
mdpi.com/journal/axioms

Special Issue Reprint

Theory of Functions  
and Applications 

Edited by 

Inna Kalchuk



Theory of Functions and Applications





Theory of Functions and Applications

Editor

Inna Kalchuk

Basel • Beijing • Wuhan • Barcelona • Belgrade • Novi Sad • Cluj • Manchester



Editor

Inna Kalchuk

Lesya Ukrainka Volyn

National University

Lutsk

Ukraine

Editorial Office

MDPI

St. Alban-Anlage 66

4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal Axioms

(ISSN 2075-1680) (available at: https://www.mdpi.com/journal/axioms/special issues/theory of

functions and applications).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

Lastname, A.A.; Lastname, B.B. Article Title. Journal Name Year, Volume Number, Page Range.

ISBN 978-3-7258-0989-9 (Hbk)

ISBN 978-3-7258-0990-5 (PDF)

doi.org/10.3390/books978-3-7258-0990-5

© 2024 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license. The book as a whole is distributed by MDPI under the terms

and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

license.



Contents

About the Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Inna Kal’chuk

Theory of Functions and Applications
Reprinted from: Axioms 2024, 13, 168, doi:10.3390/axioms13030168 . . . . . . . . . . . . . . . . . 1

Dmytro Bushev and Inna Kal’chuk

On the Realization of Exact Upper Bounds of the Best Approximations on the Classes H1,1 by
Favard Sums
Reprinted from: Axioms 2023, 12, 763, doi:10.3390/axioms12080763 . . . . . . . . . . . . . . . . . 4
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Preface

This publication is devoted to current issues and methods of modern theory of functions of

real and complex variables, as well as their applied aspects. The main idea of this Special Issue

is to invite researchers specializing in this topic to present their scientific results, which will make a

significant contribution to the further development of function theory and demonstrate its importance

in the field of practical application. The publication includes 16 articles, which were selected from 30

manuscripts that were submitted to the Special Issue “Theory of Functions and Applications” of the

MDPI journal Axioms. The publication contains the results of current research by scientists from

around the world: Italy, Spain, France, Lithuania, China, Canada, Ukraine, Serbia, Croatia, Romania,

the Republic of Korea, Azerbaijan, Taiwan, Jordan, Egypt, Saudi Arabia, Iran, and Iraq. All the articles

issue are new and original and will be valuable and interesting to readers.

I would like to take this opportunity to thank everyone who contributed to the success of this

Special Issue, namely, the authors of the articles for their qualitative contributions, the reviewers for

their valuable comments aimed at improving the presented work, and the MDPI editorial staff. I

would especially like to thank the Section Managing Editor, Ms. Lizzy Zhou, for her continuous help,

patience, attention, and support during the work on this Special Issue.

Inna Kalchuk

Editor
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Editorial

Theory of Functions and Applications

Inna Kal’chuk

Faculty of Information Technologies and Mathematics, Lesya Ukrainka Volyn National University,
43025 Lutsk, Ukraine; k.inna.80@gmail.com

1. Introduction

In this editorial, we present “Theory of Functions and Applications”, a Special Issue
of Axioms. This Special Issue comprises 15 articles devoted to exploring current problems
in both the theory of functions and in real and complex variables, as well as the applied
applications of both. Though the featured articles are concerned with a variety of topics, is-
sues related to the following fields take particular precedence in this Special Issue: function
approximation, functional analysis, complex analysis, differential equations, numerical
methods, and mathematical modeling. The main aim of this Special Issue is to share
scholars’ theories and methods relating to function theory, their significant, topical, and
novel findings in this area, and applications and solutions for applied problems in related
scientific fields.

2. Overview of the Published Papers

In contribution 1, focusing on oscillations for delay differential equations, investigated
the asymptotic properties of solutions for the fourth-order delay differential equation with
a non-canonical operator. They studied novel properties that contribute to achieving more
effective terms in the oscillation of differential equations, established criteria that guarantee
the exclusion of decreasing solutions and that ensure the oscillation of the studied equation,
and also demonstrated the theoretical aspect of their work through the use of examples.

In contribution 2, extremal problems relating to the approximation theory were con-
sidered; for instance, the approximative properties of Favard sums on the Hölder classes of
functions of one and two variables were studied. In this paper, it is proven that the value of
the approximation of the class H1,1 using the Favard method is greater than the value of the
best approximation of this class using trigonometric polynomials. Moreover, the authors
constructed classes for which these approximative characteristics are equal.

The problems considered in contribution 3 concern shifts in the wide class S̃ of L
functions and the approximations of analytical functions relating to these. Using the
continuous universality theorem, the authors proved that each set of the analytic non-
vanishing functions in a strip can be approximated simultaneously by discrete shifts,
which are defined by the Dirichlet series from the Selberg–Steuding class and the linearly
independent multiset over the field of rational numbers. The probabilistic approach based
on the weak convergence of probability measures in the space of analytic functions was
also used in their research.

The contribution 4 focuses on nonparametric prediction in Hilbertian statistics; specifi-
cally, the authors discuss the Hilbert RE-regression for weak functional time series data.
In addition to conducting an empirical study investigating the behavior of RE-regression
estimation, they also obtained a new kernel estimation for RE-regression that improved the
robustness of the classical regression in its minimizing of the effect of the largest variables.

In contribution 5, the authors studied the boundedness and compactness of the sum
operator, as defined by the complex products of composition, multiplication, and the m-
th-iterated radial derivative operators of Bloch-type spaces to weighted-type spaces on

Axioms 2024, 13, 168. https://doi.org/10.3390/axioms13030168 https://www.mdpi.com/journal/axioms1
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the unit ball. They also characterized the boundedness and compactness of all products of
composition, multiplication, and m-th-iterated radial derivative operators.

In contribution 6 studied matrix representations of Sturm–Liouville problems with
boundary- and interface-contained eigenparameters. In particular, they constructed a class
of Sturm–Liouville problems based on a given matrix eigenvalue problem relating to a
certain type and condition, depending on the eigenparameter. The authors proved that
each Sturm–Liouville problem is equivalent to the original matrix’s eigenvalue problem,
using the method of characteristic-function factorization.

In contribution 7, the authors investigated two classes of normalized holomorphic and
bi-univalent functions, which include bi-prestarlike functions. They found upper bounds
for the first two coefficients |a2| and |a3| of the Taylor–Maclaurin series for the functions
of each of these classes, and their findings can be used in the geometric theory of functions.

The authors of contribution 8 devoted their study to the class of twice-continuously dif-
ferentiable functions (including the class of convex functions), and its characteristics, satisfy-
ing second-order differential inequalities; they and obtained new Hermite–Hadamard-type
inequalities for the indicated functions.

The work in contribution 9 focuses on the issue of extending continuous functions,
defined by subsets of metric spaces, to the entire space, so that the extended function
preserves the basic properties of the original function. The authors proposed a new method
that optimizes the integral p-mean instead of its maximum value. They also considered
the more general theoretical approach based on measure-valued representations of metric
spaces and the duality formula. In addition to this, they also discovered some explicit
formulas relating to specific extensions that satisfy Lipschitz-type inequalities.

In contribution 10, the author compared two symmetries of different origins on the
set of average functions and found the asymptotic series expansion for both of them in
terms of a recursive algorithm for their coefficients, enabling them to perform a coefficient
comparison. As a result, the author obtained the class of the means, which allowed for
interpolating between those harmonic, geometric, and arithmetic.

In contribution 11 the author proved that some results of q-analyses and the partition
theory can be obtained as specializations of fundamental relations between complete and
elementary symmetric functions; specifically, he showed that Rothe’s q-binomial theorem
is a specialization of the generating function of elementary symmetric functions. He
also obtained the Uchimura identity, which provides connections between partitions and
divisors. All results are accompanied by combinatorial interpretations involving well-
known functions in the partition theory.

In contribution 12, the authors found new expressions for the high-order derivatives of
different symmetric and non-symmetric polynomials in terms of Euler polynomials, as well
as obtaining connection formulas between different polynomials and Euler polynomials.
They also proved some new definite integral formulas of the products of different symmetric
and non-symmetric polynomials with the Euler polynomials.

Contribution 13 is devoted to the study of the fractional analogue of the Brusselator
model. The authors proposed an effective hybrid method, which is based on a combination
of the quasi-linearization approach and the matrix-collocation method for the approximate
processing of fractional Brusselator equations; these methods were used to model the
problem of an autocatalytic chemical reaction. The authors analyzed the convergence and
error of this method and also presented some numerical models to test its accuracy.

In contribution 14, the authors proved new theorems that simplify the calculation
of improper integrals. Their results allow us to establish many examples of improper
integral formulas and solve them directly, without complex calculations or the use of com-
puter software. They presented some applications related to finding Green’s function, one-
dimensional vibrating-string problems, wave motion in elastic solids, and computing Fourier.

In contribution 15, the authors studied the hypothesis of Kurepa’s function distribution
and performed the analysis using PARI/GP software (version 2.13.4).

2



Axioms 2024, 13, 168

Conflicts of Interest: The author declares no conflicts of interest.

List of Contributions:

1. Nabih, A.; Cesarano, C.; Moaaz, O.; Anis, M.; Elabbasy, E.M. Non-Canonical Functional
Differential Equation of Fourth-Order: New Monotonic Properties and Their Applications in
Oscillation Theory. Axioms 2022, 11, 636.

2. Bushev, D.; Kal’chuk, I. On the Realization of Exact Upper Bounds of the Best Approximations
on the Classes H1,1 by Favard Sums. Axioms 2023, 12, 763.
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Article

On the Realization of Exact Upper Bounds of the Best
Approximations on the Classes H1,1 by Favard Sums

Dmytro Bushev and Inna Kal’chuk *

Faculty of Information Technologies and Mathematics, Lesya Ukrainka Volyn National University,
43025 Lutsk, Ukraine; bushev-d@ukr.net
* Correspondence: k.inna.80@gmail.com

Abstract: In this paper, we find the sets of all extremal functions for approximations of the Hölder
classes of H1 2π-periodic functions of one variable by the Favard sums, which coincide with the
set of all extremal functions realizing the exact upper bounds of the best approximations of this
class by trigonometric polynomials. In addition, we obtain the sets of all of extremal functions for
approximations of the class H1 by linear methods of summation of Fourier series. Furthermore, we
receive the set of all extremal functions for the class H1 in the Korneichuk–Stechkin lemma and its
analogue, the Stepanets lemma, for the Hölder class H1,1 functions of two variables being 2π-periodic
in each variable.

Keywords: Favard sums; best approximation; exact upper bounds; extremal functions; uniform
metric

MSC: 41A52; 42A10

1. Introduction

The exact values of approximation characteristics are especially valued in the theory of
function approximation. Finding the exact values of approximation characteristics even for
functions and classes of functions of one variable is a rare phenomenon. The exact values
of approximation characteristics in the theory of approximation of functions and classes
of functions of many variables being 2π-periodic in each variable, except the result of the
work [1], are unknown.

In the theory of function approximation, as in other branches of mathematics, it
is difficult to formulate the problem and attract the attention of specialists to it. The
problem of finding the exact values of approximation characteristics for functions and
classes of functions of many variables remains relevant. The exact values of approximation
characteristics even for the simplest classes of functions of many variables have not been
found. Forty years ago, the famous Ukrainian mathematician Oleksandr Stepanets called
its solution the problem of the twenty-first century.

Let H1, H1,1 be the classes of functions f (x) and f (x, y) that are 2π-periodic in the
variable x and the variables x, y, for which the following conditions hold, respectively:∣∣ f (x)− f (x′)

∣∣ ≤ ∣∣x − x′∣∣, ∣∣ f (x, y)− f (x′, y′)
∣∣ ≤ ∣∣x − x′∣∣+ ∣∣y − y′∣∣. (1)

Let
En( f ) = inf

Tn−1
‖ f (x)− Tn−1(x)‖C

be the best approximation of the function f (x) by the trigonometric polynomials Tn−1(x)
of the degree (n − 1), where C is the space of 2π-periodic continuous functions with the
uniform norm ‖ f ‖C = max

t
| f (t)|.

Axioms 2023, 12, 763. https://doi.org/10.3390/axioms12080763 https://www.mdpi.com/journal/axioms4
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Let
En,m( f ):= inf

Tn−1,m−1
‖ f (x, y)− Tn−1,m−1(x, y)‖C

be the best approximation of the function f (x, y) by the trigonometric polynomials
Tn−1,m−1(x, y) of the degree (n − 1) in the variable x and the degree (m − 1) in the variable
y in the uniform metric.

Let

Fn(u) =
1
2
+

n−1

∑
k=1

kπ

2n
cot

kπ

2n
cos ku

be the Favard kernel, and

Fn( f , x) =
1
π

∫ π

−π
f (t)Fn(t − x)dt,

Fn,m( f , x, y) =
1

π2

∫ π

−π

∫ π

−π
f (t, z)Fn(t − x)Fm(z − y)dtdz

be Favard sums of the degree (n − 1) and double rectangular Favard sums of the degree
(n − 1) in the variable x and the degree (m − 1) in the variable y, respectively.

Favard proved in 1936 that

En = sup
f∈H1

‖ f (x)− Fn( f , x)‖C =
π

2n
= En(H1):= sup

f∈H1
En( f ),

i.e., the Favard method implements the exact upper bound of the best approximations on
the class H1. In the work [1], the exact value of approximations of classes H1,1 by Favard
sums was found, namely, for n, m ≥ 2

En,m:= sup
f∈H1,1

‖ f (x, y)− Fn,m( f , x, y)‖C

=
π

2n
+

π

2m
+

8
π2

∫ π
n

0
Φn(x)Φm(x)dx, (2)

where Φk(x) = ∑k−1
i=1 Φk

i (x) is the sum of permutations in descending order of the functions

Φk
i =
∣∣∣∫ x

iπ/k Fk(t)dt
∣∣∣ (for definition of the permutation, see, e.g., [2] (p. 130)).

2. Main Result

Theorem 1. For any natural numbers n and m, n, m ≥ 2, it is asserted that

En,m > En,m

(
H1,1
)

:= sup
f∈H1,1

En,m( f ).

Theorem 1 was formulated without proof in [3]. We should note that the exact value
of En,m

(
H1,1), as well as the best linear approximation method reflecting the class H1,1 into

the space of all trigonometric polynomials Tn−1,m−1(x, y) of the degree at most (n − 1) in
the variable x and (m − 1) in the variable y are unknown. However, it was found that
En,m
(

H1,1) ≥ π
2n + π

2m . According to the result of J. Mairhuber [4], the polynomial of the
best approximation Tn−1, m−1(x, y) for the function f (x, y) is not unique, which makes it
difficult to find this polynomial.

Let us denote by W1
[a,b] and W1,1

p the classes of functions f (x) and f (x, y) defined on the
segment [a, b] and the rectangle P = [a, b]× [a1, b1] satisfying conditions (1). The summable
function ψ(x) ∈ ∨c

a,b if almost everywhere on (a, c) (a < c < b) ψ(x) > 0 (ψ(x) < 0),

almost everywhere on (c, b) ψ(x) < 0 (ψ(x) > 0) and
∫ b

a ψ(t)dt = 0.

5
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Let ψ(x) ∈ ∨c
a,b, ϕ(y) ∈ ∨c1

a1,b1
and t = ρ(x), z = δ(y) be the functions defined by the

equalities ∫ x

a
ψ(t)dt =

∫ ρ(x)

a
ψ(t)dt, x ∈ [a, c], ρ(x) ∈ [c, b],

∫ y

a1

ϕ(z)dz =
∫ δ(y)

a1

ϕ(z)dz, y ∈ [a1, c1], δ(y) ∈ [c1, b1],

and ρ−1(x) and δ−1(x) be the inverse functions to ρ(x) and δ(x).
M.P. Korneichuk [2] (pp. 190–198) for the class W1

[a,b] and O.I. Stepanets [5] (p. 52) for

the class W1,1
p proved the following statements.

Lemma K [2]. The following equalities hold

sup
f∈W1

[a,b]

∣∣∣∣∫ b

a
f (x)ψ(x)dx

∣∣∣∣ =∫ c

a
|ψ(t)|(ρ(t)− t)dt =

∫ b

c
|ψ(t)|(t − ρ−1(t))dt

=

∣∣∣∣∫ b

a
f ∗(x)ψ(x)dx

∣∣∣∣. (3)

In this case, the upper bound in (3) is implemented by functions from the class W1
[a,b] of the form

f ∗(x) = K ± x, where K is arbitrary constant.
Lemma S [5]. The following equalities hold

sup
f∈W1,1

p

∣∣∣∣∫ b

a

∫ b1

a1

f (x, y)ψ(x)ϕ(y)dxdy
∣∣∣∣

= 2
∫ c

a

∫ c1

a1

|ψ(t)ϕ(z)| min{ρ(t)− t, δ(z)− z}dt dz =

∣∣∣∣∫ b

a

∫ b1

a1

f ∗(x, y)ψ(x)ϕ(y)dx dy
∣∣∣∣, (4)

and the exact upper bound in (4) is realized by the function f ∗(x, y) specified in this lemma (see [5]
(pp. 52–54)).

Let us denote by γ∗
nm(x, y), f ∗(x), f ∗(x, y) the arbitrary extremal functions from the

classes H1,1, W1
[a,b], W1,1

P implementing exact upper bounds in (2)–(4), respectively, i.e.,
such that

En,m = ‖γ∗
nm(x, y)− Fn,m(γ

∗
nm, x, y)‖C,

sup
f∈W1

[a,b]

∣∣∣∣∫ b

a
f (x)ψ(x)dx

∣∣∣∣ = ∣∣∣∣∫ b

a
f ∗(x)ψ(x)dx

∣∣∣∣,
sup

f∈W1,1
p

∣∣∣∣∫ b

a

∫ b1

a1

f (x, y)ψ(x)ϕ(y)dxdy
∣∣∣∣ = ∫ b

a

∫ b1

a1

f ∗(x, y)ψ(x)ϕ(y)dxdy.

Let us prove that all extremal functions γ∗
nm(x, y) realizing the exact upper bound

in (2) have the same oscillations equal to π/n + π/m. To do this, we have to establish
that if two arbitrary extremal functions realizing the exact upper bound in (4) coincide on
one of the larger sides of P, then they coincide on the entire rectangle and have the same
oscillations. The proof of the last statement is based on the description of the set of all
extremal functions that realize the exact upper bound in (3).

Lemma 1. The set of all extremal functions f ∗(x) realizing the exact upper bound in (3) is the set
of functions of the form f ∗(x) = K ± x, where K is an arbitrary constant.

6
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Proof. If for the arbitrary extremal function almost everywhere on [a, b] f ∗′(x) = ±1,
then due to the absolute continuity of all functions of the class W1

[a,b] (see [5] (pp. 15–16)),
f ∗(x) = ±x + K.

Let us prove that almost everywhere on [a, b] f ∗′(x) = ±1. To do this, we have to
establish that any extremal function f ∗(x) satisfies the equalities

f ∗(x)− f ∗(ρ(x)) = ρ(x)− x, (5)

or
f ∗(x)− f ∗(ρ(x)) = −(ρ(x)− x) (6)

for x ∈ [a, c] and almost everywhere on [a, c]

f ∗′(x) = f ∗′(ρ(x)). (7)

Since f ∗(x) is absolutely continuous on [a, b], and therefore, differentiable almost
everywhere on [a, b] (see [6] (p. 229)), ρ(x) is absolutely continuous on [a, c] (see [5] (p. 19))
and c ≤ ρ(x) ≤ b, then f ∗(ρ(x)) is differentiable almost everywhere on [a, c]. From (5)
and (6) we then get that almost everywhere on [a, c]

f ∗ ′(x)− f ∗ ′(ρ(x))ρ′(x) = ρ′(x)− 1, (8)

or
f ∗′(x)− f ∗′(ρ(x))ρ′(x) = −ρ′(x) + 1. (9)

Using (7)–(9), we have almost everywhere on [a, c] f ∗′(x) = −1 or f ∗′(x) = 1. Let
us prove that f ∗(x) satisfies equalities (5) and (6). If f ∗(x) is an extremal function, then,
performing transformations such as in the proof of Theorem 3.1 (see [5] (p. 20)), we obtain∣∣∣∣∫ b

a
f ∗(x)ψ(x)dx

∣∣∣∣ = ∣∣∣∣∫ c

a
( f ∗(t)− f ∗(ρ(t)))ψ(t)dt

∣∣∣∣
=
∫ c

a
(ρ(t)− t)|ψ(t)|dt. (10)

Without loss of generality, we may assume that ψ(x) > 0 almost everywhere on [a, c].
It then follows from (10) that∫ c

a
ψ(t)((ρ(t)− t) + f ∗(t)− f ∗(ρ(t)))dt = 0

or ∫ c

a
ψ(t)((ρ(t)− t)− ( f ∗(t)− f ∗(ρ(t))))dt = 0. (11)

Since c ≤ ρ(t) ≤ b and f ∗ ∈ W1
[a,b] for t ∈ [a, c], then ρ(t)− t ≥ | f ∗(t)− f ∗(ρ(t))|,

whence ρ(t)− t ± ( f ∗(t)− f ∗(ρ(t))) ≥ 0 for t ∈ [a, c]. From (11), due to the non-negativity
and summability of functions ψ(t)((ρ(t) − t) ± ( f ∗(t)− f ∗(ρ(t))) (see [6] (Theorem 6,
p. 131)), it follows that equalities (5) and (6) are valid almost everywhere on [a, c]. Since
these functions are continuous, equalities (5) and (6) are valid for x ∈ [a, c].

Let us prove that f ∗(x) satisfies the relation (7). Since f ∗ ∈ W1
[a,b], then for x, x +

Δx, ρ(x), (ρ(x) + Δx) ∈ [a, b], using (5) and (6), we have

| f ∗(x + Δ)− f ∗(ρ(x) + Δx)| ≤ ρ(x)− x = | f ∗(x)− f ∗(ρ(x))|. (12)

As a result of the continuity of f ∗(x), for Δx → 0 the sign of ( f ∗(x) − f ∗(ρ(x)))
coincides with the sign of ( f ∗(x + Δx)− f ∗(ρ(x) + Δx)). Therefore, from (12) it follows

f ∗(x + Δx)− f ∗(x) ≤ f ∗(ρ(x) + Δx)− f ∗(ρ(x)), (13)

7
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or
f ∗(x + Δx)− f ∗(x) ≥ f ∗(ρ(x) + Δx)− f ∗(ρ(x)). (14)

Using (13) and (14) we have

f ∗′(x + 0) ≤ f ∗′(ρ(x) + 0) and f ∗′(x − 0) ≥ f ∗′(ρ(x)− 0),

or
f ∗′(x + 0) ≥ f ∗′(ρ(x) + 0) and f ∗′(x − 0) ≤ f ∗′(ρ(x)− 0).

Therefore, due to the differentiability of the function f ∗(x), we obtain that f ∗′(x) =
f ∗′(ρ(x)) almost everywhere on [a, c]. In a similar way, we prove that f ∗′(x) = ±1 almost
everywhere on [c, b]. Lemma 1 has been proved.

Corollary 1. Let ϕ(y) be the function that is summable and sign-preserving almost everywhere on
[a1, b1]. Then

sup
f∈W1,1

p

∣∣∣∣∫ b

a

∫ b1

a1

ψ(x)ϕ(y) f (x, y)dxdy
∣∣∣∣

=

∣∣∣∣∫ b1

a1

ϕ(y)
∫ c

a
ψ(t)(ρ(t)− t)dtdy

∣∣∣∣, (15)

where ψ(x), ρ(x) are the same functions as in Lemma K. Moreover, the set of all extremal functions
f ∗(x, y) ∈ W1,1

p realizing the exact upper bound in (15) has the set of functions of the form

f ∗(x, y) = ±x + g(y),

where g(y) is the arbitrary function from the class W1
[a1,b1]

.

Proof. The relation (15) was proved in [5] (Lemma 5.1, p. 54). Just as it was done in the
proof of Lemma 5.1, using Lemma 1 and the fact that

∫ b
a ψ(x)g(y)dx = 0 for the arbitrary

function g(y), we get that
f ∗(x, y) = ±x + g(y),

where g(y) ∈ W1
[a1,b1]

. The corollary has been proved.

Let
E∗ =

{
f ∗n (x) ∈ H1 : sup

f∈H1
‖ f (x)− Fn( f , x)‖C =

π

2n

= ‖ f ∗n (x)− Fn( f ∗n , x)‖C

}
be the set of all extremal functions for the Favard method on the class H1. The following
statement is then true.

Theorem 2. The set E∗ is the set of functions of the form

f ∗n (x) = ±ϕn(x − x0) + C,

where ϕn(t) is the 2π/n-periodic even function, ϕn(t) = t for t ∈ [0, π/n], x0 and C are arbitrary
constants.

Proof. We can prove that

sup
f∈H1

‖ f (x)− Fn( f , x)‖C =
2
π

sup
f∈H

∣∣∣∣∫ π

0
f (t)Fn(t)dt

∣∣∣∣,

8
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where H is the subset of even functions f (x) from the class H1 such that

‖ f (x)− Fn( f , x)‖C = | f (0)− Fn( f , 0)| = |Fn( f , 0)|.

Moreover, the arbitrary extremal function f ∗n (x) can be obtained from the arbitrary
extremal function

ϕn(t) ∈ H :
2
π

sup
f∈H

∣∣∣∣∫ π

0
f (t)Fn(t)dt

∣∣∣∣ = 2
π

∣∣∣∣∫ π

0
ϕn(t)Fn(t)dt

∣∣∣∣
by shifting its graph parallel to the OX- and OY-axes, i.e.,

f ∗n (x) = ϕn(x − x0) + C.

Let us prove that the extremal function ϕn(t) ∈ H is unique up to a sign. It is clear that

sup
f∈H

2
π

∣∣∣∣∫ π

0
f (t)Fn(t)dt

∣∣∣∣
≤ 2

π

(
sup
f∈H

∣∣∣∣∫ π/n

0
f (t)Fn(t)dt

∣∣∣∣+ n−1

∑
k=1

sup
f∈H

∣∣∣∣∫ (k+1)π/n

kπ/n
f (t)Fn(t)dt

∣∣∣∣
)

. (16)

Since Fn(t) > 0 on [0, π
n ] and f (t) ∈ H, then

sup
f∈H

∣∣∣∣∫ π/n

0
f (t)Fn(t)dt

∣∣∣∣ = ∫ π/n

0
tFn(t)dt. (17)

Since (see [7])
∫ (k+1)π/n

kπ/n Fn(t)dt = 0 then applying Lemma K for each segment
[kπ/n, (k + 1)π/n] we get

sup
f∈H

∣∣∣∣∫ (k+1)π/n

kπ/n
f (t)Fn(t)dt

∣∣∣∣ = ∫ (k+1)π/n

kπ/n
((−1)kt + Ck)Fn(t)dt. (18)

From (16)–(18), due to the continuity of the extremal function ϕn(t), it follows that
ϕn(t) is 2π/n-periodic even function, ϕn(t) = t for t ∈ [0, π/n] and

sup
f∈H

2
π

∣∣∣∣∫ π

0
f (t)Fn(t)dt

∣∣∣∣ = 2
π

∫ π

0
ϕn(t)Fn(t)dt. (19)

We assume that there is another extremal function ϕn(t) ∈ H. Then

0 =
2
π

∫ π

0
ϕn(t)Fn(t)dt − 2

π

∫ π

0
ϕn(t)Fn(t)dt

=
2
π

(∫ π/n

0
ϕn(t)Fn(t)dt −

∫ π/n

0
ϕn(t)Fn(t)dt

)
(20)

+
n−1

∑
k=1

(∫ (k+1)π/n

kπ/n
ϕn(t)Fn(t)dt −

∫ (k+1)π/n

kπ/n
ϕn(t)Fn(t)dt

)
.

From (16)–(19) it follows∫ π/n

0
ϕn(t)Fn(t)dt −

∫ π/n

0
ϕn(t)Fn(t)dt ≥ 0, (21)

∫ (k+1)π/n

kπ/n
ϕn(t)Fn(t)dt −

∫ (k+1)π/n

kπ/n
ϕn(t)Fn(t)dt ≥ 0, k = 1, n − 1. (22)

9
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In the inequality (21), the equal sign is possible only if ϕn(t) = ϕn(t) = t for
t ∈ [0, π/n].

Since ϕn(t) is the extremal function of Lemma K on each segment [kπ/n, (k + 1)π/n],
then by Lemma 1 the equal sign in (22) is possible only if ϕn(t) = ϕn(t) + Ck for
t ∈ [kπ/n, (k + 1)π/n]. In order to justify the equal sign present in (20), it must take
place in (21) and (22). Therefore, due to the continuity of functions ϕn(t) and ϕn(t), the
equality ϕn(t) = ϕn(t) holds on [0, π/n] and [kπ/n, (k + 1)π/n]. As a result of the parity
and 2π-periodicity of these functions, the equality ϕn(t) = ϕn(t) holds on the entire real
axis.

Therefore, ϕn(t) is the unique extremal function from the class H up to a sign. The
theorem has been proved.

In a similar way, we can describe the set of all extremal functions for the arbitrary
linear approximation method

Un(Λ, f , x) =
1
π

∫ π

−π
f (t)Un(λ, t − x)dt,

where Un(λ, t) = 1
2 +∑n−1

k=1 λ
(n)
k cos kt is the kernel of the method (approximation properties

of linear methods studied, for example, in [8–11]). Since any trigonometric polynomial
of the order (n − 1) has at most 2n − 2 roots on [−π, π) (see, e.g., [12] (p. 214)), then the
function Φ(x) =

∫ π
x Un(λ, t)dt can have at most n roots on [0, π]. Let Φ(x) =

∫ π
x Un(λ, t)dt

have exactly m roots xk (k = 1, m) on [0, π], 0 ≤ m ≤ n, and the function f ∗un(x) ∈ H1 is
such that

sup
f∈H1

‖ f (x)− Un(Λ, f , x)‖C =
∥∥ f ∗un(x)− Un(Λ, f ∗un , x)

∥∥
C,

i.e., it is the arbitrary extremal function for the Un(Λ, f , x) on the class H1. Then, analo-
gously to the proof of Theorem 2, we can prove the following statement.

Theorem 3. The set of all extremal functions f ∗un(x) for the method Un(Λ, f , x) on the class H1 is
the set of functions of the form

f ∗un(x) = ±ϕun(x − x0) + K,

where x0 and K are arbitrary constants and ϕun(t) is the even 2π-periodic continuous function
such that ϕ′

un(t) = 1 for t ∈ [0, x1] and ϕ′
un(t) = (−1)k for t ∈ (xk, xk+1), i.e.,

ϕun(t) =
{

t, t ∈ [0, x1],
(−1)kt + 2 ∑k

i=1(−1)i+1xi, t ∈ (xk, xk+1),

k = 1, m, 0 ≤ m ≤ n.

Let Ê =
{

f̂n(x) ∈ H1 : En(H1)C = π
2n = En( f̂n)C

}
be the set of all extremal functions

realizing the exact upper bound of the best approximations on the class H1.

Theorem 4. The set Ê = E∗ and for each function from these sets the best approximation
polynomials are constants.

Proof. According to Theorem 2 and the Chebyshev criterion (see, e.g., [2] (p. 46)), for any
function f ∗n (x) ∈ E∗ it follows that

En( f ∗n ) = En(±ϕn(x − x0) + C) = En(ϕn) = ‖ϕn‖C =
π

2n
= En(H1).

10
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These relations imply that for any function f ∗n (x) ∈ E∗ the polynomials of the best
approximation are constants and E∗ ⊆ Ê. For any function f̂n(x) ∈ Ê, it follows that

En( f̂n) =
π

2n
=
∥∥∥ f̂n(x)− T∗

n−1( f̂n, x)
∥∥∥

C

≤
∥∥∥ f̂n(x)− Fn( f̂n, x)

∥∥∥
C
≤ sup

f∈H1
‖ f (x)− Fn( f , x)‖C =

π

2n
,

where T∗
n−1( f̂n, x) is the best approximation polynomial of the degree (n− 1) of the function

f̂n(x). This means that
∥∥∥ f̂n(x)− Fn( f̂n, x)

∥∥∥
C
= π

2n , i.e., f̂n(x) ∈ E∗. So E∗ ⊇ Ê. Taking into

account that E∗ ⊆ Ê, the theorem has been proved.

Corollary 2. If n − 1 > 0 and T∗
n−1( f , x) is the polynomial of the best approximation of the

function f (x) ∈ H1 then En( f )C < π/2n.

Proof. For each function f (x) ∈ H1 the inequality En( f )C ≤ π/2n is true. If En( f ) = π/2n,
then using Theorem 4 we get deg T∗

n−1( f , x) = 0 that contradicts the condition of the
Corollary 2. The corollary has been proved.

Corollary 3. If the approximation method is different from the Favard method, i.e., Un(Λ, f , x) �=
Fn( f , x), then

sup
f∈H1

‖ f (x)− Un(Λ, f , x)‖C > sup
f∈H1

‖ f (x)− Fn( f , x)‖C =
π

2n.
(23)

Moreover, the set of all extremal functions f ∗un(x) for the method Un(Λ, f , x) on the class H1 does
not intersect with the set of extremal functions f ∗n (x) for the Favard method on this class.

Proof. If f (x) ∈ H1, then

f (x)− Un(Λ, f , x) =
1
π

∫ π

−π

(
D1(t)−

n−1

∑
k=1

λ
(n)
k
k

sin kt

)
f ′(x − t)dt,

where D1(u) = ∑∞
k=1

sin ku
k is the 2π-periodic Bernoulli function (see, e.g., [2] (pp. 109–111)).

Since the function f (x) belongs to the class H1 and the Bernoulli kernel D1(u) has a unique
polynomial of the best approximation in the metric L (see, for example, [2] (p. 59–69)), we
prove that the Favard method presents the unique best approximation method on the class
H1. Therefore, the relations (23) hold.

Let the extremal function f ∗un(x) for the method Un(Λ, f , x) belong to the set E∗. So,
according to Theorem 2 we have

f ∗un(x) = ±ϕn(x − x0) + C

and as a result of the 2π/n-periodicity of the function ϕn(t) (see, e.g., [2] (p. 61)) we get

Un(Λ, f ∗un , x) =
1
π

∫ π

−π

1
2
(ϕn(t) + C)dt =

π

2n
+ C.

Then ∥∥ f ∗un(x)− Un(Λ, f ∗un , x)
∥∥

C =
π

2n
that contradicts the fact proved above. The corollary has been proved.

11
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Lemma 2. Let f ∗(x, y) ∈ W1,1
p be an arbitrary extremal function of Lemma S, K f ∗ be the oscillation

of the function f ∗(x, y) on P, b − a ≤ b1 − a1 and y0 ∈ [a1, c1] such that δ(y0)− y0 = b − a.
Then

b − a ≤ K f ∗ = max{ max
a1≤y≤y0

f ∗(a, y), max
δ(y0)≤y≤b1

f ∗(b, y)}

− min{ min
δ(y0)≤y≤b1

f ∗(a, y), min
a1≤y≤y0

f ∗(b, y)} ≤ b1 − a1.

Moreover, if two arbitrary extremal functions coincide on one of the larger sides of the rectangle
P, then they coincide over the entire rectangle.

Proof. Without loss of generality, we may assume that ψ(x) > 0 almost everywhere on
[a, c] and ψ(x) < 0, almost everywhere on [c, b], ϕ(y) > 0 almost everywhere on [a1, c1]
and ϕ(y) < 0 almost everywhere on [c1, b1]. Let us break P into sets Ei (i = 1, 8):

E1 = {(x, y) ∈ [a, c]× [a1, c1] : ρ(x)− x ≤ δ(y)− y},

E2 = {(x, y) ∈ [c, b]× [a1, c1] : x − ρ−1(x) ≤ δ(y)− y},

E3 = {(x, y) ∈ [c, b]× [a1, c1] : δ(y)− y ≤ x − ρ−1(x)},

E4 = {(x, y) ∈ [c, b]× [c1, b1] : y − δ−1(y) ≤ x − ρ−1(x)},

E5 = {(x, y) ∈ [c, b]× [c1, b1] : x − ρ−1(x) ≤ y − δ−1(y)},

E6 = {(x, y) ∈ [a, c]× [c1, b1] : ρ(x)− x ≤ y − δ−1(y)},

E7 = {(x, y) ∈ [a, c]× [c1, b1] : y − δ−1(y) ≤ ρ(x)− x},

E8 = {(x, y) ∈ [a, c]× [a1, c1] : δ(y)− y ≤ ρ(x)− x}.

Let us prove that the arbitrary extremal function f ∗(x, y) satisfies the relations:

f ∗(x, y) = −x + K1(y), (x, y) ∈ E1 ∪ E2, (24)

f ∗(x, y) = x + K2(y), (x, y) ∈ E6 ∪ E5, (25)

f ∗(x, y) = −y + v1(x), (x, y) ∈ E8 ∪ E7, (26)

f ∗(x, y) = y + v2(x), (x, y) ∈ E3 ∪ E4. (27)

Here, K1(y) ∈ W1
[a1,c1]

if (x, y) ∈ E1 ∪ E2 for each fixed x, K2(y) ∈ W1
[c1,b1]

if (x, y) ∈
E6 ∪ E5 for each fixed x, v1(x) ∈ W1

[a,c] if (x, y) ∈ E8 ∪ E7 for each fixed y and v2(x) ∈ W1
[c,b]

if (x, y) ∈ E3 ∪ E4 for each fixed y. Applying the same transformations as in the proof
of Lemma S and Lemma 1, we establish that the arbitrary extremal function f ∗(x, y) on
[a, c]× [a1, c1] satisfies the equality

f ∗(x, y)− f ∗(ρ(x), y)− f ∗(x, δ(y)) + f ∗(ρ(x), δ(y))

= 2 min{ρ(x)− x, δ(y)− y}.

This equality is equivalent to equalities:

f ∗(x, y)− f ∗(ρ(x), y) = ρ(x)− x, (x, y) ∈ E1, (28)

f ∗(x, δ(y))− f ∗(ρ(x), δ(y)) = −(ρ(x)− x), (x, y) ∈ E1, (29)

12
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f ∗(x, y)− f ∗(x, δ(y)) = δ(y)− y, (x, y) ∈ E8, (30)

f ∗(ρ(x), y)− f ∗(ρ(x), δ(y)) = −(δ(y)− y), (x, y) ∈ E8. (31)

Substituting x = ρ−1(t) and t = x in (28), we get f ∗(x, y)− f ∗(ρ−1(x), y) = ρ−1(x)−
x, if (x, y) ∈ E2 because E1 maps to E2 after the replacement. Therefore, on E1 ∪ E2 the
extremal function f ∗(x, y) for each fixed y(a1 ≤ y ≤ c1) satisfies the equalities f ∗(x, y)−
f ∗(ρ(x), y) = ρ(x)− x if (x, y) ∈ E1, f ∗(x, y)− f ∗(ρ−1(x), y) = ρ−1(x)− x if (x, y) ∈ E2.

Thinking in the same way as in the proof of Lemma 1 and Corollary 1, we conclude
that the arbitrary extremal function f ∗(x, y) on E1 ∪ E2 satisfies relation (24). Similarly,
using (29)–(31), we prove that equalities (25)–(27) hold, respectively. Taking into account
the definiteness of the extremal function on each of the sets Ei and its continuity, we write
it on the sides of the rectangle:

f ∗(a, y) =

⎧⎨⎩
−y + v1(a), y0 ≤ y ≤ δ(y0),
u1(y), a1 ≤ y ≤ y0,
u2(y), δ(y0) ≤ y ≤ b1,

f ∗(b, y) =

⎧⎨⎩
y + v2(b), y0 ≤ y ≤ δ(y0),
u1(y)− (b − a), a1 ≤ y ≤ y0,
u2(y) + (b − a), δ(y0) ≤ y ≤ b1,

(32)

where
u1(y) = −a + K1(y), u2(y) = a + K2(y),

u1(y0) = −y0 + v1(a), u2(δ(y0)) = −δ(y0) + v1(a),

f ∗(x, a1) = −x + K1(a1), f ∗(x, b1) = x + K2(b1).

Let us prove that

K f ∗ = max
a1≤y≤b1

{ f ∗(a, y), f ∗(b, y)} − mina1≤y≤b1{ f ∗(a, y), f ∗(b, y)}.

We have to prove that

∀(α, β) ∈ P min
a1≤y≤b1

{ f ∗(a, y), f ∗(b, y)} ≤ f ∗(α, β)

≤ max
a1≤y≤b1

{ f ∗(a, y), f ∗(b, y)}. (33)

Let y0 ≤ β ≤ δ(y0). Let us prove that

f ∗(b, y0) = f ∗(a, δ(y0)) ≤ f ∗(x, β) ≤ f ∗(a, y0) = f ∗(b, δ(y0))

for x ∈ [a, b].
Since f ∗(a, y0) = u1(y0) = −y0 + v1(a) and f ∗(b, δ(y0)) = u2(δ(y0)) + (b − a) =

−δ(y0) + v1(a) + (b − a) then, taking into account that b − a = δ(y0)− y0, we get

f ∗(a, y0) = f ∗(b, δ(y0)). (34)

Similarly, we can prove that

f ∗(b, y0) = f ∗(a, δ(y0)). (35)

If x − a ≤ β − y0, then f ∗(x, β) ≤ f ∗(a, y0). Indeed,

f ∗(a, y0)− f ∗(x, β) = f ∗(a, y0)− f ∗(a, β) + f ∗(a, β))− f ∗(x, β).

13
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Taking into account relation (32) for the function f ∗(a, y), we get

f ∗(a, y0)− f ∗(a, β) = β − y0.

Since the function f ∗(x, β) belongs to the class W1
[a,b], we then get

f ∗(a, β)− f ∗(x, β) ≥ −(x − a),

hence
f ∗(x, β) ≤ f ∗(a, y0). (36)

If x − a ≥ β − y0 then, taking into account definition (32) of the extremal function
f ∗(b, y) and the fact that f ∗(x, β) belongs to the class W1

[a,b], we get

f ∗(b, δ(y0))− f ∗(x, β)

= f ∗(b, δ(y0))− f ∗(b, β) + f ∗(b, β)− f ∗(x, β)

= δ(y0)− β + f ∗(b, β)− f ∗(x, β)

= δ(y0)− y0 − (β − y0) + f ∗(b, β)− f ∗(x, β)

≥ b − a − (β − y0)− (b − x) = (x − a)− (β − y0) ≥ 0. (37)

From relations (34), (36) and (37), it follows that

f ∗(x, β) ≤ f ∗(a, y0) = f ∗(b, δ(y0)). (38)

If x − a ≤ δ(y0)− β then similarly we prove that

f ∗(x, β) ≥ f ∗(a, δ(y0)) = f ∗(b, y0). (39)

If x − a ≥ δ(y0)− β then we prove that

f ∗(x, β) ≥ f ∗(b, y0) = f ∗(a, δ(y0)). (40)

Let a1 ≤ β ≤ y0. Then, according to the definitions of the function δ(y) and the sets
E1, E2, we get δ(β)− β ≥ δ(y0)− y0 = b − a, (x, β) ∈ E1 ∪ E2 and f ∗(x, β) = −x + K1(β).
According to (32) K1(β) = u1(β) + a. This is why

f ∗(x, β) = (−x + a) + u1(β) ≤ u1(β) = f ∗(a, β) ≤ max
a1≤y≤y0

f ∗(a, y)

≤ max
a1≤y≤b1

f ∗(a, y) ≤ max
a1≤y≤b1

{ f ∗(a, y), f ∗(b, y)}. (41)

Similarly, we prove that

f ∗(x, β) ≥ min
a1≤y≤y0

{ f ∗(b, y)} ≥ min
a1≤y≤b1

{ f ∗(a, y), f ∗(b, y)}. (42)

Let δ(y0) ≤ β ≤ b1. So, (x, β) ∈ E6 ∪ E5 and f ∗(x, β) = x + K2(β). Therefore, we
prove that

min
a1≤y≤b1

{ f ∗(a, y), f ∗(b, y)} ≤ min
δ(y0)≤y≤b1

{ f ∗(a, y)} ≤ f ∗(x, β)

≤ max
δ(y0)≤y≤b1

{ f ∗(b, y)} ≤ max
a1≤y≤b1

{ f ∗(a, y), f ∗(b, y)}. (43)

14
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Relations (38)–(43) imply equality (33). Taking into account the definition (32) of
functions f ∗(a, y) and f ∗(b, y), from (33), we obtain

K f ∗ = max

{
max

a1≤y≤y0
f ∗(a, y), max

δ(y0)≤y≤b1

f ∗(b, y)

}

− min
{

min
δ(y0)≤y≤b1

f ∗(a, y), min
a1≤y≤y0

f ∗(b, y)
}

.

The points where the extreme values of the function f ∗(x, y) (extreme points) are
reached, lie on one of the larger sides of the rectangle or on both sides. If the extremal
points lie on one of the larger sides of the rectangle, then, given the definition of the extremal
function on the larger sides and the fact that functions f ∗(a, y) and f ∗(b, y) belong to the
class W1

[a1,b1]
, we conclude that

b − a ≤ K f ∗ ≤ b1 − a1. (44)

If the extreme points lie on both larger sides, then (32) implies that

K f ∗ = max
a1≤y≤y0

u1(y)− min
a1≤y≤y0

(u1(y)− (b − a)),

or
K f ∗ = max

δ(y0))≤y≤b1

(u2(y) + (b − a))− min
δ(y0)≤y≤b1

u2(y).

So,
b − a ≤ K f ∗ ≤ b − a + y0 − a1 < b1 − a1,

or
b − a ≤ K f ∗ ≤ b − a + b1 − δ(y0) < b1 − a1. (45)

From (44) and (45), it follows that b − a ≤ K f ∗ ≤ b1 − a1.
Let f ∗1 (x, y) and f ∗2 (x, y) be arbitrary extremal functions coinciding on one of the larger

sides of the rectangle P, i.e., f ∗1 (a, y) ≡ f ∗2 (a, y), or f ∗1 (b, y) ≡ f ∗2 (b, y). Then

f ∗1 (a, y) =

⎧⎨⎩
−y + v1

1(a), y0 ≤ y ≤ δ(y0),
u1

1(y), a1 ≤ y ≤ y0,
u1

2(y), δ(y0) ≤ y ≤ b1,

f ∗2 (a, y) =

⎧⎨⎩
−y + v1

2(a), y0 ≤ y ≤ δ(y0),
u2

1(y), a1 ≤ y ≤ y0,
u2

2(y), δ(y0) ≤ y ≤ b1,

where u1
1(y) = −a+K1

1(y), u1
2(y) = a+K1

2(y) and u2
1(y) = −a+K2

1(y), u2
2(y) = a+K2

2(y),
u1

1(y) = u2
1(y), u1

2(y) = u2
2(y).

Taking into account the definition of the extremal function f ∗(x, y) on E1 ∪ E2 and
on E6 ∪ E5 and the fact that f ∗1 (a, y) = f ∗2 (a, y), we get f ∗1 (x, y) = f ∗2 (x, y) on E1 ∪ E2
and E6 ∪ E5. On the set E8 ∪ E7 f ∗1 (x, y) = −y + v1

1(x), and f ∗2 (x, y) = −y + v2
1(x). Let

y = l1(x) be the line separating the sets E1 and E8, i.e., ρ(x) − x = δ(l1(x)) − l1(x) for
x ∈ [a, c]. Since f ∗(x, y) is continuous on y = l1(x), then, taking into account the definition
of the extremal function on E1 and E8, we get: −x + K1

1(l1(x)) = −l1(x) + v1
1(x) and

−x + K2
1(l1(x)) = −l1(x) + v2

1(x). Since K1
1(l1(x)) = K2

1(l1(x)), then v1
1(x) = v2

1(x) and
f ∗1 (x, y) = f ∗2 (x, y) by E8 ∪ E7. We prove, similarly, that f ∗1 (x, y) = f ∗2 (x, y) on E3 ∪ E4. So,
f ∗1 (x, y) = f ∗2 (x, y) on the entire rectangle P. The lemma has been proved.
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Lemma 3. The set of all extremal functions for the Favard method on the class H1,1 is the set of
functions given by relations

γ∗
nm(x, y) = ± f ∗nm(x − x0, y − y0) + K,

where f ∗nm(x, y) is the extremal function constructed in [1], x0, y0, K are arbitrary constants.

Proof. From [1] it follows that

f ∗nm(x, y)=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x + y, (x + y) ∈ [0, π
n ]× [0, π

m ],
x + ϕ(y), (x, y) ∈ [0, π

n ]× [0, π],
y + ψ(x), (x, y) ∈ [0, π]× [0, π

m ],
(−1)(k+1)(i+1)Fk,i(x, y) + Ck,i + r(y), (x, y) ∈
∈ [ kπ

n , (k+1)π
n ]× [ iπ

m , (i+1)π
m ], k = 1, n − 1, i = 1, m − 1.

Here ϕ(y) is the 2π/m-periodic even function, ϕ(y) = y for y ∈ [0, π/m], ψ(x) is the
even, 2π/n-periodic function, ψ(x) = x for x ∈ [0, π/n], and Fk,i(x, y) ∈ W1,1

Pk,i
such that

sup
f∈W1,1

Pk,i

∣∣∣∣∫ (k+1) π
n

k π
n

∫ (i+1) π
m

i π
m

f (x, y)Fn(x)Fm(y)dxdy
∣∣∣∣

=
∫ (k+1) π

n

k π
n

∫ (i+1) π
m

i π
m

(−1)(k+1)(i+1)Fk,i(x, y)Fn(x)Fm(y)dxdy,

i.e., Fk,i(x, y) are the extremal functions of Lemma S for the class W1,1
Pk,i

on the rectangles
Pk,i = [k π

n , (k + 1)π
n ]× [i π

m , (i + 1) π
m ], Ck,i are constants, which are chosen so that f ∗nm(x, y)

is continuous on [π
n , π]× [ π

m , π], r(y) = f ∗(π
n , y)− (F1,i(

π
n , y) + C1,i) is the function that

guarantees the continuity of f ∗nm(x, y) on the line x = π/n if n ≥ m. We can prove that

sup
f∈H1,1

‖ f (x, y)− Fnm( f , x, y)‖C

=
4

π2 sup
f∈H0

∣∣∣∣∫ π

0

∫ π

0
f (t, z)Fn(t)Fm(z)dtdz

∣∣∣∣,
where H0 is the subset of functions from the class H1,1 that are even in each of the variables,
such that

‖ f (x, y)− Fnm( f , x, y)‖C = | f (0, 0)− Fnm( f , 0, 0)| = |Fnm( f , 0, 0)|.

Moreover, if ϕ∗
nm(x, y) ∈ H0 is such that

4
π2 sup

f∈H0

∣∣∣∣∫ π

0

∫ π

0
f (x, y)Fn(x)Fm(y)dxdy

∣∣∣∣
=

4
π2

∫ π

0

∫ π

0
ϕ∗

nm(x, y)Fn(x)Fm(y)dxdy,

i.e., the arbitrary extremal function from the class H0, then

γ∗
nm(x, y) = ±ϕ∗

nm(x − x0, y − y0) + K.
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Let us prove that the extremal function ϕ∗
nm(x, y) ∈ H0 is unique and coincides with

f ∗nm(x, y) ∈ H0. We suppose that there exists another extremal function f
∗
nm(x, y) ∈ H0,

different from f ∗nm(x, y). Then

0 =
4

π2

(∫ π

0

∫ π

0
f ∗nm(t, z)Fn(t)Fm(z)dtdz

−
∫ π

0

∫ π

0
f
∗
nm(t, z)Fn(t)Fm(z)dtdz

)
=

4
π2

((∫ π
n

0

∫ π
m

0
f ∗nm(t, z)Fn(t)Fm(z)dtdz

−
∫ π

n

0

∫ π
m

0
f
∗
nm(t, z)Fn(t)Fm(z)dtdz

)

+

(
m−1

∑
i=1

(∫ π/n

0

∫ (i+1)π/m

iπ/n
f ∗nm(t, z)Fn(t)Fm(z)dtdz (46)

−
∫ π/n

0

∫ (i+1)π/m

iπ/n
f
∗
nm(t, z)Fn(t)Fm(z)dtdz

)

+
n−1

∑
k=1

(∫ (k+1)π/n

kπ/n

∫ π/m

0
f ∗nm(t, z)Fn(t)Fm(z)dtdz

−
∫ (k+1)π/n

kπ/n

∫ π/m

0
f
∗
nm(t, z)Fn(t)Fm(z)dtdz

)

+
n−1

∑
k=1

m−1

∑
i=1

(∫ (k+1)π/n

kπ/n

∫ (i+1)π/m

iπ/m
f ∗nm(t, z)Fn(t)Fm(z)dtdz

−
∫ (k+1)π/n

kπ/n

∫ (i+1)π/m

iπ/m
f
∗
nm(t, z)Fn(t)Fm(z)dtdz

)
.

Taking into account that f ∗nm(x, y) belongs to the class H0 and its construction, similarly
as it was done in Theorem 2, we get:

∫ π/n

0

∫ π/m

0
f ∗nm(t, z)Fn(t)Fm(z)dtdz

−
∫ π/n

0

∫ π/m

0
f
∗
nm(t, z)Fn(t)Fm(z)dtdz ≥ 0, (47)

∫ π/n

0

∫ (i+1)π/m

iπ/m
f ∗nm(t, z)Fn(t)Fm(z)dtdz

−
∫ π/n

0

∫ (i+1)π/m

iπ/m
f
∗
nm(t, z)Fn(t)Fm(z)dtdz ≥ 0, (48)

∫ (k+1)π/n

kπ/n

∫ π/m

0
f ∗nm(t, z)Fn(t)Fm(z)dtdz

−
∫ (k+1)π/n

kπ/n

∫ π/m

0
f
∗
nm(t, z)Fn(t)Fm(z)dtdz ≥ 0, (49)

∫ (k+1)π/n

kπ/n

∫ (i+1)π/m

iπ/m
f ∗nm(t, z)Fn(t)Fm(z)dtdz

−
∫ (k+1)π/n

kπ/n

∫ (i+1)π/m

iπ/m
f
∗
nm(t, z)Fn(t)Fm(z)dtdz ≥ 0. (50)
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It follows from (46) that inequalities (47)–(50) must contain the equal sign. In (47) there
is the equal sign only if

f
∗
nm(t, z) = f ∗nm(t, z)

on [0, π/n]× [0, π/m]. The equal sign in (48), according to Corollary 1, is possible if and
only if

f
∗
nm(t, z) = ϕ(z) + fi(t)

on [0, π/n]× [iπ/m, (i + 1)π/m]. Similarly, in (49) the equal sign is possible if and only if

f
∗
nm(t, z) = ψ(t) + gk(z)

on [kπ/n, (k + 1)π/n]× [0, π/m]. The equal sign in (50) is possible if and only if f
∗
nm(t, z)

is the extremal function of Lemma S for the class W1,1
Pk,i

on each rectangle Pk,i. For 0 ≤ t ≤ π
n

f
∗
nm(t,

π

m
) = f ∗nm(t,

π

m
) =

π

m
+ t,

but, on the other hand, f
∗
nm(t,

π
m ) = π

m + f1(t), because f
∗
nm(t, z) = ϕ(z) + f1(t) on

[0, π/n] × [π/m, 2π/m]. As a result of the continuity of the function f
∗
nm(t, z) we have

f1(t) = t.
We prove similarly that fi(t) = t, ß = 2, m − 1. Therefore, on [0, π/n] × [0, π] we

obtain
f
∗
nm(t, z) = f ∗nm(t, z). (51)

We prove similarly that on [0, π]× [0, π/m]

f
∗
nm(t, z) = f ∗nm(t, z). (52)

Since f ∗nm(t, z) and f
∗
nm(t, z) are the extremal functions of Lemma S for the class W1,1

P1,i

on each rectangle P1,i and coincide on the larger side
{(

π
n , z
)

: i π
m ≤ z ≤ (i + 1) π

m
}

of the
rectangle, then according to Lemma 2 they coincide on all rectangles P1,i. We prove similarly
that

f
∗
nm(t, z) = f ∗nm(t, z)

on P2,i, P3,i, . . . , Pk,i, . . . , Pn−1,i. So, on [π/n, π]× [π/m, π] we have

f
∗
nm(t, z) = f ∗nm(t, z). (53)

From (51)–(53), taking into account the parity and 2π-periodicity in both variables of
functions f ∗nm(x, y) and f

∗
nm(x, y) we get that f

∗
nm(x, y) = f ∗nm(x, y) on the whole plane XOY.

Thus, our assumption is wrong. Therefore, f ∗nm(x, y) is the unique extremal function from
the class H0. Since any extremal function γ∗

nm(x, y) has the form γ∗
nm(x, y) = ±ϕ∗

nm(x −
x0, y − y0) + K, and ϕ∗

nm(x, y) = f ∗nm(x, y), then

γ∗
nm(x, y) = ± f ∗nm(x − x0, y − y0 + K).

The lemma has been proved.

Proof of Theorem 1. Let us prove that there exists the function f̂nm(x, y) ∈ H1,1, realizing
the exact upper bound of the best approximation on the class H1,1, i.e., En,m( f̂nm) =

En,m(H1,1). Since En,m( f ) = En,m( f − f (0, 0)), then En,m(H1,1) = En,m(H1,1
0 ), where H1,1

0 is
the subset of functions from the class H1,1 that are equal to 0 at the origin. Let us prove
that H1,1

0 is the compact set in the metric space of 2π-periodic functions in each of the
variables. If f (x, y) ∈ H1,1

0 then | f (x, y) − f (0, 0)| = | f (x, y)| ≤ |x| + |y| ≤ 2π. This
implies that the set H1,1

0 is bounded and (see, for example, [13] (pp. 123–125)) compact.
The best approximation functional En,m( f ) is known to be continuous (see, for example, [2]
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(p. 17)). Since En,m( f ) is the continuous functional and the set H1,1
0 is compact, then there

exists the function f̂ (x, y) ∈ H1,1
0 on which the functional En,m( f ) reaches its exact upper

bound, i.e., En,m(H1,1) = En,m(H1,1
0 ) = En,m( f̂nm). Let us assume that En,m(H1,1) = En,m.

Since
En,m = En,m(H1,1) = En,m( f̂nm) =

∥∥∥ f̂nm(x, y)− T∗
n−1,m−1( f̂ , x, y)

∥∥∥
C

≤
∥∥∥ f̂nm(x, y)− Fn,m( f̂nm, x, y)

∥∥∥
C
≤ En,m,

then ∥∥∥ f̂nm(x, y)− Fn,m( f̂nm, x, y)
∥∥∥

C
= En,m. (54)

Here, T∗
n−1,m−1( f̂ , x, y) is the polynomial of the best approximation of the function

f̂nm(x, y) of the degree (n − 1) in the variable x and the degree (m − 1) in the variable y in
the uniform metric. It follows from relation (54) that the function f̂nm(x, y) belongs to the
set of extremal functions for the Favard method on the class H1,1, i.e.,

f̂nm(x, y) = ± f ∗n,m(x − x0, y − y0) + K. (55)

Since K f ∗n,m = π/n + π/m, from relation (55) we get K f̂nm
= pi/n + π/m. Since

En,m( f̂nm) ≤ K f̂nm
/2 = π/2n + π/2m, and as a result (2) En,m > π/2n + π/2m, then our

assumption is wrong. Hence, the statement of Theorem 1 is true.

Let us denote by H1,1
u+v:=

{
f (x, y) ∈ H1,1 : f (x, y) = u(x) + v(y)

}
as the subset of the

functions from the class H1,1 that can be represented as a sum of two functions, each of
which depends on only one variable. It follows from the definition of the class H1,1 that

u(x) ∈ H1, v(x) ∈ H1. (56)

Theorem 1 (see, for example, [14]) implies the following statement.

Lemma 4. If the functions u(x) and v(y) are continuous 2π-periodic in the variables x and y,
and T∗

n−1(u, x), T∗
m−1(v, y) are the polynomials of the best approximation of these functions, then

En,m(u + v) = En(u) + Em(v), and T∗
n−1(u, x) + T∗

m−1(v, y) is the unique polynomial of the best
approximation for the function f (x, y) = u(x) + v(y) ∈ H1.

Using Lemmas 4 and (56), we prove the relation

En,m(H1,1
u+v) = En(H1) + Em(H1) =

π

2n
+

π

2m
.

From the last relation and the equality

sup
f∈H1,1

u+v

‖ f (x, y)− Fn,m( f , x, y)‖C = sup
u∈H1

‖u(x)− Fn(u, x)‖C

+ sup
v∈H1

‖v(y)− Fm(v, y)‖C =
π

2n
+

π

2m

the following statement follows.

Theorem 5. For any natural numbers n and m

sup
f∈H1,1

u+v

‖ f (x, y)− Fn,m( f , x, y)‖C =
π

2n
+

π

2m
= En,m(H1,1

u+v),

that is, the Favard method implements the exact upper bound of the best approximations on the class
H1,1

u+v.
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3. Conclusions

In this paper, we proved that the approximation of the class H1,1 by Favard method is
greater than the value of the best approximation of this class by trigonometric polynomials,
the exact value of which being unknown. We have also managed to build classes for which
these values are equal.

The question of Theorem 1 validity for Hölder classes of functions of n ≥ 3 variables
being 2π-periodic in each variable, still remains open. To solve it, we have to establish
analogues of equality (1) and Lemmas 2 and 3 for these classes of functions.
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Abstract: In the paper, we consider the approximation of analytic functions by shifts from the wide
class S̃ of L-functions. This class was introduced by A. Selberg, supplemented by J. Steuding, and
is defined axiomatically. We prove the so-called joint discrete universality theorem for the function
L(s) ∈ S̃. Using the linear independence over Q of the multiset

{
(hj log p : p ∈ P), j = 1, . . . , r; 2π

}
for positive hj, we obtain that there are many infinite shifts

(
L(s + ikh1), . . . , L(s + ikhr)

)
, k = 0, 1, . . .,

approximating every collection
(

f1(s), . . . , fr(s)
)

of analytic non-vanishing functions defined in the
strip {s ∈ C : σL < σ < 1}, where σL is a degree of the function L(s). For the proof, the probabilistic
approach based on weak convergence of probability measures in the space of analytic functions
is applied.

Keywords: analytic functions; discrete shifts; limit theorem; simultaneous approximation; Selberg–
Steuding class; weak convergence

MSC: 11M06; 11M41; 11M36

1. Introduction

One of the most important branches of the function theory is the approximation of
analytic functions, and is widely used not only in mathematics but also in other natural
sciences. In the 1980s, it was discovered that there exist analytic objects that approximate
large classes of analytic functions. S.M. Voronin found [1] that the first such object as the
Riemann zeta-function ζ(s), s = σ + it, given by

ζ(s) =
∞

∑
m=1

1
ms = ∏

p∈P

(
1 − 1

ps

)−1

, σ > 1,

where P is the set of all prime numbers. As is well-known, ζ(s) has the meromorphic
continuation of the whole complex plane with Ress=1 ζ(s) = 1. Voronin proved [1] (see
also [2]) that if 0 < c < 1

4 , the function f (s) is continuous and non-vanishing on the disc
|s| ≤ c, and analytic in the interior of that disc, then there exists a real number τ = τ(ε, f )
such that

max
|s|≤c

∣∣∣∣ζ(s +
3
4
+ it
)

− f (s)
∣∣∣∣ < ε

for any ε > 0.
Thus, Voronin reported that all non-vanishing analytic functions on the strip D ={

s ∈ C : 1
2 < σ < 1

}
, and uniformly on discs can be approximated by shifts ζ(s + iτ) of

one and the same function ζ(s). The Bohr–Courant theorem [3] claims that the set

{ζ(σ + it) : t ∈ R}

Axioms 2023, 12, 674. https://doi.org/10.3390/axioms12070674 https://www.mdpi.com/journal/axioms21
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is dense everywhere on a complex plane for every fixed 1
2 < σ ≤ 1. From here, it follows

that the set of values of the function ζ(s) is very rich. Thus, in terms of approximation, the
function ζ(s) is universal, and this might be natural in view of the remark above.

We denote by H(D) the space of the analytic on D functions equipped with the
topology of uniform convergence on the compacta. Since the space H(D) has an infinite-
dimension, the Voronin theorem is a infinite-dimensional extension of the Bohr–Courant
denseness theorem.

The above-mentioned Voronin universality theorem has a more general statement
which follows the Mergelyan theorem on the approximation of analytic functions by
polynomials [4]. We denote by K(D) the set of compact subsets of the strip D with
connected complements, and by H0(K, D) the class of continuous non-vanishing functions
on K ∈ K(D) that are analytic in the interior of K. Moreover, we let mesA stand for the
Lebesgue measure of a measurable set A ⊂ R. Then the following statement on the ζ(s)’s
universality is known, see, for example, [5–9].

Theorem 1. Suppose that K ∈ K(D) and f (s) ∈ H0(K, D). Then, for every ε > 0,

lim inf
T→∞

1
T

mes
{

τ ∈ [0, T] : sup
s∈K

| f (s)− ζ(s + iτ)| < ε

}
> 0.

The inequality of the theorem shows the infinitude of shifts of ζ(s + iτ) approximating
a given function f (s) ∈ H0(K, D).

The statement of Theorem 1 was influenced by a probabilistic method proposed in [6].
The initial Voronin method based on the Riemann-type rearrangement theorem in the
Hilbert space was developed in [7,8].

Since τ in the shifts ζ(s + iτ) of Theorem 1 is an arbitrary real number, Theorem 1 is
called a continuous universality theorem. Parallel to continuous universality theorems
for zeta-functions, there are discrete universality theorems when τ takes values from a
certain discrete set. These were proposed by A. Reich [10] for Dedekind zeta-functions of
algebraic number fields K. If K = Q, we deal with a discrete universality for the Riemann
zeta-function. As an example, we now state a classical result in the following (see [6]).

Theorem 2. Suppose that K ∈ K(D), f (s) ∈ H0(K, D) and h > 0. Then, for every ε > 0,

lim inf
N→∞

1
N + 1

#
{

0 ≤ k ≤ N : sup
s∈K

| f (s)− ζ(s + ikh)| < ε

}
> 0.

Here #A denotes the number of elements of the set A ⊂ R, and N runs over the set
N0 = N∪ {0}.

Note that discrete universality theorems were also investigated in [6–8].
Some other functions given by a Dirichlet series also fulfil the property of universality

in the Voronin sense. For example, Dirichlet L-functions L(s, χ) with arbitrary Dirichlet
character χ,

L(s, χ) =
∞

∑
m=1

χ(m)

ms , σ > 1,

are universal, as was mentioned by Voronin in [2]. Let A = {am : m ∈ N} ⊂ C be a periodic
sequence. Then the periodic zeta-function

ζ(s;A) =
∞

∑
m=1

am

ms , σ > 1,

also has the universal approximation property [11]. For values of the parameters α and λ,
the Hurwitz zeta-function ζ(s, α) and Lerch zeta-function L(λ, α, s), for σ > 1, respectively
given by
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ζ(s, α) =
∞

∑
m=0

1
(m + α)s and L(λ, α, s) =

∞

∑
m=0

e2πiλm

(m + α)s ,

are universal (see [12]). In other words, they approximate analytic functions from the
class H(K, D) considered continuous on K and analytic in the interior of K functions. This
observation leads to certain conjectures. For example, by the Linnik–Ibragimov conjecture
(or programme), see [8], all functions in a certain half-plane defined by a Dirichlet series,
with analytic continuation left of the absolute convergence abscissa and satisfying some
natural growth hypotheses are universal in the Voronin sense. However, currently there are
Dirichlet series which their universality is not known, for example, the function L(λ, α, s)
with an algebraic irrational parameter. Results in this direction for the Hurwitz zeta-
function ζ(s, α), as in [13], are presented.

To obtain more general results, the universality of separate functions and some classes
of functions are considered. One such class was introduced by A. Selberg (see [14,15]),
known as the Selberg class S . The structure of the class S was studied by various authors,
see [8,16–20], but until now its structure was not completely known. However, the class
includes all main zeta- and L-functions, for example, ζ(s), L(s, χ), the zeta-functions of
certain cusp forms, etc. The Selberg class S is defined axiomatically, with its functions

L(s) =
∞

∑
m=1

a(m)

ms , a(m) ∈ C,

satisfying four axioms. Recall that the notation a �θ b, b > 0, means that there is a positive
constant c = c(θ) such that |a| ≤ cb, and that Γ(s) denotes the Euler gamma-function. The
axioms of the class S have the names:

(1) (Ramanujan conjecture). The estimate a(m) �ε mε is valid with any ε > 0.
(2) (Analytic continuation). For some l ∈ N0, (s − 1)l L(s) in an entire function of

finite order.
(3) (Functional equation). Let

ΛL(s) = L(s)qs
j0

∏
j=1

Γ(λjs + αj),

where q, λj ∈ R+, and αj ∈ C such that �αj ≥ 0. Then the functional equation of
the form

ΛL(s) = wΛL(1 − s)

is valid. Here, |w| = 1, and, as usual, by s we denote the conjugate of s.
(4) (Euler product). Let

log Lp(s) =
∞

∑
l=1

b(pl)

ps

with coefficients b(pl) such that b(pl) � pαl , α < 1
2 . Then the representation

L(s) = ∏
p∈P

Lp(s)

holds.

Axioms (1)–(4) of the class S are insufficient to prove universality as they do not
include the analogue of the prime number theorem. Therefore, J. Steuding, who was first to
study the class S with an emphasis on universality [8], introduced the following axioms.

(5) There exists κ > 0 such that

lim
x→∞

1
π(x) ∑

p≤x
|a(p)|2 = κ,

23



Axioms 2023, 12, 674

where function π(x) counts the number of primes up to x. Moreover, in [8] the Euler
product of the type

(6)

L(s) = ∏
p∈P

l

∏
j=1

(
1 − αj(p)

ps

)−1

was required with some complex αj(p).

For the universality for the above functions, we need one important ingredient of the
class S . For L ∈ S , the quantity

dL = 2
j0

∑
j=1

λj

is called the degree of the function L. The degree is an deep characteristic of the class S . If
dL = 1, then L(s) coincides with ζ(s) or L(s + ia, χ) with some a ∈ R. For L ∈ S , let

σL = max
(

1
2

, 1 − 1
dL

)
.

We denote by DσL = {s ∈ C : σL < σ < 1}, K(DσL) the class of compact subsets of
the strip DσL with connected complements, and H0(K, DσL) the class of continuous non-
vanishing functions on K that are analytic in the interior of K. Then, in [8], the following
universality theorem has been proved.

Theorem 3. Suppose that L(s) satisfies Axioms (2), (3), (5) and (6). Let K ∈ K(DσL) and
f (s) ∈ H0(K, DσL). Then, for every ε > 0, the inequality

lim inf
T→∞

1
T

mes
{

τ ∈ [0, T] : sup
s∈K

| f (s)− L(s + iτ)| < ε

}
> 0

holds.

In [21], Axiom (6) was removed. Thus, Theorem 3 holds for the so-called Selberg–
Steuding class S̃; more precisely, for the functions belonging to the Selberg class and
satisfying Axiom (5).

The discrete version of Theorem 3 has been obtained in [22].

Theorem 4. Suppose that L(s), K and f (s) are the same as in Theorem 3. Then, for every h > 0
and ε > 0,

lim inf
N→∞

1
N + 1

#
{

0 ≤ k ≤ N : sup
s∈K

| f (s)− L(s + ikh)| < ε

}
> 0.

We can consider a simultaneous approximation of a tuple of analytic functions by a
tuple of shifts of zeta- or L-functions. This type of universality is called joint universality.
This phenomenon of a Dirichlet series was also introduced by Voronin. In [23], he studied
the joint functional independence of Dirichlet L-functions using the joint universality.
Of course, the joint universality is more complicated, but, on the other hand, it is more
interesting. Obviously, in the case of joint universality, the approximating shifts require
some independence conditions. For example, Voronin used Dirichlet L-functions with
pairwise non-equivalent Dirichlet characters. Later, the joint universality theorems were
proven for zeta-functions defined by a Dirichlet series with periodic coefficients, Matsumoto
zeta-functions, and automorphic L-functions. For these proofs, see the very informative
paper [9].

This paper deals with the discrete joint universality property for L-functions for the
class S̃. Let
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L(s) =
∞

∑
m=1

a(m)

ms ,

h1, ..., hr be fixed positive numbers, and h = (h1, . . . , hr). We define the multiset

A(P, h, 2π) =
{
(hj log p : p ∈ P), j = 1, . . . , r; 2π

}
,

and then we prove the following theorem.

Theorem 5. Suppose that L(s) ∈ S̃, and the set A(P, h, 2π) is linearly independent over the field
of rational numbers Q. For j = 1, . . . , r, let Kj ∈ K(DL) and fj(s) ∈ H0(Kj, DL). Then, for every
h ∈ (R+)r and ε > 0,

lim inf
N→∞

1
N + 1

#
{

0 ≤ k ≤ N : sup
1≤j≤r

sup
s∈Kj

| f j(s)− L(s + ikhj)| < ε

}
> 0.

Moreover, for all but at most countably many ε > 0, the limit

lim
N→∞

1
N + 1

#
{

0 ≤ k ≤ N : sup
1≤j≤r

sup
s∈Kj

| f j(s)− L(s + ikhj)| < ε

}

exists and is positive.

In [24], a joint continuous universality theorem for a function L(s) ∈ S̃ on the appro-
ximation of analytic functions by shifts

(
L(s + ia1τ), . . . , L(s + iarτ)

)
with linear indepen-

dence over Q real algebraic numbers a1, . . . , ar was obtained.
For example, for r = 3, we can take h1 = 1, h2 =

√
2, and h3 =

√
3 in Theorem 5.

We denote by B(X ) the Borel σ-field of the space X , and let P and Pn, where n ∈ N,
be probability measures on (X , B(X )). We report that Pn converges weakly to P as n → ∞,
and write P w−−−→

n→∞
P, if, for all bounded continuous functions g(x) on X ,

lim
n→∞

∫
X

g(x)dPn =
∫
X

g(x)dP.

We derive Theorem 5 from a probabilistic joint discrete limit theorem on weakly
convergent probability measures in the space of analytic functions. For proof of the
latter theorem, we consider the weak convergence of probability measures on the infinite-
dimensional torus, and in the space of analytic functions for certain absolutely convergent
Dirichlet series. After this, we show a comparison in the mean between the initial L-
function and functions defined by an absolutely convergent Dirichlet series. This will give
the desired joint discrete limit theorem for the tuple of functions we are interested in.

2. Case of the Torus

We define the infinite-dimensional torus as

T = ∏
p∈P

{s ∈ C : |s| = 1},

where T is the infinite Cartesian product over prime numbers of unit circles. Since each
circle is a compact set, by the Tikhonov theorem, T with the product topology and operation
of pairwise multiplication is a compact topological abelian group. Now, we construct the set

Tr = T1 × . . . ×Tr,

where Tj = T, j = 1, . . . , r. Then, the Tikhonov theorem again shows that Tr is a compact
topological group. We denote by t = (t1, .., tr), tj ∈ Tj, tj = (tj(p) : p ∈ P), j = 1, . . . , r, the
elements of Tr.
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For A ∈ B(Tr), we set

QN,Tr ,h(A) =
1

N + 1
#
{

0 ≤ k ≤ N :
((

p−ikh1 : p ∈ P
)
, . . . ,

(
p−ikhr : p ∈ P

)) ∈ A
}

.

In this section, we consider the weak convergence for QN,Tr ,h as N → ∞.

Proposition 1. Suppose that the set A(P, h, 2π) is linearly independent over Q. Then, QN,Tr ,h
w−−−→

n→∞
mH, where mH is the probability Haar measure on (Tr, B(Tr)).

Proof. The characters of the Tr are of the form
r

∏
j=1

∏
p∈P

∗
t
ljp
j (p)

with integers ljp, where the star indicates that only a finite number of ljp are not zeroes.
Therefore, the Fourier transform FN,Tr ,h(l1, .., lr), l j = (ljp : ljp ∈ Z, p ∈ P), j = 1, . . . , r, can
be represented by

FN,Tr ,h(l1, .., lr) =
∫
Tr

r

∏
j=1

∏
p∈P

∗
tj

ljp(p)dQN,Tr ,h

=
1

N + 1

N

∑
k=0

r

∏
j=1

∏
p∈P

∗p−ikljphj

=
1

N + 1

N

∑
k=0

exp
{

− ik
r

∑
j=1

hj ∑
p∈P

∗ljp log p
}

. (1)

By a continuity theorem on the compact groups, for the proof of Proposition 1, it is
sufficient to show that the Fourier transform FN,Tr ,h(l1, .., lr) converges, as N → ∞, to the
Fourier transform

FmH (l1, . . . , lr) =

{
1 if (l1, . . . , lr) = (0, . . . , 0),
0 otherwise

of the Haar measure mH . Here, 0 = (0, 0, . . . ).
Equality (1), obviously, gives

FN,Tr ,h(0, . . . , 0) = 1. (2)

Thus, it remains to consider only the case (l1, . . . , lr) �= (0, . . . , 0). Since the set
A(P, h, 2π) is linearly independent over Q, we have, in this case,

exp
{

− i
r

∑
j=1

hj ∑
p∈P

∗ljp log p
}

�= 1. (3)

Actually, if (3) is false, then
r

∑
j=1

hj ∑
p∈P

∗ljp log p = 2πm

for some m ∈ Z and the integers ljp �= 0. However, this contradicts the assumption that
the set A(P, h, 2π) is linearly independent. Now, using (3) and the formula for the sum of
geometric progressions, we deduce from (1) that, for (l1, . . . , lr) �= (0, . . . , 0),

FN,Tr ,h(l1, . . . , lr) =

1 − exp
{

− i(N + 1)∑r
j=1 hj ∑∗

p∈P ljp log p
}

(N + 1)
(

1 − exp
{

− i ∑r
j=1 hj ∑∗

p∈P ljp log p
}) .
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Hence,

lim
N→∞

FN,Tr ,h(l1, . . . , lr) = 0

for (l1, . . . , lr) �= (0, . . . , 0). This, together with (2), shows that

lim
N→∞

FN,Tr ,h(l1, . . . , lr) = FmH (l1, . . . , lr),

thus proving the Proposition 1.

