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Various sensors utilize computational models to estimate measured variables, and
the generated data require processing. Data processing involves transforming data from
a given format into a more usable and desirable form, rendering them more meaningful
and informative. Machine learning (ML), deep learning (DL), and artificial intelligence (AI)
have proven effective for this purpose. The entire process can be automated using machine
learning algorithms, mathematical modeling, or various statistical techniques.

The aim of this Special Issue was to compile research on data processing through
machine learning and deep learning. It features both original and review articles that
address research and development in data processing using machine learning (ML) and
deep learning (DL). These areas include solutions designed for smart devices.

The first paper [1] focuses on detecting toxicity in online discussions. The authors
used classification models that incorporate machine learning methods to classify short
texts on social networking sites into multiple degrees of toxicity. Their models used
both classic methods of machine learning, such as naive Bayes and SVM (support vector
machine), as well as ensemble methods, such as bagging and RF (random forest). The
models were created using text data, which they extracted from social networks in the
Slovak language. Finally, an application was created based on machine learning models,
which can be used to detect the degree of toxicity of new social network comments, as
well as for experimentation with various machine learning methods. The best results were
achieved using an SVM—average value of accuracy = 0.89 and F1 = 0.79. This model
also outperformed the ensemble learning by the RF and Bagging methods; however, the
ensemble learning methods achieved better results than the naïve Bayes method.

The second paper [2] introduces a framework for evaluating segments of physical
and digital infrastructure, which is designed to assess their features and readiness for
facilitating the deployment of Connected and Automated Vehicles (CAVs). It delves into
the equipment and methodology employed to collect and analyze the necessary data
for automated scoring of infrastructure segments. The authors illustrate the assessment
methodology using two types of data: connectivity and positioning data for evaluating
the infrastructure’s connectivity and localization performance, and image data for road
signage detection through a Convolutional Neural Network (CNN). The data collection
and analysis were conducted in both urban and suburban settings. The primary commu-
nication challenge in the examined area is latency, particularly in infrastructure segments
located at busy intersections or near various points of interest. The study observed lower
localization accuracy in dense areas with large buildings and trees, limiting the visibility
of localization satellites. To address the challenge of automated traffic sign recognition
precision assessment, the authors proposed a CNN that achieved a precision rate of 99.7%.

The authors of [3] introduce an enhanced IoT-based system to assist teachers in man-
aging classroom activities in adherence to COVID-19 restrictions. The system, which com-
prises three components—an entry Gate node, IoT nodes, and a server—comprehensively
monitors the number of individuals in the classroom and their spatial distribution. The
Gate node, positioned at the entrance, tracks individuals entering or exiting the room
through door crossing detection, while IoT nodes, based on Arduino with NodeMCU
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modules and ultrasonic distance sensors, collect data on seat occupancy. The server, hosted
on a Raspberry Pi, allows teachers to connect to it via a web application from a class-
room computer or smartphone. The teacher can configure and modify system settings
through the graphical user interface (GUI) provided by the web application. A straight-
forward algorithm assesses the distance between occupied seats, ensuring compliance
with imposed restrictions. Notably, this system prioritizes privacy, distinguishing it from
camera-based alternatives.

Meanwhile, the authors of [4] suggest undertaking the text classification task using the
two previously mentioned models for two languages (English and Brazilian Portuguese)
across distinct datasets. According to their findings, DistilBERT exhibits a training time
approximately 45% faster for both English and Brazilian Portuguese compared to its larger
counterpart. Furthermore, it is around 40% smaller yet maintains approximately 96% of
language comprehension skills, particularly for balanced datasets.

In [5], a multi-delay identification method is proposed based on improved time-
correlation analysis. Initially, the data undergo gray relational analysis for preprocessing,
leading to the construction of a time delay sequence and a data matrix for time correla-
tion. The multi-delay identification problem is subsequently reformulated as an integer
optimization problem. The optimization is performed using an enhanced discrete state
transition algorithm to acquire multi-delay. Lastly, to assess its performance, the proposed
method is compared with the unimproved time delay identification method and the model
without an identification method, utilizing a Neodymium (Nd) component content model
constructed by a wavelet neural network. The proposed algorithm enhances optimization
accuracy, convergence speed, and stability. The effectiveness of the proposed method is
further validated by the significant improvement in the performance of the component
content model after time delay identification, particularly in the context of the rare earth
extraction process.

The analysis presented in [6] focuses on the attention heat map of benchmarks, reveal-
ing that prior models placed greater emphasis on individual phrases rather than capturing
the holistic semantic information of the entire sentence. Additionally, a strategy was intro-
duced to disperse attention away from opposing sentiment words, preventing one-sided
judgments. A two-stream network was devised, incorporating the gradient reversal layer
and feature projection layer within the auxiliary network. The gradient reversal layer was
employed to invert the gradient of features during training, optimizing parameters based
on the reversed gradient in the backpropagation stage. An auxiliary network was utilized
to extract backward features, which were then integrated into the main network along with
the standard features obtained by the main network. This approach was implemented
across three baseline models—TextCNN, BERT, and RoBERTa—using sentiment analysis
and sarcasm detection datasets. The outcomes demonstrated a 0.5% enhancement for
sentiment analysis datasets and a 2.1% improvement for sarcasm detection datasets.

The authors of [7] investigate the detrimental effects of packet loss on the video quality
encoded using different combinations of compression parameters and resolutions. Their
research utilizes a dataset comprising 11,200 full HD and ultra HD video sequences en-
coded in H.264 and H.265 formats across five bit rates, incorporating a simulated packet
loss rate (PLR) ranging from 0 to 1%. Objective assessment relied on peak signal-to-noise
ratio (PSNR) and Structural Similarity Index (SSIM) metrics, while subjective evaluation
employed the widely recognized absolute category rating (ACR). Their results confirmed
the anticipated decline in video quality with an increase in packet loss rate, irrespective of
compression parameters. The experiments also revealed that the quality of sequences af-
fected by PLR diminishes with higher bit rates. The paper concludes with recommendations
for compression parameters suitable for various network conditions.

The primary goal of [8] was to optimize the conventional 3DCNN model and intro-
duce a novel architecture that integrates 3DCNN with Convolutional Long Short-Term
Memory (ConvLSTM) layers. Through experiments conducted on the LoDVP Abnormal
Activities dataset, UCF50 dataset, and MOD20 dataset, the results highlight the superior
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performance of the 3DCNN + ConvLSTM fusion in the realm of human activity recognition.
The proposed model is suitable for real-time human activity recognition applications and
holds potential for further improvement with the incorporation of additional sensor data.
To offer a comprehensive comparison, they evaluate the proposed 3DCNN + ConvLSTM
architecture across these datasets. The authors achieved 89.12% precision for the LoDVP
Abnormal Activities dataset, and for the modified UCF50 dataset (UCF50mini) and MOD20
dataset, they achieved 83.89% and 87.76% precision, respectively. In summary, their study
underscores the efficacy of combining 3DCNN and ConvLSTM layers to enhance accu-
racy in human activity recognition tasks, positioning the proposed model as a promising
candidate for real-time applications.

The authors of [9] outline the development of an Internet of Things (IoT)-based con-
nected university system. Though various smart solutions have emerged at the university,
their adoption has been limited among users. The IoT-based connected university system
addresses this by facilitating the integration of multiple subsystems, allowing end-users to
access diverse solutions through a unified interface. Employing a microservices architecture,
the system prioritizes robustness, scalability, and universality. Currently, four subsystems
are implemented: indoor navigation, parking assistants, smart classrooms/offices, and
news aggregation from university life. The paper comprehensively details the principles
governing each subsystem and presents the system’s implementation as both a web in-
terface and a mobile application. A detailed account of the indoor navigation subsystem
using Bluetooth beacons is also provided. The paper includes a thorough presentation of
the Bluetooth-based indoor navigation concept, considering diverse node placements. Real-
world tests were conducted to assess the feasibility of the navigation module, employing
deterministic fingerprinting algorithms for precise estimation of users’ device positions.

The research presented in [10] evaluates the usability of several Apple MacBook Pro
laptops for basic machine learning research applications, encompassing text-based, vision-
based, and tabular data. Four distinct benchmarks were executed, employing four MacBook
Pro models—M1, M1 Pro, M2, and M2 Pro. A Swift-script was employed to train and
assess four machine learning models utilizing the Create ML framework, in three iterations.
The script also recorded performance metrics, particularly time-related outcomes. The
findings are presented in tabular form, facilitating a comparative analysis of each device’s
performance and the influence of their respective hardware architectures.

The research presented in [11] introduces an inventive data augmentation strategy
aimed at identifying distinct student behaviors by leveraging focused behavioral attributes.
The primary goal is to alleviate the pedagogical workload. The first step is to curate a con-
cise dataset tailored for discerning student learning behaviors, followed by the application
of data augmentation techniques to significantly expand its size. Moreover, the architectural
prowess of the Extended-efficient Layer Aggregation Networks (E-ELAN) is harnessed
to effectively extract a diverse array of learning behavior features. Notably, integrating
the Channel-wise Attention Module (CBAM) focal mechanism into the feature detection
network enhances the network’s ability to detect key cues relevant to student learning
behaviors, thereby improving feature identification precision. The methodology concludes
with the classification of the extracted features through a dual-pronged conduit: the Feature
Pyramid Network (FPN) and the Path Aggregation Network (PAN). Empirical evidence
vividly demonstrates the potency of the proposed methodology, yielding a mean average
precision (mAP) of 96.7%. This accomplishment surpasses comparable methodologies by
a substantial margin of at least 11.9%, conclusively highlighting the method’s superior
recognition capabilities. This research has significant implications for teaching evaluation
systems, reducing the burden on educators while enhancing the objectivity and accuracy of
teaching evaluations.

The authors of [12] explore a self-supervised binary classification algorithm designed
for defect image classification within ductile cast iron pipe (DCIP) images. Utilizing the
CutPaste-Mix data augmentation strategy, they amalgamate defect-free data with enhanced
data, feeding them into a deep convolutional neural network. Gaussian Density Estimation
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is then employed to compute anomaly scores, facilitating the classification of abnormal
regions. The proposed approach has been implemented in several real-world scenarios,
encompassing equipment installation, data collection, and experimentation. The results
showcase the robust performance of the method, which is evident in both the DCIP image
dataset and practical field applications, achieving an impressive 99.5 AUC (Area Under
Curve). It is a cost-effective method for providing data support for subsequent DCIP
surface inspection model training.

In [13], three images—Sentinel-2, GF-1, and Landsat 8—were chosen, and three sample
selection methods, namely grouping selection, entropy-based selection, and direct selection,
were applied. Subsequently, the selected training samples were utilized to train three
supervised classification models—random forest (RF), support-vector machine (SVM), and
k-nearest neighbor (KNN). The classification results of the three images were then evaluated.
The experimental outcomes indicated similar performances among the three classification
models. Notably, the grouping selection method achieved higher classification accuracy
using fewer samples compared to the entropy-based method. Furthermore, compared to the
direct selection method with an equal number of samples, the grouping selection method
exhibited superior performance. Hence, the grouping selection method demonstrated the
most favorable outcomes. Additionally, when employing the grouping selection method,
the image classification accuracy demonstrated an increase with the augmentation of the
number of samples within a specified sample size range.
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Machine Learning and Lexicon Approach to Texts Processing in
the Detection of Degrees of Toxicity in Online Discussions
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Abstract: This article focuses on the problem of detecting toxicity in online discussions. Toxicity
is currently a serious problem when people are largely influenced by opinions on social networks.
We offer a solution based on classification models using machine learning methods to classify short
texts on social networks into multiple degrees of toxicity. The classification models used both classic
methods of machine learning, such as naïve Bayes and SVM (support vector machine) as well
ensemble methods, such as bagging and RF (random forest). The models were created using text
data, which we extracted from social networks in the Slovak language. The labelling of our dataset
of short texts into multiple classes—the degrees of toxicity—was provided automatically by our
method based on the lexicon approach to texts processing. This lexicon method required creating a
dictionary of toxic words in the Slovak language, which is another contribution of the work. Finally,
an application was created based on the learned machine learning models, which can be used to
detect the degree of toxicity of new social network comments as well as for experimentation with
various machine learning methods. We achieved the best results using an SVM—average value of
accuracy = 0.89 and F1 = 0.79. This model also outperformed the ensemble learning by the RF and
Bagging methods; however, the ensemble learning methods achieved better results than the naïve
Bayes method.

Keywords: web mining; detection of degrees of toxicity; machine learning; lexicon approach; text
data processing

1. Introduction

Social networks today allow us to express publicly our agreement or disagreement
with other people, their opinions or social behavior. This freedom is often abused in the
online space and that is why we can see social networks that are full of toxic comments
dealing with the ongoing pandemic, political or social situations. The increase in textual
data on the Internet has stimulated the emergence of new scientific fields that examine
short texts in the online space and look for toxic posts, trolls, that try to detect the polarity
of comments, and that try to solve other tasks within the processing of textual data.

We focused our research on toxicity detection while distinguishing several degrees of
toxicity. Our research was motivated by a serious problem of the spread of toxicity and anti-
social behavior in the online space that almost all of us use. All types of antisocial behaviors
affect democracy in many countries and contribute to the polarization of a society (Tristan
Harris—former expert on the ethics of a design in Google, and cofounder of the Center for
Human Technologies). Often, the spreading of toxic posts tries to manipulate the opinions
of users looking for answers in the online space. Modern social media companies utilize
constant monitoring of users to keep their attention and consequently to ensure the success
of advertising. These information technologies can, thus, channel users toward content that
causes rudeness, a lack of trust, loneliness and societal polarization, and they can indirectly
help electoral manipulation and the spread of populism. For these reasons, we consider it
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important to help with the automatic monitoring and removal of inappropriate content on
social media.

We can divide all toxic posts and comments into types based on the cause of toxicity,
for example: cultural–ethnically based, insulting a cultural–ethical group of people; racially
based, insulting one race; based on religion; sexually based; physically based—insults that
are based on health or physical condition adaptations; personal, insulting a specific person;
politically based—insults that are based on a political opinion.

Such online harassment affects both adults and children. Research published in [1]
focused on identifying the groups of people who are most at risk. The most influential
attributes of online harassment in adults are age and gender and this mostly concerns
young men aged 18 to 29 and women aged 18 to 24.

Study [2] analyses hate speech using a web interface with a focus on the most used
social networks, such as Twitter, YouTube, and Facebook. Individual social networks try
to protect their users. For example, users who are bothered by inappropriate posts can
report these posts. Then, the administrators of social networks check the reported posts
and delete them if they are really toxic, but this manual regulation is no longer enough
today; therefore, automated systems are being developed to detect toxicity. This automatic
detection is based on either machine learning methods or a lexicon-based approach.

We have used a lexicon-based approach in the past in our work focused on the
detection of suspicious online reviewers [3]. In this work, we used a lexicon-based approach
in a sentiment analysis method as an alternative to machine learning methods for the
detection of trolls. Here, we instead use a lexicon-based approach in a new method for the
automatic labelling of extracted posts in a dataset. We can summarize the contribution of
our paper as follows:

• Creation of a dataset by extracting comments from social media in the Slovak language.
There is lack of text data for processing in the Slovak language.

• Automatic labelling of extracted data using our lexicon-based method, which repre-
sents our original approach to texts labelling.

• Creation of a lexicon of toxic words in the Slovak language as an essential resource
needed for the lexicon-based labelling method.

• Comparison of detection models trained by classic machine learning methods (e.g.,
naïve Bayes, and SVM) and ensemble learning (e.g., Bagging, and RF).

• Creation of an application using the detection models.

1.1. The Toxicity Detection Using Machine Learning

The detection of the degrees of toxicity in online discussions is a multi-classification
problem; therefore, using the classification methods of supervised machine learning meth-
ods is a natural choice. An example of this approach is the work published in [4], which
presents an approach to determine the toxicity of vulgar posts on Twitter using partial
learning with a teacher and the logical regression method, where they achieved a true
positive rate of 75.1%.

Determining hateful comments in the Italian language was dealt with in the work
of [5]. They used SVM (support vector machine) and LSTM (long short-term memory)
models trained on a sample of 17,000 comments from Facebook. For the experiment, they
used only the data that was annotated by at least three annotators. They divided the
comments into three classes: comments without hate, comments with a slight hint of hate,
and hateful comments. They further divided the hateful comments into categories based on
what the comments were about, namely, religion, physical or mental health, socio-economic
status, politics, race, or gender. The result was two documents, one with 3356 comments,
divided into 2816 non-hateful comments, 410 mildly hateful comments, and 130 strongly
hateful comments. The other document had 3575 comments, divided into 2789 non-hateful
comments and 786 hateful comments. Their best results were an accuracy of 80.60% using
an SVM and 79.81% using a LSTM for the model training.
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A work dedicated to the Arabic language [6] detected the use of offensive words. To
create the model, they chose data from Aljazeera.net, which contained 400,000 comments
on approximately 10,000 articles. Subsequently, 32,000 offensive comments were selected
from them. The selected comments were annotated using CrowdFlower, which divided
them into three groups: obscene, offensive, and neutral comments. They achieved their
best result of a 0.98 precision using the LOR (log odds ratio) with unigrams.

Since online comments or posts are often informal, unstructured, and poorly written,
a problem arises when classical models are trained to detect toxicity. Due to these problems,
the authors in [7] proposed to detect the toxicity of posts using the lexical syntactic feature
(LSF) architecture, which is used to detect offensive content and to identify potential
offensive users in interactive media. As a result, the LSF architecture performed significantly
better than the existing methods in detecting toxic posts, achieving a 98.24% accuracy in
detecting toxic (attacking) posts and up to a 77.9% accuracy in identifying those users. This
method, however, was only able to find 78.86% of toxic contributions.

Additionally, the work of [8] used the SVM, RF and naïve Bayes machine learning
methods combined with TF-IDF (term frequency—inverse document frequency) and word
embedding representations for cyberbullying and aggressiveness detection in Tweets in
the Chilean and Mexican Spanish languages. In this work, all the SVM models obtained
better results than the others, with up to 89.2% accuracy and an 89% F1 rate.

Moreover, the work of [9] used neural network methods (e.g., BiGRU—bidirectional
gated recurrent unit and BiLSTM—bidirectional long short-term memory) and classic
methods of machine learning in combination with TF-IDF and GloVe (global vector) rep-
resentations for cyberbullying detection. Across all the preprocessing steps, the logistic
regression displayed the highest average performance amongst all the machine learning
techniques used, followed by SVM, XG Boost (extreme gradient boosting), and naïve Bayes
in that order. They achieved the best results using neural networks—with accuracy and F1
scores as high as ~95% and ~98%, respectively.

The machine learning approaches are also commonly used for sentiment analysis.
Sentiment analysis is, however, related to toxicity recognition, because toxicity in online
spaces usually represents a negative opinion. There are some works which have used ma-
chine learning approaches for sentiment analysis, for example, [10] developed an ensemble
learning scheme using DT (decision trees), SVM, RF (random forest—of decision trees)
and KNN (k-nearest neighbors) for a sentiment analysis of COVID-19 related comments.
Additionally, in the work of [11], deep learning models for a sentiment analysis were used
in recommender systems. There are also some related works using sentiment analysis
based on machine learning.

1.2. Lexicon-Based Approaches to Toxicity Detection

The lexicon-based approach was originally used for the sentiment analysis of texts,
but it has also been used in the creation of recommender systems [11]. The detection of
toxicity using a lexicon-based approach analyses individual words, phrases and post or
comment sentences using lexicons. There are several types of lexicons and they can be
divided according to the language they use (the most widespread are English lexicons)
and the goal of analysis on what words are used (for example, the recognition of toxic,
positive, or negative posts). Lexicons can also be created by merging several other lexicons,
translating foreign language lexicons into another language or by adding certain words to
the already existing lexicon that can help us in recognition toxicity.

WordNet is the most famous lexicon, which contains a database of English words such
as nouns, adjectives, adverbs, and verbs, that are grouped into synonym sets or so-called
synsets. WordNet contains 117,000 English synsets and groups them according to their
meaning. WordNet also indicates the semantic relationships between words [12].

The Macquarie Semantic Orientation Lexicon (MSOL) is an English dictionary that
contains 30,458 positive and 45,942 negative words and phrases. It is a generated lexicon
created using a Roget-like thesaurus and Macquarie thesaurus [13].
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A very important issue in lexicon building is the correct annotation of words in the
lexicon by a measure of toxicity. This annotation can be provided by humans, but more
efficient is an annotation using an optimization method. In the paper of [14], PSO (particle
swarm optimization) and BBPSO (bare-bones particle swarm optimization) were used. The
problem with lexicon-based approaches is that they cannot extract opinions with a specific
orientation. In that work, the corpus-based approach was used to solve this problem. For
universal words that are not specific to the domain, they look for other sentimental words
in a corpus that already have their specific orientation and then adapt this universal lexicon
for a new list of sentimental words specific to the given corpus.

2. Materials and Methods

When solving the task of detection, namely, the degree of toxicity of online posts, we
decided to use a hybrid method, which consisted of two approaches in two steps. The
lexicon-based approach was used in the first step to label the toxic comments in the dataset.
The machine learning approach was then used in the second step to train the classification
models using machine learning methods.

For training the models, we used our own text data, which we labelled with the
degree of toxicity using the lexicon approach. The data was extracted from Facebook and
Instagram in the Slovak language. From the machine learning methods, we decided to use
classical methods such as naive Bayes, random forest, SVM and bagging, which are usually
successful in text classification.

2.1. Data Description

We prepared the dataset by downloading the comments in the Slovak language
from Facebook and slightly fewer comments from Instagram. The posts that contained
comments came primarily from the news profiles, namely, “Televízne noviny TV Markíza”
and “Television TA3”. Several dozen comments also came from the public profiles of specific
people. We downloaded the comments in two ways. The first was an extraction using the
freely available Export Comments downloader (http://exportcomments.com/ (accessed
on 26 July 2022)). To download using this tool, it is necessary to enter the URL address of
the post as an input, and then download them in .xlsx or .csv formats. This method of data
extraction has its limitations.

The second method we used was to create our own tool for the comment extraction.
This was implemented in the Python language, with help from logging into our Facebook
account and sending a POST request to “https://m.facebook.com/login.php” (accessed
on 26 July 2022) with data stored in the JSON format that contained our login information.
After logging into the account, we gave the program the URL address of the post on
Facebook that we wanted to download. Subsequently, the page data was retrieved using a
GET request. Each comment on the page was stored in the same <div> variable and marked
with the same class. After searching for comments in the code, we saved them in a .csv file.

The comments downloaded by us had to be pre-processed before further use. The
Slovak language is characteristic in its use of common diacritical marks. It is the same with
punctuation marks—periods, commas, question marks, exclamation points, colons, and
others. Some people on social networks use diacritical marks and punctuation marks, but
most people do not use them. When processing the comments, it was necessary to unify
the texts and remove all of them. Another pre-processing step was to convert uppercase
letters to lowercase letters, since our lexicon only contains words with lowercase letters.
The uppercase letters when determining toxicities play almost no role. Some comments
also contained an image or a link to another page, which were also unusable for our model
training, and deleted.

The resulting dataset contained 3092 labelled texts of posts. This dataset titled,
“Toxic_training_data.csv” is available at: https://kristina.machova.website.tuke.sk/ (ac-
cessed on 26 July 2022), in the folder RESEARCH at the end of page between “Useful links”
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(https://kristina.machova.website.tuke.sk/useful/Toxic_training_data.csv (accessed on
26 July 2022)).

2.2. Used Lexicon Approach for Data Labelling

The lexicon-based approach was used in our work to find toxic words from a pre-
created lexicon in the extracted comments, and then to label these comments with their
degree of toxicity. This labelling is necessary so that we can train detection models to
determine the degree of toxicity of unknown comments using supervised learning methods.
We classified the comments into four classes, namely:

• neutral posts—do not contain any negative words from the lexicon marked by us,
• weakly toxic posts—contain fewer toxic words from the lexicon,
• moderately toxic posts—contain words from the group of moderately toxic words from

the lexicon,
• very toxic posts—contain extremely toxic words of the lexicon.

We have created the lexicon for labelling using our domain-independent dictionary
created in the past, “lexicon_Small_human.json” (available at: https://kristina.machova.
website.tuke.sk/ (accessed on 26 July 2022) in the folder RESEARCH at the end of page
between “Useful links”) for determining the polarity of posts, which contained negative
words (also positive, but we did not take them into account in this work). We edited and
supplemented this lexicon of negative words with toxic words of varying degrees of toxicity.
We annotated the degrees of the toxicity of words manually. In the lexicon, there are words
labelled with the values “1” for the least toxic words, “2” for moderately toxic words and
“3” for very toxic offensive words and swear words in the Slovak language. The dictionary
is stored in the JSON format and contains a total of 809 toxic and offensive words, of which
there are:

• 224 words with a toxicity level “1” (mildly toxic words),
• 243 words with a toxicity level “2” (moderately toxic words),
• 342 words with a toxicity level “3” (very toxic words).

The resulting Slovak language lexicon “Lexicon_of_toxic_words.json” is available at:
https://kristina.machova.website.tuke.sk/useful/Lexicon_of_toxic_words.json (accessed
on 26 July 2022).

