
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Figure 6. (a) denotes v for different x, y when Hx = Hy = 0.3, (b) denotes v for different x, y when
Hx = Hy = 0.5 and (c) denotes v for different x, y when Hx = Hy = 0.7.
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Figure 7. (a) denotes kv for different x, y when Hx = Hy = 0.3, (b) denotes kv for different x, y when
Hx = Hy = 0.5 and (c) denotes kv for different x, y when Hx = Hy = 0.7.
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Figure 8. (a) denotes |kv− v| for different x, y when Hx = Hy = 0.3, (b) denotes |kv− v| for different
x, y when Hx = Hy = 0.5 and (c) denotes |kv− v| for different x, y when Hx = Hy = 0.7.

In Figures 6–8, (a), (b), (c) in turn represent the result figures obtained when Hx =
Hy = 0.3, 0.5, 0.7. In Figures 6 and 7, similar to the case of one asset, the change of Hx
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and Hy values will also affect the results of v and kv. The variation of v and kv values is
mainly in the range of S value from 50 to 100, and this range just includes strike price and
knock-in-barrier. If the influence of Hx and Hy on v and kv values is not considered in
practical application, there will be a great error in calculating the return of repayment in
the exercise stage, and even the result of wrong judgment. On the other hand, it can also be
confirmed from Figure 8 that with the increase of Hx and Hy values, the maximum value
of the error between v and kv also increases.

4.3. Three Underlying Assets

In three underlying assets, we also explore the relationship between Hx, Hy, Hz and
v as well as kv at a fixed point (x, y, z) and fixed value Hz under different values of Hx,
Hy. We take values of Hx and Hy at equal intervals from 0.1 to 0.9 for 20 groups. We take
n = 4 and take x and y from 0 to 200 for 21 groups. For other parameters, our values are
as follow:

σx = σy = σz = 0.3, r = 0.03, Nx = Ny = Nz = 20, T = 3, Nt = 90, Δt = T
Nt

= 1
30 ,

ρxy = ρyz = ρxz = 0.5,δ1 = Nt
6 , δ2 = Nt

3 , δ3 = Nt
2 , δ4 = 4Nt

6 , δ5 = 5
6 Nt, δ6 = 7

6 Nt,

K1 = 95, K2 = 95, K3 = 90, K4 = 90, K5 = 85, K6 = 85,

β1 = 0.05, β2 = 0.1, β3 = 0.15, β4 = 0.2, β5 = 0.25, β6 = 0.30, D = 50, d = 0.3.

K1 to K4, β1 to β4 and δ1 to δ4 represent the strike price in strike date and the
corresponding coupon rate. We can get the corresponding figure at point (x, y, z) =
(100, 100, 100) as follows.

In Figure 9, (a) represents the figure of Hx, Hy and v at fixed point (x, y, z) =
(100, 100, 100) when Hz = 0.5. (b) represents the figure of Hx, Hy and kv at fixed point
(x, y, z) = (100, 100, 100) when Hz = 0.5. In two assets, we get the conclusion that the
change of Hx and Hy will affect the results of v and kv. In three assets, this conclusion
is still true, and with the increase of Hx, Hy values, the results of v and kv also increase.
Next, we take the specific Hx, Hy, Hz values of 0.3, 0.5, 0.7 at the same time, and change
Nx = Ny = Nz = 100, Δx = Δy = Δz = 2. Therefore, we take x, y and z from 0 to 200 for
101 groups. And then we don’t change the values of other parameters. Therefore, we can
get the figures of x, y and v, the figures of x, y and kv when z = 100. At the same time, we
also give the figures of x, y and |kv− v|when z = 100. These are as shown in Figures 10–12
below.
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Figure 9. The effect of different Hx, Hy on v and kv when (x, y, z) = (100, 100, 100) and Hz = 0.5.
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Figure 10. (a) denotes v for different x, y when Hx = Hy = Hz = 0.3 and z = 100, (b) denotes v
for different x, y when Hx = Hy = Hz = 0.5 and z = 100 and (c) denotes v for different x, y when
Hx = Hy = Hz = 0.7 and z = 100.
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Figure 11. (a) denotes kv for different x, y when Hx = Hy = Hz = 0.3 and z = 100, (b) denotes kv
for different x, y when Hx = Hy = Hz = 0.5 and z = 100 and (c) denotes kv for different x, y when
Hx = Hy = Hz = 0.7 and z = 100.
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Figure 12. (a) denotes |kv− v| for different x, y when Hx = Hy = Hz = 0.3 and z = 100, (b) denotes
|kv− v| for different x, y when Hx = Hy = Hz = 0.5 and z = 100 and (c) denotes |kv− v| for different
x, y when Hx = Hy = Hz = 0.7 and z = 100.
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In Figures 10–12, (a), (b) and (c) respectively represent the corresponding figures when
Hx = Hy = Hz = 0.3, 0.5 and 0.7. In Figures 10 and 11, we can observe the conclusion
that the change of H value will still affect v and kv values, and the main change occurs in
a reign containing strike price and knock-in-barrier. At the same time, we also calculate
that v and kv at a fixed point (x, y, z) = (100, 100, 100), when Hx = Hy = Hz = 0.3, the
corresponding values of v and kv are 71.5396 and 89.7243 respectively. When Hx = Hy =
Hz = 0.5, the corresponding values of v and kv at this point are 89.7243 and 84.2065. When
Hx = Hy = Hz = 0.7, the corresponding values of v and kv at this point are 106.3668 and
95.9271. We can obtain that the value of v and kv increase with the increase of Hx, Hy and
Hz. In Figure 12, the error value increases with increase of Hx, Hy and Hz values, which
indicates that with the increase of Hx, Hy and Hz values, the difference between v and kv
value becomes significant. In practice, H value is not directly obtainable. Nowadays, the
value of H is estimated mainly based on historical data. Barunik and Kristoufek [33] point
out that it is most effective to estimate H by using the GHE method suitable for multifractal
measurement of time series. But if the influence of H value is ignored, there may be a big
error between the calculated result and the actual result, which will affect the final decision.

4.4. Empirical Evidence for Well-Posed of the Model and Validation of the Solution

In this section, we select an actual three-asset ELS product to price three-asset step-
down ELS with Monte Carlo simulation )(MCs). The three-asset ELS product consists
of three underlying assets such as KOSPI200, EU- ROSTOXX50, and S&P500 whose de-
tails can be accessed on 12 December 2020 and can be referred to website “http://www.
miraeassetdaewoo.com”.

According to the investment statement of the selected ELS, we observe the follow-
ing parameters as: the face value F = 10000, the expiration time T = 3, the volatilizes
σ1 = 0.2414 (KOSPI200), σ2 = 0.2871 (EUROSTOXX50), σ3 = 0.3509 (S&P500), the correla-
tions of two underlying assets ρ12 = 0.5474, ρ13 = 0.3357, ρ23 = 0.7172, the dummy rate
d = 0.135, the initial prices of three-asset are 315.89pt, 3160.95pt, 3281.06pt, which corre-
spond to KOSPI200, EUROSTOXX50, and S&P500, respectively. Here for convenience, we
set the benchmark prices of three underlying assets S(0) = S1(0) = S2(0) = S3(0) = 100,
then all the knock-in-barrier levels of three assets are D = 0.45× S(0). Besides, the free risk
interest rate is chosen by the current London InterBank Offered Rate r = 0.023631.

The next step is to determine the long-memory characteristics of each asset, namely,
the values of Hurst exponent. There have been many methods proposed for estimating the
Hurst exponent, we here adopt generalized Hurst exponent (GHE) approach to calculate
the Hvalue of each asset. GHE is a suitable method for measuring the multifractality
of time series. For instance, a time series S(t) with length N, where t = (1, 2, · · · , δt),
calculate the H(q) based on the scaling of qth order moments defined by the distribution

as Kq(τ) =
∑N−τ

t=0 |X(t+τ)−X(t)|q
N−τ+1 , where 1 < τ < tmax, and τmax always varies between 5 and

19, we choose τmax = 15 in this paper. We obtain the statistic scales by the power-law
Kq(τ) ∝ cτqH(q). When q = 2, the K2(τ) represents the scaling of the auto-correlation
function of the increments. We estimate the K2(τ) ∝ cτ2H(2) in this study, and we can easily
estimate 2H(2) by the least squares regression on logarithms of logK2(τ) and logτ, then
we obtain the Hurst exponents for three-asset step-down ELS in the following table.

We observe from Table 2 that the classic ELS model calculates a price that is obviously
higher than the reference price, whereas the proposed model almost exactly corresponds
to the reference price. As a result, ELS models should take into consideration long-range
correlations of underlying assets. Buyers or sellers will suffer significant losses when selling
an ELS contract with large amounts, if not considering Hurst exponent. Besides, we average
the 20 prices and obtain the ELS prices of the classical ELS model and the ELS-MCs model
are 9109.8, and 8948.6 while the reference price is given by 8931.2.
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Table 2. Hurst exponents for three-asset step-down ELS calculated by GHE approach.

KOSPI200 EUROSTOXX50 S&P500

H1 H2 H3
0.4946 0.4941 0.4870

4.5. Greeks

In one asset, we explore Greeks and obtain the conclusion that the change of H will
affect the numerical solution of Greeks. Therefore, we also explore whether the change of
H will also affect the numerical solution of three dimensional Greeks. We remain the value
of parameters unchanged and use semi-implicit to obtain solution of Greeks in x direction.
But in Rho, the value of r is selected in [0.02985, 0.03015]. In Vega, the value of σ is selected
in [0.3, 0.4]. In x direction, we give the finite difference scheme of calculating Greeks.

Finite difference scheme of Greeks:

Delta = Vx(x, T) ≈ V(x + h, y, z, T)−V(x− h, y, z, T)
2h

,

Gamma = Vxx(x, T) ≈ V(x− h, y, z, T)− 2V(x, y, z, T) + V(x + h, y, z, T)
h2 ,

Theta = Vt(x, T) ≈ V(x, y, z, T)−V(x, y, z, T − Δt)
Δt

,

Rho = Vr(x, T)|r=0.03 ≈ V(x, y, z, T)|r=0.03015 −V(x, y, z, T)|r=0.02985

0.0003
,

Vega = Vσx (x, T)|σx=0.35 ≈ V(x, y, z, T)|σx=0.4 −V(x, y, z, T)|σx=0.3

0.1
.

We also change the value of Hx, Hy, Hz and we observe the numerical figures under
different values of Hx, Hy, Hz.

Delta is the rate of change of the option price with respect to the price of the underlying
asset. With the increase of Hx, Hy, Hz, the peak value of the figure increases gradually and
the figure becomes steeper. Gamma is the change in the Delta of an option relative to the
change in the underlying assets. With the increase of Hx, Hy, Hz, the peak value of the
figure also increases gradually and the figure also becomes steeper. Theta represents the
speed of option yield decay with time. With the increase of Hx, Hy, Hz, the value range of
the curve in the figure fluctuates obviously. When Hx = Hy = Hz = 0.7, there are obvious
fluctuations in this figure. Rho is the partial differential of option yield to risk-free interest
rate. With the increase of Hx, Hy, Hz, the peak value of the figure decline gradually. Vega is
the ratio between the change of option price and the change of underlying asset volatility.
With the increase of Hx, Hy, Hz, the figure becomes smoother and wider. But the peak value
of the figure hardly changed.

In Figures 13–15, the black curve represents option price without knock-in-barrier and
the blue curve stands for option price with knock-in-barrier. From the results of figures, we
can obtain that the change of H will also affect the final result in the Greeks of three assets.
In the fractional Black-Scholes model, there is a big error between the result and the actual
result if we don’t consider the effect of H.

Our proposed model incorporates the concept of fractals on the basis of efficient
market theory. Since the concept of fractal is added, there will be some changes in the price
of options, which will lead to changes in Greeks. Considering that fractals add the historical
volatility of stock prices into the calculation, this is consistent with the long-term memory,
auto-correlation and persistence of stocks. More importantly, in the process of financial
investment, considering the fractal exponents or not will have a considerable impact on
investment Greeks risk hedging. When we consider the long-term correlation of stock
prices, the fractal exponents helps us reduce the volatility of stock expectations which can
effectively guide investment institutions or investors to reduce losses and increase revenue.
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Figure 13. Hx = Hy = Hz = 0.3, figures represent in turn are Delta, Gamma, Theta, Rho and Vega.
The blue curve stands for option price with knock-in-barrier while the black curve represents option
price without knock-in-barrier. For interpretation of the references to color in the figure, the reader is
referred to the web version of the article.
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Figure 14. Hx = Hy = Hz = 0.5, figures represent in turn are Delta, Gamma, Theta, Rho and Vega.
The blue curve stands for option price with knock-in-barrier while the black curve represents option
price without knock-in-barrier. For interpretation of the references to color in the figure, the reader is
referred to the web version of the article.
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Figure 15. Hx = Hy = Hz = 0.7, figures represent in turn are Delta, Gamma, Theta, Rho and Vega.
The blue curve stands for option price with knock-in-barrier while the black curve represents option
price without knock-in-barrier. For interpretation of the references to color in the figure, the reader is
referred to the web version of the article.

5. Conclusions

We established finite difference scheme for the step-down ELS option of one, two
and three assets under the fractional Black-Scholes model. In the case of one asset, we
established the Crank-Nicolson scheme, in the case of two assets, we established implicit
scheme and in the case of three assets, we also used OSM method to establish semi-implicit
scheme. Numerical experiments were performed after meshing at equal intervals, and the
results were obtained. Regardless of whether the knock-in-barrier is triggered, the return of
repayment will be affected by H. As the value of H increases, the return of repayment will
also increase. The gap between the result v obtained when the knock-in-barrier is occurred
and the result kv obtained when the knock-in-barrier is not occurred is also increasing.
Under different assets forms, we also had explored the relationship between H and v and
kv when option price is fixed. It can be confirmed that the conclusion that the values of v
and kv increase with the increases of the value of H. We also conducted Greeks analysis
and discovered that the values of Delta, Gamma, Theta, Rho and Vega are all different
under the fractal exponents of 0.3, 0.5 and 0.7, which implies the stock price series of the
investment market all have obvious long-term correlation and memory characteristics. In
our model, during the process of hedging, different fractal exponents can provide investors
or investment companies with constructive advice in the calculation process of Greeks
hedging, and can help reduce losses in time before losses damage. Moreover, the option
price can be more accurately described.
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Abstract: An option is the right to buy or sell a good at a predetermined price in the future. For
customers or financial companies, knowing an option’s pricing is crucial. It is well recognized
that the Black–Scholes model is an effective tool for estimating the cost of an option. The Black–
Scholes equation has an explicit analytical solution known as the Black–Scholes formula. In some
cases, such as the fractional-order Black–Scholes equation, there is no closed form expression for
the modified Black–Scholes equation. This article shows how to find the approximate analytic
solutions for the two-dimensional fractional-order Black–Scholes equation based on the generalized
Riemann–Liouville fractional derivative. The generalized Laplace variational iteration method,
which incorporates the generalized Laplace transform with the variational iteration method, is
the methodology used to discover the approximate analytic solutions to such an equation. The
expression of the two-parameter Mittag–Leffler function represents the problem’s approximate
analytical solution. Numerical investigations demonstrate that the proposed scheme is accurate
and extremely effective for the two-dimensional fractional-order Black–Scholes Equation in the
perspective of the generalized Riemann–Liouville fractional derivative. This guarantees that the
generalized Laplace variational iteration method is one of the effective approaches for discovering
approximate analytic solutions to fractional-order differential equations.