We apply Proposition 1 for the proof of weak convergence for the measures defined
by means of certain absolutely convergent Dirichlet series connected to the function L(s).
We fix a number β > 1

2 , and

vn(m; β) = exp
{

−
(

m
n

)β}
, m, n ∈ N.

We define the functions

Ln(s) =
∞

∑
m=1

a(m)vn(m; β)

ms

and

Ln(s, tj) =
∞

∑
m=1

a(m)tj(m)vn(m; β)

ms , j = 1, . . . , r,

where, for m ∈ N,

tj(m) = ∏
pl‖m

tl
j(p).

If L(s) ∈ S̃ , then a(m) � mε
ε with arbitrary ε > 0. Obviously, vn(m; β) decreases

exponentially with respect to m. Therefore, the series for Ln(s) and Ln(s, tj) are absolutely
convergent for σ > σa with arbitrary finite σa and fixed n ∈ N. Let

Ln(s + ikh) =
(

Ln(s + ikh1), . . . , Ln(s + ikhr)
)

and

Ln(s, t) =
(

Ln(s, t1), . . . , Ln(s, tr)
)
.

Moreover, let H(DL) stand for the space of analytic on DL functions endowed with
the topology of uniform convergence on compact sets, and let

Hr(DL) =
r

∏
j=1

H(DL).

For A ∈ B(Hr(DL)), we set

PN,n,h(A) =
1

N + 1
#
{

0 ≤ k ≤ N : Ln(s + ikh) ∈ A
}

.

Proposition 2. On (Hr(DL),B(Hr(DL))), a probability measure Pn exists such that PN,n,h
w−−−→

N→∞
Pn.

Proof. Let the mapping un : Tr → Hr(DL) be given by un(t) = Ln(s, t). The absolute
convergence of the series for Ln(s, tj), j = 1, . . . , r, implies the continuity of un. Hence, un is
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(Tr, Hr(DL))-measurable. Therefore, every probability measure P on (Tr, B(Tr)) induces
the unique probability measure Pu−1

n on (Hr(DL), B(Hr(DL))) given by

Pu−1
n (A) = P(u−1

n A), A ∈ B(Hr(DL)).

Let QN,Tr ,h be from Proposition 1. Then, for every A ∈ B(Hr(DL)),

PN,n,h(A) =
1

N + 1
#
{

0 ≤ k ≤ N :
((

p−ikhj : p ∈ P
)
, j = 1, . . . , r

) ∈ u−1
n A
}

= QN,Tr ,h(u−1
n A) = QN,Tr ,hu−1

n (A).

Hence, we have PN,n,h = QN,Tr ,hu−1
n . Therefore, Proposition 1, the continuity of un

and Theorem 5.1 in [25] show that PN,n,h
w−−−→

N→∞
Pn, where Pn = mHu−1

n .

We see that the measure Pn is independent of h. This allows us to obtain the weak
convergence of Pn as n → ∞, and identify the limit measure. Let

L(s, tj) =
∞

∑
m=1

a(m)tj(m)

ms , j = 1, . . . , r.

It is known [8] that the Dirichlet series for L(s, tj), for almost all tj, is uniformly
convergent on compact subsets of the strip DL. Thus, L(s, tj), for j = 1, . . . , r, is a H(DL)-
valued random element. The probability Haar measure mH on (T, B(T)) is the product of
the Haar measure mH

j on (Tj, B(Tj)), i.e., for A = A1 × . . . × Ar ∈ B(Tr),

mH(A) = mH
1 (A1) · . . . · mH

r (Ar).

The above remarks show that

L(s, t) =
(

L(s, t1), . . . , L(s, tr)
)

is a Hr(DL)-valued random element defined on the probability space (Tr,B(Tr)). We
denote by PL the distribution of L(s, t).

The measure Pn coincides with that studied in the continuous case in [24]. Therefore,
we have the following proposition.

Lemma 1. The relation Pn
w−−−→

n→∞
PL holds. Moreover, the support of the measure PL is set as({

g ∈ H(DL) : either g(s) �= 0 or g(s) ≡ 0
})r

.

Proof. The first assertion of the lemma is contained in Lemma 7 in [24], while the second
one is in Lemma 9 in [24].

3. Limit Theorem

We start this section with a mean value estimate for the collection of L-functions we
are interested in.

Let

L(s + ikh) =
(

L(s + ikh1), . . . , L(s + ikhr)
)
.

In this section, we estimate the distance between L(s + ikh) and Ln(s + ikh) in the
mean. Let d be the metric on the space Hr(DL), i.e., for g

l
= (gl1, . . . , glr), l = 1, 2,

d(g
1
, g

2
) = max

1≤m≤r
d(g1m, g2m),

and d is the metric in H(DL) which induces its uniform convergence topology on com-
pact sets.
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Lemma 2. For arbitrary positive fixed numbers h1, . . . , hr,

lim
n→∞

lim sup
N→∞

1
N + 1

N

∑
k=0

d
(

L(s + ikh), Ln(s + ikh)
)
= 0.

Proof. Since

d(g1, g2) =
∞

∑
j=1

2−j
sups∈Kj

|g1(s)− g2(s)|
1 + sups∈Kj

|g1(s)− g2(s)| , g1, g2 ∈ H(DL),

where {Kj : j ∈ N} ⊂ DL is a certain sequence of compact sets, it suffices to show that, for
every compact set K ⊂ DL,

lim
n→∞

lim sup
N→∞

1
N + 1

N

∑
k=0

sup
s∈K

|L(s + ikhj)− Ln(s + ikhj)| = 0, j = 1, . . . , r. (4)

We fix a compact set K, a positive number h, and L(s) ∈ S̃. We use the integral
representation [24]

Ln(s) =
1

2πi

∫ β+i∞

β−i∞
L(s + z)ln(z; β)dz, (5)

where

ln(s; β) =
1
β

Γ
(

s
β

)
ns,

and the fixed number β > 1
2 is the same as in the definition of vn(m; β). There exists

δ = δ(K) such that σL + 2δ ≤ σ ≤ 1 − δ for σ + it ∈ K. Thus, β1
de f
= σ − σL − δ > 0. Let

β = σL + δ. The integrand in (5) has a simple pole at the point z = 0, and a possible simple
pole at the point z = 1 − s. Therefore, by the residue theorem and (1),

Ln(s)− L(s) =
1

2πi

∫ −β1+i∞

−β1−i∞
L(s + z)ln(z; β)dz + r(s),

where

r(s) = Res
z=1−s

L(s + z)ln(z; β) = γln(1 − s; β),

and γ = Ress=1 L(s). If α = 0 in Axiom (2), then r(s) = 0. Hence, for s = σ + it ∈ K,

L(s + ikh)− Ln(s + ikh)

=
1

2πi

∫ ∞

−∞
L(s + ikh + σL − σ + δ + iτ)ln(σL − σ + δ + iτ; β)dτ + r(s + ikh)

=
1

2πi

∫ ∞

−∞
L(σL + δ + ikh + iτ)ln(σL + δ − s + iτ)dτ + r(s + ikh)

�
∫ ∞

−∞

∣∣L(σL + δ + ikh + iτ)
∣∣ sup

s∈K
|ln(σL + δ − s + iτ)|dτ + sup

s∈K
|r(s + ikh)|.

From this, we have

1
N + 1

N

∑
k=2

sup
s∈K

|L(s + ikh)− Ln(s + ikh)|

�
∫ ∞

−∞

(
1

N + 1

N

∑
k=2

|L(σL + δ + ikh + iτ)|
)

sup
s∈K

|ln(σL + δ − s + iτ)|dτ

+
1

N + 1

N

∑
k=2

sup
s∈K

|r(s + ikh)|. (6)
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By the Cauchy–Schwarz inequality,

1
N + 1

N

∑
k=2

|L(σL + δ + ikh + iτ)| �
(

1
N

N

∑
k=2

|L(σL + δ + ikh + iτ)|2
) 1

2

. (7)

To estimate the last mean square, we apply the Gallagher lemma, see Lemma 1.4
in [26], and the known estimate [8]∫ T

−T
|L(σ + it)|2dt �σ T (8)

which is valid for fixed σ, σL < σ < 1. Application of the Gallagher lemma gives

N

∑
k=2

|L(σL + δ + ikh + iτ)|2

�h

∫ Nh

3
2 h

|L(σL + δ + iv + iτ)|2dv+

+

( ∫ Nh

3
2 h

|L(σL + δ + iv + iτ)|2dv
∫ Nh

3
2 h

|L′(σL + δ + iv + iτ)|2dv
) 1

2

. (9)

The Cauchy integral formula together with (8) gives, for σL < σ < 1, the bound∫ T

−T
|L′(σ + it)|2dt �σ T.

This, and (8) and (9) lead to the estimate
N

∑
k=2

|L(σL + δ + ikh + iτ)|2 �h,δ N(1 + |τ|). (10)

To estimate ln(σL + δ − s + iτ) for s ∈ K, we use the well-known estimate

Γ(σ + it) � e−c|t|, c > 0,

which is valid for large |t| uniformly in any fixed strip. Thus, for s ∈ K, we find

ln(σL + δ − s + iτ) �β nσL+δ−σe−
c
β |τ−t| �β,K n−δc−c1|τ|

with c1 > 0. Now, the latter estimate, and (7) and (10) show that∫ ∞

−∞

(
1

N + 1

N

∑
k=2

|L(σL + δ + ikh + iτ)|
)

sup
s∈K

|ln(σL + δ − s + iτ)|dτ

�β,K,h,δ n−δ
∫ ∞

−∞
e−c1|τ|(1 + |τ|) 1

2 dτ �β,K,h,δ n−δ. (11)

Similarly, the definition of r(s) yields that, for s ∈ K,

r(s + ikh) �β n1−σe−
c
β |kh+t| �β,K n1−σL−2δe−c2kh

with c2 > 0. Hence,

1
N + 1

N

∑
k=2

sup
s∈K

|r(s + ikh)| �β,K n1−σL−2δ 1
N

N

∑
k=2

e−c2kh

�β,K,h n1−σL−2δ

(
log N

N
+

1
N

∞

∑
k≥log N

e−c2kh
)

�β,K,h n1−σL−2δ log N
N

.
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This, and (6) and (11) lead to the estimate

1
N + 1

N

∑
k=2

sup
s∈K

|L(s + ikh)− Ln(s + ikh)| �β,K,h,δ

(
n−δ + n1−σL−2δ log N

N

)
.

Therefore, taking N → ∞ and then n → ∞, we obtain

lim
n→∞

lim inf
N→∞

1
N + 1

N

∑
k=2

sup
s∈K

|L(s + ikh)− Ln(s + ikh)| = 0.

Since, obviously,

lim
N→∞

1
N + 1

1

∑
k=0

sup
s∈K

|L(s + ikh)− Ln(s + ikh)| = 0,

thus proving (4).

Now we are ready to prove the desired joint discrete limit theorem for the collection
of L-functions belonging to the class S̃. For A ∈ B(Hr(DL)), we set

PN,h(A) =
1

N + 1
#
{

0 ≤ k ≤ N : L(s + ikh) ∈ A
}

.

Let Pn and PL be the same as in Lemma 1.

Theorem 6. Suppose that L(s) ∈ S̃, and the set A(P, h, 2π) is linearly independent over Q. Then
PN,h

w−−−→
N→∞

PL.

Proof. In view of Lemma 1, it suffices to show that Pn and PN,h have the same limit measure

as n → ∞ and N → ∞, respectively. We denote by D−→ the convergence in distribution.
On some probability space (Ω, A, P), we define the random variable ξN by

P{ξN = k} =
1

N + 1
, k = 0, 1, . . . , N.

Let the Hr(DL)-valued random elements XN,n,h and XN,h be defined by

XN,n,h = XN,n,h(s) = Ln(s + ihξN)

and

XN,h = XN,h(s) = L(s + ihξN).

Then the assertion of Proposition 2 can be written in the form

XN,n,h
D−−−→

N→∞
Pn. (12)

Moreover, by Lemma 1,

Xn
D−−−→

n→∞
PL, (13)

where Xn is the Hr(DL)-valued random element with distribution Pn. Application of
Lemma 2 and defining the above random elements show that, for ε > 0,

lim
n→∞

lim sup
N→∞

P
{

d(XN,h, XN,n,h) ≥ ε
}

= lim
n→∞

lim sup
N→∞

1
N + 1

#
{

0 ≤ k ≤ N : d
(

L(s + ikh), Ln(s + ikh)
) ≥ ε

}
≤ 1

ε(N + 1)

N

∑
k=0

d
(

L(s + ikh), Ln(s + ikh)
)
= 0.
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Taking into account the separability of the space (Hr(DL), d), the latter equality,
and (12) and (13), we deduce that the hypotheses of Theorem 4.2 in [25] are satisfied.
Therefore, we have

XN,h
D−−−→

N→∞
PL.

From last relation we obtain the assertion of the theorem.

4. Proof of Theorem 5

The proof of Theorem 5 we derive from Theorem 6, Lemma 1 and the Mergelyan
theorem mentioned in Section 1 (see [4]).

Proof of Theorem 5. Since f j(s) �= 0 on Kj, application of the Megelyan theorem for
log f j(s) implies the existence of polynomials q1(s), . . . , qr(s) such that

sup
1≤j≤r

sup
s∈Kj

∣∣ f j(s)− eqj(s)
∣∣ < ε

2
. (14)

In view of the second part of Lemma 1, the tuple
(
eq1(s), . . . , eqr(s)

)
is an element of the

support of the measure PL. Therefore, the set

G(ε) =
{
(g1, . . . , gr) ∈ Hr(DL) : sup

1≤j≤r
sup
s∈Kj

|gj(s)− eqj(s)| < ε

2

}

is an open neighbourhood of the support element, and thus by a property of supports,

PL(G(ε)) > 0. (15)

Now, Theorem 6 and Theorem 2.1 in [25] give

lim inf
N→∞

PN,n,h(G(ε)) ≥ PL(G(ε)) > 0. (16)

Inequality (14) shows the inclusion of G(ε) ⊂ G1(ε), where

G1(ε) =

{
(g1, . . . , gr) ∈ Hr(DL) : sup

1≤j≤r
sup
s∈Kj

|gj(s)− f j(s)| < ε

}
.

Therefore, by (16),

lim inf
N→∞

PN,n,h(G1(ε)) > 0,

and we have the first assertion of the theorem.
For the proof of second inequality of the theorem, we observe that, for different values

of ε, the boundaries of G1(ε) do not intersect. This remark implies that the set G1(ε) is a
continuity set of the measure PL for all but at most countably many ε > 0. This result,
Theorem 6 and Theorem 2.1 in [25], in virtue of (15), imply

lim inf
N→∞

PN,n,h(G1(ε)) = PL(G1(ε)) ≥ PL(G(ε)) > 0

for all but at most countably many ε > 0.
Theorem 5 is therefore proven.

5. Concluding Remarks

In this paper we have obtained that every tuple ( f1(s), . . . , fr(s)) of analytic non-
vanishing functions in the strip DL can be approximated simultaneously by discrete shifts(

L(s + ikh1), . . . , L(s + ikhr)
)
, where L(s) is a Dirichlet series from the Selberg–Steuding

class, and the multiset {(hj log p : p ∈ P), j = 1, . . . , r; 2π} with positive h1, . . . , hr is linearly
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independent over a field of rational numbers. For proof of the above theorem, results of a
continuous universality theorem from [24] were applied.

We conjecture that Theorem 5 can be extended to include approximations by shifts(
L1(s + ikh1), . . . , Lr(s + ikhr)

)
, where L1(s), . . . , Lr(s) are functions from the Selberg–

Steuding class. For this, a modification to Lemma 1 is needed.
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Abstract: Analyzing the co-variability between the Hilbert regressor and the scalar output variable
is crucial in functional statistics. In this contribution, the kernel smoothing of the Relative Error
Regression (RE-regression) is used to resolve this problem. Precisely, we use the relative square
error to establish an estimator of the Hilbertian regression. As asymptotic results, the Hilbertian
observations are assumed to be quasi-associated, and we demonstrate the almost complete consistency
of the constructed estimator. The feasibility of this Hilbertian model as a predictor in functional
time series data is discussed. Moreover, we give some practical ideas for selecting the smoothing
parameter based on the bootstrap procedure. Finally, an empirical investigation is performed to
examine the behavior of the RE-regression estimation and its superiority in practice.

Keywords: complete convergence (a.co.); relative error regression; nonparametric prediction; kernel
method; bandwidth parameter; functional data; financial time series; quasi-associated process

MSC: 62R20; 62G05; 62G08

1. Introduction

This paper focuses on nonparametric prediction in Hilbertian statistics, which is an
intriguing area of research within nonparametric Hilbertian statistics. Various approaches
exist for modeling the relationship between the input Hilbertian variable and the output
real variable. Typically, this relationship is modeled through a regression model, where
the regression operators are estimated using the least square error. However, this rule
is not relevant for some practical cases. Instead, we consider in this paper the relative
square error. The primary advantage of this regression is the possibility of reducing the
effect of the outliers. This kind of relative error is used as a performance measure in many
practical situations, namely in time series forecasting. The literature on the subject of
nonparametric analysis is limited. Most existing works consider a parametric approach.
In particular, Narula and Wellington [1] were the first to investigate the use of the relative
square error in the estimation method. For practical purposes, relative regression has been
applied in areas such as medicine by Chatfield [2] and financial data by Chen et al. [3].
Yang and Ye [4] considered the estimation by RE-regression in multiplicative regression
models. Jones et al. [5] also focused on the use of this model but with the nonparametric
estimation method and stated the convergence of the local linear estimator obtained by the
relative error as a loss function. The RE-regression estimation has been deeply studied for
time series data in the last few years, specifically by Mechab and Laksaci [6] for the quasi-
associated time series, and Attouch et al. [7] for the spatial process. The nonparametric
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Hilbertian RE-regression was first developed by Demongeot et al. [8], who focused on
strong consistency and gave the asymptotic law of the RE-regression. To summarize,
functional statistics is an attractive subject in mathematical statistics; the reader may refer
to some survey papers, such as [9–15], for recent advances and trends in functional data
analysis and/or functional time series analysis.

In this article, we focus on the Hilbertian RE-regression for weak functional time
series data. In particular, the correlation of our observations is modeled by using the quasi-
association assumption. This correlation includes many important Hilbertian time series
cases, such as the linear and Gaussian processes, as well as positive and negative associated
processes. Our ambition in this contribution is to build a new Hilbertian predictor in the
Hilbertian time series. This predictor is defined as the ratio of the first and the second
inverted conditional moments. We use this explicit expression to construct two estimators
based on the kernel smoothing and/or k-Neighbors Number (kNN). We prove a strong
consistency of the constructed estimator, which provides good mathematical support for
its use in practice. Thus, treating the functional RE-regression by the kNN method
under quasi-associated assumption is a great theoretical development which requires
nonstandard mathematical tools and techniques. On the one hand, it is well known that
the establishment of the asymptotic property in the kNN method is more difficult than
the classical kernel estimation due to the random feature of the bandwidth parameter. On
the other hand, our weak structure of the functional time series data requires additional
techniques and mathematical tools alternative to those used in the mixing case. Clearly,
this theoretical development is very useful in practice because the kNN estimator is more
accurate than the kernel method and the quasi-association structure is sufficiently weak
to cover a large class of functional time series data. Furthermore, the applicability of this
estimator is highlighted by giving some selection procedures to determine the parameters
involved in the estimator. Then, real data are used to emphasize the superiority and impact
of this contribution in practice.

This paper is organized as follows. We introduce the estimation algorithms in Section 2.
The required conditions, as well as the main asymptotic results, are demonstrated in
Section 3. We discuss some selectors for the smoothing parameter in Section 4. The
constructed estimator’s performance over the artificial data is evaluated in Section 5.
Finally, we state our conclusion in Section 6 and demonstrate proofs of the technical results
in the Appendix A.

2. The Re-Regression Model and Its Estimation

As discussed in the introduction, we aim to evaluate the relationship between an ex-
ogenous Hilbertian variable X and a real endogenous variable Y. Specifically, the variables
(X, Y) belong in H× IR. The set H constitutes a separable Hilbert space. We assume that
the norm ‖ · ‖ in H is associated with the inner product 〈·, ·〉. Furthermore, we define on H
a complete orthonormal basis (ek)k≥1. In addition, we suppose that Y is strictly positive,
and we suppose that the Hilbertian operators IE[Y−1

∣∣X] and IE[Y−2
∣∣X] exist and are, almost

surely, finite. The RE-regression is defined by

R(x) = arg min
θ

IE

((
Y − θ

Y

)2∣∣X = x

)
. (1)

By differentiating with respect to θ, we prove that

R(x) =
IE
[
Y−1
∣∣X = x

]
IE
[
Y−2
∣∣X = x

] . (2)

Clearly, the RE-regression R(·) is a good alternative to the traditional regression, in the
sense that, the traditional regression, based on the least square error, treats all variables
with equal weight. This is inadequate when the observations contain some outliers. Thus,
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the traditional regression can lead to irrelevant results in the presence of outliers. Thus,
the main advantage of the RE-regression R(·) compared to the traditional regression is
the possibility to reduce the effect of the outliers (see Equation (1)). So, we can say that
the robustness feature is one of the main advantages of the RE-regression. Additionally,
unlike the classical robust regression (the M-egression), the RE-regression is very easy to
implement in practice. It has an explicit definition based on the ratio of the first and the
second inverted conditional moments (see Equation (2)).

Now, consider (Xi, Yi)i−1,...,n strictly stationary observations, as copies of a couple
(X, Y). The Hilbertian time series framework of the present contribution is carried out using
the quasi-association setting (see Douge [16] for the definition of the Hilbert space). We
use the kernel estimators of the inverse moments IE[Y−1

∣∣X] and IE[Y−2
∣∣X] as conditional

expectations of Y−γ (γ = 1, 2), given X = x, to estimate R(x) by

R̃(x) =
∑n

i=1 Y−1
i K
( ‖x−Xi‖

hn

)
∑n

i=1 Y−2
i K
( ‖x−Xi‖

hn

) , (3)

where hn is a positive sequence of real numbers, and K is a real-function so-called kernel.
The choice of hn is the determining issue of the applicability of the estimator R̃. A common
solution is to utilize kernel smoothing with the kNN estimation, for which

R̂(x) =
∑n

i=1 Y−1
i K
( ‖x−Xi‖

Ak
n

)
∑n

i=1 Y−2
i K
( ‖x−Xi‖

Ak
n

) , (4)

where

Ak
n(x) = min

{
an > 0;

n

∑
i=1

1IB(x,an)(Xi) = k

}
,

where B(x, an) is an open ball of radius an > 0 centered x. In R̂, the smoothing parameter
is the number k. Once again, the selection of k is crucial.

3. The Consistency of the Kernel Estimator

We demonstrate the almost complete convergence of R̃(·) to R(·) at the fixed point
x in H. Hereafter, Nx is the given neighborhood of x, and C1, C2, C, . . . are strictly pos-
itive constants. In the sequel, we put Ki(x) = K(h−1

n ‖x − Xi‖), i = 1, . . . , n, Rγ(u) =
IE[Y−γ|X = u], and γ = 1, 2, and we denote this by

λk := sup
s≥k

∑
|i−j|≥s

∞

∑
k=1

∞

∑
l=1

|Cov(Xk
j , Xk

i )|+
∞

∑
k=1

|Cov(Yj, Xk
i )|+

∞

∑
l=1

|Cov(Xl
j , Yi)|+ |Cov(Yj, Yi)|,

where Xk
i :=< Xi, ek >. Moreover, we assume the following conditions:

(D1) For all d > 0 φx(d) := IP(X ∈ B(x, d)) > 0, and lim
d→0

φx(d) = 0.

(D2) For all (x1, x2) ∈ N 2
x ,

|Rγ(x2)− Rγ(x1)| ≤ C dkγ(x2, x1) for k1, k2 > 0.

(D3) The covariance coefficient is (λk)k∈IN, such that λk ≤ Ce−ak, a > 0, C > 0.
(D4) K is the Lipschitzian kernel function, which has (0, 1) as support and satisfies the

following:
0 < C2 ≤ K(·) ≤ C3 < ∞.

(D5) The endogenous variable Y gives:

IE
[
exp(|Y|−γ1)

]
< C and ∀i �= jIE

(
|Y−γ2

i Y−γ3
j | | Xi, Xj

)
≤ C′ < ∞, (γi)i=1,2,3 = 1, 2.
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(D6) For all i �= j,

0 < sup
i �=j

IP
[
(Xj, Xi) ∈ B(x, d)× B(x, d)

]
=≤ C(φ

a+1
a

x (d)).

(D7) There exist ξ ∈ (0, 1) and ξ1 ∈ (0, 1 − ξ), xi2 ∈ (0, a − 1), such that

log n5

n1−ξ−ξ1
≤ φx(hn) ≤ 1

log n1+ξ2
.

Brief comment on the conditions: Note that the required conditions stated above are
standard in the context of Hilbertian time series analysis. Such conditions explore the
fundamental axes of this contribution. The functional path of the data is explored through
the condition (D1), the nonparametric nature of the model is characterized by (D2), and
the correlation degree of the Hilbertian time series is explored by conditions (D3) and (D6).
The principal parameters used in the estimator, namely the kernel and the bandwidth
parameter, are explored through the conditions, (D4), (D5), and (D6). Such conditions are
of a technical nature. They allow for retaining the usual convergence rate in nonparametric
Hilbertian time series analysis.

Theorem 1. Based on the conditions (D1)–(D7), we get

|R̃(x)− R(x)| = O(hk0
n ) + Oa.co.

(√
log n

n1−ξφx(hn)

)
, (5)

where k0 = min(k1, k2).

Proof of Theorem 1. Firstly, we write

R̃(x) =
R̃N(x)
R̃D(x)

,

where

R̃N(x) =
1

nIE[K(h−1
n ‖x − X1‖)]

n

∑
i=1

Y−1
i K(h−1

n ‖x − Xi‖),

and R̃D(x) =
1

nIE[K(h−1
n ‖x − X1‖)]

n

∑
i=1

Y−2
i K(h−1

n ‖x − Xi‖).

We use a basic decomposition (see Demongeot et al. [8] to deduce that Theorem 1 is a
consequence result of the below lemmas).

Lemma 1. Using the conditions (D1) and (D3)–(D7), we get

|R̃N(x)− IER̃N(x)| = Oa.co.

(√
log n

n1−ξ φx(hn)

)
,

and

|R̃D(x)− IER̃D(x)| = Oa.co.

(√
log n

n1−ξφx(hn)

)
.

Lemma 2. Under conditions (D1),(D2), (D4), and (D7), we get∣∣∣IER̃N(x)− R1(x)
∣∣∣ = O(hk1

n ),
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and ∣∣∣IER̃D(x)− R2(x)
∣∣∣ = O(hk2

n ).

Corollary 1. Using the conditions of Theorem 1, we obtain

∞

∑
n=1

P
(

R̃D(x) <
R2(x)

2

)
< ∞.

Next, to prove the consistency of R̂(x), we adopt the following postulates:

(K1) K(·) has a bounded derivative on [0, 1];
(K2) The function φx(·), such that

φx(a) = φ(a)L(x) + O(aαφ(a)) and lim
a−→0

φ(ua)
φ(a)

= ζ(u),

where L(·), ζ are positive and bounded functions, and φ is an invertible function;
(K3) There exist ξ ∈ (0, 1) and ξ1, ξ2 > 0, such that

nξ+ξ1 log n5 ≤ k ≤ n log n−1−ξ2 .

Theorem 2. Under conditions (D1)–(D6) and (K1)–(K3), we have

|R̂(x)− R(x)| = O

((
φ−1
(

k
n

))k0
)
+ Oa.co.

(√
nξ log(n)

k

)
. (6)

Proof of Theorem 2. Similarly to Theorem 1, write

R̂(x) =
R̂N(x)
R̂D(x)

,

where

R̂N(x) =
1

nIE[K(Ak−1
n ‖x − X1‖)]

n

∑
i=1

Y−1
i K(Ak−1

n ‖x − Xi‖),

and R̂D(x) =
1

nIE[K(Ak−1
n ‖x − X1‖)]

n

∑
i=1

Y−2
i K(Ak−1

n ‖x − Xi‖),

and we define, for a sequence βn ∈ (0, 1), such that βn − 1 = O
((

φ−1
(

k
n

))k0
+

√
nξ log(n)

k

)
,

h−
n = φ−1

(√
βnk
n

)
, and h+n = φ−1

(
k

n
√

βn

)
. Using standard evidence (see Bouzebda

et al. [17]), we deduce that Theorem 2 is the outcome of Theorem 1 and the two lemmas
below.

Lemma 3. Under the conditions of Theorem 2, we have

|∑n
i=1 K(h−−1

n ‖x − Xi‖)
∑n

i=1 K(h+
−1

n ‖x − Xi‖)
− βn| = O

((
φ−1
(

k
n

))k0
)
+ Oa.co.

(√
nξ log(n)

k

)
.

Lemma 4. Based on the conditions of Theorem 2, we obtain

1Ih−
n ≤φ−1( k

n ≤h+n )
→ 1, a.co..
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Corollary 2. Using the conditions of Theorem 2, we get

|R̂N(x)− R1(x)| = O

((
φ−1
(

k
n

))k0
)
+ Oa.co.

(√
nξ log(n)

k

)
,

and

|R̂D(x)− R2(x)| = O

((
φ−1
(

k
n

))k0
)
+ Oa.co.

(√
nξ log(n)

k

)
.

4. Smoothing Parameter Selection

The applicability of the estimator is related to the selection of the parameters used
for the construction of the estimator R̃. In particular, the bandwidth parameter hn has a
decisive effect on the implementation of this regression in practice. In the literature on
nonparametric regression analysis, there are several ways to achieve this issue. In this
paper, we adopt two approaches common in classical regression to the relative one. The
two selections are the cross-validation rule and the bootstrap algorithm.

4.1. Leave-One-Out Cross-Validation Principle

In classical regression, the leave-one-out cross-validation rule is obtained using the
mean square error. This criterion has been employed for predicting Hilbertian time series by
several authors in the past (see Feraty and View [18] for some references). The leave-one-out
cross-validation rule is easy to execute and has shown good behavior in practice. However,
it is a relatively time-consuming rule. We overcome this inconvenience by reducing the
cardinal of the optimization set of the rule. Thus, we adopt this rule for this kind of
regression analysis. Specifically, we consider some subset of smoothing parameters (resp.
number of the neighborhood) Hn (resp. Kn), and we select the best bandwidth parameter
as follows.

hopt
n = arg min

hn∈Hn

n

∑
i=1

(
(Yi − R̃−i(Xi))

2

Y2
i

)
(7)

or

kopt = arg min
k∈Kn

n

∑
i=1

(
(Yi − R̂−i(Xi))

2

Y2
i

)
,

where R̃−i(Xi) (resp. R̂−i(Xi)) is the leave-out-one estimator of R̃ (resp. R̂). The latter
is calculated without the observation (Xi, Yi). It is worth noting that the efficiency of
this estimator is also linked to the determination of the subset Hn, where the rule (7) is
optimized. Often, we distinguish two cases, the local case and the global case. In the local
one, the subset Hn is defined with respect to the number of neighborhoods near the location
point. For the global case, the subset Hn is the quantile of the vector distance between
the Hilbertian regressors. The choice of Kn is easier, and it suffices to take Kn as a subset
of a positive integer. This selection procedure has shown good behavior in practice, but
there is no theoretical result concerning its asymptotic optimality. This will be a significant
prospect for the future.

4.2. Bootstrap Approach

In addition to the leave-one-out cross-validation rule, the bootstrap method constitutes
another important selection method. The principle of the latter is based on the plug-in
estimation of the quadratic error. In the rest of this subsection, we describe the principal
steps of this selection procedure.

Step 1. We choose an arbitrary bandwidth h0 (resp. k0), and we calculate R̃h0(x) (resp.
R̂k0(x)).

Step 2. We estimate ε̃ = Y − R̃h0(x) (resp. ε̂ = Y − R̂k0(x)).
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Step 3. We create a sample of residual ε∗ (resp. ε∗∗ ) from the distribution

G∗ = ((
√

5 + 1)/2
√

5)δε̃(1−√
5)/2 − ((1 −

√
5)/2

√
5)δε̃(

√
5+1)/2,

(resp. G∗ = ((
√

5 + 1)/2
√

5)δε̂(1−√
5)/2 − ((1 −

√
5)/2

√
5)δε̂(

√
5+1)/2),

where δ is the Dirac measure (see Hardle and Marron [19] for more details).

Step 4. We reconstruct the sample (Y∗
i , X∗

i )i = (ε∗ − R̃h0(Xi), Xi), (resp. (Y∗∗
i , X∗∗

i )i =

(ε∗∗ − R̂k0(Xi), Xi),

Step 5. We use the sample (Y∗
i , X∗

i )i to calculate R̃h0(Xi) and (Y∗∗
i , X∗∗

i )i to calculate
R̂k0(Xi).

Step 6. We repeat the previous steps NB times and put R̃r
h0
(Xi) (resp. R̂r

k0
(Xi)), the

estimators, at the replication r.

Step 7. We select h (resp. k) according to the criteria

hoptBoo = arg min
h∈Hn

NB

∑
r=1

n

∑
i=1

(R̃r
h(Xi)− R̃r

h0
(Xi))

2, (8)

and

koptBoo = arg min
k∈Kn

NB

∑
r=1

n

∑
i=1

(R̂r
k(Xi)− R̃r

k0
(Xi))

2.

Once again, the choice of the subset Hn (resp. Kn) and the pilot bandwidth h0 (resp. k0)
have a significant impact on the performance of the estimator. It will be very interesting
to combine both approaches in order to benefit from the advantage of both selections.
However, the time cost of this idea is very important.

5. Computational Study

5.1. Empirical Analysis

As a theoretical contribution, we wish in this empirical analysis to inspect the easy
implementation of the built estimator R̃ in practice. As the determination of hn is the prin-
cipal challenge of the computation ability of R̃, we compared in this computational study
the two selections discussed in the previous section. For this purpose, we conducted an
empirical analysis based on artificial data generated through the following nonparametric
regression

Yi = τ(Xi) + εi, i = 1, . . . , n (9)

where τ() is known regression operator r and (εi) sequence of independent random
variable generated from a Gaussian distribution N (0, 0.5). The model, in (9), shows the
relationship between an endogenous and exogenous variable.

On the other hand, in order to prospect the dependency of the data, we generated the
Hilbertian regressor by using the Hilbertian GARCH process through dgp.fgarch from the
R-package rockchalk. We plotted, in Figure 1, a sample of the exogenous curves X(t).
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Figure 1. Displayed is a sample of the functional curves.

The endogenous variable Y was generated by

τ(x) = 4
∫ π

0

x2(t)
1 + x2(t)

dt.

For this empirical analysis, we compared the two selectors (7) and (8) with the mixed one
obtained by using the optimal h of the rule (7) as the pilot bandwidth in the bootstrap
procedure (8). For a fair comparison between the three algorithms, we optimized over the
same subset Hn. We selected the optimal h for the three selectors, and the subset Hn of
the quantiles of the vector distance between the Hilbertian curves observations of Xi (the
order of the quantiles was ∈ {1/5, 1/10, 1/15, 0.5}. Finally, based on a quadratic kernel on
(0, 1), the estimator was computed, and we utilized the L2 metric associated with the PCA
definition based on the m = 3 first eigenfunctions of the empirical covariance operator
associated with the m = 3 greatest eigenvalues (see Ferraty and Vieu [18]).

The efficiency of the estimation method was evaluated by plotting the true response
value (Yi)i versus the predicted values R̂(Xi). In addition, we used the relative error
defined by

RSE =
n

∑
i=1

(
(Yi − R̃−i(Xi))

2

Y2
i

)
to evaluate the performance of this simulation study, which performed over 150 replications.
The prediction results are depicted in Figure 2.

It shows clearly that the R̃ of the relative regression was very easy to implement in
practice, and both selection algorithms had satisfactory behaviors. Typically the mixed
approach performed better compared to the two separate approaches. It had an RSE = 0.35.
On the other hand, the cross-validation rule had a small superiority (RSE = 0.52) over the
bootstrap approach RSE = 0.65) in this case. Of course, this small superiority was justified
by the fact that the efficiency of the bootstrap approach was based on the pilot bandwidth
parameter h0, whereas the cross-validation rule was strongly linked to the relative error
loss function.
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Figure 2. Prediction results.

5.2. A Real Data Application

We devote this paragraph to the real application of the RE-regression as a predictor.
Our ambition is to emphasize the robustness of this new regression. To do this, we
compared it to the classical regression defined by the conditional expectation. For this
purpose, we considered physics data corresponding to the monthly number of sunspots
in the years 1749–2021. These data were available at the website of WDC-SILSO, Royal
Observatory of Belgium, Brussels, http://www.sidc.be (accessed on 1 April 2023). The
prediction of sunspots is very useful in real life. It can be used to forecast the space weather,
assess the state of the ionosphere, and define the appropriate conditions of radio shortwave
propagation or satellite communications. It is worth noting that these kinds of data can
be viewed as a continuous time process, which is the principal source of a Hilbertian time
series by cutting the continuous trajectory into small intervals with fixed larger intervals.
To fix these ideas, we plotted the initial data in Figure 3.

To predict the value of a sunspot in the future, given its past observations in a continu-
ous path, we use (Zt)t∈[0,b) the whole data set, as a real-valued process in continuous time.
We then constructed, from Zt, n Hilbertian variables (Xi)i=1,...,n, where

∀t ∈ [0, b), Xi(t) = Zn−1((i−1)b+t), Yi = Xi(b).

Thus, our objective was to predict Yn, knowing (Xi, Yi)i=1,...,n−1 and Xn. At this stage,
R̃(Xn) was the predictor of Yn. In this computational study, we aimed to forecast the
sunspot number one year ahead, given the observation of the past years. Thus, we fixed on
month j in 1, . . . , 12 , and computed the estimator R̃ by the sample (Yj

i , Xi)i=1...272, with Yj
i

as the sunspot number of jth months in the (i + 1)th year, and we repeated this estimation
procedure for all j = 1, . . . , 12.

As the main feature of the RE-regression is its insensitivity to the outliers, we examined
this property by detecting the number of outliers in each prediction step j. To do this, we
used a MAD-Median rule (see Wilcox and Rand [20]). Specifically, the MAD-Median rule
considers an observation Yi as an outlier if

|Yi − M|
MAD ∗ 0.6745

> C,

where M and MAD are the medians of (Yi)i, and (Yi − M)i respectively, and C =
√

χ2
0.975

(with one degree of freedom). Table 1 summarizes the number of outliers for each step j.
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Figure 3. Initial data.

Table 1. Number of outliers with respect to j.

Months 1 2 3 4 5 6 7 8 9 10 11 12
Outliers 15 26 13 5 24 25 7 9 11 8 9 15

Both estimators R̃ and

R̂(x) = ∑n
i=1 YiK(h−1

n ‖x − Xi‖)
∑n

i=1 K(h−1
n ‖x − Xi‖)

were simulated using the quadratic kernel K(x), where

K(x) =
3
2
(1 − x2)1I[0,1],

and norm L2 was associated with the PCA-metric with m = 3. The cross-validation
rule (7) is used to choose the smoothing parameter h. Figure 4 shows the prediction
results, where we drew two curves showing the predicted values (the dashed curve for the
relative regression and the point curve for the classical regression) and the observed values
(solid curve).

Figure 4 shows that R̃ performed better in terms of the prediction results compared to
R̂. Even though both predictors had good behavior, the ASE of the relative regression (2.09)
was smaller than the classical regression, which was equal to 2.87.
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Figure 4. Comparison of the prediction result.

6. Conclusions

In the current contribution, we focused on the kernel estimation of the RE-regression
when the observations exhibited quasi-associated autocorrelation. It constituted a new
predictor in the Hilbertian time series, an alternative to classical regression based on
conditional expectation. Clearly, this new estimator increased the robustness of the classical
regression because it reduced the effect of the largest variables. Therefore, it made this
Hilbertian model insensitive to the outlier observations; this is the main feature of this kind
of regression. We provided in this contribution two rules to select the bandwidth parameter.
The first was based on adapting the cross-validation rule to the relative error loss function.
The second was obtained by the adaptation of the wild bootstrap algorithm. The simulation
experiment highlighted the applicability of both selectors in practice. In addition to these
features, the present work opened an important number of questions for the future. First,
establishing the asymptotic distribution of the present estimator allows extending the
applicability of this model to other applied issues in statistics. The second natural prospect
focuses on the treatment of some alternative Hilbertian time series, including the ergodic
case, the spatial case, and the β-mixing case, among others. It will also be very interesting
to study another type of data (missing, censored, . . .) or another estimation method, such
as the kNN, local linear method, . . ., etc.
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Appendix A

In this appendix, we briefly give the proof of preliminary results; the proofs of
Lemmas 3 and 4 are omitted, as they can be obtained straightforwardly through the adap-
tation of the proof of Bouzebda et al. [17].

Proof of Lemma 1. Clearly, the proof of both terms is very similar. So, we will focus only
in the first one. In fact, the difficulty in this kind of proof comes from the fact that the
quantity Y−1

i is not bounded. So, to deal with this problem, the truncation method is used
to define

R̃∗
N(x) =

1
n IE[K1(x)]

n

∑
i=1

K
(

h−1
n ‖x − Xi‖

)
Y−1

i 1I|Yi |>μn with μn = n−ξ/6.

Then, the desired result is a consequence of

∣∣∣IE[R̃∗
N(x)]− IE[R̃N(x)]

∣∣∣ = O

(√
log n

n1−ξφx(hn)

)
, (A1)

∣∣∣R̃∗
N(x)− R̃N(x)

∣∣∣ = Oa.co.

(√
log n

n1−ξ φx(hn)

)
, (A2)

and ∣∣∣R̃∗
N(x)− IE[R̃∗

N(x)]
∣∣∣ = Oa.co.

(√
log n

n1−ξφx(hn)

)
. (A3)

We start by proving (A3). For this, we write

R̃∗
N(x)− IE

[
R̃∗

N(x)
]
=

n

∑
i=1

Υi where Υi =
1

n IE[K1(x)]
χ(Xi, Yi),

with

χ(z, w) = w−1K(h−1
n ‖x − z‖))1I|w|>μn − IE

[
K1(x)Y−11I|Y1|>μn

]
, z ∈ H, w ∈ IR.

Observe that,

‖χ‖∞ ≤ Cμ−1
n ‖K‖∞ and Lip(χ) ≤≤ Cμ−1

n h−1
n Lip(K).

The key tool for proving (A3) is the application of Kallabis and Newmann’s inequality
(see [21], p. 2). We apply this inequality on Υi. It requires evaluating asymptotically
two quantities: Var(∑n

i=1 Υi) and Cov(Υs1 . . . Υsu , Υt1 . . . Υtv), for all (s1, . . . , su) ∈ INu and
(t1, . . . , tv) ∈ INv.

Concerning the variance term, we write

Var

(
n

∑
i=1

Υi

)
=

n

∑
i=1

n

∑
j=1

Cov(Υi, Υj) = nVar(Υ1) +
n

∑
i=1

n

∑
j=1
j �=i

Cov(Υi, Υj).
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Note that the above formula has two terms. For the Var(Υ1) and under (D5), we obtain

IE
[
Y−21I|Y1|>μn K2

1(x)
]

≤ IE
[
K2

1(x)IE
[
Y−2

1 |X1

]]
≤ CIE[K2

1].

Then, we use
IE
[
Kj

1(x)
]
= O(φx(hn))

to deduce that

Var(Υ1) = O
(

1
nφx(hn)

)
. (A4)

Now, we need to examine the covariance term. To do that, we use the techniques of Massry
to obtain the decomposition:

n

∑
i=1

n

∑
j=1
j �=i

Cov(Υi, Υj) =
n

∑
i=1

n

∑
j=1

0<|i−j|≤mn

Cov(Υi, Υj)

+
n

∑
i=1

n

∑
j=1

|i−j|>mn

Cov(Υi, Υj)

=: TI + TII .

Note that (mn) is a positive sequence of real number integers, which tends to infinity as
n → ∞.
We use the second part of (D5) to obtain∣∣Cov(Υi, Υj)

∣∣ ≤ C
∣∣IE[Ki(x)Kj(x)

]∣∣+ ∣∣IE[Ki(x)]IE
[
Kj(x)

]∣∣
≤ C

(
φ
(a+1)/a
x (hn) + φ2

x(hn)
)

.

Therefore,
TI ≤ Cnmnφ

(a+1)/a
x (hn). (A5)

Since the observations are quasi-associated, and the kernel K is bounded, based on the
Lipschitz, we obtain

TII ≤
(

h−1
n Lip(K)

)2 n

∑
i=1

n

∑
j=1

|i−j|>mn

Υi,j

≤ C
(
(μnh)−1Lip(K)

)2 n

∑
i=1

n

∑
j=1

|i−j|>mn

Υi,j

≤ C
(
(μnh)−1Lip(K)

)2 n

∑
i=1

n

∑
j=1

|i−j|>mn

Υi,j

≤ Cn
(
(μnh)−1Lip(K)

)2
Υmn

≤ Cn
(
(μnh)−1Lip(K)

)2
e−amn . (A6)
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Then, by (A5) and (A6), we obtain

n

∑
i=1

n

∑
j=1
j �=i

Cov(Υi, Υj) ≤ C
(

nmnφ
(a+1)/a
x (hn) + n

(
(μnh)−1Lip(K)

)2
e−amn

)
.

Putting mn = log
(
((μnh)−1Lip(K))

2

aφ
(a+1)/a
x (hn)

)
, we obtain

1
nφx(hn)

n

∑
i=1

n

∑
j=1
j �=i

Cov(Υi, Υj) → 0, as n → ∞. (A7)

Combining together results (A4) and (A7), we show that

Var

(
n

∑
i=1

Υi

)
= O
(

1
nφx(hn)

)
. (A8)

We evaluate the covariance term

Cov(Υs1 . . . Υsu , Υt1 . . . Υtv), (s1, . . . , su, t1, . . . , tv)) ∈ INu+v.

To do that, we treat the following cases:

• The first case is t1 > su; based on the definition of quasi-association, we obtain

|Cov(Υs1 . . . Υsu , Υt1 . . . Υtv )| ≤
((

(μnh)−1Lip(K)
)2

(nIE[K1(x)])−1
)2

(
C

nμnIE[K1(x)]

)u+v−2 u

∑
i=1

v

∑
j=1

Υsi ,tj

≤
(

h−1
n Lip(K)

)2
(

C
nμnIE[K1(x)]

)u+v
vΥt1−su

≤
(

h−1
n Lip(K)

)2
(

C
nμnφx(hn)

)u+v
ve−a(t1−su). (A9)

On the other hand, we have

|Cov(Υs1 . . . Υsu , Υt1 . . . Υtv )| ≤
(

C‖K‖∞

nμnIE[K1(x)]

)u+v−2
×

(|IE[Υsu Υt1 ]|+ IE|Υsu |IE|Υt1 |)

≤
(

C‖K‖∞

nμnIE[K1(x)]

)u+v−2( C
nμnIE[K1(x)]

)2
×(

φ
(a+1)/a
x (hn) + φ2

x(hn)
)

≤
(

C
nμnφx(hn)

)u+v
φ
(a+1)/a
x (hn). (A10)

Furthermore, taking a 1
2(a+1) -power of (A9) and a ( 2a+1

a+1 )-power of (A10), we get for
1 ≤ s1 ≤ . . . ≤ su ≤ t1 ≤ . . . ≤ tv ≤ n :

|Cov(Υs1 . . . Υsu , Υt1 . . . Υtv)| ≤ φx(hn)

(
C

nφx(hn)

)u+v
ve−a(t1−su)/(2(a+1)).
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• The second one is where t1 = su. In this case, we have

|Cov(Υs1 . . . Υsu , Υt1 . . . Υtv)| ≤
(

C‖K‖∞

nμnIE[K1(x)]

)u+v
IE
[∣∣∣K2

1(x)
∣∣∣]

≤ φx(hn)

(
C

nμnφx(hn)

)u+v
. (A11)

So, we are in a position for Kallabis and Newmann’s inequality for the variable Υi, i =
1, . . . , n, where

Kn =
C

nμn
√

φx(hn)
, Mn =

C
μnnφx(hn)

and Var

(
n

∑
i=1

Υi

)
= O
(

1
nφx(hn)

)
.

It allows us to have

IP

(∣∣∣R̃∗
N(x)− IE

[
R̃∗

N(x)
]∣∣∣ > η

√
log n

n1−ξ φx(hn)

)

≤ IP

(∣∣∣ n

∑
i=1

Υi

∣∣∣ > η

√
log n

n1−ξ φx(hn)

)

≤ exp

⎧⎪⎪⎨⎪⎪⎩− η2 log n/(2n1−ξ φx(hn))(
Var(∑n

i=1 Υi) + Cμ−1
n (nφx(hn))

− 1
3

(
log n

n1−ξ φx(hn)

) 5
6
)
⎫⎪⎪⎬⎪⎪⎭

≤ exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩− η2 log n

Cn−ξ + μ−1
n n−ξ/6

(
log5 n

nφx(hn)

) 1
6

⎫⎪⎪⎪⎬⎪⎪⎪⎭
≤ C′ exp

{
−Cη2 log n

}
. (A12)

Choosing the η adequately leads to achieving the proof of (A3).
Next, to prove (A1), use Holder’s inequality to write that

∣∣∣IE[R̃N(x)
]
− IE
[

R̃∗
N(x)

]∣∣∣ ≤ 1
n IE[K1(x)]

∣∣∣∣∣IE
[

n

∑
i=1

Y−1
i 1I{|Yi |<μn}Ki(x)

]∣∣∣∣∣
≤ 1

IE[K1(x)]
IE
[
|Yi|−11I{|Yi |<μn}K1(x)

]
≤ Cφ−1/2

x (hn) exp
(
−μ−1

n /4
)

.

Since μn = n−ξ/6, which allows us to obtain

∣∣∣IE[R̃N(x)
]
− IE
[

R̃∗
N(x)

]∣∣∣ = o

((
log n

n1−ξφx(hn)

)1/2
)

.

We use Markov’s inequality to obtain the last claimed result (A2). Hence, for all ε > 0

IP
[∣∣∣R̃N(x)− R̃∗

N(x)
∣∣∣ > ε

]
= IP

[
1

nφx(hn)

n

∑
i=1

Y−1
i 1I|Yi |−1>μn

Ki(x)| > ε

]
≤ nIP

[
|Y1|−1 > μn

]
≤ Cn exp

(
−μ−1

n

)
.
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Then,

∑
n≥1

IP

(∣∣∣R̃N(x)− R̃∗
N(x)

∣∣∣ > ε0

(√
log n

n1−ξφx(hn)

))
≤ C ∑

n≥1
n exp

(
−μ−1

n

)
. (A13)

Use the definition of μn to achieve the proof of the lemma.

Proof of Lemma 2. Once again, the focus is on the first statement’s proof; the second
statement is obtained in the same way. In fact, the proof of both results uses the stationarity
of the couples (Xi, Yi). Therefore, we write

|IER̃N(x)− R1(x)| = 1
IE[K1(x)]

IE
[
(K1(x))

(
R1(x)− IE

[
Y−1

1 |X1

])]
. (A14)

The conditions (D2) and (D4) imply

|R1(X1)− R1(x)| ≤ Chk1 .

Hence,
|IER̃N(x)− R1(x)| ≤ Chk1 .

Proof of Corollary 1. Clearly, we can obtain that

|R̃D(x)| ≤ R2(x)
2

⇒ |R̃D(x)− R2(x)| ≥ R2(x)
2

.

So,

IP
(
|R̃D(x)| ≤ R2(x)

2

)
≤ IP
(
|R̃D(x)− R2(x)| > R2(x)

2

)
.

Consequently,
∞

∑
n=1

IP
(
|R̃D(x)| < R2(x)

2

)
< ∞.
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Abstract: The aim of the present paper is to completely characterize the boundedness and compact-
ness of a sum operator defined by some more complex products of composition, multiplication,
and mth iterated radial derivative operators from Bloch-type spaces to weighted-type spaces on the
unit ball. In some applications, the boundedness and compactness of all products of composition,
multiplication, and mth iterated radial derivative operators from Bloch-type spaces to weighted-type
spaces on the unit ball are also characterized.

Keywords: mth iterated radial derivative operator; Bloch-type space; weighted-type space; boundedness;
compactness

MSC: 47B38; 47B33; 47B37; 30H05

1. Introduction

In this section, we provide a detailed introduction to the operators involved and the
motivation of the paper.

Let N be the natural number set, N0 = N ∪ {0}, B(a, r) = {z ∈ Cn : |z − a| < r}
the open ball in the complex vector space Cn centered at a with radius r and B = B(0, 1).
Let z = (z1, z2, . . . , zn) and w = (w1, w2, . . . , wn) be two points in Cn. Define 〈z, w〉 =
z1w1 + z2w2 + · · ·+ znwn and |z|2 = 〈z, z〉.
1.1. Operators Involved in the Paper

Let Ω be a domain in Cn, H(Ω) the set of all holomorphic functions on Ω and S(Ω) the
set of all holomorphic self-maps of Ω. Let ϕ ∈ S(Ω). Associated with ϕ is the composition
operator Cϕ, which is defined by Cϕ f = f ◦ ϕ for f ∈ H(Ω). Let u ∈ H(Ω). The
multiplication operator Mu is defined by Mu f = u · f for f ∈ H(Ω).

If n = 1, the open unit ball B becomes the open unit disk D. Let m ∈ N0. The
well-known mth differentiation operator Dm on H(D) is defined by

Dm f (z) = f (m)(z),

where f (0) = f . If m = 1, it is reduced to the classical differentiation operator D. As ex-
pected, there has been some considerable interest in investigating products of differentiation
and other related operators. For example, the most common products

MuCϕD, Cϕ MuD, CϕDMu, MuDCϕ, DMuCϕ, DCϕ Mu (1)

were extensively studied (see, for example, [1–4]). One of the reasons why people are inter-
ested in the six product-type operators is that people need to obtain further methods and
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techniques for studying their properties. Some other products containing differentiation
operators can also be found in [5–8] and the related references therein. However, it is easy
to see that if one studies the operators in (1) one by one, it will require a commitment
of time and energy. In order to surmount this malpractice, the authors in [9] therefore
introduced and investigated the following sum operator (for some later and continuous
studies, see, for example, [10–12])

Tu0,u1,ϕ = Mu0 Cϕ + Mu1 CϕD, (2)

where u0, u1 ∈ H(D) and ϕ ∈ S(D). Sure enough, the operator Tu0,u1,ϕ allows unified
research for the operators in (1). More precisely, it follows that

MuCϕD = T0,u,ϕ, Cϕ MuD = T0,u◦ϕ,ϕ, MuDCϕ = T0,u·ϕ′ ,ϕ,

CϕDMu = Tu′◦ϕ,u◦ϕ,ϕ, DMuCϕ = Tu′ ,u·ϕ′ ,ϕ, DCϕ Mu = T(u′◦ϕ)·ϕ′ ,(u◦ϕ)·ϕ′ ,ϕ.

A very natural way of extending the operators in (1) can be achieved in terms of
replacing D by Dm. That is,

MuCϕDm, Cϕ MuDm, CϕDm Mu, MuDmCϕ, Dm MuCϕ, DmCϕ Mu. (3)

The significance of this extension is that in overcoming some difficulties such as those
caused by ( f ◦ ϕ)(m), some methods and techniques have been excavated. For example,
the following famous Faà di Bruno’s formula (see [13]) was used:

( f ◦ ϕ)(m)(z) =
m

∑
k=0

f (k)(ϕ(z))Bm,k(ϕ′(z), . . . , ϕ(m−k+1)(z)), (4)

where

Bm,k := Bm,k(x1, x2, . . . , xm−k+1) = ∑
m!

∏m−k−1
i=1 ji!

m−k−1

∏
i=1

( xi
i!

)ji
(5)

is the Bell polynomial, the sum is taken over all non-negative integer sequences j1, j2,
. . . , jm−k+1 satisfying ∑m−k+1

i=1 ji = k and ∑m−k+1
i=1 iji = m. In particular, if k = 0, we

have B0,0 = 1 and Bm,0 = 0 for m ∈ N. If k = 1, then Bi,1 = xi. If m = k = i, then
Bi,i = xi

1. By using the Faà di Bruno’s formula, the operators in (3) were studied (see, for
example, [14–17]). Motivated by the above-mentioned discussions, one should naturally
consider defining an operator such that the operators in (3) can be studied in a unified
manner. There may be many people who have the same idea as us. Actually, the authors
in [18] introduced the following operator, which achieved the expectations

Tm
u0,...,um ,ϕ =

m

∑
i=0

Mui CϕDi, (6)

where u0, u1, . . . , um ∈ H(D) and ϕ ∈ S(D). It is clear that if m = 1, the operator in (6) is
reduced to the operator in (2). We first see that the operators MuCϕDm and Cϕ MuDm can
be easily expressed into forms of the operator Tm

u0,...,um ,ϕ, where functions u0, u1, . . ., and
um equal what is very simple and clear. Moreover, it seems to be difficult to express other
operators in (3). However, we can still do it in terms of replacing xj with ϕ(j) in the Bell
polynomial as follows
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MuDmCϕ = Tm
u0=u·Bϕ

m,0,u1=u·Bϕ
m,1,...,um=u·Bϕ

m,m ,ϕ
,

CϕDm Mu = Tm
u0=C0

mu(m)◦ϕ,u1=C1
mu(m−1)◦ϕ,...,um=Cm

m u◦ϕ,ϕ,

Dm MuCϕ = Tm
u0=∑m

i=0 Ci
mu(m−i) ·Bϕ

i,0,u1=∑m
i=1 Ci

mu(m−i) ·Bϕ
i,1,...,um=Cm

m u·Bϕ
m,m ,ϕ

,

DmCϕ Mu = Tm
u0=∑m

i=0 Ci
m(u◦ϕ)(m−i) ·Bϕ

i,0,u1=∑m
i=1 Ci

m(u◦ϕ)(m−i) ·Bϕ
i,1,...,um=Cm

m (u◦ϕ)·Bϕ
m,m ,ϕ

,

where

Bϕ
i,j = Bi,j(ϕ′, ϕ′′, . . . , ϕi−j+1).

One of the natural ways to extend the differentiation operator on domains in Cn is the
radial derivative operator defined by

� f (z) =
n

∑
j=1

zj
∂ f
∂zj

(z). (7)

As expected, the products of the composition, multiplication, and radial derivative operators

MuCϕ�, Cϕ Mu�, Cϕ�Mu, Mu�Cϕ, �MuCϕ, �Cϕ Mu (8)

were studied (see, for example, [19–21]). Correspondingly, the operator in (2) was extended
into the following operator in [22], which completed the unified studies of the operators
in (8)

Tu0,u1,u2,ϕ = Mu0 Cϕ + Mu1 Cϕ�+ Mu2�Cϕ, (9)

where u0, u1, u2 ∈ H(B) and ϕ ∈ S(B). Recently, it has been continuously investigated
in [23–25].

Interestingly, the radial derivative operator can be employed iteratively, that is, if
�m−1 f is defined for some m ∈ N\ {1}, then �m f is naturally defined by �m f = �(�m−1 f ).
If m = 0, then we regard that �0 f = f . By using the mth iterated radial derivative operator,
we obtain the related product-type operators

MuCϕ�m, Cϕ Mu�m, Cϕ�m Mu, Mu�mCϕ, �m MuCϕ, �mCϕ Mu. (10)

The operator MuCϕ�m at first written as �m
u,ϕ was introduced and studied in [26]. We still

reconsidered the operator in [27,28]. One of the reasons why we reconsider the operator
is that we need to obtain more methods and techniques to study its properties. If people
consider the fact that Cϕ Mu�m = Mu◦ϕCϕ�m, then the operator MuCϕ�m can be regarded
as the simplest one in (10). The relatively more simple one in (10) is the operator Cϕ�m Mu.
From a direct calculation, we obtain that

Cϕ�m Mu =
m

∑
i=0

Ci
m M(�m−iu)◦ϕCϕ�i. (11)

Motivated by (11), we then in [29] directly introduced and characterized the boundedness
and compactness of the sum operator

Sm
�u,ϕ =

m

∑
i=0

Mui Cϕ�i. (12)

The boundedness and compactness of the operator were characterized again in [30], and
as an application, the same properties of the operator Cϕ�m Mu were also characterized.
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Here, what we want to emphasize is that the most complicated one in (10) is the operator
�m MuCϕ, if you notice that �mCϕ Mu = �m Mu◦ϕCϕ, which has been investigated very
recently in [31].

1.2. Motivations of the Paper

When we examine the operator Sm
�u,ϕ, we find that it is defined by the operator

Mui Cϕ�i, which can be regarded as the simplest operator in (10). Naturally, we can
try to extend the definition by using other operators in (10). To this end, in this paper, we
introduce the sum operator

Sk,l
�u,�v,ϕ = Mu0 Cϕ +

k

∑
i=1

Mui Cϕ�i +
l

∑
j=1

Mvj�jCϕ, (13)

where u0, u1, . . . , uk, v1, . . . , vl ∈ H(B), ϕ ∈ S(B), and k, l ∈ N. By using the operator, the
operators in (10) can be easily expressed into the following forms

MuCϕ�m = Sm,l
u0≡···≡um−1≡0,um=u,v1≡···≡vl≡0,ϕ,

Cϕ Mu�m = Sm,l
u0≡···≡um−1≡0,um=u◦ϕ,v1≡···≡vl≡0,ϕ,

Cϕ�m Mu = Sm,l
u0=C0

m(�mu)◦ϕ,u1=C1
m(�m−1u)◦ϕ,...,um=Cm

m u◦ϕ,v1≡···≡vl≡0,ϕ
,

Mu�mCϕ = Sk,m
u0≡···≡uk≡0,v1≡···≡vm−1≡0,vm=u,ϕ,

�m MuCϕ = Sk,m
u1≡···≡uk≡0,u0=C0

m�mu,v1=C1
m�m−1u,...,vm=Cm

m u,ϕ
,

�mCϕ Mu = Sk,m
u1≡···≡uk≡0,u0=C0

m�m(u◦ϕ),v1=C1
m�m−1(u◦ϕ),...,vm=Cm

m u◦ϕ,ϕ
.

(14)

One very obvious major difference between the operators Sm
�u,ϕ and Sk,l

�u,�v,ϕ is that there

are some terms Mvj�jCϕ in the expression of Sk,l
�u,�v,ϕ. When the jth iterated radial derivative

operator �j lies between the operators Mu and Cϕ in the product Mu�jCϕ, we find that
there exist some insurmountable difficulties caused by �j( f ◦ ϕ) (see [31]). We, therefore,
guess that there also exist some difficulties in the study of the operator Sk,l

�u,�v,ϕ. Motivated by
this, we study this operator from Bloch-type space to weighted-type space in this paper.
On the other hand, as far as we know, the operator Sk,l

�u,�v,ϕ has not been studied so far. This
study is considerably interesting to a large number of readers. For example, we will prove
that in some sense, the operator Sk,l

�u,�v,ϕ is bounded or compact from Bloch-type space to
weighted-type space if and only if each operator defined in (13) is bounded or compact.
This is a very exciting phenomenon, but it may be not right for the general case, that is,
from the boundedness of the operator T = T1 + T2 + · · ·+ Tm, where Ti is a linear operator
from Banach spaces X to Y, it cannot deduce the boundedness of the operator Ti : X → Y.

1.3. Bloch-Type and Weighted-Type Spaces

A positive continuous function φ on the interval [0, 1) is called normal (see [32]), if
there are λ ∈ [0, 1), a and b (0 < a < b) such that

φ(r)
(1 − r)a is decreasing on [λ, 1), lim

r→1

φ(r)
(1 − r)a = 0;

φ(r)
(1 − r)b is increasing on [λ, 1), lim

r→1

φ(r)
(1 − r)b = +∞.

The functions {φ, ψ} will be called a normal pair, if φ is normal and for b in above definition
of normal function there exists β > b such that

φ(r)ψ(r) = (1 − r2)β.

55



Axioms 2023, 12, 566

If φ is normal, then there exists ψ such that {φ, ψ} is a normal pair (see [32]). Note that if
{φ, ψ} is a normal pair, then ψ is also normal. The purpose of introducing normal pair is to
characterize the duality of spaces defined by the normal functions (see, for example, [33,34]).
For such a function, the following examples were given in [6]:

μ(r) = (1 − r2)α, α ∈ (0,+∞),

μ(r) = (1 − r2)α
{

log 2(1 − r2)−1}β, α ∈ (0, 1), β ∈ [α − 1
2

log 2, 0
]
,

and

μ(r) = (1 − r2)α
{

log log e2(1 − r2)−1}γ, α ∈ (0, 1), γ ∈ [α − 1
2

log 2, 0
]
.

The following fact can be used to prove that there exist a lot of non-normal functions. It
follows from [35] that if μ is normal, then for each s ∈ (0, 1) there exists a positive constant
C = C(s) such that

C−1μ(t) ≤ μ(r) ≤ Cμ(t) (15)

for 0 ≤ r ≤ t ≤ r + s(1 − r). From (15), it is easy to check that the following functions are
non-normal

μ(r) =
∣∣ sin
(

log
1

1 − r
)∣∣vα(r) + 1

and

μ(r) =
∣∣ sin
(

log
1

1 − r
)∣∣vα(r) +

1

ee
1

1−r
,

where
vα(r) =

[
(1 − r)

(
log

e
1 − r

)α]−1.

From the definition of the normal function, we have that there exists a positive constant
δ ∈ (0, 1) such that for r ∈ (δ, 1) it follows that φ(r) ≤ (1 − r)a, which shows that
supr∈(δ,1) φ(r) ≤ (1 − δ)a. Since φ is continuous and positive on [0, δ], it follows that
maxr∈[0,δ] φ(r) < +∞. Therefore, the normal function is bounded on [0, 1).

Let φ be a normal function. The Bloch-type space Bφ(B) consists of all f ∈ H(B)
such that

‖ f ‖βφ(B) = sup
z∈B

φ(|z|)|� f (z)| < +∞.

Bφ(B) is a Banach space with the norm

‖ f ‖Bφ(B) = | f (0)|+ ‖ f ‖βφ(B).

In particular, if φ(r) = (1− r2) log e
1−r2 , then the space Bφ(B) is the logarithmic Bloch space

Blog(B). If φ(r) = (1 − r2)α (α > 0), then the space Bφ(B) is simplified to the classical
weighted Bloch space B�(B). One can see [36] for some results on the Bloch-type spaces.
The operators involved Bloch-type spaces, including Toeplitz operators, composition oper-
ators, weighted composition operators, products of composition, multiplication and mth
differentiation operators, and so on (see, for example, [37–41]).
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A positive and continuous function μ on B is said to be weight. Then, the weighted-
type space H∞

μ (B) consists all f ∈ H(B) such that

‖ f ‖H∞
μ (B) = sup

z∈B
μ(z)| f (z)| < +∞.

H∞
μ (B) is a Banach space with the norm ‖ · ‖H∞

μ (B). In particular, if μ(z) = (1 − |z|2)σ,
where σ > 0, then the space H∞

μ (B) is the classical weighted-type space H∞
σ (B). If μ ≡ 1,

then the H∞
μ (B) becomes the well-known bounded holomorphic function space H∞(B).

Many operators acting from or to the weighted-type spaces have been investigated (see,
for example, [3,7,17,42] and the related references therein). It can be seen that the Bloch-
type space and weighted-type space are metric spaces. One can see [43] and the related
references therein for getting some profound results of metric spaces.

Let X and Y be two Banach spaces. A linear operator T : X → Y is bounded if
there exists a positive constant K such that ‖T f ‖Y ≤ K‖ f ‖X for all f ∈ X. The operator
T : X → Y is compact if it maps bounded sets into relatively compact sets. The norm
‖T‖X→Y of the operator T : X → Y is defined by

‖T‖X→Y = sup
‖ f ‖X≤1

‖T f ‖Y.

As usual, we use the notation j = k, l instead of writing j = k, . . . , l, where k, l ∈ N0
and k ≤ l. Some positive numbers are denoted by C, and they may vary in different
situations. The notation a � b (resp. a � b) means that there is a normal number C such
that a ≤ Cb (resp. a ≥ Cb). When a � b and b � a, we write a � b.

2. Preliminary Results

In this section, we need several elementary results for proving the main results. We
first have the following result (see [44]).

Lemma 1. Let X, Y be Banach spaces of holomorphic functions on B. Suppose that:

(a) The point evaluation functionals on X are continuous;
(b) The closed unit ball of X is a compact subset of X in the topology of uniform convergence on

compact sets;
(c) T : X → Y is continuous when X and Y are given the topology of uniform convergence on

compact sets.

Then, the bounded operator T : X → Y is compact if and only if for every bounded sequence { fm}
in X such that fm → 0 uniformly on compact sets such as m → ∞, it follows that {T fm} converges
to zero in the norm of Y as m → ∞.

We obtain the following characterization of the compactness, which can be proved similar to
that in [45], and can also be proved according to Lemma 1. Therefore, we omit the proof.

Lemma 2. Let φ be normal on [0, 1), ui ∈ H(B), i = 0, k, vj ∈ H(B), j = 1, l, and ϕ ∈ S(B),
and μ a weight function on B. Then, the bounded operator Sk,l

�u,�v,ϕ : Bφ(B) → H∞
μ (B) is compact if

and only if for any bounded sequence { fm} in Bφ(B) such that fm → 0 uniformly on any compact
subset of B as m → ∞, it follows that

lim
m→∞

‖Sk,l
�u,�v,ϕ fm‖H∞

μ (B) = 0.

The next Lemmas 3–5 are needed and obtained from [31].
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Lemma 3. Let N ∈ N and ϕ = (ϕ1, . . . , ϕn) ∈ S(B). Then, for any z ∈ B and f ∈ H(B)

�N( f ◦ ϕ)(z) =
N

∑
j=1

n

∑
l1=1

· · ·
n

∑
lj=1

(
∂j f

∂zl1 ∂zl2 · · · ∂zlj

(ϕ(z)) ∑
k1,...,kj

C(N)
k1,...,kj

j

∏
t=1

�kt ϕlt(z)
)

, (16)

where k1 + k2 + · · ·+ kj = N, j = 1, N, and C(N)
k1,k2,...,kj

are some positive integers with respect to
the positive integers k1, k2, . . . , kj.

Lemma 4. Let w ∈ B, N ∈ N, s > 0, ϕ ∈ S(B) and

gw,s(z) =
1

(1 − 〈z, w〉)s , z ∈ B.

Then

�N(gw,s ◦ ϕ)(z) =
N

∑
j=1

( j−1

∏
k=0

(s + k)
)

∑
k1,...,kj

C(N)
k1,...,kj

∏
j
t=1〈�kt ϕ(z), w〉

(1 − 〈ϕ(z), w〉)s+j , (17)

where constants C(N)
k1,k2,...,kj

are defined in Lemma 3.
Let

Bi,j(〈�ϕ(z), w〉) := Bi,j

(
〈�ϕ(z), w〉, 〈�2 ϕ(z), w〉, . . . , 〈�i−j+1 ϕ(z), w〉

)
.

We also have the following version of Lemma 4.

Lemma 5. Let N ∈ N and {gw,s} be the family of functions defined in Lemma 4. Then

�N(gw,s ◦ ϕ)(z) =
N

∑
j=1

( j−1

∏
k=0

(s + k)
) BN,j(〈�ϕ(z), w〉)
(1 − 〈ϕ(z), w〉)s+j . (18)

Remark 1. (i) From Lemmas 4 and 5, we obtain

∑
k1,...,kj

C(N)
k1,...,kj

j

∏
t=1

〈�kt ϕ(z), w〉 = BN,j(〈�ϕ(z), w〉),

where k1 + k2 + · · ·+ kj = N and j = 1, N.
(ii) If ϕ = z, then from [20] we have

�N gw,s(z) =
N

∑
j=1

a(N)
j

( j−1

∏
k=0

(s + k)
) 〈z, w〉j

(1 − 〈z, w〉)s+j , (19)

where the sequences {a(N)
j }j∈1,N, N ∈ N, are defined by the relations a(N)

N = a(N)
1 = 1 for N ∈ N

and a(N)
j = ja(N−1)

j + a(N−1)
j−1 for 2 ≤ j ≤ N − 1, N ≥ 3. Moreover, it is easy to obtain that

constants C(N)
k1,...,kj

satisfy the following conclusion

∑
k1,...,kj

C(N)
k1,...,kj

= a(N)
j = BN,j(1, 1, . . . , 1), (20)

where k1 + k2 + · · ·+ kj = N and j = 1, N.
(iii) Let

BN,j(〈z, w〉) := BN,j(〈z, w〉, 〈z, w〉, . . . , 〈z, w〉).
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From (19) and (20), we obtain the following version of the Formula (19)

�N gw,s(z) =
N

∑
j=1

( j−1

∏
k=0

(s + k)
) BN,j(〈z, w〉)
(1 − 〈z, w〉)s+j . (21)

The following result is the point-evaluation estimate for the space Bφ(B).

Lemma 6. Let φ be normal on [0, 1). Then, there is a positive constant C independent of f ∈ Bφ(B)
and z ∈ B such that

| f (z)| ≤ C
1 − |z|2
φ(|z|) ‖ f ‖Bφ(B). (22)

Proof. Theorem 3.1 in [36] shows that f ∈ Bφ(B) if and only if there is a function g ∈ L∞(B)
such that

f (z) =
∫
B

g(w)

φ(|w|)(1 − 〈z, w〉)n+t dvt(w), (23)

where t > max{b − 1, 0} and z ∈ B. Moreover, ‖ f ‖Bφ(B) � ‖g‖∞. From Lemma 2.2 in [46],
it follows that

φ(|z|)
φ(|w|) ≤

( 1 − |z|2
1 − |w|2

)a
+
( 1 − |z|2

1 − |w|2
)b

(24)

for z, w ∈ B, where a and b are the parameters in the definition of the normal function.
By (24), we have

φ(|z|)| f (z)|≤ Cφ(|z|)
∫
B

|g(w)|
φ(|w|) |1 − 〈z, w〉|n+t dvt(w)

≤ C
∫
B

φ(|z|)
φ(|w|)

|g(w)|
|1 − 〈z, w〉|n+t dvt(w)

≤ C ‖ g ‖∞

∫
B

(1−|z|2)a(1−|w|2)t−a

|1 − 〈z, w〉|n+t dv(w)

+C ‖ g ‖∞

∫
B

(1−|z|2)b(1−|w|2)t−b

|1 − 〈z, w〉|n+t dv(w).

(25)

If a < 1 and b < 1, from Theorem 1.12 in [47] and (25), then we have

φ(|z|)| f (z)| ≤ C((1 − |z|2)a + (1 − |z|2)b)‖g‖∞ ≤ C(1 − |z|2)‖ f ‖Bφ(B).

If a < 1 and b = 1, since

lim
|z|→1

(1 − |z|2) ln
1

1 − |z|2 = 0, (26)

from Theorem 1.12 in [47] and (25), we have

φ(|z|)| f (z)| ≤ C
(
(1 − |z|2)a + (1 − |z|2) ln

1
1 − |z|2

)
‖g‖∞ ≤ C(1 − |z|2)‖ f ‖Bφ(B).

If a < 1 and b > 1, from Theorem 1.12 in [47] and (25), then we have

φ(|z|)| f (z)| ≤ C((1 − |z|2)a + (1 − |z|2))‖g‖∞ ≤ C(1 − |z|2)‖ f ‖Bφ(B).
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If a = 1 and b > 1, from Theorem 1.12 in [47], (25) and (26), then we have

φ(|z|)| f (z)| ≤ C
(
(1 − |z|2) ln

1
1 − |z|2 + (1 − |z|2)

)
‖g‖∞ ≤ C(1 − |z|2)‖ f ‖Bφ(B).

If a > 1 and b > 1, from Theorem 1.12 in [47] and (25), then we have

φ(|z|)| f (z)| ≤ C((1 − |z|2) + (1 − |z|2))‖g‖∞ ≤ C(1 − |z|2)‖ f ‖Bφ(B).

Combining the above discussions, we obtain

φ(|z|)| f (z)| ≤ C(1 − |z|2)‖ f ‖Bφ(B).

The proof is finished.

The following result is an estimate for the higher-order partial derivative of functions
in the space Bφ(B).

Lemma 7. Let N ∈ N and φ be normal on [0, 1). Then, for every multi-index k = (l1, . . . , lj) such
that |k| = N, there is a positive constant C independent of f ∈ Bφ(B) and z ∈ B such that

∣∣∣ ∂N f (z)

∂zl1
k1

∂zl2
k2

· · · ∂z
lj
kj

∣∣∣ ≤ C
φ(|z|)(1 − |z|2)N−1 ‖ f ‖Bφ(B). (27)

Proof. From (23), we have

∂N f (z)

∂zl1
k1

∂zl2
k2

· · · ∂z
lj
kj

= C
∫
B

wl1
k1

wl2
k2

· · · w
lj
kj

g(w)

φ(|w|)(1 − 〈z, w〉)n+N+t dvt(w) (28)

for some C = C(n, N, t) independent of f and z.
Moreover, from Lemma 2.2 in [46], we have that for all z, w ∈ B

φ(|z|)
φ(|w|) ≤

( 1 − |z|2
1 − |w|2

)a
+
( 1 − |z|2

1 − |w|2
)b

.