For the pre-processing of data sets, the lexicon-based approach to labelling and use of
training methods, we used the Java programming language. After pre-processing, each
comment was divided into an array of words—tokens—and stored in a variable. The
evaluation of the comment was carried out from individual words in this field, where each
word was looked up in the created toxic lexicon and the toxicity value of the word was
returned. We used two ways to evaluate the final toxicity of a comment:

1. the label value is the sum of the individual toxic words in the comment,
2. the label value is the value of the most toxic word in the comment.

When learning and testing the models, we found that the second method of determining
the final value of a comment as the value of the most toxic word achieves better results. A
comment that did not contain any words from the toxic lexicon was labelled as neutral. The
values of the labels are in the form of a “float”, and we needed to create some differences
between the degrees of toxicity of the comments. In our case, they were set as follows:

• the value 0.0 belongs to Neutral,
• the value 1.0 belongs to Low toxic,
• the value 2.0 belongs to Moderately toxic,
• values 3.0 and more belong to Very toxic comments.

The dataset of labelled comments using the lexicon-based approach was subsequently
stored in the form of a CSV file with the columns “Comments” (containing comments in
the form of text (string)) and “Class” (containing the values Neutral, Low toxic, Moderately
toxic or Very toxic in the form of a nominal attribute). An illustration of the data can be
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seen in Figure 1. To use the Weka tool for model training, we needed to convert the data
from CSV to ARFF.

Figure 1. Illustration of the dataset of labelled comments extracted from social networks.

2.3. Used Methods for Models Training

We used classical learning as well as ensemble learning for training the detection mod-
els. From the classic machine learning approaches, we chose the naïve Bayes classifier as a
baseline method, as well as an SVM, because of its performance in related works [5,8–10].
This method is very efficient in text data processing. From the ensemble methods, we
selected bagging as a basic approach and random forests, because it could increase the
precision of the final classification by vote among a set of de-correlated tree models.

The naïve Bayes classifier (NB) is a probabilistic classifier based on Bayes’ theorem
and independence assumption between features. The advantage of this algorithm is its
simplicity and clarity, as each class is characterized by a probabilistic description. On the
contrary, the disadvantage of the method, as mentioned, is the assumption that attributes
are independent. NB is often applied as a baseline method; however, it is reported to be
outperformed by support vector machines [15].

Support vector machines (SVM) separate the sample space into two or more classes
with the widest margin possible. The method was originally a linear classifier, which
creates a decision boundary for the separation of examples in the space into two classes “1”
and “−1” [16], as can be seen in Figure 2.

Figure 2. Illustration of the linear SVM.

The linear SVM is suitable only for linear data, therefore, it is not a good selection for
text data, but it can relatively efficiently perform a non-linear classification using kernel
functions [17]. The trick of kernels functions is illustrated by Figure 3.
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Figure 3. Illustration of transformation of the n-dimensional space into n + 1 dimensional space
using a kernel function (there are examples of two classes – the first one consist of red pluses and the
second one consist of green minuses).

The objective is to maximize the width of the boundary, which is known as the primal
problem of support vector machines [18].

Bagging is a classification method belonging to the group of learning by a set of
methods—so called ensemble learning—which helps improve the stability and accuracy of
machine learning. The algorithm creates several Bootstrap samples so that each sample
works as an independent dataset. After selecting “m” samples, a partial classifier is gener-
ated for each of them. Then, the results are averaged, and the resulting class is selected by
the vote of all partial classifiers [19], which is illustrated in Figure 4.

Figure 4. Illustration of two steps of Bagging method—Bootstrapping and Aggregating.

The random forests (RF) method also belongs to the ensemble learning group of
methods. It is based on decision trees (DT) and the number of DTs is a parameter. The
random forests method tries to minimize the variance by creating de-correlated DTs using
a random selection of a subset of attributes. The method determines the result by a vote of
the individual generated trees [20].

The complexities of the used and proposed methods are different. The naïve Bayes
algorithm has the complexity O(N×M), where N is the number of attributes – words and
M is the number of examples in the dataset. The complexity of the SVM depends on the
used optimization. Using quadratic programming, the complexity becomes O(N3), but
the complexity of the sequential minimal optimization depends only on support vectors.
The complexity of decision trees is O(N×M) but for RF it is O(K×N×M), where K is the
number of generated trees. Bagging also has a similar complexity. The complexity of our
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lexicon-based labelling method is O(M×L×T), where M is the number of labelled texts
in the dataset, L is the number of words in the lexicon and T is the number of terms in a
unique labelled text.

3. Methodology of Research

Our research was focused at first on the creation of a new lexicon of toxic words in
the Slovak language, which was an inevitable resource for our lexicon-based labelling
method. The resulting Slovak language lexicon, “Lexicon_of_toxic_words.json” is avail-
able at: https://kristina.machova.website.tuke.sk/useful/Lexicon_of_toxic_words.json
(accessed on 26 July 2022). The lexicon was created from English lexicons by the translation
of negative words to the Slovak language and it was extended by toxic words in the Slovak
language. Next, we designed a lexicon-based labelling method. We extracted short texts
from social media to create a dataset, which was then labelled using our lexicon-based
method. The labelled dataset (available at: https://kristina.machova.website.tuke.sk/
useful/Toxic_training_data.csv (accessed on 26 July 2022)) was used for the training of
the classic methods (NB, SVM) and ensemble methods (bagging, RF). The models were
evaluated using the sensitivity, FP rate, specificity, FN Rate, accuracy, precision and F1 score.
Then, the best models were used in the application for toxicity detection. The methodology
is illustrated in Figure 5.

Figure 5. Methodology of research devoted to the creation of the detection models for detection of a
degree of toxicity in social media.

We decided to use the freely available Weka tool to train the classification models. This
tool can be used in two ways. The first is to import this tool in Java as a library. With its
help, it is possible to use all the functions that the tool contains. The second way is to use
the graphical interface of the Weka program. We decided to combine these two methods by
using the graphical interface of the Weka program to create, test and save the models, and
then, to use the created models for a new data classification, we used the library in the Java
language. The advantage of such a combination is the ease of setting parameters when
training models using a graphical interface and a simple evaluation of model quality using
the Java library.

For the model training, the Weka GUI Chooser offers several tools to choose from. We
worked with the Explorer tool. The training consisted of several steps:

• selection of training data,
• use of filters for data pre-processing,
• selection of the required model,
• setting of the model,
• selection of the method of testing the model,
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• evaluation of the achieved results.

In the process of the model training, we started from the parameters that were prede-
fined in the Weka tool and then changed them until we obtained the most effective model.
Manual tuning of the parameters was used. The parameter settings of the best models for
each machine learning method are listed in tables below.

The input for training the models was data stored in a CSV file, which contained
two columns of data, namely, text data (String) containing comments, and a column with
nominal values (Nominal), containing the toxicity value of the given comment. The total
number of 3091 comments were divided into following categories:

• Moderately toxic—776 data,
• Low toxic—757 data,
• Neutral—779 data,
• Very toxic—779 data.

We used the following measures of effectivity of the models: Sensitivity, False Posi-
tive Rate, Specificity, False Negative Rate, Accuracy, Precision and F1 Score. They were
calculated according to the formulas in Figure 6 where:

• TP is the number of true positive classifications,
• FP is the number of false positive classifications,
• TN is the number of true negative classifications,
• FN is the number of false negative classifications.

 
Figure 6. Formulas of the used measures of the effectivity of models.
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3.1. Models Training Using Classic Methods of Machine Learning

We have focused at first on classic methods such as naïve Bayes multinomial (NBM)
and support vector machines (SVM). These methods generate models that can be intuitively
well explained. Naïve Bayes offers conditional probabilities, which represent the measure
of belonging attributes to classes for recognition. Support vector machines are often used
because they form a mathematical model of a hyperplane dividing two or more classes in a
space. The model contains information about the importance of particular attributes in it.
The baseline method for the experiments was the NBM.

With the naïve Bayes method, there are several ways we can create models. The first
one is to build a model using the function “NaiveBayesMultinomial-Text”. In this case, the
“FilteredClassifier” function is not used, but the data is processed directly without a filtered
classifier. The training inputs are full sentences from the comments along with the labelling
obtained using the lexicon approach. The settings which we achieved the best results with
are listed in Table 1. The NBM—Text model was validated using a 10-fold cross-validation.
This means, that 9/10 of the data were used for training a model, which was consequently
validated on an unseen 1/10 of the data, which were not used for training. The total number
of data entries was 3091, of which 2086 were correctly categorized, which represents 67.49%,
while 1005 data were categorized incorrectly, which represents 32.51%. Detailed validation
results are shown in Table 2. These results are not bad if we consider that the random
selection for four classes has a precision of 0.25.

Table 1. The settings of the Naïve Bayes Multinomial Text model training.

Settings Values

lowercaseTokens True
minWordFrequency 2.0

norm 2.0
numDecimalPlaces 3

stemmer LovinsStemmer

Table 2. Effectivity of Naïve Bayes Multinomial Text model for recognition of four degrees of toxicity
in online discussions.

Measures Very Toxic Moderately Toxic Low Toxic Neutral

Sensitivity 0.671 0.663 0.742 0.655
FP Rate 0.078 0.061 0.094 0.200

Specificity 0.896 0.918 0.874 0.773
FN Rate 0.329 0.367 0.258 0.345

Accuracy 0.827 0.830 0.834 0.741
Precision 0.743 0.776 0.719 0.525
F1 Score 0.705 0.697 0.730 0.583

The second way to train a naïve Bayes classifier is using the function “NaiveBayes-
Multinomial” in combination with the “FilteredClassifier” function. In this case, text input
is transformed into the vectors of words. We used “StringToWordVector” as a filter. The
settings with which we achieved the best results with this model are listed in Table 3 and
the validation results are shown in Table 4.

Table 3. The settings of the Naïve Bayes Multinomial model training.

Settings Values

IDFTransform True
TFTransform True

lowCaseToken True
stemmer SnowballStemmer

wordsToKeep 2000
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Table 4. Effectivity of Naïve Bayes Multinomial model for recognition of four degrees of toxicity in
online discussions.

Measures Very Toxic Moderately Toxic Low Toxic Neutral

Sensitivity 0.702 0.693 0.651 0.401
FP Rate 0.135 0.172 0.139 0.072

Specificity 0.812 0.773 0.812 0.904
FN Rate 0.298 0.307 0.349 0.600

Accuracy 0.777 0.748 0.763 0.749
Precision 0.637 0.575 0.603 0.651
F1 Score 0.668 0.629 0.626 0.496

The total number of records during the model training was 3091, of which 1890 were
correctly categorized, which represents 61.15%, while 1201 data were incorrectly categorized,
which represents 38.85%. The data was validated using a 10-fold cross-validation.

Both naïve Bayes models achieved the best results in specificity and accuracy. The
naïve Bayes multinomial text was better in the detection of three degrees of toxicity—very,
moderately and low toxic. The neutral comments were better classified by the naïve Bayes
multinomial using a vector representation of the text.

The second classic method of machine learning—SVM—was used for training the
other models. This method is usually very successful in text processing. We trained
two SVM models. For the first one, the function FilteredClassifier was used with the filter
StringToWordVector, which transforms the text of comments into the vectors of words. The
settings of training and the filter settings for the SVM1 model are presented Table 5. The
validation results are shown in Table 6.

Table 5. The settings of the SVM1 model training.

Settings Values

IDFTransform True
TFTransform True

Debug True
loweCaseTokens True

stemmer NullStemmer
wordsToKeep 3000

batchSize 200
kernel PolyKernel

numDecimalPlaces 3

Table 6. Effectivity of SVM1 model for recognition of four degrees of toxicity in online discussions.

Measures Very Toxic Moderately Toxic Low Toxic Neutral

Sensitivity 0.628 0.723 0.712 0.621
FP Rate 0.093 0.112 0.102 0.132

Specificity 0.880 0.854 0.866 0.839
FN Rate 0.372 0.277 0.288 0.379

Accuracy 0.804 0.814 0.820 0.775
Precision 0.694 0.684 0.695 0.613
F1 Score 0.659 0.703 0.703 0.617

The total number of data entries during the training was 3091 comments, of which
2139 were correctly classified, representing 67.1%, while 952 were incorrectly classified,
representing 33.9%. We obtained this result by a 10-fold cross-validation.

The next SVM2 model, with a slightly better result, differed from the previous SVM1
model only in the settings of the filter. Namely, the stemmer attribute had the value
LovinsStemmer. All other filter and model settings remained the same as for the SVM1. In
the following Table 7, we can see an improvement of the results of the SVM2 model in all
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indicators compared to the previous SVM1 model. The total number of records was 3091,
of which there were 2473 correctly classified comments into all classes, which represents
80%, while a total of 618 were incorrectly classified data, which represents 20%. The model
was evaluated using a 10-fold cross-validation.

Table 7. Effectivity of SVM2 model for recognition of four degrees of toxicity in online discussions.

Measures Very Toxic Moderately Toxic Low Toxic Neutral

Sensitivity 0.711 0.791 0.828 0.870
FP Rate 0.044 0.053 0.051 0.119

Specificity 0.950 0.938 0.939 0.867
FN Rate 0.289 0.209 0.172 0.128

Accuracy 0.884 0.897 0.908 0.868
Precision 0.846 0.834 0.839 0.714
F1 Score 0.773 0.812 0.834 0.785

In comparison with the baseline NBM models, the SVM models achieved better results.
In addition, a small change in the settings (stemmer = LovinsStemmer) produced better
results in the specificity above 90 percent.

3.2. Models Training Using Ensemble Learning

In several works, ensemble learning provided better and more reliable results for
classification than single machine learning methods. We decided at first to use a basic
method of ensemble learning, namely, bagging. Using the bagging method, we generated
a set of models. Similar to the previous methods, we used the FilteredClassifier function,
where we applied a filter with the following settings presented in Table 8. The test results
of this model are presented in Table 9.

Table 8. The settings of filters in the ensemble learning using Bagging method.

Settings Values

IDFTransform True
TFTransform True

lowCaseToken True
stemmer LovinsStemmer

wordsToKeep 1000

Table 9. Effectivity of Bagging method for recognition of four degrees of toxicity in online discussions.

Measures Very Toxic Moderately Toxic Low Toxic Neutral

Sensitivity 0.574 0.719 0.799 0.901
FP Rate 0.052 0.055 0.052 0.184

Specificity 0.948 0.932 0.933 0.791
FN Rate 0.426 0.281 0.201 0.378

Accuracy 0.842 0.870 0.894 0.821
Precision 0.813 0.813 0.832 0.622
F1 Score 0.673 0.763 0.815 0.736

The bagging method was validated using a 10-fold cross-validation. The total number
of training data was 3091, of which there were correctly classified 2312 comments, which
represents 74.80%, while 779 comments were incorrectly classified, which represents 25.2%.

The results presented in Table 9 did not confirm the tendency of composite classifica-
tion by an ensemble of models to give better results than models learned by single machine
learning methods. The results of the bagging method were worse than the SVM2 model,
although better than the SVM1 model; therefore, we trained and tested one more model
using the ensemble learning, namely, a random forest (RF) of decision trees, which is the
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newest and most successful from the ensemble methods. The “FilteredClassifier” function
was also used for training the RF. In this function, the RF method was specified as the
classifier, and “StringToWordVector” was set as the filter. The “LovinsStemmer” function was
set for the stemmer attribute. We can see the random forest setting in Table 10. The test
results of this model are presented in Table 11. They are unfortunately not better than the
results of the bagging method.

Table 10. The settings of the ensemble learning using Random Forest method.

Settings Values

breakTiesRandomly True
debug True

numDecimalPlaces 3
numIterations 200

seed 10

Table 11. Effectivity of Random Forest model for recognition of four degrees of toxicity in online
discussions.

Measures Very Toxic Moderately Toxic Low Toxic Neutral

Sensitivity 0.525 0.713 0.699 0.875
FP Rate 0.031 0.059 0.070 0.237

Specificity 0.961 0.923 0.910 0.732
FN Rate 0.475 0.287 0.301 0.125

Accuracy 0.831 0.858 0.848 0.771
Precision 0.850 0.803 0.765 0.555
F1 Score 0.650 0.755 0.730 0.680

The RF model was validated using a 10-fold cross-validation. The total number of
comments was also 3091, of which 2173 were correctly classified, which represents 70.3%,
while 918 comments were incorrectly classified, which is 29.7%. This model achieved the
best results among all the models we trained using the random forest method.

3.3. Application for Recognition of Degrees of Toxicity

We used the most precise models for recognition of the degrees of toxicity of online
comments in the application for analyzing newly extracted posts (they were not used for
the model training). For an easier analysis of new data with the option of selecting the
type of model, we created an application in Java that includes an annotation using the
lexicon-based method, and also allows the use of all the best models. The user can choose
which model they want to use to analyze new comments. After starting the program, the
first thing that appears is a window with a menu that offers us a choice of several options:

• vocabulary approach—a method based on the lexicon for the searching and annotation
of toxic words,

• SVM model—the use of the SVM model to analyze the toxicity of new comments,
• random forest model—analysis of online comments using the random forest model,
• naive Bayes model—using the naive Bayes model to analyze online comments,
• bagging model—analysis using the bagging model,
• info—contains final results for comparing the quality of models,
• exit—ending the program.

After selecting one of these options, a new window will open (see Figure 7), which
is used to analyze the text of a comment. In the upper part, we can select the file which
contains the text to be analyzed. The program allows us to choose one of two file types,
namely, csv or arff.
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Figure 7. Window for a text data loading and an analysis starting.

Next, the user can start the analysis of the selected document of comments and save
the results. The analysis produces a table containing the analyzed comments from the
selected file together with their toxicity values, as illustrated in Figure 8. A file with this
data will also be saved as a csv.

 

Figure 8. The illustration of results of the lexicon-based analysis of comments from the selected and
loaded file.

4. Discussion and Conclusions

The most accurate model for the degree of toxicity recognition of online comments
is the SVM 2 with an average accuracy value of 0.890, which exceeded all other models
at each efficiency measure. The second most accurate model is the model created using
ensemble learning bagging with an average accuracy value of 0.857, which is only slightly
less than the SVM 2. The third most accurate model is the random forest model with an
average accuracy value of 0.827. The SVM 1 and naive Bayes multinomial text models have
very comparable results with differences in accuracy up to the third decimal place. The
least successful is the naive Bayes multinomial model with an average accuracy of 0.759.
The average results of all the models are illustrated in Figure 9. Our experiments did not
confirm the tendency of composite classification by an ensemble of models to give better
results than models learned by single machine learning methods.

Table 12 shows a comparison of the predictive performance of our best model to the
best models from previous studies focused on the same or similar problem. We can see
from this table of best results, that our SVM model achieved better results than the SVM
models of previous studies, but the deep neural network model based on BiLSTM was more
effective than our best model. On the other hand, the effectiveness of different approaches
as presented in Table 12 can be understood as indicative only. The reason for this is that the
experiments, the results of which are collected in the table, were performed by different
authors employing different textual datasets (with datasets differing not only in content
but in their used language as well). Nevertheless, the table identifies the BiLSTM method
as a possible candidate for the next research on detecting toxicity in online discussions in
the Slovak language.

19



Sensors 2022, 22, 6468

Figure 9. The average results of all models in Sensitivity, Precision, Accuracy, F1 Score and FP Rate
measures.

Table 12. Comparison of results in Accuracy of our best model to the best models from previous
studies focused on the same respectively similar problem.

Studies Methods Type of Detection Best Results

[5] SVM, LSTM Hate posts Acc (SVM) = 0.699
[7] LSF * Offensive posts Acc (LSF) = 0.778
[8] SVM, NB, RF Aggressive language Acc (SVM) = 0.892
[9] SVM, LR **, BiGRU, BiLSTM Cyberbullying Acc (BiLSTM) = 0.948

Our NB, SVM, Bagging, RF Toxic posts Acc (SVM) = 0.908
* Lexical Syntactic Features, ** Logistic Regression, Acc—Accuracy.

This article dealt with the detection of the degree of toxicity of posts in online dis-
cussions on social networks. It describes the procedure for training models using both
single and ensemble machine learning methods and their comparison. The article also
deals with the creation of a lexicon of toxic words and the use of this lexicon to label
short texts in a dataset by the degree of toxicity of texts. We can say that the novelty of
the article is mainly based on the lexicon approach for the Slovak language and in the
comparison of the effectivity of the detection models trained using classic and ensemble
learning. An application for the extraction of comments from social media was designed
to help with acquiring the text data for the generation of the detection models. We have
used the extracted and labelled comments as a dataset to train the classification models.
Additionally, an application was created to detect the degree of toxicity in new comments,
based on the most successful models.

In future, we could focus on the neural ensemble models [21], since the ensemble
models based on classical machine learning methods did not achieve the results we hoped
for. In particular, an ensemble could use methods, such as BiLSTM and the more accurate
BiGRU according to [22]; we could also extend the text processing to include the processing
of images available in online comments, for example, emoticons. Future research could
also focus on using various ensemble strategies [23] to increase the detection performance
of a set of models, for example, by using the random forest voting strategy.

Another possibility for future research is using new optimization methods in the SVM
method, such as ant colony optimization or particle swarm optimization [24], the dynamic
feature weight selection [25], and feature extraction integrating principal component anal-
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ysis and local binary patterns [26]. Using a kernel extreme learning machine could also
bring improved results [26].
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Abstract: In this paper, we present an assessment framework that can be used to score segments of
physical and digital infrastructure based on their features and readiness to expedite the deployment
of Connected and Automated Vehicles (CAVs). We discuss the equipment and methodology applied
for the collection and analysis of required data to score the infrastructure segments in an automated
way. Moreover, we demonstrate how the proposed framework can be applied using data collected
on a public transport route in the city of Zilina, Slovakia. We use two types of data to demonstrate
the methodology of the assessment-connectivity and positioning data to assess the connectivity and
localization performance provided by the infrastructure and image data for road signage detection
using a Convolutional Neural Network (CNN). The core of the research is a dataset that can be used
for further research work. We collected and analyzed data in two settings—an urban and suburban
area. Despite the fact that the connectivity and positioning data were collected in different days
and times, we found highly underserved areas along the investigated route. The main problem
from the point of view of communication in the investigated area is the latency, which is an issue
associated with infrastructure segments mainly located at intersections with heavy traffic or near
various points of interest. The low accuracy of localization has been observed mainly in dense areas
with large buildings and trees, which decrease the number of visible localization satellites. To address
the problem of automated assessment of the traffic sign recognition precision, we proposed a CNN
that achieved 99.7% precision.

Keywords: cooperative, connected and automated mobility; infrastructure readiness assessment;
connectivity data; positioning data; convolutional neural network

1. Introduction

Connected and Automated Vehicles (CAVs) are expected to bring tremendous social,
economic and environmental benefits, including increased road safety, addressing of road
congestion and decreased environmental impact due to less wasted fuel thanks to improved
vehicle management [1,2]. However, even the strongest supporters of the idea that vehicles
should be as independent of the infrastructure as possible already accept the fact that
automated driving can safely work only in specific Operational Design Domains (ODDs) [3].
Therefore, the physical and digital infrastructure already plays a role in the design and
functioning of CAVs.

The preparation of infrastructure for automated driving is a multifaceted challenge,
including components such as connectivity, provision of localization and mapping services,
machine-readable road signage, and CAV-friendly road geometry and is a time-consuming,
costly task requiring thorough planning. As highlighted in reference [4], automated driv-
ing functions relying on the infrastructure are often regarded from the perspective of a
chicken-and-egg situation—infrastructure investments are postponed in an expectation
that vehicle manufacturers take the lead and implement the related applications and vice
versa. While Automated Driving Systems (ADS) are still under development, some of their
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basic requirements on the physical and digital infrastructure are already clear. Therefore, a
complex assessment framework to help infrastructure providers evaluate the state of the
infrastructure in terms of its readiness to support automated driving can be beneficial to
help identify the essential areas of intervention and plan the investments and the timeline
of infrastructure upgrades.

Artificial Intelligence (AI) is one of the key enabling technologies for the deployment of
CAVs. Being an essential component responsible for a CAVs perception of the environment
and decision making, application of AI in the context of CAVs has been a thoroughly
investigated topic by both academia and industry. Interested readers are referred to the
works of Ma et al. [5] and Li et al. [6] for thorough surveys on the state-of-the-art of
implementing AI in CAVs.

Cybersecurity is another crucial aspect of CAVs operation that needs to be carefully
considered. Ge et al. [7] proposed an algorithm to address the problem of resilient and
safe platooning control of CAVs that are under denial-of-service attacks disrupting the V2V
communication. Khan et al. [8] developed a conceptual system dynamics model to analyze
the cybersecurity of CAVs. The model integrates six critical areas and their corresponding
parameters that either enable or mitigate attacks on CAVs operation.

Several studies have already explored the key requirements on infrastructure for
automated driving and assessed their impact on the performance of CAV operation.
Carreras et al. [9] proposed a classification scheme to classify and harmonize the capa-
bilities of a road infrastructure to support CAVs. Similarly to SAE levels of Driving
Automation [10], the authors propose five levels of infrastructure support ranging from no
support up to support sufficient to facilitate cooperative driving.

Mackenzie et al. [11] performed an assessment of line markings at multiple sites along
Australia’s Great Southern Highway using two vehicles equipped with a lane departure
warning system and two cameras. The authors conclude that the failure to accurately detect
line marking crossing events can be most often attributed to the absence of a marked line,
vehicle travel speed being lower than the speed recommended for system operation by the
manufacturer, bad condition of lane markings and the low line marking retro-reflectivity
and/or daylight brightness.

