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Abstract: A serious and ubiquitous issue in existing mapped WENO schemes is that most of them
can hardly preserve high resolutions, but in the meantime prevent spurious oscillations in the
solving of hyperbolic conservation laws with long output times. Our goal for this article was to
address this widely known problem. In our previous work, the order-preserving (OP) criterion was
originally introduced and carefully used to devise a new mapped WENO scheme that performs
satisfactorily in long simulations, and hence it was indicated that the OP criterion plays a critical
role in the maintenance of low-dissipation and robustness for mapped WENO schemes. Thus, in
our present work, we firstly defined the family of mapped WENO schemes, whose mappings meet
the OP criterion, as OP-Mapped WENO. Next, we attentively took a closer look at the mappings
of various existing mapped WENO schemes and devised a general formula for them. That helped
us to extend the OP criterion to the design of improved mappings. Then, we created a generalized
implementation of obtaining a group of OP-Mapped WENO schemes, named MOP-WENO-X, as they
are developed from the existing mapped WENO-X schemes, where the notation “X” is used to identify
the version of the existing mapped WENO scheme. Finally, extensive numerical experiments and
comparisons with competing schemes were conducted to demonstrate the enhanced performances of
the MOP-WENO-X schemes.

Keywords: order-preserving mapping; OP-Mapped WENO; hyperbolic conservation laws

1. Introduction

The essentially non-oscillatory (ENO) schemes [1–4] and the weighted ENO (WENO)
schemes [5–8] have been developed quite successfully in recent decades to solve the
hyperbolic conservation problems, especially those that may generate discontinuities and
smooth small-scale structures as time evolves in their solutions, even if the initial condition
is smooth. The main purpose of this study was to find a general method to introduce
the order-preserving (OP) mapping proposed in our previous work [9] for improving the
existing mapped WENO schemes for the approximation of the hyperbolic conservation
laws in the form

∂u

∂t
+∇ · F(u) = 0, (1)

where u = (u1, · · · , um) ∈ Rm is the vector of the conserved variables and F(u) is the vector
of the Cartesian components of flux. In recent years, there have been many works by Dumb-
ser [10], Boscheri [11–13], Tsoutsanis [14,15], Titarev and Toro [16–19], Semplice [20,21],
Puppo [22], Russo [23,24], and others on WENO approaches. These researches embraced
a wide range of issues, e.g., the ADER-WENO finite volume schemes, the Cool WENO
schemes, the unstructured WENO schemes, the Compact central WENO schemes, and so
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Math. Comput. Appl. 2021, 26, 67

on. However, because of space limitations, it is very difficult to provide detailed descrip-
tions of them here, and we refer the reader to our references for more details. In the present
study, our main concern was to improve the performances of the (2r− 1)th-order mapped
WENO schemes, so we briefly review recent developments in this field in the following.

Harten et al. [1] introduced the ENO schemes. They used the smoothest stencil
from r possible candidate stencils based on the local smoothness to perform a polynomial
reconstruction such that it yielded high-order accuracy in smooth regions but avoided
spurious oscillations at or near discontinuities. Liu, Osher, and Chan [7] introduced the
first WENO scheme, an improved version of the ENO methodology with a cell-averaged
approach, by using a nonlinear convex combination of all the candidate stencils to achieve
a higher order of accuracy than the ENO schemes, while retaining the essential non-
oscillatory property at or near discontinuities. In other words, it achieves (r + 1)th-order
accuracy from the rth-order ENO schemes [1–3] in the smooth regions while behaving
similarly to the rth-order ENO schemes in regions including discontinuities. In [8], Jiang
and Shu proposed the classic WENO-JS scheme, along with a new measurement for the
smoothness of the numerical solutions on substencils (hereafter, denoted by smoothness
indicator), by using the sum of the normalized squares of the scaled L2-norms of all the
derivatives of r local interpolating polynomials, to obtain (2r− 1)th-order accuracy from
the rth-order ENO schemes.

The WENO-JS scheme has become a very popular and quite successful methodology
for solving compressible flows modeled through hyperbolic conservation laws in the form
of Equation (1). However, it was less than fifth-order for many cases, such as at or near
critical points of order ncp = 1 in the smooth regions. Here, we refer to ncp as the order
of the critical point; e.g., ncp = 1 corresponds to f ′ = 0, f ′′ �= 0 and ncp = 2 corresponds
to f ′ = 0, f ′′ = 0, f ′′′ �= 0. In particular, Henrick et al. [25] identified that the fifth-order
WENO-JS scheme fails to yield the optimal convergence order at or near critical points
where the first derivative vanishes but the third derivative does not. Then, in the same
article, they derived the necessary and sufficient conditions on the nonlinear weights for
optimality of the convergence rate of the fifth-order WENO schemes and these conditions
were reduced to a simpler sufficient condition [26] which could be easily extended to the
(2r− 1)th-order WENO schemes [27]. Moreover, also in [25], Henrick et al. devised the
original mapped WENO scheme, named WENO-M hereafter, by constructing a mapping
function that satisfies the sufficient condition to achieve the optimal order of accuracy.

Later, following the idea of incorporating a mapping procedure to keep the nonlinear
weights of the convex combination of stencils as near as possible to the ideal weights of
optimal order accuracy, various versions of mapped WENO schemes have been successfully
proposed. In [27], Feng et al. rewrote the mapping function of the WENO-M scheme in
a simple and more meaningful form and then extended it to a general class of improved
mapping functions, leading to the family of the WENO-IM(k, A) schemes, where k is
a positive even integer and A a positive real number. It was indicated that by taking
k = 2 and A = 0.1 in the WENO-IM(k, A) scheme, far better numerical solutions with less
dissipation and higher resolution could be obtained than that of the WENO-M scheme.
Unfortunately, the numerical experiments in [28] showed that the seventh and ninth-order
WENO-IM(2, 0.1) schemes generated evident spurious oscillations near discontinuities
when the output time was large. In addition, our numerical experiments, as shown in
Figures 10, 12 and 14, indicate that, even for the fifth-order WENO-IM(2, 0.1) scheme,
the spurious oscillations are also produced when the grid number increases or a different
initial condition is used. Recently, Feng et al. [29] pointed out that, when the WENO-
M scheme is used for solving the problems with discontinuities for long output times,
its mapping function may amplify the effect from the non-smooth stencils, leading to
a potential loss of accuracy near discontinuities. To amend this drawback, a piecewise
polynomial mapping function with two additional requirements, that is, g′(0) = 0 and
g′(1) = 0 (g(x) denotes the mapping function), to the original criteria in [25] was proposed.
The recommended WENO-PM6 scheme [29] achieved significantly higher resolution than
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the WENO-M scheme when computing the one-dimensional linear advection problem with
long output times. However, it may generate spurious oscillations near the discontinuities,
as shown in Figure 8 of [27] and Figures 3–8 of [28].

More mapped WENO schemes, such as the WENO-PPMn [30], WENO-RM(mn0) [28],
WENO-MAIMi [31], WENO-ACM [32] schemes, and others, have been successfully devel-
oped to enhance the performances of the classic WENO-JS scheme in some ways, such as
letting it achieve optimal convergence orders near critical points in smooth regions; having
less numerical dissipation; letting it achieve higher resolutions near discontinuities; or re-
ducing the computational costs. See the references for more details. However, as mentioned
in previously published literature [27,28], most of the existing improved mapped WENO
schemes could not prevent the spurious oscillations near discontinuities, especially for
long-output-time simulations. Moreover, when simulating the two-dimensional problems
with strong shock waves, the post-shock oscillations, which were systematically studied
for WENO schemes by Zhang et al. [33], become very severe in the solutions of most of the
existing improved mapped WENO schemes [32].

In our previous study [9], we studied the nonlinear weights of the existing mapped
WENO schemes by taking the ones developed in [9,27,29,31] as examples. It was found
that the order of the nonlinear weights for the substencils of the same global stencil has
been changed at many points in the mapping processes of all these considered mapped
WENO schemes. The order-change of nonlinear weights is caused by weight increasing of
non-smooth substencils and weight decreasing of smooth substencils. It was revealed that
this is the essential cause of the potential loss of accuracy of the WENO-M scheme and the
spurious oscillation generation of the existing improved mapped WENO schemes, through
theoretical analysis and extensive numerical tests. In the same article, the definition of the
order-preserving (OP) mapping was given and suggested as an additional criterion in the
design of the mapping function. Then a new mapped WENO scheme with its mapping
function satisfying the additional criterion was proposed. Extensive numerical experiments
showed that this scheme can achieve the optimal convergence order of accuracy, even at
critical points. It also can decrease the numerical dissipation and obtain high resolution,
but does not generate spurious oscillation near discontinuities, even if the output time is
large. Moreover, it was observed clearly that it exhibits a significant advantage in reducing
the post-shock oscillations when calculating the problems with strong shock waves in two
dimensions.

In this article, the idea of introducing the OP criterion into the design of the mapping
functions proposed in [9] is extended to various existing mapped WENO schemes. First of
all, we give the common name of OP-Mapped WENO to the family of the mapped WENO
schemes whose mappings are OP. A general formula for the mapping functions of various
existing mapped WENO schemes is presented, which allows the extension of the OP
criterion to all existing mapped WENO schemes. The notation MOP-WENO-X is used to
denote the improved mapped WENO scheme considering the OP criterion based on the
existing WENO-X scheme. A new function named minDist is defined (see Definition 4 in
Section 3.3 below). A general algorithm to construct OP mappings through the existing
mapping functions by using the minDist function is proposed.

Extensive numerical tests were conducted to demonstrate the performances of the
MOP-WENO-X schemes: (1) A series of accuracy tests show the abilities of the MOP-
WENO-X schemes to achieve optimal convergence order in smooth regions with first-order
critical points and their advantages in long-output-time simulations of problems with very
high-order critical points. (2) The one-dimensional linear advection equation with two
kinds of initial conditions for long output times are presented to demonstrate that the MOP-
WENO-X schemes can obtain high resolution, and meanwhile avoid spurious oscillation
near discontinuities. (3) Some benchmark tests with strong shock waves modeled via
the two-dimensional Euler equations were computed. It is clear that the MOP-WENO-X
schemes also enjoy a significant advantage in reducing the post-shock oscillations.
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The remainder of this paper is organized as follows. In Section 2, we briefly review the
preliminaries to understand the finite volume method and the procedures of the WENO-
JS [8], WENO-M [25], and other versions of mapped WENO schemes. Section 3 presents a
general method to introduce the OP mapping for improving the existing mapped WENO
schemes. Some numerical results are provided in Section 4 to illustrate the advantages of
the proposed WENO schemes. Finally, concluding remarks are given in Section 5 to close
this paper.

2. Brief Review of the WENO Schemes

For simplicity of presentation but without loss of generality, we denote our topic with
the following one-dimensional linear hyperbolic conservation equation:

∂u
∂t

+
∂ f (u)

∂x
= 0, xl < x < xr, t > 0, (2)

with the initial condition u(x, 0) = u0(x). We confine our attention to the uniform meshes
in this paper, and for the WENO method with non-uniform meshes, one can refer to [34,35].
Throughout this paper, we assume that the given domain [xl , xr] is discretized into the
set of uniform cells Ij := [xj−1/2, xj+1/2], j = 1, · · · , N with the cell size Δx = xr−xl

N . The
associated cell centers and cell boundaries are denoted by xj = xl + (j − 1/2)Δx and

xj±1/2 = xj ± Δx/2, respectively. The notation ū(xj, t) =
1

Δx
∫ xj+1/2

xj−1/2
u(ξ, t)dξ indicates

the cell average of Ij. The one-dimensional linear hyperbolic conservation equation in
Equation (2) can be approximated by a system of ordinary differential equations, yielding
the semi-discrete finite volume form:

dūj(t)
dt

≈ L(uj),

L(uj) = −
1

Δx

(
f̂ j+1/2 − f̂ j−1/2

)
,

(3)

where ūj(t) is the numerical approximation of the cell average ū(xj, t), and the numerical
flux f̂ j±1/2 is a replacement of the physical flux function f (u) at the cell boundaries xj±1/2

and it is defined by f̂ j±1/2 = f̂ (u−j±1/2, u+
j±1/2). u±j±1/2 refer to the limits of u, and their

values of u±j±1/2 can be obtained by reconstruction, for instance, the WENO reconstruction
procedures shown later. In this paper, we use the global Lax–Friedrichs flux:

f̂ (a, b) =
1
2
[

f (a) + f (b)− α(b− a)
]
,

where α = maxu| f ′(u)| is a constant and the maximum is taken over the whole range of u.

2.1. The WENO-JS Reconstruction

Firstly, we review the process of the classic fifth-order WENO-JS reconstruction [8].
For brevity, we describe only the reconstruction procedure of the left-biased u−j+1/2, and the

right-biased one u+
j+1/2 can trivially be computed by mirror symmetry with respect to the

location xj+1/2 of u−j+1/2. We drop the subscript “-” below just for simplicity of notation.
To construct the values of uj+1/2 from known cell average values uj, a 5-point global

stencil S5 = {Ij−2, Ij−1, Ij, Ij+1, Ij+2} is used in the fifth-order WENO-JS scheme. It is
subdivided into three 3-point substencils Ss = {Ij+s−2, Ij+s−1, Ij+s} with s = 0, 1, 2. It is
known that the third-order approximations of u(xj+1/2, t) associated with these substencils
are explicitly given by

4
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u0
j+1/2 =

1
6
(2ūj−2 − 7ūj−1 + 11ūj),

u1
j+1/2 =

1
6
(−ūj−1 + 5ūj + 2ūj+1),

u2
j+1/2 =

1
6
(2ūj + 5ūj+1 − ūj+2).

(4)

Then the uj+1/2 of global stencil S5 is computed by a weighted average of those third-order
approximations of substencils, taking the form

uj+1/2 =
2

∑
s=0

ωsus
j+1/2. (5)

The nonlinear weights ωs in the classic WENO-JS scheme are defined as

ωJS
s =

αJS
s

∑2
l=0 αJS

l

, αJS
s =

ds

(ε + βs)2 , s = 0, 1, 2, (6)

where d0, d1, d2 are called the ideal weights of ωs since they generate the central upstream
fifth-order scheme for the global stencil S5. It is known that d0 = 0.1, d1 = 0.6, d2 = 0.3 and

in smooth regions we can get
2
∑

s=0
dsus

j+1/2 = u(xj+1/2, t) + O(Δx5). ε is a small positive

number introduced to prevent the denominator from becoming zero. The parameters βs
are the smoothness indicators for the third-order approximations us

j+1/2 and their explicit
formulas can be obtained from [8], taking the form

β0 =
13
12
(
ūj−2 − 2ūj−1 + ūj

)2
+

1
4
(
ūj−2 − 4ūj−1 + 3ūj

)2,

β1 =
13
12
(
ūj−1 − 2ūj + ūj+1

)2
+

1
4
(
ūj−1 − ūj+1

)2,

β2 =
13
12
(
ūj − 2ūj+1 + ūj+2

)2
+

1
4
(
3ūj − 4ūj+1 + ūj+2

)2.

In general, the fifth-order WENO-JS scheme is able to recover the optimal convergence
rate of accuracy in smooth regions. However, when at or near critical points where the first
derivative vanishes but the third derivative does not simultaneously, it loses accuracy and
its convergence rate of accuracy decreases to third-order or even less. We refer to [25] for
more details.

2.2. The Mapped WENO Reconstructions

To address the issue of the WENO-JS scheme mentioned above, Henrick et al. [25]
made a systematic truncation error analysis of Equation (3) in its corresponding finite
difference version by using the Taylor series expansions of the Equation (4), and hence they
derived the necessary and sufficient conditions on the weights for the fifth-order WENO
scheme to achieve the formal fifth-order of convergence at smooth regions of the solution,
taking the form

2

∑
s=0

(ω±s − ds) = O(Δx6),
2

∑
s=0

As(ω
+
s −ω−s ) = O(Δx3), ω±s − ds = O(Δx2), (7)

where the superscripts “+” and “−” on ωs correspond to their use in either us
j+1/2 and

us
j−1/2 stencils respectively, and the parameter As is independent of Δx and it is given

explicitly in Equation (16) in [25] for the fifth-order version WENO-JS scheme. Since the
first equation in Equation (7) always holds due to the normalization, a simpler sufficient
condition for the fifth-order convergence is given as [26]

ω±s − ds = O(Δx3), s = 0, 1, 2. (8)

5
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The conditions Equation (7) or Equation (8) may not hold in the case of smooth extrema
or at critical points when the fifth-order WENO-JS scheme is used. An innovative idea
of fixing this deficiency, originally proposed by Henrick in [25], is to design a mapping
function to make ωs approximating the ideal weights ds at critical points to the required
third order O(Δx3). The first mapping function devised by Henrick et al. in [25] is given as

(
gM)

s(ω) =
ω
(
ds + d2

s − 3dsω + ω2)
d2

s + (1− 2ds)ω
, s = 0, 1, 2. (9)

In Equation (9), ω = ωJS is recommended according to the theoretical analysis of WENO-M
by Henrick in [25] where the good properties of ωJS to guarantee the success of the mapped
function have been analyzed very carefully. Actually, ω = ωJS is commonly used in almost
all maping functions [9,27–32] although some other kind of nonlinear weights may also be
available.

We can verify that
(

gM)
s(ω) meets the conditions in Equation (8) as it is a non-

decreasing monotone function on [0, 1] with finite slopes and satisfies the following properties.

Lemma 1. The mapping function
(

gM)
s(ω) defined by Equation (9) satisfies:

C1. 0 ≤
(

gM)
s(ω) ≤ 1,

(
gM)

s(0) = 0,
(

gM)
s(1) = 1;

C2.
(

gM)
s(ds) = ds;

C3.
(

gM)′
s(ds) =

(
gM)′′

s (ds) = 0.

Following Henrick’s idea, a great many improved mapping functions were success-
fully proposed [9,27–32]. To clarify our major concern and provide convenience to readers
but for brevity in the description, we only state some mapping functions in the following
context, and we refer to references for properties similar to Lemma 1 and more details of
these mapping functions.

� WENO-IM(k, A) [27]

(
gIM)

s(ω; k, A) = ds +

(
ω− ds

)k+1 A(
ω− ds

)k A + ω(1−ω)
, A > 0, k = 2n, n ∈ N+. (10)

� WENO-PMk [29](
gPM)

s(ω) = c1(ω− ds)
k+1(ω + c2) + ds, k ≥ 2, (11)

where c1, c2 are constants with specified parameters k and ds, taking the following forms

c1 =

⎧⎪⎪⎨⎪⎪⎩
(−1)k k + 1

dk+1
s

, 0 ≤ ω ≤ ds,

− k + 1
(1− ds)k+1 , ds < ω ≤ 1,

c2 =

⎧⎪⎪⎨⎪⎪⎩
ds

k + 1
, 0 ≤ ω ≤ ds,

ds − (k + 2)
k + 1

, ds < ω ≤ 1.

� WENO-PPMn [30]

(
gPPMn

s
)

s(ω) =

{ (
gPPMn

s,L
)

s(ω), ω ∈ [0, ds](
gPPMn

s,R
)

s(ω), ω ∈ (ds, 1],
(12)

and for n = 5,(
gPPM5

s,L
)

s(ω) = ds
(
1 + (a− 1)5), (

gPPM5
s,R

)
s(ω) = ds + b4(ω− ds

)5. (13)

where a = ω/ds, b = 1/(ds − 1).
� WENO-RM(mn0) [28]

6
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(
gRM)

s(ω) = ds +
(ω− ds)n+1

a0 + a1ω + · · ·+ am+1ωm+1 , m ≤ n ≤ 8, (14)

where ⎧⎪⎨⎪⎩
ai = Ci

n+1(−ds)
n−i, i = 0, 1, · · · , m,

am+1 = (1− ds)
n −

m

∑
i=0

ai.
(15)

Furthermore, m = 2, n = 6 is recommended in [28], then

(
gRM)

s(ω) = ds +
(ω− ds)7

a0 + a1ω + a2ω2 + a3ω3 , ω ∈ [0, 1] (16)

where

a0 = d6
s , a1 = −7d5

s , a2 = 21d4
s , a3 = (1− ds)

6 −
2

∑
i=0

ai. (17)

� WENO-MAIM1 [31]

(
gMAIM1)

s

(
ω
)
= ds +

f FIM · (ω− ds)k+1

f FIM · (ω− ds)k + ω
ds

msω+εA (1−ω)
1−ds

ms(1−ω)+εA

, (18)

with

f FIM = A
(

1 + (−1)k

2
+

1 + (−1)k+1

2
· sgm

(
ω− ds, δ, 1, k

))
, (19)

and

sgm
(
x, δ, B, k

)
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x
|x| , |x| ≥ δ,

x(
B
(
δ2 − x2

))k+3
+ |x|

, |x| < δ. (20)

In Equations (18)–(20), k ∈ N+, A > 0, δ > 0 with δ→ 0, εA is a very small positive number

to prevent the denominator from becoming zero, and ms ∈
[

αs
k+1 , M

)
with M being a finite

positive constant real number and αs a positive constant that only depends on s in the
fifth-order WENO-MAIM1 scheme. In Equation (20), the positive parameter B is a scale
transformation factor introduced to adjust the shape of the mapping function and it is set
to be 1 in WENO-MAIM1 while to be other values in the following WENO-ACM schemes.

� WENO-ACM [32]

(
gACM)

s(ω) =

⎧⎪⎨⎪⎩
ds

2
sgm(ω−CFSs, δs, B, k) +

ds

2
, ω ≤ ds,

1− ds

2
sgm(ω−CFSs, δs, B, k) +

1 + ds

2
, ω > ds,

(21)

where CFSs ∈ (0, ds), CFSs = 1− 1−ds
ds
× CFSs with CFSs ∈ (ds, 1), and δs < min

{
CFSs,

ds −CFSs, (1− ds)
(

1− CFSs
ds

)
, 1−ds

ds
CFSs

}
.

� MIP-WENO-ACMk [9]

(
gMIP−ACMk)

s(ω) =

⎧⎨⎩
ksω, ω ∈ [0, CFSs),
ds, ω ∈ [CFSs, CFSs],
1− ks(1−ω), ω ∈ (CFSs, 1],

(22)

where CFSs ∈ (0, ds), CFSs = 1− 1−ds
ds
×CFSs with CFSs ∈ (ds, 1), and ks ∈

[
0, ds

CFSs

]
.

7
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By using the mapping function
(

gX)
s(ω) , where the superscript “X” corresponds to

“M,” “PM6,” or “IM,” etc., the nonlinear weights of the associated WENO-X scheme are
defined as

ωX
s =

αX
s

∑2
l=0 αX

l

, αX
s =

(
gX)

s(ω
JS
s ), s = 0, 1, 2,

where ωJS
s are calculated by Equation (6).

In other studies, it has been analyzed and proved in detail that the WENO-X schemes
can retain the optimal order of accuracy in smooth regions even at or near critical points.

3. A General Method to Introduce Order-Preserving Mapping for Mapped
WENO Schemes

3.1. The OP-Mapped WENO

Before giving Definition 3 below, to maintain coherence and for the readers’ conve-
nience, we state the definition of order-preserving/non-order-preserving mapping and OP/non-
OP point proposed in [9].

Definition 1 (order-preserving/non-order-preserving mapping). Suppose that
(

gX)
s(ω), s =

0, · · · , r− 1 is a monotone increasing piecewise mapping function of the (2r− 1)th-order mapped
WENO-X scheme. If for ∀m, n ∈ {0, · · · , r− 1}, when ωm > ωn, we have(

gX)
m(ωm) ≥

(
gX)

n(ωn). (23)

and when ωm = ωn, we have
(

gX)
m(ωm) =

(
gX)

n(ωn), then we say the set of mapping functions{(
gX)

s(ω), s = 0, · · · , r− 1
}

is order-preserving (OP). Otherwise, we say the set of mapping

functions
{(

gX)
s(ω), s = 0, · · · , r− 1

}
is non-order-preserving (non-OP).

Definition 2 (OP/non-OP point). Let S2r−1 denote the (2r− 1)-point global stencil centered
around xj. Assume that S2r−1 is subdivided into r-point substencils {S0, · · · , Sr−1} and ωs are
the nonlinear weights corresponding to the substencils Ss with s = 0, · · · , r− 1, which are used
as the independent variables by the mapping function. Suppose that

(
gX)

s(ω), s = 0, · · · , r− 1
is the mapping function of the mapped WENO-X scheme; then we say that a non-OP mapping
process occurs at xj, if ∃m, n ∈ {0, · · · , r− 1}, s.t.⎧⎪⎨⎪⎩

(
ωm −ωn

)((
gX)

m(ωm)−
(

gX)
n(ωn)

)
< 0, if ωm �= ωn,(

gX)
m(ωm) �=

(
gX)

n(ωn), if ωm = ωn.
(24)

In addition, we say xj is a non-OP point. Otherwise, we say xj is an OP point.

Definition 3 (OP-Mapped WENO). The family of the mapped WENO schemes with OP map-
pings is collectively referred to as OP-Mapped WENO in our study.

3.2. A General Formula for the Existing Mapping Functions

We rewrite the mapping function of the WENO-X scheme, that is,
(

gX)
s(ω), s =

0, 1, · · · , r− 1, to be a general formula, given as

gX(ω; mP, Ps,1, · · · , Ps,mP

)
=
(

gX)
s(ω), (25)

where mP is the number of the parameters related with s indicating the substencil, and
Ps,1, · · · , Ps,mP are these parameters. Taking the WENO-IM(k, A) scheme as an example,
besides the independent variable ω, there are the other three parameters in its mapping
function (see Equation (10)), namely, ds, k and A. It is easy to know that ds is related to the
substencil Ss, and k and A are not. Thus, for the WENO-IM(k, A) scheme, we have mP = 1
and Ps,1 = ds. We can also determine the value of mP and the corresponding Ps,1, · · · , Ps,mP

8
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of other WENO schemes. Clearly, we have mP = 0 for the WENO-JS scheme and mP ≥ 1
for other mapped WENO schemes. In Table 1, taking nine different WENO schemes as
examples, we have presented their parameters of mP and Ps,1, · · · , Ps,mP . Let nX denote
the order of the specified critical point, namely, ω = ds, of the mapping function of the

WENO-X scheme, that is,
(

gX)′
s(ds) = · · · =

(
gX)(nX)

s (ds) = 0,
(

gX)(nX+1)
s (ds) �= 0 . To

simplify the description of Theorem 2 below, we present nX of the WENO-X scheme in the
sixth column of Table 1.

Table 1. The parameters mP and Ps,1, · · · , Ps,mP for the WENO-JS scheme and some existing mapped WENO schemes whose
mapping functions are non-OP.

No. Scheme, WENO-X mP Ps,1, · · ·, Ps,mP
Parameters nX Ref.

1 WENO-JS 0 None None None See [8]
2 WENO-M 1 Ps,1 = ds None 2 See [25]
3 WENO-IM(k, A) 1 Ps,1 = ds k = 2.0, A = 0.1 k See [27]
4 WENO-PMk 1 Ps,1 = ds k = 6 k See [29]
5 WENO-PPMn 1 Ps,1 = ds n = 5 4 See [30]
6 WENO-RM(mn0) 1 Ps,1 = ds m = 2, n = 6 3, 4 See [28]
7 WENO-MAIM1 2 Ps,1 = ds, Ps,2 = ms k = 10, A = 1.0e−6, ms = 0.06 k, k + 1 See [31]
8 WENO-ACM 2 Ps,1 = ds, Ps,2 = CFSs A = 20, k = 2, μ = 1e−6, CFSs = ds/10 ∞ See [32]
9 MIP-WENO-ACMk 3 Ps,1 = ds, Ps,2 = CFSs, Ps,3 = ks ks = 0.0, CFSs = ds/10 ∞ See [9]

Lemma 2. For the WENO-X scheme shown in Table 1, the mapping function
(

gX)
s(ω), s =

0, 1, · · · , r− 1 is monotonically increasing over [0, 1].

Proof. See the corresponding references given in the last column of Table 1.

3.3. The New Mapping Functions

Firstly, we give the minDist function by the following definition.

Definition 4 (minDist function). Define the minDist function as follows:⎧⎪⎨⎪⎩
minDist

(
x0, · · · , xr−1; d0, · · · , dr−1; ω

)
= xk∗ ,

k∗ = min

(
IndexOf

(
min

{
|ω− d0|, |ω− d1|, · · · , |ω− dr−1|

}))
,

(26)

where ds, s = 0, · · · , r− 1 is the optimal weight; ω is the nonlinear weight, being the independent
variable of the mapping function; and the function IndexOf(·) returns a set of the subscripts of

“·”—that is, if min
{
|ω − d0|, |ω − d1|, · · · , |ω − dr−1|

}
= |ω − dm1 | = |ω − dm2 | = · · · =

|ω− dmM |, then

IndexOf
(

min
{
|ω− d0|, |ω− d1|, · · · , |ω− dr−1|

})
=
{

m1, m2, · · · , mM

}
. (27)

Let D =
{

d0, d1, · · · , dr−1

}
be an array of all the ideal weights of the (2r− 1)th-order

WENO schemes. We build a new array by sorting the elements of D in ascending order—

that is, D̃ =
{

d̃0, d̃1, · · · , d̃r−1

}
. In other words, the arraysD and D̃ have the same elements

with different arrangements, and the elements of D̃ satisfy

0 < d̃0 < d̃1 < · · · < d̃r−1 < 1. (28)

Definition 5. Let G =
{(

gX)
0(ω),

(
gX)

1(ω), · · · ,
(

gX)
r−1(ω)

}
be an array of all the mapping

functions of the (2r − 1)th-order mapped WENO-X scheme. We define a new array by sorting

9
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the elements of G in a new order—that is, G̃ =
{(̃

gX
)

0(ω),
(̃

gX
)

1(ω), · · · ,
(̃

gX
)

r−1(ω)
}

, where(̃
gX
)

s(ω) is the mapping function associated with d̃s .

Lemma 3. Denote d̃−1 = 0, d̃r = 1. Let d̊−1 = d̃−1, d̊0 = d̃0+d̃1
2 , · · · , d̊r−2 = d̃r−2+d̃r−1

2 , d̊r−1

= d̃r. For ∀i = 0, 1, · · · , r− 1, if ω ∈ (d̊i−1, d̊i], then

min

(
IndexOf

(
min

{
|ω− d̃0|, |ω− d̃1|, · · · , |ω− d̃r−1|

}))
= i.

Proof. (1) We first prove the cases of i = 1, · · · , r − 2. When d̃i ≤ ω ≤ d̃i+d̃i+1
2 , as

Equation (28) holds, we get{
0 ≤ ω− d̃i ≤ d̃i+1 −ω < · · · < d̃r−1 −ω,
0 ≤ ω− d̃i < ω− d̃i−1 < · · · < ω− d̃0.

(29)

Similarly, when d̃i−1+d̃i
2 < ω < d̃i, we get{

0 < d̃i −ω < ω− d̃i−1 < · · · < ω− d̃0,
0 < d̃i −ω < d̃i+1 −ω < · · · < d̃r−1 −ω.

(30)

Then, according to Equations (29) and (30), we obtain

min
{
|ω− d̃0|, · · · , |ω− d̃i−1|, |ω− d̃i|, |ω− d̃i+1|, · · · , |ω− d̃r−1|

}
=|ω− d̃i| = |ω− d̃i+1|,

(31)

where i = 1, · · · , r− 2 and the last equality holds if and only if ω− d̃i = d̃i+1 −ω.

(2) For the case of i = 0, we know that ω ∈ (d̊−1, d̊0] =
(

0, d̃0+d̃1
2

]
. When d̃0 ≤ ω ≤

d̃0+d̃1
2 , we have

0 ≤ ω− d̃0 ≤ d̃1 −ω < · · · < d̃r−1 −ω. (32)

Additionally, when 0 < ω < d̃0, we have

0 < d̃0 −ω < d̃1 −ω < · · · < d̃r−1 −ω. (33)

Then, according to Equations (32) and (33), we obtain

min
{
|ω− d̃0|, · · · , |ω− d̃i−1|, |ω− d̃i|, |ω− d̃i+1|, · · · , |ω− d̃r−1|

}
=|ω− d̃0| = |ω− d̃1|,

(34)

where the last equality holds if and only if ω− d̃0 = d̃1 −ω.
(3) As the proof of the case of i = r− 1 is very similar to that of the case i = 0, we do

not state it here for simplicity. Additionally, we can get that, if ω ∈ (d̊r−2, d̊r−1], then

min
{
|ω− d̃0|, · · · , |ω− d̃i−1|, |ω− d̃i|, |ω− d̃i+1|, · · · , |ω− d̃r−1|

}
= |ω− d̃r−1|. (35)

(4) Thus, according to Equation (4) and Equations (31), (34), and (35), we obtain

10
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min

(
IndexOf

(
min

{
|ω− d̃0|, · · · , |ω− d̃i−1|, |ω− d̃i|,

|ω− d̃i+1|, · · · , |ω− d̃r−1|
}))

= i.

Now, we have finished the proof of Lemma 3.

For simplicity of description and according to Lemma 3, we introduce intervals Ωi
defined as follows.

Ωi =
{

ω|minDist(d̃0, d̃1, · · · , d̃r−1; d̃0, d̃1, · · · , d̃r−1; ω) = d̃i

}
= (d̊i−1, d̊i], (36)

where i = 0, 1, · · · , r− 1.
If ω ∈ Ω = (0, 1], it is trivial to verify that: (1) Ω = Ω0

⋃
Ω1

⋃ · · ·⋃Ωr−1; (2) for
∀i, j = 0, 1, · · · , r− 1 and i �= j, Ωi

⋂
Ωj = ∅.

Lemma 4. Let a, b ∈ {0, 1, · · · , r− 1} and WENO-X be the scheme shown in Table 1. For ∀a ≥ b
and ωα ∈ Ωa, ωβ ∈ Ωb, we have the following properties: C1. If a = b and ωα > ωβ, then(̃

gX
)

a(ωα) ≥
(̃

gX
)

b(ωβ); C2. If a = b and ωα = ωβ, then
(̃

gX
)

a(ωα) =
(̃

gX
)

b(ωβ); C3. If

a > b, then ωα > ωβ,
(̃

gX
)

a(ωα) >
(̃

gX
)

b(ωβ).

Proof. (1) We can directly get properties C1 and C2 from Lemma 2. (2) As a > b, according
to Equations (28) and (36), we know that the interval Ωa must be on the right side of the
interval Ωb, and ωα ∈ Ωa, ωβ ∈ Ωb is given, then we get ωα > ωβ. Trivially, according to

Definition 5, or by intuitively observing the curves of the mapping function
(̃

gX
)

s(ω) as

shown in Figure 1, we can obtain
(̃

gX
)

a(ωα) >
(̃

gX
)

b(ωβ). Thus, C3 is proved.

By employing the minDist function, we built a general method to introduce the
OP criterion into the existing mappings which are non-OP. The general method is stated
in Algorithm 1. It is worthy to note that Algorithm 1 actually does some sorting of
the parameters of Ps,1, · · · , Ps,mP in Equation (25), and this plays an important role in
constructing the OP mappings from the existing non-OP mappings.

Theorem 1. The set of mapping functions
{(

gMOP−X)
s(ω

JS
s ), s = 0, 1, · · · , r − 1

}
obtained

through Algorithm 1 is OP.

Proof. Let ωJS
m , ωJS

n ∈ [0, 1] and ∀m, n ∈ {0, 1, · · · , r− 1}. According to Algorithm 1 and
without loss of generality, we can assume that ωJS

m ∈ Ωk∗m , ωJS
n ∈ Ωk∗n , and then we get⎧⎨⎩

(
gMOP−X)

m(ω
JS
m ) = gX

(
ωJS

m ; mP, Pk∗m ,1, · · · , Pk∗m ,mP

)
,(

gMOP−X)
n(ω

JS
n ) = gX

(
ωJS

n ; mP, Pk∗n ,1, · · · , Pk∗n ,mP

)
.

It is easy to verify that⎧⎨⎩ gX
(

ωJS
m ; mP, Pk∗m ,1, · · · , Pk∗m ,mP

)
=
(̃

gX
)

k∗m
(ωJS

m ),

gX
(

ωJS
n ; mP, Pk∗n ,1, · · · , Pk∗n ,mP

)
=
(̃

gX
)

k∗n
(ωJS

n ).

Therefore, according to Lemma 4, we can finish the proof trivially.

We now define the modified weights which are OP as follows:
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ωMOP−X
s =

αMOP−X
s

∑r−1
l=0 αMOP−X

l

, αMOP−X
s =

(
gMOP−X)

s(ω
JS
s ), s = 0, · · · , r− 1, (37)

where
(

gMOP−X)
s(ω

JS
s ) is obtained from Algorithm 1. The associated scheme will be

referred to as MOP-WENO-X.
The mapping functions of the WENO-X schemes presented in Table 1 and those

of the associated MOP-WENO-X schemes are shown in Figure 1. We can find that, for
the mapping functions of the MOP-WENO-X schemes: (1) the monotonicity over the
whole domain (0, 1) is maintained; (2) the differentiability is reduced and limited to the
neighborhood of the optimal weights ds; (3) the OP property is obtained. We summarize
these properties as follows.

Algorithm 1: A general method to construct OP mappings.
input : s, index indicating the substencil Ss and s = 0, 1, · · · , r− 1

ds, optimal weights
ωJS

s , nonlinear weights computed by the WENO-JS scheme
mP, the number of the parameters related with s
Ps,j, parameters related with s and j = 1, · · · , mP

output :
{(

gMOP−X)
s(ω

JS
s ), s = 0, 1, · · · , r− 1

}
, the new set of mapping functions

that is OP

1
(

gX)
s(ω), s = 0, 1, · · · , r− 1 is a monotonically increasing mapping function over [0, 1],

and the set of mapping functions
{(

gX)
s(ω), s = 0, 1, · · · , r− 1

}
is non-OP;

2 // implementation of the “minDist” function in Definition 4

3 for s = 0; s ≤ r− 1; s ++ do
4 // get k∗ in Equation (26)

5 set dmin = |ωJS
s − d0|, k∗s = 0;

6 for i = 1; i ≤ r− 1; i ++ do

7 if |ωJS
s − di| < dmin then

8 dmin = |ωJS
s − di|,

9 k∗s = i;
10 end

11 end

12 // remark: the for loop above indicates that ωJS
s ∈ Ωk∗s

13 // get xk∗ in Equation (26)

14 for j = 1; j ≤ mP; j ++ do

15 Ps,j = Pk∗s ,j;
16 end

17 end

18 // get
(

gMOP−X)
s(ω

JS
s )

19 for s = 0; s ≤ r− 1; s ++ do

20
(

gMOP−X)
s(ω

JS
s ) = gX

(
ωJS

s ; mP, Ps,1, · · · , Ps,mP

)
.

21 end

12
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Figure 1. A comparison of the mapping functions for WENO-X (shown in Table 1) and MOP-WENO-X.

Theorem 2. Let Ωi =
{

ω ∈ Ωi ∩ ω �= ∂Ωi

}
, i = 0, 1, · · · , r − 1. The mapping function(

gMOP−X)
s(ω) obtained from Althorithm 1 satisfies the following properties:

C1. For ∀ω ∈ Ωi, i = 0, 1, · · · , r− 1,
(

gMOP−X)′
s(ω) ≥ 0;

C2. For ∀ω ∈ Ω, 0 ≤
(

gMOP−X)
s(ω) ≤ 1, and

(
gMOP−X)

s(0) = 0,
(

gMOP−X)
s(1) = 1;

C3. For ∀s ∈
{

0, 1, · · · , r − 1
}

, d̃s ∈ Ωs, and
(

gMOP−X)
s(d̃s) = d̃s,

(
gMOP−X)′

s(d̃s) =

· · · =
(

gMOP−X)(nX)

s (d̃s) = 0 where nX is given in Table 1;
C4.

(
gMOP−X)′

s(0) =
(

gX)′
s(0),

(
gMOP−X)′

s(1) =
(

gX)′
s(1);

C5. For ∀m, n ∈
{

0, · · · , r− 1
}

, if ωm > ωn, then
(

gMOP−X)
m(ωm) ≥

(
gMOP−X)

n(ωn),

and if ωm = ωn, then
(

gMOP−X)
m(ωm) =

(
gMOP−X)

n(ωn).

Remark 1. (1) The properties C1–C3 are designed to recover the optimal convergence rate of
accuracy in a smooth region even in the presence of critical points, and the detailed theoretical
analysis has been proposed in Section 5 of [25], Section 3.2 of [27], Section 3.1 of [29], etc. (2) The
property C4 is designed to decrease the effect from non-smooth stencils, and we refer to Sections 3.1

13
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and 3.2 of [29], Remark 1 of [28], Section 2.2 of [30], and Section 3.3 of [31] for more details. (3)
The property C5 is designed to enhance the performance for long-output-time simulations and to
remove or reduce post-shock numerical oscillations, and we have analyzed this in [9] systematically
and carefully.

3.4. Convergence Properties

According to Theorem 2, we get the convergence properties for the (2r− 1)th-order
MOP-WENO-X schemes as given in Theorem 3. The proof is almost identical to that of the
associated WENO-X schemes in the references presented in Table 1.

Theorem 3. The requirements for the (2r− 1)th-order MOP-WENO-X schemes to achieve the
optimal order of accuracy are identical to that of the associated (2r− 1)th-order WENO-X schemes.

For the integrity of this paper and the benefit of the reader, we concisely express the
following Corollaries of Theorem 3.

Corollary 1. If n mapping is used in the (2r− 1)th-order MOP-WENO-M scheme, then for dif-
ferent values of ncp, the weights ωMOP−M

s in the (2r− 1)th-order MOP-WENO-M scheme satisfy

ωMOP−M
s − ds = O

(
(Δx)3n×(r−1−ncp)

)
, r = 2, 3, · · · , 9, ncp = 0, 1, · · · , r− 1,

and the rate of convergence is

rc =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2r− 1, if ncp = 0, · · · ,

⌊
3n − 1

3n r− 1

⌋
,

(3n + 1)(r− 1)− 3n × ncp, if ncp =

⌊
3n − 1

3n r− 1

⌋
+ 1, · · · , r− 1,

where �x� is a floor function of x.

Proof. The proof is almost identical to that of Lemma 6 in [31].

Corollary 2. When ncp = 1, the (2r− 1)th-order MOP-WENO-IM(k, A) schemes can achieve
the optimal order of accuracy if the mapping function

(
gMOP−IM)

s(ω) is applied to the original
weights in the (2r− 1)th-order WENO-JS schemes with the requirement of k ≥ 2 (except for the
case of r = 2).

Proof. The proof is almost identical to that of Theorem 2 in [27].

Corollary 3. The (2r− 1)th-order MOP-WENO-PMk schemes can achieve the optimal order of
accuracy if the mapping function

(
gMOP−PM)

s(ω) is applied to the original weights in the (2r− 1)
th-order WENO-JS schemes with specific requirements for k in following different cases: (I) require
k ≥ 1 for ncp = 0; (II) require k ≥ 1 for ncp = 1; (III) require k ≥ 3 for ncp = 2.

Proof. The proof is almost identical to that of Proposition 1 in [29].

Corollary 4. The (2r − 1)th-order MOP-WENO-RM(mn0) schemes can recover the optimal
order of accuracy if the mapping function

(
gMOP−RM)

s(ω) is applied to the original weights in the

(2r− 1)th-order WENO-JS schemes with requirement of n ≥ 1+ncp
r−1−ncp

for different values of ncp

with 1 ≤ ncp < r− 1.

Proof. The proof is almost identical to that of Theorem 3 in [28].
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Corollary 5. Let �x� be a ceiling function of x. For ncp < r − 1, the (2r − 1)th-order MOP-
WENO-MAIM1 schemes can achieve the optimal order of accuracy if the mapping function
(gMOP−MAIM1)s(ω) is applied to the original weights in the (2r− 1)th-order WENO-JS schemes
with requirement of k ≥ kMAIM, where

kMAIM =

⌈
r

r− 1− ncp
− 2

⌉
+

1 +
(
− 1

)
⌈

r
r− 1− ncp

−2

⌉

2
.

Proof. The proof is almost identical to that of Theorem 2 in [31].

Corollary 6. For ncp < r − 1, the (2r − 1)th-order MOP-WENO-ACM schemes can achieve
the optimal order of accuracy if the mapping function (gMOP−ACM)s(ω) is applied to the original
weights in the (2r− 1)th-order WENO-JS schemes.

Proof. The proof is almost identical to that of Theorem 2 in [32].

Corollary 7. When CFSs � d̃0, for ncp < r − 1, the (2r − 1)th-order MOP-WENO-ACMk
schemes can achieve the optimal order of accuracy if the mapping function (gMOP−ACMk)s(ω) is
applied to the original weights in the (2r− 1)th-order WENO-JS schemes.

Proof. The proof is almost identical to that of Theorem 2 in [9].

4. Numerical Results

In this section, we compare the numerical performances of the MOP-WENO-X schemes with
the associated existing mapped WENO-X schemes shown in Table 1, and the classic WENO-JS
scheme. To further demonstrate the superiority of the MOP-WENO-X schemes, some comparisons
with other WENO type reconstructions, e.g., WENO-Z [26] (in Sections 4.1 and 4.2) and the central
WENO schemes of WENO-NW6 [36], WENO-CU6 [37], and WENO-θ6 [38] (in Section 4.3),
have also been performed. As the performances of the WENO-ACM scheme and the MOP-
WENO-ACM scheme are almost identical to those of the MIP-WENO-ACMk scheme
and the MOP-WENO-ACMk scheme, respectively, we do not present the solutions of the
WENO-ACM scheme and the MOP-WENO-ACM scheme below for simplicity. It should
be noted that although we mainly provide the solutions of the fifth-order WENO methods
(WENO5) in present study, the methodology proposed in this paper can be successfully
extended to higher order WENO methods, such as WENO-7 or WENO-9, and because of
the space limitations, we do not show their solutions here.

Typical one-dimensional linear advection equation and two-dimensional Euler equa-
tions, with different initial conditions, are used to test the considered schemes. The
presentation of these numerical tests in this section starts with the accuracy test of one-
dimensional linear advection equation with four different initial conditions, followed
by the long-output-time simulations of it with two different initial conditions, including
discontinuities, and finishes with two-dimensional simulations on the shock-vortex inter-
action and the 2D Riemann problem. In all calculations below, ε is taken to be 10−40 for all
schemes following the recommendations in [25,27].

In the following numerical tests, the ODEs resulting from the semi-discretized PDEs
are marched in time using the following explicit, third-order, strong stability preserving
(SSP) Runge–Kutta method [5,39,40]:

−→
U ∗ =

−→
U n + ΔtL(−→U n),

−→
U ∗∗ =

3
4
−→
U n +

1
4
−→
U ∗ +

1
4

ΔtL(−→U ∗),
−→
U n+1 =

1
3
−→
U n +

2
3
−→
U ∗∗ +

2
3

ΔtL(−→U ∗∗),
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where
−→
U ∗,
−→
U ∗∗ are the intermediate stages,

−→
U n is the value of

−→
U at time level tn = nΔt,

and Δt is the time step satisfying some proper CFL condition. The spatial operator L is
defined as in Equation (3), and the WENO reconstructions will be applied to obtain it.

4.1. Accuracy Test

In this subsection, we solve the following one-dimensional linear advection equation:

∂u
∂t

+
∂u
∂x

= 0, −1 ≤ x ≤ 1, (38)

with different initial conditions to test the accuracy of the considered WENO schemes. In
all accuracy tests, the L1, L2, L∞ norms of the error are given as

L1 = h ·∑
j

∣∣uexact
j − (uh)j

∣∣,
L2 =

√
h ·∑

j
(uexact

j − (uh)j)
2,

L∞ = max
j

∣∣uexact
j − (uh)j

∣∣,
where h = Δx is the uniform spatial step size, (uh)j is the numerical solution, and uexact

j is
the exact solution.

Example 1. We calculate Equation (38) with the periodic boundary condition using the following
initial condition [27]:

u(x, 0) = sin(πx). (39)

It is trivial to verify that although the initial condition in Equation (39) has two first-
order critical points, their first and third derivatives vanish simultaneously. It is known
that the rate of the temporal convergence is O(Δt3) for the third-order Runge–Kutta
method [5,39,40] and the CFL number is defined by CFL = |α|Δt

Δx leading to Δt = CFL · Δx
|α|

where |α| = 1 here. Therefore, note that we consider only the fifth-order methods here, and
to ensure that the error for the overall scheme is a measure of the spatial convergence only,
we set the CFL number to be (Δx)2/3. The calculation was run until a time of t = 2.0.

In Table 2, we show the L1, L2, L∞ errors and corresponding convergence orders of
various considered WENO schemes. Unsurprisingly, the MOP-WENO-X schemes and the
associated WENO-X schemes, along with the WENO-Z scheme, provide more accurate
results than the WENO-JS scheme do in general. Naturally and as expected, all the
considered schemes have gained the fifth-order convergence rate of accuracy. It can be
found that the results of the MOP-WENO-X schemes are identical to those of the associated
WENO-X schemes for all grid numbers except N = 10. As discussed in [9], the cause of the
accuracy loss for the computing cases of all MOP-WENO-X schemes with N = 10 is that the
mapping functions of the MOP-WENO-X schemes have narrower optimal weight intervals
(standing for the intervals about ω = ds over which the mapping process attempts to use
the corresponding optimal weights; see [31,32]) than the associated WENO-X schemes.

Figure 2 shows the overall L∞ convergence behavior of various considered schemes.
We can observe that: (1) the solutions of all schemes converge at fifth-order, as evidenced
by the slope of the lines; (2) the MOP-WENO-X schemes and their associated WENO-X
schemes, along with the WENO-Z scheme, are significantly more accurate than the classic
WENO-JS scheme; (3) the errors and convergence orders of the MOP-WENO-X schemes
are almost identical to those of their associated WENO-X schemes.

We use this example to discuss the computational cost of the MOP-WENO-X scheme
compared with its associated WENO-X scheme and the classic WENO-JS scheme. In
Figure 3, we drew the graphs for the CPU time versus the computing errors (we only
present the results of the L∞-norm error here just for the sake of brevity in the presentation,
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hereinafter the same). From Figure 3, we can easily see that: (1) generally speaking, the
MOP-WENO-X schemes have better efficiency than the WENO-JS scheme; (2) for all MOP-
WENO-X schemes except the case of “X = M,” they perform almost identically to their
associated WENO-X schemes; (3) for the MOP-WENO-M scheme, it has a slightly lower
efficiency than its associated WENO-M scheme and it has significantly higher efficiency
than the WENO-JS scheme.

Table 2. Convergence properties of considered schemes on solving ut + ux = 0 with initial condition u(x, 0) = sin(πx). To
be continued.

Scheme N L1 Error L1 Order L2 Error L2 Order L∞ Error L∞ Order

WENO-JS 10 6.18328 × 10−2 - 4.72306 × 10−2 - 4.87580 × 10−2 -
20 2.96529 × 10−3 4.3821 2.42673 × 10−3 4.2826 2.57899 × 10−3 4.2408
40 9.27609 × 10−5 4.9985 7.64332 × 10−5 4.9887 9.05453 × 10−5 4.8320
80 2.89265 × 10−6 5.0031 2.33581 × 10−6 5.0322 2.90709 × 10−6 4.9610
160 9.03392 × 10−8 5.0009 7.19259 × 10−8 5.0213 8.85753 × 10−8 5.0365
320 2.82330 × 10−9 4.9999 2.23105 × 10−9 5.0107 2.72458 × 10−9 5.0228

WENO-Z 10 1.64485 × 10−2 - 1.27535 × 10−2 - 1.18974 × 10−2 -
20 5.04450 × 10−4 5.0271 3.98253 × 10−4 5.0011 3.94040 × 10−4 4.9162
40 1.59132 × 10−5 4.9864 1.25050 × 10−5 4.9931 1.24948 × 10−5 4.9789
80 4.98858 × 10−7 4.9955 3.91834 × 10−7 4.9961 3.91804 × 10−7 4.9951
160 1.56020 × 10−8 4.9988 1.22541 × 10−8 4.9989 1.22538 × 10−8 4.9988
320 4.88356 × 10−10 4.9977 3.83568 × 10−10 4.9976 3.83541 × 10−10 4.9977

WENO-M 10 2.01781 × 10−2 - 1.55809 × 10−2 - 1.47767 × 10−2 -
20 5.18291 × 10−4 5.2829 4.06148 × 10−4 5.2616 3.94913 × 10−4 5.2256
40 1.59422 × 10−5 5.0228 1.25236 × 10−5 5.0193 1.24993 × 10−5 4.9816
80 4.98914 × 10−7 4.9979 3.91875 × 10−7 4.9981 3.91808 × 10−7 4.9956
160 1.56021 × 10−8 4.9990 1.22541 × 10−8 4.9991 1.22538 × 10−8 4.9988
320 4.88356 × 10−10 4.9977 3.83568 × 10−10 4.9976 3.83541 × 10−10 4.9977

MOP-WENO-M 10 3.64427 × 10−2 - 2.95270 × 10−2 - 2.81876 × 10−2 -
20 5.18291 × 10−4 6.1357 4.06148 × 10−4 6.1839 3.94913 × 10−4 6.1574
40 1.59422 × 10−5 5.0228 1.25236 × 10−5 5.0193 1.24993 × 10−5 4.9816
80 4.98914 × 10−7 4.9979 3.91875 × 10−7 4.9981 3.91808 × 10−7 4.9956
160 1.56021 × 10−8 4.9990 1.22541 × 10−8 4.9991 1.22538 × 10−8 4.9988
320 4.88356 × 10−10 4.9977 3.83568 × 10−10 4.9976 3.83541 × 10−10 4.9977

WENO-IM(2, 0.1) 10 1.58051 × 10−2 - 1.23553 × 10−2 - 1.19178 × 10−2 -
20 5.04401 × 10−4 4.9697 3.96236 × 10−4 4.9626 3.94458 × 10−4 4.9171
40 1.59160 × 10−5 4.9860 1.25033 × 10−5 4.9860 1.24963 × 10−5 4.9803
80 4.98863 × 10−7 4.9957 3.91836 × 10−7 4.9959 3.91797 × 10−7 4.9953
160 1.56020 × 10−8 4.9988 1.22541 × 10−8 4.9989 1.22538 × 10−8 4.9988
320 4.88355 × 10−10 4.9977 3.83568 × 10−10 4.9976 3.83547 × 10−10 4.9977

MOP-WENO-IM(2, 0.1) 10 3.35513 × 10−2 - 2.75968 × 10−2 - 2.71898 × 10−2 -
20 5.04401 × 10−4 6.0557 3.96236 × 10−4 6.1220 3.94458 × 10−4 6.1071
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Table 2. Cont.

Scheme N L1 Error L1 Order L2 Error L2 Order L∞ Error L∞ Order

40 1.59160 × 10−5 4.9860 1.25033 × 10−5 4.9860 1.24963 × 10−5 4.9803
80 4.98863 × 10−7 4.9957 3.91836 × 10−7 4.9959 3.91797 × 10−7 4.9953
160 1.56020 × 10−8 4.9988 1.22541 × 10−8 4.9989 1.22538 × 10−8 4.9988
320 4.88355 × 10−10 4.9977 3.83568 × 10−10 4.9976 3.83547 × 10−10 4.9977

WENO-PM6 10 1.74869 × 10−2 - 1.35606 × 10−2 - 1.27577 × 10−2 -
20 5.02923 × 10−4 5.1198 3.95215 × 10−4 5.1006 3.94515 × 10−4 5.0151
40 1.59130 × 10−5 4.9821 1.25010 × 10−5 4.9825 1.24960 × 10−5 4.9805
80 4.98858 × 10−7 4.9954 3.91831 × 10−7 4.9957 3.91795 × 10−7 4.9952
160 1.56020 × 10−8 4.9988 1.22541 × 10−8 4.9989 1.22538 × 10−8 4.9988
320 4.88355 × 10−10 4.9977 3.83568 × 10−10 4.9976 3.83543 × 10−10 4.9977

MOP-WENO-PM6 10 3.54584 × 10−2 - 2.88246 × 10−2 - 2.76902 × 10−2 -
20 5.02923 × 10−4 6.1396 3.95215 × 10−4 6.1885 3.94515 × 10−4 6.1332
40 1.59130 × 10−5 4.9821 1.25010 × 10−5 4.9825 1.24960 × 10−5 4.9805
80 4.98858 × 10−7 4.9954 3.91831 × 10−7 4.9957 3.91795 × 10−7 4.9952
160 1.56020 × 10−8 4.9988 1.22541 × 10−8 4.9989 1.22538 × 10−8 4.9988
320 4.88355 × 10−10 4.9977 3.83568 × 10−10 4.9976 3.83543 × 10−10 4.9977

WENO-PPM5 10 1.73978 × 10−2 - 1.34998 × 10−2 - 1.27018 × 10−2 -
20 5.03464 × 10−4 5.1109 3.95644 × 10−4 5.0926 3.94865 × 10−4 5.0075
40 1.59131 × 10−5 4.9836 1.25011 × 10−5 4.9841 1.24961 × 10−5 4.9818
80 4.98858 × 10−7 4.9954 3.91831 × 10−7 4.9957 3.91795 × 10−7 4.9952
160 1.56020 × 10−8 4.9988 1.22541 × 10−8 4.9989 1.22538 × 10−8 4.9988
320 4.88356 × 10−10 4.9977 3.83568 × 10−10 4.9976 3.83528 × 10−10 4.9978

MOP-WENO-PPM5 10 3.49872 × 10−2 - 2.85173 × 10−2 - 2.75955 × 10−2 -
20 5.03464 × 10−4 6.1188 3.95644 × 10−4 6.1715 3.94865 × 10−4 6.1269
40 1.59131 × 10−5 4.9836 1.25011 × 10−5 4.9841 1.24961 × 10−5 4.9818
80 4.98858 × 10−7 4.9954 3.91831 × 10−7 4.9957 3.91795 × 10−7 4.9952
160 1.56020 × 10−8 4.9988 1.22541 × 10−8 4.9989 1.22538 × 10−8 4.9988
320 4.88356 × 10−10 4.9977 3.83568 × 10−10 4.9976 3.83528 × 10−10 4.9978

WENO-RM(260) 10 1.52661 × 10−2 - 1.19792 × 10−2 - 1.17698 × 10−2 -
20 5.02845 × 10−4 4.9241 3.95138 × 10−4 4.9220 3.94406 × 10−4 4.8993
40 1.59130 × 10−5 4.9818 1.25010 × 10−5 4.9822 1.24960 × 10−5 4.9801
80 4.98858 × 10−7 4.9954 3.91831 × 10−7 4.9957 3.91795 × 10−7 4.9952
160 1.56020 × 10−8 4.9988 1.22541 × 10−8 4.9989 1.22538 × 10−8 4.9988
320 4.88355 × 10−10 4.9977 3.83568 × 10−10 4.9976 3.83543 × 10−10 4.9977

MOP-WENO-RM(260) 10 3.29243 × 10−2 - 2.73131 × 10−2 - 2.73015 × 10−2 -
20 5.02845 × 10−4 6.0329 3.95138 × 10−4 6.1111 3.94406 × 10−4 6.1132
40 1.59130 × 10−5 4.9818 1.25010 × 10−5 4.9822 1.24960 × 10−5 4.9801
80 4.98858 × 10−7 4.9954 3.91831 × 10−7 4.9957 3.91795 × 10−7 4.9952
160 1.56020 × 10−8 4.9988 1.22541 × 10−8 4.9989 1.22538 × 10−8 4.9988
320 4.88355 × 10−10 4.9977 3.83568 × 10−10 4.9976 3.83543 × 10−10 4.9977

WENO-MAIM1 10 6.13264 × 10−2 - 4.81375 × 10−2 - 4.86913 × 10−2 -
20 5.08205 × 10−4 6.9150 4.26155 × 10−4 6.8196 5.03701 × 10−4 6.5950
40 1.59130 × 10−5 4.9971 1.25010 × 10−5 5.0913 1.24960 × 10−5 5.3330
80 4.98858 × 10−7 4.9954 3.91831 × 10−7 4.9957 3.91795 × 10−7 4.9952
160 1.56020 × 10−8 4.9988 1.22541 × 10−8 4.9989 1.22538 × 10−8 4.9988
320 4.88355 × 10−10 4.9977 3.83568 × 10−10 4.9976 3.83543 × 10−10 4.9977

MOP-WENO-MAIM1 10 6.63923 × 10−2 - 5.17462 × 10−2 - 5.19799 × 10−2 -
20 5.08205 × 10−4 7.0295 4.26155 × 10−4 6.9239 5.03701 × 10−4 6.6892
40 1.59130 × 10−5 4.9971 1.25010 × 10−5 5.0913 1.24960 × 10−5 5.3330
80 4.98858 × 10−7 4.9954 3.91831 × 10−7 4.9957 3.91795 × 10−7 4.9952
160 1.56020 × 10−8 4.9988 1.22541 × 10−8 4.9989 1.22538 × 10−8 4.9988
320 4.88355 × 10−10 4.9977 3.83568 × 10−10 4.9976 3.83543 × 10−10 4.9977
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Table 2. Cont.

Scheme N L1 Error L1 Order L2 Error L2 Order L∞ Error L∞ Order

MIP-WENO-ACMk 10 1.52184 × 10−2 - 1.19442 × 10−2 - 1.17569 × 10−2 -
20 5.02844 × 10−4 4.9196 3.95138 × 10−4 4.9178 3.94406 × 10−4 4.8977
40 1.59130 × 10−5 4.9818 1.25010 × 10−5 4.9822 1.24960 × 10−5 4.9801
80 4.98858 × 10−7 4.9954 3.91831 × 10−7 4.9957 3.91795 × 10−7 4.9952
160 1.56020 × 10−8 4.9988 1.22541 × 10−8 4.9989 1.22538 × 10−8 4.9988
320 4.88355 × 10−10 4.9977 3.83568 × 10−10 4.9976 3.83543 × 10−10 4.9977

MOP-WENO-ACMk 10 3.29609 × 10−2 - 2.72363 × 10−2 - 2.70295 × 10−2 -
20 5.02844 × 10−4 6.0345 3.95138 × 10−4 6.1070 3.94406 × 10−4 6.0987
40 1.59130 × 10−5 4.9818 1.25010 × 10−5 4.9822 1.24960 × 10−5 4.9801
80 4.98858 × 10−7 4.9954 3.91831 × 10−7 4.9957 3.91795 × 10−7 4.9952
160 1.56020 × 10−8 4.9988 1.22541 × 10−8 4.9989 1.22538 × 10−8 4.9988
320 4.88355 × 10−10 4.9977 3.83568 × 10−10 4.9976 3.83543 × 10−10 4.9977

Figure 2. L∞-norm error plots for various WENO schemes for Example 1.
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Figure 3. Comparison of various WENO schemes for Example 1 in CPU time and L∞-norm computing errors.

Example 2. We calculate Equation (38) with the periodic boundary condition using the following
initial condition [25]:

u(x, 0) = sin
(

πx− sin(πx)
π

)
. (40)

This particular initial condition has two first-order critical points, which both have a
non-vanishing third derivative. Again, the CFL number was set to be (Δx)2/3 and the
calculation was run until a time of t = 2.0.

Table 3 compares the L1, L2, L∞ errors and corresponding convergence orders obtained
from the considered schemes. It is evident that the WENO-X schemes and the associated
MOP-WENO-X schemes can achieve the optimal convergence orders, and this verifies the
properties C1 ∼ C3 of Theorem 2. Unsurprisingly, the WENO-JS scheme gives less accurate
results than the other schemes, and its L∞ convergence order decreases by almost 2 orders
leading to the noticeable drops of the L1 and L2 convergence orders. It is noteworthy that
when the grid number is too small, such as N ≤ 40, in terms of accuracy, the MOP-WENO-
X schemes provide less accurate results than those of the associated WENO-X schemes.
As mentioned in Example 1, the cause of this kind of accuracy loss is that the mapping
functions of the MOP-WENO-X schemes have narrower optimal weight intervals than the
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associated WENO-X schemes, and this issue can surely be addressed by increasing the
grid number. Therefore, as expected, the MOP-WENO-X schemes show equally accurate
numerical solutions like those of the associated WENO-X schemes when the grid number
N ≥ 80.

Figure 4 shows the overall L∞ convergence behavior of various considered schemes.
We can observe that: (1) the solutions of all MOP-WENO-X schemes and their associated
WENO-X schemes, and of the WENO-Z scheme, converge at fifth-order, as evidenced
by the slope of the lines, especially for larger (slightly) grid numbers; (2) for the classic
WENO-JS scheme, its solution converges at third-order, as evidenced by its slope of the
line; (3) naturally, the MOP-WENO-X schemes and their associated WENO-X schemes, and
the WENO-Z scheme, are significantly more accurate than the classic WENO-JS scheme; (4)
the errors and convergence orders of the MOP-WENO-X schemes are very close to those of
their associated WENO-X schemes.

We also use this example to discuss the computational cost of the MOP-WENO-X
scheme compared with its associated WENO-X scheme and the classic WENO-JS scheme.
In Figure 5, we drew the graphs for the CPU time versus the L∞-norm computing errors.
From Figure 5, we can easily see that: (1) as expected, the WENO-JS scheme has the lowest
efficiency; (2) again, for all MOP-WENO-X schemes except the case of “X = M,” they
perform almost identically to their associated WENO-X schemes; (3) for the MOP-WENO-
M scheme, despite the fact that it has slightly less efficiency than its associated WENO-M
scheme, it has significantly superior efficiency to the WENO-JS scheme.

Table 3. Convergence properties of considered schemes on solving ut + ux = 0 with initial condition u(x, 0) = sin(πx−
sin(πx)/π). To be continued.

Scheme N L1 Error L1 Order L2 Error L2 Order L∞ Error L∞ Order

WENO-JS 10 1.24488 × 10−1 - 1.09463 × 10−1 - 1.24471 × 10−1 -
20 1.01260 × 10−2 3.6199 8.72198 × 10−3 3.6496 1.43499 × 10−2 3.1167
40 7.22169 × 10−4 3.8096 6.76133 × 10−4 3.6893 1.09663 × 10−3 3.7099
80 3.42286 × 10−5 4.3991 3.63761 × 10−5 4.2162 9.02485 × 10−5 3.6030
160 1.58510 × 10−6 4.4326 2.29598 × 10−6 3.9858 8.24022 × 10−6 3.4531
320 7.95517 × 10−8 4.3165 1.68304 × 10−7 3.7700 8.31702 × 10−7 3.3085

WENO-Z 10 5.85966 × 10−2 - 4.83441 × 10−2 - 5.14928 × 10−2 -
20 3.21455 × 10−3 4.1881 2.72340 × 10−3 4.1499 3.67979 × 10−3 3.8067
40 1.35382 × 10−4 4.5695 1.35344 × 10−4 4.3307 2.31013 × 10−4 3.9936
80 4.67008 × 10−6 4.8574 4.50404 × 10−6 4.9093 6.79475 × 10−6 5.0874
160 1.50985 × 10−7 4.9510 1.42363 × 10−7 4.9836 2.14556 × 10−7 4.9850
320 4.76201 × 10−9 4.9867 4.45798 × 10−9 4.9970 6.71078 × 10−9 4.9987

WENO-M 10 7.53259 × 10−2 - 6.39017 × 10−2 - 7.49250 × 10−2 -
20 3.70838 × 10−3 4.3443 3.36224 × 10−3 4.2484 5.43666 × 10−3 3.7847
40 1.45082 × 10−4 4.6758 1.39007 × 10−4 4.5962 2.18799 × 10−4 4.6350
80 4.80253 × 10−6 4.9169 4.52646 × 10−6 4.9406 6.81451 × 10−6 5.0049
160 1.52120 × 10−7 4.9805 1.42463 × 10−7 4.9897 2.14545 × 10−7 4.9893
320 4.77083 × 10−9 4.9948 4.45822 × 10−9 4.9980 6.71080 × 10−9 4.9987

MOP-WENO-M 10 9.41832 × 10−2 - 8.03446 × 10−2 - 9.78919 × 10−2 -
20 6.59540 × 10−3 3.8359 6.37937 × 10−3 3.6547 8.97094 × 10−3 3.4479
40 2.60456 × 10−4 4.6623 2.50868 × 10−4 4.6684 4.10480 × 10−4 4.4499
80 4.80253 × 10−6 5.7611 4.52646 × 10−6 5.7924 6.81451 × 10−6 5.9126
160 1.52120 × 10−7 4.9805 1.42463 × 10−7 4.9897 2.14545 × 10−7 4.9893
320 4.77083 × 10−9 4.9948 4.45822 × 10−9 4.9980 6.71080 × 10−9 4.9987
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Table 3. Cont.