From this, (28) and Theorem 1.12 in [47], we have

φ(|z|)(1 − |z|2)N−1

∣∣∣∣∣∣∣
∂N f (z)

∂zl1
k1

∂zl2
k2

· · · ∂z
lj
kj

∣∣∣∣∣∣∣≤ Cφ (|z|)
∫
B

|g(w)|(1 − |z|2)N−1

φ(|w|)|1 − 〈z, w〉|n+N+t dvt (w)

≤ C
∫
B

φ(|z|)
φ(|w|)

|g(w)|(1 − |z|2)N−1

|1 − 〈z, w〉|n+N+t dvt(w)

≤ C ‖ g ‖∞ (1−|z|2)N−1
∫
B

(1−|z|2)a (1−|w|2)t−a

|1 − 〈z, w〉|n+N+t dv(w)

+C ‖ g ‖∞ (1−|z|2)N−1
∫
B

(1−|z|2)b (1−|w|2)t−b

|1 − 〈z, w〉|n+N+t dv(w)

≤ C ‖ g ‖∞ � ‖ f ‖Bφ(B)
.

(29)

The proof is finished.

Let
Bi,j(|�ϕ(z)|) := Bi,j

(
|�ϕ(z)|, |�2 ϕ(z)|, . . . , |�i−j+1 ϕ(z)|

)
.

60



Axioms 2023, 12, 566

Lemma 8. Let N ∈ N, ϕ ∈ S(B) and φ be normal on [0, 1). Then, there exists a positive constant
C independent of f ∈ Bφ(B) and z ∈ B such that

∣∣�N( f ◦ ϕ)(z)
∣∣ ≤ C

N

∑
j=1

BN,j(|�ϕ(z)|)
φ(|z|)(1 − |ϕ(z)|2)j−1 ‖ f ‖Bφ(B).

Proof. From Remark 1 (i), it is obvious that

∑
k1,...,kj

C(N)
k1,...,kj

j

∏
t=1

|�kt ϕ(z)| = BN,j(|�ϕ(z)|), (30)

where k1 + k2 + · · ·+ kj = N and j = 1, N. Hence, by applying Cauchy–Schwarz inequality,
and using Lemmas 3 and 7, we have

∣∣∣�N( f ◦ ϕ)(z)
∣∣∣≤ n

∑
l1=1

n

∑
l2=1

· · ·
n

∑
lN=1

∣∣∣∣∣ ∂N f
∂zl1 ∂zl2 · · · ∂zlN

(ϕ(z))

∣∣∣∣∣ ∑
k1,...,kN

C(N)
k1,...,kN

N

∏
t=1

∣∣∣�kt ϕlt(z)
∣∣∣

+
n

∑
l1=1

n

∑
l2=1

· · ·
n

∑
lN−1=1

∣∣∣∣∣ ∂N−1 f
∂zl1 ∂zl2 · · · ∂zlN−1

(ϕ(z))

∣∣∣∣∣ ∑
k1,...,kN−1

C(N)
k1,...,kN−1

N−1

∏
t=1

∣∣∣�kt ϕlt(z)
∣∣∣

+ · · ·+
n

∑
l=1

∣∣∣∣∣ ∂ f
∂zl

(ϕ(z))

∣∣∣∣∣∑k1

C(N)
k1

∣∣∣∣∣�k1 ϕl(z)

∣∣∣∣∣
≤ C

(
BN,N(|�ϕ(z)|)

φ(|z|)(1 − |ϕ(z)|2)N−1
‖ f ‖Bφ(B)

+
BN,N−1(|�ϕ(z)|)

φ(|z|)(1 − |ϕ(z)|2)N−2
‖ f ‖Bφ(B)

+ · · ·+ BN,1(|�ϕ(z)|)
φ(|z|) ‖ f ‖Bφ(B)

)
.

(31)

From (31), the desired result follows.

Remark 2. If ϕ = z, then from Lemma 8, we have that there exists a positive constant C indepen-
dent of f ∈ Bφ(B) and z ∈ B such that

∣∣�N f (z)
∣∣ ≤ C

N

∑
j=1

BN,j(|z|)
φ(|z|)(1 − |z|2)j−1 ‖ f ‖Bφ(B) �

|z|
φ(|z|)(1 − |z|2)N−1 ‖ f ‖Bφ(B),

where BN,j(|z|) = BN,j(|z|, |z|, . . . , |z|).

The next lemma offers an important test function used in the proofs of the main results.

Lemma 9. Let φ be normal on [0, 1). Then, for each t ≥ b − 1 and fixed w ∈ B, the following
function is in Bφ(B)

fw,t(z) =
1 − |w|2
φ(|w|)

(
1 − |w|2

1 − 〈z, w〉
)t+1

. (32)

Moreover,

sup
w∈B

‖ fw,t‖Bφ(B) � 1. (33)
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Proof. Since the definition of function φ, we have

φ(|z|)|� fw,t (z)|= (t + 1)
φ(|z|)
φ(|w|)

(1−|w|2)t+1|〈z, w〉|
|1 − 〈z, w〉|t+2

≤ (t + 1)
φ(|z|)

(1−|z|)t+1
(1−|w|2)t+1

φ(|w|) ≤ C < +∞.

(34)

Therefore, we have that (33) holds.

Remark 3. It is obvious that the function defined in (32) satisfies the following estimate

| fw,t(z)| ≤ (1 − |w|2)(1 + |w|)t

φ(|w|) ≤ C
(1 − |w|2)

φ(|w|) .

This shows that fw,t uniformly converges to zero on any compact subset of B as |w| → 1.

Finally, we need the following lemma (see [26]).

Lemma 10. If a > 0, then

Dn(a) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
a a + 1 · · · a + n − 1

a(a + 1) (a + 1)(a + 2) · · · (a + n − 1)(a + n)
...

...
...

n−2

∏
k=0

(a + k)
n−2

∏
k=0

(a + k + 1) · · ·
n−2

∏
k=0

(a + k + n − 1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

n−1

∏
k=1

k!.

3. The Condition on the Symbols

Let ϕ(z) = (ϕ1(z), . . . , ϕn(z)) ∈ S(B) and �m ϕ(z) = (�m ϕ1(z), . . . ,�m ϕn(z)). To
characterize the boundedness and compactness of the operator �MuCϕ, the authors in [19]
proposed the condition: there exists a λ ∈ (0, 1) such that if |ϕ(z)| > λ, then

∣∣�ϕ(z)
∣∣ ≤ 1

λ

∣∣〈�ϕ(z), ϕ(z)〉∣∣. (35)

In the characterization of the boundedness and compactness of the operator Tu0,u1,u2,ϕ,
the authors in [25] introduced the condition on symbols u1, u2 and ϕ: there are ρ ∈ (0, 1)
and a positive constant C such that if |ϕ(z)| > ρ, then∣∣u1(z)ϕ(z) + u2(z)�ϕ(z)

∣∣ ≤ C
∣∣〈u1(z)ϕ(z) + u2(z)�ϕ(z), ϕ(z)〉∣∣. (36)

The authors in [22] also gave a special relationship such that the symbols u1, u2, and ϕ
satisfied the condition.

Conditions (35) and (36) hold for all symbols if n = 1, which shows that it is more
complicated for n > 1. Since �MuCϕ can be regarded as the operator T�u,0,u,ϕ, we deduce
that condition (36) is reduced to condition (35).

Motivated by previous studies mentioned such as [19,22,25], here we introduce the
condition concerning all symbols ϕ, ui and vj, i, j = 1, l: there exist δ ∈ (0, 1) and a positive
constant C such that if z ∈ K = {z ∈ B : |ϕ(z)| > δ}, then for every j = 1, l∣∣∣∣∣ l

∑
i=j

(
ui(z)Bi,j(ϕ(z)) + vi(z)Bi,j(�ϕ(z))

)∣∣∣∣∣
≤ C

∣∣∣∣∣ l

∑
i=j

(ui(z)Bi,j (|ϕ(z)|2) + vi(z)Bi,j(〈�ϕ(z), ϕ(z)〉))
∣∣∣∣∣,

(37)
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where

Bi,j(ϕ(z)) := Bi,j(ϕ(z), ϕ(z), . . . , ϕ(z))

and

Bi,j(�ϕ(z)) := Bi,j(�ϕ(z), �2 ϕ(z), . . . , �i−j+1 ϕ(z)).

Since B1,1(x) = x, the condition (37) is reduced to condition (36) if l = 1.

Remark 4. The case of k = l is assumed in the condition (37). If k �= l, for example k > l, then by
setting vl+1 ≡ vl+2 ≡ · · · ≡ vk = 0, we see that the condition (37) is equivalent to the following
conditions

∣∣∣ l

∑
i=j

(ui(z)Bi,j(ϕ(z)) + vi(z)Bi,j(�ϕ(z)))
∣∣∣ ≤ C

∣∣∣ l

∑
i=j

(ui(z)Bi,j(|ϕ(z)|2) + vi(z)Bi,j(〈�ϕ(z), ϕ(z)〉))
∣∣∣

for j = 1, l, and

∣∣∣ k

∑
i=j

ui(z)Bi,j(ϕ(z))
∣∣∣ ≤ C

∣∣∣ k

∑
i=j

ui(z)Bi,j(|ϕ(z)|2)
∣∣∣

for j = l, k.
If l > k, then by setting uk+1 ≡ uk+2 ≡ · · · ≡ ul = 0, we also see that the condition (37) is

equivalent to the following conditions

∣∣∣ k

∑
i=j

(ui(z)Bi,j(ϕ(z)) + vi(z)Bi,j(�ϕ(z)))
∣∣∣ ≤ C

∣∣∣ k

∑
i=j

(ui(z)Bi,j(|ϕ(z)|2) + vi(z)Bi,j(〈�ϕ(z), ϕ(z)〉))
∣∣∣

for j = 1, k, and

∣∣∣ l

∑
i=j

vi(z)Bi,j(�ϕ(z))
∣∣∣ ≤ C

∣∣∣ l

∑
i=j

vi(z)Bi,j(〈�ϕ(z), ϕ(z)〉)
∣∣∣

for j = k, l.

We need to discuss what kind of symbols can satisfy the condition. Assume n > 1,
then we see that the following example satisfies the condition (37).

Example 1. Let ϕ(z) = (z1, z2/2, . . . , zn/n), ui(z) = aiz1, and vi(z) = biz1, i = 1, l, where
constants ai and bi are positive. Then, these symbols satisfy the condition (37).

Proof. It is easy to see that �i ϕ(z) = ϕ(z) for each i = 1, l. Hence, we obtain that

∣∣∣ l

∑
i=j

(ui(z)Bi,j(|ϕ(z)|2) + vi(z)Bi,j(〈�ϕ(z), ϕ(z)〉))
∣∣∣ = l

∑
i=j

|z1|
∣∣〈(ai + bi)Bi,j(ϕ(z)), ϕ(z)〉∣∣

=
l

∑
i=j

|z1|
∣∣(ai + bi)Bi,j(ϕ(z))

∣∣|ϕ(z)|j ≥ δj
l

∑
i=j

|z1|
∣∣(ai + bi)Bi,j(ϕ(z))

∣∣
= δj
∣∣∣ l

∑
i=j

(ui(z)Bi,j(ϕ(z)) + vi(z)Bi,j(�ϕ(z)))
∣∣∣,

which implies that (37) holds.
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Except for the above example, we also see that if n = 1, all symbols satisfy the
condition.

Proposition 1. If n = 1, all symbols ϕ, ui and vi, i = 1, l satisfy the condition (37).

Proof. Since ∣∣∣ l

∑
i=j

(ui(z)Bi,j(|ϕ(z)|2) + vi(z)Bi,j(〈�ϕ(z), ϕ(z)〉))
∣∣∣

=
∣∣∣〈 l

∑
i=j

(ui(z)Bi,j(ϕ(z)) + vi(z)Bi,j(�ϕ(z))), ϕ(z)j
〉∣∣∣,

we have ∣∣∣ l

∑
i=j

(ui(z)Bi,j(|ϕ(z)|2) + vi(z)Bi,j(〈�ϕ(z), ϕ(z)〉))
∣∣∣

=
∣∣∣ l

∑
i=j

(ui(z)Bi,j(ϕ(z)) + vi(z)Bi,j(�ϕ(z)))
∣∣∣|ϕ(z)|j

≥ δj
∣∣∣ l

∑
i=j

(ui(z)Bi,j(ϕ(z)) + vi(z)Bi,j(�ϕ(z)))
∣∣∣,

which implies that (37) holds for all symbols ϕ, ui and vi, i = 1, l.

For n > 1, it is difficult, but we still give the following result.

Proposition 2. Let ϕ ∈ S(B) and ui, vi ∈ H(B) for each i = 1, l. Then, the following statements
hold.

(i) If ∑l
i=j(ui(z)Bi,j(ϕ(z)) + vi(z)Bi,j(�ϕ(z)) and ϕ(z)j are linearly dependent for each

z ∈ K, j = 1, l, then the condition (37) holds;
(ii) If vi ≡ 0 for i = 1, l, then the condition (37) holds.

Proof. (i) If ∑l
i=j(ui(z)Bi,j(ϕ(z)) + vi(z)Bi,j(�ϕ(z)) and ϕ(z)j are linearly dependent for

each z ∈ K, j = 1, l, we have

∣∣∣ l

∑
i=j

(ui(z)Bi,j(|ϕ(z)|2) + vi(z)Bi,j(〈�ϕ(z), ϕ(z)〉))
∣∣∣

=
∣∣∣〈 l

∑
i=j

(ui(z)Bi,j(ϕ(z)) + vi(z)Bi,j(�ϕ(z))), ϕ(z)j
〉∣∣∣

=
∣∣∣ l

∑
i=j

(ui(z)Bi,j(ϕ(z)) + vi(z)Bi,j(�ϕ(z)))
∣∣∣|ϕ(z)|j

≥ δj
∣∣∣ l

∑
i=j

(ui(z)Bi,j(ϕ(z)) + vi(z)Bi,j(�ϕ(z)))
∣∣∣,

which implies that (37) holds.
(ii) If vi ≡ 0 for i = 1, l, we have

∣∣∣ l

∑
i=j

ui(z)Bi,j(|ϕ(z)|2)
∣∣∣ = ∣∣∣ l

∑
i=j

ui(z)Bi,j(ϕ(z))
∣∣∣|ϕ(z)|j ≥ δj

∣∣∣ l

∑
i=j

ui(z)Bi,j(ϕ(z))
∣∣∣,

which implies that (37) holds.
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4. Boundedness and Compactness of the Operator Sk,l
�u,�v,ϕ : Bφ(B) → H∞

μ (B)

We now begin to characterize the boundedness of the operator Sk,l
�u,�v,ϕ : Bφ(B) →

H∞
μ (B). We first consider the case of k = l.

Theorem 1. Assume that (37) is satisfied, k, l ∈ N, k = l, u0 ∈ H(B), ui, vi ∈ H(B), i = 1, l, φ

normal on [0, 1), ϕ ∈ S(B) and μ a weight function on B. Then, the operator Sk,l
�u,�v,ϕ : Bφ(B) →

H∞
μ (B) is bounded if and only if

I0 := sup
z∈B

μ(z)|u0(z)|(1 − |ϕ(z)|2)
φ(|ϕ(z)|) < +∞ (38)

and

Ij := sup
z∈B

μ(z)| ∑l
i=j(ui(z)Bi,j(ϕ(z)) + vi(z)Bi,j(�ϕ(z)))|

φ(|ϕ(z)|)(1 − |ϕ(z)|2)j−1 < +∞ (39)

for j = 1, l.
Moreover, if the operator Sk,l

�u,�v,ϕ : Bφ(B) → H∞
μ (B) is bounded, then the following asymptotic

relationship holds

‖Sk,l
�u,�v,ϕ‖Bφ(B)→H∞

μ (B) �
l

∑
j=0

Ij. (40)

Proof. Suppose that (38) and (39) hold. From Lemma 6, Lemma 7 and Remark 1 (i), we
have

μ(z)
∣∣∣u0(z) f (ϕ(z)) +

l

∑
i=1

ui(z)�i f (ϕ(z)) +
l

∑
j=1

uj(z)�j( f ◦ ϕ)(z)
∣∣∣

≤ μ(z)|u0(z) f (ϕ(z))|+ μ(z)
∣∣∣ l

∑
i=1

(
ui(z)�i f (ϕ(z)) + vi(z)�i( f ◦ ϕ)(z)

)∣∣∣
= μ(z)|u0(z) f (ϕ(z))|+ μ(z)

∣∣∣ l

∑
i=1

i

∑
j=1

(
ui(z)

n

∑
l1=1

· · ·
n

∑
lj=1

( ∂j f
∂zl1 ∂zl2 · · · ∂zlj

(ϕ(z)) ∑
k1,...,kj

C(i)
k1,...,kj

j

∏
t=1

ϕlt(z)
)

+ vi(z)
n

∑
l1=1

· · ·
n

∑
lj=1

( ∂j f
∂zl1 ∂zl2 · · · ∂zlj

(ϕ(z)) ∑
k1,...,kj

C(i)
k1,...,kj

j

∏
t=1

�kt ϕlt(z)
))∣∣∣

= μ(z)|u0(z) f (ϕ(z))|+ μ(z)
∣∣∣ l

∑
j=1

l

∑
i=j

(
ui(z)

n

∑
l1=1

· · ·
n

∑
lj=1

( ∂j f
∂zl1 ∂zl2 · · · ∂zlj

(ϕ(z)) ∑
k1,...,kj

C(i)
k1,...,kj

j

∏
t=1

ϕlt(z)
)

+ vi(z)
n

∑
l1=1

· · ·
n

∑
lj=1

( ∂j f
∂zl1 ∂zl2 · · · ∂zlj

(ϕ(z)) ∑
k1,...,kj

C(i)
k1,...,kj

j

∏
t=1

�kt ϕlt(z)
))∣∣∣

� μ(z)|u0(z) f (ϕ(z))|+ μ(z)
l

∑
j=1

n

∑
l1=1

· · ·
n

∑
lj=1

∣∣∣ ∂j f
∂zl1 ∂zl2 · · · ∂zlj

(ϕ(z))
∣∣∣∣∣∣ l

∑
i=j

∑
k1,...,kj

C(i)
k1,...,kj

(
ui(z)

j

∏
t=1

ϕlt(z)

+ vi(z)
j

∏
t=1

�kt ϕlt(z)
)∣∣∣
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� μ(z)|u0(z)|(1 − |ϕ(z)|2)
φ(|ϕ(z)|) ‖ f ‖Bφ(B) +

l

∑
j=1

μ(z)
∣∣∣ l

∑
i=j

∑
k1,...,kj

C(i)
k1,...,kj

(
ui(z)ϕ(z)j + vi(z)

j
∏

t=1
�kt ϕ(z)

)∣∣∣
φ(|ϕ(z)|)(1 − |ϕ(z)|2)j−1 ‖ f ‖Bφ(B)

=
μ(z)|u0(z)|(1 − |ϕ(z)|2)

φ(|ϕ(z)|) ‖ f ‖Bφ(B) +
l

∑
j=1

μ(z)
∣∣∣ l

∑
i=j

(
ui(z)Bi,j(ϕ(z)) + vi(z)Bi,j(�ϕ(z))

)∣∣∣
φ(|ϕ(z)|)(1 − |ϕ(z)|2)j−1 ‖ f ‖Bφ(B)

=
(

I0 +
l

∑
j=1

Ij

)
‖ f ‖Bφ(B) =

l

∑
j=0

Ij‖ f ‖Bφ(B).

From this, it follows that

‖Sk,l
�u,�v,ϕ f ‖H∞

μ (B) ≤
(

C
l

∑
j=0

Ij

)
‖ f ‖Bφ(B). (41)

By taking the supremum in inequality (41) over the unit ball in the space Bφ(B), using
conditions (38) and (39), we have that the operator Sk,l

�u,�v,ϕ : Bφ(B) → H∞
μ (B) is bounded.

Moreover, from (41) and the definition of operator norm, we have

‖Sk,l
�u,�v,ϕ‖Bφ(B)→H∞

μ (B) ≤ C
l

∑
j=0

Ij. (42)

Now, suppose that Sk,l
�u,�v,ϕ : Bφ(B) → H∞

μ (B) is bounded. Then, there exists a positive
constant C independent of f ∈ Bφ(B) such that

‖Sk,l
�u,�v,ϕ f ‖H∞

μ (B) ≤ C‖ f ‖Bφ(B). (43)

By using test function f (z) = 1 ∈ Bφ(B), we have

K := sup
z∈B

μ(z)|u0(z)| < +∞. (44)

By using test function fk(z) = zj
k ∈ Bφ(B), k = 1, n and j = 1, l, from (44) and the

boundedness of Sk,l
�u,�v,ϕ : Bφ(B) → H∞

μ (B), we have

μ(z)
∣∣∣u0(z)ϕk(z)j +

l

∑
i=j

(
ui(z)Bi,j(ϕk(z)) + vi(z)Bi,j(�ϕk(z))

)∣∣∣ < +∞ (45)

for each j ∈ {1, 2, . . . , l}. Using (44), (45) and the triangle inequality and the fact |ϕ(z)| ≤ 1,
we have

sup
z∈B

μ(z)

∣∣∣∣∣ l

∑
i=j

(
ui(z)Bi,j(ϕ(z)) + vi(z)Bi,j(�ϕ(z))

)∣∣∣∣∣
= sup

z∈B
μ(z)

√√√√ n

∑
k=1

∣∣∣∣∣ l

∑
i=j

(
ui(z)Bi,j(ϕk(z)) + vi(z)Bi,j(�ϕk(z))

)∣∣∣∣∣
2

≤ C + sup
z∈B

μ(z)

√
n

∑
k=1

∣∣∣u0(z)ϕk(z)
j
∣∣∣2

≤ C + sup
z∈B

μ(z)|u0 (z)||ϕ(z)|j

≤ C + K < +∞.

(46)

66



Axioms 2023, 12, 566

Let w ∈ B and dk = k + 1. For each j ∈ {1, 2, . . . , l} and constants ck = c(j)
k , k = 0, l, let

h(j)
w (z) =

l

∑
k=0

c(j)
k fw,k(z), (47)

where fw,k is defined in Lemma 9. By Lemma 9, we have

Lj = sup
w∈B

‖h(j)
w ‖Bφ(B) < +∞. (48)

From (43), (48), Lemma 5 and Remark 1 (iii), we have

Lj‖Sk,l
�u,�v,ϕ‖Bφ(B)→H∞

μ (B) ≥ ‖Sk,l
�u,�v,ϕh(j)

ϕ(w)
‖H∞

μ (B)

= sup
z∈B

μ(z)
∣∣∣u0(z)h

(j)
ϕ(w)

(ϕ(z)) +
l

∑
i=1

(
ui(z)�ih(j)

ϕ(w)
(ϕ(z)) + vi(z)�i(h(j)

ϕ(w)
◦ ϕ)(z)

)∣∣∣
≥ μ(w)

∣∣∣u0(w)h(j)
ϕ(w)

(ϕ(w)) +
l

∑
i=1

(
ui(w)�ih(j)

ϕ(w)
(ϕ(w)) + vi(w)�i(h(j)

ϕ(w)
◦ ϕ)(w)

)∣∣∣
= μ(w)

∣∣∣u0(w)h(j)
ϕ(w)

(ϕ(w)) +
l

∑
i=1

(
ui(w)

l

∑
k=0

ck�i fϕ(w),k(ϕ(w)) + vi(w)
l

∑
k=0

ck�i( fϕ(w),k ◦ ϕ)(w)
)∣∣∣

= μ(w)
∣∣∣u0(w)(1 − |ϕ(w)|2) c0 + c1 + · · ·+ cl

φ(|ϕ(w)|)

+
l

∑
i=1

(
ui(w)Bi,1(|ϕ(w)|2) + vi(w)Bi,1(〈�ϕ(w), ϕ(w)〉)

) (d0c0 + · · ·+ dlcl)

φ(|ϕ(w)|)
+ · · ·

+
l

∑
i=j

(
ui(w)Bi,j(|ϕ(w)|2) + vi(w)Bi,j(〈�ϕ(w), ϕ(w)〉)

) (d0 · · · dj−1c0 + · · ·+ dl · · · dl+j−1cl)

φ(|ϕ(w)|)(1 − |ϕ(w)|2)j−1

+ · · ·
+
(

ul(w)Bl,l(ϕ(w)) + vl(w)Bl,l(〈�ϕ(w), ϕ(w)〉)
) (d0 · · · dl−1c0 + · · ·+ dl · · · d2l−1cl)

φ(|ϕ(w)|)(1 − |ϕ(w)|2)l−1

∣∣∣. (49)

Since dk > 0, k = 0, l, by Lemma 10, we have the following linear equations⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 · · · 1
d0 d1 · · · dl
...

...
. . .

...
j−1

∏
k=0

dk

j−1

∏
k=0

dk+1 · · ·
j−1

∏
k=0

dk+l

...
...

. . .
...

l−1

∏
k=0

dk

l−1

∏
k=0

dk+1 · · ·
l−1

∏
k=0

dk+l

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c0
c1
...

cj

...

cl

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
...

1

...

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (50)

From (49), (50) and (37), we have
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Lj‖ Sk,l
→
u ,

→
v ,ϕ

‖
Bφ(B)→H∞

μ (B)
≥ sup

z∈K

μ(z)| ∑l
i=j(ui(z)Bi,j(|ϕ(z)|2)+vi(z)Bi,j(〈�ϕ(z), ϕ(z)〉))|

φ(|ϕ(z)|)(1 − |ϕ(z)|2)j−1

= sup
z∈K

μ(z)
∣∣∣〈∑l

i=j
(
ui(z)Bi,j(ϕ(z)) + vi(z)Bi,j(�ϕ(z))

)
, ϕ(z)j

〉
|

φ(|ϕ(z)|)(1 − |ϕ(z)|2)j−1

� sup
z∈K

μ(z)| ∑l
i=j
(
ui(z)Bi,j(ϕ(z)) + vi(z)Bi,j(�ϕ(z))

)|
φ(|ϕ(z)|)(1 − |ϕ(z)|2)j−1

.

(51)

On the other hand, from (46), we have

sup
z∈B�K

μ(z)| ∑l
i=j
(
ui(z)Bi,j(ϕ(z)) + vi(z)Bi,j(�ϕ(z))

)|
φ(|ϕ(z)|)(1 − |ϕ(z)|2)j−1

≤ sup
z∈B

μ(z)| ∑l
i=j
(
ui(z)Bi,j(ϕ(z)) + vi(z)Bi,j(�ϕ(z))

)|
max|z|≤δ φ(z)(1 − δ2)

j−1 < +∞.

(52)

From (51) and (52), we find that (39) holds for j = 1, l.
For constants ck = c(0)k , k = 0, l, let

h(0)w (z) =
l

∑
k=0

c(0)k fw,k(z). (53)

By Lemma 9, we know that L0 = supw∈B ‖h(0)w ‖Bφ(B) < +∞. From this, (49), (50) and
Lemma 10, we obtain

L0‖Sk,l
�u,�v,ϕ‖Bφ(B)→H∞

μ (B) ≥
μ(z)|u0(z)|(1 − |ϕ(z)|2)

φ(|ϕ(z)|) . (54)

Hence, we have that I0 < +∞. Moreover, we have

C‖Sk,l
�u,�v,ϕ‖Bφ(B)→H∞

μ (B) ≥
l

∑
j=0

Ij. (55)

From (42) and (55), we obtain (40). The proof is completed.

The following result gives a sufficient condition for the boundedness of the operator
Sk,l
�u,�v,ϕ : Bφ(B) → H∞

μ (B) for k = l. It does not need to satisfy the condition (37).

Corollary 1. Let k, l ∈ N, k = l, u0 ∈ H(B), ui, vi ∈ H(B), i = 1, l, φ normal on [0, 1),
ϕ ∈ S(B) and μ a weight function on B. If

sup
z∈B

μ(z)|u0(z)|(1 − |ϕ(z)|2)
φ(|ϕ(z)|) < +∞

and

sup
z∈B

μ(z)| ∑l
i=j(ui(z)Bi,j(ϕ(z)) + vi(z)Bi,j(�ϕ(z)))|

(1 − |ϕ(z)|2)j−1 < +∞

for j = 1, l, then the operator Sk,l
�u,�v,ϕ : Bφ(B) → H∞

μ (B) is bounded.
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If we consider some special symbols, we can obtain the following interesting results.
For example, if we let vj ≡ 0, j = 1, l, then the operator Sk,l

�u,�v,ϕ is reduced to the operator

Sk
�u,ϕ, that is,

Sk
�u,ϕ =

k

∑
i=0

Mui Cϕ�i.

Then, from Theorem 3.2 in [30], we can obtain similarly the following result, which is right
without any additional conditions on the symbols.

Theorem 2. The operators Mui Cϕ�i : Bφ(B) → H∞
μ (B), i = 0, k, are bounded operator if and

only if Sk
�u,ϕ : Bφ(B) → H∞

μ (B) is bounded and

μ(z)|ui(z)||ϕ(z)| < +∞ (56)

for each i = 1, k.

Moreover, if we consider ui ≡ 0, i = 1, k, then the operator Sk,l
�u,�v,ϕ becomes the following

operator, denoted by Sl
�v,ϕ. Namely,

Sl
�v,ϕ =

l

∑
j=0

Mvj�jCϕ.

For this special case, the condition (37) becomes: there exist δ ∈ (0, 1) and two positive
constants C1 and C2 such that if z ∈ K = {z ∈ B : |ϕ(z)| > δ}, then∣∣�j ϕ(z)

∣∣ ≤ C1
∣∣〈�j ϕ(z), ϕ(z)〉∣∣ ≤ C2

∣∣〈�ϕ(z), ϕ(z)〉∣∣j (57)

for every j = 1, l.
Then, from Remark 4.1 in [31], we have the following interesting result.

Theorem 3. Assume that (57) is satisfied. Then, the operator Sl
�v,ϕ : Bφ(B) → H∞

μ (B) is bounded

if and only if the operators Mvj�jCϕ : Bφ(B) → H∞
μ (B), j = 0, l, are bounded.

Remark 5. The boundedness can be discussed similarly for two cases of k > l and k < l. Here, we
omit.

We next begin to consider the compactness of the operator Sk,l
�u,�v,ϕ : Bφ(B) → H∞

μ (B) only for
k = l.

Theorem 4. Assume that (37) is satisfied, k, l ∈ N, k = l, u0 ∈ H(B), ui, vi ∈ H(B), i = 1, l, φ

normal on [0, 1), ϕ ∈ S(B) and μ a weight function on B. Then, the operator Sk,l
�u,�v,ϕ : Bφ(B) →

H∞
μ (B) is compact if and only if the operator Sk,l

�u,�v,ϕ : Bφ(B) → H∞
μ (B) is bounded,

lim
|ϕ(z)|→1

μ(z)|u0(z)|(1 − |ϕ(z)|2)
φ(|ϕ(z)|) = 0 (58)

and

lim
|ϕ(z)|→1

μ(z)| ∑l
i=j(ui(z)Bi,j(ϕ(z)) + vi(z)Bi,j(�ϕ(z)))|

φ(|ϕ(z)|)(1 − |ϕ(z)|2)j−1 = 0 (59)

for j = 1, l.
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Proof. Assume that Sk,l
�u,�v,ϕ : Bφ(B) → H∞

μ (B) is compact. It is obvious that Sk,l
�u,�v,ϕ : Bφ(B) →

H∞
μ (B) is bounded. If ‖ϕ‖∞ < 1, then it is clear that (58) and (59) are true. Therefore, we

suppose that ‖ϕ‖∞ = 1. Let {zm} be a sequence in B such that |ϕ(zm)| → 1 as m → ∞ and
h(j)

m = h(j)
ϕ(zm)

, where h(j)
w are defined in (47) for a fixed j ∈ {1, 2, . . . , l}. Then, we have that

supm∈N ‖h(j)
m ‖Bφ(B) < +∞. By Remark 3, we have that h(j)

m → 0 uniformly on any compact
subset of B as m → ∞. Hence, by Lemma 2 we obtain

lim
m→∞

‖Sk,l
�u,�v,ϕh(j)

m ‖H∞
μ (B) = 0. (60)

From (51), for sufficiently large m, we have that

μ(zm)| ∑l
i=j(ui(zm)Bi,j(ϕ(zm)) + vi(zm)Bi,j(�ϕ(zm)))|

φ(|ϕ(zm)|)(1 − |ϕ(zm)|2)j−1 ≤ ‖Sk,l
�u,�v,ϕh(j)

m ‖H∞
μ (B). (61)

Taking m → ∞ in (61), by using (60), we have that (59) holds for j = 1, l.
Furthermore, let h(0)m = h(0)

ϕ(zm)
, where h(0)w is defined in (53). Then, we also have that

supm∈N ‖h(0)m ‖Bφ(B) < +∞ and h(0)m → 0 uniformly on any compact subset of B as m → ∞.
Hence, by Lemma 2 we have

lim
m→∞

‖Sk,l
�u,�v,ϕh(0)m ‖H∞

μ (B) = 0. (62)

From (54), we have

μ(zm)|u0(zm)|(1 − |ϕ(zm)|2)
φ(|ϕ(zm)|) ≤ ‖Sk,l

�u,�v,ϕh(0)m ‖H∞
μ (B). (63)

Letting m → ∞ in (63) and using (62), we have that (58) holds.
Now, assume that Sk,l

�u,�v,ϕ : Bφ(B) → H∞
μ (B) is bounded. From (44) and (46), we have

μ(z)|u0(z)| ≤ C < +∞ (64)

and

μ(z)
∣∣∣ l

∑
i=j

(ui(z)Bi,j(ϕ(z)) + vi(z)Bi,j(�ϕ(z)))
∣∣∣ ≤ C < +∞ (65)

for all z ∈ B. On the other hand, from (58) and (59), we have that for arbitrary ε > 0, there
is a δ ∈ (0, 1) such that on K

μ(z)|u0(z)|(1 − |ϕ(z)|2)
φ(|ϕ(z)|) < ε. (66)

and

μ(z)| ∑l
i=j(ui(z)Bi,j(ϕ(z)) + vi(z)Bi,j(�ϕ(z)))|

φ(|ϕ(z)|)(1 − |ϕ(z)|2)j−1 < ε. (67)

Assume that { fs} is a sequence such that sups∈N ‖ fs‖Bφ(B) ≤ M and fs → 0 uniformly
on any compact subset of B as s → ∞. Then, by Lemmas 3, 6, and 7 and (64)–(67), we have
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‖ Sk,l
→
u ,

→
v ,ϕ

fs ‖H∞
μ (B)

= sup
z∈B

μ(z)

∣∣∣∣∣u0(z) f (ϕ(z)) +
l

∑
i=1

(
ui(z)�i f (ϕ(z)) + vi(z)�i( f ◦ ϕ)(z)

)∣∣∣∣∣
= sup

z∈K
μ(z)

∣∣∣∣∣u0(z) f (ϕ(z)) +
l

∑
i=1

(
ui(z)�i f (ϕ(z)) + vi(z)�i( f ◦ ϕ)(z)

)∣∣∣∣∣
+ sup

z∈B�K
μ(z)

∣∣∣∣∣u0(z) f (ϕ(z)) +
l

∑
i=1

(
ui(z)�i f (ϕ(z)) + vi(z)�i( f ◦ ϕ)(z)

)∣∣∣∣∣
≤ C sup

z∈K

μ(z)|u0 (z)|(1 − |ϕ(z)|2)
φ(|ϕ(z)|) ‖ fs ‖Bφ(B)

+C sup
z∈K

μ(z)| ∑l
i=j
(
ui(z)Bi,j(ϕ(z)) + vi(z)Bi,j(�ϕ(z))

)|
φ(|ϕ(z)|)(1 − |ϕ(z)|2)j−1

‖ fs ‖Bφ(B)

+ sup
z∈B�K

μ(z)|u0 (z)|| fs (ϕ(z))|

+ sup
z∈B�K

l

∑
j=1

μ(z)

∣∣∣∣∣ l

∑
i=j

(
ui(z)Bi,j(ϕ(z)) + vi(z)Bi,j(�ϕ(z))

)∣∣∣∣∣ max
{l1,l2,...,lj}

∣∣∣∣∣ ∂j fs

∂zl1 ∂zl2 · · · ∂zlj

(ϕ(z))

∣∣∣∣∣
≤ CMε + C sup

|w|≤δ

l

∑
j=0

max
{l1,l2,...,lj}

∣∣∣∣∣ ∂j fs

∂zl1 ∂zl2 · · · ∂zlj

(w)

∣∣∣∣∣.

(68)

Since fs → 0 uniformly on any compact subset of B as s → ∞, by Cauchy’s estimates,

we also have that ∂j fs
∂zl1

∂zl2
···∂zlj

→ 0 uniformly on any compact subset of B as s → ∞. From

this and using the fact that {w ∈ B : |w| ≤ δ} is a compact subset of B, by letting s → ∞ in
inequality (68), we obtain

lim sup
s→∞

‖Sk,l
�u,�v,ϕ fs‖H∞

μ (B) ≤ CMε.

Since ε is an arbitrary positive number, it follows that

lim
s→∞

‖Sk,l
�u,�v,ϕ fs‖H∞

μ (B) = 0. (69)

From (69) and Lemma 2, the operator Sk,l
�u,�v,ϕ : Bφ(B) → H∞

μ (B) is compact.

From Theorem 3.4 in [30] and Remark 4.2 in [31], we have the following interesting
results.

Theorem 5. The operator Sk
�u,ϕ : Bφ(B) → H∞

μ (B) is compact and (56) holds if and only if the

operators Mui Cϕ�i : Bφ(B) → H∞
μ (B), i = 0, k are compact.

Theorem 6. Assume that (57) is satisfied. Then, the operator Sl
�v,ϕ : Bφ(B) → H∞

μ (B) is compact

if and only if the operators Mvj�jCϕ : Bφ(B) → H∞
μ (B), j = 0, l are compact.

5. Some Applications

As some applications of the results in Part 4, we can characterize the boundedness
and compactness of the operators MuCϕ�m, Cϕ Mu�m, Cϕ�m Mu, Mu�mCϕ, �m MuCϕ, and
�mCϕ Mu : Bφ(B) → H∞

μ (B). More specifically, all results of this section are obtained from
the relationships in (14). Since

MuCϕ�m = Sm,l
u0≡···≡um−1≡0,um=u,v1≡···≡vl≡0,ϕ,
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the following corollaries come from Proposition 2 (ii), Theorems 1 and 4.

Corollary 2. Let m ∈ N, u ∈ H(B), φ normal on [0, 1), ϕ ∈ S(B) and μ a weight on B. Then,
the operator MuCϕ�m : Bφ(B) → H∞

μ (B) is bounded if and only if

Lj := sup
z∈B

μ(z)|u(z)||Bm,j(ϕ(z))|
φ(|ϕ(z)|)(1 − |ϕ(z)|2)j−1 < +∞.

for j = 1, m.
Moreover, if the operator MuCϕ�m : Bφ(B) → H∞

μ (B) is bounded, then the following
asymptotic relationship holds

‖MuCϕ�m‖Bφ(B)→H∞
μ (B) �

m

∑
j=1

Lj.

Corollary 3. Let m ∈ N, u ∈ H(B), φ normal on [0, 1), ϕ ∈ S(B) and μ a weight on B. Then,
the operator MuCϕ�m : Bφ(B) → H∞

μ (B) is compact if and only if the operator MuCϕ�m :
Bφ(B) → H∞

μ (B) is bounded and

lim
|ϕ(z)|→1

μ(z)|u(z)||Bm,j(ϕ(z))|
φ(|ϕ(z)|)(1 − |ϕ(z)|2)j−1 = 0

for j = 1, m.
Since

Cϕ Mu�m = Sm,l
u0≡···≡um−1≡0,um=u◦ϕ,v1≡···≡vl≡0,ϕ,

the following corollaries come from Proposition 2 (ii), Theorems 1 and 4.

Corollary 4. Let m ∈ N, u ∈ H(B), φ normal on [0, 1), ϕ ∈ S(B) and μ a weight on B. Then,
the operator Cϕ Mu�m : Bφ(B) → H∞

μ (B) is bounded if and only if

Mj := sup
z∈B

μ(z)|u(ϕ(z))||Bm,j(ϕ(z))|
φ(|ϕ(z)|)(1 − |ϕ(z)|2)j−1 < +∞

for j = 1, m.
Moreover, if the operator Cϕ Mu�m : Bφ(B) → H∞

μ (B) is bounded, then the following
asymptotic relationship holds

‖Cϕ Mu�m‖Bφ(B)→H∞
μ (B) �

m

∑
j=1

Mj.

Corollary 5. Let m ∈ N, u ∈ H(B), φ normal on [0, 1), ϕ ∈ S(B) and μ a weight on B. Then,
the operator Cϕ Mu�m : Bφ(B) → H∞

μ (B) is compact if and only if the operator Cϕ Mu�m :
Bφ(B) → H∞

μ (B) is bounded and

lim
|ϕ(z)|→1

μ(z)|u(ϕ(z))||Bm,j(ϕ(z))|
φ(|ϕ(z)|)(1 − |ϕ(z)|2)j−1 = 0

for j = 1, m.
Since

Cϕ�m Mu = Sm,l
u0=C0

m(�mu)◦ϕ,u1=C1
m(�m−1u)◦ϕ,...,um=Cm

m u◦ϕ,v1≡···≡vl≡0,ϕ
,

the following results hold from Proposition 2 (ii), Theorems 1 and 4.
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Corollary 6. Let m ∈ N, u ∈ H(B), φ normal on [0, 1), ϕ ∈ S(B) and μ a weight on B. Then,
the operator Cϕ�m Mu : Bφ(B) → H∞

μ (B) is bounded if and only if

N0 := sup
z∈B

μ(z)|(�mu)(ϕ(z))|(1 − |ϕ(z)|2)
φ(|ϕ(z)|) < +∞

and

Nj := sup
z∈B

μ(z)| ∑m
i=j(�m−iu)(ϕ(z))Bi,j(ϕ(z))|

φ(|ϕ(z)|)(1 − |ϕ(z)|2)j−1 < +∞

for j = 1, m.
Moreover, if the operator Cϕ�m Mu : Bφ(B) → H∞

μ (B) is bounded, then the following
asymptotic relationship holds

‖Cϕ�m Mu‖Bφ(B)→H∞
μ (B) �

m

∑
j=0

Nj.

Corollary 7. Let m ∈ N, u ∈ H(B), φ normal on [0, 1), ϕ ∈ S(B) and μ a weight on B. Then,
the operator Cϕ�m Mu : Bφ(B) → H∞

μ (B) is compact if and only if the operator Cϕ�m Mu :
Bφ(B) → H∞

μ (B) is bounded,

lim
|ϕ(z)|→1

μ(z)|(�mu)(ϕ(z))|(1 − |ϕ(z)|2)
φ(|ϕ(z)|) = 0

and

lim
|ϕ(z)|→1

μ(z)| ∑m
i=j(�m−iu)(ϕ(z))Bi,j(ϕ(z))|

φ(|ϕ(z)|)(1 − |ϕ(z)|2)j−1 = 0

for j = 1, m.
Since

Mu�mCϕ = Sk,m
u0≡···≡uk≡0,v1≡···≡vm−1≡0,vm=u,ϕ

and the condition (37) is reduced to the following condition∣∣∣ m

∑
j=1

Bm,j(�ϕ(z))
∣∣∣ ≤ C

∣∣∣ m

∑
j=1

Bm,j(〈�ϕ(z), ϕ(z)〉))
∣∣∣, (70)

we obtain the next results from Theorems 1 and 4.

Corollary 8. Assume that (70) is satisfied, m ∈ N, u ∈ H(B), φ normal on [0, 1), ϕ ∈ S(B) and
μ a weight on B. Then, the operator Mu�mCϕ : Bφ(B) → H∞

μ (B) is bounded if and only if

L̃j := sup
z∈B

μ(z)|u(z)||Bm,j(�ϕ(z))|
φ(|ϕ(z)|)(1 − |ϕ(z)|2)j−1 < +∞

for j = 1, m.
Moreover, if the operator Mu�mCϕ : Bφ(B) → H∞

μ (B) is bounded, then the following
asymptotic relationship holds

‖Mu�mCϕ‖Bφ(B)→H∞
μ (B) �

m

∑
j=1

L̃j.
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Corollary 9. Assume that (70) is satisfied, m ∈ N, u ∈ H(B), φ normal on [0, 1), ϕ ∈ S(B) and
μ a weight on B. Then, the operator Mu�mCϕ : Bφ(B) → H∞

μ (B) is compact if and only if the
operator Mu�mCϕ : Bφ(B) → H∞

μ (B) is bounded and

lim
|ϕ(z)|→1

μ(z)|u(z)||Bm,j(�ϕ(z))|
φ(|ϕ(z)|)(1 − |ϕ(z)|2)j−1 = 0

for j = 1, m.
Since

�m MuCϕ = Sk,m
u1≡···≡uk≡0,u0=C0

m�mu,v1=C1
m�m−1u,...,vm=Cm

m u,ϕ

and the condition (37) is reduced to the following condition∣∣∣ m

∑
i=j

Ci
m(�m−iu)(z)Bi,j(�ϕ(z))

∣∣∣ ≤ C
∣∣∣ m

∑
i=j

Ci
m(�m−iu)(z)Bi,j(〈�ϕ(z), ϕ(z)〉)

∣∣∣ (71)

for j = 1, m. We have the following corollaries from Theorems 1 and 4.

Corollary 10. Assume that (71) is satisfied, m ∈ N, u ∈ H(B), φ normal on [0, 1), ϕ ∈ S(B)
and μ a weight on B. Then, the operator �m MuCϕ : Bφ(B) → H∞

μ (B) is bounded if and only if

M̃0 := sup
z∈B

μ(z)|(�mu)(z)|(1 − |ϕ(z)|2)
φ(|ϕ(z)|) < +∞

and

M̃j := sup
z∈B

μ(z)| ∑m
i=j Ci

m(�m−iu)(z)Bi,j(�ϕ(z))|
φ(|ϕ(z)|)(1 − |ϕ(z)|2)j−1 < +∞

for j = 1, m.
Moreover, if the operator �m MuCϕ : Bφ(B) → H∞

μ (B) is bounded, then the following
asymptotic relationship holds

‖�m MuCϕ‖Bφ(B)→H∞
μ (B) �

m

∑
j=0

M̃j.

Corollary 11. Assume that (71) is satisfied, m ∈ N, u ∈ H(B), φ normal on [0, 1), ϕ ∈ S(B)
and μ a weight on B. Then, the operator �m MuCϕ : Bφ(B) → H∞

μ (B) is compact if and only if
the operator �m MuCϕ : Bφ(B) → H∞

μ (B) is bounded,

lim
|ϕ(z)|→1

μ(z)|(�mu)(z)|(1 − |ϕ(z)|2)
φ(|ϕ(z)|) = 0

and

lim
|ϕ(z)|→1

μ(z)| ∑m
i=j Ci

m(�m−iu)(z)Bi,j(�ϕ(z))|
φ(|ϕ(z)|)(1 − |ϕ(z)|2)j−1 = 0

for j = 1, m.
Since

�mCϕ Mu = Sk,m
u1≡···≡uk≡0,u0=C0

m�m(u◦ϕ),v1=C1
m�m−1(u◦ϕ),...,vm=Cm

m u◦ϕ,ϕ
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and the condition (37) is reduced to the following condition∣∣∣ m

∑
i=j

Ci
m�m−i(u ◦ ϕ)(z)Bi,j(�ϕ(z))

∣∣∣ ≤ C
∣∣∣ m

∑
i=j

Ci
m�m−i(u ◦ ϕ)(z)Bi,j(〈�ϕ(z), ϕ(z)〉)

∣∣∣ (72)

for j = 1, m. we obtain the following corollaries from Theorems 1 and 4.

Corollary 12. Assume that (72) is satisfied, m ∈ N, u ∈ H(B), φ normal on [0, 1), ϕ ∈ S(B),
and μ a weight on B. Then, the operator �mCϕ Mu : Bφ(B) → H∞

μ (B) is bounded if and only if

Ñ0 := sup
z∈B

μ(z)|�m(u ◦ ϕ)(z)|(1 − |ϕ(z)|2)
φ(|ϕ(z)|) < +∞

and

Ñj := sup
z∈B

μ(z)| ∑m
i=j Ci

m�m−i(u ◦ ϕ)(z)Bi,j(�ϕ(z))|
φ(|ϕ(z)|)(1 − |ϕ(z)|2)j−1 < +∞

for j = 1, m.
Moreover, if the operator �mCϕ Mu : Bφ(B) → H∞

μ (B) is bounded, then the following
asymptotic relationship holds

‖�mCϕ Mu‖Bφ(B)→H∞
μ (B) �

m

∑
j=0

Ñj.

Corollary 13. Assume that (72) is satisfied, m ∈ N, u ∈ H(B), φ normal on [0, 1), ϕ ∈ S(B)
and μ a weight on B. Then, the operator �mCϕ Mu : Bφ(B) → H∞

μ (B) is compact if and only if
the operator �mCϕ Mu : Bφ(B) → H∞

μ (B) is bounded,

lim
|ϕ(z)|→1

μ(z)|�m(u ◦ ϕ)(z)|(1 − |ϕ(z)|2)
φ(|ϕ(z)|) = 0

and

lim
|ϕ(z)|→1

μ(z)| ∑m
i=j Ci

m�m−i(u ◦ ϕ)(z)Bi,j(�ϕ(z))|
φ(|ϕ(z)|)(1 − |ϕ(z)|2)j−1 = 0

for j = 1, m.

6. Conclusions

In this paper, we define the sum operator

Sk,l
�u,�v,ϕ = Mu0 Cϕ +

k

∑
i=1

Mui Cϕ�i +
l

∑
j=1

Mvj�jCϕ

on some subspaces of H(B), where u0, u1, . . . , uk, v1, . . . , vl ∈ H(B), ϕ ∈ S(B), and
k, l ∈ N. We completely characterized the boundedness and compactness of the oper-
ator Sk,l

�u,�v,ϕ : Bφ(B) → H∞
μ (B) in terms of the behaviors of the symbols uj, vj, and ϕ. As

an application, the corresponding results of the operators MuCϕ�m, Cϕ Mu�m, Cϕ�m Mu,
Mu�mCϕ, �m MuCϕ, �mCϕ Mu : Bφ(B) → H∞

μ (B) are obtained. This paper can be viewed
as a continuation and extension of the work of [30,31]. We hope that the study can attract
more people’s attention to such operators.
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Matrix Representations for a Class of Eigenparameter
Dependent Sturm–Liouville Problems with Discontinuity
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Abstract: Matrix representations for a class of Sturm–Liouville problems with eigenparameters
contained in the boundary and interface conditions were studied. Given any matrix eigenvalue
problem of a certain type and an eigenparameter-dependent condition, a class of Sturm–Liouville
problems with this specified condition was constructed. It has been proven that each Sturm–Liouville
problem is equivalent to the given matrix eigenvalue problem.

Keywords: Atkinson type; finite spectrum; eigenparameter-dependent interface condition;
matrix representation

1. Introduction

Recently, Sturm–Liouville problems (SLPs) with discontinuity inside intervals have
attracted significant attention from scholars due to their wide application in various fields.
For example, one application involves a string loaded with point masses [1–5]. Generally
speaking, the eigenparameter only appears in the equation, but in many actual phenomena,
it is necessary for the eigenparameter to appear in the boundary conditions, such as heat
conduction at the liquid–solid interface [6], and so on. Due to its physical significance, many
scholars have studied the problem of boundary conditions containing a spectral parame-
ter [7–14]. In recent decades, more researchers have studied eigenparameter-dependent
SLPs with discontinuity, including the asymptotic behavior of eigenvalues, the inverse
spectral theory, the finite spectrum, the oscillation of eigenfunctions, etc., see [9,10,15–19].

Regular SLPs have an infinite countable number of eigenvalues that are bounded
below and unbounded above. However, Atkinson, in his well-celebrated book [20], stated
that finite eigenvalues may exist under certain conditions. Kong and Zettl [18] solved this
problem by constructing a class of regular SLPs, which has exactly N eigenvalues for every
positive integer N; they obtained the corresponding matrix representations in [19]. This
special problem is called Atkinson-type SLPs (ASLPs). Ao et al. generalized this problem
to various differential operators, for example, ASLPs with interface conditions, ASLPs with
eigenparameters contained in boundary conditions, higher-order differential operators,
etc. [21–26]. They discussed the existence of a finite spectrum and gave the corresponding
matrix representation. In particular, Ao et al. proved that ASLPs with interface conditions
have, at most, M+N+ 2 eigenvalues and gave the corresponding matrix representation
in [23]. Moreover, the authors generalized the problem to eigenparameter-dependent
ASLPs [24].

In recent years, SLPs with interface conditions dependent on parameters have also
captured the attention of researchers, see [2–4] and references therein. In reference [2],
the author obtained the operator–theoretic formulation. The asymptotic properties of
eigenvalues were given for SLPs with interface conditions that were rationally dependent
on the parameters in [3]. In work by Mukhtarov et al. [4], Green’s function was provided
for eigenparameter-dependent SLPs with interface conditions.

In a recent paper, Ao et al. proved that SLPs with interface conditions dependent on
the eigenparameter still have a finite spectrum [27]. Here, the following question arises:
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When the eigenparameter appears in both the boundary and interface conditions, does it
affect the number in the spectrum? In this paper, we will solve this problem. We study an
SLP in which an eigenparameter is contained in both the boundary and interface conditions,
regardless of whether it is self-adjoint or non-self-adjoint. We prove that the problem has, at
most, M+N+ 5 eigenvalues, which is different from the results in [27], where the number
of eigenvalues is, at most, M+N+ 4. Moreover, we provide an example to illustrate our
conclusion (as it turns out, it affects the number of eigenvalues). The basic method we used
in this paper is a factorization of the characteristic function.

The rest of this paper is organized as follows: Some preliminaries are given in Section 2.
In Section 3, we show that the number of eigenvalues of the considered problem is finite.
In Section 4, the corresponding matrix representation is given, and for a given specific type
of matrix eigenvalue problem, we construct a class of SLPs with the same boundary and
interface conditions, ensuring that they have the same eigenvalues.

2. Preliminaries

In this work, we investigate the SL equation

−(q(t) f ′(t))′ + p(t) f (t) = μw(t) f (t), t ∈ I = [c, η) ∪ (η, d], −∞ < c < d < ∞ (1)

with boundary conditions at the endpoints c and d, as follows

ξ1 f (c) + ξ2(q f ′)(c) + ξ3 f (d) + ξ4(q f ′)(d) = μ[ξ ′
1 f (c) + ξ ′

2(q f ′)(c) + ξ ′
3 f (d) + ξ ′

4(q f ′)(d)], (2)

τ1 f (c) + τ2(q f ′)(c) + τ3 f (d) + τ4(q f ′)(d) = μ[τ′
1 f (c) + τ′

2(q f ′)(c) + τ′
3 f (d) + τ′

4(q f ′)(d)], (3)

and interface conditions

f (η + 0) = (e1μ + e′1) f (η − 0) + (e2μ + e′2)(q f ′)(η − 0), (4)

(q f ′)(η + 0) = (e3μ + e′3) f (η − 0) + (e4μ + e′4)(q f ′)(η − 0), (5)

where f (η + 0) and f (η − 0) denote the right and left limits of f (t) at η, respectively. μ ∈ C

is a spectral parameter; ξi, τi, ei, ξ ′
i, τ′

i , e
′
i ∈ R (i = 1, 4), and

rank
(

ξ1 ξ2 ξ3 ξ4
ξ ′

1 ξ ′
2 ξ ′

3 ξ ′
4

)
= 2, rank

(
τ1 τ2 τ3 τ4
τ′

1 τ′
2 τ′

3 τ′
4

)
= 2,

rank
(

ξ1 ξ2 ξ3 ξ4
τ1 τ2 τ3 τ4

)
= 2, rank

(
ξ ′

1 ξ ′
2 ξ ′

3 ξ ′
4

τ′
1 τ′

2 τ′
3 τ′

4

)
= 2.

(6)

We assume that the coefficients satisfy the following conditions

1
q(t)

, p(t), w(t) ∈ L1(I, R), (7)

where L1(I, R) =
{

f : I→ R
∣∣ ∫

I | f (t)|dt < ∞
}

.
We suppose that Rank[Aμ|Bμ] = 2 and det(Γμ) �= 0, where

Aμ =

(
ξ1 − μξ ′

1 ξ2 − μξ ′
2

τ1 − μτ′
1 τ2 − μτ′

2

)
, Bμ =

(
ξ3 − μξ ′

3 ξ4 − μξ ′
4

τ3 − μτ′
3 τ4 − μτ′

4

)
, (8)

Γμ =

(
e1μ + e′1 e2μ + e′2
e3μ + e′3 e4μ + e′4

)
, (9)

79



Axioms 2023, 12, 479

then (2)–(5) turn into

AμF(c) + BμF(d) = 0, F(η + 0) = ΓμF(η − 0), F =

(
f

q f ′
)

.

Equation (1) can be represented as{
u′ = sv,
v′ = (p − μw)u.

(10)

by using

{
u = f ,
v = q f ′.

Definition 1. (Reference [18]) f (t) is called a trivial solution of (1) if f (t) ≡ q(t) f ′(t) ≡ 0,
t ∈ I.

Let Φ(t, μ) = [�kl(t, μ)] (k, l = 1, 2) be the fundamental solution matrix of system (10),
satisfying (4) and (5) as follows

Φ(t, μ) =

{
Φ1(t, μ), t ∈ [c, η),
Φ2(t, μ), t ∈ (η, d],

(11)

with the initial condition Φ1(c, μ) = I.
Define Λ(μ) := det[Aμ + BμΦ2(d, μ)]. Let

H(μ) =

(
h11(μ) h12(μ)
h21(μ) h22(μ)

)
,

where
h11(μ) = (ξ3 − μξ ′

3)(τ2 − μτ′
2)− (ξ2 − μξ ′

2)(τ3 − μτ′
3),

h12(μ) = (ξ1 − μξ ′
1)(τ3 − μτ′

3)− (ξ3 − μξ ′
3)(τ1 − μτ′

1),

h21(μ) = (ξ4 − μξ ′
4)(τ2 − μτ′

2)− (ξ2 − μξ ′
2)(τ4 − μτ′

4),

h22(μ) = (ξ1 − μξ ′
1)(τ4 − μτ′

4)− (ξ4 − μξ ′
4)(τ1 − μτ′

1).

By a direct calculation, we know

Λ(μ) =det[Aμ + BμΦ2(d, μ)]

=

∣∣∣∣(ξ1 − μξ ′
1 ξ2 − μξ ′

2
τ1 − μτ′

1 τ2 − μτ′
2

)
+

(
ξ3 − μξ ′

3 ξ4 − μξ ′
4

τ3 − μτ′
3 τ4 − μτ′

4

)(
�11(d, μ) �12(d, μ)
�21(d, μ) �22(d, μ)

)∣∣∣∣
=det(Aμ) + det(Bμ)− det(Bμ)

+ [(ξ3 − μξ ′
3)(τ2 − μτ′

2)− (ξ2 − μξ ′
2)(τ3 − μτ′

3)]�11(d, μ)

+ [(ξ1 − μξ ′
1)(τ3 − μτ′

3)− (ξ3 − μξ ′
3)(τ1 − μτ′

1)]�12(d, μ)

+ [(ξ4 − μξ ′
4)(τ2 − μτ′

2)− (ξ2 − μξ ′
2)(τ4 − μτ′

4)]�21(d, μ)

+ [(ξ1 − μξ ′
1)(τ4 − μτ′

4)− (ξ4 − μξ ′
4)(τ1 − μτ′

1)]�22(d, μ)

+ (ξ3 − μξ ′
3)(τ4 − μτ′

4)�22(d, μ)�11(d, μ) + (ξ4 − μξ ′
4)(τ3 − μτ′

3)�21(d, μ)�12(d, μ)

− (ξ4 − μξ ′
4)(τ3 − μτ′

3)�22(d, μ)�11(d, μ) + (ξ3 − μξ ′
3)(τ4 − μτ′

4)�21(d, μ)�12(d, μ)

=det(Aμ) + det(Bμ) + h11(μ)�11(d, μ) + h12(μ)�12(d, μ) + h21(μ)�21(d, μ)

+ h22(μ)�22(d, μ) + [(ξ3 − μξ ′
3)(τ4 − μτ′

4)− (ξ4 − μξ ′
4)(τ3 − μτ′

3)]×
[�11(d, μ)�22(d, μ)− �12(d, μ)�21(d, μ)− 1],
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since det(Φ2(d, μ)) = det(Φ1(d, μ)) = 1, so �11(d, μ)�22(d, μ)− �12(d, μ)�21(d, μ)− 1 = 0,
we have

Λ(μ) =det(Aμ) + det(Bμ) + h11(μ)�11(d, μ) + h12(μ)�12(d, μ)

+ h21(μ)�21(d, μ) + h22(μ)�22(d, μ).
(12)

Proposition 1. Λ(μ) = 0 ⇐⇒ μ is an eigenvalue of (1)–(5).

Proof. We suppose Λ(μ) = 0, then the equation [Aμ + BμΦ2(d, μ)]C = 0 has non-zero
solutions. We solve the initial value problem

F
′
=

(
0 s

p − μw 0

)
F, F =

(
f

p f
′

)
on J, F(c) = C,

then we have F(d) = Φ2(d, μ)F(c) and [Aμ + BμΦ2(d, μ)]F(c) = 0, we can obtain
AμF(c) + BμF(d) = 0, so μ is an eigenvalue.

On the contrary, if μ is an eigenvalue and f is an eigenfunction, then F =

(
f

p f
′

)
satis-

fies F(d) = Φ2(d, μ)F(c); thus, [Aμ + BμΦ2(d, μ)]F(c) = 0. If F(c) = 0, then it is a trivial so-
lution. This contradicts f being an eigenfunction, so we have det[Aμ + BμΦ2(d, μ)] = 0.

3. The Finite Spectrum Problem of (1)–(5)

Problems (1)–(5) have finite eigenvalues in this section. In the sequel, we always
suppose that (7) holds, and there is a partition of I

c = c0 < c1 < c2 < · · · < c2M < η < d1 < d2 < · · · < d2N+1 = d, (13)

for M,N ∈ Z+, such that

1
q(t)

= 0, t ∈ ∪M−1
i=0 [c2i, c2i+1] ∪ [c2M, η) ∪ (η, d1] ∪N

j=1 [d2j, d2j+1];

p(t) = w(t) = 0, t ∈ ∪M−1
i=0 [c2i+1, c2i+2] ∪N−1

j=0 [d2j+1, d2j+2];
(14)

∫ c2i+2

c2i+1

1
q(t)

dt �= 0, i = 0,M− 1;
∫ d2j+2

d2j+1

1
q(t)

dt �= 0, j = 0,N− 1;∫ c2i+1

c2i

w(t)dt �= 0, i = 0,M− 1;
∫ d2j+1

d2j

w(t)dt �= 0, j = 1,N;∫ d1

η
w(t)dt �= 0,

∫ η

2M
w(t)dt �= 0.

(15)

Definition 2. (Reference [1]) If an SL Equation (1) satisfies (13)–(15), then Equation (1) is called
an Atkinson type.

Definition 3. (Reference [1]) If there exists an Equation (1) of the Atkinson type, then (1)–(5) is
called an Atkinson type.
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Definition 4. Let (13)–(15) hold. We define the following notations.

si :=
∫ c2i

c2i−1

1
q(t)

dt, i = 1, 2, . . . ,M;

pi :=
∫ c2i+1

c2i

p(t)dt, wi :=
∫ c2i+1

c2i

w(t)dt, i = 0,M− 1;

pM :=
∫ η

c2M

p(t)dt, wM :=
∫ η

c2M

w(t)dt;

s̃j :=
∫ d2j

d2j−1

1
q(t)

dt, j = 1, 2, . . . ,N;

p̃0 :=
∫ d1

η
p(t)dt, p̃j :=

∫ d2j+1

d2j

p(t)dt, j = 1,N;

w̃0 :=
∫ d1

η
w(t)dt, w̃j :=

∫ d2j+1

d2j

w(t)dt, j = 1,N.

(16)

Next, we give two fundamental solution matrices of system (10).

Lemma 1. Φ(t, μ) defined as (11), we have

Φ1(c1, μ) =

(
1 0

p0 − μw0 1

)
,

Φ1(c3, μ) =

(
1 + (p0 − μw0)s1 s1

�21(c3, μ) 1 + (p1 − μw1)s1

)
,

where �21(c3, μ) = (p0 − μw0) + (p1 − μw1) + (p0 − μw0)(p1 − μw1)s1.
In general, for 1 ≤ i ≤ M− 1, we have

Φ1(c2i+1, μ) =

(
1 si

pi − μwi 1 + (pi − μwi)si

)
Φ1(c2i−1, μ),

particularly,

Φ1(η − 0, μ) =

(
1 sM

pM − μwM 1 + (pM − μwM)sM

)
Φ1(c2M−1, μ).

Proof. From (14), we know that u is constant on ∪M−1
i=0 [c2i, c2i+1] ∪ [c2M, η) by

1
q(t)

= 0

and v is constant on ∪M−1
i=0 [c2i+1, c2i+2] by p(t) = w(t) = 0. Thus, we can obtain the result

by using the iterative method.

Using similar methods in Lemma 1, we have

Lemma 2. For each μ ∈ C, we denote

Θ(t, μ) = [ψkl(t, μ)](k, l = 1, 2) (17)

a fundamental solution matrix of the system (10) with interface conditions (4) and (5), and satisfy
the initial condition Θ(η + 0, μ) = I. Then we have

Θ(d1, μ) =

(
1 0

p̃0 − μw̃0 1

)
.
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Generally, for 1 ≤ j ≤ N,

Θ(d2j+1, μ) =

(
1 s̃j

p̃j − μw̃j 1 + ( p̃j − μw̃j)s̃j

)
Θ(d2j−1, μ).

Lemma 3. Let Φ(t, μ) and Θ(t, μ) be defined in (11) and (17), respectively. Then we have

Φ2(d, μ) = Θ(d, μ)ΓμΦ1(η − 0, μ), t ∈ (η, d],

where Γμ is defined in (9).

Proof. From the two fundamental solutions, Θ(t, μ) and Φ(t, μ) of system (10), and the
given initial value, we can obtain

Θ(t, μ) = Φ2(t, μ)Φ−1
2 (η + 0, μ),

from (4) and (5), we have

Φ2(η + 0, μ) = ΓμΦ1(η − 0, μ).

Particularly, let t = d, we obtain

Φ2(d, μ) = Θ(d, μ)ΓμΦ1(η − 0, μ).

In light of Lemmas 1–3, we can obtain the following theorem, and problems (1)–(5)
have finite eigenvalues:

Theorem 1. Let (14)-(16) hold, H(μ) is defined as above. Assume e2 �= 0; thus,

Conditions The number of eigenvalues
If ξ ′

4τ′
2 − ξ ′

2τ′
4 �= 0; M+N+ 5

If ξ ′
4τ′

2 − ξ ′
2τ′

4 = 0;
w0w̃N(τ4ξ ′

2 + ξ2τ′
4 − ξ4τ′

2 − τ2ξ ′
4)

−w̃N

(
ξ ′

1τ′
4 − ξ ′

4τ′
1
)− w0

(
τ′

2ξ ′
3 − ξ ′

2τ′
3
) �= 0;

M+N+ 4

If ξ ′
4τ′

2 − ξ ′
2τ′

4 = ξ ′
3τ′

2 − ξ ′
2τ′

3 = ξ ′
1τ′

4 − ξ ′
4τ′

1

=τ4ξ ′
2 + ξ2τ′

4 − ξ4τ′
2 − τ2ξ ′

4 = 0;
ξ ′

1τ′
3 − ξ ′

3τ′
1 + w0w̃N(ξ4τ2 − ξ2τ4)

−w0(ξ2τ′
3 + ξ ′

2τ3 − ξ3τ′
2 − ξ ′

3τ2)

−w̃N(ξ4τ′
1 + ξ ′

4τ1 − ξ1τ′
4 − ξ ′

1τ4) �= 0;

M+N+ 3

If ξ ′
4τ′

2 − ξ ′
2τ′

4 = ξ ′
3τ′

2 − ξ ′
2τ′

3 = ξ ′
1τ′

4 − ξ ′
4τ′

1

=ξ4τ2 − ξ2τ4 = ξ ′
1τ′

3 − ξ ′
3τ′

1 = τ4ξ ′
2 + ξ2τ′

4 − ξ4τ′
2 − τ2ξ ′

4

=ξ2τ′
3 + ξ ′

2τ3 − ξ3τ′
2 − ξ ′

3τ2 = ξ4τ′
1 + ξ ′

4τ1 − ξ1τ′
4 − ξ ′

1τ4 = 0;
ξ3τ′

1 + ξ ′
3τ1 − ξ1τ′

3 − ξ ′
1τ3

−w̃N(ξ1τ4 − ξ4τ1)− w0(ξ3τ2 − ξ2τ3) �= 0;

M+N+ 2

If ξ ′
4τ′

2 − ξ ′
2τ′

4 = ξ ′
3τ′

2 − ξ ′
2τ′

3 = ξ ′
1τ′

4 − ξ ′
4τ′

1 = ξ4τ2 − ξ2τ4

=ξ ′
1τ′

3 − ξ ′
3τ′

1 = ξ3τ2 − ξ2τ3 = ξ1τ4 − ξ4τ1

=τ4ξ ′
2 + ξ2τ′

4 − ξ4τ′
2 − τ2ξ ′

4 = ξ2τ′
3 + ξ ′

2τ3 − ξ3τ′
2 − ξ ′

3τ2

=ξ4τ′
1 + ξ ′

4τ1 − ξ1τ′
4 − ξ ′

1τ4 = ξ3τ′
1 + ξ ′

3τ1 − ξ1τ′
3 − ξ ′

1τ3 = 0;
ξ1τ3 − ξ3τ1 �= 0;

M+N+ 1

If none of the conditions in the table above are met, then (1)–(5) have ι eigenvalues for
ι ∈ {1, 2, · · · ,M+N} or the system can be degenerate.
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Proof. Firstly, by Lemma 3, we know that Φ2(d, μ) = Θ(d, μ)ΓμΦ1(η − 0, μ); next, we can
obtain the structure of Φ2(d, μ) by a direct calculation.

If e2 �= 0, we can obtain the structure of Φ2(d, μ), as follows:

�11(d, μ) =ΥΥ̃
[
(e2μ + e′2)(pM − μwM)( p̃0 − μw̃0) + (e1μ + e′1)( p̃0 − μw̃0) + e3μ + e′3

+(e4μ + e′4)(pM − μwM)
]×M−1

∏
i=0

(pi − μwi)
N−1

∏
j=1

( p̃j − μw̃j) + �̃11(μ),

�12(d, μ) =ΥΥ̃
[
(e2μ + e′2)(pM − μwM)( p̃0 − μw̃0) + (e1μ + e′1)( p̃0 − μw̃0) + e3μ + e′3

+(e4μ + e′4)(pM − μwM)
]×M−1

∏
i=1

(pi − μwi)
N−1

∏
j=1

( p̃j − μw̃j) + �̃12(μ),

�21(d, μ) =ΥΥ̃
[
(e2μ + e′2)(pM − μwM)( p̃0 − μw̃0) + (e1μ + e′1)( p̃0 − μw̃0) + e3μ + e′3

+(e4μ + e′4)(pM − μwM)
]×M−1

∏
i=0

(pi − μwi)
N

∏
j=1

( p̃j − μw̃j) + �̃21(μ),

�22(d, μ) =ΥΥ̃
[
(e2μ + e′2)(pM − μwM)( p̃0 − μw̃0) + (e1μ + e′1)( p̃0 − μw̃0) + +e3μ + e′3

(e4μ + e′4)(pM − μwM)
]×M−1

∏
i=1

(pi − μwi)
N

∏
j=1

( p̃j − μw̃j) + �̃22(μ),

where Υ = ∏M
i=1 si, Υ̃ = ∏N

j=1 s̃j, �̃kl(μ) = o(ΥΥ̃) when min {si, s̃j : i = 1,M, j =
1,N} → ∞, k, l = 1, 2.

So if e2 �= 0, it follows that the degrees of �11(d, μ), �12(d, μ), �21(d, μ) and �22(d, μ) in
μ are M+N+ 2, M+N+ 1, M+N+ 3, and M+N+ 2, respectively. According to (12)
and Proposition 1, if ξ ′

4τ′
2 − ξ ′

2τ′
4 �= 0 in h21(μ), we can obtain the highest degree of μ

in Λ(μ) is M+N+ 5; hence, Λ(μ) has M+N+ 5 roots. Moreover, other cases can be
obtained by using similar methods.

Remark 1. In Theorem 1, if e2 = 0, but e′2 �= 0, we can obtain the same conclusions. In fact,
the highest degree of μ in Λ(μ) is M+N+ 4. Thus, it has M+N+ 4, M+N+ 3, M+N+ 2,
M+N+ 1, M+N eigenvalues, respectively.

Example 1. We study a specific SLP:⎧⎪⎨⎪⎩
−(q(t) f ′(t))′ + p(t) f (t) = μw(t) f (t), t ∈ I = (−1, 0) ∪ (0, 2).
AμF(−1) + BμF(2) = 0,
F(0+)− ΓμF(0−) = 0,

where

Aμ =

(
1 μ
0 2μ

)
, Bμ =

(
1 2μ + 1
0 μ

)
, Γμ =

(
μ 2μ
1 0

)
.
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We choose M = N = 1, and q(t), p(t), w(t) are piece-wise constant functions:

q(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞, (−1, − 2
3 )

1
3 , (− 2

3, − 1
3 )

∞, (− 1
3 , 0)

∞, (0, 1
2 )

1
2 , ( 1

2 , 1)

∞, (1, 2)

, p(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3, (−1, − 2
3 )

0, (− 2
3 , − 1

3 )

6, (− 1
3 , 0)

2, (0, 1
2 )

0, ( 1
2 , 1)

1, (1, 2)

, w(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3, (−1, − 2
3 )

0, (− 2
3 , − 1

3 )

3, (− 1
3 , 0)

2, (0, 1
2 )

0, ( 1
2 , 1)

1, (1, 2)

.

From the conditions, we know e2 = 2 �= 0. By a direct calculation, we have

Λ(μ) = 6μ7 − 53μ6 + 142μ5 − 71μ4 − 166μ3 + 142μ2 + 17μ.

Then the number of eigenvalues of this problem is 7.

μ1 ≈ −1.0291, μ2 ≈ −0.1071, μ3 = 0, μ4 ≈ 1.4317 + 0.1083i,

μ5 ≈ 1.4317 − 0.1083i, μ6 ≈ 3.1662, μ7 ≈ 3.9400.

Figure 1 shows the trace of Λ(μ). For clarity, we use a logarithmic scale for the vertical axis. We
label trajectories above the horizontal axis in red and trajectories below the horizontal axis in blue.
The alternating red and blue pattern represents the zero of the Λ(μ). By doing so, we can observe
that the function has five real roots, meeting our desired outcome.

Figure 1. Characteristic function in Example 1.

4. Matrix Presentations of (1)–(5)

In this section, we discuss the matrix representations of problems (1)–(5) with finite spectra.

Definition 5. If the eigenvalues of SLPs of the Atkinson type coincide with matrix eigenvalue
problems, then we call them equivalent.

For (1)–(5), we rebuild the matrix eigenvalue problems, which have the following form

BT = μFT,
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whose eigenvalues coincide with the corresponding SLPs of the Atkinson type. Assume
(16) holds, we have

qi =
(∫ c2i

c2i−1

s
)−1

, i = 1, 2, · · · ,M;

q̃j =
(∫ d2j

d2j−1

s
)−1

, j = 1, 2, · · · ,N.

(18)

In accordance with (14)–(15), we know qi, wi, q̃j, w̃j ∈ R \ {0}. In addition, by (14) and (15),
for each solution (u, v) of system (10), on the sub-intervals where s ≡ 0, we know that u is constant;
regarding the sub-intervals where p ≡ w ≡ 0, we know that v is constant.

Let

u(t) =

⎧⎪⎪⎨⎪⎪⎩
ui, t ∈ [c2i, c2i+1], i = 0, . . . ,M− 1,
uM, t ∈ [c2M, η),
ũ0, t ∈ (η, d1],
ũj, t ∈ [d2j, d2j+1], j = 1, . . . ,N;

v(t) =
{

vi, t ∈ [c2i, c2i+1], i = 0, . . . ,M− 1,
ṽj, t ∈ [d2j, d2j+1], j = 1, . . . ,N;

(19)

and

v0 = v(c0) = v(c), ṽN+1 = v(d2N+1) = v(d), vM+1 = v(η − 0), ṽ0 = v(η + 0). (20)

Lemma 4. ([23]) Suppose that Equation (1) is of the Atkinson type. Then for each solution (u, v)
of (10), we have

qi(ui − ui−1) = vi, i = 1, 2, · · · ,M, (21)

vi+1 − vi = ui(pi − μwi), i = 0, 1, · · · ,M, (22)

q̃j(ũj − ũj−1) = ṽj, j = 1, 2, · · · ,N, (23)

ṽj+1 − ṽj = ũj( p̃j − μw̃j), j = 0, 1, · · · ,N. (24)

On the contrary, for any solution, ui (i = 0,M), vi (i = 0,M+ 1), ũj (j = 0,N), and
ṽj (j = 0,N+ 1) of systems (21)–(24), there exists a unique solution (u, v) of system (10),
such that (19) and (20) holds.