Magyari et al. [12] conducted a study on sight distances at unsignalized intersections,
comparing the minimum required sight distances between automated and human-driven
vehicles. The authors demonstrated that automated vehicles require 10–40 m shorter sight
distances than conventional vehicles.

Liu et al. [13] identified infrastructure aspects that should be considered to be up-
graded based on the gap between their current state and future requirements of CAVs. The
authors concluded that the main infrastructure intervention areas that currently require
attention should be traffic signs and road markings, communications, pavement structure
and road surface, parking lots, service stations, safe harbor areas, roundabouts, bridges,
drainage and geotechnical aspects.

Nitsche et al. [14] conducted a study about the requirements on road transport
infrastructure for highly automated vehicles focusing on automation Levels 2–4. The
methods used in the study consist of a literature review and an online survey with
54 multidisciplinary experts. The study identified the factors with the largest impact
on the performance of ADS in three categories: lane assistance systems, collision avoidance
systems and speed control systems. The authors also argued that the complex urban envi-
ronments, temporary work zones and poor visibility due to bad weather conditions are the
major infrastructure challenges for automated driving systems.

Madadi et al. [15] carried out an assessment of road network readiness based on a
workshop including experts who judged images of specific infrastructure segments. Each
of the two rounds of judgements was followed by a group discussion and a summary. The
authors conclude that the experts identified many similar issues for different instances of
roads and intersections.
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Although there are numerous approaches already presented in the literature that
aim at assessing the readiness of infrastructure for automated driving, those approaches
are either limited to the assessment of a single performance indicator, do not provide
measurable performance indicators at all, or rely on a per-segment evaluation performed
by experts. Evaluation by a group of experts is both time-consuming and expensive for
evaluating larger infrastructure networks. Moreover, it also brings the challenge of personal
perception and subjective evaluation of readiness, as can be seen from often contradictory
human assessments of the same infrastructure segment.

To allow large-scale, automated assessment of the physical and digital infrastructure
readiness for automated driving, key aspects of the infrastructure contributing to the safe
and reliable operation of CAVs and their minimum requirements in terms of measurable
performance indicators have to be identified. Furthermore, a common methodology for the
collection of required data, their processing and evaluation is essential to be developed,
which, to the best of our knowledge, has not been presented in the available literature yet.

It is noteworthy to mention that the proposed assessment framework does not cover
all the requirements of automated driving, as many of them are still under development.
However, the framework provides a tool to infrastructure providers that can quickly and
cheaply assess the extent to which the already known fundamental requirements are
met and support them with identifying segments and specific interventions needed for
increasing their readiness for automated mobility. The framework presented herein aspires
to contribute toward solving the above-mentioned chicken-and-egg loop by providing a
simple yet robust basis to identify the areas where infrastructure investments are necessary,
regardless of the further developments in automated driving functions down the line.

The scientific and practical contribution of this paper can be summarized as follows:

• We propose a novel assessment framework to help infrastructure operators evaluate
the readiness of physical and digital infrastructure for automated driving based on
a set of indicators derived from the literature review on infrastructure requirements
for CAV;

• We propose a data-collection setup and data processing methodology for collect-
ing and evaluating data on the infrastructure necessary for the application of the
assessment framework;

• We demonstrate the data collection and processing approach as well as the experimen-
tal results on a part of infrastructure in the city of Žilina, Slovakia.

The rest of the paper is organized as follows. The framework for assessment of
physical and digital infrastructure for CAVs is described in Section 2. Section 3 contains a
description of the data collection for connectivity, positioning and image data. The applied
methods and methodology are described in Section 4. The achieved experimental results
are presented in Section 5. Finally, Section 6 concludes by summarizing the results of this
study, its contribution and further suggestions for future research.

2. Framework for Assessment of Physical and Digital Infrastructure Readiness
for CAVs

In this section, we present the framework that we developed to assess the infrastructure
readiness for Cooperative, Connected and Automated Mobility (CCAM). The framework
is based on an extensive literature review of the requirements of CCAM, as well as on
current industry best practices, anticipating the future requirements of various components
of automated driving.

The framework aims to assess the infrastructure in five key areas crucial for CCAM
implementation—connectivity, localization, machine-readable signage, and maps and
object detection. For each area, a set of indicators is presented. A scoring grid mapping a
score to an indicator value is assigned to each indicator. It is worth noting that the number
of indicators selected for assessment of each area, as well as their corresponding assessment
grids, may be subject to change and will be continually revised as new requirements for
CCAM emerge or the currently identified ones are further clarified and quantified. The
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indicators for the current framework version has been selected in regard to the data that
are either available now, or can be collected with a currently available technology. It should
be noted that currently, it is not practical to provide an overarching index for each of the
assessment areas since the level of impact of individual indicators on the performance of
CAVs is not entirely clear yet. Therefore, the infrastructure assessment should be performed
on a per-indicator basis.

The result of an assessment of an infrastructure segment is a numerical index, which
represents the readiness of the evaluated road segment for CAVs deployment in the context
of the corresponding indicator. This index can be useful for objective evaluation of the
current status of infrastructure readiness and for planning and prioritizing future infras-
tructure upgrades, expansion and investments to increase its readiness to CAVs. The
framework is presented in Tables 1–5.

Table 1. The assessment framework—connectivity area.

Indicator Value Score

Communication latency

x < 1 ms 1
1 ms ≤ x < 50 ms 0.75

50 ms ≤ x < 100 ms 0.5
x ≥ 100 ms 0

x < 0.001% 1
Message loss 0.001% ≤ x < 10% 0.5

x ≥ 10% 0

x ≥ 1 Gbit/s 1
24 Mbit/s ≤ x < 1 Gbit/s 0.75

Bitrate per vehicle 8.5 Mbit/s ≤ x < 24 Mbit/s 0.5
300 kbit/s ≤ x < 8.5 Mbit/s 0.25

x < 300 kbit/s 0

Table 2. The assessment framework—localization area.

Indicator Value Score

x > 20 1
15 ≤ x < 20 0.75

Average number of satellites 10 ≤ x < 15 0.5
5 ≤ x < 10 0.25

x ≤ 5 0

x ≥ 4 1
x = 3 0.75

Number of using satellites x = 2 0.5
x = 1 0.25
x = 0 0

x < 0.1 m 1
GNSS lateral localization error 0.1 m ≤ x ≤ 0.2 m 0.5

x > 0.2 m 0

Table 3. The assessment framework—object detection distance area.

Indicator Value Score

Intersection sight distance

Vd = 62.5 km/h
x ≥ 183 m 1

148 m ≤ x < 183 m 0.75
113 m ≤ x < 148 m 0.25

x < 113 m 0
Vd = 112.5 km/h

x ≥ 329 m 1
266 m ≤ x < 329 m 0.75
203 m ≤ x < 266 m 0.25

x < 203 m 0

Infrastructure for remote Yes 1
sensor sharing available No 0
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Table 4. The assessment framework—quality of maps area.

Indicator Value Score

Static and dynamic infrastructure is available on the map and
available to the CAV. Based on the information on the map the
vehicle can perceive microscopic traffic situations in real time.

1

Quality of maps
Digital map with detailed lane information and static road signs is

available. Traffic lights, short-term road works and variable
message signs have to be recognized by AVs.

0.75

Digital map is available but vehicle has to recognize lane geometry
and/or road signs. 0.25

No digital map is available. The vehicle has to recognize road
geometry and traffic signs on its own. 0

Table 5. The assessment framework—machine-readable signage area.

Indicator Value Score

Precision of horizontal signage detection

x ≥ 99% 1
90% ≤ x < 99% 0.5
80% ≤ x < 90% 0.25

x < 80% 0

Precision of vertical x ≥ 98% 1
signage detection x < 98% 0

2.1. Connectivity of Vehicles

It is already a well-accepted fact that connectivity and V2X communication will play
a crucial role in the automation of road transport and addressing its safety challenges. A
good example is a work by Zadobrischi et al. [16], who developed a system for analysis and
management of dangerous situations that can detect a wide range of potentially hazardous
conditions, including driver’s psychosomatic conditions, as well as attributes of nearby
vehicles and pedestrians. The system communicates with various traffic safety elements
through V2X radio frequency (RF) or Visible Light Communication (VLC). In order to share
the detected hazards beyond the nearby connected vehicles in direct RF or VLC reach,
a connectivity infrastructure based on either Dedicated Short-Range Communications
(DSRC) Roadside Units (RSUs), or cellular networks has to be in place.

We would like to point out that the assessment framework for the connectivity area is
technology agnostic, i.e., communication infrastructure based on any current (e.g., DSRC,
4G- or 5G-based Cellular-V2X, VLC), or future communication technology can be consid-
ered for V2X communication as long as it meets the corresponding performance indicators.

The values of indicators used to evaluate the connectivity area are based on the already
identified requirements for V2X communications as well as on projected bandwidth needs
for AVs. While the amount of data collected by SAE Level 5 AV’s sensors is expected to
be huge [17], it is important to note that the majority of these raw measurements will be
processed and utilized locally.

The lowest possible boundary of the bit rate has been set to 300 kbit/s. This bit rate
corresponds to a connected vehicle broadcasting Cooperative Awareness Messages (CAM)
with a maximum length of 1500 bytes while receiving CAMs from one neighboring vehicle
at the same time with a message generation frequency of 10 Hz. If the infrastructure is not
able to support this level of service, then no deployment of Cooperative ITS is possible,
and therefore, the score of such an infrastructure segment would be equal to zero. On the
contrary, if the 300 kbit/s bit rate is available for each vehicle at the given road segment, a
score of 0.25 is awarded, indicating that at least a basic CAM service is available.

To achieve a score of 0.5, the infrastructure segment has to allow at least bi-directional
sharing of sensory information on top of the basic CAM service. A sharing of footage from
one automotive-grade camera with a resolution of 1280 × 1080 capturing a fairly complex
scene, including buildings and vegetation, at 30 frames per second encoded by H.265 codec,
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including one 128 kbit/s audio track has been assumed. The resulting bit rate necessary to
facilitate such traffic is 8.5 Mbit/s.

An infrastructure segment with a score of 0.75 is able to facilitate at least a bi-directional
sensor sharing of one camera and a LIDAR sensor as well as a basic CAM service. From
collected data, we empirically estimated the average bit rate of a 16-ray automotive LIDAR
sensor to 7.66 Mbit/s. Therefore, the resulting minimum bit rate per vehicle necessary to
achieve a score of 0.75 is 24 Mbit/s.

It is widely accepted that highly automated vehicles will utilize communication links
with bit rates beyond 1 Gbit/s for extensive sensor sharing and operational data exchange.
Therefore an infrastructure segment providing this level of service is awarded a score of 1.

To achieve the highest score in the message loss indicator, the communication infras-
tructure has to demonstrate at least 99.99% availability of service. On the contrary, if the
average packet loss is above 10%, it might mean a steady information loss from more than
one communicating vehicle, which, depending on the specific message content, might be
unacceptable. Therefore, such a segment receives a score of zero.

The last evaluated indicator within the connectivity area is communication latency.
The indicator values corresponding to the scores were derived from the networking and
connectivity requirements of V2X communication services presented in [18].

2.2. Localization of Vehicles

Precise localization is a fundamental element of automated driving. Global Navigation
Satellite Systems (GNSS) have become common tools to determine the precise location of
vehicles and other road participants. Within the localization area of the framework, we
evaluate four indicators (see Table 2) that provide insight into the availability and precision
of the localization achievable by the GNSS at the given infrastructure segment.

Most GNSS techniques work with as few as five satellites. However, the redundancy
is important for a number of reasons. First, the large number of satellites increases GNSS
availability by providing service even if local obstructions block a significant part of the
sky—a situation very common, especially in urban environments. Second, as demonstrated
in [19], the performance of a three-constellation system, which sees only satellites more than
32 degrees above the horizon is equivalent to a single-constellation system in an open-sky
scenario. Third, GNSS systems are developed independently, which allows performing
cross-checking between constellations, enabling integrity guarantees [20]. Therefore, the
average number of satellites as well as the number of available constellations a GNSS
receiver can see when driving along the evaluated road segment are important indicators
impacting the availability and performance of the localization service.

The values of the GNSS lateral localization error indicator corresponding to individual
scores were derived using a methodology described in [21]. The lateral localization error
below 0.1 m means that the vehicle is capable of determining its lane on a local road reliably
(assuming a lane width of 3 m and a curvature of 20 m). If the lateral localization error is
below 0.2 m, the vehicle is capable of determining its lane reliably on a highway (assuming
a lane width of 3.6 m and speed of up to 137 km/h). If the lateral localization error is above
0.2 m, the vehicle might not be capable of determining its lane reliably.

It is worth noting here that the precision of the map also has to be factored in when
evaluating the lateral localization precision. We assumed an equal error budget for the
GNSS and the map.

2.3. Object Detection

The distance and reliability of object detection play a crucial role in automated driving
as it is one of the key inputs into the CAV’s decision-making. Currently deployed CAVs
use a multitude of sensors for object detection and advanced algorithms to classify those
objects and assign them meaning. Most commonly used technologies use Light Detection
and Ranging (LIDAR), Radio Detection and Ranging (RADAR) and camera sensors.
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These sensors are usually embedded in the vehicle, but the infrastructure too can
support the object detection either by transmitting information from sensors deployed
along the road to the CAVs, hence extending their sensing capability beyond the onboard
sensors’ line-of-sight, or by its geometry that accounts for the limitations of CAV sensing
technologies.

An important attribute of the road infrastructure affecting the ability of CAV to detect
other vehicles in time and prevent potentially dangerous situations, especially in an urban
setting, is Intersection Sight Distance (SD). According to the methodology presented in the
study [12], the required intersection sight distance along a major road SD for an automated
combination truck can be computed as:

SD = 0.278 Vdtc − Vd(tR1 − tR2)

3.6
, (1)

where tc is an acceptable time gap to enter the major road, Vd is the design speed of the
major road in km/h, tR1 is the reaction time of a conventional vehicle in seconds, tR2 is
the reaction time of automated vehicle in seconds.

The critical gaps for various vehicle types (passenger car, single-unit truck, combina-
tion truck) and maneuver types (left turn, right turn, crossing) are provided in the American
Association of State Highway and Transportation Officials Green Book [22]. From the road
design point of view, we consider the worst-case scenario of a combination truck trying
to perform a left turn at a STOP-controlled intersection. In such a scenario, the value of tc
is 11.5 s.

Dixit [23] estimated the value of an automated vehicle’s reaction time to 0.8 s, while
Guzek [24] provided the human driver’s reaction time on the brake pedal in the range
between 1.2 and 2.2 s. We assume the difference in human-driven and automated vehicle’s
reaction times of 1 s, a reasonable assumption commonly used in many studies, e.g.,
Schoettle [25]. However, it is worth noting that some studies, e.g., Rossi [26], point out
that in the case when a driver has to take over the driving tasks from a Level 4 automated
vehicle, the reaction time of the driver is, in fact, much larger than in the case of a manually
driven vehicle. We do not consider this phenomenon for sight distance calculations.

In Table 3, we present the values of SD calculated for a passenger car, single-unit truck
and combined truck for speeds of 50 and 90 km/h, which are the usual speed limits for
urban roads and rural roads in Europe, respectively. It is worth noting here that the speed
limit is usually set in the range of 80–90% of the road’s design speed. Therefore, Vd of
62.5 and 112.5 km/h was considered for computing the indicator values for urban and
rural roads, respectively. A highway scenario has not been considered as the maneuvers
performed on the highway are different from the ones performed on urban and rural roads,
i.e., no left turns or crossings are allowed there.

The infrastructure segment that satisfies the SD criteria for the combination truck
is assigned a score of 1 in the framework. An intersection that satisfies the criteria for a
single-unit truck is assigned a score of 0.75. An intersection that satisfies the minimum SD
criteria for a passenger car is assigned a score of only 0.25 since its ability to provide safe
maneuvering space to any larger vehicle type than a passenger car might be severely limited.

The indicator “Infrastructure for remote sensor sharing available” refers to the ability
of the infrastructure to sense the traffic situation at the assessed road segment and share
its sensor data with the CAVs heading to that segment before they are able to detect
the situation with their onboard sensors. An example might be a pedestrian crossing
equipped with a radar sensor and Infrastructure-to-Vehicle communication capability to
share information about the presence of pedestrians in an area where the CAV’s sensor
detection range might be limited due to obstacles or road geometry.

2.4. Quality of Maps

Just as conventional vehicles, CAVs use outdoor structured roads whose basic at-
tributes such as location and geometry are a priori known. These static road data can be
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pre-created and provided to the vehicle. In combination with GNSS, inertial navigation
and odometry allow the vehicle to perform high-precision (centimeter level) positioning in
real-time, reducing the complexity and cost of the CAV’s systems significantly [27]. Once
the vehicle establishes its precise position on the road, it can use the a priori information
from the map to make decisions about maneuvers and navigation, some of which would
not be possible relying only on the sensor-based road model recognition methods [28].
Therefore, high-precision maps are considered one of the core enabling technologies for
automated driving.

Obviously, the available maps come with different levels of precision and provide
different richness of additional information about the infrastructure, ranging from the
provision of basic static data on road geometry to highly dynamic high-definition maps
updated in real-time and reflecting the current traffic situation.

Table 4 presents the indicator for the Quality of maps framework area with suggested
map attributes and corresponding scores.

It is worth noting here that for the purpose of assessment, the score of a road segment
without a fully updated map should correspond to the real state at the time of the data
collection, i.e., if the traffic signs on the map are not up-to-date, the segment should be
scored as there were no traffic signs on the map available at all.

2.5. Machine-Readable Signage

Road segments where either no high-definition map is available or where a mixed
traffic of conventional and CAV traffic is expected, CAVs need to detect and recognize
road signage using their own sensors. Numerous studies, e.g., [29,30], conclude that the
features of road markings that are key for their recognition by human drivers, such as
retroreflectivity and contrast, are also important in the case of marking detection by CAVs.

Table 5 presents the assessment framework and indicators proposed for the Machine-
readable signage area of infrastructure assessment.

We consider two indicators within this assessment area—precision of horizontal
signage detection and precision of vertical signage detection by an automated detection
system. We detail the CNN used to evaluate the precision of vertical signage detection
indicator from the collected sample data in Section 4.2. In this article, we will consider
only vertical marking (vertical signs). Road traffic participants will also be included in the
neural network training process.

Waykole et al., in [31], conducted an extensive literature review on lane detection and
tracking algorithms for advanced driver assistance systems. The authors conclude that
the lane detection and tracking efficiency rate under dry and light rain conditions is near
99% in most scenarios. Therefore, we adopt this value of precision for the infrastructure
segment to be scored by a score of 1. To achieve a score of 0.5, a segment of infrastructure
has to provide road markings clear enough to allow precision of detection in the range
between 90% and 99%, which is equivalent to a precision of a lane detection and tracking
system operating during the night at isolated highways. When the precision of horizontal
signage detection is between 80% and 90%, the infrastructure markings only provide a
performance equivalent to a vanishing point detection system operating on unstructured
roads. Such an infrastructure segment is awarded a score of 0.25.

Due to the high variation in detection results in different testing environments, the
evaluation of the precision of horizontal signage detection is a complex problem on its own,
requiring an extensive definition of test scenarios, which is out of the scope of this paper.
Therefore, we refer the interested reader to the relevant works summarized in [31] and
relevant automotive standards such as [32] for further details on measurement methodology
and test settings.

30



Sensors 2022, 22, 7315

3. Data Collection and Processing

In this section, we interpret the technical parameters of used data systems and describe
the parameters of positioning and the connectivity dataset. We also describe the system for
the collection of image data.

3.1. Connectivity and Positioning Data

To collect the connectivity and positioning data, a Mikrotik LtAP LTE6 wireless access
point and a Single-Board Computer (SBC) were used. LtAP LTE6 is a compact wireless
access point with built-in GPS. LTE connectivity was enabled by the Mikrotik R11e-LTE6
LTE modem connected to miniPCIE slot integrated in the Mikrotik LtAP LTE6 access point,
as shown in Figure 1. The used LTE modem belongs to the LTE CAT6 category and provides
a maximum download speed of 300 Mb/s and an upload speed of 50 Mb/s. The collection
system block diagram is shown in Figure 1.

For LTE transmission, an external 3dB wideband monopole LTE antenna with a
resonant frequency from 698–2690 MHz and an input impedance of 50 Ω was used. For
GPS reception, a Mikrotik ACGPSA external 26 dB, 50 Ω antenna with a resonant frequency
of 1575.4 MHz was used. To ensure effective communication, we installed both antennas
on the top of the testing vehicle’s roof, as illustrated in Figure 2.

Figure 1. Collection system block diagram [33].

Figure 2. Antenna placement view.

3.1.1. Positioning Data

The used device supports GPS, GLONASS, BeiDou and Galileo GNSS standards. The
following telemetry of GNSS was collected as is shown in Figure 3—GPS coordinates,
number of satellites used, Dilution of Precision (DOP) and fix quality.
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Figure 3. Block scheme of the position dataset.

The Dilution of Precision (DOP) is an important factor in determining positional
errors in a GPS system. It is the collection of satellites’ geometry constellation from which
signals are actually received. Basically, four satellites are the minimum required value
to determine a complete positional fix in three dimensions. DOP is calculated using
geometrical correlations between the position of the GPS receiver and the positions of
the GPS satellites. The exact locations of these satellites relative to the receiver have an
effect on the positional error. If the GPS receiver communicates with satellites spread
throughout the sky, the calculated position will be more accurate, and the DOP value will
be low. However, when satellites are close to each other, the calculated position will be less
accurate, and the DOP value will be high [34,35]. In the following table, the DOP value
rating is shown (Table 6).

Table 6. DOP value rating [34].

DOP Value Rating

<1 Ideal
1–2 Excellent
2–5 Good
5–10 Moderate
10–20 Fair
>20 Poor

The following metrics are used to describe DOP. Position Dilution of Precision (PDOP),
Horizontal Dilution of Precision (HDOP), Vertical Dilution of Precision (VDOP) and Time
Dilution of Precision (TDOP).

PDOP describes the number of satellites used that are spread in the sky. The more
satellites directly above GPS receiver are used, the lower the PDOP value is. The effect of
DOP on the horizontal position is described by HDOP. The HDOP and horizontal position
(latitude and longitude) are better when more GPS satellites are used. The effect of DOP on
the vertical (altitude) position is referred to as VDOP. The time difference between the GPS
satellites’ and the GPS receiver’s internal clocks are represented by TDOP. A low TDOP
value represents more accurate time synchronization. Because DOP metrics are derived
from convergence, they are not independent. For example, a high TDOP value represents
worse clock synchronization, and it has an effect on positional error [34,36,37].

The type of signal or technique used by the GPS receiver to establish its location is
represented by the GPS fix status telemetry. The number of GPS satellites and techniques
used by the GPS receiver are used to determine the GPS fix type technique. In general, the
fix quality rating is given by numbers ranging from one to five, as Table 7 shows. The fix
quality number represents the type of GPS technique that was used to determine location.
Each technique has a different accuracy. The used GPS technique can be GPSFix, Differential
GPS (DGPS), Precise Positioning System (PPSFix), Fixed Real Time Kinematic (RTK Fixed)
or Float Real Time Kinematic (RTK Float). The GPSFix describes a basic GPS technique
or Standard Positioning Service (SPS). SPS is a standard service provided to any user
worldwide, without qualification or restrictions. Based on US security interests, the accuracy
of this service is determined by the US Department of Defense [34,37]. Unlike GPSFix, the
DGPS technique utilizes a network of ground stations used to broadcast the divergence
between indicated position by GPS satellites and the real known position. PPSFix stands
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for most precise localization technique provided by GPS. Only the Federal Government
and military have access to this service, which is encrypted. The RTK Fixed technique is
used to optimize position accuracy calculated by DGPS. The technique is based on carrier
phase measurement of the GPS, GLONASS, Galileo. Thanks to high accuracy, this technique
is used for geodetic measurement purposes. On the other hand, RTK Float is a similar
technique as RTK Fixed but with low accuracy. The accuracy is decreased by skipping the
phase initialization process, which increases the speed of position calculation [34,38,39].

Table 7. GPS FIX status enumeration and technique accuracy [34,38,39].

FIX Quality Technique Accuracy (m)

1 GPSFix 15
2 DGPS 0.1
3 PPSFix <0.03
4 RTK Fixed 0.01–0.02
5 RTK Float 0.75–0.2

3.1.2. Connectivity Data

The following telemetry of LTE communication was collected, as is shown in Figure 4.
Communication latency, bandwidth, Signal Interference Noise Ratio (SINR), Received Sig-
nal Strength Indicator (RSSI), Reference Signal Received Quality (RSRQ), Reference Signal
Received Power (RSRP), E-UTRA Absolute Radio Frequency Channel Number (EARFCN),
Cell Identification (Cell ID), Channel Quality Indicator (CQI) and Rank Indicator (Ri).

Figure 4. Block scheme of the connectivity dataset.