Keywords: fractional Black–Scholes equation; variational iteration method; generalized fractional
derivative; generalized Laplace tranform; generalized Mittag–Leffler function

1. Introduction

The right to purchase or sell a basic product at a specific price in the future is known as
an option. Options have a significant presence on marketplaces and exchanges. Determin-
ing the prices of an option is important for customers or financial companies. The valuation
of options is one of the most important challenges in the field of financial investing. It is
well known that the Black–Scholes model [1,2] is an effective instrument for figuring out
an option’s cost. There are analytical and numerical approaches used by researchers to
solve the Black–Scholes Equations [3–10].

We observe that the Black–Scholes Equations (1)–(3) are partial differential equations
with integer-order derivatives. Further study [11–14] demonstrates that the globalized
financial markets are fractal in nature. This illustrates that the traditional Black–Scholes
model does not adequately reflect the actual financial market. Studies confirmed the appli-
cability of fractional differential equations many years ago, demonstrating their usefulness
for researching aspects linked to fractal geometry and fractal dynamics. Secondly, frac-
tional differential equations provide several benefits in describing significant phenomena in
a variety of disciplines, including electromagnetics, fluid flow, acoustics, electrochemistry,
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as well as material science [15–18]. Is it reasonable to use the fractional differential equation
in the financial market? The answer to the question is “yes”. Fractional derivatives can be
used in the financial market because they have a property called “self-similarity”. Further,
fractional derivatives respond better to long-term repositories than integer order deriva-
tives. The fractional derivative’s remarkable abilities are employed to solve the fractal
complexity in the financial market. At the present, there is an increase in the number of
publications that discuss the use of fractional calculus in financial theory [19].

The Black–Scholes equation with two assets of a European call option is defined by:

∂u
∂τ

+
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2

σ2
1 S2

1
∂2u
∂S2

1
+

1
2

σ2
1 S2
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∂2u
∂S1∂S2

+ r
(
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∂u
∂S1

+ S2
∂u
∂S2

)
− ru = 0, (1)

for (S1,S2,τ ) ∈ [0,∞ ) × [0,∞ ) ×[0, T], with the terminal condition:

u(S1, S2, T) = max{β1S1 + β2S2 − K, 0} for (S1, S2) ∈ [0, ∞)× [0, ∞), (2)

where u is the call option depending on the underlying asset prices S1, S2 at time τ;

S1, S2 are the asset price variables;
σ1, σ2 are the volatility function of underlying assets;
β1, β2 are coefficients so that all risky asset price are at the same level;
ω is the volatility of S1 and S2;
r is the risk-free interest rate;
T is the expiration date;
K = max{K1, K2} where Ki is strike price of the ith underlying asset.

K. Trachoo, W. Sawangtong, and P. Sawangtong [20] researched the two-dimensional
Black–Scholes equation with European call option (1) and (2) in 2017. Using the Laplace
transform homotopy perturbation approach, they demonstrated that the explicit solution
to this issue is represented as a Mellin–Ross function.

P. Sawangtong, K. Trachoo, W. Sawangtong, and B. Wiwattanapataphee [21] inves-
tigated the modified Black–Scholes model of (1) and (2) with two assets based on the
Liouville–Caputo fractional derivative in 2018. They established, using the Laplace trans-
form homotopy perturbation technique, that the explicit solution to this problem is repre-
sented as the Generalized Mittag–Leffler function.

2. The Modified Black–Scholes Equation

The modified Black–Scholes equation in fractional-order derivative form is presented
in this section. Let x = ln(S1)−

(
r− 1

2 σ2
1

)
τ, y = ln(S2)−

(
r− 1

2 σ2
2

)
τ, t = T − τ and

u(S1, S2, τ) = e−r(T−τ)v(x, y, t). Readers may find out more information for transformation
in [21]. Without loss of generality, we consider the variables x and y by x ∈ [0, xmax] and
y ∈ [0, ymax] where xmax and ymax are positive constants. In the end, the Black–Scholes par-
tial differential equation with two assets of the European call option Equations (1) and (2)
is capable of being converted into the following form:

vt =
1
2

σ2
1

∂2v
∂x2 +

1
2

σ2
2

∂2v
∂y2 + ωσ1σ2

∂2v
∂x∂y

, for (x, y, t) ∈ [0, xmax]× [0, ymax]× [0, T], (3)

with the initial condition:

v(x, y, 0) = max{c1ex + c2ey − K, 0}, for (x, y) ∈ [0, xmax]× [0, ymax], (4)

where c1 and c2 are constants defined by

c1 = β1e(r−
1
2 σ2

1 )T and c2 = β2e(r−
1
2 σ2

2 )T . (5)
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In this study, we extend the previous work [20] and analyze the general form of
the Black–Scholes equation in Equations (3) and (4) by replacing the integer-order time
derivative with the fractional-order time derivative. The fractional-order Black–Scholes
equation based on the generalized Riemann–Liouville fractional derivative with α ∈ (0, 1)
is considered in the form:

Dα,ρ
t u(x, y, t; ρ, α) =

1
2

σ2
1

∂2u
∂x2 +

1
2

σ2
2

∂2u
∂y2 + ωσ1σ2

∂2u
∂x∂y

, for (x, y, t) ∈ [0, xmax]× [0, ymax]× [0, T], (6)

with the fractional integral initial condition:

I1−α,ρ
t u(x, y, 0; ρ, α) = max{c1ex + c2ey − K, 0}, for (x, y) ∈ [0, xmax]× [0, ymax]. (7)

where ρ > 0, Dα,ρ
t and I1−α,ρ

t denote the generalized Riemann–Liouville fractional-order deriva-
tive with order α and the generalized fractional-order integral with order 1− α, respectively.

The generalized Laplace variational iteration method is a methodology combining the
variational iteration approach with the generalized Laplace transform. Analytical solutions
are more complex to obtain than numerical solutions, particularly for fractional partial
differential equations. Consequently, the analytical solution offers a valuable instrument for
analyzing financial behavior. The generalized Laplace variational iteration approach is used
in this research to provide the approximate analytic solution of the time fractional-order
Black–Scholes model with two assets for the European call option (6) and (7). In addition,
the closed-form analytic solution of the fractional-order Black–Scholes model (6) and (7) is
investigated under certain requirements.

The structure of the article is as follows. The definitions of the generalized fractional-
order derivative and integral are presented in Section 3. Section 4 discusses the generalized
Laplace variational iteration technique’s application and convergence analysis. The explicit
solution of the fractional-order Black–Scholes equation is provided in Section 5. In Section 6,
numerical results with various parameter values can be seen. This work’s conclusion is
provided into Section 7.

3. Basic Definitions

In this section, the generalized Riemann–Liouville fractional integral, the generalized
Riemann–Liouville fractional derivative, and the generalized Laplace transform with their
some properties have been discussed. For more details, readers can see [22,23]. Throughout
this article, we assume that α and ρ are constants with 0 < α ≤ 1 and ρ > 0, and we denote
the gamma function by Γ.

Definition 1. The generalized fractional-order integral α of a continuous function f : [0, ∞)→ R
is expressed as

Iα,ρ
t f (t) =

1
Γ(α)

t∫
0

(
tρ − τρ

ρ

)α−1 f (τ)
τ1−ρ

dτ.

Definition 2. The generalized Riemann–Liouville fractional-order derivative of α of a continuous
function f : [0, ∞)→ R is given as

Dα,ρ
t f (t) =

1
Γ(1− α)

(
t1−ρ d

dt

) t∫
0

(
tρ − τρ

ρ

)−α f (τ)
τ1−ρ

dτ.

We next give some properties that deal with the generalized Riemann–Liouville
fractional derivative.

Lemma 1. Let f : [0, ∞)→ R be a continuous function and c be a constant. Then,
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1. Iα,ρ
t

(
tρ

ρ

)c
= Γ(c+1)

Γ(c+α+1)

(
tρ

ρ

)c+α
,

2. Dα,ρ
t Iα,ρ

t f (t) = f (t),

3. Dα,ρ
t c = ρα−1

Γ(1−α)
t−αρ.

The following part discusses the generalized Laplace transform and some of
its properties.

Definition 3. The generalized Laplace transform of a continuous function f : [0, ∞) → R is
defined as

Lρ{ f (t)}(s) =
∞∫

0

e−s tρ
ρ

f (t)
t1−ρ

dt,

where s is the Laplace transform parameter.

It is important to note that the generalized Laplace transform can be reduced to the
Laplace transform when ρ = 1.

Lemma 2. Let f : [0, ∞)→ R be a continuous function and c be a constant. Then,

1. Lρ

{(
tρ

ρ

)c}
= Γ(c)

sc+1 ,

2. Lρ

{
Dα,ρ

t f (t)
}
= sαLρ{ f (t)}(s)− I1−α,ρ

t f (0).

Definition 4. Let f : [0, ∞)→ R and g : [0, ∞)→ R be continuous functions. The generalized
convolution of f and g is defined by

f (t) ∗ρ g(t) =
∫ t

0
f
(
(tρ − τρ)

1
ρ

)
g(τ)

dτ

τ1−ρ
,

if the integral exists.

Lemma 3. Let f : [0, ∞)→ R and g : [0, ∞)→ R be continuous functions. If Lρ{ f (t)}(s) and
Lρ{g(t)}(s) exist, then

Lρ

{
f (t) ∗ρ g(t)

}
(s) = Lρ{ f (t)}(s)Lρ{g(t)}(s).

In the last part of this section, we will introduce a special function that helps us rewrite
complex expressions in a simple form.

Definition 5. The two-parameter Mittag–Leffler function is defined as follows:

Eα,β(z) =
∞

∑
k=0

zk

Γ(αk + β)
,

where Γ denotes the Gamma function, α > 0, β ∈ R and z ∈ C.

It is important to note that, E1,2(z) = ez−1
z .

4. The General Methodology of the Generalized Laplace Variational Iteration Method

In this section, we apply the generalized variational iteration method to the nonlinear
partial differential equation. Assume that Ω is the bounded domain. Let us consider the
following general fractional differential equation in the generalized Riemann–Liouville
fractional derivative

Dα,ρ
t u(x, y, t) + R[u(x, y, t)] + N[u(x, y, t)] = f (x, y, t) for (x, y, t) ∈ Ω× [0, T], (8)
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and the generalized Riemann–Liouville fractional initial condition

I1−α,ρ
t u(x, y, 0) = g(x, y) for (x, y) ∈ Ω (9)

where Dα,ρ
t and Iα,ρ

t are the generalized Riemann–Liouville fractional derivative and integral
of order 0 < α ≤ 1, respectively, R[u] is a linear term, N[u] is a nonlinear term and f and g
are given functions.

In the first step of the process, we find the suitable Lagrange multiplier λ that will
be found by using properties of the generalized Riemann–Liouville fractional derivative
and integral.

Based on the generalized Riemann–Liouville integration, the correction functional for
the nonlinear problem (8) and (9) is defined by

un+1(x, y, t) = un(x, y, t) + Iα,ρ
t λ

(
(tρ − τρ)

1
ρ

)
[Dα,ρ

t un(x, y, τ) + R[un] + N[un]− f (x, y, t)]. (10)

4.1. Lagrange Multipliers

Theorem 1. The Lagrange multiplier λ for the fractional-order nonlinear partial differential

Equations (8) and (9) can be determined by λ

(
(tρ − τρ)

1
ρ

)
= −1.

Proof. Let us consider the correction functional (10) for the nonlinear problem (8) and (9):

un+1(x, y, t) = un(x, y, t) + Iα,ρ
t λ

(
(tρ − τρ)

1
ρ

)[
Dα,ρ

τ un(x, y, t) + R[un(x, y, t)]

−N[un(x, y, t)]− f (x, y, t)
]

un+1(x, y, t) = un(x, y, t) +
1

Γ(α)

∫ t

0

(
tρ − τρ

ρ

)α−1
λ

(
(tρ − τρ)

1
ρ

)
Dα,ρ

τ un(x, y, τ)
dτ

τ1−ρ

+
1

Γ(α)

∫ t

0

(
tρ − τρ

ρ

)α−1
λ

(
(tρ − τρ)

1
ρ

)
[R[un]− N[un]− f (x, y, τ)]

dτ

τ1−ρ
.

Let a(t) = tρ(α−1)λ(t). Thus,

un+1(x, y, t) = un(x, y, t) +
ρ1−α

Γ(α)
a(t) ∗ρ Dα,ρ

t un(x, y, t)

+
1

Γ(α)

∫ t

0

(
tρ − τρ

ρ

)α−1
λ

(
(tρ − τρ)

1
ρ

)[
R[un]− N[un]

− f (x, y, τ)
] dτ

τ1−ρ
,

where a(t) ∗ρ Dα,ρ
t un(x, y, t) is the generalized convolution of a and Dα,ρ

t un. The generalized
Laplace variational iteration correction functional will be defined in the following manner:

Lρ{un+1(x, y, t)}(s) = Lρ{un(x, y, t)}(s) + ρ1−α

Γ(α)
Lρ

{
a(t) ∗ρ Dα,ρ

τ un(x, y, t)
}
(s)

+
1

Γ(α)
Lρ

{ ∫ t

0

(
tρ − τρ

ρ

)α−1
λ

(
(tρ − τρ)

1
ρ

)[
R[un]− N[un]

− f (x, y, τ)
] dτ

τ1−ρ

}
(s)

or equivalenty, upon applying the properties of the Laplace transform, we have
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Lρ{un+1(x, y, t)}(s) = Lρ{un(x, y, t)}(s) + ρ1−α

Γ(α)
Lρ{a(t)}(s){sαLρ{un(x, y, t)}(s)− g(x, y)

}
+

1
Γ(α))

Lρ

{ ∫ t

0

(
tρ − τρ

ρ

)α−1
λ

(
(tρ − τρ)

1
ρ

)[
R[un]− N[un]

− f (x, y, τ)
] dτ

τ1−ρ

}
(s)

Taking the variation with respect to un of both side of the latter equation, leads to

δ

δun
Lρ{un+1(x, y, t)}(s) =

δ

δun
Lρ{un(x, y, t)}(s)

+
δ

δun

ρ1−α

Γ(α)
Lρ{a(t)}(s){sαLρ{un(x, y, t)}(s)− g(x, y)

}
+

δ

δun

1
Γ(α))

Lρ

{ ∫ t

0

(
tρ − τρ

ρ

)α−1
λ

(
(tρ − τρ)

1
ρ

)[
R[un]− N[un]

− f (x, y, τ)
] dτ

τ1−ρ

}
(s)

and upopn simplification we obtain

Lρ

{
δ

δun
un+1(x, y, t)

}
(s) = Lρ

{
δ

δun
un(x, y, t)

}
(s)

+
ρ1−α

Γ(α)
Lρ{a(t)}(s) δ

δun

{
sαLρ{un(x, y, t)}(s)− g(x, y)

}
+

1
Γ(α)

Lρ

{ ∫ t

0
(t− τ)α−1λ

(
(tρ − τρ)

1
ρ

)
δ

δun

[
R[un]− N[un]

− f (x, y, τ)
] dτ

τ1−ρ

}
(s)

Furthermore, the extra condition of un+1 requires that δ
δun

un+1(x, y, t) = 0. More-
over, the terms R[un] and N[un] are considered as restricted variations, which implies

δ
δun

R[un] = 0 and δ
δun

N[un] = 0. We then obtain 1 + ρ1−αsα

Γ(α) Lρ{a(t)}(s) = 0 or

Lρ{a(t)}(s) = − Γ(α)
ρ1−αsα

.