Theorem 2. Suppose ξi, τi, ei, ξ ′
i, τ′

i , e
′
i ∈ R (i = 1, 4) satisfy (6)–(9) and e2 �= 0. Define an

(M+N+ 5)× (M+N+ 5) matrix Q as follows:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξ2 ξ1 ξ3 ξ4
1 q1 −q1
−q1 q1+q2 −q2

. . . . . . . . .
−qM−1 qM−1 + qM −qM

−qM qM −1
−e′1 −e′2 1
e′3 e′4 q̃1 −q̃1

−q̃1 q̃1 + q̃2 −q̃2
. . . . . . . . .

−q̃N−1 q̃N−1+q̃N −q̃N
−q̃N q̃N −1

τ2 τ1 τ3 τ4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

86



Axioms 2023, 12, 479

Let P = diag (0, p0, p1, p2, . . . , pM, 0, p̃0, p̃1, p̃2, . . . , p̃N−1, p̃N, 0) and

W =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξ ′
2 ξ ′

1 ξ ′
3 ξ ′

4
w0

w1
. . .

wM−1
wM

e1 e2
−e3 −e4 w̃0

w̃1
. . .

w̃N−1
w̃N

τ′
2 τ′

1 τ′
3 τ′

4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then SLPs (1)–(5) are equivalent to matrix eigenvalue problems

(Q+P)U = μWU, (25)

where U = (v0, u0, u1, · · · , uM, vM+1, ũ0, ũ1, · · · , ũN, ṽN+1)
T. Furthermore, (19) shows the

relationship between the eigenfunction u(x) of problems (1)–(5) and eigenvector U of (25), in terms
of sharing the same eigenvalues.

Proof. Between the solutions of the following system:

q1(u1 − u0)− v0 = u0(p0 − μw0), (26)

qi+1(ui+1 − ui)− qi(ui − ui−1) = ui(pi − μwi), i = 1, 2, . . . ,M− 1, (27)

vM+1 − qM(uM − uM−1) = uM(pM − μwM), (28)

q̃1(ũ1 − ũ0)− ṽ0 = ũ0( p̃o − μw̃0), (29)

q̃j+1(ũj+1 − ũj)− q̃j(ũj − ũj−1) = ũj( p̃j − μw̃j), j = 1, 2, . . . ,N− 1, (30)

ṽN+1 − q̃N(ũN − ũN−1) = ũN( p̃N − μw̃N). (31)

and those of (21)–(24), a one-to-one correspondence exists by the assumption.
Now, we suppose ui (i = 0,M) and vi (i = 0,M+ 1) are solutions of systems (21) and

(22). Then (26)–(28) follow from (21) to (22). Similarly, (29)–(31) follow from (23) to (24) by
assuming that ũj (j = 0,N) and ṽj (j = 0,N) are solutions of systems (23) and (24).

In other words, let ui (i = 0,M) be a solution of (26)–(28); thus, v0 and vM+1 can
be calculated by (26) and (28). Assume that vi (i = 1,M) is defined in (21). Then, using
(26), and utilizing induction on (27), (22) holds. Moreover, (23) and (24) can be similarly
obtained.

Hence, according to Theorem 2, any solution of (10) is uniquely determined by solu-
tions of (26)–(31). Note the first row of matrix (25)

ξ2v0 + ξ1u0 + ξ3ũN + ξ4ṽN+1 = μ(ξ ′
2v0 + ξ ′

1u0 + ξ ′
3ũN + ξ ′

4ṽN+1), (32)
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and the last row of matrix (25)

τ2v0 + τ1u0 + τ3ũN + τ4ṽN+1 = μ(τ′
2v0 + τ′

1u0 + τ′
3ũN + τ′

4ṽN+1), (33)

substituting

u0 = u(c) = f (c), ũN = u(d) = f (d), v0 = v(c) = (q f ′)(c), ṽN+1 = v(d) = (q f ′)(d),

into (32) and (33), we obtain (2) and (3). From (4) to (5), we obtain

ũ0 = (e1μ + e′1)uM + (e2μ + e′2)vM+1, ṽ0 = (e3μ + e′3)uM + (e4μ + e′4)vM+1, (34)

and let U = (v0, u0, u1, · · · , uM, vM+1, ũ0, ũ1, · · · , ũN, ṽN+1)
T . Then the equivalence fol-

lows from (26) to (34).

The following result shows that the SLP of the Atkinson type is equivalent to the SLP
with piecewise constant coefficients in the sense that they have similar eigenvalues.

Theorem 3. Suppose that (1) is of the Atkinson type and qi (i = 1,M), q̃j (j = 1,N), pi, wi (i =
0,M), p̃j, w̃j (j = 0,N) are defined in (16) and (18). Denote piecewise constant functions q̄, p̄, w̄
on I by

q̄(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

qi(c2i − c2i−1), t ∈ [c2i−1, c2i], i = 1, . . . ,M,

∞, t ∈ ∪M
i=1[c2i−2, c2i−1] ∪ [c2M, η),

q̃j(d2j − d2j−1), t ∈ [d2j−1, d2j], j = 1, . . . ,N,

∞, t ∈ ∪N
j=1[d2j, d2j+1] ∪ (η, d1];

(35)

p̄(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pi
c2i+1−c2i

, t ∈ [c2i, c2i+1], i = 0, . . . ,M− 1,

pM
η−c2M

, t ∈ [c2M, η),

0, t ∈ ∪M
i=1[c2i−1, c2i],

p̃j
d2j+1−d2j

, t ∈ [d2j, d2j+1], j = 1, . . . ,N,

p̃0
d1−η , t ∈ (η, d1],

0, t ∈ ∪N
j=1[d2j−1, d2j];

(36)

w̄(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wi
c2i+1−c2i

, t ∈ [c2i, c2i+1], i = 0, . . . ,M− 1,

wM
η−c2M

, t ∈ [c2M, η),

0, t ∈ ∪M
i=1[c2i−1, c2i],

w̃j
d2j+1−d2j

, t ∈ [d2j, d2j+1], j = 1, . . . ,N,
w̃0

d1−η , t ∈ (η, d1],

0, t ∈ ∪N
j=1[d2j−1, d2j];

(37)

Suppose that (2)–(5) hold. Then the eigenvalues of SLPs (1)–(5) coincide with the eigenvalues
of the SLP

−(q̄(t) f ′(t))′ + p̄(t) f (t) = μw̄(t) f (t), t ∈ I (38)

with (2)–(5).

Proof. It is observed that SLPs (1)–(5) and (29), (2)–(5) determine the same

qi, i = 1, 2, . . . ,M, pi, wi, i = 0, 1, . . . ,M;

q̃j, j = 1, 2, . . . ,N, p̃j, w̃j, j = 0, 1, . . . ,N.
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Thus, they are equivalent to the same matrix eigenvalue problem, based on Theorem 2.
The results follow.

In light of Theorem 3, we know that for a fixed set of Equations (2)–(5) on a given
interval, there exists a family of SLPs of the Atkinson type, which have the same eigenvalues
as SLPs (38), (2)–(5). We refer to this family as the equivalent family of SLPs (38), (2)–(5).

Next, we will illustrate that matrix eigenvalue problems in the following form:

AT = μFT (39)

have representations as Atkinson-type SLPs.

Theorem 4. Let n ≥ 7, ei, e′i (i = 1, 2, 3, 4) in (4) and (5) satisfy det(Γμ) �= 0 (where Γμ is
defined in (9)), assume e2 �= 0. Assume that A is an n × n matrix as follows:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11 a12 a1,n−1 a1n
1 a22 a23

a23 a33 a34
. . . . . . . . .

am,m+1am+1,m+1 am+1,m+2
am+1,m+2 am+2,m+2 −1

am+3,m+2 am+3,m+3 1
am+4,m+2 am+4,m+3 am+4,m+4 am+4,m+5

am+4,m+5 am+5,m+5 am+5,m+6
. . . . . . . . .

an−2,n−3 an−2,n−2 an−2,n−1
an−2,n−1 an−1,n−1−1

an1 an2 an,n−1 ann

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where aj,j+1 �= 0 (j = 2, 3, . . . , n − 2), 2 ≤ m ≤ n − 5, aij ∈ R (1 ≤ i, j ≤ n),
a21 = am+3,m+4 = 1, am+2,m+3 = an−1,n = −1. Let F be an n × n matrix of the following form:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f11 f12 f1,n−1 f1n
f22

f33
. . .

fm+1,m+1
fm+2,m+2
fm+3,m+2 fm+3,m+3
fm+4,m+2 fm+4,m+3 fm+4,m+4

fm+5,m+5
. . .

fn−2,n−2
fn−1,n−1

fn1 fn2 fn,n−1 fnn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where fjj �= 0, fjj ∈ R (j = 2, 3, . . . , n − 1), and

rank
(

a11 a12 a1,n−1 a1n
an1 an2 an,n−1 ann

)
= 2, rank

(
f11 f12 f1,n−1 f1n
fn1 fn2 fn,n−1 fnn

)
= 2,

rank
(

a11 a12 a1,n−1 a1n
f11 f12 f1,n−1 f1n

)
= 2, rank

(
an1 an2 an,n−1 ann
fn1 fn2 fn,n−1 fnn

)
= 2.
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Then (39) represents an Atkinson-type SLP in the form of (1)–(5). Furthermore, SLPs (38),
(2)–(5) have unique representations when a fixed partition (13) of I is given, using the notations in
(16) and (18). All SL representations of (39) are given by the corresponding equivalent families of
SLPs (38), (2)–(5).

Proof. Let M = m, N = n − m − 5, I = [c, η) ∪ (η, d], −∞ < c < d < ∞. Firstly, one
defines the parameters in (2) and (3), let

ξ2 = a11, ξ1 = a12, ξ3 = a1,n−1, ξ4 = a1n;

τ2 = an1, τ1 = an2, τ3 = an,n−1, τ4 = ann;

ξ ′
2 = f11, ξ ′

1 = f12, ξ ′
3 = a f1,n−1, ξ ′

4 = f1n;

τ′
2 = fn1, τ′

1 = fn2, τ′
3 = fn,n−1, τ′

4 = fnn;

and
−e′1 = am+3,m+2, −e′2 = am+3,m+3, e′3 = am+4,m+2, e′4 = am+4,m+3;

e1 = fm+3,m+2, e2 = fm+3,m+3, −e3 = fm+4,m+2, −e4 = fm+4,m+3.

For a given partition of I by (13), one can define piecewise constant functions q̄, p̄
and w̄ on the interval I that satisfies (7), (14) and (15), as follows:

qi = −ai+1,i+2, i = 1,M, q̃j = −aM+j+3,M+j+4, j = 1,N;

wi = fi+2,i+2, i = 0,M, w̃j = fM+j+4,M+j+4, j = 0,N;

and
p0 = a22 − q1, pi = ai+2,i+2 − qi − qi+1, i = 1,M− 1,

pM = aM+2,M+2 − qM;

p̃0 = aM+4,M+4 − q̃1, p̃j = aM+j+4,M+j+4 − q̃j − q̃j+1, j = 1,N− 1,

p̃n = aM+N+4,M+N+4 − q̃N.

Next, we define q̄, p̄ and w̄ by (35)–(37), respectively. Such piecewise constant functions,
q̄, p̄, and w̄ on interval I, satisfying (7) and (14) and (15), are found; Equation (38) is of the
Atkinson type, and (16) and (18) satisfy with q, p, and w replaced by q̄, p̄, and w̄, respectively.
Obviously, Equation (39) is of the same form as Equation (25). Therefore, the problem (39)
is equivalent to the SLPs (1)–(5) by Theorem 2. The last part is yielded by Theorem 3.

Remark 2. If ξ ′
i = τ′

i = ei = 0 (i = 1, 4) in (2)–(5), then the problem under consideration
degenerates to the case discussed in [22].

If ei = 0 (i = 1, 4) in (4) and (5), then the problem under consideration degenerates to the
case discussed in [26].
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4. Akdoğan, Z.; Demirci, M.; Mukhtarov, O.S. Green function of discontinuous boundary value problem with transmission

conditions. Math. Methods Appl. Sci. 2007, 30, 1719–173. [CrossRef]
5. Mukhtarov, O.S.; Aydemir, K. Spectral analysis of alpha-semi periodic 2-interval Sturm-Liouville problems. Qual. Theory Dyn.

Syst. 2022, 21, 1–14. [CrossRef]
6. Fulton, C. Two-point boundary value problems with eigenvalue parameter contained in the boundary conditions. Proc. R. Soc.

Edinb. Sect. Math. 1977, 77, 293–308. [CrossRef]
7. Guo, Y.; Wei, G. Inverse nodal problem for Dirac equations with boundary conditions polynomially dependent on the spectral

parameter. Results Math. 2015, 67, 95–110. [CrossRef]
8. Kerimov, N.B.; Maris, E.A. On the uniform convergence of Fourier series expansions for Sturm-Liouville problems with a spectral

parameter in the boundary conditions. Results Math. 2018, 102, 1–16. [CrossRef]
9. Sat, M. Interior inverse problem for Sturm-Liouville operator with eigenparameter dependent boundary conditions. In

Bulletin of the Transilvania; Series III: Mathematics, Informatics, Physics; University of Brasov: Brasov, Romania, 2017;
Volume 10, pp. 129–141.

10. Yang, C.; Pivovarchik, V.N. Inverse nodal problem for Dirac system with spectral parameter in boundary conditions. Complex
Anal. Oper. Theory 2013, 7, 1211–1230. [CrossRef]

11. Li, K.; Zhang, M.; Zheng, Z. Dependence of eigenvalues of Dirac system on the parameters. Stud. Appl. Math. 2023, 150,
1201–1216. [CrossRef]

12. Guliyev, N.J. Schrödinger operators with distributional potentials and boundary conditions dependent on the eigenvalue
parameter. J. Math. Phys. 2019, 60, 063501. [CrossRef]

13. Guliyev, N.J. A Riesz basis criterion for Schrödinger operators with boundary conditions dependent on the eigenvalue parameter.
Anal. Math. Phys. 2020, 60, 1–8. [CrossRef]

14. Guliyev, N.J. On two-spectra inverse problems. Proc. Amer. Math. Soc. 2020, 10, 4491–4502. [CrossRef]
15. Yang, C.; Yang, X. An interior inverse problem for the Sturm-Liouville operator with discontinuous conditions. Appl. Math. Lett.

2009, 22, 1315–1319. [CrossRef]
16. Prather, C.L.; Shaw, J.K. On the oscillation of differential transforms of eigenfunction expansions. Trans. Am. Math. Soc. 1983,

280, 187–206. [CrossRef]
17. Zhang, L.; Ao, J. Inverse spectral problem for Sturm-Liouville operator with coupled eigenparameter dependent boundary

conditions of the Atkinson type. Inverse Probl. Sci. Eng. 2019, 27, 1689–1702. [CrossRef]
18. Kong, Q.; Wu, H.; Zettl, A. Sturm-Liouville problems with finite spectrum. J. Math. Anal. Appl. 2001, 263, 748–762. [CrossRef]
19. Kong, Q.; Volkmer, H.; Zettl, A. Matrix representations of Sturm-Liouville problems with finite spectrum. Results Math. 2009,

54, 103–116. [CrossRef]
20. Atkinson, F.V. Discrete and Continuous Boundary Value Problems, 2nd ed.; Academic Press: New York, NY, USA; London, UK, 1964.
21. Ao, J.; Sun, J. Matrix representations of fourth-order boundary value problems with coupled or mixed boundary conditions.

Linear Multilinear Algebra 2015, 63, 1590–1598. [CrossRef]
22. Ao, J.; Sun, J.; Zhang, M. The finite spectrum of Sturm-Liouville problems with transmission conditions. Appl. Math. Comput.

2011, 218, 1166–1173. [CrossRef]
23. Ao, J.; Sun, J.; Zhang, M. Matrix representations of Sturm-Liouville problems with transmission conditions. Comput. Math. Appl.

2012, 63, 1335–1348. [CrossRef]
24. Ao, J.; Sun, J.; Zhang, M. The finite spectrum of Sturm-Liouville problems with transmission conditions and eigenparameter

dependent boundary conditions. Results Math. 2013, 63, 1057–1070. [CrossRef]
25. Ge, S.; Wang, W.; Ao, J. Matrix representations of fourth order boundary value problems with periodic boundary conditions.

Appl. Math. Comput. 2014, 227, 601–609. [CrossRef]
26. Cai, J.; Zheng, Z. Matrix representations of Sturm-Liouville problems with coupled eigenparameter dependent boundary

conditions and transmission conditions. Math. Methods Appl. Sci. 2018, 41, 3495–3508. [CrossRef]
27. Zhang, N.; Ao, J.-J. Finite spectrum of Sturm-Liouville problems with transmission conditions dependent on the spectral

parameter. Numer. Funct. Anal. Optim. 2023, 44, 21–35. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

91



Citation: Hamadneh, T.; Abu

Falahah, I.; AL-Khassawneh, Y.A.;

Al-Husban, A.; Wanas, A.K.;
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Abstract: In this article, we introduce and study the behavior of the modules of the first two co-
efficients for the classes NΣ(γ, λ, δ, μ; α) and NΣ∗ (γ, λ, δ, μ; β) of normalized holomorphic and bi-
univalent functions that are connected with the prestarlike functions. We determine the upper bounds
for the initial Taylor–Maclaurin coefficients |a2| and |a3| for the functions of each of these families, and
we also point out some special cases and consequences of our main results. The study of these classes
is closely connected with those of Ruscheweyh who in 1977 introduced the classes of prestarlike
functions of order μ using a convolution operator and the proofs of our results are based on the well-
known Carathédory’s inequality for the functions with real positive part in the open unit disk. Our
results generalize a few of the earlier ones obtained by Li and Wang, Murugusundaramoorthy et al.,
Brannan and Taha, and could be useful for those that work with the geometric function theory of
one-variable functions.

Keywords: holomorphic functions; univalent functions; bi-univalent functions; convolution (Hadamard)
product; prestarlike functions; coefficient estimates; Taylor–Maclaurin coefficients

MSC: 30C45; 30C50

1. Introduction

We denote by A the family of functions which are analytic in the open unit disk
U := {z ∈ C : |z| < 1} and with the following normalized form:

f (z) = z +
∞

∑
k=2

akzk, z ∈ U. (1)

Let S denote the subclass of A of the functions that are univalent in U. From the Koebe
one-quarter theorem [1], all the functions f ∈ S have an inverse f −1 defined by

f −1( f (z)) = z (z ∈ U)

Axioms 2023, 12, 453. https://doi.org/10.3390/axioms12050453 https://www.mdpi.com/journal/axioms92
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and

f
(

f −1(w)
)
= w

(
|w| < r0( f ), r0( f ) ≥ 1

4

)
.

In addition, for every function f ∈ S , there exists an inverse function f −1 : f (U) → U

analytic in the domain f (U), but it is not sure that f (U) ⊆ U. Therefore, if we denote by g
the analytic continuation of f −1 to the unit disk U, assuming that it exists, then

g(w) := f −1(w) = w − a2w2 +
(

2a2
2 − a3

)
w3 −

(
5a3

2 − 5a2a3 + a4

)
w4 + . . . , w ∈ U. (2)

A function f ∈ A is called to be bi-univalent in U if both f and g = f −1 are univalent
in U and Σ denotes the class of normalized bi-univalent functions in U. For the historical
account and for many relevant examples of functions belonging to the class Σ, see the
pioneering work connected with this subject of Srivastava et al. [2], which has actually been
of crucial importance for studies of bi-univalent functions in recent years. According to
this article of Srivastava et al. [2], we would like to recall here some examples of functions
belonging to the class Σ, such as

z
1 − z

, − log(1 − z) and
1
2

log
(

1 + z
1 − z

)
.

Thus, the class Σ is not empty, while the Koebe function does not belongs to Σ.
In a large number of papers which appeared after the work of Srivastava et al. [2], the

authors defined and studied the different families of the bi-univalent function class Σ (as
can be seen, for example, in [3–22]), but only non-sharp estimates on the initial coefficients
|a2| and |a3| in the Taylor–Maclaurin expansion (1) were obtained in many of these recent
papers. The problem of finding the upper bounds for the general coefficient of the power
series expansion coefficients

|an|
(
n ∈ N \ {1, 2}, N := {1, 2, 3, . . . })

for functions f ∈ Σ is still not completely solved for many subclasses of the bi-univalent
function class Σ (as can be seen, for example, in [11,14,15]).

For two analytic functions in U, namely F(z) =
∞
∑

k=0
αkzk and G(z) =

∞
∑

k=0
βkzk, ∗”

usually denotes the convolution (or Hadamard) product of these functions by

(F ∗ G)(z) :=
∞

∑
k=0

αkβkzk, z ∈ U.

In [23], Ruscheweyh defined and investigated the family of prestarlike functions of order
μ, that are the functions f with the property that f ∗ Iμ is a starlike function of order μ in U,
where

Iμ(z) :=
z

(1 − z)2(1−μ)
, z ∈ U (0 ≤ μ < 1).

Remark that the function Iμ could be written in the form

Iμ(z) = z +
∞

∑
k=2

ϕk(μ)zk, z ∈ U,

where

ϕk(μ) =

k
∏
j=2

(j − 2μ)

(k − 1)!
, k ≥ 2.
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In addition, we note that ϕk is a decreasing function and satisfies the limit property

lim
k→∞

ϕk(μ) =

⎧⎪⎨⎪⎩
∞, if μ < 1

2 ,

1, if μ = 1
2 ,

0, if μ > 1
2 .

Next, we recall the following lemma that will be used as a main tool in the proofs of
our two main results.

Lemma 1 ([1,24]). (Carathéodory’s inequality) If h ∈ P , then

|ck| ≤ 2 (k ∈ N),

where P is the class of all functions h analytic in U, for which

Re h(z) > 0, z ∈ U,

with
h(z) = 1 + c1z + c2z2 + . . . , z ∈ U.

2. Initial Coefficient Estimates for the Bi-Univalent Function Subclass NΣ(γ, λ, δ, μ; α)

First, we will first define the new subclass NΣ(γ, λ, δ, μ; α) of the bi-univalent function
as follows:

Definition 1. A function f ∈ Σ of the form (1) belongs to the bi-univalent function class
NΣ(γ, λ, δ, μ; α) if it satisfies the conditions∣∣∣∣∣arg

((
z( f ∗ Iμ)

′
(z)

( f ∗ Iμ)(z)

)γ[
(1 − δ)

z( f ∗ Iμ)
′
(z)

( f ∗ Iμ)(z)
+ δ

(
1 +

z( f ∗ Iμ)
′′
(z)

( f ∗ Iμ)
′
(z)

)]λ
)∣∣∣∣∣ < απ

2 , z ∈ U, (3)

and∣∣∣∣∣arg

((
w(g ∗ Iμ)

′
(w)

(g ∗ Iμ)(w)

)γ[
(1 − δ)

w(g ∗ Iμ)
′
(w)

(g ∗ Iμ)(w)
+ δ

(
1 +

w(g ∗ Iμ)
′′
(w)

(g ∗ Iμ)
′
(w)

)]λ
)∣∣∣∣∣ < απ

2 , w ∈ U, (4)

where
0 < α ≤ 1, 0 ≤ γ ≤ 1, 0 ≤ λ ≤ 1, 0 ≤ δ ≤ 1,

and g = f −1 is given by (2).

Remark 1. The subclass NΣ(γ, λ, δ, μ; α) generalizes some well-known families considered in
earlier studies and which will be recalled below:

(i) For γ = 0, λ = 1 and μ = 1
2 , the class NΣ(γ, λ, δ, μ; α) reduces to the class MΣ(α, δ), which

was investigated by Li and Wang [25], that is

MΣ(α, δ) :=

{
f ∈ Σ :

∣∣∣∣arg
[
(1 − δ)

z f ′(z)
f (z)

+ δ

(
1 +

z f ′′(z)
f ′(z)

)]∣∣∣∣ < απ

2
, z ∈ U, and

∣∣∣∣arg
[
(1 − δ)

wg′(w)

g(w)
+ δ

(
1 +

wg′′(w)

g′(w)

)]∣∣∣∣ < απ

2
, w ∈ U

}
,

where g = f −1 is defined like in (2).
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(ii) For γ = 1, λ = 0 and μ = 1
2 , the class NΣ(γ, λ, δ, μ; α) reduces to the class SΣ∗(α) that was

defined and studied by Brannan and Taha [26] by

SΣ∗(α, δ) :=

{
f ∈ Σ :

∣∣∣∣arg
z f ′(z)

f (z)

∣∣∣∣ < απ

2
, z ∈ U, and

∣∣∣∣arg
wg′(w)

g(w)

∣∣∣∣ < απ

2
, w ∈ U

}
,

where g = f −1 is defined as in (2).

Remark 2. We would like to emphasize that, for appropriate parameter choices, the classesNΣ(γ, λ, δ, μ; α)

are not empty. Thus, if we consider μ = 1
2 , then mathrmI 1

2
(z) = z

1−z =
∞
∑

k=1
zk, and letting f∗(z) =

z
1−z , it is easy to check that f∗ ∈ S, and moreover, f∗ ∈ Σ with g(w) = f −1∗ (w) = w

1+w .
A simple computation shows that the conditions (3) and (4) become∣∣∣∣∣arg

((
1

1 − z

)γ(1 + δz
1 − z

)λ
)∣∣∣∣∣ < απ

2
, (5)

and ∣∣∣∣∣arg

((
1

1 + w

)γ(1 − δw
1 + w

)λ
)∣∣∣∣∣ < απ

2
, (6)

respectively. For the particular case γ = 1
3 , δ = 1

2 and λ = 1
5 , using the 2D plot of the MAPLE™

computer software, we obtain the image of the open unit disk U by the function

Φ(z) :=
(

1
1 − z

)γ(1 + δz
1 − z

)λ

which is the same with those by

Ψ(w) :=
(

1
1 + w

)γ(1 − δw
1 + w

)λ

and it is shown in Figure 1:

Figure 1. The image of Φ(U) = Ψ(U).

Since Φ(z) = Φ(z) and similarly for Ψ, it follows that the domains Φ(U) = Ψ(U) are
symmetric with respect to the real axe. Therefore, if θ is the positive argument of the tangent starting from
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the origin to the boundary of the domain Φ(U) that is Φ(∂U), for α ≥ tan θ (see also Figure 1), we
obtain that the inequalities (5) and (6) are satisfied, and hence f∗(z) = z

1−z ∈ NΣ

(
1
3 , 1

5 , 1
2 , 1

2 ; α
)

.
Concluding, for appropriate choices of the parameters γ, λ, δ, μ and α, the subclasses

NΣ(γ, λ, δ, μ; α) are not empty.

Our first main result is presented in the below theorem where we found upper bounds
for the first two coefficients |a2| and |a3| of the power series expansion of the functions
belonging to these classes.

Theorem 1. Let the function f ∈ NΣ(γ, λ, δ, μ; α), with 0 < α ≤ 1, 0 ≤ γ ≤ 1, 0 ≤ λ ≤ 1,
0 ≤ δ ≤ 1 be given by (1). Then,

|a2| ≤ α√∣∣∣α(1 − μ)Φ(μ, γ, λ, δ) + (1 − α)(1 − μ)2(γ + λ(δ + 1)
)2∣∣∣

and

|a3| ≤ α2

8(1 − μ)2(γ + λ(δ + 1)
)2 +

α

(1 − μ)(3 − 2μ)
(
γ + λ(2δ + 1)

) ,

where

Φ(μ, γ, λ, δ) = (1 − μ)
[
γ(γ − 1) + λ(δ + 1)

(
2γ + (λ − 1)(δ + 1)

)− 2
(
γ + λ(3δ + 1)

)]
+(3 − 2μ)

(
γ + λ(2δ + 1)

)
.

(7)

Proof. According to the conditions (3) and (4), we have(
z
(

f ∗ Iμ

)′
(z)(

f ∗ Iμ

)
(z)

)γ[
(1 − δ)

z
(

f ∗ Iμ

)′
(z)(

f ∗ Iμ

)
(z)

+ δ

(
1 +

z
(

f ∗ Iμ

)′′
(z)(

f ∗ Iμ

)′
(z)

)]λ

= [p(z)]α, (8)

and(
w
(

g ∗ Iμ

)′
(w)(

g ∗ Iμ

)
(w)

)γ[
(1 − δ)

w
(

g ∗ Iμ

)′
(w)(

g ∗ Iμ

)
(w)

+ δ

(
1 +

w
(

g ∗ Iμ

)′′
(w)(

g ∗ Iμ

)′
(w)

)]λ

= [q(w)]α, (9)

where g = f −1, with the functions p, q ∈ P having the power series representations

p(z) = 1 + p1z + p2z2 + p3z3 + . . . , z ∈ U, (10)

and
q(w) = 1 + q1w + q2w2 + q3w3 + . . . , w ∈ U. (11)

Equating the corresponding coefficients of (8) and (9), we obtain that

2(1 − μ)
(
γ + λ(δ + 1)

)
a2 = αp1, (12)

2(1 − μ)(3 − 2μ)
(
γ + λ(2δ + 1)

)
a3

+ 2(1 − μ)2
[
γ(γ − 1) + λ(δ + 1)

(
2γ + (λ − 1)(δ + 1)

)− 2
(
γ + λ(3δ + 1)

)]
a2

2

= αp2 +
α(α − 1)

2
p2

1, (13)

− 2(1 − μ)
(
γ + λ(δ + 1)

)
a2 = αq1, (14)
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and

2(1 − μ)(3 − 2μ)
(
γ + λ(2δ + 1)

)(
2a2

2 − a3
)

+2(1 − μ)2
[
γ(γ − 1) + λ(δ + 1)

(
2γ + (λ − 1)(δ + 1)

)− 2
(
γ + λ(3δ + 1)

)]
a2

2

= αq2 +
α(α−1)

2 q2
1.

(15)

Using (12) and (14), it follows that
p1 = −q1, (16)

and
8(1 − μ)2(γ + λ(δ + 1)

)2a2
2 = α2(p2

1 + q2
1), (17)

and if we add (13) to (15), we obtain

4(1 − μ)Φ(μ, γ, λ, δ)a2
2 = α(p2 + q2) +

α(α − 1)
2

(
p2

1 + q2
1

)
, (18)

where Φ(μ, γ, λ, δ) is given by (7).
Substituting the value of p2

1 + q2
1 from (17) into the right-hand side of (18), a simple

computation leads to

a2
2 =

α2(p2 + q2)

4α(1 − μ)Φ(μ, γ, λ, δ) + 4(1 − α)(1 − μ)2(γ + λ(δ + 1)
)2 . (19)

Taking the modules of both sides of (19) and using the Lemma 1 for the coefficients p2 and
q2, we obtain

|a2| ≤ α√∣∣∣α(1 − μ)Φ(μ, γ, λ, δ) + (1 − α)(1 − μ)2(γ + λ(δ + 1)
)2∣∣∣ .

In order to determine the upper bound of |a3|, subtracting (15) from (13), we have

4(1 − μ)(3 − 2μ)
(
γ + λ(2δ + 1)

)(
a3 − a2

2

)
= α(p2 − q2) +

α(α − 1)
2

(
p2

1 − q2
1

)
. (20)

Substituting the value of a2
2 from (17) into (20) and using (16), we obtain

a3 =
α2(p2

1 + q2
1
)

8(1 − μ)2(γ + λ(δ + 1)
)2 +

α(p2 − q2)

4(1 − μ)(3 − 2μ)
(
γ + λ(2δ + 1)

) . (21)

Taking the modules for both sides of (21) and once again using Lemma 1 for the
coefficients p1, p2, q1 and q2, it follows that

|a3| ≤ α2

8(1 − μ)2(γ + λ(δ + 1)
)2 +

α

(1 − μ)(3 − 2μ)
(
γ + λ(2δ + 1)

) ,

and the proof of our theorem is complete.

Remark 3. Note that Theorem 1 generalizes some earlier results obtained by different authors:

(i) If, in this theorem, we choose γ = 0, λ = 1, and μ = 1
2 , then we have the following result of

Li and Wang ([25] Theorem 2.2):
Let f be given by (1) in the class MΣ(α, δ) := NΣ

(
0, 1, δ, 1

2 ; α
)

, 0 ≤ α < 1, δ ≥ 0. Then,

|a2| ≤ 2α

(1 + δ)(α + 1 + δ − αδ)
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and

|a3| ≤ 4α2

(1 + δ)2 +
α

1 + 2δ
.

(ii) For the special case γ = 1, λ = 0 and μ = 1
2 , we obtain the result of Murugusundaramoorthy

et al. ([27] Corollary 6), that is:
Let f be given by (1) be in the class Sα

Σ := NΣ

(
1, 0, δ, 1

2 ; α
)

, 0 < α ≤ 1. Then,

|a2| ≤ 2α

α + 1
, |a3| ≤ 4α2 + α.

3. Initial Coefficient Estimates for the Bi-Univalent Function Subclass NΣ∗(γ, λ, δ, μ; β)

In the next main result of the paper, we also found the upper bounds of the two initial
coefficients of the power series. Thus, we define the subclass NΣ∗(γ, λ, δ, μ; β) of the class
of bi-univalent functions.

Definition 2. A function f ∈ Σ of the form (1) is called to be in subclass NΣ∗(γ, λ, δ, μ; β) of the
class of bi-univalent functions if it satisfies the conditions

Re

{(
z( f ∗ Iμ)

′
(z)

( f ∗ Iμ)(z)

)γ[
(1 − δ)

z( f ∗ Iμ)
′
(z)

( f ∗ Iμ)(z)
+ δ

(
1 +

z( f ∗ Iμ)
′′
(z)

( f ∗ Iμ)
′
(z)

)]λ
}

> β, z ∈ U, (22)

and

Re

{(
w(g ∗ Iμ)

′
(w)

(g ∗ Iμ)(w)

)γ[
(1 − δ)

w(g ∗ Iμ)
′
(w)

(g ∗ Iμ)(w)
+ δ

(
1 +

w(g ∗ Iμ)
′′
(w)

(g ∗ Iμ)
′
(w)

)]λ
}

> β, w ∈ U, (23)

where
0 ≤ β < 1, 0 ≤ γ ≤ 1, 0 ≤ λ ≤ 1, 0 ≤ δ ≤ 1,

and g = f −1 is given by (2).

Remark 4. The subclass NΣ∗(γ, λ, δ, μ; β) is a generalization of some well-known classes investi-
gated previously, which we recall below:

1. For γ = 0, λ = 1 and μ = 1
2 , the class NΣ∗(γ, λ, δ, μ; β) is reduced to the subclass BΣ(β, δ)

introduced by Li and Wang [25], as follows

BΣ(β, δ) :=

{
f ∈ Σ : Re

[
(1 − δ)

z f ′(z)
f (z)

+ δ

(
1 +

z f ′′(z)
f ′(z)

)]
> β, z ∈ U, and

Re
[
(1 − δ)

wg′(w)

g(w)
+ δ

(
1 +

wg′′(w)

g′(w)

)]
> β, w ∈ U

}
,

where g = f −1 is defined as in (2).
2. For γ = 1, λ = 0, and μ = 1

2 , the class NΣ∗(γ, λ, δ, μ; β) is reduced to the subclass SΣ∗(β)
that was already investigated by Brannan and Taha [26], and was defined by

SΣ∗(β) :=

{
f ∈ Σ : Re

z f ′(z)
f (z)

> β, z ∈ U, and Re
wg′(w)

g(w)
> β, w ∈ U

}
,

where g = f −1 is defined as in (2).
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Remark 5. Considering the same values of the parameters γ, λ, δ, μ, and α as in the Remark 2, for
the function f∗(z) = z

1−z , we obtain that the inequalities (22) and (23) become

Re Φ(z) > β, z ∈ U, Re Ψ(w) > β, w ∈ U,

respectively. As can be seen in Figure 1, there exists a positive value of β < 1 such that the above
two inequalities hold, hence f∗(z) = z

1−z ∈ NΣ∗
(

1
3 , 1

5 , 1
2 , 1

2 ; β
)

Consequently, for appropriate choices of the parameters γ, λ, δ, μ, and β, the subclasses
NΣ∗(γ, λ, δ, μ; β) are not empty.

Our second main result presented in the next theorem gives upper bounds for the two
initial coefficients of the functions belonging to the class NΣ∗(γ, λ, δ, μ; β).

Theorem 2. If the function f ∈ NΣ∗(γ, λ, δ, μ; β), with 0 ≤ β < 1, 0 ≤ γ ≤ 1, 0 ≤ λ ≤ 1,
0 ≤ δ ≤ 1, is given by (1), then

|a2| ≤ 2

√
1 − β

(1 − μ)(γ + 2)(γ + 1) + 2μλ(2λ − 1)

and

|a3| ≤ 4(1 − β)2[
(1 − μ)(γ + 1) + μ(2λ − 1)

]2 +
2(1 − β)

(1 − μ)(γ + 2) + μ(3λ − 1)
.

Proof. From the relations (22) and (23), it follows that the functions p, q ∈ P exist such that(
z( f ∗ Iμ)

′
(z)

( f ∗ Iμ)(z)

)γ[
(1 − δ)

z( f ∗ Iμ)
′
(z)

( f ∗ Iμ)(z)
+ δ

(
1 +

z( f ∗ Iμ)
′′
(z)

( f ∗ Iμ)
′
(z)

)]λ

= β + (1 − β)p(z), (24)

and(
w(g ∗ Iμ)

′
(w)

(g ∗ Iμ)(w)

)γ[
(1 − δ)

w(g ∗ Iμ)
′
(w)

(g ∗ Iμ)(w)
+ δ

(
1 +

w(g ∗ Iμ)
′′
(w)

(g ∗ Iμ)
′
(w)

)]λ

= β + (1 − β)q(w), (25)

where g = f −1, and the functions p, q ∈ P have the series expansions given by (10) and (11),
respectively. Equating the corresponding coefficients of (24) and (25), we deduce

2(1 − μ)
(
γ + λ(δ + 1)

)
a2 = (1 − β)p1, (26)

2(1 − μ)(3 − 2μ)
(
γ + λ(2δ + 1)

)
a3

+ 2(1 − μ)2
[
γ(γ − 1) + λ(δ + 1)

(
2γ + (λ − 1)(δ + 1)

)− 2
(
γ + λ(3δ + 1)

)]
a2

2

= (1 − β)p2, (27)

− 2(1 − μ)
(
γ + λ(δ + 1)

)
a2 = (1 − β)q1, (28)

and

2(1 − μ)(3 − 2μ)
(
γ + λ(2δ + 1)

)(
2a2

2 − a3
)

+2(1 − μ)2
[
γ(γ − 1) + λ(δ + 1)

(
2γ + (λ − 1)(δ + 1)

)− 2
(
γ + λ(3δ + 1)

)]
a2

2

= (1 − β)q2.

(29)

From (26) and (28), we find that

p1 = −q1, (30)
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and
8(1 − μ)2(γ + λ(δ + 1)

)2a2
2 = (1 − β)2(p2

1 + q2
1). (31)

By adding (27) and (29), we obtain

4(1 − μ)Φ(μ, γ, λ, δ)a2
2 = (1 − β)(p2 + q2), (32)

where Φ(μ, γ, λ, δ) is given by (7). Consequently, we have

a2
2 =

(1 − β)(p2 + q2)

4(1 − μ)Φ(μ, γ, λ, δ)
.

Applying the Lemma 1 for the coefficients p2 and q2, it follows that

|a2| ≤
√

1 − β

(1 − μ)Φ(μ, γ, λ, δ)
.

To obtain the upper bound of |a3|, by subtracting (29) from (27), we obtain

4(1 − μ)(3 − 2μ)
(
γ + λ(2δ + 1)

)(
a3 − a2

2

)
= (1 − β)(p2 − q2)

or equivalently,

a3 = a2
2 +

(1 − β)(p2 − q2)

4(1 − μ)(3 − 2μ)
(
γ + λ(2δ + 1)

) . (33)

Substituting the value of a2
2 from (31) into (33), it follows that

a3 =
(1 − β)2(p2

1 + q2
1)

8(1 − μ)2(γ + λ(δ + 1)
)2 +

(1 − β)(p2 − q2)

4(1 − μ)(3 − 2μ)
(
γ + λ(2δ + 1)

) .

Finally, applying once again the Lemma 1 for the coefficients p1, p2, q1, and q2, we obtain

|a3| ≤ (1 − β)2

(1 − μ)2(γ + λ(δ + 1)
)2 +

(1 − β)

(1 − μ)(3 − 2μ)
(
γ + λ(2δ + 1)

) .

Thus, we completed the proof of Theorem 2.

Remark 6. Theorem 2 also generalizes some previous results as follows:

(i) If we choose, in this theorem, that γ = 0, λ = 1, and μ = 1
2 , then we obtain the result of Li

and Wang ([25] Theorem 3.2) as follows:
Let f be given by (1) in the class BΣ(β, δ) := NΣ∗

(
0, 1, δ, 1

2 ; β
)

, 0 ≤ β < 1, 0 ≤ δ ≤ 1.
Then

|a2| ≤
√

2(1 − β)

1 + δ
.

(ii) For γ = 1, λ = 0 and μ = 1
2 , we obtain the next result of Murugusundaramoorthy et al.

([27] Corollary 7):
Let f be given by (1) in the class SΣ(β) := NΣ∗

(
1, 0, δ, 1

2 ; β
)

, 0 ≤ β < 1, 0 ≤ δ ≤ 1. Then

|a2| ≤
√

2 − 2β, |a3| ≤ 4(1 − β)2 + (1 − β).

4. Conclusions

In this article, we defined two new subclasses of bi-univalent functions, that are
NΣ(γ, λ, δ, μ; α) and NΣ∗(γ, λ, δ, μ; β), with the aid of the arguments and real parts’ up-
per bounds, respectively. In these definitions, we used the convolution product with
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the function Iμ first defined in [23]. For some particular cases of parameters, the classes
NΣ(γ, λ, δ, μ; α) generalize those introduced by Li and Wang [25] and Brannan and Taha [26],
while NΣ∗(γ, λ, δ, μ; β) extends the classes BΣ(β, δ) of Li and Wang [25], and SΣ∗(β) is de-
fined as studied by Brannan and Taha [26].

The two main results give upper bounds for the first two coefficients of the power series
for the functions that belong to these families. Our main results extend those of Li and Wang
([25] Theorem 2.2), Li and Wang ([25] Theorem 3.2), Murugusundaramoorthy et al. ([27]
Corollary 6) and Murugusundaramoorthy et al. ([27] Corollary 7).

We would like to mention that neither of the main theorems give the best
(i.e., the lowest) upper bounds for |a2| and |a3| for the functions that belong to the subclasses
NΣ(γ, λ, δ, μ; α) and NΣ∗(γ, λ, δ, μ; β). To find the best (that is the lowest, or so-called the
sharp) upper bounds of these coefficients remains an interesting open question, and could
motivate researchers to find other methods for this type of study.

Moreover, another open question is to find upper bounds for the general coefficients
|an|, n ≥ 4 for the functions of these new classes. Our attempts for the coefficient |a4| fail
because of the very complicated expression of this coefficient, but still remains a challenging
problem; maybe another approach could give a satisfactory result in this sense.
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Abstract: Hermite–Hadamard inequality is a double inequality that provides an upper and lower
bounds of the mean (integral) of a convex function over a certain interval. Moreover, the convexity
of a function can be characterized by each of the two sides of this inequality. On the other hand, it
is well known that a twice differentiable function is convex, if and only if it admits a nonnegative
second-order derivative. In this paper, we obtain a characterization of a class of twice differentiable
functions (including the class of convex functions) satisfying second-order differential inequalities.
Some special cases are also discussed.

Keywords: convex functions; Hermite–Hadamard inequality; second-order differential inequalities

MSC: 26A51; 26D15; 26D10

1. Introduction

Inequalities involving convex functions are very useful in many branches of math-
ematics. The Hermite–Hadamard inequality is the one of the most important inequality
for convex functions. This inequality provides an upper and lower bounds of the mean
of a convex function over a certain interval. It is mostly used in mathematics to study the
properties of convex functions and their applications in optimization and approximation
theory, see, e.g., [1–3].

A real-valued function f defined in an interval I is convex if:

f (ιy + (1 − ι)z) ≤ ι f (y) + (1 − ι) f (z)

for every ι ∈ [0, 1] and y, z ∈ I. If f is twice differentiable, then f is convex, if and only if
its second derivative is nonnegative. The Hermite–Hadamard inequality can be stated as
follows: Let f be a real-valued convex function in an interval I. Then, for all x, y ∈ I with
x < y, we have:

f
(

x + y
2

)
≤ 1

y − x

∫ y

x
f (τ) dτ ≤ f (x) + f (y)

2
. (1)

Many generalizations and extensions of (1) can be found in the literature. For instance,
Dragomir and Agarwal [2] studied the following class of functions:

F =
{

f : [a, b] → R : f is differentiable , | f ′| is convex
}

.

They proved that, if f ∈ F , then:∣∣∣∣ 1
b − a

∫ b

a
f (x) dx − f (a) + f (b)

2

∣∣∣∣ ≤ b − a
8
(| f ′(a)|+ | f ′(b)|).
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Some improvements and extensions of the above result have been obtained by some
authors, see, e.g., [4–7]. Other extensions of (1) to various classes of functions have been ob-
tained: s-convex functions [8–11], log-convex functions [12–14], h-convex functions [15,16],
and m-convex functions [17–20]. For other classes of functions, we refer to [21–24] and
the references therein. Some extensions of Hermite–Hadamard inequality to a higher
dimension can be found in [25–29].

It is interesting to notice that each of the two sides of (1) provides a characterization of
convex functions. Namely, if f is a real valued continuous function in an interval I, then
the following statements are equivalent:

(i) f is convex;
(ii) For all x, y ∈ I with x < y:

1
y − x

∫ y

x
f (τ) dτ ≥ f

(
x + y

2

)
;

(iii) For all x, y ∈ I with x < y:

1
y − x

∫ y

x
f (τ) dτ ≤ f (x) + f (y)

2
. (2)

The proof of the implication (ii) =⇒ (i) can be found in ([30], p. 98). For the proof of
the implication (iii) =⇒ (i), we refer to (Problem Q, [31], p. 15). On the other hand, one can
check easily that (iii) is equivalent to:∫ y

x
f (τ) dτ ≤ H′(x) f (x)− H′(y) f (y) (3)

for all x, y ∈ I with x < y, where:

H(z) =
1
2
(z − x)(y − z), x ≤ z ≤ y.

Observe that H is the unique (nonnegative) solution to the boundary value problem:{
H′′(z) = −1, x < z < y,
H(x) = H(y) = 0.

From the above remarks, we deduce that, if f is twice differentiable in I, then f ′′ ≥ 0
(i.e., f is convex), if and only if (3) holds for all x, y ∈ I with x < y. Thus, (3) provides
a characterization of twice differentiable functions in I, having a nonnegative second
derivative.

Motivated by the above discussion, our aim in this paper is to obtain a characterization
of the class of twice continuously differentiable functions f in I, satisfying second-order
differential inequalities of the form:

(α f ′)′ + β f + γ ≥ 0, (4)

where α is twice continuously differentiable in I and β, γ are continuous in I. We shall
assume that for all x, y ∈ I with x < y, there exists a unique nonnegative solution H to the
boundary value problem:{

(α(z)H′(z))′ + β(z)H(z) = −1, x < z < y,
H(x) = H(y) = 0.

The rest of the paper is organized as follows. Section 2 is devoted to the main results
and their proofs. Namely, we establish a characterization of the class of functions f
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satisfying differential inequalities of the form (4). In Section 3, we discuss some special
cases of (4).

2. Main Results

For any interval J of R, by Cn(J), where n ≥ 0 is a natural number, we mean the space
of n-continuously differentiable functions in J.

Let I be an open interval of R. Let α ∈ C1(I) and β, γ ∈ C(I). Throughout this section,
it is assumed that for all x, y ∈ I with x < y, there exists a unique nonnegative solution
H ∈ C2(]x, y[) ∩ C([x, y]) to the Dirichlet boundary value problem:{

(α(z)H′(z))′ + β(z)H(z) = −1, x < z < y,
H(x) = H(y) = 0.

(5)

We are concerned with the class of functions f ∈ C2(I) satisfying the second-order
differential inequality:

(α(z) f ′(z))′ + β(z) f (z) + γ(z) ≥ 0, z ∈ I. (6)

Our main result, which is stated below, provides a characterization of this class of
functions.

Theorem 1. Let α ∈ C1(I), β, γ ∈ C(I) and f ∈ C2(I). The following statements are equivalent:

(i) (6) holds;
(ii) For all x, y ∈ I with x < y, it holds that:∫ y

x
f (τ) dτ ≤ H′(x)α(x) f (x)− H′(y)α(y) f (y) +

∫ y

x
γ(τ)H(τ) dτ. (7)

Proof. Assume that (6) holds. Let x, y ∈ I with x < y. Multiplying (6) by H (notice that
H ≥ 0) and integrating over ]x, y[, we obtain:∫ y

x
(α(τ) f ′(τ))′H(τ) dτ +

∫ y

x
β(τ) f (τ)H(τ) dτ ≥ −

∫ y

x
γ(τ)H(τ) dτ. (8)

An integration by parts gives us that:∫ y

x
(α(τ) f ′(τ))′H(τ) dτ =

[
α(τ) f ′(τ)H(τ)

]y
τ=x −

∫ y

x
f ′(τ)(α(τ)H′(τ)) dτ.

On the other hand, by (5), we have H(x) = H(y) = 0, which yields:[
α(τ) f ′(τ)H(τ)

]y
τ=x = 0.

Then, it holds that:∫ y

x
(α(τ) f ′(τ))′H(τ) dτ = −

∫ y

x
f ′(τ)(α(τ)H′(τ)) dτ.

Integrating again by parts, we obtain:∫ y

x
(α(τ) f ′(τ))′H(τ) dτ

= −[ f (τ)α(τ)H′(τ)
]y

τ=x +
∫ y

x
f (τ)(α(τ)H′(τ))′ dτ

= −H′(y)α(y) f (y) + H′(x)α(x) f (x) +
∫ y

x
f (τ)(α(τ)H′(τ))′ dτ.
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However, due to (5), we have (α(τ)H′(τ))′ = −1 − β(τ)H(τ), which yields:∫ y

x
(α(τ) f ′(τ))′H(τ) dτ

= −H′(y)α(y) f (y) + H′(x)α(x) f (x)−
∫ y

x
f (τ) dτ −

∫ y

x
β(τ) f (τ)H(τ) dτ.

(9)

Thus, (7) follows from (8) and (9). This shows that (i) =⇒ (ii). Assume now that (ii)
holds. Let x ∈ I be fixed. Then, for all ε > 0 (sufficiently small), we have:∫ x+ε

x−ε
f (τ) dτ ≤ H′(x − ε)α(x − ε) f (x − ε)− H′(x + ε)α(x + ε) f (x + ε) +

∫ x+ε

x−ε
γ(τ)H(τ) dτ, (10)

where H is the unique positive solution to the boundary value problem:{
(α(z)H′(z))′ + β(z)H(z) = −1, x − ε < z < x + ε,
H(x − ε) = H(x + ε) = 0.

(11)

Moreover, by (11), we have:∫ x+ε

x−ε
f (τ) dτ = −

∫ x+ε

x−ε

(
(α(τ)H′(τ))′ + β(τ)H(τ)

)
f (τ) dτ.

Integrating by parts, we obtain:∫ x+ε

x−ε
f (τ) dτ

= −
∫ x+ε

x−ε
(α(τ)H′(τ))′ f (τ) dτ −

∫ x+ε

x−ε
β(τ)H(τ) f (τ) dτ

= −[α(τ)H′(τ) f (τ)
]x+ε

τ=x−ε
+
∫ x+ε

x−ε
H′(τ)α(τ) f ′(τ) dτ −

∫ x+ε

x−ε
β(τ)H(τ) f (τ) dτ

= α(x − ε)H′(x − ε) f (x − ε)− α(x + ε)H′(x + ε) f (x + ε) +
[
H(τ)α(τ) f ′(τ)

]x+ε
τ=x−ε

−
∫ x+ε

x−ε
H(τ)(α(τ) f ′(τ))′ dτ −

∫ x+ε

x−ε
β(τ)H(τ) f (τ) dτ.

Since H(x − ε) = H(x + ε) = 0, we obtain:∫ x+ε

x−ε
f (τ) dτ

= α(x − ε)H′(x − ε) f (x − ε)− α(x + ε)H′(x + ε) f (x + ε)

−
∫ x+ε

x−ε
H(τ)

(
(α(τ) f ′(τ))′ + β(τ) f (τ)

)
dτ.

Hence, by (10), it holds that:∫ x+ε

x−ε
H(τ)

(
(α(τ) f ′(τ))′ + β(τ) f (τ) + γ(τ)

)
dτ ≥ 0.

Since H ≥ 0 and (α f ′)′ + β f + γ ∈ C([x − ε, x + ε]), then there exists zε ∈ [x − ε, x + ε]
such that:

(α(zε) f ′(zε))
′ + β(zε) f (zε) + γ(zε) ≥ 0.

Passing to the limit as ε → 0+ in the above inequality, we obtain:

(α(x) f ′(x))′ + β(x) f (x) + γ(x) ≥ 0,

which proves that (6) holds. This shows that (ii) =⇒ (i).

Replacing f by − f and γ by −γ in Theorem 1, we obtain the following result.
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Theorem 2. Let α ∈ C1(I), β, γ ∈ C(I) and f ∈ C2(I). The following statements are equivalent:

(i) (α(z) f ′(z))′ + β(z) f (z) + γ(z) ≤ 0, z ∈ I;
(ii) For all x, y ∈ I with x < y, it holds that:∫ y

x
f (τ) dτ ≥ H′(x)α(x) f (x)− H′(y)α(y) f (y) +

∫ y

x
γ(τ)H(τ) dτ.

From Theorem 1, we deduce the following result.

Corollary 1. Let α ∈ C1(I), β, γ ∈ C(I) and f ∈ C2(I). If (6) holds, then for all x, y ∈ I with
x < y, we have:∫ y

x
f (τ) dτ ≤ H′

1(x)α(x) f (x)− H′
2(y)α(y) f (y) +

∫ y

x
γ(τ)H(τ) dτ

−
[

H′
1

(
x + y

2

)
− H′

2

(
x + y

2

)]
α

(
x + y

2

)
f
(

x + y
2

)
, (12)

where H1 and H2 are the unique nonnegative solutions to the boundary value problems:{
(α(z)H′

1(z))
′ + β(z)H1(z) = −1, x < z < x+y

2

H1(x) = H1

(
x+y

2

)
= 0

, (13)

{
(α(z)H′

2(z))
′ + β(z)H2(z) = −1, x+y

2 < z < y
H2

(
x+y

2

)
= H2(y) = 0

, (14)

and

H(z) =

{
H1(z) if x ≤ z ≤ x+y

2 ,
H2(z) if x+y

2 < z ≤ y.
(15)

Proof. Writing (7) with x+y
2 instead of y, we obtain:

∫ x+y
2

x
f (τ) dτ

≤ H′
1(x)α(x) f (x)− H′

1

(
x + y

2

)
α

(
x + y

2

)
f
(

x + y
2

)
+
∫ x+y

2

x
γ(τ)H1(τ) dτ.

(16)

Similarly, writing (7) with x+y
2 instead of x, we obtain:∫ y

x+y
2

f (τ) dτ

≤ H′
2

(
x + y

2

)
α

(
x + y

2

)
f
(

x + y
2

)
− H′

2(y)α(y) f (y) +
∫ y

x+y
2

γ(τ)H2(τ) dτ.
(17)

Adding (16) to (17), we obtain (12).

Similarly, from Theorem 2, we deduce the following result.

Corollary 2. Let α ∈ C1(I), β, γ ∈ C(I) and f ∈ C2(I). If:

(α(z) f ′(z))′ + β(z) f (z) + γ(z) ≤ 0, z ∈ I,

107



Axioms 2023, 12, 443

then for all x, y ∈ I with x < y, we have:∫ y

x
f (τ) dτ ≥ H′

1(x)α(x) f (x)− H′
2(y)α(y) f (y) +

∫ y

x
γ(τ))H(τ) dτ

−
[

H′
1

(
x + y

2

)
− H′

2

(
x + y

2

)]
α

(
x + y

2

)
f
(

x + y
2

)
,

where H1 (resp. H2) is the unique nonnegative solution to (13) (resp. (14)) and H is defined by (15).

From Corollary 1, we deduce the following refinement of Hermite–Hadamard inequal-
ity (see [29]).

Corollary 3. Let f ∈ C2(I) be a convex function. Then, for all x, y ∈ I with x < y, we have:

1
y − x

∫ y

x
f (τ) dτ ≤ 1

2

(
f (x) + f (y)

2
+ f
(

x + y
2

))
. (18)

Proof. Taking:
α = 1, β = γ = 0

in Corollary 1, we obtain:

H1(z) =
1
4
(z − x)(x + y − 2z), x ≤ z ≤ x + y

2

and
H2(z) =

1
4
(y − z)(2z − x − y),

x + y
2

≤ z ≤ y.

Then, by (12), we obtain (18).

Similarly, from Corollary 2, we deduce the following result.

Corollary 4. Let f ∈ C2(I) be a concave function. Then, for all x, y ∈ I with x < y, we have

1
y − x

∫ y

x
f (τ) dτ ≥ 1

2

(
f (x) + f (y)

2
+ f
(

x + y
2

))
.

3. Applications

In this section, some special cases of Theorems 1 and 2 are discussed. Namely, we
provide characterizations of various classes of functions satisfying differential inequalities
of type (6). We first consider the classes of functions:

F+
� =

{
f ∈ C2(I) : f ′′(z) ≥ �, z ∈ I

}
(19)

and
F−
� =

{
f ∈ C2(I) : f ′′(z) ≤ �, z ∈ I

}
, (20)

where � ∈ R is a constant. Observe that for � = 0, F+
0 reduces to the class of twice continu-

ously differentiable convex functions, while F−
0 reduces to the class of twice continuously

differentiable concave functions. We recall that in [29], Niculescu and Persson proved that,
if f ∈ F+

� , then for all x, y ∈ I with x < y, it holds that:

f (x) + f (y)
2

− 1
y − x

∫ y

x
f (τ) dτ ≥ �(y − x)2

12
. (21)
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Furthermore, if f ∈ F−
� , then for all x, y ∈ I with x < y, it holds that:

f (x) + f (y)
2

− 1
y − x

∫ y

x
f (τ) dτ ≤ �(y − x)2

12
. (22)

In this section, we show that (21) (resp. (22)) provides a characterization of the class of
functions F+

� (resp. F−
� ). We next consider the classes of functions

G+
λ =

{
f ∈ C2(I) : f ′′(z)− λ f (z) ≥ 0, z ∈ I

}
(23)

and
G−

λ =
{

f ∈ C2(I) : f ′′(z)− λ f (z) ≤ 0, z ∈ I
}

, (24)

where λ > 0. Observe that when λ = 0, G+
0 reduces to the class of twice continuously differ-

entiable convex functions, while G−
0 reduces to the class of twice continuously differentiable

concave functions.

3.1. Characterizations of the Classes of Functions F±
�

Let I be an open interval of R. Let � ∈ R. The following result provides a characteriza-
tion of the class of functions F+

� defined by (19).

Corollary 5. Let f ∈ C2(I). The following statements are equivalent:

(i) f ∈ F+
� ;

(ii) For all x, y ∈ I with x < y, (21) holds.

Proof. Observe that:

F+
� =

{
f ∈ C2(I) : (α(z) f ′(z))′ + β(z) f (z) + γ(z) ≥ 0, z ∈ I

}
,

where
α = 1, β = 0, γ = −�.

Hence, by Theorem 1, f ∈ F+
� , if and only if, for all x, y ∈ I with x < y, it holds that:∫ y

x
f (τ) dτ ≤ H′(x) f (x)− H′(y) f (y)− �

∫ y

x
H(τ) dτ, (25)

where
H(z) =

1
2
(z − x)(y − z), x ≤ z ≤ y

is the unique (nonnegative) solution to the boundary value problem:{
H′′(z) = −1, x < z < y,
H(x) = H(y) = 0.
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On the other hand, for all x, y ∈ I with x < y, we have:

H′(x) f (x)− H′(y) f (y)− �
∫ y

x
H(τ) dτ

=
y − x

2
f (x)− 1

2
(x − y) f (y)− �

2

∫ y

x
(−τ2 + (x + y)τ − xy) dτ

= (y − x)
f (x) + f (y)

2
− �

2

[
−τ3

3
+

x + y
2

τ2 − xyτ

]y

τ=x

= (y − x)
f (x) + f (y)

2
− �

12

(
y3 − x3 − 3xy2 + 3x2y

)
= (y − x)

f (x) + f (y)
2

− �

12
(y − x)3,

which shows that (25) is equivalent to (21).

Similarly, using Theorem 2 (or replacing f by − f and � by −� in Corollary 5), we
obtain the following characterization of the class of functions F−

� defined by (20).

Corollary 6. Let f ∈ C2(I). The following statements are equivalent:

(i) f ∈ F−
� ;

(ii) For all x, y ∈ I with x < y, (22) holds.

3.2. Characterizations of the Classes of Functions G±
λ

Let I be an open interval of R and λ > 0. We first need the following lemma. Its proof
is elementary; we omit the details.

Lemma 1. For all x, y ∈ I with x < y, the following boundary value problem:{
H′′(z)− λH(z) = −1, x < z < y,
H(x) = H(y) = 0

admits a unique nonnegative solution given by:

H(z) =
e−

√
λz
(

e
√

λx − e
√

λz
)(

e
√

λz − e
√

λy
)

λ
(

e
√

λx + e
√

λy
) , x ≤ z ≤ y. (26)

The following result provides a characterization of the class of functions G+
λ defined

by (23).

Corollary 7. Let f ∈ C2(I). The following statements are equivalent:

(i) f ∈ G+
λ ;

(ii) For all x, y ∈ I with x < y, it holds that:

∫ y

x
f (τ) dτ ≤ e

√
λy − e

√
λx

√
λ
(

e
√

λx + e
√

λy
) ( f (x) + f (y)). (27)

Proof. Observe that:

G+
λ =

{
f ∈ C2(I) : (α(z) f ′(z))′ + β(z) f (z) + γ(z) ≥ 0, z ∈ I

}
,

where
α = 1, β = −λ, γ = 0.
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Hence, by Theorem 1, f ∈ G+
λ , if and only if, for all x, y ∈ I with x < y, it holds that:∫ y

x
f (τ) dτ ≤ H′(x) f (x)− H′(y) f (y), (28)

where H is given by (26). On the other hand, for all x, y ∈ I with x < y, we have:

H′(z) = e
√

λ(x−z+y) − e
√

λz

√
λ
(

e
√

λx + e
√

λy
) , x ≤ z ≤ y,

which yields:

H′(x) =
e
√

λy − e
√

λx

√
λ
(

e
√

λx + e
√

λy
)

and

H′(y) = e
√

λx − e
√

λy

√
λ
(

e
√

λx + e
√

λy
) = −H′(x).

Hence, for all x, y ∈ I with x < y, we have:

H′(x) f (x)− H′(y) f (y)

= H′(x)( f (x) + f (y))

=
e
√

λy − e
√

λx

√
λ
(

e
√

λx + e
√

λy
) ( f (x) + f (y)),

which shows that (28) is equivalent to (27).

Remark 1. Passing to the limit as λ → 0+, (27) reduces to the standard Hermite–Hadamard
inequality (2).

Similarly, using Theorem 2 (or replacing f by − f in Corollary 7), we obtain the
following characterization of the class of functions G−

λ defined by (24).

Corollary 8. Let f ∈ C2(I). The following statements are equivalent:

(i) f ∈ G−
λ ;

(ii) For all x, y ∈ I with x < y, it holds that:

∫ y

x
f (τ) dτ ≥ e

√
λy − e

√
λx

√
λ
(

e
√

λx + e
√

λy
) ( f (x) + f (y)).

4. Conclusions

The Hermite–Hadamard inequality (Inequality (1)) provides an upper and lower
bounds of the (integral) mean of a convex function over a certain interval. Moreover,
each of the two sides of (1) provides a characterization of convex functions. In the special
case when a function f is twice differentiable in a certain interval I, the convexity of f is
equivalent to the differential inequality f ′′ ≥ 0 in I. Thus, it is natural to ask whether it
is possible to obtain a characterization of twice differentiable functions satisfying more
general differential inequalities. In this paper, we gave a positive answer to this question for
the class of functions f satisfying differential inequalities of the form (α f ′)′ + β f + γ ≥ 0
in I, where α ∈ C1(I) and β, γ ∈ C(I). Namely, assuming that for every x, y ∈ I with x < y,
the Dirichlet boundary value problem:
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{
(α(z)H′(z))′ + β(z)H(z) = −1, x < z < y,
H(x) = H(y) = 0

admits a unique nonnegative solution H. We show that the considered differential inequal-
ity is equivalent to:∫ y

x
f (τ) dτ ≤ H′(x)α(x) f (x)− H′(y)α(y) f (y) +

∫ y

x
γ(τ)H(τ) dτ

for every x, y ∈ I with x < y. The above inequality is a generalization of the right side of
Hermite–Hadamard inequality (1), which can be obtained by taking α = 1 and β = γ = 0.
We also discussed some special cases of α, β and γ, and provided some characterizations in
those cases.

In this work, only second-order differential inequalities are investigated. It would
be interesting to show whether it is possible to obtain a characterization of functions
f satisfying higher-order differential inequalities. For instance, the class of functions f
satisfying f ′′′′ ≥ 0 in I deserves to be studied.

Author Contributions: All authors contributed equally to this paper. All authors have read and
agreed to the published version of the manuscript.

Funding: The authors extend their appreciation to the Deanship of Scientific Research at Imam
Mohammad Ibn Saud Islamic University (IMSIU) for funding and supporting this work through
Research Partnership Program no RP-21-09-03.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Dragomir, S.S.; Pearce, C.E.M. Selected Topics on Hermite-Hadamard Inequalities and Applications; RGMIA Monographs; Victoria
University: Footscray, VIC, Australia, 2000.

2. Dragomir, S.S.; Agarwal, R.P. Two inequalities for differentiable mappings and applications to special means of real numbers and
to trapezoidal formula. Appl. Math. Lett. 1998, 11, 91–95. [CrossRef]

3. Guessab, A.; Semisalov, B. Optimal general Hermite-Hadamard-type inequalities in a ball and their applications in multidimen-
sional numerical integration. Appl. Numer. Math. 2021, 170, 83–108. [CrossRef]
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Abstract: This work is inspired by some recent developments on the extension of Lipschitz real
functions based on the minimization of the maximum value of the slopes of a reference set for
this function. We propose a new method in which an integral p-average is optimized instead of
its maximum value. We show that this is a particular case of a more general theoretical approach
studied here, provided by measure-valued representations of the metric spaces involved, and a
duality formula. For p = 2, explicit formulas are proved, which are also shown to be a particular case
of a more general class of measure-based extensions, which we call ellipsoidal measure extensions.
The Lipschitz-type boundedness properties of such extensions are shown. Examples and concrete
applications are also given.

Keywords: Lipschitz; metric space; extension; measure

MSC: 26A16; 54C20

1. Introduction

The process of extending a real function f : S → R, where S is a subset of a metric
space M, to the whole space M can be approached from different perspectives. For example,
assuming a linear structure on M (i.e., M is a normed space), the Hahn–Banach theorem
states that if S is a vector subspace of M and f is linear and continuous on S, f can be
extended to a linear and continuous functional F : M → R. Moreover, the norm of the
functional is preserved, such that ‖F‖ = ‖ f ‖. On the other hand, the classical McShane–
Whitney theorem gives the Lipschitz counterpart of this result. If M is just a metric space
and f : S → R is a Lipschitz map (no linearity involved), we can always find an extension
of f to M preserving the Lipschitz constant [1,2].

There is a large class of variants of extension theorems for continuous and Lipschitz
maps, which aim to cover different requirements on the results obtained. From the the-
oretical point of view, it is a first order problem to know under which requirements it is
possible to find an extension of real-valued functions preserving some continuity property,
e.g., continuity, uniform continuity, Lipschitz, etc. Let us expose some results in this direc-
tion. The classical Tietze theorem states that, given a normal topological space X, if S is a
closed subset of X and f : S → R is continuous, then there exists a continuous extension
f̂ : X → R of f , and it can be chosen in such a way that infS f ≤ f̂ ≤ supS f on X [3]. In
this case, continuity and point-wise bounds are preserved, but nothing is said about the
extension procedure. In this direction, more recent results are known. For example, the next
result is due to Matoušková (see [4] and also [5]). Let (X, τ) be a compact Hausdorff metric
space, d a τ−lower semicontinuous metric on X, and S ⊂ X a τ−closed set. Suppose that
there is a real-valued continuous function g in S such that it is also Lipschitz with respect to
d. Then there exists a continuous function f on X that extends g and minS g ≤ f ≤ maxS g,
and f is also Lipschitz with the same Lipschitz constant as g. Thus, continuity, the Lipschitz
constant as well as point-wise bounds are preserved. When the analysis is restricted to
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subsets of Euclidean spaces, stronger results can be obtained. For example, for the case of
non-expansive maps N(S) in subsets S of Euclidean spaces (that is, functions f : S → X
such that ‖ f (x)− f (y)‖ ≤ ‖x − y‖ for x, y ∈ S), we have the next result by Kopecká [6],
[Th. 1.3] : let X be a Euclidean space and let S ⊂ X be a compact subset. Then there exists a
uniformly continuous function F : N(S) → N(X) such that, if f ∈ N(S), then F( f )|S = f ,
and if f is Lipschitz, then F( f ) is also Lipschitz with the same Lipschitz constant.

All these extension results have the common property of belonging to abstract ex-
istence. None of them provide effective computational procedures or explicit formulas.
However, Lipschitz extensions have become a fundamental tool in many disciplines that
are experiencing a strong growth in recent years, such as artificial intelligence (see, for
example, [7–12]); thus, applied approaches are also needed.

In the present paper, we are interested in showing some explicit formulas to give
concrete extensions satisfying certain Lipschitz-type inequalities. From this applied point
of view, we have as a main reference the method of Oberman [13] and Milman [14]. This
procedure minimizes for each x ∈ M \ S the maximum slope of the segment from f (x)
to any f (s) with s ∈ S (see Figure 1). The slope is given by | f (x)− f (s)|/d(x, s). For any
possible value y ∈ R that we could assign to F(x), the maximum value of the slope is
given by

Mx(y) = sup
s∈S

|y − f (s)|
d(x, s)

=

∥∥∥∥y − f (·)
d(x, ·)

∥∥∥∥
∞

.

Figure 1. Geometric construction by Oberman and Milman (left) and the one that minimizes Mp
x (y)

for p = 2 (right). In black, the graph of f (x) = −x2 + 4x − 3 for 1 ≤ x ≤ 2, to be extended to the
point x = 0. In blue, the point y that minimizes the problem, and in grey, an example point, y = 1.

The proposed extension is then given by F(x) = arg miny∈R Mx(y). Since we want to
define an extension of f , for each s ∈ S, we define F(s) = f (s). In [13], it is shown that it
can be explicitly computed, and important properties about the extension are also proven,
such as that it preserves the Lipschitz constant (see also [14]).

Our idea in this paper is to study the extension of f defined as follows. For each
x ∈ M \ S, we minimize, instead of the maximum, an “integral p−average” of the slopes of
the segment from f (x) to any of the values of f (s) with s ∈ S. To compute this “p-average”,
we consider a probability Borel measure on S, μ ∈ P(S), and fix 1 ≤ p < +∞. That is,

Mp
x(y) =

(∫
S

∣∣∣∣y − f (s)
d(x, s)

∣∣∣∣pdμ(s)
) 1

p

=

∥∥∥∥y − f (·)
d(x, ·)

∥∥∥∥
p
.

This will be explained in Section 3. We intend to introduce some smoothing elements
into the extensions in this way; this property has become an important feature in recent
research on the subject, both from a theoretical and applied point of view (see, for exam-
ple, [7,15]). In Section 3.1, we will see that the above minimization problem for p = 2 (when
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S is compact and f is integrable) can be solved explicitly for x ∈ M \ S. The solution is
given by the equation

F(x) =
(∫

S

f (s)
d(x, s)2 dμ(s)

)
·
(∫

S

1
d(x, s)2 dμ(s)

)−1
.

However, this article also has a more theoretical purpose. We show that the method
explained above can be integrated into a more general framework for the extension of
continuous maps defined on compact subsets of metric spaces. This is done in Section 2.
In order to do so, if (M, d) is a metric space and f : S → R, we intend to find a suitable
extension of f to M preserving some natural constant associated with Lipschitz-type
inequalities. Let us first recall some basic concepts. If S is a compact set, we write B(S) for
the associated Borel σ−algebra. As usual, we will denote by M(S) the Banach space of
real-valued measures of bounded variation and by C(S) the Banach space of real-valued
continuous functions. Recall that M(S) can be identified as the dual space of C(S) via the
Riesz representation theorem; that is, M(S) = C(S)∗. If μ ∈ M(S), L1(μ) is the Lebesgue
space of μ−integrable functions. Recall that a measure μ0 is μ−continuous (or absolutely
continuous with respect to μ) if μ(A) = 0 implies μ0(A) = 0 for every A ∈ B(S). If s ∈ S,
we write as usual δs ∈ M(S) for the Dirac delta measure.

Our idea is to consider the function we want to extend f ∈ C(S) as a functional acting
on the elements of a characteristic subset of its topological (linear) dual space: the space of
regular Borel measures M(S). The subset P(S) of all the probability regular Borel measures
on S will be used instead when the normalization is required.

Using the duality, we can write a Lipschitz-type inequality as a composition of
two elements,

1. A map x �→ μx, that relates each element x of M with a measure μx ∈ M(S);
2. The function f ∈ C(S) being understood as an element of the pre-dual of M(S).

The inequality is
∣∣〈 f , μx −μy〉

∣∣ ≤ K d(x, y), x, y ∈ M. It is easy to see that this definition
makes sense for trivial cases; for instance, if we take M = S and x �→ μx = δx ∈ P(S) as
the representation map, we have that∣∣〈 f , δx − δy〉

∣∣ = ∣∣ f (x)− f (y)
∣∣ ≤ K d(x, y)

gives the standard Lipschitz inequality for f : M → R.
Finally, we analyze a particular class of average extensions in Section 4 as an applica-

tion. We call them ellipsoidal measure extensions; we show some Lipschitz-type properties
for this class and some examples. We refer to [16] for general issues on Lipschitz functions,
ref. [17] for the definitions and results on functional analysis that are used, and [18] for the
abstract concepts on topology.

2. Duality on C(S) and Measure-Based Extension of Continuous Functions

In this section, we present the main results and show some basic examples of our
proposed extension of continuous maps from compact subsets of metric spaces. Then, we
will show in later sections some particular types of extensions that conform to this abstract
scheme, mainly the mean slope extension that we explained in the Introduction. We will
demonstrate that duality over the space of continuous functions provides a useful setting
for the analysis of an interesting class of Lipschitz maps.

Definition 1. Let (M, d) be a metric space and consider a compact subset S ⊂ M. We say that a
map m : M → M(S) given by m(x) = μx is a measure representation.

In most cases, we will also consider a measure μ controlling all the measures μx if such
a μ exists. That is, we will take μ ∈ P(S) ⊂ C(S)∗, which satisfies that the measures μx are
μ−continuous for all x ∈ M \ S.
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If f ∈ C(S), we can always consider the dual action on m(M) ⊂ M(S) as follows.
Define the integral corresponding map for f provided by the function ϕm, f : M → R given
by the formula

ϕm, f (x) = 〈 f , m(x)〉 =
∫

S
f (s) dμx(s), x ∈ M.

Note that, once the subset S has been fixed and the representation by the measure m
has been chosen, we have a linear mapping

ψ : C(S) → RM

f �→ ϕm, f .

We show in the next proposition that the continuity properties of ϕm, f are inherited
from m. Then, under some requirements on m, C(M) can be chosen to be the range of ψ.

Proposition 1. Let f : S → R be acontinuous function and let m : M → M(S) be a measure
representation of M. Then,

1. If m is continuous on x, then ϕm, f is continuous on x;
2. If m is uniformly continuous, then ϕm, f is uniformly continuous;
3. If m is Lipschitz, then ϕm, f is Lipschitz with Lip(ϕm, f ) ≤ ‖ f ‖C(S) · Lip(m).

Proof. All statements follow from the fact that for any x, y ∈ M, we have∣∣ϕm, f (x)− ϕm, f (y)
∣∣ = ∣∣∣ ∫

S
f (s) dμx(s)−

∫
S

f (s) dμy(s)
∣∣∣

≤ ‖ f ‖C(S) · ‖μx − μy‖M(S);

thus, if m is Lipschitz, we have ‖μx − μy‖M(S) ≤ Lip(m) · d(x, y). Therefore,∣∣ϕm, f (x)− ϕm, f (y)
∣∣ ≤ ‖ f ‖C(S) · Lip(m) · d(x, y),

and so the result is proven.