Scheme N L1 Error L1 Order L2 Error L2 Order L∞ Error L∞ Order

WENO-IM(2, 0.1) 10 8.38131 × 10−2 - 6.71285 × 10−2 - 7.62798 × 10−2 -
20 4.30725 × 10−3 4.2823 3.93700 × 10−3 4.0918 5.84039 × 10−3 3.7072
40 1.51327 × 10−4 4.8310 1.41737 × 10−4 4.7958 2.10531 × 10−4 4.7940
80 4.85592 × 10−6 4.9618 4.53602 × 10−6 4.9656 6.82606 × 10−6 4.9468
160 1.52659 × 10−7 4.9914 1.42479 × 10−7 4.9926 2.14534 × 10−7 4.9918
320 4.77654 × 10−9 4.9982 4.45805 × 10−9 4.9982 6.71079 × 10−9 4.9986

MOP-WENO-IM(2, 0.1) 10 8.49795 × 10−2 - 7.29388 × 10−2 - 9.47429 × 10−2 -
20 7.01287 × 10−3 3.5990 6.80019 × 10−3 3.4230 9.96943 × 10−3 3.2484
40 2.59767 × 10−4 4.7547 2.51121 × 10−4 4.7591 4.01785 × 10−4 4.6330
80 4.85592 × 10−6 5.7413 4.53602 × 10−6 5.7908 6.82606 × 10−6 5.8792
160 1.52659 × 10−7 4.9914 1.42479 × 10−7 4.9926 2.14534 × 10−7 4.9918
320 4.77654 × 10−9 4.9982 4.45805 × 10−9 4.9982 6.71079 × 10−9 4.9986

WENO-PM6 10 9.51313 × 10−2 - 7.83600 × 10−2 - 9.32356 × 10−2 -
20 4.82173 × 10−3 4.3023 4.29510 × 10−3 4.1894 5.91037 × 10−3 3.9796
40 1.55428 × 10−4 4.9552 1.43841 × 10−4 4.9001 2.09540 × 10−4 4.8180
80 4.87327 × 10−6 4.9952 4.54036 × 10−6 4.9855 6.83270 × 10−6 4.9386
160 1.52750 × 10−7 4.9956 1.42488 × 10−7 4.9939 2.14532 × 10−7 4.9932
320 4.77729 × 10−9 4.9988 4.45807 × 10−9 4.9983 6.71079 × 10−9 4.9986

MOP-WENO-PM6 10 1.00298 × 10−1 - 8.49034 × 10−2 - 9.88357 × 10−2 -
20 5.84504 × 10−3 4.1009 5.80703 × 10−3 3.8699 9.01779 × 10−3 3.4542
40 2.51725 × 10−4 4.5373 2.40678 × 10−4 4.5926 3.66822 × 10−4 4.6196
80 4.87327 × 10−6 5.6908 4.54036 × 10−6 5.7282 6.83270 × 10−6 5.7465
160 1.52750 × 10−7 4.9956 1.42488 × 10−7 4.9939 2.14532 × 10−7 4.9932
320 4.77729 × 10−9 4.9988 4.45807 × 10−9 4.9983 6.71079 × 10−9 4.9986

WENO-PPM5 10 9.22982 × 10−2 - 7.46925 × 10−2 - 8.46229 × 10−2 -
20 4.68376 × 10−3 4.3006 4.18882 × 10−3 4.1563 5.92748 × 10−3 3.8356
40 1.55745 × 10−4 4.9104 1.44018 × 10−4 4.8622 2.09420 × 10−4 4.8229
80 4.88795 × 10−6 4.9938 4.54528 × 10−6 4.9857 6.83617 × 10−6 4.9371
160 1.52852 × 10−7 4.9990 1.42506 × 10−7 4.9953 2.14527 × 10−7 4.9940
320 4.77759 × 10−9 4.9997 4.45812 × 10−9 4.9984 6.71080 × 10−9 4.9985

MOP-WENO-PPM5 10 9.50369 × 10−2 - 8.08190 × 10−2 - 9.65522 × 10−2 -
20 6.27179 × 10−3 3.9215 6.11267 × 10−3 3.7248 8.98120 × 10−3 3.4263
40 2.52600 × 10−4 4.6340 2.41656 × 10−4 4.6608 3.69338 × 10−4 4.6039
80 4.88795 × 10−6 5.6915 4.54528 × 10−6 5.7324 6.83617 × 10−6 5.7556
160 1.52852 × 10−7 4.9990 1.42506 × 10−7 4.9953 2.14527 × 10−7 4.9940
320 4.77759 × 10−9 4.9997 4.45812 × 10−9 4.9984 6.71080 × 10−9 4.9985

WENO-RM(260) 10 8.24328 × 10−2 - 6.64590 × 10−2 - 7.64206 × 10−2 -
20 4.37642 × 10−3 4.2354 4.00547 × 10−3 4.0524 5.88375 × 10−3 3.6992
40 1.52200 × 10−4 4.8457 1.42162 × 10−4 4.8164 2.09889 × 10−4 4.8090
80 4.86434 × 10−6 4.9676 4.53769 × 10−6 4.9694 6.83016 × 10−6 4.9416
160 1.52735 × 10−7 4.9931 1.42486 × 10−7 4.9931 2.14533 × 10−7 4.9926
320 4.77728 × 10−9 4.9987 4.45807 × 10−9 4.9983 6.71079 × 10−9 4.9986

MOP-WENO-RM(260) 10 8.96509 × 10−2 - 7.51169 × 10−2 - 9.20962 × 10−2 -
20 6.87612 × 10−3 3.7047 6.65488 × 10−3 3.4967 9.75043 × 10−3 3.2396
40 2.59418 × 10−4 4.7282 2.51194 × 10−4 4.7275 4.03065 × 10−4 4.5964
80 4.86434 × 10−6 5.7369 4.53769 × 10−6 5.7907 6.83016 × 10−6 5.8829
160 1.52735 × 10−7 4.9931 1.42486 × 10−7 4.9931 2.14533 × 10−7 4.9926
320 4.77728 × 10−9 4.9987 4.45807 × 10−9 4.9983 6.71079 × 10−9 4.9986
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Table 3. Cont.

Scheme N L1 Error L1 Order L2 Error L2 Order L∞ Error L∞ Order

WENO-MAIM1 10 1.24659 × 10−1 - 1.14152 × 10−1 - 1.40438 × 10−1 -
20 8.07923 × 10−3 3.9476 7.08117 × 10−3 4.0108 1.03772 × 10−2 3.7584
40 3.32483 × 10−4 4.6029 3.36264 × 10−4 4.3963 6.62891 × 10−4 3.9685
80 1.01162 × 10−5 5.0385 1.49724 × 10−5 4.4892 4.48554 × 10−5 3.8854
160 1.52910 × 10−7 6.0478 1.42515 × 10−7 6.7150 2.14522 × 10−7 7.7080
320 4.77728 × 10−9 5.0003 4.45807 × 10−9 4.9986 6.71079 × 10−9 4.9985

MOP-WENO-MAIM1 10 1.27999 × 10−1 - 1.12692 × 10−1 - 1.31113 × 10−1 -
20 7.62753 × 10−3 4.0688 6.93240 × 10−3 4.0229 1.27480 × 10−2 3.3625
40 3.37132 × 10−4 4.4998 3.36497 × 10−4 4.3647 6.40953 × 10−4 4.3139
80 1.01162 × 10−5 5.0586 1.49724 × 10−5 4.4902 4.48554 × 10−5 3.8369
160 1.52910 × 10−7 6.0478 1.42515 × 10−7 6.7150 2.14522 × 10−7 7.7080
320 4.77728 × 10−9 5.0003 4.45807 × 10−9 4.9986 6.71079 × 10−9 4.9985

MIP-WENO-ACMk 10 8.75629 × 10−2 - 6.98131 × 10−2 - 7.91292 × 10−2 -
20 4.39527 × 10−3 4.3163 4.02909 × 10−3 4.1150 5.89045 × 10−3 3.7478
40 1.52219 × 10−4 4.8517 1.42172 × 10−4 4.8247 2.09893 × 10−4 4.8107
80 4.86436 × 10−6 4.9678 4.53770 × 10−6 4.9695 6.83017 × 10−6 4.9416
160 1.52735 × 10−7 4.9931 1.42486 × 10−7 4.9931 2.14533 × 10−7 4.9926
320 4.77728 × 10−9 4.9987 4.45807 × 10−9 4.9983 6.71079 × 10−9 4.9986

MOP-WENO-ACMk 10 9.08634 × 10−2 - 7.58160 × 10−2 - 9.29135 × 10−2 -
20 7.09246 × 10−3 3.6793 6.88532 × 10−3 3.4609 1.01479 × 10−2 3.1947
40 2.59429 × 10−4 4.7729 2.51208 × 10−4 4.7766 4.03069 × 10−4 4.6540
80 4.86436 × 10−6 5.7369 4.53770 × 10−6 5.7908 6.83017 × 10−6 5.8830
160 1.52735 × 10−7 4.9931 1.42486 × 10−7 4.9931 2.14533 × 10−7 4.9926
320 4.77728 × 10−9 4.9987 4.45807 × 10−9 4.9983 6.71079 × 10−9 4.9986

Example 3. We calculate Equation (38) using the following initial condition [29]:

u(x, 0) = sin9(πx), (41)

with the periodic boundary condition. It is trivial to verify that this initial condition has
high-order critical points. We also set the CFL number to be (Δx)2/3.

We use the L1- and L∞-norm of numerical errors to measure the dissipations of the
schemes. It is easy to check that the exact solution is u(x, t) = sin9 (π(x− t)

)
. Moreover,

we consider the increased errors (in percentage) compared to the MIP-WENO-ACMk
scheme that gives solutions with highly low dissipations. For the L1- and L∞-norms of
numerical errors of the scheme “Y,” their associated increased errors at output time t are
defined by

χ1 =
LY

1 (t)− LMIP−WENO−ACMk
1 (t)

LMIP−WENO−ACMk
1 (t)

× 100%,

χ∞ =
LY

∞(t)− LMIP−WENO−ACMk
∞ (t)

LMIP−WENO−ACMk
∞ (t)

× 100%,

where LMIP−WENO−ACMk
1 (t) and LMIP−WENO−ACMk

∞ (t) are the L1- and L∞-norms of numer-
ical errors of the MIP-WENO-ACMk scheme.
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Figure 4. L∞-norm error plots for various WENO schemes for Example 2.

Table 4 shows the L1- and L∞-norm numerical errors and their increased errors by
using a uniform grid cell of N = 200 at different output times of t = 10, 100, 200, 500, 1000.
From Table 4, we can observe that: (1) the WENO-JS scheme has the largest increased errors
for no matter short or long output times; (2) for short output times, such as t ≤ 100, the
solutions computed by the WENO-M scheme are closer to those of the MIP-WENO-ACMk
scheme, leading to smaller increased errors than the associated MOP-WENO-M scheme;
(3) however, when the output time is larger, such as t ≥ 200, the solutions computed by the
MOP-WENO-M scheme, whose increased errors do not get larger but evidently decreased,
are closer to those of the MIP-WENO-ACMk scheme than the associated WENO-M scheme,
whose errors increases dramatically, leading to significantly larger increased errors; (4) the
performance of the WENO-Z scheme is very similar to that of the WENO-M scheme; (5)
although the errors of the MOP-WENO-X schemes except the MOP-WENO-M scheme are
not as small as those of the associated WENO-X schemes, these errors can be maintained
considerable levels leading to acceptable increases in errors that are much lower than those
of the WENO-JS and WENO-M schemes.

Actually, as mentioned in Examples 1 and 2, the cause of the slight accuracy loss
discussed above is that the mapping function of the MOP-WENO-X scheme has narrower
optimal weight intervals than the associated WENO-X schemes, and one can easily over-
come this drawback by increasing the grid number. To demonstrate this, we calculate
this problem using the same schemes at the same output times with a larger grid number
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of N = 800. The results are shown in Table 5, and we can see that: (1) the errors of the
MOP-WENO-X schemes get closer to those of the MIP-WENO-ACMk scheme when the
grid number increases from N = 200 to N = 800, resulting in the significant decrease of the
increased errors, and in different words, the errors of the MOP-WENO-X schemes and the
MIP-WENO-ACMk scheme are so close that one can ignore their differences; (2) although
the errors of the WENO-JS, WENO-M and WENO-Z schemes get smaller when the grid
number increases from N = 200 to N = 800, their increased errors become very large; (3)
naturally, the increased errors of the MOP-WENO-X schemes are far smaller than those of
the WENO-JS, WENO-M and WENO-Z schemes. Actually, it is an important advantage of
the MOP-WENO-X schemes that can maintain comparably high resolution for long output
times. In the next subsection we have further discussion of this.

Figure 5. Comparison of various WENO schemes for Example 2 in CPU time and L∞-norm computing errors.
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Table 4. Performances of various considered schemes on solving ut + ux = 0 with u(x, 0) = sin9(πx), N = 200.

MIP-WENO-ACMk MOP-WENO-ACMk
Time, t L1 error χ1 L∞ error χ∞ L1 error χ1 L∞ error χ∞

10 8.42873× 10−5 − 1.38205× 10−4 − 1.55900× 10−4 85% 5.22964× 10−4 278%
100 8.35747× 10−4 − 1.36404× 10−3 − 2.72470× 10−3 226% 9.83147× 10−3 621%
200 1.65557× 10−3 − 2.68955× 10−3 − 4.11740× 10−3 149% 6.66166× 10−3 148%
500 3.95849× 10−3 − 6.45564× 10−3 − 8.34435× 10−3 111% 1.83215× 10−2 184%
1000 7.24723× 10−3 − 1.21593× 10−2 − 1.54830× 10−2 114% 3.16523× 10−2 160%

WENO−JS WENO−Z
Time, t L1 error χ1 L∞ error χ∞ L1 error χ1 L∞ error χ∞

10 3.86931× 10−4 359% 5.36940× 10−4 289% 9.25912× 10−5 10% 1.38334× 10−4 0%
100 5.42288× 10−3 549% 1.20056× 10−2 780% 1.45856× 10−3 75% 3.76895× 10−3 176%
200 2.35657× 10−2 1323% 6.47820× 10−2 2309% 8.32696× 10−3 403% 3.37176× 10−2 1154%
500 1.55650× 10−1 3832% 2.57663× 10−1 3891% 8.95980× 10−2 2163% 1.94577× 10−1 2914%
1000 2.91359× 10−1 3920% 4.44664× 10−1 3557% 1.42377× 10−1 1865% 2.80558× 10−1 2207%

WENO−M MOP−WENO−M
Time, t L1 error χ1 L∞ error χ∞ L1 error χ1 L∞ error χ∞

10 8.90890× 10−5 6% 1.38348× 10−4 0% 1.56466× 10−4 86% 5.08956× 10−4 268%
100 1.29154× 10−3 55% 3.32665× 10−3 144% 2.88442× 10−3 245% 1.01393× 10−2 643%
200 5.74021× 10−3 247% 2.37125× 10−2 782% 5.11795× 10−3 209% 1.02172× 10−2 280%
500 4.89290× 10−2 1136% 1.78294× 10−1 2662% 9.09352× 10−3 130% 1.98022× 10−2 207%
1000 1.34933× 10−1 1762% 3.17199× 10−1 2509% 1.75990× 10−2 143% 4.01776× 10−2 230%

WENO-IM(2, 0.1) MOP-WENO-IM(2, 0.1)
Time, t L1 error χ1 L∞ error χ∞ L1 error χ1 L∞ error χ∞

10 8.46989× 10−5 0% 1.38220× 10−4 0% 1.55777× 10−4 85% 5.08361× 10−4 268%
100 8.39425× 10−4 0% 1.36420× 10−3 0% 2.74109× 10−3 228% 9.88287× 10−3 625%
200 1.67834× 10−3 1% 2.68977× 10−3 0% 4.16210× 10−3 151% 6.81406× 10−3 153%
500 4.17514× 10−3 5% 8.13666× 10−3 12% 8.37898× 10−3 112% 1.84998× 10−2 187%
1000 6.45231× 10−3 0% 1.21388× 10−2 0% 1.25166× 10−2 73% 2.02754× 10−2 67%

WENO−PM6 MOP−WENO−PM6
Time, t L1 error χ1 L∞ error χ∞ L1 error χ1 L∞ error χ∞

10 8.40259× 10−5 0% 1.38205× 10−4 0% 1.53937× 10−4 83% 4.92116× 10−4 256%
100 8.30374× 10−4 −1% 1.36410× 10−3 0% 2.70283× 10−3 223% 9.52154× 10−3 598%
200 1.63963× 10−3 −1% 2.68938× 10−3 0% 4.07454× 10−3 146% 6.49923× 10−3 142%
500 3.88864× 10−3 −2% 6.45650× 10−3 0% 8.46326× 10−3 114% 1.83171× 10−2 184%
1000 7.17606× 10−3 −1% 1.21637× 10−2 0% 1.54196× 10−2 113% 3.15065× 10−2 159%

WENO−PPM5 MOP−WENO−PPM5
Time, t L1 error χ1 L∞ error χ∞ L1 error χ1 L∞ error χ∞

10 8.40198× 10−5 0% 1.38206× 10−4 0% 1.53322× 10−4 82% 4.97691× 10−4 260%
100 8.30119× 10−4 −1% 1.36411× 10−3 0% 2.70476× 10−3 224% 9.71919× 10−3 613%
200 1.63931× 10−3 −1% 2.68939× 10−3 0% 4.17894× 10−3 152% 6.89990× 10−3 157%
500 3.89396× 10−3 −2% 6.45658× 10−3 0% 8.34997× 10−3 111% 1.83470× 10−2 184%
1000 7.20573× 10−3 −1% 1.21629× 10−2 0% 1.21149× 10−2 67% 1.87607× 10−2 54%

WENO−RM(260) MOP−WENO−RM(260)
Time, t L1 error χ1 L∞ error χ∞ L1 error χ1 L∞ error χ∞

10 8.43348× 10−5 0% 1.38206× 10−4 0% 1.55787× 10−4 85% 5.05390× 10−4 266%
100 8.35534× 10−4 0% 1.36404× 10−3 0% 2.72147× 10−3 226% 9.74612× 10−3 615%
200 1.65314× 10−3 0% 2.68956× 10−3 0% 4.13179× 10−3 150% 6.71615× 10−3 150%
500 3.94006× 10−3 0% 6.45544× 10−3 0% 8.32505× 10−3 110% 1.83262× 10−2 184%
1000 7.25689× 10−3 0% 1.21576× 10−2 0% 1.57577× 10−2 117% 3.30552× 10−2 172%

WENO−MAIM1 MOP−WENO−MAIM1
Time, t L1 error χ1 L∞ error χ∞ L1 error χ1 L∞ error χ∞

10 8.24623× 10−5 −2% 1.38215× 10−4 0% 9.97376× 10−5 18% 1.38172× 10−4 0%
100 8.03920× 10−4 −4% 1.36392× 10−3 0% 8.16839× 10−4 −2% 1.36470× 10−3 0%
200 1.58626× 10−3 −4% 2.68849× 10−3 0% 1.60912× 10−3 −3% 2.68832× 10−3 0%
500 3.77900× 10−3 −5% 6.46356× 10−3 0% 6.83393× 10−3 73% 1.63188× 10−2 153%
1000 7.04287× 10−3 −3% 1.21473× 10−2 0% 1.24817× 10−2 72% 2.22178× 10−2 83%
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Table 5. Performance of various considered schemes on solving ut + ux = 0 with u(x, 0) = sin9(πx), N = 800.

MIP-WENO-ACMk MOP-WENO-ACMk
Time, t L1 error χ1 L∞ error χ∞ L1 error χ1 L∞ error χ∞

10 8.28794× 10−8 - 1.36172× 10−7 - 8.47930× 10−8 2% 1.36172× 10−7 0%
100 8.28891× 10−7 - 1.36206× 10−6 - 9.73202× 10−7 17% 1.79160× 10−6 32%
200 1.65782× 10−6 - 2.72415× 10−6 - 1.78369× 10−6 8% 2.72415× 10−6 0%
500 4.14451× 10−6 - 6.81018× 10−6 - 4.84739× 10−6 17% 8.79296× 10−6 29%
1000 8.28868× 10−6 - 1.36194× 10−5 - 8.61232× 10−6 4% 1.36194× 10−5 0%

WENO-JS WENO-Z
Time, t L1 error χ1 L∞ error χ∞ L1 error χ1 L∞ error χ∞

10 4.23531× 10−7 411% 6.95290× 10−7 411% 8.28830× 10−8 0% 1.36173× 10−7 0%
100 4.74028× 10−6 472% 1.09481× 10−5 704% 8.28938× 10−7 0% 1.36207× 10−6 0%
200 7.29285× 10−5 4299% 9.51604× 10−4 34832% 2.10734× 10−6 27% 9.02795× 10−6 231%
500 3.11698× 10−2 751974% 8.63989× 10−2 1268573% 9.91182× 10−4 23816% 1.65219× 10−2 242506%
1000 1.01278× 10−1 1221783% 2.13485× 10−1 1567407% 2.82670× 10−3 34003% 1.85472× 10−2 136082%

WENO-M MOP-WENO-M
Time, t L1 error χ1 L∞ error χ∞ L1 error χ1 L∞ error χ∞

10 8.28912× 10−8 0% 1.36173× 10−7 0% 8.48762× 10−8 2% 1.36173× 10−7 0%
100 8.29015× 10−7 0% 1.36207× 10−6 0% 9.93577× 10−7 20% 2.03738× 10−6 50%
200 2.27991× 10−6 38% 1.22731× 10−5 351% 1.81123× 10−6 9% 2.72417× 10−6 0%
500 1.41413× 10−3 34021% 1.90785× 10−2 280047% 4.68314× 10−6 13% 6.81022× 10−6 0%
1000 1.83325× 10−2 221075% 1.38215× 10−1 1014739% 8.53126× 10−6 3% 1.36195× 10−5 0%

WENO-IM(2, 0.1) MOP-WENO-IM(2, 0.1)
Time, t L1 error χ1 L∞ error χ∞ L1 error χ1 L∞ error χ∞

10 8.28803× 10−8 0% 1.36172× 10−7 0% 8.48292× 10−8 2% 1.36172× 10−7 0%
100 8.28891× 10−7 0% 1.36206× 10−6 0% 9.80868× 10−7 18% 1.87953× 10−6 38%
200 1.65781× 10−6 0% 2.72415× 10−6 0% 1.79137× 10−6 8% 2.72415× 10−6 0%
500 4.14443× 10−6 0% 6.81019× 10−6 0% 4.88306× 10−6 18% 9.14624× 10−6 34%
1000 8.28840× 10−6 0% 1.36194× 10−5 0% 8.63424× 10−6 4% 1.36194× 10−5 0%

WENO-PM6 MOP-WENO-PM6
Time, t L1 error χ1 L∞ error χ∞ L1 error χ1 L∞ error χ∞

10 8.28795× 10−8 0% 1.36172× 10−7 0% 8.47719× 10−8 2% 1.36172× 10−7 0%
100 8.28892× 10−7 0% 1.36206× 10−6 0% 9.71688× 10−7 17% 1.78452× 10−6 31%
200 1.65782× 10−6 0% 2.72415× 10−6 0% 1.78163× 10−6 7% 2.72415× 10−6 0%
500 4.14452× 10−6 0% 6.81018× 10−6 0% 4.93547× 10−6 19% 1.08735× 10−5 60%
1000 8.84565× 10−6 7% 1.38461× 10−5 2% 8.65269× 10−6 4% 1.36194× 10−5 0%

WENO-PPM5 MOP-WENO-PPM5
Time, t L1 error χ1 L∞ error χ∞ L1 error χ1 L∞ error χ∞

10 8.28794× 10−8 0% 1.36172× 10−7 0% 8.47367× 10−8 2% 1.36172× 10−7 0%
100 8.28890× 10−7 0% 1.36206× 10−6 0% 1.04103× 10−6 26% 1.78285× 10−6 31%
200 1.65781× 10−6 0% 2.72415× 10−6 0% 1.83725× 10−6 11% 2.72415× 10−6 0%
500 4.14448× 10−6 0% 6.81018× 10−6 0% 4.30721× 10−6 4% 6.81018× 10−6 0%
1000 8.28862× 10−6 0% 1.36194× 10−5 0% 8.27506× 10−6 0% 1.36194× 10−5 0%

WENO-RM(260) MOP-WENO-RM(260)
Time, t L1 error χ1 L∞ error χ∞ L1 error χ1 L∞ error χ∞

10 8.28794× 10−8 0% 1.36172× 10−7 0% 8.48225× 10−8 2% 1.36172× 10−7 0%
100 8.28889× 10−7 0% 1.36206× 10−6 0% 9.56819× 10−7 15% 1.58577× 10−6 16%
200 1.65781× 10−6 0% 2.72415× 10−6 0% 1.77008× 10−6 7% 2.72415× 10−6 0%
500 4.14448× 10−6 0% 6.81018× 10−6 0% 4.72311× 10−6 14% 6.81018× 10−6 0%
1000 8.28860× 10−6 0% 1.36194× 10−5 0% 8.55573× 10−6 3% 1.36194× 10−5 0%

WENO-MAIM1 MOP-WENO-MAIM1
Time, t L1 error χ1 L∞ error χ∞ L1 error χ1 L∞ error χ∞

10 8.28796× 10−8 0% 1.36172× 10−7 0% 8.28791× 10−8 0% 1.36172× 10−7 0%
100 8.28893× 10−7 0% 1.36206× 10−6 0% 8.28894× 10−7 0% 1.36206× 10−6 0%
200 1.65782× 10−6 0% 2.72415× 10−6 0% 1.65783× 10−6 0% 2.72415× 10−6 0%
500 4.14450× 10−6 0% 6.81018× 10−6 0% 4.14454× 10−6 0% 6.81018× 10−6 0%
1000 8.28865× 10−6 0% 1.36194× 10−5 0% 8.28830× 10−6 0% 1.36194× 10−5 0%

In Figures 6 and 7, we plot the solutions computed by various schemes at output time
t = 1000 with the grid numbers of N = 200 and N = 800, respectively. For N = 200,
Figure 6 shows that: (1) the MOP-WENO-M scheme provides results with far higher
resolution than the associated WENO-M scheme and the WENO-Z scheme, which give
results with slightly better resolution than the worst one computed by the WENO-JS scheme;
(2) the results of the MOP-WENO-MAIM1 scheme are very close to those of its associated
WENO-MAIM1 scheme; (3) the results of the other MOP-WENO-X schemes show far better
resolutions than the WENO-M , WENO-Z, and WENO-JS schemes, although they give
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results with very slightly lower resolutions than their associated WENO-X schemes because
of the narrower optimal weight intervals. Actually, we can amend this minor issue by
using a larger grid number. Consequently, for N = 800, it can be seen from Figure 7 that:
(1) all the MOP-WENO-X schemes produce results very close to those of their associated
mapped WENO-X schemes with extremely high resolutions except the case of X = M; (2)
the MOP-WENO-M scheme also produces results with very high resolution, whereas the
resolutions of the results from the WENO-M , WENO-Z, and WENO-JS schemes have far
lower resolutions.

Figure 6. Performances of various WENO schemes for Example 3 at output time t = 1000 with a uniform mesh size of
N = 200.

Figure 7. Performances of various WENO schemes for Example 3 at output time t = 1000 with a uniform mesh size of
N = 800.

Example 4. We calculate Equation (38) using the following initial condition [8]:

u(x, 0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1
6
[
G(x, β, z− δ̂) + 4G(x, β, z) + G(x, β, z + δ̂)

]
, x ∈ [−0.8,−0.6],

1, x ∈ [−0.4,−0.2],
1−

∣∣10(x− 0.1)
∣∣, x ∈ [0.0, 0.2],

1
6
[
F(x, α, a− δ̂) + 4F(x, α, a) + F(x, α, a + δ̂)

]
, x ∈ [0.4, 0.6],

0, otherwise,

(42)

where G(x, β, z) = e−β(x−z)2
, F(x, α, a) =

√
max

(
1− α2(x− a)2, 0

)
, and the constants are

z = −0.7, δ̂ = 0.005, β =
log 2
36δ̂2

, a = 0.5, and α = 10. The periodic boundary condition is

used. Although the CFL number can be chosen from a wide range of values—for example,
CFL = 0.6 usually works well—we set CFL = 0.1 here to keep the consistent with the
literatures [27,29,31,32] having strong relevance to the present study and to make thorough
comparisons with the results of these literature. For brevity in the presentation, we call
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this linear problem SLP as it is presented by Shu et al. in [8]. It is known that this problem
consists of a Gaussian, a square wave, a sharp triangle, and a semi-ellipse.

In Tables 6 and 7, we present the L1, L2, L∞ errors and the corresponding convergence
rates of accuracy with t = 2 and t = 2000, respectively. For the case of t = 2, it can be seen
that: (1) the L1 and L2 orders of all considered schemes are approximately 1.0 and about
0.35 to 0.5, respectively; (2) negative values of the L∞ orders of all considered schemes
are generated; (3) in terms of accuracy, the MOP-WENO-X schemes produce less accurate
results than the associated WENO-X schemes. For the case of t = 2000, it can be seen
that: (1) the L1, L2 orders of the WENO-JS, WENO-M, and WENO-Z schemes decrease to
very small values and even become negative; (2) however, the L1 and L2 orders of all the
MOP-WENO-X schemes, and the associated mapped WENO-X schemes without WENO-
M, are clearly larger than 1.0 and around 0.5 to 0.9, respectively; (3) the L∞ orders of all
WENO-X schemes are very small, and some of them are even negative (e.g., the WENO-JS,
WENO-PPM5 and MIP-WENO-ACMk schemes), and those of the MOP-WENO-X schemes
are all positive, although they are also very small; (4) in terms of accuracy, on the whole,
the MOP-WENO-X schemes produce accurate and comparable results to the associated
WENO-X schemes, except the WENO-M scheme. However, if we take a closer look, we can
find that the resolution of the results computed by the WENO-M scheme is significantly
lower than that of the MOP-WENO-M scheme, and the other mapped WENO-X schemes
generate spurious oscillations, but the associated MOP-WENO-X schemes do not. Detailed
tests are conducted and the solutions are presented carefully to demonstrate this in the
following subsection.

Table 6. Convergence properties of various considered schemes on solving ut + ux = 0 with initial condition Equation (42),
t = 2. To be continued.

Scheme N L1 Error L1 Order L2 Error L2 Order L∞ Error L∞ Order

WENO-JS 200 6.30497 × 10−2 - 1.08621 × 10−1 - 4.09733 × 10−1 -
400 2.81654 × 10−2 1.2103 7.71111 × 10−2 0.4943 4.19594 × 10−1 −0.0343
800 1.41364 × 10−2 0.9945 5.69922 × 10−2 0.4362 4.28463 × 10−1 −0.0302

WENO-Z 200 4.98422 × 10−2 - 9.59452 × 10−2 - 3.92478 × 10−1 -
400 2.37836 × 10−2 1.0674 6.98647 × 10−2 0.4576 4.03601 × 10−1 −0.0403
800 1.19851 × 10−2 0.9887 5.14607 × 10−2 0.4411 4.13262 × 10−1 −0.0341

WENO-M 200 4.77201 × 10−2 - 9.53073 × 10−2 - 3.94243 × 10−1 -
400 2.23407 × 10−2 1.0949 6.91333 × 10−2 0.4632 4.05856 × 10−1 −0.0419
800 1.11758 × 10−2 0.9993 5.09232 × 10−2 0.4411 4.16937 × 10−1 −0.0389

MOP-WENO-M 200 5.72690 × 10−2 - 1.00827 × 10−1 - 4.14785 × 10−1 -
400 2.72999 × 10−2 1.0689 7.33765 × 10−2 0.4585 4.45144 × 10−1 -0.1019
800 1.42908 × 10−2 0.9338 5.57886 × 10−2 0.3953 4.64024 × 10−1 −0.0599

WENO-IM(2, 0.1) 200 4.40293 × 10−2 - 9.19118 × 10−2 - 3.86789 × 10−1 -
400 2.02331 × 10−2 1.1217 6.68479 × 10−2 0.4594 3.98769 × 10−1 −0.0441
800 1.01805 × 10−2 0.9909 4.95333 × 10−2 0.4325 4.09515 × 10−1 −0.0383

MOP-WENO-IM(2, 0.1) 200 6.09985 × 10−2 - 1.03438 × 10−1 - 4.35238 × 10−1 -
400 2.86731 × 10−2 1.0891 7.56598 × 10−2 0.4512 4.62098 × 10−1 −0.0864
800 1.45601 × 10−2 0.9777 5.61842 × 10−2 0.4294 4.64674 × 10−1 −0.0080

WENO-PM6 200 4.66681 × 10−2 - 9.45566 × 10−2 - 3.96866 × 10−1 -
400 2.13883 × 10−2 1.1256 6.82948 × 10−2 0.4694 4.06118 × 10−1 −0.0332
800 1.06477 × 10−2 1.0063 5.03724 × 10−2 0.4391 4.15277 × 10−1 −0.0322

MOP-WENO-PM6 200 5.45129 × 10−2 - 9.95654 × 10−2 - 4.02785 × 10−1 -
400 2.61755 × 10−2 1.0584 7.16656 × 10−2 0.4744 4.26334 × 10−1 −0.0820
800 1.38981 × 10−2 0.9133 5.44733 × 10−2 0.3957 4.63134 × 10−1 −0.1194
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Table 6. Cont.

Scheme N L1 Error L1 Order L2 Error L2 Order L∞ Error L∞ Order

WENO-PPM5 200 4.54081 × 10−2 - 9.33165 × 10−2 - 3.91076 × 10−1 -
400 2.07948 × 10−2 1.1267 6.76172 × 10−2 0.4647 4.02214 × 10−1 −0.0405
800 1.04018 × 10−2 0.9994 4.99580 × 10−2 0.4367 4.12113 × 10−1 −0.0351

MOP-WENO-PPM5 200 5.51553 × 10−2 - 9.94592 × 10−2 - 4.04763 × 10−1 -
400 2.65464 × 10−2 1.0550 7.19973 × 10−2 0.4662 4.32887 × 10−1 −0.0969
800 1.41381 × 10−2 0.9089 5.52704 × 10−2 0.3814 4.68577 × 10−1 −0.1143

WENO-RM(260) 200 4.63072 × 10−2 - 9.40674 × 10−2 - 3.96762 × 10−1 -
400 2.13545 × 10−2 1.1167 6.81954 × 10−2 0.4640 4.08044 × 10−1 −0.0405
800 1.06392 × 10−2 1.0052 5.03289 × 10−2 0.4383 4.16722 × 10−1 −0.0304

MOP-WENO-RM(260) 200 5.54343 × 10−2 - 9.93009 × 10−2 - 4.04041 × 10−1 -
400 2.71415 × 10−2 1.0303 7.22823 × 10−2 0.4582 4.38358 × 10−1 −0.1176
800 1.45563 × 10−2 0.8989 5.66845 × 10−2 0.3507 4.70380 × 10−1 −0.1017

WENO-MAIM1 200 5.71142 × 10−2 - 1.03257 × 10−1 - 4.15051 × 10−1 -
400 2.48065 × 10−2 1.2031 7.29236 × 10−2 0.5018 4.23185 × 10−1 −0.0280
800 1.21078 × 10−2 1.0348 5.32803 × 10−2 0.4528 4.28710 × 10−1 −0.0187

MOP-WENO-MAIM1 200 5.98640 × 10−2 - 1.05066 × 10−1 - 4.12365 × 10−1 -
400 2.64819 × 10−2 1.1767 7.38102 × 10−2 0.5094 4.26841 × 10−1 −0.0498
800 1.33647 × 10−2 0.9866 5.44089 × 10−2 0.4400 4.38310 × 10−1 −0.0383

MIP-WENO-ACMk 200 4.45059 × 10−2 - 9.24356 × 10−2 - 3.92505 × 10−1 -
400 2.03633 × 10−2 1.1280 6.69718 × 10−2 0.4649 4.03456 × 10−1 −0.0397
800 1.02139 × 10−2 0.9954 4.95672 × 10−2 0.4342 4.13217 × 10−1 −0.0345

MOP-WENO-ACMk 200 5.56533 × 10−2 - 9.94223 × 10−2 - 4.03765 × 10−1 -
400 2.79028 × 10−2 0.9961 7.33101 × 10−2 0.4396 4.48412 × 10−1 −0.1513
800 1.43891 × 10−2 0.9554 5.51602 × 10−2 0.4104 4.67036 × 10−1 −0.0587

Table 7. Convergence properties of various considered schemes on solving ut + ux = 0 with initial condition Equation (42),
t = 2000.

Scheme N L1 Error L1 Order L2 Error L2 Order L∞ Error L∞ Order

WENO-JS 200 6.12899 × 10−1 - 5.08726 × 10−1 - 7.99265 × 10−1 -
400 5.99215 × 10−1 0.0326 5.01160 × 10−1 0.0216 8.20493 × 10−1 −0.0378
800 5.50158 × 10−1 0.1232 4.67585 × 10−1 0.1000 8.14650 × 10−1 0.0103

WENO-Z 200 3.86995 × 10−1 - 3.42335 × 10−1 - 6.85835 × 10−1 -
400 2.02287 × 10−1 0.9359 2.18125 × 10−1 0.6503 5.18993 × 10−1 0.4021
800 1.66703 × 10−1 0.2791 1.94240 × 10−1 0.1673 5.04564 × 10−1 0.0407

WENO-M 200 3.81597 × 10−1 - 3.59205 × 10−1 - 6.89414 × 10−1 -
400 3.25323 × 10−1 0.2302 3.12970 × 10−1 0.1988 6.75473 × 10−1 0.0295
800 3.48528 × 10−1 −0.0994 3.24373 × 10−1 −0.0516 6.25645 × 10−1 0.1106

MOP-WENO-M 200 3.85134 × 10−1 - 3.48164 × 10−1 - 7.41230 × 10−1 -
400 1.74987 × 10−1 1.1381 1.86418 × 10−1 0.9012 5.04987 × 10−1 0.5537
800 6.40251 × 10−2 1.4505 1.07629 × 10−1 0.7925 4.81305 × 10−1 0.0693

WENO-IM(2, 0.1) 200 2.17411 × 10−1 - 2.30000 × 10−1 - 5.69864 × 10−1 -
400 1.12590 × 10−1 0.9493 1.64458 × 10−1 0.4839 4.82180 × 10−1 0.2410
800 5.18367 × 10−2 1.1190 9.98968 × 10−2 0.7192 4.73102 × 10−1 0.02784

MOP-WENO-IM(2, 0.1) 200 3.83289 × 10−1 - 3.47817 × 10−1 - 7.25185 × 10−1 -
400 1.67452 × 10−1 1.1947 1.76550 × 10−1 0.9783 5.24538 × 10−1 0.4673
800 6.44253 × 10−2 1.3780 1.05858 × 10−1 0.7379 5.19333 × 10−1 0.0144

WENO-PM6 200 2.17323 × 10−1 - 2.28655 × 10−1 - 5.63042 × 10−1 -
400 1.05197 × 10−1 1.0467 1.47518 × 10−1 0.6323 5.04977 × 10−1 0.1570
80 4.47030 × 10−2 1.2347 9.34250 × 10−2 0.6590 4.71368 × 10−1 0.0994
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Table 7. Cont.

Scheme N L1 Error L1 Order L2 Error L2 Order L∞ Error L∞ Order

MOP-WENO-PM6 200 4.51487 × 10−1 - 4.01683 × 10−1 - 7.71539 × 10−1 -
400 1.75875 × 10−1 1.3601 1.83478 × 10−1 1.1305 5.06314 × 10−1 0.6077
800 6.32990 × 10−2 1.4743 1.04688 × 10−1 0.8095 4.76091 × 10−1 0.0888

WENO-PPM5 200 2.17174 × 10−1 - 2.29008 × 10−1 - 5.65575 × 10−1 -
400 1.03201 × 10−1 1.0734 1.46610 × 10−1 0.6434 5.06463 × 10−1 0.1593
800 4.81637 × 10−2 1.0994 9.47748 × 10−2 0.6294 5.14402 × 10−1 −0.0224

MOP-WENO-PPM5 200 3.86292 × 10−1 - 3.49072 × 10−1 - 7.36405 × 10−1 -
400 1.75232 × 10−1 1.1404 1.88491 × 10−1 0.8890 5.14732 × 10−1 0.5167
800 6.36336 × 10−2 1.4614 1.06801 × 10−1 0.8196 4.98424 × 10−1 0.0464

WENO-RM(260) 200 2.17363 × 10−1 - 2.28662 × 10−1 - 5.62933 × 10−1 -
400 1.04347 × 10−1 1.0587 1.47093 × 10−1 0.6365 4.98644 × 10−1 0.1750
800 4.45176 × 10−2 1.2289 9.33066 × 10−2 0.6567 4.71450 × 10−1 0.0809

MOP-WENO-RM(260) 200 4.56942 × 10−1 - 4.06524 × 10−1 - 7.71747 × 10−1 -
400 2.25420 × 10−1 1.0194 2.25814 × 10−1 0.8482 5.12018 × 10−1 0.5919
800 8.02414 × 10−2 1.4902 1.18512 × 10−1 0.9301 4.90610 × 10−1 0.0616

WENO-MAIM1 200 2.18238 × 10−1 - 2.29151 × 10−1 - 5.63682 × 10−1 -
400 1.09902 × 10−1 0.9897 1.51024 × 10−1 0.6015 4.94657 × 10−1 0.1885
800 4.41601 × 10−2 1.3154 9.35506 × 10−2 0.6910 4.72393 × 10−1 0.0664

MOP-WENO-MAIM1 200 2.39900 × 10−1 - 2.47191 × 10−1 - 6.06985 × 10−1 -
400 1.41890 × 10−1 0.7577 1.71855 × 10−1 0.5244 5.61908 × 10−1 0.1113
800 5.43475 × 10−2 1.3845 1.02170 × 10−1 0.7502 5.10242 × 10−1 0.1392

MIP-WENO-ACMk 200 2.21312 × 10−1 - 2.28433 × 10−1 - 5.36234 × 10−1 -
400 1.06583 × 10−1 1.0541 1.46401 × 10−1 0.6418 5.03925 × 10−1 0.0897
800 4.76305 × 10−2 1.1620 9.40930 × 10−2 0.6378 5.15924 × 10−1 −0.0339

MOP-WENO-ACMk 200 3.83033 × 10−1 - 3.46814 × 10−1 - 7.18464 × 10−1 -
400 1.77114 × 10−1 1.1128 1.87369 × 10−1 0.8883 5.05980 × 10−1 0.5058
800 6.70535 × 10−2 1.4013 1.09368 × 10−1 0.7767 4.80890 × 10−1 0.0734

4.2. 1D Linear Advection Problems with Long Output Times

The objective of this subsection is to demonstrate the advantage of the MOP-WENO-X
schemes on long-output-time simulations that can obtain high resolution and meanwhile
do not generate spurious oscillations.

The one-dimensional linear advection problem Equation (38) is solved with the peri-
odic boundary condition by taking the following two initial conditions.

Case 1. (SLP) The initial condition is given by Equation (42).
Case 2. (BiCWP) The initial condition is given by

u(x, 0) =

⎧⎨⎩
0, x ∈ [−1.0,−0.8]

⋃
(−0.2, 0.2]

⋃
(0.8, 1.0],

0.5, x ∈ (−0.6,−0.4]
⋃
(0.2, 0.4]

⋃
(0.6, 0.8],

1, x ∈ (−0.8,−0.6]
⋃
(−0.4,−0.2]

⋃
(0.4, 0.6].

(43)

Case 1 and Case 2 were carefully simulated in [9]. Case 1 is called SLP as mentioned
earlier in this paper. Case 2 consists of several constant states separated by sharp disconti-
nuities at x = ±0.8,±0.6,±0.4,±0.2 and it was called BiCWP for brevity in the presentation
as the profile of the exact solution for this Problem looks like the Breach in City Wall.

In Figures 8–11, we show the comparison of considered schemes for SLP and BiCWP,
respectively, by taking t = 2000 and N = 800. It can be seen that: (1) all the MOP-WENO-X
schemes produce results with considerable resolutions which are significantly higher than
those of the WENO-JS, WENO-M and WENO-Z schemes, and what is more, they all do
not generate spurious oscillations, while most of their associated WENO-X schemes do,
when solving both SLP and BiCWP; (2) it should be reminded that the WENO-IM(2, 0.1)
scheme appears not to generate spurious oscillations and it gives better resolution than
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the MOP-WENO-IM(2, 0.1) scheme in most of the region when solving SLP on present
computing condition, however, from Figure 8b, one can observe that the MOP-WENO-IM(2,
0.1) scheme gives a better resolution of the Gaussian than the WENO-IM(2, 0.1) scheme,
and if taking a closer look, one can see that the WENO-IM(2, 0.1) scheme generates a very
slight spurious oscillation near x = −0.435 as shown in Figure 8c; (3) it is very evident as
shown in Figure 10 that, when solving BiCWP, the WENO-IM(2, 0.1) scheme generates the
spurious oscillations.

Figure 8. Performance of the WENO-JS, WENO-M, MOP-WENO-M, WENO-IM(2, 0.1), MOP-WENO-IM(2, 0.1), WENO-
PM6 and MOP-WENO-PM6 schemes for the SLP at output time t = 2000 with a uniform mesh size of N = 800.

Figure 9. Performance of the WENO-JS, WENO-M, WENO-PPM5, MOP-WENO-PPM5, WENO-RM260, MOP-WENO-
RM260, WENO-MAIM1, MOP-WNEO-MAIM1, MIP-WENO-ACMk and MOP-WENO-ACMk schemes for the SLP at output
time t = 2000 with a uniform mesh size of N = 800.
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Figure 10. Performance of the WENO-JS, WENO-M, MOP-WENO-M, WENO-IM(2, 0.1), MOP-WENO-IM(2, 0.1), WENO-
PM6 and MOP-WENO-PM6 schemes for the BiCWP at output time t = 2000 with a uniform mesh size of N = 800.

Figure 11. Performance of the WENO-JS, WENO-M, WENO-PPM5, MOP-WENO-PPM5, WENO-RM260, MOP-WENO-
RM260, WENO-MAIM1, MOP-WNEO-MAIM1, MIP-WENO-ACMk and MOP-WENO-ACMk schemes for the BiCWP at
output time t = 2000 with a uniform mesh size of N = 800.

In Figures 12–15, we show the comparison of considered schemes for SLP and BiCWP
respectively, by taking t = 200 and N = 3200. From these solutions computed with larger
grid numbers and a reduced but still long output time, it can be seen that: (1) firstly, the
WENO-IM(2, 0.1) scheme generates spurious oscillations but the MOP-WENO-IM(2, 0.1)
scheme does not while provides an improved resolution when solving SLP; (2) although the
resolutions of the results computed by the WENO-JS, WENO-M and WENO-Z schemes are
significantly improved for both SLP and BiCWP, the MOP-WENO-X schemes still evidently
provide much better resolutions; (3) the spurious oscillations generated by the WENO-X
schemes appear to be more evident and more intense as the grid number increases, while
the associated MOP-WENO-X schemes can still avoid spurious oscillations but obtain
higher resolutions, when solving both SLP and BiCWP.

For the further interpretation, without loss of generality, in Figure 16, we present
the non-OP points of the numerical solutions of SLP computed by the WENO-M and
MOP-WENO-M schemes with N = 800, t = 2000, and the non-OP points of the numerical
solutions of BiCWP computed by the WENO-PM6 and MOP-WENO-PM6 schemes with
N = 3200, t = 200. We can find that there are a great many non-OP points in the solutions
of the WENO-M and WENO-PM6 schemes while the numbers of the non-OP points in the
solutions of the MOP-WENO-M and MOP-WENO-PM6 schemes are zero. Actually, there
are many non-OP points for all considered mapped WENO-X schemes. Furthermore, as
expected, there are no non-OP points for the associated MOP-WENO-X schemes and the
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WENO-JS scheme for all computing cases here. We do not show the results of the non-OP
points for all computing cases here just for the simplicity of illustration.

Figure 12. Performance of the WENO-JS, WENO-M, MOP-WENO-M, WENO-IM(2, 0.1), MOP-WENO-IM(2, 0.1), WENO-
PM6 and MOP-WENO-PM6 schemes for the SLP at output time t = 200 with a uniform mesh size of N = 3200.

Figure 13. Performance of the WENO-JS, WENO-M, WENO-PPM5, MOP-WENO-PPM5, WENO-RM260, MOP-WENO-
RM260, WENO-MAIM1, MOP-WNEO-MAIM1, MIP-WENO-ACMk and MOP-WENO-ACMk schemes for the SLP at output
time t = 200 with a uniform mesh size of N = 3200.

Figure 14. Performance of the WENO-JS, WENO-M, MOP-WENO-M, WENO-IM(2, 0.1), MOP-WENO-IM(2, 0.1), WENO-
PM6 and MOP-WENO-PM6 schemes for the BiCWP at output time t = 200 with a uniform mesh size of N = 3200.
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Figure 15. Performance of the WENO-JS, WENO-M, WENO-PPM5, MOP-WENO-PPM5, WENO-RM260, MOP-WENO-
RM260, WENO-MAIM1, MOP-WNEO-MAIM1, MIP-WENO-ACMk and MOP-WENO-ACMk schemes for the BiCWP at
output time t = 200 with a uniform mesh size of N = 3200.

Figure 16. Cont.
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Figure 16. The non-OP points in the numerical solutions of SLP computed by the WENO-M and MOP-WENO-M schemes
with N = 800, t = 2000, and the non-OP points in the numerical solutions of BiCWP computed by the WENO-PM6 and
MOP-WENO-PM6 schemes with N = 3200, t = 200.

In summary, the solutions in this subsection could be regarded as numerical verifi-
cations of properties C4, C5 of Theorem 2. In other words, it could be indicated that the
general method to introduce the OP mapping can help to gain the advantage of achieving
high resolutions and in the meantime preventing spurious oscillations when solving prob-
lems with discontinuities for long output times. Additionally, this is the most important
point we want to report in this paper.

4.3. Comparison with Central WENO Schemes

In this subsection, we compare the performances of the MOP-WENO-X schemes with
the quite recent approach, called central WENO (CWENO) schemes. For simplicity, only
the cases of the WENO-NW6 [36], WENO-CU6 [37] and WENO-θ6 [38] schemes are taken
into account in the following discussion.

We firstly consider the following example.

Example 5. We compute

{
ut + ux = 0, x ∈ (−1, 1),
u(x, 0) = max(− sin(πx), 0),

(44)

with periodic boundary conditions.
We calculate this problem by the fifth-order MOP-WENO-X schemes proposed in

the present work and the sixth-order central schemes of WENO-NW6, WENO-CU6 and
WENO-θ6 schemes. The output time is taken to be t = 2.4 and the cell number is N = 200.
The solutions are plotted in Figure 17. It clearly shows that the sixth-order central WENO
schemes of WENO-NW6 and WENO-CU6 perform worse than the fifth-order MOP-WENO-
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X schemes. It was reported by Jung et al. [38] that this loss of resolution is an important
issue since there are many problems whose solution often exhibits the same behavior as
this example. Therefore, we claim that the MOP-WENO-X schemes are more favorable than
the central WENO schemes of WENO-NW6 and WENO-CU6 for this kind of problems. In
addition, the the central WENO scheme of WENO-θ6 performs as well as the MOP-WENO-
X schemes in this test. Unfortunately, it performs worse and gives significantly lower
resolution than the MOP-WENO-X schemes on solving problems with discontinuities for
long output times. We now discuss this in detail.

We calculate the problems of SLP and BiCWP (see Section 4.2) by using the sixth-order
central schemes of WENO-NW6, WENO-CU6, and WENO-θ6 schemes. The computing
conditions of t = 200 and N = 3200 are used here. In Figures 18 and 19, the results for
SLP and BiCWP are shown. From these figures, we can see that the sixth-order central
WENO schemes of WENO-NW6 and WENO-θ6 provide significantly lower resolutions
than the fifth-order MOP-WENO-X schemes. The WENO-CU6 scheme appears to obtain
the resolution equivalent to, or even better than those of the MOP-WENO-X schemes.
However, it generates spurious oscillations, and the MOP-WENO-X schemes do not.

Figure 17. (Left): Numerical solutions of Equation (44) at time t = 2.4 obtained from different WENO schemes. (Right):
Zoom near the critical region.
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Figure 18. Performance of the WENO-NW6, WENO-CU6, WENO-θ6 and MOP-WENO-X schemes for the SLP at output
time t = 200 with a uniform mesh size of N = 3200.

Figure 19. Performance of the WENO-NW6, WENO-CU6, WENO-θ6 and MOP-WENO-X schemes for the BiCWP at output
time t = 200 with a uniform mesh size of N = 3200.

4.4. Euler System in Two Dimension

In this subsection, we focus on the numerical simulations of the shock-vortex inter-
action problem [41,42] and the 2D Riemann problem [43–45]. They are governed by the
two-dimensional Euler system of gas dynamics, taking the following strong conservation
form of mass, momentum and energy

∂ρ

∂t
+

∂(ρu)
∂x

+
∂(ρv)

∂y
= 0,

∂(ρu)
∂t

+
∂(ρu2 + p)

∂x
+

∂(ρuv)
∂y

= 0,

∂(ρv)
∂t

+
∂(ρvu)

∂x
+

∂(ρv2 + p)
∂y

= 0,

∂E
∂t

+
∂(uE + up)

∂x
+

∂(vE + vp)
∂y

= 0,

(45)

where ρ, u, v, p, and E are the density components of velocity in the x and y coordinate
directions, pressure, and total energy, respectively. The following equation of state for an
ideal polytropic gas is used to close the two-dimensional Euler system Equation (45)

p = (γ− 1)
(

E− 1
2

ρ(u2 + v2)
)

,
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where γ is the ratio of specific heat, and we set γ = 1.4 in this paper. In the computations
below, the CFL number is taken to be 0.5. All the considered WENO schemes are applied
dimension-by-dimension to solve the two-dimensional Euler system and the local charac-
teristic decomposition [8] is used. In [46], Zhang et al. investigated two commonly used
classes of finite volume WENO schemes in two-dimensional Cartesian meshes, and we
employ the one denoted as class A in this subsection.

Example 6. (Shock-vortex interaction) We consider the shock-vortex interaction problem used
in [41,42]. It consists of the interaction of a left moving shock wave with a right moving vortex.
The computational domain is initialized by(

ρ, u, v, p
)
(x, y, 0) =

{
UL, x < 0.5,
UR, x ≥ 0.5,

where UL = (ρL, uL, vL, pL) = (1,
√

γ, 0, 1), and UR = (ρR, uR, vR, pR) taking the form

pR = 1.3, ρR = ρL

(
γ− 1 + (γ + 1)pR

γ + 1 + (γ− 1)pR

)
uR = uL

(
1− pR√

γ− 1 + pR(γ + 1)

)
, vR = 0.

The vortex δU = (δρ, δu, δv, δp), defined by the following perturbations, is superimposed
onto the left state UL,

δρ =
ρ2

L
(γ− 1)pL

δT, δu = ε
y− yc

rc
eα(1−r2), δvs. = −ε

x− xc

rc
eα(1−r2), δp =

γρ2
L

(γ− 1)ρL
δT,

where ε = 0.3, rc = 0.05, α = 0.204, xc = 0.25, yc = 0.5, r =
√
((x− xc)2 + (y− yc)2)/r2

c,
δT = −(γ− 1)ε2e2α(1−r2)/(4αγ). The transmissive boundary condition is used on all bound-
aries. A uniform mesh size of 800× 800 is used and the output time is set to be t = 0.35.

We calculate this problem using all the considered mapped WENO-X schemes in
Table 1 and their associated MOP-WENO-X schemes. For the sake of brevity though, we
only present the solutions of the WENO-M, WENO-IM(2, 0.1), WENO-PPM5, WENO-
MAIM1 schemes and their associated MOP-WENO-X schemes in Figures 20 and 21, where
the first rows give the final structures of the shock and vortex in density profile of the
existing mapped WENO-X schemes, the second rows give those of the associated MOP-
WENO-X schemes, and the third rows give the cross-sectional slices of density plot along
the plane y = 0.65 where x ∈ [0.70, 0.76]. We find that all the considered schemes perform
well in capturing the main structure of the shock and vortex after the interaction. It can be
seen that there are clear post-shock oscillations in the solutions of the WENO-M, WENO-
IM(2, 0.1), and WENO-PPM5 schemes. However, in the solutions of the MOP-WENO-M,
MOP-WENO-IM(2, 0.1), and MOP-WENO-PPM5 schemes, the post-shock oscillations are
either gone or significantly reduced. The post-shock oscillations of the WENO-MAIM1
scheme are very slight and even hard to be noticed. Actually, it seems difficult to distinguish
the solutions of the WENO-MAIM1 scheme from that of the MOP-WENO-MAIM1 scheme
only according to the structure of the shock and vortex in the density profile. Nevertheless,
when taking a closer look from the cross-sectional slices of the density profile along the
plane y = 0.65 at the bottom right picture of Figure 21 where the reference solution
is obtained using the WENO-JS scheme with a uniform mesh size of 1600 × 1600, we
can see that the post-shock oscillation of the WENO-MAIM1 scheme is very remarkable
while it is imperceptible for the MOP-WENO-MAIM1 scheme. Additionally, from the
third rows of Figures 20 and 21, we find that the WENO-IM(2, 0.1) and WENO-PPM5
schemes generate the post-shock oscillations with much bigger amplitudes than that of the
WENO-MAIM1 scheme. The WENO-M scheme also generates clear post-shock oscillations
with the amplitudes slightly smaller than that of the WENO-IM(2, 0.1) and WENO-PPM5
schemes. Evidently, the solutions of the MOP-WENO-M, MOP-WENO-IM(2, 0.1) and
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MOP-WENO-PPM5 schemes almost generate no post-shock oscillations or only generate
some imperceptible numerical oscillations and their solutions are very close to the reference
solution, and this should be an advantage of the mapped WENO schemes whose mapping
functions are OP.

Figure 20. Density plots for the Shock-vortex interaction using 30 contour lines with range from 0.9 to 1.4 (the first two rows)
and the cross-sectional slices of density plot along the plane y = 0.65 where x ∈ [0.70, 0.76] (the third row), computed using
the WENO-M and MOP-WENO-M (left column), WENO-IM(2, 0.1), and MOP-WENO-IM(2, 0.1) (right column) schemes.
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Figure 21. Density plots for the Shock-vortex interaction using 30 contour lines with range from 0.9 to 1.4 (the first two rows)
and the cross-sectional slices of density plot along the plane y = 0.65 where x ∈ [0.70, 0.76] (the third row), computed using the
WENO-PPM5 and MOP-WENO-PPM5 (left column), WENO-MAIM1 and MOP-WENO-MAIM1 (right column) schemes.
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Example 7. (2D Riemann problem) It is very favorable to test the high-resolution numerical
methods [30,45,47] using the series of 2D Riemann problems [43,44]. In [45], Lax et al. classified
a total of 19 genuinely different Configurations for 2D Riemann problem and calculated all the
numerical solutions. Configuration 4 is chosen here for the test, and the computational domain is
initialized by

(
ρ, u, v, p

)
(x, y, 0) =

⎧⎪⎪⎨⎪⎪⎩
(1.1, 0.0, 0.0, 1.1), 0.5 ≤ x ≤ 1.0, 0.5 ≤ y ≤ 1.0,
(0.5065, 0.8939, 0.0, 0.35), 0.0 ≤ x ≤ 0.5, 0.5 ≤ y ≤ 1.0,
(1.1, 0.8939, 0.8939, 1.1), 0.0 ≤ x ≤ 0.5, 0.0 ≤ y ≤ 0.5,
(0.5065, 0.0, 0.8939, 0.35), 0.5 ≤ x ≤ 1.0, 0.0 ≤ y ≤ 0.5.

The transmission boundary condition is used on all boundaries, and the numerical
solutions are calculated on a uniform mesh size of 800× 800. The computations proceed to
t = 0.25.

Similarly, although we calculate this problem using all the considered mapped WENO-
X schemes in Table 1 and their associated MOP-WENO-X schemes, we only present the
solutions of the WENO-M, WENO-PM6, WENO-RM260 and MIP-WENO-ACMk schemes
and their associated MOP-WENO-X schemes here for the sake of brevity. We have shown
the numerical results of density obtained by using these schemes in Figures 22 and 23,
where the first rows give the structures of the 2D Riemann problem in density profile
of the existing mapped WENO-X schemes, the second rows give those of the associated
MOP-WENO-X schemes, and the third rows give the cross-sectional slices of density plot
along the plane y = 0.5 where x ∈ [0.65, 0.692]. We can see that all schemes can capture
the main structure of the solution. However, we can also observe that there are obvious
post-shock oscillations (as marked by the pink boxes), which are unfavorable for the fidelity
of the results, in the solutions of the WENO-M, WENO-PM6, WENO-RM(260) and MIP-
WENO-ACMk schemes. These post-shock oscillations can be seen more clearly from the
cross-sectional slices of density profile as presented in the third rows of Figures 22 and 23,
where the reference solution is obtained by using the WENO-JS scheme with a uniform
mesh size of 3000× 3000. Noticeably, there are either almost no or imperceptible post-
shock oscillations in the solutions of the MOP-WENO-M, MOP-WENO-PM6, MOP-WENO-
RM(RM260) and MOP-WENO-ACMk schemes. Again, we believe that this should be an
advantage of the mapped WENO schemes whose mapping functions are OP.
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Figure 22. Density plots for the 2D Riemann problem using 30 contour lines with range from 0.5 to 1.9 (the first two rows)
and the cross-sectional slices of density plot along the plane y = 0.5 where x ∈ [0.65, 0.692] (the third row), computed using
the WENO-M and MOP-WENO-M (left column), WENO-PM6 and MOP-WENO-PM6 (right column) schemes.

43



Math. Comput. Appl. 2021, 26, 67

Figure 23. Density plots for the 2D Riemann problem using 30 contour lines with range from 0.5 to 1.9 (the first two rows) and
the cross-sectional slices of density plot along the plane y = 0.5 where x ∈ [0.65, 0.692] (the third row), computed using the
WENO-RM(260) and MOP-WENO-RM(260) (left column), MIP-WENO-ACMk and MOP-WENO-ACMk (right column) schemes.
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5. Conclusions

The concept of OP-Mapped WENO schemes standing for the family of the mapped
WENO schemes with order-preserving (OP) mappings, as well as a general way to build one
group of this kind of schemes, has been proposed in this paper. Specifically, we extended
the OP mapping introduced in [9] to various existing mapped WENO schemes in references
by providing a general formula of their mapping functions. A systematic analysis has
been performed to prove that the improved mapped WENO scheme based on the existing
mapped WENO-X scheme, denoted as MOP-WENO-X, generates numerical solutions with
the same convergence rates of accuracy in smooth regions as the associated WENO-X
scheme. Furthermore, numerical experiments were run to show that the MOP-WENO-
X schemes have the same advantage as the mapped WENO scheme proposed in [9] in
calculating the one-dimensional linear advection problems including discontinuities with
long output times. The mapping functions of the MOP-WENO-X schemes are OP and
hence able to attain high resolutions and avoid spurious oscillations meanwhile. Moreover,
numerical results with the 2D Euler system problems were presented to show that the
MOP-WENO-X schemes perform well in simulating the two-dimensional problems with
strong shock waves to capture the main flow structures and remove or significantly reduce
the post-shock oscillations.
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Abstract: When using boundary integral equation methods, we represent solutions of a linear
partial differential equation as layer potentials. It is well-known that the approximation of layer
potentials using quadrature rules suffer from poor resolution when evaluated closed to (but not
on) the boundary. To address this challenge, we provide modified representations of the problem’s
solution. Similar to Gauss’s law used to modify Laplace’s double-layer potential, we use modified
representations of Laplace’s single-layer potential and Helmholtz layer potentials that avoid the
close evaluation problem. Some techniques have been developed in the context of the representation
formula or using interpolation techniques. We provide alternative modified representations of the
layer potentials directly (or when only one density is at stake). Several numerical examples illustrate
the efficiency of the technique in two and three dimensions.

Keywords: boundary integral equations; layer potential identities; density subtractions; quadrature
rules

1. Introduction

One can represent the solution of partial differential boundary-value problems using
boundary integral equation methods, which involves integral operators defined on the
domain’s boundary called layer potentials. Using layer potentials, the solution can be
evaluated anywhere in the domain without restriction to a particular mesh. For that reason
boundary integral equations have found broad applications, including in fluid mechanics,
electromagnetics, and plasmonics [1–8].

The close evaluation problem refers to the nonuniform error produced by high-order
quadrature rules used to discretize layer potentials. This phenomenon arises when comput-
ing the solution close to the boundary (i.e., at close evaluation points). It is well understood
that this growth in error is due to the fact that the integrands of the layer potentials become
increasingly peaked as the evaluation point approaches the boundary (nearly singular
behavior), leading in limited cases to an O(1) error [9].

There exists a plethora of manners to address the close evaluation problem: using
extraction methods based on Taylor series expansions [10], regularizing the nearly sin-
gular behavior of the integrand and adding corrections [11,12], compensating quadra-
ture rules via interpolation [13], using Quadrature By Expansion related techniques
(QBX) [9,14–19], using adaptive methods [20], using singularity subtraction techniques and
interpolation [21–23], or using asymptotic approximations [24–26], to name a few. Most
techniques rely on either providing corrections to the kernel (related to the fundamental
solution of the PDE at stake), or to the density (solution of the boundary integral equation).

In the latter category, it is well-known that Laplace’s double-layer potential can
be straightforwardly modified via a density subtraction technique based on Gauss’ law
(e.g., [27]). This modification alleviates the close evaluation problem, and provides a better
approximation for any given numerical method. However this identity technique is specific
to Laplace’s double-potential. Other identities have been derived for other problems, such
as for the elastostatic problem [28].

In this paper, we provide modified representations of layer potentials, and we give
guidance to address the close evaluation problem in two and three dimensions. In particu-
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lar, we modify Laplace’s single-layer potential (representing the solution of the exterior
Neumann Laplace problem) and Helmholtz layer potentials (in the context of a sound-soft
scattering problem). With some given quadrature rule, the resulted modified representa-
tions allow us to obtain better approximations compared to standard representations. The
proposed modifications are based on subtracting specific solutions (or auxiliary functions)
of the PDE at stake. The use of auxiliary functions have been developed in the context
of Boundary Regularized Integral Equation Formulation (BRIEF) [29–31] to regularize
the representation formula on the boundary, or in the context of density interpolation
techniques [21,23,32] to regularize layer potentials (generalization of density subtractions).
Those techniques commonly consider multiple auxiliary functions, and may require to
solve additional problems to find such functions. The proposed work concentrates on regu-
larizing nearly singular integrals using explicitly one analytic auxiliary function, and when
representing the solution with layer potentials involving only one density (no representa-
tion formula). We provide several examples of auxiliary functions (and compare them),
and provide guidelines to find them. The proposed modified representations are simple
and easy to implement, and allow one to straightforwardly gain accuracy in evaluating
the solution, especially when computational resources are limited. This work provides
valuable insights into Laplace and Helmholtz layer potentials. Additionally this can also
be applied to modify boundary integral equations to avoid weakly singular integrals.

The paper is organized as follows: Section 2 presents some context and motivation for
the proposed modified representations. Section 3 establishes the modified representations
and general guidelines to find appropriate auxiliary functions. Sections 4 and 5 illustrate
the efficiency of the modified representations for Laplace and Helmholtz in two and three
dimensions, off and on boundary. Finally, Section 6 presents our concluding remarks,
Appendices A and B provide a brief summary of the Nyström methods used in two and
three dimensions, and Appendix C details some proofs for Section 3.

2. Motivation for Modified Representations

Consider a domain D ⊂ Rd, d = 2, 3, that is a bounded simply connected open set
with smooth boundary (of class C2), and a linear elliptic partial differential equation of
the form Lu = 0. It is common to represent the solution v of that PDE using the so-called
representation formula (e.g., Theorem 6.5 in [33], Theorem 3.1 in [34]). In particular for v
satisfying Lv = 0 in D, we have the following identities:

∫
∂D

∂ny G(x, y)v(y)dσy −
∫

∂D
G(x, y)∂nyv(y)dσy =

⎧⎪⎪⎨⎪⎪⎩
−v(x) x ∈ D,

−1
2
v(x) x ∈ ∂D,

0 x ∈ E := Rd \ D̄,

(1)

where G denotes the fundamental solution of considered PDE, ny is the unit outward
normal of D at y, and dσy is the integration surface element. For instance, (1) holds true for
L := Δ and L := Δ + k2, the Laplace and the Helmholtz equation, respectively. The goal
of this paper is to use (1) with well-chosen v to modify the representation of the solution
of boundary value problems associated with L. Let us illustrate the strategy with, for
example, the Exterior Neumann Laplace problem:∣∣∣∣∣∣

Find u ∈ C2(E) ∩ C1(Ē := Rd \ D) such that:

Δu = 0 in E, ∂nu = g on ∂D, lim
|x|→∞

u(x) = o(1), (2)

with some smooth data g (with null average). The solution of Problem (2) can be repre-
sented using Green’s formula [34,35]:

u(x) =
∫

∂D
∂ny G(x, y)u(y) dσy −

∫
∂D

G(x, y)∂ny u(y) dσy, x ∈ E,

=
∫

∂D
∂ny G(x, y)u(y) dσy −

∫
∂D

G(x, y)g(y) dσy, x ∈ E,
(3)
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where

G(x, y) =

⎧⎪⎨⎪⎩
− 1

2π
log |x− y| for d = 2,

1
4π

1
|x− y| for d = 3,

(4)

and the trace on the boundary satisfies the boundary integral equation of the second kind:

1
2

u(x∗)−
∫

∂D
∂ny G(x∗, y)u(y) dσy =

∫
∂D

G(x∗, y)g(y) dσy, x∗ ∈ ∂D. (5)

The fundamental solution G is singular when y = x∗. For x ∈ Rd \ ∂D, assume we can
write x = x∗ ± �nx∗ with nx∗ the unit outward normal at x∗, and � > 0 the distance from
the boundary. Then G is nearly singular at y = x∗ when |x− y| = �� 1 (i.e., when x is close
to the boundary). A layer potential is said to be a weakly singular integral (resp. a nearly
singular integral) when its kernel (G or ∂nG in the cases above) is singular at y = x∗ (resp.
nearly singular at y = x∗). There exist high-order quadrature rules to approximate weakly
singular integrals with very high accuracy (e.g., [36–39]). However, high accuracy is lost for
nearly singular integrals: this is the so-called close evaluation problem. Assuming we have
solved (5), we can modify (3) using (1) to address the close evaluation problem. Taking the
difference we obtain

u(x) =
∫

∂D
∂ny G(x, y)[u(y)− v(y)] dσy −

∫
∂D

G(x, y)[g(y)− ∂nyv(y)] dσy, x ∈ E. (6)

If one finds v such that v(x∗) = u(x∗) and ∂nx∗v(x∗) = g(x∗), where x∗ ∈ ∂D denotes
the closest boundary point of the evaluation point x (x = x∗ + �nx∗ ), then (6) does not
suffer from the close evaluation problem.