The inverse generalized Laplace transform implies that

a(t) = − 1
ρ1−α

(
tρ

ρ

)α−1
= −tρ(α−1).

By the definition of a, the Lagrange multipliers is λ(t) = −1.

Note that it follows form Theorem 1 that the correction functional (10) associated with
(8) and (9), is formed as:

un+1(x, y, t) = un(x, y, t)− Iα,ρ
t [Dα,ρ

t un(x, y, τ) + R[un] + N[un]− f (x, y, t)].

4.2. Convergence Analysis of the Proposed Method

In this section, we study the convergence of the generalized Laplace variational
iteration method, when applied to the nonlinear partial differential Equations (8) and (9).
The sufficient conditions for convergence of the method and the error estimate are presented.
The main results are proposed in the below theorems.
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We next define the operator A : D(A) ⊆ H → H, where D(A) is the domain of the
operator A and (H, ‖·‖H) is a Banach space, by:

A[u(x, y, t)] = −Iα,ρ
t

[
Dα,ρ

t u(x, y, t) + R[u(x, y, t)] + N[u(x, y, t)]− f (x, y, t)
]
, (11)

and define the sequence {vn}∞
n=0 by:

v0(x, y, t) = u0(x, y, t)
v1(x, y, t) = A[v0]
v2(x, y, t) = A[v0(x, y, t) + v1(x, y, t)]
v3(x, y, t) = A[v0(x, y, t) + v1(x, y, t) + v2(x, y, t)]

...
vn(x, y, t) = A[v0(x, y, t) + v1(x, y, t) + . . . + vn−1(x, y, t)].

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(12)

The relationship between the sequences {un}∞
n=0 and {vn}∞

n=0 given by (10) and (12),
respectively, is shown in the following lemma.

Lemma 4. Let {un}∞
n=0 and {vn}∞

n=0 be the sequences constructed by (10) and (12), respectively.

Then, un =
n
∑

k=0
vk for any n = 0, 1, 2, . . . .

Proof. We can deduce from (10) and (12) that v1 = A[v0] and u1 = u0 + A[u0]. This
implies that

u1 = u0 + v1. (13)

We also know that from (10) and (12), v2 = A[v0 + v1] and u2 = u1 + A[u1]. By (13),
we then get

u2 = u1 + v2. (14)

Once again, we find that v3 = A[v0 + v1 + v2] and u3 = u2 + A[u2]. This yields, by
(13) and (14), that u3 = u2 + v3. Throughout this procedure, we finally discover that that
un = un−1 + vn for any n ≥ 1. This will lead to the desired results.

It is important to note that, if the limit exists, Lemma 4 enables us to get that

limn→∞ un(x, y, t) =
∞
∑

n=0
vn(x, y, t).

The next lemma shows the convergence of the infinite series
∞
∑

n=0
vn(x, y, t).

Lemma 5. Assume that there exists a positive real number γ with γ < 1 such that ‖vn+1‖H ≤ γ‖vn‖H

for any n = 0, 1, 2, 3, . . . . Then, the infinite series
∞
∑

n=0
vn(x, y, t) given by (12) converges.

Proof. Let Sn denote the partial sum of the infinite series
∞
∑

n=0
vn(x, y, t). We would like to

show that the sequence {Sn}∞
n=0 is a Cauchy sequence in the Banach space H. It follows

from the assumption of the theorem that we have:

‖Sn+1 − Sn‖H = ‖vn+1‖H ≤ γ‖vn‖H ≤ γ2‖vn−1‖H ≤ . . . ≤ γn+1‖v0‖H . (15)
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Let n and m be any natural numbers with n ≥ m. We consider that by (15):

‖Sn − Sm‖H = ‖(Sn − Sn−1) + (Sn−1 − Sn−2) + . . . + (Sm+1 − Sm)‖H

≤ ‖Sn − Sn−1‖H + ‖Sn−1 − Sn−2‖H + . . . + ‖Sm+1 − Sm‖H

≤ γn‖v0‖H + γn−1‖v0‖H + . . . + γm+1‖v0‖H

=
1− γn−m

1− γ
γm+1‖v0‖H .

We can deduce from the fact that 0 < γ < 1 that:

lim
m→∞

‖Sn − Sm‖H = 0.

Therefore, {Sn}∞
n=0 is a Cauchy sequence in the Banach space H. This information

indicates that the infinite series
∞
∑

n=0
vn(x, y, t) determined by (12) converges in the Banach

space H. Hence, Lemma 1 is proved completely.

The below theorem demonstrates that the convergent series
∞
∑

n=0
vn(x, y, t) is the solu-

tion of the nonlinear Equations (8) and (9).

Lemma 6. Let φ(x, y, t) be the function such that the infinite series
∞
∑

n=0
vn(x, y, t) , determined

by (12), converges to φ(x, y, t). Then, the function φ(x, y, t) is the solution of the nonlinear partial
differential Equations (8) and (9) for any (x, y, t) ∈ Ω× [0, T].

Proof. By the property of the convergent series
∞
∑

n=0
vn(x, y, t), we get that limn→∞ vn(x, y, t)

= 0. Let us consider the following:

k

∑
n=0

[vn+1(x, y, t)− vn(x, y, t)] = vk+1(x, y, t)− v0(x, y, t)

and

∞

∑
n=0

[vn+1(x, y, t)− vn(x, y, t)]

= lim
k→∞

k

∑
n=0

[vn+1(x, y, t)− vn(x, y, t)] (16)

= lim
k→∞

vk+1(x, y, t)− v0(x, y, t)

= −v0(x, y, t).

Taking the generalized Riemann–Liouville fractional derivative on both sides of (17),
we find that:

Dα,ρ
t

∞

∑
n=0

[vn+1(x, y, t)− vn(x, y, t)] =
∞

∑
n=0

Dα,ρ
t [vn+1(x, y, t)− vn(x, y, t)] = −Dα,ρ

t v0(x, y, t). (17)

It follows from (11) and (12) and the linearity property of operators that we obtain:

Dα,ρ
t [vn+1(x, y, t)− vn(x, y, t)]

= Dα,ρ
t A[v0(x, y, t) + v1(x, y, t) + . . . + vn(x, y, t)] (18)

−Dα,ρ
t A[v0(x, y, t) + v1(x, y, t) + . . . + vn−1(x, y, t)]

= −Dα,ρ
t vn(x, y, t)− R[vn]− N[v0 + v1 + . . . + vn] + N[v0 + v1 + . . . + vn−1]
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for all n ≥ 1. As a result of (19), we now have that:

k

∑
n=0

Dα,ρ
t [vn+1(x, y, t)− vn(x, y, t)]

= Dα,ρ
t [v1(x, y, t)− v0(x, y, t)] +

k

∑
n=1

Dα,ρ
t [vn+1(x, y, t)− vn(x, y, t)]

= Dα,ρ
t v1(x, y, t)− Dα,ρ

t v0(x, y, t) (19)

−Dα,ρ
t v1(x, y, t)− R[v1(x, y, t)]− N[v0(x, y, t) + v1(x, y, t)] + N[v0(x, y, t)]

−Dα,ρ
t v2(x, y, t)− R[v2(x, y, t)]− N[v0(x, y, t) + v1(x, y, t) + v2(x, y, t)] + N[v0 + v1]

...

−Dα,ρ
t vk(x, y, t)− R[vk(x, y, t)]− N[v0 + v1 + . . . + vk] + N[v0 + v1 + . . . + vk−1].

The fact that Dα,ρ
t v1(x, y, t) = Dα,ρ

t A[v0] = −Dα,ρ
t v0(x, y, t) − R[v0(x, y, t)]−

N[v0(x, y, t)] + f (x, y, t), yields that the Equation (19) becomes:

k

∑
n=0

Dα,ρ
t [vn+1(x, y, t)− vn(x, y, t)]

= −Dα,ρ
t v0(x, y, t)− Dα,ρ

t

[
k

∑
n=0

vn(x, y, t)

]
− R

[
k

∑
n=0

vn(x, y, t)

]
(20)

−N

[
k

∑
n=0

vn(x, y, t)

]
+ f (x, y, t).

From (17) and (20), we obtain that as k → ∞,

Dα,ρ
t

[
∞

∑
n=0

vn(x, y, t)

]
+ R

[
∞

∑
n=0

vn(x, y, t)

]
+ N

[
∞

∑
n=0

vn(x, y, t)

]
= f (x, y, t),

or
Dα,ρ

t φ(x, y, t) + R[φ(x, y, t)] + N[φ(x, y, t)] = f (x, y, t).

This information implies
∞
∑

n=0
vn(x, y, t) is the infinite series solution of the nonlinear

partial differential Equations (8) and (9).

Lemma 7. Assume that the infinite series
∞
∑

n=0
vn(x, y, t), where vn is defined by (12), converges to

the solution u of the nonlinear partial differential Equations (8) and (9). If the approximate analytic

solution uapprox is the truncated series constructed by uapprox = uM(x, y, t) =
M
∑

n=0
vn(x, y, t) for

any (x, y, t) ∈ Ω× [0, T], then the maximum error norm can be evaluated as

‖u− uM‖H ≤
1

1− γ
γM+1‖v0‖H

where γ is the real number given in Lemma 5.

Proof. Let n and M be any natural numbers with n ≥ M. As discussed in Theorem 1, we
obtain that:

‖Sn − SM‖H ≤
1− γn−M

1− γ
γM+1‖v0‖H
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where Sn is the partial sum of the infinite series
∞
∑

n=0
vn(x, y, t). As we let n approach to

infinity, we obtain that: ∥∥∥∥∥u−
M

∑
n=0

vn

∥∥∥∥∥
H

≤ 1− γn−M

1− γ
γM+1‖v0‖H .

The definition of real number γ implies that 1− γn−M < 1 and∥∥∥∥∥u−
M

∑
n=0

vn

∥∥∥∥∥
H

≤ 1
1− γ

γM+1‖v0‖H .

The proof of Lemma 7 is therefore complete.

The following main theorem is the result from Lemmas 5 and 6.

Theorem 2. By using the generalized Laplace variational iteration approach, the approximate
analytic solution uapprox for the general fractional differential Equation (8) with the integral initial
condition (9) can be obtained by the following iteration:

u0(x, y, t) is an arbitrary function,
un+1(x, y, t) = un(x, y, t)− Iα,ρ

t

[
Dα,ρ

τ un(x, y, t) + R[un(x, y, t)] + N[un(x, y, t)]− f (x, y, t)
]
.

for any (x, y, t) ∈ Ω × [0, T] and for all n ≥ 1. Moreover, if limn→∞ un(x, y, t) exists, then
the analytic solution u for the general fractional differential Equation (8) with the integral initial
condition (9) can be found by

u(x, y, t) = lim
n→∞

un(x, y, t) for any (x, y, t) ∈ Ω× [0, T].

5. An Application of the Generalized Laplace Variational Iteration Method

In this part, we will apply the generalized Laplace variational iteration method to
the fractional-order Black–Scholes equation based on the generalized Riemann–Liouville
fractional derivative with the fractional integral initial condition (6) and (7). By (8) and (9),
we set that R[un] = −

(
1
2 σ2

1
∂2un
∂x2 + 1

2 σ2
2

∂2un
∂y2 + ωσ1σ2

∂2un
∂x∂y

)
, N[un] = 0, f (x, y, t) = 0 and

g(x, y) = max{c1ex + c2ey − K, 0}. By Theorem 2 and by choosing

u0(x, y, t) =
1

Γ(α)
max{c1ex + c2ey − K, 0}

(
tρ

ρ

)α−1
+

1
Γ(α + 1)

ωex+y
(

tρ

ρ

)α

,

We obtain that:

u0(x, y, t) = 1
Γ(α) max{c1ex + c2ey − K, 0}

(
tρ

ρ

)α−1
+ 1

Γ(α+1)ωex+y
(

tρ

ρ

)α
,

un+1(x, y, t) = un(x, y, t)− 1
Γ(α)

∫ t
0

(
tρ−τρ

ρ

)α−1(
Dα,ρ

τ un − 1
2 σ2

1
∂2un
∂x2 − 1

2 σ2
2

∂2un
∂y2

−ωσ1σ2
∂2un
∂x∂y

)
dτ

τ1−ρ , n ≥ 0.
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Note that I1−α,ρ
t u0(x, y, 0) = max{c1ex + c2ey − K, 0}. The generalized Laplace trans-

form is then used to aid us discover the terms un for n ≥ 1. Let us consider the following:

un+1(x, y, t) = un(x, y, t)− 1
Γ(α)

∫ t

0

(
tρ − τρ

ρ

)α−1
Dα,ρ

τ un(x, y, τ)
dτ

τ1−ρ

+
1

Γ(α)

∫ t

0

(
tρ − τρ

ρ

)α−1(1
2

σ2
1

∂2un

∂x2 +
1
2

σ2
2

∂2un

∂y2 + ωσ1σ2
∂2un

∂x∂y

)
dτ

τ1−ρ

= un(x, y, t)− ρ1−α

Γ(α)
tρ(α−1) ∗ρ Dα,ρ

t un(x, y, t)

+
ρ1−α

Γ(α)
tρ(α−1) ∗ρ

(
1
2

σ2
1

∂2un

∂x2 +
1
2

σ2
2

∂2un

∂y2 + ωσ1σ2
∂2un

∂x∂y

)
.

Taking the generalized Laplace transform on both sides of the above equation:

Lρ{un+1}(s) = Lρ{un}(s)− 1
Γ(α)

Lρ

{(
tρ

ρ

)α−1
}
(s)Lρ

{
Dα,ρ

t un(x, y, t)
}
(s)

+
1

Γ(α)
Lρ

{(
tρ

ρ

)α−1
}
(s)Lρ

{
1
2

σ2
1

∂2un

∂x2 +
1
2

σ2
2

∂2un

∂y2 + ωσ1σ2
∂2un

∂x∂y

}
(s)

= Lρ{un}(s)− 1
sα

(
sαLρ{un}(s)− I1−α,ρ

t un(x, y, 0)
)

+
1
sα
Lρ

{
1
2

σ2
1

∂2un

∂x2 +
1
2

σ2
2

∂2un

∂y2 + ωσ1σ2
∂2un

∂x∂y

}
(s).

The inverse generalized Laplace transform yields that

un+1(x, y, t) = L−1
ρ

{
1
sα

I1−α,ρ
t un(x, y, 0)

}
(21)

+L−1
ρ

{ 1
sα
Lρ

{1
2

σ2
1

∂2un

∂x2 +
1
2

σ2
2

∂2un

∂y2 + ωσ1σ2
∂2un

∂x∂y

}
(s)
}
(t)

for n ≥ 1. Thus, the generalized Laplace variational iteration method for finding the
approximate analytic solution of the fractional-order Black–Scholes Equation (6) with the
fractional integral condition (7) is defined by:

u0(x, y, t) = 1
Γ(α) max{c1ex + c2ey − K, 0}

(
tρ

ρ

)α−1
+ 1

Γ(α+1)ωex+y
(

tρ

ρ

)α

un+1(x, y, t) = L−1
ρ

{
1
sα I1−α,ρ

t un(x, y, 0)
}
+ L−1

ρ

{
1
sαLρ

{
1
2 σ2

1
∂2un
∂x2 + 1

2 σ2
2

∂2un
∂y2

+ ωσ1σ2
∂2un
∂x∂y

}
(s)
}
(t) for n ≥ 0,

with I1−α,ρ
t un(x, y, 0) = max{c1ex + c2ey − K, 0} for all n ≥ 0.