Recall that our main objective is to obtain a procedure that assigns to each f : S → R a
function F : M → R that extends f , that is, F|S = f . Let us give some formal definitions and
results in this respect.

Definition 2. Let S be a compact subspace of a metric space (M, d). An extension rule is a
mapping ER : C(S) → RM that extends the functions, that is, ER( f )|S = f for each f ∈ C(S).

Proposition 2. Let (M, d) be a metric space and let S be a compact subset of M. Let μ ∈ P(S),
and let m be a measure representation of M. Then, f �→ ϕm, f is an extension rule if and only if
m(s) = δs, s ∈ S.

In this case, we call the mapping f �→ ϕm, f an integral extender map.

Proof. Fix s ∈ S and observe that f �→ ϕm, f preserves the value of the functions on s if and
only if

ϕm, f (s) = 〈 f , m(s)〉 = f (s) = 〈 f , δs〉,
for any f ∈ C(S). Since m(s) ∈ P(S) ⊂ C(S)∗, this is only possible when m(s) and δs are
the same measure.

The next theorem is a characterization of our extension procedure. We show in it that
essentially, the linear extension rules, under some hypothesis, can be written in terms of an
integral extender map introduced above.
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Theorem 1. Let S be a compact subset of a metric space M. An extension rule ER : C(S) →
(�∞(M), ‖ · ‖∞) is a linear isometry that preserves the constant functions if and only if there exists
a measure representation m : M → P(S) with m(s) = δs for each s ∈ S such that ER( f ) = ϕm, f
for all f ∈ C(S).

Proof. Assume first that ER( f ) = ϕm, f = 〈m(·), f 〉 with m : M → P(S) as in the statement.
Clearly, ER is linear, and for each f , ER( f ) extends f (Proposition 2). To see that ER is an
isometry, let f ∈ C(S). Then,

‖ f ‖C(S) ≤ ‖ER( f )‖∞ = sup
x∈M

∣∣〈 f , m(x)〉∣∣ ≤ sup
x∈M

‖ f ‖C(S)‖m(x)‖P(S) ≤ ‖ f ‖C(S).

To see the converse, let us define m at each point of M. For s ∈ S, let m(s) = δs, and
for x ∈ M \ S, let ξx : C(S) → R be defined as ξx( f ) = ER( f )(x). Since it is linear, so is ξx.
For each f ∈ C(S),

|ξx( f )| = |ER( f )(x)| ≤ ‖ER( f )‖C(S) = ‖ f ‖C(S),

so ξx ∈ C(S)∗ = M(S) and ‖ξx‖ ≤ 1. Let us see that ξx is a positive functional. Let 1

denote the constant function on S such that 1(s) = 1. For f ∈ C(S) such that f ≥ 0, call
g = f − (‖ f ‖/2

) · 1. Then,

‖ f ‖
2

= ‖g‖C(S) = ‖ER(g)‖∞ =

∥∥∥∥ER( f )− ‖ f ‖
2

1

∥∥∥∥
∞

≥ ‖ f ‖
2

− ξx( f ),

so ξx( f ) ≥ 0. We conclude that ξx ∈ P(S), so it is the value we assign to m(x). Thus,
ϕm, f (x) = 〈ξx, f 〉 = ER( f )(x). This finishes the proof.

Note that in this result, we do not need any linear requirement of M, since the linearity
of ER depends on the rank of the functions, which is R.

Example 1. Let S be a finite subset of a metric space M, so C(S) coincides with the set of real
Lipschitz functions on S. An example of extension rule C(S) → C(M) is the one provided by
the mean of the McShane and the Whitney formulas [1,2]. For each f ∈ C(S), this extension
f̂ : M → R is defined on every x ∈ M by

f̂ (x) =
1
2

(
sup
s∈S

{
f (s)− Lip( f )d(x, s)

}
+ inf

s∈S

{
f (s) + Lip( f )d(x, s)

})
.

It can be easily seen that it preserves the infima and suprema of the functions; see [12]. As a
consequence, it preserves the norm (‖ f ‖C(S) =‖ f̂ ‖C(M)) and the constant functions. However, it is
not of the form f̂ = ϕm, f for any representation by a measure m, since it is non-linear. To see this,
let, for example, S = {(0, 0), (1, 0), (0, 1), (1, 1)} ⊂ R2 with the Euclidean norm. Define for each
s ∈ S the function fs : S → R with values fs(s) = 1, and let fs(t) = 0 for every t �= s. Clearly,
f = ∑s∈S fs is the constant function 1, so its extension on x = (1/2, 1/2) is f̂ (x) = 1. However,
∑s∈S f̂s(x) = ∑s∈S 1/2 = 2, which is a contradiction.

Example 2. Fix a measure μ ∈ P(S). For every x ∈ M, the (sometimes called Kuratowski)
function s �→ d(x, s) is continuous, and hence, μ−integrable. Take the map m : M → M(S)
given by

m(x)(A) = μx(A) :=
∫

A
d(x, s) dμ(s), A ∈ B(S),

for each x ∈ M. Therefore, in this case, μx is always μ-continuous, and d(x, ·) is the Radon–
Nikodym derivative dμx/dμ.
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For a function f ∈ C(S), consider

ϕm, f (x) =
∫

S
f (s) dμx(s) =

∫
S

f (s) d(x, s) dμ, x ∈ M.

This formula can be used to compute a Lipschitz function ϕm, f : M → R. Indeed, for
x, y ∈ M, ∣∣ϕm, f (x)− ϕm, f (y)

∣∣ = ∣∣∣ ∫
S

f (s) (d(x, s)− d(y, s)) dμ(s)
∣∣∣

≤
( ∫

S
| f (s)| dμ(s)

)
· d(x, y)

= ‖ f ‖L1(μ) · d(x, y),

and so the map ϕm, f is Lipschitz and Lip(ϕm, f ) ≤ ‖ f ‖L1(μ) ≤ ‖ f ‖C(S). Then, the integral
corresponding map f �→ ϕm, f maps C(M) on Lip(M).

It is easy to see that this formula does not preserve the values of f when applied to the elements
of S. To obtain an integral extender map, following Proposition 2, we can define m(s) = δs for
s ∈ S and m(x) = m(x) for x ∈ M \ S. Then, ϕm, f always extends f but may not preserve any
continuity property. Since

|μx − δs0 | =
∫

S\{s0}
d(x, y)dμ(s) +

∣∣1 − μ({s0})d(x, s0)
∣∣,

this quantity never converges to 0 when x → s0. For an explicit counterexample, let S = {0, 1} ⊂
M = R with μ = 1

2 (δ0 + δ1) and f as the identity map on S.

Example 3. Let us show a particular case of the example above. Let (M, d) be a discrete metric
space, that is, d(x, y) = 1 if x �= y. Then,

ϕm, f (x) =
∫

S
f (s) dμ(s), x ∈ M \ S.

Therefore, the extension of the function f on M \ S is given by a constant, the μ−average of
its values on S.

Example 4. Consider the fuzzy k-nearest neighbors algorithm presented in [11]. Let S be a finite
subset of the metric space M. Assume that the points in S are “fuzzy” classified on a finite number
of classes, C . For each s ∈ S and every class c ∈ C , uc(s) denotes the “degree of membership”
of the element s to the class c. The classification problem consists of assigning to a new point
x ∈ M \ S the class of C to which x is most likely to belong. Observe that this problem can be solved
by extending the “degree of membership” functions uc : S → [0, 1] to S ∪ {x} or the whole M.

The formula presented in [11] for a general parameter m can be computed using a measure
representation in the following way. Let μ = 1

|S| ∑s∈S δs ∈ P(S) be the normalized counting
measure on S, and for each x ∈ M \ S, define m(x) = μx as the measure given by the Radon–
Nikodym derivative

dμx

dμ
(s) = I−1

x · 1
d(s, x)2/(n−1)

χNk(x)(s),

where Nk(x) is the set of k nearest points to x in S, n is a size parameter, and

Ix =
∫

Nk(x)

1
d(s, x)2/(n−1)

dμ(s)

is the normalization factor.
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Then, the resulting formula to extend each uc is

ϕm,uc(x) = 〈uc, m(x)〉
= I−1

x

∫
Nk(x)

uc(s)
d(s, x)2/(n−1)

dμ(s)

=
∑s∈Nk(x) uc(s)/d(s, x)2/(n−1)

∑s∈Nk(x) 1/d(s, x)2/(n−1)
,

which is the original formula that can be found in [11].

3. The p−Average Slope Minimizing Extension

In this section, we explain a new method for extending functions in the context we
have already fixed, which is based on the calculation of an average Lp−norm of the slopes
defined by the point to which we intend to extend the function and the reference points.
As we have explained in the Introduction, this is a mild version of the maximum slope
minimization developed by Oberman [13] and Milman [14]. We will focus attention on
the case p = 2, since the 2−average slope method gives a canonical example of measure-
based extension, in which the measures μx can be computed explicitly and easily. As a
generalization of this case, we will devote the last section of the article to what we call
ellipsoidal measure extensions.

As before, (M, d) is a metric space, S is a compact subset, and f is a continuous
function on S. The regression procedure that we propose is based on the minimization on
each x ∈ M \ S of the μ-average in Lp(μ) of the slopes of the line from (x, F(x)) to each
(s, f (s)), computed as

Mp
x(y) =

(∫
S

∣∣∣∣y − f (s)
d(x, s)

∣∣∣∣pdμ(s)
) 1

p

=

∥∥∥∥y − f (·)
d(x, ·)

∥∥∥∥
Lp(μ)

, (1)

for a fixed 1 < p < +∞.
First of all, observe that the condition that S is closed and x �∈ S ensures that d(x, S) > 0.

As f is bounded, the slope function |y − f (·)|/d(x, ·) defined on S is continuous and
bounded, so the integral is well-defined and finite for any y ∈ R. Since the functions
y �→ |y − f (s)|p, y ∈ R, are strictly convex for any s, Mp

x(y) is also strictly convex and
positive. This fact, together with the property that M(y) → ∞ when y tends to +∞ and
−∞, shows that M has a unique point in R where its minimum is attained.

Then, we define the extension on a point x ∈ M \ S as

F(x) = arg min
y∈R

Mp
x(y) = arg min

y∈R

∫
S

∣∣∣∣y − f (s)
d(x, s)

∣∣∣∣p dμ(s). (2)

For the values s ∈ S, we define F(s) = f (s). We call this formula the p-average-slope-
minimizing extension. We can see a geometric representation of this method compared
with the one that minimizes the maximum slope at each point in Figure 1.

The minimization problem (2) for x ∈ X \ S is equivalent to solving the equation

0 =
∂(Mp

x(y))p

∂y
= p

∫
S

∣∣∣∣y − f (s)
d(x, s)

∣∣∣∣p−1

sign(y − f (s)) dμ(s), (3)

where sign(·) denotes the sign function. This equation may not be solvable explicitly,
but it can always be solved numerically using, for example, a Newton–Raphson method.
Examples of the average slope minimizing extensions are shown in Figure 2, comparing
different values of p.
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Figure 2. Interpolation of the points (1, 0), (2, 1), (3, 0), and (5, 2) using the formula of 2 for different
values of p. The measure considered is the counting normalized measure μ =

(
δ1 + δ2 + δ3 + δ5

)
/4.

3.1. Explicit Formula for p = 2

Let us explicitly calculate the extension on x ∈ M \ S for p = 2. Equation (3) can be
rewritten as

∂(M2
x(y))2

∂y
= 2
(

y
∫

S

1
d(x, s)2 dμ(s)−

∫
S

f (s)
d(x, s)2 dμ(s)

)
.

If we write Ix for the normalization constant Ix =
∫

S

1
d(x, s)2 dμ(s), the unique point

where ∂(M2
x(y))2

∂y = 0 is

y∗ = I−1
x

∫
S

f (s)
d(x, s)2 dμ(s).

Clearly, y∗ = arg miny∈R M2
x(y), so it is the searched value for F(x). We can adapt the

formula to understand it as an integral extender map. Let μx ∈ P(S) be the Borel measure,
defined as

μx(A) = I−1
x

∫
A

1
d(s, x)2 dμ(s),

for each μ-measurable set A. For every s ∈ S, we define μs = δs as the Dirac delta on s.
Then, the extension F can be computed on x (using the notation explained in the previous
section) as

F(x) =
∫

S
f (s) dμx(s) = 〈μx, f 〉. (4)

Observe that the “weight” function s �→ I−1
x · 1

d(x,s)2 acts as the Radon–Nikodym
derivative dμx/dμ.

Remark 1. Assume now that S is a finite set and μ ∈ P(S) is the probability measure that assigns
the same measure to each point,

μ =
1
|S| ∑

s∈S
δs. (5)

The function F is a (finite) convex combination of the values { f (s) : s ∈ S} with weights
inversely proportional to the square of the distance from x to s, that is

F(x) = 〈μx, f 〉 = ∑
s∈S

μx({s}) f (s) = ∑
s∈S

1
d(x,s)2

∑t∈S
1

d(x,t)2

f (s). (6)

We can see an example of the Radon–Nikodym derivatives of the measures μx in Figure 3.
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Figure 3. The values of dμx
dμ (s) for s ∈ S = {1, 2, 3, 4} and x ∈ [−2, 7] on (R, | · |).

Remark 2. Note that the expression (6) is the same as that given in the fuzzy k-nearest neighbours
algorithm presented in [11] and in Example (4) for n = 2 if we consider S defined only as the set of
k nearest neighbours of x.

We study in the rest of the section the continuity properties of the extension formula
given in (4) for the finite set S. First of all, we show that it does not always preserve the
Lipschitz continuity of f .

Example 5. Consider (R, | · |) and the subset S = {0, 1}. Let f : S → R be the identity map,
f (0) = 0, f (1) = 1. Clearly, it is a Lipschitz map with constant 1.

1. We start with an example in which the measure μ ∈ P(S) has non-trivial null sets. Let μ = δ0.
Then, following the previously explained extension procedure, we extend f to F : R → R by
the given formula to obtain

F(x) = 〈 f , μx〉 =
∫

S f (s)/d(s, x)2dδ0(s)∫
S 1/d(s, x)2dδ0(s)

= 0,

for each x ∈ R \ S and F|S = f . The result is the constant function 0 on R \ S; see Figure 4
(left). However, the Lipschitz property of f has been lost. Indeed, observe that the inequality

| f (x)− f (1)| = 1 ≤ K|x − 1|,

does not hold for any K > 0 when x tends to 1.

Figure 4. Minimizing average slope extension for p = 2 of the function f (0) = 0, f (1) = 1 for
different measures. In the fist one, μ = δ0, and in the second one, μ = 1

2 (δ0 + δ1).

2. Let us show an example of a 1-Lipschitz map on a subset of the Euclidean space (R2, ‖ · ‖2)
that does not extend to the whole space as a 1-Lipschitz map with the 2-average-slope mini-
mization method. To avoid the pathological behaviour of the previous example, which is due
to the existence of a point in S of measure 0, we can work with the measure given in (5),
μ = 1

2 (δ0 + δ1).

Then, for each x ∈ R \ S, the 2-average slope minimization formula is given by (6), which is,
in this case,

F(x) = 〈 f , μx〉 =
1

(x−1)2

1
x2 +

1
(x−1)2

=
x2

2x2 − 2x + 1
;
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see Figure 4 (right). A simple argument, using for example the mean value theorem, shows
that F is Lipschitz (Lip(F) ≤ 2). However, the Lipschitz constant is strictly bigger than
1 because ∣∣∣∣ f(1

3

)
− f
(

2
3

)∣∣∣∣ = ∣∣∣∣15 − 4
5

∣∣∣∣ = 3
5
>

1
3
=

∣∣∣∣13 − 2
3

∣∣∣∣.
In fact, it can be shown that the Lipschitz constant of F is exactly 2, and so the extension does
not preserve the constant.

We have shown that the 2−average slope minimizing method does not preserve
the Lipschitz constant; however, it satisfies other continuity properties that make this
extension still interesting. We finish this section with some results on this. To avoid non-
empty null subsets of S, we consider for the discrete case the measure given in Remark 1,
μ = 1

|S| ∑s∈S δs. If S = {s}, it is obvious that the extension F will be a constant function
F(x) = f (s), so we assume in the rest of the work that |S| ≥ 2.

Lemma 1. Consider a finite subset S ⊂ M that has at least two elements. For each s ∈ S, the
function x �→ μx({s}) has the following properties:

1.
{

μ(·)({s}) : M → [0, 1]
}

s∈S form a partition of the unity.
2. μ(·)({s}) are Lipschitz functions with a Lipschitz constant less than or equal to

Ks = (2 + 2
√

2) ∑
t �=s

1
d(s, t)

.

3. If (M, d) = (R, | · |), μ(·)({s}) are differentiable functions with ∂μx({s})
∂x

∣∣
x=t = 0 for each

t ∈ S.

Proof. By fixing s ∈ S, we study the properties of x �→ μx({s}) = dμx
dμ (s).

1. The first statement is obvious.
2. Let s ∈ S. We can see that μ(·)({s}) is continuous at any point of M using the

continuity of the functions d(t, ·) and some elementary calculations. However, we are
going to see a stronger property of these functions.
Let λ = 2 + 2

√
2 and x, y ∈ M. As μ(·)({s}) is bounded by 1, if d(x, y) > 1

Ks
, then

|αs(x)− αs(y)| ≤ 1 ≤ Ksd(x, y). Therefore, we can assume now that d(x, y) ≤ 1
Ks

. We
distinguish four cases.

(a) We assume first that x, y �∈ S. If we write M(w) = ∑t∈S
1

d(w,t)2 , for w ∈ M, then

∣∣μx({s})− μy({s})∣∣ =
∣∣∣∑t∈S

d(y,s)2

d(y,t)2 − ∑t∈S
d(x,s)2

d(x,t)2

∣∣∣
M(x)M(y)d(x, s)2d(y, s)2

≤ ∑
t �=s

|d(y, s)2d(x, t)2 − d(x, s)2d(y, t)2|
M(x)M(y)d(x, s)2d(y, s)2d(x, t)2d(y, t)2 .

Applying some elementary algebraic relations on the numerator, we obtain

|d(y, s)2d(x, t)2 − d(x, s)2d(y, t)2|
≤ |d(y, s)2d(x, t)2 − d(y, s)2d(y, t)2|+ |d(y, s)2d(y, t)2 − d(x, s)2d(y, t)2|
= d(y, s)2|d(x, t)2 − d(y, t)2|+ d(y, t)2|d(y, s)2 − d(x, s)2|
= d(y, s)2(d(x, t) + d(y, t))|d(x, t)− d(y, t)|+ d(y, t)2(d(y, s) + d(x, s))|d(y, s)− d(x, s)|
≤ d(x, y)

(
d(y, s)2(d(x, t) + d(y, t)) + d(y, t)2(d(y, s) + d(x, s))

)
.
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Observe that M(y)d(y, w)2 ≥ 1 and M(x)d(x, w)2d(x, w′)2 ≥ d(x, w)2

+d(x, w′)2 for all w, w′ ∈ S; thus,

|μx({s})− μy({s})|
d(x, y)

≤ ∑
t �=s

d(y, s)2(d(x, t) + d(y, t)) + d(y, t)2(d(y, s) + d(x, s))
M(x)M(y)d(x, s)2d(x, t)2d(y, s)2d(y, t)2

≤ ∑
t �=s

d(x, t) + d(x, s) + d(y, t) + d(y, s)
M(x)d(x, s)2d(x, t)2

≤ ∑
t �=s

2
(
d(x, t) + d(x, s)

)
+ 2d(x, y)

d(x, s)2 + d(x, t)2 .

Now, by applying the arithmetic-quadratic mean inequality, which states that
a2 + b2 ≥ (a + b)2/2, we obtain

|μx({s})− μy({s})|
d(x, y)

≤ ∑
t �=s

(
4
(
d(x, s) + d(x, t)

)
(d(x, s) + d(x, t))2 +

2d(x, y)
d(x, s)2 + d(x, t)2

)

≤ 4 ∑
t �=s

(
1

d(x, s) + d(x, t)
+

d(x, y)
(d(x, s) + d(x, t))2

)
≤ 4 ∑

t �=s

1
d(s, t)

+ 4d(x, y) ∑
t �=s

1
d(s, t)2 .

Then, by the previous bound and taking into account that d(x, y) ≤ 1
Ks

, we obtain

|μx({s})− μy({s})|
d(x, y)

≤ 4 ∑
t �=s

1
d(s, t)

+ 4d(x, y) ∑
t �=s

1
d(s, t)2

≤ 4 ∑
t �=s

1
d(s, t)

+ 4
1

Ks

(
∑
t �=s

1
d(s, t)

)2

≤ 4
(

1 +
1
λ

)
∑
t �=s

1
d(s, t)

= Ks.

(b) If x ∈ M \ S and y = s,

|μx({s})− μy({s})| = 1 − μx({s}) ≤
∑
t �=s

1
d(x, t)2

1
d(x, y)2

= d(x, y) · ∑
t �=s

d(x, y)
d(x, t)2 .

Reasoning as before, as we assume that d(x, y) < 1
Ks

, for each t �= s, λd(x, y) ≤
λ
Ks

≤ d(s, t) ≤ d(y, x) + d(x, t), so d(x, y) ≤ (λ − 1)d(x, y) ≤ d(x, t). Moreover,
d(s, t) ≤ d(y, x)+ d(x, t) ≤ 1

Ks
+ d(x, t) ≤ 1

λ d(s, t), which implies that d(x, t) ≥
(1 − 1

λ )d(s, t) ≥ 1
λ d(s, t). Thus,

|μx({s})− μy({s})| ≤ d(x, y) · ∑
t �=s

1
d(x, t)

≤ d(x, y) · ∑
t �=s

λ

d(s, t)
≤ Ksd(x, y).

(c) Let x ∈ M \ S and y ∈ S different from s, using the case 2b,

|μx({s})− μy({s})| = μx({s}) = 1 − ∑
t �=s

μx({t}) ≤ 1 − μx({y})

= |μy({s})− μx({y})| ≤ Ksd(x, y).
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(d) In the last case, we suppose that x, y ∈ S. If x �= s �= y, αs(x) = 0 = αs(y), so
we can assume that, for example, x = s and y �= s. Then,

|μx({s})− μy({s})| = 1 =
1

d(x, y)
· d(x, y) ≤ Ksd(x, y).

Summing up the four cases, we have proved the desired inequality.

3. We assume now that M = R. Let x ∈ R. We are going to calculate the limit

lim
y→x

μy({s})− μx({s})
y − x

.

We distinguish now three cases.

(a) If x �∈ S = S, consider the same neighborhood V of x in which d(y, s) > 0 for
all s ∈ S and y ∈ V. Then, as the function d(·, s) = |(·)− s| does not vanish on
V, it is differentiable and also μ(·)({s}), in particular on x.

(b) If x = s,

lim
y→s

μy({s})− μx({s})
y − x

= lim
y→s

− ∑t �=s
1

(y−t)2

y−s
(y−s)2 + ∑t �=s

y−s
(y−t)2

= 0.

(c) If s �= x = s0 ∈ S, we have

lim
y→s0

μy({s})− μx({s})
y − x

= lim
y→s

1
(y−s)2

y−s0
(y−s0)2 + ∑t �=s0

y−s0
(y−t)2

= 0.

Although the bound provided in part 2 of Lemma 1 seems to be accurate, we do not
know if it can be improved by using other arguments.

Question: Is the bound for the Lipschitz constant provided in Lemma 1 the best
possible?

As a consequence of the previous result, we obtain the following:

Proposition 3. Let (M, d) be a metric space, and let S be a finite subset of M. Consider a function
f : S → R and let F : M → R be the extension of f given by (6). Then,

1. infx∈M F(x) = infs∈S f (s) and supx∈M F(x) = sups∈S f (s).
2. F : M → R is a Lipschitz function.
3. If (M, d) = (R, | · |), F : M → R is a differentiable function with F′(s) = 0 for all s ∈ S.

Proof. The proofs are a direct consequence of Lemma 1. Observe that m : M → P(S), so
m(x) = μx is a Lipschitz function, since

‖m(x)− m(y)‖M(S) = ∑
s∈S

|μx({s})− μy({s})| ≤ ∑
s∈S

Ksd(x, y),

Therefore, according to Proposition 1, Lip(F) ≤ ‖ f ‖C(S) ∑s∈S Ks. We give here some
better bounds for the Lipschitz constant of F in terms of Lip( f ):
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Lip(F) ≤ (2 + 2
√

2) ∑
s∈S

∑
t �=s

1
d(s, t)

min
ξ∈R

max
s∈S

| f (s)− ξ|

= (1 +
√

2) ∑
s∈S

∑
t �=s

1
d(s, t)

(
max f (S)− min f (S)

)
≤ (1 +

√
2) ∑

s∈S
∑
t �=s

1
d(s, t)

Diam(S)Lip( f ).

Lip(F) ≤ (2 + 2
√

2)max
s∈S

∑
t �=s

1
d(s, t)

min
ξ∈R ∑

s∈S
| f (s)− ξ|

≤ (2 + 2
√

2)max
s∈S

∑
t �=s

1
d(s, t) ∑

s∈S
∑
t �=s

d(s, t)
1
|S| Lip( f ).

Corollary 1. If we fix a finite subset S of M, the extension rule f �→ F from C(S) to C(M)
provided by (6) is a linear isometric mapping. Moreover, it preserves constant functions and the
infima and suprema of the involved functions.

3.2. More Examples for p = 2

To conclude this section, we show in the following more visual examples of the
formulas provided for the 2-average-slope-minimizing extension. Our goal is to show that,
under certain geometric conditions, we can expect better smoothness properties for the
extended functions, although the Lipschitz constants are not preserved in general.

Example 6. Let us consider the example studied by Oberman in [13] [Example 1], where S = {−1, 1}
in R with the absolute value norm and f (−1) = −1, f (1) = 1.

We can extend f to R by applying the mean of the McShane and Whitney extension. We write
F1 for it. On the other hand, following the explicit formula given in [13], the extension studied by
Oberman and Milmam can be computed as

F2(x) =
d(−1, x) · 1 + d(1, x) · (−1)

d(−1, x) + d(1, x)
=

|x + 1| − |x − 1|
|x + 1|+ |x − 1| ,

for x ∈ R \ {−1, 1}. To calculate the 2-average-slope-minimizing extension, we consider the
measure on μ = 1

2 (δ−1 + δ1) on S. The resulting extension for x ∈ R \ {−1, 1} is then given by

F3(x) =
−1/(x + 1)2 + 1/(x − 1)2

1/(x + 1)2 + 1/(x − 1)2 =
2x

x2 + 1
.

We can see the representation of both extension functions in Figure 5. As proved in Lemma 1 (3), F3
is differentiable, unlike the extensions F1 and F2.

Figure 5. Extension of the function f (−1) = −1, f (1) = 1 using three different methods. In blue,
F1, the mean of the McShane and Whitney formulas; in red F2, the one proposed by Oberman and
Milman; and in green, F3, our proposal, the 2−average slope minimizing extension.

126



Axioms 2023, 12, 359

Example 7. We set now an example similar to the previous one shown in Example 6. Let S =
[−1, 1] ⊂ R and let f : S → R, f (s) = s. We compute the same extensions F1, F2 and F3. For
the cases F1 and F2, we obtain the same result. For the case of F3, we consider on S the Lebesgue
measure, which we again call μ. We obtain that the value for x ∈ R \ S is, by applying the second
fundamental theorem of calculus,

F3(x) =

∫
S

f (s)/(x − s)2dμ(s)∫
S

1/(x − s)2dμ(s)
= x +

x2 − 1
2

log
(∣∣∣∣ x − 1

x + 1

∣∣∣∣).

The results can be seen in Figure 6. Contrary to what happens in the previous example, we can
observe that, in this case, our formula does not provide a smoother approximation due to the weight
of the rest of the points of the interval that, as it is computing an average value, has a relevant role
in this approximation.

Figure 6. Extension the function f (s) = s for s ∈ [−1, 1] using three different methods. In black, the
original function, f ; in blue F1, the mean of the McShane and Whitney formulas; in red F2, the one by
Oberman and Milman; and in green F3, the 2−average slope minimizing extension.

Example 8. We finish with another example on R2. Let D = {(x, y) ∈ R2 : 2 ≤ ‖(x, y)‖ ≤ 3}
be an annulus inside the ball M = {(x, y) ∈ R2 : ‖(x, y)‖ ≤ 3}. Consider on D a sample S
of 81, 000 points and let μ = 1

|S| ∑s∈S δs as an approximation of the Lebesgue measure on C. Let
f : S → R be the function

f (x, y) = x3 − 3xy2;

that is, z = f (x, y) is the monkey saddle surface on the region (x, y) ∈ S. We extend f to
M \ D using the same 2-average-slope-minimizing extension formula. The resulting function
F : M \ D → R can be seen in Figure 7.

The result is very similar to the monkey saddle surface in M \ D. In fact, the maximum error
committed in the approximation max{F(x, y) − (x3 − 3xy2) : (x, y) ∈ M \ D} is less than
3 × 10−7.

Figure 7. Extension of the function f (x, y) = x3 −3xy2 defined on D = {(x, y) ∈ R2 : 2 ≤ ‖(x, y)‖ ≤ 3}
using the 2-average-slope-minimizing extension.
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Moreover, that surface can also be reconstructed using only the information of f on the
circumference C = {(x, y) ∈ R2 : ‖(x, y)‖ = 2}. Now, we consider on C a sample S of
1000 points and let μ = 1

|S| ∑s∈S δs as an approximation of the line integral measure on C. We

extend the function to B = {(x, y) ∈ R2 : ‖(x, y)‖ < 2} using the same method. This example
can be seen in Figure 8. The maximum error committed by the extension compared to the original
function f (x, y) = x3 − 3xy2 on B is now less than 3 × 10−6.

Figure 8. Extension of the function f (x, y) = x3 − 3xy2 defined on D = {(x, y) ∈ R2 : ‖(x, y)‖ = 2}
using the 2-average-slope-minimizing extension.

The explicit formula calculated for the case p = 2 makes it easy to find the best
extension of the Lipschitz function. However, we have found no equivalent (or even
approximate) formula for any case with p �= 2. This suggests the following open question
for the interested reader.

Question: Is it possible to provide an explicit formula for the best extension for the
case p �= 2?

4. Application: Ellipsoidal Measure Extensions

Motivated by the extension formulas based on integral averages that we have shown,
in this section, we introduce a particular class of measure representation of the metric
space by considering a normalization requirement. We will treat representations such as
m : M → P(S), i.e., m(x) are probability measures. This requirement provides a different
way of considering the Lipschitz property of the integral extenders. We need to fix a radial
function, and the Lipschitz inequality will hold for elements of M that have the same value
of the average of this radial function. The simplest way to define this property is in terms
of the Radon–Nikodym derivatives of the measures m(x) = μx with respect to μ, as we
do below.

Definition 3. Let (M, d) be a metric space and let S be a compact subspace. Let μ ∈ P(S) and
consider a measure representation of M, m : M → P(S). We say that m is an ellipsoidal measure
representation if there exists a measurable function ψ : R+ → R+ such that for all x ∈ M \ S
and A ∈ B(S),

m(x)(A) = μx(A) =
∫

A
ψ(d(x, s))dμ(s).

In other words, the Radon–Nikodym derivative dμx
dμ : S → R+ only depends on the distance

from x to s.

Since m(x) is a probability measure, in most cases, we will compute it as the normal-
ization of a finite measure,

m(x)(A) = μx(A) =

∫
A

ψ(d(x, s))dμ(s)∫
S

ψ(d(x, s))dμ(s)
. (7)
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Let us illustrate this notion with some examples.

Example 9. Let us start with a negative example. Let

M =
{
(0, 0), (0, 1), (1, 0), (1, 1)

}
with the Euclidean distance and let S = {(0, 0), (1, 1)} with the measure μ = 1

2
(
δ(0,0) + δ(1,1)

)
.

Let m :→ P(S) be defined as

m
(
(0, 0)

)
= δ(0,0), m

(
(0, 1)

)
= δ(0,0), m

(
(1, 0)

)
= δ(1,1), m

(
(1, 1)

)
= δ(1,1).

Then, m is not an ellipsoidal measure representation, since the points in M \ S satisfy

d
(
(0, 1), s

)
= d
(
(1, 0), s

)
,

but m
(
(0, 1)

)
and m

(
(1, 0)

)
are different measures.

Example 10. Let us consider the normalization of the measure representation given by Example 2.
It is a typical case of ellipsoidal measure representation. Fix μ ∈ P(S) and consider the map
m : M → P(S) given by

x �→ m(x)(A) = μx(A) :=

∫
A

d(x, s) dμ(s)∫
S

d(x, s) dμ(s)
, x ∈ M \ S, A ∈ B(S),

and m(s) = δs for s ∈ S. Then, we have the integral corresponding map

ϕm, f (x) = 〈 f , μx〉 =

∫
S

f (s) d(x, s) dμ(s)∫
S

d(x, s) dμ(s)
, x ∈ M,

for each f ∈ C(S). Simple computations show that for any x, y ∈ M,

‖μx − μy‖ ≤ d(x, y) · 2∫
S

d(x, s) dμ(s)
.

Assuming that I = infx∈M
∫

S d(x, s)dμ(s) > 0, we obtain that m is Lipschitz. Thus, by
Proposition 1, for any f ∈ C(S), we have that ϕm, f ∈ C(M), and moreover, it is a Lipschitz
function with Lip(ϕm, f ) ≤ 2I−1 · ‖ f ‖C(S). Recall that ϕm, f is not necessarily an extension of f .

In the above example, the Lipschitz inequality is preserved in the comparison between
any pair of elements for which the extension is defined. However, this need not be true
in general for ellipsoidal measure representations. Instead, we will prove below the most
interesting property of these representations: the Lipschitz inequality is always preserved
when involving elements with the same “average radial distance” to the set S. This is the
reason for using the term ellipsoidal measure representation.

Let m be such a representation, and take a fixed ψ as in (7). For any r > 0, consider the
“ellipsoidal set”

Mr =

{
x ∈ M \ S :

∫
S

ψ(d(x, s)) dμ(s) = r
}

.

If Mr �= ∅, we can study the Lipschitz condition of ϕm, f on Mr. Therefore, by fixing
the continuous function ψ : R+ → R+, we say that a function f : M → R is radial-Lipschitz
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if for any r > 0 such that for Mr �= ∅, there exists a constant Lr such that Lip( f |Mr ) ≤ Lr;
that is,

| f (x)− f (y)| ≤ Lr · d(x, y),

for all x, y ∈ Mr.

Example 11. Continuing with Example 2, the characteristic bound for ellipsoidal measures is
provided by the following computations. Fix r ∈ R+ such that the ellipsoidal set Mr = {x ∈ M :∫

s d(x, y)dμ(s) = r} is non-empty. For x, y ∈ Mr,

∣∣ϕm, f (x)−ϕm, f (y)
∣∣ = 1

r

∣∣∣∣∫S
f (s) (d(x, s)− d(y, s)) dμ(s)

∣∣∣∣
≤ 1

r

(∫
S
| f (s)|dμ(s)

)
· d(x, y) =

‖ f ‖L1(μ)

r
· d(x, y),

and so the map ϕm, f is radial-Lipschitz and

Lip(ϕm, f |Mr ) ≤
‖ f ‖L1(μ)

r
.

Observe that on each ellipsoidal set Mr, the Lipschitz constant of ϕm, f has been improved
compared to that of Example 10,

Lip(ϕm, f ) ≤ 2
inf{r > 0 : Mr �= ∅}‖ f ‖C(S). (8)

The next result provides a bound for the Lipschitz constant restricted to the ellipsoidal
set Mr for the integral expression that is given by the optimization explained in Section 3.1,
in which the norm in L2(μ) is considered. We need to define the following class of sets. For
r ∈ R+, Mr is the set

Mr :=
{

x ∈ M \ S : r =
∫

S

1
d(x, s)2 dμ(s)

}
,

that is well-defined since S is closed, so the function s �→ 1
d(x,s) belongs to L2(μ) for every

x ∈ M \ S.

Proposition 4. Fix μ ∈ P(S). Consider the function m : M → P(S) and the ellipsoidal measure
representation given by the function ψ(t) = 1

t2 on M \ S; that is,

m(x)(A) = μx(A) =

∫
A

1/d(x, s)2 dμ(s)∫
S

1/d(x, s)2 dμ(s)
, x ∈ M \ S, A ∈ B(S),

and ms = δs for s ∈ S.
Let r > 0 such that Mr �= ∅ and suppose that Qr = supx∈Mr

‖1/d(x, ·)2‖L2(μ) is finite.
Then, m|Mr : Mr → P(S) is Lipschitz with

Lip(m|Mr ) ≤
2Qr

r
1
2

.

Moreover, for every f ∈ C(S), ϕm, f (x) =
∫

S f (s) dμx, x ∈ M, defines a Lipschitz function
when restricted to Mr, and

Lip(ϕm, f |Mr ) ≤
2Qr

r
1
2

‖ f ‖C(S).
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Proof. Let r be as in the statement and x, y ∈ Mr. Then,

‖μx − μy‖M(S) =
1
r

∫
S

∣∣∣∣ 1
d(x, s)2 − 1

d(y, s)2

∣∣∣∣dμ(s)

=
1
r

∫
S

|d(x, s)− d(y, s)|(d(x, s) + d(y, s))
d(x, s)2d(y, s)2 dμ(s)

≤ d(x, y)
r

(∫
S

1
d(x, s)d(y, s)2 dμ(s) +

∫
S

1
d(x, s)2d(y, s)

dμ(s)
)

.

Now, using the Cauchy–Schwarz inequality, we obtain

‖μx − μy‖M(S) ≤
d(x, y)

r

((∫
S

1
d(x, s)2

) 1
2
(∫

S

1
d(y, s)4

) 1
2
+

(∫
S

1
d(y, s)2

) 1
2
(∫

S

1
d(x, s)4

) 1
2
)

≤ d(x, y)
r

2r
1
2 Qr = d(x, y)

2Qr

r
1
2

.

The last statement is a consequence of reasoning as in Proposition 1.

Example 12. Let M = [−2, 2]× [−2, 2] ⊂ R2 with the Euclidean distance and let S be a mesh of
the set C = {(x, y) ∈ R2 : 1

2 ≤ max(|x|, |y|) ≤ 1} with 121, 200 points and a spacing of 0.005.
We consider on S the counting normalized measure μ = 1

|S| ∑s∈S δs as in Remark 1.

We can see in Figure 9 a representation of the value of
∫

S 1/d(x, s)2dμ for each x ∈ M \ C
and some relevant sets Mr.

x

y

Figure 9. In red, the set C. In different shades of blue, the value of
∫

S 1/d(x, s)2dμ(s) for each
x ∈ M \ C. We have fixed some bands of constant value to facilitate the understanding of the graphic.
Some sets Mr are plotted in black for r ∈ { 1

4 , 1
2 , 1, 2, 4}.

Finally, consider on S the function f : S → R, defined as

f (x, y) = x · cos(10y); (9)

see Figure 10. We extend f to the whole M using the 2-average-slope-minimizing extension,
ϕm, f : M → R, with m(x) = μx defined as in (6). The result is shown in Figure 10.
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Figure 10. Extension of the function f (x, y) = x · cos(10y) defined on C = {(x, y) ∈ R2 : 1
2 ≤

max(|x|, |y|) ≤ 1} using the 2-average-slope-minimizing method.

5. Conclusions

Given a compact subset S of a metric space M, we define the notion of measure
representation of the whole metric space by assigning a measure μx on S to each element
x ∈ M. This representation is shown to be useful for generating extension formulas for
functions defined on S to all M via what we call integral extensor maps. Although these
ideas seem very abstract, we show that the new Lipschitz function extension techniques we
introduce (the p−slope-minimizing extensions) can be understood as particular cases of
this general setting for p = 2. These new extension formulas are based on the calculation of
an integral average of the slopes of the lines given by the points of S and the point to which
we want to extend the function. They prove to be useful for modulating the smoothness
of the produced functions, which is not at all given in the case of the classical McShane
and Whitney formulas. However, they do not, in general, preserve the Lipschitz constant,
but we show some bounds for the resulting Lipschitz norms. For example, we show that
in some special cases (such as the ellipsoidal measure extensions we present in the last
section), good control of the Lipschitz norms is possible on certain subsets of the metric
space with a natural geometric description.
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Abstract: On the set M of mean functions, the symmetric mean of M with respect to mean M0 can be
defined in several ways. The first one is related to the group structure on M, and the second one is
defined trough Gauss’ functional equation. In this paper, we provide an answer to the open question
formulated by B. Farhi about the matching of these two different mappings called symmetries on the
set of mean functions. Using techniques of asymptotic expansions developed by T. Burić, N. Elezović,
and L. Mihoković (Vukšić), we discuss some properties of such symmetries trough connection with
asymptotic expansions of means involved. As a result of coefficient comparison, a new class of means
was discovered, which interpolates between harmonic, geometric, and arithmetic mean.

Keywords: mean; asymptotic expansion; symmetry; Catalan numbers

MSC: 26E60; 41A60; 26E40; 39B22

1. Introduction

Function M : R+ × R+ → R is called a mean if for all s, t ∈ R+

min(s, t) ≤ M(s, t) ≤ max(s, t). (1)

Mean M is symmetric if for all s, t ∈ R+

M(s, t) = M(t, s)

and homogeneous (of degree 1) if for all λ, s, t ∈ R+

M(λs, λt) = λM(s, t).

This paper was motivated by the problem of matching two different mappings on the
set of mean functions formulated in paper [1] in which author introduced algebraic and
topological structures on the set MD of symmetric means on a symmetric domain D with
additional property

M(s, t) = s ⇒ s = t, ∀(s, t) ∈ D.

The first mapping is related to the group structure and the second one is defined trough
Gauss’ functional equation. It was found that those mappings coincide for arithmetic,
geometric, and harmonic mean, but the question of the existence of other solutions remained
open. We shall take D = R+ × R+.

First, let AD be set of all functions f : D → R such that

(∀(x, y) ∈ D) f (x, y) = − f (y, x).

(AD ,+) is an abelian group with the neutral element 0. Function ϕ : MD → AD defined by

Axioms 2023, 12, 238. https://doi.org/10.3390/axioms12030238 https://www.mdpi.com/journal/axioms134
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ϕ(M)(x, y) :=

{
log
(
− M(x,y)−x

M(x,y)−y

)
, x �= y,

0, x = y,

is a bijection. The composition law ∗ : MD ×MD → MD is defined by

M1 ∗ M2 = ϕ−1(ϕ(M1) + ϕ(M2)).

Thus (MD , ∗) is an abelian group with the neutral element ϕ−1(0) = A. It can also easily
be shown that the explicit formula for the composition law ∗ holds:

(M1 ∗ M2)(x, y) =

{ x(M1−y)(M2−y)+y(M1−x)(M2−x)
(M1−x)(M2−x)+(M1−y)(M2−y) , x �= y,

x, x = y.
(2)

For the sake of simplicity, variables (x, y) were omitted. By sum and difference of means,
we assume usual pointwise addition and subtraction. More on the topological structures
on set of bivariate means can also be found in [2].

Based on the operation ∗ defined in (2), the first type of the symmetry was defined.

Definition 1 ([1]). The symmetric mean M2 to a mean M1 with respect to mean M0 via the group
structure (MD , ∗) is defined with the expression

SM0(M1) = M2 ⇔ M1 ∗ M2 = M0 ∗ M0. (3)

Combining (3) with (2), the explicit formula for symmetric mean of mean M1 with
respect to M0 can easily be calculated:

SM0(M1) =
x(M1 − x)(M0 − y)2 − y(M0 − x)2(M1 − y)
(M1 − x)(M0 − y)2 − (M0 − x)2(M1 − y)

. (4)

We shall see the behavior of SM0 for some basic well known means M0. For (s, t) ∈
D = R+ × R+ let

A(s, t) =
s + t

2
, G(s, t) =

√
st, H(s, t) =

2st
s + t

,

be the arithmetic, geometric, and harmonic means, respectively.

Example 1 ([1]). For any mean M ∈ MD , we have:

1. SA(M) = 2A − M,

2. SG(M) = G2

M ,
3. SH(M) = HM

2M−H .

Notice that the denominator in SH(M) from Example 1 cannot be equal to 0, since
M = 1

2 H does not satisfy the left hand side inequality in (1) and, hence, it is not a mean.
Another type of symmetry, independent of the group structure (MD , ∗), can also be

defined.

Definition 2 ([1]). Mean M2 is said to be functional symmetric mean of M1 with respect to M0 if
the following functional equation is satisfied:

σM0(M1) = M2 ⇔ M0(M1, M2) = M0. (5)

We can also say that mean M0 is the functional middle of M1 and M2. Defining
equation on the right side of the equivalence relation (5) is known as the Gauss functional
equation. Some authors refer to means M1 and M2 as a pair of M0-complementary means.
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Mean M0 is also said to be (M1, M2)-invariant. For recent related results, see [3–6] and also
survey article on invariance of means [7] and references therein. Furthermore, if functional
symmetric mean exists, then it is unique.

With respect to the same means as in the latter exmple, we may calculate the symmetric
means. For instance, when M0 = H, we have

H(M, σH(M)) = H ⇔ 2MσH(M)
M+σH(M)

= H ⇔ 2MσH(M) = H(M + σH(M)) ⇔ σH(M) = HM
2M−H .

Other symmetric pairs, with respect to A and G, are obtained in similar manner.

Example 2 ([1]). For any mean M ∈ MD , we have:

1. σA(M) = 2A − M,

2. σG(M) = G2

M ,
3. σH(M) = HM

2M−H .

Taking into account Examples 1 and 2, in which the same mappings appear with
respect to arithmetic, geometric, and harmonic mean appear, the author in [1] states the
following.

Open question. For which mean functions M0 on D = R+ × R+ do the two symme-
tries, S and σ, with respect to M0, coincide?

The goal of this paper is to analyze the open question and offer the answer in the setting
of symmetric homogeneous means, which possess the asymptotic expansion. Techniques of
asymptotic expansions were developed in [8–10] and appeared to be very useful in compari-
son and finding inequalities for bivariate means ([11,12]), comparison of bivariate parameter
means ([10]), finding optimal parameters in convex combinations of means ([12,13]), and
solving the functional equations of the form B(A(x)) = C(x), where asymptotic expan-
sions of B and C are known ([14]). In the latter example, A, B, and C are functions of a
real variable, which possess asymptotic expansion as x → ∞ with respect to asymptotic
sequences (xw−n)n∈N0 , (xu−n)n∈N0 , and (xv−n)n∈N0 , respectively, where w, u, and v are
real numbers. When used with B(x) = f (x) and C(x) = 1

t−s
∫ t

s f (x + u) du, finding A(x) is

then equivalent to determining integral f -mean I f (x + s, x + t) = f −1
(

1
t−s
∫ x+t

x+s f (u) du
)

for a given function f as it was described in detail in above mentioned paper. We may
perceive the significance of this approach when explicit formula for the inverse function is
not known, which is case for the digamma function.

Techniques and results applyed in this paper were described in Section 2. In the next
step, we obtained the algorithm for calculating the coefficients in the asymptotic expan-
sions of means MS

2 = SM0(M1) and Mσ
2 = σM0(M1). Comparing the first few obtained

coefficents, we anticipated the general form of the coefficients in the asymptotic expansion
of mean M0 for which symmetries SM0 and σM0 coincide, i.e., such that MS

2 = Mσ
2 .

At the beginning of Section 3, we found closed formula and explored some properties,
such as limit behavior and monotonocity with respect to the parameter. We proved that
proposed function represents the well defined one parameter class of means. We have
shown that it also covers, as the special cases, means from Examples 1 and 2.

Lastly, in Section 4, we have proved that this class of means answered the open
question and stated the hypothesis that there were not any other solutions in the context of
homogeneous symmetric means, which possess asymptotic power series expansions.

In addition, methods presented in this paper may be useful with similar problems
regarding functional equations, especially in case when the explicit formula for included
function was not known.

2. Asymptotic Expansions

Recall the definition of an asymptotic power series expansion as x → ∞.

136



Axioms 2023, 12, 238

Definition 3. The series ∑∞
n=0 cnx−n is said to be an asymptotic expansion of a function f (x) as

x → ∞ if for each N ∈ N

f (x) =
N

∑
n=0

cnx−n + o(x−N).

Main properties of asymptotic series and asymptotic expansions can be found in [15].
Taylor series expansion can also be seen as an asymptotic expansion, but the converse is not
generally true, and the asymptotic series may also be divergent. The main characteristic
of asymptotic expansion is that it provides good approximation using a finite number of
terms while letting x → ∞.

Beacause of the intrinsity (1), mean M would possess the asymptotic power series as
x → ∞ of the form

M(x + s, x + t) =
∞

∑
n=0

cn(s, t)x−n+1

with c0(s, t) = 1. For a homogeneous symmetric mean, the coefficients cn(s, t) are also
homogeneous symmetric polynomials of degree n in variables s and t, and for s = −t, they
have a simpler form. Let the means included possess the asymptotic expansions as x → ∞
of the form

M0(x − t, x + t) =
∞

∑
n=0

cnt2nx−2n+1, (6)

M1(x − t, x + t) =
∞

∑
n=0

ant2nx−2n+1,

M2(x − t, x + t) =
∞

∑
n=0

bnt2nx−2n+1.

Conversely, it can also be shown that the expansion in variables (x − t, x + t) is sufficent to
obtain the so-called two variable expansion, i.e., the expansion in variables (x + s, x + t).
Furthermore, note that

a0 = b0 = c0 = 1. (7)

In this section, we will find the asymptotic expansions of means MS
2 = SM0(M1) and

Mσ
2 = σM0(M1).

2.1. Symmetry SM0

Recall the recently developed results for tansformations of asymptotic series, i.e., the
complete asymptotic expansions of the quotient and the power of asymptotic series.

Lemma 1 ([10], Lemma 1.1.). Let function f (x) and g(x) have the following asymptotic expan-
sions (a0 �= 0, b0 �= 0) as x → ∞:

f (x) ∼
∞

∑
n=0

anx−n, g(x) ∼
∞

∑
n=0

bnx−n.

Then, asymptotic expansion of their quotient f (x)/g(x) reads as

f (x)
g(x)

∼
∞

∑
n=0

cnx−n,

where coefficients cn are defined by

cn =
1
b0

(
an −

n−1

∑
k=0

bn−kck

)
.
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Lemma 2 ([8,16]). Let m(x) be a function with asymptotic expansion (c0 �= 0):

m(x) ∼
∞

∑
n=0

cnx−n, (x → ∞).

Then, for all real r, it holds

[m(x)]r ∼
∞

∑
n=0

P[n, r, (cj)j∈N0 ]x
−n

where
P[0, r, (cj)j∈N0 ] = cr

0,

P[n, r, (cj)j∈N0 ] =
1

nc0

n

∑
k=1

[k(1 + r)− n]ckP[n − k, r, (cj)j∈N0 ].
(8)

Symmetric mean with respect to mean M0 of mean M1 via the group structure (MD , ∗)
as a consequence of (4) can be expressed as:

MS
2 (x − t, x + t) = SM0(M1)(x − t, x + t)

=
(x − t)(M1 − x + t)(M0 − x − t)2 − (x + t)(M0 − x + t)2(M1 − x − t)

(M1 − x + t)(M0 − x − t)2 − (M0 − x + t)2(M1 − x − t)

=
(x − t)(M1 + t)(M0 − t)2 − (x + t)(M0 + t)2(M1 − t)

(M1 + t)(M0 − t)2 − (M0 + t)2(M1 − t)

= x +
2t2M0 − t2M1 − M2

0M1

t2 + M2
0 − 2M0M1

,

where Mi, i = 1, 2, 3, stands for Mi − x. The variables (x − t, x + t) were omitted for the
sake of symplicity. Further calculations reveal that:

MS
2 (x − t, x + t) = x + t2x−1

[
(2c1 − a1)+

+
∞

∑
n=0

(
2cn+2 − an+2 +

n

∑
k=0

( k

∑
j=0

(
cj+1ck−j+1

)
an+1−k

))
t2n+2x−2n−2

]
×

×
[
1 +

∞

∑
n=0

n

∑
k=0

ck+1(cn−k+1 − 2an−k+1)t2n+2x−2n−2
]−1

.

Coefficients bS
n for n ≥ 1 are obtained using Lemma 1 for the division of asymptotic series.

Hence, we have the following:

bS
0 = 1,

bS
n = numn −

n−2

∑
k=0

denn−1−kbS
k+1, n ≥ 1,

where (numn)n∈N0 and (denn)n∈N0 dentote auxiliary sequences, which appear in the nu-
merator and the denominator:

num0 = 2c1 − a1,

numn = 2cn+1 − an+1 +
n−1

∑
k=0

(
k

∑
j=0

(cj+1ck−j+1)an−k

)
, n ≥ 1,
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and
den0 = 1,

denn =
n−1

∑
k=0

ck+1(cn−k − 2an−k), n ≥ 1.

We shall calculate the first few coefficients:

bS
0 = 1,

bS
1 = 2c1 − a1,

bS
2 = 2c2 − a2 − 2c1(a1 − c1)

2,

bS
3 = 2c3 − a3 − 2(a1 − c1)(2a2c1 + c2

1(2a2
1 − 3a1c1 + c2

1) + (a1 − 3c1)c2),

bS
4 = 2c4 − a4 − 2(a2

2c1 + 4a4
1c3

1 + 4a3
1c1(−3c3

1 + c2)

+ 2a2((3a1 − 2c1)(a1 − c1)c2
1 + (a1 − 2c1)c2)

+ a2
1(13c5

1 − 15c2
1c2 + c3) + 2a1(a3c1 − 3c6

1 + 8c3
1c2 − c2

2 − 2c1c3)

+ c1(−2a3c1 + c6
1 − 5c3

1c2 + 3c2
2 + 3c1c3)),

bS
5 = 2c5 − a5 − 2(−2a4c2

1 + 8a5
1c4

1 + 4a3c4
1 − c9

1 − 4a3c1c2 + 7c6
1c2 − 10c3

1c2
2

+ c3
2 + a2

2(6a1c2
1 − 5c3

1 + c2) + 4a4
1c2

1(−7c3
1 + 3c2)− 5c4

1c3 + 6c1c2c3

+ 2a3
1(19c6

1 − 24c3
1c2 + c2

2 + 2c1c3) + 2a2(a3c1 + 8a3
1c3

1 − 3c6
1 + 8c3

1c2

− c2
2 + 6a2

1c1(−3c3
1 + c2)− 2c1c3 + a1(13c5

1 − 15c2
1c2 + c3)) + 3c2

1c4

+ a2
1(6a3c2

1 − 5c1(5c6
1 − 13c3

1c2 + 3c2
2 + 3c1c3) + c4) + 2a1(a4c1

+ a3(−5c3
1 + c2) + 2(2c8

1 − 9c5
1c2 + 6c2

1c2
2 + 4c3

1c3 − c2c3 − c1c4))).

2.2. Symmetry σM0

The problem of functional symmetic mean corresponds the functional equation

M0(x − t, x + t) = M0(M1(x − t, x + t), M2(x − t, x + t))

which we will solve in terms of asymptotic series. To this end, we shall use the following
result from Burić and Elezović about the asymptotic expansion of the composition of means.

Theorem 1 ([17], Theorem 2.2.). Let M and N be given homogeneous symmetric means with
asymptotic expansions

M(x − t, x + t) =
∞

∑
k=0

akt2kx−2k+1, N(x − t, x + t) =
∞

∑
k=0

bkt2kx−2k+1,

and let F be homogeneous symmetric mean with expansion

F(x − t, x + t) =
∞

∑
k=0

γkt2kx−2k+1.

Then, the composition H = F(M, N) has asymptotic expansion

H(x − t, x + t) =
∞

∑
k=0

hnt2nx−2n+1,

where coefficients (hn) are calculated by

hn =
� n

2z  
∑
k=0

γk

n−2zk

∑
j=0

P[j, 2k, (dm)m∈N0 ]P[n − 2zk − j, −2k + 1, (cm)m∈N0 ].
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Sequences (cn) and (dn) are defined by

cn =
1
2
(an + bn), dn =

1
2
(an+z − bn+z), n ≥ 0,

where z is the smallest number such that dn �= 0.

Applying Theorem 1 on M = M1, N = M2 (or equivalently M = M2, N = M1) and
F = M0, we obtain the asymptotic expansion of the composition M0(M1, M2). Since the
equation M0 = M0(M1, M2) holds, on the other side, in Theorem 1, we also have H = M0.
The coeficients in the asymptotic expansion of the composition M0(M1, M2) equal the
coefficients cn in the asymptotic expansion of mean M0. In the end, we obtain the recursive
algorithm for coefficients cn:

c0 = 1;

cn =
� n

2z  
∑
k=0

ck

n−2zk

∑
j=0

P[j, 2k, ( 1
2 (am − bσ

m))m≥z]P[n − 2zk − j, −2k + 1, ( 1
2 (am + bσ

m))m∈N0 ], (9)

where P[n, r, (cm)m∈N0 ], n ∈ N0 denotes the n-th coefficient in the asymptotic expansion
of r-th power of the asymptotic seires with coefficients (cm)m∈N0 , as it was defined in (8).
Because of (7), z is always greater or equal to 1.

For z = 1 we calculate the first few coefficients:

c0 = 1,

c1 =
1
2
(a1 + bσ

1 ),

c2 =
1
2
(a2 + bσ

2 ) +
1
4
(a1 − bσ

1 )
2c1,

c3 =
1
2
(a3 + bσ

3 )−
1
8
(a1 − bσ

1 )(a2
1 − 4a2 − (bσ

1 )
2 + 4bσ

2 )c1,

c4 =
1
2
(a4 + bσ

4 ) +
1
16

((a4
1 + 4a2

2 − 8a3bσ
1 + (bσ

1 )
4 + 2a2((bσ

1 )
2 − 4bσ

2 )

− 2a2
1(3a2 + (bσ

1 )
2 − bσ

2 )− 6(bσ
1 )

2bσ
2 + 4(bσ

2 )
2

+ 4a1(2a3 + bσ
1 (a2 + bσ

2 )− 2bσ
3 ) + 8bσ

1 bσ
3 )c1 + (a1 − bσ

1 )
4c2),

c5 =
1
2
(a5 + bσ

5 )−
1
32

((a5
1 + a4

1bσ
1 − 4a2

2bσ
1 + 16a4bσ

1 − 4a3(bσ
1 )

2 + (bσ
1 )

5

− 2a3
1(4a2 + (bσ

1 )
2) + 16a3bσ

2 − 8(bσ
1 )

3bσ
2 + 12bσ

1 (b
σ
2 )

2

− 8a2(2a3 + bσ
1 bσ

2 − 2bσ
3 ) + 2a2

1(6a3 − (bσ
1 )

3 + 4bσ
1 bσ

2 − 2bσ
3 ) + 12(bσ

1 )
2bσ

3

− 16bσ
2 bσ

3 − 16bσ
1 bσ

4 + a1(12a2
2 − 16a4 − 8a3bσ

1 + (bσ
1 )

4 + 8a2((bσ
1 )

2 − bσ
2 )

− 4(bσ
2 )

2 − 8bσ
1 bσ

3 + 16bσ
4 ))c1 − (a1 − bσ

1 )
3(3a2

1 − 8a2 − 3(bσ
1 )

2 + 8bσ
2 )c2).

The connetcion between bσ
n and cn with the highest index n in each equation is linear.

In the expression (9), bσ
n appears ony in the second part

P[n − 2zk − j, −2k + 1, ( 1
2 (am + bσ

m))m∈N0 ], (10)

when k = j = 0. Then, (10) becomes P[n, 1, ( 1
2 (am + bσ

m))m∈N0 ], which represents the n-th
coefficient in the ∑∞

n=0
1
2 (an + bσ

n)t2nx−2n+1 to the power of 1, which equals 1
2 (an + bσ

n). So,
we can easily extract bσ

n . The first few coefficients bσ
n are:

bσ
0 = 1,

bσ
1 = 2c1 − a1,

140



Axioms 2023, 12, 238

bσ
2 = 2c2 − a2 − 1

2
c1(a1 − bσ

1 ),

bσ
3 = 2c3 − a3 +

1
4
(a1 − bσ

1 )(a2
1 − 4a2 − (bσ

1 )
2 + 4bσ

2 )c1,

bσ
4 = 2c4 − a4 − 1

8
((a4

1 + 4a2
2 − 8a3bσ

1 + (bσ
1 )

4 + 2a2((bσ
1 )

2 − 4bσ
2 )

− 2a2
1(3a2 + (bσ

1 )
2 − bσ

2 )− 6(bσ
1 )

2bσ
2 + 4(bσ

2 )
2

+ 4a1(2a3 + bσ
1 (a2 + bσ

2 )− 2bσ
3 ) + 8bσ

1 bσ
3 )c1 + (a1 − bσ

1 )
4c2),

bσ
5 = 2c5 − a5 +

1
16

((a5
1 + a4

1bσ
1 − 4a2

2bσ
1 + 16a4bσ

1 − 4a3(bσ
1 )

2 + (bσ
1 )

5

− 2a3
1(4a2 + (bσ

1 )
2) + 16a3bσ

2 − 8(bσ
1 )

3bσ
2 + 12bσ

1 (b
σ
2 )

2

− 8a2(2a3 + bσ
1 bσ

2 − 2bσ
3 ) + 2a2

1(6a3 − (bσ
1 )

3 + 4bσ
1 bσ

2 − 2bσ
3 ) + 12(bσ

1 )
2bσ

3

− 16bσ
2 bσ

3 − 16bσ
1 bσ

4 + a1(12a2
2 − 16a4 − 8a3bσ

1 + (bσ
1 )

4 + 8a2((bσ
1 )

2 − bσ
2 )

− 4(bσ
2 )

2 − 8bσ
1 bσ

3 + 16bσ
4 ))c1 − (a1 − bσ

1 )
3(3a2

1 − 8a2 − 3(bσ
1 )

2 + 8bσ
2 )c2).

For beter understanding the role of the parameter z, we shall recall the idea behind
the proof of Theorem 1. The composition F(M, N) has the asymptotic expansion

F(M(x − t, x + t), N(x − t, x + t)) =

= F
(

M + N
2

− N − M
2

,
M + N

2
+

N − M
2

)
=

∞

∑
k=0

γk

(
N − M

2

)2k(M + N
2

)−2k+1
.

Larger z corresponds with the equating ai and bσ
i and some parts of the coefficients cn

reduce. Observation of the cases with z > 1 in sequel did not provide any new information
about the ceofficients cn.

2.3. Comparison of Coefficients

Sequences (bS
n)n∈N0 and (bσ

n)n∈N0 represent the coefficients in asymptotic expansions
of means, which are results of mappings SM0(M1) and σM0(M1), respectively. Since we are
looking for a mean M0 such those mappings coincide, bS

n and bσ
n need to be equal. Since the

equality must hold for any mean M1, we may suppose that z = 1, which is equivalent with
a1 �= c1. Equating bS

0 with bσ
0 and bS

1 with bσ
1 does not provide any new information, except

b0 = bS
0 = bσ

0 = 1 and b1 = bS
1 = bσ

1 = 2c1 − a1.

With such bσ
1 we may express bσ

2 as

bσ
2 = 2c2 − a2 − 2c1(a1 − c1)

2,

which is already equal to bS
2 . Now, we can substitute

b2 = bS
2 = bσ

2 = 2c2 − a2 − 2c1(a1 − c1)
2,

in bσ
3 to obtain

bσ
3 = 2c3 − a3 − 2c1(a1 − c1)(2a2 + 2c1(a1 − c1)

2 + c2
1 − a1c1 − 2c2),

which, after equating with bS
3 , gives the following condition

(a1 − c1)
2(c2

1 + c3
1 + c2) = 0.
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Since we assumed that a1 and c1 are not equal, it is necessarily

c2 = −c2
1(1 + c1).

Now, we have

b3 = bS
3 = bσ

3 = 2c3 − a3 − 2c1(a1 − c1)
(
(3 − 4a1)c2

1 + a1(2a1 − 1)c1 + 2a2 + 4c3
1

)
.

After substitutions, we observe the next coefficient

bσ
4 = 2c4 − a4 − 2c1

(
2a2c1

(−a1(6c1 + 1) + 3a2
1 + 2c1(2c1 + 1)

)
+ c1
(
c1
(−4a3

1(4c1 + 1) + a2
1(2c1 + 1)(15c1 + 2)− 2a1c1(14c1(c1 + 1) + 3)

+ 4a4
1 + c2

1(c1(11c1 + 15) + 5)
)− 2a3

)
+ 2c3(c1 − a1) + a2

2 + 2a1a3
)

which, after equating with bS
4 , gives the following condition:

(a1 − c1)
2
(

2c3
1(c1 + 1)2 − c3

)
= 0,

and we conclude that it must be

c3 = 2c3
1(1 + c1)

2.

We continue with this procedure as it was described above. Further calculations reveal that
the first few coefficients cn have the following form:

c0 = 1,

c1 = c,

c2 = −c2(1 + c),

c3 = 2c3(1 + c)2,

c4 = −5c4(1 + c)3,

c5 = 14c5(1 + c)4,

c6 = −42c6(1 + c)5.

After these first steps, it is natural to state the following hypothesis about the general
formula for the coefficients in the asymptotic expansion of mean M0:

c0 = 1,

cn = (−1)n−1Cn−1cn(1 + c)n−1, n ≥ 1, (11)

where Cn denotes the n-th Catalan number. Catalan numbers appear in many occasions,
and their behavior has been widely explored. Here, we mention only a few properties,
which we will use in sequel. Catalan numbers are defined by

Cn =
1

n + 1

(
2n
n

)
, n ∈ N0

and they satisfy the recursive relation

Cn+1 =
n

∑
k=0

CkCn−k, n ∈ N0.

Based on this recursive relation, the generating function for Catalan numbers can be
obtained ([18]):
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∞

∑
n=0

Cnyn =
1 −√1 − 4y

2y
, (12)

which is convergent for |y| < 1
4 .

3. New Mean Function

In this section, we shall find closed a form for a mean whose coefficients are given in
(11). We start from asymptotic expansion (6):

M0(x − t, x + t) = x +
∞

∑
n=1

(−1)n−1Cn−1cn(1 + c)n−1t2nx−2n+1

= x +
∞

∑
n=0

(−1)nCncn+1(1 + c)nt2n+2x−2n−1

= x + ct2x−1
∞

∑
n=0

Cn

[
− c(1 + c)t2

x2

]n

. (13)

Introducing the substitution y = − c(1+c)t2

x2 , as x → ∞ and thereby y → 0, yields

M0(x − t, x + t) = x + ct2x−1
∞

∑
n=0

Cnyn,

and, then, according to the formula (12), for c + 1 �= 0, we obtain

M0(x − t, x + t) = x + ct2x−1 1 −√1 − 4y
2y

=
1 + 2c

2(1 + c)
x +

1
2(1 + c)

√
x2 + 4c(1 + c)t2. (14)

Abandoning series expansion in this moment, from the Equation (14) with substitution

x =
a + b

2
, t =

b − a
2

,

we obtain the expression for M0 in terms of variables a and b. For c ∈ R \ {−1} and a, b > 0
we define function Lc : R+ × R+ → R+

Lc(a, b) =
a + b

2
1 + 2c

2(1 + c)
+

1
2(1 + c)

√(
a + b

2

)2
+ 4c(1 + c)

(
b − a

2

)2
. (15)

Remark 1. Function Lc is well defined for all (a, b) ∈ R+ × R+ as we can rearrange terms under
the square root:(

a + b
2

)2
+ 4c(1 + c)

(
b − a

2

)2
=

1
4

(
(a + b)2 + 4c(1 + c)(b − a)2

)
=

1
4

(
(1 + 2c)2(a − b)2 + 4ab

)
> 0.

Remark 2. For c = −1 function Lc corresponds to the harmonic mean which will be proved in
sequel. Therefore, definition (15) can be considered for all c ∈ R.

Remark 3. Formula for Lc can also be written in a following way:

Lc(a, b) = A(a, b)
1 + 2c

2(1 + c)
+

1
2(1 + c)

√
A(a, b)2 + 4c(1 + c)(A(a, b)2 − G(a, b)2). (16)
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3.1. Limit Cases and Monotonicity

In this subsection, we study properties of Lc with respect to parameter c. First, we
state the following proposition, which can be proved using basic methods of mathematical
analysis.

Proposition 1. For a fixed pair (a, b) ∈ R+ × R+, function Lc holds

1. lim
c→−∞

Lc(a, b) = min(a, b),

2. lim
c→−1−

Lc(a, b) = lim
c→−1+

Lc(a, b) =
2ab

a + b
= H(a, b)

3. lim
c→+∞

Lc(a, b) = max(a, b),

It is well known that the following double inequality holds

H < A < G.

Also, H = Lc for c → −1, G = Lc for c = − 1
2 , and A = Lc for c = 0. In the next Theorem,

we explore the ordering of means Lc with respect to parameter c.

Theorem 2. For a fixed pair (a, b) ∈ R+ × R+, a �= b, function f : R \ {−1} → R,

f (c) = Lc(a, b)

is strictly increasing.

Proof. Starting form the (16), with A = A(a, b) and G = G(a, b), we have

f (c) = A
1 + 2c

2(1 + c)
+

1
2(1 + c)

√
g(c),

where
g(c) = A2 + 4c(1 + c)

(
A2 − G2

)
> 0

according to Remarks 1 and 3. The first derivative of function f equals

f ′(c) = 1
2(1 + c)2

(
A + 2(1 + 2c)(1 + c)(A2 − G2)g(c)−

1
2 − g(c)

1
2

)
=

1

2(1 + c)2g(c)
1
2

(
Ag(c)

1
2 + 2(1 + 2c)(1 + c)(A2 − G2)− g(c)

)
=

1

2(1 + c)2g(c)
1
2

(
Ag(c)

1
2 + 2(1 + c)(A2 − G2)− A2

)
.

So, the condition f ′(c) > 0 is equivalent to

Ag(c)
1
2 > A2 − 2(1 + c)(A2 − G2).

If the right-hand side is negative, than the inequality obviusly holds. If it is positive, then
we may observe the squared inequality:

A2g(c) > A4 − 4(1 + c)(A2 − G2)A2 + 4(1 + c)2(A2 − G2)

which is equivalent to

4c(1 + c)A2(A2 − G2) > −4(1 + c)(A2 − G2)A2 + 4(1 + c)2(A2 − G2)

144



Axioms 2023, 12, 238

and
(A2 − G2)(1 + c)2G2 > 0

which is true for a �= b and c �= 1.

Since Lc assumes values between minimum and maximum of a and b, we may con-
clude the following.

Corollary 1. For c ∈ R funcion Lc is a mean.

Remark 4. Notice that we proved that Lc is a strict mean, i.e., for a �= b, strict inequalities hold:

min(a, b) < M(a, b) < max(a, b).

3.2. Special Cases

Before we continue further, let us see what happens with some of the special cases of
parameter c. We shall also connect results form this paper with the previously obtained
asymptotic expansions of classical means.

Example 3. (a) c = −1. Then mean has two non-zero coefficients:

c0 = 1, c1 = c, cn = 0, n ≥ 2.

Corresponding asymptotic expansion is finite. From (13), we obtain

Lc(x − t, x + t) = x − t2x−1,

which, after substitution x = a+b
2 , t = b−a

2 becomes

Lc(a, b) =
a + b

2
− (b − a)2

4
· 2

a + b
=

2ab
a + b

= H(a, b).

(b) c = 0. All coefficients except c0 equal zero. Then, either from the (13) or (14), we obtain

Lc(x − t, x + t) = x,

and after the substitution

Lc(a, b) =
a + b

2
= A(a, b).

(c) c = − 1
2 . The coefficients are

c0 = 1, cn = − 1
22n−1 Cn−1, n ≥ 1. (17)

Coefficients (17) correspond to the coefficients in asymptotic expansion of geometric mean
obtained in [9] for α = 0 and β = t, and also to coefficients of power mean Mp with p = 0
obtained in [10]. On the other side, from the formula (14), we obtain

Lc(x − t, x + t) =
√

x2 − t2,

and, after substitution
Lc(a, b) =

√
ab = G(a, b).

From the example above, we see that we covered the cases of means for which in [1]
was stated that symmetries S and σ coincide.
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4. Answer to the Open Question

Theorem 3. For mean Lc, c ∈ R, defined in (15), symmetries SLc and σLc coincide.

Proof. Let us rewrite mean Lc in the following manner:

Lc(a, b) =
1

4(1 + c)

[
(1 + 2c)(a + b) +

√
(a + b)2 + 4c(1 + c)(b − a)2

]
.

For M0 = Lc and variable mean M1 = M, there exists symmetric mean σ = σLc(M), i.e.,
the condition Lc(M, σ) = Lc holds, which yields (for the sake of brevity, the variables will
be ommited):

1
4(1 + c)

[
(1 + 2c)(M + σ) +

√
(M + σ)2 + 4c(1 + c)(M − σ)2

]
= Lc,

or equivalently√
(M + σ)2 + 4c(1 + c)(M − σ)2 = 4(1 + c)Lc − (1 + 2c)(M + σ).

We rearrange the terms and, because of the existence of mean σ = σLc(M), we may square
the latter expression:

M2(1 + 2c)2 + 2Mσ(1 − 4c − 4c2) + σ2(1 + 2c)2

= [4(1 + c)Lc − (1 + 2c)M]2 − 2[4(1 + c)Lc − (1 + 2c)M]2 + σ2(1 − 2c)2.

The terms σ2(1 − 2c)2 cancel from both sides. Further calculation gives

2M(1 − 4c − 4c2)σ + 2
(
4(1 + c)Lc − (1 + 2c)M

)
(1 + 2c)σ

= −M2(1 + 2c)2 +
(
4(1 + c)Lc − (1 + 2c)M

)2,

and finally

σ =
Lc
(
(1 + 2c)M − 2(1 + c)Lc

)
2cM − (1 + 2c)Lc

. (18)

Thus, we obtained the explicit expression for mean σ = σLc(M) in terms of M and Lc.
On the other side, from (4), we know that

SLc(M) =
a(M − a)(Lc − b)2 − b(Lc − a)2(M − b)
(M − a)(Lc − b)2 − (Lc − a)2(M − b)

,

which may be written as

SLc(M) =
K1M − K2

K0M − K1
, (19)

where

K0 = (Lc − b)2 − (Lc − a)2,

K1 = a(Lc − b)2 − b(Lc − a)2,

K2 = a2(Lc − b)2 − b2(Lc − a)2.

By equating the results of mappings σ and S with respect to mean Lc of a mean M and
employing Formulas (18) and (19), we obtain

Lc
(
(1 + 2c)M − 2(1 + c)Lc

)
2cM − (1 + 2c)Lc

=
K1M − K2

K0M − K1
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which needs to be proved. We calculate

Lc[2(1 + c)Lc − (1 + 2c)M](K0M − K1) = [(1 + 2c)Lc − 2cM](K1M − K2).

Grouping by the powers of M yields

[M0(1 + 2c)K0 − 2cK1]M2 + 2
[
K2c − (1 + c)L2

c K0

]
M

+ Lc[2(1 + c)LcK1 − (1 + 2c)K2] = 0. (20)

Now, we simplify each coefficient by the powers of M. First,

M0(1 + 2c)K0 − 2cK1 =

= M0(1 + 2c)
[
(Lc − b)2 − (Lc − a)2

]
− 2c
[

a(Lc − b)2 − b(Lc − a)2
]

= (a − b)
[
2(1 + c)L2

c − (a + b)(1 + 2c)Lc + 2abc
]
,

second,

cK2 − (1 + c)L2
c K0 =

= c
[

a2(Lc − b)2 − b2(Lc − a)2
]
− (1 + c)L2

c

[
(Lc − b)2 − (Lc − a)2

]
= −(a − b)Lc

[
2(1 + c)L2

c − (a + b)(1 + 2c)Lc + 2abc
]
,

and third

2(1 + c)LcK1 − (1 + 2c)K2 =

= 2(1 + c)Lc

[
a(Lc − b)2 − b(Lc − a)2

]
− (1 + 2c)

[
a2(Lc − b)2 − b2(Lc − a)2

]
= (a − b)Lc

[
2(1 + c)L2

c − (a + b)(1 + 2c)Lc + 2abc
]
.

Hence, the equation (20) factorizes as

(a − b)
[
2(1 + c)L2

c − (a + b)(1 + 2c)Lc + 2abc
](

M2 − 2Lc M + L2
c

)
= 0. (21)

Notice that the mean Lc defined in (15) is one of the solutions of quadratic equation

2(1 + c)L2
c − (a + b)(1 + 2c)Lc + 2abc,

and the condition (21) is fulfilled, which proves the theorem.

We will close this section with a conjecture. Based on the analysis in this paper, we
may conclude the following.

Hypothesis 1. Symmetric homogeneous mean, which has the asymptotic power series expansion
and fulfills the requirements of the open question from [1] necessarily has the same coefficients as
mean Lc, c ∈ R.

5. Concluding Remarks

Using techniques of asymptotic expansions, we were able to compare two symmetries
of different origins on the set of mean functions. Finding asymptotic series expansion for
both of them, in terms of recursive algorithm for their coefficients, enabled us to carry out
the coefficient comparison, which resulted in obtaining a class of means, which interpolates
between harmonic, geometric, and arithmetic mean.
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Methods presented in this paper may be useful with various problems regarding
bivariate means and further. For example, in case of dual means, generalized inverses of
means and similar problems where some functional connection is given, and especially
when the explicit formula for some of the means involved, was not known.
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14. Elezović, N.; Vukšić, L. Asymptotic expansions of integral means and applications to the ratio of gamma functions. Appl. Math.