Similarly, one can represent the solution of Problem (2) using a single-density represen-
tation given by the single-layer potential:

u(x) =
∫

∂D
G(x, y)ρ(y) dσy, x ∈ D, (7)

with ρ a continuous density solution of the boundary integral equation of the second-kind:

− 1
2

ρ(x∗) +
∫

∂D
∂n∗x G(x∗, y)ρ(y) dσy = g(x∗), x∗ ∈ ∂D. (8)

Assuming we have solved (8) for ρ, subtracting (1) from (7) we obtain

u(x) =
∫

∂D
G(x, y)[ρ(y)− ∂nyv(y)] dσy +

∫
∂D

∂ny G(x, y)v(y) dσy, x ∈ E. (9)

If one finds v such that v(x∗) = 0 and ∂nx∗ v(x∗) = ρ(x∗), then (9) does not suffer from
the close evaluation problem.

Representations (6) and (9) are attractive representations, and several works have
provided guidelines on how to build appropriate solutions v. For (6) one can use Taylor-
like functions v(x) = u(x∗)g̃(x) + ∂nx∗ u(x∗) f̃ (x), with g̃ and f̃ solutions of some Laplace
boundary value problems [29–31]. This technique has been first developed in the con-
text of Boundary Regularized Integral Equation Formulation (BRIEF) (namely to solve
(5) using the same subtraction technique on boundary) and applied to evaluate the so-
lution near the boundary. For (9) one can use density interpolation methods [21,23,32]:
v = v(x∗, y) = ∑J

j=0 cj(y)Hj(x∗ − y) where (Hj)j satisfy the PDE (in the above case (Hj)j

are harmonic functions). In both methods the chosen auxiliary functions v necessarily
depend on the trace u (and/or normal trace ∂nu), or the density ρ at the closest evaluation
point. Furthermore they require to satisfy at least two conditions (two boundary value
problems or two boundary conditions).
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In this paper, we provide another construction of modified representations for single-
density representations of Laplace and Helmholtz boundary value problems. The con-
struction relies on auxiliary functions v that are independent of the density (solution of
the boundary integral equation), and requires fewer constraints in the context of (7). As a
consequence, our approach provides more freedom in choosing v. The proposed modified
representations are also simple to implement and do not add significant computational
costs. In what follows we provide modified representations for Laplace and Helmholtz in
2D and 3D, and provide several examples to illustrate the efficiency of the method.

3. Modified Representations

We present modified representations for single-density representations of Laplace
and Helmholtz boundary value problems. In particular, we consider the interior Dirichlet
Laplace problem (where one can represent the solution using the double-layer potential),
the exterior Neuman Laplace problem (2) (using the single-layer potential (7)), and the
sound-soft scattering problem.

3.1. Modified Representation for the Laplace Double-Layer Potential

The interior Dirichlet problem for Laplace consists of finding u ∈ C2(D) ∩ C1(D)
such that ∣∣Δu = 0 in D, u = f on ∂D, (10)

with some smooth data f . The solution of Problem (10) can be represented as a double-layer
potential [34,35]:

u(x) =
∫

∂D
∂ny G(x, y)μ(y) dσy, x ∈ D, (11)

with G defined in (4), and μ a continuous density solution of the boundary integral equation:

− 1
2

μ(x∗) +
∫

∂D
∂ny G(x∗, y)μ(y) dσy = f (x∗), x∗ ∈ ∂D. (12)

We now make use of (1) to modify (11). One can show the following (see Appendix C.1
for details):

Proposition 1. Given x = x∗ − �nx∗ ∈ D with x∗ ∈ ∂D, let v be a solution of Laplace’s equation
in D ⊂ Rd, d = 2, 3, such that

v(x∗) = 1, ∂nx∗v(x∗) = 0. (13)

The solution of the exterior Dirichlet Laplace problem (11) admits the modified representation:

u(x) =
∫

∂D
∂ny G(x, y)μ(y)[1− v(y)] dσy +

∫
∂D

∂ny G(x, y)[μ(y)− μ(x∗)]v(y) dσy

− μ(x∗)v(x∗) + μ(x∗)
∫

∂D
G(x, y)

[
∂nyv(y)− ∂nx∗v(x∗)

]
dσy − μ(x∗)∂nx∗v(x∗), x ∈ D.

(14)

The modified representation (14) has smoother integrands than (11), and it addresses the close
evaluation problem, in the sense that nearly singular terms vanish as y→ x∗.

From Proposition 1 we can now build auxiliary functions v independent of μ, and
there exist plenty of candidates: constant, linear, based on Green’s function (v(y) = G(y, x0)
with x0 ∈ E), quadratic (v(y1, y2) = 1 + (y1 − x∗1)(y2 − x∗2), v(y1, y2) = 1 + (y1 − x∗1)

2 −
(y2 − x∗2)

2), v(y1, y2, y3) = ey3(sin y1 + sin y2), etc. The solution v ≡ 1 naturally satisfies
the conditions (13), and the modified representation (14) boils down to

u(x) =
∫

∂D
∂ny G(x, y)[μ(y)− μ(x∗)] dσy − μ(x∗), x ∈ D. (15)
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The modified representation (15) is well-known and widely used (e.g., [9,25,27]), it is the
simplest representation that naturally addresses the close evaluation problem. Thus, we do
not provide numerical results for this case. Rather, we concentrate on other layer potentials.

3.2. Modified Representation for the Laplace Single-Layer Potential

Going back to Problem (2), one can show the following (see Appendix C.2 for details):

Proposition 2. Given x = x∗ + �nx∗ ∈ E with x∗ ∈ ∂D, let v be a solution of Laplace’s equation
in D ⊂ Rd, d = 2, 3, such that

∂nx∗v(x∗) = 1. (16)

The solution of the exterior Neumann Laplace problem (2) admits the modified representation:

u(x) =
∫

∂D
G(x, y)ρ(y)

[
1− ∂nyv(y)

]
dσy +

∫
∂D

G(x, y)[ρ(y)− ρ(x∗)]∂nyv(y) dσy

+ ρ(x∗)
∫

∂D
∂ny G(x, y)ρ(y)[v(y)− v(x∗)] dσy, ∀x ∈ E.

(17)

The modified representation (17) has smoother integrands than (7).

Contrary to auxiliary functions provided in Taylor-like methods and density interpo-
lation methods (discussed in Section 2), auxiliary functions v do not depend on ρ and rely
on only one constraint (16). Therefore, there is a lot of freedom in choosing v: given u a
solution of Laplace’s equation, then one chooses v := u

∂n∗xu(x∗) (as long as ∂n∗xu(x∗) �= 0).

Candidates may then include:

• The linear function v(y) = nx∗ · y;
• The function v(y) = 2d−1πG(y, x∗ + nx∗) based on Green’s function;

• The quadratic product function v(y) =
(y1 − x0,1)(y2 − x0,2)

nx∗ ,1(x∗2 − x0,2) + nx∗ ,2(x∗1 − x0,1)
, x0 ∈ D;

• The quadratic difference function v(y) =
1
2

(y1 − x0,1)
2 − (y2 − x0,2)

2

nx∗ ,1(x∗1 − x0,1)− nx∗ ,2(x∗2 − x0,2)
, x0 ∈ D.

Note that the above candidates are valid in Rd, one can also consider any of the
quadratic functions above in R3 as a function of (yi, yj), i, j = 1, 2, 3, j �= i. In Section 4, we
will test (17) using several candidates v and make comparisons. The modified representa-
tion (17) adds two terms to compute compared to (7), it is the price to pay to gain accuracy
at close evaluation points. We will make comparative tests to quantify this aspect.

3.3. Modified Representation for the Helmholtz Double- and Single-Layer Potentials

We consider in this case the sound-soft scattering problem:∣∣∣∣∣∣
Find u ∈ C2(E) ∪ C1(Ē) such that:

Δu + k2u = 0 in E, u = f on ∂D, lim
R→∞

∫
|y|=R

|∂nu− iku|2 dσy = 0,
(18)

with some smooth data f associated with the wavenumber k. Above, the last condition
represents the Sommerfeld radiation condition. The solution of Problem (18) can be
represented as a combination of double- and single-layer potentials [40]:

u(x) =
∫

∂D

[
∂ny GH(x, y)− ikGH(x, y)

]
μ(y) dσy, x ∈ E, (19)

with GH defined by

GH(x, y) =

⎧⎪⎪⎨⎪⎪⎩
i
4

H(1)
0 (k|x− y|), for d = 2,

1
4π

eik|x−y|

|x− y| , for d = 3,
(20)
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with H(1)
0 (·) the Hankel function of the first kind, and μ a continuous density satisfying:

1
2

μ(x∗) +
∫

∂D

[
∂ny GH(x∗, y)−ikGH(x∗, y)

]
μ(y) dσy = f (x∗), x∗ ∈ ∂D. (21)

One obtain the following:

Proposition 3. Given x = x∗+ �nx∗ ∈ E with x∗ ∈ ∂D, let v be a solution of Helmholtz equation
in D ⊂ Rd, d = 2, 3, such that

v(x∗) = 1, ∂nx∗v(x∗) = ik. (22)

Then the solution of the sound-soft scattering problem (18) admits the modified representation:

u(x) =
∫

∂D

[
∂ny GH(x, y)− ∂nyv(y)G

H(x, y)
]
[μ(y)− μ(x∗)] dσy

+
∫

∂D
GH(x, y)

[
∂nyv(y)− ik

]
μ(y) dσy

+ μ(x∗)
∫

∂D
∂ny GH(x, y)[1− v(y)] dσy, ∀x ∈ E.

(23)

The modified representation (23) has smoother integrands than (19).

The proof can be found in Appendix C.3. One can check in particular that plane waves
v(y) = eiknx∗ ·(y−x∗) do satisfy (22), whereas Green-based functions like v(y) = GH(y, x∗ + nx∗)
(up to some constant) cannot. We will use (23) with plane waves for the numerical examples.

4. Numerical Examples

The accuracy in approximating (11)–(15), (7)–(17), (19)–(23), respectively, relies on
the resolution of the boundary integral Equations (12), (8) and (21), respectively. In what
follows we assume that the boundary integral equations are sufficiently resolved. Given
the density’s resolution, we compare the representations and their modified ones through
several examples. All the codes can be found in [41].

4.1. Exterior Neumann Laplace Problem
4.1.1. Example 1: Exterior Laplace in Two Dimensions

Since ∂D is a closed smooth boundary, we use the Periodic Trapezoid Rule (PTR)
to approximate (7) and (17), where we will use several v according to Proposition 2. We
consider an exact solution of Problem (2):

uexact(x) = uexact(x1, x2) =
x1 − x0,1

|x− x0|2
, x0 = (x0,1, x0,2) ∈ D,

which consists of choosing g(x∗) = ∂nx∗ uexact(x∗), for any x∗ ∈ ∂D.
All simulations are done outside of a kite-shaped domain using the Periodic Trapezoid

Rule with N = 128 quadrature points for the following representations:

• V0: standard representation (7);
• V1: modified representation (17) with the linear function v1(y) = nx∗ · y;
• V2: modified representation (17) with the Green’s function v2(y) = 2πG(y, x∗ + n∗);

• V3: modified representation (17) with the quadratic function v3(y) =
1
2

y2
1 − y2

2
nx∗ ,1x∗1 − nx∗ ,2x∗2

;

• V4: modified representation (17) with the quadratic function

v4(y) =
(y1 − 5)(y2 − 5)

nx∗ ,1(x∗2 − 5) + nx∗ ,2(x∗1 − 5)
.
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We solved (8) using the Nyström method based on the Periodic Trapezoid Rule
(using Matlab classic backslash). The accuracy of all methods is limited by the accuracy of
the resolution for ρ (in particular when considering moderate N). This can be assessed
by looking the density’s Fourier coefficients decay: in this case the coefficients decay is
bounded by 10−5 for N = 128. The results in Figures 1 and 2 show that given ρ resolved,
the approximation of the modified representations provide better results overall. Far from
the boundary, all methods approximate well the solution. As the evaluation point gets
closer to the boundary (�→ 0), V0 approximated by PTR suffers from the close evaluation
problem and the error increases (see [9]). Note that the single-layer potential commonly
suffers less from this phenomenon than the double-layer potential (e.g., [24]). Using
the modified representations (V1–V4) allows to reduce the error by a couple of orders
of magnitude for the close evaluation problem. All modified representations provide a
satisfactory correction overall. We use a naïve (straightforward) implementation of (7) and
(17) in Matlab, computed on a Mac mini SSD 512Go. We provide run times in Table 1 for
various number of quadrature points. Run times do not count the time to compute the
boundary integral equation for ρ (being the same for all methods).

Representation V0 is obviously cheaper (less terms to compute) than V1–V4, and V1 is
cheaper than V2–V4 due to simpler terms: there are less operations to conduct to compute
v1(y) than the other provided auxiliary functions.

Figure 1. Laplace 2D single-layer. Plots of log10 of the error for the evaluation of the solution of (2) out of the kite domain
defined by the boundary y(t) = (cos t + 0.65 cos(2t)− 0.65, 1.5 sin t), t ∈ [0, 2π], for the Neumann data, g = ∂nuexact with
x0 = (0.1, 0.4), for representations V0, V1, V2, V3, V4 computed using PTR with N = 128. Computations are made on a
boddy-fitted grid with N × 200 grid points.

Figure 2. Laplace 2D single-layer Log-log plots of the errors with respect to � made in computing the solution (as described
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Table 1. Laplace 2D single-layer. CPU times (in seconds) for various number of quadrature points
and representations. Times account for computing the solution at N × 12 grid points (� = 10−k,
k = �0, 11�) on a body-fitted grid.

Method V0 V1 V2 V3 V4

N = 128 0.014 0.044 0.055 0.045 0.05
N = 256 0.056 0.07 0.112 0.08 0.081
N = 512 0.12 0.192 0.263 0.2 0.19

To better compare the methods, Figure 3 represents log plots of the maximum error
with respect to the number of quadrature points N and for various distances � from point
A (indicated in Figure 1). The results show that modified representations allow to gain
a couple of order of magnitude even for moderate N (N < 100). Additionally, the error
using V0 decreases linearly with the number of quadrature points whereas it is cubic using
modified representations. While there is no significant difference between the considered
modified representations V1–V4, one may consider run times (and simplicity of auxiliary
function v) to discuss competitiveness. Based on the above results, overall representation
V1 seems to be the best choice for the best computational cost-accuracy trade-off. Let
us emphasize that the focus of this paper is to highlight the efficacy and simplicity of
the proposed modified representations, given a quadrature rule. Our results show that
modified representations allow to naturally gain a couple of orders of magnitude in the
error, addressing the close evaluation problem even for moderate computational resources.
Additionally, the proposed auxiliary functions are independent of the density ρ. In the next
section we investigate the efficacy of (17) in three dimensions.

Figure 3. Laplace 2D single-layer. Log-log plots of the errors with respect to N made in computing the solution at some
distance � along the normal from point A plotted as black ×’s in Figure 1.

4.1.2. Example 2: Exterior Laplace in Three Dimensions

Given a domain D ⊂ R3 with smooth boundary, we assume ∂D to be an analytic,
closed, and oriented surface that can be parameterized by y = y(s, t) for s ∈ [0, π] and
t ∈ [−π, π]. Then one can write (7) as

u(x) =
∫ π

−π

∫ π

0
G(x, y(s, t))J(s, t)ρ(y(s, t)) sin(s)dsdt, (24)

with J(s, t) = |ys(s, t)× yt(s, t)|/ sin(s) the Jacobian. We now work with a surface integral
defined on a sphere, and we use a three-step method (see [26] for details) to approximate (7)
and (17). This method corresponds to a modification of the product Gaussian quadrature
rule (PGQ) [42], and it has been shown to be very effective for computing layer potentials
in three dimensions at close evaluation points compared to other quadrature methods for
nearly singular integrals [26]. It relies on (i) rotating the local coordinate system so that x∗

corresponds to the north pole, (ii) use Periodic Trapezoid Rule with 2N quadrature points
to approximate the integral with respect to t, (iii) use Gauss–Legendre with N quadrature
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points mapped to (0, π) (and not (−1, 1)) to approximate the integral with respect to s.
This leads to the approximation:

u(x) ≈ π2

2N

N

∑
i=1

2N

∑
j=1

wi sin(si)F(si, tj),

with F(si, tj) = G(x, y(si, tj))J(si, tj)ρ(y(si, tj)), tj = −π + π(j − 1)/N, j = 1, · · · , 2N,
si = π(zi + 1)/2, i = 1, · · · , N with zi ∈ (−1, 1) the N-point Gauss–Legendre quadrature
rule abscissas with corresponding weights wi for i = 1, · · · , N. One proceeds similarly for
(17). We consider an exact solution of Problem (2):

uexact(x) =
1

|x− x0|
, x0 ∈ D,

which consists of choosing g(x∗) = ∂nx∗ uexact(x∗), for any x∗ ∈ ∂D. The efficacy of the
three-step method for various geometries (including effects of curvature) is presented in
[26]. Naively implementing this method has the same computational cost as the PGQ
method. We do not focus in this paper on fast implementations but do believe that it
is possible to speed up this method using ideas that have been previously developed
including the fast multipole method [20]. Then for simplicity, results will be computed on a
sphere where the resolution of ρ does not require a lot of quadrature points. One can apply
the technique for arbitrary closed smooth surfaces, but might be limited by the resolution
of (8). All simulations are done outside of a sphere of radius 2 using the three-step method
with N = 16 for the following representations:

• V0: standard representation (7);
• V1: modified representation (17) with the linear function v1(y) = nx∗ · y;
• V2: modified representation (17) with the Green’s function v2(y) = 4πG(y, x∗ + n∗);

• V3: modified representation (17) with the quadratic function v3(y) =
1
2

y2
1 − y2

2
nx∗ ,1x∗1 − nx∗ ,2x∗2

;

• V4: modified representation (17) with the quadratic product function

v4(y) =
(y1 − 5)(y2 − 5)

nx∗ ,1(x∗2 − 5) + nx∗ ,2(x∗1 − 5)
.

Note that there are other quadratic polynomials v (as a function of 2 variables instead
of 3, see [22] where those polynomials serve as basis for interpolation method). We make
here the choice to test using similar functions as in Section 4.1.1. We solve (8) using a
Galerkin method and the product Gaussian quadrature rule [36,42–45] (see Appendix B for
details).The accuracy in approximating V0–V4 is limited by the accuracy of the resolution
for ρ. This can be assessed by looking at the coefficients’ decay of the density spherical
harmonic expansion. In this case the coefficients’ decay has reached 10−15. The results in
Figure 4 show that given ρ resolved, the approximation of the modified representations
provide better results overall, except for V2 where the error plateaus around 10−7 for
small � (providing less accurate results compared to standard representation V0). Note
that the single-layer potential commonly suffers less from the close evaluation than the
double-layer potential, and the chosen method provides already a good approximation.
This is the reason why the error when considering V0 decays as � decreases [26]. The
modified representations allow to make it even better. To better assess the efficacy of
the modified representations in three dimensions, Figure 5 represents log plots of the
maximum error with respect to N ∈ {8, 16, 24, 32} (the method uses 2N × N quadrature
points) and for various distances � from point B. The results show that as � → 0, V1–V4
allow to gain a couple of orders of magnitude in the error, even for a small N. Note
that the error produced by three-step method does not seem to depend on N, and in this
case there are more variations with respect to the choice of auxiliary function v than in
two dimensions. Here, V1 (the linear function) is the best representation, producing the
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smallest errors (and the fastest to compute as indicated in Table 2). Again, the three-step
method has been designed to treat nearly-singular integrals. It is the reason why the
method provides already satisfactory results (given the resolution of ρ). The modified
representations allow to significantly gain even more accuracy in this case, even with
limited computational resources.

Figure 4. Laplace 3D single-layer. Log-log plots of the errors with respect to � made in comput-
ing the solution of (2) for the Neumann data, g(x∗) = − nx∗ ·(x∗−x0)

|x∗−x0|3 with x0 = (0, 0, 0), outside
of a sphere a radius 2, along the normal of point A = (−0.0065,−0.0327, 1.9997) (left), of point
B = (−0.3526,−1.7728, 0.8561) (right).

Figure 5. Laplace 3D single-layer. Log-log plots of the errors with respect to N made in computing the solution (as described
in Figure 4) at some distance � along the normal from point B = (−0.3526,−1.7728, 0.8561).

Table 2. Laplace 3D single-layer. CPU times (in seconds) for various number of quadrature points
and representations for computing the solution (as described in Figure 4) from points A and B, for
� = 10−k, k = �0, 11�.

Method V0 V1 V2 V3 V4

N = 8 0.028 0.029 0.032 0.031 0.046
N = 16 0.143 0.146 0.148 0.150 0.142
N = 24 0.352 0.344 0.346 0.35 0.356

4.2. Scattering Problem

Using Proposition 3, we compare (19) with the modified representation (23) obtained
with v(y) = eiknx∗ ·(y−x∗):

u(x) =
∫

∂D

[
∂ny GH(x, y)− ik(ny · nx∗)eik(nx∗ ·(y−x∗))GH(x, y)

]
[μ(y)− μ(x∗)] dσy

+ ik
∫

∂D
[(ny · nx∗)eik(nx∗ ·(y−x∗)) − 1]GH(x, y)μ(y) dσy

+ μ(x∗)
∫

∂D
∂ny GH(x, y)[1− eik(nx∗ ·(y−x∗))] dσy, x ∈ Rd \ D̄.

(25)

4.2.1. Example 3: Scattering in Two Dimensions

We consider an exact solution of Problem (18):

56



Math. Comput. Appl. 2021, 26, 69

uexact(x) =
i
4

H(1)
0 (k|x− x0|), x0 ∈ D,

which consists of choosing f (x∗) = uexact(x∗), for any x∗ ∈ ∂D. All simulations are
done outside of a star-shaped domain using the Periodic Trapezoid Rule with N = 256
quadrature points and k = 15 for the following representations:

• V0: standard representation (19);
• V1: modified representation (25) (i.e., (23) with the plane wave function

v1(y) = eiknx∗ ·(y−x∗)).

We solved (21) using Kress product quadrature rule [40] (see Appendix A). The
quadrature rule is well adapted to approximate kernels with a logarithmic singularity. The
accuracy of both methods is limited by the resolution for μ (the Fourier coefficients’ decay
of the density is bounded by 10−6 for N = 256 and k = 15). The results in Figures 6 and 7
show that given μ resolved, the approximation of the modified representation provides
better results overall. Similarly to Laplace’s examples, both methods approximate well
the solution far from the boundary. As the evaluation point gets closer to the boundary
(�→ 0), V0 approximated with PTR suffers from the close evaluation problem leading to
large errors (see [9]). Using the modified representation V1 allows to reduce the error by a
couple of order of magnitude for the close evaluation problem.

Figure 8 represents log plots of the maximum error with respect to the number of
quadrature points N ∈ �50, 3000� and for various distances � from point A (indicated in
Figure 6). The results show that for any number of quadrature points, the error when
considering V0 explodes as we approach the boundary (error larger than 105) while the
error with V1 remains bounded (of the order of 10−2 in the case presented above). In this
case standard rerpresentation V0 strongly suffers from the close evaluation problem, how-
ever the modified representation V1 significantly reduces the error. Even when standard
quadrature rules fail to compute the standard representation, the proposed modified one
regularizes the solution and provides satisfactory results without significant additional
computational time (as shown in Table 3).

Table 3. Helmholtz 2D. CPU times (in seconds) for various number of quadrature points and
representations. Times account for computing the solution for N × 12 grid points (for � = 10−k,
k = �0, 11�) on a body-fitted grid.

Method N = 128 N = 256 N = 512

V0 0.18 0.27 0.71
V1 0.21 0.33 0.89

Figure 6. Helmholtz 2D. Plots of log10 of the error for the evaluation of the solution of (18) out of
the star domain defined by the boundary y(t) = (1 + 0.3 cos 5t) ∗ (cos t, sin t), t ∈ [0, 2π], for the

Dirichlet data, f (x∗) = i
4 H(1)

0 (15|x∗ − x0|) with x0 = (0.2, 0.8), for representations V0, V1, computed
using PTR with N = 256.
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Figure 8. Helmholtz 2D. Log-log plots of the errors with respect to N made in computing the solution at some distance �

along the normal from point A plotted as black ×’s in Figure 6.

4.2.2. Example 4: Scattering in Three Dimensions

We consider an exact solution of (10):

uexact(x) =
1

4π

eik|x−x0|

|x− x0|
, x0 ∈ D,

which consists of choosing f (x∗) = uexact(x∗), for any x∗ ∈ ∂D.
All simulations are done outside of an ellipsoid parameterized by

y(s, t) = (2 cos(t) sin(s), sin(t) sin(s), 2 cos(s)), (s, t) ∈ [0, π] × [−π, π], and using the
three-step method with various N. This is in order to investigate the technique in the
context of limited resolution, namely the coefficients’ decay of the density spherical
harmonic expansion does not reach machine precision. We consider k = 5 and the
following representations:

• V0: standard representation (19);
• V1: modified representation (25).

We solved (21) using Galerkin method and the product Gaussian quadrature rule
(see Appendix B for details). The accuracy of both methods is limited by the accuracy of
the resolution for μ. This limitation can be checked for instance by looking at the density
spherical harmonics coefficients’ decay: for k = 5, the resolution will be capped around
10−2 for N = 16, 10−4 for N = 24, and 10−7 for N = 32. The results in Figure 9 show that
given μ resolved, standard representation incurs bigger errors at close evaluation points
while the modified representation provides better results overall. Here, the resolution of
the boundary integral equation was fairly limited. Figure 10 represents log plots of the
maximum error with respect to N ∈ �8, 32� (the method uses 2N × N quadrature points)
and for various distances � from the boundary from point A. While the three-step method
has been designed to treat nearly-singular integrals and provided satisfactory results for
Laplace’s problems, the method here requires more quadrature points to achieve accuracy
due to the wavenumber (see Section 4.2.3 for more details). The standard representation
V0 suffers from both the close evaluation problem and the poor density resolution. The
modified representation V1 allows to gain accuracy even with limited resolution (without
significant additional computational time as indicated in Table 4).

(a) N = 16 (b) N = 24 (c) N = 32
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Table 4. Helmholtz 3D. CPU times (in seconds) for various number of quadrature points and
representations. Times account for computing the solution from points A and B, for � = 10−k,
k = �0, 11�.

Method N = 8 N = 16 N = 20

V0 0.027 0.15 0.313
V1 0.03 0.15 0.314
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Figure 10. Helmholtz 3D. Log-plot of the maximum error for computing the solution as described in Figure 9 with ∂D being
the ellipsoid parameterized by y(s, t) = (2 cos(t) sin(s), sin(t) sin(s), 2 cos(s)), (s, t) ∈ [0, π]× [−π, π], at some distance �

along the normal from point A= (−0.7664, 0.0607, 1.8433).

4.2.3. High Frequency Behavior

It is well-known that for a fixed number of quadrature points N, accuracy is lost for
larger wavenumbers k. Figures 11 and 12 represent the high frequency behavior for the
Examples 3 and 4, for various k and N. We consider the same quadrature rules, exact
solution uexact, boundary shapes, as in Sections 4.2.1 and 4.2.2, but we vary k and/or N.
The modified representation annihilates some oscillatory behavior by subtracting plane
waves along the normal of the evaluation points. It then allows a better approximation
for a wider range of wavenumbers (until the number of quadrature points is not enough),
and results in a greater wavenumber stability. The results in Figures 11 and 12 confirm
this phenomenon.

(a) N = 128 (b) N = 256 (c) N = 512
Figure 11. Helmholtz 2D. Log-Log of the maximum error in computing the solution of Problem (18) as described in
Section 4.2.1, with respect to the wavenumber k, for various number of quadrature points N.

(a) N = 8 (b) N=16 (c) N=24
Figure 12. Helmholtz 3D. Log-Log of the maximum error in computing the solution of Problem (18) as described in
Section 4.2.2, with respect to the wavenumber k, for various number of quadrature points N.
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5. Modified Boundary Integral Equations

We have used (1) to modify the representation of solution of boundary value problems
close to (but not on) the boundary. One could also use (1) to avoid weakly singular
integrals in the boundary integral equation as done in BRIEF [31]. In the section we present
a modified representation of (21).

Proposition 4. Given x∗ ∈ ∂D, let v be a solution of Helmholtz equation in D ⊂ Rd, d = 2, 3, sat-
isfying conditions (22). Then the boundary integral Equation (21) admits the modified representation:∫

∂D

[
∂ny GH(x∗, y)− ∂nyv(y)G

H(x∗, y)
]
[μ(y)− μ(x∗)] dσy

+
∫

∂D
GH(x∗, y)

[
∂nyv(y)− ik

]
μ(y) dσy + μ(x∗)

∫
∂D

∂ny GH(x∗, y)[1− v(y)] dσy

= f (x∗), ∀x∗ ∈ ∂D.

(26)

The modified representation (26) has smoother integrands than (21).

The proof can be found in Appendix C.3. Using again v(y) = eiknx∗ ·(y−x∗), Proposition 4
gives us the modified boundary integral equation:∫

∂D

[
∂ny GH(x∗, y)− ik(ny · nx∗) eiknx∗ ·(y−x∗)GH(x∗, y)

]
[μ(y)− μ(x∗)] dσy

+ ik
∫

∂D
GH(x∗, y)

[
(ny · nx∗)eiknx∗ ·(y−x∗) − 1

]
μ(y) dσy

+ μ(x∗)
∫

∂D
∂ny GH(x∗, y)

[
1− eiknx∗ ·(y−x∗)

]
dσy = f (x∗), x∗ ∈ ∂D.

(27)

Equation (27) has no singular integrals (in the sense its integrands have vanish-
ing singularities), in particular it could be approximated using standard quadrature
rules such as PTR in two dimensions. Going back to Examples 3 and 4 presented in
Sections 4.2.1 and 4.2.2, we now compare the approximation of the representations (19)–(25)
where the density μ has been computed via (21)–(27). We then have four representations:

• V0: standard representation (19) with previous approximation of (21);
• V1: modified representation (25) with previous approximation of (21);
• V2: standard representation (19), approximation of (27) using PTR as Nyström method

(2D), using product Gaussian quadrature rule (3D);
• V3: modified representation (25), approximation of (27) using PTR as Nyström method

(2D), using product Gaussian quadrature rule (3D).

Figure 13 represents the results in two dimensions and illustrates how the resolution
of μ limits the approximation of the solution of (18). Far from the boundary the error
made using V2–V3 cannot be better than order 10−6. This limitation is due to the poor
resolution of μ using Nyström method based on PTR to approximate (25). This can be
assessed by looking at the density Fourier coefficients’ decay, which caps at 10−6 for
N = 256. However, as the evaluation point gets closer to the boundary (�→ 0), V3 yields
competitive (sometimes better) results. Additionally, the use of Nyström PTR allows to
reduce CPU times as indicated in Table 5. The modified boundary integral Equation (27)
can be approximated using standard quadrature rules such as Periodic Trapezoid Rule
(note that Nyström PTR was not possible to use to solve for (21) due to singular integrals).
Its resolution may be limited but it offers interesting corrections for the close evaluation
problem using simple quadrature rules as well as faster solvers.
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Table 5. Helmholtz 2D. CPU times (in seconds) for various number of quadrature points to compute
the solution of the boundary integral equation.

Method N = 128 N = 256 N = 512

(21) with Kress product rule 0.12 0.45 1.70
(27) with PTR 0.09 0.302 1.16

Figure 13. Helmholtz 2D. Log-Log plot of the error along the normal for the solution of (18) out of the star domain defined

by the boundary y(t) = (1.55 + 0.4 cos 5t) ∗ (cos t, sin t), t ∈ [0, 2π], for the Dirichlet data, f (x∗) = i
4 H(1)

0 (15|x∗ − x0|) with
x0 = (0.2, 0.8), at the three points A,B, C plotted as black ×’s in Figure 6.

The results in Figure 14 show that the resolution of the solution using both methods
yields the same accuracy in three dimensions. The product Gaussian quadrature rule is
an open quadrature at the singular point y = x∗ (see Appendix B). Thus, the modification
introduced in (25) does not affect the approximation. The product Gaussian quadrature
rule is a well-used, efficient, easy to implement method, but one could consider a closed
quadrature rule to study the effect of (27) more closely.

Figure 14. Helmholtz 3D. Log-Log plot of the error for the problem described in Figure 9 using N = 32, and for the four
representations (standard or modified, off and on boundary).

6. Conclusions

In this paper, we have provided modified representations for Laplace and Helmholtz
layer potentials to address the close evaluation problem in several boundary value prob-
lems. Similar to Gauss’ law, we take advantage of one auxiliary function, satisfying the
partial differential equation at stake. A similar technique has been used in the context of
BRIEF and density interpolation. Our approach provides guidelines on how to develop
them independently of the density, and valuable insights into the layer potentials inher-
ent nearly singular behavior. Several examples in two and three dimensions have been
presented and demonstrated the efficiency of the modified representations. Given a quadra-
ture rule, the modified representation of the solution provides a better approximation by
several orders of magnitude even with limited computational resources. This assumes that
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the density, solution of the boundary integral equation, is sufficiently well-resolved. The
modified boundary integral equation has no singular behaviors anymore, and allows us to
use standard quadrature rules that do not treat singularities.

We have provided general modified representations, one can use them with any
solution of their choice as long as they follow the provided guidelines to address the close
evaluation. One can use this technique to modify any other wave problems, including
sound-hard, penetrable obstacles. Future work includes applying those techniques to
plasmonic scattering problems [46,47], deriving an asymptotic analysis to quantify the
limit behavior of the error as the evaluation point approaches the boundary, as well as
extensions to other partial differential equations such as Stokes problems and others.
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Appendix A. Kress Product Quadrature

In this section, we provide a brief summary about the Kress product quadrature
rule [40] used to compute the density μ, solution of (21), in two dimensions. Denoting
the parameterization of ∂D as y(t), t ∈ (0, 2π), and denoting x∗ = y(t∗), we compactly
rewrite (21)

1
2

μ(t∗) +
∫ 2π

0
K(t, t∗)μ(t) dt = f (t∗), (A1)

with the abuse of notation K(t, t∗) =
(

∂ny GH(x∗, y(t))− ikGH(x∗, y(t))
)
|y′(t)|,

μ(t) = μ(y(t)), and f (t) = f (y(t)). The Kress product quadrature rule is well adapted
for weakly singular integrals involving kernel with a logarithmic singularity. To that aim
one rewrites:

K(t, t∗) = K1(t, t∗) log
(

4 sin2
(

t∗ − t
2

))
+ K2(t, t∗),

with smooth functions K1, K2 (the expression of K1, K2 can be found in [40]). Then one
discretizes the integral using N = 2n quadrature points as follows:

∫ 2π

0
K(t, t∗)μ(t) dt ≈

2n−1

∑
k=0

(
R(n)

k (t∗)K1(t∗, tk) +
π

n
K2(t∗, tk)

)
μ(tk),

with tk =
πk
n , k = 0, . . . , 2n− 1, and R(n)

k (t∗) the weights

R(n)
k (t∗) = −2π

n

n−1

∑
j=1

1
j

cos(j(t∗ − tk))−
π

n2 cos(n(t∗ − tk)), k = 0, . . . , 2n− 1.

Appendix B. Galerkin Approximation

In this section, we provide a brief summary about the Galerkin approximation used to
compute the solutions of (8), (12), (21) and (27) in three dimensions. First, we compactly
write (8), (12), (21) and (27) as

K [ψ] = F, (A2)

with ψ denoting the density (i.e., μ, ρ), and F denoting the Dirichlet or Neumann data. We
introduce the approximation for ψ

ψ(y(θ, ϕ)) ≈
N−1

∑
n=0

n

∑
m=−n

Ynm(θ, ϕ)ψ̂nm, (A3)
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with y(θ, ϕ), θ ∈ (0, π), ϕ ∈ (−π, π) a parameterization of the boundary ∂D, {Ynm(θ, ϕ)}n,m
the orthonormal set of spherical harmonics. For x∗ ∈ ∂D, we write x∗ = y(θ�, ϕ�). Note
that N in (A3) corresponds also to the same order of the quadrature rule used to approxi-
mate (8), (12), (21) and (27). Substituting (A3) into (A2) and taking the inner product with
Yn′m′(θ

�, ϕ�), we obtain the Galerkin equations

N−1

∑
n=0

n

∑
m=−n

〈Yn′m′ , K [Ynm]〉ψ̂nm = 〈Yn′m′ , F〉. (A4)

We construct the N2 × N2 linear system for the unknown coefficients, ψ̂n′m′ resulting
from (A4) evaluated for n′ = 0, · · · , N− 1 with corresponding values of m′. To compute the
inner products, 〈Yn′m′ , K [Ynm]〉 and 〈Yn′m′ , F〉, we use the product Gaussian quadrature
rule for spherical integrals [42]. This corresponds to approximate the integral with respect
to ϕ using N Gauss–Legendre quadrature points, and the integral with respect to θ using
a 2N Periodic Trapezoid Rule points. One can proceed as in the three-step method (see
Section 4.1.2, and [26] for more details), by adding a rotation of the local coordinate system
so that x∗ corresponds to the north pole, and by using the N Gauss–Legendre quadrature
points mapped to (0, π) and not (−1, 1).
For (12) we have

K [Ynm](θ
�, ϕ�) = −1

2
Ynm(θ

�, ϕ�) +
∫ π

−π

∫ π

0
∂ny GL(θ�, ϕ�, θ, ϕ)J(θ, ϕ) sin(θ)Ynm(θ, ϕ)dθdϕ.

For (8) we make use of the adjoint K � of K . Using Gauss’ law we write
∑N−1

n=0 ∑n
m=−n〈K �[Yn′m′ ], Ynm〉ψ̂nm = 〈Yn′m′ , F〉 with

K �[Yn′m′ ](θ, ϕ) =
∫ π

−π

∫ π

0
∂n∗x GL(θ�, ϕ�, θ, ϕ)J(θ�, ϕ�) sin(θ�)[Yn′m′(θ

�, ϕ�)−Yn′m′(θ, ϕ)]dθ�dϕ�.

For (21) we have

K [Ynm](θ
�, ϕ�) =

1
2

Ynm(θ
�, ϕ�) +

∫ π

−π

∫ π

0

[
∂ny GH(θ�, ϕ�, θ, ϕ)− ikGH(θ�, ϕ�, θ, ϕ)

]
J(θ, ϕ) sin(θ)Ynm(θ, ϕ)dθdϕ,

and for (27) we have

Km[Ynm](θ
�, ϕ�) =

∫ π

−π

∫ π

0

[
∂ny GH(θ�, ϕ�, θ, ϕ)− ik(ny · nx∗) eik(nx∗ ·(y(θ,ϕ)−y(θ� ,ϕ�))GH(θ�, ϕ�, θ, ϕ)

]
J(θ, ϕ) sin(θ)[Ynm(θ, ϕ)−Ynm(θ

�, ϕ�)]dθdϕ

+ ik
∫ π

−π

∫ π

0
[(ny · nx∗)eik(nx∗ ·(y(θ,ϕ)−y(θ� ,ϕ�)) − 1]GH(θ�ϕ�, θ, ϕ)J(θ, ϕ) sin(θ)Ynm(θ, ϕ)dθdϕ

+ Ynm(θ
�, ϕ�)

∫ π

−π

∫ π

0
[1− eik(nx∗ ·(y(θ,ϕ)−y(θ� ,ϕ�))]∂ny GH(θ�ϕ�, θ, ϕ)J(θ, ϕ) sin(θ)dθdϕ.

Appendix C. Proof of Modified Representations

Appendix C.1. Modified Double-Layer Potential (14)

Given v solution of Laplace’s equation in D ⊂ Rd, d = 2, 3, and for x ∈ D we write
x = x∗ − �nx∗ , with x∗ ∈ ∂D. Then we write (11) as:

u(x) =
∫

∂D
∂ny G(x, y)μ(y)[1− v(y)] dσy +

∫
∂D

∂ny G(x, y)μ(y)v(y) dσy

=
∫

∂D
∂ny G(x, y)μ(y)[1− v(y)] dσy +

∫
∂D

∂ny G(x, y)[μ(y)− μ(x∗)]v(y) dσy

+ μ(x∗)
∫

∂D
∂ny G(x, y)v(y)− G(x, y)∂nyv(y) dσy + μ(x∗)

∫
∂D

G(x, y)∂nyv(y) dσy
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Using (1) the third term becomes −μ(x∗)v(x∗). Then

u(x) =
∫

∂D
∂ny G(x, y)μ(y)[1− v(y)] dσy +

∫
∂D

∂ny G(x, y)[μ(y)− μ(x∗)]v(y) dσy − μ(x∗)v(x∗)

+ μ(x∗)
∫

∂D
G(x, y)[∂nyv(y)− ∂nx∗ v(x∗)] dσy + μ(x∗)∂nx∗ v(x∗)

∫
∂D

G(x, y) dσy

which is (14), after using (1) for the last term.

Appendix C.2. Proof of Proposition 2

In this section, we derive (17). Given v solution of Laplace’s equation in D ⊂ Rd,
d = 2, 3, and for x ∈ E we write x = x∗ + �nx∗ , with x∗ ∈ ∂D. Then we write (7) as:

u(x) =
∫

∂D
G(x, y)ρ(y)

[
1− ∂nyv(y)

]
dσy +

∫
∂D

G(x, y)ρ(y)∂nyv(y) dσy

=
∫

∂D
G(x, y)ρ(y)

[
1− ∂nyv(y)

]
dσy +

∫
∂D

G(x, y)[ρ(y)− ρ(x∗)]∂nyv(y) dσy

+ ρ(x∗)
∫

∂D
G(x, y)∂nyv(y)− ∂ny G(x, y)v(y) dσy + ρ(x∗)

∫
∂D

∂ny G(x, y)v(y) dσy

Using (1), the third term vanishes. Then

u(x) =
∫

∂D
G(x, y)ρ(y)

[
1− ∂nyv(y)

]
dσy +

∫
∂D

G(x, y)[ρ(y)− ρ(x∗)]∂nyv(y) dσy

+ ρ(x∗)
∫

∂D
∂ny G(x, y)[v(y)− v(x∗)] dσy + ρ(x∗)v(x∗)

∫
∂D

∂ny G(x, y) dσy

The last term vanishes using (1) then one obtains (17).

Appendix C.3. Proof of Propositions 3, 4

In this section, we derive (23), (26). Given v solution of the Helmholtz equation
in D ⊂ Rd, d = 2, 3, and for x ∈ E we write x = x∗ + �nx∗ , with x∗ ∈ ∂D. Then we
write (19) as:

u(x) =
∫

∂D

[
∂ny GH(x, y)− ∂nyv(y)G

H(x, y)
]
μ(y) dσy +

∫
∂D

[
∂nyv(y)− ik

]
GH(x, y)μ(y) dσy

=
∫

∂D

[
∂ny GH(x, y)− ∂nyv(y)G

H(x, y)
]
[μ(y)− μ(x∗)] dσy + μ(x∗)

∫
∂D

[
∂ny GH(x, y)v(y)− GH(x, y)∂nyv(y)

]
dσy

+
∫

∂D

[
∂nyv(y)− ik

]
GH(x, y)μ(y) dσy + μ(x∗)

∫
∂D

∂ny GH(x, y)[(1− v(y)] dσy

(A5)

Using (1), the third term vanishes, then one obtains (23). One proceeds similarly
starting with (21): one can show that the layer potentials in (21) correspond to (A5) for
x = x∗ ∈ ∂D. Finally, (1) gives that the third term boils down to − 1

2 μ(x∗)v(x∗), which
finishes the proof.
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Abstract: We present a new algorithm to design lightweight cellular materials with required prop-
erties in a multi-physics context. In particular, we focus on a thermo-elastic setting by promoting
the design of unit cells characterized both by an isotropic and an anisotropic behavior with respect
to mechanical and thermal requirements. The proposed procedure generalizes the microSIMPATY
algorithm to a thermo-elastic framework by preserving all the good properties of the reference design
methodology. The resulting layouts exhibit non-standard topologies and are characterized by very
sharp contours, thus limiting the post-processing before manufacturing. The new cellular materials
are compared with the state-of-art in engineering practice in terms of thermo-elastic properties,
thus highlighting the good performance of the new layouts which, in some cases, outperform the
consolidated choices.

Keywords: topology optimization; cellular materials; multi-physics; homogenization; anisotropic
mesh adaptation

1. Introduction

Cellular materials represent an effective solution for structural applications where
conventional monolithic materials fail to satisfy the design constraints [1]. The fast advance-
ments in additive manufacturing technologies experienced in the last few years have further
amplified the interest toward metamaterials. In addition, the possibility to employ a large
variety of bulk materials in manufacturing processes (e.g., metals, polymers, ceramics [2–4])
has enabled the design of new metamaterials, featuring innovative combinations of physi-
cal effective properties. The possibility to blend different materials in order to reach diverse
objectives proved to have a great impact in all the contexts where multi-functionality is
required. For example, in [5–8], biocompatible 3D-printed metal bone implants promoting
bone ingrowth are proposed by properly tailoring the material microstructure in order to
reproduce the elastic modulus and the permeability of the human bone. Other applica-
tions range from thermal-cloaking systems fitly combining microstructure geometry and
orientation [9,10] to lattice-based heat exchangers, where good thermal conductivity and
convection properties are exploited to enhance the devices’ performance [11,12].

From a modeling viewpoint, the proposal of innovative multifunctional cellular mate-
rials can benefit from the most recent advancements in topology optimization [13], properly
combined with direct and inverse homogenization processes [14–16]. Several optimiza-
tion approaches can be exploited in the context of metamaterial design. The layout of
the employed microstructures can be selected a priori, starting from consolidated dic-
tionaries of unit cells [16–21], or designed from scratch to match the expected effective
properties [22–28]. In this context, a single- or a multi-objective topology optimization
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at the microscale can drive the design of new unit cells matching target properties at the
macroscale, potentially in a multi-physics framework. For instance, the optimization of
homogenized elastic properties is tackled in [29–31] with the aim of maximizing the bulk (or
shear) modulus. To this aim, the authors control specific components of the homogenized
elastic tensor or resort to the minimization of the compliance of a given structural part.
Other works focus on a multi-physics optimization (for instance, by considering elastic,
thermal, and electrical properties) by providing microstructures optimized with respect to
diverse objectives and physics [32–35].

Nevertheless, it is well-known that standard topology optimization techniques suffer
from typical issues that may compromise the effective performance and manufacturability
of the new layouts. Among the most recurrent, we mention the possible presence of
intermediate densities, the non-smooth contours of the final design and the generation
of unit cells which turn out to be unprintable since presenting too thin struts. All these
drawbacks are strictly related to the selected computational grid: a coarse mesh promotes
jagged boundaries and a diffused void/material interface; vice versa, an extremely fine
mesh leads to a non-affordable computational effort and fosters the generation of too
complex structures. Filtering offers a possible remedy to address all these concerns by
alternating smoothing with sharpening phases to be properly tuned. Such a tuning is not a
trivial task and may often lead to non-optimal design solutions [13,33,36].

The selection of a computational mesh customized to the design problem has been
proved to be instrumental in order to limit the main issues of topology optimization.
For instance, in [37], the combination of a standard density-based method for topology
optimization with an anisotropic mesh adaptation procedure has been used to get rid of
intermediate densities, irregular boundaries, and thin struts in the design of structures at the
macroscale. The proposed algorithm, named SIMPATY (SIMP with mesh AdaptiviTY), is
based on a robust mathematical tool, namely an a posteriori estimator for the discretization
error, and it leads to final designs characterized by reliable mechanical properties as well as
by free-form features. The same procedure has been successfully exploited at the microscale,
with the proposal of the microSIMPATY algorithm [26]. So far, this procedure has been
used for the design of unit cells with optimized mechanical properties in a linear elasticity
setting [27,38].

In this work, we propose a new pipeline for the design of new cellular materials by
extending the microSIMPATY algorithm to a multi-physics context. The objective is to
obtain lightweight metamaterials with prescribed requirements on the elastic and thermal
conductivity properties, which are characterized by a ready-to-print topology. The design
strategy here developed is confined to a 2D setting and has to be meant as a proof-of-
concept, preliminary to a 3D implementation. However, to corroborate the effectiveness of
the proposed methodology, we perform a cross-comparison between the new cells and the
standard ones in thermo-elastic applications.

The paper is organized as follows. Section 2 represents the core of the paper. It
provides the physical problem constraining the optimization process, outlines the main
theoretical tools to perform the optimization, and formalizes the thermo-elastic design
procedure in the MultiP-microSIMPATY algorithm. Three design cases are considered in
Section 3 to apply the MultiP-microSIMPATY algorithm to diverse scenarios. Section 4
further analyzes the results in the previous section by comparing the new designs with the
state-of-the-art. Finally, Section 5 outlines the most remarkable contributions of the work
together with some future perspectives.

2. Methods

In this paper, we refer to a multi-physics framework, in order to provide new layouts
for the design of cellular materials. A standard issue consists in optimizing the microscale to
ensure desired properties at the macroscale. To deal with this two-scale setting, it is crucial
to properly transfer the physical characterization of the micro- to the macroscale. Direct
and inverse homogenization represent widespread solutions in such a direction [14,39–41].
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In particular, the direct approach incorporates the microscopic effects into a homogenized
macroscopic model. As a consequence, the microscopic behavior is known, whereas we
have to identify the (homogenized) macroscopic characterization. Vice versa, inverse
homogenization starts from desired macroscopic physical properties and designs the
microscale in order to match such features, thus swapping the role played by known and
unknown scales with respect to direct homogenization.

In this paper, we focus on a two-dimensional setting and on linear thermo-elastic prop-
erties, so that, at the macroscale, the reference models are the linear elasticity equation [42]
and the linear thermal conduction problem, as identified by the standard stress–strain (σ-ε)
and heat flux-temperature (q-θ) relations, given by

σ(u) =

⎡⎢⎣σ11(u)
σ22(u)
σ12(u)

⎤⎥⎦=
⎡⎢⎣E1111 E1122 E1112

E2211 E2222 E2212
E1211 E1222 E1212

⎤⎥⎦
⎡⎢⎣ ε11(u)

ε22(u)
2ε12(u)

⎤⎥⎦ = E ε(u), (1)

and

q(θ) =

[
q1(θ)
q2(θ)

]
=

[
k11 k12
k21 k22

]⎡⎢⎢⎢⎣
∂θ

∂x1

∂θ

∂x2

⎤⎥⎥⎥⎦ = k ∇θ, (2)

respectively, where E and k are the stiffness and the conductivity tensors characterizing the
considered solid material.

We observe that in view of the homogenization procedures, the constitutive laws (1)
and (2) have to be properly modified to include the effects of the microscale, into

σH(u) = EH ε(u), qH(θ) = kH ∇θ,

where EH and kH denote the homogenized stiffness and thermal conductivity tensors, as
detailed in the next section.

2.1. Inverse Homogenization

Inverse homogenization is the procedure that allows us to design microstructures
with prescribed properties at the macroscale. The required features are mathematically
commuted into a goal functional J and into suitable constraints driving a topology opti-
mization process to be solved in the unit cell Y ⊂ R2 whose periodic repetition yields the
cellular material [26,27,29,38,43]. According to a density-based approach, a standard way
to perform such an optimization leads us to define an auxiliary scalar field, ρ, that models
the relative material density at the microscale. A priori, it is assumed that ρ = 1 labels the
material, while ρ = 0 identifies the void. However, since density ρ ∈ L∞(Y, [0, 1]

)
can take

all the values in [0, 1], it is standard to penalize the intermediate values (i.e., intermediate
material densities) that are not physically consistent. To this aim, we resort to the SIMP
method, which modifies the reference state equations by weighting the constitutive laws
with a suitable power of the density [13].

In general, the optimization problem we are interested to solve is

min
ρ∈L∞(Y,[0,1])

J (z(ρ), ρ) :

⎧⎨⎩aρ

(
z(ρ), w

)
= Fρ(w) ∀w ∈W

LB ≤ C(z(ρ), ρ) ≤ UB,
(3)

where z = z(ρ) denotes the state variable depending on the density field, aρ(·, ·) together
with Fρ(·) defines the state equation constraining the topology optimization, W is a suitable
function space [44], and the box inequality includes specific design and physical require-
ments, with C(·, ·) being the vector gathering the quantities to be controlled through the
corresponding lower and upper bounds, LB a UB.
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In the analysis below, we pick the objective functional J as

M(ρ) =
∫

Y
ρ dY (4)

since we are interested in minimizing the total mass,M, of the cellular structure, i.e., to
design lightweight materials.

According to a standard homogenization procedure, as the state equation, we select the
linear elasticity model at the microscale weighed by the density function, which describes
the Y-periodic displacement field fluctuations, u∗,ij, induced by the test displacement fields
u0,ij, with u0,11 = [x, 0]T, u0,22 = [0, y]T and u0,12 = [y, 0]T. This leads us to identify the
forms aρ(·, ·) and Fρ(·) in (3) with

aE,ij
ρ

(
u∗,ij(ρ), v

)
=

1
|Y|

∫
Y

ρp σ(u∗,ij) : ε(v)dY,

FE,ij
ρ (v) =

1
|Y|

∫
Y

ρp σ(u0,ij) : ε(v)dY,

(5)

respectively, with p ∈ R+, ij ∈ I = {11, 22, 12}, and where the superscript E refers to the
elasticity setting. The state equation associated with (5) is completed with fully periodic
conditions on the cell boundary ∂Y, according to the asymptotic homogenization theory.
Thus, W in (3) coincides with the space U 2

# = [H1
�(Y)]

2 of the H1(Y)-vector functions
satisfying periodic boundary conditions along ∂Y.

To include also the thermal component in the topology optimization, we further
constrain the process with the ρ-weighed thermal conductivity model at the microscale,
which are characterized by the forms

ak,m
ρ (θ∗,m(ρ), v) =

1
|Y|

∫
Y

ρs q(θ∗,m) : ∇v dY,

Fk,m
ρ (v) =

1
|Y|

∫
Y

ρs q(θ0,m) : ∇v dY,

(6)

with s ∈ R+, m ∈ J = {1, 2}, and where the superscript k refers to the thermal framework.
Analogously to (5), we complete the thermal state equation identified by (6) with periodic
boundary conditions along ∂Y, so that θ∗,m and v ∈ U 1

# = H1
�(Y), where θ∗,m denotes the

temperature fluctuations associated with the test temperature fields θ0,m (namely, θ0,1 = x
and θ0,2 = y).

The two problems at the microscale, (5) and (6), are instrumental to define the homog-
enized elastic tensor, EH , and the homogenized thermal conductivity tensor, kH , which will
be involved in the box constraints in (3). The component-wise definition of EH and kH is

EH
ijkl =

1
|Y|

∫
Y

ρp
[
σ(u0,ij)− σ(u∗,ij(ρ))

]
:
[
ε(u0,kl)− ε(u∗,kl(ρ))

]
dY, (7)

kH
mn =

1
|Y|

∫
Y

ρs
[
q(θ0,m)− q(θ∗,m(ρ))

]
:
[
∇θ0,n −∇θ∗,n(ρ)

]
dY, (8)

respectively, with ij, kl ∈ I and m, n ∈ J. In particular, the two-sided inequality in (3) will
be exploited to promote diverse mechanical and thermal behaviors along the different
spatial directions. To this aim, we constrain the two ratios EH

2222/EH
1111 and kH

22/kH
11 so that

they vary in suitable ranges. This choice allows us to penalize the mechanical and the
thermal contributions in a different way along the two directions, as shown in the numerical
assessment. An additional two-sided control is enforced on the first and the last diagonal
terms, EH

1111 and EH
1212, of the homogenized elastic tensor, as well as on the first diagonal

term, kH
11, of the homogenized thermal conductivity tensor.
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To sum up, the optimization setting we are led to deal with coincides with the following
problem:

min
ρ∈L∞(Y,[0,1])

M(ρ) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

aE,ij
ρ

(
u∗,ij(ρ), v

)
= FE,ij

ρ (v) ∀v ∈ U 2
# , ij ∈ I

ak,m
ρ

(
θ∗,m(ρ), v

)
= Fk,m

ρ (v) ∀v ∈ U 1
# , m ∈ J

Elow
1111 ≤ EH

1111 ≤ Eup
1111

Elow
1212 ≤ EH

1212 ≤ Eup
1212(

E2222

E1111

)low
≤ EH

2222
EH

1111
≤
(

E2222

E1111

)up

klow
11 ≤ kH

11 ≤ kup
11(

k22

k11

)low
≤ kH

22
kH

11
≤
(

k22

k11

)up

ρmin ≤ ρ ≤ 1

(9)

where all the bound values, (·)low and (·)up, will be set according to the application at
hand and in order to avoid an unfeasible solution (inappropriate constraints might lead
to an empty solution space). Finally, the last inequality in (9) is meant to ensure the well-
posedness of both the elasticity and the thermal problems (5) and (6), ρmin being a suitable
value in (0, 1) (see Section 3 for more details).

2.2. Discretization on Anisotropic Adapted Meshes

With a view to the solution of problem (9), all the quantities involved in the state
equations, as well as in the constraints, have to be discretized on a suitable tessellation of
the unit cell Y. For this purpose, we resort to a computational mesh Th = {K} customized
to the problem at hand and characterized by stretched elements (i.e., a so-called anisotropic
adapted mesh). Mesh Th is employed to discretize both the test and the trial functions in the
state equations, as well as the density function ρ, by means of a finite element scheme [44].
The anisotropic reference setting is the one proposed in [45]. In particular, the anisotropic
features of each element K coincide with the lengths, λ1,K, λ2,K, and the directions, r1,K,
r2,K, of the semi-axes of the ellipse circumscribed to K through the standard affine map,
TK : K̂ → K, between the reference element K̂ and the triangle K.

Concerning the adaptation procedure, we resort to a metric-based approach driven by
an a posteriori estimator for the discretization error associated with the density function ρ.
Among the error estimators available in the literature [46,47], we refer to an a posteriori
recovery-based error analysis. Following the seminal work by O.C. Zienkewicz and J.Z.
Zhu [48], we control the H1-seminorm of the discretization error on the density, eρ = ρ− ρh.
The selection of such an estimator is motivated by the fact that the density ρ exhibits
strong gradients (i.e., large values for the H1-seminorm) across the material–void interface.
This feature will yield meshes whose elements are crowded along the boundaries of the
structure, thus promoting the design of very smooth layouts. To this aim, we exactly
integrate the so-called recovered error, E∇ = P

(
∇ρh

)
−∇ρh, namely,

|eρ|2H1(Y) = ‖∇eρ‖2
L2(Y) =

∫
Y

∣∣∇ρ−∇ρh
∣∣2 dY

� ‖E∇‖2
L2(Y) =

∫
Y
|P
(
∇ρh

)
−∇ρh|2dY,

(10)

where ρh denotes the finite element discretization of ρ in the space Vr
h of the piecewise

polynomials of degree r ∈ N associated with Th. The operator P : [Vr−1
h ]2 → [Vs

h ]
2

in (10), with s ∈ N , denotes the recovered gradient, which, in general, provides a more
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accurate estimate of the exact gradient∇ρ with respect to the discrete gradient∇ρh. Several
recipes are available in the literature to define P [49–52]. In particular, we select operator
P : [V0

h ]
2 → [V0

h ]
2 as the area-weighted average of ∇ρh over the patch of the elements,

ΔK = {T ∈ Th : T ∩ K �= ∅}, associated with K; i.e., we opt for

P
(
∇ρh

)
(x) =

1
|ΔK| ∑

T∈ΔK

|T| ∇ρh

∣∣∣
T
∀x ∈ K, (11)

with |ω| the area of the generic domain ω ⊂ R2, where we have set the degree of the finite
element space for ρh to r = 1. Space V1

h is also adopted to discretize the components of
the displacement vectors u∗,ij as well as the temperature fields θ∗,m in (9), with ij ∈ I and
m ∈ J.

According to [53,54], we here adopt the anisotropic generalization of (10). This estima-
tor essentially exploits the anisotropic counterpart of the definition of the H1-seminorm [45],
based on the symmetric semidefinite positive matrix GΔK , with entries

[
GΔK (∇g)

]
i,j = ∑

T∈ΔK

∫
T

∂g
∂xi

∂g
∂xj

dT i, j = 1, 2, (12)

with g ∈ H1(Y), and where it is understood x1 = x and x2 = y. Thus, the squared
H1-seminorm |eρ|2H1(Y) is evaluated by the (global) error estimator η2 = ∑K∈Th

η2
K, where

η2
K =

1
λ1,Kλ2,K

2

∑
i=1

λ2
i,K

(
rT

i,K GΔK (E∇) ri,K

)
, (13)

defines the local error estimator. The contribution between brackets coincides with the
projection of the squared L2-norm of the recovered error along the anisotropic directions,
while the scaling factor (λ1,Kλ2,K)

−1 guarantees the consistency with the isotropic case (for
more details, see [53]).

The new adapted mesh is generated after commuting the error estimator ηK into a new
mesh spacing (the metric), M, consisting of the triplet {λadapt

1,K , λ
adapt
2,K , r

adapt
1,K }, where the

direction r
adapt
2,K is automatically defined being r

adapt
1,K · radapt

2,K = 0, for each element K ∈ Th.
This operation is performed by taking into account three different criteria, namely, (i) the
minimization of the mesh cardinality #Th; (ii) an accuracy requirement on the discretization
error |eρ|H1(Y) (i.e, on the error estimator η), controlled up to a user-defined tolerance TOL;
(iii) the equidistribution of the error throughout the mesh elements (i.e., η2

K = TOL2/#Th).
These three criteria lead us to solve a constrained minimization problem on each triangle
K ∈ Th. The solution to this local optimization problem can be analytically derived, as
proved in [55], being

λ
adapt
1,K = g−1/2

2

(
TOL2

2 #Th |Δ̂K|

)1/2

, r
adapt
1,K = g2,

λ
adapt
2,K = g−1/2

1

(
TOL2

2 #Th |Δ̂K|

)1/2

, r
adapt
2,K = g1

(14)

where g1, g2 and g1, g2 are the eigenvalues and the eigenvectors of the scaled matrix
ĜΔK (E∇) = GΔK (E∇)/|ΔK|, with g1 ≥ g2 > 0.

Finally, the metricM = {λadapt
1,K , λ

adapt
2,K , r

adapt
1,K }K∈Th has to be changed into a quantity

associated with the vertices of Th received as an input by the selected mesh generator. A
standard choice consists in an arithmetic mean formula applied to the patch of elements
associated with each vertex in Th [54].

The anisotropic mesh adaptation based on the metric (14) is customized to a topology
optimization problem in the algorithm SIMPATY, proposed in [37]. This procedure has been
successfully employed for the design of structures at the macroscale [37,56,57] as well as for
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the design of new metamaterials with the proposal of the algorithm microSIMPATY [26,27].
Moreover, a combination of topology optimization at the macroscale and at the microscale
is carried out in [38]. In particular, a multiscale topology optimization process is used
for the design of orthotic devices for 3D printing manufacturing with the proposal of
patient-specific innovative solutions.

It has been verified that the adoption of an adapted anisotropic mesh leads to free-form
layouts characterized by very smooth boundaries both at the macroscale and at the mi-
croscale, mitigating some of the well-known drawbacks of standard topology optimization,
such as the massive employment of filtering, the staircase effect, and the generation of too
complex structures [13,33,36]. However, in [57], it has been observed that the presence
of deformed elements inside the structures makes the finite element analysis less reliable.
To overcome this issue, the authors suggest a hybrid approach. Thus, the mesh is kept
isotropic, with a uniform diameter hiso in the full-material regions, {x ∈ Y : ρh(x) > ρth}
with ρth as a user-defined threshold, whereas the stretched triangles are preserved along the
material–void interface. Actually, these hybrid meshes ensure an effective balance between
the smoothness of the structure and robust engineering performances (the interested reader
can find a quantitative investigation of the benefits of the hybrid approach in terms of
accuracy in (Section 5, [57])). For this reason, we resort to hybrid meshes in the sequel.

2.3. Multi-Physics Optimization Algorithm

In this section we propose the multi-physics adaptive inverse homogenization pro-
cedure, which generalizes the algorithm proposed in [26]. The discretization of the state
equations associated with (5) and (6) is performed with the open-source finite element
solver FreeFEM [58], which provides the ideal environment to implement an anisotropic
mesh adaptation procedure in Section 2.2 through the built-in mesh generator BAMG
(Bidimensional Anisotropic Mesh Generator).

The developed multi-physics optimization procedure is listed in the pseudocode in
Algorithm 1. The main loop (lines 3–12) includes an optimization step, a filtering phase, and
the mesh adaptation. At each global iteration k, the optimization problem is solved (line
4, function optimize) by taking into account all the constraints on the components of the
elastic and of the thermal conductivity tensors in (9). To this aim, we use the interior point
algorithm IPOPT [59], although any other optimization tool can be selected [60]. IPOPT
requires as input the functional J to be minimized; the vector C gathering the constrained
quantities in the optimization procedure; the two vectors cl and cu of the lower and upper
bounds for the components in C; the array G collecting the derivative of the functional J
and of the constraints C with respect to ρ, computed by the adjoint Lagrangian approach
(for more details, we refer to [27]); the initial guess ρkh to start the optimization process;
the accuracy TOPT for the minimization problem; the maximum number of iterations IT
to stop the optimization. In particular, in the numerical assessment of Section 3, we set
TOPT = 10−5, and IT = 100 for k = 0 and IT = 10 for all the successive iterations. The
higher value for IT for k = 0 takes into account that the initial guess ρ0h can be completely
arbitrary with respect to the minimum to be reached. On the contrary, a smaller value for
IT is sufficient for k > 0, since the initial guess, ρkh , coincides with the output of a previous
optimization step.
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Algorithm 1 MultiP-microSIMPATY

1: Input: CTOL, kmax, cl , cu, ρ0
h, TOPT, IT, kfmax, τ, β, T 0

h , TOL, HYB
2: Set: k = 0, errC = 1+CTOL;
3: while errC > CTOL & k < kmax do
4: ρk+1h = optimize(J , C, cl , cu, G, ρkh , TOPT, IT);
5: if k < kfmax then
6: ρk+1h = helmholtz(ρk+1h , τ);
7: ρk+1h = heaviside(ρk+1h , β);
8: end if
9: T k+1

h = adapt(T k
h , ρk+1h ,TOL, HYB);

10: errC =
∣∣∣#T k+1

h − #T k
h

∣∣∣ /#T k
h ;

11: k = k+1;
12: end while
13: Th = T k

h ;
14: ρh = ρkh ;

15:
[
EH , kH

]
= homogenize(ρh);

16: return Th, ρh, EH , kH

Function optimize returns the density ρk+1h , which is successively processed by means
of Helmholtz and Heaviside filters (lines 6–7, functions helmholtz and heaviside) [61,62].
The two filtering operations work in a complementary way. The Helmholtz partial differen-
tial equation is instrumental to remove too thin features, although promoting intermediate
densities along the layout contour. In more detail, it consists of a low-pass filter based on a
diffusion kernel with radius τ ∈ R+. On the contrary, the Heaviside filter, coinciding with
a β-dependent regularization of the Heaviside function with β ∈ R+, penalizes the inter-
mediate material densities, also due to the Helmholtz filter, thus increasing the sharpness
of the material/void interface. The combined filtering takes place for the first kfmax global
iterations only. This choice leads to start the mesh adaptation procedure with a density
field, which is free from too complex features, while exhibiting a clear alternation between
void and material. The filtering phase becomes redundant when the optimization loop
approaches the minimum, so that mesh adaptation alone suffices to ensure well-defined
structures. In the next section, filtering parameters τ and β are set equal to 0.02 and 5
respectively, while kfmax = 25.

The next step coincides with the mesh adaptation procedure detailed in Section 2.2
and here represented by function adapt (line 9). The input parameter TOL establishes the
accuracy of the error estimator η through the predicted metric in (14). Parameter HYB is a
boolean flag that, in correspondence with the full material, switches the employment of an
isotropic mesh on or off.

The main loop is controlled by a check on the stagnation of the relative difference
between the cardinality of two consecutive meshes (line 10), up to a maximum number
of global iterations kmax (line 3). The choices TOL = 10−5 and kmax= 100 are preserved
throughout all the numerical assessment below.

Algorithm MultiP-microSIMPATY returns the final adapted mesh Th, the optimized
density ρh, and the homogenized elastic and conductivity tensors, EH and kH , which are
computed by function homogenize (line 15), based on (7) and (8).

We remark that the procedure itemized in Algorithm 1 is fully general and it can
be applied in a straightforward way to different multi-physics contexts after properly
modifying the formulation in (9).

3. Results

We analyze three different cases of microstructure design according to (9). In order to
highlight the interplay between the different (thermal and mechanical) physics involved,
we consider configurations where the thermal conductivity and the elastic stiffness require-
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ments act along different directions. For instance, a high shear stiffness combined with
a high thermal conductivity along the x-direction orient the material along two opposite
directions, with the prescription of a conflict configuration.

The whole verification below shares common choices for some physical quantities
and discretization parameters. In particular, the unit cell Y ⊂ R2 is identified with the
unitary square, Y = (0, 1)2. Moreover, we set the Young modulus, EY, and the Poisson
ratio, ν, to 1 and 0.3, respectively, and we consider an isotropic solid material with unitary
thermal conductivity by setting k11 = k22 = 1 and k12 = k21 = 0. These choices allow
us to obtain normalized homogenized mechanical and thermal properties for the cellular
structures. Following [26], both the SIMP-powers, p and s, in (7) and (8) are chosen equal
to 4 to penalize intermediate densities.