Theorem 3. The approximate analytic solution for the two dimensional fractional-order Black–Scholes
Equation (6) with the fractional integral condition (7) can be defined by the following iteration:
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un(x, y, t) =
1

Γ(α)
max{c1ex + c2ey − K, 0}

(
tρ

ρ

)α−1

+
n−1

∑
k=0

(
1

2k+1 σ
2(k+1)
1 max{c1ex, 0}+ 1

2k+1 σ
2(k+1)
2 max{c2ey, 0}

)
(22)

× 1
Γ((k + 2)α)

(
tρ

ρ

)(k+2)α−1

+
1

Γ((n + 1)α + 1)

[
1
2

σ2
1 +

1
2

σ2
2 + ωσ1σ2

]n( tρ

ρ

)nα

for any (x, y, t) ∈ [0, xmax]× [0, ymax]× [0, T] and for all n ≥ 1. Furthermore, if

1
Γ((n + 1)α + 1)

[
1
2

σ2
1 +

1
2

σ2
2 + ωσ1σ2

]n( tρ

ρ

)nα

approaches zero when n goes to infinity for any fixed t ∈ [0, T], then the analytic solution u for the
fractional-order Black–Scholes Equations (6) and (7) is in the form:

u(x, y, t) = max{c1ex + c2ey − K, 0} 1
Γ(α)

(
tρ

ρ

)α−1

+
σ2

1 max{c1ex, 0}
2

(
tρ

ρ

)2α−1
Eα,2α

(
σ2

1
2

(
tρ

ρ

)α
)

(23)

+
σ2

2 max{c2ey, 0}
2

(
tρ

ρ

)2α−1
Eα,2α

(
σ2

2
2

(
tρ

ρ

)α
)

where Eα,β denotes the two-parameter Mittag–Leffler function.

Proof. Let u0(x, y, t) = 1
Γ(α) max{c1ex + c2ey − K, 0}

(
tρ

ρ

)α−1
+ 1

Γ(α+1)ωex+y
(

tρ

ρ

)α
. The gen-

eralized Laplace variational iteration procedure is then started by computing the term u1.
By (22), we obtain:

u1 = L−1
ρ

{
1
sα

I1−α,ρ
t u0(x, y, 0)

}
(t) + L−1

ρ

{
1
sα
Lρ

{
1
2

σ2
1

∂2u0

∂x2 +
1
2

σ2
2

∂2u0

∂y2 + ωσ1σ2
∂2u0

∂x∂y

}
(s)
}
(t)

= max
{

c1ex + β̃2ey − K, 0
}L−1

ρ

{
1
sα

}
(t)

+L−1
ρ

{
1
sα
Lρ

{
1
2

σ2
1

∂2u0

∂x2 +
1
2

σ2
2

∂2u0

∂y2 + ωσ1σ2
∂2u0

∂x∂y

}
(s)
}
(t)

=
1

Γ(α)
max{c1ex + c2ey − K, 0}

(
tρ

ρ

)α−1

+
1
2

σ2
1 max{c1ex, 0} 1

Γ(2α)

(
tρ

ρ

)2α−1
+

1
2

σ2
2 max{c2ey, 0} 1

Γ(2α)

(
tρ

ρ

)2α−1

+
1
2

σ2
1 ωex+y 1

Γ(2α + 1)

(
tρ

ρ

)2α

+
1
2

σ2
2 ωex+y 1

Γ(2α + 1)

(
tρ

ρ

)2α

+ωσ1σ2ωex+y 1
Γ(2α + 1)

(
tρ

ρ

)2α

.
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Then, the function u1 is

u1(x, y, t) = max{c1ex + c2ey − K, 0} 1
Γ(α)

(
tρ

ρ

)α−1

+

[
1
2

σ2
1 max{c1ex, 0}+ 1

2
σ2

2 max{c2ey, 0}
]

1
Γ(2α)

(
tρ

ρ

)2α−1

+

[
1
2

σ2
1 +

1
2

σ2
2 + ωσ1σ2

]
ωex+y 1

Γ(2α + 1)

(
tρ

ρ

)2α

.

Note that the function u1 satisfies that I1−α,ρ
t u1(x, y, 0) = max{c1ex + c2ey − K, 0}. We

next find the function u2. By (22), we get:

u2 = L−1
ρ

{
1
sα

I1−α,ρ
t u1(x, y, 0)

}
(t) + L−1

ρ

{
1
sα
Lρ

{
1
2

σ2
1

∂2u1

∂x2 +
1
2

σ2
2

∂2u1

∂y2 + ωσ1σ2
∂2u1

∂x∂y

}
(s)
}
(t)

Consider Lρ

{
1
2 σ2

1
∂2u1
∂x2 + 1

2 σ2
2

∂2u1
∂y2 + ωσ1σ2

∂2u1
∂x∂y

}
(s).

Lρ

{
1
2

σ2
1

∂2u1

∂x2 +
1
2

σ2
2

∂2u1

∂y2 + ωσ1σ2
∂2u1

∂x∂y

}
(s)

=
1
2

σ2
1 max{c1ex, 0}Lρ

{
1

Γ(α)

(
tρ

ρ

)α−1
}
(s) +

1
2

σ2
2 max{c2ey, 0}Lρ

{
1

Γ(α)

(
tρ

ρ

)α−1
}
(s)

+
1
22 σ4

1 max{c1ex, 0}Lρ

{
1

Γ(2α)

(
tρ

ρ

)2α−1
}
(s) +

1
22 σ4

2 max{c2ey, 0}Lρ

{
1

Γ(2α)

(
tρ

ρ

)2α−1
}
(s)

+
1
2

σ2
1

[
1
2

σ2
1 +

1
2

σ2
2 + ωσ1σ2

]
ωex+yLρ

{
1

Γ(2α + 1)

(
tρ

ρ

)2α
}
(s)

+
1
2

σ2
2

[
1
2

σ2
1 +

1
2

σ2
2 + ωσ1σ2

]
ωex+yLρ

{
1

Γ(2α + 1)

(
tρ

ρ

)2α
}
(s)

+ωσ1σ2

[
1
2

σ2
1 +

1
2

σ2
2 + ωσ1σ2

]
ωex+yLρ

{
1

Γ(2α + 1)

(
tρ

ρ

)2α
}
(s)

=
1
2

σ2
1 max{c1ex, 0} 1

sα
+

1
2

σ2
2 max{c2ey, 0} 1

sα

+
1
22 σ4

1 max{c1ex, 0} 1
s2α

+
1
22 σ4

2 max{c2ey, 0} 1
s2α

+
1
2

σ2
1

[
1
2

σ2
1 +

1
2

σ2
2 + ωσ1σ2

]
ωex+y 1

s2α+1

+
1
2

σ2
2

[
1
2

σ2
1 +

1
2

σ2
2 + ωσ1σ2

]
ωex+y 1

s2α+1

+ωσ1σ2

[
1
2

σ2
1 +

1
2

σ2
2 + ωσ1σ2

]
ωex+y 1

s2α+1 .
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Then, the term u2 is determined by

u2(x, y, t) =
1

Γ(α)
max{c1ex + c2ey − K, 0}

(
tρ

ρ

)α−1

+
1
2

σ2
1 max{c1ex, 0}L−1

ρ

{
1

s2α

}
(t) +

1
2

σ2
2 max{c2ey, 0}L−1

ρ

{
1

s2α

}
(t)

+
1
22 σ4

1 max{c1ex, 0}L−1
ρ

{
1

s3α

}
(t) +

1
22 σ4

2 max{c2ey, 0}L−1
ρ

{
1

s3α

}
(t)

+
1
2

σ2
1 ωex+yL−1

ρ

{
1

s3α+1

}
(t) +

1
2

σ2
2 ωex+yL−1

ρ

{
1

s3α+1

}
(t)

+ωσ1σ2ωex+yL−1
ρ

{
1

s3α+1

}
(t)

=
1

Γ(α)
max{c1ex + c2ey − K, 0}

(
tρ

ρ

)α−1

+

[
1
2

σ2
1 max{c1ex, 0}+ 1

2
σ2

2 max{c2ey, 0}
]

1
Γ(2α)

(
tρ

ρ

)2α−1

+

[
1
22 σ4

1 max{c1ex, 0}+ 1
22 σ4

2 max{c2ey, 0}
]

1
Γ(3α)

(
tρ

ρ

)3α−1

+

[
1
2

σ2
1 +

1
2

σ2
2 + ωσ1σ2

]2
ωex+y 1

Γ(3α + 1)

(
tρ

ρ

)3α

.

Note that the function u2 satisfies that I1−α,ρ
t u2(x, y, 0) = max{c1ex + c2ey − K, 0}. As

a result of the preceding explanation, we now have term u3 as follows:

u3(x, y, t) =
1

Γ(α)
max{c1ex + c2ey − K, 0}

(
tρ

ρ

)α−1

+

[
1
2

σ2
1 max{c1ex, 0}+ 1

2
σ2

2 max{c2ey, 0}
]

1
Γ(2α)

(
tρ

ρ

)2α−1

+

[
1
22 σ4

1 max{c1ex, 0}+ 1
22 σ4

2 max{c2ey, 0}
]

1
Γ(3α)

(
tρ

ρ

)3α−1

+

[
1
23 σ6

1 max{c1ex, 0}+ 1
23 σ6

2 max{c2ey, 0}
]

1
Γ(4α)

(
tρ

ρ

)4α−1

+

[
1
2

σ2
1 +

1
2

σ2
2 + ωσ1σ2

]3
ωex+y 1

Γ(4α + 1)

(
tρ

ρ

)4α

.

Note that the function u3 satisfies that I1−α,ρ
t u3(x, y, 0) = max{c1ex + c2ey − K, 0}.

Using the same manner, we can find the expression of un in the following form:

un(x, y, t) =
1

Γ(α)
max{c1ex + c2ey − K, 0}

(
tρ

ρ

)α−1

+
n−1

∑
k=0

(
1

2k+1 σ
2(k+1)
1 max{c1ex, 0}+ 1

2k+1 σ
2(k+1)
2 max{c2ey, 0}

)
(24)

× 1
Γ((k + 2)α)

(
tρ

ρ

)(k+2)α−1

+
1

Γ((n + 1)α + 1)

[
1
2

σ2
1 +

1
2

σ2
2 + ωσ1σ2

]n( tρ

ρ

)nα

,
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and I1−α,ρ
t un(x, y, 0) = max{c1ex + c2ey − K, 0} for all n ≥ 1. As a consequence of the

generalized Laplace variational iteration process, we derive that, under the assumption of
the theorem, the analytic solution for the fractional Black–Scholes equation is as follows:

u(x, y, t) = lim
n→∞

un(x, y, t)

= max{c1ex + c2ey − K, 0} 1
Γ(α)

(
tρ

ρ

)α−1

+
∞

∑
k=0

(
1

2k+1 σ
2(k+1)
1 max{c1ex, 0}+ 1

2k+1 σ
2(k+1)
2 max{c2ey, 0}

)

× 1
Γ((k + 2)α)

(
tρ

ρ

)(k+2)α−1

= max{c1ex + c2ey − K, 0} 1
Γ(α)

(
tρ

ρ

)α−1

+
σ2

1 max{c1ex, 0}
2

(
tρ

ρ

)2α−1 ∞

∑
k=0

1
Γ(αk + 2α)

[
σ2

1
2

(
tρ

ρ

)α
]k

+
σ2

2 max{c2ey, 0}
2

(
tρ

ρ

)2α−1 ∞

∑
k=0

1
Γ(αk + 2α)

[
σ2

2
2

(
tρ

ρ

)α
]k

= max{c1ex + c2ey − K, 0} 1
Γ(α)

(
tρ

ρ

)α−1

+
σ2

1 max{c1ex, 0}
2

(
tρ

ρ

)2α−1
Eα,2α

(
σ2

1
2

(
tρ

ρ

)α
)

+
σ2

2 max{c2ey, 0}
2

(
tρ

ρ

)2α−1
Eα,2α

(
σ2

2
2

(
tρ

ρ

)α
)

.

Therefore, the Theorem 3 is proved completely.

Corollary 1. The analytic solution for the two-dimensional fractional-order Black–Scholes equation
based on the Riemann–Liouville fractional derivative with the Riemann–Liouville fractional integral
condition is given in the following:

u(x, y, t) = max{c1ex + c2ey − K, 0} tα−1

Γ(α)
+

σ2
1 max{c1ex, 0}

2
t2α−1Eα,2α

(
σ2

1
2

tα

)
(25)

+
σ2

2 max{c2ey, 0}
2

t2α−1Eα,2α

(
σ2

2
2

tα

)
,

for any (x, y, t) ∈ [0, xmax]× [0, ymax]× [0, T].

Proof. By setting ρ = 1, this corollary can be obtained immediately from Theorem 3.

Corollary 2. The analytic solution of the classical two-dimensional Black–Scholes equation with
the European call option is:

u(x, y, t) = max{c1ex + c2ey − K, 0}+ max{c1ex, 0}
(

e
σ2

1
2 t − 1

)
+ max{c2ey, 0}

(
e

σ2
2
2 t − 1

)
, (26)

for any (x, y, t) ∈ [0, xmax]× [0, ymax]× [0, T].
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Proof. By Theorem 3, we have that

u(x, y, t) = max{c1ex + c2ey − K, 0} 1
Γ(α)

(
tρ

ρ

)α−1
+

σ2
1 max{c1ex, 0}

2

(
tρ

ρ

)2α−1

×Eα,2α

(
σ2

1
2

(
tρ

ρ

)α
)
+

σ2
2 max{c2ey, 0}

2

(
tρ

ρ

)2α−1
Eα,2α

(
σ2

2
2

(
tρ

ρ

)α
)

.

Since the generalized Riemann–Liouville fractional derivative can be reduced to the
usual derivative when ρ = α = 1, we obtain:

u(x, y, t) = max{c1ex + c2ey − K, 0}

+
σ2

1 max{c1ex, 0}
2

tE1,2

(
σ2

1
2

t

)
+

σ2
2 max{c2ey, 0}

2
tE1,2

(
σ2

2
2

t

)
,

for any (x, y, t) ∈ [0, xmax]× [0, ymax]× [0, T].

6. Numerical Results

We will assume throughout this section that the strike price K is 70. The risk-free
annual interest rate is 5%, thus r = 0.05; the maturity time is T = 1 year; and the volatilities
of the underlying assets x ∈ [0, 5] and y ∈ [0, 5] are σ1 = 5% and σ2 = 10%, respectively.
In the following, we will demonstrate the European option prices computed from the
previously described analytic solutions. Figure 1 shows the European call-option pricing
with various values of the parameter α obtained by (24) with the asset pricing y = 5 and
ρ = 1.

Figure 1. European call-option prices with various fractional-order α values.

Figure 2 demonstrates the European call-option pricing with various values of the
parameter ρ given by (24) with the asset pricing y = 5 and α = 0.5.

In case ρ = 1, the graphs of the option pricing by (24) with four different values for
fractional order α = 0.3, 0.5, 0.7, and 0.9 are shown in Figure 3.