Comput. 2014, 235, 187–200. [CrossRef]
15. Erdélyi, A. Asymptotic Expansions; Dover Publications: Mineola, NY, USA, 1956.
16. Gould, H.W. Coefficient identities for powers of Taylor and Dirichlet series. Am. Math. Monthly 1974, 81, 3–14. [CrossRef]
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1. Introduction

A partition λ = (λ1, λ2, . . . , λk) of a positive integer n is a weakly decreasing sequence
of positive integers whose sum is n. The positive integers in the sequence are called parts [1].
To indicate that λ = (λ1, λ2, . . . , λk) is a partition of n, we consider the notation λ ! n.

In the following, we recall some essential facts about monomial symmetric functions.
Proofs and more details can be found in Macdonald’s book [2]. If λ = (λ1, λ2, . . . , λk) is an
integer partition with k � n then, the monomial symmetric function

mλ(x1, x2, . . . , xn) = m(λ1,λ2,...,λk)
(x1, x2, . . . , xn)

is the sum of the monomial xλ1
1 xλ2

2 · · · xλk
k and all distinct monomials obtained from this by

a permutation of variables. For instance, with λ = (2, 1, 1) and n = 4, we have:

m(2,1,1)(x1, x2, x3, x4) = x2
1x2x3 + x1x2

2x3 + x1x2x2
3 + x2

1x2x4 + x1x2
2x4 + x1x2x2

4

+ x2
1x3x4 + x1x2

3x4 + x1x3x2
4 + x2

2x3x4 + x2x2
3x4 + x2x3x2

4.

If every monomial in a symmetric function has total degree k, then we say that this
symmetric function is homogeneous of degree k.

The kth complete homogeneous symmetric function hk is the sum of all monomials of
total degree k in these variables, i.e.,

hk(x1, x2, . . . , xn) = ∑
λ!k

mλ(x1, x2, . . . , xn) = ∑
1�i1�i2�···�ik�n

xi1 xi2 · · · xik ,

and the kth elementary symmetric function is defined by

ek(x1, x2, . . . , xn) = m(1k)(x1, x2, . . . , xn) = ∑
1�i1<i2<···<ik�n

xi1 xi2 · · · xik ,

where e0(x1, x2, . . . , xn) = h0(x1, x2, . . . , xn) = 1. In particular, the case λ = (k) provides
the kth power sum symmetric function

pk(x1, x2, . . . , xn) = m(k)(x1, x2, . . . , xn) =
n

∑
i=1

xk
i ,

with p0(x1, x2, . . . , xn) = n.
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In this paper, we aim to show that some results from q-analysis and partition theory
can easily be derived as specializations of the fundamental relationships between complete
and elementary symmetric functions. To do this, we consider the q-binomial coefficients

[
n
k

]
=

[
n
k

]
q
=

{
(q;q)n

(q;q)k(q;q)n−k
, n, k integers, 0 � k � n,

0, otherwise,

as specializations of symmetric functions, namely

hk(1, q, . . . , qn) =

[
n + k

k

]
(1)

and

ek(1, q, . . . , qn−1) = q(
k
2)

[
n
k

]
. (2)

Here, and in the following, we use the customary q-series notation:

(a; q)n =

{
1, for n = 0,
(1 − a)(1 − aq) · · · (1 − aqn−1), for n > 0;

(a; q)∞ = lim
n→∞

(a; q)n.

Because (a; q)∞ diverges when a �= 0 and |q| � 1, whenever (a; q)∞ appears in a formula,
we shall assume |q| < 1. All identities may be understood in the sense of formal power
series in q.

The content of this paper is structured as follows. In the next section, we consider
the generating function of the complete homogeneous symmetric functions and derive the
q-identities obtained by Cauchy and Euler. In Section 3, we note that Rothe’s q-binomial
theorem is a specialization of the generating function of the elementary symmetric func-
tions. In Section 4, we consider the derivates of the generating functions of the complete
and elementary symmetric functions and obtain Uchimura’s identity, which provides con-
nections between partitions and divisors. In Section 5, Newton’s identities allow for us to
obtain a curios q-identity of Euler. Combinatorial interpretations involving well-known
functions in partition theory accompany these results in each section.

2. Complete Homogeneous Symmetric Functions

It is well-known that the complete homogeneous symmetric functions are character-
ized by the following formal power series identity in t:

H(t) =
∞

∑
k=0

hk(x1, x2, . . . , xn) tk =
n

∏
i=1

(1 − xit)−1. (3)

From (3), with xj replaced by qj−1 for each j ∈ {1, 2, . . . , n}, we obtain a well-known
identity, which was proved by Cauchy ([3], Theorem 26).

Theorem 1 (Cauchy). If n is any nonnegative integer and |q| and |t| are both less than 1, then

∞

∑
k=0

[
n + k

k

]
tk =

1
(t; q)n+1

.

Some combinatorial interpretations of this theorem can easily be derived if we consider
the following partition functions.

Definition 1. Let n, i and j be non-negative integers. We define p(n; i, j) as the number of
partitions of n into at most i parts, with each being, at most, j.
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For example, p(5; 3, 4) = 4, and the partitions in question are

(4, 1), (3, 2), (3, 1, 1), (2, 2, 1).

The generating function of the p(n; i, j) is given by the following Cayley’s theorem
([3], Theorem 24 ) often attributed to Sylvester.

Theorem 2 (Cayley). Let i and j be positive integers. Then,

∞

∑
n=0

p(n; i, j) qn =

[
i + j

i

]
.

Definition 2. Let n and i be a non-negative integers. We define:

(i) pe(n; i) as the number of partitions of n divided into an even number of parts, with most being
i parts;

(ii) po(n; i) as the number of partitions of n divided into an odd number of parts, with most being
i parts;

(iii) p(n; i) as the number of partitions of n divided into, at most, i parts.

It is clear that p(n; i) = pe(n; i) + po(n; i). For example, the partitions of 5 into at most
3 parts are:

(5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1).

We see that p(5; 3) = 5, pe(5; 3) = 2 and po(5; 3) = 3. On the other hand, it is well-known
that

∞

∑
n=0

(
pe(n; i)± po(n; i)

)
qn =

1
(±q; q)i

.

We have the following result.

Corollary 1. Let n and i be nonnegative integers. Then,

pe(n; i + 1)± po(n; i + 1) =
n

∑
j=0

(±1)j p(n − j; i, j).

Proof. The case t = ±q of Theorem 1 reads as follows

∞

∑
j=0

[
i + j

j

]
(±q)j =

1
(±q; q)i+1

.

We can write

∞

∑
j=0

∞

∑
n=0

(±1)j p(n; i, j) qn+j =
∞

∑
n=0

(
pe(n; i + 1)± po(n; i + 1)

)
qn.

The identity follows by comparing coefficients of qn on both sides of this equation.

Take into account that p(n; i, j) is symmetric in i and j, i.e., p(n; i, j) = p(n; j, i), the
identity given by Corollary 1 can be rewritten as

pe(n; i + 1)± po(n; i + 1) =
n

∑
j=0

(±1)j p(n − j; j, i).

Definition 3. Let n, and i be a non-negative integer. We define:

(i) pO(n; i) as the number of partitions of n into odd parts, each, at most, 2i − 1;
(ii) pO(n) as the number of partitions of n into odd parts.
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For example, the partitions of 5 into odd parts are:

(5), (3, 1, 1), (1, 1, 1, 1, 1).

We can see that pO(5) = 3, pO(5; 1) = 1 and pO(5; 2) = 2. It is well-known that

∞

∑
n=0

pO(n; i) qn =
1

(q; q2)i

and
∞

∑
n=0

pO(n) qn =
1

(q; q2)∞
.

By replacing q by q2 and t by q in Theorem 1, we deduce the following partition identity.

Corollary 2. Let n and j be nonnegative integers. Then,

pO(n; j + 1) =
�n/2 
∑
i=0

p
(�n/2 − i; 2i, j

)
.

The limiting case n → ∞ of Theorem 1 is given by the following theorem of Euler ([3]:
Theorem 25).

Theorem 3 (Euler). If |q| < 1 and |t| < 1, then

∞

∑
k=0

tk

(q; q)k
=

1
(t; q)∞

.

We consider the following partition functions.

Definition 4. Let n, i and j be a non-negative integer. We define:

(i) pe(n) as the number of partitions of n into an even number of parts;
(ii) po(n) as the number of partitions of n into an odd number of parts;
(iii) p(n) as the number of partitions of n.

It is clear that p(n) = pe(n) + po(n). For example, the partitions of 5 are:

(5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1), (1, 1, 1, 1, 1).

We see that pe(5) = 3, po(5) = 4 and p(5) = 7. In addition, we know that

∞

∑
n=0

(
pe(n)± po(n)

)
qn =

1
(±q; q)∞

.

Thus, the case t = ±q of Theorem 3 allows for us to derive the following partition identities.

Corollary 3. Let n be a nonnegative integer. Then,

pe(n)± po(n) =
n

∑
j=0

(±1)j p(n − j; j).

Using Theorem 3, with q replaced by q2 and t replaced by q, we can derive the limiting
case j → ∞ of Corollary 2.
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Corollary 4. Let n be a nonnegative integer. Then,

pO(n) =
�n/2 
∑
i=0

p
(�n/2 − i; 2i

)
.

3. Elementary Symmetric Functions

Recall that the elementary symmetric functions are characterized by the following
identity of the formal power series in t:

E(t) =
∞

∑
k=0

ek(x1, x2, . . . , xn) tk =
n

∏
i=1

(1 + xit). (4)

The following result is known as Rothe’s q-binomial theorem ([3], Theorem 12). This
can be obtained by (4), replacing xj with qj−1 for each j ∈ {1, 2, . . . , n}.

Theorem 4 (Rothe’s q-binomial theorem). If n is any nonnegative integer and |q| and |t| are
both less than 1, then

n

∑
k=0

[
n
k

]
q(

k
2) tk = (−t; q)n.

In analogy with Definition 2, we consider the following functions, involving partitions
into distinct parts.

Definition 5. Let n, i and j be a non-negative integer. We define:

(i) pDe(n; i) as the number of partitions of n into an even number of distinct parts, with each, at
most, i;

(ii) pDo(n; i) as the number of partitions of n into an odd number of distinct parts, with each, at
most, i;

(iii) pD(n; i) as the number of partitions of n into distinct parts, each, at most, i.

It is clear that pD(n; i) = pDe(n; i) + pDo(n; i). For example, the partitions of 9 into
distinct parts, with each, at most, 6 are:

(6, 3), (6, 2, 1), (5, 4), (5, 3, 1), (4, 3, 2).

We see that pDe(9; 6) = 2, pDo(9; 6) = 3 and pD(9; 6) = 5. Moreover, we know that

∞

∑
n=0

(
pDe(n; i)± pDo(n; i)

)
qn = (∓q; q)i.

Thus, the case t = ±q of Theorem 4 allows for us to derive the following partition identities.

Corollary 5. Let n, j be nonnegative integers. Then

pDe(n; j)± pDo(n; j) =
j

∑
i=0

(±1)i p
(
n − i(i + 1)/2; i, j − i

)
.

Proof. The case t = ±q of Theorem 4 reads as follows

j

∑
i=0

(±1)i
[

j
i

]
q(

i+1
2 ) = (∓q; q)j.
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Theorem 2 implies that [ji] is the generating function for partitions into at most i parts, with
each, at most, j − i. Thus, we can write

j

∑
i=0

∞

∑
n=0

(±1)i p(n; i, j − i)qn+i(i+1)/2 =
∞

∑
n=0

(
pDe(n; j)± pDo(n; j)

)
qn.

The identity can be derived by comparing coefficients of qn on both sides of this equa-
tion.

Definition 6. Let n, and i be a non-negative integer. We define:

(i) pOD(n; i) as the number of partitions of n into distinct odd parts, with each, at most, 2i − 1;
(ii) pOD(n) as the number of partitions of n into distinct odd parts.

For example, the partitions of 18 into distinct odd parts are:

(17, 1), (15, 3), (13, 5), (11, 7), (9, 5, 3, 1).

We see that pOD(18) = 5, pOD(18; 5) = 1, pOD(18; 6) = 2, pOD(18; 7) = 3, pOD(18; 8) = 4.
It is well-known that

∞

∑
n=0

pOD(n; i)qn = (−q; q2)i

and
∞

∑
n=0

pOD(n)qn = (−q; q2)∞.

By replacing q by q2 and t with q in Theorem 4, we deduce the following partition identities.

Corollary 6. Let n and j be nonnegative integers. Then,

(i) pOD(2n; j) =
∞

∑
i=0

p
(
n − 2i2; 2i, j − 2i

)
;

(ii) pOD(2n + 1; j) =
∞

∑
i=0

p
(
n − 2i(i + 1); 2i + 1, j − (2i + 1)

)
.

The limiting case n → ∞ of Theorem 4 offers another theorem of Euler ([3], Theorem 27).

Theorem 5 (Euler). If |q| < 1, then

∞

∑
k=0

q(
k
2)tk

(q; q)k
= (−t; q)∞.

We consider the following partition functions.

Definition 7. Let n be a non-negative integer. We define:

(i) pDe(n) as the number of partitions of n into an even number of distinct parts;
(ii) pDo(n) as the number of partitions of n into an odd number of distinct parts;
(iii) pD(n) as the number of partitions of n into distinct parts.

It is clear that pD(n) = pDe(n) + pDo(n). For example, the partitions of 9 into distinct
parts are:

(9), (8, 1), (7, 2), (6, 3), (6, 2, 1), (5, 4), (5, 3, 1), (4, 3, 2).
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We see that pDe(9) = 4, pDo(9) = 4 and pD(9) = 8. In addition, we know that

∞

∑
n=0

(
pDe(n)± pDo(n)

)
qn = (∓q; q)∞.

Thus, the case t = ±q of Theorem 5 allows for us to derive the following partition identities.

Corollary 7. Let n be a nonnegative integer. Then,

pDe(n)± pDo(n) =
n

∑
j=0

(±1)j p
(
n − j(j + 1)/2; j

)
.

Using Theorem 5, with q replaced by q2 and t replaced by q, we can derive the limiting
case j → ∞ of Corollary 6.

Corollary 8. Let n be a nonnegative integer. Then,

(i) pOD(2n) =
∞

∑
i=0

p
(
n − 2i2; 2i

)
;

(ii) pOD(2n + 1) =
∞

∑
i=0

p
(
n − 2i(i + 1); 2i + 1

)
.

4. Partitions and Divisors

Some interesting connections between partitions and divisors can easily be derived if
we consider the derivatives of the generating functions of the complete and elementary
symmetric functions.

Theorem 6. Let n be a non-negative integer. Then,

(i)
n+1

∑
k=1

qk−1t
1 − qk−1t

=
1

(t; q)n+1

n+1

∑
k=1

(−1)k−1
[

n + 1
k

]
q(

k
2)k tk;

(ii)
∞

∑
k=1

[
n + k

k

]
k tk =

1
(t; q)2

n+1

n+1

∑
k=1

(−1)k−1
[

n + 1
k

]
q(

k
2)k tk.

Proof. (i) We have

d
dt

ln
(
E(t)
)
=

n+1

∑
k=1

d
dt

ln(1 + xkt) =
n+1

∑
k=1

xk
1 + xkt

On the other hand, we can write

d
dt

ln
(
E(t)
)
=

(
n+1

∏
k=1

1
1 + xkt

)(
n+1

∑
k=1

k ek(x1, x2, . . . , xn+1)tk−1

)
.

Thus, we deduce that

n+1

∑
k=1

xk t
1 + xk t

=

(
n+1

∏
k=1

1
1 + xkt

)(
n+1

∑
k=1

k ek(x1, x2, . . . , xn+1)tk

)
.

The first identity easily follows by replacing t by −t and xk by qk−1 for each k ∈ {1, 2, . . . , n + 1}.
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(ii) We can write

∞

∑
k=1

k hk(x1, x2, . . . , xn+1)tk−1 =
d
dt

n+1

∏
i=1

(1 − xit)−1

=

(
n+1

∏
i=1

(1 − xit)−2

)(
n+1

∑
k=1

(−1)k k ek(x1, x2, . . . , xn+1)tk−1

)
.

The proof easily follows by replacing xk by qk−1 for each k ∈ {1, 2, . . . , n + 1}.

The first identity of Theorem 6 is known and can be seen in ([4], Equation (7)). The
following identity can be derived as a consequence of Theorem 6.

Corollary 9. Let n be a non-negative integer. Then,

∞

∑
k=1

[
n + k

k

]
k tk =

1
(t; q)n+1

n+1

∑
k=1

qk−1t
1 − qk−1t

.

We consider the following divisor functions.

Definition 8. Let n and k be positive integers. We define:

(i) τ(n; k) as the number of divisors of n less than or equal to k;
(ii) τ(n) as the number of divisors of n.

We known that
∞

∑
n=0

τ(n; k) qn =
k

∑
n=1

qn

1 − qn

and
∞

∑
n=0

τ(n) qn =
∞

∑
n=1

qn

1 − qn .

By replacing t with q in Corollary 9, we easily deduce the following identity involving
partitions and divisors.

Corollary 10. Let n and j be positive integers. Then,

n

∑
i=1

i p(n − i; i, j) =
n

∑
i=0

p(n − i; j + 1) τ(i; j + 1).

The limiting case n → ∞ of Theorem 6 and Corollary 9 reads as follows.

Theorem 7. For |q| < 1, we have

(i)
∞

∑
k=1

qk−1 t
1 − qk−1t

=
1

(t; q)∞

∞

∑
k=1

(−1)k−1 k tk

(q; q)k
q(

k
2);

(ii)
∞

∑
k=1

k tk

(q; q)k
=

1
(t; q)2

∞

∞

∑
k=1

(−1)k−1 k tk

(q; q)k
q(

k
2);

(iii)
∞

∑
k=1

k tk

(q; q)k
=

1
(t; q)∞

∞

∑
k=1

qk−1 t
1 − qk−1 t

.

We note that the case t = q of the first identity of Theorem 7 can be seen in ([4],
Theorem 1):

∞

∑
k=1

qk

1 − qk =
1

(q; q)∞

∞

∑
k=1

(−1)k−1 k q(
k+1

2 )

(q; q)k
.
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This identity was stated without proof by Eisenstein ([3], Theorem 39). We have the
following combinatorial interpretation of this identity.

Corollary 11. Let n be a positive integer. Then,

∞

∑
k=−∞

(−1)k τ
(
n − k(3k − 1)/2

)
=

∞

∑
k=1

(−1)k−1 k p
(
n − k(k + 1)/2; k

)
.

The case t = q of the third identity of Theorem 7 is known as Uchimura’s theorem ([3],
Theorem 38).

Theorem 8 (Uchimura). For |q| < 1,

∞

∑
n=1

τ(n) qn = (q; q)∞

∞

∑
n=1

n qn

(q; q)n
.

We consider the following counting function.

Definition 9. Let n be a non-negative integer. We define s(n) as the number of parts in all the
partitions of n.

The partitions of 4 are:

(4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1).

We have s(4) = 1 + 2 + 2 + 3 + 4 = 12. It is known that

∞

∑
n=1

s(n) qn =
1

(q; q)∞

∞

∑
n=1

qn

1 − qn .

This generating function allows for us to derive two identities:

τ(n) =
∞

∑
k=−∞

(−1)k s
(
n − k(3k − 1)/2

)
and

s(n) =
n

∑
k=1

τ(k) p(n − k).

The case t = q of the third identity of Theorem 7 allows for us to deduce a new decomposi-
tion for s(n).

Corollary 12. Let n be a non-negative integer. Then,

s(n) =
n

∑
k=1

k p(n − k; k).

5. Newton’s Identities

There is a fundamental relationship between the elementary symmetric functions and
the complete homogeneous ones:

k

∑
j=0

(−1)k ek(x1, x2, . . . , xn) hn−k(x1, x2, . . . , xn) = 0,

which is valid for all k > 0, and any number of variables n. By replacing xi with qi−1, we
derive the following identity.
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Theorem 9. Let n and k be positive integers. Then,

k

∑
j=0

(−1)j q(
j
2)

[
n + 1

j

][
n + k − j

k − j

]
= 0.

The limiting case n → ∞ of this theorem reads as follows

k

∑
j=0

(−1)j q(
j
2)

(q; q)j(q; q)k−j
= 0.

By multiplying this identity by (q; q)k, we obtain the following result which, is the
case t = 1 of Theorem 4:

k

∑
j=0

(−1)j q(
j
2)

[
k
j

]
= 0.

The limiting case k → ∞ of this identity is the case t = 1 of Theorem 5:

∞

∑
j=0

(−1)j q(
j
2)

(q; q)j
= 0.

We have the following combinatorial interpretations of the last two identities.

Corollary 13. Let n and k be positive integers. Then,

(i)
k

∑
j=0

(−1)j p
(
n − j(j − 1)/2; j, k − j

)
= 0;

(ii)
∞

∑
j=0

(−1)j p
(
n − j(j − 1)/2; j

)
= 0.

The problem of expressing power sum symmetric polynomials in terms of elementary
symmetric polynomials and vice versa was solved a long time ago. This was also the case
for the problem of expressing power sum symmetric polynomials in terms of complete
symmetric polynomials and vice versa. The relations are given as Newton’s identities

k hk(x1, x2, . . . , xn) =
k

∑
j=1

hk−j(x1, x2, . . . , xn) pj(x1, x2, . . . , xn)

and

k ek(x1, x2, . . . , xn) =
k

∑
j=1

(−1)j−1 ek−j(x1, x2, . . . , xn) pj(x1, x2, . . . , xn)

and are well known. Using these identities, with xi replaced by qi−1, we can obtain the
following identities.

Theorem 10. Let n and k be positive integers. Then,

(i) k
[

n + k
k

]
=

k

∑
j=1

[
n + k − j

k − j

]
1 − qj(n+1)

1 − qj ;

(ii) k q(
k
2)

[
n
k

]
=

k

∑
j=1

(−1)j−1 q(
k−j

2 )

[
n

k − j

]
1 − qj(n+1)

1 − qj .

The limiting case n → ∞ of this theorem reads as follows.
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Theorem 11. Let n and k be positive integers. Then,

(i)
k

(q; q)k
=

k

∑
j=1

1
(1 − qj)(q; q)k−j

;

(ii)
k q(

k
2)

(q; q)k
=

k

∑
j=1

(−1)j−1 q(
k−j

2 )

(1 − qj)(q; q)k−j
.

We have the following combinatorial interpretations of these identities.

Corollary 14. Let n and k be positive integers. Then,

(i) k p(n; k) =
n

∑
i=0

k

∑
j=1
j|i

p(n − i; k − j);

(ii) k p(n; k) =
n

∑
i=0

k

∑
j=1
j|i

(−1)j−1 p
(

n − i +
(

k
2

)
−
(

k − j
2

)
; k − j

)
.

By multiplying both sides of the firs identity of Theorem 11 by (q; q)k, we obtain a
curious q-identity of Euler ([3], Theorem 17).

Theorem 12 (Euler). Let k be a positive integer. Then,

k =
k

∑
j=1

(q; q)j−1

[
k
j

]
.

Recently, Merca [4] proved that the complete, elementary and power sum symmetric
functions are related by

pk(x1, x2, . . . , xn) =
k

∑
j=1

(−1)j−1 j ej(x1, x2, . . . , xn) hk−j(x1, x2, . . . , xn).

Using this relation, with xi replaced by qi−1, we can derive the following identity.

Theorem 13. Let n and k be positive integers. Then,

k

∑
j=1

(−1)j−1 j q(
j
2)

[
n + 1

j

][
n + k − j

k − j

]
=

1 − qk(n+1)

1 − qk .

The limiting case n → ∞ of this theorem reads as follows:

k

∑
j=1

(−1)j−1 j q(
j
2)

1
(q; q)j(q; q)k−j

=
1

1 − qk .

By multiplying both sides of this identity by (q; q)k, we can obtain the following result.

Theorem 14. Let k be a positive integer. Then,

k

∑
j=1

(−1)j−1 j q(
j
2)

[
k
j

]
= (q; q)k−1.

We note the following combinatorial interpretation of this theorem.
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Corollary 15. Let n and k be positive integers. Then,

pDe(n; k − 1)− pDo(n; k − 1) =
k

∑
j=1

(−1)j−1 j p
(
n − j(j − 1)/2; j, k − j

)
.

The case t = −q of Theorem 5 is given by

(q; q)∞ =
∞

∑
j=0

(−1)j q(
j
2)

(q; q)j
.

The limiting case k → ∞ of Theorem 14 provides another representation of Euler’s function
(q; q)∞.

Theorem 15. For |q| < 1,

(q; q)∞ =
∞

∑
j=1

(−1)j−1 j q(
j
2)

(q; q)j
.

As a consequences of this result, we can derive the following recurrence relation for
p(n; k).

Corollary 16. Let n be a positive integer. Then,

∞

∑
j=1

(−1)j−1 j p
(
n − j(j − 1)/2; j

)
=

{
(−1)n, if n = m(3m − 1)/2, m ∈ Z,
0, otherwise.

6. Concluding Remarks

The partition identities obtained in this paper are specializations of the fundamental
relations between complete and elementary symmetric functions. There are other relations
between complete and elementary symmetric functions, which can be used to derive
partitions identities. For example, the following relations between complete and elementary
symmetric functions

�n/2 
∑
k=0

hk(x2
1, x2

2, . . . , x2
m) en−2k(x1, x2, . . . , xm) = hn(x1, x2, . . . , xm)

and

�n/4 
∑
k=0

hk(x4
1, . . . , x4

m) en−4k(x1, . . . , xm) =
�n/2 
∑
k=0

(−1)k hk(x2
1, . . . , x2

m) hn−2k(x1, . . . , xm)

was introduced by Merca [5] to obtain generalizations of two identities of Guo and Yang
for the q-binomial coefficients. The partition identities that can be derived by considering
these relations can be seen in [5,6].

Motivated by the relations obtained in [5], Merca introduced an infinite family of
relations between complete and elementary symmetric functions ([7], Theorem 1.1). It
would be interesting to see what partition identities can be obtained as combinatorial
interpretations of ([7], Theorem 1.1).
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Abstract: The major goal of the current article is to create new formulas and connections between
several well-known polynomials and the Euler polynomials. These formulas are developed using
some of these polynomials’ well-known fundamental characteristics as well as those of the Euler
polynomials. In terms of the Euler polynomials, new formulas for the derivatives of various symmet-
ric and non-symmetric polynomials, including the well-known classical orthogonal polynomials, are
given. This leads to the deduction of several new connection formulas between various polynomials
and the Euler polynomials. As an important application, new closed forms for the definite integrals
for the product of various symmetric and non-symmetric polynomials with the Euler polynomials
are established based on the newly derived connection formulas.

Keywords: Euler polynomials; special polynomials; hypergeometric functions; definite integrals;
connection formulas

1. Introduction

Numerous problems in various fields, such as approximation theory and theoretical
physics, depend on special functions. Considerable research has been conducted on sev-
eral well-known polynomial sequences and the numbers that they are associated with.
Therefore, from both theoretical and practical aspects, it is interesting to investigate various
special functions. Among the essential special functions are the well-known Hermite,
Laguerre, and Jacobi polynomials. These classical orthogonal polynomials were exten-
sively studied by many authors, both theoretically and practically; see, for example, [1–4].
The Jacobi polynomials include six special polynomials. Four of these polynomials are
symmetric: the ultraspherical, Legendre, and the first and second kinds of Chebyshev
polynomials. The polynomials, namely, the third- and fourth-kind Chebyshev polyno-
mials, are two celebrated non-symmetric classes of Jacobi polynomials. All six classes of
Jacobi polynomials have their parts in approximation theory and numerical analysis; see,
for example, [5–7]. Other types of polynomials were also studied by many authors. For
example, the Lucas and Fibonacci sequences, as well as their extensions and modified
polynomials, were investigated by many authors. The authors in [8,9] studied certain
kinds of generalized Fibonacci and generalized Lucas polynomials and their corresponding
numbers. Furthermore, they employed them to find reduction formulas for some even and
odd radicals. New identities of Horadam sequences of integers with four parameters were
introduced by the authors in [10]. In [11], certain Appel polynomials are treated using a
matrix technique. To handle bivariate Appell polynomials, matrix calculus was used in [12].
Classical and quantum orthogonal polynomials are extensively studied in [13].

Euler polynomials and Euler numbers have been the subject of numerous contempo-
rary and older investigations. For example, the author in [14] developed some relations
between the Bernoulli and Euler polynomials. Some properties on the integral of the prod-
uct of several Euler polynomials are presented in [15]. In [16], the authors discussed the
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decomposition of the linear combinations of Euler polynomials with odd degrees. In [17],
the authors found some identities for Euler and Bernoulli polynomials and their zeros.
Other identities for the product of two Bernoulli and Euler polynomials were obtained
in [18]. New types of Euler polynomials and numbers are developed in [19]. For some other
classes relating to Euler polynomials, one can refer, for example, to [20,21]. From a practical
point of view, Euler polynomials were utilized to treat different types of differential and
integral equations. For example, in [22], certain fractional-order delay integro-differential
equations were numerically treated using an operational matrix of derivatives based on the
utilization of fractional-order Euler polynomials. In [23], a numerical scheme utilizing Euler
wavelets was derived to handle the fractional order pantograph Volterra delay-integro-
differential equation. Two-dimensional Volterra integral equations of the fractional order
were treated using two-dimensional Euler polynomials in [24].

The various formulas of special functions are important from both theoretical and
practical perspectives. For example, the expressions for the high-order derivatives of
different polynomials in terms of their original ones can be used to obtain some spectral
solutions to different differential equations. For example, in [25], new expressions for
the third- and fourth-kinds of Chebyshev polynomials were established and utilized for
solving specific even-order BVPs. Some other expressions for the high-order derivatives
were utilized in [26] for treating linear and non-linear BVPs of even order. The author
in [27] found new derivative formulas for the sixth-kind Chebyshev polynomials and used
them to provide a numerical solution to the non-linear Burgers’ equation in one dimension.
Additionally, among the important formulas concerned with special functions are the
connection and linearization formulas. These formulas are useful in some applications (see,
for example, [28]).

This paper aims to find some new formulas concerning the Euler polynomials. To be
more precise, the objectives of the current paper can be listed in the following items:

• Developing new expressions for the high-order derivatives of different symmetric and
non-symmetric polynomials in terms of Euler polynomials.

• Deducing connection formulas between different polynomials and Euler polynomials.
• Presenting an application to the derived connection formulas. Several new definite in-

tegral formulas of the product of different symmetric and non-symmetric polynomials
with the Euler polynomials in closed forms.

The paper is organized as follows. Section 2 introduces an overview of Euler poly-
nomials. In addition, some properties of some celebrated symmetric and non-symmetric
polynomials are presented in this section. Section 3 develops new expressions for the
derivatives of symmetric and non-symmetric polynomials as combinations of Euler poly-
nomials. Section 4 is interested in deducing connection formulas between symmetric and
non-symmetric polynomials with the Euler polynomials. In Section 5, an application to the
connection formulas presented in Section 4 is displayed. More precisely, some new definite
integral formulas of the product of different symmetric and non-symmetric polynomials
with the Euler polynomials are given. Finally, Section 6 reports some conclusions.

2. Preliminaries and Some Essential Formulas

This section is interested in presenting an overview of the Euler polynomials and
their related numbers. Furthermore, we introduce some properties of symmetric and
non-symmetric polynomials. In addition, an account of some classes of polynomials that
will be connected with Euler polynomials is given.

2.1. An Account of Euler Polynomials

The classical Euler polynomials Em(x) can be defined with the aid of the generating
function [29]

2 ex z

ez + 1
=

∞

∑
m=0

Em(x)
zm

m!
, |z| < π.
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The corresponding Euler number is given by

Em = 2m Em

(
1
2

)
.

This is the inversion formula of Euler polynomials:

xm =
1
2

m

∑
k=0

ck

(
m

m − k

)
Em−k(x), m ≥ 0, (1)

where ck is defined as

ck =

{
2, k = 0,
1, k > 0.

Additionally, among the famous identities of the polynomials Em(x) are the following
identities [29]:

d
dx

Em(x) =m Em−1(x),∫ b

a
Em(x) dx =

Em+1(b)− Em+1(a)
m + 1

.

2.2. An Overview on Symmetric and Non-Symmetric Polynomials

Let us consider, respectively, the two classes of symmetric and non-symmetric polyno-
mials, {Pi(x)}i≥0 and {Qi(x)}i≥0. We can express these polynomials as:

Pi(x) =
� i

2 
∑

m=0
Am,i xi−2m, (2)

Qi(x) =
i

∑
m=0

Bm,i xi−m, (3)

where the symbol �z denotes the well-known floor function.
We give some of the celebrated symmetric and non-symmetric polynomials. We first

refer to the classical normalized Jacobi polynomials V(λ,δ)
m (x). These polynomials can be

written in a hypergeometric form as [30]

V(λ,δ)
m (x) = 2F1

( −m, m + λ + δ + 1
λ + 1

∣∣∣∣1 − x
2

)
.

Jacobi polynomials include six important classes of polynomials. The ultraspherical,
Legendre, and first-and second-kind Chebyshev polynomials are symmetric Jacobi polyno-
mials, so they can be expressed as in (2), while the two celebrated third- and fourth-kind
Chebyshev polynomials are particular polynomials of the non-symmetric Jacobi polynomi-
als, so they can be expressed as in (3). In addition, we have the following identities [31]:

Tm(x) = V(− 1
2 ,− 1

2 )
m (x), Um(x) = (m + 1)V( 1

2 , 1
2 )

m (x),

Vm(x) = V(− 1
2 , 1

2 )
m (x), Wm(x) = (2m + 1)V( 1

2 ,− 1
2 )

m (x),

Pm(x) = V(0,0)
m (x), G(δ)

m (x) = V(δ− 1
2 ,δ− 1

2 )
m (x),

where the first-, second-, third-, and fourth kinds of Chebyshev polynomials are, respec-
tively, denoted by the symbols Tm(x), Um(x), Vm(x), and Wm(x). Additionally, the polyno-
mials Pn(x) and G(δ)

n (x) denote the Legendre and ultraspherical polynomials, respectively.
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The helpful books by Andrews et al. [32] and Mason and Handscomb [33] are both
excellent resources for in-depth surveys of Jacobi polynomials and their celebrated classes.

Additionally, among the non-symmetric Jacobi polynomials are the shifted Jacobi
polynomials on [0, 1]. These polynomials are defined as

Ṽ(λ,δ)
m (x) = V(λ,δ)

m (2x − 1).

We comment here that all six shifted special polynomials of the shifted Jacobi polyno-
mials are non-symmetric. The power form representation of Ṽ(λ,δ)

m (x) is given by [34]:

Ṽ(λ,δ)
m (x) =

m! Γ(1 + λ)

Γ(1 + m + λ)

m

∑
r=0

(−1)r (1 + δ)m (1 + λ + δ)2m−r

(m − r)! r! (1 + δ)m−r (1 + λ + δ)m
xm−r. (4)

Note that the symbol (z)� in Formula (4) represents the Pochhammer function defined as:

(z)� =
Γ(z + �)

Γ(z)
.

Among the important symmetric polynomials are the Fibonacci and Lucas polynomials
and their generalizations and modifications (see, [35]). Recently, Abd-Elhameed et al.
in [9] studied two polynomials generalizing Fibonacci and Lucas polynomials. These
polynomials may be constructed with the aid of the following two recursive formulas:

FA,B
k (x) = A x FA,B

k−1(x) + B FA,B
k−2(x), FA,B

0 (x) = 1, FA,B
1 (x) = A x, k ≥ 2, (5)

and

LR,S
k (x) = R x LR,S

k−1(x) + S LR,S
k−2(x), LR,S

0 (x) = 2, LR,S
1 (x) = R x, k ≥ 2. (6)

It is to be noted that several celebrated classes of polynomials can be obtained as
special cases of the two generalized classes of FA,B

k (x) and LR,S
k (x) (see, [9]). For example,

the Fibonacci polynomials Fk+1(x) and Lucas polynomials Lk(x) can be considered as
special cases of FA,B

k (x) and LR,S
k (x). In fact, we have:

Fk+1(x) = F1,1
k (x), Lk(x) = L1,1

k (x).

Furthermore, the power form representations of the generalized polynomials FA,B
i (x)

and LR,S
i (x) are, respectively, given as follows [9]:

FA,B
i (x) =

� i
2 

∑
m=0

(i−m
m ) Bm Ai−2m xi−2m, i ≥ 0, (7)

LR,S
i (x) = i

� i
2 

∑
m=0

Sm Ri−2m (i−m
m )

i − m
xi−2m, i ≥ 1.

3. New Expressions for the Derivatives of Some Celebrated Polynomials in Terms of
Euler Polynomials

This section is devoted to developing new expressions for the high-order derivatives
of some symmetric and non-symmetric polynomials in terms of Euler polynomials.

3.1. Derivative Expressions for Some Symmetric Polynomials

In this section, we give the derivatives of some symmetric polynomials in terms of
the Euler polynomials. To be more precise, the derivatives of the generalized Fibonacci
polynomials that are defined in (5), the generalized Lucas polynomials that are defined
in (6), the ultraspherical polynomials, and the Hermite polynomials will be expressed in
terms of the Euler polynomials.
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Theorem 1. Let n and � be two non-negative integers with n ≥ �. The derivatives of the
generalized Fibonacci polynomials FA,B

n defined in (5) have the following expansion in terms
of Euler polynomials:

D�FA,B
n (x) =An

⎛⎝� n−�
2  

∑
r=0

A−2r Br (n − r)! (2r)! + n! r!
2 r! (2r)! (−�+ n − 2r)! 2F1

( −r, −r + 1
2

−n

∣∣∣∣− 4B
A2

)
En−�−2r(x)

+n!
� 1

2 (n−�−1) 
∑
r=0

2F1

( −r, −r − 1
2

−n

∣∣∣∣− 4B
A2

)
2 (2r + 1)! (−�+ n − 2r − 1)!

En−�−2r−1(x)

⎞⎟⎟⎟⎠.

(8)

Proof. The power-form representation of the polynomials FA,B
n (x) in (7) allows one to write

D�FA,B
n (x) =

� n−�
2  

∑
m=0

An−2mBm(1 − 2m + n)m(1 − �− 2m + n)�
m!

xn−2m−�.

Inserting the inversion formula of the Euler polynomials (1) yields the following
relation:

D�FA,B
n (x) =

� n−�
2  

∑
m=0

An−2mBm(1 − 2m + n)m(1 − �− 2m + n)�
2m!

×
n−2m−�

∑
s=0

cs

( −�− 2m + n
−�− 2m + n − s

)
En−2m−s−�(x).

After some algebraic computations, the last formula can be rewritten in the form

D�FA,B
n (x) =

� n−�
2  

∑
r=0

1
2 (n − 2r − �)!

r

∑
s=0

c2r−2s An−2s Bs (n − s)!
s! (2r − 2s)!

En−�−2r(x)

+
� 1

2 (n−�−1) 
∑
r=0

1
2 (−�+ n − 2r − 1)!

r

∑
s=0

c2r−2s−1 An−2sBs(n − s)!
s! (2r − 2s + 1)!

En−�−2r−1(x).

Based on the following two identities:

r

∑
s=0

c2r−2s An−2s Bs(n − s)!
s! (2r − 2s)!

=

An
(

A−2r Br (n − r)! (2r)! + n! r! 2F1

( −r, −r + 1
2

−n

∣∣∣∣− 4B
A2

))
r! (2r)!

,

r

∑
s=0

c2r−2s−1 An−2s Bs(n − s)!
s! (2r − 2s + 1)!

=

An n! 2F1

( −r, −r − 1
2

−n

∣∣∣∣− 4B
A2

)
(2r + 1)!

,

Formula (8) can be obtained. This proves Theorem 1.

Remark 1. It is to be noted that, for the case corresponding to the choice B = − A2

4 , Formula (8)
can be simplified due to the Chu–Vandermond identity. The following corollary exhibits this result.
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Corollary 1. For the case B = − A2

4 , Formula (8) reduces to the following one:

D�FA,− A2
4

n (x) =
1
2

An
� n−�

2  
∑
r=0

(− 1
4 )

r
(n−r)!

r! +
n! (n−2r+ 3

2 )r
(2r)! (n−r+1)r

(−�+ n − 2r)!
En−�−2r(x)

+
1
2

An n!
� 1

2 (n−�−1) 
∑
r=0

(
n − 2r + 1

2

)
r

(2r + 1)! (−�+ n − 2r − 1)! (n − r + 1)r
En−�−2r−1(x).

(9)

Proof. The substitution by B = − A2

4 into Formula (8) yields

D�FA,− A2
4

n (x) = =
1
2

An
� n−�

2  
∑
r=0

(
− 1

4

)r
(n − r)!(2r)! + n!r! 2F1

( −r, −r + 1
2

−n

∣∣∣∣1)
r! (2r)! (−�+ n − 2r)!

En−�−2r(x)

+
1
2

Ann!
� 1

2 (n−�−1) 
∑
r=0

2F1

( −r, −r − 1
2

−n

∣∣∣∣1)
(2r + 1)! (−�+ n − 2r − 1)!

En−�−2r−1(x).

Chu–Vandermonde identity implies the following two identities:

2F1

( −r, −r + 1
2

−n

∣∣∣∣1) =

(
n − 2r + 3

2
)

r
(n − r + 1)r

,

2F1

( −r, −r − 1
2

−n

∣∣∣∣1) =

(
n − 2r + 1

2

)
r

(n − r + 1)r
,

therefore, the following formula can be obtained:

D�FA,− A2
4

n (x) =
1
2

An
� n−�

2  
∑
r=0

(− 1
4 )

r
(n−r)!

r! +
n! (n−2r+ 3

2 )r
(2r)! (n−r+1)r

(−�+ n − 2r)!
En−�−2r(x)

+
1
2

An n!
� 1

2 (n−�−1) 
∑
r=0

(
n − 2r + 1

2

)
r

(2r + 1)! (−�+ n − 2r − 1)! (n − r + 1)r
En−�−2r−1(x).

Remark 2. An expression for the derivatives of Chebyshev polynomials of the first kind can be
obtained as a direct special case of Formula (9). The following corollary displays this important
specific result.

Corollary 2. Let n and � be two non-negative integers with n ≥ �. The derivatives of the Chebyshev
polynomials of the second kind can be represented in terms of Euler polynomials as

D�Un(x) =2n−1
� n−�

2  
∑
r=0

(− 1
4 )

r
(n−r)!

r! +
n!(n−2r+ 3

2 )r
(2r)!(n−r+1)r

(−�+ n − 2r)!
En−�−2r(x)

+ 2n−1n!
� 1

2 (n−�−1) 
∑
r=0

(
n − 2r + 1

2

)
r

(2r + 1)! (−�+ n − 2r − 1)! (n − r + 1)r
En−�−2r−1(x).

Theorem 2. Let n and � be two non-negative integers with n ≥ �. The derivatives of the ultraspher-
ical polynomials G(δ)

n (x) can be expanded in terms of Euler polynomials as in the following form:
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D�G(δ)
n (x) =

n! Γ
(

δ + 1
2

)
√

π Γ(n + 2δ)
×

� n−�
2  

∑
r=0

2n−2r+2δ−2
(
(−1)r (2r)! Γ(n − r + δ) +

4r r! Γ(n+δ)(n−2r+δ+ 1
2 )r

(n−r+δ)r

)
r! (2r)! (−�+ n − 2r)!

En−�−2r(x)

+
n! 2n+2δ−2 Γ

(
δ + 1

2

)
Γ(n + δ)

√
π Γ(n + 2δ)

� 1
2 (n−�−1) 

∑
r=0

(
n − 2r + δ − 1

2

)
r

(2r + 1)! (−�+ n − 2r − 1)!(n − r + δ)r
En−�−2r−1(x).

(10)

Proof. The power form representation of the ultraspherical polynomials given by

G(δ)
n (x) =

n! Γ(2δ + 1)
2Γ(δ + 1) Γ(n + 2δ)

� n
2  

∑
m=0

(−1)m 2n−2m Γ(n − m + δ)

m! (n − 2m)!
xn−2m,

enables one to write:

D�G(δ)
n (x) =

n! Γ
(

δ + 1
2

)
√

π Γ(n + 2δ)

� n−�
2  

∑
m=0

(−1)m 2−2m+n+2δ−1 Γ(−m + n + δ)

m! (−�− 2m + n)!
xn−2m−�,

which can be written again with the aid of the inversion Formula (1) into the form

D�G(δ)
n (x) =

n! Γ
(

δ + 1
2

)
2
√

π Γ(n + 2δ)
×

� n−�
2  

∑
m=0

(−1)m 2−2m+n+2δ−1 Γ(−m + n + δ)

m! (−�− 2m + n)!

n−2m−�

∑
s=0

cs

( −�− 2m + n
−�− 2m + n − s

)
En−2m−s−�(x).

Some lengthy algebraic computations lead to

D�G(δ)
n (x) =

n! Γ
(

δ + 1
2

)
√

π Γ(n + 2δ)

⎛⎝� n−�
2  

∑
r=0

1
(−�+ n − 2r)!

r

∑
s=0

(−1)s c2r−2s 2n−2s+2δ−2 Γ(n − s + δ)

s! (2r − 2s)!
En−�−2r(x)

+
� 1

2 (n−�−1) 
∑
r=0

1
(−�+ n − 2r − 1)!

r

∑
s=0

(−1)sc2r−2s+1 2n−2s+2δ−2 Γ(n − s + δ)

s! (2r − 2s + 1)!
En−�−2r−1(x)

⎞⎠.

(11)

To transform (11) into a simplified formula, we will find closed forms for the two
interior sums that appear in it. Regarding the first sum, we can write

r

∑
s=0

(−1)s c2r−2s 2n−2s+2δ−2 Γ(n − s + δ)

s!(2r − 2s)!

= 2n+2δ−2

⎛⎜⎜⎜⎝
(
− 1

4

)r
Γ(n − r + δ)

r!
+

Γ(n + δ) 2F1

( −r + 1
2 , −r

1 − n − δ

∣∣∣∣1)
(2r)!

⎞⎟⎟⎟⎠,

(12)
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and accordingly, the Chu–Vandermonde identity implies the following identity:

r

∑
s=0

c2r−2s (−1)s 2n−2s+2δ−2 Γ(n − s + δ)

s! (2r − 2s)!
=

2n+2δ−2

r!

⎛⎝(−1
4

)r
Γ(n − r + δ) +

r! Γ(n + δ)
(

n − 2r + δ + 1
2

)
r

(2r)! (n − r + δ)r

⎞⎠.

Regarding the second sum, set

Mr,n =
r

∑
s=0

c2r−2s+1 (−1)s 2n−2s+2δ−2 Γ(n − s + δ)

s! (2r − 2s + 1)!
,

and employ the important algorithm of Zeilberger [36] to show that the following recurrence
relation of order one is satisfied by Mr,n:

Mr+1,n − (3 − 2n + 4r − 2δ) (5 − 2n + 4r − 2δ)

4 (r + 1) (2r + 3) (3 − 2n + 2r − 2δ) (1 − n + r − δ)
Mr,n = 0, M0,n = 1,

which can be immediately solved to give

r

∑
s=0

(−1)s c2r−2s+1 2n−2s+2δ−2 Γ(n − s + δ)

s! (2r − 2s + 1)!
=

2n+2δ−2Γ(n + δ)
(

n − 2r + δ − 1
2

)
r

(2r + 1)! (n − r + δ)r
. (13)

In virtue of the two Identities (12) and (13), Formula (11) can be put into the simpler
formula:

D�G(δ)
n (x) =

n! Γ
(

δ + 1
2

)
√

π Γ(n + 2δ)
×

� n−�
2  

∑
r=0

2n−2r+2δ−2
(
(−1)r (2r)! Γ(n − r + δ) +

4r r! Γ(n+δ)(n−2r+δ+ 1
2 )r

(n−r+δ)r

)
r! (2r)! (−�+ n − 2r)!

En−�−2r(x)

+
n! 2n+2δ−2 Γ

(
δ + 1

2

)
Γ(n + δ)

√
π Γ(n + 2δ)

� 1
2 (n−�−1) 

∑
r=0

(
n − 2r + δ − 1

2

)
r

(2r + 1)! (−�+ n − 2r − 1)!(n − r + δ)r
En−�−2r−1(x).

This proves Theorem 2.

Remark 3. Since the Legendre and Chebyshev polynomials of the first and second kinds are
included in the ultraspherical polynomials, G(δ)

n , three specific expressions for the derivatives of
these polynomials can be inferred as direct special cases of Formula (10). These expressions can be
seen in the subsequent corollary.

Corollary 3. Let n and � be two non-negative integers with n ≥ �. The formulas that express the
derivatives of Legendre and Chebyshev polynomials of the first and second kinds in terms of Euler
polynomials are given as follows:
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D�Pn(x) =
1√
π

� n−�
2  

∑
r=0

2n−2r−1
(
(−1)r(2r)! Γ

(
n − r + 1

2

)
+

4r r! Γ(n+ 1
2 )(n−2r+1)r

(n−r+ 1
2 )r

)
r! (2r)! (−�+ n − 2r)!

En−�−2r(x)

+
2n−1Γ

(
1
2 + n

)
√

π

� 1
2 (n−�−1) 

∑
r=0

(n − 2r)r

(2r + 1)! (−�+ n − 2r − 1)!
(

n − r + 1
2

)
r

En−�−2r−1(x),

(14)

D�Tn(x) =n!
� n−�

2  
∑
r=0

2n−2r−2
(
(−1)r(2r)! + 4rr!

(
n − 2r + 1

2

)
r

)
r! (2r)! (−�+ n − 2r)! (n − r)r

En−�−2r(x)

+ 2n−2n!
� 1

2 (n−�−1) 
∑
r=0

(
n − 2r − 1

2

)
r

(2r + 1)! (−�+ n − 2r − 1)! (n − r)r
En−�−2r−1(x),

(15)

D�Un(x) =
1
2

� n−�
2  

∑
r=0

2n−2r(22rn! r!
(
n − 2r + 3

2
)

r + (−1)r (2r)! (n − r)! (n − r + 1)r
)

r! (2r)! (−�+ n − 2r)! (n − r + 1)r
En−�−2r(x)

+ 2n−1n!
� 1

2 (n−�−1) 
∑
r=0

(
n − 2r + 1

2

)
r

(2r + 1)! (−�+ n − 2r − 1)! (n − r + 1)r
En−�−2r−1(x).

(16)

Proof. Formulas (14), (15) and (16) can be obtained as special cases of Formula (10) by
setting δ = 1

2 , 0, 1, respectively.

Remark 4. Expressions for the derivatives of other symmetric polynomials can be derived using
similar techniques to those used in the proofs of Theorems 1 and 2. Some outcomes in this regard are
shown by the following two theorems:

Theorem 3. Let n and � be two non-negative integers with n ≥ �. The derivatives of the Hermite
polynomials Hn can be expanded in terms of Euler polynomials as

D�Hn(x) =n!
� n−�

2  
∑
r=0

(−1)r 2n−2r−1
(

1 + 1F1

(
−r; 1

2 ; 1
))

r! (−�+ n − 2r)!
En−�−2r(x)

+
� 1

2 (n−�−1) 
∑
r=0

U
(−r, 3

2 , 1
)

(−�+ n − 2r − 1)! (2r + 1)!
En−�−2r−1(x),

(17)

where U(a, b; z) is the well-known confluent hypergeometric [37].

Proof. Based on the power form representation of Hermite polynomials given by [37]

Hn(x) = n!
� n

2  
∑

m=0

(−1)m2n−2m

m!(n − 2m)!
xn−2m,

along with the inversion formula of Euler polynomials (1), and performing similar steps
that followed in the proof of Theorem 1, Formula (17) can be obtained.

Theorem 4. Let n and � be two non-negative integers with n ≥ �. The derivatives of the generalized
Lucas polynomials that are constructed by (6) can be expanded in terms of Euler polynomials as
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D�LR,S
n (x) =

1
2

Rn
� n−�

2  
∑
r=0

R−2r Sr n(n − r − 1)! (2r)! + n! r! 2F1

( −r, −r + 1
2

1 − n

∣∣∣∣− 4 S
R2

)
r! (2r)!(−�+ n − 2r)!

En−�−2r(x)

+
1
2

Rnn!
� 1

2 (n−�−1) 
∑
r=0

2F1

( −r, −r − 1
2

1 − n

∣∣∣∣− 4S
R2

)
(2r + 1)! (−�+ n − 2r − 1)!

En−�−2r−1(x).

(18)

Proof. Similar to the proof of Theorem 1.

3.2. Derivative Expressions for Some Non-Symmetric Polynomials

This section is confined to developing new expressions for the derivatives of some
non-symmetric polynomials in terms of Euler polynomials. To be more precise, the expres-
sions for the derivatives of the shifted Jacobi, Laguerre, and Schröder polynomials will
be presented.

Theorem 5. Let n and � be two non-negative integers with n ≥ �. The derivatives of the shifted
Jacobi polynomials can be written in terms of the Euler polynomials as

D�Ṽ(λ,δ)
n (x) =

n! Γ(λ + 1)
2 Γ(n + λ + 1) Γ(n + λ + 1 + δ)

×
n−�

∑
m=0

Γ(2n − m + λ + δ + 1)
m! (n − m − �)! Γ(n − m + λ + 1) Γ(n − m + δ + 1)

×

((−1)m Γ(n − m + λ + 1) Γ(n + δ + 1) + Γ(n + λ + 1) Γ(n − m + δ + 1)) En−�−m(x).

(19)

Proof. The representation of the shifted Jacobi polynomials in (4) serves to obtain the
following formula:

D�Ṽ(λ,δ)
n (x) =

n! Γ(n + δ + 1) Γ(λ + 1)
Γ(n + λ + 1) Γ(n + δ + 1 + λ)

n+m−�

∑
r=0

(−1)r Γ(2n − r + δ + λ + 1)
r! (−�+ n − r)! Γ(n − r + δ + 1)

xn−r−�,

hence, when the inversion Formula (1) is applied, it yields the following formula:

D�Ṽ(λ,δ)
n (x) =

n! Γ(n + δ + 1) Γ(λ + 1)
2 Γ(n + λ + 1) Γ(n + δ + 1 + λ)

×
n+m−�

∑
r=0

(−1)r Γ(2n − r + δ + λ + 1)
r! (−�+ n − r)! Γ(n − r + δ + 1)

n−�−r

∑
t=0

ct

( −�+ n − r
−�+ n − r − t

)
En−r−�−t(x).

Rearranging the terms in the last formula turns it into the following form:

D�Ṽ(λ,δ)
n (x) =

n! Γ(n + δ + 1) Γ(λ + 1)
2 Γ(n + λ + 1) Γ(n + δ + 1 + λ)

n−�

∑
m=0

1
(−�+ n − m)!

×
m

∑
r=0

(−1)r cm−r Γ(2n − r + δ + λ + 1)
(m − r)! r! Γ(n − r + δ + 1)

En−�−m(x).

(20)

The second sum that appears on the right-hand side of (20) can be rewritten in the
following form:

m

∑
r=0

(−1)r cm−r Γ(2n − r + δ + λ + 1)
r! (m − r)! Γ(n − r + δ + 1)

=

(−1)m Γ(n + δ + 1) Γ(2n − m + δ + λ + 1) + Γ(n − m + δ + 1) Γ(2n + δ + λ + 1) Hm,n

m! Γ(n + δ + 1) Γ(n − m + δ + 1)
,
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where Hm,n is given by

Hm,n = 2F1

( −m, −n − δ
−2n − δ − λ

∣∣∣∣1).

Chu-Vandermond identity implies that

2F1

( −m, −n − δ
−2n − δ − λ

∣∣∣∣1) =
(n − m + λ + 1)m

(2n − m + δ + λ + 1)m
,

thus, the following identity can be obtained:

m

∑
r=0

(−1)r cm−r Γ(2n − r + δ + λ + 1)
(m − r)! r! Γ(n − r + δ + 1)

=

(
(−1)m

Γ(n−m+δ+1) +
Γ(n+λ+1)

Γ(n+δ+1) Γ(n−m+λ+1)

)
Γ(2n − m + δ + λ + 1)

m!
.

The reduction of the last sum enables one to reduce Formula (20) in the following
simpler form:

D�Ṽ(λ,δ)
n (x) =

n! Γ(λ + 1)
2 Γ(n + λ + 1) Γ(n + λ + 1 + δ)

×
n−�

∑
m=0

Γ(2n − m + λ + δ + 1)
m! (n − m − �)! Γ(n − m + λ + 1) Γ(n − m + δ + 1)

×

((−1)m Γ(n − m + λ + 1) Γ(n + δ + 1) + Γ(n + λ + 1) Γ(n − m + δ + 1)) En−�−m(x).

This finalizes the proof of Theorem 5.

Taking into consideration the six special polynomials of the shifted Jacobi polynomials,
six special formulas of Formula (19) can be obtained. The following two corollaries present
these formulas.

Corollary 4. Let n and � be two non-negative integers with n ≥ �. The following expressions give
the derivatives of the shifted ultraspherical, shifted Legendre, and shifted Chebyshev polynomials of
the first and second kinds:

D�G̃(δ)
n (x) =

n! Γ
(

δ + 1
2

)
Γ(n + 2δ)

� n−�
2  

∑
m=0

Γ(2(n − m + δ))

(2m)! (−�+ n − 2m)! Γ
(

1
2 + n − 2m + δ

)En−�−2m(x),

D� P̃n(x) =
� n−�

2  
∑

m=0

(2n − 2m)!
(2m)! (n − 2m)! (−�+ n − 2m)!

En−�−2m(x),

D�T̃n(x) =n
√

π
� n−�

2  
∑

m=0

(2n − 2m + 1)!

(2m)! (−�+ n − 2m)! Γ
(

n − 2m + 1
2

)En−�−2m(x),

D�Ũn(x) =
1
2
√

π
� n−�

2  
∑

m=0

(2n − 2m + 1)!
(2m)! (−�+ n − 2m)! Γ

(
n − 2m + 3

2
)En−�−2m(x).
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Corollary 5. Let n and � be two non-negative integers with n ≥ �. The derivatives of the shifted
third- and fourth-kind Chebyshev polynomials are, respectively, given by the following expressions:

D�Ṽn(x) =
1
2
√

π

⎛⎝� n−�
2  

∑
m=0

(2n − 2m + 1)!

(2m)! (−�+ n − 2m)! Γ
(

n − 2m + 3
2

)En−�−2m(x)

−
� 1

2 (n−�−1) 
∑

m=0

(2n − 2m − 1)!

(2m)! (−�+ n − 2m − 1)! Γ
(

n − 2m + 1
2

)En−�−2m−1(x)

⎞⎠,

(21)

D�W̃n(x) =
1
2
√

π

⎛⎝� n−�
2  

∑
m=0

(2n − 2m + 1)!

(2m)! (−�+ n − 2m)! Γ
(

n − 2m + 3
2

)En−�−2m(x)

+
� 1

2 (n−�−1) 
∑

m=0

(2n − 2m − 1)!

(2m)! (−�+ n − 2m − 1)! Γ
(

n − 2m + 1
2

)En−�−2m−1(x)

⎞⎠.

(22)

Theorem 6. For non-negative integers n and q with n ≥ q, the derivatives of the generalized
Laguerre polynomials L(λ)

n (x) can be expanded in terms of the Euler polynomials as

D�L(λ)
n (x) =

1
2

Γ(n + λ + 1)
n−�

∑
m=0

(−1)n+m (1 + 1F1(−m; n − m + λ + 1; 1))
m! (−�+ n − m)! Γ(n − m + λ + 1)

En−�−m(x). (23)

Proof. The proof can be done with the aid of the following formula [37]:

L(λ)
n (x) =

Γ(n + λ + 1)
n!

n

∑
k=0

(−1)n−k (n
k)

Γ(n + λ − k + 1)
xn−k,

along with Formula (1).

Theorem 7. For non-negative integers n and q with n ≥ q, the derivatives of the Schröder
polynomials can be expanded in terms of Euler polynomials as

D�Sn(x) =
1

2(n + 1)!

n−�

∑
m=0

(n + 1)! (2n − m)! + (2n)! (n − m + 1)! 2F1

(
−m, −n − 1

−2n

∣∣∣∣∣− 1

)
m! (n − m + 1)! (−�+ n − m)!

×

En−�−m(x).

(24)

Proof. The proof can be done with the aid of the following representation of Schröder
polynomials [38]

Sn(x) =
n

∑
r=0

(2r
r )(

n+r
n−r)

j + 1
xr,

along with Formula (1).

4. Connection Formulas of Different Polynomials with Euler Polynomials

In this section, the connection formulas between some symmetric and non-symmetric
polynomials and the Euler polynomials are given. In fact, since all the derivative formulas
developed in Section 3 are valid for � = 0, it is an easy matter to deduce the connection
formulas as special cases of these formulas.

4.1. Connection Formulas between Some Symmetric Polynomials and Euler Polynomials

In this section, we present new connection formulas between some symmetric poly-
nomials and Euler polynomials. More precisely, the connection formulas between the
ultraspherical, generalized Fibonacci, generalized Lucas, and Hermite polynomials and
Euler polynomials will be presented.
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Corollary 6. For every non-negative integer n, the following connection formulas hold:

U(δ)
n (x) =

n! Γ
(

δ + 1
2

)
√

π Γ(n + 2δ)
×⎛⎜⎜⎝� n

2  
∑
r=0

2n−2r+2δ−2
(
(−1)r(2r)! Γ(n − r + δ) +

4r r! Γ(n+δ)(−n+r−δ+ 1
2 )r

(1−n−δ)r

)
r! (2r)! (n − 2r)!

En−2r(x)

+Γ(n + δ)
� n−1

2  
∑
r=0

2n+2δ−2(−n + r − δ + 3
2
)

r
(2r + 1)! (n − 2r − 1)! (1 − n − δ)r

En−2r−1(x)

⎞⎠,

(25)

Pn(x) =
1√
π

� n
2  

∑
r=0

2n−1
(
(− 1

4 )
r

Γ(n−r+ 1
2 )

r! +
Γ(n+ 1

2 ) (n−2r+1)r

(2r)! (n−r+ 1
2 )r

)
(n − 2r)!

En−2r(x)

+
2n−1 Γ

(
n + 1

2

)
√

π

� n−1
2  

∑
r=0

(n − 2r)r

(2r + 1)! (n − 2r − 1)!
(

n − r + 1
2

)
r

En−2r−1(x),

Tn(x) =n!
� n

2  
∑
r=0

2n−2r−2
(
(−1)r(2r)! + 4r r!

(
n − 2r + 1

2

)
r

)
r! (2r)! (n − 2r)! (n − r)r

En−2r(x)

+ 2n−2n!
� n−1

2  
∑
r=0

(
n − 2r − 1

2

)
r

(2r + 1)! (n − 2r − 1)! (n − r)r
En−2r−1(x),

Un(x) =
1
2

n!
� n

2  
∑
r=0

2n
((

− 1
4

)r
(2r)! + r!

(
n − 2r + 3

2
)

r

)
r! (2r)! (n − 2r)! (n − r + 1)r

En−2r(x)

+ 2n−1 n!
� n−1

2  
∑
r=0

(
n − 2r + 1

2

)
r

(2r + 1)! (n − 2r − 1)! (n − r + 1)r
En−2r−1(x).

Proof. All formulas listed in Corollary 6 are direct consequences of Theorem 2 and Corollary 3
with the same arrangement of their equations. They can be deduced by setting � = 0.

Corollary 7. Let n be any positive integer. The following are the generalized Fibonacci–Euler, the
generalized Lucas–Euler, and the Hermite–Euler connection formulas.

FA,B
n (x) =An

⎛⎜⎜⎜⎝
� n

2  
∑
r=0

A−2r Br(n − r)! (2r)! + n! r! 2F1

( −r, −r + 1
2

−n

∣∣∣∣− 4B
A2

)
2 r! (2r)! (n − 2r)!

En−2r(x)

+ n!
� n−1

2  
∑
r=0

2F1

( −r, −r − 1
2

−n

∣∣∣∣− 4B
A2

)
2 (2r + 1)! (n − 2r − 1)!

En−2r−1(x)

⎞⎟⎟⎟⎠,

(26)
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LR,S
n (x) =

1
2

Rnn!

⎛⎜⎜⎜⎝
� n

2  
∑
r=0

R−2r Sr n(n − r − 1)! (2r)! + n! r! 2F1

( −r, −r + 1
2

1 − n

∣∣∣∣− 4 S
R2

)
r! (2r)! (n − 2r)!

En−2r(x)

+ n!
� n−1

2  
∑
r=0

2F1

( −r, −r − 1
2

1 − n

∣∣∣∣− 4 S
R2

)
(2r + 1)! (n − 2r − 1)!

En−2r−1(x)

⎞⎟⎟⎟⎠,

(27)

Hn(x) =n!
� n

2  
∑
r=0

(−1)r2n−2r−1
(

1 + 1F1

(
−r; 1

2 ; 1
))

r! (n − 2r)!
En−2r(x)

+ 2n−1n!
� n−1

2  
∑
r=0

1
(2r + 1)! (n − 2r − 1)!

U
(
−r,

3
2

, 1
)

En−2r−1(x).

(28)

Proof. Formulas (26), (27) and (28) are, respectively, special cases of Formulas (8), (18) and (17)
for the case � = 0.

4.2. Connection Formulas between Some Non-Symmetric Polynomials with Euler Polynomials

In this section, we introduce new connection formulas between some non-symmetric
polynomials and Euler polynomials. The shifted Jacobi–Euler, generalized Laguerre–Euler,
and Schröder–Euler connection formulas will be displayed.

Corollary 8. Let n be a non-negative integer. The shifted Jacobi–Euler connection formula is

Ṽ(λ,δ)
n (x) =

n! Γ(λ + 1)
2Γ(n + λ + 1) Γ(n + λ + 1 + δ)

×
n

∑
m=0

(Γ(−m + n + δ + 1) Γ(n + λ + 1) + (−1)m Γ(n + δ + 1) Γ(1 − m + n + λ))

m! (n − m)! Γ(−m + n + δ + 1)Γ(1 − m + n + λ)
×

Γ(−m + 2n + δ + λ + 1) En−m(x).

(29)

Proof. Formula (29) can be immediately deduced for Formula (19) by setting q = 0.

Corollary 9. Let n be a non-negative integer. The following are the ultraspherical-Euler, Legendre-
Euler, first-kind-Euler, and second-kind-Euler connection formulas

G̃(δ)
n (x) =

n! Γ
(

δ + 1
2

)
Γ(n + 2δ)

� n
2  

∑
m=0

Γ(2(n − m + δ))

(2m)! (n − 2m)! Γ
(

1
2 + n − 2m + δ

) En−2m(x),

P̃n(x) =
� n

2  
∑

m=0

(2n − 2m)!

(2m)! ((n − 2m)!)2 En−2m(x),

T̃n(x) =n
√

π
� n

2  
∑

m=0

(2n − 2m − 1)!

(2m)! (n − 2m)! Γ
(

n − 2m + 1
2

)En−2m(x),

Ũn(x) =
1
2
√

π
� n

2  
∑

m=0

(2n − 2m + 1)!
(2m)! (n − 2m)! Γ

(
n − 2m + 3

2
)En−2j(x).

Proof. Corollary 9 is a special case of Corollary 4 for � = 0.
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Corollary 10. The following are the shifted third-kind Chebyshev–Euler and shifted fourth-kind
Chebyshev–Euler connection formulas.

Ṽn(x) =
1
2
√

π

⎛⎝� n
2  

∑
m=0

(2n − 2m + 1)!
(2m)! (n − 2m)! Γ

(
n − 2m + 3

2
)En−2m(x)

−
� n−1

2  
∑

m=0

(2n − 2m − 1)!

(2m)! (n − 2m − 1)! Γ
(

n − 2m + 1
2

) En−2m−1(x)

⎞⎠,

(30)

W̃n(x) =
1
2
√

π

⎛⎝� n
2  

∑
m=0

(2n − 2m + 1)!
(2m)! (n − 2m)! Γ

(
n − 2m + 3

2
)En−2m(x)

+
� n−1

2  
∑

m=0

(2n − 2m − 1)!

(2m)! (n − 2m − 1)! Γ
(

n − 2m + 1
2

) En−2m−1(x)

⎞⎠.

(31)

Proof. Formulas (30) and (31) are, respectively, special ones of Formulas (21) and (22) only
by setting � = 0.

Corollary 11. The following are the generalized Laguerre–Euler and Schröder–Euler connection
formulas:

L(λ)
n (x) =

1
2

Γ(n + λ + 1)
n

∑
m=0

(−1)n+m(1 + 1F1(−m; n − m + λ + 1; 1))
m! (n − m)! Γ(n − m + λ + 1)

En−m(x), (32)

Sn(x) =
1

2(n + 1)!

n

∑
m=0

(n + 1)! (2n − m)! + (2n)! (n − m + 1)! 2F1

( −m, −n − 1
−2n

∣∣∣∣− 1
)

m! (n − m)! (n − m + 1)!
En−m(x). (33)

Proof. Formulas (32) and (33) are, respectively, special ones of Formula (23) and (24) only
by setting � = 0.

5. Application to Compute Some New Integrals

This section is confined to developing an application to the connection formulas
between different polynomials and the Euler polynomials. In this regard, new formulas are
developed for computing some definite integrals of the products of different symmetric and
non-symmetric polynomials with Euler polynomials. In fact, the connection coefficients
aid in the evaluation of the desired definite integrals.

5.1. Definite Integrals for the Product of Euler Polynomials with Symmetric Polynomials

This section is interested in introducing a new explicit formula for evaluating a definite
integral for the product of the Euler polynomial of any degree with a symmetric polynomial
of any degree. After that, we apply this general formula to evaluate the definite integral for
the product of Euler polynomials with some celebrated symmetric polynomials.

Theorem 8. Let φn(x) be any symmetric polynomial that can be expressed as in (2), and let it have
the following connection formula with Euler polynomials:

φn(x) =
� n

2  
∑
r=0

Rr,n En−2r(x) +
� n−1

2  
∑
r=0

R̄r,n En−2r−1(x). (34)
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The following integral formula is valid:

∫ 1

0
φn(x) Em(x) dx =4 m!

⎛⎝� n
2  

∑
r=0

(−1)n(2m+n−2r+2 − 1
)
(n − 2r)!

(m + n − 2r + 2)!
Bm+n−2r+2 Rr,n

+
� n−1

2  
∑
r=0

(−1)n+1(2m+n−2r+1 − 1
)
(n − 2r − 1)!

(m + n − 2r + 1)!
Bm+n−2r+1 R̄r,n

⎞⎠,

(35)

and Bn are the well-known Bernoulli numbers.

Proof. The connection Formula (34) immediately yields

∫ 1

0
φn(x) Em(x) dx =

� n
2  

∑
r=0

Rr,n

∫ 1

0
Em(x)En−2r(x) dx +

� n−1
2  

∑
r=0

R̄r,n

∫ 1

0
Em(x)En−2r−1(x) dx. (36)

In virtue of the well-known formula [29]:

∫ 1

0
Em(x)En(x) dx = Fm,n =

4(−1)n(2m+n+2 − 1
)

n! m!
(m + n + 2)!

Bm+n+2. (37)

Formula (36) can be transformed into the following formula:

∫ 1

0
φn(x) Em(x) dx =

� n
2  

∑
r=0

Rr,n Fm,n−2r +
� n−1

2  
∑
r=0

R̄r,n Fm,n−2r−1,

and this leads to the following integral formula:

∫ 1

0
φn(x) Em(x) dx =4 m!

⎛⎝� n
2  

∑
r=0

(−1)n(2m+n−2r+2 − 1
)
(n − 2r)!

(m + n − 2r + 2)!
Bm+n−2r+2 Rr,n

+
� n−1

2  
∑
r=0

(−1)n+1(2m+n−2r+1 − 1
)
(n − 2r − 1)!

(m + n − 2r + 1)!
Bm+n−2r+1 R̄r,n

⎞⎠.

This proves Theorem 8.

Remark 5. As a consequence of Theorem 8 along with the connection formulas stated in Section 4,
several new definite integral formulas of the product of some symmetric polynomials with the Euler
polynomials can be obtained. The following corollaries exhibit these formulas.

Corollary 12. For all non-negative integers m and n, the following definite integral formula holds:

∫ 1

0
G(δ)

n (x) Em(x) dx =
(−1)nm! n! Γ

(
δ + 1

2

)
√

π Γ(n + 2δ)

� n
2  

∑
r=0

2n−2r+2δ
(
2m+n−2r+2 − 1

)
r! (2r)! (m + n − 2r + 2)!

×⎛⎝(−1)r(2r)! Γ(n − r + δ) +
4rr! Γ(n + δ)

(
−n + r − δ + 1

2

)
r

(1 − n − δ)r

⎞⎠ Bm+n−2r+2

+
2n+2δm! n! Γ

(
δ + 1

2

)
Γ(n + δ)

√
π Γ(n + 2δ)

� n−1
2  

∑
r=0

(−1)n+1(2m+n−2r+1 − 1
) (−n + r − δ + 3

2
)

r
(2r + 1)! (m + n − 2r + 1)! (1 − n − δ)r

Bm+n−2r+1.

(38)

Proof. This result is a direct consequence of the connection Formula (25) along with the
integral Formula (35).
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The following three specific formulas of Formula (38) are concerned with the definite
integral formulas for the products of Legendre and Chebyshev polynomials of the first and
second kinds with Euler polynomials.

Corollary 13. Let m and n be any non-negative integers. The following definite integral formu-
las apply:

∫ 1

0
Pn(x)Em(x) dx =

(−1)n2n+1m!√
π

� n
2  

∑
r=0

(
2m+n−2r+2 − 1

)( (− 1
4 )

r
Γ(n−r+ 1

2 )
r! +

Γ(n+ 1
2 )(n−2r+1)r

(2r)! (n−r+ 1
2 )r

)
(m + n − 2r + 2)!

Bm+n−2r+2

+ (−1)n+122−nm!
� n−1

2  
∑
r=0

(
2m+n+1 − 4r)(2n − 2r − 1)!

(2r + 1)! (n − 2r − 1)! (m + n − 2r + 1)!
Bm+n−2r+1,

(39)

∫ 1

0
Tn(x)Em(x) dx =

m! n!

⎛⎝� n
2  

∑
r=0

(−2)n−2r(2m+n−2r+2 − 1
)(

(−1)r(2r)! + 4rr!
(

1
2 + n − 2r

)
r

)
r! (2r)! (m + n − 2r + 2)! (n − r)r

Bm+n−2r+2

+
� n−1

2  
∑
r=0

(−2)n−2r(−2m+n+1 + 4r)(− 1
2 + n − 2r

)
r

(2r + 1)! (m + n + 1 − 2r)! (n − r)r
Bm+n−2r+1

⎞⎠, n ≥ 1,

(40)

∫ 1

0
Un(x)Em(x) dx =

m!

⎛⎜⎝� n
2  

∑
r=0

(−2)n−2r+1(−2m+n+2 + 4r)n!
((

− 1
4

)r
(2r)! + r!

(
n − 2r + 3

2

)
r

)
r! (2r)! (m + n − 2r + 2)! (n − r + 1)r

Bm+n−2r+2

+ n!
� n−1

2  
∑
r=0

(−2)n−2r+1(2m+n+1 − 4r)( 1
2 + n − 2r

)
r

(2r + 1)! (m + n + 1 − 2r)! (n − r + 1)r
Bm+n−2r+1

⎞⎠.

(41)

Proof. Formulas (39), (40) and (41) can be obtained as special cases of Formula (38) by
setting δ = 1

2 , 0, 1, respectively.

The following corollary is concerned with the definite integrals of the two generalized
Fibonacci and generalized Lucas polynomials with the Euler polynomials.

Corollary 14. For all non-negative integers m and n, the following definite integral formulas
apply:

∫ 1

0
FA,B

n (x) Em(x) dx = 2 An m! ×

� n
2  

∑
r=0

(−1)n (2m+n−2r+2 − 1
) (

A−2r Br (n − r)!(2r)! + n! r! 2F1

( −r, −r + 1
2

−n

∣∣∣∣− 4 B
A2

))
r! (2r)!(m + n − 2r + 2)!

×

Bm+n−2r+2 + 2Anm! n!
� n−1

2  
∑
r=0

(−1)n+1(2m+n−2r+1 − 1
)

2F1

( −r, −r − 1
2

−n

∣∣∣∣− 4 B
A2

)
(2r + 1)! (m + n − 2r + 1)!

Bm+n−2r+1,

(42)
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∫ 1

0
LR,S

n (x) Em(x) dx = 2(−1)n m!
� n

2  
∑
r=0

(
2m+n−2r+2 − 1

)
Rn

r! (2r)! (m + n − 2r + 2)!
×(

n R−2rSr(n − r − 1)! (2r)! + n! r! 2F1

( −r, −r + 1
2

1 − n

∣∣∣∣− 4 S
R2

))
Bm+n−2r+2

+ 2(−1)n+1m! n! Rn
� n−1

2  
∑
r=0

(
2m+n−2r+1 − 1

)
2F1

( −r, −r − 1
2

1 − n

∣∣∣∣− 4 S
R2

)
(2r + 1)! (m + n − 2r + 1)!

Bm+n−2r+1, n ≥ 1.

(43)

Proof. Formulas (42) and (43) can be obtained, respectively, as by the application to Theorem 8
along with the two connection Formulas (26) and (27).