Concerning the discretization frame, we choose a random density field, ρ0
h, as the

initial guess for the optimization process, in order to avoid any bias. In particular, ρ0
h is

defined on an initial structured mesh characterized by 30 subdivisions per side, and with
values ranging from ρmin = 10−4 to 1 (see Figure 1 for an example).

Figure 1. Initial guess ρ0
h (left) and corresponding mesh T 0

h (right).

Finally, to ensure a reliable finite element analysis, we resort to the hybrid mesh adap-
tation procedure (HYB = 1 in function adapt). In particular, we choose the threshold value
ρth = 0.9 to manage the alternation between isotropic and anisotropic elements, and the
isotropic tessellation is characterized by the uniform diameter hiso = 0.03 (approximately
1/30 of the design domain dimension).

After the optimization, we perform a verification step to check the actual mechanical
and thermal properties of the material yielded by a periodic repetition of the optimized
unit cell. To this aim, we use the Abaqus software (Abaqus, Dassault Systèmes Simulia
Corp, Johnston, RI, USA). The layouts provided by Algorithm 1 are imported in Abaqus
after a thresholding, which neglects the density smaller than 0.75. The obtained geometry is
remeshed on a uniform isotropic triangular mesh with an average size equal to 0.01, while
the displacement and temperature fields are discretized with quadratic finite elements,
completed with periodic boundary conditions. The verification here performed can be
considered as a preliminary step toward the integration of the MultiP-microSIMPATY
algorithm into a common workflow for structural analysis.

3.1. Design Case 1

The main goal of this first optimization process is to design a lightweight unit cell
characterized by isotropic mechanical homogenized properties and, vice versa, anisotropic
thermal homogenized features. This problem can be cast in setting (9), after making the
following choices for the constraints:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.05 ≤ EH
1111 ≤ 0.08

0.055 ≤ EH
1212 ≤ 0.080

1 ≤ EH
2222

EH
1111
≤ 2

0.01 ≤ kH
11 ≤ 1.00

0.00 ≤ kH
22

kH
11
≤ 0.58.

(15)

The isotropic mechanical behavior and the anisotropic thermal properties are enforced
by the constraints in (15)3 and (15)5. In particular, we expect ratios EH

2222/EH
1111 and kH

22/kH
11

to coincide with the corresponding lower and upper bounds, respectively. Moreover, since a
control on the ratios does not ensure EH

1111, EH
2222, kH

11, and kH
22 to be in a physically admissible

range of values, we further constrain the optimization through the box inequalities (15)1
and (15)4. Finally, a control on the component EH

1212 of the homogenized stiffness tensor
closes the minimization problem, thus further restricting the solution space.

For the values set for the input parameters, the MultiP-microSIMPATY algorithm
converges in 51 global iterations. Figure 2 shows the layout and the associated anisotropic
adapted mesh at three different iterations.

Figure 2. Design Case 1: density field (top) and associated anisotropic adapted mesh (bottom) for
three different global iterations.

We remark that the final topology of the layout is already detected at the first iteration,
although the quality of the solution is improved throughout the optimization process. In
particular, at the first iteration (k = 1), we observe a significant staircase effect together with
the presence of intermediate densities along the microstructure interface. At the end of the
filtering phase (k = 24), the jagged boundaries are fully smoothed, despite the intermediate
densities still blurring the design. The spreading effect along the material/void interface is
gradually reduced when switching off the filtering, i.e., for k > 24, as shown by the last
column in Figure 2. Thus, the final optimized solution (k = 51) shows an extremely sharp
transition from material to void and smooth boundaries, which make the structure ready
for printing or manufacturing, with a limited need for post-processing.
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Concerning the adapted mesh, we recognize the effect of the hybrid approach, which
combines stretched elements to discretize the strong gradients of the density field, coarse
anisotropic triangles outside the structure, and isotropic elements in correspondence with
the material.

Additional quantitative information on the MultiP-microSIMPATY algorithm is pro-
vided by Table 1 and by the diagrams in Figure 3, which show the evolution of the objective
function and of the constrained quantities (top), together with the trend of the mesh cardi-
nality (bottom), over the global iterations. Notice that the values of the constraints have
been normalized between 0 and 1 (see the highlighted area in the top panel of Figure 3).
It is evident that the mass exhibits a completely different trend when compared with the
constrained quantities. The value of the objective function oscillates with values between
0.325 and 0.475 over the first 35 iterations, and it eventually converges toward a stable
phase. On the contrary, all the constrained quantities are characterized by mild oscillations.
In particular, kH

11 remains essentially constant over the whole optimization process. The
plot of the ratios EH

2222/EH
1111 and kH

22/kH
11 confirms that the two inequalities are in conflict

so that the active constraints are the lower and upper bound, respectively. Moreover, from
the values in Table 1, it can be observed that the stiffness component along the x-direction,
EH

1111, reaches a value that is about 25% lower than the corresponding cl . This can be
ascribed to the presence of very thin struts generated by the severe thresholding (ρh < 0.75)
applied before performing the analyses in Abaqus.

Table 1. Design cases 1, 2, and 3: values of the constraints and of the objective functional computed
with Abaqus software, together with the lower and the upper bounds, cl and cu, involved in the
optimization.

EH
1111 EH

1212
EH

2222

EH
1111

kH
11

kH
22

kH
11

M
Design Case 1

cu 0.080 0.080 2.000 1.000 0.580
c 0.038 0.056 1.299 0.199 0.566
cl 0.050 0.055 1.000 0.010 0.000

0.292

Design Case 2
cu 0.350 0.150 2.000 1.000 2.000
c 0.250 0.086 0.299 0.317 0.597
cl 0.230 0.080 0.300 0.300 0.000

0.412

Design Case 3
cu 0.150 0.100 1.100 0.400 1.100
c 0.151 0.083 1.074 0.260 1.002
cl 0.100 0.080 1.000 0.250 1.000

0.415

The evolution of the topology in Figure 2 is consistent with the trend in Figure 3 (top
panel). The topology does not essentially vary during the optimization process, according
to the almost constant trend of the constraints. On the other hand, the highly oscillatory
trend ofM in the first optimization stage is related to the effect of the smoothing and of
the sharpening operations, which are confined to the first 24 iterations. From k = 25, only
the minimization process and the mesh adaptation contribute to a mass variation, with less
striking changes.

Finally, in Figure 4 (left), we show the 3× 3-cell material generated by a periodic
repetition of the optimized unit cell.
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Figure 3. Design Case 1: evolution of the objective functionalM and of the constraints ci (top); trend
of the mesh cardinality #Th (bottom) throughout the global iterations k.

Figure 4. Design Cases 1, 2, and 3 (left–right): 3× 3-cell meta-material.

3.2. Design Case 2

The second MultiP-microSIMPATY run aims at designing a microstructure that pro-
vides high stiffness and thermal conductivity along the x-direction and a high shear stiffness.
As for the Design Case 1, these requirements might originate a set of conflicting constraints.
In fact, the two former demands are expected to orient the material along the x-direction,
while the latter requirement prescribes also the presence of material along the diagonal of
the cell Y, which could react by tension to shear loading. This design setting is formalized
by problem (9) when completed by the following set of constraints:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.23 ≤ EH
1111 ≤ 0.35

0.08 ≤ EH
1212 ≤ 0.15

0.3 ≤ EH
2222

EH
1111
≤ 2.0

0.3 ≤ kH
11 ≤ 1.0

0 ≤ kH
22

kH
11
≤ 2.

(16)
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We highlight that the bounds for the stiffness tensor components to be promoted, EH
1111

and EH
1212, are set by taking into account the mass minimization goal, i.e., by keeping them

considerably lower than 1.
Algorithm 1 stops in 56 iterations due to mesh stagnation. Figure 5 gathers the density

field distribution together with the associated anisotropically adapted computational mesh
at iterations k = 5, 20, and 56. At the fifth iteration, the cell presents very thin struts that are
progressively erased by the combined action of the Helmholtz and the Heaviside filters. For
k = 20, the topology essentially coincides with the final optimized one, although the layout
still exhibits intermediate density values along the boundaries. The structure contours
become sharper and sharper throughout the next iterations when filtering is switched off
and thanks to the mesh adaptation procedure.

Concerning the final topology, we observe that most of the material is aligned along
the two main diagonals of Y. This guarantees high shear stiffness, while ensuring a low
stiffness along the y-direction, so that the lower bound for EH

2222/EH
1111 is reached. On the

other side, the requirements on EH
1111 and kH

11 are taken into account by the two thinner
struts along the x-direction, which improves the corresponding stiffness and the thermal
conductivity. Figure 4 (center) provides a sketch of the metamaterial associated with the
optimized cell in a 3× 3 cellular pattern.

For a more quantitative characterization of the optimized structure in terms of mass
and reached constraints, we refer to Table 1. We notice that to address the conflict among
the several requirements, the optimization process pushes all the constrained quantities
toward the lower bound of the corresponding range, while increasing the mass of the
structure if compared, for instance, with the previous design case.

Figure 5. Design Case 2: density field (top) and associated anisotropic adapted mesh (bottom) for
three different global iterations.

3.3. Design Case 3

As a third design, we carry out the optimization of a microcell characterized by similar
stiffness and thermal conductivity along the x- and y-directions and by a high shear stiffness.
This leads to solve problem (9) when the following constraints are enforced:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.10 ≤ EH
1111 ≤ 0.15

0.08 ≤ EH
1212 ≤ 0.10

1.0 ≤ EH
2222

EH
1111
≤ 1.1

0.25 ≤ kH
11 ≤ 0.40

1.0 ≤ kH
22

kH
11
≤ 1.1.

(17)

The limited range for the two ratios EH
2222/EH

1111 and kH
22/kH

11 is consistent with the
request for comparable stiffness and thermal conductivities along the two directions,
whereas the mass minimization goal justifies the tight variation for the other tensors
components.

The MultiP-microSIMPATY algorithm resorts to 35 loops before satisfying the stopping
criterion. Figure 6 shows the density field and the mesh for three different global iterations
of the algorithm. As for the previous design cases, thin features are removed by filtering
during the first 24 iterations, while intermediate densities are erased in the second part of
the process by the mesh adaptation procedure. As a consequence, the final microstructure
exhibits very sharp density gradients, so that little post-processing has to be applied. In the
final layout, most of the material is allocated along the two main diagonals of the domain,
which ensures the required high shear stiffness as well as the balance between stiffness and
thermal conductivity with respect to the horizontal and vertical directions.

Table 1 offers some additional quantitative information regarding the optimized
structure. All the box constraints are satisfied (with a slight violation for the component
EH

1111) in the presence of a structure mass comparable with the one obtained for Design
Case 2 (about 40% with respect to the full material configuration). We refer to Figure 4
(right) for an example of the microcellular material associated with the optimized cell.

Figure 6. Design Case 3: density field (top) and associated anisotropic adapted mesh (bottom) for
three different global iterations.

4. Discussion of Results

This section is meant to highlight the benefits of the MultiP-microSIMPATY algorithm.
To this aim, we compare the layouts provided by the proposed methodology with unit
cells available in engineering practice and with cellular materials designed by a standard
inverse homogenization procedure, which does not exploit mesh adaptation.
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4.1. Comparison with Off-The-Shelf Designs

This first investigation is carried out by comparing each of the three designs in the
previous section with state-of-the-art unit cells in terms of mechanical and thermal per-
formance, after setting a reference value for the overall mass. The quantities involved in
such a comparison are the homogenized elastic modulus, EH

x and EH
y , associated with the

direction x and y, which coincide with the inverse of the diagonal entries, CH
11 and CH

22, of
the compliance matrix CH = (EH)−1; the homogenized shear modulus, GH , equal to the
inverse of the third diagonal entry of matrix CH ; the homogenized thermal conductivities,
kH

11 and kH
22, along the x- and y-direction. The results of this analysis are summarized in

Table 2.

Table 2. Comparison between the MultiP-microSIMPATY optimized structures and off-the-shelf de-
signs in terms of homogenized elastic and thermal properties, for comparable volume fraction values.

EH
x EH

y GH kH
11 kH

22

Design Case 1

D1 0.012 0.015 0.056 0.200 0.113

A 0.009 0.009 0.075 0.163 0.163

B 0.095 0.042 0.059 0.198 0.131

Design Case 2

D2 0.126 0.039 0.082 0.317 0.126

C 0.341 0.116 0.002 0.432 0.125

Design Case 3

D3 0.070 0.070 0.082 0.260 0.261

L 0.188 0.188 0.072 0.255 0.255

Concerning Design Case 1, we perform two comparisons. Since the geometry provided
by MultiP-microSIMPATY is similar to a square cell rotated by 45◦, we choose simple
squares (A and B) characterized by the same rotation as state-of-the-art unit cells. The
basic squares in layout A fully couple mechanical and thermal features, thus excluding this
cell for the purpose addressed in the first design case. This justifies the selection of cell B
where the reinforcing horizontal strut mimics the very thin diagonal member connecting
the adjacent sides in the proposed layout (D1). From a structural perspective, the horizontal
strut in B increases the nodal connectivity and reacts with tension/compression to a load
applied along the x-axis. This fact is confirmed by the non-isotropic elastic behavior of
the material (compare the values EH

x and EH
y ). Regarding thermal conduction, the strut

promotes heat transfer along the horizontal direction, as highlighted by the discrepancy
between kH

11 and kH
22. In the optimized layout D1, the thin member is instead slightly

inclined and does not connect two opposite nodes. Thus, the elastic modulus along the
two directions is similar, since the strut reacts by bending to a load applied along the
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x-axis. Moreover, the thin member promotes the heat transfer along the x-direction, thus
decoupling the ratios EH

y /EH
x and kH

22/kH
11.

The unit cell D2 has been designed to ensure high stiffness and conductivity along
the x-direction as well as a high shear modulus. As reference layout, we consider a
square cell characterized by a rectangular cavity. This choice offers us a trivial solution
to optimize stiffness and conductivity along direction x. The optimization performed by
MultiP-microSIMPATY is corroborated by the values of GH . In fact, cell D2 is characterized
by a shear modulus, which is approximately 40 times higher when compared with the
reference layout, although the values of EH

x and kH
11 for cell D2 are, on average, 30% lower

with respect to cell C.
Finally, the Design Case 3 aims at ensuring equal elastic modulus and conductivity

along the x- and y-directions, as well as a high shear modulus. The paradigm for an
isotropic stretch-based lattice, namely the standard triangular cell (L), is assumed as the
off-the-shelf layout. A comparison between the corresponding values in Table 2 shows a
15% increment in the shear modulus of cell D3. In addition, both cells D3 and L exhibit the
requested isotropic behavior in terms of the selected mechanical and thermal properties.

4.2. Comparison with Standard Inverse Homogenization

This section is meant to verify the benefits led by mesh adaptation in the context
of thermo-elastic inverse homogenization, which is in accordance with the preliminary
remarks in Section 3.

To this aim, we carry out a comparison between the MultiP-microSIMPATY algorithm
and a standard inverse homogenization procedure. This comparison is performed in terms
of mass. We expect that the employment of mesh adaptation leads to efficiently allocate
the available material, thus promoting the mass minimization. As a reference standard
approach, we implement a non-adaptive version of Algorithm 1, where the adaptation loop
(lines 3–12) is replaced by the single call

ρh = optimize(J̃ , C̃, cl , cu, G̃, ρ0h , TOPT, IT).

We refer to this variant of Algorithm 1 as MultiP-microSIMP. In this case, the optimiza-
tion is performed on the filtered density, so that the goal functional, the constraints, and
the associated derivatives are modified accordingly (this justifies the new notation Q → Q̃,
with Q = J , C,G, where Q̃ refers to quantities dependent on the filtered density). This
choice is recurrent in topology optimization [61,62]. As far as all the parameters required
by the optimization are concerned, we preserve the same values as in Section 2.3, while the
computational mesh coincides with a 50× 50 structured mesh.

Figure 7 compares the optimized layouts delivered by MultiP-microSIMP (top) and
MultiP-microSIMPATY (bottom) for the three design cases in Section 3. The topologies
characterizing the three cells vary when resorting to mesh adaptation. In general, MultiP-
microSIMPATY provides more complex layouts, which however are still manufacturable.
The presence of intermediate densities in the cells yielded by MultiP-microSIMP is high-
ligthed by the blurred structure contours, promoted by the massive employment of filtering.
Table 3 quantitatively assesses the optimization performance of the two algorithms by
collecting the mass of the corresponding unit cells, together with the percentage mass
reduction ensured by MultiP-microSIMPATY. On average, a mass saving of approximately
10% is guaranteed by the sharp detection of the material/void interface, i.e., by the removal
of intermediate densities.

The use of filtering deserves further discussion. In particular, we prove the redundancy
of the filtering phase after a sufficiently large number of global optimization iterations.
To this aim, we run Algorithm 1 for kfmax = 25 and kfmax = kmax (i.e., smoothing and
sharpening filters in lines 6–7 are applied at each global iteration). Figure 8 compares
the output associated with these two choices. The final topology provided by both the
procedures is the same. This confirms that filtering is instrumental only in the identification
of the final layout, and this takes place during the first iterations. From the top-left panel, the
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slightly diffusive action of the selected filtering is also evident, giving rise to intermediate
densities along the layout boundaries. On the other hand, the removal of filtering allows
mesh adaptation to sharply detect gradients from material to void, thus increasing the
quality of the final output (compare the two panels on the left panel). The improvement in
terms of boundary detection is confirmed also by the final adapted mesh, which captures
the steep gradients of the density with thinner refined areas (compare the two panels on
the right).

Figure 7. Comparison between the optimized cells delivered by MultiP.microSIMP (top) and by
MultiP-microSIMPATY (bottom) for the Design Cases 1, 2, and 3 (from left to right).

Table 3. Comparison between the optimized cells delivered by MultiP-microSIMPATY and a standard
inverse homogenization algorithm in terms of mass.

D1 D2 D3

MultiP-microSIMP 0.330 0.443 0.486

MultiP-
microSIMPATY 0.292 0.412 0.415

Mass reduction [%] 11.5% 7.0% 14.6%

Figure 8. Effect of filtering for the MultiP-microSIMPATY algorithm: density field (left) and associated
anisotropic adapted mesh (right) when filtering is applied during the whole optimization process
(top) and in the first 25 iterations only (bottom).

Finally, we highlight that the presence of blurred interfaces may raise issues in the
extraction of the final geometry after the optimization procedure. In fact, the extracted
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geometry strongly depends on the cut-off threshold, with a possible significant alteration
of the overall mass and the expected thermo-elastic properties.

5. Conclusions and Perspectives

In this paper, we provide a new methodology for the design of cellular materials
optimized by means of multi-physics inverse homogenization, which was discretized on
customized computational meshes. The inverse homogenization problem is modeled by a
standard density-based topology optimization at the microscale; the grid is generated by
exploiting an anisotropic a posteriori error estimator that drives a mesh adaptation proce-
dure. These two phases are iteratively coupled in the MultiP-microSIMPATY algorithm
in order to deliver layouts characterized by clear-cut contours. In particular, the goal of
the analyzed test cases is the design of lightweight structures with prescribed elastic and
thermal properties, according to a multi-physics framework.

The main results of this work can be outlined as follows:

(i) The MultiP-microSIMPATY algorithm provides original design solutions, complying
also with conflicting requirements;

(ii) The good performance of microSIMPATY has been confirmed also in a thermo-elastic
context. Standard issues typical of topology optimization, such as the presence of
intermediate densities, of jagged boundaries, and of too complex structures, is miti-
gated by the employment of a mesh customized to the design process (see Figure 7
and Table 3);

(iii) The new cellular materials have been successfully compared with consolidated solu-
tions in terms of mechanical and thermal properties (see Table 2);

(iv) Filtering can be considerably limited thanks to the use of mesh adaptation. This turns
into an improvement in terms of accuracy of the optimization process (see Figure 8);

(v) The employment of an anisotropic mesh adaptation provides advantages with a view
to a manufacturing phase. Indeed, the unit cells designed by MultiP-microSIMPATY
exhibit very smooth geometries which demand for a very limited post-processing;

(vi) The procedure here settled turns out to be fully general with respect to the selected
multi-physics context.

Possible future developments include the extension of the MultiP-microSIMPATY
design procedure to a 3D setting. The proposed methodology could also be exploited
in a multiscale topology optimization framework [38], inspired by the many possible
applications in engineering practice (including medicine, aerospace, automotive, and
architecture). In such a context, with a view to the manufacturing step, another issue that
deserves further investigation is represented by the handling of the transition area between
different cellular materials. Finally, innovative techniques, such as model reduction or
machine learning, still represent topics of high relevance in topology optimization for a
future examination [63–65].
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Abstract: Components of Earth system models (ESMs) usually use different numerical grids because
of the different environments they represent. Therefore, a coupling field sent by a source model
has to be regridded to be used by a target model. The regridding has to be accurate and, in some
cases, conservative, in order to ensure the consistency of the coupled model. Here, we present work
done to benchmark the quality of four regridding libraries currently used in ESMs, i.e., SCRIP, YAC,
ESMF and XIOS. We evaluated five regridding algorithms with four different analytical functions
for different combinations of six grids used in real ocean or atmosphere models. Four analytical
functions were used to define the coupling fields to be regridded. This benchmark calculated some of
the metrics proposed by the CANGA project, including the mean, maximum, RMS misfit, and global
conservation. The results show that, besides a few very specific cases that present anomalous values,
the regridding functionality in YAC, ESMF and XIOS can be considered of high quality and do not
present the specific problems observed for the conservative SCRIP remapping. The evaluation of the
computing performance of those libraries is not included in the current work but is planned to be
performed in the coming months. This exercise shows that benchmarking can be a great opportunity
to favour interactions between users and developers of regridding libraries.

Keywords: regridding; remapping; interpolation; Earth system modelling; code coupling; coupler;
coupling library; coupled models; ocean-atmosphere general circulation models

1. Introduction

Component models assembled in Earth system models (ESMs) usually have different
grids because of the different environments that they represent, e.g., in an ocean model,
the latitude–longitude grid convergence singularity can be conveniently displaced over
a continent. Therefore, the coupling fields sent by a source component model have to
be transformed for use by a target component on its grid. The first step is to define the
addresses and weights of the source grid points that will contribute to the calculation of the
coupling field on the target grid. The second step is regridding, i.e., the multiplication of
the source grid values by the regridding weights to express the coupling field on the target
grid. This spatial transformation is called regridding, remapping, or interpolation.

Different libraries exist for regridding in ESMs, offering different algorithms. We
briefly describe here the two-dimensional (2D) algorithms used. With a nearest neighbour
algorithm, the values of the nearest neighbours on the source grid, possibly weighted by
their distance to the target point, are associated to each target grid point. A first-order
non-conservative approximation uses, for each target point, the values of the coupling field
at the four enclosing source grid points, as in a bilinear algorithm. Different algorithms are
implemented for higher-order (non-conservative) regridding: one widely used schema is
the bicubic interpolation, which uses the values of the four enclosing source neighbours
but also the values of the field gradients in each direction and the cross gradient in the
diagonal direction. In a first-order conservative remapping, the value for each target cell is
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computed as a weighted sum of the source cell values, with the contribution of a source
cell being proportional to the fraction of the target cell intersected by the source cell. This
method should be applied when it is important to conserve the area-integrated value of
the coupling field, for example to conserve the energy associated with heat fluxes or water
associated precipitation fields. The basis of a second-order conservative remapping is the
same as the first-order conservative remapping but additional terms proportional to the
gradients of the source field are applied.

The OASIS3-MCT (Ocean Atmosphere Sea Ice Soil 3—Model Coupling Toolkit) cou-
pler [1] includes the SCRIP (Spherical Coordinate Remapping and Interpolation Package)
library [2] for its regridding operations. A detailed analysis of the quality of the SCRIP
library conservative remapping was realised in [3,4]. The impact of the different nor-
malisation options and of a Lambert azimuthal projection above a certain latitude have
been analysed for different types of grids. The general conclusion is that the SCRIP first-
order conservative remapping may give satisfactory results for some types of grids for the
different normalisation options; however, in some cases, only if the Lambert projection
is activated and, in other cases, only if it is not. Furthermore, conservative regridding
involving a Gaussian reduced grid always shows some problems, whether or not the
Lambert projection is activated. This analysis motivated the exploration of other regridding
libraries currently available for Earth system modelling, for a possible future interfacing in
OASIS3-MCT. The regridding libraries analysed are the ones mostly used in Earth system
modelling today, i.e., ATLAS, MOAB-Tempest Remap, YAC, ESMF and XIOS. The results
of this exploration are presented in this paper and additional details can be found in [5].
Here we also show results for the SCRIP library, as a basis for comparison, but do not inves-
tigate specific problems when they arise, as the current objective is to evaluate alternative
regridding libraries.

ATLAS [6] is an open-source library written in C++, currently being developed at
the European Centre for Medium-Range Weather Forecast (ECMWF). It provides grids,
mesh generation, and parallel data structures targeting numerical weather prediction or
climate model developments. It is designed as an object-oriented modular library, with
the capability to take advantage of the most recent computer architectures. It is meant to
provide, among many other features, a set of parallel interpolation methods and is oriented
toward the use of an internally consistent set of predefined grids and meshes. At the time
of our evaluation, ATLAS provided nearest neighbour, linear, cubic and finite-element
regridding methods but did not include any conservative remapping.

MOAB-Tempest Remap [7], which is also written in C++, is used in the energy exascale
Earth system model (E3SM) [8], a state-of-the-art Earth system modelling project funded
by the Department of Energy (DOE) in the United States. Through Fortran-compatible
interfaces, it offers online conservative regridding based on a scalable advancing-front
intersection algorithm, which allows to compute the supermesh defined by the intersection
of the source and target grid cells. The supermesh is then used to assemble the higher-order,
conservative, and monotonicity-preserving regridding weights.

YAC, Yet Another Coupler [9,10], is developed as a joint initiative between the German
Climate Computing Center (DKRZ) and the Max Planck Institute for Meteorology (MPI-M).
YAC is coded in C and a Fortran interface is also provided. Although targeting the German
ICON (ICOsahedral Nonhydrostatic) model, the software provides multiple regridding
methods, e.g., linear, nearest neighbour, first and second order conservative, and hybrid
cubic Bernstein–Bézier patch [11] (see also Section 2.1.3) for the coupling of physical fields
defined on regular and irregular grids on the sphere without a priori assumption about the
particular grid structure or grid element types.

ESMF, the Earth System Modelling Framework [12,13], is an open-source software
for coupling model components to form weather, climate, coastal, and other Earth science
related applications. Today, ESMF is developed and governed by a set of partners in the
USA that include the National Aeronautics and Space Administration (NASA), the National
Oceanic and Atmospheric Administration (NOAA), the U.S. Navy, the National Center
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for Atmospheric Research (NCAR) and the national Earth System Prediction Capability
(ESPC). Using ESMF, the scientist only codes the scientific part of their model into modular
components and adapts it to the standard calling interface and standard data structures of
the framework. Different modules, coded by either the scientists themselves or by others,
can then be assembled into large scientific applications. ESMF offers a full interface to
Fortran 90 and partial interface to C/C++ and Python. The ESMF software provides the
underlying layers necessary for an efficient parallel execution of the scientific applications
on different computer architectures, allowing for the coupling of the module to other
components. ESMF supports regridding on combinations of 2D or 3D, spherical or cartesian
coordinates with different regridding methods: nearest neighbour, bilinear, higher order,
based on patch algorithm (see Section 2.1.3), and first and second order conservative.

XIOS [14], standing for XML-IO-Server, is an open-source library written in C++ with a
Fortran interface developed at the Institut Pierre-Simon Laplace (IPSL) and dedicated to the
management of I/O in climate codes. XIOS offers an impressive ensemble of online operations
on model data (file rebuilding, time series, seasonal means, regridding, vertical interpolation,
compression, etc.) based on external XML metadata definition, in order to minimize the
post-processing of the data. Its regridding utility offers first and second order conservative
remapping (but no non-conservative algorithms) on any type of grids used in Earth system
modelling. Recently, XIOS has also been used as a coupler, i.e., managing communication of
data, not only between a component and a file, but also between two components.

In order to compare these libraries, several aspects have to be considered. In a pre-
liminary analysis, we enquired about the available regridding methods and evaluated
the general software development environment, e.g., the coding language, project history,
development plans, provision of support to external projects, and committed manpower.
This first analysis led us to conclude that ATLAS and MOAB-Tempest Remap are certainly
appealing libraries with good long-term perspectives regarding their development and
support. However, their usage for regridding in OASIS3-MCT cannot be recommended at
this point, as some basic capabilities were still missing in the version evaluated (0.21), in par-
ticular the handling of missing/masked values for MOAB-Tempest Remap or conservative
regridding for ATLAS [15].

Therefore, we pushed further the analysis for YAC, ESMF, and XIOS and decided to
benchmark the quality of their regridding. We also analyzed SCRIP as a basis for compari-
son, using criteria proposed by Coupling Approaches for Next-Generation Architectures
(CANGA) project [16]. CANGA is a joint effort funded by the United States Department of
Energy’s Office of Science under the Scientific Discovery Through Advanced Computing
(SciDAC) program that targets new high-performance coupling approaches for Earth sys-
tem models on next-generation computers. Following CANGA, aspects to consider when
evaluating a regridding library are the sensitivity (i.e., the algorithmic invariance of the
scheme to the underlying mesh topology), the global conservation of integral quantities, the
consistency (i.e., the preservation of discretization order and accuracy), the monotonicity
(i.e., the preservation of global solution bounds), the dissipation (i.e., the smoothing of local
solution maxima and minima that has to be minimal), the scalability, and the performance
of the library. CANGA proposes metrics to quantify these aspects and we implemented the
calculation of some of these metrics in our benchmark. The benchmark characteristics are
detailed in Section 2.1, while its specific use for evaluating SCRIP, YAC, ESMF and XIOS is
described in Section 2.2. In Section 3, we detail the benchmark results obtained for the four
libraries. Finally, conclusions and perspectives of this work are presented in Section 4.

2. The Regridding Benchmark

Here, in Section 2.1, we describe the characteristics of the benchmark used to evaluate
the regridding libraries that includes five algorithms, four different functions, and different
combinations of six grids used in real ocean or atmosphere models. In Section 2.2, we
provide some details on its application for the four libraries SCRIP, YAC, ESMF and XIOS.
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2.1. The Benchmark Characteristics
2.1.1. Grids

The six grids considered in the benchmark are the following, given with their acronym
used in the rest of the document and number of grid points:

• torc: the ocean model NEMO (Nucleus for European Modelling of the Ocean) [17],
rotated-stretched logically-rectangular grid with 182 × 149 points horizontally;

• nogt: the ocean model NEMO, rotated-stretched logically-rectangular grid with
362 × 294 points horizontally;

• bggd: the atmosphere model LMDz (Laboratoire de Météorologie Dynamique
zoom), [18] regular latitude–longitude grid with 144 × 143 points horizontally;

• sse7: the atmosphere model ARPEGE (Action de Recherche Petite Echelle Grande
Echelle) [19], Gaussian reduced T127 with 24,572 points horizontally (unstructured,
described with up to 7 vertices per cell);

• icos: the atmosphere model Dynamico [20], low-resolution unstructured icosahedral
grid with 15,222 points horizontally;

• icoh: the atmosphere model Dynamico, high-resolution unstructured icosahedral grid
with 2,016,012 points horizontally.

These grids are illustrated on Figure 1.

Figure 1. Illustration of the types of grids included in the benchmark: (a) rotated-stretched logically-
rectangular (torc, nogt), (b) regular latitude–longitude (bggd), (c) Gaussian-reduced (sse7), and
(d) icosahedral (icos, icoh).

The first five grids are relatively low-resolution grids. We decided to run the bench-
mark for the six pairs of these grids matching an ocean and an atmospheric grid and
introduced the higher-resolution icoh grid only to test the impact of large resolution differ-
ences on the conservative regridding.

We note here that all grids used in this benchmark define a sea-land mask, with valid
(non-masked) points over the ocean and not valid (masked) point over the land. In order
to avoid non-matching sea-land masks between the ocean and the atmosphere grids, we
adopted the following best practice that sets up a consistent atmosphere-ocean system and
defines a well-posed coupled problem: The original sea-land mask of the ocean model is
taken as is. For the atmosphere model, the fraction of water in each cell is defined by the
conservative remapping of the ocean mask on the atmospheric grid. Then, the atmospheric
coupling mask is adapted by associating a valid/active index to cells containing at least a
surface fraction 1/1000 of water. Under 1/1000 of water, the atmospheric cell is considered
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to be completely masked. This method ensures that the total sea and land surfaces are the
same in the ocean and atmosphere models, allowing global conservation of sea or land
integrated quantities. It also minimizes the number of target grid points that does not
receive a value with each specific regridding algorithm.

2.1.2. Analytical Functions

The four analytical functions used to define the coupling fields to be regridded,
illustrated on Figure 2, are (see also Appendix A for their exact definition expressed
in Fortran 90):

(a) sinusoid: a slowly varying standard sinusoid over the globe;
(b) harmonic: a more rapidly varying function with 16 maximums and 16 minimums in

northern and southern bands;
(c) vortex: a slowly varying function with two added vortices, one in the Atlantic and one

over Indonesia;
(d) gulfstream: the slowly varying standard sinusoid with a mimicked Gulf Stream.

 
Figure 2. The four analytical functions defining the coupling field: (a) sinusoid, (b) harmonic, (c) vortex,
(d) gulfstream.

2.1.3. Regridding Algorithms

The following algorithms were evaluated for the different regridding libraries, when
available. The particularities of the algorithm for each library are described. We also
specifically mention the option activated in the different regridding libraries to ensure that
all valid target grid points receive a regridded value, even near the coasts.

1. Nearest neighbour

For all libraries, except for XIOS, which does not implement this algorithm, the value
of the non-masked nearest neighbour on the source grid was assigned to each target grid
point, i.e., only one neighbour was used.

For ESMF, the options allowing regridding on the cell centre locations of an unstruc-
tured grid (i.e., –src_loc center –dst_loc center) and the option ignoring degenerate cells in
either the source or the destination grid (–ignore_degenerate) were activated. This option can
be useful for the NEMO grids torc and nogt, which may have masked cells (i.e., not used in
the regridding) collapsing into a point or line.
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2. First order non-conservative

SCRIP uses a general scheme based on a local bilinear approximation. For non-masked
target points that do not receive a value with the original bilinear algorithm, as can happen
near the coast, the nearest non-masked source neighbour value was used, by default.

ESMF uses a standard bilinear algorithm. The same options as for the nearest neigh-
bour regridding were activated (i.e., –src_loc center –dst_loc center, –ignore_degenerate). In
addition, the option –extrap_method neareststod is turned on. Each target point that did
not receive a value with the original algorithm used the closest unmasked source point to
define its value (in order to reproduce the default behaviour of the SCRIP library).

We also note that with ESMF, grids can be described with the so-called SCRIP format
or with an unstructured format. The SCRIP format (not to be confused with the SCRIP
library itself) describes the grid with the latitude and the longitude of the centre and corners
of each cell. The unstructured format describes the grid as an ensemble of elements and
provides the element connectivity associating for each element a certain number of nodes
in the list of nodes for which the latitude and longitude are provided.

For YAC, we activated an inverse-distance weighting of the vertex values of the source
polygon enclosing the target point, and an average of the two nearest neighbours for target
points falling outside any source polygon, so to ensure that all non-masked target grid
points receive a regridded value.

XIOS does not implement any first-order non conservative regridding.

3. Second order non-conservative

For SCRIP, the bicubic regridding follows the general local bilinear remapping using
the values of each vertex of the enclosing source cell and the values of the gradients in each
local direction and in the cross direction. Again, the nearest non-masked source neighbour
value is used for non-masked target points that do not receive any value with the original
bicubic algorithm.

For YAC, the recently introduced hybrid cubic spherical Bernstein–Bézier (HCSBB)
method [11] was used [10]. Compared to the patch algorithm used in ESMF (see below), the
HCSBB method always results in an interpolated field that has a continuous first derivative.
The source grid was first triangulated and the derivatives of the source field across the
edges of the triangles were computed. Triangular patches were constructed from a blend of
spherical Bernstein–Bézier polynomials using these derivatives, and then used to regrid
each target point. Compared to the patch algorithm, this method uses a bigger stencil to
compute each target point. The completion with 4-nearest non-masked neighbours is also
activated for non-masked target points that do not receive any value with the original
HCSBB algorithm.

For ESMF, the patch algorithm that is used is a technique commonly used in finite
element modelling. Patch interpolation works by constructing multiple polynomial patches
for the cells around the vertices of a source cell (e.g., for a square source cell four patches would
be computed). For 2D grids, these polynomials are currently second degree 2D polynomials.
The interpolated value at the destination point is the weighted average of all the patches for
the source cell (e.g., the four patches for a square cell). This patch averaging prevents too
strong overshoots and undershoots. The same options as for the first order non-conservative
regridding (i.e., –src_loc center –dst_loc center –ignore_degenerate –extrap_method neareststod)
were activated.

XIOS does not implement any second order non-conservative regridding.

4. First order conservative with FRACAREA and DESTAREA normalisations

In a first-order conservative remapping, the value for each target cell is computed as a
weighted sum of source cell values, with the contribution of a source cell being proportional
to the fraction of the target cell intersected by the source cell. In case of non-matching
sea-land masks between the atmosphere and the ocean grids, different normalisation
options exist. DESTAREA (DESTination AREA) uses the whole target cell area for the
normalisation, whereas FRACAREA (FRACtional AREA) uses the intersected area of
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the target cell. DESTAREA ensures local conservation but may produce non-physical
values while FRACAREA does not ensure local conservation but produces values that are
physically consistent. We note also that the FRACAREA normalisation may give some good
results for the wrong reasons, in the sense that the normalisation operation involving the
intersected target cell area, as calculated by the library itself, may lead to the cancellation of
error present in the weights before the normalisation. DESTAREA does not involve this
error cancellation and therefore often reveals specific algorithmic problems. All libraries
implement both normalisation options.

For conservative remappings, the SCRIP library assumes by default that the edges of
the meshes follow a straight path in the longitude–latitude space. It is however possible, for
the edge intersection calculation, to switch to a Lambert equivalent azimuthal projection
above a certain latitude threshold if specified. We performed the benchmark tests either
without any projection, or with a projection above 1.45 radians in latitude north. In the
latter case, the results are denoted as SCRIP-L and in the former case, they are denoted as
SCRIP. We mention here that, by default, target cells that do not intersect any non-masked
source cells do not receive any value, even if this never happens in our tests thanks to the
approach use to define the sea-land masks (see Section 2.1.1).

For conservative remapping, ESMF assumes by default that grid cells edges follow great
circle paths along the sphere surface. The default normalisation is DESTAREA. To activate
the FRACAREA normalisation, the option –norm_type fracarea was activated. The option
–ignore_degenerate (see above) was also activated. In addition, the option –ignore_unmapped,
i.e., do not do anything special for target point that does not receive a value with the original
algorithm, was activated in order to reproduce the default behaviour of SCRIP.

With XIOS, the mesh edges can be described with great circle or latitude circles, and is
automatically defined by the grid type. For unstructured and curvilinear grids (i.e., torc,
nogt, icos, and icoh in our case), great circles are used. For longitude–latitude (i.e., bggd in
our case), and Gaussian-reduced (i.e., sse7), latitude circles are used for the edges located
on a latitude circle and great circles are used otherwise.

With YAC, the edges of the grid cells can be either defined with longitude and latitude
circles or with great circles depending on the interface used. We used the interface defining
the edges of the grid cells with great circles. We have to note here that this is not totally
appropriate for the cell edges following a latitude circle as in the regular latitude-longitude
grid bggd and in the Gaussian-reduced grid sse7.

5. Second order conservative with FRACAREA normalisation

As stated above, the basis of a second-order conservative remapping is the same as for
the first-order conservative remapping but additional terms proportional to the gradients
of the source field are applied. While remaining conservative, this remapping ensures
that field details are reconstructed and that different target cells entirely located under
the same source cell receive different values. This difference between the first-order and
second-order methods is particularly apparent when going from a coarse source grid to a
finer destination grid (see Section 3.6). Another difference is that the second-order method
does not guarantee that after regridding the range of values in the destination field is within
the range of values in the source field. For example, if the minimum value in the source
field is 0.0, it is possible that after regridding the destination field contains negative values.

SCRIP applies gradients calculated in the longitudinal and latitudinal directions.
YAC, ESMF, and XIOS implement the second-order conservative algorithm based

on [21]. For all four libraries, in cases where the gradient computation fails (for example
due to a lack of neighbours, which can occur at land-sea mask borders), the algorithm
automatically assumes a zero gradient, which is essentially a fall back to a first-order
conservative remapping.

For ESMF, the same options used for the first-order conservative remapping
(i.e., –ignore_unmapped –ignore_degenerate, and –norm_type fracarea) were activated.
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2.1.4. Benchmark Metrics

The benchmark implements the calculation of regridding metrics proposed by the
CANGA project. With the following definitions:

• Ψs: the analytical function on the source grid;
• Ψt: the analytical function on the target grid;
• RΨs: the source analytical function regridded on the target grid;
• Is: the integral on the source grid;
• It: the integral on the target grid;

The CANGA metrics are defined as:

• mean misfit: mean (|RΨs − Ψt|/|Ψt|);
• maximum misfit: max (|RΨs − Ψt|/|Ψt|);
• RMS (root mean square) misfit: RMS (|RΨs − Ψt|/|Ψt|);
• Lmin: (min Ψt − min RΨs)/max (|Ψt|) (A positive Lmin detects an overestimate of

the function minimum (i.e., it reinforces the minimum) while a negative Lmin detects
some smoothing of the function minimum);

• Lmax: (max RΨs −max Ψt)/max (|Ψt|) (A positive Lmax detects an overestimate of
the function maximum (i.e., it reinforces the maximum) while a negative Lmax detects
some smoothing of the function maximum);

• Source global conservation: |It (RΨs) − Is (Ψs)|/Is (Ψs);
• Target global conservation: |It (RΨs) − It (Ψt)|/It (Ψt).

We calculated these metrics for all libraries for all pairs of grids for the 4 functions for
all algorithms except when the library did not support the algorithm.

2.2. Implementation of the Regridding Benchmark for SCRIP, YAC, ESMF and XIOS

The steps to realize in order to calculate the benchmark metrics for each regridding
library is, of course to download the library sources, compile them, and develop a scripting
environment to generate regridding weights activating the different regridding algorithms
for the different pairs of grids. We went through these steps for YAC, ESMF and XIOS.
For completeness, we also describe the environment used to generate the weights with the
SCRIP library, as the benchmark metrics were also calculated for the SCRIP for comparison.
These calculations were realized by different developers on different platforms, using the
intel 18.0.1.163 compiler and associated intel mpi 2018.1.163. The current benchmark results,
evaluating the quality of the regriddings, are not sensible to the platform used, while a
benchmark evaluating the numerical performance of the libraries would be.

• SCRIP

The OASIS3-MCT, and therefore SCRIP, sources used for the regridding benchmark
correspond to the trunk of the OASIS3-MCT git developer repository dated 05/05/2021.
The environment used to calculate regridding weights with the SCRIP library in OASIS3-
MCT is available on Zenodo (see the Data Availability section below). The benchmark tests
were run on LENOVO cluster nemo at CERFACS (288 bi-socket nodes with 12 Intel cores
E5-2680-v3 2.5 Ghz with 64 GB of memory).

• ESMF

The sources used for the results presented in Section 3 correspond to the branch
ESMF_8_2_0_beta_snapshot_08. An environment developed to generate regridding weights
with ESMF is available on Zenodo. As for SCRIP, the benchmark tests were run on LENOVO
cluster nemo at CERFACS.

• YAC

YAC sources used for the regridding benchmark corresponds to a pre-release state of
YAC v2.0.0 that was provided by the developers. All developments used in this version are
now included in the official release YAC v2.3.0. The environment to calculate regridding
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weights with YAC is available on Zenodo. All regridding weight calculations were done on
a PC Dell Precision M7720 with 6 cores Intel Xeon E-2186M, 64 Gb RAM.

• XIOS

The sources used for the results presented in Section 3 correspond to SVN revision
2134 dated 2021-04-29. The environment developed to generate regridding weights with
XIOS is available on Zenodo. As for YAC, all regridding weight calculations were done on
a PC Dell Precision M7720 with 6 cores Intel Xeon E-2186M, 64 Gb RAM.

Once the regridding weights had been generated, the benchmark metrics were cal-
culated for the four libraries using different analytical functions using a specific scripting
environment based on Python 3.7.7 available on Zenodo.

3. Benchmark Results

All benchmark metrics were calculated for:

• the four analytical functions: sinusoid, harmonic, vortex, gulfstream (see Section 2.1.2);
• the six pairs of relatively low-resolution grids matching an ocean grid with an at-

mospheric grid: torc-bggd, torc-icos, torc-sse7, nogt-bggd, nogt-icos, nogt-sse7 in both
directions (see Section 2.1.1); for the conservative remapping, we also analyse the
regridding of the vortex function for icos-icoh and nogt-icoh in order to test the impact
of that regridding on cases with large resolution difference (see Section 3.6);

• for the four regridding libraries: SCRIP (+SCRIP-L, i.e., with Lambert projection for
conservative regridding), YAC, ESMF and XIOS;

• for all algorithms: nearest neighbour, 1st and 2nd order non-conservative, 1st and 2nd
order conservative, except when the regridding library does not support the algorithm,
such as, e.g., nearest neighbour for XIOS (see Section 2.1.3).

Results of all metric values and plots are available on Zenodo. The lists of the in-
dividual files containing metric values and plots are detailed in Appendices B and C,
respectively.

We analysed all metrics obtained but we cannot of course discuss them all here. In the
next paragraphs, we present specific cases, either to illustrate the main conclusions of our
analysis or to highlight the specific problems observed. We note here that we show metric
results for the SCRIP library, as a basis for comparison. However, if specific problems are
revealed by the benchmark for the SCRIP, we do not further investigate them as the current
objective is to evaluate other regridding libraries.

3.1. Nearest Neighbour Regridding

Figure 3 shows the mean, rms and maximum misfit for the different pairs of grids for
the harmonic function for the nearest neighbour regridding. The three regridding libraries
produce almost exactly the same, and very reasonable, results: the curves are superimposed
and not distinguishable. This is also true for the other analytical functions (not shown).

We observed that the function used to define the coupling field has a strong impact on
the maximum misfit, as illustrated on Figure 4, which shows the maximum misfit for the
different pairs of grids for the four functions. The maximum misfit is directly linked to the
gradient of the function, being much higher for example for the gulfstream function than for
the slowly varying sinusoid function, as is expected for a nearest neighbour algorithm.
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Figure 3. (a) mean, (b) rms and (c) maximum misfit for the different pairs of grids for the harmonic
function for nearest neighbour algorithm for ESMF, SCRIP and YAC.

 
Figure 4. Maximum misfit for the different pairs of grids for the different functions sinusoid, vortex,
harmonic, gulfstream for the nearest neighbour algorithm for ESMF, SCRIP and YAC.

3.2. 1st Order Non-Conservative Regridding

Figure 5 shows the mean, rms, and maximum misfit for the different pairs of grids
for SCRIP, ESMF and YAC, for the vortex function for the first-order non-conservative
regriddings described in Section 2.1.3. The algorithm in YAC is less accurate on average,
i.e., the mean misfit is higher on average. This was also observed for the other analytical
functions (not shown).
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Figure 5. (a) mean, (b) rms, and (c) maximum misfit for the different pairs of grids for the vortex
function for first-order non-conservative regridding for ESMF, SCRIP and YAC.

3.3. Second-Order Non-Conservative Regridding

Second-order non-conservative algorithms are available in SCRIP, ESMF and YAC (see
details in Section 2.1.3). Figure 6 shows the mean misfit, rms misfit, maximum misfit, and
Lmax for the different pairs of grids for these three regridding libraries for the gulfstream
function.

 
Figure 6. (a) mean, (b) rms, and (c) maximum misfit and (d) Lmax for the different pairs of grids for
the gulfstream function for second-order non-conservative algorithms for ESMF, SCRIP and YAC. The
red circles identify anomalous regriddings detailed in the text.

On average, the SCRIP bicubic algorithm gives slightly better results for certain pairs
of grids and the ESMF patch algorithm gives slightly less accurate results (Figure 6a). The
averaging present in the ESMF patch algorithm smooths the regridded field and prevents
overshoots or undershoots, as can be seen by the more negative values for Lmax.
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In Figure 6c, we note some high maximum misfit for ESMF for torc-bggd and torc-sse7,
not present for the other functions (not shown). These anomalous points also appear for
the bilinear regridding for the gulfstream function only (not shown). This led us to look for
anomalous regridded values in the gulf stream region. The 2D plots of the misfit in that region
for the gulfstream function for the torc-bggd regridding are shown at Figure 7. One anomalous
value near the coast (in yellow) is indeed easy to identify for ESMF patch algorithm. The same
anomalous point appears for the torc-sse7 regridding (not shown). At the time of writing this
paper, this particular case was under investigation with ESMF developers.

 
Figure 7. Misfit (%) for the gulfstream function in the gulf stream region for torc-bggd regridded with
the second-order non-conservative algorithm for (a) YAC HCSBB and (b) ESMF PATCH. The red circle
identifies the anomalous value near the coast for the ESMF patch algorithm discussed in the text.

Figure 6d also shows high values of Lmax for icos-torc and icos-nogt for the gulfstream
function that do not appear for the other functions (not shown). Figure 8 shows 2D plots of the
regridded field in the gulf stream region for ESMF and YAC. Indeed, it confirms that, compared
to ESMF, which tends to smooth the local maximum with its patch averaging algorithm, YAC
gives higher, but a priori non-anomalous, values in the centre of the gulf stream.

 
Figure 8. Misfit (%) for the gulfstream function in the gulf stream region for icos-torc regridded with
the second-order non-conservative algorithm for (a) YAC HCSBB and (b) ESMF PATCH. The red
circle identifies the highest, but a priori non-anomalous, value in the centre of the gulf stream for
YAC discussed in the text.

3.4. First-Order Conservative Remapping with DESTAREA Normalisation

To evaluate the quality of the first-order conservative regridding, we started by looking
at the results obtained with the DESTAREA normalisation option, which usually reveals
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problems that the FRACAREA option would hide, sometimes involving a cancellation of
errors. Figure 9 shows the mean and the maximum misfits for the harmonic function for the
four libraries. Here, for ESMF, nogt and torc are described with the unstructured grid format
(see Section 2.1.3). It confirms the extremely wrong values obtained using the SCRIP library
either activating (SCRIP-L) or not activating (SCRIP) the Lambert azimuthal projection, as
mentioned in the introduction (see also [4,5]). The other libraries ESMF, YAC and XIOS
produced practically the same and satisfactory results, with a mean misfit between 0.1%
and 1% and a maximum misfit between 1% and 10% for all pairs of grids.

 
Figure 9. (a) mean and (b) maximum misfit for ESMF, SCRIP, SCRIP-L, YAC, and XIOS for the
first-order conservative remapping with DESTAREA normalisation for the different pairs of grids for
the harmonic function. For ESMF, nogt and torc are described with the unstructured format.

Figure 10 shows the source global conservation metric for the 4 functions for all regrid-
ding libraries for the different pairs of grids. Again, it is very clear that the SCRIP/SCRIP-L
library presents some important problems with the first-order conservative remapping. On
the contrary, ESMF, YAC, and XIOS show similar and very reasonable results, this metric
being at maximum of the order of 1%.

 

vortex gulfstream

harmonicsinusoid

Figure 10. Source global conservation (%) for ESMF, SCRIP, SCRIP-L, YAC and XIOS for the 1st
order conservative remapping with DESTAREA normalisation for the different pairs of grids for the
4 functions: (a) sinusoid, (b) harmonic, (c) vortex, and (d) gulfstream.
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We then analysed the impact of the grid description format in ESMF. As explained in
Section 2.1.3 two formats are supported to describe the grids with ESMF, either the so-called
SCRIP format or the unstructured format. The results above were produced describing the
ocean NEMO grids nogt and torc with the unstructured format. However, the nogt and torc
grids are structured, and it is possible to describe them using the SCRIP format. As such,
we repeated the first-order conservative regriddings for ESMF using the SCRIP format to
describe the nogt and torc grids. Figure 11 shows the mean and the maximum misfit for the
harmonic function in that case. The results are the same as on Figure 9, except that ESMF
now presents anomalous mean and maximum misfits when nogt is the source grid. The
same anomalies are observed for the other functions (not shown).

 
Figure 11. (a) Mean and (b) maximum misfit for ESMF, SCRIP, SCRIP-L, YAC, and XIOS for the
first-order conservative remapping with DESTAREA normalisation for the different pairs of grids for
the harmonic function. For ESMF, nogt and torc are described with the SCRIP structured format. The
red oval shapes identify ESMF regriddings showing anomalous mean and maximum misfits when
nogt is the source grid. These regriddings are discussed in the text.

Figure 12 shows the 2D plot of the misfit of the harmonic regridded function for
nogt-bggd with nogt described (a) with the SCRIP format and (b) with the unstructured
format. The problem, clearly linked to the north fold of the NEMO, disappears when nogt
is described with the unstructured format.

 
Figure 12. Two-dimensional plot of the misfit of the harmonic function regridded with ESMF first-order
conservative remapping for nogt-bggd with nogt described (a) with the SCRIP format and (b) with the
unstructured format. The red oval shape identifies in (a) the grid points linked to the north fold of the
NEMO grid showing anomalous misfit when the nogt grid is described in the SCRIP format.
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It is interesting to note that the regridding does not show any specific problem when
torc is the source grid. This is certainly linked to the type of grid in the north fold. For torc,
the north fold is such that in the (i,j) space the third-to-last row folds on the last row and the
penultimate row folds on to itself. For nogt, the penultimate row folds on the last row. As for
the anomaly identified for the patch regridding for the gulfstream function (see Section 3.3),
this problem is, at the time of writing, under investigation with ESMF developers.

3.5. 1st Order Conservative Remapping with FRACAREA Normalisation

Figure 13 shows the maximum misfit for the first-order conservative regridding with
FRACAREA normalisation for the four functions for all pairs of grids. For ESMF, the nogt
grid is described with the unstructured format to avoid specific problems linked to the north
fold (see Section 3.4). All regridding libraries have the same maximum misfit, except SCRIP
and SCRIP-L, which we will not further discuss here. As expected, the maximum misfit
is higher for the functions with sharper gradients. For example, the maximum misfit is
higher for the harmonic function than for the sinusoid function for all pairs of grids. For the
gulfstream function (Figure 13d), the maximum misfit for torc-sse7 is particularly high. As
this is the case for all regridding libraries and not for the other functions, this is probably
linked to the sharp gradients of the gulfstream function.

 
Figure 13. Maximum misfit for ESMF, SCRIP, SCRIP-L, YAC, and XIOS for the first-order conserva-
tive remapping with FRACAREA normalisation for the different pairs of grids for the 4 functions:
(a) sinusoid, (b) harmonic, (c) vortex, (d) gulfstream.

For the source global conservation metric (not shown), ESMF, YAC, and XIOS show
similar and very good results, this metric being less than 0.01% in all cases. The source
global conservation for the icos-icoh pair of grids for the vortex function, also calculated for
that regridding, is remarkably small, being of the order of 10−9.

3.6. Second-Order Conservative Remapping with FRACAREA Normalisation

Figure 14 shows the mean, maximum, rms misfits, and the source global conservation
for the second-order conservative remapping with the FRACAREA normalisation for the
different pairs of grids for all regridding libraries for the harmonic function. Besides SCRIP
and SCRIP-L, which we will not further analyse here, we see that all regridding libraires
show more or less the same behaviour with good global conservation. This is not surprising,
as they all implement the same algorithm based on [21].
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Figure 14. (a) Mean, (b) rms, (c) maximum misfit, and (d) source global conservation for the different
pairs of grids for the harmonic function for second-order conservative remapping with FRACAREA
normalisation. The red circles identify anomalous regriddings for ESMF when the source grid is the
icosahedral one (icos) detailed in the text.

The only particularity seems to be for ESMF, when the source grid is the icosahedral one
(icos), which shows a relatively high mean misfit. To better qualify this anomaly, we zoomed
in on the 2D representation of the misfit for the icos-nogt case, as shown on Figure 15. The
misfit shows an alternating positive and negative pattern which causes the relatively high
mean misfit for ESMF. Work is underway with ESMF developers to solve this issue.

 
Figure 15. Misfit (%) on the target grid nogt for the icos-nogt second-order conservative remapping
with FRACAREA normalisation for ESMF, with a zoom on the left.

Figure 16 shows Lmin and Lmax for the second-order conservative remapping with
FRACAREA normalisation for the gulfstream function, which presents some outstanding
values (the other functions do not present such outstanding values). XIOS shows a strong
undershoot for torc-icos, as shown by Lmin, and a strong overestimate for bggd-nogt as
shown by Lmax.
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Figure 16. Lmin and Lmax for the different pairs of grids for the gulfstream function for 2nd order
conservative remapping with FRACAREA normalisation.

To understand XIOS’s undershoot of torc-icos, we looked at the 2D misfit in the gulf
stream region for XIOS, ESMF and YAC (Figure 17). We observed one clearly outstanding
point near the coast for XIOS. ESMF also shows some negative misfit at this point, but it
is much smaller than XIOS. YAC does not show any important misfit at this point. This
difference between the three regridding libraries has to be investigated in more detail.
As they are based on the same algorithm, it must be linked to some implementation
differences in the way the libraries calculate the gradients and eventually switch to a 1st
order conservative remapping when the gradient cannot be calculated, e.g., near the coast.

 

Figure 17. Misfit in the gulf stream region for the second-order conservative remapping of the
gulfstream function for torc-icos for XIOS, YAC and ESMF. The red circles identify the grid point near
the coast showing an outstanding value for XIOS.

To understand XIOS’s overshoot of bggd-nogt, we looked at the 2D regridded gulfstream
function in the gulf stream region for XIOS, ESMF and YAC (not shown). We observed
that XIOS shows higher values near the centre of the gulf stream. As for YAC HCSBB (see
Figure 8), this behaviour, which explains the overshoot, is most probably linked to some
specificities in the algorithm but not to a bug in the implementation.
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3.7. Comparison of Regridding Algorithms

It is also interesting to compare the results of the different algorithms for each specific
library. Figure 18 shows 2D plots of the relative misfit for the remapping of the vortex
function from the low-resolution icosahedral grid icos to the high-resolution icosahedral
grid icoh with YAC for the (a) first-order conservative remapping and (b) the second-
order conservative remapping (both with FRACAREA normalisation). We see the clear
benefit of the second order compared to the first order, especially when this remapping
involves two grids with very different resolutions. XIOS shows very similar results but not
ESMF, probably because of the problem identified above for the second-order conservative
remapping for icos-nogt, which also exists for icos-icoh (alternating positive and negative
pattern in the misfit, see Figure 15).

 
Figure 18. Misfit (%) for the (a) first-order and (b) second-order conservative remapping (both with
FRACAREA normalisation) of the vortex function from the low-resolution icosahedral grid icos to the
high-resolution icosahedral grid icoh with YAC.

Figure 19 shows the mean misfit and the source global conservation for the different
regridding algorithms for ESMF and for YAC. We do not show the equivalent graphs for
XIOS as this library supports only conservative regridding, which makes the comparison
somewhat limited.

For both ESMF and YAC, Figure 19a,c, respectively, show that the mean misfit for the
first-order conservative remapping is always higher than for the second-order remapping.
This is expected and fully coherent with the 2D results shown above in Figure 18 for the
icos-icoh pair of grids.

The comparison of the mean misfit between conservative and non-conservative al-
gorithms does not lead to such clear-cut conclusions. We would expect non-conservative
algorithms to show less error at the price of being non-conservative. For ESMF (Figure 19a),
we see that this is the case for bilinear and patch when compared with first-order conserva-
tive remapping (the green and red curves are under the blue curve for all grid pairs) but
their mean misfits are of about the same magnitude as that of the second-order conservative
remapping (black curve). For YAC (see Figure 19c), this expectation is basically fulfilled
for the HCSBB algorithm (red curve), which shows an error smaller than all of the other
algorithms except for the second-order conservative remapping for torc-icos. However, the
non-conservative first-order regridding (green curve) is the one showing in general the
highest error.
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Figure 19. Mean misfit (%) for the different regridding algorithms in (a) ESMF and (c) YAC; source
global conservation (%) for the different regridding algorithms in (b) ESMF and (d) YAC.

Regarding the global conservation (Figure 19b,d), we can observe that the non-conservative
remappings (green and red curves) show much more variability with respect to the grid pairs
than the first- or second-order remappings. This is reassuring, as it means that the conservative
remapping guarantees a certain level of conservation. Still, we observe that for a few pairs
of grids, e.g., for torc-icos for ESMF, the global conservation is better for non-conservative
regriddings than for conservative remappings, which was unexpected a priori.

4. Discussion

This paper presents work done to benchmark the quality of four regridding libraries:
SCRIP, YAC, ESMF, and XIOS, each evaluating five algorithms (see Section 2.1.3) with
four different analytical functions (see Section 2.1.2) for six grids used in real ocean or
atmosphere models (see Section 2.1.1).

This benchmark calculates some of the metrics proposed by the CANGA project and
we can state that it provides a strong basis to analyse the quality of regridding libraries as
it evaluates:

• their sensitivity, as we perform the metric calculation for six pairs of grids in both
directions and, in addition, for the icos-icoh and nogt-icoh pairs for the vortex function
for second-order conservative FRACAREA remapping;

• their global conservation, as we provide the source and target global conservation metrics.

As we provide and analyse Lmin and Lmax metrics, our benchmark also allows a first
analysis of the regridding library monotonicity and dissipation (or smoothing). We also
started to evaluate the performances of the libraries with a first scalability analysis, not shown
here but in [5], that will be completed in the coming months. However, we do not address the
regridding library consistency, i.e., the preservation of discretization order and accuracy.

The details of our analysis are the following (note that XIOS offers only first- and
second-order conservative remapping):

• ESMF and YAC nearest neighbour regriddings produce almost exactly the same and
very reasonable results than the SCRIP (Figure 3). The analytical function defining
the field to be regridded has a strong impact on the maximum of the misfit, which is
directly linked to the field gradient (Figure 4).

• For first-order non-conservative regridding, YAC, using an inverse distance weighting
of the vertex values of the source polygon enclosing the target point, is less accurate
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on average than the SCRIP or ESMF bilinear schemes (Figure 5). For second-order
non-conservative regridding, the ESMF patch algorithm gives slightly less accurate
results than the SCRIP bicubic or the YAC spherical Bernstein–Bézier polynomial
algorithms (Figure 6). For first- and second-order non-conservative regridding, all
results for ESMF and YAC are reasonable, except for ESMF in the case of the gulfstream
function for torc-bggd and torc-sse7 grid pairs, which show one anomalous value near
the coast (Figure 7). For second-order non-conservative regridding in the case of
icos-torc and icos-nogt for the gulfstream function, YAC also shows some higher, but a
priori non-anomalous values, in the centre of the gulf stream (Figure 8).

• First-order conservative remapping with DESTAREA normalisation in YAC, ESMF, and
XIOS show very similar and good results (Figures 9 and 10), except for ESMF when nogt
is the source grid if this grid is described with the SCRIP (structured) format (Figures 11
and 12). For first-order conservative remapping with FRACAREA normalisation, YAC,
ESMF, and XIOS show very similar and good results for all functions (Figure 13); this
regridding raises no specific issues for any regridding library.

• YAC, ESMF, and XIOS show approximately the same behaviour with good global
conservation for second-order conservative remapping with FRACAREA normalisa-
tion, implemented following [21] in the 3 libraries (Figure 14). One issue, however, is
in ESMF when the source grid is the icosahedral one, icos, which shows a relatively
high mean misfit for all functions, with an alternating positive and negative pattern
(Figure 15). Another issue is present for XIOS, which shows a strong undershoot for
the gulfstream function for torc-icos, with one clearly outstanding point near the coast.

• The second-order remapping always shows a lower mean misfit than the first-order
remapping (Figure 19a,c), and the gain is very evident when going from a low-
resolution to a high-resolution grid (Figure 18).

• Unexpectedly, conservative algorithms do not always offer better global conservation
than non-conservative ones (Figure 19b,d).

This benchmark leads us to conclude that YAC, ESMF, and XIOS can all three be
considered as high-quality regridding libraries, even if some details for few specific cases
still need to be fixed. Interactions are currently going on with the library developers to
address the very few problems observed.

Benchmarking libraries is always a delicate task as the environment has to be designed
to not favour any library a priori. Benchmarking is more than a way to compare libraries
and should be taken as a great opportunity for the users to interact with the developers,
as we did during the exercise presented here, and for the developers to have their library
tested in depth by expert users.
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https://doi.org/10.5281/zenodo.5872716 (accessed on 18 January 2022). The environment developed to
generate regridding weights with XIOS is available in the tar file generate_weights_XIOS.tar on Zenodo
at https://doi.org/10.5281/zenodo.5342491 (accessed on 31 August 2021). The environment used to
calculate the benchmark metrics for the four libraries, once the regridding weights were generated for
each of them, is available in the tar file compare_interpolation.tar on Zenodo at https://doi.org/10.5281/
zenodo.5342778 (accessed on 31 August 2021). The tar file Regridding_Benchmark_metrics.tar, gathering
the CSV files containing the benchmark metric values, is available on Zenodo at https://doi.org/10.528
1/zenodo.5343166 (accessed on 31 August 2021). The tar file Regridding_Benchmark_metrics_plots.tar,
gathering the plots of the regridding benchmark metric, is available on Zenodo at https://doi.org/10.5
281/zenodo.5347696 (accessed on 31 August 2021).
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Appendix A. Analytical Functions

This appendix contains the definition of the four analytical functions, expressed in
Fortran 90, used to define the coupling fields, i.e., sinusoid (see Figure A1), harmonic (see
Figure A2), vortex (see Figure A3), gulfstream (see Figure A4).

(A) sinusoid

 

Figure A1. Fortran 90 code defining the sinusoid analytical function.
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(B) harmonic

 

Figure A2. Fortran 90 code defining the harmonic analytical function.

(C) vortex

 

Figure A3. Fortran 90 code defining the vortex analytical function.
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(D) gulfstream

 

Figure A4. Fortran 90 code defining the gulfstream analytical function.

Appendix B. List of CSV Files Containing Metrics Values

The files included in the tar file Regridding_Benchmark_metrics.tar available on
Zenodo at https://doi.org/10.5281/zenodo.5343166 (accessed on 31 August 2021) are
listed here below in Table A1. This tar file contains the regridding benchmark metrics
calculated for all pairs of grids (see Section 2.1.1) and all functions (see Section 2.1.2) for
all regridding libraries SCRIP (+SCRIP-L, i.e., with Lambert projection for conservative
regridding), YAC, ESMF, and XIOS, and for all algorithms (see Section 2.1.3), except in
cases where the regridding library does not support the algorithm (e.g., nearest neighbour
for XIOS).

The name of the file is given as R_A_f.csv, where R is the regridding library, A is the
algorithm, and f is the function (here classic is equivalent to sinusoid). The algorithm A can be:
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• “DISTWGT_1” for nearest neighbour
• “BILINEAR” for first-order non conservative
• “BICUBIC” for second-order non-conservative
• “CONSERV” for first-order conservative
• “CONS2ND” for second-order conservative

For conservative remapping, A also contains the normalisation option “FRACAREA”
or “DESTAREA”.

For XIOS, there are therefore no files for nearest neighbour, first- and second-order
non-conservative algorithms as they are not supported in XIOS. For the first- and second-
order conservative remapping for SCRIP, there are two files: one with (SCRIP-L) and one
without (SCRIP) the Lambert azimuthal projection. For ESMF, all results are provided for
the version tagged ESMF_8_2_0_beta_snapshot_08 (ESMF-820bs08). For ESMF, for first-
and second-order conservative algorithms, the nogt grid was described as unstructured,
as it correctly supports the north fold of the NEMO grid (see Section 3.4), in that case,
R = “ESMF-820bs08-U”. For first-order conservative with DESTAREA normalisation, results
are also provided that describe the nogt grid as with the SCRIP format for comparison, in
that case, R = “ESMF-820bs08”.

Table A1. Regridding benchmark files included in the tar file Regridding_Benchmark_metrics.tar
available on Zenodo at https://doi.org/10.5281/zenodo.5343166 (accessed on 31 August 2021).