It is well known that in the classical Black–Scholes model, the option price depends on
five variables. These are volatility, the price of the underlying asset, the strike price of the
option, the time until expiration of the option, and the risk-free interest rate. With these
variables, sellers of options could, in theory, set prices for the options they sell that make
sense. However, in the fractional-order Black–Scholes equation proposed here, there are
two parameters added: α and ρ. In each of the figures, it is shown that the value of call
options will increase according to the values of two parameters. Therefore, if we can figure
out the right values for these two factors, the modified Black–Scholes equation will give us
option prices that are close to what they are worth on the market.
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Figure 2. European call-option prices with various fractional-order ρ values.

α = 0.3 α = 0.5

α = 0.7 α = 0.9

Figure 3. The graphs of the option pricing with different fractional-order α.

7. Conclusions

It is well known that in option pricing theory, the Black–Scholes equation is one of the
most significant models for option pricing. In this manuscript, we developed the classical
Black–Scholes equation in the form of the fractional-order Black–Scholes equation based
on the generalized Riemann–Liouville derivative. This article provides the approximate
analytic solution to the fractional-order Black–Scholes equation via the generalized Laplace
variational iteration method. Moreover, we show that the solution to the classical Black–
Scholes equation is achieved as a special case of the proposed approximate analytic solution.
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This demonstrates that the generalized Laplace variational iteration method is one of the
effective approaches for discovering approximate analytic solutions to fractional-order
differential equations. The advantage of the modified Black–Scholes equation is that it
has two parameters occurring in the definition of the fractional derivative, that is α and
ρ. If we can correctly estimate the values of these two factors, the option prices produced
from the modified form will be close to the market value of option prices. We may utilize
the genetic algorithm and the actual value of the option to determine the proper values
for two parameters. Option pricing may be determined by the solution to the modified
Black–Scholes equation after the proper values for these two parameters are already known.
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Abstract: After the discovery of the fractal structures of financial markets, enormous effort has
been dedicated to finding accurate and stable numerical schemes to solve fractional Black-Scholes
partial differential equations. This work, therefore, proposes a numerical scheme for pricing double-
barrier options, written on an underlying stock whose dynamics are governed by a non-standard
fractal stochastic process. The resultant model is time-fractional and is herein referred to as a time-
fractional Black-Scholes model. The presence of the time-fractional derivative helps to capture the
time-decaying effects of the underlying stock while capturing the globalized change in underlying
prices and barriers. In this paper, we present the construction of the proposed scheme, analyse it
in terms of its stability and convergence, and present two numerical examples of pricing double
knock-in barrier-option problems. The results suggest that the proposed scheme is unconditionally
stable and convergent with order O(h2 + k2).

Keywords: time-fractional Black-Scholes PDEs; double barriers options; numerical methods

MSC: 91B24; 91G20; 91G60

1. Introduction

Over the years, exotic options have become very popular. Today, a wide variety of
exotic options are readily available to investors as they are cheaper, and many offer specific
tailor-made protections that have been formulated; see [1–4] and references therein. Several
factors can explain the wide popularity of exotic options, one is their almost unlimited
flexibility in addressing investors’ specific needs, which may not be possible with standard
options for which initial formulations are attributed to Black & Scholes [5] the early 70s.
Therefore, with exotic options, an investor who would like to hedge against a large drop in
an underlying asset price, for example, can sell a down-and-in put option with the barrier
set at a lower level as the cheapest way to purchase the underlying asset.

On the other hand, exotic options play a significant hedging role in meeting investors’
needs in very cost-effective ways; see for example [1,6,7] and references therein. Rational
investors are moving away from buying general protections, and rather focus on designing
complex strategies that serve to address their specific exposures at any given point in time.
Most of these complex strategies are based on exotic options.

The oldest type of exotic option is the barrier option. Barrier options in general come in
two forms—knock-out option (disappearing) or knock-in (appearing), when the underlying
asset price triggers some pre-set price levels [8]. Barrier options are thus conditional options,
and depend on whether the barrier(s) have been breached during the lifetime of the option.

Barrier options are also part of a class of option called path-dependent. According
to Buchen and Konstandatos [1], barrier options are usually cheaper than their vanilla
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counterparts. This is due to the fact that a buyer of a barrier option has a more specific
view of the underlying asset price dynamics within the time to maturity of the option
as compared to its vanilla counterpart. Another hybrid barrier option is the so-called
partial-time barrier options [1]. Here, the barrier is monitored (or active) for a time period
that is shorter than the expiry time. These options are also called window-barrier options.
Another refinement of these kinds of barrier options are those options where barrier(s) are
monitored discretely in time. Comprehensive coverage of these kinds of options can be
found for example in [8–10] to mention a few.

Another style of barrier options is a double-barrier option, some references to which
can be found in [11–14], among others. Under the double-barrier case, there is an upper
and a lower barrier. The upper barrier is set above and the lower barrier is below the
current underlying asset price. Double knock-in options come to life, and double knock-out
options terminate if either of the barriers is hit. It is worth noting that, under double-barrier
options, investors can enjoy a greater leverage potential, e.g., under a knock-out option,
the barriers can be set too close for comfort, and for knock-ins, the odds of knocking in can
also be reduced without much discount [13].

Fractional calculus, and specifically fractional differential equations, are useful math-
ematical tools for modelling the dynamics of systems and phenomena in very diverse
fields in the applied sciences. Some applications can be found in [7,15–20] among others.
The discovery of the fractal nature of financial markets, and the subsequent development
of fractal-based asset-pricing models, has intensified the search for accurate and stable
numerical methods for solving these somewhat involved yet useful asset-pricing models.

Though numerical methods for classical asset-pricing models are abundant, numerical
methods for fractional calculus-based models are very much limited. Since fractional
models are, to some extent, a generalisation of classical models, several already existing
numerical techniques for classical models can be extended to solving fractional ones.

In terms of the Black-Scholes model, there exists a very distinct difference between
fractional Black-Scholes and classical Black-Scholes models, in the sense that the derivatives
involved in fractional Black-Scholes models are globally defined, while classical models can
only capture localized information about a function in a point-wise manner. As such, the
non-locality nature of fractional derivatives-based models, among other things, contributes
greatly to the complexity of the design, analysis, and implementation of the solution
methods for fractional models.

At present, several numerical methods for fractional Black-Scholes models have been
suggested. The existing methods can be categorised into three classes: methods based
on finite difference [16,19–25], finite elements [26–28] and those based on the spectral
approach [29–31]. Compared to the other two classes, the finite difference-based methods
are proven to be more robust, efficient and tractable in solving fractional Black-Scholes
equations.

In the current work, we extend the concept of double-barrier-option pricing into a
time-fractional Black-Scholes framework. Pricing of double-barrier options via the time-
fractional Black-Scholes framework is justified by evidence of “long memory” in the time
direction observed in many asset time series; see, for example, [32–37]. It is imperative to
note that, this desired long decay in the underlying asset in the time direction does not
deteriorate the no-arbitrage constraint of asset-pricing theory. For more scientific evidence,
see, [19,38,39] and references therein.

The combination of time-fractional Black-Scholes and double-barrier conditions adds
additional degrees of complexity in designing solutions to the proposed model. Given
the complexity involved, we designed a new robust numerical scheme for solving a time-
fractional Black-Scholes model for pricing discrete-monitored double-barrier European
options. This paper, therefore, serves to suggest an efficient numerical scheme for solving a
time-fractional Black-Scholes model for pricing a discrete double-barrier-option problem.

The rest of this paper is organised as follows. Section 2 presents preliminary concepts
and definitions while specifying the model under consideration. Section 3 presents the
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detailed construction of the numerical scheme. A comprehensive theoretical analysis of
the method in terms of convergence and stability is presented in Section 4. Two practical
examples of the use of the approach for pricing double knock-in European put stock options
can be found in Section 5. Lastly, Section 6 presents some concluding remarks and sets the
scope for future research.

2. Model

This section presents an overview of the preliminary knowledge of the subject of
fractional differentiation while specifying the involved tfBS model and its brief derivation
background.

2.1. Preliminaries

The most commonly used fractional derivative definitions in modelling financial data
are the Caputo, Riemann–Liouville and the Jumarie-revised Riemann–Liouville definition.
Though there exist numerous other definitions, these three possess specific properties that
make them more appropriate for modelling financial data.

To develop the basis of our model, as well as touch base with the concept of fractional
calculus in application to financial modelling and analysis, we will briefly revisit the above
three definitions in terms of their mathematical formulations, merits, and demerits.

Definition 1. Caputo Derivative
Let f : R → R be a continuous, but not necessarily a differentiable function. The Caputo

fractional derivative of order α is defined as

Dα
t f (t) =

1
Γ(η − α)

∫ t

0

1
(t− τ)α−η+1

dη f (τ)
dtη dτ, η − 1 < α ≤ η. (1)

Though the Caputo fractional derivative of a non-differentiable function may have a
kernel at the origin, and that Caputo derivative of a constant function is not zero, according
to [19], the Caputo definition allows for the incorporation of traditional initial and bound-
ary conditions into the formulation of the problem, which provides a framework that is
consistent with the classical definition.

Definition 2. Riemann–Liouville Derivative
Let f : R → R be a continuous function, but not necessarily differentiable. Then, the

Riemann–Liouville fractional derivative of order α is given by

Dα f (t) =
1

Γ(η − α)

dη

dtη

∫ t

0

f (τ)
(t− τ)α−η+1 dτ, η − 1 < α ≤ η. (2)

Just as with the Caputo derivative, the Riemann–Liouville derivative of a constant
is non-zero, and the derivative of any function that is constant at the origin, for example,
the exponential or Mittag–Leffler function, have singularities at the origins. Due to short-
comings in the Caputo and Riemann–Liouville definitions, their applications to modelling
several non-linear real-life problems are limited [40].

A modified definition by Jumarie [41] with aid from the definition based on the
Generalised Taylor series found in [19,41,42] addresses issues of singularities regarding the
origin as well the non-zero constraint of constant functions.

Definition 3. Jumarie Derivative
Let f : R→ R be a continuous function, but not necessarily a differentiable, and suppose that

f (t) is

(i) a constant K, then its Jumarie fractional derivative of order α is defined by

Dα
t f (t) =

{ K
Γ(η−α)

t−α+1−η , α ≤ η − 1,

0, α > η − 1,
(3)
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(ii) not a constant, then

Dα
t f (t) =

1
Γ(η − α)

dη

dtη

∫ t

0

{ f (τ)− f (0)}
(t− τ)α

dτ, η − 1 < α < η, (4)

Dα
t f (t) =

∂η f (t)
∂tη , α = η (5)

The Jumarie [37,41,43,44] definition above takes into account the existence of a frac-
tional derivative at the origin, and the existence of a fractional derivative of a constant,
therefore aligning the definition consistently well with local derivative-based differen-
tial calculus.

2.2. Model Specification

Let S be the stock price that follows the following non-random fractional stochas-
tic process

dS = (r− δ)Sdt + σSω(t)(dt)α/2, 0 < α ≤ 1, (6)

which is driven by a fractal process βα(t) governed by Gaussian white noise ω(t) such that

dβα(t) = ω(t)(dt)α/2. (7)

In (6), σ2 represents the underlying stock volatility and r and δ represents the risk-free
interest rate and the continuous dividend yield, respectively.

We note that in the fractional stochastic process (6), the standard Brownian motion is
generalised by βα(t) defined in (7). Furthermore, when α = 1, Equation (6) is equivalent to
a geometric Brownian motion.

Unlike in the standard Brownian motion, the non-Gaussian fractional process (6) does
not make any prior assumptions about the underlying distribution of the stock price (S);
see, for example, [20] and references therein. However, (6) does give insights on how the
market is scaling with respect to time.

Using (6), we arrive at the time-fractional Black-Scholes (tfBS)-PDE (8) for pricing
double-barrier put options, where the fractional derivative is defined in the Caputo sense.
Detailed derivations of similar models for pricing standard options can be found in, among
others, [19,41,43,44] and references therein.⎧⎪⎪⎨⎪⎪⎩

∂αv
∂tα =

(
rv− (r− δ) S∂v

∂S

)
t1−α

Γ(2−α)
− σ2Γ(1+α)

2
S2∂2v
∂S2 , 0 < α ≤ 1,

Bl ≤ S ≤ Bu, t ∈ (0, T)

v(Bl , t) = Rl , V(Bu, t) = Ru.

(8)

In the above model, (8) Bl and Bu represent the lower and upper knock-in barriers,
with Rl and Ru denoting the respective rebates paid when the corresponding barriers are
hit. Moreover, r represents the risk-free interest rate and δ the dividend yield paid by the
underlying dividend-paying stock.

To the best of our knowledge, there is a limited amount of literature on the subject of
high-order solution schemes for barrier-option pricing time-fractional Black-Scholes PDEs,
as the topic is still relatively new and limited to vanilla option problems.

Using variable transform (τ = T − t) time to maturity, (8) can be transformed into the
following initial value problem (IVP)

τα−1(T − τ)1−α ∂αv
∂τα

−
(

rv
Γ(2− α)

− (r− δ)Sα ∂αv
∂Sα

)
(T − τ)1−α +

Γ(1 + α)σ2S2

2
∂2v
∂S2 = 0,

which simplifies to
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∂αv
∂τα

−
(

rv
Γ(2− α)

− (r− δ)S
∂v

Γ(2− α)∂S

)
τ1−α +

Γ(1 + α)σ2S2

2
∂2v
∂S2 = 0, (9)

0 < α ≤ 1,

with initial and boundary conditions

S ∈ (Bl , Bu),

τ ∈ (T, 0),

v(Bl , τ) = Rl , v(Bu, τ) = Ru.

⎫⎪⎬⎪⎭ (10)

Considering the following change in variables x = ln(S) and v(x, τ) = erτv(S, τ) and
without loss of notations, after simplification, we obtain

∂αv(x, τ)

∂τα
=

(
rv(x, τ)

Γ(2− α)
− (r− δ)x

∂v(x, τ)

Γ(2− α)∂x

)
τ1−α − Γ(1 + α)σ2x2

2
∂2v
∂S2 , (11)

0 < α ≤ 1,

with the following initial and barrier conditions

v(x, 0) = max(K− ex, 0), 0 < τ < T,

v(bl , τ) = rl , v(bu, τ) = ru, bl < x < bu.

}
(12)

3. Numerical Scheme

This section presents the construction of the involved numerical scheme in solving
(11), subject to initial and barrier conditions (12).

3.1. Model Discretization

Let L and N be positive integers and define h = (bu − bl)/L and k = T/N the
space and time step-sizes, respectively. We denote xl = bl + lh; for l = 0, 1, 2, . . . , L and
τn = nk; n = 0, 1, 2, . . . , N, such that xl ∈ [bl , bu] and τn ∈ [0, T]. Furthermore, we define
vn

l = v(xl , τn) as the solution at the grid point (xl , τn) = (bl + lh, nk).

3.1.1. Temporal Discretization

Let us define

Δtvn
l = Δtv(xl , τn) =

v(xl , τn)− v(xl , τn−1)

kα
=

vn
l − vn−1

l
kα

, (13)

and discretize the time-fractional derivative in (11) at the grid point (xl , τn+1) by the
following quadrature formula

∂αv(xl , τn+1)

∂τα
=

k−α

Γ(2− α)

n

∑
j=0

σj
(
v(xl , τn−j+1)− v(xl , τn−j)

)
+

τ1−α
n

Γ(2− α)
k,

=
1

Γ(2− α)

n

∑
j=0

σjΔtv(xl , tn−j+1) +O(k2), (14)

where
σj = (j + 1)1−α − j1−α, j = 0, 1, 2, · · · , n, (15)

such that 1 = σ0 > σ1 > σ2 > · · · >→ 0 as j → n.