Our priority was to emulate the Cellular-V2X (C-V2X), as there is currently no DSRC-
and VLC-enabled communication infrastructure available along the investigated route. We
set up SBC to send communication packets periodically to a virtual server. We chose a
packet length of 300 bytes and period of 100 ms since these values are commonly used to
represent a transmission of CAM [40]. The virtual server re-sent the packet back to SBC, as
is shown in Figure 5.

Each sent and received packet was marked with a time stamp by Network Time
Protocol. The two-way latency communication (Δt) was calculated depending on packet
transmit time (ttx) and packet received time (trx), as shown in equation:

Δt[ms] = trx − ttx . (2)

Signal Interference Noise Ratio (SINR) represents the signal quality based on the
strength of the wanted signal compared to the unwanted interference and noise. The
SINR is a metric used in cellular networks to determine if a particular frequency resource is
acceptable for maintaining a communication link. The network employs SINR to track radio
link and handover failures. In systems that employ multiple access technologies based on
frequency division, the scheduler can take SINR into account while allocating frequency
resources [41]. It is a signal quality metric that is established by the User Equipment (UE)
manufacturer instead of the 3GPP specifications. The basic SINR mathematical expression
is shown in Equation (3):
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SINR[dB] =
S

I + N
, (3)

where S stands for the strength of the usable signals. I stands for interference power of
signals or channel interference signals from other cells. N stands for background noise,
which is proportional to measurement bandwidths and receiver noise coefficients. Table 8
shows the standard SINR values and signal quality category.

Figure 5. Emulated CV2X Mode 3 communication scheme.

Table 8. Performance indicator standards for SINR [42].

Range (dB) Category

10 to 30 Excellent
3 to 10 Good
0 to −3 Fair

−20 to −3 Poor

Higher SINR values can affect the spectral efficiency as it enables the receiver to decode
a higher Modulation Coding Scheme (MCS). To provide the best possible User Experience,
the network operator attempts to optimize SINR at all locations, either by transmitting at a
greater power or by avoiding interference and noise [43].

SINR optimization can aid in achieving higher cell capacity by allowing higher QAM
modulation, which results in greater peak data rates, fewer missed calls, and an overall
better quality of user experience [44].

Received Signal Strength Indicator (RSSI) is an LTE metric that states how much overall
wideband power measured in symbols have been received, including all interference and
thermal noise. UE does not send RSSI values to eNodeB. It may be easily calculated using
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RSRQ and RSRP, which are instead reported by UE. The value is measured in dBm. RSSI is
defined as [45]:

RSSI[dBm] = S + I + N , (4)

where S, I and N are the same parameters as in the SINR equation.
Reference Signal Received Power (RSRP) and Refence Signal Received Quality (RSRQ)

are two main key signal level and quality indicators for current LTE networks. When
a UE goes from cell to cell in a cellular network and conducts handover, it performs a
measurement of the reference signal strength and quality of serving and neighbor cells for
successful execution of the handover process. In essence, it is the power of the received
signal from eNodeB by UE [42]. Based on RSRP, it is possible to compare the strengths
of signals from individual cells in LTE networks. The measurement process is shown
in Figure 6.

Figure 6. RSRP measurement.

Figure 6 shows eNodeB and UE, which receive the reference signal from the eNodeB.
The closer the UE is to the eNodeB location, the stronger the received signal. The reporting
range of RSRP is defined from −140 to −44 dBm with 1 dB resolution [42]. Table 9 shows
the standard RSRP values and signal quality category.

Table 9. Performance indicator standards for RSRP [46].

Range (dBm) Category

−80 to −44 Excellent
−90 to −80 Good
−100 to −90 Fair
−110 to −100 Poor
−140 to −110 Very Poor

The RSRP calculation is shown in Equation (5), where N stands for Number of PRBs
(Physical Resource Blocks) [42,47,48].

RSRP[dBm] = RSSI − 10 ∗ log(12 ∗ N). (5)

RSRQ telemetry parameter is the proportion of RSRP to wideband power. RSRQ
represents signal quality received by the UE. The signal, noise, and interference received
by the UE also have an effect on the RSRQ [40,42]. The following equation [42] is used for
RSRQ calculation, where N stands for Number of Physical Resource Blocks (PRBs).

RSRQ[dB] = N ∗ RSRP/RSSI, (6)

The reporting range of RSRQ is defined from −3 to −20 dB. Table 10 shows the
standard RSRQ values and signal quality category.
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Table 10. Performance indicator standards for RSRQ [42].

Range (dB) Category

−10 to −3 Excellent
−12 to −10 Good
−14 to −12 Fair
−17 to −14 Poor
−20 to −17 Very Poor

Instead of reporting raw carrier frequencies in MHz, LTE base stations use the ETSI
E-UTRA Absolute Radio Frequency Channel Number (EARFCN) industry standard to
report channel numbers. In LTE technology, EARFCN determines the carrier frequency
in the uplink and downlink, the range of which is from 0 to 65,535. The equations below
express the relationship between EARFCN and its uplink/downlink carrier frequency [49].

Fdownlink = FDL-low + 0.1(NDL − Noffs-DL), (7)

Fuplink = FUL-low + 0.1(NUL − Noffs-UL), (8)

where NDL stands for downlink EARFCN, NUL for uplink EARFCN, Noffs-UL offset used to
calculate uplink EARFCN, Noffs-DL offset used to calculate downlink EARFCN. The values
FUL-low, FDL-low, NDL, NUL, Noffs-DL, Noffs-UL are given in [49] by ETSI.

For unique identification of LTE components, the identification numbers are used.
As shown in Figure 7, we have three main key identifiers in the LTE cell. The E-UTRAN
Cell Identifier (ECI) represents the identity of a cell within a Public Land Mobile Network
Identifier (PLMN). ECI consists of 28 bits where the first 20 bits represent the eNodeB ID
number and the last 8 bits are stated for cell ID. The sector ID identifies a particular antenna
in cell sectors [50,51].

The code rate and modulation are defined by MCS in the LTE. MCS specifies the
maximum number of usable bits that can be transferred per Resource Element (RE), and
it is affected by radio channel quality. Table 11 shows the CQI-MCS mapping for LTE rel.
12 and beyond. The better channel quality is represented by a higher MCS, and the more
useful data can be transmitted. In other words, MCS depends on error probability. In LTE,
a Turbo encoder with a 1/3 coding rate is employed. The actual ratio of usable bits to total
transmitted bits (useful bits + parity bits) is dependent on the quality of the radio link. The
range of coding rates is 0.0762 to 0.9258.

Figure 7. Description of the E-UTRAN identifiers.
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Table 11. CQI-MCS mapping for LTE rel.12 and beyond [52].

CQI Modulation Code Rate Bits per RE

1 QPSK 0.0762 0.1524
2 QPSK 0.1885 0.377
3 QPSK 0.4385 0.877
4 QPSK 0.3691 1.4764
5 QPSK 0.4785 1.914
6 QPSK 0.6016 2.4064
7 16QAM 0.4551 2.7306
8 16QAM 0.5537 3.3222
9 16QAM 0.6504 3.9024
10 64QAM 0.7539 4.5234
11 64QAM 0.8525 5.115
12 64QAM 0.6943 5.5544
13 64QAM 0.7783 6.2264
14 64QAM 0.8634 6.9072
15 64QAM 0.9258 7.4064

Radio link quality is estimated based on the Channel Quality Indicator (CQI). The CQI
parameter is reported by UE to the eNodeB. The CQI measurement is based on the Cell
Reference Signal (CRS) [52]. Better radio condition is represented by higher CQI and the
higher coding rate, as is shown in the table below. Bits per RE column should be multiplied
by the number of data streams to obtain a final value in case of MIMO usage [52].

3.1.3. Collection of Image Data

For image data collection, the OmniVision OV10640 camera system (OmniVision,
Santa Clara, CA, USA) was used. This sensor uses a proprietary technology, which delivers
an image with a very high dynamic range (HDR). Furthermore, the sensor is encapsulated
in a compact package, which can be easily deployed for a wide range of automotive
applications (see Table 12). A total of four cameras were used on the bus (one on the
windshield recorded the area in front of the bus, one on the rear window recorded the area
behind the bus, and one on each side recorded the area on the sides of the bus).

Table 12. Specifications of OmniVision OV10640 camera system.

Camera System Parameter Specification

Resolution 1280 (H) × 1080 (V)
Mega Pixels 1.3 MP

Supply Voltage 1.7 to 3.47 V
Frame Rate 60 fps
Pixel Size 4.2 μm × 4.2 μm

Dynamic Range 120 dB
Sensitivity 8.4 V/lux-s

SNR 41.5 dB

Three cameras were used in the collection of image data. Two cameras were placed on
the sides of the bus and one in the middle of the bus above the windshield (see Figure 8). The
cameras located on the sides of the bus had a standard horizontal field of view (52 degrees).
The middle camera capturing objects in front of the bus was a fisheye (horizontal field of
view of 194 degrees).

Furthermore, the sensor is capable of sampling the recorded scene simultaneously
instead of sequentially, which helps to minimize the distortion caused by motion.

The image dataset contains classes representing traffic signs and also classes repre-
senting road users, as is shown in Figure 9. Table 13 shows all the classes that our image
dataset contains. The first column contains the number of classes, and the second column
shows the specification of the given class.
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Figure 8. Image data collection.

Figure 9. An example of an image dataset.

Table 13. The classes in the image dataset.

Number of Class Class Specification
The Overall

Number of Data
Training Dataset Testing Dataset Validation Dataset

1 Ahead only 1670 1003 500 167
2 Turn left ahead 1670 1003 500 167
3 Turn right ahead 1670 1003 500 167
4 The one-way traffic 1670 1003 500 167
5 The stop sign 1670 1003 500 167
6 Give away 1670 1003 500 167
7 The priority road 1670 1003 500 167
8 The pedestrians 1670 1003 500 167
9 The cyclists 1670 1003 500 167
10 The motorbikes 1670 1003 500 167
11 The scooters 1670 1003 500 167
12 Road closed 1670 1003 500 167
13 Passing prohibited 1670 1003 500 167
14 No entry 1670 1003 500 167
15 Speed limit 1670 1003 500 167
16 No right turn sign 1670 1003 500 167
17 No left turn sign 1670 1003 500 167
18 Two-way traffic ahead 1670 1003 500 167
19 The passenger cars 1670 1003 500 167
20 The Vans/trucks 1670 1003 500 167
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4. Methodology

In this section, we describe the processing of connectivity and positioning data and
processing of image data using the proposed CNN.

4.1. Processing of Connectivity and Positioning Data

The data collection process was repeated four times on different days and at different
time. Data processing was divided into three parts, as illustrated in Figure 10. In the first
part, data pre-processing, the data were prepared for processing. Data were collected as
text files (.txt), and it was necessary to convert them to Comma-Separated Values (CSV)
and separate them. The conversion process and data separation was performed by a
python script.

The pre-processed data served as an input to the processing stage. In this stage, the
latency data were averaged because latency was measured every 100 ms, and other data
were collected every 1000 ms. After the averaging process, all data were synchronized on
the basis of a time stamp that was obtained via Network Time Protocol (NTP) during the
data collection. A weighting coefficient was assigned to examine parameters on the basis
of which it is possible to represent the quality of the digital infrastructure parameters. In
the data post-processing stage, data were concentrated, evaluated, and visualized.

Figure 10. Data processing block diagram.

4.2. Processing of Image Data Using CNN

For traffic sign recognition, we proposed CNN, which is detailed in Figure 11 and
Table 14. We selected CNN since, depending on the used hardware, it has a potential to
process data in real-time. Hence, it can serve as a basis for the future development of an
automated infrastructure readiness assessment system operating in real-time.
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Figure 11. Proposed architecture of CNN.

Table 14. CNN layers.

Layers Description of Layers

Conv2D_1 32 filters with dimensions 5 × 5, the output is a feature map with dimensions 32 × 32 × 32
Conv2D_2 32 filters with dimensions 5 × 5, the output is a feature map with dimensions 32 × 32 × 32

MaxPooling_1 Filter size 2 × 2, the output is a feature map with dimensions 32 × 16 × 16
Dropout_1 50% neuron shutdown, the output is a 32 × 16 × 16 feature map
Conv2D_3 64 filters with dimensions 3 × 3, the output is a feature map with dimensions 64 × 16 × 16
Conv2D_4 64 filters with dimensions 3 × 3, the output is a feature map with dimensions 64 × 16 × 16

MaxPooling_2 Filter size 2 × 2, the output is a feature map with dimensions 32 × 8 × 8
Dropout_2 50% neuron shutdown, the output is a 32 × 8 × 8 feature map
Flatten_1 4096 neurons
Dense_1 256 neurons

Dropout_3 50% neuron shutdown
Dense_2 20 neurons

The CNN is divided into two parts, the feature learning part (convolutional part) and
the classification part. The convolution part is used for data processing. The classifica-
tion part serves to transform the format of the processed data and to classify the output.
Figure 11 shows the block diagram of the proposed CNN. This proposed CNN consists of
12 layers (four 2-D convolutional layers, two MaxPooling layers, three layers for turning
off neurons (Dropout) and 3 fully connected layers.

As discussed in [53], the image data that are corrupted by various noises impact the
resulting performance of the proposed neural network. For this reason, the noisy image
data are recovered with the pre-processing step (using various filters). This step improves
the overall performance of the proposed neural network.

The first and input layer is the convolution layer. The input is represented by images
with dimensions of 32 × 32 pixels. At the input of the layer, we will therefore have
32 × 32 neurons (1024 arranged in a square matrix). Each pixel in the image is represented
by an 8-bit number, ranging from 0–255 for each color. Sometimes it also uses a black and
white image, which is represented by one channel in the same range, where 0 represents
white and 255 black. In our case, each pixel is represented by three values from the RGB
palette. Together, these values form three two-dimensional matrices, which together form
the image volume. In this layer, we use 32 filters with dimensions of 5 × 5. We also use
the padding parameter set to “Same”, which will cause the output feature maps to be the
same size as the input image. The output from this layer will be 32 (32 × 32 feature maps
for each input image).

The second layer is the convolutional layer, which includes 32 feature maps with
dimensions of 32 × 32. It contains 32 filters with a window size of 5 × 5. It also contains a
parameter that maintains the same dimensions of the output as the input. The output of
the layer will be 32 × 32 × 32 feature maps for each image. The third layer is a merging
layer (MaxPooling layer) with a filter size of 2 × 2 and a maximum value criterion. This
causes the dimensions of the 32 × 32 × 32 input features to be halved in the output. The
number of feature maps remains the same. In the end, we obtain 32 feature maps with
dimensions 16 × 16. The fourth layer is dropout with a parameter of 0.5, which means
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that 50% of the random neurons at the input will be turned off. This layer preserves the
previous dimensions of the output. The fifth and sixth layers are convolutional, which
includes 32 feature maps with dimensions 16 × 16 and 64 filters with dimensions 3 × 3,
respectively. The seventh layer is a merging layer with a filter size of 2 × 2 and a maximum
value criterion. The dimensions of the output will be twice as small as the input, i.e.,
64 × 8 × 8 with 64 feature maps. The eighth layer is a dropout with a parameter value of
0.5, which means that 50% of the random neurons on the current layer will be turned off.
The ninth layer is flattened, which transforms feature maps into fully connected layers.
This layer will contain 8 × 8 × 64 neurons, which is a total of 4096 neurons and, therefore,
also 4096 outputs. The tenth layer is Dense, which represents the classic fully connected
layer. It contains 256 neurons. The last layer is the Dense layer, which classifies the output
from the network. It contains 20 neurons (20 classes). Each neuron represents a given class.
In this layer, we use the sigmoid activation function, which classifies us with the probability
that a given neuron is activated, thus determining to which class it belongs.

5. Experimental Results

In this section, the performance evaluation of the proposed method based on the
created dataset is discussed.

5.1. Results for Connectivity and Positioning Data

Analyzed connectivity data are interpreted on the maps with the heat map route,
which shows the analyzed route in the city. Figure 12 shows the communication latency on
the analyzed route. The blue color represents the latency values less than or equal to 9 ms,
and the red color represents values greater than or equal to 800 ms.

Figure 12. Example of latency data collection.

As we can see, the latency value is higher in urban areas than in suburban areas.
The average latency value in urban areas was 83 ms, and in a suburban area, 42 ms. We
found spots where the latency was higher than 800 ms in an urban area. These places are
interpreted by red color, and they are located mainly at intersections with heavy traffic or
near points of interest. The latency value in these places reached the value of 1500 ms. For
the deployment of CCAM, it is necessary to support telecommunication infrastructure in
these red areas. Please note that during the data collection campaign, no considerable traffic
jams or road congestions occurred along the investigated route. In the case of extremely
congested traffic, the communication performance is expected to drop even further.
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The number of GNSS satellites used, i.e., the number of visible satellites, ranged from
14 to 22. The maximum number of visible satellites was reached in sparsely-built areas
with a clear vision of the sky. In Figure 13, the blue color represents the usage of less
than or equal to 10 satellites. The red color represents the usage of more than or equal to
20 satellites. The number of visible satellites was lower in dense urban areas and in the
suburban area too.

The results for the Signal Interference Noise Ratio are shown in Figure 14. This map
interprets the coverage quality of the 4G telecommunication infrastructure. The blue color
represents SINR values less than or equal to −15 dB, and the red color represents SINR
values greater than or equal to 32 dB. As shown in Figure 14, the better coverage is in the
suburban area compared to the urban area. In the urban area, there were spots in which
the SINR value was −15 dB, which is also related to poor connectivity parameters.

Figure 13. Example of satellite numbers used.

Figure 14. Example of Signal Interference Noise Ratio.

As can be seen in Figure 15, RSRP values less than or equal to −120 dBm are rep-
resented by blue. RSRP values higher or equal to −40 dBm are represented by red. The
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received power of the reference signal is lower in the suburban area compared to the
urban area. It is caused by the fact that there are many eNodeBs in the city, which ensure
handover and thus provide higher power of the reference signal. On the other hand, in the
suburban area, there is a low number of eNodeBs, which reduces the received power of the
reference signal.

The received quality of the reference signal ranges from −15 to −5 (dB). As can be
seen in Figure 16, in an urban area at an intersection with heavy traffic, the received quality
of reference signal is lower than in other areas. The blue color represents an RSRQ value
lower than or equal to −15 dB, and the red color represents an RSRQ value greater than or
equal to −5 dB.

Figure 15. Example of Reference Signal Received Power.

Figure 16. Example of Reference Signal Received Quality.

Fades in received reference signal power are caused by larger communication distance
and resulting lower signal power from the individual cells in the 4G network, which is
spread over the area. Near the eNodeBs, the quality of the received reference signal was
−5 (dB), which represents a better condition of the connection.
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5.2. Results for Image Data

The inputs to the proposed CNN were image data of size 32 × 32 × 3. The model was
trained on 30 epochs. In the training process, it is important to find the point where the
network gives us the best results. If we exceed this threshold, the network learns too much
detail, which means that the success on the validation or test model decreases (overtraining
of neural network). On the other hand, if we stop learning too early, the network will be
untrained. For this reason, we use checkpoints and also dropout layers, which improve our
model. In the figure below, can be seen how we split the data into train, validation, and
testing. In our work, we use this proportion, but it can be changed as per the requirement.
To build CNN for traffic sign classification, the Keras deep learning framework was used.

Each class contains 1670 images. The dataset was divided into training, testing and
validation parts in the ratio 60:30:10, as is shown in Figure 17. This means that 60% of
images were used for training data, 10% for validation data and 30% for test data. The size
of each animal image was 32 × 32 pixels.

Figure 17. Division of the image dataset (training data, test data and validation data).

The training set and the validation set were used, respectively, to train and optimize
the model. The test set was used to check how the model performs on unseen data. As
can be seen in Figure 18, precision of 99.7% on our training set (blue line) was obtained.
Please note that this precision is very similar to the results presented by other works, such
as [54,55].

Figure 18. Training and validation precision.

Figure 19 demonstrates the confusion matrix. The rows of the confusion matrix
represent the actual class, while the columns of the confusion matrix represent the predicted
class. The values along the main diagonal represent images that correctly classified images
to be the same class. The correctly classified images across all classes are used to define
the classification accuracy. In other words, it is the ratio of the sum of the correctly
labeled images to the total number of images in the test dataset. In the case of traffic sign
classification, the precision was greater than 99%. On the other hand, in the case of the
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classification of traffic participants, the precision was 98.4% for pedestrians, 85.5% for
cyclists, 86.4% for motorbikes and 96.4% for scooters (see Table 15).

Figure 19. Confusion matrix.

Table 15. Results of image classification.

Number of Class Precision (%) Recall (%) F1 Score (%)

1 99.8 100 99.9
2 100 100 100
3 100 100 100
4 100 100 100
5 100 100 100
6 100 100 100
7 99.6 100 99.8
8 98.4 97.8 98.1
9 85.5 85.2 85.3
10 86.4 87.4 86.9
11 96.4 96.2 96.3
12 99.6 99.8 99.7
13 100 99.6 99.8
14 99.6 100 99.8
15 100 99.8 99.9
16 100 100 100
17 100 100 100
18 100 99.6 99.8
19 100 100 100
20 100 100 100

6. Discussion and Conclusions

The result of our research is a framework that serves to assess the state of physical and
digital infrastructure readiness for CCAM. The core of the research is a dataset that can
be employed for further research on the topic. Our results can serve as a basis for more
effective planning of infrastructure development from the point of view of readiness for
CCAM. The main goal of the connectivity and positioning data metering is research on the
performance of new generation networks and localization systems for CCAM readiness.
As part of this research, we mapped and analyzed the urban and suburban areas. Despite
the fact that the analysis and mapping were carried out in different time frames and days,
we found underdimensioned areas on the investigated route. The main problem of data
communication analysis is the latency. As we described in Section 5.1, we found the critical
places in urban areas from the point of view of latency. These places are mainly located
at intersections with heavy traffic or near points of interest. A possible solution to high
latency is to add microcells to critical places. On the one hand, adding microcells can
not only lower the latency, but it can also increase the performance of telecommunication
networks and increase coverage. On the other hand, this solution comes with increased
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infrastructure costs. The best solution for accelerating the implementation of CCAM is the
deployment of 5G networks. Currently, 5G networks are not widely deployed, and they
are mainly located in metropolitan areas and capital cities in some designated locations.
Analysis of the performance of the 5G network from the point of view of CCAM readiness
will be our future work. The issue of localization is dense areas with large buildings and
trees. It affects the number of visible satellites, which also has an impact on the accuracy of
localization. A possible solution is to use 5G networks in conjunction with GNSS. This can
improve the better localization accuracy in dense urban areas. Using GPS, digital maps
and neural networks, the vehicle can recognize the direction of travel, speed, lane detection
and traffic signs. By combining neural network, GPS data and digital maps, it is possible to
create a reliable system that could reliably recognize traffic signs.

The problem of traffic sign recognition in order to create an automated system was
solved using the proposed neural network. The proposed system opens up new possibilities
for further research in our future work. The automation of the traffic sign recognition system
is becoming increasingly necessary for its use in road traffic. The example of traffic signs
classification using CNN is shown in Figure 20. When the “Speed limit” symbol is shown
to the camera system, the trained model identifies it and classifies the traffic sign name as
“Speed limit”. Classifications and predictions are made in very less time (almost real-time),
which benefits drivers. Although the classification of traffic signs has many advantages,
there are also some difficulties. For instance, if the traffic sign is covered by trees or any
billboard on the side of the road, then it can cause inaccurate traffic sign detection and
classification. It may also happen that the vehicle is cruising so fast that the system does
not have enough time to correctly recognize the traffic sign. These situations can be very
dangerous and lead to traffic accidents.

Figure 20. Example of traffic sign detection and classification.

Various environmental constraints, including lighting, traffic sign distance (the sign is
too far away), or shadow, can significantly affect the accurate detection and classification of
traffic signs. Therefore, further research in this area is needed.

One of the directions that require further research is traffic light detection, which the
industry continues to develop at an ever-increasing pace. Notable examples in this area
include recent developments made by several major automotive industry players, whose
vehicles already include systems based on either DSRC or image processing for traffic light
color recognition and driver alerting.

In our future work, we plan to improve the precision of the proposed neural network
for the recognition of traffic signs. We also plan to create a line detection system for auto-
mated vehicle driving. The processing of collected data for the infrastructure assessment
was not completed in real-time. In our future work, we plan to introduce elements of
automatization to the assessment process with the ultimate goal of developing a fully
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automated system for infrastructure readiness assessment. The research presented in this
manuscript is an initial step towards this goal.