ESMF-820bs08-U_CONS2ND_FRACAREA_classic.csv SCRIP_CONS2ND_FRACAREA_harmonic.csv
ESMF-820bs08-U_CONS2ND_FRACAREA_gulfstream.csv SCRIP_CONS2ND_FRACAREA_vortex.csv
ESMF-820bs08-U_CONS2ND_FRACAREA_harmonic.csv SCRIP_CONSERV_DESTAREA_classic.csv
ESMF-820bs08-U_CONS2ND_FRACAREA_vortex.csv SCRIP_CONSERV_DESTAREA_gulfstream.csv
ESMF-820bs08-U_CONSERV_DESTAREA_classic.csv SCRIP_CONSERV_DESTAREA_harmonic.csv
ESMF-820bs08-U_CONSERV_DESTAREA_gulfstream.csv SCRIP_CONSERV_DESTAREA_vortex.csv
ESMF-820bs08-U_CONSERV_DESTAREA_harmonic.csv SCRIP_CONSERV_FRACAREA_classic.csv
ESMF-820bs08-U_CONSERV_DESTAREA_vortex.csv SCRIP_CONSERV_FRACAREA_gulfstream.csv
ESMF-820bs08-U_CONSERV_FRACAREA_classic.csv SCRIP_CONSERV_FRACAREA_harmonic.csv
ESMF-820bs08-U_CONSERV_FRACAREA_gulfstream.csv SCRIP_CONSERV_FRACAREA_vortex.csv
ESMF-820bs08-U_CONSERV_FRACAREA_harmonic.csv SCRIP_DISTWGT_1_classic.csv
ESMF-820bs08-U_CONSERV_FRACAREA_vortex.csv SCRIP_DISTWGT_1_gulfstream.csv
ESMF-820bs08_BICUBIC_classic.csv SCRIP_DISTWGT_1_harmonic.csv
ESMF-820bs08_BICUBIC_gulfstream.csv SCRIP_DISTWGT_1_vortex.csv
ESMF-820bs08_BICUBIC_harmonic.csv XIOS_CONS2ND_FRACAREA_classic.csv
ESMF-820bs08_BICUBIC_vortex.csv XIOS_CONS2ND_FRACAREA_gulfstream.csv
ESMF-820bs08_BILINEAR_classic.csv XIOS_CONS2ND_FRACAREA_harmonic.csv
ESMF-820bs08_BILINEAR_gulfstream.csv XIOS_CONS2ND_FRACAREA_vortex.csv
ESMF-820bs08_BILINEAR_harmonic.csv XIOS_CONSERV_DESTAREA_classic.csv
ESMF-820bs08_BILINEAR_vortex.csv XIOS_CONSERV_DESTAREA_gulfstream.csv
ESMF-820bs08_CONSERV_DESTAREA_classic.csv XIOS_CONSERV_DESTAREA_harmonic.csv
ESMF-820bs08_CONSERV_DESTAREA_gulfstream.csv XIOS_CONSERV_DESTAREA_vortex.csv
ESMF-820bs08_CONSERV_DESTAREA_harmonic.csv XIOS_CONSERV_FRACAREA_classic.csv
ESMF-820bs08_CONSERV_DESTAREA_vortex.csv XIOS_CONSERV_FRACAREA_gulfstream.csv
ESMF-820bs08_DISTWGT_1_classic.csv XIOS_CONSERV_FRACAREA_harmonic.csv
ESMF-820bs08_DISTWGT_1_gulfstream.csv XIOS_CONSERV_FRACAREA_vortex.csv
ESMF-820bs08_DISTWGT_1_harmonic.csv YAC_BICUBIC_classic.csv
ESMF-820bs08_DISTWGT_1_vortex.csv YAC_BICUBIC_gulfstream.csv
SCRIP-L_CONS2ND_FRACAREA_classic.csv YAC_BICUBIC_harmonic.csv
SCRIP-L_CONS2ND_FRACAREA_gulfstream.csv YAC_BICUBIC_vortex.csv
SCRIP-L_CONS2ND_FRACAREA_harmonic.csv YAC_BILINEAR_classic.csv
SCRIP-L_CONS2ND_FRACAREA_vortex.csv YAC_BILINEAR_gulfstream.csv
SCRIP-L_CONSERV_DESTAREA_classic.csv YAC_BILINEAR_harmonic.csv
SCRIP-L_CONSERV_DESTAREA_gulfstream.csv YAC_BILINEAR_vortex.csv
SCRIP-L_CONSERV_DESTAREA_harmonic.csv YAC_CONS2ND_FRACAREA_classic.csv
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Table A1. Cont.

SCRIP-L_CONSERV_DESTAREA_vortex.csv YAC_CONS2ND_FRACAREA_gulfstream.csv
SCRIP-L_CONSERV_FRACAREA_classic.csv YAC_CONS2ND_FRACAREA_harmonic.csv
SCRIP-L_CONSERV_FRACAREA_gulfstream.csv YAC_CONS2ND_FRACAREA_vortex.csv
SCRIP-L_CONSERV_FRACAREA_harmonic.csv YAC_CONSERV_DESTAREA_classic.csv
SCRIP-L_CONSERV_FRACAREA_vortex.csv YAC_CONSERV_DESTAREA_gulfstream.csv
SCRIP_BICUBIC_classic.csv YAC_CONSERV_DESTAREA_harmonic.csv
SCRIP_BICUBIC_gulfstream.csv YAC_CONSERV_DESTAREA_vortex.csv
SCRIP_BICUBIC_harmonic.csv YAC_CONSERV_FRACAREA_classic.csv
SCRIP_BICUBIC_vortex.csv YAC_CONSERV_FRACAREA_gulfstream.csv
SCRIP_BILINEAR_classic.csv YAC_CONSERV_FRACAREA_harmonic.csv
SCRIP_BILINEAR_gulfstream.csv YAC_CONSERV_FRACAREA_vortex.csv
SCRIP_BILINEAR_harmonic.csv YAC_DISTWGT_1_classic.csv
SCRIP_BILINEAR_vortex.csv YAC_DISTWGT_1_gulfstream.csv
SCRIP_CONS2ND_FRACAREA_classic.csv YAC_DISTWGT_1_harmonic.csv
SCRIP_CONS2ND_FRACAREA_gulfstream.csv YAC_DISTWGT_1_vortex.csv

Appendix C. List of Metric Plots

The plots included in the tar file Regridding_Benchmark_metrics_plots.tar available
on Zenodo at https://doi.org/10.5281/zenodo.5347696 (accessed on 31 August 2021) are
listed here below in Table A2.

This tar file contains the regridding benchmark metric plots calculated for all pairs
of grids (see Section 2.1.1), for all functions (see Section 2.1.2), for all regridding libraries
(SCRIP, SCRIP-L, i.e., with Lambert projection for conservative regridding, YAC, ESMF,
and XIOS) and for all algorithms (see Section 2.1.3), except when the regridding library
does not support the algorithm (e.g., bilinear for XIOS).

There is one plot for each algorithm, for each function, for all metrics, for all pairs of grids,
and for all regridding libraries. The name of the file is given as plot_remap_metrics_A_f.pdf,
where A is the algorithm (see Appendix B) and f is the function (here classic is equivalent
to sinusoid).

For XIOS, there is no plot for nearest neighbour, first- and second-order non-conservative
algorithms as they are not supported by XIOS.

For ESMF, all plots are provided for the version tagged ESMF_8_2_0_beta_snapshot_08
with nogt described with the unstructured format, as it correctly supports the north fold of
the NEMO grid (see Section 3.4).

Table A2. Regridding benchmark plots included in the tar file Regridding_Benchmark_metrics_plots.tar
available on Zenodo at https://doi.org/10.5281/zenodo.5347696 (accessed on 31 August 2021).

plot_remap_metrics_BICUBIC_classic.pdf
plot_remap_metrics_BICUBIC_gulfstream.pdf
plot_remap_metrics_BICUBIC_harmonic.pdf
plot_remap_metrics_BICUBIC_vortex.pdf
plot_remap_metrics_BILINEAR_classic.pdf
plot_remap_metrics_BILINEAR_gulfstream.pdf
plot_remap_metrics_BILINEAR_harmonic.pdf
plot_remap_metrics_BILINEAR_vortex.pdf
plot_remap_metrics_CONS2ND_FRACAREA_classic.pdf
plot_remap_metrics_CONS2ND_FRACAREA_gulfstream.pdf
plot_remap_metrics_CONS2ND_FRACAREA_harmonic.pdf
plot_remap_metrics_CONS2ND_FRACAREA_vortex.pdf
plot_remap_metrics_CONSERV_DESTAREA_classic.pdf
plot_remap_metrics_CONSERV_DESTAREA_gulfstream.pdf
plot_remap_metrics_CONSERV_DESTAREA_harmonic.pdf
plot_remap_metrics_CONSERV_DESTAREA_vortex.pdf
plot_remap_metrics_CONSERV_FRACAREA_classic.pdf
plot_remap_metrics_CONSERV_FRACAREA_classic_sansconservationMTR.pdf

113



Math. Comput. Appl. 2022, 27, 31
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plot_remap_metrics_CONSERV_FRACAREA_gulfstream.pdf
plot_remap_metrics_CONSERV_FRACAREA_harmonic.pdf
plot_remap_metrics_CONSERV_FRACAREA_vortex.pdf
plot_remap_metrics_DISTWGT_1_classic.pdf
plot_remap_metrics_DISTWGT_1_gulfstream.pdf
plot_remap_metrics_DISTWGT_1_harmonic.pdf
plot_remap_metrics_DISTWGT_1_vortex.pdf
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Abstract: Neurodegenerative diseases such as Alzheimer’s (AD) are associated with the propagation
and aggregation of toxic proteins. In the case of AD, it was Alzheimer himself who showed the
importance of both amyloid beta (Aβ) plaques and tau protein neurofibrillary tangles (NFTs) in
what he called the “disease of forgetfulness”. The amyloid beta forms extracellular aggregates
and plaques, whereas tau proteins are intracellular proteins that stabilize axons by cross-linking
microtubules that can form largely messy tangles. On the other hand, astrocytes and microglial
cells constantly clear these plaques and NFTs from the brain. Astrocytes transport nutrients from
the blood to neurons. Activated astrocytes produce monocyte chemoattractant protein-1 (MCP-1),
which attracts anti-inflammatory macrophages and clears Aβ. At the same time, the microglia cells
are poorly phagocytic for Aβ compared to proinflammatory and anti-inflammatory macrophages.
In addition to such distinctive neuropathological features of AD as amyloid beta and tau proteins,
neuroinflammation has to be brought into the picture as well. Taking advantage of a coupled
mathematical modelling framework, we formulate a network model, accounting for the coupling
between neurons and astroglia and integrating all three main neuropathological features with the
brain connectome data. We provide details on the coupled dynamics involving cytokines, astrocytes,
and microglia. Further, we apply the tumour necrosis factor alpha (TNF-α) inhibitor and anti-Aβ

drug and analyze their influence on the brain cells, suggesting conditions under which the drug can
prevent cell damage. The important role of astrocytes and TNF-α inhibitors in AD pathophysiology
is emphasized, along with potentially promising pathways for developing new AD therapies.

Keywords: astrocytes; neural–glial coupled dynamics; Alzheimer’s disease; multiple scales; data
assimilation; data-driven dynamic environments; biologic TNF-α inhibitors; neuroinflammation; AD
drug development; biomarkers

1. Introduction

Alzheimer’s disease (AD) is one of the most common late-life dementias, with colossal
social and economic impacts. The study by the Institute for Health Metrics and Evaluation
published this year in [1] predicts 153 million people will be living with Alzheimer’s disease
by 2050. While there are various medical products that help manage the symptoms of AD,
as of today, there is only one drug officially approved by the FDA that was designed to
treat a possible cause of this form of dementia, rather than the symptoms. Yet, the cost
and controversy are limiting the use of this drug, known as aducanuman and marketed
as aduhelm. Much of this controversy is related to whether or not the build-up of a
protein called amyloid β in the brain can be used as a biomarker. According to the AD
“amyloid cascade hypothesis”, this build-up causes neurodegeneration, but the link between
clearance of amyloid β from the brain and deceleration of memory loss and cognitive decline
requires further clarification. With over 99% of drugs developed for AD having failed in
clinical trials, in addition to more traditional targets related to Aβ and tau proteins, there
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is an increasing interest in the potential of TNF-α inhibition to prevent AD and improve
cognitive function [2].

With underlying interconnections between the processes and factors mentioned above,
computational experiments, based on mathematical modelling and computer simulations,
can effectively supplement in vivo and in vitro research. In this paper, we present a
multiscale model for the onset and evolution of AD that accounts for the diffusion and ag-
glomeration of amyloid beta (Aβ) peptide (amyloid cascade hypothesis) and the spreading
of the disease through neuron-to-neuron transmission (prionoid hypothesis). Indeed, to
cover such diverse facets of AD in a single model, different spatial and temporal scales
must be taken into account: microscopic spatial scales to describe the role of the neurons,
macroscopic spatial and short temporal (minutes, hours) scales for the description of rel-
evant diffusion processes in the brain, and large temporal scales (years, decades) for the
description of the global development of AD. The way in which we combine distinct scales
in a single model with brain connectome data assimilation forms the core and major novelty
of the paper. Following closely the biomedical literature on AD, we briefly describe the pro-
cesses that we shall include in our model. In the neurons and their interconnections, several
microscopic phenomena take place. We know that Aβ monomers are present in healthy
individuals, and therefore, they are unlikely to be toxic. Furthermore, the τ monomer is
non-toxic [3]. On the other hand, Aβ oligomers are highly toxic, playing an important
role in the process of cerebral damage, as postulated by the already mentioned amyloid
cascade hypothesis.

In the analysis of neurodegenerative diseases, AD in particular, it is important to
account for the coupling between neuronal and glial dynamics. Furthermore, given the
importance of astrocytes (collectively known as astroglia) in amyloid production [4], several
coupled models have been recently developed in this direction, describing Alzheimer’s
Aβ accumulation based on calcium-dependent exosome release from astrocytes [5]. It
represents a shift from a more traditional view, considering astrocytes as non-excitable
brain cells, to a deeper investigation of reactive functions of astrocytes (e.g., increasing the
calcium concentration level in response to neurotransmitters and neuromodulators) and
their synaptic communication with neurons and other brain cells via what is sometimes
labelled as astrocytic networks. Hence, with the ready availability of the data from the
brain connectome, derived from various AD mouse models and obtained with the help
of transcriptomics and other technologies [6], it is enlightening to go beyond single astro-
cyte’s consideration and to develop network models allowing such data assimilation (see,
e.g., [7–10] and references therein). This idea is pursued further in this paper.

By now, it is well known that the neuronal and astroglial networks of the brain are
innately interwoven, with astrocytes carrying out a multitude of functions in various brain
processes, including homoeostasis and neurogenesis, with both positive and negative
effects reported [11]. In particular, they are critical in defining the normal operation of the
nervous system, but they could also actively contribute to the pathogenesis of AD and
other neurodegenerative disorders [8]. As observed in experiments on astroglial atrophy at
earlier stages of such neurodegenerative diseases such as Alzheimer’s, Parkinson’s, and
various forms of dementia, they play a major role in them, leading to disruptions in synaptic
connectivity, disbalance in neurotransmitter homoeostasis, and neuronal death through
increased excitotoxicity [12,13]. They maintain their importance in the progression of these
diseases at the later stages as well, in particular through their activation and contribution
to the neuroinflammatory component of grey matter in pathological neurodegeneration.
Given the significance of the contribution of neuroinflammation to Alzheimer’s disease
(AD) progression [14], our better understanding and ultimately controlling of these coupled
neuronal–astroglial networks become increasingly important, opening the door to develop-
ing future therapies. For this to happen, increasing attention is being paid to a relationship
between the astrocytes’ effects in the brain and such fundamental processes as synaptic
transmission, cognition, and myelination [11]. At the same time, conclusive experimental
studies of the role of astrocytes remain extremely challenging, given that the multiple func-
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tionalities of these cells are dependent on numerous (and sometimes contradictory) factors
during the disease progression. Researchers have shown that both microglia and astrocytes
are very heterogeneous in their functions in the diseased brain [15–17]. Indeed, on the one
hand, they can contribute to the clearance of Aβ and limit the growing inflammation in the
brain, while, on the other hand, they may neglect their metabolic role and release neurotox-
ins, contributing in this way to AD neurodegenerative processes. This leads to a situation
where mathematical and computational models developed in a data-driven environment
may very efficiently complement the progress made in the experimental domain.

While we briefly touch on other aspects, in this paper, our focus is mainly on the role
of astrocytes in Alzheimer’s disease via their dynamic interactions with agglomerations
of Aβ peptides. Not only AD is typified by such agglomerations, along with activated
glial cells, but also because Aβ plaques trigger intracellular NFT formation, neuronal cell
death, neuroinflammation, and gliosis, whereas reactive astrocytes in AD, surrounding
these plaques, may additionally contribute to the overall amyloid burden in the brain by
secreting Aβ [4]. Indeed, today, we know that a reactive character of astrocytes in AD is
usually expressed by intermediate filament proteins and cellular hypertrophy, as well as
that these star-shaped glial cells can regulate synaptic communication and modulate brain
network functions [7].

The rest of the paper is organised as follows. We develop a network mathematical
model for brain connectome data assimilation in Section 2. With the help of brain connec-
tome data, in Section 3, we provide details on two groups of computational experiments
elucidating the role of cytokines and astrocytes in AD and giving further details on AD
TNF-α inhibitor drugs, quantifying their influence on the reduction of neuronal damage.
All numerical results, reported in this section, were obtained with our new network model.
Several possible extensions of this work are discussed in Section 4, with concluding remarks
given in Section 5.

2. AD Network Model for Brain Connectome Data Assimilation

In this section, we develop a network model based on the consideration originally
presented in [18], where a PDE model on AD was discussed. Before going to the full
network model in the brain connectome, we first define the diffusion and chemoattraction
terms in a network [19,20]. Suppose the network graph G has V number of nodes and
E number of edges. For j, k = 1, 2, 3, . . . , V, the elements of the adjacency matrix Wl

corresponding to the graph G are

Wl
jk =

njk

l2
jk

, (1)

where njk is the mean fiber number and l2
jk is the mean length squared between the nodes j

and k. We define a matrix Ll with entries

Ll
jk = (Dl

jj −Wl
jk), j, k = 1, 2, 3, . . . , V, (2)

where Dl
jj = ∑V

k=1 Wl
jk. Therefore, at each node j, we take the contribution of the diffusion

term for a dummy variable denoted below as u in the following form

(Δu)j = −
V

∑
k=1

Ll
jkuk. (3)

Similarly, at each node j, we find the chemoattraction term as

(∇ · (v∇u))j =

( V

∑
k=1

Lc
jkvk

)( V

∑
k=1

Lc
jkuk

)
− vj

V

∑
k=1

Ll
jkuk, (4)

where Lc
jk = (Dc

jj −Wc
jk) with Wc

jk = njk/ljk and Dc
jj = ∑V

k=1 Wc
jk.
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Now, at the node j in the brain connectome, we are ready to define a network model
for Alzheimer’s disease incorporating the astrocytes’ dynamics [18]. We use j as the node
index in each of the upcoming equations. Suppose Nj is the density of the living neurons
and N0 is the reference density of the neurons in brain cells. Inside the neurons, amyloid
beta Ai

β is constitutively produced from APP at a rate λi
β and degraded at a rate dAi

β
. In the

early stage of disease progression, Ai
β is overproduced by reactive oxygen species (ROS)

factor R. Therefore, the dynamics of Ai
β is given by

dAi
βj

dt
=

(
λi

β(1 + R)− dAi
β
Ai

βj

) Nj

N0
. (5)

The density of extracellular amyloid beta peptides (Ao
β), depends on different factors,

such as neuronal death, microglias, astrocytes, etc. The equation for Ao
β is given by

dAo
βj

dt
=Ai

βj

∣∣∣∣dNj

dt

∣∣∣∣+ λN
Nj

N0
+ λA

Aj

A0

−
(

dAo
β M̂(M̂1j + θM̂2j) + dAo

β M(M1j + θM2j)

) Ao
βj

Ao
βj + KAo

β

,
(6)

where A0 is the reference astrocyte cell density and KAo
β

is a Michaelis–Menten coeffi-
cient [21]. The first term on the right-hand side of (6) is the contribution due to neuronal
death. The second and third terms of (6) are the growths released from amyloid precur-
sor protein (APP) [22] and astrocytes [23], respectively. The last multiplying factor is the
clearance of Ao

β by peripheral macrophages M̂1 and M̂2 and the activated microglias M1

and M2. Here, 0 ≤ θ < 1 as M̂1 and M1 are more effective in clearing the extracellular Aβ
compared to M̂2 and M2. APP on live neurons shed Aβ peptides in both the intracellular
and extracellular space [18]. We assumed that most of the Ao

β is produced from dead
neurons, so the production from the live neurons is neglected.

The second most critical factor in AD is the tau protein. Suppose that the tau protein
is constitutively produced, and the degradation rates are λτ0 and dτ , respectively. Due to
the abnormal concentrations of Aβ, i.e., when the production of Ai

β exceeds a threshold,

say Ai
βc, glycogen synthase kinase-type 3 (GSK-3) becomes activated, and it mediates the

hyperphosphorylation of tau proteins. Suppose dτ is the degradation rate of tau proteins
due to ROSs. Then, the rate of change of tau protein is given by

dτj

dt
=

(
λτ0 + λτ R− dττj

) Nj

N0
. (7)

Inside the neurons, NFTs form from the hyperphosphorylation of tau proteins and are
released into the extracellular space after the death of the neurons [24–27]. The equations
for NFTs inside the neurons and the extracellular space are given by

dFij

dt
=

(
λFτj − dFi Fij

) Nj

N0
, (8)

dFoj

dt
= Fij

∣∣∣∣dNj

dt

∣∣∣∣− dFo Foj, (9)

respectively.
Due to NFTs’ formation in the brain cell, microtubules are depolymerised and de-

structed, leading to neuron death [24–27]. Not only NFTs, proinflammatory and anti-
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inflammatory cytokines are also responsible for neuronal death in the brain. Including
these factors in the dynamics for N, we obtain

dNj

dt
= −dNF

Fij

Fij + KFi

Nj − dNT
Tαj

Tαj + KTα

1
1 + γI10jKI10

Nj, (10)

where Tα and I10 denote the proinflammatory and anti-inflammatory cytokines,
respectively.

Astrocytes are primarily activated by the proinflammatory cytokines Tα [28], but they
are also activated by the extracellular amyloid beta Ao

β [23]. Therefore, the equation for
astrocytes is given by

dAj

dt
= λAAo

β
Ao

βj + λATα
Tαj − dA Aj. (11)

Microglias and peripheral macrophages clear the NFTs in the extracellular space and
keep neurons healthy. Therefore, the dynamics of neuronal death is given by

dNdj

dt
=dNF

Fij

Fij + KFi

Nj + dNT
Tαj

Tαj + KTα

1
1 + γI10jKI10

Nj

− dNd M(M1j + M2j)
Ndj

Ndj + KNd

− dNd M̂(M̂1j + M̂2j)
Ndj

Ndj + KNd

.
(12)

Amyloid beta oligomers are soluble, and they diffuse in the brain tissue [29–31].
Incorporating the diffusion of the oligomers in the network model along with its production
(from Ao

β) and degradation, we obtain

dAoj

dt
= −DAo

V

∑
k=1

Ll
jk Aok + λAo Ao

βj − dAo Aoj, (13)

where DAo is the diffusion coefficient.
In the AD-affected brain, dying neurons produce nonhistone chromatin-associated

protein (HMGB-1), and it diffuses in the brain cells [32,33]. The reaction–diffusion equation
for the PDE-based model of [18] is simplified into the ODE in the network as follows:

dHj

dt
= −DH

V

∑
k=1

Ll
jk Hk + λH Ndj − dH Hj. (14)

Microglias travel in the brain cell [34]. Activated microglias are chemoattracted to the
cytokines’ high mobility group box 1 (HMGB-1). Furthermore, microglias are activated by
the extracellular NFTs and soluble oligomers. The M1 and M2 phenotypes are characterised
by the proinflammatory and anti-inflammatory signals from Tα and I10, respectively. These
two types of microglias satisfy the following equations

dM1j

dt
=M1j

V

∑
k=1

Ll
jk Hk −

( V

∑
k=1

Lc
jk M1k

)( V

∑
k=1

Lc
jk Hk

)
− λM1Tβ

Tβj

Tβj + KTβ

M1j

− dM1 M1j + M0
G

(
λMF

Foj

Foj + KFo

+ λMA
Aoj

Aoj + KAo

)
βε1

βε1 + ε2
,

(15)

dM2j

dt
=M2j

V

∑
k=1

Ll
jk Hk −

( V

∑
k=1

Lc
jk M2k

)( V

∑
k=1

Lc
jk Hk

)
+ λM1Tβ

Tβj

Tβj + KTβ

M1j

− dM2 M2j + M0
G

(
λMF

Foj

Foj + KFo

+ λMA
Aoj

Aoj + KAo

)
ε2

βε1 + ε2
,

(16)
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where ε1 = Tαj/(Tαj + KTα), ε2 = I10j/(I10j + KI10). The parameter β is the ratio of
the proinflammatory and anti-inflammatory environment, and it determines the relative
strengths of Tα and I10. Here, the ratios βε1/(βε1 + ε2) and ε2/(βε1 + ε2) in the right-hand
sides measure the activated microglias becoming M1 and M2 macrophages, respectively.

Depending on the relative concentrations of Tα and I10, the incoming macrophages are
divided into two phenotypes M̂1 and M̂2 [35]. Furthermore, the phenotype of macrophages
M̂1 change to the macrophages M̂2 under the signal Tβ. Therefore, the peripheral macrophages
satisfy the following equations:

dM̂1j

dt
= M̂1j

V

∑
k=1

Ll
jk Aok −

( V

∑
k=1

Lc
jk M̂1k

)( V

∑
k=1

Lc
jk Aok

)
− λM̂1Tβ

Tβj

Tβj + KTβ

M̂1j

− dM̂1
M̂1j + α(Pj)(M0 − M̂j)

βε1

βε1 + ε2
,

(17)

dM̂2j

dt
= M̂2j

V

∑
k=1

Ll
jk Aok −

( V

∑
k=1

Lc
jk M̂2k

)( V

∑
k=1

Lc
jk Aok

)
+ λM̂1Tβ

Tβj

Tβj + KTβ

M̂1j

− dM̂2
M̂2j + α(Pj)(M0 − M̂j)

ε2

βε1 + ε2
,

(18)

where M̂j = M̂1j + M̂2j and α(Pj) = αPj/(Pj + KP).
Tα is produced by proinflammatory macrophages M1 and M̂1. Tβ and I10 are produced

by M2 and M̂2. Therefore, the equations for Tα, Tβ and I10 are in the form

dTαj

dt
=− DTα

V

∑
k=1

Ll
jkTαk + λTα M1 M1j + λTα M̂1

M̂1j − dTα Tαj, (19)

dTβj

dt
=− DTβ

V

∑
k=1

Ll
jkTβk + λTβ M M2j + λTβ M̂ M̂2j − dTβ

Tβj, (20)

dI10j

dt
=− DI10

V

∑
k=1

Ll
jk I10k + λI10 M M2j + λI10 M̂ M̂2j − dI10 I10j. (21)

Activated astrocytes and microglias produce monocyte chemoattractant protein-1
(MCP-1) [36,37], and it is assumed to be of the M2 phenotype. Hence,

dPj

dt
= −DP

V

∑
k=1

Ll
jkPk + λPA Aj + λPM2 M2j − dPPj. (22)

We have used the same estimated parameter values developed by Hao and Fried-
man [18] for the network model (5)–(22). Further details are provided in Tables 1 and 2
with λAAo

β
= 1.793 and λATα

= 1.54. We have assumed that these parameter values are
uniform for all the nodes in the brain connectome.

Table 1. Parameter values.

Parameter Value Parameter Value Parameter Value

dAi
β

9.51 dAi
β

9.51 KM1 0.03

dFi 2.77× 10−3 dFo 2.77× 10−4 KM2 0.017

dτ 0.277 dN 1.9× 10−4 KM̂1
0.04

dNF 3.4× 10−4 dNT 1.7× 10−4 KM̂2
0.007

dNd M 0.06 dNd M̂ 0.02 KFi 3.36× 10−10

dA 1.2× 10−3 dAo 0.951 KFo 2.58× 10−11
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Table 1. Cont.

Parameter Value Parameter Value Parameter Value

dM1 0.015 dM2 0.015 KM 0.47

dM̂1
0.015 dM̂2

0.015 KI10 2.5× 10−6

dH 58.71 dI10 16.64 KTβ
2.5× 10−7

dTα
55.45 dTβ

333 KTα
4× 10−5

dP 1.73 A0 0.14 KM̂ 0.47

R0 6 M0 0.05 KAo 10−7

M0
G 0.47 N0 0.14 KP 6× 10−9

KAo
β

7× 10−3 KNd 10−3

Table 2. Parameter values.

Parameter Value Parameter Value Parameter Value

DAo 4.32× 10−2 DH 8.11× 10−2 DP 2× 10−1

DTα
6.55× 10−2 DTβ

6.55× 10−2 DI10 6.04× 10−2

λi
β 9.51× 10−6 λN 8× 10−9 λA 8× 10−10

λτ0 8.1× 10−11 λτ 1.35× 10−11 λF 1.662× 10−3

λPA 6.6× 10−8 λPM2 1.32× 10−7 λAo 5× 10−2

λH 3× 10−5 λMF 2× 10−2 λMA 2.3× 10−3

λM1Tβ
6× 10−3 λM̂1tβ

6× 10−4 λTβ M 1.5× 10−2

λTβ M̂ 1.5× 10−2 λTα M1 3× 10−2 λTα M̂1
3× 10−2

λI10 M2 6.67× 10−3 λI10 M̂2
6.67× 10−3 θ 0.9

α 5 β 10 γ 1

3. Numerical Results Based on the Network Model

In this section, we report two groups of computational experiments, focusing on (a) the
role of cytokines and astrocytes and (b) the importance of TNF-α inhibitors in reducing neu-
ronal damage in AD. We considered a high-resolution brain connectome structure consisting
of V = 1015 vertices and E = 70,892 edges; the data source is available for the patients’
connectome data at https://braingraph.org (accessed on 20 April 2022) [38]. The network
model developed in Section 2 was implemented by using the C programming language and
Matlab. We simulated the network model (5)–(22) for each node j = 1, 2, . . . , V with uniform
initial conditions for all the nodes [18,39]: Ai

β = 10−6, Ao
β = 10−8, τ = 1.37× 10−10, Fi =

3.36× 10−10, Fo = 3.36× 10−11, N = 0.14, A = 0.14, M1 = M2 = 0.02, M̂1 = M̂2 = Nd =
0, H = 1.3× 10−11, Tβ = 10−6, Tα = 2× 10−5, I10 = 10−5, P = 5× 10−9. Table 3 lists all the
variables used in the model, and the units of all these variables are given in g/mL. We used
the value of R as

R =

{
R0t/100 0 ≤ t ≤ 100,

R0 t > 100.

121



Math. Comput. Appl. 2022, 27, 33

Table 3. The variables of the model and their functions.

Variable Function Variable Function

Ai
β Amyloid beta inside neurons Ao

β Amyloid beta outside neurons

τ
hyperphosphorylated tau pro-
tein Fi

Neurofibrillary tangle inside
neurons

Fo
Neurofibrillary tangle outside
neurons N Live neurons

A Astrocytes Nd Dead neurons

Ao Amyloid beta oligomer H High mobility group box 1

M1 Proinflammatory microglias M2 Anti-inflammatory microglias

M̂1
Peripheral proinflammatory
macrophages M̂2

Peripheral anti-inflammatory
macrophages

Tα Tumour necrosis factor alpha Tβ
Transforming growth factor
beta

I10 Interleukin 10 P Monocyte chemoattractant
protein-1

3.1. Computational Experiments on the Role of Cytokines and Astrocytes in AD

After integrating the brain connectome data, we computed all the components in-
volved in Equations (1)–(4). We plot the average densities of twelve variables for the
network model in Figure 1. These variables have an influence on the model, but we mainly
focused on the astrocyte and microglia variables and the other variables directly associated
with these two. Extracellular Aβ and the pro-inflammatory cytokines Tα play a crucial role
in the growth of astrocytes in the brain (see Equation (11)).

Figure 1. Average concentration of the variables with respect to time.
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The density change in the astrocytes or the microglia causes a change in the MCP-1’s
density, following from Equation (22). Figure 2 shows the density change in astrocytes and
MCP-1 by changing the growth parameters in astrocytes, while the other concentrations do
not change as such. As additional factors have been taken into account, here we obtained a
different result as compared to [18]. As time progresses, the densities of extracellular Aβ,
Aβ-oligomers, astrocytes, and MCP-1 decrease.

Figure 2. Average solutions of the six variables associated with astrocytes and microglias. We take all
the parameter values from Tables 1 and 2. Blue curve: λAAo

β
= 1.793 and λATα

= 1.4; black curve:
λAAo

β
= 1.793 and λATα

= 1.7; magenta curve: λAAo
β
= 1.65 and λATα

= 1.54.

3.2. Computational Experiments on AD Drugs

Next, our attention is drawn to soluble inflammatory cytokines. It is well known
that soluble cytokine receptors regulate inflammatory and immune events by functioning
as antagonists of cytokine signalling. Among various biologic medical products that, by
interfering with tumour necrosis factor (TNF), are used to treat autoimmune diseases,
caused by an overactive immune response, etanercept (marketed as enbrel) is quite popular.
In its essence, it is an amalgamation protein, produced by recombinant DNA, that fuses
the TNF receptor to the constant end of the immunoglobulin G1 antibody. Etanercept acts
as a TNF-α inhibitor, where TNF-α is considered to be the key regulator of the inflamma-
tory/immune response in many organ systems. We used the amount of etanercept as a
parameter in a series of computational experiments that will be discussed here.

Before going to the numerical results involving etanercept, we provide our motivation
for focusing on TNF-α and further insight into its leading role in AD pathophysiology.
First, we recall that three distinctive neuropathological features of AD are: (a) extracel-
lular deposits of Aβ peptides assembled in plaques, (b) intraneuronal accumulation of
hyperphosphorylated tau proteins forming tangles, and (c) chronic inflammation [40].
While (a) and (b) we addressed earlier, here, we note that as far as (c) is concerned, the
pro-inflammatory cytokine TNF-α plays a critical role. Moreover, with existing evidence,
indicating that TNF-α signalling frequently makes pathologies related to (a) and (b) worse,
a growing interest is seen in modulating this signalling and developing anti-TNF-α AD
therapies, allowing improved cognitive performance. Compared to other approaches in
developing AD treatments [41], TNF-α inhibitors have been consistently rated favourably.
While the full range of pathogenetic mechanisms underlying neuronal death and dysfunc-
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tion in AD remain unclear, most recent analyses convincingly imply that TNF-mediated
neuroinflammation is linked to AD neuronal necroptosis [42]. Furthermore, given the
pathophysiological importance of the entire TNF-TNFR1/2 system, more and more atten-
tion is currently paid to its other components as well, in particular to tumour necrosis factor
receptor 2 (TNFR2) of the cytokines, which promotes neuronal survival downstream. While
both TNFR1 and TNFR2 can induce pro-inflammatory activities, it is TNFR2 that can also
elicit strong anti-inflammatory activities and has protective effects. Recent studies (e.g., [43])
indicate that the TNF pathway can contribute to resilience in AD. The latter concept is
important in understanding heterogeneity in cognitive and behavioural phenotypes of AD,
which requires involvement not only of Aβ and tau proteins, but other molecular factors as
well. This leads, among other things, to the investigation of genetic variants of the TNFR2
pathway as a marker of resilience and the TNFR2 pathway itself as a target for developing
new AD therapies [43].

As we already mentioned earlier, debates over AD drugs continue today, with the
first drug able to remove amyloid approved only in 2021 (it is also the first new AD drug
approved since 2003). The controversy around this new drug, aducanumab, is effectively
centred on AD biomarkers and whether the extent of amyloid plaques can be considered
as one of them because some scientists believe that they are more like a side-effect of the
disease process. In the meantime, this controversy has generated a burst of new research
activities and the development of another drug, known as donanemab, which is currently
in late-stage clinical trials. Considered to be an important advance in amyloid pathology,
it is expected to be able to treat early symptoms of AD. In the meantime, scientists are
in agreement that new treatments, drugs, and therapies are urgently needed [44], and
mathematical modelling and computational experiments will be playing an increasingly
important role in these new developments.

In what follows, we account for the fact that many clinical trials of drugs aimed at
preventing or clearing the Aβ and tau protein pathology have failed to demonstrate efficacy
and that one of the possible treatments could be based on TNF-α inhibitors (suggested
also in [18]). For the treatment, we first ran the model for what corresponds to 300 days
in order to ensure that AD has been diagnosed, and then, we applied continuous treat-
ment by the drug from Day 300 until the end of 10 years. In this case, we can replace
Equation (19) with

dTαj

dt
= −DTα

V

∑
k=1

Ll
jkTαk + λTα M1 M1j + λTα M̂1

M̂1j − dTα Tαj − f Tαj, (23)

where f is proportional to the amount of etanercept. We simulated this equation with the
full network model for the brain connectome and plotted the result in Figure 3. For this
set of computations, we took f = 10dTα along with λAAo

β
= 1.793 and λATα

= 1.4. After
applying the drug, we observed reduced neuronal damage in the brain (see the middle-top
sub-figure in Figure 3).

The drug aducanumab is considered to be one of the most effective in clearing Aβ. In
this case, we replaced Equation (6) with

dAo
βj

dt
=Ai

βj

∣∣∣∣dNj

dt

∣∣∣∣+ λN
Nj

N0
+ λA

Aj

A0

−
(

dAo
β M̂(M̂1j + θM̂2j) + dAo

β M(M1j + θM2j)(1 + g)
) Ao

βj

Ao
βj + KAo

β

,
(24)

where g is proportional to the amount of the dosing level of the drug aducanumab. We
simulated the entire network model (5)–(22) with (24) with g = 10, λAAo

β
= 1.793, and

λATα
= 1.54. Figure 4 depicts the effect of the drug in Aβ aggregation in the advancement

of time. It has a pronounced effect only on the extracellular Aβ concentrations, not on
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neuronal death. However, the TNF-α inhibitors have a strong effect of reducing neuronal
death. These results agree with those obtained in [18].

Figure 3. Average solutions of the six variables associated with astrocytes and microglias. We take
all the parameter values from Tables 1 and 2 with λAAo

β
= 1.793 and λATα

= 1.4. Magenta and blue
curve curves correspond to the absence and presence of TNF-α inhibitor, respectively.

Figure 4. Average solutions of the six variables associated with astrocytes and microglias. We take all
the parameter values from Tables 1 and 2 with λAAo

β
= 1.793 and λATα

= 1.54. Magenta and blue
curve curves correspond to the absence and presence of anti-Aβ drug, respectively.
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4. Discussion and Future Directions

There are several recently developed models, dealing with astrocytes, that consider
averaged characteristics such as the collective exosomal release rate in astrocytes. Such
models have an advantage of their generalisations to account for temperature effects, which
is an important consideration, given the recent discovery of an intrinsic connection between
the temperature dependence of exosome release and Aβ neurotoxicity [5]. Among other
things, such models can describe the synapse and astrocyte couplings and allow replicating
typical calcium oscillations in astrocytes under the influence of Aβ. Therefore, it would be
instructive to extend the network model proposed here to account for thermal effects.

Tau proteins play a more prominent role than the amyloid hypothesis suggests. The
τPs are usually considered as secondary agents in the disease even though: (i) other
τP-related diseases (tauopathies), such as frontotemporal lobar degeneration, are mostly
dominated by tau spreading; (ii) brain atrophy in AD is directly correlated with large
concentrations of NFT; (iii) the τP distribution determines disease staging, and lowering τP
levels prevent neuronal loss; (iv) τP reduces neural activity and is the main factor associated
with cognitive decline. This motivates another possible extension of the developed model
by combining the tau protein dynamics more precisely [19,45], rather than considering
only a linear contribution of the tau protein. In addition, the dynamics of the variables in
different regions in the brain connectome would give a better understanding of the disease
progression [45]. Following this recent study, we note that although we chose here uniform
parameter values all over the brain connectome, this can be extended to different parameter
values in respective regions according to the clinical data.

Regarding the route connected with TNF inhibitors, in addition to the possible ex-
tensions already mentioned in the previous section, we will also mention that one of the
existing difficulties lies with the fact that classical biologic TNF-α inhibitor macromolecules
cannot cross the blood–brain barrier [46,47]. This requires the development of blood–
brain-barrier-penetrating TNF-α inhibitors, and from a modelling point of view, further
extensions of the models developed here may be needed to qualitatively estimate this factor.

5. Conclusions

We constructed a network model to study neurodegenerative disorders in the brain
connectome, focusing on Alzheimer’s disease. The developed model can capture the
concentrations of the variables in different regions of the brain connectome, which could
not be identified by earlier-developed simple PDE-based models. All three distinctive
neuropathological features of AD, including amyloid beta and tau proteins, as well as
neuroinflammation were considered in the network model for brain connectome data
assimilation. Special attention was given to the role of cytokines and astrocytes, as well
as to the influence of anti-Aβ and TNF-α inhibitor drugs in AD pathophysiology. We
showed that etanercept has good efficacy in most of the aspects, including neuronal death,
while aducanumab has a good efficacy only in reducing the aggregation of extracellular
amyloid beta. Among other applications, one may choose the developed methodology
to address the diffusion and chemoattraction challenges by evaluating the corresponding
term’s contributions in the network model. Finally, potentially promising pathways for
developing new AD therapies were also discussed.
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Abstract: Physical systems governed by advection-dominated partial differential equations (PDEs)
are found in applications ranging from engineering design to weather forecasting. They are known to
pose severe challenges to both projection-based and non-intrusive reduced order modeling, especially
when linear subspace approximations are used. In this work, we develop an advection-aware
(AA) autoencoder network that can address some of these limitations by learning efficient, physics-
informed, nonlinear embeddings of the high-fidelity system snapshots. A fully non-intrusive reduced
order model is developed by mapping the high-fidelity snapshots to a latent space defined by an
AA autoencoder, followed by learning the latent space dynamics using a long-short-term memory
(LSTM) network. This framework is also extended to parametric problems by explicitly incorporating
parameter information into both the high-fidelity snapshots and the encoded latent space. Numerical
results obtained with parametric linear and nonlinear advection problems indicate that the proposed
framework can reproduce the dominant flow features even for unseen parameter values.

Keywords: deep autoencoder; advection-dominated flows; physics informed machine learning;
LSTM; parametric model order reduction; non-intrusive reduced order modeling

1. Introduction

Modern scientific computing relies on efficient numerical simulation of complex phys-
ical systems, especially for applications that seek solutions at different time or parameter
instances. For these types of applications, the relevant physical system is typically described
by a set of parameterized nonlinear partial differential equations (PDEs). Numerical dis-
cretizations of such systems using a high-fidelity (finite element, finite volume, or finite
difference type) computational solver can be prohibitively expensive as they generate high-
dimensional representations of the solution in order to accurately resolve multiple time and
space scales and underlying nonlinearities [1]. However, there is compelling scientific evi-
dence to suggest that the underlying dynamics often exhibit low-dimensional structure [2].
Reduced order models (ROMs) can replace such expensive high-fidelity solvers by exploit-
ing the intrinsic, low-rank structure of the simulation data in order to create more tractable
models for the spatiotemporal evolution dynamics of the PDE system [3,4].

Among the many different classes of ROM techniques that have been developed
over the years, projection-based ROMs occupy a prominent place across a wide range
of applications [5]. Formally, this class of methods is based on the identification of a
reduced set of basis functions (or modes) such that their linear superposition spans an
optimal low-rank approximation of the solution manifold. The Proper Orthogonal De-
composition (POD) is one of the widely popular methods of this class that leverages the
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singular value decomposition (SVD) to determine an empirical basis of dominant, orthonor-
mal modes that can help define the best possible linear subspace in which to project the
PDE dynamics [6,7]. If the governing equations are known, Galerkin projection [8,9], or
the Petrov–Galerkin projection [10,11], can be adopted to generate an interpretable ROM
defined by the high-energy or dominant modes. For applications where the governing equa-
tions are not accessible, purely data-driven methods for non-intrusive ROM (NIROM) [12]
have gained in popularity. In these methods, instead of a Galerkin-type projection, the
expansion coefficients for the reduced solution are obtained via interpolation on the re-
duced basis space spanned by the set of dominant modes. However, since the reduced
dynamics generally belong to nonlinear, matrix manifolds, a variety of interpolation and
regression methods have been proposed, which are capable of enforcing the constraints
characterizing those manifolds. Some notable examples in this class include dynamic mode
decomposition (DMD) [13,14], radial basis function interpolation [15,16], and Gaussian
process regression [17,18], to name a few. In addition, the emergence of modern machine
learning (ML) methods has provided a transformative approach to effectively approximate
and accelerate existing numerical models by leveraging the capabilities to incorporate
multi-fidelity datastreams from diverse sources, seamlessly explore massive design spaces,
and identify complex, multivariate correlations. A variety of data-driven, ML-based ap-
proximation frameworks have been proposed to model the propagation of system dynamics
in the latent space. Some of the highly successful examples involve the use of deep neural
networks (DNNs) [19], long-short-term memory (LSTM) networks [20,21], neural ordinary
differential equations (NODE) [22,23], and temporal convolutional networks (TCNs) [24].

One fundamental assumption of linear reduced basis methods like POD is that any
element in the solution manifold,M of the nonlinear PDE system can be accurately approx-
imated using a linear combination of a small number of basis functions. Traditionally this
concept is quantified by the Kolmogorov n-width,Dn, which measures the error introduced
by approximating any element f of M with an element g of a linear space En. A com-
mon heuristic approach to get a rough estimate of Dn for a particular discretized solution
manifold is to examine the rate of decay of the singular values obtained by a SVD of the
system snapshots. A fast rate of decay signifies a small Dn, which indicates the existence of
a low-dimensional space in which the high-fidelity nonlinear system can be approximated
well. Many PDE systems of importance, however, exhibit transport-dominated behavior
(e.g., advection-dominated flows, wave and shock propagation phenomena), which leads
to a large Kolmogorov n-width. For instance, a stationary soliton wave solution can be
perfectly captured by one spatial mode, as reflected in a rapid decay of the correspond-
ing POD singular values, whereas a wave translating in time cannot be represented by a
low-dimensional representation with POD/SVD. This is because the steep gradients and
moving spatial discontinuities inherent to these problems often trigger temporal disconti-
nuities. An accurate linear approximation of such temporal discontinuities requires a large
number of basis functions, hindering the efficiency of a ROM [25,26], and often leads to an
oscillatory approximation [27,28]. These inadequacies have inspired a growing number
of works in recent years, which focus on constructing an efficient alternative—nonlinear
ROMs for transport-dominated systems. A brief review will be provided in the following
section. The focus of this work will be the study of ML-based, non-intrusive reduced order
modeling strategies for transport-dominated systems.

2. Related Work

As the traditional approach for constructing a ROM for transport-dominated problems
has proven to be ineffective due to the limitations of a linear subspace approximation, there
has been significant interest in alternative modifications for improving the accuracy of ROM
approximations in these applications. These can be roughly classified into two distinct
approaches: transformations of the linear subspace to facilitate better mode extraction and
improved stability of projection-based ROMs [28–34], and the construction of low-rank rep-
resentations in terms of nonlinear manifolds [35–37]. Most of the previous work in the first
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class of methods has been focused on either (a) sparse sampling of nonlinear terms to enable
efficient approximation in a reduced subspace like gappy POD [38], GNAT [27], DEIM [39],
or (b) pre-processing the linear subspace to embed the dominant advective features of the
solution [28–31,40]. A collection of methods in this class has also been based around the
concept of adaptivity. For instance, offline adaptive methods either extend [41] or create
a weighted [42] snapshot database during the construction of the reduced model. Online
adaptive methods, on the other hand, either rely on precomputed quantities to update the
reduced basis online using interpolation, localization, and dictionary approaches [43–45],
or allow for the incorporation of new data online [46,47]. Almost all of the above techniques
from the first class of methods require some kind of problem-specific prior knowledge of
the physical or numerical properties of the underlying nonlinear system, thus imposing
some limitations on their applicability to experimental data or systems with no access to
governing equations and closed-form solutions.

An alternative perspective on the limitations of linear subspace approximation in ROM
design is based upon the observation that many PDE systems of importance, especially
in fluids, contain symmetries such as rotations, translations, and scaling, which play a
foundational role in the dynamics. Traditional ROM approaches such as the SVD-based
methods are unable to handle these symmetries, and are only truly effective for dynamical
systems where time and space interactions can be essentially decoupled through separa-
tion of variables [7]. To overcome these limitations, the second class of methods based
on nonlinear manifold learning have recently gained a lot of research interest. Some of
the earliest examples of methods in this class include Iso-map [48], Locally linear embed-
ding (LLE) [49], Laplacian eigenmaps [50], and t-SNE [51]. However, these methods fail
to provide a mapping from the low-dimensional nonlinear representation to the high-
dimensional input, which is a crucial tool for dimension reduction applications. Many
other novel approaches have been proposed to overcome this gap, such as self-organizing
maps [52], kernel PCA [53], diffeormorphic dimensionality reduction [54], and autoen-
coders [55] (see [36] for a survey). In recent years, due to the tremendous progress in
the development of high-performance software tools for the construction of neural net-
works based models, different types of autoencoder models [56,57] have emerged, as
some of the most popular and powerful techniques for nonlinear manifold-based dimen-
sion reduction of PDEs. These have been successfully applied to different types of ROM
applications such as deep fully-connected autoencoders [58,59], deep convolutional autoen-
coders (CAEs) [36,60], time-lagged autoencoders [61], shallow masked autoencoders [37],
variational autoencoders [62], and deep delay autoencoders [63].

In this work, we propose an advection-aware (AA) autoencoder design, in which a
high-fidelity system snapshot is mapped through a shared latent space to an approximation
of itself and simultaneously to another arbitrary snapshot. For advection-dominated
problems, this arbitrary snapshot can be chosen in a physics-guided manner to primarily
represent the advective features, thus allowing the latent space to more efficiently identify
reduced-representations of high-fidelity solution fields. We then employ LSTM neural
networks to non-intrusively model the temporal evolution of these compressed latent
representations. Moreover, our approach enables exploration of parametric search spaces
by training on a combined parametric dataset of offline simulations. In contrast, the studies
outlined in Refs. [36,60] use a convolutional autoencoder architecture to nonlinearly embed
high-dimensional states, and this may pose problems when the high-fidelity simulation
data is available on unstructured computational meshes. In addition, Ref. [36] adopts
an intrusive approach by solving the governing equations on the nonlinear manifold
defined by the CAE model, whereas Ref. [60] employs a similar idea of modeling latent
dynamics using recurrent neural networks like an LSTM. Another interesting approach is
proposed by Ref. [64], where the authors introduce the idea of imposing Lyapunov stability-
preserving priors to the autoencoder-based model in order to improve the generalization
performance for fluid flow prediction. While this approach is similar to ours in being
motivated by the idea of physics-informed learning, the ultimate objective of the proposed
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design is different. Our approach also differs from the framework proposed in [65] as the
system parameters such as shape of the profile, flow speed, and viscosity are explicitly
embedded in the input feature space and the latent space, thus allowing independent
training of the AA autoencoder and the LSTM networks. In Ref. [66], a registration-based
approach is proposed, which trains a diffeomorphic mapping between the physical space
and a new parameter-varying, spatio-temporal grid on which the solution of the PDE can be
expressed in the form of a low-rank linear decomposition. This low-rank time/parameter-
varying grid or manifold is utilized as an autoencoder type layer for reducing the dimension
of high-fidelity snapshots. This is an elegant approach, but involves solving optimization
problems with nonlinear constraints and performing repeated 2D interpolation tasks, both
of which may potentially lead to efficiency issues and introduce approximation errors for
large-scale problems.

The rest of the article is organized as follows. In Section 3, we provide a high-level
overview of undercomplete autoencoders, followed by details on the proposed AA au-
toencoder network design and training strategies. We also include a brief review of LSTM
networks, which have been adopted in this work to model the system dynamics in the
nonlinear latent space. In Section 4, we present numerical results obtained with the pro-
posed AA autoencoder model on two different types of parametric problems characterized
by advection-dominated flow features. Finally, in Section 5, we present some concluding
remarks and discuss plans for future work.

3. Methodology

3.1. Autoencoders

An autoencoder is a type of neural network that is designed to learn an approximation
of the identity mapping, χ : v �→ ṽ such that ṽ ≈ v and χ : RN �→ RN . This is accomplished
using a two-part architecture. Figure 1 shows an example of a fully connected autoencoder
network with two distinct parts. The first part is called an encoder, χe, which maps a high-
dimensional input vector v to a low-dimensional latent vector z as given by z = χe(v; θe)
where z ∈ Rm (m� N).

Figure 1. Fully connected autoencoder architecture.

The second part is called a decoder, χd, which maps the latent vector z to an approx-
imation ṽ of the high-dimensional input vector v and is defined as ṽ = χd(z; θd). The
combination of these two parts yields an autoencoder of the form

χ : v �→ χd ◦ χe(v). (1)
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This autoencoder network is trained by computing the optimal values of the parame-
ters (θ∗e , θ∗d) that minimize the reconstruction error over all the training data

θ∗e , θ∗d = argmin
θe ,θd

L(v, ṽ), (2)

where L(v, ṽ) is a chosen measure of discrepancy between v and its approximation ṽ.
The restriction dim(z) = m � N = dim(v) forces the autoencoder model to learn the
salient features of the input data via compression into a low-dimensional space and then
reconstructing the input, instead of directly learning the identity function. Essentially, au-
toencoders can be thought of as a powerful generalization of the POD/SVD approach from
learning a linear subspace to identifying an improved coordinate system on a nonlinear
manifold. That is, with the choice of a linear, single-layer encoder of the form z = HEv, and
a linear, single-layer decoder of the form ṽ = HDz, where HE ∈ Rm×N , HD ∈ RN×m, and
a squared reconstruction error as the loss function L(ṽ, v) = ‖v− ṽ‖2

2, the autoencoder
model has been shown to learn the same subspace as that spanned by the first m POD
modes if H = HE = HD. However, additional constraints are necessary to ensure that
the columns of H form an orthonormal basis and follow an energy-based hierarchical
ordering [67].

3.2. Advection-Aware Autoencoder Design

In this work, inspired by the registration-based nonlinear manifold learning idea [66]
and the physics-informed autoencoder model design [64], we develop a new advection-
aware autoencoder model that incorporates physical knowledge of the advection-dominated
flow features into the autoencoder neural network via both an inductive bias as well as
soft constraints. As shown in Figure 2, this AA autoencoder architecture is composed
of three sub-networks. The first part, as usual, is called an encoder, χe, which maps a
high-dimensional input snapshot v to a low-dimensional latent vector z, and is defined by
z = χe(v; θe) where z ∈ Rm (m� N).

Two independent decoder networks are also defined, which map the latent vector
to (i) a transformed (or “shifted”) version of the high-dimensional input snapshot, and
(ii) back to the true high-dimensional input snapshot. The first of these two decoders is
called a shift decoder, φs, that maps the latent vector z to an approximation ṽs of a suitably
defined “shifted” snapshot vs that encapsulates the dominant advective features of the flow
problem, ṽs = φs(z; θs). This can be achieved by following a registration-type approach,
where a high-fidelity snapshot at a randomly chosen time point in the simulation is selected
to be the candidate output target for the shift decoder. The arbitrariness of the choice
could be partially resolved if a known physical characteristic of the flow like dissipation
or multiscale oscillations indicates that a particular time point such as the initial solution
or a time point at the beginning of a period is a more preferable candidate for the output
target of φs. This approach is flexible, by design, as it does not require any additional
knowledge of the dominant advection patterns of the flow, such as speed of propagation,
in order to train the shift decoder, and has been adopted for the numerical experiments
in this study. Alternatively, if some partial knowledge of the dominant advective flow
features are available, then a transported snapshot could be defined, following the ideas
in [29,30]. In this approach, a set of time-varying coordinates are defined by transporting
the high-dimensional computational grid using the dominant advection properties such
as speed and direction of propagation. Then, the true simulation snapshots are mapped
onto the time-varying grid using a suitable interpolation technique to produce the time-
varying output target for the shift decoder. The primary advantage of this approach is
that it preserves some of the structural properties of any secondary features of the flow
problem such as frictional dissipation or the wake patterns trailing a moving vessel. In this
way, this approach allows an improved isolation of the dominant advective features of the
flow. However, the additional requirements of physical knowledge about the flow, and the
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potential approximation errors introduced by the interpolation technique are some of the
primary issues that need to resolved.

Figure 2. Advection-aware autoencoder architecture. An encoder network χe extracts the dominant
features of v ∈ RN into a compressed latent space z ∈ Rk. One decoder network φs maps the latent
vector to the shifted snapshot, vs ∈ RN . The second decoder network χd maps the latent vector back
to an approximation of itself, ṽ ∈ RN .

The third and final sub-network is called a true decoder, χd, which maps the latent
vector z to an approximation ṽ of the high-dimensional input snapshot v, and is defined as
a traditional decoder network as ṽ = χd(z; θd). The combination of the encoder network
χe and the true decoder network χd yields an autoencoder network given by (1).

Such a network enables us to express high-dimensional snapshots in terms of low-
dimensional nonlinear manifolds, and can be employed in traditional non-intrusive reduced
order modeling frameworks. On the other hand, the combination of the encoder network χe
and the shift decoder network φs creates a nonlinear mapping between the true snapshots
v and the “shifted” snapshots vs in the high-dimensional physical space, such that this
transformation map learns about the dominant advective features of the flow.

χ̂ : v �→ φs ◦ χe(v). (3)

The primary contribution of this AA autoencoder design is that simultaneous training
of these two partially-coupled autoencoder and transformation maps, χ and χ̂, respectively,
endows the intermediate nonlinear, latent space manifold with the information about
the dominant advection characteristics of the flow, as well. The simultaneous training
can be performed by defining two separate loss functions. The shift loss, L1, is defined
as a measure of discrepancy between the prediction of the shift decoder and the high-
dimensional “shifted” snapshot, L1 = ‖vs −φs ◦ χe(v)‖V , where ‖‖V denotes a chosen
error norm. The second loss function is called the reconstruction loss, L2, and is defined
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as the error between the prediction of the true decoder and the high-dimensional true
snapshot, L2 = ‖v− χd ◦ χe(v)‖V , in the same error norm ‖‖V . The AA autoencoder is
trained by computing the optimal values of the parameters (θ∗e , θ∗d , θ∗s ) that simultaneously
minimize a weighted combination of these two loss components over all the training data

θ∗e , θ∗d , θ∗s = argmin
θe ,θd ,θs

{
w1L1(v, ṽs) + w2L2(v, ṽ)

}
, (4)

where w1, w2 are the weights of the linear combination that could either be fixed during
training or be a part of the trainable hyperparameters. In this work, AA autoencoder
networks are trained to produce an advection-informed latent space representation of the
high-fidelity numerical solution of a parametric linear advection problem and a parametric
viscous advecting shock problem. LSTM networks are trained to model the temporal
dynamics of the latent space coefficients. The AA autoencoder and the LSTM dynamics
model are combined to construct a fully non-intrusive, physics-aware reduced order model
for the advection-dominated test problems.

3.3. Long-Short-Term Memory (LSTM) Network

An LSTM network is a special type of recurrent neural network (RNN) that is well-
suited for performing classification and regression tasks based on time series data. The
main difference between the traditional RNN and the LSTM architecture is the capability of
an LSTM memory cell to retain information over time, and an internal gating mechanism
that regulates the flow of information in and out of the memory cell [68]. A very concise
overview of LSTM networks as applied in the context of model reduction can be found
in Ref. [60].

The LSTM cell consists of three parts, also known as gates, that have specific functions.
The first part, called the forget gate, chooses whether the information coming from the
previous step in the sequence is to be remembered or can be forgotten. The second part,
called the input gate, tries to learn new information from the current input to this cell.
The third and final part, called the output gate, passes the updated information from the
current step to the next step in the sequence. The basic LSTM equations for an arbitrary
input vector u are

input gate: ζi = αS ◦ Fi(u),

forget gate: ζ f = αS ◦ F f (u),

cell state: ct = ζ f � ct−1 + ζi � (αT ◦ Fa(u)),

output gate: ζo = αS ◦ Fo(u),

output: ht = ζo ◦ αT(ct).

(5)

Here, F refers to a linear transformation defined by a matrix multiplication and bias
addition, that is, F (x) = Wx + b, where W ∈ Rn×m is a matrix of layer weights, b ∈ Rn is
a vector of bias values, and x ∈ Rm is a vector of layer activations. Also, αS and αT denote
sigmoid and hyperbolic tangent activation functions, which are usually the default choices
in an LSTM network, and x� y denotes a Hadamard product of two vectors x and y. In the
context of reduced order modeling, the vector u represents a linear or nonlinearly encoded
snapshot vector, with which the LSTM network is trained to advance with time. The core
concept of an LSTM network is the cell state ct, which behaves as the “memory” of the
network. It can either allow greater preservation of past information, reducing the issues of
short-term memory, or it can suppress the influence of the past depending on the actions of
the various gates during the training process.

LSTM networks have proven to be an effective tool in the development of reduced
order models for physical systems and have shown that they can outperform alternate
classical methods such as DMD and POD-Galerkin, as well as other flavors of RNNs
that often suffer from issues with vanishing gradients and the transmission of long-term
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information [20,69–71]. Different ML methods for time series modeling, such as the neural
ordinary differential equations (NODE) [23,59], spatial transformer networks [72], echo
state networks [73], and residual networks (ResNets) [74] have also been shown to be
very accurate in various ROM applications for dynamical systems. Unfortunately, many
of these newer approaches are not readily available as packages or modules inside well-
known machine learning libraries such as TensorFlow and PyTorch. However, LSTM
implementations are included as part of the core, highly-efficient, GPU-accelerated modules
of all these libraries. Hence, owing to the ease of implementation and the well-known
success stories of LSTM-based prediction models for dynamical systems, we have adopted
it as our method of choice for modeling of latent space dynamics.

We train an LSTM network to independently learn the temporal evolution of the
latent space coefficients generated by the encoder of a pre-trained AA autoencoder model,
following a similar approach as in [60,69]. The decoupling of the AA autoencoder training
for a nonlinear embedding and the LSTM training for latent space dynamics allows for
greater flexibility in our non-intrusive ROM development. If alternate time series learning
methods are available that better suit the needs of the problem in a future time, the
nonlinear manifold defined by the pre-trained AA autoencoder will not need to be retrained.
Moreover, an end-to-end, simultaneous training of an AA autoencoder and a time series
learning method like LSTM requires the development of a carefully weighted loss function
that appropriately penalizes both the reconstruction and the forecast accuracy. This can
often lead to significant loss in both the training efficiency as well as in the overall robustness
of the training algorithm.

4. Results

In this section, we demonstrate the capability of the advection-aware autoencoder
architecture to generate a compressed representation for high-fidelity snapshots of two
different advection-dominated problems. Furthermore, we present numerical results to il-
lustrate the potential of training reduced order models for the system dynamics in the latent
space generated by the pre-trained AA autoencoder models. In this study, LSTM architec-
tures are chosen to build these dynamics models for the purposes of illustration. However,
the methodology could be easily adapted to use any other approximation framework that
might be more appropriate for a particular problem.

4.1. Linear Advection Problem

Consider the advection of a circular Gaussian pulse traveling in the positive y−direction
through a rectangular domain, Ω = [−100, 100]× [0, 500] at a constant speed, c. The analyt-
ical solution is given by

u(x, y) = exp
{
−
(
(x− x0)

2

2σ2
x

+
(y− y0 − ct)2

2σ2
y

)}
, (6)

where (x0, y0) is the initial location of the center of the pulse, σx and σy define the support
of the pulse in the x and y directions, respectively. The domain is uniformly discretized
into 201 grid points in the x-direction and 501 grid points in the y-direction using Δx = 1
and Δy = 1, respectively, and generating 100,701 computational nodes. A uniform time
discretization of Δt = 1 is used to generate 460 high-fidelity time snapshots for a cir-
cular Gaussian pulse parametrized by different values of the size of the pulse profile
σx = σy ≡ σ = {5, 8, 10, 16, 20}, and traveling at a constant speed c = 1 from an initial
location (x0, y0) = (0, 40). Figure 3 depicts the relative information content (RIC) for a
different number of POD modes obtained by taking a SVD of the high-fidelity snapshots.
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As the singular values computed by SVD are arranged in the descending order of relative
importance, the RIC values of the leading r POD modes can be defined as

RIC(%) =
∑r

k=1 λ2
k

∑M
k=1 λ2

k

× 100, (7)

where λk is the kth singular value and M denotes the total number of time snapshots. For
the set of snapshots generated with a given value of σ, the dotted vertical line indicates the
number of leading POD modes required to attain a RIC value of 99.9%. For instance, σ = 20
signifies a flatter pulse profile and 17 POD modes contain 99.9% RIC for the corresponding
system of snapshots, whereas 63 POD modes are needed to capture 99.9% RIC for a sharper
pulse profile given by σ = 5. This illustrates the phenomena of relatively large Kolmogorov
n-widths for even simple, linear advection problems, which severely limits the efficiency of
low-dimensional approximation using SVD-generated linear subspaces.

Figure 3. The relative information content for different number of retained POD modes. The singular
values are computed by taking an SVD of the high-fidelity snapshots for an advecting circular
Gaussian pulse (see Equation (6)) of varying width (σ) traveling at a constant speed c = 1.

In the first numerical example, the training dataset is constructed using 460 high-
fidelity snapshots for each value of σtrain = {5, 10, 16}. The remaining snapshots corre-
sponding to σtest = {8, 20} are used to create a test dataset. This creates a geometrically
parameterized training and testing dataset.

The AA autoencoder network is trained on the parametric training set for 8000 epochs
using the Adam optimizer with an initial learning rate of 1× 10−4 that decays step-wise
by 15% every 456 epochs. The training snapshots are all augmented by the value of the
corresponding parameter. The training snapshots are divided into two sets—starting from
the initial time point every alternate snapshot is used for training the AA autoencoder
model, while the rest are reserved for validation during training. In this study, the losses
computed on the validation points are solely used to monitor the extent of overfitting
during training, and later to evaluate the accuracy of prediction on unseen time steps
associated with a training parameter value. After exploring a large space of network design
parameters, as described in Table 1, the results presented here are obtained with two of the
most optimal AA autoencoder designs. In the first model (AA1), only the input feature
is augmented by the parameter value; while in the second model (AA2), both the input
feature and the output labels are augmented by the parameter value. The encoder network
χe of both the models is constructed with three hidden layers composed of 629, 251 and 62
units that connect an input feature (i.e., augmented snapshot) of dimension N = 100, 702 to
an encoded latent vector representation of dimension k. For both the models, the decoder
networks χd and φs are set up to be mirror images of the corresponding encoder network.
The AA1 model uses the selu activation function for the hidden layers followed by a linear
activation on the output layer, while the AA2 model uses the swish activation function for
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the hidden layers. The individual loss components L1 and L2 are defined as a weighted
combination of the normalized mean square error (NMSE) loss and the pseudo-Huber loss,
as defined below,

NMSE Losses: LNMSE
1 =

1
N

N

∑
k=1

∥∥vk,s −φs ◦ χe(vk)
∥∥2

2
‖vk‖2

2
,

LNMSE
2 =

1
N

N

∑
k=1

‖vk − χd ◦ χe(vk)‖2
2

‖vk‖2
2

,

pseudo-Huber Losses: LH
1 =

1
N

N

∑
k=1

δ2
(√

1 +
(ak,1

δ

)2
− 1

)
,

LH
2 =

1
N

N

∑
k=1

δ2
(√

1 +
(ak,2

δ

)2
− 1

)
,

where ak,1 = vk,s −φs ◦ χe(vk) and ak,2 = vk − χd ◦ χe(vk).

(8)

Table 1. Hyperparameters explored to design the AA autoencoders for the linear advection example.

Hyperparameters AA1 AA2

Input/Output Augmented Input,
non-augmented output Augmented input and output

Hidden Units (50–1500) 629, 251, 62 629, 251, 62
Batch Size (8–128) 32 24

Latent Dimension (5–50) 15 15
Activation (ReLU, selu, linear,

tanh, swish) selu swish

The pseudo-Huber loss is a smooth approximation of the Huber loss function that
behaves as a L2 squared loss by being strongly convex near the desired minimum and as
a L1 absolute loss with reduced steepness near the extreme values. The scale at which
this transition happens and the steepness near the extreme values is controlled by the
δ parameter.

A piece-wise segmented training approach is adopted for both the models in which
only the L2 component of the total loss is minimized for the first 2500 epochs, followed by a
weighted combination of both the loss components w1L1 + w2L2 for the rest of the training.
The AA1 model is trained with mini batches of size 32 and the AA2 model is trained with
mini batches of size 24, while both models generate a latent space of dimension 15.

The training trajectories for the AA1 and AA2 models are shown in Figure 4. Even
though both models are trained for the same number of epochs, the lower training and
validation loss values for the AA2 model (see the left panel of Figure 4) indicates a higher
level of expressivity and overfitting due to the augmented dimension of the decoder outputs
and the resultant higher number of network hyperparameters (weights and biases). As
a result, the prediction errors for the test parameter values are found to be higher using
the AA2 model than those obtained with the AA1 model. Less overfitting is usually an
indication of better generalization performance, and hence the AA1 model is used to
generate the field predictions for both the seen and unseen data in the rest of this example.
On the other hand, when extrapolatory predictions or predictions for unseen data are
not required, a slightly overfit model such as AA2 can be considered preferable. This
is supported by the evolution of the losses corresponding to each decoder: L1 for the
prediction of shifted snapshots and L2 for the reconstruction of the true solution (see the
right panel of Figure 4). As the L1 loss is associated with the network’s ability to map
the true snapshot to a fixed snapshot, it is relatively easier to minimize and both models
perform equally well in this task. However, due to the higher expressivity of the AA2
model, it is able to minimize the L2 loss much more than the AA1 model, thus leading to
higher accuracy in the approximation of the true snapshots using training data.
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Figure 4. Training characteristics of two AA autoencoder networks trained using a parametric dataset
of snapshots for a 1D advecting Gaussian pulse parameterized with varying support of the pulse
profile, σ = {5, 10, 16}. AA1 denotes the model trained with the input features augmented by
parameter values, while AA2 denotes the model where both input features and output labels are
augmented. The left panel shows the decay of training and validation losses during training. The
right panel shows the evolution of the loss components during training.