3.1.2. Spatial Discretization

Let us define

Δxvn
l = Δxv(xl , τn) =

v(xl+1, τn)− v(xl−1, τn)

h2 =
vn

l+1 − vn
l−1

h2 , (16)
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Δxxvn
l = Δxv(xl , τn) =

v(xl+1, τn)− 2v(xl , τn) + v(xl−1, τn)

h2 =
vn

l+1 − 2vn
l + vn

l−1
h2 . (17)

We approximate the spatial derivatives in (11), as follows:

∂v(xl , τn+1)

∂x
=

v(xl+1, τn+1)− v(xl−1, τn+1)

2h
− h2

6
∂3v(xl , τn+1)

∂x3 +O(h4), (18)

and

∂2v(xl , τn+1)

∂x2 =
v(xl+1, τn+1)− 2v(xl , τn+1) + v(xl−1, τn+1)

h2 − h2

12
∂4v(xl , τn+1)

∂x4 +O(h2). (19)

3.2. The Full Scheme

To obtain the full numerical scheme, we substitute (14), (18) and (19) into (11) and we
obtain the following scheme

1
Γ(2− α)

n

∑
j=0

σjΔtv
n−j+1
l =

(
rvn+1

l − qΔxvn+1
l

) τ1−α

Γ(2− α)
−ω(α)Δxxvn+1

l − Rn+1
l (20)

q = r− δ, n ≥ 0, ω(α) =
Γ(1 + α)σ2x2

2
.

which, after some algebraic manipulations, can be simplified into

n+1

∑
j=1

ϕj−1vn−j+1
l = avn+1

l−1 + bvn+1
l + cvn+1

l+1 + Rn+1
l (21)

where by

a = −kαq τ1−α−ω′
h2 , b = kα τ1−αr+2ω′

h2 , c = −kαq τ1−α−ω′
h2 − 1,

ω′ = kαΓ(2− α)ω(α), ϕj = σj − σj+1.

The final scheme is explicitly given by

ϕ0vn
l + · · ·+ ϕn−1v1

l + ϕnv0
l = avn+1

l−1 + bvn+1
l + cvn+1

l+1 , (22)

whereby the left-hand side of the scheme (22) captures the memory effects.
Furthermore, Rn+1

l in (21) represents the remainder after truncation, which is given by

Rn+1
l =

h2

12

(
τ1−α

Γ(2− α)

∂3vn+1
l

∂x3 + ω(α)
∂4vn+1

l
∂x4

)
+O

(
h2 + k2

)
, (23)

which implies that, ∣∣∣Rn+1
l

∣∣∣ = C
(

h2, k2
)

, (24)

for some constant C independent of h and k. The proof to this result follows in the
next section.

4. Theoretical Analysis of the Scheme

In this section, we present the stability and convergence properties of the proposed
difference scheme (22).

4.1. Stability Analysis

The stability properties of the proposed scheme (22) will be discussed using the
concept of Fourier analysis. Suppose v̂n

l is an approximate solution to the scheme (22) such
that vn

l − v̂n
l = εn

l for l = 0, 1, · · · , L, then the following theorem holds.
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Theorem 1. The difference scheme in (22) is unconditional stable.

To prove the above theorem, we substitute the roundoff error εn
l into (22), we obtain

n+1

∑
j=1

ϕj−1ε
n−j+1
l = aεn+1

l−1 + bεn+1
l + cεn+1

l+1 , (25)

such that εn
0 = εn

L = 0.
Let us define the grid function as follows,

εn(x) =

⎧⎨⎩
εn

l , when xl − h
2 < x ≤ xl +

h
2 , l = 1, 2, . . . , L− 1,

0, when bl ≤ x ≤ bl +
h
2 or bu − h

2 < x ≤ bu +
h
2 ,

(26)

which can be expanded in terms of the following Fourier series representation

εn(x) =
∞

∑
j=1

�n(j)ei2π jx/bu−bl , n = 1, 2, . . . , N, (27)

where

�n(j) =
1

bu − bl

∫ bu−bl

0
εn(x)e−i2π jx/bu−bl dx, n = 1, 2, . . . , N, (28)

and i =
√−1.

Let εn = (εn
1 , εn

2 , · · · , εn
L−1)

T and, define its norm

‖εn‖2 =

(
L−1

∑
l=1

h| εn
l |2
)1/2

=

(∫ bu−bl

0
| εn(x) |2dx

)1/2

, (29)

and apply the Parseval equality to obtain∫ bu−bl

0
| εn(x)2 | dx =

∞

∑
j=−∞

| �n(j) |2, (30)

to obtain

‖εn‖2
2 =

∫ bu−bl

0
| εn(x) |2dx =

∞

∑
j=−∞

| �n(j) |2 . (31)

Therefore, the solution to (25) takes the following form

εn
l = �neiβlh, (32)

for β := 2π j/bu − bl and i =
√−1. Substituting the expression for εn into (25) we obtain

ϕ0�neiβlh + · · ·+ ϕn−1�1eiβlh + ϕn�0eiβlh = a�n+1eiβ(l−1)h + b�n+1eiβlh + c�n+1eiβ(l+1)h, (33)

Which, after simplifications, leads to

(ϕ0�n + · · ·+ ϕn−1�1 + ϕn�0)eiβlh = eiβlh�n+1

(
ae−iβh + ceiβh + b

)
, (34)

ϕ0�n + · · ·+ ϕn−1�1 + ϕn�0 = �n+1

(
a
(

e−iβh + eiβh
)
+ b− 1

)
, (35)

since β0 = 1 and a = c− β0.
From the Fourier series representation of cos βh, we obtain

ϕ0�n + · · ·+ ϕn−1�1 + ϕn�0 = �n+1(a cos βh + b− 1). (36)

Proposition 1. Suppose �n+1 satisfies (36), then |�n+1| ≤ |�0|, for all n = 0, 1, 2, · · · , N.
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Let n = 0, then from (36) we have

|�1(a cos βh + b− 1)| = |ϕ0�0|, (37)

which imply that

|�1| =

∣∣∣∣ ϕ0�0

a cos βh + b− 1

∣∣∣∣,
≤ ϕ0

|a cos βh + b− 1| |�0|,

≤ 1− β1

|a cos βh + b− 1| |�0|, (38)

<
1

|a cos βh + b− 1| |�0|, (∵ 1− β1 < 1),

< |�0|,
(
∵ 1
|a cos βh + b− 1| < 1

)
.

This implies that,
|�1| ≤ |�0|.

For n = 1, we suppose |�n| ≤ |�0| for all n = 1, 2, · · · , N, and show that the same is
true for |�n+1| ≤ |�0| for all n.

Proof.

|�n+1| =

∣∣∣∣∣∑
n+1
j=1 ϕj−1�n−j+1

a cos βh + b− 1

∣∣∣∣∣,
≤ 1

|a cos βh + b− 1|
n+1

∑
j=1

∣∣ϕj−1�n−j+1
∣∣,

≤
n+1

∑
j=1

∣∣ϕj−1�n−j+1
∣∣,(∵ 1

|a cos βh + b− 1|
)
< 1,

= ϕ0|�n|+ ϕ1|�n−1|+ · · ·+ ϕn−1|�1|+ ϕn|�0|, (39)

≤ ϕ0|�0|+ ϕ1|�0|+ · · ·+ ϕn−1|�0|+ ϕn|�0|,
= (ϕ0 + ϕ1 + · · ·+ ϕn−1 + ϕn)|�0|,

=
n+1

∑
j=1

ϕj−1|�0|,

= |�0|,
(
∵

n+1

∑
j=1

ϕj−1 = 1

)
.

Therefore,
∥∥∥εn+1

l

∥∥∥
2
≤ ∥∥ε0

l

∥∥
2, which concludes the proof for Theorem 1.

4.2. Convergence of the Numerical Scheme

In this subsection, we prove that the proposed scheme (22) converges with temporal
order of two and is spatially accurate with fourth order. The analysis will follow the concept
of Fourier analysis. Let Rn+1

l denote the truncation error involved in the approximation at
grid point (xl , τn+1), then, from (23), we obtain the following theorem:

Theorem 2. The difference scheme (22) is convergent and converges with order O(k2 + h4).

Let ξn
l = v(xl , tn)− vn

l denote the approximation error at grid point (tn, xl), such that
ξn

L = 0, for n = 1, 2, · · · , N and ξ0
l = 0, for l = 0, 1, · · · , L. By substituting ξn

l into the
scheme (22) we obtain
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n+1

∑
j=1

ϕj−1ξ
n−j+1
l + Rn+1

l = aξn+1
l−1 + bξn+1

l + cξn+1
l+1 , (40)

Similar to stability analysis, we define the following grid functions

ξn(S) =

{
ξn

l , when xl − h
2 < x ≤ Sl +

h
2 , l = 1, 2, . . . , L− 1,

0, when 0 ≤ x < h
2 or xmax − h

2 < S ≤ xmax +
h
2 ,

(41)

Rn(x) =

{
Cn

l , when xl − h
2 < x ≤ xl +

h
2 , l = 1, 2, . . . , L− 1,

0, when 0 ≤ x < h
2 or xmax − h

2 < x ≤ xmax +
h
2 ,

(42)

which implies ξn(x) and Cn
l have the following Fourier series representations

ξn(x) =
∞

∑
j=1

τn(j)ei2π jx/xmax ; n = 1, 2, . . . , N, (43)

Rn(x) =
∞

∑
j=1

νn(j)ei2π jx/xmax ; n = 1, 2, . . . , N, (44)

where

τn(j) =
1

xmax

∫ xmax

0
ξn(x)e−i2π jx/xmax dx; n = 1, 2, . . . , N. (45)

νn(j) =
1

xmax

∫ xmax

0
Rn(x)e−i2π jx/xmax dx; n = 1, 2, . . . , N. (46)

Let ξn = (ξn
1 , ξn

2 , · · · , ξn
L−1)

T and Rn = (Rn
1 , Rn

2 , · · · , Rn
L−1)

T , and let us define their
norms as follows:∥∥∥∥ξn

∥∥∥∥
2
=

(
L−1

∑
l=1

h| ξn
l |2
)1/2

=

(∫ xmax

0
| ξn(x) |2dx

)1/2
, (47)

∥∥∥∥Rn
∥∥∥∥

2
=

(
L−1

∑
l=1

h| Rn
l |2
)1/2

=

(∫ xmax

0
| Rn(x) |2dx

)1/2
, (48)

and, apply the following Parseval equalities

∫ Smax

0
| ξn(S)2 | dS =

∞

∑
j=−∞

| τn(j) |2; n = 1, 2, . . . , N (49)

∫ Smax

0
| Rn(S)2 | dS =

∞

∑
j=−∞

| νn(j) |2; n = 1, 2, . . . , N (50)

to obtain ∥∥∥∥ξn
∥∥∥∥2

2
=

∞

∑
j=−∞

| τn(j) |2; n = 1, 2, . . . , N. (51)

∥∥∥∥Rn
∥∥∥∥2

2
=

∞

∑
j=−∞

| νn(j) |2; n = 1, 2, . . . , N. (52)

Based on this analysis, we can therefore propose that

ξn = τneiβlh and Rn = νneiβlh, (53)
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where β = 2π j/Smax and i =
√−1. Substituting the expressions in (53) into (40) we obtain

n+1

∑
j=1

ϕj−1τn−j+1eiβlh = aτn+1eiβ(l−1)h + bτn+1eiβlh + cτn+1eiβ(l+1)h − νn+1eiβlh, (54)

which implies(
n+1

∑
j=1

ϕj−1τn−j+1

)
eiβlh = eiβlhτn+1

((
ae−iβh + ceiβh + b

)
− νn+1

)
(55)

which simplify into

n+1

∑
j=1

ϕj−1τn+1−j = τn+1(a cos βh + b− 1)− νn+1. (56)

Therefore

τn+1 =
∑n+1

j=1 ϕj−1τn+1−j + νn+1

(a cos βh + b− 1)
. (57)

Proposition 2. Suppose τn for n = 0, 1, · · · , N is a solution to (57); then, there exists some
positive constant C such that |τn| ≤ C|ν1| for all n.

Proof. It is trivial to show that for n = 0, from (57), we have

|τ1| =

∣∣∣∣ ϕ0τ0 + ν1

(a cos βh + b− 1)

∣∣∣∣ ≤ ν1. (58)

Suppose |τn| ≤ C0|ν1|, for n = 1, 2, · · · , N, for some constant C independent of h and
k. Then,

|τn+1| ≤
∣∣∣∣∣∑

n+1
j=1 ϕj−1τn+1−j + νn+1

(a cos βh + b− 1)

∣∣∣∣∣,
≤

n+1

∑
j=1

1
|(a cos βh + b− 1)| (σj−1

∣∣τn−j+1
∣∣+ |νn+1|),

≤
n+1

∑
j=1

Cj−1(σj−1
∣∣τn−j+1

∣∣+ |νn+1|),

≤
n+1

∑
j=1

σj−1Cj−1
∣∣τn−j+1

∣∣+ Cn+1|ν1|, (59)

≤
n+1

∑
j=1

σj−1Cj−1|ν1|+ Cn+1|ν1|,

= σ0C0|ν1|+ σ1C1|ν1|+ σ2C2|ν1|+ · · ·+ σnCn|ν1|+ Cn+1|ν1|,

≤ Ĉ(
n+1

∑
j=1

σj−1|ν1|+ ν1), (Ĉ = max
0≤j≤n+1

{Cj})

= Ĉ(
n+1

∑
j=0

σj)|ν1|

= C|ν1|.

We can therefore conclude that the scheme (22) is convergent, and this completes the
proof to Theorem 2.
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5. Numerical Results and Discussions

In this section, we present two numerical examples of the pricing of double-barrier
knock-in put-option problems.

Example 1. Consider Equation (8), subject to conditions (12) for pricing a double knock-in put
option with the following parameters: K = 80, r = 0.05, σ = 0.01, T = 1, Smax = 120, L = 100,
N = 50, δ = 0.025, and 0.075, α = (0.5, 0.7, 0.9, 1.0), with lower barrier located at Bl = 6
and upper barrier located at Bu = 110.

To asses the effects of change in some key option parameters on the effectiveness of
the approach, as well as, the numerical method herein, we considered a second example
with two different sets of dividend yields δ, two different sets of barriers, the same interest
rate r, the same strike price K, the same maturity time T and the same set of α values.

Example 2. Consider Equation (8), subject to conditions (12) for pricing double knock-in put
options with the following parameters: K = 80, r = 0.05, σ = 0.015, T = 1, Smax = 120,
L = 100, N = 100, δ = 0.045 and 0.10, α = (0.5, 0.7, 0.9, 1.0), with lower barrier located at
Bl = 10 and upper barrier located at Bu = 130.

Option maturity payoff curves for the two considered examples (Examples 1 and 2,
above) are presented in Figures 1 and 2 below.
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Figure 1. Double-barrier put-option payoffs for δ = 0.025, and 0.075, with α = (0.5, 0.7, 0.9, 1.0),
and Bl = 6, Bu = 110 at t = T.
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Figure 2. Double-barrier put-option payoffs for δ = 0.045, and 0.10, with α = (0.5, 0.7, 0.9, 1.0),
and Bl = 10, Bu = 130 at t = T.