Another option for further research is to design a fully automatic road sign recognition
system that will work in real-time. This system will use the camera system on the vehicle
to detect and recognize traffic signs in real-time. In the event that this system is integrated
together with the GPS system, it is also possible to provide the driver with additional
practical information about the current restrictions within the current traffic situation on
the given road. Based on the comparison of data from GPS and the sign recognition system,
this system could warn the driver in the case of disregarding traffic signs. It is worth noting
here that the detection and correct classification of live objects is an extremely important
aspect of CAV operation. While being beyond the scope of this paper, we aim to incorporate
this aspect and address its challenges in our future work as well.
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Abbreviations

The following abbreviations are used in this manuscript:

ADS Automated Driving Systems
CAM Cooperative Awareness Messages
CCAM Cooperative, Connected and Automated Mobility
CAVs Connected and Automated Vehicles
CNN Convolutional Neural Network
CRS Cell Reference Signal
CQI Channel Quality Indicator
CV2X Cellular Vehicle-to-everything
DGPS Differential Global Positioning System
DOP Dilution of Precision
EARFCN E-UTRA Absolute Radio Frequency Channel Number
GNSS Global Navigation Satellite Systems
GPS Global Positioning System
HDOP Horizontal Dilution of Precision
LTE Long-Term Evolution
ODDs Operational Design Domains
PDOP Position Dilution of Precision
RF Radio Frequency
RI Rank Indicator
RSRP Reference Signal Received Power
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RSRQ Reference Signal Received Quality
RSSI Received Signal Strength Indicator
RTK Real Time Kinematic
SBC Single-Board Computer
SD Sight Distance
SINR Signal Interference Noise Ratio
SPS Standard Positioning Service
TDOP Time Dilution of Precision
UE User Equipment
VDOP Vertical Dilution of Precision
VLC Visible Light Communication
V2I Vehicle-to-Infrastructure
V2X Vehicle-to-everything
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Abstract: This paper presents an improved IoT-based system designed to help teachers handle lessons
in the classroom in line with COVID-19 restrictions. The system counts the number of people in the
classroom as well as their distribution within the classroom. The proposed IoT system consists of
three parts: a Gate node, IoT nodes, and server. The Gate node, installed at the door, can provide
information about the number of persons entering or leaving the room using door crossing detection.
The Arduino-based module NodeMCU was used as an IoT node and sets of ultrasonic distance
sensors were used to obtain information about seat occupancy. The system server runs locally on
a Raspberry Pi and the teacher can connect to it using a web application from the computer in the
classroom or a smartphone. The teacher is able to set up and change the settings of the system
through its GUI. A simple algorithm was designed to check the distance between occupied seats and
evaluate the accordance with imposed restrictions. This system can provide high privacy, unlike
camera-based systems.

Keywords: IoT-based system; IoT nodes; Raspberry Pi; Arduino-based module; COVID-19

1. Introduction

Following the COVID-19 outbreak in 2019, we have been facing different and difficult
challenges in all aspects of our lives. One of them is without a doubt the continuous full-
time educational process. Online education has its advantages, however, it cannot replace
full-time education and student skills gained from face-to-face experience and practice,
especially when it comes to education in technology and engineering. Various countries
have different approaches that are enabling full-time education and access to facilities for
students. Rules to reduce the maximum number of people in a classroom alongside social
distancing rules have been introduced widely. These two mentioned restrictions were
our primary motivation to propose an improved smart IoT-based system for detecting the
number of people and their distribution in the indoor environment (e.g., classroom, or any
type of room).

There have been a multitude of studies published in the area of detecting and counting
people in indoor spaces. Most of the proposed solutions are based on image processing
from cameras installed in the area. For example, Myint and Sein [1] proposed a robust
camera-based system which is able to estimate the number of people entering and exiting a
room. Their solution is based on Raspberry Pi and software using a pre-trained VGG-16
CNN model and an SVM classifier based on TensorFlow and the Keras library.

Another camera-based system for counting people using Raspberry Pi was proposed
by Rantelobo et al. in [2]. This system can distinguish between people entering or leaving
a room by performing image processing using background subtraction, morphological
transformation, and calculating the contour area of the image. The main advantage of
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this solution is that the system can run on cheap hardware such as Raspberry Pi. Similar
solutions relying on cameras and computer vision algorithms have been presented in [3,4].

Moreover, Hou et al. [5] presented a solution for social distancing detection based on
a deep learning model. The primary goal was distance evaluation between individuals to
mitigate the impact of the COVID-19 pandemic and reduce the virus transmission rate in
indoor spaces. The detection tool was developed to alert people to maintain a safe distance
from each other by processing a video feed from cameras used to monitor the environment.
A similar system was proposed by Sharma in [6]. This system helps people to ensure proper
social distancing in crowded places and highlights the violations of these norms in real
time. The proposed system is based on image processing. There are many more published
papers (e.g., [7,8]) solving the problem of social distancing using feeds from cameras and
computer vision [9,10].

The work presented in [11] proposed a large Convolutional Neural Network (CNN)
trained using a single-step model and You Only Look Once version 3 (YOLOv3) on Google
Colaboratory to process the images within a database and accurately locate people within
the images. The trained neural network was able to successfully generate test data, achiev-
ing a mean average precision of 78.3% and a final average loss of 0.6 while confidently
detecting the people within the images. Yet another work presented in [12] uses YOLO v3
and Single Shot multi-box Detector (SSD) to detect and count people. The authors analyzed
both methods and their comparison of the achieved results showed that the precision, recall,
and F1 measure achieved for SSD were higher than for YOLO v3. The main issue related
to camera-based systems involves privacy concerns, as data collected by cameras can be
misused for face recognition, thus revealing the identity of the individuals in the area [13].

On the other hand, there are multiple works for counting people or measuring social
distance which do not require the installation of camera systems. Among such systems,
a smart social distancing monitoring system based on Bluetooth and GPS was described
in [14]. In this system, an application can offer a solution for monitoring public spaces
and reminding users to maintain distance. The work presented in [15] is based on an
ultra-wideband radar sensor for a people counting algorithm. The proposed algorithm can
operate in real time and is able to achieve a mean absolute error of less than one person.
The system in [16] relies on Wi-Fi probing requests to count people in a crowd by taking
advantage of people’s smartphones.

Another way of counting people or measuring social distance could be using Internet
of Things (IoT) technology. The IoT can be described as a network of physical objects
(things) that are equipped with sensors, software, and other technologies to connect and
exchange data with other devices or systems via the internet or a local network. IoT
represents interaction between the physical and the digital world in its simplest form. An
IoT object in the world can be a simple sensor equipped with a communication interface or
a smart self-driving car equipped with state-of-the-art technology. The advantages of using
IoT technology in real-world applications are almost unlimited, and use cases can be found
in such disparate areas as Industry 4.0 [17,18], smart agriculture [19,20], smart cities [21,22],
smart transportation [23,24], smart homes [25,26], eHealth [27], and wearables [28]. With
the massive adoption of IoT technology, it is finding applications in many areas [29,30].
For example, the authors of [29] stated that their platform, based on a combination of IoT
and fog cloud, can be used in systematic and intelligent COVID-19 prevention and control.
The system involves five use cases, including COVID-19 Symptom Diagnosis, Quarantine
Monitoring, Contact Tracing and Social Distancing, COVID-19 Outbreak Forecasting, and
SARS-CoV-2 Mutation Tracking [31]. Another IoT-based COVID-19 and Other Infectious
Disease Contact Tracing Model was described by the authors of [32]. They presented an
RFID-based proof-of-concept for their model and leveraged blockchain-based trust-oriented
decentralization for on-chain data logging and retrieval.

The wearable proximity sensing system presented in [33] is based on an oscillating
magnetic field that overcomes many of the weaknesses of the current state-of-the-art
Bluetooth-based proximity detection. The authors proposed, implemented, and evaluated
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their system and demonstrated that the proposed magnetic field-based system is much more
reliable than previously proposed Bluetooth-based approaches. Another possible solution
for monitoring people in indoor environments was introduced by Perra et al. [34]. The
proposed device implements a novel real-time pattern recognition algorithm for processing
data sensed by a low-cost infrared (IR) array sensor. The device can perform local processing
of infrared array sensor data, and in this way is able to monitor occupancy in any space of a
building while maintaining people’s privacy. A seat-occupancy detection system based on
Low-Cost mm-Wave Radar at 60 GHz was presented in [35]. Detection is based on Pulsed
Coherent Radar in the unlicensed 60 GHz ISM band. The system can detect the presence of
people occupying the seats by measuring small movements of the body, such as breathing.
The solution for counting the people in the classroom proposed by Zhang et al. [36] is
similar to the work presented in this paper. In their case, the authors used two E18-D80NK
photoelectric sensors to count people in a classroom and an hc-sr501 infra-red sensor for
detection of seat occupancy. However, the authors presented only the basic principles and
hardware design of the system. The solution proposed in this paper is based on a slightly
different technology with lower energy consumption. Moreover, it provides a complex
solution with a user-friendly GUI and advanced functionalities, e.g., management of the
rules and functions supporting deployment of the system.

The remainder of this paper is organized as follows. Section 2 is devoted to a descrip-
tion of the system concept. The system’s implementation is described in detail in Section 3,
including the implemented methods, software, and hardware design. In Section 4, the
achieved results are presented and discussed. Section 5 provides a comparison with other
systems proposed for occupancy detection, and Section 6 concludes the paper.

2. System Concept

The main goal of the proposed system is to deliver counting of incoming students
when they are entering the classroom as well as detection of the distribution of the students
among the seats. The proposed system is portable and can be easily deployed and managed
by the teacher. The main purpose of the proposed system is to help teachers with the
management of their classes while respecting implemented COVID-19 restrictions. The
concept of the proposed system is presented in Figure 1.

Figure 1. The system concept proposal.
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The number of IoT nodes and sensor devices connected to the system is variable,
however, there is one server per classroom. The teacher can access the system’s Graphical
User Interface (GUI) from a mobile device or personal computer in order to set up the
system as well as to check whether all restrictions are being obeyed. Each seat available
in the classroom is equipped with a single HC-SR04 Ultrasonic Distance Sensor. Up to
sixteen distance sensors can be connected to a single IoT node, which is responsible for
the evaluation of the seat occupancy on a single row. Each IoT node collects data from the
connected sensors and sends data via MQTT protocol to the main server. The IoT nodes
are based on the NodeMCU Arduino board. The entrance to the classroom is equipped
with a Gate node. The purpose of the Gate node is to count the students entering or leaving
the classroom. The Gate node consists of a single NodeMCU board with two HC-SR04
sensors used for door crossing detection by persons entering or leaving the classroom.
The HC-SR04 is a low-cost sensor which can provide distance measurements between
2 and 400 cm with non-contact measurements and ranging accuracy up to 3 mm. The
sensor accuracy is sufficient for the purposes of occupancy detection. Each sensor module
includes an ultrasonic transmitter, a receiver, and a control circuit. The sensor’s principle is
as follows:

• To trigger measurement output, the pin has to be activated for at least 10 μs;
• The Module automatically sends eight 40 kHz signals and detects pulse signal reflections;
• The distance is calculated as follows:

st = t ∗ 343/2, (1)

where t is the pulse trigger duration and the constant 343 is the speed of sound in m/s.

The sensor implemented in the system operates at 5 volts and consumes 15 mA, while
its dimensions are 45 ∗ 20 ∗ 15 mm. For the sake of comparison, the Infrared Proximity
Sensor E18-D80NK used for people counting and HC-SR501 PIR sensor for detecting
the seat occupancy in [36] consume 25–100 mA and 65 mA, respectively. Moreover, it is
important to note that the infrared proximity sensor has a shorter sensing range compared
to the ultrasonic sensor implemented in the proposed solution. On the other hand, the
ultrasonic distance sensor has its own disadvantages, such as sensitivity to variations in
the ambient temperature and difficulties when reading reflections from soft, curved, thin,
and small objects. The server is based on the Raspberry Pi model 4B+ and is responsible
for managing the whole system. The proposed solution consists of a Message Queuing
Telemetry Transport (MQTT) broker for communication, Node-RED for logic, Mongo
database for data storage, and a React-based web application that serves as the GUI.
The system is deployed using Docker containers and the docker-compose tool ensures
container orchestration.

Cloud Technologies Versus Self-Hosted Solutions

There are two main categories of technology that can be implemented on the server side:

• Cloud-based technology;
• Self-hosted on-premises solutions.

Both of these have their advantages and disadvantages. Cloud technologies are
relatively new platforms, however, they can offer a lot of already built-in features which are
ready to use without a long setup. On the other hand, users may argue that when their data
are not stored on their hardware, they do not have full control over the hardware, nor over
the data. The primary goal of cloud technology for IoT is to provide universal functionality
for application development as well as ubiquitous access to the data. Therefore, the user of
the IoT platform can focus only on the functionality of its product and its value and does
not need to care about the hardware itself. There are four categories of IoT platforms:
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• IoT cloud platforms;
• IoT connectivity platforms;
• IoT device platforms;
• Analytics platforms.

The well-known IoT platforms in 2022 are represented by the IBM Watson IoT Platform,
Particle, AWS IoT Core, Google Cloud IoT Core, Azure IoT Central, and many others. While
many of the features provided by these platforms are free of charge, users must pay in
order to receive the most out of each of these platforms.

The alternative is self-hosting. In this case, the user has to install and configure services
according to their project’s needs. In the proposed system, a self-hosted solution based on
the Raspberry Pi was chosen. The primary reason for this decision was that there may not
be internet access available in every classroom and the Raspberry Pi can create its Wi-Fi
network. Therefore, there is no need to add an extra router in order to provide connectivity
for the system. With this in mind, the proposed system can be deployed in any classroom
without any significant limitations.

3. System Implementation

The first step in system implementation is the design of the communication flow
diagram. The flowchart of the system functionalities is presented in Figure 2. Individual
users can visit the GUI either from a personal computer in the classroom or through their
smartphone. The communication between the GUI and the rest of the system was created
using the HTTP protocol. WebSocket-based communication was implemented in order
to obtain real-time information when seat occupancy changes. The main communication
node of the system is the MQTT broker.

Figure 2. The main system data flowchart.

All communication between nodes and Node-RED applications is handled by this
broker. All connected IoT nodes send their data to the broker. The Node-RED application is
responsible for data processing and storing the results in the Mongo database server using
the Mongo DB driver. At the same time, it provides a RESTful application programming
interface (API) and WebSocket endpoint that serves the data for the GUI. The hardware of
the system consists of three main blocks:

• Gate node;
• IoT nodes for detecting seat occupancy;
• Self-hosted server.

3.1. The Gate Node

The primary task of the Gate node is to detect people who cross the door, i.e., those
entering or leaving the classroom. The Gate node consists of one NodeMCU board equipped
with two HC-SR04 distance sensors. The principal functionality of the Gate node is depicted
in Figure 3.
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Figure 3. Principal functionality of Gate node.

As mentioned earlier, from the sensing point of view the gate consists of two distance
sensors, which are enough to detect when a person is crossing the door of the classroom.
However, there is one limitation to this approach, being that only one person at a time can
cross the door of the classroom. The flowchart of the software implemented in the Gate
node is shown in Figure 4.

Figure 4. The Gate node algorithm implementation.
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The software managing the Gate node starts with the initialization of variables and
definitions. Moreover, it is necessary to set up the Wi-Fi network name (SSID), Wi-Fi
password, server IP address, and MQTT credentials. When the node is connected to the
Wi-Fi network as well as the MQTT broker, the Gate node starts to measure values from
distance sensors. The PubSubClient library, which is available for Arduino-based boards,
was used for connection and data transfer over MQTT. The MQTT topics used for this type
of message are “sensors/gateEnter” and “sensors/gateExit”.

The algorithm for door-crossing detection operates based on the detection of a se-
quence of events reported by the sensors. To explain the crossing detection algorithm, we
defined two states of sensors S1 and S2. The first is the “Active sensor”, which means
that the measured distance from the sensor is shorter than the defined value of the door
width, i.e., an active sensor means that the sensor detects the object. The second term is
“Inactive sensor”, which means that the measured distance from the sensor is not shorter
than the defined value of the door width, i.e., there is no object detected in front of the
sensor. The possible sequences of sensor states resulting in successful crossing detection by
the algorithm implemented in the Gate node are shown in Table 1, where 0 represents the
inactive state of the sensor and 1 stands for the active state of the sensor.

Table 1. Sequences for successful door crossing detection.

Result
t(0) t(1) t(2) t(3) t(4)

S1 S2 S1 S2 S1 S2 S1 S2 S1 S2

Person entered room 0 0 1 0 1 1 0 1 0 0
Person left room 0 0 0 1 1 1 1 0 0 0

In the table, steps t(0)–t(4) are defined by the time when the state of the sensor has
changed. The system detects a door crossing event only when the states of the S1 and
S2 sensors change according to the sequences provided in the table. In cases when other
sequences are detected, the system does not detect a door crossing event, and thus does not
change the number of persons in the room.

3.2. IoT Nodes for Detecting Seat Availability

Each IoT node is based on a NodeMCU board which can connect up to sixteen distance
sensors. In the proposed system design, it is necessary to use just a single distance sensor
per seat. Therefore, it is possible to determine seat occupancy across the classroom and
automatically check whether the students in the room are keeping the desired social
distance simply by evaluating data from individual distance sensors. The ultrasonic
distance sensor (HC-SR04) can be placed under the PC monitor or can be attached to the
bottom part of the table. In order to connect sixteen distance sensors to the NodeMCU board,
it is necessary to use a 16:1 single-channel analogue multiplexer, such as CD74HC4067 in
our case. An example of the sensor placement is shown in Figure 5. The implemented sensor
can provide distance measurements between 2 and 400 cm with non-contact measurements
and ranging accuracy up to 3 mm. Each sensor module includes an ultrasonic transmitter,
a receiver, and a control circuit. During operation, it is necessary to establish whether there
is a person relatively close to the sensor. The decision-making distance was set at 70 cm
during the tests, however, the teacher is able to change the decision-making distance based
on the conditions in the classroom using the web application interface of the server. When
the measured distance is shorter than the threshold value, the seat is considered to be taken,
represented by a logical one; otherwise, the seat is considered to be free (logical zero).
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Figure 5. Sensor placement.

When the seat occupancy status changes, the updated seat occupancy information is
sent to the server for evaluation and storage. A flowchart of the software implementation
for the IoT node for detecting seat availability is shown in Figure 6.

Figure 6. IoT node algorithm implementation.

The software of the IoT node starts with variable initialization and definitions. The
first part of the code matches the software for the Gate node, such as Wi-Fi and MQTT
connections and initialization of libraries. Afterwards, the nodes measure the distances
from each sensor in the loop. When a change in the sensor value is detected, the node sends
the message to the server for evaluation. The MQTT topic used for this type of message is
“/sensors/distanceChanged”. Useful information in messages represents JSON objects in
string representation. A message with data about the occupancy sent from sensors looks
like this:

{row: 1, seats: [0, 1, 0, 1, 0, 0, 0, 1]};

where the row specifies the position in the classroom and the seats represent an array of
values that define the seat occupancy for individual positions in a row.

In the improved version of the IoT-based system, the option to set up the whole
classroom from scratch using only the GUI was added. For this purpose, each node
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subscribes to the topic “nodes/setupConfig” to enable receiving of the configuration
messages and is able send status data to the topic “nodes/nodeStatusUpdate”. The setup
message for the IoT node is as follows:

{rowPosition: 1, sensorCount: 8, thresholdDistance: 70};

where rowPosition specifies the row position in the classroom, sensorCount defines the
number of seats in a particular row, and thresholdDistance is used to set up the decision-
making value for seat occupancy. The status message sent by the node contains the
following information:

{nodeId: “011808db24be32c5”, nodeStatus: 0};

where nodeId is a string which represents the node’s unique identification in the system
and NodeStatus defines the status of the node in the system. Node status can have two
values, zero and one. The node sends a status message with nodeStatus equal to zero
when it is connected to the system. The Node-RED application evaluates the message and
checks whether the node is already registered in the system. In such a case, Node-RED
responds with the configuration message to this node automatically. The node responds to
Node-RED with the status message with the value of nodeStatus equal to one to confirm a
successful setup. On the other hand, when the node ID is not registered in the system, i.e.,
a new node is connected, it needs to be configured from the GUI. The process of creating
the classroom and configuring the nodes is described in Section 4.

3.3. Self-Hosted Server Solution

The server, which is the central unit of the proposed system, is based on the Raspberry
Pi minicomputer. This device runs all applications and services that provide connectivity to
IoT nodes as well as management of the system, data evaluation, and storage. There are five
primary services running on the server: Mosquitto MQTT broker, Node-RED application,
React web application, Nginx server, and MongoDB database system.

MongoDB is a popular general-purpose document-based distributed database that
stores all data for actual and further evaluation. Mosquitto MQTT broker is an open-source
MQTT message broker which is widely used across various IoT applications. The logic of
the proposed system is implemented by a Node-RED application. The schematic design
of flow for handling the messages from the Gate node for processing, evaluation, and
representation of results is shown in Figure 7.

Figure 7. Schematic design of flow for handling incoming messages.

The flow starts with the MQTT broker input nodes. These input nodes listen to the
topics “sensors/gateEnter” and “sensors/gateExit”. The purpose of this part of the flow is
to collect data from the Gate node and evaluate the number of students that are currently in
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the classroom. All pieces of information are stored in the Mongo DB, and thus are available
to Node-RED. However, the latest values are stored in flow variables as well, and their
updates are sent via WebSocket to the connected client using the React web application.
The message with the number of people currently in the classroom appears as follows:

{“counter”:14, “limit”:20};

where the counter represents the number of people and the limit is the maximum allowed
amount of people who can be inside the room due to active restrictions. This limit could be
changed by a teacher via the GUI.

Another MQTT broker input node listens to the topic “/sensors/distanceChanged”. This
node is responsible for handling the incoming messages from the IoT nodes about changes in
seat occupancy. The structure of this message was provided in the previous section.

The next part of the flow is responsible for providing all system data as the RESTful
API. An example of this flow design is depicted in Figure 8. Altogether, there are eight
different routes implemented in the API; three are POST routes, while the rest are GET
routes. The description of the RestAPI GET routes is as follows:

• /currentPersonCount: the route is responsible for obtaining information about the
actual number of persons in the classroom. The route flow acquires the data from the
database and creates a response in JSON format;

• /resetConterCount: the route for resetting the current counter. For example, this can
be used in cases when false detection occurs;

• /currentPersonsDistribution: the route obtains the data from the database about actual
person distribution in the classroom. Data are then stored in JSON format and sent to
the client. The data structure is described later in the experimental results section;

• /getDevicesList: the route for acquiring the actual list of all IoT nodes connected to
the system. Data are acquired from the database as well;

• /getLessonsList: the route obtains all lessons records from database and returns them
as JSON objects.

Description of RestAPI POST routes:

• /setupDevice: this route serves to set up the IoT node. It expects the JSON data in the
request body with parameters specifying node position, sensor count, and threshold
for decision-making distance when the seat is considered occupied;

• /startLesson: this route starts a new lesson; it expects only one parameter, e.g., les-
son name;

• /finishLesson: this route finishes the current lesson, and is parameter-less.

Figure 8. Schematic design of flow for providing the RESTful API.

Two of the routes shown in Figure 9 handle the IoT nodes’ configuration setup from
the GUI. The configuration process of the IoT nodes is described in the next section.
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Figure 9. Schematic design of flow for providing the RESTful API for setting up the IoT nodes.

Simple algorithms were designed to evaluate whether the distribution of students
across the classroom meets the requirements defined by COVID-19 restrictions. It is
assumed that the students are seated in rows; however, there do not have to be the same
number of seats in each row. The implemented algorithm considers student distribution to
be valid when the distance between taken seats is at least 2 in both the x and y directions.
Otherwise, the system shows a popup notification about the violation of the restriction.

4. Experimental Results

In this section, the GUI of the proposed IoT-based system for detecting the number
of people and their distribution in the classroom is presented. The application helps the
teacher to easily handle the implementation of restrictions defined due to the COVID-19
outbreak. The home screen of the developed web application is shown in Figure 10.

The teacher’s daily routine will be as follows. Before the beginning of the class, the
teacher enters the classroom and resets the current count of the students in the classroom.
Afterwards, students can enter the classroom. The web application shows any changes in
seat occupancy in real time using WebSocket communication. When students are heading to
their chosen seat, they can cross other seats and temporarily change seat occupancy status.
This could lead to an evaluation of person distribution that does not meet the requirements
defined by COVID-19 restrictions. The system shows an alert only when the incorrect seat
occupancy state holds for more than one minute. In a typical scenario, the system evaluates
the data in real-time, and therefore temporarily changing seat status occupancy does not
cause an alert. All other communication between the web application and the Node-RED
backend is carried out via HTTP protocol. The data received from WebSocket or an HTTP
GET request representing the student distribution are defined as follows:

{
distributionState: “Ok”,
data: [

{row: 1, seats: [0, 1, 0, 1, . . . , 0, 1]};
{row: 2, seats: [1, 0, 0, 0, . . . , 1, 0]};
. . .

{row: n, seats: [0, 1, 0, 1, ..., 0, 1]};
]}

where “distributionState” tells whether the students’ distribution across the classroom
meets the requirements defined by restrictions. The entry “data” represents the real seat
occupancy in the classroom. When the teacher finishes the lesson, all information gathered
during the lesson is stored in the database for later analysis. The teacher can check the
relevant data from the finished lessons at any time.
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Figure 10. GUI home screen showing student distribution in the classroom.

The user window that provides the classroom setup and configuration is shown in
Figure 11. The proposed system was designed to be as simple as possible from both the
setup and implementation point of view. After all software is installed on the Raspberry
Pi, the user is able to configure the classroom via the GUI. This configuration process is as
follows. First, the user needs to set up the room limits, such as the maximum number of
students in the classroom and minimum distance limits. Afterwards, the teacher turns on
the first IoT node in the first row. The IoT node is registered in the system. By clicking on the
button “Add IoT module”, the teacher can display a window with a list of all unconfigured
nodes in the system. Then, the teacher selects one of the unconfigured IoT nodes and
configures it by setting the position in the classroom (e.g., the row number parameter)
and the number of sensors connected to the IoT node, which is the number of seats in a
particular row. Then, the IoT node is ready for use, and the teacher can add the rest of the
IoT nodes. Moreover, the teacher is able to change the configuration of any IoT node at
any time.