Figure 5 presents the predictions of the high-dimensional shifted and true snapshots
obtained by the corresponding decoders φs and χd, respectively, of model AA1 as well
as a comparison of the prediction performance for different training parameter values in
terms of the spatial relative errors of the full-order predictions. The decoder predictions
are evaluated for the two parameter values at the boundaries of the training range σ = 5
and σ = 16 as they present distinct challenges. Autoencoders are known to struggle with
the extraction of discontinuities in the input feature space. The snapshot data for σ = 5
features a very steep gradient in the shape of the pulse profile which poses some of the
same challenges as a discontinuous profile. Moreover, a single encoder network χe is
being tasked, by design, to combine with two independent decoder networks χd and φs
to map into both a stationary discontinuity as well as a moving discontinuity. Thus the
spatial distribution of reconstruction error for the σ = 5 profile is more localized near the
moving pulse, whereas that of the σ = 16 profile is more uniformly spread out across
the spatial domain (see Figure 5b,d. Despite all of these minor differences in prediction
performance, there is a high degree of agreement between the full order decoder predictions
and the high-dimensional snapshots, with less than 4% relative error for all of the training
parameter values (see Figure 5e).

Finally, prediction performance results of the AA1 model for high-fidelity snapshots
generated with an unseen parameter value σ = 8 ∈ σtest are presented in Figure 6. Loss
in accuracy with extrapolatory predictions for a geometrically parameterized dataset is
one of the well-known challenges faced by both intrusive and non-intrusive reduced order
modeling approaches, which requires particular attention to resolve representation issues
posed by the topology of the parametric solution manifold [75]. Thus, as expected, there
is a noticeable drop in accuracy for the prediction of full order solutions, with the errors
being especially localized near the moving pulse profile (see Figure 6b). This effect is also
reflected in the relative error plots for the two unseen parameter values in σtest. However,
the quality of predictions are still quite encouraging considering that these are purely
extrapolatory predictions on an unseen parameter instance, without any special treatment
of the solution manifold or modification of the training process.
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Figure 5. Prediction performance of φs and χd decoders on training data. (a,b) predictions of shifted
and true snapshots, respectively, for pulse size σ = 5 and (c,d) predictions of shifted and true
snapshots, respectively, for pulse size σ = 16 at an intermediate time t = 6.92 min using the AA1
model. (e) Relative errors for the decoder predictions using different values of the parameter from
the training set.

140



Math. Comput. Appl. 2022, 27, 34

Figure 6. Prediction performance of φs and χd decoders on unseen data. (a,b) predictions of shifted
and true snapshots, respectively, for unseen pulse size σ = 8 at time t = 6.92 min using the AA1
model. (c) Relative errors for the decoder predictions using two different values of the parameter
from the unseen test set.

4.2. Advecting Viscous Shock Problem

The second numerical example is described by the one-dimensional viscous Burgers’
equation (VBE) with Dirichlet boundary conditions [60] as given by

u̇ + u
∂u
∂x

= ν
∂2u
∂x2 ,

u(x, 0) = u0, x ∈ [0, L], u(0, t) = u(L, t) = 0,
(9)

where we set L = 1 and the maximum time tmax = 2. The solution of the above equation
is capable of generating shock discontinuities even with smooth initial conditions if the
viscosity ν is sufficiently small, due to the advection-dominated behavior. We consider the
initial condition

u(x, 0) ≡ u0 =
x

1 +
√

1
t0

exp
(

Re x2

4

) . (10)

An analytical solution of this problem is given by

u(x, t) =
x

t+1

1 +
√

t+1
t0

exp
(

Re x2

4t+4

) , (11)

where t0 = exp (Re/8) and Re = 1/ν. The high-fidelity snapshot data is generated by
directly evaluating the analytical solution over a uniformly discretized spatial domain
containing 200 grid points and for 500 uniform time steps. Figure 7 shows a visualization
of the time evolution of the initial condition for three different values of Re = 50, 300, 600.
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Figure 7. Time evolution of the high-fidelity snapshots for the advecting viscous shock problem (see
Equation (9)), parameterized with variable Reynolds number, Re.

A parametric dataset is generated by collecting 500 high-fidelity snapshots for different
values of the Reynolds number, Re = {50, 150, 300, 400, 500, 600}. The training dataset is
constructed using snapshots for Retrain = {50, 150, 300, 500}. The remaining snapshots for
Retest = {400, 600} constitute the test dataset. Figure 8 depicts the variation in RIC with
the number of retained POD modes for snapshots corresponding to different Re values.
The vertical dashed lines represent the number of POD modes required to attain 99.9%
RIC for snapshots of a given Re value. The gradual rise in the number of POD modes
required to attain 99.9% RIC with increasing values of Re clearly indicates how a growth of
advection-dominated behavior raises the effective Kolmogorov n-width of the system.

Figure 8. The relative information content for a different number of retained POD modes. The
singular values are computed by taking an SVD of the high-fidelity snapshots for the advecting
viscous shock problem (see Equation (9)), parameterized with variable Reynolds number, Re.

4.2.1. AA Autoencoder Models for Varying Advection Strength

In this section, we present the numerical results on the training of AA autoencoder
networks for the viscous advecting shock problem parameterized with variable Re values,
as discussed before. Following the idea of a registration-type approach, as discussed in
Section 3.2, a high-fidelity simulation snapshot at roughly the midpoint of the simulation
time period is chosen as the shifted snapshot for training the shift decoder. This choice is,
however, arbitrary and any other high-fidelity snapshot could have been selected without
affecting the effectiveness of the approach.

The results reported here are obtained with two different AA autoencoder models—
AA3 and AA4. The primary objective of this comparison is to evaluate the ability of AA
autoencoders not just to predict snapshots for unseen parameter values, but also to forecast
solutions at time points not included in the time history of the training snapshots. With
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that objective in mind, the AA3 model is trained using all of the time snapshots available
for each training parameter value, while the AA4 model is trained using the first 90% of the
time snapshots, i.e., until t = 1.80, for each training parameter value. Similar to the previous
numerical example, the available high-fidelity snapshots for each training parameter value
are divided into two sets—starting from the initial time point every alternate snapshot is
used for training the AA autoencoder model, while the rest are reserved for validation
purposes. As in the previous example, the losses computed on the validation data points
during training are solely used to monitor the extent of overfitting, and later to evaluate the
accuracy of prediction on unseen data points corresponding to a training parameter value.

After a careful exploration of the design space, a set of optimal values for the hy-
perparameters were obtained to construct models AA3 and AA4 (see Table 2). Both the
models are trained for 5000 epochs using minibatches of size 24 and employing the Adam
optimizer. The AA3 model training is initialized with a learning rate of 5× 10−4 that decays
stepwise by 10% every 330 epochs, whereas the initial learning rate for the AA4 model
is chosen to be 3× 10−4 and it is allowed to decay by 10% every 309 epochs. Both the
input features and the output labels are constructed by augmenting the training snapshots
with the corresponding scaled parameter values. The encoder network χe for model AA3
is constructed with a single hidden layer of size 50 that connects an input feature (i.e.,
augmented snapshot) of dimension N = 201 to an encoded latent vector representation of
dimension k. On the other hand, the AA4 model is defined with two hidden layers of sizes
100 and 50. For both the models, the decoder networks χd and φs are set up to be mirror
images of the encoder network. From Figure 8 it can be seen that at least a minimum of
3 POD modes are required to attain 99% RIC for any of the chosen Re values. However,
while exploring a range of possible latent space dimensions, 3 ≤ k ≤ 10, it was observed
that a latent space of dimension k = 5 was adequate in capturing the essential dynamical
features of the entire parametric training dataset. Hence, k = 5 is selected as the optimal
latent space dimension for both models AA3 and AA4. All hidden layers are endowed with
the swish activation function, while the output layers are designed to have a linear activation.
The individual loss components L1 and L2 are defined by a weighted combination of the
NMSE loss and the pseudo-Huber loss, as discussed in the previous numerical example.

Table 2. Hyperparameters to design the AA autoencoders for the viscous advecting shock example.

Hyperparameters AA3 AA4

Input/Output Augmented input and output Augmented input and output
Hidden Units (50–150) 50 100, 50

Batch Size (8–128) 24 24
Latent Dimension (3–10) 5 5

Activation (selu, tanh, swish) swish swish
Initial Learning Rate
(1× 10−3–1× 10−5) 5× 10−4 3× 10−4

Figure 9 shows the salient features of the training process for models AA3 and AA4.
The left plot shows the decay of the training and validation losses during training, and
the right plot shows the decay of the two loss components, L1 and L2, for both models.
Due to its higher capacity (more hidden layers and more neurons) model AA4 is capable
of attaining lower values of training and validation losses as compared to model AA3.
This is possibly an indication that model AA4 is able to learn the essential features of the
high-dimensional state space more effectively, thus enabling improved prediction over data
points that lie within the bounds of the training time history, as will be shown in the later
experiments. On the other hand, this also causes the L1 loss component of model AA4 to
have a sharper decay than the L2 component, whereas model AA3 shows a more balanced
decay of the two loss components. The latter trait is considered more preferable, as the
effectiveness of any latent space dynamics model is dependent upon the accuracy of the true
decoder χd, that is measured by the L2 loss component. Therefore, in situations when the
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entire time history is available for model training, a smaller capacity AA autoencoder model
like AA3 is capable of achieving the desirable training outcomes. Hence, following the
principle of parsimony, model AA3 is chosen to generate the latent space representations
that are used to train LSTM dynamics models in the next two sections.

Figure 9. Training characteristics of two AA autoencoder networks trained using a parametric dataset
of snapshots for the advecting viscous shock problem parameterized with variable Reynolds number,
Re = {50, 150, 300, 500}. AA3 denotes the model trained with the entire time snapshot history for
every parameter value, while AA4 denotes the model trained with the initial 90% of the time snapshot
history for each parameter value. The left panel shows the decay of training and validation losses
during training. The right panel shows the evolution of the loss components during training.

Figures 10 and 11 present a performance comparison of models AA3 and AA4 in
predicting the true and shifted snapshots for two of the training parameter values, Re = 50
and Re = 500, respectively. Each individual plot shows the evolution of either a solution
field or an error field in the x− t space, where the x-axis represents time and the y-axis
represents space. The plots in the left column depict the solution fields predicted by the
AA3 and AA4 models, the plots in the middle column depict the high-dimensional solution
fields, and the plots in the right column depict the pointwise error between the high-
dimensional and the predicted solution fields. It is evident from the first two columns that
models AA3 and AA4 are able to qualitatively capture both the true and shifted solution
fields. A closer look at the right column reveals that the approximation error of model
AA3 is randomly spread throughout the simulation time history (see Figures 10b and 11a,b,
whereas the approximation error of model AA4 rises gradually as predictions are sought
further away from the end point of the training time history, i.e., t > 1.8. This confirms
the previously discussed observation that, due to the higher network capacity, model AA4
offers more accurate predictions than model AA3 for time points that lie within the bounds
of the training time history that is common to both models, i.e., 0 < t ≤ 1.8. However,
model AA4 gradually loses predictive capability over the unseen time points given by
t > 1.8, whereas model AA3 still generates accurate predictions, despite its lower network
capacity.

Figure 12 depicts the time trajectory of the spatial relative errors for the predictions
obtained by models AA3 and AA4 over the parametric training dataset. The spatial relative
errors are computed as the ratio of the spatial l2-norm of the prediction error to the spatial
l2-norm of the high-dimensional solution at every computational time point. Figure 12a
shows the spatial relative errors for the shift decoder predictions while Figure 12b shows
the corresponding errors for the true decoder predictions, for every value in the parametric
training dataset, Retrain = {50, 150, 300, 500}. The relative error plots not only validate the
previously discussed observations about the prediction capabilities of models AA3 and
AA4, but also highlight that even for t > 1.8, model AA4 offers encouraging extrapolatory
predictions with a relative error of less than 4%.
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(a) Prediction of true snapshots for Re = 50 using models AA3 and AA4

(b) Prediction of shifted snapshots for Re = 50 using models AA3 and AA4

Figure 10. Prediction performance of χd and φs decoders on training data. Predictions of (a) true
and (b) shifted snapshots for a training parameter value, Re = 50, using models AA3 and AA4. The
left column shows the predicted solutions, the center column shows the high-fidelity solutions, and
the right column shows the error between the two.

(a) Prediction of the true snapshots for Re = 500 using models AA3 and AA4

(b) Prediction of the shifted snapshots for Re = 500 using models AA3 and AA4

Figure 11. Prediction performance of χd and φs decoders on training data. Predictions of (a) true
and (b) shifted snapshots for a training parameter value, Re = 500, using models AA3 and AA4. The
left column shows the predicted solutions, the center column shows the high-fidelity solutions and
the right column shows the error between the two.
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(a) Relative errors of the shift decoder predictions

(b) Relative errors of the true decoder predictions

Figure 12. Relative errors of (a) φs and (b) χd predictions using the AA3 and AA4 models for
snapshots generated with the training parameter values.

Figures 13 and 14 show the performance of models AA3 and AA4 while predicting
the true and shifted snapshots using parameter values from the test dataset, Re = 400
and Re = 600, respectively. Figure 15 presents the spatial relative errors of the predictions
made by models AA3 and AA4 for the two test parameter values. Even for the unseen test
parameter values, the true and shifted solution fields computed by the AA autoencoder
models are closely aligned with the high-dimensional solution fields. This is reflected in the
error field plots as well as the spatial relative error plots, which are bounded below the 5%
relative error. The results in this section demonstrate that even for a nonlinear advection-
dominated problem, a trained AA autoencoder network can offer accurate extrapolatory
predictions for unseen parameter instances as well as short-term extrapolatory predictions
for unseen time.

4.2.2. LSTM Models for System Dynamics

In this section, numerical results are presented for the modeling of the temporal
evolution of the latent space coefficients defined by a pre-trained AA autoencoder network
for the advective viscous shock problem parametrized by variable Re. As the focus of this
work is to demonstrate the efficiency and flexibility of the AA autoencoder architecture,
hence for the sake of simplicity, the latent space dynamics are modeled in an autoregressive
fashion using traditional LSTM networks.
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(a) Prediction of true snapshots for Re = 400 using models AA3 and AA4

(b) Prediction of shifted snapshots for Re = 400 using models AA3 and AA4

Figure 13. Prediction performance of χd and φs decoders on unseen data. Predictions of (a) true and
(b) shifted snapshots for a test parameter value, Re = 400, using models AA3 and AA4. The left
column shows the predicted solutions, the center column shows the high-fidelity solutions and the
right column shows the error between the two.

(a) Prediction of true snapshots for Re = 600 using models AA3 and AA4

(b) Prediction of shifted snapshots for Re = 600 using models AA3 and AA4

Figure 14. Prediction performance of χd and φs decoders on unseen data. Predictions of (a) true and
(b) shifted snapshots for a test parameter value, Re = 600, using models AA3 and AA4. The left
column shows the predicted solutions, the center column shows the high-fidelity solutions, and the
right column shows the error between the two.
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Figure 15. Relative errors of φs (left) and χd (right) predictions using the AA3 and AA4 models for
snapshots generated with the unseen test parameter values.

Two different approaches are adopted to construct these dynamics models. In the first
method, an independent LSTM network is trained for the encoded snapshots corresponding
to each parameter value in Retrain = {50, 150, 300, 500}. The AA3 model is chosen to
compute the encoded latent representations of the high-dimensional snapshots. For the
datasets characterized by weaker advection, i.e., Re = 50 and Re = 150, a smaller capacity
LSTM network is defined using two stacked LSTM cells with 32 hidden dimensions each
and swish activation. For the datasets with higher values of Re = 300 and Re = 500, a
higher capacity network consisting of two stacked LSTM cells with 150 hidden units was
found to be necessary to accurately capture the dynamics. The network is trained to read
an input consisting of 5 time steps and predict the next element in the time series. The
first 90% time steps are used for training the LSTM model and the remaining 10% are used
for testing the extrapolatory predictive capability of the trained LSTM model. Training is
performed for 4000 epochs using the Adam optimizer with minibatches of size 24 and with
an initial learning rate of 2× 10−5 that decays by 10% every 304 epochs. For minimization
of the network hyperparameters, losses in the latent space predictions are computed using
the NMSE loss. Scaling the input features used for training the LSTM model was found to
offer no additional benefits to the training process or improved prediction accuracy. Some
preliminary testing with the use of dropout layers also yielded inconclusive evidence to
support or recommend their use for further training.

In Figure 16, the latent space coefficients of the high-dimensional snapshots as defined
by the AA3 autoencoder model are compared with the predictions generated by the
individual LSTM models. As the AA3 model defines a latent space of dimension 5, hence
each plot depicts 5 latent space modes. The plots in panels (a)–(c) are obtained with LSTM
models that are trained on the latent space coefficients corresponding to snapshots in the
parametric training dataset, i.e., Re = 50, 300, 500, respectively. The modal trajectories in
panel (d) are obtained by evaluating the latent space coefficients for a test parameter value
Re = 400 using the AA3 model and then training a LSTM model to learn the evolution
of these coefficients. As mentioned before, the LSTM models are trained on the first 90%
time steps of each timeseries and the boundary of the training data is marked by a dashed
vertical line in each plot. The encoded true snapshots and the LSTM predictions for both the
training and even the test parameter values display a high degree of agreement, especially
for time steps within the LSTM training time window. It is also encouraging to observe
that for a short length outside the training time window, even the extrapolatory predictions
obtained from the trained LSTM models are in agreement with the encoded true snapshots.
This behavior can also be seen in Figure 17 where the true decoder of the AA3 model is
applied to the LSTM predictions and the results are compared with the high-dimensional
snapshots. These plots are populated with the predicted and high-dimensional solution
snapshots at four different intermediate times with the x-axis representing the spatial grid.
The plotting time steps are distributed uniformly throughout the simulation time window
and are chosen in such a way that the final time step t = 1.90 lies outside the LSTM
training time window. It is clear that the trained autoencoder(AE)-LSTM model captures
the viscous advecting shock-like feature fairly well, even for the extrapolatory time step.
This demonstrates the ease of constructing dynamics models in a latent space defined by
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the parametric AA autoencoder model, even while adopting a standard implementation
of a simple and lightweight LSTM network. While some discrepancies emerge with
extrapolatory and longer-time prediction windows, this can be attributed to the well-
known issues with the autoregressive modeling of time series data using standard LSTM
networks [70]. However, for applications where time series predictions are desired over
shorter time windows, the proposed AA autoencoder+LSTM approach shows the capacity
for effective extrapolatory predictions.

(a) LSTM prediction for Re = 50 (b) LSTM prediction for Re = 300

(c) LSTM prediction for Re = 500 (d) LSTM prediction for Re = 400

Figure 16. Comparing latent space predictions obtained using a parametric AA autoencoder and
LSTM models. The LSTM models are trained separately for each training parameter value as pre-
sented in (a) Re = 50, (b) Re = 300, (c) Re = 500 and for a test parameter value shown in (d) Re = 400.
All LSTM models are trained using the first 90% of the total time steps (as demarcated by the vertical
lines in each figure), and the remaining time steps are used for evaluating extrapolatory predictions.
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(a) Decoded AE-LSTM prediction for Re = 50 (b) Decoded AE-LSTM prediction for Re = 300

(c) Decoded AE-LSTM prediction for Re = 500 (d) Decoded AE-LSTM prediction for Re = 400

Figure 17. Comparing predictions of the high-dimensional solutions for the parametric advecting
viscous shock problem using an AA autoencoder and LSTM models. The LSTM models are individu-
ally trained for each parameter value and are presented as (a) Re = 50, (b) Re = 300, (c) Re = 500,
and (d) Re = 400.

In the second approach, a parametric LSTM (pLSTM) network is trained on the
encoded snapshots obtained by the AA3 model. An encoded representation is obtained for
every snapshot corresponding to the training parameter values, Retrain = {50, 150, 300, 500}.
Moreover, the encoded snapshots are augmented by explicitly attaching the corresponding
scaled parameter values as labels. The pLSTM network is defined using three stacked
LSTM cells with 128 hidden units each and swish activation. The network is trained to
read an input consisting of 8 time steps and predict the next element in the time series.
Training is performed for 50,000 epochs using the Adam optimizer with minibatches of size
150, and with an initial learning rate of 1× 10−3, that decays by 20% every 2083 epochs.
For optimization of the network hyperparameters, losses in the latent space predictions
are computed using the NMSE loss. Similar to the previous approach, scaling the input
features for the pLSTM network were not found to be beneficial.

Figure 18a,b show the comparison between the encoded true snapshots and the latent
space predictions of the pLSTM model for snapshots corresponding to training parameter
values Re = 150 and Re = 300, respectively. The pLSTM model can be clearly seen to
approximate the time trajectory of the latent space coefficients accurately. In Figure 18c,d,
the true decoder of the AA3 model is applied to the latent space predictions at four
intermediate time steps and the results are compared to the high-dimensional solution
snapshots. The solutions predicted by the combined AA3+pLSTM model perfectly match
the high-dimensional simulation snapshots.

In the next set of numerical experiments, the trained pLSTM model is deployed
to emulate the evolution of the latent space coefficients in a recursive fashion, i.e., the
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pLSTM model outputs for one time step are recursively rolled into the time step input
window and used for pLSTM predictions at the next time step. Figure 19 shows two
such examples of recursive pLSTM predictions for training parameter values Re = 50
and Re = 500, starting from randomly chosen initial time points. In panel (a), pLSTM
predictions of the latent space evolution for Re = 50 are computed by randomly choosing
the encoded high-dimensional solution at t = 0.26 as the initial data, and marching
forward until t = 2 in a recursive fashion. Similarly, in (b), the initial point is chosen
to be t = 0.50 and the latent space evolution for Re = 500 is computed recursively. In
both cases, the predicted trajectories show remarkable agreement with the encoded high-
dimensional solution trajectories. Finally, in (c) and (d), the pLSTM latent space predictions
are decoded using model AA3 to compare with the high-dimensional solution snapshots at
four intermediate time steps. Again, the predicted solutions are found to closely align with
the true high-dimensional snapshot data.

(a) pLSTM prediction for Re = 150 (b) pLSTM prediction for Re = 300

(c) Decoded pLSTM prediction for Re = 150 (d) Decoded pLSTM prediction for Re = 300

Figure 18. Comparing predictions obtained using a parametric AA autoencoder and a parametric
LSTM (pLSTM) model. (a,b) show the latent space predictions using the pLSTM model and the en-
coded high-dimensional snapshots for training parameter values Re = 150 and Re = 300, respectively.
(c,d) compare the corresponding decoded pLSTM predictions with the high-dimensional snapshots
at four intermediate time steps.
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(a) pLSTM prediction for Re = 50 (b) pLSTM prediction for Re = 500

(c) Decoded pLSTM prediction for Re = 50 (d) Decoded pLSTM prediction for Re = 500

Figure 19. Comparing recursive predictions obtained using a parametric AA autoencoder and a
parametric LSTM (pLSTM) model. (a,b) show the recursive latent space predictions using the pLSTM
model and the encoded high-dimensional snapshots for training parameter values Re = 50 and
Re = 500, respectively. (c,d) compare the corresponding decoded pLSTM predictions with the
high-dimensional snapshots at four intermediate time steps.

5. Conclusions and Future Work

In this study, we propose a novel advection-aware autoencoder network that can
find a low-dimensional nonlinear embedding of the salient physical features of advection-
dominated transport problems. Such systems are known to exhibit instabilities and in-
efficient compression ratios when expressed in terms of a linear subspace defined by
POD-Galerkin projection-based reduced order models. The novelty of the proposed design
lies in the definition of a latent space vector that can simultaneously be efficiently mapped
to the corresponding high-fidelity simulation snapshot as well as an arbitrary snapshot that
effectively emulates the advective features of the high-fidelity snapshot. We demonstrate
that for a linear advection problem that requires about 60 linear POD basis modes to accu-
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rately capture solution features, the AA autoencoder model can achieve a stable nonlinear
embedding using a latent representation of dimension 15, and for a viscous advecting shock
problem that requires about 15 POD basis modes, the AA autoencoder model can produce
accurate representations with a nonlinear embedding of dimension 5. We also develop
a fully, non-intrusive ROM framework by combining the AA autoencoder architecture
with a separately trained LSTM network that captures the temporal dynamics in the latent
space defined by the AA autoencoder model. This non-intrusive ROM formulation is
extended to parametric problems by concatenating the parameter information to both the
high-dimensional input snapshots for the AA autoencoder as well as the low-dimensional
latent states used for the LSTM training, and then training each model independently. The
proposed parametric, non-intrusive ROM is numerically evaluated on the parametric test
problem involving a viscous advecting shock. The results indicate that the framework is
capable of learning essential underlying features by exhaustively exploring different types
of parametric design spaces. Moreover, evaluations with unseen parameter values reveal
that the model is also able to produce accurate extrapolatory predictions. The numerical
examples presented here demonstrate that the proposed approach is capable of handling
not just uniform advection, but also nonlinear problems involving viscous shocks. The
key to extending this approach to a wider class of advection-dominated problems such as
solitary waves, chaotic systems, and systems governed by multiple traveling waves, lies
in the appropriate selection of a shifted snapshot that optimally endows the latent space
with information about the underlying advective transport. The registration-type approach
of selecting an intermediate high-fidelity simulation snapshot as the shifted snapshot, as
adopted here, is a versatile strategy that can be extended even to problems with multiple
traveling features. For the examples studied here, the efficacy of the approach was found
to be independent of the choice of the particular intermediate time step. However, a sys-
tematic sensitivity analysis is required to understand the effect of this choice for systems
characterized by multiple traveling waves and chaotic dynamics.

Currently, we are engaged in developing a robust, end-to-end algorithm for concurrent
training of the AA autoencoder and the dynamics model, and formulating design guide-
lines to help the end user choose between concurrent and separately trained ROMs. One
important step towards this goal is to explore the addition of physics-based regularizing
constraints to the loss function, in order to resolve some of the instabilities in the training
trajectory. We are also interested in investigating the use of other ML-based and classical
time series learning strategies to model the dynamical features of the latent space coeffi-
cients. Another planned direction of future work is aimed at the development of a method
that can efficiently map the high-fidelity solution on to a regular, logically rectangular
grid. This will allow us to construct AA autoencoder models using convolutional and
deconvolutional layers that can more efficiently extract localized spatial patterns in the
input features.
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Abstract: Musculoskeletal computational models provide a non-invasive approach to investigate
human movement biomechanics. These models could be particularly useful for pediatric applications
where in vivo and in vitro biomechanical parameters are difficult or impossible to examine using
physical experiments alone. The objective was to develop a novel musculoskeletal subject-specific
infant model to investigate hip joint biomechanics during cyclic leg movements. Experimental
motion-capture marker data of a supine-lying 2-month-old infant were placed on a generic GAIT 2392
OpenSim model. After scaling the model using body segment anthropometric measurements and
joint center locations, inverse kinematics and dynamics were used to estimate hip ranges of motion
and moments. For the left hip, a maximum moment of 0.975 Nm and a minimum joint moment of
0.031 Nm were estimated at 34.6◦ and 65.5◦ of flexion, respectively. For the right hip, a maximum
moment of 0.906 Nm and a minimum joint moment of 0.265 Nm were estimated at 23.4◦ and 66.5◦ of
flexion, respectively. Results showed agreement with reported values from the literature. Further
model refinements and validations are needed to develop and establish a normative infant dataset,
which will be particularly important when investigating the movement of infants with pathologies
such as developmental dysplasia of the hip. This research represents the first step in the longitudinal
development of a model that will critically contribute to our understanding of infant growth and
development during the first year of life.

Keywords: musculoskeletal model; infant movement; biomechanics; motion capture; OpenSim

1. Introduction

Human movements are complex event sequences that involve high coordination levels
between musculoskeletal and neurological systems. Establishing the normative characteris-
tics of specific human movements is particularly important when investigating individuals
who have pathologies preventing natural movements. In the biomechanics field, aspects
of human movements, such as segmental kinematics, kinetics, and muscle activity, are
experimentally quantified and characterized by using established methodologies, such
as marker-based motion capture (MOCAP), inertial measurement units, force plates, and
electromyography. While these technologies are non-invasive, they require the presence of
human subjects in the laboratory following specific instructions to obtain a useful dataset.
For common human movements such as walking gait, once normative experimental data
ranges are established for specific populations, biomechanists often turn to musculoskeletal
computational models (MCM). MCM are convenient to non-invasively study the simu-
lated dynamics of human movement, bypassing the investigation of in vivo and in vitro
biomechanical parameters that may be difficult or impossible to examine using physical
experiments alone.
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Over the past two decades, the complexity and quality of MCM advanced at a rapid
rate. In the biomechanics literature, MCMs have been used for a wide range of applications,
including sports performance [1,2], clinical outcomes [3–8], occupational ergonomics [9,10],
and accident reconstruction [11]. While there has been a steady advance in adult human
MCM [12–14], neonatal and infant populations have been widely under-investigated
in modeling.

In early infancy, when babies experience rapid development, it is vital to understand
the nature of infant movements in daily body positioning environments and the effect on
healthy musculoskeletal development. Novel MCMs have studied these effects during
fetal movement [15–17] and pathological conditions in infancy, such as developmental
dysplasia of the hip (DDH) [18–20]. DDH is an abnormal condition in infants characterized
by dislocation, misalignment, or instability of the hip [21,22]. Infants are at a greater risk of
DDH if they were in a breech position during delivery, are female, are the first-born, or have
a family history of DDH [23]. Challenges in establishing a normative dataset are due to
difficulties in recruiting infant subjects and the dearth of biomechanical studies examining
movement and coordination in early infancy. Developing realistic infant MCM is crucial,
particularly due to the paucity of experimental infant data in the literature. Additionally,
since infants experience rapid growth in their first year of life, it is equally important
to develop subject-specific infant MCM to obtain a more robust understanding of their
movements and the subsequent joint and musculoskeletal development. MCM achieve the
closest approximation to physiologically accurate movements when they are developed as
subject-specific models. However, developing subject-specific MCM is a complicated, multi-
layered process, often involving segmental anthropometric measurements, 3D imaging
such as MRI/CT, 3D kinematics using MOCAP, and electromyography.

Typically, subject-specific MCMs are developed by scaling the generic model using
the subject’s segment anthropometries [24]. The segment lengths can be calculated using
surface anatomical landmarks [24] alone or in combination with joint center locations.
Kainz et al. [25] found that incorporating joint centers in the scaling process significantly
increased the accuracy of the thigh and shank segment estimates when compared to scaling
with surface markers alone. The hip joint center (HJC) locations are difficult to estimate
because HJC locations cannot be directly identified from surface marker locations. HJC
locations can be estimated using functional estimation methods or regression equations.
Knee and ankle joint centers can also be estimated using functional methods. Functional
approaches are implemented during MOCAP for subjects who have a sufficient hip range of
motion and can easily perform the instructed functional movements [24]. However, regres-
sion equations are implemented after MOCAP for subjects who have a limited hip range
of motion [24] or cannot perform the required movements. Both approaches are accepted
methods of calculating HJC locations when medical imaging is not available [26], which is
the case for infant populations under the age of one year where MRI/CT is unavailable.

Previous studies have attempted to quantify an infant’s joint kinematics and kinetics
during spontaneous movement, but an infant MCM has yet to be created. The purpose of
this work was to develop a novel lower extremity computational musculoskeletal model
representative of an infant, using body segment anthropometric measurements and experi-
mental MOCAP data of a single infant taken from previously collected infant biomechanics
data [27,28]. This study will provide more insight into biomechanical loadings at the hip
joint during a spontaneous kick and will provide a noninvasive technique for evaluating
the mechanisms contributing to infant hip development.

2. Materials and Methods

2.1. Experimental Methods

De-identified experimental data for one healthy, full-term male infant (2.4 months)
was obtained from a study approved by the Institutional Review Board of the University of
Arkansas for Medical Sciences [28]. The infant was weighed on an infant scale at 5.35 kg and
was measured head to heel (lying supine) at 56 cm. Leg length measurements were made

158



Math. Comput. Appl. 2022, 27, 36

with a standard measuring tape, with the right and left leg measuring 23 cm and 22 cm,
respectively. Marker-based MOCAP (100 Hz; Vicon, Oxford, UK) recorded movement
through reflective markers placed bilaterally on the anterior and posterior of the head,
anterior superior iliac spine (ASIS), posterior superior iliac spine (PSIS), greater trochanter,
medial and lateral epicondyles of the knee, and the medial and lateral malleolus of the
ankle. Additionally, three-marker rigid bodies were placed on the anterior and posterior
of the pelvis and bilaterally on the lateral aspect of each thigh. Data were recorded over
a 30 s period with the infant lying in the supine position and was allowed to move freely
and naturally without any external stimulations as shown in Figure 1a.

 

Figure 1. Methodology pipeline: (a) infant MOCAP data collection, (b) musculoskeletal scaling, and
(c) musculoskeletal model to predict hip joint ROMs and external hip joint moments.

2.2. Musculoskeletal Model Development

Markers from the experiment were placed on a generic GAIT 2392 OpenSim model [29,30],
which is used for simulating lower extremity dominant motions. This model has 23 degrees
of freedom and 96 musculotendon actuators that represent 76 muscles in the lower extremity,
including the pelvis, femur, tibia, fibula, talus, foot, and toes.

To create a subject-specific model representative of an infant’s size, marker-based
scaling was used. This scaling approach minimizes the distance between experimental
and model (virtual) markers through optimization and predicts scale factors. The opti-
mization used during scaling was a weighted least squares optimization problem given
by Equation (1) [21], where q is the vector of generalized coordinates being solved for, xexp

i
is the experimental position of marker i, xi(q) is the position of the corresponding model
marker (which depends on the coordinate values), and qexp

j is the experimental value for
coordinate j. The prescribed coordinates are set to their experimental values. The goal
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of the optimization problem was to place the model markers in the position that closely
matched the subject’s position while minimizing marker errors.

min
q

[
∑

i ∈ markers
wi‖xexp

i − xi(q)‖2 + ∑
i ∈ unprescribed coords

wj

(
qexp

j − qj

)2
]

(1)

qj = qexp
j for all prescribed coordinates j

Functional joint centers for the hips, knees, and ankles were estimated and used
during the scaling process. The ankle and knee joint centers were calculated using the
midpoint between the medial and lateral marker positions. The hip joint centers (HJC)
were estimated using regression equations based on the subject’s leg length (LL) [31], as
shown in Equations (2)–(4).

HJCx= 11− 0.063× LL (2)

HJCy= 8 + 0.086× LL (3)

HJCz= −9− 0.078× LL (4)

The mean absolute errors for the posterior-anterior (HJCx), medial-lateral (HJCy), and
inferior-superior (HJCz) position equations are 5.2 mm, 4.4 mm, and 3.8 mm, respectively.
The femur and tibia were both scaled non-uniformly by using a scale factor for the medial-
lateral direction and the superior-inferior direction. Since the infant was placed in the
supine position, the posterior pelvic markers were not captured during MOCAP. Thus, the
pelvis was scaled uniformly with respect to the medial-lateral direction.

The average upper-segment lower-segment (USLS) infant ratio [32], which compares
the upper segment (torso) and lower segment (legs), was also used to validate scaling.
A 5% difference was found between the reported USLS infant ratio (1.70) and the scaled
musculoskeletal model USLS infant ratio (1.61). In addition, a user-defined constant
ground reaction force (GRF) was defined to represent the infant's weight normal to the
ground and was applied at the infant’s coccyx. The GRFs in the shear directions were
neglected since the infant was lying supine and the motion was only observed in the lower
extremity. Typically, generic models use a synchronous GRF during scaling obtained from
a calibration sequence completed by the participant (either a static pose or a series of
predefined functional movements). For infant MOCAP studies, infants are generally placed
in a supine position, and there is not much variation in GRFs. Therefore, we assumed a
constant GRF concentrated at the coccyx. Inverse kinematics and inverse dynamics were
then used to estimate hip joint range of motion (ROM) and external moments. Figure 1
shows the methodology pipeline used in this study. Figure 2 shows the subject-specific
musculoskeletal infant model.

2.3. Outcome Measures

A movement of the hip joint beginning from an extended position moving through a
single flexion phase and then returning to the extended position is defined as a single kick.
A single, discrete kick, defined by a kick where no other kicking motion is observed within
1 s before and after the kick, was identified and isolated over a 3 s period for each hip to
visualize the extended–flexed–extended pattern [33]. To compare the kick on the left and
right leg, the kick-start time was adjusted to plot the kicks generated by both the right and
left hips.
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Figure 2. Subject-specific OpenSim model displaying the virtual joint center marker positions in pink
and the calculated joint center marker positions in blue. (a) Right-side view of the musculoskeletal
model in the supine position and (b) isolated right lower extremity. Head and torso bodies are not
to scale.

3. Results

3.1. Hip Joint Range of Motion

Over a 3 s period, minimum joint angle values of 22.2◦ (right hip) and 23.2◦ (left hip)
and maximum joint angle values of 66.6◦ (right hip) and 66.3◦ (left hip) were predicted
as shown in Figure 3. For both kicks, the maximum hip flexion was calculated to be
approximately 66.0◦. Additionally, Figure 4 shows the beginning and end of the kick cycle
for both the right and left hips and identifies all different stages of the motion defined by
each single kick, which was classified as discrete.

Once both kicks were classified, the cyclic data for the right hip and left hip were
isolated again to show the beginning and end of the kick cycle. Figure 4 shows details
of flexion and extension for both hips where the kick starts with the hip moving towards
the trunk as it reaches maximum flexion and then moves away from the body as the
hip extends.
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Figure 3. Hip joint ROM for left and right hips over a 3 s period.
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Figure 4. Hip joint angle data during discrete isolated kicks for right and left hips.

3.2. Hip Joint Moment

The correlating hip joint moment results of the discrete kicks for the right and left hip
joints are shown in Figure 5 and are consistent with the observed hip ranges of motion.
Figure 5 shows that the maximum torque is required at the beginning of the kick cycle
when the hip joint torque must overcome the gravitational force to reach maximum flexion.
Once the gravitational force is overcome, the moment decreases to slow down the motion
as it reaches maximum flexion. Similarly, the moment increases as the motion reverses as it
goes into extension where the maximum torque is needed at the end of the kick cycle to
slow down the hip joint.
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Figure 5. Hip joint moment during discrete isolated kicks for right and left hips.

4. Discussion

The purpose of this study was to create a preliminary musculoskeletal computational
model representative of an infant to study the biomechanics of the lower extremity. By
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using experimental motion-capture data along with external forces, a novel musculoskeletal
model was created using inverse kinematics and dynamics. Our preliminary results
suggest that the musculoskeletal model is able to portray the biomechanics of infants when
estimating hip joint ROM and moments to investigate healthy infant movement.

Our results for the hip flexion angle and hip moment were normalized by the time
scale to better compare the kicks with varying kick duration to the kicks reported in the lit-
erature [33]. Figure 6 shows a trend agreement between the reported values and our results.
However, reported flexion values were higher when compared to our model. There was a
maximum hip joint angle difference of 30.5◦ (right hip) and 30.8◦ (left hip) when compared
to the literature. This maximum difference was observed at the corresponding time of
maximum hip flexion angle. This difference is attributed to dissimilarities in data collection
methodologies and subject heterogeneity. In the methods used by Schneider et al. [33], the
infant subject’s chest and abdomen were immobilized while the lower extremity could
move freely and naturally. On the other hand, our study permitted no movement restric-
tions, allowing the upper extremity as well as the lower extremity to move freely and
naturally in coordination with the upper body. With these different approaches, we see that
the kick cycle ends at a greater hip joint angle for both hips compared to the starting hip
joint angle at the beginning of the kick cycle. This may be caused by the additional muscle
control needed when motion is reversed from flexion to extension to stabilize the hip joint.
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Figure 6. Time normalized hip joint ROM comparison between infant model and Schneider et al.’s [33].

Hip joint moment data obtained through the musculoskeletal model were also normal-
ized and compared to values reported in the literature [33]. In both results, a decrease in
moment was observed during hip flexion, and an increase in moment was observed during
the extension of the hip, as shown in Figure 7.
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Figure 7. Normalized hip joint moment comparison between infant model and Schneider et al.’s [33].

Figure 7 shows hip joint moment for both the right and left hip decreases as the hip joint
undergoes flexion and then increases as the hip returns to the extended position. The flexion
phase of the kick corresponds to concentric hip flexor contraction, while the extension phase
corresponds to eccentric hip flexor contraction. This trend coincides with the results found
in Schneider et al.’s study in their joint moment calculations [33]. Similar to the comparison
made on the hip joint angle, a trend agreement was observed when comparing moment
values from the infant model to reported values from the literature [33]. There was a hip
joint moment difference of 0.275 Nm (right hip) and 0.083 Nm (left hip) when compared to
the literature. This maximum difference (right: 0.283 Nm; left: 0.039 Nm) was observed at
the corresponding time of maximum hip flexion angle. The difference in moments can be
attributed to several factors, such as not restraining the upper extremity, the difference in
kick intensity, and that the present model was developed from subject-specific data.

Due to the limitation of accessible data, and the fact that infant subjects are unable to
follow verbal instructions, recreating specific kicking motions is impossible. The similarity
in how the joint moment behaves with respect to hip joint flexion and extension is observed
in both the results of this study and results found in the literature.

Another limitation of this study is that the regression equations were based on child
and adult populations ranging between the ages of 5-years-old and 40-years-old [31]. There
are currently no regression equations present in the literature for estimating the location
of hip joint centers in infants. Regression equations are developed using either cadaveric
data or medical imaging studies [34]. To the knowledge of the authors, such data for infant
populations under the age of one year old are not available. The risks of radiation exposure
from taking CT scans of young, healthy infants to obtain more representative regression
equations are not justifiable. Other approaches that do not include ionizing radiation,
including MRI scans or ultrasound, were outside of the scope of this study. Nonetheless,
amongst the regression methods, Hara et al. [31] found an improved accuracy of their
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regression equations when compared to previously published equations [35–37] when
using the leg length as the predictor. Furthermore, the Hara method had the largest sample
size of all regression methods for estimating hip joint centers. Exploring the best methods
of defining the HJC for an infant population should be a focus of future research.

The paucity of infant biomechanical data in the literature is a major limitation in
infant musculoskeletal modeling. Additionally, infants’ inability to follow instructions in
an experimental laboratory makes infant biomechanics research a unique challenge. Our
model, while not yet generalizable to the infant population, represents a crucial advance in
developing subject-specific infant lower-extremity MCM from experimental data.

This study represents a novel musculoskeletal model that can enable innovative
research on the understudied infant population and eventually extend to pathologies such
as DDH. Eventually, researchers with limited or no access to infant participants will be
able to use the infant MCM model to study biomechanical loads that occur at the hip joint
during dynamic movements and use the results to identify and evaluate the mechanisms
that contribute to infant hip development. Future work should include how joint moments
might change with age during the first year of life before infants start walking. During this
period, the anatomy and neuromuscular system of infants undergo rapid changes, making
the development of valid subject-specific MCM of infants a crucial step to gain a more
granular and holistic understanding of infant growth and development.

5. Conclusions

A preliminary musculoskeletal computational model representative of an infant to
study the biomechanics of the lower extremity was created. This novel musculoskeletal
model was created using experimental MOCAP and GRF data, as well as OpenSim’s
inverse kinematics and inverse dynamics post-processing tools. The infant MCM can
enable innovative research on the understudied infant population by providing more
insight into biomechanical loadings at the hip joint during a spontaneous kick and can
eventually be extended to evaluating the mechanisms contributing to pathologies such
as DDH.
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Abstract: In the present paper non-convex multi-objective parameter optimization problems are
considered which are governed by elliptic parametrized partial differential equations (PDEs). To solve
these problems numerically the Pascoletti-Serafini scalarization is applied and the obtained scalar
optimization problems are solved by an augmented Lagrangian method. However, due to the PDE
constraints, the numerical solution is very expensive so that a model reduction is utilized by using
the reduced basis (RB) method. The quality of the RB approximation is ensured by a trust-region
strategy which does not require any offline procedure, in which the RB functions are computed in
a greedy algorithm. Moreover, convergence of the proposed method is guaranteed and different
techniques to prevent the excessive growth of the number of basis functions are explored. Numerical
examples illustrate the efficiency of the proposed solution technique.

Keywords: non-convex multi-objective optimization; partial differential equations; Pascoletti-Serafini
method; augmented Lagrangian; reduced basis method; trust-region strategy

1. Introduction

Multi-objective optimization plays an important role in many applications, e.g., in
industry, medicine or engineering. One of the mentioned examples is the minimization of
costs with simultaneous quality optimization in production or the minimization of CO2
emission in energy generation and simultaneous cost minimization. These problems lead
to multi-objective optimization problems (MOPs), where we want to achieve an optimal
compromise with respect to all given objectives at the same time. Normally, the different
objectives are contradictory such that there exists an infinite number of optimal compro-
mises. The set of these compromises is called the Pareto set. The goal is to approximate the
Pareto set in an efficient way, which turns out to be more expensive than solving a single
objective optimization problem.

Since MOPs are of great importance, there exist several algorithms to solve them.
Among the most popular methods are scalarization methods, which transform MOPs into
scalar problems. For example, in the weighted sum method [1–3], convex combinations of
the original objectives are optimized. However, in our case the multi-objective optimization
problem

min Ĵ(u) =
(

Ĵ1(u), . . . , Ĵk(u)
)T subject to (s.t.) u ∈ Uad (MOP)

is non-convex with a bounded, non-empty, convex and closed set Uad. To solve (MOP) a
suitable scalarization method in that case is the Pascoletti-Serafini (PS) scalarization [4,5]:
For a chosen reference point z ∈ Rk and a given target direction r ∈ Rk with ri > 0 for all
i ∈ {1, . . . , k} the Pascoletti-Serafini problem is given by

min t s.t. (t, u) ∈ R×Uad and Ĵ(u)− z ≤ t r. (PPS
z,r )
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In the present paper (PPS
z,r ) is solved by an augmented Lagrangian approach. However,

in our case the evaluation of the objective Ĵ requires the solution of an elliptic partial
differential equation (PDE) for the given parameter u. This implies further that for the
computation of the gradients ∇ Ĵi, i = 1, . . . , k, adjoint PDEs have to be solved; cf. [6].
Here, surrogate models offer a promising tool to reduce the computational effort signif-
icantly [7]. Examples are dimensional reduction techniques such as the Reduced Basis
(RB) method [8,9]. In an offline phase, a low-dimensional surrogate model of the PDE is
constructed by using, e.g., the greedy algorithm, cf. [8,10,11]. In the online phase, only the
RB model is used to solve the PDE, which saves a lot of computing time.

Since the early 2000s the combination of model order reduction with trust-region
algorithms in the setting of PDE-constrained optimization is present in the literature,
cf. [12,13]. The idea in these methods is to replace the usual quadratic model function in each
trust-region step with the reduced-order approximation of the cost function. More recent
publications followed and enhanced this approach by using a-posteriori error estimates of
the cost function and its gradient, cf. [14,15]. These works were the starting point for the
trust-region reduced basis methods developed in [16–18]. Let us mention that [19,20] have
proposed similar methods for the combination of reduced-order and trust-region methods
based on previous works on trust-region algorithms for PDE-constrained optimization
under uncertainty, cf. [21,22]. In contrast to the approach followed by [14–18], these
methods do not use rigorous a-posteriori error estimates but rather asymptotic error
indicators which still allow for a global convergence result. Here we propose an extension
of the method in [16] for solving multi-objective PDE-constrained parameter optimization
problems, which is based on a combination of the trust-region reduced basis method
presented in [17,18] and the PS method. In particular, we discuss different strategies to
handle the increasing number of reduced basis functions, which is crucial in order to
guarantee good performances of the algorithm. Notice that our approach is designed
for applications, where we have to solve the multi-objective PDE-constrained parameter
optimization problem once. For that reason, our trust-region reduced basis method does
not rely on any offline computations. These proposed strategies are not only interesting in
the field of multi-objective optimization by the PS method, but can also be used in other
applications where many PDE-constrained optimization problems must be solved and it
is hence crucial to keep the number of reduced basis functions small enough, as, e.g., in
model predictive control; cf. [23].

The paper is organized as follows: In Section 2 we introduce a general MOP and
explain the PS method, in particular, a hierarchical version of the PS algorithm which turns
out to be very efficient in the numerical realization. The concrete PDE-constrained MOP
is investigated in Section 3. The trust-region RB method and its combination with the PS
method is described in Section 4. Convergence is ensured and the algorithmic realization of
the approach is explained. Numerical examples are discussed in detail in Section 5. Finally,
we draw some conclusions.

2. Multi-Objective Optimization

Let (U, 〈· , ·〉U) be a real Hilbert space, Uad ⊂ U non-empty, convex and closed, k ≥ 2
arbitrary and Ĵ1, . . . , Ĵk : Uad ⊂ U→ R be given real-valued functions. In this manuscript,
we assume also that Uad is bounded. This is an assumption we will require later for the
convergence of our method. Note that one can derive similar results of this section if Uad

is unbounded by introducing additional assumptions; cf. [16]. To shorten the notation,
we write Ĵ := ( Ĵ1, . . . , Ĵk)

T : Uad → Rk. In the following, we deal with the multi-objective
optimization problem

min Ĵ(u) s.t. u ∈ Uad. (MOP)
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Definition 1. (a) The functions Ĵ1, . . . , Ĵk are called cost or objective functions. Analogously,
the vector-valued function Ĵ : Uad → Rk is named the (multi-objective) cost or (multi-
objective) objective function.

(b) The Hilbert space U is named the admissible space, the set Uad is called the admissible set
and a vector u ∈ Uad is called admissible.

(c) The space Rk is named the objective space and the image set Ĵ(Uad) is called the objective
set. A vector y = Ĵ(u) ∈ Ĵ(Uad) is called objective point.

Definition 2 (Partial ordering on Rk). On Rk we define the partial ordering ≤ as

x ≤ y :⇐⇒ (∀i ∈ {1, . . . , k} : xi ≤ yi)

for all x, y ∈ Rk. Moreover, we define

x < y :⇐⇒ (∀i ∈ {1, . . . , k} : xi < yi).

For convenience, we write

x � y :⇐⇒ (x ≤ y & x �= y)

for all x, y ∈ Rk and define the two sets Rk
≤ := {y ∈ Rk | y ≤ 0}, Rk

� := {y ∈ Rk | y � 0}.
Analogously, the relations ≥, > and � as well as the sets Rk

≥ and Rk
� are defined.

Definition 3 (Pareto optimality).

(a) An admissible vector ū ∈ Uad and its corresponding objective point ȳ := Ĵ(ū) ∈ Ĵ(Uad) are
called (locally) weakly Pareto optimal if there is no ũ ∈ Uad (in a neighborhood of ū) with
Ĵ(ũ) < Ĵ(ū). The sets

Uopt,w := {u ∈ Uad | u is weakly Pareto optimal} ⊂ Uad,

Uopt,w,loc := {u ∈ Uad | u is locally weakly Pareto optimal} ⊂ Uad

are said to be the weak Pareto set and the locally weak Pareto set, respectively. The sets

Jopt,w := Ĵ(Uopt,w) ⊂ Rk, Jopt,w,loc := Ĵ(Uopt,w,loc) ⊂ Rk,

are the weak Pareto front and the locally weak Pareto front, respectively.
(b) An admissible vector ū ∈ Uad and its corresponding objective point ȳ := Ĵ(ū) ∈ Ĵ(Uad)

are called (locally) Pareto optimal if there is no ũ ∈ Uad (in a neighborhood of ū) with
Ĵ(ũ) � Ĵ(ū). The sets

Uopt := {u ∈ Uad | u is Pareto optimal} ⊂ Uad,

Uopt,loc := {u ∈ Uad | u is locally Pareto optimal} ⊂ Uad

are called the Pareto set and the local Pareto set, respectively. The sets

Jopt := Ĵ(Uopt) ⊂ Rk, Jopt,loc := Ĵ(Uopt,loc) ⊂ Rk

are called the Pareto front and the local Pareto front, respectively.

If we talk about the different notions of (local) (weak) Pareto optimality in one sentence,
we use the notation Uopt,(w),(loc) to keep the sentence compact. Analogously, Uopt,(w),loc,
Uopt,(loc), Jopt,(w),(loc) etc. are to be understood. An example with the different concepts of
Pareto optimality can be found in [16] (Example 1.2.6).

The next theorem about a sufficient condition for the existence of Pareto optimal points
goes back to [24]. It also appears in a similar form in [25,26].
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Theorem 1. Suppose that there is y ∈ Ĵ(Uad) +Rk
≥ such that the set (y−Rk

≥)∩ ( Ĵ(Uad) +Rk
≥)

is compact. Then it holds Jopt �= ∅.

Proof. This is a slight generalization of [1] (Theorem 2.10) using the argument that adding
Rk
≥ to the set Ĵ(Uad) does not change the Pareto front Jopt.

Given any y = Ĵ(u) ∈ Ĵ(Uad) with y �∈ Jopt, it follows directly from the definition of
Pareto optimality that there is ȳ = Ĵ(ū) ∈ Ĵ(Uad) with ȳ � y. However, even if the Pareto
front Jopt is not empty (e.g., since the assumptions of Theorem 1 are satisfied), it is not clear
that there is ȳ ∈ Jopt with ȳ � y. If this property holds for all y ∈ Ĵ(Uad) \ Jopt, the set Jopt
is said to be externally stable; cf. [1,26].

Definition 4. The set Jopt is said to be externally stable if for every y ∈ Ĵ(Uad) there is ȳ ∈ Jopt
with ȳ ≤ y. This is equivalent to Ĵ(Uad) ⊂ Jopt +Rk

≥.

Especially for the investigation of suitable solution methods for solving (MOP), we
are interested in guaranteeing that the Pareto front is externally stable. The next result
provides a sufficient condition for this property.

Theorem 2. If for every y ∈ Ĵ(Uad) +Rk
≥ the set (y−Rk

≥) ∩ ( Ĵ(Uad) +Rk
≥) is compact, then

Jopt is externally stable.

Proof. For a proof of a similar version of this theorem, we refer to [1] (Theorem 2.21).

Among the methods to solve multi-objective optimization problems, the ones based
on scalarization techniques are frequently appearing in the literature. Let us mention here
the weighted-sum method [1,3], the Euclidian reference point method [27] and the PS
method [4,5]. Since in our case the set Ĵ(Uad) +Rk

≥ is non-convex, we apply the PS method
which is proven to be able to solve a non-convex (MOP).

2.1. The PS Method

For a chosen reference point z ∈ Rk and a given target direction r ∈ Rk
> the PS problem

is given by
min t s.t. (t, u) ∈ R×Uad and Ĵ(u)− z ≤ t r. (PPS

z,r )

Analogously, we can define the PS problem as a scalarization problem. For z ∈ Rk and
r ∈ Rk

> we define the scalarization function

gz,r : Rk → R, x �→ gz,r(x) := max
1≤i≤k

1
ri
(xi − zi),

and the PS scalarized function

Ĵgz,r (u) := gz,r( Ĵ(u)) = max
1≤i≤k

1
ri
( Ĵi(u)− zi) for u ∈ Uad.

Then the reformulated PS problem is given by

min Ĵgz,r (u) s.t. u ∈ Uad. (RPPS
z,r )

The following theorem proved in [16] (Theorem 1.7.3) ensures the equivalence between
(PPS

z,r ) and (RPPS
z,r ).

Theorem 3. Let z ∈ Rk and r ∈ Rk
> be arbitrary. On the one hand, if (ū, t̄) is a global (local)

solution of (PPS
z,r ), then ū is a global (local) solution of (RPPS

z,r ) with minimal function value t̄. On the
other hand, if ū is a global (local) solution of (RPPS

z,r ), then (ū, t̄) with t̄ := max1≤i≤k( Ĵi(ū)− zi)/ri

is a global (local) solution of (PPS
z,r ).
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Assumption 1. The cost functions Ĵ1, . . . , Ĵk are weakly lower semi-continuous and bounded from
below.

Theorem 4. Let Assumption 1 be satisfied and z ∈ Rk as well as r ∈ Rk
> be arbitrary. Then

(RPPS
z,r ) has a global solution ū ∈ Uopt.

Proof. A proof of this statement can be found in [16] (Corollary 1.7.12).

The previous result also shows that the existing global solution of (RPPS
z,r ) belongs to

the Pareto set. To guarantee a good reconstruction of the Pareto set by the PS method, one
needs that, given a (weakly) Pareto optimal point, it is possible to choose the parameters z
and r such that this point solves (RPPS

z,r ). This is stated in [16] (Theorem 1.7.13), which we
report here for clearness.

Theorem 5. Let ū ∈ Uopt,w be arbitrary. Then for every r ∈ Rk
> and every t̄ ∈ R we have that ū

is a global solution of (RPPS
z,r ) for the reference point z := Ĵ(ū)− t̄r. If even ū ∈ Uopt, any other

global solution ũ of (RPPS
z,r ) satisfies Ĵ(ũ) = Ĵ(ū).

Remark 1. We refer the reader to [16] (Lemma 1.7.15) for the derivation of first-order necessary
optimality condition for a global solution of (PPS

z,r ).

Thus, the PS method can compute in principle every (locally) (weak) Pareto optimal
point so that many algorithms based on PS method have been proposed. Here we only
mention the ones which are related to (but differ from) our proposed technique. Our main
idea is to keep the parameter r fixed, while varying the reference point z. This was also
proposed in [4], but the method turns out to be, on the one hand, not numerically efficient
for k > 2 and, on the other hand, not numerically applicable in some cases for k > 2.
In [28], the authors provide assumptions on the Pareto front to ensure that the so-called
trade-off limits (i.e., points on the Pareto front which cannot be improved in at least one
component), are given by the solution to subproblems. Their idea was then to find these
trade-off points first and then compute the rest of the Pareto front. A similar idea but with
the use of Centroidal Voronoi Tessellation was presented by [29]. Finally, [30] shows and
fixes some problematic behavior associated to the algorithm in [28]. We follow the idea
of the mentioned contributions of hierarchically solving subproblems of (MOP), but with
the focus of finding a set of reference points, by looking at subproblems, for which we
can obtain Pareto optimal points. We are then not interested in finding ‘boundary’ points
(i.e., the trade-off limits) of the Pareto front and then filling its ‘interior’ as in [28–30],
but rather to partly generalize this approach. In what follows, we characterize which
reference points are necessary and/or sufficient for computing the entire (local) (weak)
Pareto front. First, we recall the following well-defined solution mappings of (RPPS

z,r );
cf. [16] (Definition 1.7.16).

Definition 5. We define the set-valued mappings

Qopt,w : Rk ⇒ Uopt,w, z �→ {u ∈ Uad | u is a global solution of (RPPS
z,r )},

Qopt,w,loc : Rk ⇒ Uopt,w,loc, z �→ {u ∈ Uad | u is a local solution of (RPPS
z,r )},

Qopt,(loc) : Rk ⇒ Uopt,(loc), z �→ Qopt,w,(loc)(z) ∩Uopt,(loc).

From Theorem 3, it follows that Qopt,(w),(loc)(R
k) = Uopt,(w),(loc), i.e., by solving

(RPPS
z,r ) for all z ∈ Rk, we obtain all (locally), (weakly) Pareto optimal points. Furthermore,

if Assumption 1 is satisfied, we infer from Theorem 4 that Qopt,(w),(loc)(z) �= ∅ for all
z ∈ Rk. We also introduce the notion of a (locally) (weakly) Pareto sufficient set for the
PS method.
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Definition 6. A set Z ⊂ Rk is called (locally) (weakly) Pareto sufficient if we haveQopt,(w),(loc)
(Z) = Uopt,(w),(loc).

Hence, a (locally) (weakly) Pareto sufficient set contains the reference points which
allow us to compute the entire (local) (weak) Pareto front. Clearly, the set Rk is (locally)
(weakly) Pareto sufficient, but this fact is not computationally useful. The next lemma gives
a first condition towards this computational efficiency.

Lemma 1. Let Z ⊂ Rk be arbitrary. Z is (locally) (weakly) Pareto sufficient, if

∀ū ∈ Uopt,(w),(loc) : ∃t ∈ R : Ĵ(ū)− tr ∈ Z. (1)

Proof. Let Z ⊂ Rk be such that (1) holds. Let ū ∈ Uopt,(w),(loc) be arbitrary. We need to
show that there is a z ∈ Z with ū ∈ Qopt,(w),(loc)(z). Indeed, by (1) there is t ∈ R with
z := Ĵ(ū)− tr ∈ Z and by Theorem 5 we already have ū ∈ Qopt,(w),(loc)(z).

To proceed we introduce the concepts of ideal point and shifted ideal point, which will
first be used to define a set of shifted coordinate planes D. On this set we can then define a
set of reference points ZD

opt,(w),(loc) which turns out to be an optimal Pareto sufficient set
(The word ‘optimal’ here means that removing any point from the set will cause the loss of
the Pareto sufficient property).

Definition 7.

(a) We define the ideal objective point yid ∈ Rk ∪ {−∞} by yidi := infu∈Uad
Ĵi(u) for all

i ∈ {1, . . . , k}.
(b) For an arbitrary vector d̃ ∈ Rk

> define the shifted ideal point ỹid := yid − d̃. Let Di ⊂ Rk

be given by Di := {y ∈ Rk | y ≥ ỹid, yi = ỹidi } for all i ∈ {1, . . . , k}. Then the set D ⊂ Rk

is defined by D :=
⋃k

i=1 Di.
(c) We define ZD

opt,(w),(loc) := {z ∈ D | ∃ū ∈ Uopt,(w),(loc) : ∃t ∈ R : z = Ĵ(ū)− tr}.
(d) For any y ∈ Rk we set tD(y) := mini∈{1,...,k}(yi − ỹidi )/ri ∈ R.

Remark 2. It is proved in [16] (Lemma 1.7.24) that

ZD
opt,(w),(loc) =

{
Ĵ(ū)− tD( Ĵ(ū)) r

∣∣ ū ∈ Uopt,(w),(loc)
}

.

Furthermore, the set ZD
opt,(w),(loc) is (locally) (weakly) Pareto sufficient and there is a Lipschitz

continuous bijection between ZD
opt and the Pareto front Jopt. Unfortunately, there is no bijection

between ZD
opt,(w),(loc) and Jopt,(w),(loc), but the set ZD

opt,(w),(loc) is still (locally) (weakly) Pareto
sufficient. Therefore, it is anyway possible to use it for the computation of the Pareto front.

2.2. Hierarchical PS Method

Due to Definition 7 and Remark 2 the set ZD
opt,(w),(loc) can only by computed once the

set Uopt,(w),(loc) is available. Clearly, this characterization of ZD
opt,(w),(loc) is not useful for a

numerical algorithm since the availability of Uopt,(w),(loc) means that we have already solved
(MOP). Fortunately, in [16,31] it is shown that the Pareto set has a hierarchical structure.
This means that the (weak) Pareto front and the (weak) Pareto sets of (MOP) are contained
in the set of all (weak) Pareto fronts and (weak) Pareto sets of all of its subproblems. This
particular structure of the Pareto set can be exploited to set up a hierarchical algorithm for
obtaining a superset of ZD

opt,(w),(loc) without having to compute the entire (local) (weak)
Pareto set Uopt,(w),(loc) first. We start the explanation of the hierarchical algorithm by
introducing the notion of a subproblem and related notations.
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Definition 8. For the index set I ⊂ {1, . . . , k} we denote by Ĵ I the multi-objective cost function
( Ĵi)i∈I : Uad → RI , and call the problem

min Ĵ I(u) s.t. u ∈ Uad (MOPI)

a subproblem of (MOP). For I, K ⊂ {1, . . . , k} with K ⊂ I,

(a) and for every y ∈ RI we denote by yK := (yi)i∈K ∈ RK the canonical projection to RK.
(b) the set UI

opt,(w),(loc) := {u ∈ Uad | u is (loc.) (weak.) Pareto optimal for (MOPI)} denotes

the (local) (weak) Pareto set and the set JI
opt,(w),(loc) := Ĵ I(UI

opt,(w),(loc)) ⊂ RI denotes
the (local) (weak) Pareto front of the subproblem (MOPI).

(c) the (local) (weak) nadir objective point for the subproblem (MOPI) is defined by

ynad,I,(w),(loc)
i := sup{yi | y ∈ JI

opt,(w),(loc)} for all i ∈ I.

Given a subproblem (MOPI) it is straight-forward to define the PS problem for this
setting.

Definition 9. Let I ⊂ {1, . . . , k} be arbitrary. For a given reference point z ∈ RI and target
direction r ∈ RI

>, we define the PS problem for (MOPI) by

min t s.t. (t, u) ∈ R×Uad and Ĵ I(u)− z ≤ trI . (PPS
I,z,r)

Again, it is possible to show that (PPS
I,z,r) is equivalent (in the sense of Theorem 3) to the

problem

min
(

max
i∈I

1
ri

(
Ĵi(u)− zi

))
s.t. u ∈ Uad. (RPPS

I,z,r)

Let us mention that the statements proved in Section 2.1 can be adapted for the PS
method for the subproblems. Similarly, we can also generalize the definition of the shifted
coordinate plane D and the (locally) (weakly) Pareto sufficient set of reference points
ZD
opt,(w),(loc) to this setting.

Definition 10. Let I ⊂ {1, . . . , k} be arbitrary. Given the vector d̃ ∈ Rk
> and the shifted ideal

point ỹid ∈ Rk, which were both introduced in Definition 7, let DI
i ⊂ RI be given by

DI
i :=

{
y ∈ RI ∣∣ y ≥ (ỹid)I , yi = ỹidi

}
for i ∈ I.

Then the set DI ⊂ RI is defined by DI :=
⋃

i∈I Di. Moreover, for all K ⊂ {1, . . . , k} we
define the sets

ZDI ,K
opt,(w),(loc) :=

{
z ∈ DI ∣∣ ∃ū ∈ UK

opt,(w),(loc) : ∃t ∈ R : z = Ĵ I(ū)− trI}.

To ease the notation, we write ZDI

opt,(w),(loc) := ZDI ,I
opt,(w),(loc). If I = {1, . . . , k} we set

ZD,K
opt,(w),(loc) := ZDI ,K

opt,(w),(loc) and ZD
opt,(w),(loc) := ZDI ,I

opt,(w),(loc). Finally, for any y ∈ RI we set

tDI
(y) := mini∈I

yi−ỹidi
ri
∈ R.

Note that also Remark 2 can be rewritten for the subproblems.
The main ingredient of the hierarchical PS method is the result that a superset of

ZDI

opt,(w),(loc) can be computed by using the sets UK
opt,(w),(loc) for all K � I. In other words,

in contrast to Definition 10 only the Pareto optimal solutions to all subproblems–but not
the problem itself–are needed to compute the (locally) (weakly) Pareto sufficient set of
reference points ZDI

opt,(w),(loc) for the subproblem (MOPI). The very technical details of the
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analytical derivation and verification of this result are omitted here to ease and shorten
the presentation. For a reader interested in the details we refer to [16] (Sections 1.7.4.2–
1.7.4.4). Building on this result, the idea of the hierarchical PS method is to iteratively solve
subproblems with increasing number of cost functions. During this procedure the required
reference points for the current subproblem can be computed by using the Pareto optimal
solutions of all of its subproblems as described above.

Before we formulate the hierarchical algorithm, we give the necessary numerical
condition in order to compute a numerical approximation of the set ZDI

opt,(w),(loc) by using
the numerical solution to all subproblems.

To do so, we introduce a grid on DI as follows.

Definition 11. Let I ⊂ {1, . . . , k} be arbitrary. For a given grid size h > 0 and any i ∈ I,
we define

Zh,I
i :=

{
z ∈ DI

i

∣∣∣∣ ∀j ∈ I \ {i} :
(
∃k ≥ 0 : zj = ỹidj +

h
2
+ kh

)
&
(

zj ≤ ynad,I,w
j − t̄irj

)}
.

Furthermore, we set Zh,I :=
⋃

i∈I Zh,I
i . If I = {1, . . . , k}, we write Zh := Zh,I .

The idea is to only choose reference points that lie on the grid Zh,I and do not satisfy
the condition

∃K � I : ∃(ū, t̄, z̄) ∈ UT Znum(K) : zK = z̄K & zI\K ≥ Ĵ I\K(ū)− t̄rI\K, (2)

whereUT Znum(K) is a numerical approximation ofUT Z(K) = {(u, d̃j, ỹidj ) | u ∈ Ũopt,w(I)}.
An explanation for excluding points based on (2) can be found in [16] (Section 1.7.4.5).
Finally, we describe the proposed numerical hierarchical PS method in Algorithm 1.

Remark 3. In [32], the author introduce three different quality criteria for the numerical im-
plementation of a scalarization method, which we discuss here for the presented hierarchical PS
method.

(a) Coverage: Every part of the Pareto set and front has to be represented in the sets Unum
opt,w and

Jnumopt,w, respectively. This can be measured by

cov(Jopt,(w),(loc)) := max
ȳ∈Jopt,(w),(loc)

min
y∈Jnum

opt,(w),(loc)

‖ȳ− y‖.

In the case of Algorithm 1, we have that cov(Jopt,(w),(loc)) = O(h) (cf. [16] (Remark 1.7.69-
(a))).

(b) Uniformity: The points on the Pareto set and front should be distributed (almost) equidis-
tantly; cf. [16] (Remark 1.7.69-(b)).