Corollary 15. For all non-negative integers m and n, the following definite integral formula
applies: ∫ 1

0
Hn(x)Em(x) dx = m! n! ×⎛⎝� n

2  
∑
r=0

(−1)n−r2n−2r+1(2m+n−2r+2 − 1
)(

1 + 1F1

(
−r; 1

2 ; 1
))

r! (m + n − 2r + 2)!
Bm+n−2r+2

+
� n−1

2  
∑
r=0

(−2)n−2r+1(2m+n+1 − 4r)
(2r + 1)! (m + n − 2r + 1)!

U
(
−r,

3
2

, 1
)

Bm+n−2r+1

⎞⎠.

Proof. Direct application to Theorem 8 making use of the connection formula (28) yields
the desired result.

5.2. Definite Integrals for the Product of Euler Polynomials with Non-Symmetric Polynomials

This section focuses on developing a new closed expression for a definite integral for
the product of the Euler polynomial of any degree with any non-symmetric polynomial of
any degree. Furthermore, it focuses on some specific definite integrals for the product of
Euler polynomials with some celebrated non-symmetric polynomials. In this regard, the
following theorem will be stated and proved.

Theorem 9. Let φn(x) by any non-symmetric polynomial that is connected with Euler polynomials
by the following formula:

φn(x) =
n

∑
r=0

Sr,n En−r(x). (44)

The following integral formula applies:

∫ 1

0
φn(x) Em(x) dx = 4 m!

n

∑
r=0

(−1)n−r(2m+n−r+2 − 1
)
(n − r)!

(m + n − r + 2)!
Bm+n−r+2Sr,n.

Proof. Based on the connection Formula (44), one has the following integral formula:

∫ 1

0
φn(x) Em(x) dx =

n

∑
r=0

Sr,n Fm,n−r,

where Fm,n are given by (37). This leads to the formula

∫ 1

0
φn(x) Em(x) dx = 4 m!

n

∑
r=0

(−1)n−r(2m+n−r+2 − 1
)
(n − r)!

(m + n − r + 2)!
Bm+n−r+2Sr,n.
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Remark 6. As a consequence of Theorem 9, along with the connection formulas in Section 4.2,
several new definite integral formulas for the product of some non-symmetric polynomials with the
Euler polynomials can be obtained. The following corollaries exhibit some of these integral formulas.

Corollary 16. For all positive integers m and n, the following integral formulas hold:∫ 1

0
Ṽ(λ,δ)

n (x) Em(x) dx =
2 m! n! Γ(λ + 1)

Γ(n + λ + 1)Γ(n + δ + 1 + λ)
×

n

∑
r=0

(−1)n−r (2m+n−r+2 − 1
)

Γ(2n − r + δ + λ + 1)
r! (m + n + 2 − r)! Γ(n − r + δ + 1) Γ(n − r + λ + 1)

×

(Γ(n − r + δ + 1) Γ(n + λ + 1) + (−1)r Γ(n + δ + 1) Γ(n − r + λ + 1)) Bm+n−r+2.

(45)

Proof. The proof is based on utilizing Theorem 9 along with the connection Formula (29).

The following two corollaries give six special formulas of Formula (45).

Corollary 17. For all positive integers m and n, the following integral formulas hold:

∫ 1

0
G̃(δ)

n (x) Em(x) dx =
4 (−1)n m! n! Γ

(
δ + 1

2

)
Γ(n + 2 δ)

� n
2  

∑
r=0

(
2m+n−2r+2 − 1

)
Γ(2(n − r + δ))

(2r)! (m + n − 2r + 2)! Γ
(

n − 2r + δ + 1
2

)×
Bm+n−2r+2,

(46)

∫ 1

0
P̃n(x)Em(x) dx =4 m! (−1)n

� n
2  

∑
r=0

(
2m+n−2r+2 − 1

)
(2n − 2r)!

(2r)! (n − 2r)! (m + n − 2r + 2)!
Bm+n−2r+2, (47)

∫ 1

0
T̃n(x)Em(x) dx =4 (−1)n n

√
π m!

� n
2  

∑
r=0

(
2m+n−2r+2 − 1

)
(2n − 2r − 1)!

(2r)! Γ
(

n − 2r + 1
2

)
(m + n − 2r + 2)!

Bm+n−2r+2, (48)

∫ 1

0
Ũn(x)Em(x) dx =2 (−1)n m!

√
π

� n
2  

∑
r=0

(
2m+n+2−2r − 1

)
(2n − 2r + 1)!

(2r)! Γ
(
n − 2r + 3

2
)
(m + n − 2r + 2)!

Bm+n−2r+2. (49)

Proof. Formula (46) can be obtained from the general Formula (45) if both λ and δ are
replaced by

(
δ − 1

2

)
. Formulas (47), (48) and (49) are special ones of Formula (46) for the

cases δ = 1
2 , 0, 1, respectively.

Corollary 18. For all positive integers m and n, the following integral formulas hold:∫ 1

0
Ṽn(x)Em(x) dx =

√
π m!×

n

∑
r=0

(−1)n−r(2m+n−r+2 − 1
)
(1 + (−1)r + 2(1 + (−1)r)n − 2r)(2n − r)!

r! Γ
(
n − r + 3

2
)
(m + n + 2 − r)!

Bm+n−r+2,
(50)

∫ 1

0
W̃n(x)Em(x) dx =

√
π m! ×

n

∑
r=0

(−1)n−r(2m+n−r+2 − 1
)
(1 + 2n + (−1)r(2n − 2r + 1))(2n − r)!

r! Γ
(
n − r + 3

2
)
(m + n + 2 − r)!

Bm+n−r+2.
(51)

Proof. Formulas (50) and (51) can be obtained as direct special cases of Formula (45) for
the three cases λ = − 1

2 , δ = 1
2 , and λ = 1

2 , δ = − 1
2 , respectively .

Corollary 19. For all positive integers m and n, the following integral formula holds:
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∫ 1

0
L(λ)

n (x)Em(x) dx =2 m! Γ(n + λ + 1)
n

∑
r=0

(
2m+n−r+2 − 1

)
(1 + 1F1(−r; n − r + λ + 1; 1))

r! (m + n − r + 2)! Γ(n − r + λ + 1)
×

Bm+n−r+2.

Proof. Direct application to Theorem 9, taking into consideration the connection For-
mula (32), will yield the desired result.

Corollary 20. For all positive integers m and n, the following integral formula holds:

∫ 1

0
Sn(x) Em(x) dx = 2m! ×

n

∑
r=0

(−1)n−r (2m+n−r+2 − 1
)(

(n + 1)! (2n − r)! + (2n)! (n − r + 1)! 2F1

( −r, −n − 1
−2n

∣∣∣∣− 1
))

(n + 1)! r! (n − r + 1)! (m + n + 2 − r)!
×

Bm+n−r+2.

Proof. Direct application to Theorem 9 taking into consideration the connection For-
mula (33) will yield the desired result.

6. Concluding Remarks

In this article, we developed new identities involving the Euler polynomials. We estab-
lished new derivative expressions for different polynomials in terms of Euler polynomials.
Connection formulas between various polynomials and the Euler polynomials. We proved
that the connection coefficients are in many cases simple and free of any hypergeometric
functions, but in other cases, they involve certain hypergeometric functions. An interesting
application is provided where various definite integrals involving Euler polynomials are
computed exactly in closed forms to highlight the significance of the derived connection
formulas. We intend to derive further identities and integrals involving Euler polynomials
in the near future based on other formulas between different polynomials and Euler poly-
nomials. We think that the majority of the findings in this work are novel, and they might
be applicable to other areas of mathematics.

Author Contributions: W.M.A.-E. contributed to conceptualization, methodology, software, vali-
dation, formal analysis, investigation, Writing—Original draft, Writing—review & editing. A.K.A.
contributed to methodology, validation, investigation, original draft preparation, and funding Acqui-
sition. All authors have read and agreed to the published version of the manuscript.

Funding: The second author: Amr Kamel Amin (akgadelrab@uqu.edu.sa) is funded by the Deanship
for Research and Innovation, Ministry of Education in Saudi Arabia.

Data Availability Statement: Not applicable.

Acknowledgments: The authors extend their appreciation to the Deanship for Research and Inno-
vation, Ministry of Education in Saudi Arabia for funding this research work through the project
number: IFP22UQU4331287DSR038.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Singh, H. Jacobi collocation method for the fractional advection-dispersion equation arising in porous media. Numer. Methods
Partial. Differ. Equ. 2022, 38, 636–653. [CrossRef]
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Abstract: The primary focus of this research study is in the development of an effective hybrid matrix
method to solve a class of nonlinear systems of equations of fractional order arising in the modeling
of autocatalytic chemical reaction problems. The fractional operator is considered in the sense
of Liouville–Caputo. The proposed approach relies on the combination of the quasi-linearization
technique and the spectral collocation strategy based on generalized clique bases. The main feature of
the hybrid approach is that it converts the governing nonlinear fractional-order systems into a linear
algebraic system of equations, which is solved in each iteration. In a weighted L2 norm, we prove the
error and convergence analysis of the proposed algorithm. By using various model parameters in the
numerical examples, we show the computational efficacy as well as the accuracy of our approach.
Comparisons with existing available schemes show the high accuracy and robustness of the designed
hybrid matrix collocation technique.

Keywords: clique functions; collocation points; convergent analysis; fractional Brusselator system;
Liouville–Caputo derivative

1. Introduction

The Brusselator is a theoretical model for a type of autocatalytic reaction. In fact, this
model is a common nonlinear reaction in which a reactant species interacts with other
species to increase its production rate. The Brusselator model was proposed by Prigogine
and Lefever [1] in 1968. It is also known that the Belousov–Zhabotinsky model and the
chemical reactions of the Brusselator are the same [2–4]. By U, V, D, A, B, and E, we denote
the chemical components in the chemical reaction. Generally, the reaction process can be
described by the following four steps:

A → U,

B + U → V + D,

2U + V → 3U,

U → E.

We now assume that the species A and B are sufficiently available and can thus be
modeled at a constant concentration. Further, note that the final products E and D are
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removed once they are produced from the reaction process. Under scaling the rate constant
to unity, the rate equations become as follows{

d
dt{U} = {A}+ {U}2{V} − {B}{U} − {U},
d
dt{V} = {B}{U} − {U}2{V}.

(1)

Fractional integrals and derivatives have attracted considerable attention over the
last decades. Due to a wide range of applications from theory to practice, they have
gained increasing popularity in the modeling of various natural phenomena in engineering,
physics, chemistry, economics, etc. It is found that the non-integer derivatives and integrals
are more appropriate for describing the properties of several real processes and materials,
see cf. [5,6]. However, the solutions to most fractional differential equations do not exist
in terms of elementary functions. Therefore, it is essential to develop computational and
approximate procedures for the numerical evaluation of fractional differential equations.

Our main goal is to study the fractional counterpart of the Brusselator model (1). To
be precise, this research paper presents a power series solution based upon the (fractional)
version of clique functions implemented in matrix formulation for the following nonlinear
fractional-order Brusselator system of two equations⎧⎪⎪⎨⎪⎪⎩

LCDλ
τ u(τ) = θ − (η + 1) u(τ) + u2(τ) v(τ),

LCDλ
τ v(τ) = η u(τ)− u2(τ) v(τ),

τ ∈ [0, 1], (2)

where θ and η are two positive real numbers. Moreover, LCDλ
τ presents the Liouville–

Caputo fractional derivative of order λ ∈ (0, 1]. The following initial conditions will
accompany the above system, given as

u(0) = u0, v(0) = v0. (3)

If we set λ = 1, the classical system of the Brusselator system (1) will be obtained. The
integer-order model of the Brusselator has been solved by three numerical approaches,
including the Implicit Runge–Kutta method, the Adams method, and the Backward differ-
ential formula in [7].

1.1. Literature Review and Related Works

The fractional-order system (2) has been considered in the literature by many research
scholars from different points of dynamic systems and numerical behaviors. The stability
of the fractional Brusselator system was addressed in [8–10]. In [11], the existence of a limit
cycle was proven numerically by the Adams–Bashforth–Moulton approach. The authors
of [12,13] developed some nonstandard finite difference (NSFD) methods to solve (2)
numerically. As a semi-analytical approach, the variational iteration method is devised
in [14]. The polynomial least square technique was investigated in [15]. The operational
matrix methods based on Bernstein and Legendre wavelet functions were studied in [16,17],
respectively. The authors of [18] further developed three explicit and implicit techniques
based on product integration, NFSD, and multi-step procedures. In all mentioned works
above, the underlying fractional operator was taken as the Liouville–Caputo fractional
derivative. However, let us mention that the Brusselator model with fractional derivatives
in the sense of Liouville–Caputo, Caputo–Fabrizio, and Atangana–Baleanu was considered
in [19] recently. In this paper, the dynamic characteristics of the model under three fractional
derivatives have been investigated, and a three-stage iterative approach was also developed
for the model under consideration. In addition, in [20], the fractal-fractional differential
operators related to the power law, exponential decay, and the generalized Mittag–Leffler
kernels were investigated. In the latter research work, the proposed numerical procedure
is based on the Lagrange interpolating polynomial together with the theory of fractional
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calculus. Finally, let us mention that the PDE counterpart of the Brusselator model (2) has
been investigated in the literature. Among others, we refer to the published papers [21–24]

1.2. Outline of This Paper

The primary purpose of the current research paper is to propose an effective hybrid
technique. Our novel method is based on a combination of the quasi-linearization approach
and matrix collocation method for an approximate treatment of the fractional Brusselator
equations. The idea of a quasi-linearization method (QLM) is used to convert the nonlinear
model into a family of linearized equations. Afterward, the spectral approach based on the
(novel) generalized clique functions (GCFs) is employed to solve the quasi-linear equations
in an iterative manner. Let us emphasize that the coefficients of all clique polynomials are
all positive and integer-compared to the classical set of polynomials, such as Legendre,
Chebyshev, Hermit, Laguerre, etc. Consequently, working with positive numbers yields
more stable results during the computations. This would be the main motivation to employ
the family of clique polynomials in the collocation matrix procedure over others. Another
major advantage of the presented hybrid method, namely QLM-GCFs, is that it is not
only effective in terms of required CPU time, but it provides high-order accuracy and
better resolution characteristics compared to the existing numerical models in the literature.
The accurateness and robustness of the spectral collocation strategies have been justified
successfully by applying various model equations. Among others, let us mention the
works [25–30].

The content of this research paper is organized as follows. Some basic facts on frac-
tional calculus are reviewed in Section 2. Section 3 is devoted to the definition of clique basis
functions. Moreover, a generalization of these functions is given. Then, the convergence
analysis of this basis function is established in a weighted L2 norm. A detailed description
of the present QLM-GCFs technique is provided in Section 4. The results of the performed
numerical simulations and experiments are given in Section 5. The concluding summary is
given in Section 6.

2. Fractional Calculus: Basic Facts

Let us give some important facts about fractional calculus that will be used in the
subsequent sections. For more detail, we refer the readers to the standard text [6] or some
recent expository papers [31,32].

Let us first recall that the Riemann–Liouville fractional integral operator of order λ > 0
is given by

0Iλ
τ [k](τ) =

1
Γ(λ)

∫ τ

0

k(r)
(τ − r)1−λ

dr,

where Γ(·) is the Gamma function and we assumed k(τ) ∈ Cξ , ξ > −1. We note that a real
function k(τ), τ > 0 belongs to the space Cξ , ξ ∈ R if there exists a number μ ∈ R and a
function l(τ) ∈ C∞([0, ∞) such that k(τ) = τμ l(τ). We also call that k(τ) ∈ Cn

ξ if and only

if k(n)(τ) ∈ Cξ for a n ∈ N.
We are now ready to define the fractional Liouville–Caputo derivative next.

Definition 1. Assume that k ∈ Cn
−1 and n − 1 < λ < n, n ∈ N. The Liouville–Caputo fractional

derivative of k(τ) of order λ is defined by

LCDλ
τ k(τ) = 0In−λ

τ [Dnk](τ) =
1

Γ(n − λ)

∫ τ

0
(τ − r)n−λ−1k(n)(r)dr, τ > 0,

where D = d
dτ .
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One should emphasize that the fractional operator LCDλ
τ is a linear operator. If C is a

constant number, we have
LCDλ

τ C = 0. (4)

Our next goal is to compute the Liouville–Caputo fractional derivative of the function
k(τ) = τp, where p is a constant. This can be performed through the following relations

LCDλ
τ τp =

⎧⎨⎩ 0, for κ ∈ N0 and p < #λ$,
Γ(p + 1)

Γ(p + 1 − λ)
τp−λ, for p ∈ N0 and p ≥ #λ$ or p /∈ N and p > �λ .

(5)

Note that N0 := N∪ {0} and also we have utilized #·$ and �· as the ceil and floor functions
respectively.

3. The Fractional-Order Clique Polynomial and Its Convergence Analysis

Here, we first consider the clique polynomials Cr(t) related to the cliques in a complete
graph. We then introduce the fractional version of these polynomials. Hence, we establish
the convergence analysis of these polynomials.

3.1. The Clique Functions: The Generalized Form

The clique polynomials were first introduced in [33] and associated with graph theory.
However, they have been recently considered for numerical approximations of ordinary
and fractional differential equations, see cf. [34–37]. Below, we first describe the main
aspects of them.

Definition 2. Over a bounded interval of the real line [a, b], (b > a ≥ 0), we define the clique
functions (CFs) as follows:

Cr(t) :=
r

∑
k=0

(
r
k

)
tk. (6)

For r = 0, 1 in (6), we get C0(t) = 1 and C1(t) = 1 + t. One can easily observe that the
following recursive formulation holds for this set of polynomials{

Cr+1(t) = (1 + t) Cr(t), r = 0, 1, . . . ,
C0(t) = 1.

(7)

By using recursion (7), we derive a few terms of CFs as

C2(t) = t2 + 2t + 1,

C3(t) = t3 + 3t2 + 3t + 1,

C4(t) = t4 + 4t3 + 6t2 + 4t + 1.

One can easily check that Cr(0) = 1 and Cr(1) = 2r for all values of r ≥ 0. It is not a
difficult task to check that these CFs satisfy a second-order differential equation in the form

d
dt

[
(t + 1)2 d

dt
Cr(t)

]
= r(r + 1) Cr(t), r ∈ N0. (8)

In what follows, we intend to use the CFs on an arbitrary interval Da,b := [a, b]. We
are also interested in using the generalized version of these polynomials of fractional order
0 < α ≤ 1.

Definition 3. Generalized CFs (GCFs) of degree r on Da,b are represented by Cα
r (τ) and defined by

Cα
r (τ) = Cr(t), t =

( τ

L

)α
, (9)
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where L = b − a.

With the help of this transformation, the explicit form in (6) will be given as follows:

Cα
r (τ) =

r

∑
k=0

1
Lkα

(
r
k

)
τkα, r ∈ N. (10)

3.2. L2-Convergent of GCFs

Let us investigate the convergence analysis of the GCFs in a weighted L2 norm. In
other words, we will investigate the behavior of the expansion series of a given function
with respect to GCFs, especially when we increase the number of bases. We associate the
following space to domain Da,b as [25]

L2,w(Da,b) = {� : Da,b → R | � is measurable and ‖�‖w < ∞}, w(τ) = 1/L,

Here, the related induced norm and inner product are given by

〈�(τ), k(τ)〉w =
∫ b

a
�(τ) k(τ)w(τ)dτ, ‖�‖2

w =
∫ b

a
|�(τ)|2 w(τ)dτ

Practically, a finite-dimensional subset, say SR, of the space L2,w(Da,b) is selected as

SR = span〈Cα
0 (τ), Cα

1 (τ), . . . , Cα
R(τ)〉.

One observes that dim(SR) = R + 1 and is also a closed subspace of L2,w(Da,b).
It follows that SR is a complete subspace of L2,w(Da,b). Thus, any given function � ∈
L2,w(Da,b) has a unique best (finest) approximation �� ∈ SR in the following sense that

‖�(τ)− ��(τ)‖w ≤ ‖�(τ)− h(τ)‖ω, ∀h ∈ SR. (11)

Generally, a given function �(τ) ∈ L2,w(Da,b) can be expressed as a linear combination
of GCFs. Thus, we have

�(τ) =
∞

∑
r=0

κr Cα
r (τ), τ ∈ Da,b. (12)

Here, the coefficients of κr are unknown for r = 0, 1, . . .. By truncating the former
series up to (R + 1) terms, we may approximate �(τ) in practice as

�(τ) ≈ �R(τ) =
R

∑
r=0

κr Cα
r (τ) = CCCα

R(τ)KKKR, (13)

where we have represented the involved finite series in a compact way by defining

CCCα
R(τ) = [Cα

0 (τ) Cα
1 (τ) . . . Cα

R(τ)], KKKR = [κ0 κ1 . . . κR]
T . (14)

Note that the first one is the vector of GCFs while KKKR is the vector of unknowns. To
derive an upper bound for the ER(τ) = �(τ) − �R(τ), we need the following result. A
proof of the next theorem can be found in [38].

Theorem 1. Let � ∈ CR(Da,b). If lR(τ) represents the interpolating function of � at R Chebyshev
points on Da,b, then we have

|�(τ)− lR(τ)| ≤ 2LR‖�‖R,∞

4RR!
, ‖�‖R,∞ := max

τ∈Da,b
|�(R)(τ)|.

Following [39], we establish the following error bound for the GCFs expansion series.
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Theorem 2. Suppose that � ∈ CR(Da,b) ∩ Lw,2(Da,b). If �R(τ) = CCCα
R(τ)KKKR presents the best

(finest) approximation of �(τ) out of SR,α, then an error bound is given by

‖ER‖w ≤ 2‖�‖R,∞

4R R!
.

Proof. Let us first define the new function z(t) := �(t
1
α ) on Dα

a,b := [aα, bα] and for any
α > 0. Applying Theorem 1 to function z(t) with R Chebyshev nodes leads to the following
error estimate

|z(t)− lR(t)| ≤ 2‖z‖R,∞

4R R!
, t ∈ Dα

a,b.

We next substitute t = τα in the preceding inequality. It follows that

|�(τ)− lR(τ
α)| ≤ 2‖�‖R,∞

4R R!
, τ ∈ Da,b. (15)

According to the theorem’s assumption, we know that the approximate solution �R(τ)
is the finest approximation belonging to the space SR,α. Thus, it holds that

‖�(τ)− �R(τ)‖w ≤ ‖�(τ)− h(τ)‖w, ∀h ∈ SR.

The former inequality is valid, particularly for h = lR(τ
α) ∈ SR,α. Employing this fact,

as well as (15), we conclude that

‖�(τ)− �R(τ)‖2
w ≤ ‖�(τ)− lR(τ

α)‖2
w =

∫ b

a
|�(τ)− lR(τ

α)|2 w(τ)dτ

≤
∫ b

a

∣∣∣∣2‖�‖R,∞

4R R!

∣∣∣∣2 w(τ)dτ ≤
[

2‖�‖R,∞

4R R!

]2 ∫ b

a
w(τ)dτ. (16)

Using the fact that
∫ b

a w(τ)dτ = 1, we only require the application of the square roots
to the foregoing inequality.

4. The Methodology of the QLM-GCFs Scheme

Instead of applying the direct collocation procedure to the underlying nonlinear
model (2), our main aim is first to employ the quasi-linearization method (QLM) for (2)
with initial conditions (3). Then, the generalized CFs (GCFs) collocation matrix technique
is applied to the resultant family of linear subequations in an iterative manner.

4.1. The Basic Concept of QLM

By employing QLM, we can overcome the nonlinearity of a given model equation. The
applicability of the QLM strategy has already been checked through tremendous research
studies in the literature. For recent applications, we refer readers to [40–43].

By rewriting first the nonlinear coupled system (2) in a matrix representation form,
we get

ZZZ(λ)(τ) = FFF(ZZZ(τ), τ). (17)

Here, we have utilized the following notations

ZZZ(τ) :=
(

u(τ)
v(τ)

)
, ZZZ(λ)(τ) := LCDλ

τ

(
u(τ)
v(τ)

)
, FFF(ZZZ(τ), τ) :=

(
θ − (η + 1) u(τ) + u2(τ) v(τ)

η u(τ)− u2(τ) v(τ)

)
.

Suppose that ZZZ0(τ) is a rough first approximation of ZZZ(τ). Thus, the QLM for (17) is
written for p = 0, 1, . . . as

ZZZ(λ)
p+1(τ) ≈ FFF(ZZZp(τ), τ) + FFFZZZ(ZZZp(τ), τ)

(
ZZZp+1(τ)− ZZZp(τ)

)
.
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Here, by FFFZZZ = d
dZZZ FFF, we denote the corresponding Jacobian matrix. Let us note that

the same initial conditions as (3) will be given to the last sequence of equations. After
performing some straightforward calculations, we receive the following family of a linear
system of equations as the result of QLM from model (17). Thus, we have

LCDλ
τ ZZZp+1(τ) + ξξξ p(τ)ZZZp+1(τ) = sssp(τ), p = 0, 1, . . . , (18)

where

ZZZp+1(τ) =

(
up+1(τ)
vp+1(τ)

)
, ξξξ p(τ) =

(
η + 1 − 2up(τ) vp(τ) −u2

p(τ)

−η + 2up(τ) vp(τ) u2
p(τ)

)
,

sssp(τ) =

(
θ − 2u2

p(τ) vp(τ)

2u2
p(τ) vp(τ)

)
.

Systemically, we can present the initial conditions (3) as

ZZZp+1(0) =
(

up+1(0)
vp+1(0)

)
=

(
u0
v0

)
. (19)

To solve the quasi-linear systems (18)–(19) accurately, we will design a matrix colloca-
tion procedure based on the GCFs to receive an approximate solution.

4.2. The QLM-GCFs Technique

Supposedly, the unknown solutions of quasi-linear model (18) can be expanded as
a combination of the cut series form (13) with (R + 1)-terms. Further, assume that for a
fixed α ∈ (0, 1] the approximate solutions U (p)

R,α(τ) and V (p)
R,α(τ) to up(τ) and vp(τ) in the

iteration p for p = 0, 1, . . . are known. For p = 0, we utilize the initial guess ZZZ0(τ) as the
starting point. In the next iteration, p + 1, we seek the approximate solutions in the forms

up+1(τ) ≈ U (p+1)
R,α (τ) =

R

∑
r=0

κ
(p)
r,1 Cα

r (τ), vp+1(τ) ≈ V (p+1)
R,α (τ) =

R

∑
r=0

κ
(p)
r,2 Cα

r (τ), (20)

for τ ∈ Da,b. Below, our primary job is to find the unknown coefficients {κ
(p)
r,j }R

r=0 for
j = 1, 2 and p = 1, 2, . . . by using a spectral matrix collocation approach relying on the
GCFs. To this end, we first construct the matrix forms of the approximate solutions given
in 20. Similar to (13), the finite series solutions in ((20)) for j = 1, 2 can be expressed as

R

∑
r=0

κ
(p)
r,j Cα

r (τ) = CCCα
R(τ)KKK(p)

R,j , (21)

where the unknown vectors KKK(p)
R,j and the vector of GCFs are given by

KKK(p)
R,j =

[
κ
(p)
0,j κ

(p)
1,j . . . κ

(p)
R,j

]T
, CCCα

R(τ) = [Cα
0 (τ) Cα

1 (τ) . . . Cα
R(τ)].

In the next Lemma, we further write the vector of basis functions in terms of monomials
multiplied by a constant matrix.

Lemma 1. The representation of the vector of GCFs is given by

CCCα
R(τ) = ΠΠΠα

R(τ)MMMR, (22)
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where ΠΠΠα
R(τ) =

[
1 τα τ2α . . . τRα

]
and MMMR of size (R + 1)× (R + 1) is an upper trian-

gular matrix whose components are obtained via (10). It reads

MMMR =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(0
0) (1

0) (2
0) . . . (R−1

0 ) (R
0)

0 μ1(
1
1) μ1(

2
1) . . . μ1(

R−1
1 ) μ1(

R
1)

0 0 μ2(
2
2) . . . μ2(

R−1
2 ) μ2(

R
2)

...
...

. . . . . . . . .
...

0 . . . μR−1(
R−1
R−1) μR−1(

R
R−1)

0 . . . μR(
R
R)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, μj := L−jα, j = 1, 2, . . . , R.

Proof. By virtue of relation (10), it is sufficient to multiply matrix MMMR by ΠΠΠα
R(τ) from the

left.

Obviously, the diagonal elements of matrix MMMR are all non-zero. Thus, this matrix is
non-singular. In fact, we have det(MMMR) = L−Rα(R+1)/2.

If one combines two former relations (21) and (22), the approximate solutions are
written as {

U (p+1)
R,α (τ) = CCCα

R(τ)KKK(p)
R,1 = ΠΠΠα

R(τ)MMMR KKK(p)
R,1,

V (p+1)
R,α (τ) = CCCα

R(τ)KKK(p)
R,2 = ΠΠΠα

R(τ)MMMR KKK(p)
R,2,

τ ∈ Da,b. (23)

Next, we need the λ-derivative of the approximate solutions. To do so, we apply the
operator LCDλ

τ to both sides of the relation (23). Thus, we get{
LCDλ

τ U (p+1)
R,α (τ) =

(LCDλ
τ ΠΠΠα

R(τ)
)
MMMR KKK(p)

R,1,
LCDλ

τ V (p+1)
R,α (τ) =

(LCDλ
τ ΠΠΠα

R(τ)
)
MMMR KKK(p)

R,2.
(24)

Consequently, we must only compute the λ-derivatives of the vector ΠΠΠα
R(τ). In this

respect, we consider two properties (4) and (5) to calculate the fractional derivatives of
ΠΠΠα

R(τ). As an example, we set R = 3 and λ = 3
4 . Now, using α = 1 and α = 1

2 we
get, respectively,

LCD
3
4
τ ΠΠΠ1

5(τ) =
[
0 1!

Γ( 5
4 )

τ
1
4 2!

Γ( 9
4 )

τ
5
4 3!

Γ( 13
4 )

τ
9
4
]
, LCD

3
4
τ ΠΠΠ

1
2
5 (τ) =

[
0 0 1!

Γ( 5
4 )

τ
1
4

Γ( 5
2 )

Γ( 7
4 )

τ
3
4

]
.

Practically, however, we can use the modified version of Algorithm 4.1 in [44] or [45]
or Algorithm 3.1 in [46] with linear complexity O(R + 1) to compute the λ-derivative of
ΠΠΠα

R(τ). To continue, let us define the fractional derivative of the vector as

ΠΠΠ(λ,α)
R (τ) := LCDλ

τ ΠΠΠα
R(τ). (25)

We can now place this relation into (24) to arrive at

LCDλ
τ U (p+1)

R,α (τ) = ΠΠΠ(λ,α)
R (τ)MMMR KKK(p)

R,1, LCDλ
τ V (p+1)

R,α (τ) = ΠΠΠ(λ,α)
R (τ)MMMR KKK(p)

R,2. (26)
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We come back to the matrix differential equation (18). Vector ZZZp+1(τ) and its derivative
LCDλ

τ ZZZp+1(τ) can be approximated as

ZZZp+1 ≈ ZZZ(p+1)
R (τ) :=

(
U (p+1)

R,α (τ)

V (p+1)
R,α (τ)

)
,

LCDλ
τ ZZZp+1(τ) ≈ LCDλ

τ ZZZ(p+1)
R (τ) :=

(
LCDλ

τU (p+1)
R,α (τ)

LCDλ
τV (p+1)

R,α (τ)

)
.

(27)

Lemma 2. In the matrix formats, the approximated solution ZZZ(p+1)
R (τ), and its λ-derivative

LCDλ
τ ZZZ(p+1)

R (τ) in (27) can be stated as follows:

ZZZ(p+1)
R (τ) = Π̂ΠΠ(τ) M̂MM K̂KK

(p)
, LCDα

τZZZ(p+1)
R (τ) = Π̂ΠΠλ(τ) M̂MM K̂KK

(p)
, (28)

where the following notations are used: K̂KK
(p)

=
(

KKK(p)
R,1 KKK(p)

R,2

)T
and

Π̂ΠΠ(τ) =

(
ΠΠΠα

R(τ) 000
000 ΠΠΠα

R(τ)

)
, M̂MM =

(
MMMR 000
000 MMMR

)
, Π̂ΠΠλ(τ) =

(
ΠΠΠ(λ,α)

R (τ) 000
000 ΠΠΠ(λ,α)

R (τ)

)
.

Proof. To conclude the results, we need to substitute two relations (23) and (26) into the
corresponding vector forms in (27).

We are then looking for a partitioning Da,b that will be used as a set of collocation
points. To do so, we utilize (R + 1) equidistant points from interval [a, b]. Let us set

τρ := a +
L
R

ρ, ρ = 0, 1, . . . , R. (29)

Now, adding the aforementioned set of collocation points into the sequence of linear
matrix differential equations (18) to get

LCDλ
τ ZZZp+1(τρ) + ξξξ p(τρ)ZZZp+1(τρ) = sssp(τρ), ρ = 0, 1, . . . , R, (30)

for p = 0, 1, . . .. We next introduce the following matrix and vector notations

ΣΣΣλ
p =

⎛⎜⎜⎜⎝
LCDλ

τ ZZZp+1(τ0)
LCDλ

τ ZZZp+1(τ1)
...

LCDλ
τ ZZZp+1(τR)

⎞⎟⎟⎟⎠, ΣΣΣp =

⎛⎜⎜⎜⎝
ZZZp+1(τ0)
ZZZp+1(τ1)

...
ZZZp+1(τR)

⎞⎟⎟⎟⎠, SSSp =

⎛⎜⎜⎜⎝
sssp(τ0)
sssp(τ1)

...
sssp(τR)

⎞⎟⎟⎟⎠,

ΞΞΞp =

⎛⎜⎜⎜⎝
ξξξ p(τ0) 000 . . . 000

000 ξξξ p(τ1) . . . 000
...

...
. . .

...
000 000 . . . ξξξ p(τR)

⎞⎟⎟⎟⎠.

In the vector representation, we are able to show relation (30) in a compact formulation
as

ΣΣΣλ
p +ΞΞΞp ΣΣΣp = SSSp, p = 0, 1, . . . . (31)

Our next aim is to derive the matrix expressions of ΣΣΣp and ΣΣΣλ
p . By collocating two

relations (28) at the collocations points, we render
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Lemma 3. The two relations (28) at the collocation point (29) can be written as follows:

ΣΣΣp = ˜̂ΠΠΠ M̂MM K̂KK
(p)

, ΣΣΣλ
p = ˜̂ΠΠΠλ M̂MM K̂KK

(p)
, (32)

where the two matrices ˜̂ΠΠΠ and ˜̂ΠΠΠλ are given by

˜̂ΠΠΠ = [Π̂ΠΠ(τ0) Π̂ΠΠ(τ1) . . . Π̂ΠΠ(τR)]
T ,˜̂ΠΠΠλ = [Π̂ΠΠλ(τ0) Π̂ΠΠλ(τ1) . . . Π̂ΠΠλ(τR)]

T .

Here, the three matrices M̂MM, Π̂ΠΠ, and Π̂ΠΠλ, as well as the vector K̂KK
(p)

, are defined in (28) previously.

Finally, we form the so-called fundamental matrix equation at each iteration p by
placing the preceding relations (32) into (31). It follows that

AAAp K̂KK
(p)

= SSSp, or
[
AAAp; SSSp

]
, p = 0, 1, . . . , (33)

where
AAAp :=

{ ˜̂ΠΠΠλ +ΞΞΞp
˜̂ΠΠΠ}M̂MM.

It should be noted that the last matrix equation (33) is a linear system with 2(R + 1)
unknowns κ

(p)
r,j for r = 0, 1, . . . , R and j = 1, 2 to be specified as the coefficients of GCFs

in the series solutions (20). However, the supplemented initial conditions (3) are not yet
implemented and entered into the system (33). First, we consider the matrix representation
forms (28) for the approximate solution ZZZ(p+1)

R (τ). We then let τ → 0 arrive at

ÂAA0,p K̂KK
(p)

= ŜSS0, ÂAA0,p := Π̂ΠΠ(0) M̂MM, ŜSS0 =

(
u0
v0

)
, or

[
ÂAA0,p; ŜSS0

]
.

Here, the two constants u0 and v0, are available from (3). The replacement of two
rows of the matrix [AAAp; SSSp] in (33) will be carried out next by the row matrix

[
ÂAA0,p; ŜSS0

]
. The

modified fundamental matrix equation will be shown by

ÂAAp K̂KK
(p)

= ŜSSp, or
[

ÂAAp; ŜSSp

]
. (34)

To get the unknown coefficients of GCFs, it is sufficient to solve the modified algebraic
linear system (34) in each iteration. Now, one requires a linear solver to be used to receive

the solution of this system. After finding vector K̂KK
(p)

, all unknowns κ
(p)
r,j , for j = 1, 2, and

r = 0, 1, . . . , R as the coefficients in the expansion series (20) will be found in iteration p.
Thus, we get an approximate solution of model (2).

Algorithmically, we summarize all of the steps of the proposed QLM-GCs technique
in Algorithm 1. Here, by pmax we denote the maximum number of iterations required to
achieve the desired accuracy in the QLM method. It should be remarked that we have
utilized the MATLAB notation AAA[i : j, s : k] to denote the submatrix of AAA formed by all
entries in the intersection of rows i, . . . , j and columns s, . . . , k.
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Algorithm 1: An algorithmic description of the QLM-GCFs.

1: procedure QLM_GCFs(R, λ, α, θ, η, MMMR, CCCα
R(τ), u0, v0, pmax)

2: p := 0; m := R + 1; n := 2;
3: ΠΠΠα

R(τ) :=
[
1 τα τ2α . . . τRα

]
;

4: ΠΠΠ(λ,α)
R (τ) := LCDλ

τ ΠΠΠα
R(τ);{Via calling to Algorithm 4.1 from [44]}

5: Π̂ΠΠ(τ) :=
(

ΠΠΠα
R(τ) 000
000 ΠΠΠα

R(τ)

)
; M̂MM :=

(
MMMR 000
000 MMMR

)
; Π̂ΠΠλ(τ) =(

ΠΠΠ(λ,α)
R (τ) 000

000 ΠΠΠ(λ,α)
R (τ)

)
;

6: ZZZp(τ) := 000; up(τ) := ZZZp[1]; vp(τ) := ZZZp[2];

7: ξξξ p(τ) :=

(
η + 1 − 2up(τ) vp(τ) −u2

p(τ)

−η + 2up(τ) vp(τ) u2
p(τ)

)
; sssp(τ) :=

(
θ − 2u2

p(τ) vp(τ)

2u2
p(τ) vp(τ)

)
;

{Using the collocation points (29)}
8: ΞΞΞp := 000; SSSp := 000; {ΞΞΞp ∈ Rn∗m×n∗m & SSSp ∈ Rn∗m×1}

9:
˜̂ΠΠΠ := 000; ˜̂ΠΠΠλ = 000; { ˜̂ΠΠΠ, ˜̂ΠΠΠλ ∈ Rn∗m×n∗m}

10: for j := 0, . . . , R
11: ΞΞΞp[n ∗ j + 1 : n ∗ (j + 1), n ∗ j + 1 : n ∗ (j + 1)] := ξξξ p(τj);
12: SSSp[n ∗ j + 1 : n ∗ (j + 1)] := sssp(τj);

13:
˜̂ΠΠΠ[n ∗ j + 1 : n ∗ (j + 1), n ∗ j + 1 : n ∗ (j + 1), :] := Π̂ΠΠ(τj);

14:
˜̂ΠΠΠλ[n ∗ j + 1 : n ∗ (j + 1), n ∗ j + 1 : n ∗ (j + 1), :] := Π̂ΠΠ(τj);

15: end for

16: for p := 1, . . . , pmax

17: Fa_Sys:=
( ˜̂ΠΠΠλ +ΞΞΞp

˜̂ΠΠΠλ

)
M̂MM; rhs_Sys:=SSSp;

{Entering the I.C.}
18: Fa_Sys[1:2,:]:=Π̂ΠΠ(0) M̂MM; rhs_Sys[1:2]:=[u0, v0]

T ;

19: K̂KK
(p)

:=LinSolve (Fa_Sys,rhs_Sys);
20: U (p)

R,α(τ) := CCCα
R(τ)KKK(p)

R,1; V (p)
R,α(τ) := CCCα

R(τ)KKK(p)
R,2;

21: Update ξξξ p(τ) and sssp(τ) in line 7 in terms of the former solutions;
22: Calculate two matrices ΞΞΞp and SSSp in lines 11-12;
23: end for

24: end;

5. Numerical Results and Graphical Representations

In this part, a set of computational examples is provided to describe and support
the theoretical findings. In this respect, we apply the QLM-GCFs to the fractional-order
Brusselator of Equation (2) by solving the quasi-linear model Equation (17). For performing
computational simulations, we use Matlab software version 2021a on a computer with
16 GB of RAM and a CPU with 2.2 GHz Intel® Core™ i7-10870H processor.

In the computational results, we utilize the QLM with parameter p = 5. Furthermore,
in the QLM-GCFs, the initial approximation ZZZ0(τ) is selected as the zero function, or we
take it as the initial condition (3). As previously mentioned, the exact solutions of this
system are not available, especially when the order of the derivative is described in the
fractional order. Therefore, we define the residual error functions (REFs) associated with the
Brusselator model to measure the accuracy of the proposed spectral QLM-GCFs collocation
technique. That is, in iteration p = 1, 2, . . ., we define the error terms as

Res(p)
u,R,α(τ) :=

∣∣∣∣LCDλ
τU (p)

R,α(τ)− θ + (η + 1)U (p)
R,α(τ)−

(
U (p)

R,α(τ)
)2 V (p)

R,α(τ)

∣∣∣∣ ∼= 0,

Res(p)
v,R,α(τ) :=

∣∣∣∣LCDλ
τV (p)

R,α(τ)− η U (p)
R,α(τ) +

(
U (p)

R,α(τ)
)2 V (p)

R,α(τ)

∣∣∣∣ ∼= 0.
(35)
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We also compute the L∞ error norms (for a fixed p) via the relations

Lu
∞ ≡ Lu

∞(R) := max
τ∈Da,b

Res(p)
u,R,α(τ), Lv

∞ ≡ Lv
∞(R) := max

τ∈Da,b
Res(p)

v,R,α(τ).

We further utilize the following relations to compute the obtained numerical order
of convergence (Noc) related to the numerical technique applied to both solutions of the
coupled system (2) given by

Nocu
∞ := log2

(
Lu

∞(R)
Lu

∞(2R)

)
, Nocv

∞ := log2

(
Lv

∞(R)
Lv

∞(2R)

)
. (36)

Note that these formulae are utilized to check the order of accuracy of our proposed
technique in the L∞ norm for both solutions.

Example 1. As the first test case, let us consider the fractional Brusselator system by taking two
parameters θ = 0 and η = 1 to get{

LCDλ
τ u(τ) = −2u(τ) + u2(τ) v(τ),

LCDλ
τ v(τ) = u(τ)− u2(τ) v(τ),

λ ∈ (0, 1].

The given initial conditions are u(0) = 1, v(0) = 1. This example was considered in [14,16,17]
previously.

Let us first set a = 0, b = 1 and take R = 5. We also consider λ = 1. Using α = 1,
the proposed QLM-GCFs with the collocation points {0, 2/10, 4/10, 6/10, 8/10, 1}, the
following approximate solutions are obtained.

U (5)
5,1 (τ) = 0.044402695 τ5 − 0.23533824 τ4 + 0.4152989 τ3 + 0.02746560 τ2 − 1.0042497 τ + 1.0,

V (5)
5,1 (τ) = −0.02397666 τ5 + 0.1692558 τ4 − 0.4510957 τ3 + 0.4843923 τ2 + 0.002544616 τ + 1.0.

For λ = 1, let us compare our outcomes with those polynomial solutions obtained via
the two (semi)analytical techniques. The first one is the polynomial least squares method
(PLSM) [15] with the following approximations

xplsm(t) = 0.0750974 t3 + 0.201028 t2 − 1.02827 t + 1.0,

yplsm(t) = −0.180088 t3 + 0.334087 t2 + 0.0271107 t + 1.0.

The second method is the Legendre wavelet operational matrix method (LWOMM) [17],
the solutions of which are reported as

y1(t) = 1.0 − 1.0120 t + 0.1211 t2 + 0.1517 t3,

y2(t) = 1.0 + 0.0096 t + 0.4069 t2 − 0.2461 t3.

In Figure 1, we show the above approximate solutions obtained by our method
(black lines) and two other existing ones, i.e., the PLSM and LWOMM procedures. From
this visualization, we conclude that the alignment between the results of QLM-GCFs
and PLSM is more than the outcomes of our method and LWOMM. On the other hand,
note that our solutions are obtained by using R = 5, which gives us the approximate
polynomial solutions of five degrees compared to the three-degree polynomials reported
by the LWOMM and PLSM. However, our proposed procedure can produce more accurate
results just by increasing R. To be more precise, we plot the achieved REFs obtained via (35)
when R = 5, 10, and 15. These experiments are shown in Figure 2.
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Figure 1. Comparisons of approximate solutions for u(τ) (left) and v(τ) (right) obtained via the
QLM-GCFs technique in test case 1 with R = 5, λ, α = 1, and p = 5.
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Figure 2. Comparisons of achieved REFs obtained via QLM-GCFs in test case 1 with λ, α = 1,
R = 5, 10, 15, and p = 5.

Finally, for the integer order λ = 1, we report the numerical results evaluated at
some points τ ∈ [0, 1]. For this purpose, we use R = 10 and show the outcomes of the
proposed QLM-GCFs for both solutions in Table 1. Table 2 presents the maximum REF
values achieved by using R = 2i, i = 1, 2, 3, 4, 5. The corresponding Noc are also reported
in this table related to both solutions u(τ) and v(τ). Higher order accuracy of the proposed
method is visible from the results presented in Table 2. The required CPU times to solve
modified system

[
ÂAAp; ŜSSp

]
measured in seconds are shown in Table 2. The CPU’s spent time

clearly behaves linearly as the number of basis functions becomes two-fold.
Let us turn next to the fractional cases and set λ = 0.75. By employing the QLM-GCFs

with R = 10, we obtain two approximate solutions for 0 ≤ τ ≤ 1 as given below. The
obtained results for α = 1 are given by

U (5)
10,1(τ) = 11.965651 τ10 − 71.374363 τ9 + 187.82167 τ8 − 287.243 τ7 + 283.18426 τ6

− 188.87801 τ5 + 87.324068 τ4 − 28.680548 τ3 + 7.4595572 τ2 − 2.3034134 τ + 1.0,

V (5)
10,1(τ) = 2.2725108 τ10 − 13.632576 τ9 + 36.11913 τ8 − 55.727909 τ7 + 55.641481 τ6

− 37.881744 τ5 + 18.156988 τ4 − 6.2694104 τ3 + 1.4527369 τ2 + 0.079421181 τ + 1.0.
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Table 1. Numerical results and REFs for u(τ), v(τ) obtained via the QLM-GCFs procedure using
R = 10 and p = 5 in Example 1 with λ, α = 1.

τ U (5)
10,1(τ) Res(5)

u,10,1(τ) V (5)
10,1(τ) Res(5)

v,10,1(τ)

0.1 0.900464302493772 2.7735×10−15 1.004523943044246 4.6810 × 10−15

0.2 0.803448542998189 1.1723 × 10−15 1.016373836862601 8.9920 × 10−15

0.3 0.710824317213952 1.2023 × 10−14 1.033327205646229 1.3351 × 10−15

0.4 0.623892736413153 1.1641 × 10−14 1.053574529276645 1.0168 × 10−14

0.5 0.543504717634733 1.3233 × 10−16 1.075649740696301 1.0648 × 10−14

0.6 0.470149961736370 1.2558 × 10−14 1.098381593278497 2.8102 × 10−14

0.7 0.404024163774677 3.7396 × 10−14 1.120859071635027 1.4690 × 10−14

0.8 0.345083563213368 3.6526 × 10−14 1.142403440455486 2.1380 × 10−14

0.9 0.293093303881749 8.6498 × 10−14 1.162541379315871 5.4074 × 10−14

1.0 0.247672792516836 7.3249 × 10−14 1.180976444182846 4.0555 × 10−14

Table 2. The results of L∞ norms, the corresponding convergence rate, and CPU times in Example 1
with diverse R, λ, α = 1, and p = 5.

R Lu
∞ Nocu

∞ Lv
∞ Nocv

∞ CPU(s)

2 8.8464 × 10−2 − 2.5585 × 10−1 − 0.55877

4 2.3798 × 10−2 1.8942 1.4707 × 10−2 4.1207 0.83877

8 9.2239 × 10−5 8.0113 1.1027 × 10−4 7.0593 1.64742

16 1.0027 × 10−8 13.167 1.0748 × 10−8 13.325 3.67631

32 3.1173 × 10−11 8.3294 6.7817 × 10−11 7.3082 9.55585

The numerical results using α = 0.75 are as follows

U (5)
10,0.75(τ) = 1.0412945 τ

9
4 − 0.0042152951 τ

3
2 − 0.17590936 τ6 − 1.087782 τ

3
4 − 0.76166775 τ

9
2

− 1.273861 τ3 − 0.0033094122 τ
15
2 + 1.0551812 τ

15
4 + 0.44543369 τ

21
4 + 0.038673796 τ

27
4 + 1.0,

V (5)
10,0.75(τ) = 0.8351074 τ3 + 0.7563994 τ

3
2 + 0.084382784 τ6 − 0.00029275212 τ

3
4 + 0.44680831 τ

9
2

− 1.0399673 τ
9
4 − 0.00064861533 τ

15
2 − 0.60459347 τ

15
4 − 0.2553921 τ

21
4 − 0.01045752 τ

27
4 + 1.0.

The former approximations for each solution of u(τ) and v(τ) related to two different
values of α = 1 and α = 0.75 are depicted in Figures 3 and 4. In addition to the approximate
solutions, we also visualize the associated REFs for each solution on the left plots. By
looking at these figures, we infer that the approximate solutions related to both α = 1, 0.75
are very close together. However, the achieved REFs for α = 0.75 equal to the fractional
order λ = 0.75 are smaller in magnitude than those obtained using α = 1. Therefore, in the
next experiments, we only consider the results obtained related to α = λ.

Next, we consider λ = 0.5 and R = 10. Using α = 0.5, the approximate solutions
evaluated at some point τ ∈ [0, 1] are reported in Table 3. The corresponding absolute
errors defined via relations (35) are also tabulated in Table 3.
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Figure 3. Comparisons of approximate solutions for u(τ) (left) and related REFs (right) obtained via
the QLM-GCFs technique in Example 1 with R = 10, λ = 0.75, α = 1, 0.75, and p = 5.
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Figure 4. Comparisons of approximate solutions for v(τ) (left) and related REFs (right) obtained via
the QLM-GCFs technique in Example 1 with R = 10, λ = 0.75, α = 1, 0.75, and p = 5.

When λ = 0.98, different numerical methods, such as the variational iteration method
(VIM) [14], the PLSM [15], the method based on an operational matrix of Bernstein polyno-
mials [16], and LWOMM [17], reported the approximate solutions for this value. In all of
these approaches, the solutions obtained are three-degree polynomials. However, here, we
first consider the case α = 1 and obtain the following approximate solutions

U (5)
5,1 (τ) = 0.038196735 τ5 − 0.20054309 τ4 + 0.32635768 τ3 + 0.13961269 τ2 − 1.054247 τ + 1.0,

V (5)
5,1 (τ) = −0.03637521 τ5 + 0.2145241 τ4 − 0.5073211 τ3 + 0.5049069 τ2 + 0.008199928 τ + 1.0.

Additionally, the maximum absolute values of REFs using α = 0.98 are shown in
Table 4 for various values of R as a power of 2. The related Nocs are also tabulated in this
table. Moreover, we present the numerical results when λ, α = 0.75 in Table 4. One can
obviously observe a high order of accuracy for the proposed QLM-GCFs. Finally, for the
first test case, we use various values of λ = 0.25, 0.5, 0.75, 1. Utilizing R = 10 and α = λ,
we plot the numerical solutions in Figure 5.
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Table 3. Numerical results and REFs for u(τ), v(τ) obtained via the QLM-GCFs procedure using
R = 10, p = 5 in Example 1 with λ, α = 0.5.

τ U (5)
10,0.5(τ) Res(5)

u,10,0.5(τ) V (5)
10,0.5(τ) Res(5)

v,10,0.5(τ)

0.1 0.676592310003481 2.8530 × 10−14 1.059227208815533 1.4962 × 10−15

0.2 0.573857423802071 1.1549 × 10−13 1.096675293835927 1.0566 × 10−13

0.3 0.507770381824183 1.3181 × 10−13 1.124827045650820 1.3320 × 10−13

0.4 0.459738270417381 6.8264 × 10−13 1.147290159849651 2.6591 × 10−13

0.5 0.422579704301791 1.0439 × 10−13 1.165852096005718 1.5040 × 10−13

0.6 0.392675915528585 4.1750 × 10−13 1.181563743233397 4.5923 × 10−14

0.7 0.367932268722878 9.3469 × 10−13 1.195103916669479 4.5888 × 10−14

0.8 0.347025860146580 7.5152 × 10−13 1.206938751776391 1.2845 × 10−13

0.9 0.329068932537851 3.1123 × 10−14 1.217402627420391 7.1534 × 10−14

1.0 0.313438314355603 1.2928 × 10−12 1.226743490360364 1.1390 × 10−13

Table 4. The results of L∞ norms, the corresponding convergence rate in Example 1 with diverse R,
λ, α = 0.75, 0.98, and p = 5.

λ = 0.75 λ = 0.98

R Lu
∞ Nocu

∞ Lv
∞ Nocv

∞ Lu
∞ Nocu

∞ Lv
∞ Nocv

∞

2 2.9301−02 − 2.6438−01 − 8.4327−02 − 2.5731−01 −
4 6.7159−02 −1.1966 5.1045−02 2.3727 2.6363−02 1.6775 1.6514−02 3.9617
8 5.9544−04 6.8175 3.7342−04 7.0948 9.6808−05 8.0892 1.2087−04 7.0941

16 8.0008−07 9.5396 5.8560−07 9.3167 1.5261−08 12.631 1.5225−08 12.955
32 2.3658−08 5.0797 1.2673−08 5.5301 4.7902−11 8.3155 2.3028−11 9.3689
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Figure 5. Comparisons of approximate solutions for u(τ) (left) and v(τ) (right) obtained via the
QLM-GCFs technique in Example 1 with R = 10, λ, α = 0.25, 0.5, 0.75, 1, and p = 5.

Example 2. In the second model problem, we take θ = 0.5 and η = 0.1. In this case, we consider
the nonlinear coupled system{

LCDλ
τ u(τ) = 0.5 − 1.1 u(τ) + u2(τ) v(τ),

LCDλ
τ v(τ) = 0.1 u(τ)− u2(τ) v(τ),

λ ∈ (0, 1].
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Here, we use initial conditions u(0) = 0.4, v(0) = 1.5. This example was considered
in [14,16,17] previously.

Let us first take λ, α = 1. By using R = 5, the results of the approximations are as
follows

U (5)
5,1 (τ) = −0.002595532 τ5 − 0.01516870 τ4 + 0.02354928 τ3 − 0.002285779 τ2 + 0.30026 τ + 0.4,

V (5)
5,1 (τ) = 0.007186591 τ5 + 0.007075174 τ4 − 0.02123004 τ3 − 0.1484152 τ2 − 0.2001643 τ + 1.5.

The REFs related to the above approximate solutions are shown in Figure 6. To show
that the achieved REFs are decreasing as a function of R, we also plot the REFs related to
R = 10, 15 in Figure 6. Clearly, the desired level of accuracy is achievable by increasing the
number of basis functions.

We next tabulate the numerical results obtained by using R = 10 in Table 5. Here, we
have used the midpoints 0.05, 0.15, . . . , 0.95 on the interval [0, 1]. Note that these midpoints
are different from the points used in Table 1, which are exactly the same as the collocation
points (29) when R = 10. In fact, the smallest magnitude of errors is achieved at the
collocation points. Finally, for this test case and for λ = 1, we display the maximum
absolute REFs achieved by utilizing various R numbers in Table 6. The associated Nocs are
also visible in this table. The results show the exponential behavior in terms of the accuracy
of the presented QLM-GCFs.

We now consider the fractional-order 0 < λ < 1. By considering λ = 0.5, 0.75, we
obtain the results of absolute values of REFs using various R = 2, 4, . . . , 32, as shown in
Table 7. The associated numerical order of convergence, i.e., Nocs, is also depicted in
Table 7. Obviously, we can get a higher order accuracy by increasing R. Finally, we present
numerical results computed at some points τ ∈ [0, 1] in Table 8. Here, we have used diverse
values of λ, α = 0.25, 0.5, 0.75.

Table 5. Numerical results and REFs for u(τ), v(τ) obtained via the QLM-GCFs procedure using
R = 10, p = 5 in Example 2 with λ, α = 1.

τ U (5)
10,1(τ) Res(5)

u,10,1(τ) V (5)
10,1(τ) Res(5)

v,10,1(τ)

0.05 0.420364987163538 5.4281 × 10−08 1.464193736210683 6.9171 × 10−08

0.15 0.458172247718453 2.8803 × 10−09 1.395407097431014 3.6639 × 10−09

0.25 0.492300715744509 5.0979 × 10−10 1.330238068232444 6.4809 × 10−10

0.35 0.523000098574405 1.6945 × 10−10 1.268512980921797 2.1555 × 10−10

0.45 0.550506819287693 9.0387 × 10−11 1.210065493419779 1.1521 × 10−10

0.55 0.575044582788486 7.2710 × 10−11 1.154736326110934 9.3018 × 10−11

0.65 0.596824922738173 8.6618 × 10−11 1.102373006480542 1.1144 × 10−10

0.75 0.616047729841562 1.5522 × 10−10 1.052829621356641 2.0132 × 10−10

0.85 0.632901761975499 4.4405 × 10−10 1.005966576578516 5.8234 × 10−10

0.95 0.647565136639679 2.3660 × 10−09 0.961650363916099 3.1497 × 10−09

Table 6. The results of L∞ norms, the corresponding convergence rate, and CPU times in Example 2
with diverse R, λ, α = 1, and p = 5.

R Lu
∞ Nocu

∞ Lv
∞ Nocv

∞

2 2.3453 × 10−2 − 3.1850 × 10−2 −
4 1.5211 × 10−3 3.9466 3.7107 × 10−3 3.1015
8 1.5652 × 10−6 9.9245 3.1978 × 10−7 13.502
16 3.8244 × 10−11 15.321 5.1169 × 10−11 12.610
32 4.0160 × 10−13 6.5733 5.1238 × 10−14 9.9638

200



Axioms 2022, 11, 654

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10−19

10−17

10−15

10−13

10−11

10−9

10−7

10−5

10−3

τ

Res
(5)
u,5,1(τ)

Res
(5)
v,5,1(τ)

Res
(5)
u,10,1(τ)

Res
(5)
v,10,1(τ)

Res
(5)
u,15,1(τ)

Res
(5)
v,15,1(τ)

Figure 6. Comparisons of achieved REFs obtained via QLM-GCFs in Example 2 with λ, α = 1,
R = 5, 10, 15, and p = 5.

Table 7. The results of L∞ norms and the corresponding convergence rate in Example 2 with diverse
R, λ, α = 0.5, 0.75, and p = 5.

λ = 0.5 λ = 0.75

R Lu
∞ Nocu

∞ Lv
∞ Nocv

∞ Lu
∞ Nocu

∞ Lv
∞ Nocv

∞

2 8.3797−02 − 1.7867−01 − 6.2299−02 − 1.0729−01 −
4 5.0780−02 0.7226 6.4041−02 1.4802 4.2712−02 3.8665 3.0414−03 5.1406
8 5.6280−03 3.1736 3.8246−03 4.0656 4.1380−04 3.3676 5.3709−04 2.5015
16 1.2860−04 5.4516 4.9033−05 6.2854 6.9800−08 12.533 6.5807−08 12.995
32 1.8406−07 9.4485 3.9839−07 6.9434 1.1363−11 12.585 4.3433−11 10.565

Table 8. Numerical results and REFs for u(τ), v(τ) obtained via the QLM-GCFs procedure using
R = 10, p = 5 in Example 2 with λ, α = 0.25, 0.5, 0.75.

λ = α = 0.25 λ = α = 0.5 λ = α = 0.75

τ U (5)
10,α(τ) V (5)

10,α(τ) U (5)
10,α(τ) V (5)

10,α(τ) U (5)
10,α(τ) V (5)

10,α(τ)

0.05 0.53635357 1.36264701 0.54865158 1.35823553 0.47111143 1.40197516
0.15 0.59116199 1.26326681 0.62140849 1.25622929 0.54574688 1.28946276
0.25 0.61628002 1.20991192 0.65785082 1.18993711 0.59572321 1.20586462
0.35 0.63187140 1.17308734 0.68077488 1.13917346 0.63266615 1.13749235
0.45 0.64277275 1.14501830 0.69648157 1.09776992 0.66096850 1.07937071
0.55 0.65091723 1.12240609 0.70772186 1.06280079 0.68300039 1.02887191
0.65 0.65726824 1.10352709 0.71595859 1.03259028 0.70025234 0.98436225
0.75 0.66237220 1.08736331 0.72206423 1.00606805 0.71374714 0.94472572
0.85 0.66656700 1.07326219 0.72660021 0.98249967 0.72422723 0.90915154
0.95 0.67007499 1.06078003 0.72994787 0.96135501 0.73225308 0.87702453

6. Conclusions

Generalized (fractional-order) clique basis functions (GCFs) have been used to devise
not only an effective but also an accurate spectral matrix collocation approach for find-
ing approximate solutions of the nonlinear Brusselator system of equations of fractional
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order arising in chemical modeling. The fractional derivative is described in the Liouville–
Caputo sense. To overcome the underlying nonlinearity of the model, the method of
quasi-linearization (QLM) is first employed to receive a family of linearized equations. Af-
terward, the spectral clique collocation procedure is used to solve this sequence of equations
iteratively. The convergence analysis of the proposed combined QLM-GCFs is established.
To support the theoretical findings and in order to show the applicability of the QLM-GCFs,
a set of numerical test examples is carried out. The results presented in the tables and
figures indicate the accuracy of the proposed approach over the existing numerical models
and the gain in computational efficiency in terms of CPU time. The presented technique is
straightforward, easy to implement, and computationally less demanding.
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Abstract: In the present article, we iteratively deduce new monotonic properties of a class from
the positive solutions of fourth-order delay differential equations. We discuss the non-canonical
case in which there are possible decreasing positive solutions. Then, we find iterative criteria that
exclude the existence of these positive decreasing solutions. Using these new criteria and based
on the comparison and Riccati substitution methods, we create sufficient conditions to ensure that
all solutions of the studied equation oscillate. In addition to having many applications in various
scientific domains, the study of the oscillatory and non-oscillatory features of differential equation
solutions is a theoretically rich field with many intriguing issues. Finally, we show the importance of
the results by applying them to special cases of the studied equation.

Keywords: delay differential equation; higher-order; oscillatory; nonoscillatory; non-canonical case

1. Introduction

In this work, we study the asymptotic behavior of solutions to the fourth-order delay
differential equation of the form

(h(r)(Φ′′′(r))α)′ + q(r)Φα(τ(r)) = 0, (1)

where r ≥ ro. Through the paper, the next conditions are satisfied:

(V1) α > 0 is a quotient of odd positive integers;
(V2) h, q, τ ∈ C([ro, ∞), (0, ∞)), τ(r) < r, limr→∞ τ(r) = ∞, and

η(ro) =
∫ ∞

ro
h−1/α(v)dv < ∞. (2)

By a solution of (1), we mean a function Φ ∈ C([r∗, ∞),R), r∗ ≥ ro such that Φ(r)
satisfies (1) on [r∗, ∞). In what follows, we suppose that solutions of (1) exist and can be
continued indefinitely to the right. Furthermore, we consider only solutions Φ(r) of (1)
that satisfy sup{|Φ(r)| : r∗ ≤ r} > 0 for all r ≥ r∗, and we tacitly assume that (1) possesses
such solutions.

Definition 1. A solution Φ of (1) is said to be non-oscillatory if, essentially, it is positive or
negative; otherwise, it is said to be oscillatory. If all of its solutions oscillate, the equation itself is
called oscillatory.

Axioms 2022, 11, 636. https://doi.org/10.3390/axioms11110636 https://www.mdpi.com/journal/axioms204
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The delay differential equations are a subclass of functional differential equations. The
concept of delay in systems is proposed as a key role in modeling when representing the
time taken to complete some hidden operations. Examples of the delay in the predator–prey
model occur when the predator birth rate is affected by previous levels of predator or prey
rather than only current levels. With the rapid development of communication technologies,
sending measured signals to the remote-control center has become increasingly simple.
However, the main problem facing engineers is the inevitable time delay between the
measurement and the signal received by the controller, and this time delay must be taken
into account at the design stage to avoid risks of experimental instability and potential
damage, see [1,2].

Differential equations of the fourth-order delay can be found in the mathematical
models of numerous biological, chemical, and physical phenomena. Examples of such ap-
plications include elastic problems and soil settlement. One model that can be represented
by a fourth-order oscillatory equation with delay is the oscillatory traction of a muscle,
which occurs when the muscle is under an inertial load [3].

One of two things is necessarily required to explain natural phenomena and problems
that use differential equations in their modeling: either finding solutions to these equations
or studying the properties of these solutions. However, the equations resulting from
the modeling of natural phenomena are often non-linear differential equations that are
difficult to find a closed-form solution to, and this has strongly stimulated the study of
the qualitative behavior of these models. From here, strong interest has emerged in the
study of the qualitative theory of differential equations, one of the most important branches
of which is the theory of oscillation. Obtaining lower bounds for the separation between
succeeding zeros, taking into account the number of zeros, studying the laws of distribution
of the zeros, and establishing the conditions for the existence of oscillatory (non-oscillatory)
solutions and/or convergence to zeroconstitute the essence of oscillation theory, see [4].

Finding sufficient conditions for the oscillatory and non-oscillatory properties of
second and higher-order differential equations has been a persistent area of research over
the last few years, see [5–7]. Among the numerous papers dealing with this subject, we
refer in particular to the following.

Onose [8] focused on the oscillation of fourth-order functional differential equations(
h(r)Φ′′(r)

)′′
+ f (Φ(τ(r)), r) = 0

and (
h(r)Φ′′(r)

)′′
+ q(r) f (Φ(τ(r))) = τ(r),

under the canonical case. The oscillation and non-oscillation of the fourth and higher-
order differential equations have been the focus of the attention of numerous authors since
this paper was first published.

Wu [9] and Kamo and Usami [10] studied the oscillatory of a fourth-order differen-
tial equation (

h(r)
∣∣Φ′′(r)

∣∣α−1Φ′′(r)
)′′

+ q|Φ(r)|β−1Φ(r) = 0,

when the noncanonical holds and the constants α and β are positive.
Grace et al. [11] focused on the oscillatory behavior of the fourth-order differential

equation of the form (
h
(
Φ′)α)′′′(r) + q(r) f (Φ(g(r))) = 0,

under the noncanonical case.
Zhang et al. [12] and Baculikova et al. [13] studied the oscillatory behavior of the

higher-order differential equation(
h(r)
(

Φn−1(r)
)α)′

+ q(r) f (Φ(τ(r))) = 0. (3)
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Ref. [12] provided some oscillation criteria for Equation (3), in which f (Φ) = Φβ

and β is a quotient of odd positive integers. In [13], various techniques have been used in
investigating higher-order differential equations. In the case where n = 4 and f (Φ) = Φα,
by the Riccatti technique, Zhang et al. [14] established some new criteria for the oscillation
of all solutions of the fourth-order differential Equation (3).

Theorem 1. Ref. [12] Let n ≥ 2. Suppose that (2) holds. Further, assume that for some constant
λ0 ∈ (0, 1), the differential equation

Φ′(r) + q(r)
(

λ0τn−1(r)

(n − 1)!h1/α(τ(r))

)β

Φβ/α(τ(r)) = 0, (4)

is oscillatory. If

lim sup
r→∞

∫ r

r0

(
Mβ−αq(j)

(
λ1τn−2(j)

(n − 2)!

)β

ηα(j)− αα+1

(α + 1)α+1
1

η(j)h1/α(j)

)
dj = ∞, (5)

for some constant λ1 ∈ (0, 1) and for every constant M > 0, then every solution of (6) is oscillatory
or tends to zero.

Zhang et al. [15] suggested some new oscillation criteria for an even-order delay
differential equation (

h(r)
(

Φn−1(r)
)α)′

+ q(r)Φβ(τ(r)) = 0, (6)

in the noncanonical case with n ≥ 4, where β is a quotient of odd positive integers.

Theorem 2. Ref. [15] Let n ≥ 4 be even, (V1), (V2), and (2). Suppose that differential Equation
(4) is oscillatory for some constant λ0 ∈ (0, 1). If (5) and

lim sup
r→∞

∫ r

ro

[
Mβ−αq(j)Hα(j)− αα+1

(α + 1)α+1
(H′(j))α+1

H(j)ηα
1 (j)

]
dj = ∞,

hold for some constants λ1 ∈ (0, 1) and for every constant M > 0, then (6) is oscillatory, where

H(r) =
∫ ∞

r
(j − r)η(j)dj.

By using a generalized Riccatti substitution, in the case f (Φ) = qΦβ where q is a
nonnegative function and β is a quotient of odd positive integers, Moaaz and Muhib [16]
provided a new criterion for the oscillation of solutions of fourth-order quasi-linear differ-
ential equations (

h(r)
(
Φ′′′(r)

)α)′
+ f (r, Φ(σ(r))) = 0. (7)

Theorem 3. Ref. [16] Suppose that α ≥ 1 and the differential equation

Φ′(r) + q(r)
(

λ0τ3(r)

3!h1/α(τ(r))

)β

Φβ/α(τ(r)) = 0, (8)

oscillates where λ0 ∈ (0, 1). If there is a positive function γ ∈ C1([ro, ∞), (0, ∞)) such that

lim sup
r→∞

∫ r

r0

(
ϕ(j)− h(j)γ(j)

(α + 1)α+1

(
γ′(j)

γ(j)
+

(1 + α)

h1/α(j)η(j)

)α+1
)

dj = ∞, (9)
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holds for any positive constants c1 and c2 and for λ1 ∈ (0, 1), where

ϕ(r) = γ(r)q
(

λ1

2!
τ2
)β

+ (1 − α)
γ(r)

h1/α(r)ηα+1(r)

then every solution of (6) is oscillatory or tends to zero.

Theorem 4. Ref. [16] Suppose that Equation (8) oscillates where λo ∈ (0, 1). If there is a function
γ ∈ C1([ro, ∞), (0, ∞)) such that

lim sup
r→∞

ηα(r)

γ(r)

∫ r

ro

(
γ(j)q(j)

(
λ1

2!
τ2(j)

)α

− h(j)(γ′(j))α+1

(α + 1)α+1γα(j)

)
dj > 1, (10)

then every solution of (7) is oscillatory or converges to zero as r → ∞ for λ1 ∈ (0, 1).

Theorem 5. Ref. [16] Suppose that α ≥ 1 and the differential Equation (8) is oscillatory or some
constant λo ∈ (0, 1). If there is a function γ ∈ C1([ro, ∞), (0, ∞)) such that (9) and

lim sup
r→∞

∫ r

ro

[
ψ(j)− γ(j)

(α + 1)(α+1)ηα
1 (r)

(
γ′(j)

γ(j)
+

(1 + α)η1(j)

η2(j)

)α+1
]

dj = ∞, (11)

holds for λ1 ∈ (0, 1), where

ψ(r) = qγ(r) + (1 − α)γ(r)η1(r)/ηα+1
2 (r).

Then, (7) is oscillatory .

Elabbasy et al. [17] considered the even-order neutral differential equation with sev-
eral delays

(h(r)(z(n−1)(r))α)′ +
k

∑
i=1

qi(r) f (Φ(τi(r))) = 0,

where z(r) = Φ(r)+ p(r)Φ(τ(r)) and n ≥ 4 with the noncanonical operator. Moaaz et al. [18]
studied the fourth-order delay differential equation of the form

(h(r)(Φ′′′(r))α)′ + f (r, Φ(σ(r))) = 0,

under the noncanonical case.

Lemma 1. Ref. [19] Let f ∈ Cn([ro, ∞), (0, ∞)). If the derivative f (n)(r) is eventually of one
sign for all large r, then there is a rΦ such that rΦ ≥ ro and an integer l, 0 ≤ l ≤ n, with n + l
even for f (n)(r) ≥ 0, or n + l odd for f (n)(r) ≤ 0 such that

l > 0 implies f (k)(r) > 0 for r ≥ rΦ, k = 0, 1, . . . , l − 1,

and
l ≤ n − 1 implies (−1)l+k f (k)(r) > 0 for r ≥ rΦ, k = l, l + 1, . . . , n − 1.

Lemma 2. Ref. [12] Let α be a ratio of two odd positive integers. Then,

Lv
(α+1)/α − Kv ≥ − αα

(α + 1)α+1
Kα+1

Lα
, L > 0 (12)

and
A(α+1)/α − (A − B)(α+1)/α ≤ 1

α
B1/α[(1 + α)A − B], α ≥ 1, AB ≥ 0. (13)

207



Axioms 2022, 11, 636

The main purpose of this work is to test the oscillation of solutions of a fourth-order
delay differential Equation (1). This paper is organized as follows: In Section 2, we create
new properties that help us achieve more effective terms in the oscillation of the studied
equation. In Section 3, we apply the Riccati substitution in the general form and the
comparison method to obtain criteria that excluded decreasing solutions. In Section 4, by
combining the results known in the literature and the results we obtained, we set criteria
that ensure the oscillation of the studied equation and offer an illustrative example to show
our results. Finally, in Section 5, we conclude the article with a summary.

2. New Monotonic Properties

It is well known that positive solutions of delay differential equations must be catego-
rized based on the sign of their derivatives when investigating their oscillatory behavior.
Now, we assume that Φ is an eventually positive solution of (1). From the differential
equation in (1) and taking into account that q(r) > 0, we have that h(r)(Φ′′′(r))α is a
nonincreasing function. Furthermore, according to Lemma 1, we obtain the following three
cases, eventually:

Case (1) : Φ′(r) > 0, Φ′′′(r) > 0 and Φ(4)(r) < 0;
Case (2) : Φ′(r) > 0, Φ′′(r) > 0 and Φ′′′(r) < 0;
Case (3) : Φ′(r) < 0, Φ′′(r) > 0 and Φ′′′(r) < 0,

for r ≥ r1, where r1 is sufficiently large. For convenience, we will symbolize the set of
all eventually positive solutions of the Equation (1) by +and the set of all solutions with
satisfying case (3) by +

3 .
In order to prove our main results, we define the following:

ηi(r) =
∫ ∞

r
ηi−1(j)dj for i = 1, 2.

and

β∗ = lim inf
r→∞

1
α

q(r)η−1
1 (r)ηα+1

2 (r).

In addition, we put

μ∗ = lim inf
r→∞

η2(τ(r))

η2(r)
.

It is useful to note that in view of (V2), μ∗ ≥ 1. In the proofs, we will often use
that there is r1 ≥ ro sufficiently large such that, for arbitrary β ∈ (0, β∗) and μ ∈ [1, μ∗),
we have

q(r)η−1
1 (r)ηα+1

2 (r) ≥ αβ, (14)

and
η2(τ(r))

η2(r)
≥ μ.

on [r1, ∞).
Below, we define a sequence that is used to improve the monotonic properties of the

positive solutions of (1).

Definition 2. We define sequence {βn} as βo = α
√

β∗ and

βn =
βoμ

βn−1∗
α
√

1 − βn−1
, n ∈ N. (15)
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Remark 1. By induction, it is easy to see that if, for any n ∈ N, βi < 1, for i = 0, 1, 2, . . . , n.
Then, βn+1 exists and

βn+1 = �nβn > βn, (16)

where �n is defined by

�o =
μ

βo∗
α
√

1 − βo
,

and

�n+1 = μ
βo(�n−1)
∗ α

√
1 − βn

1 − �nβn
, n ∈ No.

Lemma 3. Assume that Φ ∈ C([ro, ∞), (0, ∞)) is a solution of (1) and Case (3) holds. If

∫ ∞

ro

(
1

h(v)

∫ v

r1

q(j)dj

)1/α

dv = ∞, (17)

then Φ(r) converges to zero and Φ(r)/η2(r) is eventually nondecreasing.

Proof. Assume that Φ ∈ + and satisfies case (3). Then, we obtain that limr→∞ Φ(r) = δ ≥ 0.
We claim that lim

r→∞
Φ(r) = 0. Assume the contrary that δ > 0. Thus, there is r1 ≥ ro such

that Φ(τ(r)) ≥ δ for r ≥ r1, and hence(
h(r)
(
Φ′′′(r)

)α)′
= −q(r)Φα(τ(r)) ≤ −δαq(r),

for r ≥ r1. Integrating the above inequality twice from r1 to r, we have

Φ′′′(r) ≤ −δ

(
1

h(r)

∫ r

r1

q(j)dj

)1/α

and

Φ′′(r) ≤ Φ′′(r1)− δ
∫ r

r1

(
1

h(v)

∫ v

r1

q(j)dj

)1/α

dv.