The results in Figures 1 and 2 are consistent with those obtained in [45] which are
formulated using a call option. Figures 1 and 2 indicates that, change in dividend yield has
an effect on the option price (premium). A higher dividend yield (δ) yields a lower option
premium. This is not strange because, the holder of an option with a higher dividend yield
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is compensated more through dividends as compared to the one with a lower dividend
yield.

Moreover, the considered tfBS in Equation (8) gives high option prices both for the
in-the-money option and for when the underlying asset price (S) is close to the strike price
(K) as compared to the classical BS model (α = 1) case. This indicates that, the tfBS model
in (8) is of a power-law nature as compared to the classical Black-Scholes model.

Tabular results for the two considered examples (Examples 1 and 2, above) are pre-
sented in Tables 1–4, below.

Table 1. Approximation errors for Example 1 with r = 0.05 and δ = 0.025.

α N = 50 N = 100 N = 200 N = 400 N = 800

0.1 7.1212 × 103 1.7901 × 103 4.4561 × 104 1.1525 × 104 2.9154 × 105

0.2 7.1336 × 103 1.8180 × 103 4.4711 × 104 1.1563 × 104 2.9250 × 105

0.3 7.3465 × 103 1.8383 × 103 4.5753 × 104 1.1827 × 104 2.9717 × 105

0.4 7.4609 × 103 1.9326 × 103 4.8371 × 104 1.2239 × 104 3.0759 × 105

0.5 8.1315 × 103 2.0213 × 103 5.1493 × 104 1.3000 × 104 3.2785 × 105

0.6 8.4515 × 103 2.1032 × 103 5.4620 × 104 1.3842 × 104 3.4915 × 105

0.7 9.5333 × 103 2.3909 × 103 6.1088 × 104 1.5478 × 104 3.7153 × 105

0.8 1.1062 × 102 2.5616 × 103 6.4925 × 104 1.6449 × 104 4.1409 × 105

0.9 1.2494 × 102 3.1452 × 103 7.8208 × 104 2.0062 × 104 5.0548 × 105

1.0 1.3815 × 102 3.4591 × 103 8.7754 × 104 2.2198 × 104 5.5953 × 105

Table 2. Rate of convergence for Example 1 with r = 0.05 and δ = 0.025.

α N = 100 N = 200 N = 400 N = 800

0.1 1.91 1.95 1.98 1.99
0.2 1.92 1.96 1.98 1.99
0.3 1.93 1.96 1.98 1.99
0.4 1.93 1.96 1.98 1.99
0.5 1.93 1.97 1.98 1.99
0.6 1.94 1.97 1.98 1.99
0.7 1.94 1.97 1.98 1.99
0.8 1.94 1.97 1.98 1.99
0.9 1.94 1.97 1.98 1.99
1.0 1.94 1.97 1.98 1.99

Table 3. Approximation errors for Example 2 with r = 0.05 and δ = 0.045.

α N = 100 N = 200 N = 400 N = 800 N = 1600

0.1 6.5512 × 102 1.6492 × 102 4.1892 × 103 1.0597 × 103 2.5953 × 104

0.2 5.7988 × 103 1.4694 × 102 3.7170 × 103 9.4025 × 104 2.3784 × 104

0.3 5.2147 × 102 1.3191 × 102 3.3368 × 103 8.4408 × 104 2.1352 × 104

0.4 4.7443 × 102 1.2001 × 102 3.0358 × 103 7.6794 × 104 1.9426 × 104

0.5 4.3746 × 102 1.1066 × 102 2.7993 × 103 7.0810 × 104 1.7912 × 104

0.6 4.0893 × 102 1.0344 × 102 2.6167 × 103 6.6192 × 104 1.6544 × 104

0.7 3.8773 × 102 9.8080 × 103 2.4898 × 103 6.2752 × 104 1.5688 × 104

0.8 3.7318 × 102 9.4300 × 103 2.3779 × 103 6.0305 × 104 1.4980 × 104

0.9 3.6499 × 102 9.3328 × 103 2.4355 × 103 5.9979 × 104 1.5745 × 104

1.0 3.7328 × 102 9.2895 × 103 2.4246 × 103 5.9803 × 104 1.5670 × 104

Table 4. Rate of convergence for Example 2 with r = 0.05 and δ = 0.045.

α N = 200 N = 400 N = 800 N = 1600

0.1 1.95 1.98 1.99 1.99
0.2 1.96 1.98 1.99 1.99
0.3 1.96 1.98 1.99 1.99
0.4 1.96 1.98 1.99 2.00
0.5 1.97 1.98 1.99 2.00
0.6 1.97 1.98 1.99 2.00
0.7 1.97 1.98 1.99 2.00
0.8 1.97 1.98 1.99 2.00
0.9 1.97 1.98 1.99 2.00
1.0 1.97 1.98 1.99 2.00

The numerical results herein confirm our theoretical deductions on the stability and
convergence properties of the scheme as presented in Sections 4.1 and 4.2, respectively. The
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results indicates that, the proposed scheme is unconditionally stable (see Section 4.1) and
converges with order O(h2, k2), i.e., the scheme converges with order two in both time and
asset directions under all possible orders of the fractional derivative (α).

6. Concluding Remarks and Scope for Future Direction

In this paper we considered a double-barrier-option pricing problem under the time-
fractional Black-Scholes setup. We propose a robust second-order numerical scheme for
solving a discretely monitored double-barrier time-fractional Black-Scholes PDE. Two
numerical examples are presented. Results indicates that, adding to the already established
scientific evidence, the fractional Black-Scholes approach is a very efficient valuation
technique for barrier option problems as compared to the usual/classical Black-Scholes
approach. The double barrier-option tfBS model in Equation (8) is sensitive to dividend
payouts, and allocates lower put premiums to higher dividend yield options. These results
are well in line with the theory of no-arbitrage, where investors who are compensated
well in dividends would receive prices lower than those of investors with lower dividend
yield options. Moreover, the numerical scheme herein proves to be efficient at solving
the involved time-fractional Black-Scholes model, though the approach using the general
signal produces some asymmetric performances when 0 < α < 0.5. The approach is only
effective when 0.5 ≤ α < 1, and it is for this reason that we only presented results for when
α = (0.5, 0.7, 0.9, 1.0). The calibration of the model to real-time market data remains the
subject of future research.
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Convergence Rate of the High-Order Finite Difference Method
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Abstract: The high-order finite difference method for option pricing is one of the most popular
numerical algorithms. Therefore, it is of great significance to study its convergence rate. Based on
the relationship between this algorithm and the trinomial tree method, as well as the definition of
local remainder estimation, a strict mathematical proof is derived for the convergence rate of the
high-order finite difference method for option pricing in a Markov regime-switching jump-diffusion
model. The theoretical result shows that the convergence rate of this algorithm is O(Δτ) . Moreover,
the results also hold in the case of Brownian motion and jump-diffusion models that are specialized
forms of the given model.

Keywords: convergence rate; high-order finite difference method; Markov regime-switching
jump-diffusion model; partial integro-differential equations

1. Introduction

1.1. Background

Partial integro-differential equations (PIDEs) in a Markov regime-switching jump-
diffusion model are popular in financial engineering ([1–14]). The advantages of this
model lie in two aspects: on the one hand, the Markov chain reflects the information
of market environments; on the other hand, it accurately describes the behavior of the
underlying asset. However, it is difficult to solve the PIDEs due to the close relation to the
Markov chain.

Some numerical methods, such as the high-order finite difference scheme, have been
widely used to solve the PIDEs. The principle of the high-order difference method is
to obtain finite difference approximations for high-order derivatives in the truncation
error by operating on the differential equations as an auxiliary relation. The high-order
schemes in a central difference approximation increase the order of accuracy. During and
Fournie ([15–17]) derived a high-order difference scheme under the Heston model in 2012
and extended this method to non-uniform grids in 2014 and to multiple space dimensions
in 2015. In 2019, During and Pitkin [18] applied this approach to stochastic volatility jump
models. Additionally, some other scholars have put forward an improved algorithm based
on higher-order finite difference in their papers ([19–25]). Rambeerich and Pantelous [4]
developed a high-order finite element scheme to approximate the spatial terms of PIDE
using linear and quadratic basis polynomial approximations and solved the resulting
initial value problem using exponential time integration. Patel [6] proposed a fourth-
order compact finite difference scheme for the solution of PIDE under regime-switching
jump-diffusion models. Tour et al. [7] developed a high-order radial basis function finite
difference (RBF-FD) approximation on a five-point stencil under the regime-switching
stochastic volatility models with log-normal and contemporaneous jumps. Ma et al. [26]
presented the high-order equivalence between the finite difference method and trinomial
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trees method for regime-switching models and proved the convergence rates of trinomial
trees for pricing options with state-dependent switching rates using the theory of the FDMs.

It is of great importance to investigate the convergence rate of algorithms based on the
Markov chain with finite difference schemes. In 2010, Alfonsi [27] presented weak second
and third-order schemes for the CIR process and gave a general recursive construction
method for obtaining weak second-order schemes. In 2017, Altmayer and Neuenkirch [28]
established a weak convergence rate of order one under mild assumptions regarding the
smoothness of the payoff. Zheng [29] derived that the weak convergence rate of a time-
discrete scheme for the Heston stochastic volatility model was 2 for all parameter regimes.
In 2018, Bossy and Olivero [30] studied the rate of convergence of a symmetrized version of
the Milstein scheme applied to the solution of the one-dimensional SDE. Briani et al. stud-
ied the rate of weak convergence of Markov chains to diffusion processes under suitable,
but quite general, assumptions in [31] and developed stability properties of a hybrid approx-
imation of the functional of the Bates jump model with the stochastic interest rate in [32].
Lesmana and Wang [33] presented the consistency, stability, convergence, and numerical
simulations of American options with transaction cost under a jump-diffusion process.

However, these papers all show the efficiency of this algorithm via numerical examples.
It is important to give strict mathematical proof to guarantee the correctness of the high-
order difference method. The objective of this article is to investigate the convergence
rate of the high-order difference scheme (5)–(15) for option pricing assuming a Markov
regime-switching jump-diffusion model (1) followed by the underlying asset.

1.2. The PIDEs in a Markov Regime-Switching Jump-Diffusion Model

Under the risk-neutral measure, the underlying xt = log St will be modelled by a
Markov regime-switching jump-diffusion model.

dxt = [r(αt)− β(αt)λ(αt)]dt + σ(αt)dWt + [η(αt)− 1]dQt (1)

where {Wt}t≥0 is a standard Brownian motion, {αt} is a continuous-time Markov chain
with finite states {1, 2, · · · , n}, r(αt) = ri is the risk-free rate, σ(αt) = σi denotes the
constant volatility, {Qt} represents the compound Poisson process with intensity λ(αt) = λi
at state i, [η(αt)− 1] = ηi − 1 denotes the function which jump from St to Stηi. The
expectation of this function is then given by β(αt) = βi where βi = E(ηi − 1). We assume
that the stochastic processes {Wt}t≥0 and {Qt}t≥0 in (1) are mutually independent in
this paper.

Let A = (ρil), i, l = 1, 2, · · · , n, be the generator matrix of the Markov chain process
whose elements are constants satisfying ρil ≥ 0 for i �= l and ∑n

l=1 ρil = 0 for i = 1, 2, · · · , n.
Let the underlying xt satisfy (1). Then, the value of a European option Vi(x, τ) satisfies

the following PIDE:⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂Vi(x,τ)

∂τ = LVi(x, τ) + IVi(x, τ) +
n

∑
l=1

ρilVl(x, τ), i = 1, 2, · · · , n, (x, τ) ∈ R× [0, T],

Vi(x, τ) =

{
0, x → −∞,
Kex − Ke−riτ , x → + ∞.

(2)

where

LVi(x, τ) =

(
ri − λiβi − 1

2
σ2

i

)
∂Vi(x, τ)

∂x
+

1
2

σ2
i

∂2Vi(x, τ)

∂x2 − (ri + λi) Vi(x, τ) (3)

IVi(x, τ) = λi

∫ +∞

−∞
Vi(x, τ) f i(z− x)dz (4)
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and the density function f i(z− x) is given by [34]

f i(z− x) =
1√

2πγi
exp

[
− (z− x− αi)

2

2γ2
i

]
.

1.3. High-Order Finite Difference Method

The high-order finite difference method has been developed for option pricing [15–24].
The idea of this method is to obtain finite difference approximations for high-order deriva-
tives in the truncation error. The high-order schemes in a central difference approximation
increase the order of accuracy.

We divide the domain (−∞, + ∞) into three parts: (−∞, xmin), [xmin, xmax), and
[xmax, + ∞) and introduce uniform grids with Δx = (xmax − xmin)/M and Δτ = (T − t)/N
where M and N denote the number of space and time intervals, respectively. T is the ma-
turity date of the option. Furthermore, let the mesh points be xm = xmin + mΔx for
m = 0, 1, · · · , M and τj = j Δτ for j = 0, 1, 2, ··· , N .

For the integral term in Equation (2), by choosing the appropriate interval[xmin, xmax],
we can assure that the integral value beyond this range can be ignored, that is,

λi

∫ xmin

−∞
Vi(x, τ) f i(z− x)dz ≈ λi

∫ xmin

−∞
max(1− exp(ξ), 0) f i(ξ)dξ = 0 (5)

λi

∫ +∞

xmax
Vi(x, τ) f i(z− x)dz ≈ λi

∫ +∞

xmax
max(1− exp(ξ), 0) f i(ξ)dξ = 0. (6)

By using the composite Simpson’s rule and Equations (5) and (6), we obtain

IVi(x, τ) = λi
∫ +∞
−∞ Vi(x, τ) f i(z− x)dz ≈ λi

∫ xmax
xmin

Vi(x, τ) f i(z− x)dz

≈ λiΔx
3

mx/2

∑
m=1

[Vi(x2m−2, τ) f i(x2m−2 − x) + 4Vi(x2m−1, τ) f i(x2m−1 − x)

+Vi(x2m, τ) f i(x2m − x)]

(7)

For the differential term in Equation (2), we define Vi
m,j ≡ Vi(xm, τj

)
, j = 1, 2, · · · , N.

Then, the standard central difference approximation to Equation (3) at point
(
xm, τj

)
for

regime i is

LVi
m,j = (ri − λiβi − 1

2
σ2

i )δxVi
m,j +

1
2

σ2
i δ2

xVi
m,j − (ri + λi)Vi

m,j + ε
(i)
m (8)

where δx and δ2
x are the first- and second-order central difference approximations with

respect to x, respectively. The truncation error is given by

ε
(i)
m =

(Δx)2

12

(
2ri − 2λiβi − σ2

i

)∂3Vi
m,j

∂x3 +
1
24

(Δx)2σ2
i

∂4Vi
m,j

∂x4 +O
(
(Δx)4

)
(9)

Differentiating Equation (3) with respect to x, we have

∂3Vi
m,j

∂x3 =
2
σ2

i

∂LVi
m,j

∂x
− 2ri − 2λiβi − σ2

i
σ2

i

∂2Vi
m,j

∂x2 +
2(ri + λi)

σ2
i

∂Vi
m,j

∂x
(10)

∂4Vi
m,j

∂x4 =
2
σ2

i

∂2LVi
m,j

∂x2 −2
(
2ri − 2λiβi − σ2

i
)

σ4
i

∂LVi
m,j

∂x
+

(
2ri − 2λiβi − σ2

i
)2

σ4
i

∂2Vi
m,j

∂x2 −4(ri + λi)
(
ri − λiβi − σ2

i
)

σ4
i

∂Vi
m,j

∂x
(11)

We substitute Equations (10) and (11) into (9) to obtain a new expression of the error
term ε

(i)
l that only includes terms which are either O

(
(Δx)4

)
or O

(
(Δx)2

)
multiplied
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by derivatives of V, which can be approximated to O
(
(Δx)2

)
within the compact stencil.