(c) Cardinality: The number of points contained in the numerical approximation should be
reasonable. In the case of Algorithm 1 is not possible to estimate a-priori the number of
elements computed by the method. It is possible to show a bound which can be computed when
the nadir objective point ynad,(w) is known (cf. [16], Remark 1.7.69-(c)).
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Algorithm 1 Solving (MOP) numerically by the hierarchical PS method

1: for j = 1 : k do
2: Set I := {j};
3: Compute Unum

opt,w(I) = {u | u minimizes Ĵj};
4: Choose d̃j, compute yidj and set ỹidj = yidj − d̃j;

5: Set UT Znum(I) = {(u, d̃j, ỹidj ) | u ∈ Unum
opt,w(I)};

6: end for
7: for i = 2 : k do
8: for all I ⊂ {1, . . . , k} with |I| = i do
9: Initialize Unum

opt,w(I) =
⋃

K�I U
num
opt,w(K) and UT Znum(I) = ∅;

10: Compute the reference points Znum(I) = {z ∈ Zh,I | ¬(2)};
11: while Znum(I) �= ∅ do
12: Choose z ∈ Znum(I) and remove z from Znum(I);
13: Solve (PPS

I,z,r)/(RPPS
I,z,r);

14: Set Unum
opt,w(I)← Unum

opt,w(I) ∪QI
opt,w(z);

15: Set
UT Znum(I)← UT Znum(I) ∪ {(ū, t̄, z) | (ū, t̄) gl. sol. of (PPS

I,z,r)};
16: Add solutions of PSPs with respect to redundant reference points: Set

UT Znum(I)← UT Znum(I) ∪ {(ū, t̄, z̃) | (ū, t̄) gl. sol. of (PPS
I,z,r),

z̃ ∈ Znum(I) ∩ [z− (t̄rI − ( Ĵ I(ū)− z)), z]};
17: Remove redundant reference points: Set

Znum(I)← Znum(I) \ [z− (t̄rI − ( Ĵ I(ū)− z)), z] for all ū ∈ QI
opt,(w)(z);

18: end while
19: end for
20: end for
21: if computeParetoFront == true then
22: Remove all u ∈ Unum

opt,w({1, . . . , k}) with u �∈ Uopt by a non-dominance test;
23: end if

3. The Non-Convex Parametric PDE-Constrained MOP

Before defining our exemplary MOP, we introduce the PDE model which will later
serve as an equality constraint. Let Ω ⊂ Rd, d ∈ {2, 3}, be a bounded domain with
Lipschitz-continuous boundary Γ = ∂Ω. Furthermore, let Ω1, . . . , Ωm be a pairwise disjoint
decomposition of the domain Ω and set Γi := ∂Ωi ∩ ∂Ω for all i = 1, . . . , m. Then we
are interested in the following elliptic diffusion-reaction equation with Robin boundary
condition:

−∇ ·
(

m

∑
i=1

uκ
i χΩi (x)∇y(x)

)
+ ur r(x)y(x) = f (x) a.e. in Ω, (3a)

uκ
i

∂y
∂n

(s) + αy(s) = αya(s) a.e. on Γi. (3b)

For every i ∈ {1, . . . , m}, the parameter uκ
i > 0 represents the diffusion coefficient on

the subdomain Ωi. By r ∈ L∞(Ω), we denote a reaction function, which is supposed to
satisfy r > 0 a.e. in Ω and is controlled by the scalar parameter ur > 0. On the right-hand
side of (3a), we have the source term f ∈ L2(Ω). The constant α > 0 in (3b) models the heat
exchange with the outside of the domain Ω, where a temperature of ya ∈ L2(Γ) is assumed.
In total, the parameter space is given by U = Rm ×R and any parameter u ∈ U can be
written as the vector u = (uκ , ur)T with uκ = (uκ

1, . . . , uκ
m)

T ∈ Rm. Setting H = L2(Ω) and
V = H1(Ω) the weak formulation of (3) is

a(u; y, ϕ) = F (ϕ) for all ϕ ∈ V (4)
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for any u ∈ U. In (4) the parameter-dependent symmetric bilinear form a(u; · , ·) : V ×V →
R is given by

a(u; ϕ, ψ) :=
m

∑
i=1

uκ
i

∫
Ωi

∇ϕ(x) · ∇ψ(x)dx + ur
∫

Ω
r(x)ϕ(x)ψ(x)dx

+ α
∫

Γ
ϕ(s)ψ(s)ds

for all ϕ, ψ ∈ V and u ∈ U. The linear functional F ∈ V′ is defined by

F (ϕ) :=
∫

Ω
f (x)ϕ(x)dx + α

∫
Γ

ya(s)ϕ(s)ds for all ϕ ∈ V.

Lemma 2. (a) For all u ∈ U it holds

‖a(u; ·, ·)‖L(V,V′) ≤ C‖u‖U

with a constant C > 0, which does not depend on u.
(b) For all u ∈ U with uκ > 0 in R and ur > 0, it holds

a(u; ϕ, ϕ) ≥ min(uκ
1, . . . , uκ

m, ur)‖ϕ‖2
V for all ϕ ∈ V.

(c) The mapping F ∈ V′ is well-defined.

Proof. All statements follow from similar arguments of [33] (Lemma 1.4), where related
operators were considered in the parabolic case.

Theorem 6. Let u ∈ U with u > 0 be arbitrary. Then there is a unique solution y = y(u) ∈ V
of (3). Moreover, the estimate

‖y‖V ≤ C
(
‖ f ‖L2(Ω) + ‖ya‖L2(Γ)

)
(5)

holds with a constant C > 0, which depends continuously on u, but is independent of f and ya.

Proof. The claims follow from the Lax-Milgram theorem (cf. [34]) and Lemma 2.

Definition 12. Let uκ
min ∈ (0, ∞)m and ur

min > 0 be arbitrary. Then we define the closed set

Ueq := {u ∈ U | uκ ≥ uκ
min, ur ≥ ur

min}.

In view of Theorem 6, it is possible to define the solution operator S : Ueq → V, which maps
any parameter u ∈ Ueq to the unique solution y = S(u) ∈ V of (4).

Remark 4. Due to Lemma 2, we can conclude that a(u; ϕ, ϕ) ≥ αmin‖ϕ‖2
V for all ϕ ∈ V and

u ∈ Ueq, where αmin := min
(
(uκ

min)1, . . . , (uκ
min)m, ur) > 0. In particular, the constant C

in (5) can be chosen independently of u if we restrict ourselves to parameters u ∈ Ueq.

Theorem 7. The solution operator S : Ueq → V is twice continuously Fréchet differentiable.
For the first derivative S′ : Ueq → L(U, V), we have that for any u ∈ Ueq and h ∈ U the function
yh := S′(u)h ∈ V solves the equation

a(u; yh, ϕ) = −∂ua(u;S(u), ϕ)h for all ϕ ∈ V.
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The second derivative S′′ : Ueq → L(U, L(U, V)) is given as follows: For any u ∈ Ueq and
h1, h2 ∈ U, the function yh1,h2 := S′′(u)(h1, h2) solves the equation

a(u; yh1,h2 , ϕ) = −∂ua(u;S′(u)h1, ϕ)h2 − ∂ua(u;S′(u)h2, ϕ)h1 for all ϕ ∈ V.

Remark 5. By ∂ua we denote the partial derivative of the mapping a w.r.t. the parameter u. Since
a is linear in u, it holds

∂ua(u; ϕ, ψ)h = a(h; ϕ, ψ), ∂2
ua(u; ϕ, ψ) = 0 ∈ L(U,U′)

for all u, h ∈ U and all ϕ, ψ ∈ V. In particular, we can identify ∂ua(u; ϕ, ψ) ∈ U′ by

∂ua(u; ϕ, ψ) =

⎛⎜⎜⎜⎜⎝
∫

Ω1
∇ϕ(x) · ∇ψ(x)dx

...∫
Ωm
∇ϕ(x) · ∇ψ(x)dx∫

Ω r(x)ϕ(x)ψ(x)dx

⎞⎟⎟⎟⎟⎠ ∈ U

by using the Riesz representation theorem.

We are now ready to state the multiobjective parametric PDE-constrained optimization
problem (MPPOP). Let k ∈ N be fixed and

σ
(1)
Ω , . . . , σ

(k)
Ω ≥ 0 as well as σ

(1)
U , . . . , σ

(k)
U ≥ 0

be non-negative weights. Furthermore, denote by y(1)Ω , . . . , y(k)Ω ∈ H the desired states and

by u(1)
d , . . . , u(k)

d ∈ U the desired parameters. Then we define the multiobjective essential
cost functions Ĵ1, . . . , Ĵk : Ueq → R by

Ĵi(u) :=
σ
(i)
Ω
2

∥∥S(u)− y(i)Ω

∥∥2
H +

σ
(i)
U

2

∥∥u− u(i)
d

∥∥2
U

for all u ∈ Ueq and i ∈ {1, . . . , k}.

Moreover, ua, ub with ua ≤ ub are lower and upper bounds on the parameter u which
we assume to be finite. We define Uad := {u ∈ U | ua ≤ u ≤ ub} and we assume
that Uad ⊂ Ueq holds. Note that Uad is a closed, convex and bounded set because of the
finiteness assumption on ua and ub. We are interested in solving

min
u∈Uad

Ĵ(u) = min
u∈Uad

(
Ĵ1(u), . . . , Ĵk(u)

)T . (MPPOP)

Note that, thanks to the assumptions on Uad and σ
(i)
U , the costs Ĵ1, . . . , Ĵk satisfy As-

sumption 1. This problem fits into the framework of non-convex multiobjective optimiza-
tion and Algorithm 1 can be applied. The non-convexity comes from the way the bilinear
form depends on the parameter u. This makes, in fact, the solution mapping non-linear
and thus the MPPOP non-convex. To close this section, we derive the expression of the
gradient and Hessian of the cost functionals Ĵ1, . . . , Ĵk. We define the i-th adjoint equation
and its solution operator as

Definition 13. For i = 1, . . . , k, the solution operator of the i-th adjoint equation isAi : Ueq → V,
where for any given u ∈ Ueq, p(i) := Ai(u) solves the equation

a(u; ϕ, p(i)) = 〈σ(i)
Ω (S(u)− y(i)Ω ), ϕ〉H for all ϕ ∈ V. (6)

As shown in [16], this operators satisfy the two following results:
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Lemma 3. The solution operator Ai : Ueq → V is continuously Fréchet differentiable for all
i = 1, . . . , k. For all i = 1, ...k, for the first derivative A′i : Ueq → L(U, V), we have that for any
u ∈ Ueq and h ∈ U the function p(i),h := A′i(u)h ∈ V solves the equation

a(u; ϕ, p(i),hi ) = −∂ua(u; ϕ,Ai(u))h + σΩ〈S′(u)h, ϕ〉V′ ,V for all ϕ ∈ V. (7)

Corollary 1. Let Uad ⊂ Ueq, u ∈ Uad and h ∈ U be arbitrary. Then for i = 1, . . . , k the cost
functions Ĵi are twice continuously Fréchet differentiable and it holds

∇ Ĵi(u) = −∂ua(u;S(u),Ai(u)) + σU(u− u(i)
d ) ∈ U,

∇2 Ĵi(u)h = −∂ua(u;S′(u)h,Ai(u))− ∂ua(u;S(u),A′i(u)h) + σ
(i)
U h ∈ U.

where we use the representation of ∂ua(u;S(u),Ai(u)) ∈ U′ in U, cf. Remark 5.

The RB Method for MPPOP

One of the limitations of solving the MPPOP directly with the PS method is the high
computational cost. Algorithm 1, in fact, requires to solve the state and adjoint equation
a large number of times in order to efficiently approximate the Pareto set. Unfortunately,
the numerical evaluation of the state and adjoint solution operators is costly due to the
high number of degrees of freedom required to apply, for example, the FE method. For this
reason, we use the RB method. In the following we explain how the RB method can
be applied to our model. From Theorem 6, we know that the weak form of the state
equation admits a unique solution for any control u ∈ Ueq. This allows us to define the
solution operator S : Ueq → V. Now, let us consider the so-called solution manifold
M := {S(u) | u ∈ Ueq} ⊂ V. The goal of the RB method is to provide a low-dimensional
subspace V� ⊂ V, which is a good approximation of M. The subspace V� is defined
as the span of linearly independent snapshots S(u1), . . . ,S(u�) for selected parameters
u1, . . . , u� ∈ Ueq. Clearly, V� has dimension � and the snapshots constitute its basis. Let us
postpone the discussion on how to select good parameters for generating V�. Given an RB
space V�, we obtain the reduced-order state equation by a Galerkin projection:

a(u; y�, ψ) = F (ψ) for all ψ ∈ V�. (8)

Also for the reduced-order equation, we have unique solvability for all parameters
u ∈ Ueq. The solution map S� : Ueq → V�, which maps any parameter u ∈ Ueq to the
unique solution y� = S�(u) ∈ V� of (8), is then well-defined. We can similarly define a
reduced-order adjoint equation and essential cost functional. For i = 1, . . . , k, we define the
essential reduced-order cost functions Ĵ�i : Ueq → R by

Ĵ�i (u) :=
σ
(i)
Ω
2
‖S�(u)− y(i)Ω ‖2

H +
σ
(i)
U

2
‖u− u(i)

d ‖2
U,

the reduced-order adjoint equation by

a(u; ψ, p(i),�) =
〈
σ
(i)
Ω (S�(u)− y(i)Ω ), ψ

〉
H for all ψ ∈ V� (9)

and the reduced-order adjoint solution operator A�
i : Ueq → V. Following Corollary 1, it

is possible to represent the gradient and the Hessian of the essential reduced-order cost
functions Ĵ�i for i = 1, . . . , k by simply replacing the operators S and Ai by their respective
reduced-order versions S� and A�

i . There are still two aspects which remain to be clarified:
first, how to generate an RB space which guarantees a good approximation of the state and
adjoint solution manifolds and, second, how to estimate a-posteriori (i.e., without explicitly
evaluating the full-order solution operators S and A) the error of such an approximation.
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For the first aspect, one can think of building an RB space either prior to solving the
reduced-order optimization problem or while solving it. The first approach is the so-called
offline/online decomposition; cf. [35]. This technique exploits a greedy algorithm in the
offline phase, which iteratively searches for the parameter for which the approximation
error between the full- and reduced-order state and adjoint variables is the largest. Then,
the RB space is enriched (by solving the full-order state and adjoint equations at the
respective parameter and orthonormalizing the newly computed snapshots with respect to
the current RB basis) until a pre-defined tolerance for the approximation error is reached.
Once the RB space is computed, the online phase can start: the optimization problem is
solved fast on the reduced-order level. Although this technique is still widely used in
literature, it shows many disadvantages in the context of optimization. At first, it suffers
from the curse of dimensionality: for a high-dimensional parameter space it is too costly
to explore the entire parameter space with a greedy procedure. At second, it is counter-
intuitive to prepare an RB space which is accurate enough for any parameter, when usually
the optimization method follows a (short) pattern in the parameter space to find the solution
or when the Pareto set is contained in some local regions of the parameter space, as often in
the case of non-convex multiobjective problems. While it is true that the computational
costs of an offline phase could be amortized in the context of multiobjective optimization for
a reasonably small dimension of the parameter space due to the vast amount a scalarized PS
problems that need to be solved in the online phase, the disadvantage of the offline-online
splitting in this setting is the lack of control of the accuracy of the Pareto optimal solutions.
Indeed, to the best of our knowledge there are no suitable error indicators for the greedy
algorithm to guarantee a certified accuracy of the reduced-order Pareto optimal points w.r.t.
full-order ones. Luckily, the focus has shifted recently towards adapting the RB space while
proceeding with the optimization method. This procedure is followed, e.g., by the methods
presented in [14,15,17,18]. The advantage of these methods with respect to methods based
on an offline-online splitting is that they compute first-order critical points of the full-
order optimization problems. Let us specify that in [14,17,18] the authors proposed and
progressively improved an RB method combined with a TR algorithm, based on more
general results presented in [15]. Such a method constructs the RB space adaptively while
the optimizer is computing the optimal solution. Our focus here is on further improving
the method in [17], which can be considered the most general among the TR-RB methods.

For any of the above-mentioned methods, a-posteriori error estimates are crucial to
compute upper bounds of the approximation error made by the RB space in reconstructing
the solution for a given parameter without any full-order solution at hand. In case of opti-
mization, one is also interested in estimating the error in reconstructing the cost functional
and its gradient. For our model, we can use the following estimates:

Theorem 8. Let u ∈ Uad be arbitrary and denote by α(u) the coercivity constant of the bilinear
form a(u; ·, ·). By Remark 4, it holds α(u) ≥ αmin > 0. Let the residual rst(u; ·) ∈ V′ be given by
rst(u; ϕ) := F (ϕ)− a(u;S�(u), ϕ) for all ϕ ∈ V. Then it holds

∥∥S(u)− S�(u)∥∥V ≤ Δst(u) :=

∥∥rst(u; ·)
∥∥

V′

α(u)
. (10)

For i = 1, . . . , k the residual r(i)adj(u; ·) ∈ V′ of the adjoint equations is given by r(i)adj(u; ϕ) :=

〈σ(i)
Ω (S�(u)− y(i)Ω ), ϕ〉H − a(u; ϕ,A�

i (u)) for all ϕ ∈ V. Then it holds

∥∥Ai(u)−A�
i (u)

∥∥
V ≤ Δ(i)

adj(u) :=

∥∥r(i)adj(u; ·)
∥∥

V′ + σ
(i)
Ω Δst(u)

α(u)
.
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Furthermore, for i = 1, . . . , k we have∣∣ Ĵi(u)− Ĵ�i (u)
∣∣ ≤ Δst(u)

∥∥r(i)adj(u; ·)
∥∥

V′ + σ
(i)
Ω Δst(u)2 =: Δ Ĵ�i

(u),∥∥∇ Ĵi(u)−∇ Ĵ�i (u)
∥∥
U
≤ ‖∂ua(u; ·, ·)‖

(∥∥S�(u)∥∥VΔ(i)
adj(u) + Δst(u)Δ

(i)
adj(u)

+Δst(u)
∥∥A�

i (u)
∥∥

V

)
=: Δ∇ Ĵ�i

(u).

Proof. A proof of the a-posteriori error estimates for the state and adjoint can be found
in [35]. For the cost function and the gradient, we refer to [18] (Proposition 2.5).

Note that we only need the reduced-order state and adjoint state to evaluate the
a-posteriori error estimates. For our example, the computation of the coercivity constant
α(u) is cheap, see Lemma 2. In more general examples, this might not be the case. Thus,
one often uses a quickly computable lower bound αLB(u) instead. Possible methods for
computing such a lower bound are, e.g., the min-theta approach (cf. [35]) or the Successive
Constraint Method (SCM) (cf. [36]). In situations in which the computation or the estimation
of the coercivity constant is complicated, the TR-RB algorithms presented in [19,20] have
the advantage that they do not require the computation or estimation of the coercivity
constant but only rely on asymptotic error estimates consisting of residual based error
indicators. Note finally that the computation of the terms ‖rst(u; ·)‖V′ and ‖r(i)adj(u; ·)‖V′ is
not possible in an infinite-dimensional setting. Even after discretization with the FE method,
the cost of computing such a term depends on the dimension of the full-order model, which
contradicts the request of having a computationally cheap estimate. However, in our case,
the parameter-separability of the bilinear form a(u; · , ·) can be exploited to preassemble
certain quantities in such a way that the computational cost for evaluating ‖rst(u; ·)‖V′

and ‖r(i)adj(u; ·)‖V′ only depends on the dimension of the RB space; see, e.g., [36]. Finally,

we apply the RB method to (MPPOP): for a given RB space V� the reduced-order MPPOP
reads

min Ĵ�(u) =
(

Ĵ�1(u), . . . , Ĵ�k (u)
)T s.t. u ∈ Uad. (MPPOP�)

For an arbitrary reference point z ∈ Rk and target direction r ∈ Rk, the reduced-order
PS problem reads

min
(u,t)

t s.t. (t, u) ∈ R×Uad and Ĵ�i (u)− zi ≤ t, i = 1, . . . , k. (PPS,�
z,r )

One could then outline an algorithm similar to Algorithm 1 by using an offline/online
splitting. Because of the above-mentioned disadvantages, we focus on combining the
PSPs with the TR-RB method from [17] and extend it with respect to the method in [16].
The TR method introduces new aspects to the RB implementation, such as the adaptive
construction of the RB space; see the next section for further details.

4. The TR-RB Method

We briefly introduce the method from [17] and clarify how to apply this in combination
with the PS method. In Section 4.2 we highlight our extension to this method and how
this can reduce the computational time. The basic idea of a TR method is to compute
a first-order critical point of a costly optimization problem by iteratively solving some
cheap-to-solve approximations in local regions of the admissible space, where these model
approximations can be trusted (i.e., are accurate enough). In such a way, one can derive a
global method, which converges in a finite number of steps. For each outer iteration j ≥ 0
of the TR method, the cheap approximation of the objective is generally indicated by m(j)

and the trust regions are described by a radius δ(j). To simplify the exposition, let us stick

181



Math. Comput. Appl. 2022, 27, 39

with the case U = Rm × R, as in Section 3. The TR method solves then, for each j ≥ 0,
the following constrained optimization sub-problems

min
v∈U

m(j)(v) s.t. ‖v‖2 ≤ δ(j), ũ := u(j) + v ∈ Uad. (11)

Under suitable assumptions, problem (11) admits a unique solution v̄(j), which is used
to compute the next outer iteration u(j+1) = u(j) + v̄(j). To further simplify the presentation
of the algorithm in [17], let us present it for a general cost functional J . Later in this
section we will give more details about its application to the MPPOP and the PS method.
The TR-RB version of problem (11) is

min
ũ∈Uad

J �,(j)(ũ) s.t. q(j)(ũ) :=
ΔJ �,(j) (ũ)

J �,(j)(ũ)
≤ δ(j), (12)

where J �,(j)(ũ) is the reduced-order cost functional w.r.t. the reduced-order model at the
j-th iteration and ΔJ �,(j) (ũ) is an estimate for the error |J (ũ)−J �,(j)(ũ)|. Looking at (12),
one clearly sees that the role of the model function m(j) is played by the reduced-order
model cost functional. This is perfectly in line with the TR spirit of having a cheap-to-solve
approximation of the original optimization problem. The trust regions are defined instead
through the RB error estimator, which is in fact the way we use to check the quality of the
approximation. Let us mention at this point that there are also different approaches to this.
In [19,20] the authors incorporated the usual trust-region constraints as seen in (11) into
a TR-RB algorithm. In [18] also the importance of introducing a correction term on the
RB level is discussed to improve the performance of the method. We point out that this
only has to be done if one chooses two separate RB spaces for state and adjoint equations
(see also [17]). This will not be the case for our application. In Algorithm 2, we report
the method from [17]. In what follows, we guide the reader through the features of the
algorithm. At first, we need to initialize the reduced-order model at the initial guess
u(0). This means computing S(u(0)) and Ai(u(0)) for i = 1, . . . , k and generating the RB
space V�,(0) as their span. Similarly, updating the RB space V�,(j) at the point u(j+1) means
computing the full-order quantities S(u(j+1)) and Ai(u(j+1)) for i = 1, . . . , k and adding
them to the RB space by a Gram-Schmidt orthonormalization.

In Line 3 of Algorithm 2, it is required to compute the so-called approximated general-
ized Cauchy (AGC) point. We report here its definition according to [15,18].

Definition 14. Let κ ∈ (0, 1) and κarm ∈ (0, 1) be backtracking parameters. For the current
iterate u(j) define d(j) := ∇J �,(j)(u(j)). Let α ∈ N be the smallest number for which the two
conditions

J �,(j)(PUad
(u(j) − καd(j))

)
−J �,(j)(u(j)) ≤ −κarm

κα
‖PUad

(u(j) − καd(j))− u(j)‖2
U, (13)

q(j)(PUad
(u(j) − καd(j))) ≤ δ(j) (14)

are satisfied, where PUad
: U→ Uad is the canonical projection onto the closed and convex set Uad.

Then we define the AGC point as u(j)
AGC := PUad

(u(j) − καd(j)).

The TR-RB subproblem (12) is then solved in Line 4 using a projected Newton-CG
algorithm with the AGC point as a warm start and the following termination criteria

‖u− PUad
(u−∇J �,(j)(u))‖U ≤ τsub, βboundδ(j) ≤ q(j)(u) ≤ δ(j). (15)

The first condition in (15) is the standard first-order criticality condition with tolerance
τsub ∈ (0, 1) and the second one was already introduced in [14] to avoid too many iterations
close to the TR boundary, which is generally an area where we are already starting to trust
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the model function less. The parameter βbound is usually chosen to be close to one exactly
for this purpose.

Algorithm 2 TR-RB algorithm

1: Initialize the reduced-order model at u(0), set j = 0 and Loop_flag=True;
2: while Loop_flag do

3: Compute the AGC point u(j)
AGC ;

4: Compute u(j+1) as solution of (12) with stopping criteria (15);
5: if J �,(j)(u(j+1)) + ΔJ �,(j) (u(j+1)) < J �,(j)(u(j)

AGC) then

6: Accept u(j+1), set δ(j+1) = δ(j), compute �(j) and g(u(j+1));
7: if g(u(j+1)) ≤ τFOC then
8: Set Loop_flag=False;
9: else

10: if �(j) ≥ η� then

11: Enlarge the TR radius δ(j+1) = β−1
1 δ(j);

12: end if
13: if not Skip_enrichment_flag(j) then

14: Update the RB model at u(j+1) ;
15: end if
16: end if
17: else if J �,(j)(u(j+1))− ΔJ �,(j) (u(j+1)) > J �,(j)(u(j)

AGC) then

18: if β1δ(j) ≤ δmin or Skip_enrichment_flag(j− 1) then

19: Update the RB model at u(j+1);
20: end if
21: Reject u(j+1), shrink the radius δ(j+1) = β1δ(j) and go to 4;
22: else
23: Compute J (u(j+1)), g(u(j+1)), �(j) and set δ(j+1) = β−1

1 δ(j);
24: if g(u(j+1)) ≤ τFOC then
25: Set Loop_flag=False;
26: else
27: if Skip_enrichment_flag(j) and �(j) ≥ η� then

28: Accept u(j+1);
29: else if J (u(j+1)) ≤ J �,(j)(u(j)

AGC) then

30: Accept u(j+1) and update the RB model ;
31: if �(j) < η� then

32: Set δ(j+1) = δ(j);
33: end if
34: else
35: if β1δ(j) ≤ δmin or Skip_enrichment_flag(j− 1) then

36: Update the RB model at u(j+1);
37: end if
38: Reject u(j+1), set δ(j+1) = β1δ(j) and go to 4;
39: end if
40: end if
41: end if
42: Set j = j + 1;
43: end while

An important aspect of TR methods is the decision to accept or reject the step u(j+1).
Generally, one asks for the so-called sufficient decrease condition J �,(j+1)(u(j+1)) ≤
J �,(j)(u(j)

AGC); cf. [15]. Note that this condition requires to update the RB space before
being sure that the step will be accepted. If it is rejected, then we performed a costly update
without the possibility of exploiting it. Because of this fact, Ref. [14] proposed a sufficient
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(Line 5) and a necessary (Line 17) condition for the sufficient decrease condition. In [18] it
is also noted that the full-order quantities J (u(j+1)) and ∇J (u(j+1)) are cheaply available
after updating the RB space. Additionally, Ref. [17] introduced the possibility of skipping a
redundant enrichment, which is particularly useful at the late stage of the method, where
we are close to the optimum. This will prevent the dimension of the RB space from growing
too fast, so that the cheap-to-solve property is preserved. The three conditions to be checked
in order to decide whether to skip the update of the RB space are contained in the following
skipping parameter

Skip_enrichment_flag(j) :=
(
q(j)(u(j+1)) ≤ βqδ(j+1)) and(∣∣g(u(j+1))− g�,(j)(u(j+1))

∣∣
g�,(j)(u(j+1))

≤ τg

)
and(∥∥∇J �,(j)(u(j+1))−∇J (u(j+1))

∥∥
U∥∥∇J �,(j)(u(j+1))

∥∥
U

≤ min{τgrad, βgradδ(j+1)}
)

.

where βq, βgrad, τg, τgrad ∈ (0, 1) are given parameters and

g(u) :=
∥∥u− PUad

(u−∇J (u))
∥∥
U

, g�,(j)(u) :=
∥∥u− PUad

(u−∇J �,(j)(u))
∥∥
U

.

Note also that g(u) = 0 is nothing else than the standard first-order condition for
optimization problems with constraints on the parameter set. This is the reason why
Algorithm 2 terminates when g(u(j+1)) < τFOC holds with τFOC ∈ (0, 1). For more details
on the skipping condition, we refer to [17]. Typically, TR methods also have the option of
shrinking (enlarging) the TR radius δ(j) with some factor β1 ∈ (0, 1) (β−1

1 > 1, respectively).
In the case of Algorithm 2, we shrink the radius if a point is rejected. We also compute
the ratio

�(j) :=
J (u(j))−J (u(j+1))

J �,(j)(u(j))−J �,(j)(u(j+1))
.

If this ratio is greater than a parameter η� ∈ [0.75, 1], then the radius is enlarged.
Algorithm 2 is proved to be convergent given some technical assumptions on the problem.
We summarize everything in the following theorem (cf. [17]).

Theorem 9. Suppose that Uad = [ua, ub] ⊂ RP for some ua, ub ∈ RP with ua ≤ ub. Assume
that J and J �,(j) (j ∈ N) are strictly positive, J is continuously Fréchet differentiable and J �,(j)

is even twice continuously Fréchet differentiable for all j ∈ N. Moreover, ∇J �,(j) is uniformly
Lipschitz-continuous with respect to j. Suppose that there is δmin > 0 such that for every j ∈ N there
exists a TR radius δ(j) ≥ δmin, for which there is a solution u(j+1) of the TR-RB subproblem (12)
which is accepted by Algorithm 2. Assume that the family of functions (q(j))j∈N is uniformly
continuous w.r.t. the parameter u and the index j. Then every accumulation point ū of the sequence
of iterates (u(j))j∈N is a first-order critical point for the full-order optimization problem, i.e., it holds∥∥ū− PUad

(ū−∇J (ū))
∥∥
U
= 0.

In particular, Algorithm 2 terminates after finitely many steps.

Although many of the assumptions in Theorem 9 are quite technical for the proof, one
can show that they are reasonable in the case of the RB method; cf. [17].

4.1. The TR-RB Algorithm Applied to the PS Method

In this section we show how Algorithm 2 can be applied to the PS method. To this
end, we recall the following lemma from [16].
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Lemma 4. There are constants CJ , C∇J , C∇2 J > 0 such that for any j ∈ {1, . . . , k}, any u ∈ Uad

and any choice of the RB space V� it holds∣∣ Ĵ�i (u)∣∣ ≤ CJ ,
∥∥∇ Ĵ�i (u)

∥∥
U
≤ C∇J ,

∥∥∇2 Ĵ�i (u)
∥∥

L(U)
≤ C∇2 J .

Lemma 4 immediately implies that the reduced-order gradient is uniformly Lipschitz-
continuous with respect to �. We have to solve (PPS

z,r ). We follow the approach in [16], where
the target direction r = (1, . . . , 1) is chosen and an augmented Lagrangian method is used.
Provided a penalty parameter μ > 0, the augmented Lagrangian for (PPS

z,r ) is

LA((u, t, s), λ; μ) := t +
k

∑
i=1

λici(u, t, s) +
μ

2

k

∑
i=1

ci(u, t, s)2 (16)

with ci(u, t, s) = Ĵi(u)− zi − t + si. The idea is to iteratively solve the subproblems

minLA((u, t, s), λ; μ) s.t. (u, t, s) ∈ Uad ×R×Rk
≥ (17)

approximately and then update the Lagrange multiplier λ and the penalty parameter μ
until the termination criteria

‖c(u, t, s)‖Rk < τEC, (18)∥∥(u, t, s)− Pad
(
(u, t, s)−∇(u,t,s)LA((u, t, s), λ; μ)

)∥∥
U×R×Rk < τFOC (19)

are satisfied for some tolerances τEC, τFOC ∈ (0, 1), where Pad : U×R×Rk → Uad ×R×
Rk
≥ is the canonical projection onto Uad × R× Rk

≥. For further details, we refer to [16]
(Appendix B). We want to combine then the augmented Lagrangian method with the
TR-RB algorithm to solve problem (PPS

z,r ). To do so, we apply Algorithm 2 to solve each
subproblem (17). We first define the reduced-order augmented Lagrangian

L�A((u, t, s), λ; μ) := t +
k

∑
i=1

λic�i (u, t, s) +
μ

2

k

∑
i=1

c�i (u, t, s)2, (20)

with c�i (u, t, s) = Ĵ�i (u)− zi − t + si, which leads to the reduced-order subproblem

minL�A((u, t, s), λ; μ) s.t. (u, t, s) ∈ Uad ×R×Rk
≥. (21)

Note that in this case the admissible set Uad ×R×Rk
≥ is unbounded, which collides

with the first assumption of Theorem 9. Nevertheless, Ref. [16] showed that the (PPS
z,r )

problem is also equivalent to

min t s.t. (t, u) ∈ [tmin, tmax]×Uad and Ĵ(u)− z ≤ t. (22)

There is still the problem that the admissible set for the slack variables s is given by
[0, ∞)k. However, computing the partial derivative of the augmented Lagrangian LA with
respect to si, we obtain

∂siLA((u, t, s), λ; μ) = λi + μ
(

Ĵi(u)− zi − t + si
)
≥ λi + μ(−zi − tmax + si).

Thus, LA is strictly monotonically increasing in si for si > −λi/μ + zi + tmax =: smax
i .

Thus, given the Lagrange multiplier λ and the penalty parameter μ, we can restrict the
slack variable si to the interval [0, smax

i ]. This will not cause any modification to the
solvability and the solution of the augmented Lagrangian subproblem. By setting Xad :=
Uad × [tmin, tmax] × [0, smax], the equivalent formulation for the augmented Lagrangian
subproblem corresponding to (22) reads
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min
(u,t,s)∈Xad

LA((u, t, s), λ; μ). (23)

Similarly, the reduced-order augmented Lagrangian subproblem is given by

minL�A((u, t, s), λ; μ) s.t. (u, t, s) ∈ Xad. (24)

Therefore, the goal is to apply Algorithm 2 to solve the subproblem (23). To this end,
we define x = (u, t, s) ∈ U×R×Rk, J (x) = LA(x, λ; μ) and J �,(j)(x) = L�,(j)

A (x, λ; μ) for
any reference point z ∈ Rk, any Lagrange multiplier λ ∈ Rk

≥ and any penalty parameter
μ > 0. Furthermore, using the a-posteriori estimates of the individual objectives (cf.
Theorem 8), we have that

∣∣J (x)−J �,(j)(x)
∣∣ ≤ k

∑
j=1

(
λj + c

∣∣ Ĵ�,(j)
j (u)− zj − t + sj

∣∣)Δ
Ĵ�,(j)
j

(u)

+
k

∑
j=1

c
2

(
Δ

Ĵ�,(j)
j

(u)
)2

=: Δ�,(j)
J (u)

for all u ∈ Uad, which can be used as a-posteriori error estimate in the TR-RB algorithm.
According to Theorem 9, we still need to show the strict positivity of the costs J and J �,(j)

and the uniform Lipschitz continuity of the gradient ∇J �,(j). For the first, we note that
the objectives J and J �,(j) are bounded from below by C := tmin −∑k

i=1 λ2
i /(2μi). Since

C depends only on fixed parameters of the optimization problems, we can add C + 1 to
the cost functions to obtain strict positivity. Obviously, this will not change the minimizers.
The second property is a bit more technical and we prove it in the following lemma.

Lemma 5. Let the Lagrange multiplier λ and the penalty parameter μ be given. Then the function
J (·) := LA(·, λ; μ) is twice continuously Fréchet-differentiable for all j ∈ N and the gradient
∇J �,(j) is uniformly Lipschitz continuous with respect to j.

Proof. Due to Corollary 1 the cost functions Ĵ1, . . . , Ĵk are twice continuously Fréchet-
differentiable. Thus, the function (u, t, s) �→ LA((u, t, s), λ; μ) is also twice continuously
Fréchet-differentiable as a composition of twice continuously Fréchet-differentiable func-
tions. Similarly, the reduced-order augmented Lagrangians L�,(j)

A ((· , · , ·), λ; μ) are also
twice continuously Fréchet-differentiable for all j ∈ N. We have that

∇2L�,(j)
A ((u, t, s), λ; μ)(hu, ht, hs) =⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

k
∑

j=1

((
λj + μc�,(j)

j
)
∇2 Ĵ�,(j)

j (u)hu + μ
(
d�,(j)

j − ht + hs
j
)
∇ Ĵ�,(j)

j (u)
)

kμht − μ
k
∑

j=1

(
d�,(j)

j + hs
j
)

μ
(
d�,(j)

1 + hs
1 − ht)

...
μ
(
d�,(j)

k + hs
k − ht)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
for any h = (hu, ht, hs) ∈ U× R× Rk, where c�,(j)

j := Ĵ�,(j)
j (u) − zj − t + sj and d�,(j)

j :=

〈∇ Ĵ�,(j)(u), hu〉U for j ∈ {1, . . . , k}. Using Lemma 4, we obtain that the Hessian ma-
trix ∇2L�,(j)

A ((u, t, s), λ; μ) can be bounded independently of (u, t, s) and j. Using the

mean value theorem, we can conclude that the gradients ∇L�,(j)
A ((·, ·, ·), λ; μ) are Lipschitz-

continuous with constant CL uniformly in j.
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As a consequence of Theorem 9, we have that Algorithm 2 applied to solve the
augmented Lagrangian subproblem (23) converges after finitely many steps to a first-order
critical point of (23).

Remark 6. Algorithm 2 constructs and updates the RB space during the optimization procedure.
In the case of the PS method, we are free to choose what to do for the space constructed during the
TR-RB procedure. For example, we can use it for the next augmented Lagrangian subproblem (and
also for the next reference point). We explored different ideas (see also [16]), but we report here only
the two most interesting and efficient ones:

(1) Use one common RB space for all the subproblems and reference points, i.e., use a single space
V� (which is, of course, updated in the process) for solving the MOP. This strategy acquires
efficiency in terms of reconstructing the full-order parameter space during the iterations.
Therefore, thanks to the possibility of skipping an enrichment (which is the costly part in
Algorithm 2), we expect more and more speed-up, together with accuracy, as the algorithm
proceeds.

(2) Use multiple (local) RB spaces. This idea is already exploited by [16,37,38]. In this case,
we do not use the previously obtained RB space for the next minimization problem. We
generate instead k initial spaces V�

1 , . . . , V�
k , resulting from the minimization (Note that this

procedure does not require extra computational cost, since we need to solve these problems
for the hierarchical PS method anyway) of the objectives Ĵ1, . . . , Ĵk. Then at the beginning
of every PS problem, we can decide to use the space V�

i for which q(0)(u(0)) < βqδ(0) and
dim V�

i ≤ �max, with �max ∈ N being a predefined maximal number of basis functions.
If several spaces satisfy these conditions then we select the one for which the value q(0)(u(0))
is the smallest. If instead there is no space fulfilling these conditions, we initialize a new space
V�

k+1 by using the full-order quantities S(u(0)) and Ai(u0) for i = 1, . . . , k.

Although these two techniques are already efficient, we noticed that there is a common problem:
the number of RB basis functions might grow too fast and prevent a good speed-up for the solution.
In particular, this is the case for the first strategy. To fix this issue, we propose different strategies
to remove basis functions from V� in Section 4.2. This approach was not considered in [14,16–18]
and to our knowledge it has not been addressed in the literature yet. In reduced-order optimization,
instead, this is meaningful, since the reduced-order model might grow too fast; see, e.g., [33], in the
case of proper orthogonal decomposition.

4.2. How to Reduce the Number of Basis Functions

We point out that what is described in this section can also generally be applied to
Algorithm 2 from [17] without any relation to the PS method. In particular, the strategies
for reducing the number of basis functions presented in this section cannot only be used
for PDE-constrained multi-objective optimization problems, but also for any other prob-
lem formulation containing PDE-constrained optimization problems. Therefore, we use
again the general notation J for the cost, as it was done in the beginning of this section.
The methodology to remove a basis function comes from the observation that some basis
elements might not be used during the optimization process. Suppose that we start from
a point u(0) very far from the optimum. Clearly, after j iterations the point u(j) is in a
completely different region of the admissible set compared to the one of the starting point.
Hence, the basis functions built for u(0) might give a negligible contribution in spanning
the reduced-order model at the point u(j). If this is the case, we can expect that these
functions will not play any further role also for the subsequent points and therefore they
can be removed to reduce the dimension of the RB space. Our methodologies for removing
basis functions are then based on Remark 6 and try to check which basis functions give a
negligible contribution for the current iteration of the TR-RB algorithm. Notice that every
technique we propose from now on will be applied after updating the RB space in the
TR-RB algorithm. The aim is to modify the updated RB space in order to provide a new RB
space, where the number of basis functions is reduced.
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Technique T1. The first proposed technique is based on the computation of the so-called
Fourier coefficients. Given v ∈ V and a set of orthonormal basis functions {ψn}�n=1 ⊂ V�,

the n-th Fourier coefficient is defined as c(n)F (v) := 〈v, ψn〉V . Now, T1 consists in computing

c(n)F (S(u(j+1))) and c(n)F (Ai(u(j+1))), i = 1, . . . , k, for n = 1, . . . , � and remove the basis
function ψn for which

ζ(n) := max

⎧⎨⎩ c(n)F (S(u(j+1)))2

∑�
η=1 c(η)F (S(u(j+1)))2

, max
i=1,...,k

⎧⎨⎩ c(n)F (Ai(u(j+1)))2

∑�
η=1 c(η)F (Ai(u(j+1)))2

⎫⎬⎭
⎫⎬⎭

is below a certain tolerance. Note, in fact, that the Fourier coefficients indicate the order of
magnitude of the contribution of a given basis function in reconstructing the new snapshots
that we want to add to update the RB. Strategy T1 is also based on the assumption that
the snapshots, which we want to include in an update, are the most relevant for the new
TR subproblem, because they correspond to the last accepted optimization step u(j+1).
The advantage of T1 is that the required Fourier coefficients are already available from the
Gram-Schmidt orthogonalization performed during the update of the RB space. There is,
anyway, a possible drawback of T1 due to the tolerance we set: it can happen that also
important basis functions are removed although one thinks that the tolerance is small
enough. Because of this, we would like to have a criteria to decide in an unbiased way
which basis functions should be removed.

Technique T2. This approach is based on the idea that once a point u(j+1) is accepted by
the TR-RB algorithm and the RB space is updated, we will compute a provisional AGC
point u(j+1),prov

AGC (cf. Definition 14) with respect to the previously updated RB space. One
robustness criteria that we demand is that after removing basis functions, this provisional
AGC point is still inside the new TR (Note that the TR depends on the reduced-order model
due to the inequality constraint in (12) and, therefore, changes if we remove basis functions),
although it might not coincide with the actual AGC point u(j+1)

AGC that we compute after
removing basis functions according to Line 3 in Algorithm 2 (Note that the reduced-order
cost function changes by removing a basis function, so that also the first term in (13)
differs after this removal). If we do not demand this robustness criteria, we can expect a
deterioration of the TR performances due to lack of accuracy of the RB model in the steepest
descent direction. Another important aspect is to guarantee the convergence of the TR-RB
method, which implies checking that the conditions for accepting the point u(j+1) are still
fulfilled, although we removed basis functions.

In summary, the difference with respect to T1 is then to remove basis functions starting
from the one with the smallest value of ζ(n) and proceeding in ascending order until one of
the following conditions is satisfied

ΔJ �−rem,(j+1) (u
(j+1),prov
AGC )

J �−rem,(j+1)(u(j+1),prov
AGC )

> βqδ(j+1), (25a)

Δ∇J �−rem,(j+1) (u
(j+1),prov
AGC )∥∥∇J �−rem,(j+1)(u(j+1),prov
AGC )

∥∥
U

> min{τgrad, βgradδ(j+1)}, (25b)

∥∥∇J �−rem,(j+1)(u(j+1))−∇J (u(j+1))
∥∥
U∥∥∇J �−rem,(j+1)(u(j+1))

∥∥
U

> min{τgrad, βgradδ(j+1)}, (25c)∣∣g(u(j+1))− g�−rem,(j+1)(u(j+1))
∣∣

g�−rem,(j+1)(u(j+1))
> τg, (25d)

J �−rem,(j+1)(u(j+1)) > J �,(j)(u(j)
AGC), (25e)

J �−rem,(j+1)(u(j+1),prov
AGC

)
−J (u(j+1)) > −κarm

∥∥u(j+1),prov
AGC − u(j+1)∥∥2

U
. (25f)
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If one of the conditions (25) holds we re-add the basis function to the RB space and
finish the removal continuing with the TR-RB procedure. T2 is summarized in Algorithm 3.

Algorithm 3 Summary of T2

1: Follow the steps in Algorithm 2 until the RB model is updated at u(j+1);
2: Compute a provisional AGC point u(j+1),prov

AGC by using the reduced-order cost function
w.r.t. the updated RB model;

3: Compute ζ(n) for n ∈ {1, . . . , �};
4: while None of the conditions in (25) is fullfiled do
5: Out of all remaining basis functions, remove the one with the smallest value of ζ(n)

from the RB space;
6: end while
7: Add the last removed basis function to the RB space;
8: Proceed with Algorithm 2 with the RB space obtained performing Steps 2–7;

Let us explain the meaning of (25). At first, the superindex � − rem indicates that
the space used to compute the quantity is the RB space obtained after removing a basis
function. Condition (25a) is to check that the provisional AGC point will remain inside
an accurate-enough region of the TR. Condition (25b) is in the spirit of (25a) but for the
gradient of the objective. Conditions (25c) and (25d) are based on the skipping enrichment
criteria and are checked to ensure convergence and robustness of the method after the
removal. For a similar issue we need to check that the sufficient decrease condition is
fulfilled as well (cf. (25e)). Finally, (25f) is to enforce that the provisional AGC point is still a
Cauchy point. In such a way, we are sure that Algorithm 2 converges even after performing
the basis removal (cf. [17,18]). In this sense, T2 introduces an unbiased way to deal with
the technique introduced in T1. There are still a few aspects one should comment on
before implementing T2. At first, note that all the above-mentioned conditions are cheaply
computable, since they are based either on reduced-order quantities or the appearing
full-order quantities are available because of the RB update. At second, conditions (25a)
and (25b) request efficient and reliable error estimators. Although for the PS method the
efficiency of Δ�,(j)

J is acceptable, it is not the same for an error estimator Δ�,(j)
∇J based on

the a-posteriori estimates of the gradients of the individual objectives. These estimators
generally produce a huge overestimation, which makes them useless in practice. We notice,
in fact, that condition (25b) is immediately triggered in the case of the PS method and we
can not remove any basis function. This is the reason why we solved this issue by two
different related approaches:

Technique T2a. We replace the numerator of (25b) by∥∥∇J �−rem,(j)(u(j+1),prov
AGC )−∇J (u(j+1),prov

AGC )
∥∥
U

,

which is the true error we wanted to estimate, but it is unfortunately costly. It requires the
computation of the full-order quantities S(u(j+1),prov

AGC ) and Ai(u
(j+1),prov
AGC ), i = 1, . . . , k.

Technique T2b. We replace the numerator of (25b) by∥∥∇J �−rem,(j)(u(j+1),prov
AGC )−∇J �,(j+1)(u(j+1),prov

AGC )
∥∥
U

which is a cheap approximation of the true error that we suppose to be reliable only after
enough steps of Algorithm 2, however.
Clearly, if one has a good estimation of the gradient at hand, T2 can be still used in its
original form.

Technique T3. Another drawback of T2 is the fact that we first need to remove the basis
function in order to check (25). This implies that when we stop the removal, we need to
add back the last basis function which was removed, because it is containing important
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information; cf. Line 7 of Algorithm 3. This results in a waste of time for the modified
Algorithm 2. We decide to add the option of introducing numerical tolerances for each of
the conditions (25). In such a way, the modified algorithm will generally stop before an
important basis function is removed at the price of possibly leaving one or a few redundant
basis functions in the RB space. We think that this is a meaningful modification regarding
the time that is wasted reintroducing the removed basis function into the RB space; cf.
Section 5. We indicate this last strategy as T3.

5. Numerical Experiments

In this section we test Algorithm 2 and compare it with the results obtained in [16]
(Section 3.2.2). We use the same numerical setting, which we briefly report here. Let the
domain Ω be the two-dimensional unit square, split into four different subdomains Ω1 =
(0, 0.5)× (0, 0.5), Ω2 = (0, 0.5)× (0.5, 1), Ω3 = (0.5, 1)× (0, 0.5) and Ω4 = (0.5, 1)× (0.5, 1).
For each Ωi, we consider a corresponding diffusion coefficient uκ

i ∈ R in (3) for i = 1, . . . , 4.
The reaction term r(x) is set to be constantly equal to 1 for any x ∈ Ω. We impose
homogeneous Neumann boundary conditions (i.e., α = 0) and a source term f (x) =

∑4
i=1 ciχΩi (x) with c1 ≈ 2.76, c2 ≈ −0.96, c3 ≈ 0.51 and c4 ≈ −1.66 generated randomly in

order to obtain a problem with a non-convex Pareto front. For the spatial discretization of
the state equation, we apply the Finite Element (FE) method with 1340 nodes and piecewise
linear basis functions. For (MPPOP) we choose the following three objectives

Ĵ1(u) :=
1
2

∥∥S(u)− y(1)Ω

∥∥2
H +

ε

2

∥∥u− u(1)
d

∥∥2
U

,

Ĵ2(u) :=
1
2

∥∥S(u)− y(2)Ω

∥∥2
H +

ε

2

∥∥u− u(2)
d

∥∥2
U

, Ĵ3(u) :=
0.05

2

∥∥u− u(3)
d

∥∥2
U

with ε = 0.002, the desired states

y(1)Ω (x) := χ(0,0.5)×(0,1)(x), y(2)Ω (x) := χ(0.5,1)×(0,1)(x),

and the desired parameter values

u(1)
d = u(2)

d := (2, 0, 0, 0, 0.3)T , u(3)
d := (2, 1, 1, 1, 0.3)T .

The lower and upper parameter bounds are given by

ua = (2, 0.1, 0.1, 0.1, 0.3)T and ub = (2, 4, 4, 4, 0.3)T ,

respectively. This implies that uκ
1 = 2 and ur = 0.3 are seen as constants and we only

optimize over the three parameters uκ
2, uκ

3 and uκ
4. Note furthermore, that the desired

parameters u(1)
d = u(2)

d are not admissible. In fact, as for the parameters of the source term,
they were chosen such that the resulting Pareto front is non-convex.

For the choice of the initial value for PSPs corresponding to reference points for the
entire problem ( Ĵ1, Ĵ2, Ĵ3) we do the following: Let ūi be the minimizer of Ĵi for i = 1, 2, 3.
Recall that the sets Di have been introduced in Definition 7-(ii). Then, if z ∈ Di, we
choose ūi as the initial value for solving (PPS

z,r ). We additionally choose the shifting vectors
d̃ = 0.001 · (1, 1, 1)T , while the grid size h for the reference point grid is set to hPSM = 0.003.

5.1. Parameter Choices for the TR-RB Algorithm

There are many parameters used in the TR-RB algorithm, which we will specify and
briefly comment on in this section.

• The initial TR radius is chosen as δ(0) = 0.1, the tolerance for increasing the TR radius
is set to η� = 0.75 and the factor for shrinking the TR radius to β1 = 0.5. For the
minimal TR radius we use δmin = 1× 10−16.
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• For the Armijo backtracking strategy, we use the constants κarm = 1 × 10−4 and
κ = 0.5.

• The tolerance of the first-order condition is set to τFOC = τ
(i)
FOC,sub, where τ

(i)
FOC,sub

is the tolerance for the first-order condition of the current augmented Lagrangian
subproblem. Moreover, we choose τsub = 0.5 τFOC as the tolerance of the first-order
condition of the TR-subproblem and βbound = 0.9 as the constant in (15).

• For checking the necessity of updating the RB space, we choose τg = 1, τgrad = 0.1,
βgrad = 0.2 and βq = 0.005.

• The tolerance chosen in T1 (cf. Section 4.2) for the Fourier coefficient is 10−6. Similarly,
we choose the same tolerance for T3 in order to break the removal algorithm before
deleting important basis functions, i.e., we subtract it on the right-hand side of (25a)–(25f).

We notice in our numerical experiments that the method without basis removal is
quite robust in terms of computational time and required PDE solves with respect to all the
parameters except for the ratio between the first-order conditions of the current augmented
Lagrangian subproblem and the TR-subproblem τFOC/τsub. In our experiments we choose
this ratio to be 2, but we observe that a too large ratio (already 5 is sufficient) slows down
the method considerably. The reason is that the TR-subproblems are solved with too much
accuracy in this case which needs a lot of numerical effort but does not benefit the overall
optimization. Regarding the techniques introduced in Section 4.2, T1 heavily depends on
the choice of the tolerance for truncating the Fourier coefficient. The smaller the tolerance
the less basis functions are removed. Anyway, if we remove too many basis functions (e.g.,
tolerance of 10−4), T1 becomes less stable and the method needs more iterations to converge
which generally corresponds in more enrichment steps which slow it down. Conversely,
removing few basis functions (e.g., 10−8) implies no significant differences between T1 and
the method without removal. Contrarily to T1, techniques T2, T2a and T2b are only based
on the same parameters which influence the behavior of the algorithm without removal.
Their performances are also robust with respect to all these parameters in terms of basis
functions removed. For T3 the same discussion applies, but this method is also sensitive to
the tolerance chosen to break the removal algorithm before deleting presumed important
basis functions. On one hand, if this tolerance is too high (e.g., 10−2), the method will
not remove a significant number of basis functions to influence the performances of the
algorithm. On the other hand, if this is too low (e.g., 10−8) T3 will be essentially equivalent
to T2.

5.2. Numerical Ressults

In this section, we focus mainly on the comparison of our proposed TR-RB variants,
briefly commenting on full-order versus reduced-order model. For detailed comments and
results on the PS method applied on the FE and RB level, we refer to [16] (Section 3.2.2).
At first, to validate our approach, we show in Figure 1 the obtained Pareto fronts by using
the method in [16] (left) and our method (right). As one can see, there is no visible difference.
The approximation error is, in fact, of the order of 10−6 for a Pareto point computed by
all the proposed techniques (i.e., T1, T2a, T2b and T3) on average. This can be essentially
explained by the fact that the termination criteria for Algorithm 2 relies on the full-order
model. Therefore, any computed point is first-order critical for the FE model, up to the
chosen stopping tolerance. Let us remark that this is not typical for model order reduction,
where generally there is an additional approximation error due to the reduced-order model
inaccuracy.
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Figure 1. (a) Algorithm 2 no Removal local RB spaces. (b) Algorithm 2 T3 local RB spaces.

In Figure 2 we compare the computational time of Algorithm 2 for all the proposed
techniques (cf. Section 4.2) against the full-order FE model and the algorithm in [16].
Concerning the FE method, we can save between 41% and 59% of the computational time.
Considering the fact that we do not have an approximation error in reconstructing the
Pareto points, we get the same result in approximately half of the time by using any of the
TR-RB variants. This speed-up will also increase with an increasing number of degrees of
freedom for the FE method, since the number of required FE solves of the PDE is significally
smaller for the TR-RB algorithms than for the FE method; cf. Table 1.

Figure 2. Computational times in seconds for Algorithm 2 with or without basis removal and using
the two strategies in Remark 6 for initializing the RB space.
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Table 1. Total PDE and only FE solves for the tested methods.

Method # Total PDE Solves # FE Solves

FE 433378 433378

Common RB Space No R. 493254 20743
Common RB Space T1 493282 20786
Common RB Space T2a 497032 20838
Common RB Space T2b 497032 20752
Common RB Space T3 493985 20792

Local RB Space No R. 497072 20773
Local RB Space T1 497589 20893
Local RB Space T2a 507064 21226
Local RB Space T2b 507064 20857
Local RB Space T3 502911 21023

Furthermore, we get a speed-up of the TR-RB algorithm by using the proposed
techniques for reducing the number of basis functions in almost all cases. Depending on
the strategy from Remark 6, one technique performs better than the others. Here we try
to explain this phenomena in detail. Let us focus on the common RB space first. In this
case, every technique helps in saving computational time. This is clearly the effect of
removing redundant basis functions, which are particularly frequently included using a
large common RB space. This is the reason why T1 appears to be the most effective, since
it is the cheapest among the techniques (as we said it does not imply additional cost to
be checked). T2a is more robust, but it comes with the price of evaluating the full-order
gradient at the new AGC point and thus results to be slower than T1. Apparently, T2b
should overcome this problem, but the inaccuracy of the RB space in the beginning yields a
bad approximation of (25b), resulting in removing too many basis functions which leads
to a worse approximation for the consecutive steps. This worsening of the approximation
results in a way larger number of enrichment steps towards the end of the algorithm, which
also negatively influences the computational time. T3 is comparable with T2a, meaning
that for this example we are removing many basis functions in only a few instances, rather
than frequently removing a few basis functions. Figure 3b confirms the above remarks
for the case of a common RB space. In this figure we report the number of basis functions
obtained at the end of Algorithm 2 while this is applied to compute each Pareto optimal
point in the PS method.

Now, let us focus on the left group of columns in Figure 2 (and thus on Figure 3a),
which corresponds to the computational times in the case of using local RB spaces (cf.
Remark 6). This case is a bit more delicate, since the use of local RB spaces makes it more
difficult to interpret the results. Here the problem of T1 is emerging. The fact that this
technique removes a number of basis functions without any robustness criteria implies
that the method slows down. In the case of local spaces, in fact, we do not have the same
amount of redundant basis functions as it can occur for a common RB space. Therefore, we
should only remove the basis functions which are actually redundant. As one can note in
Figure 3a, T1 removes a significantly larger amount of basis functions in comparison to the
other techniques. Here the criteria introduced in T2a play their role in a positive way. We
can counteract the effect of T1 in such a way that the computational time is comparable
to the one in [16]. The further simplification introduced in T2b helps to get an additional
speed-up. In contrast to the common RB space, here we have local spaces which provide a
sufficiently good accuracy for approximating (25b) also in the beginning of the optimization.
This is then beneficial for the algorithm, since the cost of computing the criteria in T2b is
way cheaper than T2a, where we need full-order solves of the state and adjoint equation to
compute the gradient at the new AGC point. Additionally, T3 further improves T2a and
T2b in terms of computational time, since in the case of local RB spaces it is more probable
that we indeed remove only a few basis functions but more frequently than in the case of
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one common RB space. In this case, it is important to have tolerances that let us stop before
removing an important basis function and save time for reintroducing it in the RB space.
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Figure 3. Number of basis functions used to compute each Pareto optimal point. (a) Local RB space.
(b) Common RB space. In brackets: average number of basis functions.

In conclusion, comparing our fastest method (i.e., Algorithm 2 with local RB spaces
and T3) to the slowest (i.e., using [16] with a common RB space) we get essentially the same
results (the approximation error is 10−6) saving approximately 30% of the computational
time, which is roughly 300 s. This shows how one should invest time and resources
in providing efficient techniques for reducing the number of basis functions in the RB
space, while using an adaptive TR-RB algorithm. Particularly in the case of multiobjective
optimization, this becomes crucial for a large number of cost functionals k. To obtain the
same resolution of the Pareto front as in Figure 1 for a large k, we will need to solve the
PSPs for many more points, implying higher risk of having redundant basis functions.

6. Conclusions

We showed the applicability and convergence of the TR-RB algorithm in the context
multi-objective PDE-constrained parameter optimization problem. We presented and
analyzed novel ways of reducing the dimension of the RB space during the optimization
procedure. To our knowledge, basis reduction strategies have not been proposed yet for
the RB method, although it is common for other model order reduction techniques. Such a
removal significantly improved the performances of the TR-RB algorithm in the context of
multiobjective optimization, leading faster to an accurate solution than the already existing
techniques. The presented example contained only three parameters to be optimized.
However, based on the results in [17] (Section 4.4) for an example with 28 parameters and
on the various examples in [39] (Sections 3.5.4–3.5.6), we expect all of the TR-RB methods to
scale well with an increasing number of parameters. As for the multi-objective optimization
by the PS method, the numerical effort grows exponentially with the number of cost
functions k, but is independent of the number of parameters m if m ≥ k− 1. Moreover,
the presented removal techniques of reduced basis functions can also be extended to other
applications in which sequential parametric PDE-constrained optimization problems must
be solved. In future work, one can try to extend the convergence theory for the presented
TR-RB algorithm to a larger class of PDEs than the one presented here, as, e.g., parabolic
PDEs [14] or non-affine parameter-to-state couplings. Due to the general formulation of
the convergence result we are optimistic that this is possible. Moreover, one can try to
achieve further improvements concerning robustness of the method and deriving tighter
a-posteriori error estimators, in particular for the gradient of the cost function. This is also
of great interest in the RB community. Another interesting idea could be to incorporate
the usual trust-region condition based on the (Euclidean) distance from the current iterate

194



Math. Comput. Appl. 2022, 27, 39

into the presented TR-RB algorithm. In [19] the usual trust-region condition was actually
performing slightly better than a residual-based error estimate as the trust-region constraint
for some of the considered problems. Despite the fact that we use not only a residual-based
error estimate but an error estimate of the actual cost function, a comparison between the
different approaches is definitely of interest.
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Abstract: We propose two enhancements of quasi-Newton methods used to accelerate coupling
iterations for partitioned fluid-structure interaction. Quasi-Newton methods have been established as
flexible, yet robust, efficient and accurate coupling methods of multi-physics simulations in general.
The coupling library preCICE provides several variants, the so-called IQN-ILS method being the most
commonly used. It uses input and output differences of the coupled solvers collected in previous
iterations and time steps to approximate Newton iterations. To make quasi-Newton methods both
applicable for parallel coupling (where these differences contain data from different physical fields)
and to provide a robust approach for re-using information, a combination of information filtering
and scaling for the different physical fields is typically required. This leads to good convergence, but
increases the cost per iteration. We propose two new approaches—pre-scaling weight monitoring
and a new, so-called QR3 filter, to substantially improve runtime while not affecting convergence
quality. We evaluate these for a variety of fluid-structure interaction examples. Results show that we
achieve drastic speedups for the pure quasi-Newton update steps. In the future, we intend to apply
the methods also to volume-coupled scenarios, where these gains can be decisive for the feasibility of
the coupling approach.

Keywords: fluid-structure interaction; quasi-Newton; multiphysics coupling

1. Introduction

Multiphysics simulations have shown immense usefulness in the engineering de-
sign sector, and are increasingly being applied to more complex problems, ranging from
biomedical devices [1] and wind loads on structures [2], to hydraulic fracture simulation
[3]. The rise in challenging applications of multiphysics simulations has led to an increased
focus on developing flexible, efficient, and scalable multiphysics coupling software. A practical
and user friendly approach is to develop partitioned-coupling software, which couples existing
standalone physics simulation solvers together to solve new types of simulation problems.
Here, the physics solvers themselves are treated as black boxes. This is in contrast to mono-
lithic methods, where all of the equations from each physics domain are solved together in a
single system. Partitioned coupling requires an additional piece of software taking care
of the actual numerical and technical coupling of the separate solvers. Amongst various
such coupling software packages available is preCICE [4]. The key features of preCICE
are the minimally invasive library approach, sophisticated numerical methods, parallel
scalability, and a strong focus on usability, maintainability, and extensibility. In this paper,
we present enhancements and robust parameter choices for numerical equation coupling
with preCICE, substantially improving performance, robustness and usability.

Various other general-purpose coupling software exist that are able to per-
form partitioned coupling for multiphysics (including fluid-structure interaction) and
multi-scale problems. Software coupling packages similar to preCICE are DTK [5] and
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OpenPALM [6], which both offer a slightly different approach to simulation coupling than
preCICE. DTK’s application programming interface (API) offers lower-level features com-
pared to preCICE, allowing more flexibility regarding the coupling logic, but at a greater
development effort for the user, whereas OpenPALM offers a higher-level approach, with
built-in coupling logic and a graphical user interface. A comparison of preCICE with the
mentioned libraries, as well as many others coupling software solutions, is provided in [7].

In addition to numerical coupling of separate solvers, a coupling software has to
provide communication between solvers, data mapping between non-matching meshes at
the interface between solvers, and interpolation in time (if higher order time stepping shall
be achieved). We focus on the numerical coupling in this paper, with a specific focus on
parallel quasi-Newton schemes. Quasi-Newton schemes for partitioned multi-physics cou-
pling were introduced in 2009 [8] and have been improved since [9–13]. Similar methods
have been developed in a different community in the context of acceleration of fixed-point
solvers under the name Anderson mixing or Anderson acceleration [14–17]. Quasi-Newton
acceleration schemes have been shown to provide fast and stable coupling between various
physics solvers for a variety of problems [3,9,18]. However, to provide fast and stable
coupling, additional numerical techniques are implemented in preCICE [10]. These addi-
tional interface operations have often been considered to have a negligible computational
cost compared to the solvers, as the interface degrees of freedom are assumed to be much
fewer than those of the coupled solvers themselves. However, this might not be true if
the interface becomes large or in the case of volume coupling, where the entire domain is
essentially the coupling interface.

The aim of this work is to implement minor enhancements to the existing implemen-
tation of quasi-Newton methods in preCICE, which, however, give major improvements
in terms of efficiency, robustness, and usability. The enhancements allow easier access to
good input parameter choices for standard users, while also offering maximal flexibility
for expert users without having to consider the computational cost of the coupling library.
We approach this goal by achieving a detailed understanding on how the implementation
of quasi-Newton schemes affects computational performance.

The remainder of the paper is structured as follows. In Section 2, we provide an
overview of multisecant quasi-Newton methods for fixed-point problems, as well as general
existing methods used to improve the quasi-Newton performance in preCICE. In Section 3,
we show how these additional general methods can be further enhanced to reduce the
number of coupling iterations, on the one hand, and the runtime of the actual acceleration,
on the other hand. In Section 4, we present different test cases to analyse the improvements.
In Section 5, we present results for these test cases, followed by a discussion of the results
in Section 6.

2. Methods—Introduction to Quasi-Newton Coupling

In this section, we present variants of iterative quasi-Newton coupling as implemented for
multiphysics simulation coupling. We start with the different versions of fixed-point equations
that are solved in iterative partitioned coupling approaches in Section 2.1. In Section 2.2, we
present the basic ideas of the quasi-Newton approaches used, followed by enhancements
of these methods improving convergence and robustness in Section 2.3. The contributions
of this paper, enhancements and rules that further improve the efficiency, robustness and
usability of quasi-Newton coupling for multiphysics simulations, are presented in Section 3.

2.1. Partitioned Coupling

For time-dependent problems, partitioned coupling, i.e., coupling of separate sim-
ulation codes, can be divided into two types: explicitly (loosely) coupled or implic-
itly (strongly) coupled. In explicit coupling, each solver performs its time step only
once and proceeds with the next time step after exchanging data with the other solvers.
In implicit coupling, all solvers iterate their time steps exchanging data after each iteration
until a fixed-point problem describing the coupling conditions is solved. Solving this fixed
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point problem requires the introduction of sophisticated methods, such as quasi-Newton
methods, to achieve acceleration of the convergence of the respective fixed-point iterations.

To explain the derivation of the fixed-point formulation, we consider two coupled
solvers for simplicity, represented by mapping functions S1 and S2 operating on data
defined at the coupling interface Γ. A common example is a fluid-structure interaction
(FSI) model, where S1 is the fluid solver that maps interface displacements or velocities
x1 to forces x2 exerted at the structure, whereas S2 is the structure solver that maps forces
x2 to interface displacements or velocities x1. The following description of the coupling,
however, generalises to any multi-physics problem. The mapping S1 requires the output of
S2 and vice-versa such that

S1 : x1 �→ x2 and S2 : x2 �→ x1.

For the considered time-dependent problems, x1 and x2 are the respective interface
values at the new time step. Strong or implicit coupling between S1 and S2 is formulated as
a fixed point problem. Two mathematically equivalent variants of this fixed-point problem
can be formulated in matrix-like notation as

x1 = S2 ◦ S1(x1) (Gauss-Seidel type coupling) and (1)(
x1
x2

)
=

(
0 S2
S1 0

)(
x1
x2

)
(Jacobi type coupling). (2)

These correspond to two different types of fixed-point iterations as depicted in Figure 1.
In this work, we focus on the second, so-called Jacobi type system as it results in higher
parallelism and, thus, more efficient usage of computational resources on large compute
clusters and supercomputers [11], and allows for an arbitrary number of solvers to be
coupled [19].

xk
1 xk

2 x̃k
1 xk+1

1

k �→ k + 1

S1 S2 Acc xk
1

xk
2 x̃k

1

x̃k
2 xk+1

2

xk+1
1

k �→ k + 1

k �→ k + 1

S1

S2

Acc

Figure 1. General coupling options, Gauss-Seidel (left) and Jacobi (right), for partitioned coupling of
two solvers S1 and S2.

The unmodified fixed-point iterations xk+1 = H(xk), where

x =

(
x1
x2

)
and H =

(
0 S2
S1 0

)
(3)

in matrix-like notation, may be slow to converge or not converge at all [9]. We therefore
apply an acceleration scheme, Acc(), such that

xk+1 = Acc(x̃k) with x̃k = H(xk).

In the following, we explain how the acceleration operator Acc is realised based on
quasi-Newton approaches.