Figure 11. GUI for classroom setup.
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Experiments were carried out to test the robustness and reliability of the door crossing
detection algorithm at the Gate node. The tests were performed considering the follow-
ing scenarios:

1. The person enters the classroom.
2. The person leaves the classroom.
3. The person enters the Gate area, stops, and then continues in the same direction.
4. The person enters the Gate area, stops, and leaves in the direction from which they entered.

Each scenario was tested 100 times, and the achieved results are presented in Table 2.

Table 2. Gate node implementation testing results.

Scenario
Number of

Tests
Correct

Detection
Incorrect
Detection

Accuracy [%]

1. 100 100 0 100
2. 100 100 0 100
3. 100 100 0 100
4. 100 100 0 100

From the achieved results, it is obvious that the proposed system is both robust, and
reliable and is able to correctly detect door crossing using the Gate node. The Gate node is
able to distinguish between all four cases, i.e., a person who enters the room, leaves the
room, or decides to return after entering the door from either side. The Gate can detect
other crossing objects that are not human targets, such as bags, cabinets, or tables. However,
it is not possible to distinguish what type of object crosses through the Gate. Moreover, the
system can operate in real time and is designed to be deployed at a relatively low cost. The
hardware cost of equipment required for one classroom with a capacity of 40 seats, i.e., five
rows and eight seats per row, is approximately EUR 210, as can be seen in Table 3.

Table 3. Cost of system deployment.

Item Unit Price Count Total Price [Eur]

Raspberry PI 40 1 40
NodeMCU 5 6 30
HC-SR04 1.4 42 58.8

74HC4067 (16-channel multiplexer) 2.3 5 11.5
Wires, pcb and secondary materials 70 1 70

Total 210.3

It is important to note here that deployment of the system does not require any
preexisting infrastructure for the internet connection. The server, running on Raspberry Pi,
can provide wireless connection to all IoT nodes in the room and store all the data locally.

5. Discussion

In this section, the proposed solution for counting and detecting the distribution of
people around the classroom is compared with the other state-of-the-art works. As our
literature review found only a single work dealing with a similar solution based on data
from a sensor network, solutions based on image processing were considered in comparison
with proposed system. It is important to note that in most papers a limited amount of
information about the systems requirements, cost, and power consumption were presented.
However, based on the provided information, several parameters for comparison could
be estimated. For the comparison, implementation of the system for the classroom with a
capacity of 40 seats, i.e., five rows and eight seats per row, was considered. Unfortunately,
due to the lack of information provided in the literature, it is not possible to cover all
comparison parameters for all solutions. The comparison of the proposed system with
other solutions is shown in Table 4.

63



Sensors 2022, 22, 7912

Table 4. Comparison of the proposed system with other solutions.

Solution
Proposed
Solution

Zhang et al. [36] Le et al. [4] Hasan et al. [11] Al-Sa’d et al. [7]

Initial investment
[Eur] 210 220 80 330 minimal estimated

price: 330

Power
consumption [W] 8.55 14.5 4.425 300(Tesla

K80+camera)
minimal estimated:

300

Privacy respected respected not respected not respected not respected

Robustness against
physical tempering

part of the system
could be easily

damaged

part of the system
could be easily

damaged

depends on the
camera position

depends on the
camera position

depends on the
camera position

System accuracy
Very high, easy

and precise
algorithms

not applicable not provided 78.3% (mAP) F1—99.1

Provides
distribution of

people
yes yes-not in GUI no

Possible to
calculate, but not

provided

Possible to
calculate, but not

provided

Response time Real-time Real-time 7.5 fps not provided Real-time

From the comparison, it is clear that the proposed system can provide information
about seat occupancy with high accuracy while maintaining the privacy of people in the
monitored area. In addition to the privacy, the advantage of the proposed system over
systems based on image processing is that accuracy is consistent over whole area, while
in systems based on image processing the accuracy can be affected by the position of the
camera. On top of that, image processing-based solutions are not designed to provide
information about distribution of people in the area. Moreover, the proposed system can
operate in real time with low implementation cost and lower power consumption than the
IoT-based solution proposed in [36].

6. Conclusions

In the paper, an improved IoT-based system for detecting the number of people in
a classroom and their distribution was proposed. The main purpose of the proposed
system is to help teachers to manage their classes with respect to rules implemented due to
COVID-19 restrictions. An improved system was presented in which the teacher can set
up the whole classroom from a GUI. The system is more robust and much easier to extend
than the previous version published in [37]. The teacher is able to configure IoT nodes from
the GUI and change the configuration at any time. The system consists of a Gate node for
counting people entering or leaving the classroom, IoT nodes with distance sensors placed
in the room for detecting the availability of seats, and a server based on a Raspberry Pi. It is
possible to connect up to sixteen HC-SR04 ultrasonic distance sensors to a single IoT node;
thus, a single node is able to check the availability of sixteen seats. The Raspberry Pi server
can create a Wi-Fi network, which is used to transfer the data from the IoT nodes; therefore,
there is no need for an extra Wi-Fi router to provide connectivity in the classroom. Five
system services running on the Raspberry Pi provide all functionalities of the proposed
system, which uses an Nginx server for request routing, a React web application, the Mongo
DB database, a Node-RED application for the logic part, and an eclipse-mosquitto MQTT
broker. All services run on the server as Docker containers. Thanks to this setup, it is easy
to deploy the proposed system in any classroom. The main idea of our system is to help
teachers to handle COVID-19 restrictions. However, there may be other use cases for the
system. For example, the system can check the distance between students during exams
and tests in order to help prevent cheating. The main disadvantage of the proposed system
is the complexity of the deployment of the IoT modules compared to camera-based systems.
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When camera-based systems are deployed, it is sufficient to simply place the camera in
the classroom and the system is ready immediately. However, in the proposed system it is
necessary to connect cables between sensors and IoT nodes in order to provide the power
supply for the individual IoT nodes. On the other hand, when privacy is considered, the
proposed system has the advantage in that it cannot provide any information about the
identities of people in the room.

The proposed system was deployed and tested in a classroom at the University
of Zilina. The presented IoT-based system is highly reliable and robust thanks to the
algorithm’s simplicity and clarity. The main advantage of the system is the possibility of
deployment without jeopardizing the privacy of individuals in the classroom, as there is
no way to identify individuals, unlike in camera-based systems.
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Abstract: The Internet of Things is a paradigm that interconnects several smart devices through the
internet to provide ubiquitous services to users. This paradigm and Web 2.0 platforms generate
countless amounts of textual data. Thus, a significant challenge in this context is automatically
performing text classification. State-of-the-art outcomes have recently been obtained by employing
language models trained from scratch on corpora made up from news online to handle text classification
better. A language model that we can highlight is BERT (Bidirectional Encoder Representations
from Transformers) and also DistilBERT is a pre-trained smaller general-purpose language representation
model. In this context, through a case study, we propose performing the text classification task with
two previously mentioned models for two languages (English and Brazilian Portuguese) in different
datasets. The results show that DistilBERT’s training time for English and Brazilian Portuguese was
about 45% faster than its larger counterpart, it was also 40% smaller, and preserves about 96% of
language comprehension skills for balanced datasets.

Keywords: big data; pre-trained model; BERT; DistilBERT; BERTimbau; DistilBERTimbau; transformer-
based machine learning

1. Introduction

It is known that the support of computational systems is in several areas of knowledge,
be it in the human, exact, and biological areas. Consequently, this contributes to the
accelerated increase in the generation, consumption, and transmission of data in the
global network. According to the study by the Statista Research Department [1], in 2018,
the total amount of data created, captured, and consumed in the world was 33 zettabytes
(ZB)—equivalent to 33 trillion gigabytes. Already in 2020 it has grown to 59 ZB and is
expected to reach 175 ZB by 2025.

In the Internet of Things (IoT) context, we know that these devices (e.g., virtual assistants)
are connected to the Internet and generate large amounts of data. On the other hand,
we also have Web 2.0 platforms, e.g., social networks, micro-blogs, and all these types
of websites with massive amounts of textual information available online. It is worth
mentioning that the data generated by these devices and websites are growing faster and
faster. An important point worth mentioning is that the information generated from a
large amount of text/data generated by users for many entrepreneurs or public agents is
vital for maintaining their business. This way, one can exploit this constant and continuous
feedback on a particular subject/product through these data. Due to the ever-increasing
volume of online text data, the text classification task is more necessary than ever. In this
context, text classification (automatically classifying textual) is an essential task.

Automatic text classification can be described as a task that automatically categorizes
group documents into one or more predefined classes according to their topics. Thereby,
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the primary objective of text classification is to extract information from textual resources.
The text classification task is the basic module for many NLP (natural language processing)
applications. However, this necessitates the presence of efficient and flexible methods to
access, organize, and extract useful information from different data sources. These methods
can include text classification [2–4], information retrieval [5,6], summarization [7,8], text
clustering [9,10], and others, collectively named text mining [2,4,6].

Many works are available in the literature on text classification tasks using various
neural network models. Some typical works include convolutional neural network (CNN)
models [11,12], attentional models [13,14], adversarial models [3], and recurrent neural
network (RNN) models [13], which particularly outperform many statistics-based models.
The previously mentioned works represent text based on words, i.e., word vectors pre-trained
over a large-scale corpus are usually used as the sequence features. Such vectors are usually
trained via the word2vec tool [15] or Glove [16,17] algorithm based on the presumption
that similar words tend to appear in similar contexts.

In recent years, to avoid specific structures and significantly decrease the parameters to
be learned from scratch, as is done in the models presented above, some researchers
have contributed in another direction, highlighting the pre-training models for general
language and fine-tuning them to downstream tasks. Another problem with traditional
NLP approaches worth mentioning is the issue of multilingualism [18]. The Open AI
group (https://openai.com/, accessed on 13 July 2022) proposes the GPT (Generative
Pre-trained Transformer) using a left-to-right multi-layer Transformer architecture to learn the
general language presentations from a large-scale corpus to deal with the abovementioned
problems [19]. Later, Google, inspired by GPT, presented a new language representation
called BERT (Bidirectional Encoder Representations from Transformers) [20]. BERT is a
state-of-the-art language representation model designed to pre-train deep bidirectional
representations from unlabeled text and is fine-tuned using labeled text for different
NLP tasks [20]. A smaller, faster, and lighter version of BERT architecture, well-known as
DistilBERT, was implemented by the HuggingFace team (https://github.com/huggingface/
transformers, accessed on 13 July 2022).

This work aimed to examine an extensive dataset from different contexts, including
datasets from different languages, specifically English and Brazilian Portuguese, to analyze
the performance of the two models (BERT and DistilBERT). To do this, we first fine-tuned
BERT and DistilBERT, then the aggregating layer was utilized as the text embedding, and then
we compared the two models with several selected datasets. As a general result, we can
highlight that the DistilBERT is nearly 40% smaller and around 45% faster than its larger
counterpart. Yet, it preserves around 96% of language comprehension skills for both English
and Brazilian Portuguese for balanced datasets.

The main contributions of the paper are as follows:

• We compare BERT and DistilBERT, demonstrating how the Light Transformer model
can be very close in effectiveness compared to its larger model for different languages;

• We compared models Transformer (BERT) and Light Transformer (DistilBERT) for
both English and Brazilian Portuguese.

The rest of the document is organized as follows: Section 2 presents a short summary of
the necessary concepts to understand this work, while Section 3 presents the method and
hyperparameter configuration for automatic text classification. The case study of this work
is presented in Section 4, and the results are presented in Section 5. Thereafter, in Section 6,
we discuss the performance of the two models (BERT and DistilBERT) in the different
datasets used. Finally, Section 7 concludes with a discussion and recommendations for
future work.

2. Theoretical Foundation

This section presents the theoretical foundation for a better understanding of the work.
In Section 2.1, the Transformer architecture is described, while in Section 2.2, Bidirectional
Encoder Representations from Transformers (BERT) is described. In Section 2.3, the
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comprehension models are presented, and finally, in Section 2.4, the BERTimbau model
is introduced.

2.1. Transformer Architecture

It is essential to review two concepts: (i) encoder–decoder [21]; and (ii) attention [22]
configurations to understand the Transformer architecture. The first concept refers to the
type of training adopted to produce embeddings from input tokens.

The second is a technique to circumvent a common problem in sequential architectures
applied to natural language processing problems (e.g., recurrent networks [23]). Sequential
networks attempt to map the relationship between a token in the target sequence with
the source sequence tokens. However, a token in the target sequence may be closer to
one or more tokens in the source sequence rather than the entire source sequence. In this
way, the network used to generate the representation of the tokens ends up encoding
information that may not be relevant to the problem at hand. This problem occurs mainly
when the input sequence is long and rich in information and selecting the essential passages
is not possible.

In a few words, the idea of the attention mechanism is to make this selection explicit,
consisting of a neural layer created exclusively to understand this context relationship
between tokens. In this context, Vaswani et al. [19] proposed the Transformer architecture,
an encoder–decoder network based on parallelization of the attention mechanism. In this
network, attention mechanisms generate multiple representations of tokens, where each
representation can refer to a different contextual relationship.

Transformers are based on the traditional architecture of Multilayer Perceptron, making
massive use of attention mechanisms trained under the encoder–decoder configuration.
Figure 1 illustrates the Transformer architecture. The Transformer receives the source and
target sequences, concatenated with positional encodings that help the network understand
the order between the tokens. The boxes with a light gray background on the left and right
represent the encoder and decoder, respectively. Note that the encoder and decoder differ
only in the presence of an additional layer of attention in the decoder. The Transformer
network considers N stacked encoders–decoders, summarized in Figure 1 by the Nx
notation. The embedding produced by the network is taken from its top.

Figure 1. Transformer architecture [19].
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2.2. BERT

Bidirectional Encoder Representations from Transformers is a language model based
on the transformer architecture [20]. BERT is a language model designed to pre-train
bidirectional deep representations from unlabeled text. Its two-way approach aims to
model the context to both the right and the left of a given token. Two essential aspects
of this approach are that, without substantial changes to its architecture, it can be used
(i) pre-trained with or without fine-tuning; and (ii) for tasks that consider individual sentences
or sentence pairs (e.g., natural language inference and semantic textual similarity [24]).

In the BERT architecture, there are two essential stages [20]: (i) pre-training; and
(ii) fine-tuning. In the first stage, the model is trained on a large unlabeled corpus. While
the second one, the model is initialized with the pre-trained data, and all the parameters
are fine-tuned using labeled data for specific tasks.

The architecture of a BERT network can be seen in Figure 2, where the pre-trained
version is shown on the left side, and fine-tuned versions adjusted for different tasks are
shown on the right. The model is trained using unlabeled data from different tasks in the
pre-training stage. In principle, it is possible to use pre-trained BERT models to produce
contextual embeddings that can be used for (un)supervised learning tasks. The model is
initialized with the pre-trained parameters in the second stage, from fine-tuning to given
supervised learning tasks. Then, these parameters are readjusted using data labeled for
the task to be solved. Since fine-tuning is performed by task, each task has an individual
adjusted model, even if they were initialized with the same pre-trained parameters [20].

To handle various tasks, the representation of BERT input can consist of a single
sentence or a pair of sentences. Both possibilities are illustrated at the bottom of the models
shown in Figure 2.

Figure 2. The BERT architecture [20] in a pre-training context (left) or fine-tuning for different
tasks (right).

2.3. Compression of Deep Learning Models

Pre-trained language models (e.g., BERT) have significantly succeeded in various
NLP tasks. However, high storage and computational costs prevent pre-trained language
models from effectively deploying on resource-constrained devices. To overcome this
issue, the compression of deep neural network techniques has been adopted to produce a
model with the same robustness as the pre-training models but requires fewer computational
resources. Through such a technique, it was possible to design distilled (lightweight)
models known as DistilBERT [25].

The compression of the deep neural network is made using knowledge distilling. This
compression technique allows a compact model to be trained to reproduce the behavior of a
larger model. Dilbert (distilled BERT) is a smaller, faster, general-purpose pre-trained version
of BERT that retains nearly the same language comprehension capabilities. The distillation
technique [26] consists of training a model based on a larger model, called the teacher,
which is used to teach the distilled model, called the student, to reproduce the behavior of
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the larger model. Thus, DistilBERT is a lightweight model based on the behavior of the
original BERT model [25].

The main goal is to produce a smaller model able to reproduce the decisions of the
robust bigger model. To do that, it is necessary to approximate the distilled model to the
generated function of the bigger model. This function is used to classify a high quantity of
pseudo data that show the value of each attribute on the distribution independently [27].
A faster and more compact model trained with pseudo data does not risk present overfitting
and will also approximate the learned function from the bigger model [27].

The neural network produces the probability of the classes using a softmax on the
output that converts the logit, zi, calculated for each class into a probability, qi, comparing
it with the other logits.

Neural networks typically produce class probability using a so f tmax output layer that
converts the logit, zi, calculated for each class into a probability, qi, comparing it with the
other logits, see Equation (1).

qi =
exp( zi

T )

∑
j

exp(
zj
T )

(1)

where the T symbol presented refers to the temperature, typically set to 1; using a more
significant value for T, a more soft distributed (soft-target) over the classes is obtained.

In the simplest form of distillation, knowledge is transferred to the distilled model by
training it with a transfer set. Furthermore, a soft-target distribution is used for each case
of the transfer set produced by the larger model with a high value of T in its softmax [26].
The same T with a high value is used to train the distilled model, but temperature 1 is
used after training. At low temperatures, distillation pays much less attention to matching
the results of the logit function, which are much more negative than the average. Thus,
using temperatures more significant than 1, the distilled model extracts more relevant
information from the training dataset [26].

2.4. BERTimbau: BERT Model for Brazilian Portuguese

It is known that pre-trained models such as BERT have high robustness, but this
model is pre-trained with a large amount of English data. To develop a good model
for another language such as Brazilian Portuguese, researchers from NeuralMind (https:
//neuralmind.ai/en/home-en/, accessed on 25 July 2022) developed a BERT model called
BERTimbau [28].

To train the model in the Brazilian Portuguese language, the developers used an
enormous Portuguese corpus called brWaC, which contains 2.68 billion tokens from
3.53 million documents on the Brazilian webpages [28,29].

Two BERTimbau versions were created: in the first one, BERTimbau Base, the weights
were initialized with the checkpoint of Multilingual BERT base, a BERT version trained
to 107 languages [30], and trained the model for four days on a TPU (tensor processing
unit) v3-8 instance [28]. The second version is called BERTimbau Large; the weights were
initialized with the checkpoint of English BERT Large. This version is more significant
than the base version and took seven days to train on the same TPU [28]. The version used
for evaluation in this article was BERTimbau Base. Additionally, a distilled model from
BERTimbau was used and obtained on the HuggingFace Platform (https://huggingface.
co/adalbertojunior/distilbert-portuguese-cased, accessed on 25 July 2022).

3. Method and Hyperparameter Configuration

This section presents the details of our proposed method for automatic text classification
from different languages. The approaches we designed were mainly inspired by the
works of Vaswani et al. [19] and Devlin et al. [20], in which attention mechanisms made
it possible to track the relations between words across very long text sequences in both
forward and reverse directions. Notwithstanding, we explore an extensive dataset from
different contexts, including datasets from different languages, specifically English and
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Brazilian Portuguese, to analyze the performance of the two state-of-the-art models (BERT
and DistilBERT).

Our implementation follows the fine-tuning model released in the BERT project [20].
For the multi-class purpose, we use sigmoid cross entropy with logits function to replace
the original softmax function, which is appropriate for one-hot classification only. To do
this, we first fine-tuned the BERT and DistilBERT, used the aggregating layer as the text
embedding, and compared the two models with several selected datasets.

The methodological details are organized into two subsections. The structural steps
are the following: Section 3.1 presents the details of the hyperparameter configuration for
fine-tuning process, while Section 3.2 presents the environment where the experiments
were performed.

3.1. Hyperparameter Optimization for Fine-Tuning

In this section, we present the hyperparameter optimization for fine-tuning of our work.
All the fine-tuning and evaluation steps performed on each model in this article used the
Simple Transformers Library (https://simpletransformers.ai/docs/usage/ accessed on
1 August 2022). Table 1 reports the details of each hyperparameter configuration for
fine-tuning process.

Table 1. Hyperparameters of the fine-tuned model.

Hyperparameter Value

Batch size 8
Epochs 10

Learning rate 0.00004
Optimizer AdamW

Adam_epsilon 0.00000001
Model class Classification model

Maximum sequence length 128

The BatchSize is a hyperparameter that controls the number of samples from the training
dataset used on each training step. On each step, the predictions are compared with the
expected results, an error is calculated, and the internal parameters of the model are
improved [31].

The second parameter of Table 1, Epochs, controls the number of times the training
dataset will pass through the model during the training process. An epoch has one or
more batches [31]. A high number of epochs can make the model overfit, causing it
not to generalize, so when the model receives unseen data, it will not make a trustful
prevision [32].

Overfitting can be detected in the evaluation step by analyzing the error of the
predictions, as in Figure 3. A low number of epochs can also cause underfitting, which
means that the models still need more training to learn from the training dataset.

Furthermore, the LearningRate is also related to underfitting or overfitting. This
parameter controls how fast the model learns according to the errors obtained. Increasing
the learning rate can bring the model from underfitting to overfitting [33].

The Optimizer determines in what measure the weight and the learning rate should
be changed in order to reduce the losses of the models. The AdamW is a variant of Adam
Optimizer [34]. Adam_epsilon is a parameter used on Adam Optimizer.

The ModelClass refers to the class from the Simple Transformers Library that was used
to fine-tune the models. The maximum sequence length parameter refers to the maximum
size of the sequence of tokens that can be inputted into the model.

Table 2 presents the hyperparameters of the pre-trained models used in this article
for the performance evaluation. The distilled version of the models has six hidden
layers, less than the original BERT and BERTimbau models, demonstrating how much
smaller the distilled models are. Additionally, the DistilBERT model has 50 million fewer
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parameters than BERT. The author does not provide the number of parameters of the
DistilBERTimbau model.

Figure 3. Overfitting example.

Table 2. Model hyperparameters.

Hyperparameter BERT Base [20]
DistilBERT

Base [25]
BERTimbau

Base 1
DistilBERTimbau

Base 2

Hidden layers 12 6 12 6
Total parameters 110 M 66 M 110 M -

1 https://huggingface.co/neuralmind/bert-base-portuguese-cased accessed on 1 August 2022. 2 https://
huggingface.co/adalbertojunior/distilbert-portuguese-cased accessed on 1 August 2022.

3.2. Implementation

A cloud GPU environment (Google Colab Pro https://colab.research.google.com,
accessed on 8 April 2022) was chosen to conduct the fine-tuning process on the models using
the datasets selected; the metrics used to evaluate the models were defined. During the
fine-tuning process, the (Weights and Biases https://wandb.ai/site, accessed on 8 April
2022) tool was used to monitor each training step and the models’ learning process to detect
some overfitting or anything that would bring about poor learning performance.

We trained our models on Google Colab Pro using the hyperparameters described
in Tables 1 and 2. The results were computed and compared between each model to
extract information about their performance, and graphics were built to visualize better and
compare the results.

Furthermore, the K-fold cross-validation method was used, which consists of splitting
the dataset into n folders so that every validation set is different from the others. The K
refers to the number of approximately equal size disjoint subsets, and the fold refers to the
number of subsets created. This splitting step is done by randomly sampling cases from
the dataset without replacement [35].

Figure 4 represents an example from 10-fold cross-validation. Ten subsets were
generated, and each subset is divided into ten parts where nine of them are used to
train Dtrain and the other one to evaluate Dval the model.

Every evaluation part, Dval , differs between the subsets. The model is trained,
evaluated, and then discarded for each subset or fold, so every part of the dataset will
be used for training and evaluation. This allows us to see the potential of the model’s
generalization and prevent overfitting [35,36].
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Figure 4. A 10-fold cross-validation example.

To evaluate the models, a 5-fold cross-validation was used. So five subsets were
created, and each one was divided into five parts where a fourth of them (80%) are used for
the fine-tuning process Dtrain, and rest (20%) to evaluate Dval .

4. Case Study

This section has been divided into two parts for a better presentation. The first part,
Section 4.1 shows the datasets used in the experiments, while the evaluation metrics are
shown in Section 4.2.

4.1. Datasets

For this case study, different datasets from the English and Portuguese languages were
used. Section 4.1.1 presents the datasets used in the English language, while Section 4.1.2
presents the Brazilian Portuguese ones.

4.1.1. English Language

Three datasets were selected to evaluate the English models. The first one, called the
Brexit Blog Corpus [37], contains 1682 phrases provided by a blog associated with Brexit.
Those phrases are divided into nine classes, as shown in Table 3. This dataset contains
a considerable number of classes and a few examples for each class. It can be seen that
this dataset is unbalanced since some classes have less than 50 samples and others more
than 200. The choice of an unbalanced dataset was purposeful to evaluate the performance
of the chosen models.

Table 3. Brexit Blog Corpus dataset.