Inserting this new expression for the error term in (8), we obtain[
ri − λiβi − σ2

i
2 + (ri+λi)(ri−λi βi)(Δx)2

6σ2
i

]
δxVi

m,j +

[
σ2

i
2 −

(2ri−2λi βi−σ2
i )

2
(Δx)2

24σ2
i

]
δ2

xVi
m,j − (ri + λi)Vi

m,j

= LVi
m,j −

(2ri−2λi βi−σ2
i )(Δx)2

12σ2
i

δxLVi
m,j − (Δx)2

12 δ2
xLVi

m,j

(12)

According to Equations (7) and (12), we obtain the discretization of PIDE (2) at point(
xm, τj

)
for regime i

Vi
m,j = aiVi

m+1,j+1 + biVi
m,j+1 + ciVi

m−1,j+1

where

ai =
1

1 + (ri + λi)Δτ

(Δx)2[(ri + λi − ρii)Δτ − 1]− (Δτ − 1)
[

σ2
i −

(2ri−2λi βi−σ2
i )

2
(Δx)2

12σ2
i

]
(ri + λi − ρii)Δτ(Δx)2 − (Δx)2 +

[
σ2

i −
(2ri−2λi βi−σ2

i )
2
(Δx)2

12σ2
i

] (13)

bi =
1

1 + (ri + λi)Δτ

[
σ2

i
2 −

(2ri−2λi βi−σ2
i )

2
(Δx)2

24σ2
i

]
Δτ + 1

2

[
ri − λiβi − σ2

i
2 + (ri+λi)(ri−λi βi)(Δx)2

6σ2
i

]
ΔτΔx

(ri + λi − ρii)Δτ(Δx)2 − (Δx)2 +

[
σ2

i −
(2ri−2λi βi−σ2

i )
2
(Δx)2

12σ2
i

] (14)

ci =
1

1 + (ri + λi)Δτ

[
σ2

i
2 −

(2ni−2λi βi−σ2
i )

2
(Δx)2

24σ2
i

]
Δτ − 1

2

[
ni − λiβi − σ2

i
2 + (ri+λi)(ri−λi βi)(Δx)2

6σ2
i

]
ΔτΔx

(ri + λi − ρii)Δτ(Δx)2 − (Δx)2 +

[
σ2

i −
(2ri−2λi βi−σ2

i )
2
(Δx)2

12σ2
i

] (15)

1.4. Outline of This Paper

The rest of this paper is organized as follows. In Section 2, the relationship between
the high-order difference scheme and the trinomial tree algorithm is investigated, and then
the convergence rate of the high-order difference algorithm for option pricing in a Markov
regime-switching model is obtained. Section 3 summarizes the main conclusions.

2. Main Results

In this section, we investigate the relationship between the high-order difference
method and the trinomial tree approach and propose the estimation of the local remainder
of this algorithm. After this, we can obtain the convergence rate.

2.1. The Two Lemmas

Lemma 1. If Δτ ≤ 1+(2ri−2λi βi−σ2
i )

2

ri+λi−ρii
and Δx ≤ σ

√
Δτ

1−(ri+λi−ρii)Δτ+(2ri−2λi βi−σ2
i )

2 , the high-

order finite difference method is equivalent to a trinomial tree approach, that is, for the defined
high-order finite difference (13)–(15), the following result holds for regime i = 1, 2, · · · , n.

ai + bi + ci =
1

1 + (ri + λi)Δτ
and ai ≥ 0, bi ≥ 0, ci ≥ 0
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Proof. Equations (13)–(15) imply that

ai + bi + ci =
1

1+(ri+λi)Δτ

(Δx)2[(ri+λi−ρii)Δτ−1]−(Δτ−1)

⎡⎣σ2
i −

(2ri−2λi βi−σ2
i )

2
(Δx)2

12σ2
i

⎤⎦
(ri+λi−ρii)Δτ(Δx)2−(Δx)2+

⎡⎣σ2
i −

(2ri−2λi βi−σ2
i )

2
(Δx)2 ]

12σ2
i

⎤⎦

+ 1
1+(ri+λi)Δτ

⎡⎣ σ2
i
2 −

(2ri−2λi βi−σ2
i )

2
(Δx)2

24σ2
i

⎤⎦Δτ+ 1
2

[
ri−λi βi−

σ2
i
2 +

(ri+λi) (ri−λi βi) (Δx)2

6σ2
i

]
ΔτΔx

(ri+λi−ρii)Δτ(Δx)2−(Δx)2+

⎡⎣σ2
i −

(2ri−2λi βi−σ2
i )

2
(Δx)2

12σ2
i

⎤⎦

+ 1
1+(ri+λi)Δτ

⎡⎣ σ2
i
2 −

(2ri−2λi βi−σ2
i )

2
(Δx)2

24σ2
i

⎤⎦Δτ− 1
2

[
ri−λi βi−

σ2
i
2 +

(ri+λi) (ri−λi βi) (Δx)2

6σ2
i

]
ΔτΔx

(ri+λi−ρii)Δτ(Δx)2−(Δx)2+

⎡⎣σ2
i −

(2ri−2λi βi−σ2
i )

2
(Δx)2

12σ2
i

⎤⎦
= 1

1+(ri+λi)Δτ

Under the condition in Lemma 1, it is easy to show ai ≥ 0, bi ≥ 0, ci ≥ 0. Therefore,
the expressions ai[1 + (ri + λi)Δτ], bi[1 + (ri + λi)Δτ], and ci[1 + (ri + λi)Δτ] can be
interpreted as the probabilities of moving from xm to xm, xm+1 and xm−1, respectively. �

Let V
(
xm, τj, i

)
denote a high-order finite difference approximation value at the

node
(
xm, τj

)
for regime i. Then, from Lemma 1, V

(
xm, τj, i

)
can be calculated by

V
(

xm, τj, i
)
= e−riΔτ

n

∑
l=1

[
Pil(aiV

(
xm+1, τj+1, l

)
+ biV

(
xm, τj+1, l

)
+ ciV

(
xm−1, τj+1, l

)
)
]

(16)

where Pil is the transition probability from regime i to l, satisfying the following equation

(Pil)n×n = I +
∞

∑
l=1

(Δτ)l Al

l!
(17)

in which I denotes the unit matrix and A is the generation matrix of the Markov chain.
Define the local remainder of Vi(x, τ) for regime i at

(
xm, τj

)
by

Ri
j = Vi(xm, τj

)− e−riΔτ
n

∑
l=1

[Pil(aiV
(
xm+1, τj+1, l

)
+ biV

(
xm, τj+1, l

)
+ciV(xm−1, τj+1, l))]

(18)

where Vi(xm, τj
)

denotes the exact European option value for regime i at
(
xm, τj

)
.

Lemma 2. Let V(x, τ) be a function for which the partial derivatives ∂V
∂x , ∂2V

∂x2 and ∂3V
∂x3 are defined

and continuous. The estimation of the local remainder Ri
j in (18) is given by Ri

j = O
(
(Δτ)2

)
for

regime i = 1, 2, · · · , n.

Proof. By applying Taylor expansion to Vi(xm, τj
)
, Vi(xm+1, τj+1

)
and Vi(xm−1, τj+1

)
,

i = 1, 2, · · · , n at τj+1, we have

Vi(xm, τj
)
= Vi(xm, τj+1

)− ∂Vi(xm, τj+1
)

∂τ
Δτ +O

(
(Δτ)2

)
(19)

Vi(xm+1, τj+1
)
= Vi(xm, τj+1

)
+

∂Vi(xm ,τj+1)
∂x Δxm

+ 1
2

∂2Vi(xm ,τj+1)
∂x2 (Δxm)

2 + 1
6

∂3Vi(xm ,τj+1)
∂x3 (Δxm)

3 +O((Δxm)
4)

(20)
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and

Vi(xm−1, τj+1
)
= Vi(xm, τj+1

)
+

∂Vi(xm ,τj+1)
∂x (−Δxm)

+ 1
2

∂2Vi(xm ,τj+1)
∂x2 (−Δxm)

2 + 1
6

∂3Vi(xm ,τj+1)
∂x3 (−Δxm)

3 +O((−Δxm)
4)

(21)

Substituting (19)–(21) into (18), we have

Ri
j = Vi(xm, τj

)− e−riΔτ
n

∑
l=1

Pil(aiVl(xm+1, τj+1
)
+ biVl(xm, τj+1

)
+ ciVl(xm−1, τj+1

)
)

= Vi(xm, τj+1
)− ∂Vi(xm ,τj+1)

∂τ Δτ +O((Δτ)2)

−e−riΔτ
n

∑
l=1

Pil

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
ai

⎡⎣ Vl(xm, τj+1) +
∂Vl(xm ,τj+1)

∂x Δxm + 1
2

∂2Vl(xm ,τj+1)

∂x2 (Δxm)2

+ 1
6

∂3Vl(xm ,τj+1)

∂x3 (Δxm)
3 +O(

(
Δxm)4)

⎤⎦+ biVl(xm, τj+1)

+ci

⎡⎣ Vl(xm, τj+1) +
∂Vl(xm ,τj+1)

∂x (−Δxm) +
1
2

∂2Vl(xm ,τj+1)

∂x2 (−Δxm)
2

+ 1
6

∂3Vl(xm ,τj+1)

∂x3 (−Δxm)
3 +O(

(−Δxm)4)

⎤⎦

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
= Vi(xm, τj+1

)− ∂Vi(xm ,τj+1)
∂τ Δτ +O((Δτ)2)

−e−riΔτ
n

∑
l=1

Pil

⎧⎨⎩ (ai + bi + ci)Vl(xm, τj+1) + (ai − ci)
∂Vl(xm ,τj+1)

∂x Δxm

+ 1
2 (ai + ci)

∂2Vl(xm ,τj+1)

∂x2 (Δxm)
2 + 1

6 (ai − ci)
∂3Vl(xm ,τj+1)

∂x3 (Δxm)
3 + (ai + ci)O(

(
Δxm)4) )

⎫⎬⎭

(22)

Using Lemma 1 and Equation (17), we obtain

Ri
j = O((Δτ)2)

⎡⎢⎣
∂Vi(xm ,τj+1)

∂τ −
(

ri − βi − 1
2 σ2

i )
∂Vi(xm ,τj+1)

∂x − 1
2 σ2

i
∂2Vi(xm ,τj+1)

∂x2

−(ri + λi)Vi(xm, τj+1) −
n
∑

j=1
ρijVi(xm, τj+1) − λi

∫ +∞
−∞ V(z, τ, i) f (z− x, i)dz

⎤⎥⎦Δτ

= O((Δτ)2)

�

Based on Lemmas 1 and 2, the convergence rate of the high-order finite difference
algorithm is investigated as follows.

2.2. The Main Theorem

Theorem 1. (Convergence rate of the high-order finite difference method). We define the error of
high-order finite difference at the node

(
xm, τj

)
by

ε
j
i(xm) = Vi(xm, τj

)−V
(
xm, τj, i

)
, i = 1, 2, · · · , n (23)

and the infinity norm by

‖ε
j
i‖∞ = max

∣∣∣εj
i(xm)

∣∣∣, i = 1, 2, · · · , n (24)

Then, the convergence rate of the high-order finite difference is estimated by

‖ε
j
i‖∞ = |O(Δτ)|, i = 1, 2, · · · , n (25)

Proof. According to Equation (18),

Vi(xm, τj
)
= Ri

j + e−riΔτ
n

∑
l=1

Pil(aiVl(xm+1, τj+1
)
+ biVl(xm, τj+1

)
+ ciVl(xm−1, τj+1

)
) (26)
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Then, we note from Equations (16) and (26) that

ε
j
i(xm) = e−riΔτ

n

∑
l=1

Pil

(
aiε

j+1
l (xm+1) + biε

j+1
l (xm) + ciε

j+1
l (xm−1)

)
+ Ri

j

Therefore, the following inequality holds:∣∣∣εj
i(xm)

∣∣∣ ≤
∣∣∣Ri

j

∣∣∣+ e−riΔτ
n

∑
l=1

Pil(ai|εj+1
i (xm+1)|+ bi|εj+1

i (xm)|+ ci|εj+1
i (xm−1)|)

≤
∣∣∣Ri

j

∣∣∣+ e−riΔτ
n

∑
l=1

Pil‖ε
j+1
l ‖∞

= e−riΔτ
n

∑
l=1

Pil‖εk+1
l ‖∞ + |O((Δτ)2)|

(27)

The last line of (27) is obtained from Lemma 2. Therefore, by using Equation (17),
we have

n

∑
i=1
‖ε

j
i‖∞≤

n

∑
i=1

e−riΔτ
2

∑
l=1

Pil‖ε
j+1
l ‖∞ + |O((Δτ)2)|

≤
n

∑
i=1

[
1 +

n

∑
i=1

ailΔτ + |O
(
(Δτ)2

)
|
]
‖ε

j+1
i ‖∞ + |O((Δτ)2)|

(28)

The term ∑n
i=1 ailΔτ + |O((Δτ)2)| ≥ 0 in Equation (28) implies

n

∑
i=1
‖ε

j
i‖∞ ≤

n

∑
i=1
‖ε

j+1
i ‖∞ +

⎧⎨⎩
n

∑
j=1

⎡⎣ n

∑
i=1

aijΔτ + |O((Δτ)2)|
⎤⎦⎫⎬⎭

n

∑
i=1
‖ε

j+1
i ‖∞ + |O((Δτ)2)|

Since ∑n
j=1 aij = 0, i = 1, 2, · · · , n, the following inequality can be obtained:

n

∑
i=1
‖ε

j
i‖∞ ≤ [1 + |O((Δτ)2)|]

n

∑
i=1
‖ε

j+1
i ‖∞ + |O((Δτ)2)| (29)

By iterating (29), we have

n

∑
i=1
‖ε

j
i‖∞ ≤ [1 + |O((Δτ)2|]n−j

(
n

∑
i=1
‖εn

i ‖∞

)
− 1 + [1 + |O((Δτ)2)|]n−j (30)

At the final step τn = 0, the following expression holds:

εn
i = Vi(xm, τn)−V(xm, τn, i) = 0, i = 1, 2, · · · , n

According to (30), we have

n
∑

i=1
‖ε

j
i‖∞ ≤ −1 + [1 + |O((Δτ)2)|]n−j

= −1 +
n−j

∑
l=0

Cl
n−j|O((Δτ)2)|l

= C1
n−jO((Δτ)2) +

n−j

∑
l=2

Cl
n−j|O((Δτ)2)|l

≤ nO((Δτ)2) = T
ΔτO(

(
Δτ)2) = O(Δτ)

�
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3. Conclusions

In this paper, we have investigated the convergence rate of the high-order finite
difference method for option pricing in a Markov regime-switching jump-diffusion model
by employing the relationship between this algorithm and the trinomial tree approach. The
result shows that the convergence rate of this algorithm is O(Δτ). This theoretical proof
ensures the validation of the high-order finite difference method for option pricing.

For future research, it is worth investigating the convergence rate of the high-order
finite difference method for options with stochastic volatility jump models in the case of
infinite states for the Markov chain.
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