2.2. Introduction to Quasi-Newton Coupling Methods

The partitioned coupling schemes described above require solving a non-linear problem

R(x) := H(x)− x = 0. (4)

To solve this for problem sizes typically encountered in multi-physics simulations,
full Newton methods are undesirable due to large computational costs and memory re-
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quirements and, in addition, infeasible for black-box coupling as the derivatives of the
fixed-point operator H are inaccessible. Quasi-Newton methods are able to approximate a
Newton step and in general accelerate the convergence compared to the pure fixed-point
iteration [8,9,12]. At each iteration, we compute the next iteration via

xk+1 = x̃k − J−1rk, (5)

where rk = R(xk) = x̃k − xk and J−1 is an approximation of the inverse Jacobian of the
mapping R̃ : x̃ �→ x̃ − H−1(x̃), i.e., the function that maps the result of the fixed point
iteration to the residual (R̃(H(x)) = R(x)). Equation (5) represents a sequence of a fixed-
point iteration and a modified approximated Newton step. As multiple iterations are
performed in each time step for implicitly coupled systems, we introduce a convergence
criteria to define when we proceed to the next time step. Implicitly coupled solvers are
considered to have converged if

‖xk
1 − x̃k

1‖2

‖xk
1‖2

< εconv. (6)

For solver S1, and similarly for solver S2. Critical to the performance of the quasi-
Newton method is the manner in which we approach the approximation of the inverse
Jacobian J−1. We use the input/output differences collected from previous iterations
collected in matrices

Wη
k =

[
Δx̃k, Δx̃k−1, ..., Δx̃k−η

]
with Δx̃k = x̃k − x̃k−1,

Vη
k =

[
Δrk, Δrk−1, ..., Δrk−η

]
with Δrk = rk − rk−1,

(7)

where Wη
k ∈ RN×η , Vη

k ∈ RN×η , N is the number of degrees of freedom (DoF) at the
coupling interface, and η is the maximum number of previous iterations that are retained.
For transient coupled problems, this can also include iterations from previous time steps.
We, however, drop iterations older than ζ time steps. The approximation of the inverse
Jacobian is required to fulfil the multi-secant equation

J−1Vk = Wk, (8)

a strongly under-determined system as η � N. We, thus, have to add a norm minimisation

min ‖J−1 − J−1
prev‖F. (9)

where J−1
prev is a previous approximation. Depending on the choice of J−1

prev, we get two
types of quasi-Newton methods:

IQN-ILS. The Interface Quasi-Newton Inverse Least-Squares (IQN-ILS) method is a popu-
lar and frequently used multiphysics coupling acceleration scheme. It was first introduced
in [8]. For IQN-ILS, we choose J−1

prev = 0, i.e., to determine J−1, we solve

J−1Vk = Wk with J−1 = argmin‖J−1‖F, (10)

yielding

J−1 = Wk

(
VT

k Vk

)−1
VT

k . (11)

The benefit of this classic least-squares approach is the option for a matrix-free imple-
mentation of the quasi-Newton step (5):

xk+1 = x̃k + Wkα with α = argmin‖Vkα + rk‖2. (12)
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To solve this least-squares problem, we compute a QR-decomposition of Vk = QR and
solve the small η × η system Rα = −QTrk.

The IQN-ILS method builds the approximation of J−1 exclusively from the retained
input/output vectors stored in Wk and Vk. Therefore, the amount and quality of the
information stored in Vk and Wk is decisive for the convergence rate and robustness of the
IQN-ILS method, and many problems typically require storing many previous iterations ,
η, over many previous time steps, ζ.

IQN-IMVJ. The Interface Quasi-Newton Inverse Multi-Vector Jacobian method [12,13,20]
implicitly retains information from previous time steps using J−1

prev as the previous time
step’s inverse Jacobian approximation and, thus, allows us to implicitly use information on
J−1 already collected in previous time steps. In the IQN-IMVJ method, we also perform a
QR-decomposition of Vη

k = QR to determine the pseudo-inverse V†
k =

(
VT

k Vk
)−1VT

k and
get J−1 from

J−1 = J−1
prev +

(
Wk − J−1

prevVk

)(
VT

k Vk

)−1
VT

k . (13)

The disadvantage of this method is that we need an explicit representation of J−1
prev

which requires O(N2) both in memory and computational complexity. By smart approx-
imations, this cost can, however, be reduced to O(N) [12,21]. In this paper, we focus on
improvements to the IQN-ILS method, as the most commonly used quasi-Newton variant.

2.3. IQN-ILS Enhancement Techniques

When implementing the IQN-ILS method into a software library, various numerical
methods need to be utilised to further improve numerical stability and reduce runtime and
memory requirements. The two methods we highlight here are filtering of columns in Vk [10]
and pre-scaling of the interface values [22]. These techniques are discussed below, and the
advantages and disadvantages are highlighted.

2.3.1. Filtering

For IQN-ILS, there is no guarantee that all columns in Vk are linearly independent.
Thus, to aid convergence for all acceleration schemes, filtering columns of the matrices
Vk and Wk is performed to remove any linearly dependent columns [10]. We discuss two
filtering variants: QR1 and QR2 filters (referred to as old QR and new QR filter, respectively,
in Haeltemann et al. [10]). Both methods begin by performing a QR-decomposition
Vk = QR, where Vk is decomposed into an orthogonal matrix QN×η and an upper triangular
matrix Rη×η .

In every iteration, a new column is added to the left of both Vk and Wk (see
Equation (7)). Therefore the leftmost columns represent newest information and the right-
most columns older information. The QR-decomposition is performed column-wise from
right to left, and is realised by a QR update procedure as shown in Figure 2. Taking an
already computed decomposition QR from the previous iteration, a new column on the left
v = (Vk):,1 (the subscript indicates the row and column number in a Python-like notation.
:, 1 refers to the leftmost column of Vk—this is the most recent column added to Vk) is
orthogonalised against Q via a modified Gram–Schmidt procedure. The orthogonalised v is
then added as additional (rightmost) column in Q (column q in Figure 2). A new (leftmost)
column is also added to R (column r in Figure 2) along with a bottom row of zeros. A
series of Givens rotations eliminate any non-zero sub-diagonal entries in R. A detailed
explanation of the procedure can be found in [23]. Note that this seems to be unnecessarily
complicated compared to adding columns from the right of Vk, which would only require
orthogonalisation of the new column q with a standard Gram–Schmidt algorithm, and
adding a new column r on the right of R. However, having the oldest information in
the rightmost columns of Vk and Wk offers the advantage that deleting old information,
possibly multiple columns at a time, is cheap. Deleting columns from Vk and Wk typically
occurs at least every time step.
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Deleting the rightmost (oldest) column of Vk only requires removing the rightmost
column from Q and the rightmost column as well as the last row from R. This does not in-
troduce non-zero sub-diagonal elements in R and, thus, does not require additional Givens
rotations. Removing an arbitrary column from Vk requires (1) removing the corresponding
column from R, (2) removing any sub-diagonal elements from R using Givens rotations,
(3) applying the corresponding Givens-rotations to Q from the right, (4) removing the last
column from Q as well as the bottom (zero) row from R.

If a complete QR decomposition is required, Q and R are discarded completely, and new
Q and R matrices are rebuilt using each column from Vk, adding one column at a time.

v V = qQ

G

0

r
R

= Q̄

R̄

Figure 2. QR-decomposition updating procedure. For every new column added to Vk on the left,
the QR decomposition can be updated by adding the orthogonalised version of this column as new
(rightmost) column q in Q, adding an additional row of zeros to R and subsequently adding a new
(leftmost) column r to R representing the respective orthogonalisation factors. To compute the final
decomposition, we have to apply Given rotations (represented by the matrix G in the figure) to
eliminate sub-diagonal entries in R. Q̄ and R̄ represent the final decomposition result.

QR1. In the QR1 filter, the impact of a column on the condition of R is estimated by
comparing the diagonal elements of R to the complete norm of R as a metric for the norm
of orthogonalised columns of Vk before normalisation. This means, we delete a column i if

Rii < ε f · ‖R‖F, (14)

where ε f is the filtering limit, a user specified parameter. This filter has a potential drawback
as the QR-decomposition is built from the oldest column of information to the newest and,
thus, has a tendency to delete new columns instead of (potentially outdated) old ones.
However, [22] found that this was not problematic with a well selected filter limit. The
main advantage of the QR1 filter is that it does not enforce a complete re-computation of
the QR-decomposition in each coupling iteration, but allows updating the decomposition
by inserting the newest column v into QR only. Any filtered column can be removed with
a single column deletion step.

QR2. The QR2 filter (Algorithm 1) was introduced in [10] as a means to quantify the amount
of new information a column in Vk adds to the QR-decomposition, and to filter the columns
during the construction of Q and R itself. Importantly, the QR2 method re-constructs the
QR-decomposition beginning with the newest column of information and, thus, has to
rebuild the QR decomposition in each iteration, and tends to remove the oldest columns
from Vk. This is favoured as older columns might no longer be relevant to the current
dynamics of the physical system.
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Algorithm 1 : QR2 Filter [10]

R11 = ‖(Vk):,1‖2 � This is the newest column
for i = 1, ..., η do � Starts from newest column

v = (Vk):,i
for j = 1, ..., i− 1 do

Rji = QT
:,j · v

v = v− Rji ·Q:,j
end for
if ‖v‖2 < ε f ‖(Vk):,i‖2 then

delete column i
end if
Rii = ‖v‖2 and Q:,i = v/Rii

end for

2.3.2. Pre-Scaling

When using the Jacobi-type fixed point equation as introduced in Equation (2),
largely different orders of magnitude of the two parts of the vector x, forces and dis-
placements/velocities, and their residuals R(x) may cause numerical issues as only the
field with the larger magnitude is seen in the approximation of J−1. For example, in case
of a stiff solid structure, the surface pressure may be in the order of 105, whereas the
structural deformation may be in the order of 10−3. Additionally, the solution of the
stiff structure might not change much between time steps, and therefore have a small
residual value R(x), while the residual of the fluid solver may still be several order of
magnitude larger. Therefore, additional scaling of the sub-vectors of x and the respective
residual components is required. We apply a pre-scaling to Vk = ΛkVk and rk = Λkrk,
where Λk = diag(λk,1 . . . λk,1 λk,2 . . . λk,2)

T ∈ RN×N . The two pre-scaling weights λk,1
and λk,2 are selected to normalise the values of each sub-vector in rk. Using the so-called
residual-sum pre-scaling introduced in [24],

λk,1 =

(
k

∑
j=1

‖S2(xj
2)− xj

1‖2

‖R(xj)‖2

)
and λk,2 =

(
k

∑
j=1

‖S1(xj
1)− xj

2‖2

‖R(xj)‖2

)
. (15)

Uekermann [22] showed that this provided a suitable scaling for multiphysics sim-
ulations. In this pre-scaling, we use the norms of the fixed point equation residuals in
each sub-field divided by the norm of the complete residual as scaling factors. This is then
summed over all iterations, k, within one time step. The summation over all previous
iterations in one time-step prevents a zig-zag convergence behaviour found in [22].

By updating the pre-scaling weights of Λk in each iteration, a complete QR-
decomposition of Vk is required in every iteration instead of just a cheap update as all
columns of Vk change. A complete QR-decomposition is required as each row in Vk is not
scaled by the same value. This does not further affect the QR2 filter, but now a complete
QR-decomposition in each iteration is also required for the QR1 filter.

2.4. Current Good Practice for IQN-ILS

Even though quasi-Newton methods for multiphysics coupling problems is advanced,
tuning both convergence speed and runtime requires a careful understanding of the method
in combination with the enhancements described above. Therefore, we describe some
important aspects of IQN-ILS in combination with pre-scaling and filtering and the choice
of other methodological parameters.

The pseudo-code of the IQN-ILS method with additional pre-scaling (Section 2.3.2)
and filtering (Section 2.3.1) steps is shown in Algorithm 2. As the IQN-ILS method builds
the approximation of J−1 exclusively from Vk and Wk, the problem dependent parameters
η and ζ can have a large impact on the robustness and convergence as mentioned above.
Whereas the general idea is to improve the approximation of J−1 by using more informa-
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tion than generated in a single time step, a large number of columns also has obvious
negative impact: In addition to increasing the risk of rank deficiency of Vk (which can
be resolved by filtering), retaining a large number of columns in Wk and Vk also leads to
(i) larger memory consumption for matrix storage and (ii) larger computational effort in
performing the QR-decomposition of Vk. A choice of between η = 100 and η = 200 previous
iterations over the previous ζ = 10 to ζ = 20 time steps is a good choice if combined with a
well-tuned filter. The filter QR2 is preferred as it tends to delete older columns and only if
they add little information to the QR-decomposition. The filter limit should be chosen such
that some, but not too many columns are deleted. A good filter limit is typically between
ε f = 0.1 and ε f = 0.001.

Algorithm 2 : IQN-ILS

initial value x0

x̃0 = H
(
x0) and r0 = x̃0 − x0

xk+1 = x0 + ω(x̃0 − x0)
for k = 1, 2, ... do

x̃k = H
(

xk
)

and rk = x̃k − xk

if converged then
break

end if
Vk =

[
Δrk, ..., Δr1

]
, Δrk = rk − rk−1

Wk =
[
Δx̃k, ..., Δx̃1

]
, Δx̃k = x̃k − x̃k−1

Determine pre-scaling weights Λk
Compute ΛkVk = QR
Filter columns in QR
solve Rα = −QTΛkrk

xk+1 = x̃k + Wkα
end for

3. Computational Improvements for the Quasi-Newton Method

The complex manner in which input parameters interact with each other makes it dif-
ficult to find the optimal input settings for a given problem, while still maintaining fast
simulation runtimes. In the following section, we discuss two methods developed to improve
the computational runtime while maintaining the robustness of the quasi-Newton methods.

3.1. Pre-Scaling Weight Monitoring

As the pre-scaling weights λk,1 and λk,2 change in each iteration, a complete QR-
decomposition is performed in each iteration, adding a significant computational expense
to the quasi-Newton update. We introduce a new pre-scaling weight monitoring method to
freeze the pre-scaling weights after the first time step. In each iteration in the first time step,
we recompute and apply the pre-scaling weights as usual. Starting from the second time
step„ we only compute the theoretical new pre-scaling weight values Λ∗k from the newest
residual values using Equation (15). We update the actual pre-scaling weights Λk �→ Λ∗k if
these theoretical weights change by more than one order of magnitude (i.e., if λ∗k,i > 10 · λk,i
or λ∗k,i < 0.1 · λk,i for each solver i). This allows us to implement further methods to reduce
the computational runtime for iterations where we keep pre-scaling weights constant:

1. We alter the QR-decomposition strategy for the QR1 filter, such that it only recom-
putes the QR-decomposition if pre-scaling weights change. Previously, the full re-
computation was done in every iteration if pre-scaling was enabled.

2. We develop a new faster QR filter, QR3, that can mimic the behaviour of the QR2 filter.
The previous QR2 inherently required to recompute the QR-decomposition in each
iteration independent on whether pre-scaling was enabled. We describe the new filter
below in Section 3.2).
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3.2. Fast Alternative QR Filter

The current QR2 filtering technique relies on performing a complete QR-decomposition
in every iteration. We typically assume that the number of DoF on the coupling interface, N, is
much smaller than the number of DoF within the solvers. Therefore, the computational time
for the QR-decomposition should be negligible. However, this may not always be the case as

1. the number η of columns in Vk can grow very large and the cost of inserting a column
into QR has a computational complexity of O(η3),

2. in volume coupling, the number of coupling DoF is equal to the number of all DoF in
the domain, and is not negligible.

It is unnecessary for the QR2 filter step to perform a complete QR-decomposition if
actually no column is deleted. In this case, a single column insertion step could have been
performed. In this work, we introduce a new QR3 filter. A requirement for this filter is that
the pre-scaling weights remain constant, and therefore the pre-scaling weight monitoring
(Section 3.1) is required to use the QR3 filter. If the weights are updated during a coupling
iteration, then a normal QR2 filter step is performed as the QR-decomposition is then
rebuilt (ΛkVk = QR) in the process. Otherwise, the new filter computes these three steps:

1. the newest column of Vk is inserted into an existing QR decomposition (see
Section 2.3.1),

2. a check is performed to tag any column that should be removed according to the same
criteria as QR2,

3. only if any one column is tagged to be removed, then a normal QR2 filter step is
performed instead, that is, a complete QR-decomposition is performed and columns
are removed in this step.

In step 2, the check begins from the oldest column, R:,η (the subscript refers to the
row and column number. :, η refers to the right most column of R), and moves towards
the previous newest column, R:,2. We do not check if the first column R:,1 should be
removed as we want to keep the latest information. A column i is tagged for deletion if
Rii < ε f ‖Vk,(:,i)‖2 . This criteria aims to mimic the behaviour of the QR2 filter by tending to
find older columns to delete similar to the regular QR2 filter, but without reconstructing
QR. If at least one column is tagged for deletion, then the QR2 filter is applied to rebuild
QR starting from newest information, ensuring that a good quality of QR is maintained.
Further runtime improvements could be found if this criterion is made stricter, for instance
if at least two or three columns must be tagged for deletion before a QR2 filter step is
performed. For simplicity, we restrict our tests, however, to only a single column. The QR3
pseudo-code is shown in Algorithm 3.

Algorithm 3 : QR3 Filter

Add newest column v = (Vk):,1 to QR
filter← false

for i = η, ..., 2 do � Starts from oldest column and works forwards
if Rii < ε f ‖(Vk):,i‖2 then

filter← true

break
end if

end for
if filter then

Compute QR2 Filter Step
end if

4. Numerical Setup

To test the effectiveness of our suggested enhancements, we introduce three fluid-
structure interaction test scenarios in this section, followed by descriptions of the used
software and hardware.
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4.1. Test Cases

We selected three test scenarios that feature fluid and solid density values known
to be challenging in terms of stability due to the added mass effect [25,26]: a 3D elastic
tube scenario and a breaking dam scenario in 2D and 3D. Whereas the elastic tube scenario
represents an outer elastic structure, the breaking dam scenarios feature elastic structures
immersed in the fluid and involve free surface flow, such that we cover the main types of
fluid-structure interaction scenarios. In addition, the breaking dam scenarios are dynami-
cally changing, which challenges the reuse of past information of quasi-Newton methods.
To ensure reproducibility of our results, the complete test setups are available under an
open-source license at https://github.com/KyleDavisSA/IQN-test-cases accessed on 15
February 2022.

Elastic-Tube-3D. The Elastic-Tube-3D problem, proposed for instance in [27] and used
in many other studies [8,13,20], is a simplified heamodynamic FSI test case. The test
case geometry consists of a cylindrical tube with elastic walls and an inner fluid domain.
A time-dependent pressure boundary condition is applied at the inlet and at the outlet of
the fluid domain. At the inlet, a pressure of 1.3332 kPa is applied for 3 ms followed by 0 Pa
for another 7 ms. At the outlet, the pressure is kept constant at 0 Pa. The simulation is run
for 10−2 s, with a time step size of dt = 10−4 s, for a total of 100 time steps. The fluid flow
causes the solid domain to expand, and a pressure pulse travels through the tube. The
domain geometry and material properties are shown in Figure 3.

L

W
1

W
2

Γinlet ΓoutletFluid

Solid

Solid

Domain

L 0.05 m
W1 0.01 m
W2 0.012 m

Fluid

ρ 1000 kg/m3

ν 3 × 10−6 m2 × s−1

Solid

E 3 × 105 Pa
ρ 1200/120 kg/m3

Figure 3. Domain geometry—not to scale—(left) and dimension and material parameters (right) of
the Elastic-Tube-3D test case.

We compare two different densities for the structural solver to examine the added
mass effect: (i) ρ = 1200 kg/m3 and (ii) ρ = 120 kg/m3, referred to as Elastic-Tube-3D-Heavy
and Elastic-Tube-3D-Light, respectively. The structural solver has 11,735 elements in the
domain and 1816 vertices on the coupling interface. The fluid domain contains 32,691 cells,
with 1860 vertices on the coupling interface.

Breaking-Dam-2D. The Breaking-Dam-2D test case is a free surface problem, where a large
body of water comes into contact with a flexible barrier [28,29]. This test case may pose
problems for the quasi-Newton method: Firstly, the past information retained in the matri-
ces Vk and Wk may not be entirely relevant once the water impacts the coupling interface
and, thus, the character of the interaction between fluid and solid changes. Secondly, also
the pre-scaling weight values may change dramatically at the moment of the impact. The
domain and the material properties are shown in Figure 4.
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L1 L2 L3

L4

H
1

H
2

H
3

Air

Water

Solid

Domain

L1 0.146 m H1 0.292 m
L2 0.14 m H2 0.073 m
L3 0.286 m H3 0.08 m
L4 0.548 m

Fluid - Water Fluid - Air

ρ 1000 kg/m3 ρ 1 kg/m3

v 1 × 10−6 m2 × s−1 v 1 × 10−5 m2 × s−1

Solid

E 3 × 105 Pa
ρ 2500 kg/m3

Figure 4. Domain geometry—not to scale—(left) and dimension and material parameters (right) of
the Breaking-Dam-2D test case.

A no slip boundary condition is applied at the bottom, the left, and the right boundary,
and a zero pressure outlet at the top. The test case was run for 1 s with a time step size
of dt = 0.005 s, for a total of 200 time steps. The fluid domain contains 1382 cells in the
domain, with 44 vertices on the interface, and the structural domain uses 325 quadratic
finite elements in the domain, and 282 vertices on the coupling interface.

Breaking-Dam-3D. The Breaking-Dam-3D test case is a more complex test case inspired
by the Breaking-Dam-2D example. A new, larger domain was created with larger bodies of
water placed on either side of the wall, and a heavier solid wall was placed between the
water columns. The water bodies are offset in the third dimension such that they hit the
wall at opposite ends and at different times, resulting in a non-symmetrical movement of
the dam wall (Figure 5 (left)). The solid domain is fixed only at the bottom and the sides are
free to move in-plane. The test case was run for 0.75 s with a time step of dt = 0.005 s, for a
total of 150 time steps. The domain geometry is shown in Figure 6, with the dimension and
material properties given in Figure 5 (right). The fluid domain contains 25,712 cells in the
domain, with 714 vertices on the interface. The solid domain is simulated using 319 linear
elements with 387 vertices on the coupling interface.

Domain

L1 2 m H2 2 m
L2 0.95 m H3 1 m
L3 1.95 m H4 0 m
L4 1 m H5 4 m
L5 6 m H6 1 m
H1 2 m H7 4 m

Fluid - Water Fluid - Air

ρ 1000 kg/m3 ρ 1 kg/m3

v 1 × 10−6 m2 × s−1 v 1×10−5 m2 × s−1

Solid

E 1 × 107 Pa
ρ 7850 kg/m3

Figure 5. Breaking-Dam-3D waters striking the flexible wall at 0.75 s (left) and dimensions and
material parameters (right).
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Figure 6. Domain geometry—not to scale—of the Breaking-Dam-3D test cases: front view (left), and
top view (right).

4.2. Quasi-Newton Configuration

A few numerical parameters are the same for each test case. The following values are
used unless stated otherwise:

• number of time steps reused: ζ = 10 or ζ = 20;
• maximal number of previous iterations: η = 100 or η = 200;
• convergence threshold for IQN-ILS: εconv = 10−3;
• maximum number of iterations allowed per time step before proceeding to the next

time step, even if εconv is not reached: 30 or 50 (Breaking-Dam-3D);
• limit for QR2 or QR3 filter: ε f = 0.001, ε f = 0.01, or ε f = 0.1;
• type of pre-scaling: residual-sum pre-scaling as defined in Equation (15);
• initial under-relaxation value: ω = 0.1.

A simulation run is denoted as diverged only if one of the physics solvers crashed, not
if the convergence threshold was not reached in one or several time steps.

4.3. Software

We only use open-source software to test the quasi-Newton enhancements. We use
the following versions:

• Fluid solver: https://www.openfoam.com/news/main-news/openfoam-v20-12, ac-
cessed on (OpenFOAM v2012) [30]; 15 February 2022

• Fluid solver adapter: https://github.com/precice/openfoam-adapter/releases/tag/
v1.0.0, accessed on OpenFOAM-preCICE Adapter v1.0.0; 15 February 2022

• Solid solver: http://www.calculix.de/, accessed on CalculiX v2.17 [31]; 15 Febru-
ary 2022

• Solid solver adapter: https://github.com/precice/calculix-adapter/tree/5d42fb616
0ede35926a59786ef8ae25dd71d7cdb, accessed on CalculiX-preCICE Adapter, commit
5d42fb6, 15 February 2022.

All quasi-Newton methods described in Sections 2 and 3 have been implemented in
the coupling library preCICE [4,7]. We use two different versions of preCICE:

• https://github.com/precice/precice/releases/tag/v2.3.0 accessed on 15 February
2022, as baseline without the enhancements presented in Section 3

• https://github.com/precice/precice/tree/3fb3d8d465e45e1eadba766a8ce5f1f96c1
38b20 accessed on 15 February 2022, for the enhancements presented in Section 3.

4.4. Hardware

All simulations are run on a single core of a Lenovo T480, with an Intel Core i5–8250U
CPU, 1.60 GHz × 4, and 16 GB main memory.
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5. Results and Discussion

In this section, we present the results and discussion for the pre-scaling weight moni-
toring and the new QR3 filtering procedure.

5.1. Pre-Scaling Weight Monitoring

We introduced pre-scaling weight monitoring in order to reduce the number of weight
updates throughout the simulation and, as a consequence, to be able to reduce the com-
putational cost of QR-decompositions and filtering. Therefore, we examine the impact of
different variants of pre-scaling weight updating on both, the number of quasi-Newton
iterations and on the computational cost for QR-decompositions and filtering.

Table 1 shows the impact of different versions of pre-scaling on the number of quasi-
Newton iterations. First, we provide a baseline set of results where we update the pre-
scaling weights in each iteration. Second, we freeze the pre-scaling weights after the first
time step. Finally, we use the pre-scaling weight monitoring.

Table 1. Comparison of the average number of quasi-Newton iterations per time step for IQN-
ILS with QR2 filter (ε f = 0.01) for (i) pre-scaling update in every quasi-Newton iteration (column
“baseline”), (ii) pre-scaling with freezing of weights after the first time step (column “freeze”), (iii) the
new pre-scaling weight monitoring approach (column “monitoring”). For each test case, the first
row uses a maximum of η = 100 iterations from previous ζ = 10 time steps, and the second row
η = 200 and ζ = 20. Braces indicate how many time steps did not converge within 30 iterations
before moving to the next time step.

Test Case ζ η Baseline Freeze Monitoring

Elastic-Tube-3D Heavy 10 100 4.51 4.45 4.48
Elastic-Tube-3D Heavy 20 200 3.84 3.96 3.94

Elastic-Tube-3D Light 10 100 7.23 7.30 7.16
Elastic-Tube-3D Light 20 200 5.84 6.00 5.83

Breaking-Dam-2D 10 100 7.08 (2) 8.59 (8) 7.9 (3)
Breaking-Dam-2D 20 200 8.06 (6) 9.16 (10) 8.14 (2)

Breaking-Dam-3D 10 100 4.34 4.77 4.33
Breaking-Dam-3D 20 200 4.3 5.19 4.15

From the comparison of quasi-Newton iteration counts in Table 1, we observe that,
in general, our new pre-scaling weight monitoring approach does not lead to an increase
of the number of iterations compared to the more expensive baseline approach, where
weights are updated in every iteration. All test cases apart from the Breaking-Dam-2D
case offer comparable results in terms of iteration counts. For the Breaking-Dam-2D case,
a slight increase can be observed for our weight monitoring approach. However, overall,
the results show that the weight monitoring is effective in the sense that it detects when
updates are necessary.

On the other hand, comparing our new approach to simulation runs where we freeze
the pre-scaling weights after the first time step shows that freezing the weights substantially
increases the number of iterations. It yields comparable results only for both Elastic-Tube-
3D cases. There is a significant increase in the number of iterations for both Breaking-Dam
cases, which shows that simply freezing the weights is sub-optimal if scenarios undergo
sudden changes (fluid hitting the obstacle in the Breaking-Dam case). We conclude, that
the weight monitoring is not only sufficient, but also necessary to ensure fast quasi-Newton
convergence in general.

To further analyse the impact of the pre-scaling weight monitoring on the overall
computational cost, we present more detailed results for the fluid and the solid domain
in Table 2, in particular including the number of weight updates, the most important
factor for computational cost as each update requires a complete re-computation of the
QR-decomposition of Vk. Here, we use the pre-scaling weight monitoring with the new
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QR3 filter. The combined impact of this new filter and the pre-scaling weight monitoring is
presented in Section 5.2.

The more detailed analysis of these tests in Table 2 leads to further insights: (i) The
large difference between the fluid and solid pre-scaling weights is immediately apparent.
This large difference necessitates using pre-scaling in the first place. Completely removing
the pre-scaling results in either a large increase in coupling iterations, or divergence of the
solvers, for all test cases. For brevity, we do not explicitly list these results. (ii) In addition,
we observe a large difference between the minimum and the maximum value of the
weights for each of the fields over the entire simulation—fluid and solid. This indicates
that updating the pre-scaling weights is necessary to ensure suitable scaling.

Table 2. Performance details of pre-scaling weight monitoring with QR3 filter (ε f = 0.01). For each
test case, the first row uses a maximum of η = 100 iterations from previous ζ = 10 time steps, and
the second row η = 200 and ζ = 20. We show the total number of quasi-Newton iterations for
the entire simulation with the average number of quasi-Newton iterations per time step in braces
(column “Its”), the numbers of updates of the pre-scaling weights during both the first time step
(column “Upd 1”) and all other time steps (column “Upd 2-”), as well as the range of weights λ f /s
for both solvers.

Test Case ζ η Its Upd 1 Upd 2- λs λ f

Elastic-Tube-3D-Heavy 10 100 448 (4.48) 14 1 17.38–3155.7 0.071–1.0
Elastic-Tube-3D-Heavy 20 200 394 (3.94) 14 1 17.38–3155.7 0.071–1.0

Elastic-Tube-3D-Light 10 100 716 (7.16) 22 6 4.68–2365.8 0.045–1.0
Elastic-Tube-3D-Light 20 200 583 (5.83) 22 7 2.13–2401.5 0.045–1.0

Breaking-Dam-2D 10 100 1525 (7.63) 4 54 0.98–1018.5 0.09–1.0
Breaking-Dam-2D 20 200 1651 (8.23) 4 75 0.98–621.3 0.09–1.0

Breaking-Dam-3D 10 100 649 (4.33) 10 11 9.67 × 104–3.23 × 107 0.1–1.0
Breaking-Dam-3D 20 200 623 (4.15) 10 6 2.19 × 105–3.23 × 107 0.1–1.0

During the first time step, the pre-scaling weight monitoring updates the weights in
each iteration. Therefore, a large number of weight updates is observed for the first time
step in Table 2 (column “Upd 1”) compared to the rest of the simulation (column “Upd 2-”).
For all test cases, the number of updates after the first time step is low compared to the total
number of iterations, with the Elastic-Tube-3D-Light cases requiring only six and seven
updates after the first time step, respectively. The Breaking-Dam-2D scenario requires 54
and 75 updates after the first time step. However, this is a low number compared to the
total of 1525 and 1651 iterations for the entire simulation.

Comparing the amount of retained iterations η over a certain window of time steps ζ, we
observe that the number of pre-scaling weight updates as well as the range of weight values
do not appear to be very sensitive to these parameters. This was expected since converged
solutions at the end of each time step should be rather independent of these parameters.

The range of pre-scaling weight values is also interesting. The Breaking-Dam-3D case
features very large scaling values for the solid solver. This indicates that the solid solver
residuals are far smaller than the fluid solver’s residuals. For this test case, the structure
is a heavy wall and “slow” to move. This could account for a high stability in the solid
solver itself, but necessitates the use of pre-scaling. A change in the pre-scaling magnitudes
is observed for the Elastic-Tube-3D scenarios, with slightly larger solid solver pre-scaling
weight values for the Elastic-Tube-3D-Heavy scenario with a higher structure density, once
again indicating smaller residual values compared to the fluid solver.

Summarising, our results show that the pre-scaling weights do not change consid-
erably between successive iterations majority of the time, and that the factor of 10 used
to determine when the pre-scaling weights is updated is a suitable choice. However, the
weights can change significantly over time, and adjusting the weights is necessary.
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5.2. QR3 Filter

We introduced the QR3 filter in order to reduce the number of complete QR-
decompositions performed when filtering columns from QR in the quasi-Newton update.
The new QR3 filter mimics the previous QR2 filter method in the way it detects which columns
are to be deleted in Vk and Wk. However, it does not require a complete QR-decomposition
in each quasi-Newton iteration, but only cheap QR-updates as long as (i) pre-scaling weights
are unchanged and (ii) no column is tagged to be deleted. In the experiments in this section,
we analyse the impact of the new filter in combination with pre-scaling weight monitoring
on both the number of required quasi-Newton iterations and on the computational runtime.
We compare the number of quasi-Newton iterations in Table 3 and the number of deleted
columns in Table 4 for the QR2 filter while computing new pre-scaling weights in each
iteration, and the new QR3 filter with pre-scaling weight monitoring.

Table 3. Comparison of the average number of quasi-Newton iterations per time step for (i) pre-
scaling update in every quasi-Newton iteration with the QR2 filter (column “QR2”), and (ii) the new
pre-scaling weight monitoring approach with the new QR3 filter (column “QR3”). Three different
filter limits ε f = 0.001, ε f = 0.01, and ε f = 0.1 are compared. Values in brackets indicate how many
time steps did not converge within 30 iterations before moving to the next time step.

QR2 QR3
Test Case ζ η ε f = 0.001 0.01 0.1 ε f = 0.001 0.01 0.1

Elastic-Tube-3D-Heavy 10 100 4.26 4.51 5.12 4.59 4.48 5.24
Elastic-Tube-3D-Heavy 20 200 4.09 3.84 4.91 4.05 3.94 3.92

Elastic-Tube-3D-Light 10 100 7.27 7.23 8.83 7.18 7.16 8.69
Elastic-Tube-3D-Light 20 200 5.78 5.84 7.88 5.83 5.83 7.67

Breaking-Dam-2D 10 100 div 7.08 (2) 5.87 (3) 12.5 (25) 7.63 (3) 5.76 (2)
Breaking-Dam-2D 20 200 12.12 (19) 8.10 (6) 6.11 (2) div 8.26 (2) 5.74 (2)

Breaking-Dam-3D 10 100 4.45 4.34 4.21 4.8 4.33 4.31
Breaking-Dam-3D 20 200 4.51 4.30 4.15 4.51 4.15 4.33

Table 4. Average number of columns deleted per time step for (i) pre-scaling update in every quasi-
Newton iteration with the QR2 filter (column “QR2”), and (ii) the new pre-scaling weight monitoring
approach with the new QR3 filter (column “QR3”). Three different filter limits ε f = 0.001, ε f = 0.01,
and ε f = 0.1 are compared.

QR2 QR3
Test Case ζ η ε f = 0.001 0.01 0.1 ε f = 0.001 0.01 0.1

Elastic-Tube-3D-Heavy 10 100 0.01 0.1 2.01 0.01 0.03 1.61
Elastic-Tube-3D-Heavy 20 200 0.01 0.04 2.19 0.01 0.03 0.31

Elastic-Tube-3D-Light 10 100 0.01 0.04 2.67 0.01 0.01 2.88
Elastic-Tube-3D-Light 20 200 0.01 0.03 2.8 0.01 0.03 2.65

Breaking-Dam-2D 10 100 div 3.45 3.95 4.42 3.82 3.8
Breaking-Dam-2D 20 200 8.25 5.81 4.64 div 5.81 4.19

Breaking-Dam-3D 10 100 1.99 2.06 2.19 2.14 1.88 2.17
Breaking-Dam-3D 20 200 2.03 2.27 2.45 2.26 2.03 2.38

The number of quasi-Newton iterations as presented in Table 3 does not increase
when using the new QR3 filter instead of the QR2 filter. It even decreases for 13 of the
24 simulations performed. The Breaking-Dam-2D case diverges for ε f = 0.001 for both
filters. This is in-line with previous observations, that for scenarios that are prone to linear
dependencies in Vk, the filter limit cannot be chosen too small [10,22]. Changing from the
QR2 to the QR3 filter is, thus, not the source of this issue.
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Table 4 shows that also the number of deleted columns is comparable for both filters. The
Elastic-Tube-3D-Heavy test case has only one and three columns deleted for ε f = 0.001 and
ε f = 0.01, respectively. The Breaking-Dam test cases have more columns deleted, approxi-
mately half of all iterations. Both filters are able to address this with similar efficiency.

For ε f = 0.001, the filtering criterion tends to remove fewer columns. This seems to be
somewhat contradicted by the Breaking-Dam-3D case with the QR3 filter, where the number
of deleted columns is larger for ε f = 0.001. However, the total number of iterations for
ε f = 0.001 is also larger than for ε f = 0.01. Therefore, more QR filter checks are performed
and more columns are deleted over the entire simulation runtime. The same happens for
the Breaking-Dam-2D case, where the number of removed columns for ε f = 0.01 is larger
than for ε f = 0.1.

The runtime of the QR filter (filtering of columns including QR decomposition time)
as a percentage of the total simulation runtime is shown in Table 5. The total simulation
runtime includes the total runtime of the solvers and preCICE including initialisation.

Table 5. QR decomposition and filtering time as a percentage of the total simulation runtime for
(i) pre-scaling update in every quasi-Newton iteration with the QR2 filter (QR2), and (ii) the new
pre-scaling weight monitoring approach with the new QR3 filter (QR3). Three filter limits ε f = 0.001,
ε f = 0.01 and ε f = 0.1 were tested. The test cases used a maximum of η = 100 iterations from
previous ζ = 10 time steps, and η = 200 and ζ = 20.

QR2 QR3
Test Case ζ η ε f = 0.001 0.01 0.1 ε f = 0.001 0.01 0.1

Elastic-Tube-3D-Heavy 10 100 1.99% 2.48% 1.51% 0.06% 0.06% 0.62%
Elastic-Tube-3D-Heavy 20 200 6.67% 4.9% 3.18% 0.08% 0.09% 0.36%

Elastic-Tube-3D-Light 10 100 7.41% 7.23% 6.60% 0.15% 0.15% 2.42%
Elastic-Tube-3D-Light 20 200 12.99% 13.12% 13.20% 0.38% 0.43% 5.04%

Breaking-Dam-2D 10 100 div 4.69% 1.27% 3.21% 2.52% 0.85%
Breaking-Dam-2D 20 200 27.98% 9.72% 2.33% div 5.75% 1.65%

Breaking-Dam-3D 10 100 0.61% 0.59% 0.54% 0.08% 0.03% 0.04%
Breaking-Dam-3D 20 200 1.75% 1.57% 1.44% 0.23% 0.09% 0.07%

Comparing the relative runtimes shown in Table 5, we see that, for every test case,
the runtime of the new QR3 filter is significantly smaller than the runtime of the QR2
filter. More noticeable improvements occur for ζ = 20 and η = 200 than for ζ = 10 and
η = 100, which is expected since the larger number of columns in Vk increases the cost
of each complete QR-decomposition. The filtering accounts for a large percentage of the
simulation runtime for the Breaking-Dam-2D case, as the solver meshes are rather small.
Especially for ζ = 20 and η = 200 and the QR2 filter with limit ε f = 0.001, the QR-
decompositions are relatively expensive. The Elastic-Tube-3D-Light scenario spends up
to 13.20% of the simulation runtime filtering the QR2 filter with ε f = 0.1. The largest
improvement in runtime performance is approximately 12.5% of the simulation runtime
for the Elastic-Tube-3D-Light with ζ = 20 and η = 200.

Also in terms of runtime and runtime gains, we observe large differences between
Breaking-Dam-2D and Breaking-Dam-3D scenarios, which can, however, be easily ex-
plained as the 2D problem has a much smaller domain in terms of size and number of
elements in the domain. Each fluid solver call is relatively “cheap” computationally, and
therefore the relative cost of the QR decomposition increases.

Note that these runtime comparisons represent the overall gain of both improvements,
pre-scaling weight monitoring and the QR3 filter as the QR2 filter is not able to exploit the
advantage of pre-scaling weight monitoring, that is, it always re-computes the complete
QR-decomposition of Vk independent of whether weight updates are required or not.
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6. Conclusions

We provide an overview of current quasi-Newton acceleration methods commonly
used for partitioned fluid-structure interaction. We also discuss numerical techniques that
improve the computational efficiency and enhance convergence of quasi-Newton accelera-
tion. From this, two new methods are introduced to further improve the computational
efficiency of the acceleration: pre-scaling weight monitoring and a faster QR filtering pro-
cedure. The combination of both methods allows us to significantly reduce the necessary
number of computationally expensive QR-decompositions. Instead, we can simply update
existing QR decompositions in most acceleration steps—a rather cheap operation. We study
the effectiveness of these new methods with three common fluid-structure interaction test
cases, each offering a unique coupling difficulty. The new methods reduce the runtime of
the QR filter significantly, while not decreasing the convergence speed. A small, but already
significant speed up for complete fluid-structure interaction simulations is observable. This is
true despite the fact that there are drastically fewer degrees of freedom at the coupling interface
compared to the solver domains for such surface-coupled problems. For volume-coupled
problems, we expect an even higher impact of the newly introduced methods.
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Abstract: A cerebral aneurysm is a medical condition where a cerebral artery can burst under
adverse pressure conditions. A 20% mortality rate and additional 30 to 40% morbidity rate have
been reported for patients suffering from the rupture of aneurysms. In addition to wall shear
stress, input jets, induced pressure, and complicated and unstable flow patterns are other important
parameters associated with a clinical history of aneurysm ruptures. In this study, the anterior cerebral
artery (ACA) was modeled using image segmentation and then rebuilt with aneurysms at locations
vulnerable to aneurysm growth. To simulate various aneurysm growth stages, five aneurysm sizes
and two wall thicknesses were taken into consideration. In order to simulate realistic pressure loading
conditions for the anterior cerebral arteries, inlet velocity and outlet pressure were used. The pressure,
wall shear stress, and flow velocity distributions were then evaluated in order to predict the risk of
rupture. A low-wall shear stress-based rupture scenario was created using a smaller aneurysm and
thinner walls, which enhanced pressure, shear stress, and flow velocity. Additionally, aneurysms
with a 4 mm diameter and a thin wall had increased rupture risks, particularly at specific boundary
conditions. It is believed that the findings of this study will help physicians predict rupture risk
according to aneurysm diameters and make early treatment decisions.

Keywords: cerebral; hemodynamics; aneurysm; rupture; artery; CFD

1. Introduction

A cerebral aneurysm is a weak or thin region of an arterial section in the human
brain that balloons or bulges out when filled up with blood. The bulging aneurysm may
compress the nerves or brain tissue. Additionally, this may lead to rupture or bursting,
causing blood to flow into adjacent tissues (called a hemorrhage). A ruptured aneurysm can
cause serious health problems such as hemorrhagic stroke, brain damage, unconsciousness,
and even death [1,2]. The adult population within the range of 30 to 60 years of age is the
most vulnerable to aneurysms, and women are more likely than men to have one. A brain
aneurysm rupture affects roughly 6.7 million people in the USA each year, and the most
serious aneurysm complication is rupture, which affects 2–4% of the global population [3].
In addition to this, 500,000 deaths related to aneurysm rupture are reported worldwide [4].
These problems are also prevalent in Europe, southern Asia, and Eastern Asia, with death
rates of approx. 41%, 46%, and 60%, respectively [5]. In a recent study by Bechstein
et al. [6], it was reported that Mongolia reported a crude incidence of 14.53 ruptures per
100,000 persons.

Hence, understanding aneurysm development and its progression is essential, which
is the aim and rationale for this study.

Fukazawa et al. [7] performed a computational study to investigate the rupture risk
of middle cerebral artery (MCA) aneurysms. They estimated the points with a high risk
of rupture on the basis of the dynamic blood flow. Using three-dimensional CT scans and
computational fluid dynamics (CFD), the aneurysm shapes were reconstructed, and it was
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found that the wall shear stress had a substantial impact on aneurysm rupture. Geers
et al. [8] performed steady-flow simulations of the hemodynamics of cerebral aneurysms
to evaluate wall shear stress (WSS) and examined the time-averaged (TA), peak systole
(PS), and end-diastole (ED) WSS fields to compare simulations of steady flow and pulsatile
flow. Cebral et al. [9] investigated pulsatile flow CFD models with patient-specific models.
They studied 210 consecutive cerebral aneurysms and observed that concentrated inlet
jets, narrow impingement zones, and complex and unstable flow patterns were all related
to a clinical history of previous aneurysm rupture. This was performed using image-
based, patient-specific geometry and qualitative hemodynamic analysis. These qualitative
evaluations serve as a springboard for even more complex quantitative analyses intended
to calculate the likelihood that an aneurysm will collapse later.

John et al. [10] characterized the various flow types found in anterior communicating
artery aneurysms. Individual patient computational models were created, and simula-
tions were performed to evaluate the risk of rupture. The findings demonstrated that
aneurysms with smaller impaction regions and more blood entering the aneurysm were
more likely to rupture. The results showed that aneurysms with smaller impaction areas
and greater amounts of blood entering the aneurysm had a higher probability of rupture.
Jeong et al. [11] compiled and discussed the probability of cerebral aneurysm initiation,
growth, and rupture. The results demonstrated that the highest stress and displacement
values were obtained by aneurysms that ruptured close to artery walls. Similarly, Luckrajh
et al. [12] used CT angiograms of individuals with anterior communicating artery (ACoA)
aneurysms and these statistics may act as baseline information of the morphological and
morphometric features of ACoA aneurysms which should also be understood when or-
ganizing and carrying out aneurysm treatments. Using finite element analysis, Foutrakis
et al. [9] investigated the hemodynamics of cerebral saccular aneurysm formation. Models
of the curved artery section and arterial splitting at various stages were created to assess the
development of aneurysms. The results demonstrated that pressure and shear stress gener-
ated across an artery’s outer wall and at the leading edge of a capillary bifurcation increased
the formation of saccular aneurysms. Torii et al. [13] created two brain aneurysms for the
purpose of conducting fluid–structure interaction (FSI) simulations with hypertensive and
normal blood pressure parameters. They looked at the distribution of wall shear stress
(WSS) to completely comprehend an aneurysm. They noticed that the larger distribution of
high WSS reduced wall weakening while increasing wall deformation-related alterations in
flow patterns. Therefore, knowledge of pressure, wall shear, and blood flow is required to
analyze an aneurysm rupture.

It is well known that one of the key causes of aneurysm rupture is hemodynamics.
Aneurysm rupture is indicated by flow impingement, increased pressure, and unusual
wall shear stress. Understanding the function of wall shear stress in cerebral aneurysms
at comparable anatomic sites may be possible. These results indicate that CFD may be a
key factor in the clinical assessment of aneurysm risks. There is an increasing need for
accurate prediction of aneurysm growth and rupture in order to select the most appropriate
and effective endovascular treatment. Concerning the possibility of aneurysm rupture,
there is a huge knowledge gap. This study characterized the rupture risk by evaluating
aneurysm growth and wall thickness during initiation in a real anterior cerebral artery
(ACA). The formation of the aneurysm throughout its five stages was modeled by adjusting
the aneurysm’s diameter. Following an assessment of the rupture risk for each stage under
hypertension settings and consideration of two wall thicknesses (0.075 mm and 0.15 mm),
an analysis of both flow and pressure distributions on the artery-aneurysm models was
conducted. The findings of this study are anticipated to open up novel possibilities for
understanding the development of aneurysms and their risk of perforation under situations
of variable aneurysm diameters and wall thicknesses.

The novel aspects of our work include the consideration of different aneurysm sizes
on actual MRI-scanned artery models to study the behavior of fluids (i.e., blood), compared
to the plethora of previous studies that over-simplified the artery geometry as a hollow
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cylindrical tube. Our study showcases economical modeling methods using realistic
scanned geometries.

2. Materials and Methods

2.1. Selection of Artery and Aneurysm

As compared to the posterior lobes, the frontal lobes receive more blood from the
anterior cerebral arteries. Due to this, anterior arteries are more vulnerable to induced
pressures hence, it is important to understand the disorders that are associated with the
anterior region. One of the most frequent locations is the anterior cerebral artery (ACA) of
intracranial aneurysms which has been reported as a significant site for ruptures. Over 92%
of the total rupture cases have been reported due to an aneurysm at this location [2,12,14].
Data shows that brain arteries with curvature or bifurcation are prone to develop or spread
aneurysms [11]. Hence, according to statistical data and literature review, we found that
ACA is more prominent and vulnerable to diseases. Hence our study focused on this area
as discussed in the following sections.

2.2. Geometrical Modeling

The initial steps in the geometric modeling of the arteries included recreation of
the segmented MRI data. To develop geometric models of aneurysm development, the
cerebral artery was further divided and altered. The thorough technique is explained in the
ensuing subsections.

2.2.1. Preparing Arterial 3-D Geometry and Modeling

To create a three-dimensional model of the human cerebral arteries, MRI scans of
the brain were taken from the NIH Visible Human database. The 3-D geometry of the
cerebral artery network was obtained by segmenting and reconstructing the MRI data
using TurtleSeg software (Figure 1A). It is evident from the literature review that aneurysm
genesis or progression is more frequent in cerebral arteries that curve or split. As a result,
specific parts of the anterior cerebral artery, which are reported to be at risk of aneurysm
development, were dissected from the full arterial network using the MeshLab program
(Figure 1B). The surface features of the cut-out cerebral arteries were then smoothened,
and all the discrepancies were resolved using the ‘stitch and remove’ command. The ACA
sections were then assigned a diameter of 2 mm and a thickness of 0.2 mm (i.e., 10% of the
diameter [15]).

Figure 1. (A) Network of cerebral veins and arteries; (B) ACA section.

2.2.2. Modeling of Aneurysms

In order to simulate the aneurysm on the cut-out portion of the cerebral arteries, the
optimal aneurysm positions on the arterial segment were determined. After that, a cavity
was built where the aneurysm was to be placed. The geometry was then exported in
‘.STEP’ format using Solidworks (Dassault Systèmes, Vélizy-Villacoublay, France). and
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then imported to ANSYS Workbench 2020R1 (Canonsburg, PA, USA) for analysis using the
computational fluid dynamics (CFD) technique.

In the current work, the shape of the aneurysms was considered spherical due to
their commonality. In a previous study, MRI scans from 84 patients reported a spherical
shape of the aneurysms [14]. Hence, on the basis of these data, we considered the shape
of the aneurysm to be spherical. In this work, we simulated aneurysm growth through
the development of five different models with different diameters, where each model with
a fixed size represented a particular aneurysm growth stage. Additionally, two different
wall thicknesses were simulated for all five models. The five models were then used to
understand and evaluate the nature of blood flow and differences in wall shear stresses
and pressures among all the stages of aneurysm growth [16]. For the ACA component,
aneurysms with sizes of 2 mm, 4 mm, 6 mm, 8 mm, and 10 mm were modeled. In a
previous study, the aneurysms were reported to have walls that ranged in thickness from
0.01 to 0.216 mm [17]. As a result, in this work, two aneurysm thicknesses—0.075 mm and
0.15 mm—were taken into account for the arterial sections [18]. The models developed for
the ACA segment of the cerebral arteries have different aneurysm dimensions, as shown in
Figure 2A–E. As our study also includes the effect of wall thickness, a fluid domain was
created in each of the respective artery models using both Fusion 360 and SolidWorks. As
the artery was developed using MRI technology, it had a large number of faces and edges.
The STL format was used to resolve the small edges and faces, which added complexity
to the computational domain. So, to overcome this, an optimal STL was obtained using
Fusion 360 by reducing the model’s number of faces and edges in several steps and then
exporting the file in STEP format. The STEP file was imported into SolidWorks for the
development of the fluid domain and was finally assembled.

Figure 2. Aneurysms of different diameters that simulate growth in ACA: (A) 2 mm, (B) 4 mm,
(C) 6 mm, (D) 8 mm, and (E) 10 mm.

2.3. Finite Element Modeling

The mesh convergence analysis of the models was conducted using ANSYS Work-
bench. The Solid-187 elements were used to combine the aneurysm and artery models.
Higher-order, three-dimensional, ten-node elements with quadratic displacement behavior
were chosen, similar to prior computational studies [19,20]. Surface-to-surface contact was
applied between aneurysm and artery models. The method involving bonding contact
pairs at all times was adopted [21,22]. A mesh adaptive technique was used to ensure
an optimal mesh with low skewness and high orthogonality. Six meshes were produced
for each artery model by altering the element size and spacing; 30,867, 40,560, 45,993,
78,831, 123,634, and 420,125 were the generated number of mesh elements for the artery
model. Additionally, the residuals also converged to a convergence value of 10−6. Figure 3
represents the meshed model of a single artery, including the fluid domain.
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Figure 3. Meshed artery model of the ACA section.

Fluid Properties, Loads, and Boundary Conditions

From the literature, it was determined that the blood density was 1070 kg/m3 and the
viscosity was 0.004 kg/m·s [23]; hence, these values were used in the current work. We
presumptively used Newtonian laminar flow, which is an incompressible fluid flow. Fur-
thermore, the lumen’s wall was considered rigid. Inlet boundary conditions were applied
to the elements on the face of the inlet. At the inlet, the blood velocity was adopted from the
literature [23]. A constant velocity of 0.10 m/s was assigned at the inlet. The operating pres-
sure was set to atmospheric pressure, i.e., 101,325 Pa, and the reference pressure value was
set to zero. The rigid wall’s properties were modeled with a Young’s modulus of 10 MPa,
a Poisson’s ratio of 0.49, and a density of 10 MPa. These values were based on a recent
study by Khe et al. [24]. As per a previous study [25], the zero-pressure boundary condition
indicated zero pressure as the bleeding was reported without considering any impacts from
the vessels outside the simulation area. Therefore, in our study, the outlet gauge pressure
was given the static pressure value of 0.024 MPa, corresponding to 180 mmHg, and was
used to simulate the pressure circumstances associated with hypertension. Figure 4 shows
the inlet and outlet flows.

Figure 4. Annotation of the inlet and outlet section for artery ACA.

3. Results

3.1. Results of Mesh Convergence

For the mesh convergence investigation, the produced meshes were subjected to an
input flow velocity of 0.1 m/s. The highest pressure introduced in the mesh-based designs
was evaluated across consecutive meshes in order to determine the ideal number of mesh
elements. The ACA section’s maximum pressure variation was within a tolerable limit
(i.e., 5%) for the pressure after the mesh elements crossed 123,634 elements (Figure 5A). As
a result, the mesh with 123,634 elements was found to be optimal for the ACA segment.
Figure 5B shows the change in area-weighted average pressure with respect to the number
of iterations. A constant line was reported, which showed converged results for the
corresponding meshed models. The mesh independence study revealed that considering
a more refined mesh does not show any significant differences as compared to coarsely
meshed structures. By adopting a number of elements 123,634, the net mass flow was
achieved to a convergence value of 10−7. Additionally, the residuals also converged to a
convergence value of 10−6. The developed computational framework took 70 iterations to
reach convergence.
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(A)

(B)

(C)

Figure 5. (A) Mesh convergence results for ACA; (B) CFD result convergence; (C) plot of surface
report for wall shear stress result vs. iteration.
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3.2. Distributions of Stress at Various Aneurysm Progression Levels

Figure 6 shows the pressure distributions for the ACA’s 0.075 mm (Figure 6a) and
0.15 mm (Figure 6b) aneurysm thickness models. In line with previous computational
studies on hemodynamics, our study showed similar static pressure values across all the
models [7,11,23]. On the arterial and aneurysmal structures, it was found that the pressure
concentration was not uniform in all the models. Near the artery-aneurysm’s neck region,
there was a concentration of pressure, and the aneurysm’s neck and aneurysm showed
homogeneous pressure ranges. According to the literature [26], the pressure range observed
in the MCA was 22,000.00 Pa–26,287.00 Pa. Hence, the pressure results of our study are
in the same order as the literature results. For various models with 0.075 mm thickness,
the highest pressure varied between 24,005.00 Pa and 24,035.00 Pa, while for models with
0.15 mm thickness, it varied from 24,007.00 Pa to 24,032.00 Pa. Evaluation of the pressure
data showed that variations in aneurysm sizes and in boundary thicknesses significantly
affect the pressure distribution. In summary, the findings showed considerable influence on
the aneurysm’s structural characteristics, including its width and thickness. It was noticed
that the pressure decreased from 24,031.97 to 24,009.75 as the aneurysm’s size increased
from 2 mm to 10 mm in the ACA artery with a wall thickness of 0.15 mm. In the ACA artery
with a wall thickness of 0.075 mm, the pressure first increased from 24,029.24 to 24,034.5
for an aneurysm diameter of 2 mm to 4 mm, and then further decreased from 24,024.15 to
24,008.75 with the increase in diameter. Also, a strong correlation R2 was found (i.e.,0.97
and 0.8294) between pressure and a changing diameter of the aneurysm for an artery with
walls of thickness 0.15 mm and 0.075 mm, respectively.

3.3. Distributions of Wall Shear Stress at Varying Aneurysm Progression Stages

Figure 7 shows the wall shear stresses for the aneurysm with thicknesses of 0.075 mm
(Figure 7a) and 0.15 mm (Figure 7b), respectively. In the figures, the red region signifies
a wall shear stress of more than 2 Pa. A non-uniform WSS was observed throughout the
artery. Overall, the findings showed considerable influence on the aneurysm’s structural
characteristics, including its diameter and thickness. As per previous studies, our study
also exhibited similar results, i.e., in all model walls, shear stress was found to be zero at
the aneurysm [9,27]. As the aneurysm’s size rose from 2 mm to 10 mm in the ACA artery
with a wall thickness of 0.15 mm, it was found that the wall shear stress dropped from
3.57 Pa to 0.5 Pa. With an aneurysm diameter of 2 mm to 4 mm, the wall shear stress in the
ACA artery with a wall thickness of 0.075 mm first increased from 2.42 Pa to 5.83 Pa, and
as the diameter increases, it continues to decrease from 1.68 Pa to 0.48 Pa.

(a)

D E 

Figure 6. Cont.
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(b)

Figure 6. (a,b) Pressure contours of artery ACA of wall thickness 0.075 mm and 0.15 mm, respectively,
at hypertension pressure conditions for different aneurysm diameters: (A) 2 mm, (B) 4 mm, (C) 6 mm,
(D) 8 mm, and (E) 10 mm.

(a)

(b)

Figure 7. (a,b) Wall shear stress contours of artery ACA of wall thickness 0.075 mm and 0.15 mm,
respectively, at hypertension pressure conditions for different aneurysm diameters: (A) 2 mm,
(B) 4 mm, (C) 6 mm, (D) 8 mm, and (E) 10 mm.
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3.4. Velocity Streamlines at Various Aneurysm Progression Stages

Our findings also showed that all rupture regions have low WSS magnitudes and
slower flow rates. As per a previous study by Fukazawa et al. [7], it was reported that lower
WSS could be a significant component contributing to the degenerative process ongoing
in the aneurysm wall and aneurysm rupture, independent of the aneurysm morphology.
Based on this, our study reported lower WSS at the apex of all the aneurysms. After the
apex, the geometrical boundary joining the artery showed reduced WSS as compared to
other regions of the artery. Hence, the low WSS and slow flow rates at these locations may
suggest possible aneurysm ruptures. It has been suggested that the flow pattern may be a
crucial element in the pathogenic process of aneurysm rupture [7,9,27]. In our study, the
maximum streamline velocity was observed near the bifurcation of the arteries (Figure 8).
The flow velocity in the ACA artery, which has a wall thickness of 0.075 mm, initially
increased from 0.14 m/s to 0.15 m/s (Figure 8a) as the aneurysm diameter increased from
2 mm to 4 mm. However, as the diameter expanded further, it continued to decrease up
to 0.01 m/s. The velocity also decreased from 0.15 m/s to 0.01 m/s when the aneurysm’s
diameter was increased from 2 mm to 10 mm in the ACA artery with a 0.15 mm thick
wall (Figure 8b). Furthermore, there was a significant association (i.e., R2 of 0.96 and 0.85)
between pressure and aneurysm diameter for an arterial wall thickness of 0.150 mm and
0.075 mm, respectively.

(a)

(b)

Figure 8. (a,b) Velocity streamlines contours of artery ACA of wall thickness 0.075 mm and 0.15 mm,
respectively, at hypertension pressure conditions for different aneurysm diameters: (A) 2 mm,
(B) 4 mm, (C) 6 mm, (D) 8 mm, and (E) 10 mm.

223



Math. Comput. Appl. 2023, 28, 90

4. Discussion

This study has demonstrated that steady-flow simulations can accurately approximate
the wall shear stress, pressure, and velocity streamline field of an aneurysm as well as an
artery. Figure 9 displays the changes in aneurysm pressure and average neck pressure as
well as the correlation between pressure and diameter for aneurysms having thicknesses of
0.15 mm and 0.075 mm. When wall tension is higher than the tissue’s mechanical strength,
aneurysms rupture. Pathological wall remodeling is directly related to the localized weak-
ening of the aneurysm wall, which is characterized by the narrowing of the media and a
lack of collagen fibers [28]. An artery with a thickness of 0.15 mm and the smallest diameter
of 2 mm, as well as an artery with a wall thickness of 0.075 mm and a diameter of 4 mm,
both experienced the highest pressure. These results are in line with previous studies.
This research showed that an artery with a 4 mm diameter and a 0.075 mm wall thickness
was the most vulnerable to aneurysm rupture. Additionally, the fluctuation in pressure
with thickness is consistent with the literature [11], which asserts that the wall tension of a
spherical aneurysm is inversely proportional to the wall thickness and directly proportional
to the internal pressure and radius. As a result, high pressure, and a thin wall increase
wall tension.

One of the important hemodynamic factors is WSS. The current analysis showed that
the WSS at the rupture locations had a low magnitude. Therefore, these findings imply that
reduced WSS would substantially lead to the continuous deterioration of the aneurysm wall
and its rupture [7]. A 4 mm aneurysm demonstrated the peak wall shear stress in an artery
with a 0.15 mm wall thickness, while a 4 mm aneurysm demonstrated the maximum wall
shear stress in an artery with a 0.075 mm wall thickness. The opposite side of the aneurysm
in both situations had a critical area with wall thicknesses of 0.075 mm and 0.15 mm in the
artery and a 4 mm aneurysm diameter. This region had a high value of WSS and pressure
close to the aneurysm bifurcation, raising the risk of aneurysm development at that location.
Additionally, our observations and results were in line with those of previous research [11],
which demonstrated that low WSS and modified flow patterns might have a long-term
influence on aneurysm wall deterioration via wall reconfiguration.

A flow pattern analysis based on 3D streamlines of intra-aneurysmal flow and cross-
sectional flow was performed, which revealed a complex flow structure and pattern. We
discovered that the artery with a wall thickness of 0.15 and the lowest diameter, or one with
a wall thickness of 0.075 and a diameter of 4 mm, produced the highest pressures when
observing the streamline velocity in the artery. Based on this study, the most vulnerable
aneurysm that can rupture was observed to have a diameter of 4 mm and a wall thickness of
0.075 mm. These results are in line with previous studies [9]. A ruptured aneurysm is more
likely to have complicated and unstable flows, concentrated inputs, and tiny impingement
zones. Figure 10 represents the correlation of velocity with diameter for wall thicknesses
of 0.075 mm and 0.15 mm, respectively. These results are in line with previous studies,
according to the statistical analysis, which also shows a substantial correlation between
these qualitative hemodynamic features and aneurysm rupture. Even though diffuse
inflows characterized the majority of unruptured aneurysms, many of them also featured
complicated flows, unstable flows, and/or tiny impingement zones.
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(A)

(B)

(C)

Figure 9. Cont.
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(D)

Figure 9. (A,C) Pressure at the aneurysm and average pressure at the neck variation with diameter of
wall thickness 0.075 mm and 0.15 mm, respectively. (B,D) Correlation of pressure with diameter for
wall thicknesses of 0.075 mm and 0.15 mm, respectively.

(A)

(B)

Figure 10. Correlation of velocity with diameter for wall thicknesses of (A) 0.075 mm and (B) 0.15 mm.

In past arterial flow studies, wall shear stresses have been extensively studied and
reported as an important metric in determining thrombosis, aneurysms, minor clots, etc.
In a previous study by Shojima et al. [29], 20 middle cerebral artery aneurysms were
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evaluated using CFD, and it was concluded that the WSS of the aneurysm region may
be of some help for the prediction of rupture. In another study by Cebral et al. [9], a
qualitative hemodynamic analysis of cerebral aneurysms was performed using images
from 210 patients. The specific geometry, concentrated inflow jets, small impingement
zones, complicated flow patterns, and unstable flow patterns were all found to be associated
with a clinical history of past aneurysm rupture. The findings demonstrate the possibility
that CFD could have a significant impact on the clinical assessment of aneurysm risks. Our
study is in line with previous studies; it follows the same trend and also conforms to the
range of values for WSS, pressure, and velocity. A total of 12 intracranial aneurysms (IAs),
8 ruptured and 4 unruptured, at the middle cerebral artery bifurcation were studied using
FSI to better identify the characteristics of ruptured IAs [30]. In conclusion, they found that
ruptured IAs had a larger low WSS area and more complex, concentrated, and unstable
flow [31]. Computational models of six ruptured middle cerebral artery aneurysms with
intraoperative confirmation of rupture points were constructed from three-dimensional
rotational angiography images, and they were able to find the rupture points in all cases.
With those findings, the local hemodynamics of ruptured aneurysms were quantitatively
investigated. The rupture point was located in a low WSS region of the aneurysm wall [7].
Twelve ruptured middle cerebral artery bifurcation aneurysms were analyzed by three-
dimensional computed tomographic angiography and CFD, and it was found that CFD
may determine the rupture point of aneurysms using the feature of markedly low WSS [32].
It was found that ruptured aneurysms tend to have complex and/or unstable flow patterns,
concentrated flow jets, and small impingement regions.

These assumptions were carefully taken into consideration by studying the past
literature in this area. One of the assumptions, such as the consideration of human blood as
Newtonian, was based on a previous study by Berger et al. [33]. The blood flow mechanics,
along with their impact on the artery walls, were reviewed. It was mentioned that the
consideration of blood as a Newtonian and laminar fluid was appropriate to understand
the flow mechanics if the viscosity and density were accurately modeled. In larger arteries,
the blood was treated as a Newtonian fluid. This assumption was found to be acceptable
for most regions except those with a small strain rate; hence, no significant differences were
reported for non-Newtonian flows in these arteries. Based on this study, we considered the
viscosity and density of the blood to model the fluid computationally. Our work consisted
of understanding the effect of different aneurysm sizes on fluid pressures, wall shear
stresses, and blood velocities. Hence, the modeling of water, ions, proteins, nutrients, red
and white blood cells, and platelets was not considered as it could have led to a much
more complex flow system. The complex flow system could lead to difficulties in model
convergence and, hence, reduced accuracy and precision of the CFD model. Moreover, the
results from our work were comparable with a recent study by Berger et al. [33], which was
based on the actual clinical setting.

Another assumption, such as the consideration of a lumen’s wall as rigid, was based
on a recent study by Humphrey et al. [34]. The lumen’s wall was considered rigid, and
modeling the multiple layers was reported as computationally expensive. These consider-
ations were found to be significant at peak systolic pressures. Also, based on a previous
study by Jou et al. [35], the aneurysm’s mechanical properties were reported to be twice as
stiff (due to a lack of elastin) as compared to other vessels; hence, it was considered rigid.
In other studies, such as those by Shojima et al. [29] and Gao et al. [21], similar assumptions
were considered to investigate the hemodynamics of an aneurysm by calculating the wall
shear stress, wall pressures, and velocity streamlines. Other novel aspects of our work
include the consideration of different aneurysm sizes on the actual MRI-scanned artery
models to study the behavior of fluid (i.e., blood), whereas a plethora of previous studies
oversimplified the artery geometry, considering it as a hollow cylindrical tube. Our study
showcases economical modeling methods using realistic scanned geometries. To the best of
our knowledge, these modeling methods and results have not been reported to date.
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5. Conclusions

This study presented the development of a computational framework for modeling
cerebral aneurysm growth and estimating rupture risk. By altering the aneurysm width
and wall thickness in vulnerable arterial sections, such as the anterior cerebral artery,
aneurysm growth was simulated. It was determined how blood pressure, aneurysm wall
thickness, and aneurysm diameter affect the wall shear stresses at the aneurysm wall.
According to this study, fluid–structure interaction can locate aneurysm rupture spots by
utilizing distinctive flow dynamic properties, including complicated flow and noticeably
low WSS. To evaluate the risk of rupture, a computational fluid dynamics-based model was
incorporated to determine the effect of geometrical characteristics on the pressure gradients
of an aneurysm. The results of this study may be used to estimate the risk of aneurysm
rupture under varied aneurysm sizes and wall thicknesses. It is believed that this research
will offer new perspectives on cerebral aneurysms and assist physicians and surgeons in
formulating preventative methods to lessen aneurysm ruptures.

There are a few limitations to this work that must be acknowledged. Only spherical
aneurysms with constant wall thicknesses were taken into account to develop artery-
aneurysm models. It is known that certain aneurysms in real-world situations have irregu-
lar geometries and differing wall thicknesses at various aneurysm sites. The computational
modeling of the artery and aneurysm structures in this work also made use of the isotropic
material properties. Because of the fibers that are present in the skin layers, arteries exhibit
anisotropic material characteristics. The consideration of the mechanical properties of the
blood as Newtonian is a simplification based on studies by Berger et al. [33]. It was men-
tioned that the consideration of blood as a Newtonian and laminar fluid was appropriate
to understand the flow mechanics if the viscosity and density were accurately modeled. In
larger arteries, the blood was treated as a Newtonian fluid. This assumption was found to
be acceptable for most regions, except in those with a small strain rate; hence, no significant
differences were reported for non-Newtonian flows in these arteries. The lumen’s wall
was considered rigid since modeling the multiple layers was reported as computationally
expensive, but this assumption was found to be significant at peak systolic pressures. Also,
based on a previous study by Jou et al. [35], the aneurysm’s mechanical properties were
reported to have twice the stiffness due to a lack of elastin as compared to other vessels,
and, hence, it was considered rigid. The artery wall was assumed to be rigid, and it was
assigned as a solid domain with its material properties, such as density, Young’s modulus,
and Poisson ratio, in the Ansys Fluent solver. As per the Fluent Theory Guide [36], it has
an intrinsic FSI function that takes into account the effect of changing thickness on the
wall stiffness to some extent. Future studies considering FSI, actual aneurysm forms, wall
thicknesses, and anisotropic material-based models can help enhance the overall accuracy
and precision of the developed framework.
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