ID Classes Number of Examples

0 agreement/disagreement 50
1 certainly 84
2 contrariety 352
3 hypothetically 171
4 necessity 204
5 prediction 252
6 source of knowledge 287
7 tact/rudeness 44
8 uncertainty 196
9 volition 42

Total 1682

The second dataset, called BBC Text, was obtained on Kaggle Platform (https://www.
kaggle.com/) and built from BBC News [38], is made up of 2225 comments divided by
five classes, as presented in the Table 4. Observing the number of classes and the sample
numbers of each class, such a dataset is much more balanced compared to the Brexit Blog
Corpus dataset.
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Table 4. BBC Text dataset.

ID Classes Number of Examples

0 business 510
1 entertainment 386
2 politics 417
3 sport 511
4 tech 401

Total 2225

The last English dataset selected was the Amazon Alexa Reviews Dataset, also obtained
on Kaggle. This dataset contains 3150 feed-backs comments about the Amazon Virtual
Assistant Alexa, containing only two classes, positive and negative, presented in Table 5.

Table 5. Amazon Alexa Reviews dataset.

ID Classes Number of Examples

0 positive 2893
1 negative 257

Total 3150

This dataset contains much fewer negative samples, but contains only two classes.

4.1.2. Brazilian Portuguese Language

To evaluate the Portuguese models, two datasets were selected. The first, called
PorSimples Corpus [39], is a dataset with sentences that passed through different stages of
simplifications task. Table 6 contains the stages and the number of sentences produced for
each stage of simplification. The Original class contains the original sentences, Natural
contains the sentences produced from a Natural stage of simplification of the original
sentences, and Strong has the sentences produced on a strong stage of simplification.
On each stage of simplification the sentence becomes less complex. In the fine-tuning
process, the model will learn the complexity of the sentences and will classify those
sentences on three levels, so sentences more complex will be classified as Original, less
complex sentences as Natural, and simple sentences as Strong.

Table 6. PorSimples Corpus dataset.

ID Classes Number of Examples

0 Original 2907
1 Natural 4066
2 Strong 4971

Total 11,944

The second dataset selected, called Textual Complexity Corpus for School Internships
in the Brazilian Educational System Dataset [40], is a dataset that contains texts divided by
the stages of the Brazilian educational system. The stages of education are divided into
four stages, representing the four classes presented in the Table 7.

Table 7. Textual Complexity Corpus for School Internships in the Brazilian Educational System dataset.

ID Classes Number of Examples

0 Elementary School—I 297
1 Elementary School—II 325
2 High School 628
3 University Education 826

Total 2076
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4.2. Metrics

Four metrics of the evaluation were used to measure the performance of the models.
The first one is accuracy (Equation (2)), which consists of the number of correct and overall
predictions. This metric is the probability that the model predicted the suitable class [41].

Accuracy =
∑ CorrectedPredictions

∑ AllPredictions
(2)

The precision score (Equation (3)) is used to analyze the proportion of true positives that
the model predicted. Precision tells how trustful the model is when predicting a particular
class. The calculation is done by dividing the true positives (TP) by the sum of true positives
(TP) and the false positives (FP) [41].

Precision =
TP

TP + FP
(3)

Additionally, to measure the capability of the model to predict all the positive classes,
the recall score (Equation (4)) is used. The recall score can be provided by dividing the true
positives (TP) by the sum of true positives (TP) and the false negative (FN) [41].

Recall =
TP

TP + FN
(4)

The last metric applied in the experiments is the F1 score (Equation (5)) to measure the
performance of the model. This metric uses the precision score (PS) and recall score (RC) as
a weighted average under the concept of harmonic mean [41].

F1Score = 2 × (
PS × RS
PS + RS

) (5)

It is worth mentioning that all metrics presented have their best score as 1 and their
worst score as 0.

5. Results

This section shows the performance assessment of the BERT, DistilBERT, BERTimbau,
and DistilBERTimbau models. For a better presentation, this section was divided into two
subsections. The first presented the results of the English language (Section 5.1), and the
second presented the results of the Brazilian Portuguese language (Section 5.2).

It is worth mentioning that, after each K-fold iteration, an evaluation is made using
the evaluation part of the dataset to measure the score of the fine-tuned model.

5.1. English Language

Brexit Blog Corpus was the first dataset evaluated. The BERT model’s results are
presented in Table 8 and the DistilBERT model’s results are in Table 9.

Table 8. BERT—Brexit Blog Corpus dataset.

K-Fold Accuracy Precision Recall F1 Score
Evaluation

Loss
Training

Time
Evaluation

Time

1 0.3650 0.3345 0.3290 0.3279 2.558 395 12
2 0.4214 0.4270 0.4017 0.4068 2.497 384 12
3 0.4107 0.3421 0.3495 0.3433 2.516 385 13
4 0.4286 0.3754 0.4223 0.3761 2.320 391 11
5 0.4405 0.4217 0.3909 0.3991 2.256 390 10
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Table 9. DistilBERT—Brexit Blog Corpus dataset.

K-Fold Accuracy Precision Recall F1 Score
Evaluation

Loss
Training

Time
Evaluation

Time

1 0.3561 0.3078 0.2971 0.2981 2.546 205 12
2 0.4154 0.3650 0.3557 0.3494 2.298 208 10
3 0.4137 0.3687 0.3606 0.3537 2.373 205 11
4 0.3750 0.3807 0.3442 0.3506 2.421 199 11
5 0.4048 0.3480 0.3352 0.3378 2.357 201 11

The Brexit Blog Corpus dataset obtained relatively low score results for all metrics
evaluated, see Table 9. This behavior is expected since the dataset used is unbalanced. That
is, many classes and few samples for each class; furthermore, some class has significantly
more or fewer samples than others.

Additionally, the score results obtained by the distilled model of BERT are similar to
those of its original model BERT. Still, the distilled model took around 47.7% less time on
the fine-tuning process than BERT since DistilBERT is a more lightweight model than BERT.

The second English dataset evaluated was the BBC Text. The evaluation score results
are presented in Table 10 for the BERT model and in Table 11 for DistilBERT.

Table 10. BERT—BBC Text dataset.

K-Fold Accuracy Precision Recall F1 Score
Evaluation

Loss
Training

Time
Evaluation

Time

1 0.9753 0.9742 0.9747 0.9743 0.2062 435 10
2 0.9820 0.9826 0.9810 0.9816 0.1470 438 12
3 0.9820 0.9808 0.9821 0.9812 0.1116 450 13
4 0.9685 0.9685 0.9694 0.9689 0.2923 432 13
5 0.9573 0.9608 0.9540 0.9565 0.3191 438 13

Table 11. DistilBERT—BBC Text dataset.

K-Fold Accuracy Precision Recall F1 Score
Evaluation

Loss
Training

Time
Evaluation

Time

1 0.9685 0.9680 0.9685 0.9681 0.2478 278 11
2 0.9685 0.9690 0.9705 0.9694 0.2098 269 12
3 0.9775 0.9747 0.9763 0.9754 0.2041 266 13
4 0.9753 0.9758 0.9763 0.9760 0.2039 266 13
5 0.9888 0.9877 0.9879 0.9876 0.0955 277 13

Unlike the Brexit Blog Corpus dataset, the BBC Text achieved outstanding score results.
It is known that this dataset is balanced, having a good and uniform number of samples
for each class. Comparing the two models, the evaluation results are very similar, but the
fine-tuning time is around 37.3% lower for DistilBERT compared to BERT.

The last English dataset evaluated was Amazon Alexa Review Dataset. The BERT
model’s score result are presented on Tables 12 and 13 for DistilBERT model.

Table 12. BERT—Amazon Alexa Review dataset.

K-Fold Accuracy Precision Recall F1 Score
Evaluation

Loss
Training

Time
Evaluation

Time

1 0.9651 0.8998 0.8377 0.8656 0.2050 665 12
2 0.9587 0.9191 0.7766 0.8304 0.2890 663 13
3 0.9508 0.8299 0.8109 0.8201 0.3314 663 14
4 0.9619 0.8523 0.8667 0.8593 0.2755 666 14
5 0.9508 0.9305 0.7919 0.8443 0.3640 666 14
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Table 13. DistilBERT—Amazon Alexa Review dataset.

K-Fold Accuracy Precision Recall F1 Score
Evaluation

Loss
Training

Time
Evaluation

Time

1 0.9603 0.8902 0.8065 0.8423 0.2431 324 09
2 0.9492 0.8725 0.8016 0.8323 0.3847 314 10
3 0.9413 0.8803 0.7228 0.7763 0.4456 319 11
4 0.9571 0.8369 0.8298 0.8333 0.3127 317 11
5 0.9619 0.9344 0.7966 0.8469 0.2698 318 11

The Amazon Alexa Reviews dataset reached good results. Analyzing Tables 12 and 13,
it is possible to note that the precision, recall, and F1-score are a little lower than the
accuracy score. Those results may occur because the dataset has fewer examples for the
negative class and a very high number of samples for the positive class.

The BERT and DistilBERT score results were also very similar when compared. The DistilBERT
model took around 52.1% less time to fine-tune when compared to its larger counterpart.

5.2. Brazilian Portuguese Language

In order to evaluate the Portuguese model BERTimbau and the distilled version
DistilBERTimbau, the first Portuguese dataset selected was the Textual Complexity Corpus
for School Internships in the Brazilian Educational System Dataset (TCIE). The BERTimbau
score results are presented in Table 14 and the DistilBERTimbau results in Table 15.

Table 14. BERTimbau—TCIE dataset.

K-Fold Accuracy Precision Recall F1 Score
Evaluation

Loss
Training

Time
Evaluation

Time

1 0.9351 0.9232 0.9280 0.9233 0.3477 418 12
2 0.9325 0.9227 0.9194 0.9206 0.4158 408 12
3 0.9301 0.9172 0.9193 0.9181 0.3752 421 13
4 0.9422 0.9375 0.9395 0.9384 0.3229 414 14
5 0.9253 0.9211 0.9168 0.9186 0.5360 241 13

Table 15. DistilBERTimbau—TCIE dataset.

K-Fold Accuracy Precision Recall F1 Score
Evaluation

Loss
Training

Time
Evaluation

Time

1 0.9135 0.9060 0.9087 0.9072 0.5106 299 13
2 0.9277 0.9137 0.9180 0.9148 0.4370 289 15
3 0.9253 0.9025 0.9051 0.9024 0.3878 291 14
4 0.9181 0.9026 0.8990 0.9006 0.4631 307 15
5 0.9036 0.8822 0.8783 0.8797 0.6200 308 14

The TCIE dataset accomplished good results. Looking over Tables 14 and 15, it is
possible to note that the distilled model had an evaluation score slightly lower than the
BERTimbau model on every metric, but the fine-tuning process took around 21.5% longer
on BERTimbau than the distilled version.

The second Portuguese dataset used was the PorSimples Corpus. For this dataset,
the parameters used on the other datasets presented in Table 1 caused overfitting. A lower
number of the learning rate hyperparameter was used to correct this issue, 0.000001
instead of 0.00004. This reduces the model’s learning speed, solving the overfitting issue.
The BERTimbau results are presented in Table 16 and the DistilBERTimbau evaluation score
results are presented in Table 17.

The evaluation result with this dataset did not achieve very high scores in both the
BERTimbau and DistilBERTimbau models. These low results may be explained because,
on the PorSimples Corpus dataset, some sentences are similar to the others when passing
through the simplifications process, so similar sentences are presented in each dataset class.
Hence, the model has more challenges when learning the class differences. Additionally,
the BERTimbau model took around 49.2% more time than the distilled model to the
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fine-tuning process. Furthermore, the high time results presented in Tables 16 and 17
were expected since this dataset has 11,944 samples, many more when compared to the
other datasets.

Table 16. BERTimbau—PorSimples Corpus dataset.

K-Fold Accuracy Precision Recall F1 Score
Evaluation

Loss
Training

Time
Evaluation

Time

1 0.5184 0.4948 0.5056 0.4690 0.9385 2162 25
2 0.5126 0.4824 0.4881 0.4679 0.9665 2159 25
3 0.5008 0.4737 0.4912 0.4518 0.9543 2170 26
4 0.5021 0.4813 0.4892 0.4634 0.9647 2173 24
5 0.5050 0.4681 0.4718 0.4483 0.9768 2198 27

Table 17. DistilBERTimbau—PorSimples Corpus dataset.

K-Fold Accuracy Precision Recall F1 Score
Evaluation

Loss
Training

Time
Evaluation

Time

1 0.5038 0.4797 0.4801 0.4520 0.9635 1099 15
2 0.5067 0.4697 0.4837 0.4449 0.9559 1098 17
3 0.5226 0.4889 0.5030 0.4687 0.9311 1095 18
4 0.5251 0.4892 0.4968 0.4721 0.9428 1126 18
5 0.5008 0.4794 0.4853 0.4446 0.9746 1103 17

Table 18 contains the size of the models generated after the fine-tuning process for each
dataset. Analyzing the results, it is possible to identify that the distilled models produced
models around 40% smaller than their larger counterparts.

Table 18. Model Size.

Dataset BERT DistilBert

Amazon Alexa Review 413.3 MB 251 MB
BBC Text 413.3 MB 251 MB

Brexit Blog Corpus 413.3 MB 251 MB
TCIE 415.6 MB 253.4 MB

PorSimples Corpus 415.6 MB 253.3 MB

An important observation is that on every evaluation, the scores reached on every
k-fold iteration had very similar results, which show the model’s generalization capability.

The barplot presented in Figure 5 contains the arithmetic mean of each scoring metric
on each k-fold iteration. In this figure, the red bars refer to BERT/BERTimbau models,
and the blue ones to DistilBERT/DistilBERTimbau models.

As we can see, the score recorded by the distilled models is very similar to the ones
scored by the original models. This shows the power of the compression of deep learning
models technique, which produces smaller models, requires fewer computation resources,
and has almost the same power as the original models.

Figure 5. Bar plot comparing BERT and DistilBERT’s model scores.
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6. Discussion

Analyzing the results presented in Section 5 and Figure 5, the scores recorded by
the distilled models are very similar to the ones scored by the original models. In our
experiments, they were around 45% faster in the fine-tuning process, about 40% smaller,
and also preserving about 96% of the language comprehension skills performed by BERT and
BERTimbau. It is worth noting that these results are similar to the results presented on [25],
where the DistilBERT models were 40% smaller, 60% faster, and retained 97% of BERT’s
comprehension capability.

The work presented in [42] compared BERT, DistilBERT, and other pre-trained models
for emotion recognition and also achieved similar score results on BERT and DistilBERT.
Furthermore, the DistilBERT model was the fastest one. These results presented in that
work and also in the literature show the power of the compression of deep learning models
technique, which produces smaller models, requires fewer computation resources, and has
almost the same power as the original models.

Another critical point we can highlight in Figure 5 is the importance of the quality of
the datasets to produce a good predicted model. In two unbalanced datasets, such as Brexit
Blog Corpus and PorSimples Corpus, the accuracy was low against the other balanced
datasets. The Amazon Alexa Reviews achieve good accuracy, but lower precision, recall,
and F1 score since this dataset has a low number of negative samples.

Other pre-trained models have been widely developed for other languages such as
BERTino [43], an Italian DistilBERT, and CamemBERT [44] for the French language based
on the RoBERTa [45] model, a variation of the BERT model. The main goal of pre-trained
models is to remove the necessity of building a specific model for each task and to improve
the necessity of developing a pre-trained model for each language, bigger models that
understand multiple languages have been developed such as BERT Multilingual [30] and
also GPT-3 [46]. Still, those models are trained with more data than BERT for specific
languages, especially GPT-3, and should require more computational resources.

7. Conclusions

Inspired by a state-of-the-art language representation model, this paper analyzed two
state-of-the-art models, BERT and DistilBERT, for text classification tasks for both English
and Brazilian Portuguese. These models have been compared with several selected datasets.
The experiment results showed that the compression of neural networks responsible for the
generation of the DistilBERT and DistilBERTimbau produce models around 40% smaller and
take around 45% (our experiments ranged from 21.5% to 66.9%) less time for the fine-tuning
process. In other words, compression models require fewer computational resources,
which did not significantly impact the model’s performance. Thus, the lightweight models
allow being executed with low computational resources and with the performance of their
larger counterparts. In addition, the distilled models preserve about 96% of language
comprehension skills for balanced datasets.

Some extensions of our future work can be highlighted: (i) other robust models are
being widely studied and developed, such as in [47] and GPT-3 [46], which can be evaluated
and compared with the models mentioned in this work; and (ii) perform task classification
for non-Western languages (e.g., Japanese, Chinese, and Korean).

In closing, the experiment results show how robust the Transformer architecture is and
the possibility of using it for more languages than English, such as the Brazilian Portuguese
models studied in this work.
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Abstract: The rare earth extraction process has significant time delay characteristics, making it
challenging to identify the time delay and establish an accurate mathematical model. This paper
proposes a multi-delay identification method based on improved time-correlation analysis. Firstly, the
data are preprocessed by grey relational analysis, and the time delay sequence and time-correlation
data matrix are constructed. The time-correlation analysis matrix is defined, and the H∞ norm
quantifies the correlation degree of the data sequence. Thus the multi-delay identification problem is
transformed into an integer optimization problem. Secondly, an improved discrete state transition
algorithm is used for optimization to obtain multi-delay. Finally, based on an Neodymium (Nd)
component content model constructed by a wavelet neural network, the performance of the proposed
method is compared with the unimproved time delay identification method and the model without
an identification method. The results show that the proposed algorithm improves optimization
accuracy, convergence speed, and stability. The performance of the component content model after
time delay identification is significantly improved using the proposed method, which verifies its
effectiveness in the time delay identification of the rare earth extraction process.

Keywords: rare earth extraction; time delay identification; grey correlation analysis; time-correlation;
discrete state transition algorithm; wavelet neural network

1. Introduction

The rare earth extraction process includes dozens or even hundreds of extraction
tanks. The mixing speed and time of each group of agitators are different, which affects the
reaction and transmission time of materials, leading to multi-delay, so a large amount of
data cannot be effectively utilized. Current modeling studies of the rare earth extraction
process do not consider time delay or take it as a constant [1–3], resulting in a particular
gap between the model and the extraction site. Therefore, it is significant to study how to
identify multi-delay.

A series of solutions have been proposed for the problem of time delay identification.
The step response method was used in the time delay identification of systems [4,5], but
this method is susceptible to noise and requires a filter to remove high-frequency noise.
Rad et al. [6] estimated the time delay of input and output signals based on the cross-
correlation function, which cannot reflect their specific relationship, so the results are not
ideal. Some scholars used a recursive least squares algorithm to identify the system with
time delay [7–9], which is assumed to be known and may not be established in engineering
practice. Neural networks were used to identify time delay, which have the problem of
long training times and easily falling into local optima [10–12]. Liu et al. [13] developed a
compressed sensing recovery algorithm for the multiple input single output finite impulse
response systems with unknown time delay, but it was not easy to choose the optimal
threshold. Chen et al. [14] proposed an effective identification model based on the Bayesian
theorem for systems with unknown time delay. Wang et al. [15] proposed a parameter iden-
tification method of a fractional-order time delay system based on the Legendre wavelet,
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which reduces the effect of noise on the accuracy of parameter identification. Hofmann
et al. [16] proposed an offline time-delay identification strategy based on falling film evapo-
rator pilot plant experiments and obtained good results in both validation experiments,
with and without evaporation. Prasad et al. [17] used fractional-order modeling technique
to identify the parameters of Hammerstein structured nonlinear systems with discontinu-
ous asymmetric (two segment piecewise-linear with a dead-zone) nonlinearity and input
time delay. Li et al. [18] designed a discrete-time robust adaptive estimator to identify the
time delay and sandwich system parameters. Meanwhile, they reconstructed the obser-
vation and augmented data to obtain the explicit expression of the delay parameter. To
achieve an effective system control strategy and accurate response prediction, Liu et al. [19]
proposed a new method to identify the parameters of linear time-delay differential systems
by analyzing the frequency domain response of complex systems. To solve the influence of
time delay on HVAC systems, Li et al. [20] introduced transfer entropy and proposed a
model-free identification method based on the information theory framework. Ni et al. [21]
studied the parameter estimation problem for a class of linear time-delay systems. Based
on the frequency responses and harmonic balance methods and by means of the gradient
search, a two-stage stochastic gradient and gradient-based iterative algorithm was devel-
oped by using the collected data under the sinusoidal excitation. The maximum likelihood
method [22], variable structure observer [23], particle swarm optimization [24], and other
methods have also been applied.

Industrial processes have become complex with the rapid development of science and
technology, resulting in multi-delay, and the abovementioned methods have been unable to
meet practical requirements. Xie et al. [25] improved the genetic algorithm, applied it to the
identification of multi-delay, and obtained their optimal estimate, but the method requires
an accurate system model. Huang et al. [26] proposed an improved cross-correlation
function method and realized multi-delay identification of the alumina carbon separation
process. Wang et al. [27] proposed a trend similarity analysis method and realized the
multi-delay identification of the hydrocracking process. All the abovementioned methods
have the problems of high computational redundancy and time consumption.

This paper draws on the successful application of the time-correlation analysis
method [28] in the alumina carbon separation and evaporation processes. We propose an
improved time-correlation analysis method for the rare earth extraction process. Based
on field data and the improved method, the multi-delay identification problem is trans-
formed into an unconstrained integer optimization problem without changing the time
delay relationship. Since the discrete state transition algorithm [29] can effectively solve
the unconstrained integer optimization problem [30], we adopt the improved algorithm to
solve it. Experimental comparison and analysis show that the improved time-correlation
analysis method has high speed, high accuracy, and good stability, and is suitable for the
multi-delay identification of the rare earth extraction process.

2. Improvement of Time-Correlation Analysis Method

Time-correlation analysis is a time delay identification method based on the relation-
ship between data sequences, which has the advantage of high efficiency. This paper
improves its shortcomings in data preprocessing and selection.

2.1. Grey Relational Analysis

Grey relational analysis (GRA) is derived from the grey system theory in system
science [31]. Its basic idea is to judge the tightness of sequence connections according to
the similarity between the geometric shapes of sequence curves. The closer the curves, the
more significant the correlation between sequences.

Compared with traditional multi-factor analysis methods (such as canonical correla-
tion analysis and multiple linear regression), this method has lower data requirements and
less computational burden. It is suitable for quantitative analysis of the dynamic develop-
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ment process and hence can be used to analyze the correlation between a large amount of
process data obtained from a production site and the content of rare earth elements.

Let the time base of a critical process variable in N work units be d = [d1, d2, . . ., di, . . ., dN],
where i = 1, 2, . . ., N, di = τi/T. T is the sampling period, the delay sequence is
Γ = [τ1, τ2, . . ., τi, . . ., τN ], and τi is the time delay of the ith work unit. The content of
n rare earth elements and m process variables is obtained by k times sampling. The
element component content U′

j(t) = [u′
1(t), u′

2(t), . . ., u′
j(t), . . ., u′

n(t)] are used as the ref-
erence sequence in the correlation analysis, where 1 ≤ j ≤ n, 1 ≤ t ≤ k, and u′

j(t)
represents the jth rare earth element component content. The process variable data
E′

l(t) = [e′1(t), e′2(t), . . ., e′l(t), . . ., e′m(t)] are used as the comparison sequence, where
1 ≤ l ≤ m, 1 ≤ t ≤ k, and e′l(t) represents the lth process variable data.

The original data are normalized to eliminate the influence of different dimensions on
the results. Standard processing methods include initialization and averaging. This paper
adopts averaging, {

Uj(t) = U′
j(t)/

1
k ∑k

t=1 U′
j(t)

El(t) = E′
l(t)/

1
k ∑k

t=1 E′
l(t)

(1)

where Uj(t) is the processed reference sequence data, and El(t) is the processed comparison
sequence data.

The correlation coefficient is used to express the degree of closeness between the index
values of the comparison and reference sequence in grey relational analysis. The higher the
value, the greater the degree of proximity,

ξl j(t) =
min

l
min

j
|Uj(t)− El(t)|+ ρmax

l
max

j
|Uj(t)− El(t)|

|Uj(t)− El(t)|+ ρmax
l

max
j
|Uj(t)− El(t)| (2)

where ξl j(t) is the correlation coefficient of the lth characteristic variable corresponding
to the content of the jth rare earth element component, and ρ ∈ [0, 1] is the resolution
coefficient, which we take as 0.5.

According to the correlation coefficient, the correlation degree between each process
variable and the content of rare earth elements can be obtained as

rlj(t) =
1
k

k

∑
t=1

ξl j(t) (3)

The correlation degree is sorted from large to small. If r11 < r21, then the correlation
degree between the comparison sequence e2(t) and the content of the first rare earth element
component is greater than that of comparison sequence e1(t).

2.2. Time Delay Identification Method Based on Time-Correlation Analysis

The process variable with the highest gray correlation is taken as the key process
variable, and its standardized data el(t) are used to form the time-correlation data matrix,

E =

∣∣∣∣∣∣∣∣∣
e0,t e1,t+τ1 · · · ei,t+τ1+···+τi · · · eN,t+τ1+···+τN

e0,t+T e1,t+τ1+T · · · ei,t+τ1+···+τi+T · · · eN,t+τ1+···+τN+T
...

...
. . .

...
. . .