Letting r → ∞ and using (17), we obtain that limr→∞ Φ′′(r) = −∞, which contradicts
Φ′′(r) > 0. Thus, the proof is complete. Using the fact that h1/α(r)Φ′′′(r) is nonincreasing,
we see that

Φ′′(r) ≥ −
∫ ∞

r
h−1/α(j)h1/α(j)Φ′′′(j)dj ≥ −h1/α(r)Φ′′′(r)η(r). (18)

Now, we have(
Φ′′(r)
η(r)

)′
=

η(r)Φ′′′(r) + h−1/α(r)Φ′′(r)
η2(r)

=
1

h1/α(r)η2(r)

[
h1/α(r)Φ′′′(r)η(r) + Φ′′(r)

]
≥ 0. (19)

Thus, we obtain

Φ′(r) ≤ −
∫ ∞

r
η(j)

Φ′′(j)

η(j)
dj ≤ −Φ′′(r)

η(r)
η1(r), (20)
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which implies (
Φ′(r)
η1(r)

)′
=

η1(r)Φ′′(r) + η(r)Φ′(r)
η2

1(r)

=
1

η2
1(r)

[
Φ′′(r)η1(r) + Φ′(r)η(r)

]
≤ 0. (21)

This leads to

Φ(r) ≥ −
∫ ∞

r
η1(j)

Φ′(j)

η1(j)
dj ≥ −Φ′(r)

η1(r)
η2(r), (22)

hence (
Φ(r)

η2(r)

)′
=

η2(r)Φ′(r) + η1(r)Φ(r)

η2
2(r)

=
1

η2
2(r)

[
η2(r)Φ′(r) + η1(r)Φ(r)

]
≥ 0. (23)

This completes the proof.

Lemma 4. Let β∗ > 0 and μ∗ < ∞. If Φ ∈ C([ro, ∞), (0, ∞)) is a solution of (1) and Case (3)
holds, then for any n ∈ No (

Φ(r)

η
βn
2 (r)

)′
< 0.

Proof. Assume that Φ ∈ + and satisfies case (3) on [r1, ∞) where r1 ≥ ro such that
Φ(τ(r)) > 0 and (14) holds for r ≥ r1. Integrating (1) from r1 to r, we have

h(r)
(
Φ′′′(r)

)α
= h(r1)

(
Φ′′′(r1)

)α −
∫ r

r1

q(j)Φα(τ(j))dj

≤ h(r1)
(
Φ′′′(r1)

)α − Φα(r)
∫ r

r1

q(j)dj.

By using (14) in the above inequality, we obtain

h(r)
(
Φ′′′(r)

)α ≤ h(r1)
(
Φ′′′(r1)

)α − βΦα(r)
∫ r

r1

α

η−1
1 (j)ηα+1

2 (j)
dj

≤ h(r1)
(
Φ′′′(r1)

)α − β
Φα(r)

ηα
2 (r)

+ β
Φα(r)

ηα
2 (r1)

.

From Lemma 3, we have that limr→∞ Φ(r) = 0. Hence, there is a r2 ∈ [r1, ∞) such that

h(r1)
(
Φ′′′(r1)

)α
+ β

Φα(r)

ηα
2 (r1)

< 0,

for r ≥ r2. Thus,

h(r)
(
Φ′′′(r)

)α
< −β

Φα(r)

ηα
2 (r)

or
h1/α(r)Φ′′′(r)η2(r) < − α

√
βΦ(r) = −εoβoΦ(r), (24)
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where εo = α
√

β/βo is an arbitrary constant from (0, 1). Note that,

h1/α(r)Φ′′′(r)η(r) ≥
∫ ∞

r
h−1/α(j)h1/α(j)Φ′′′(j)dj ≥ −Φ′′(r),

then,
Φ′′(r) ≥ −h1/α(r)η(r)Φ′′′(r).

By repeating this step twice over [r, ∞), we obtain

Φ′(r) ≤ h1/α(r)η1(r)Φ′′′(r) (25)

and
Φ(r) ≥ −h1/α(r)η2(r)Φ′′′(r).

From (24) and (25), we obtain

Φ′(r)
η1(r)

≤ h1/α(r)Φ′′′(r)

and
Φ′(r)
η1(r)

≤ − α
√

β
Φ(r)

η2(r)
,

hence,
η2(r)Φ′(r) + α

√
βη1(r)Φ(r) ≤ 0.

Therefore,⎛⎝ Φ(r)

η
α
√

β

2 (r)

⎞⎠′

=
η

α
√

β

2 (r)Φ′(r) + α
√

βη
α
√

β−1
2 (r)η1(r)Φ(r)

η
2 α
√

β

2 (r)

=
η

α
√

β−1
2

[
α
√

βη1(r)Φ(r) + η2(r)Φ′(r)
]

η
2 α
√

β

2 (r)

=
1

η
α
√

β+1
2 (r)

[
α
√

βη1(r)Φ(r) + η2(r)Φ′(r)
]

≤ 0.

Integrating (1) from r2 to r and using that Φ(r)/η
α
√

β

2 (r) is decreasing, we have

h(r)
(
Φ′′′(r)

)α ≤ h(r2)
(
Φ′′′(r2)

)α −
∫ r

r2

q(j)η
α α
√

β

2 (τ(j))
Φα(τ(j))

η
α α
√

β

2 (τ(j))

dj

≤ h(r2)
(
Φ′′′(r2)

)α −
⎛⎝ Φ(τ(r))

η
α
√

β

2 (τ(r))

⎞⎠α ∫ r

r2

q(j)η
α α
√

β

2 (τ(j))dj,

hence,

h(r)
(
Φ′′′(r)

)α ≤ h(r2)
(
Φ′′′(r2)

)α −
⎛⎝ Φ(r)

η
α
√

β

2 (r)

⎞⎠α ∫ r

r2

q(j)

(
η2(τ(j))

η2(j)

)α α
√

β

η
α α
√

β

2 (j)dj.

It is clear that from (14), we have
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h(r)
(
Φ′′′(r)

)α ≤ h(r2)
(
Φ′′′(r2)

)α − β

(
Φ(r)

η
α
√

β(r)

)α ∫ r

r2

α
(

η2(τ(j))
η2(j)

)α α
√

β

η1(j)η
α+1−α α

√
β

2 (j)

dj

≤ h(r2)
(
Φ′′′(r2)

)α − β

1 − α
√

β
μα α

√
β

⎛⎝ Φ(r)

η
α
√

β

2 (r)

⎞⎠α ∫ r

r2

α
(
1 − α
√

β
)

η1(j)η
α+1−α α

√
β

2 (j)

dj,

which implies that,

h(r)
(
Φ′′′(r)

)α ≤ h(r2)
(
Φ′′′(r2)

)α −
β

1 − α
√

β
μα α

√
β

⎛⎝ Φ(r)

η
α
√

β

2 (r)

⎞⎠α⎛⎝ 1

η
α(1− α

√
β)

2 (r)

− 1

η
α(1− α

√
β)

2 (r2)

⎞⎠.

(26)

Now, we claim that limr→∞ Φ(r)/η
α
√

β

2 (r) = 0. It is enough to show that there is

ε > 0 such that Φ(r)/η
α
√

β+ε

2 (r) is eventually decreasing. Since η2(r) tends to zero, there is
a constant

� ∈
⎛⎝ α

√
1 − α
√

β

μ
α
√

β
, 1

⎞⎠
and a r3 ≥ r2 such that

1

η
α(1− α

√
β)

2 (r)

− 1

η
α(1− α

√
β)

2 (r2)

> �α 1

η
α(1− α

√
β)

2 (r)

, (27)

for r ≥ r3. By using (27) in (26), we obtain

h(r)
(
Φ′′′(r)

)α ≤ − �αβ

1 − α
√

β
μα α

√
β

(
Φ(r)

η2(r)

)α

,

its mean ,

h1/α(r)Φ′′′(r) ≤ −
(

α
√

β + ε
)Φ(r)

η2(r)
, (28)

where

ε = α
√

β

⎛⎝ �μ
α
√

β

α

√
1 − α
√

β
− 1

⎞⎠ > 0.

Thus, from (28), ⎛⎝ Φ(r)

η
α
√

β+ε

2 (r)

⎞⎠′

≤ 0,

for r ≥ r3, and hence the claim is valid. Therefore, for r4 ∈ [r3, ∞),

h(r2)
(
Φ′′′(r2)

)α
+

β

1 − α
√

β
μα α

√
β

⎛⎝ Φ(r)

η
α
√

β

2 (r)

⎞⎠α

1

η
α(1− α

√
β)

2 (r2)

< 0,

212



Axioms 2022, 11, 636

for r ≥ r4. By using the above inequality in (26), we have

h(r)
(
Φ′′′(r)

)α ≤ h(r2)
(
Φ′′′(r2)

)α − β

1 − α
√

β
μα α

√
β

⎛⎝ Φ(r)

η
α
√

β

2 (r)

⎞⎠α

1

η
α(1− α

√
β)

2 (r)

+
β

1 − α
√

β
μα α

√
β

⎛⎝ Φ(r)

η
α
√

β

2 (r)

⎞⎠α

1

η
α(1− α

√
β)

2 (r2)

≤ h(r2)
(
Φ′′′(r2)

)α − β

1 − α
√

β
μα α

√
β

(
Φ(r)

η2(r)

)α

+
β

1 − α
√

β
μα α

√
β

⎛⎝ Φ(r)

η
α
√

β

2 (r)

⎞⎠α

1

η
α(1− α

√
β)

2 (r2)

hence,

h(r)
(
Φ′′′(r)

)α
< − β

1 − α
√

β
μα α

√
βΦα(r),

or

h1/α(r)Φ′′′(r) < −
α
√

β

α

√
1 − α
√

β
μ

α
√

βΦ(r) = −ε1β1Φ(r),

for r ≥ r4, where

ε1 = α

√
β
(
1 − α
√

β∗
)

β∗
(
1 − α
√

β
) μ

α
√

β

μ
α
√

β∗
∗

is an arbitrary constant from (0, 1) approaching 1 if β → β∗ and μ → μ∗. Hence,(
Φ(r)

η
ε1β1
2 (r)

)
< 0,

for r ≥ r4. One can show that through induction, for any n ∈ No and r large enough,(
Φ(r)

η
εn βn
2 (r)

)′
< 0,

where εn given by

εo =
α

√
β

β∗

εn+1 = εo
α

√
1 − βn

1 − εnβn

μεn βn

μ
βn∗

, n ∈ No

is an arbitrary constant from (0, 1) approaching 1 if β → β∗ and μ → μ∗. Finally, we claim
that from any n ∈ No (

Φ(r)

η
εn+1βn+1
2 (r)

)′
< 0

implies that from (16) and the fact that εn+1 is arbitrary close to 1,

εn+1βn+1 > βn.

Hence, for r large enough,

h1/α(r)Φ′′′(r)η2(r) < −εn+1βn+1Φ(r) < −βnΦ(r).
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So, for any n ∈ No and r large enough,(
Φ(r)

η
βn
2 (r)

)′
< 0.

The proof is complete.

3. Nonexistence of Solutions in the Class +
3

Theorem 6. Suppose that (V1) and (V2) hold. If

lim sup
r→∞

∫ r

ro

[
Hα(j)q(j)

η
αβn
2 (τ(j))

η
αβn
2 (j)

− αα

(α + 1)α+1
(H′(j))α+1

H(j)ηα
1 (j)

]
dj = ∞, (29)

then +
3 = ∅. Where

H(r) =
∫ ∞

r
(j − r)η(j)dj.

Proof. Consider the case where (1) has a nonoscillatory solution. We can suppose that
Φ ∈ + eventually without losing generality. Assume that Φ satisfies case (3). Since
h(r)(Φ′′′(r))α is nonincreasing, we obtain

h1/α(j)Φ′′′(j) ≤ h1/α(r)Φ′′′(r), j ≥ r ≥ r1. (30)

By dividing (30) by h1/α(j) and integrating the resulting inequality from r to �,
we obtain

Φ′′(�) ≤ Φ′′(r) + h1/α(r)Φ′′′(r)
∫ �

r
h1/α(j)dj.

Letting � → ∞, we have

0 ≤ Φ′′(r) + h1/α(r)Φ′′′(r)η(r),

which produces
Φ′′(r) ≥ −η(r)h1/α(r)Φ′′′(r). (31)

Integrating (31) from r to ∞, yields

− Φ′(r) ≥ −h1/α(r)Φ′′′(r)
∫ ∞

r
η(j)dj. (32)

Again, integrating (32) from r to ∞, we obtain

Φ(r) ≥ −h1/α(r)Φ′′′(r)
∫ ∞

r
(j − r)η(j)dj.

Now, define the function ω by

ω(r) :=
h(r)(Φ′′′(r))α

(Φ(r))α , r ≥ r1. (33)

Then, we see that ω(r) < 0 for r ≥ r1. Differentiating (33), we obtain

ω′(r) = (h(r)(Φ′′′(r))α)′

(Φ(r))α − α
h(r)(Φ′′′(r))αΦ′(r)

(Φ(r))α+1 .

It follows from (1) and (32) that

ω′(r) ≤ −q(r)
Φα(τ(r))

(Φ(r))α − αω1+1/α(r)
∫ ∞

r
η(j)dj.
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ω′(r) ≤ −q(r)
η

αβn
2 (r)

(Φ(r))α
Φα(τ(r))

η
αβn
2 (r)

− αω1+1/α(r)
∫ ∞

r
η(j)dj.

Lemma 4 yields

− η
αβn
2 (τ(r))

(Φ(τ(r)))α ≥ − η
αβn
2 (r)

(Φ(r))α ,

hence,

ω′(r) ≤ −q(r)
η

αβn
2 (τ(r))

η
αβn
2 (r)

− αω1+1/α(r)
∫ ∞

r
η(j)dj. (34)

Multiplying (34) by Hα(r) and integrating the resulting inequality from r1 to r,
we have

Hα(r)ω(r)− Hα(r1)ω(r1)− α
∫ r
r1

H′(j)Hα−1(j)ω(j)dj +
∫ r
r1

q(j)
η

αβn
2 (τ(j))

η
αβn
2 (j)

Hα(j)dj

+α
∫ r
r1

ω1+1/α(j)η1(j)Hα(j)dj ≤ 0.

By using the inequality (12) with K = −H′(j)Hα−1(j), L = η1(j)Hα(j), and v = −ω(j),
we obtain

∫ r

r1

[
q(j)

η
αβn
2 (τ(j))

η
αβn
2 (j)

Hα(j)− αα

(α + 1)α+1
(H′(j))α+1

H(j)ηα
1 (j)

]
dj ≤ Hα(r1)ω(r1) + 1,

we obtain a contradiction with (29) by taking the lim sup on both sides of this inequality.
The proof is now complete.

Theorem 7. Suppose that α ≥ 1. If there is a function γ ∈ C1([ro, ∞), (0, ∞)) such that

lim sup
r→∞

∫ r

ro

[
ψ(j)− γ(j)

(α + 1)(α+1)ηα
1 (r)

(
γ′(j)

γ(j)
+

(1 + α)η1(j)

η2(j)

)α+1
]

dj = ∞, (35)

where

ψ(r) = γ(r)q(r)
η

αβn
2 (τ(r))

η
αβn
2 (r)

+ (1 − α)γ(r)η1(r)/ηα+1
2 (r).

Then +
3 = ∅.

Proof. Consider the case where (1) has a nonoscillatory solution. We can suppose that
Φ ∈ + eventually without losing generality. Assume that Φ satisfies case (3). Since
h(r)(Φ′′′(r))α is non-increasing, we obtain

Φ′′(v)− Φ′′(r) =
∫ v

r

1
h1/α(ζ)

(
h(ζ)(Φ′′′(ζ))α

)1/αdζ

≤ h1/α(r)Φ′′′(r)
∫ v

r

1
h1/α(ζ)

dζ.

Letting v → ∞, we have

Φ′′(r) ≥ −h1/α(r)Φ′′′(r)η(r). (36)

Integrating (36) from r to ∞ yields

− Φ′(r) ≥ −h1/α(r)Φ′′′(r)η1(r). (37)
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Again, integrating (37) from r to ∞, we obtain

Φ(r) ≥ −h1/α(r)Φ′′′(r)η2(r).

Now, define the function ω1 by

ω1(r) = γ(r)

(
h(r)(Φ′′′(r))α

(Φ(r))α +
1

ηα
2 (r)

)
, r ≥ r1. (38)

Then, we see that ω1(r) > 0 for r ≥ r1. Therefore, we have

ω′
1(r) =

γ′(r)
γ(r)

ω1(r) + γ(r)

(
h(r)(Φ′′′(r))α)′

(Φ(r))α − αγ(r)
h(r)(Φ′′′(r))αΦ′(r)

(Φ(r))α+1 − αγ(r)
η′

2(r)

ηα+1
2 (r)

.

It follows from (1) that

ω′
1(r) =

γ′(r)
γ(r)

ω1(r)− q(r)γ(r)
η

αβn
2 (r)

(Φ(r))α
Φα(τ(r))

η
αβn
2 (r)

− αγ(r)
h(r)(Φ′′′(r))αΦ′(r)

(Φ(r))α+1 − αγ(r)
η′

2(r)

ηα+1
2 (r)

.

From (37) and (38), we find

ω′
1(r) ≤ γ′(r)

γ(r)
ω1(r)− q(r)

η
αβn
2 (r)

(Φ(r))α
Φα(τ(r))

η
αβn
2 (r)

− αγ(r)η1(r)

(
ω1(r)

γ(r)
− 1

ηα
2 (r)

)1+1/α

+αγ(r)
η1(r)

ηα+1
2 (r)

.

From Lemma 4, we obtain

− η
αβn
2 (τ(r))

(Φ(τ(r)))α ≥ − η
αβn
2 (r)

(Φ(r))α ,

hence,

ω′
1(r) ≤

γ′(r)
γ(r)

ω1(r)− γ(r)q(r)
η

αβn
2 (τ(r))

η
αβn
2 (r)

+ αγ(r)
η1(r)

ηα+1
2 (r)

− αγ(r)η1(r)

(
ω1(r)

γ(r)
− 1

ηα
2 (r)

)1+1/α

.

By using the inequality (13) with A = ω1(r)/γ(r) and j = 1/ηα
2 (r), we obtain

ω′
1(r) ≤ γ′(r)

γ(r)
ω1(r)− γ(r)q(r)

η
αβn
2 (τ(r))

η
αβn
2 (r)

+ αγ(r)
η1(r)

ηα+1
2 (r)

−αγ(r)η1(r)

{(
ω1(r)

γ(r)

)1+1/α

− 1
η2(r)

(
(1 + α)

ω1(r)

γ(r)
− 1

ηα
2 (r)

)}
,

hence,

ω′
1(r) ≤

(
γ′(r)
γ(r)

+
(1 + α)η1(r)

η2(r)

)
ω1(r)− γ(r)q(r)

η
αβn
2 (τ(r))

η
αβn
2 (r)

− αη1(r)

γ1/α(r)
ω1+1/α

1 (r)

−γ(r)η1(r)

ηα+1
2 (r)

+
αγ(r)η1(r)

ηα+1
2 (r)

.
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Using the inequality (12) with K = γ′(r)/γ(r)+ (1 + α)η1(r)/η2(r), L = αη1(r)/γ1/α(r),
and v = ω1(r), we obtain

ω′
1(r) ≤ −γ(r)q(r)

η
αβn
2 (τ(r))

η
αβn
2 (r)

+ (α − 1)
γ(r)η1(r)

ηα+1
2 (r)

+
γ(r)

(α + 1)(α+1)ηα
1 (r)

(
γ′(r)
γ(r)

+
(1 + α)η1(r)

η2(r)

)α+1

. (39)

Integrating (39) from r1 to r, we have

∫ r

r1

[
ψ(j)− γ(j)

(α + 1)(α+1)ηα
1 (r)

(
γ′(j)

γ(j)
+

(1 + α)η1(j)

η2(j)

)α+1
]

dj ≤ ω1(r1),

we obtain a contradiction with (35) by taking the lim sup on both sides of this inequality.
The proof is now complete.

Theorem 8. Suppose that Φ ∈ C((ro, ∞), (0, ∞)) is a solution of (1). If the differential equation

Φ′(r) +
1

η2(τ(r))

(∫ ∞

r

∫ ∞

ζ

η2(τ(v))
h1/α(v)

(∫ v

r1

q(j)dj

)1/α

dvdζ

)
Φ(τ(r)) = 0. (40)

is oscillatory, then +
3 = ∅.

Proof. Assume that Φ ∈ + and satisfies case (3). From (1) and integrating from r1 to r,
we obtain

h(r)
(
Φ′′′(r)

)α ≤ −Φα(τ(r))
∫ r

r1

q(j)dj. (41)

As in the proof of Lemma 3, we obtain that (19), (21), and (23) hold. Now, integrating
(41) from r to ∞ and using (23), we obtain

−Φ′′(r) ≤ −
∫ ∞

r

Φ(τ(v))
η2(τ(r))

η2(τ(r))

h1/α(v)

(∫ v

r1

q(j)dj

)1/α

dv.

From Lemma 3, note that Φ(r)/η2(r) is nondecreasing and yields

− Φ′′(r) ≤ − Φ(τ(r))

η2(τ(r))

∫ ∞

r

η2(τ(r))

h1/α(v)

(∫ v

r1

q(j)dj

)1/α

dv. (42)

Integrating (42) from r to ∞, we find

Φ′(r) ≤ −
∫ ∞

r

Φ(τ(ζ))

η2(τ(ζ))

∫ ∞

ζ

η2(τ(r))

h1/α(v)

(∫ v

r1

q(j)dj

)1/α

dvdζ

≤ − Φ(τ(r))

η2(τ(r))

∫ ∞

r

∫ ∞

ζ

η2(τ(v))
h1/α(v)

(∫ v

r1

q(j)dj

)1/α

dvdζ.

As a result, it is clear that Φ is a positive solution to the first-order delay differential inequality

Φ′(r) +
1

η2(τ(r))

(∫ ∞

r

∫ ∞

ζ

η2(τ(v))
h1/α(v)

(∫ v

r1

q(j)dj

)1/α

dvdζ

)
Φ(τ(r)) ≤ 0.

According to [20], Equation (40) also has a solution that is positive, creating a contra-
diction. The proof is now complete.
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Corollary 1. Assume that Φ ∈ C((ro, ∞), (0, ∞)) is a solution of (1). If

lim inf
r→∞

∫ r

τ(r)

1
η2(τ(ξ))

(∫ ∞

ξ

∫ ∞

ζ

η2(τ(v))
h1/α(v)

(∫ v

r1

q(j)dj

)1/α

dvdζ

)
dξ >

1
e

, (43)

then +
3 = ∅.

Proof. We remark that (43) ensures the oscillation of (40) using [20]. The proof is
now complete.

4. Application in Oscillation Theory

The criteria for oscillation depend on finding conditions that exclude each case of the
derivatives of the solution separately. In many cases, we note that the most influential
condition in the test of oscillation of the equation is the condition of excluding decreasing
solutions. Therefore, improving the conditions for excluding decreasing solutions necessar-
ily affects the improvement of oscillation criteria. In this section, we will set the criteria
for testing oscillation for (1) to combine conditions known in the literature that exclude
cases (1) and (2) of the derivatives of the solution with the new conditions in the previous
section that exclude the existence of solutions that fulfill case (3).

In the next theorems, the proof of the case where (1) or (2) holds is the same as that
of [16] (Theorem 2.1, Theorem 2.2). Moreover, either conditions (29) or (35), or (43), excludes
case (3) .

Theorem 9. Assume that (29) holds. If (8) and (10) hold for some λ1 ∈ (0, 1), then (1) oscillates.

Theorem 10. Assume that (35) holds. If (8) and (10) hold for some λ1 ∈ (0, 1), then (1) oscillates.

Theorem 11. Assume that (43) holds. If (8) and (10) hold for some λ1 ∈ (0, 1), then (1) oscillates.

Example 1. We consider(
eαr
(
Φ′′′(r)

)α)′
+ qoeαrΦα

(
r− arcsin

(√
10/10

))
= 0, (44)

where h(r) = eαr, q(r) = qoeαr, τ(r) = r− arcsin
(√

10/10
)

and η(r) = e−r. Note that

H(r) =
∫ ∞

r
(j − r)e−jdj

= e−r.

If we choose γ(r) = e−αr, then we see that

η1(r) = e−r, η2(r) = e−r and η2(τ(r)) = e−(r−arcsin(
√

10/10)).

It is easy to verify that

�o =
e
√

qo/α arcsin(
√

10/10)√
1 −
√√

qo/α

, μ∗ =
e−(r−arcsin(

√
10/10))

e−r
= earcsin(

√
10/10),

n = 0, β∗ = qo/α, and βo =
√

qo/α.
By using Theorem 9, we find conditions (8) and (10) are satisfied and the condition (29)

holds if

qo >
(α)α+1

(α + 1)α+1eα
√

qo/α arcsin(
√

10/10)
. (45)
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Therefore, Equation (44) is oscillatory if (45) holds. Additionally, by using Theorem 10, we
find that condition (35) is satisfied if

qo >
1

eα
√

qo/α arcsin(
√

10/10)

(
1

(α + 1)α+1 − (1 − α)

)
. (46)

Therefore, Equation (44) is oscillatory if (46) holds. Now, by using Theorem 2 and Theorem 5,
Equation (44) is oscillatory if

qo >
(α)α+1

(α + 1)α+1 . (47)

Figure 1 illustrates the efficiency of conditions (45)–(47) in studying the oscillation of solutions
of (44).

Remark 2. To the best of our knowledge, the known related sharp criterion for (44) based on
Example 1 gives

q0 >

(
α

α + 1

)α+1
. (48)

Note firstly that our criteria (45) and (46) essentially take into account the influence of the
delay argument τ(r), which has been neglected in all previous results of fourth-order equations.

Secondly, in the case where α = 1, we get the results in Table 1. Therefore, we note that condi-
tions (45) and (46) support the most efficient and sharp criterion for oscillation of Equation (44).

Table 1. Comparison of the different oscillation criteria of (44) with α = 1.

Condition (45) (46) (48)
Criterion q0 > 0.215 q0 > 0.215 q0 > 0.250

Figure 1. Regions for which conditions (45)–(47) are satisfied.

5. Conclusions

The study of oscillations for delay differential equations always begins with the classi-
fication of positive solutions based on the sign of their derivatives. The oscillation criteria
depend on the conditions that exclude each case of the positive solutions. In many cases, the
exclusion of decreasing solutions is the condition that has the most effect on the test for the
oscillation of the equation. Therefore, improving the criteria for oscillation must obviously
have an effect on improving the conditions for excluding decreasing solutions. In this
work, we study the asymptotic properties of solutions to the fourth-order delay differential
equation with the non-canonical operator. We have created new properties that help us
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have more effective terms in the oscillation of the Equation (1). We use the comparison
theorem and more than one compensation for Riccatti to obtain criteria that guarantee the
exclusion of decreasing solutions. After that, by combining well-known results with the
results of Section 3, we set new criteria for the oscillation of the studied equation. Finally,
we gave an example to illustrate the novelty and importance of our results. An open ques-
tion is whether the neutral delay equation can be studied with the same technique used in
this research.
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Abstract: To resolve several challenging applications in many scientific domains, general formulas
of improper integrals are provided and established for use in this article. The suggested theorems
can be considered generators for new improper integrals with precise solutions, without requiring
complex computations. New criteria for handling improper integrals are illustrated in tables to
simplify the usage and the applications of the obtained outcomes. The results of this research are
compared with those obtained by I.S. Gradshteyn and I.M. Ryzhik in the classical table of integrations.
Some well-known theorems on improper integrals are considered to be simple cases in the context of
our work. Some applications related to finding Green’s function, one-dimensional vibrating string
problems, wave motion in elastic solids, and computing Fourier transforms are presented.

Keywords: improper integrals; power series; analytic function; Cauchy residue theorem; Ramanu-
jan’s master theorem

MSC: 30E20; 33E20; 44A99

1. Introduction

Numerous studies on the topic of improper integrals have been published in recent
years in a variety of scientific disciplines, including physics and engineering [1–7]. Due
to this, mathematicians have been particularly interested in finding new theorems and
methods to solve these integrals. Particularly in engineering, applied mathematical physics,
electrical engineering, and other fields, it is sometimes necessary to handle erroneous
integrals in computations or when describing models [8–16]. While some of these integra-
tions can be handled easily, others require complex calculations. Many of these integrals
require computer software to be solved as they cannot be calculated so manually. Addition-
ally, numerical techniques may be employed to resolve some incorrect integrals that the
aforementioned techniques are unable to resolve [17–23].

The process of evaluating improper integrals is not usually based on certain rules or
techniques that can be applied directly. Many methods and techniques were established
and introduced by mathematicians and physicists to present a closed form for indefinite
integrals, the technique of double integrals, series methods, residue theorems, calculus
under the integral sign, and other methods that are used to solve improper complex
integrals exactly or approximately [24–31].

The residue theorem was first established by A.L. Cauchy in 1826, which is consid-
ered a powerful theorem in complex analysis. However, the applications that can be
calculated using the residue theorem to compute integrals on real numbers require many
precise constraints that should be satisfied in order to solve the integrals, including finding
appropriate closed contours and also determining the poles. Another challenge in the
process of applying the residue theorem is the difficulty and efforts in finding solutions for
some integrations.

According to his published memoirs, Cauchy developed powerful formulas in math-
ematics using the residue theorem [4]. Researchers consider these formulas essential in
treating and solving improper integrals. However, these results are considered simple cases

Axioms 2022, 11, 572. https://doi.org/10.3390/axioms11100572 https://www.mdpi.com/journal/axioms221
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when compared to the results that we present in this article. In addition, we show that the
proposed theorems and results in this research are not based on the residue theorem.

One significant accomplishment in the sphere of definite and indefinite integrals is
found in the master theorem of Ramanujan, which presents new expressions concerning
the Milline transform of any continuous function in terms of the analytic Taylor series, and
others [32–39]. It was implemented by Ramanujan and other researchers as a powerful tool
in calculating definite and indefinite integrals and also in computing infinite series. The
obtained results are as applicable and effective as Ramanujan’s master theorem in handling
and generating new formulas of integrals with direct solutions.

In this study, we introduce new theorems to simplify the procedure of computing
improper integrals by presenting new theorems with proofs. Each theorem can generate
many improper integral formulas that cannot be solved by usual techniques or would need
a large amount of effort and time spent in order to be solved. The motivation of this work is
to generate as many improper integrals and their values as possible to be used in different
problems. The obtained results can be implemented to construct new tables of integrations
so that researchers can use them in calculations and to check the accuracy of their answers
while discovering new methods.

The main purpose of this work is to introduce simple new techniques to help re-
searchers, mathematicians, engineers, physicists, etc., to solve some difficult improper
integrals that cannot be treated or solved easily (and which require several theorems and a
large amount of effort to solve). This goal is achieved by introducing some master theorems
that can be implemented in order to solve difficult applications. The outcomes can be
generalized and introduced in tables to obtain and to use the results of some improper
integrals directly.

We organize this article as follows: In Section 2, we introduce some illustrative prelimi-
naries; then, facts concerning analytic functions, master theorems, and results are presented
in Section 3. Mathematical remarks and several applications are presented in Section 4.
Finally, the conclusion of our research is presented in Section 5.

2. Preliminaries

In this section, some basic definitions and theorems related to our work are presented
and illustrated for later use.

2.1. Basic Definitions and Lemmas

Definition 1 ([7]). Suppose that a function f is analytic in a domain Ω ⊆ C, where C is the
complex plane. Consider a disc D ⊆ Ω centered at z0; then, the function f can be expressed in the
following series expansion:

f (z) =
∞

∑
n=0

an(z − z0)
n,

where anis the coefficients of the series.

Definition 2 ([8]). Assume that f is an analytic function; then, Taylor series expansion at any
point x0 of f in its domain is given by

T(x) =
∞

∑
n=0

f (n)(x0)

n!
(x − x0)

n,

which converges to f in a neighborhood of x0 point wisely.

2.2. Basic Formulas of Series and Improper Integrals

In this section, we introduce some series and improper integrals that are needed in
our work.
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Lemma 1. The following factorization formula holds for n∈ N, as follows

1
(x2+12)(x2+32)...(x2+(2n+1)2)

= (−1)n

4n(2n+1)!

n
∑

k=0
(−1)k

(
2n + 1

k

)
2n+1−2k

(2n+1−2k)2+x2

(1)

Proof. To prove Equation (1), we define an integral whose solution can be expressed by
two different forms: the left side of Equation (1) and the right side of the equation.

Let

I =
∞∫

0

e−px(sinx)2a+1dx, (2)

where p > 0, a ∈ N.
Taking the indefinite integral:

J = p2
∫

e−px(sinx)2a+1dx (3)

Applying integration by parts on Equation (3) twice, we obtain a reduction formula
as follows:

J = −pe−px(sinx)2a+1 − (2a + 1)e−pxsin2axcosx
+(2a + 1)

∫
e−px[2a((sinx)2a−1 − (sinx)2a+1)− (sinx)2a+1] dx.

(4)

Taking the limit of the integrals in Equation (4) from 0 to ∞, we obtain:

∞∫
0

e−px(sinx)2a+1dx =
(2a + 1)(2a)

p2 + (2a + 1)2

∞∫
0

e−px(sinx)2a−1dx. (5)

Applying Equation (5) (a − 1) times to the integral
∫ ∞

0 e−px(sinx)2a−1dx, we obtain:

∞∫
0

e−px(sinx)2a+1dx

= (2a+1)(2a)(2a−1)(2a−2)...(3)(2)
((2a+1)2+p2) ((2a−1)2+p2)...(3+p2)

∞∫
0

e−pxsinxdx.
(6)

The integral
∫ ∞

0 e−pxsinxdx can be calculated easily using twice integration by parts
to obtain:

∞∫
0

e−pxsinxdx =
1

1 + p2 . (7)

Substituting the fact in Equation (7) into Equation (6), we obtain:

∞∫
0

e−px(sinx)2a+1dx =
(2a + 1)!

((2a + 1)2 + p2) ((2a − 1)2 + p2) . . . (3 + p2) (1 + p2)
. (8)

Therefore, the left side of Equation (1) is obtained.
Now, we express the solution of Equation (2) in another form, that is, to obtain the

right side of Equation (1), as follows:
Using the power trigonometric formula deduced using De Moivre’s formula, Euler’s

formula, and the binomial theorem [10] (p. 31)

(sin(x))2a+1 =
(−1)a

4a

a

∑
k=0

(−1)k
(

2a + 1
k

)
sin[(2a + 1 − 2k)x]. (9)
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Substituting Equation (9) into Equation (2), we obtain:

∞∫
0

e−px(sinx)2a+1dx =

∞∫
0

e−px (−1)a

4a

a

∑
k=0

(−1)k
(

2a + 1
k

)
sin[(2a + 1 − 2k)x]dx (10)

Therefore, by changing the order of the integral and the sum in Equation (10), we obtain:

∞∫
0

e−px(sinx)2a+1dx =
(−1)a

4a

a

∑
k=0

(−1)k
(

2a + 1
k

) ∞∫
0

e−pxsin[(2a + 1 − 2k)x]dx (11)

To evaluate the integral
∫ ∞

0 e−pxsin[(2a + 1 − 2k)x]dx, we apply twice integration by
parts to obtain:

∞∫
0

e−pxsin[(2a + 1 − 2k)x]dx =
2a + 1 − 2k

(2a + 1 − 2k)2 + p2
. (12)

Substituting the result in Equation (12) into Equation (11), we obtain:

∞∫
0

e−px(sinx)2a+1dx=
(−1)a

4a

a

∑
k=0

(−1)k
(

2a + 1
k

)
2a + 1 − 2k

(2a + 1 − 2k)2 + p2
. (13)

Therefore, the right side of Equation (1) is obtained.
Then, equating Equation (13) with Equation (8); this, thus, completes the proof of

Equation (21). �

Lemma 2. The following factorization holds for n∈ N as,

1
x(x2+22)(x2+42)...(x2+4n2)

=

1
22n (2n)!

(
1
x

(
2n
n

)
+ 2

n−1
∑

k=0
(−1)n+k

(
2n
k

)
x

(2n−2k)2+x2

)
.

(14)

Proof. The proof is obtained by repeating the same process in proving Lemma (1), but by
using the integral

∫ ∞
0 e−px(sinx)2adx, where p > 0 and a ∈ N. �

Lemma 3. The following factorization formula holds for n = 0, 1, · · · , and m = 1, 2, · · · , as
follows:

1
[(x2+12)(x2+32)...(x2+(2n+1)2)] [x(x2+22)(x2+42)...(x2+4m2)]

= (−1)n

(22m+2n)(m!)2(2n+1)!

n
∑

s=0
(−1)s

(
2n + 1

s

)
2n+1−2s

x((2n+1−2s)2+x2)

+ (−1)n

22m+2n−1 (2m)!(2n+1)!

(
m−1
∑

k=0

n
∑

s=0
(−1)m+k+s

(
2m
k

)(
2n + 1

s

)
x(2n+1−2s)

((2m−2k)2+x2) ((2n+1−2s)2+x2)

)
.

(15)

Proof. This is a direct result obtained by multiplying Equation (1) by Equation (14). �
Lemma 4. The following formulas of improper integrals are created using Lemmas (1–3):

∞∫
0

cos(θx)
(x2+1)(x2+9)...(x2+(2n+1)2)

dx

= (−1)n

(2n+1)!
π

22n+1

n
∑

k=0
(−1)k

(
2n + 1

k

)
eθ(2k−2n−1),

for θ ≥ 0 , n = 0, 1, · · ·

(16)
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Proof. The formula is obtained by multiplying both sides of Equation (1) by cos(θx), then
integrating both sides from 0 to ∞, and using the well-known fact:

∞∫
0

cos(θx)
a2 + x2 dx =

π

2a
e−aθ ,

where a and θ > 0. �
∞∫
0

xsin(θx)
(x2+1)(x2+9)...(x2+(2n+1)2)

dx

= (−1)n

(2n+1)!
π

22n+1

n
∑

k=0
(−1)k

(
2n + 1

k

)
(2n − 2k + 1)eθ(2k−2n−1),

for θ > 0 , n = 0, 1, · · · .

(17)

Proof. The formula is obtained by differentiating both sides of Equation (16) with respect
to θ. �

∞∫
0

sin(θx)
x(x2+4)(x2+16)...(x2+(2n)2)

dx

= (−1)n

(2n)!
π

22n+1

(
(−1)n

(
2n
n

)
+ 2

n−1
∑

k=0
(−1)k

(
2n
k

)
e2θ(k−n)

)
,

for θ > 0 , n = 1, 2, · · · .

(18)

Proof. The formula is obtained by multiplying both sides of Equation (14) by sin(θx), then
integrating both sides from 0 to ∞, and using the well-known fact:

∞∫
0

sin(θx)
x(a2 + x2)

dx =
π

2a2

(
1 − e−aθ

)
,

where θ and a > 0

∞∫
0

cos(θx)
(x2+4)(x2+16)...(x2+(2n)2)

dx = (−1)nπ 21−2n

(2n)!

n−1
∑

k=0
(−1)k

(
2n
k

)
(k − n)e2θ(k−n),

for θ ≥ 0 , n = 1, 2, · · · .
(19)

�

Proof. The formula is obtained by differentiating both sides of Equation (18) with respect
to θ. �

Lemma 5. Let θ > 0 and n = 0, 1, · · · , m = 1, 2, · · · . Then, we have the following improper integrals:

∞∫
0

sin(θx)
((x2+1)(x2+9)···(x2+(2n+1)2)) (x(x2+4)(x2+16)···(x2+4m2))

dx

= (−1)nπ

(22m+2n+1)(m!)2(2n+1)!

n
∑

s=0
(−1)s

(
2n + 1

s

)
1−e−θ(2n+1−2s)

(2n+1−2s)

+ (−1)nπ
22m+2n (2m)!(2n+1)!

m−1
∑

k=0

n
∑

s=0
(−1)m+k+s

(
2m
k

)(
2n + 1

s

)
(2n+1−2s)(e−θ(2n+1−2s)−e−θ(2m−2k))

(2m−2k)2−(2n+1−2s)2 .

(20)

Proof. The formula is obtained by multiplying both sides of Equation (15) by sin(θx), then
integrating both sides from 0 to ∞, and using the well-known facts:
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∞∫
0

sin(θx)
x(a2 + x2)

dx =
π

2a2

(
1 − e−aθ

)
,

and
∞∫

0

xsin(θx)
a2 + x2 dx =

π

2
e−aθ ,

where θ and a > 0

∞∫
0

cos(θx)
((x2+1)(x2+9)...(x2+(2n+1)2)) ((x2+4)(x2+16)...(x2+4m2))

dx

= (−1)nπ

(22m+2n+1)(m!)2(2n+1)!

n
∑

s=0
(−1)s

(
2n + 1

s

)
e−θ(2n+1−2s) + (−1)nπ

22m+2n (2m)!(2n+1)!

m−1
∑

k=0

n
∑

s=0
(−1)m+k+s

(
2m
k

)(
2n + 1

s

)
(2n+1−2s)((2m−2k)e−θ(2m−2k)−(2n+1−2s)e−θ(2n+1−2s))

(2m−2k)2−(2n+1−2s)2

�

Proof. The formula can be obtained by differentiating both sides of Equation (20) with
respect to θ. �

3. New Master Theorems

In this part, we present new theorems to help mathematicians, engineers, and physi-
cists solve complicated improper integrals. To obtain our objective, we introduce some
facts concerning analytic functions [7,9,12].

Assuming that f is an analytic function in a disc D centered at α, then using Taylor’s
expansion, where α , β and θ are real constants, we have

f (z) =
∞

∑
k=0

f (k)(α)
k!

(z − α)k, (21)

substituting z = α + βeiθx into f (z), where β is not completely arbitrary, since it must be
smaller than the radius of D, we obtain

f
(

α + βeiθx
)
=

∞

∑
k=0

f (k)(α)
k!

βkeiθkx, x ∈ R. (22)

Using the formulas

eiθx + e−iθx = 2cos(θx), eiθx − e−iθx = 2isin(θx),

one can obtain

1
2

(
f
(

α + βeiθx
)
+ f
(

α + βe−iθx
))

= 1
2

∞
∑

k=0

f (k)(α)
k! βk

(
eiθkx + e−iθkx

)
=

∞
∑

k=0

f (k)(α)
k! βkcos(kθx)

= f (α) + f ′(α)βcos(θx) + f ′′ (α)
2! β2cos(2θx) + . . . .

(23)

Similarly,

1
2i

(
f
(

α + βeiθx
)
− f
(

α + βe−iθx
))

= 1
2

∞
∑

k=0

f (k)(α)
k! βk

(
eiθkx − e−iθkx

)
= f ′(α)βsin(θx) + f ′′ (α)

2! β2sin(2θx) + . . .

=
∞
∑

k=1

f (k)(α)
k! βksin(kθx).

(24)

226



Axioms 2022, 11, 572

Next, the parameters in Equations (23) and (24) can be modified in the follow-
ing lemma.

Lemma 3. Assume that g(α + z) is an analytic function that has the following series expansion:

g(α + z) =
∞

∑
k=0

Mke−kz, (25)

whether z be real or imaginary, and ∑∞
k=0 Mk is absolutely convergent. Then

1
2
(g(α − iθx) + g(α + iθx)) =

1
2

∞

∑
k=0

Mk

(
eikθx + e−ikθx

)
=

∞

∑
k=0

Mkcos(k θx), (26)

and,

1
2i
(g(α − iθx)− g(α + iθx)) =

1
2i

∞

∑
k=1

Mk

(
eikθx − e−ikθx

)
=

∞

∑
k=1

Mksin(k θx), (27)

where θ > 0, α ∈ R, and x is any real number.

The next part of this section includes the new master theorems that we establish. Moreover,
we mention here that Cauchy’s results in [3] are identical to our results with special choices of the
parameters, as will be discussed later.

Theorem 1. Let f be an analytic function in a disc D centered at α, where α ∈ R. Then, we have
the following improper integral formula:

∞∫
0

f (α+βeiθx)+ f (α+βe−iθx)

(x2+1)(x2+9)···(x2+(2n+1)2)
dx

= (−1)n

(2n+1)!
π

22n

n
∑

s=0
(−1)s

(
2n + 1

s

)
f
(

α + βeθ(2s−2n−1)
)

,
(28)

where θ ≥ 0 and n = 0, 1, 2, · · · .

Proof. Let

I =
∞∫

0

f
(
α + βeiθx)+ f

(
α + βe−iθx)

(x2 + 1)(x2 + 9) · · · (x2 + (2n + 1)2)
dx. (29)

Now, since f is an analytic function around α, substituting the fact in Equation (23)
into Equation (29), we obtain

I =
∞∫

0

2 ∑∞
k=0

f (k)(α)βk

k! cos(kθx)

(x2 + 1)(x2 + 9) · · · (x2 + (2n + 1)2)
dx. (30)

Fubini’s theorem implies changing the order of the summation and the improper
integral to obtain

I = 2
∞

∑
k=0

f (k)(α)βk

k!

∞∫
0

cos(kθx)

(x2 + 1)(x2 + 9) · · · (x2 + (2n + 1)2)
dx. (31)

The fact in Equation (1) implies that Equation (31) becomes

I = 2
∞

∑
k=0

f (k)(α)βk

k!
(−1)n

(2n + 1)!
π

22n+1

n

∑
s=0

(−1)s
(

2n + 1
s

)
ekθ(2s−2n−1). (32)
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The result comes directly, by comparing the definition of the function g in Equation (25)
with the definition of the function f in Equation (22), to obtain

I =
(−1)n

(2n + 1)!
π

22n

n

∑
s=0

(−1)s
(

2n + 1
s

)
f
(

α + βeθ(2s−2n−1)
)

.

�

Theorem 2. Let f be an analytic function in a disc D centered at α, where α ∈ R. Then, we have
the following improper integral formula:

∞∫
0

x( f (α+βeiθx)− f (α+βe−iθx))
i(x2+1)(x2+9)···(x2+(2n+1)2)

dx

= (−1)n

(2n+1)!
π

22n

n
∑

s=0
(−1)s

(
2n + 1

s

)
(2n − 2s

+1)
(

f
(

α + βeθ(2s−2n−1)
)
− f (α)

)
,

(33)

where θ > 0 and n = 0, 1, 2, · · · .

Proof. Let

I =
∞∫

0

x
(

f
(
α + βeiθx)− f

(
α + βe−iθx))

i(x2 + 1)(x2 + 9) . . . (x2 + (2n + 1)2)
dx. (34)

Now, since f is an analytic function around α and substituting the fact in Equation (24)
into Equation (34), we obtain

I = 2
∞

∑
k=1

f (k)(α)βk

k!

∞∫
0

x(sin(kθx))

(x2 + 1)(x2 + 9) . . . (x2 + (2n + 1)2)
dx. (35)

Substituting the fact in Equation (2) into Equation (35), we obtain

I = 2
∞

∑
k=1

f (k)(α)βk

k!
(−1)n

(2n + 1)!
π

22n+1

n

∑
s=0

(−1)s
(

2n + 1
s

)
(2n − 2s + 1)eθk(2s−2n−1). (36)

The fact in Equation (22) implies that Equation (36) becomes

I =
(−1)n

(2n + 1)!
π

22n

n

∑
s=0

(−1)s
(

2n + 1
s

)
(2n − 2s + 1)

(
f
(

α + βeθ(2s−2n−1)
)
− f (α)

)
.

Hence, this completes the proof. �
We should point out that f (α) appears in Equation (33) because the lower index of the

infinite summation started from k = 1 and not from k = 0, as is the case in Equation (29).
Thus, when we want to express the answer in terms of the original function f , we add and
subtract f (α) to obtain our result.

Theorem 3. Let f be an analytic function in a discD centered at α, whereα ∈ R. Then, we have the
following improper integral formula:

∞∫
0

f
(
α + βeiθx)− f

(
α + βe−iθx)

i x (x2 + 4)(x2 + 16) . . . (x2 + (2n)2)
dx =

(−1)n

(2n)!
π

22n

(
(−1)n

(
2n
n

)
ψ + 2

n−1

∑
s=0

(−1)s
(

2n
s

)
φ(s)

)
, (37)

where θ > 0 , n = 1, 2, · · · , ψ = f (α + β)− f (α) and φ(s) = f
(

α + βe2θ(s−n)
)
− f (α).
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Proof. The proof of Theorem 3 can be obtained by similar arguments to Theorem 2 and
using the fact (3) in Lemma 1. �

Theorem 4. Let f be an analytic function in a disc D centered at α ∈ R. Then, we have the
following improper integral formula:

∞∫
0

f
(
α + βeiθx)+ f

(
α + βe−iθx)

(x2 + 4)(x2 + 16) . . . (x2 + (2n)2)
dx =

(−1)nπ 22−2n

(2n)!

n−1

∑
s=0

(−1)s
(

2n
s

)
(s − n) f

(
α + βe2θ(s−n)

)
, (38)

where θ ≥ 0 , n = 1, 2, · · · .

Proof. The proof of Theorem 4 can be obtained by similar arguments to Theorem 1 and
using the fact (4) in Lemma 1. �

Theorem 5. Let f be an analytic function in a disc D centered at α, where α ∈ R. Then, we have
the following improper integral formula:

∞∫
0

f (α+βeiθx)− f (α+βe−iθx)
i ((x2+1)(x2+9)...(x2+(2n+1)2)) (x(x2+4)(x2+16)···(x2+4m2))

dx

= (−1)nπ

(22m+2n)(m!)2(2n+1)!

n
∑

s=0
(−1)s

(
2n + 1

s

)
(ϕ−ψ(s))
(2n+1−2s)

+ (−1)nπ

22m+2n−1 (2m)!(2n+1)!

(
m−1
∑

k=0

n
∑

s=0
(−1)m+k+s

(
2m
k

)(
2n + 1

s

)
(2n + 1

−2s) (ψ(s)−φ(k))
((2m−2k)2−(2n+1−2s)2)

)
,

(39)

where θ > 0, n = 0, 1, 2, · · · , m = 1, 2, · · · , ψ(s) = f
(

α + βe−θ(2n+1−2s)
)

, φ(k) =

f
(

α + βe−θ(2m−2k)
)

, and ϕ = f (α + β).

Proof. Let

I =
∞∫

0

f
(
α + βeiθx)− f

(
α + βe−iθx)

i
(
(x2 + 1)(x2 + 9) . . . (x2 + (2n + 1)2)) (x(x2 + 4)(x2 + 16) · · · (x2 + 4m2))

dx. (40)

Now, since f is an analytic function around α and substituting the fact in Equation (24)
into Equation (40), we obtain

I = 2
∞

∑
k=1

f (k)(α)βk

k!

∞∫
0

sin(θkx)(
(x2 + 1)(x2 + 9) . . . (x2 + (2n + 1)2)) (x(x2 + 4)(x2 + 16) · · · (x2 + 4m2))

dx. (41)

Substituting the fact in Equation (9) into Equation (41), we obtain

I = 2
∞

∑
k=1

f (k)(α)βk

k!
(A + B), (42)

where

A =
(−1)nπ

(22m+2n+1)(m!)2(2n + 1)!

n

∑
s=0

(−1)s
(

2n + 1
s

)
1 − e−θk(2n+1−2s)

(2n + 1 − 2s)
,
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B =
(−1)nπ

22m+2n (2m)!(2n + 1)!

(
m−1

∑
k=0

n

∑
s=0

(−1)m+k+s
(

2m
k

)(
2n + 1

s

)
(2n + 1 − 2s)

e−θk(2n+1−2s) − e−θk(2m−2k)

(2m − 2k)2 − (2n + 1 − 2s)2

)
.

The fact in Equation (22) implies that Equation (42) becomes

I

= (−1)nπ

(22m+2n)(m!)2(2n+1)!

n
∑

s=0
(−1)s

(
2n + 1

s

)
ϕ−ψ(s)

2n+1−2s

+ (−1)nπ

22m+2n−1 (2m)!(2n+1)!

(
m−1
∑

k=0

n
∑

s=0
(−1)m+k+s

(
2m
k

)(
2n + 1

s

)
(2n

+1 − 2s) (ψ(s)−φ(k))
((2m−2k)2−(2n+1−2s)2)

)
,

where ψ(s) = f
(

α + βe−θ(2n+1−2s)
)

, φ(k) = f
(

α + βe−θ(2m−2k)
)

, and ϕ = f (α + β).
Hence, this completes the proof of Theorem 5. �

Theorem 6. Let f be an analytic function in a disc D centered at α, where α ∈ R. Then, we have
the following improper integral formula:

∞∫
0

f (α+βeiθx)+ f (α+βe−iθx)(
(x2+1)(x2+9)...(x2+(2n+1) 2)

)
((x2+4)(x2+16)...(x2+4m2))

dx

= (−1)nπ

(22m+2n)(m!)2(2n+1)!

n
∑

s=0
(−1)s

(
2n + 1

s

)
ψ(s)

+ (−1)nπ

22m+2n−1 (2m)!(2n+1)!

(
m−1
∑

k=0

n
∑

s=0
(−1)m+k+s

(
2m
k

)(
2n + 1

s

)
(2n+1−2s)((2m−2k) φ(k)−(2n+1−2s)ψ(s))

((2m−2k)2−(2n+1−2s) 2)

)
,

(43)

where θ ≥ 0 , n = 0, 1, 2, · · · , m = 1, 2, · · · , ψ(s) = f
(

α + βe−θ(2n+1−2s)
)

, and φ(k) =

f
(

α + βe−θ(2m−2k)
)

.

Proof The proof of Theorem 6 can be obtained by similar arguments to Theorem 5 and
using the fact (6) in Lemma 2. �

The following table, Table 1 illustrates some corollaries of the theorems with special
cases and presents some values of improper integrals under certain conditions.
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T
a

b
le

1
.
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w
it
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th

e
se

ri
es

re
pr

es
en

ta
ti

on
as

de
ta

ile
d

in
Eq

ua
ti

on
(2

5)
.

f(
x)

∞ ∫ 0
f(

x)
dx

C
o

n
d

it
io

n
s

N
o

.
o

f
T

h
e

o
re

m

1.
g (

α
−i

θ
x )
+

g (
α
+

iθ
x )

(x
2
+

1 )
(x

2
+

9 )
···
( x

2
+
(2

n+
1 )

2
)

(−
1 )

n

(2
n+

1 )
!

π 22n

n ∑ s=
0(−

1 )
s( 2n

+
1

s

) g (
α
−

θ (
2s

−
2n

−
1 )
),

θ
≥

0,
n
=

1,
2,

··
·

Th
eo

re
m

1

2.
x (

g (
α
−i

θ
x )

− g
(α
+

iθ
x )
)

i (
x2
+

1 )
(x

2
+

9 )
...
(x

2
+
(2

n+
1 )

2
)

(−
1 )

n

(2
n+

1 )
!

π 22n

n ∑ s=
0(−

1 )
s( 2n

+
1

s

) (2
n
−

2s
+

1 )
(g
(α

−
θ (

2s
−

2n
−

1 )
)
−

g(
α
) )

,
θ
>

0,
n
=

1,
2,

··
·

Th
eo

re
m

2

3.
g (

α
−i

θ
x )
+

f (
α
+

iθ
x )

(x
2
+

4 )
(x

2
+

16
)··

·(x
2
+
(2

n )
2
)

(−
1 )

n
π

22−
2n

(2
n )

!

( n−
1

∑ s=
0(−

1 )
s( 2n s

) (s
−

n )
g (

α
−

2θ
(s

−
n )
)) ,

θ
≥

0,
n
=

1,
2,

··
·

Th
eo

re
m

4

4.
g (

α
−i

θ
x )
+

g (
α
+

iθ
x )

((
x2
+

1 )
(x

2
+

9 )
...
(x

2
+
(2

n+
1)

2
) )

1
((

x2
+

4 )
(x

2
+

16
).

.. (
x2
+

4m
2
))

(−
1 )

n
π

(2
2m

+
2n

)(
m

! )
2
(2

n+
1 )

!

n ∑ s=
0(−

1 )
s( 2n

+
1

s

) ψ
(s
)
+

(−
1 )

n
π

22m
+

2n
−1

(2
m
)!
(2

n+
1 )

!( m
−1 ∑ k=

0

n ∑ s=
0(−

1 )
m
+

k+
s( 2m k

)( 2n
+

1
s

)
(2

n+
1−

2s
)(
(2

m
−2

k )
φ
(k
)−

(2
n+

1−
2s
)ψ

(s
) )

((
2m

−2
k )

2
− (

2n
+

1−
2s
)2
)

) ,

w
he

re
ψ
(s
)
=

g (
α
+

θ (
2n

+
1
−

2s
))

an
d

φ
(k
)
=

g (
α
+

θ (
2m

−
2k
))

θ
≥

0,
n
=

0,
1,

2,
··

·
m

=
1,

2,
··

·
Th

eo
re

m
6
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4. Applications and Examples

In this section, we present the results, applications, and observations of the proposed
theorems. We also show that the simple cases of the master theorems are identical to
the results obtained by Cauchy, as detailed in his memoirs, using Residue Theorem 4.
Additionally, some examples on difficult integrals that cannot be treated directly by usual
methods are addressed. In this section, we show the applicability of our results in handling
such problems.

4.1. Some Remarks on the Theorems

Remark 1. Letting α = 0 and n = 1 in Theorem 3, we obtain

∞∫
0

f
(

βeiθx)− f
(

βe−iθx)
i x(x2 + 4)

dx =
π

4

(
f (β)− f

(
βe−2θ

))
, (44)

where θ > 0.

By letting x
2 = y,

1
4

∞∫
0

f
(

βe2iθy)− f
(

βe−2iθy)
i y(y2 + 1)

dy =
π

4

(
f (β)− f

(
βe−2θ

))
.

Letting 2θ = ϕ

∞∫
0

f
(

βeiϕy)− f
(

βe−iϕy)
i y(y2 + 1)

dy = π
(

f (β)− f
(

βe−ϕ
))

.

This result appears in [10] (Theorem 4). Further, we show that Cauchy made a mistake in this
result (see [4]) (P. 62 formula (10)).

The following table, Table 2 presents some remarks on improper integrals.
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+
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f( α
+

β
e−

3θ
))

Th
is

re
su

lt
do

es
no

ta
pp

ea
r

in
[4

,5
,1

0]
.

5
n
=

2
3

f (
α
+

β
eiθ

x
)−

f (
α
+

β
e−

iθ
x
)

i
x
(x

2
+

22
)(

x2
+

42
)

π 19
2

( 3 (
f (

a
+

β
))

+
f( α

+
β

e−
4θ
) −

4
f( α

+
β

e−
2θ
))

Th
is

re
su

lt
do

es
no

ta
pp

ea
r

in
[4

,5
,1

0]
.

6
n
=

1
4

f (
α
+

β
eiθ

x
)+

f (
α
+

β
e−

iθ
x
)

(x
2
+

22
)(

x2
+

42
)

π 48

( 2
f( α

+
β

e−
2θ
) −

f( α
+

β
e−

4θ
))

Th
is

re
su

lt
do

es
no

ta
pp

ea
r

in
[4

,5
,1

0]
.
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4.2. Generating Improper Integrals

In this section, we show the mechanism of generating an infinite number of integrals
by choosing the function f (z) and finding the real or imaginary part. It is worth noting that
some of these integrals with special cases appear in [40–43] when solving some applications
related to finding Green’s function, one-dimensional vibrating string problems, wave
motion in elastic solids, and when using Fourier cosine and Fourier Sine transforms.

To illustrate the idea, we show some general examples that are applied on Theorems 1,
2, and 3, as follows:

1. Setting f (z) = zm, m ∈ R+:

• Using Theorem (1) and setting α = 0 and β = 1 we have:

f
(

eiθx
)
+ f
(

e−iθx
)
= eiθmx + e−iθmx = 2cos(θ mx).

Thus,

∞∫
0

2cos(θ mx)

(x2 + 1)(x2 + 9) · · ·
(

x2 + (2n + 1)2
)dx =

(−1)n

(2n + 1)!
π

22n

n

∑
s=0

(−1)s
(

2n + 1
s

)
emθ(2s−2n−1).

where θ ≥ 0 and n = 0, 1, 2, · · ·
Setting m = 1, the obtained integral is a Fourier cosine transform [40,41] of the function

f (t) = 1
(t2+1)(t2+9)···(t2+(2n+1)2)

.

• Using Theorem (3), and setting α = 0, β = 1 we have:

1
i

(
f
(

eiθx
)
− f
(

e−iθx
))

=
1
i

(
eiθmx + e−iθmx

)
= 2sin(θ mx).

Thus,

∞∫
0

2sin(θ mx)

x (x2 + 4)(x2 + 16) . . .
(

x2 + (2n)2
)dx =

(−1)n

(2n)!
π

22n

(
(−1)n

(
2n
n

)
+ 2

n−1

∑
s=0

(−1)s
(

2n
s

)
e2θm(s−n)

)
.

Setting m = 1, the obtained integral is a Fourier sine transform [40,41] of the function
f (t) = 1

t (t2+4)(t2+16)...(t2+(2n)2)
.

2. Setting f (z) = ez.

• Using Theorem (1), we have:

f
(
α + βeiθx)+ f

(
α + βe−iθx) = eα+βeiθx

+ eα+βe−iθx
= 2eα+βcos(θx)cos(βsin(θx)).

∞∫
0

2eα+βcos(θx)cos(βsin(θx))
(x2+1)(x2+9)···(x2+(2n+1)2)

dx = (−1)n

(2n+1)!
π

22n

n
∑

s=0
(−1)s

(
2n + 1

s

)
eα+βeθ(2s−2n−1)

,

where θ ≥ 0 and n = 0, 1, 2, · · · .

• Using Theorem (2), we have:

1
i

(
f
(

α + βeiθx
)
− f
(

α + βe−iθx
))

=
1
i

(
eα+βeiθx − eα+βe−iθx

)
= 2eα+βcos(θx)sin(βsin(θx)).
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Thus,

∞∫
0

2xeα+βcos(θx)sin(βsin(θx))
i(x2+1)(x2+9)···(x2+(2n+1)2)

dx

= (−1)n

(2n+1)!
π

22n

n
∑

s=0
(−1)s

(
2n + 1

s

)
(2n − 2s + 1)

(
eα+βeθ(2s−2n−1) − eα

)
.

3. Setting f (z) = sinhz.

• Using Theorem (1), we have:

f
(
α + βeiθx)+ f

(
α + βe−iθx) = sinh

(
α + βeiθx)+ sinh

(
α + βe−iθx)

= 2cos(βsin(θx))sinh(α + βcos(θx))

Thus,
∞∫
0

2cos(βsin(θx))sinh(α+βcos(θx))
(x2+1)(x2+9)···(x2+(2n+1)2)

dx

= (−1)n

(2n+1)!
π

22n

n
∑

s=0
(−1)s

(
2n + 1

s

)
sinh
(

α + βeθ(2s−2n−1)
)

• Using Theorem (3), we have:

1
i
(

f
(
α + βeiθx)− f

(
α + βe−iθx)) = 1

i
(
sinh
(
α + βeiθx)− sinh

(
α + βe−iθx))

= 2sin(βsin(θx))cosh(α + βcos(θx)).

Thus,

∞∫
0

2sin(βsin(θx))cosh(α+βcos(θx))
x (x2+4)(x2+16)...(x2+(2n)2)

dx

= (−1)n

(2n)!
π

22n

(
(−1)n

(
2n
n

)
(sinh(α + β)− sinh(α))

+2
n−1
∑

s=0
(−1)s

(
2n
s

)(
sinh
(

α + βe2θ(s−n)
)
− sinh(α)

))
,

where θ > 0, n = 1, 2, · · · .

4. Setting f (z) = cos(ez)

• Using Theorem (1), we have:

f
(
α + βeiθx)+ f

(
α + βe−iθx) = cos

(
eα+βeiθx

)
+ cos

(
eα+βe−iθx

)
= 2cos

(
eα+βcos(θx)cos(βsin(θx))

)
cosh
(

sin(βsin(θx))eα+βcos(θx)
)

.

Thus,
∞∫
0

2cos(eα+βcos(θx)cos(βsin(θx)))cosh(sin(βsin(θx))eα+βcos(θx))
(x2+1)(x2+9)···(x2+(2n+1)2)

dx

= (−1)n

(2n+1)!
π

22n

n
∑

s=0
(−1)s

(
2n + 1

s

)
cos
(

α + βeθ(2s−2n−1)
)

.

5. Setting f (z) = ln(1 + z),

• Using Theorem (1), we have:

f
(
1 + α + βeiθx)+ f

(
1 + α + βe−iθx) = ln

(
1 + α + βeiθx)+ ln

(
1 + α + βe−iθx)

= ln((α + 1)2 + β2 + 2(α + 1)βcos(θx)).
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Thus,

∞∫
0

ln((α+1)2+β2+2(α+1)βcos(θx))
(x2+1)(x2+9)···(x2+(2n+1)2)

dx

= (−1)n

(2n+1)!
π

22n

n
∑

s=0
(−1)s

(
2n + 1

s

)
ln
(

1 + α + βeθ(2s−2n−1)
)

.

• Setting α = 0 and β = 1, we have:

f
(
eiθx)+ f

(
e−iθx) = ln

(
1 + eiθx)+ ln

(
1 + e−iθx)

= 2ln
∣∣∣2cos

(
θx
2

)∣∣∣.
Thus,

∞∫
0

2ln|2cos( θx
2 )|

(x2+1)(x2+9)···(x2+(2n+1)2)
dx

= (−1)n

(2n+1)!
π

22n

n
∑

s=0
(−1)s

(
2n + 1

s

)
ln
(

1 + eθ(2s−2n−1)
)

.

4.3. Solving Improper Integrals

In this section, some applications on complicated problems are introduced and solved
directly depending on our new theorems. We note that the Mathematica and Maple
software cannot solve such examples.

Example 1. Evaluate the following integral:

∞∫
0

ln2
∣∣∣tan
(

θx
2 − π

4

)∣∣∣
(x2 + 4)(x2 + 16)

dx,

where θ > 0.

Solution: Using Theorem 1 and setting α = 0, β = 1, and n = 1 or using Remark 6 Table 2
and setting α = 0 and β = 1, we set

f (z) =
(

tan−1z
)2

=
−1
4

ln2
(

1 − iz
1 + iz

)
.

Therefore, we have f
(
eiθx) = − 1

4 ln2
(

1−ieiθx

1+ieiθx

)
, and f

(
eiθx)+ f

(
e−iθx) = 2 Re f

(
eiθx).

Thus, we obtain

∞∫
0

f (eiθx)+ f (e−iθx)
(x2+4)(x2+16) dx = −1

4

∞∫
0

ln2
(

1−ieiθx

1+ieiθx

)
+ln2

(
1−ie−iθx

1+ie−iθx

)
(x2+4)(x2+16) dx

= −1
4

∞∫
0

2 Re
(

ln2
(

1+sin(θx)−icos(θx)
1−sin(θx)+icos(θx)

))
(x2+4)(x2+16) dx

= −1
2

∞∫
0

Re(ln(1+sin(θx)−icos(θx))−ln(1−sin(θx)+icos(θx)))2

(x2+4)(x2+16) dx

= −1
2

∞∫
0

Re(±i π
2 −ln|tan( θx

2 − π
4 )|)2

(x2+4)(x2+16) dx

= −1
2

∞∫
0

Re
(
− π2

4 +ln2|tan( θx
2 − π

4 )|±iπln|tan( θx
2 − π

4 )|
)

(x2+4)(x2+16) dx

= −1
2

∞∫
0

− π2
4 +ln2|tan( θx

2 − π
4 )|

(x2+4)(x2+16) dx = π
24

(
3
(
tan−1e−θ

)2 − (tan−1e−3θ
)2).

∴
∞∫
0

ln2|tan( θx
2 − π

4 )|
(x2+4)(x2+16) dx = π3

384 − π
48

(
3
(
tan−1e−θ

)2 − (tan−1e−3θ
)2).
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Example 2. Evaluate the following integral:

PV
∞∫

0

x tan(πx)

(x2 + 22)(x2 + 42) . . .
(

x2 + (2n)2
)dx, (45)

where n = 1, 2, · · · .

Solution. Using Theorem 4, let α = 0, β = 1 and f (z) = ln(1 + z).

Therefore, we have

f
(
eiθx)+ f

(
e−iθx) = ln

(
1 + eiθx)+ ln

(
1 + e−iθx) = ln(2cos(θx) + 2)

= 2ln
∣∣∣2cos

(
θx
2

)∣∣∣.
Therefore, we have

I(θ) = PV
∞∫

0

2ln
∣∣∣2cos

(
θx
2

)∣∣∣
(x2 + 22)(x2 + 42) . . .

(
x2 + (2n)2

)dx =
(−1)nπ 22−2n

(2n)!

(
n−1

∑
s=0

(−1)s
(

2n
s

)
(s − n)ln

(
1 + e2θ(s−n)

))
.

Now, taking the derivative of I(θ) with respect to θ, we obtain

∂I
∂ θ

= PV
∞∫

0

−x tan
(

θx
2

)
(x2 + 22)(x2 + 42) · · · (x2 + (2n)2)

dx =
(−1)nπ 22−2n

(2n)!

(
n−1

∑
s=0

(−1)s
(

2n
s

)
(s − n)

2(s − n)e2θ(s−n)

e2θ(s−n) + 1

)
.

Therefore,

PV
∞∫

0

x tan(πx)

(x2 + 22)(x2 + 42) · · · (x2 + (2n)2)
dx =

(−1)n+1π 22−2n

(2n)!

(
n−1

∑
s=0

(−1)s
(

2n
s

)
(s − n)

2(s − n)e4π(s−n)

e4π(s−n) + 1

)

Putting n = 1 in Equation (45), we obtain the following integral:

PV
∞∫

0

x tan(πx)
x2 + 4

dx = π
e−4π

e−4π + 1
=

π

(e4π + 1)
.

Example 3. Evaluate the following integral:

∞∫
0

1 + 2cos(θx)
(x2 + 1)(x2 + 4) (1 + 4cos(θx) + 4)

dx,

where θ ≥ 0.

Solution. Using Theorem 5 and taking α = 0 and β = 1, let f (z) = 1
1+2ez .

Thus, we have

f
(

ei θx
)
+ f
(

e−i θx
)
=

(
1

1 + 2eiθx +
1

1 + 2e−iθx

)
=

2(1 + 2 cos(θx))
1 + 4cos(θx) + 4

.

Therefore, setting n = 0 and m = 1, in Theorem 5, we obtain

∞∫
0

1 + 2cos(θx)
(x2 + 1)(x2 + 4) (1 + 4cos(θx) + 4)

dx =
π

12

(
2

1 + 2e−θ
− 1

1 + 2e−θ

)
.
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5. Conclusions

In this research, we introduce new theorems that simplify calculating improper inte-
grals. These results can establish many instances of formulas of improper integrals and
solve them directly without complicated calculations or computer software. We illustrate
some remarks that analyze our work.

• The proposed theorems are considered powerful techniques for generating improper
integrals and testing the results when using other methods to solve similar examples.

• These theorems can be illustrated in tables of integrations, with different values of
functions and generate more results.

• The obtained improper integrals cannot be solved manually (simply) or by computer
software such as Mathematica and Maple.

We intend to generalize the proposed theorems and make tables and algorithms to
simplify their use during the applications. Additionally, these results can be used to solve
differential equations by inverting the integrals into differential equations.
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Abstract: Kurepa’s function and his hypothesis have been investigated by means of numerical
simulation. Particular emphasis has been given to the conjecture on its distribution, that should be
one of a random uniform distribution, which has been verified for large numbers. A convergence
function for the two has been found.
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1. Introduction

It has been more than fifty years since the introduction of the simple arithmetic
function and the hypothesis related to it, the former being the Kurepa’s function and
the latter known as the Kurepa’s hypothesis. This hypothesis has defied the resolution
ever since.

Namely, in [1], Kurepa defined the function,

K(n) = !n =
n−1

∑
i=0

i! , (1)

for n ∈ N following his earlier works [2–4]. Kurepa himself called the function the left
factorial, at present the function is also called Kurepa’s left factorial, or simply Kurepa’s
function. He subsequently extended this function to the complex plane [5]

K(z) =
∫ +∞

0
e−t tz − 1

t − 1
dt , (2)

for �(z) > 0. An important property of this function is the following:

lim
x→+∞

K(x)
Γ(x)

= 1 , (3)

where Γ(x) represents the Gamma function. For more details, see [6], for Kurepa’s selected
papers with commentary on number theoretical problems, see [7], and regarding historical
overview of the problem up to the fiftieth anniversary, see [8]. Some recent developments
and further references could be found in [9,10].

In the same 1971 paper [1], Kurepa introduced his hypothesis on the function K(n),
which could be written in the following manner:

mod(K(n), n) �≡ 0, n ∈ N, n > 2 , (4)
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where mod(K(n), n) signifies the remainder of the division of K(n) by n. Up to today (2022),
it has not been proved. In 2004, an attempt at a proof was presented in a paper that was later
retracted by the authors [11,12]. In [13], the search for a counterexample of the hypothesis
was performed, without success, for n < 234 ≈ 1.718 × 1010 by means of GPU computing.

The aim of this work is not to try to solve the original Kurepa’s hypothesis, already
discussed in great detail in [9,10], together with the properties of Kurepa’s function and its
extension on the complex plane. The scope is to investigate the conjecture first presented
in [13] about the distribution of Kurepa’s function as a function of n ∈ N.

2. The Distribution Conjecture

While studying numerically the hypothesis, the authors of [13] made the
following conjecture:

mod(K(n), n)/n (5)

is a random number in the range [0, n] with uniform distribution in (0, 1). In this paper, we
will further numerically investigate this conjecture. Previously, in [9,10], we did an analysis
of (5) on prime numbers distribution up to the value of p = 116, 447, that is, the 11,000th
prime number, where it is clearly shown how the difference with a uniform random
distribution in (0, 1) decreases with increasing number of prime numbers p considered.

Our new analysis is done with the software PARI/GP [14] for n ∈ N up to the value
of n = 4 × 106, for which K(4 × 106) > 10107

. In the following figures, Figure 1a–d, we
show the distribution of (5) for different ranges of n. As our largest n is 4 × 106, we have
millions of points, so we could only present a small range for the distribution in order
for the figure to be discernible from a black blob. The figures, for different ranges of
n, visually do not appear to be different from a uniform random distribution in (0, 1),
the so-called white noise. A different choice of n ranges and starting points does not
present substantial modifications to the figures. Additionally, compare those results to the
one obtained in [9,10] for different ranges of the arguments, which are quite similar. We
could also observe how Kurepa’s hypothesis is satisfied, as there is no value of n in the
investigated range for which mod(K(n), n) = 0.

In Figure 2, we show the comparison of the results of mod(K(n), n)/n with respect to
a random uniform distribution in (0, 1) as a function of n, for the whole range of numbers
considered, up to n = 4 × 106. We observe that this fluctuation, naturally defined as the
difference of (5) from the average of a random distribution in (0,1), which is 1/2, normalized
to its average, that is

fluctuation(n) =

( mod(K(n),n)
n − 1

2
1
2

)
, (6)

as a function of n, stabilizes above a certain number and then starts decreasing with
increasing n, providing more support to the conjecture presented in Equation (5), for which
the relation

lim
n→+∞

fluctuation(n) = 0, (7)

holds true. Loosely speaking, it means that for large n, the average value of (5) is 1/2. For n
approximately larger than 106, the fluctuation in percentage is less than 0.2 and decreasing,
being lower than 0.1 when n crosses the value of 3 × 106.
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(a) (b)

(c) (d)
Figure 1. Distribution of mod (K(n), n)/n; (a) n in range [0÷ 2.5]× 104, (b) n in range [1.0÷ 1.025]× 106,
(c) n in range [2.0÷ 2.025]× 106, and (d) n in range [3.0÷ 3.025]× 106.

Figure 2. Difference of mod(K(n), n)/n from a random uniform distribution, in percentage.

To evaluate the speed at which the fluctuation decreases as a function of n, we have
used a simple function:

A exp(−nα), (8)

where the parameters A, α have been fitted to the data points for n > 106. The obtained
results for the parameters in the range n = [1 × 106 ÷ 4 × 106] are:

A = 37.8409, α = 0.12034 . (9)

This fit is compared to data points in Figure 3, and it is possible to observe a very
good agreement with the function (8). The fluctuation goes to zero with increasing n as a
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negative exponential function of a small power of n. The simplicity of Equation (8) also
allows us to estimate the limit value of n above which the fluctuation F should be lower
than a fixed value by means of the equation

A exp(−nα) = F implies n = α

√
ln
(

A
F

)
. (10)

For instance, n should be approximately larger than 2.7 × 106 in order to obtain a fluctua-
tion F smaller than 0.1%; n > 6.7 × 106 for F < 0.05%, and n > 40.7 × 106 for F < 0.01%.

Figure 3. Fit of the function (8) to the data.

3. Conclusions and Outlook

After more than half a century from the introduction of Kurepa’s hypothesis, there is
still not even a hand-waving argument towards its possible solution. The best approach
remains a numerical simulation that cannot provide a rigorous proof for its very nature.
This fact also remains true for the distribution conjecture of Equation (5), which, curiously
enough, is not due to Kurepa himself, but rather stemmed out from numerical simulations.

The present work did not solve the latter problem, but, for the first time, confirmed the
conjecture, and as a byproduct Kurepa’s hypothesis as well, for the values up to n = 4× 106.
It also provides a convergence speed function given by an exponential of a mild power of n,
Equation (8), a result not obtained previously. Moreover, this function shows convincingly
that the behavior of Equation (7), the conjecture itself, should be true. Those results could
help to indicate the path towards a formal and rigorous solution of Kurepa’s hypothesis
and the conjecture on its distribution, which are both lacking after all this time.
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