...
e0,t+(F−1)T e1,t+τ1+(F−1)T · · · ei,t+τ1+···+τi+(F−1)T · · · eN,t+τ1+···+τN+(F−1)T

∣∣∣∣∣∣∣∣∣
(4)

where e0,∗ and ei,∗ are the time series of the inlet process variables and the ith unit outlet
process variables, respectively. F ≥ ∑N

1 di, so that the data in the time-correlation matrix
contain information about the entire process cycle, from inlet to outlet.
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The matrix E describes the degree of correlation between the data corresponding
to the time sequences. Multiple time sequences are described by the time-correlation
analysis matrix,

R =
cov(E)

∏N
i=1 σi

(5)

where cov(E) is the covariance matrix of E, whose standard deviation of column i is σi.
R is a time-correlation analysis matrix, which reflects the correlation degree of multiple

groups of sequences under multi-delay. The H∞ norm can quantify it and is expressed as

β = max(||R||∞) (6)

A maximum value of the H∞ norm indicates the maximum correlation between each
time sequence in the data matrix. At this time, the corresponding delay sequence Γ consists
of the multi-delay to be solved.

According to the extraction production site experience, each unit’s time delay during
operation will fluctuate within a fixed range. Based on this, the time-base value range
of key process variables can be determined as di ∈ [dimin, dimax]. Thus, the time delay
identification problem of Equation (6) can be transformed into an unconstrained integer
optimization problem, {

β = max(‖R‖∞)

s.t di ∈ [dimin, dimax]
(7)

In summary, the steps of the improved method of combining grey correlation analysis
with time-correlation analysis are as follows.

Step 1: Based on the original data of the rare earth extraction process, the multi-delay
sequence Γ is constructed;

Step 2: Grey correlation analysis is used to identify key process variables and construct
a time-correlation data matrix according to Equation (4);

Step 3: According to Equation (5), the time-correlation analysis matrix is defined, and
the correlation degree of the data sequence is quantified by the H∞ norm;

Step 4: The time delay identification results are obtained using Equation (7).
There are many methods to solve the time delay identification. The discrete state

transition algorithm (DSTA) has been successfully applied to typical discrete optimization
problems such as Boolean integer programming [32] and staff assignment [30]. We use this
method to solve Equation (7).

3. Adaptive Chaotic Discrete State Transition Algorithm

Discrete state transition algorithm is an individual-based optimization algorithm. Its
basic idea is to regard the solution of an optimization problem as a state, and the process
of updating the solution is called state transition. The standard form of the discrete state
transition algorithm can be described as{

xs+1 = Asxs ⊕ Bsus

ys+1 = f (xs+1)
(8)

where xs ∈ Z is a current state; As, Bs are transformation operators; us ∈ Z is a control
variable; ⊕ is an operation; f (·) is the evaluation function, which is used to measure the
quality of xs.

The four special transformation operators [32] are as follows.

(1) Swap transformation:
xs+1 = Aswap

s (ma)xs (9)

where Aswap
s ∈ Rn×n is a random 0–1 matrix with swap action, called a swap transfor-

mation matrix, and ma is a swap factor that can control the number of swap elements
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in the solution. Swap transformation is called local exploration and global exploration
when ma = 2 and ma ≥ 3, respectively.

(2) Shift transformation:

xs+1 = Ashi f t
s (mb)xs (10)

where Ashi f t
s ∈ Rn×n is a random 0–1 matrix with shift action, called a shift transfor-

mation matrix, and a shift factor, mb, can control the continuous shift of elements in
the solution. If mb = 1, the shift transformation is regarded as local exploitation, and
if mb ≥ 2, the shift transformation is regarded as global exploration.

(3) Symmetry transformation:
xs+1 = Asym

s (mc)xs (11)

where Asym
s ∈ Rn×n is a random 0–1 matrix with symmetry action, called a symmetry

transformation matrix, and a symmetry factor, mc, can control the continuous sym-
metry of elements in the solution. Symmetry transformation is intrinsically called
global exploration.

(4) Substitute transformation:

xs+1 = Asub
s (md)xs + Bsub

s (md)us (12)

where Asub
s , Bsub

s ∈ Rn×n is a substitute transformation matrix, and md is a constant
integer, called a substitute factor, to control the maximum number of positions to be
substituted. If md = 1, the substitute transformation is regarded as local exploitation,
and if md ≥ 2, the substitute transformation is regarded as global exploration.

The initial solution is given randomly in the discrete state transition algorithm, and the
solution significantly affects the convergence performance of the algorithm. DSTA easily
falls into local optima in the iterative process. Therefore, an adaptive chaotic discrete state
transition algorithm (ACDSTA) is proposed by introducing the opposition-based learning
strategy, chaotic perturbation strategy, and adaptive recovery strategy.

3.1. Initialization Method Based on Opposition-Based Learning Strategy

The initialization method of the discrete state transition algorithm has the problem
of uneven distribution, which somewhat affects its optimization efficiency. Therefore,
an opposition-based learning strategy (OBL) is introduced to initialize the discrete state
transition algorithm. OBL [33] is a machine-learning method whose idea is to generate a
reverse solution based on the forward solution, compare their fitness values, and select
the optimal solution as the initial solution, thereby improving the optimization speed of
the algorithm.

Let X = [x1, x2, . . . , xc, . . . , xD] be an entity in D-dimensional space. The reverse
solution based on OBL is X′ = [x′1, x′2, . . . , x′c, . . . , x′D], where xc, x′c ∈ [La, Lb], c = 1, 2, . . . , D
calculated as

X′ = La + Lb − X (13)

where La and Lb are the upper and lower bounds, respectively, of the value range of the
target vector.

Based on the idea of OBL, the best initial solution is selected as

yo = max
(

f (X), f
(
X′)) (14)

where f (·) is the fitness function, yo is the fitness value corresponding to Xo, and Xo is the
initial solution into the subsequent iterative process.

3.2. Chaos Perturbation Strategy

Chaos comes from nonlinear dynamic systems. Because of its unique randomness,
ergodicity, and complexity, it can effectively prevent the algorithm from falling into local
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optima, and it is widely used in optimization problems [34]. We propose the chaotic
perturbation strategy to improve the problem that the discrete state transition algorithm
can easily fall into local optima and is described as follows. During the algorithm iteration,
when a value recurs a certain number of times, it indicates that the algorithm has fallen
into a local optimum. Chaotic perturbation is applied to obtain a chaotic variable sequence,
which is inversely mapped to the original solution space to obtain the perturbation solution,
which is substituted in the next iteration so that the calculation exits the local extremum.
When the termination condition is satisfied, the algorithm ends the iteration, and the final
solution is the global optimum.

There are many rules to generate chaos, among which logistic mapping is common,
but it has the problem of uneven frequency distribution. Zhou et al. [35] combined logistic
mapping and tent mapping based on the uniform ergodicity of tent mapping to realize
logistic-tent mapping,

Xn+1 =

{
(αXn(1 − Xn) + (4 − α)Xn/2)mod1 Xn < 0.5

(αXn(1 − Xn) + (4 − α)(1 − Xn)/2)mod1 Xn ≥ 0.5
(15)

where Xn ∈ [0, 1] is a chaotic variable, and the mod1 operation ensures that its output data
are in the range of [0, 1], and α ∈ (0, 4] is a chaotic factor, which we take as 3.99.

The chaotic variables generated by Equation (15) cannot be directly used for iterative
calculation of the algorithm. So, chaotic variables are mapped to the solution space of the
objective function,

Xnew = round(Lb + (La − Lb)Xn) (16)

where Xnew is a new solution generated after chaotic perturbation.

3.3. Adaptive Recovery Strategy

In the iterative process of the discrete state transition algorithm, the chaos perturbation
strategy is introduced to generate new solutions, which can effectively improve its ability
to jump out of local optima. However, the new solution directly enters the next iteration,
which will decrease the algorithm’s convergence performance. To only use the greedy
criterion can no longer meet the convergence requirements. We propose adaptive recovery,
adopting the greedy criterion to ensure the general convergence of the algorithm. The
current value is restored to the preserved historical best value with adaptive probability to
further improve convergence performance.

The discrete state transition algorithm is in the stage of rapid optimization in the early
stages of iteration, which greatly decreases fitness. The recovery probability should be
small at this time, so as not to affect the searchability of the algorithm in the early stage
of iteration. In the middle and later stages, the searchability decreases, and the optimal
historical value should be restored with a large probability. We use a nonlinear adaptive
adjustment method [36],

P = (pa − pb)× (1 − sin(
π

2
· ( iter

itermax
)μ)) (17)

where P ∈ [0, 1], Pa is the maximum value of the recovery probability P, Pb is the minimum
value of P, iter is the current number of iterations, itermax is the maximum number of
iterations, and μ is the adaptive factor, which we take as 2.

The steps of the proposed adaptive chaotic discrete state transition algorithm are
as follows.

Step 1: Set relevant parameters such as swap factor ma, shift factor mb, symmetry
factor mc, substitution factor md, chaos factor α, and adaptive factor μ;

Step 2: Generate the reverse solution using the initialization method according to
Equation (13). The fitness of the forward and reverse solutions is compared by Equation (14)
to select the best initial solution;
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Step 3: Update the solution by swap, shift, symmetry, and substitution transformations
(Equations (9)–(12)) in turn;

Step 4: According to Equation (17), judge whether the adaptive recovery strategy is
satisfied, and if so, assign the optimal historical value to the current solution;

Step 5: Determine whether the condition of the chaotic perturbation strategy is satis-
fied. If so, generate the chaotic variable according to Equation (15), and the perturbation
solution Xnew according to Equation (16) for the next iteration. Otherwise, go to step 6.

Step 6: Determine whether the iteration termination condition is satisfied. If so,
terminate the search and output the final optimization result. Otherwise, return to step 3.

3.4. Validation of ACDSTA

Many applications in economics, chemistry, manufacturing, and other fields can be
transformed into unconstrained integer optimization problems. To verify the feasibility,
superiority, and applicability of ACDSTA, three functions of unconstrained integer opti-
mization problems [37] are selected for experiments, denoted by EXP1, EXP2, and EXP3,
and expressed as follows, with respective optimal values of −620, −70,429, and −1,439,658.

[EXP1]

{
min f (x) = 1

2 xTQx + cTx
s.t x ∈ {0, 1, 2, . . . , 10}8 (18)

where

Q =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 −2 −3 0 1 4 5 −2
−2 −4 0 0 2 2 0 0
−3 0 8 −2 0 3 4 0
0 0 −2 −4 4 4 0 1
1 2 0 4 100 2 0 −2
4 2 3 4 2 100 1 0
5 0 4 0 0 1 200 4
−3 0 0 1 −2 0 4 10

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

cT = (−4 1 − 8 3 − 100 − 10 − 20 0).

[EXP2]

{
min f (x) = xTQx

s.t x ∈ {0, 1, 2, . . . , 49}10 (19)

where

Q =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 −2 2 8 −5 1 −4 0 0 8
−2 2 0 −5 4 −4 −4 −5 0 −5
2 0 2 −3 7 0 −3 7 5 0
8 −5 −3 −1 −3 −1 7 1 7 2
−5 4 7 −3 1 0 −4 2 4 −2
1 −4 0 −1 0 1 9 5 2 0
−4 −4 −3 7 −4 9 3 1 2 0
0 −5 7 1 2 5 1 0 −3 −2
0 0 5 7 4 2 2 −3 2 3
8 −5 0 2 −2 0 0 −2 3 3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

[EXP3]
{

min f (x) = xTQx + cTx
s.t x ∈ {0, 1, 2, . . . , 99}20 (20)

where
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Q =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−3 7 0 −5 1 1 0 2 −1 −1 −9 3 5 0 0 1 7 −7 −4 −6
7 0 −5 1 1 0 2 −1 −1 −9 3 5 0 0 1 7 −7 −4 −6 −3
0 −5 1 1 0 2 −1 −1 −9 3 5 0 0 1 7 −7 −4 −6 −3 7
−5 1 1 0 2 −1 −1 −9 3 5 0 0 1 7 −7 −4 −6 −3 7 0
1 1 0 2 −1 −1 −9 3 5 0 0 1 7 −7 −4 −6 −3 7 0 −5
1 0 2 −1 −1 −9 3 5 0 0 1 7 −7 −4 −6 −3 7 0 −5 1
0 2 −1 −1 −9 3 5 0 0 1 7 −7 −4 −6 −3 7 0 −5 1 1
2 −1 −1 −9 3 5 0 0 1 7 −7 −4 −6 −3 7 0 −5 1 1 0
−1 −1 −9 3 5 0 0 1 7 −7 −4 −6 −3 7 0 −5 1 1 0 2
−1 −9 3 5 0 0 1 7 −7 −4 −6 −3 7 0 −5 1 1 0 2 1
−9 3 5 0 0 1 7 −7 −4 −6 −3 7 0 −5 1 1 0 2 1 2
3 5 0 0 1 7 −7 −4 −6 −3 7 0 −5 1 1 0 2 1 2 3
5 0 0 1 7 −7 −4 −6 −3 7 0 −5 1 1 0 2 1 2 3 9
0 0 1 7 −7 −4 −6 −3 7 0 −5 1 1 0 2 1 2 3 9 4
0 1 7 −7 −4 −6 −3 7 0 −5 1 1 0 2 1 2 3 9 4 −1
1 7 −7 −4 −6 −3 7 0 −5 1 1 0 2 1 2 3 9 4 −1 −3
7 −7 −4 −6 −3 7 0 −5 1 1 0 2 1 2 3 9 4 −1 −3 9
−7 −4 −6 −3 7 0 −5 1 1 0 2 1 2 3 9 4 −1 −3 9 7
−4 −6 −3 7 0 −5 1 1 0 2 1 2 3 9 4 −1 −3 9 7 −9
−6 −3 7 0 −5 1 1 0 2 1 2 3 9 4 −1 −3 9 7 −9 8

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

cT = (−5 2 − 1 − 3 5 4 − 1 0 9 4 7 − 4 3 5 8 − 1 1 5 − 6 9).

The algorithm was simulated using an Intel Core i5-11300H CPU at 3.10 GHz, with
16.00 GB RAM, Windows 10, and MATLAB R2018a, and compared with particle swarm op-
timization (PSO), DSTA, and DSTAI [32], based on the results of each group of experiments
running 20 times.

The maximum numbers of iterations of EXP1–EXP3 were set to 100, 500, and 1000,
respectively. The remaining parameters were set as follows: PSO learning probability
c1 = c2 = 1.5, initial population 120, inertia weight 0.8. The ACDSTA parameters were set
to SE = 30, ma = 2, mb = 1, mc = 0, md = 1, and mmax = 20. The parameter settings of
DSTA and DSTAI were the same as in Zhou et al.’s study [32].

The average error, average value, and accuracy of optimization (S/20) were selected
as performance evaluation indices of each algorithm. Table 1 compares the results of
quadratic integer programming problems EXP1, EXP2, and EXP3, where the optimal
values of each function index are in boldface.

Table 1. Results of unconstrained integer optimization.

Algorithm Index EXP1 EXP2 EXP3

PSO
average error 0 7.6% 18.7%
average value −620 −64,907 −1,170,653

S/20 20/20 11/20 2/20

DSTA
average error 82.9% 62.6% 58.1%
average value −106 −26,264 −603,975

S/20 0/20 0/20 0/20

DSTAI
average error 0 1.6% 8.4%
average value −620 −69,148 −1,319,270

S/20 20/20 18/20 7/20

ACDSTA
average error 0 0 2.2%
average value −620 −70,429 −1,408,107

S/20 20/20 20/20 15/20
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Figure 1 compares the convergence curves of EXP1, EXP2, and EXP3 under four
optimization algorithms.

Figure 1. Convergencecurves of EXP1, EXP2, and EXP3 on four algorithms.

From Table 1 and Figure 1, we can see the following: (1) For the unconstrained integer
optimization problem EXP1 with a low dimension, PSO, DSTAI, and ACDSTA can all find
the optimal solution, and all the indices are the best; (2) For the unconstrained integer
optimization problems EXP2 and EXP3 with higher dimensions, although PSO and DSTAI
can also find the optimal solution, each index of ACDSTA is better. Among them, the
optimization accuracies of EXP3 were improved by 65%, 75%, and 40% compared with
PSO, DSTA, and DSTAI, respectively, and the respective average values were 20.3%, 133.1%,
and 6.7% higher. Moreover, the average error was only 2.19%, which is significantly lower
than for the other comparison algorithms. This indicates that the higher the dimensionality
of the integer optimization problem and the larger the search space of the solution, the
more prominent the advantage of ACDTSA; (3) Whether low-dimensional EXP1 or high-
dimensional EXP3, ACDSTA was superior to the other three algorithms in terms of initial
average fitness and convergence speed and could find the optimal value faster. This shows
that ACDSTA can approach the optimal value faster and improve convergence performance
through the opposition-based learning strategy and adaptive recovery strategy; (4) For
EXP3, the optimization accuracy of ACDSTA was better than that of the other three
algorithms. Although there was a tendency to fall into local optima in late iterations, it
could effectively jump out of local optima and obtain better optimization accuracy because
of the chaos perturbation strategy.

In summary, ACDSTA was superior to the other algorithms in the test of uncon-
strained integer optimization problems, especially when the dimension and optimization
range were extensive, which can better reflect the advantages of ACDSTA. This demon-
strates the feasibility, superiority, and applicability of ACDSTA when solving practical
engineering problems.

4. Application of ACDSTA in Rare Earth Extraction Process

4.1. Rare Earth Extraction Process Analysis

Rare earth extraction is the obtaining of a single rare earth product from rare earth
liquid, extractant, and detergent through specific equipment. We use the praseodymium/
neodymium (Pr/Nd) extraction and separation process as an example, as shown in Figure 2.
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Figure 2. Schematic Diagram of Rare Earth Extraction Process.

The extractant is added from the first stage, and it flows from left to right through
the stirrer. The detergent is added from the n + m stage and flows from right to left. The
organic phase is added to the feed liquid from the nth stage. The solution in the tank is
divided into two layers by stirring and clarifying. The upper layer is the organic phase,
and the lower layer is the water phase. The difficult extraction product Pr is obtained in the
lower layer of the first stage and the easy extraction product Nd from the upper layer of
the n + m stage.

There are many extraction stages, and it is necessary to control the content distribution
of Pr/Nd components in the tank to ensure the stability of product quality. It takes several
hours or more to cause changes in the content of the export grade Pr/Nd component due
to changes in the flow rate of the feed solution, extractant, and detergent. Therefore, it is
necessary to obtain the residence time of materials in each unit group for timely control.

4.2. Time Delay Identification of Rare Earth Extraction Process

To verify the ability of the proposed method to solve the engineering delay problem,
the delay identification of the 30-stage Pr/Nd production process in a rare earth extraction
plant was carried out. During the Pr/Nd extraction process, the content of Pr/Nd com-
ponents in different tanks changes with time, which leads to a change in the color of the
solution. Therefore, the characteristic color variable of the solution image can be selected
as an auxiliary variable to identify the time delay.

The sampling period was 5 min, and 220 groups of data of Nd component content
and color characteristic variables (H, S, I, R, G, B) were selected in the continuous stable
production process. The grey correlation method was used to analyze the correlation
between Nd component content and color characteristic variables. The results are shown in
Table 2, where the B component has the highest correlation degree, and the H component
has the lowest correlation degree. Therefore, the B component is regarded as the critical
process variable. In the actual extraction site, every five stages of the extraction tank share
a set of agitators, i.e., every five stages constitute a unit group. Therefore, the 30-stage
extraction tank was constructed as six groups of units for identification. According to the
flow direction of the extractant, the first-stage inlet sampling data and each group of outlet
sampling data were recorded as e0, . . ., e6, and the original data matrix E was obtained.

Table 2. Results of GRA.

Color Feature R G B H S I

correlation degree 0.6179 0.5832 0.6734 0.543 0.5706 0.6123

According to the operation experience of the extraction separation site, the time
delay range of stirring and clarification of each stage extraction tank is [3, 8] min. Given
the abovementioned construction method, the time delay range of each unit group is
[15, 40] min. Therefore, the value range of the time-base sequence is [3, 8]. According to
Equation (4), the time-correlation data matrix E is constructed, and the time delay sequence
solution is transformed into the optimization problem by Equations (5) and (6), as shown
in Equation (7).
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ACDSTA is used to solve the abovementioned optimization problem. A certain
number of time-based sequences is generated according to the range of time-based values,
and the fitness function is constructed according to Equation (7). A new sequence is
generated after the operation of the time-based sequence by the swap, shift, symmetry, and
substitution operators. At the same time, the fitness value is calculated, and the current
optimal value and the optimal time-based sequence are retained. The abovementioned
operation is repeated until the iteration termination condition is satisfied, and the global
optimal fitness value and global optimal time-based sequence are obtained. The solution
process of ACDSTA is shown in Figure 3. Here, the maximum number of iterations is set to
100, SE = 5, and the remaining parameters are set according to Section 3.4.

Figure 3. Iterative curve of improved discrete state transition algorithm.

As seen from Figure 3, ACDSTA can obtain the optimal value H∞ = 3.711 in the
early stage of iteration, and the corresponding time-base sequence is [3 6 4 5 4 4]. Since the
sampling period is 5 min, the time delay of the identified unit group is [15 30 20 25 20 20], i.e.,
the 30-stage Pr/Nd extraction production process and the time delay identification result
of each stage of the extraction tank are [3 3 3 3 3 6 6 6 6 6 4 4 4 4 4 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4].

4.3. Time Delay Identification Results and Method Verification

To verify the accuracy of the improved time delay identification method, we conducted
the following experiments. Firstly, the characteristic components H, S, and I of the solution
image of the rare earth extraction tank are considered auxiliary variables. A prediction
model of Nd component content that meets the requirements of the extraction site is
established by the wavelet neural network and used as a verification model. Then the
maximum relative error (MAXRE), mean relative error (MEANRE), and mean absolute
error (MAE) are determined to measure the performance of the model,

MAXRE = MAX
( |z − z′|

z′ × 100%
)

(21)

MEANRE =
1
n

n

∑
i=1

|z − z′|
z′ × 100% (22)

MAE =
1
n

n

∑
i=1

∣∣z − z′
∣∣ (23)
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where z is the predicted component content value of the wavelet neural network, and z′
is the actual component content value. Finally, the following comparative experiments
are designed. Based on the data processed by the improved time delay identification
method (Improved method), time-correlation analysis method (Original method), and
Unused method, the performance of the component content model based on wavelet
neural network (WNN) is compared and analyzed.

WNN is a neural network based on wavelet analysis theory that combines the excellent
time-frequency localization property of wavelet function and the powerful self-learning
function of the neural network. WNN uses the wavelet basis function as the activation
function, which has a strong prediction ability than the back propagation neural network.
Lu et al. [38] showed a nonlinear relationship between the color characteristic components
H, S, and I of the rare earth extraction solution image and Nd component content. Therefore,
we use the WNN to model the component content of the rare earth extraction process,
using the Morlet function as the wavelet basis function.

y = cos(1.75x)(−0.5x2) (24)

The parameter settings are as follows. The learning probability is 0.01, the momentum
factor is 0.001, and the maximum number of iterations is 1000. The data samples consist of
220 groups, and 190 groups are randomly selected for model training. The remaining are
used to verify the model, as shown in Figure 4.

Figure 4. Prediction model result of wavelet neural network.

The maximum relative error of the model prediction is 4.76%, which meets the accuracy
requirements of the rare earth extraction site for the prediction model, so it can be used as a
verification model for time delay identification.

Table 3 shows the model evaluation indices based on the Unused, Original, and
Improved methods, where the bold data are the optimal values, and the corresponding
relative error curve is shown in Figure 5.

Table 3. Model evaluation indices of different methods.

Method MAXRE% MEANRE% MAE

Unused 7.96 1.63 0.9183
Original 5.08 1.33 0.8738

Improved 1.69 0.48 0.362
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Figure 5. Forecast relative error of different methods.

From Table 3 and Figure 5, we can see the following: (1) The performance of the
component content model based on the Original method is better than that based on the
Unused method. However, its maximum relative error is greater than 5%, which does not
meet actual requirements. This shows that although the Original method can improve the
model’s performance to a certain extent, due to the randomness of its data selection and
the lack of data preprocessing, the method fails to accurately identify the real-time delay.
(2) The mean relative error of the component content model based on the Improved method
is better than that based on the Unused and Original methods, which is reduced by 70.1%
and 63.9%, respectively. This shows that the model based on the improved method is more
stable. (3) Compared with the Unused and Original methods, the mean absolute error of
the model based on the improved method is reduced by 60.6% and 58.6%, respectively,
indicating that the prediction accuracy of the model is higher.

In summary, the improved method significantly improved the model’s performance.
This shows that the improved method based on grey correlation analysis can effectively
select the data closest to the real-time delay and improve the accuracy of the delay identi-
fication results. At the same time, the maximum relative error of the model based on the
improved method is less than 5%, which meets the actual requirements. This shows that
the improved time delay identification method proposed in this paper is suitable for the
time delay identification of rare earth extraction process.

5. Conclusions

Rare earth extraction is a typical nonlinear, large-time-delay industrial process. The
existence of time delay precludes the effective use of much field data and leads to a gap
between the model describing the rare earth extraction process and the actual situation.
We did the following work in response to this problem: Based on the standard discrete
state transition algorithm, an improved algorithm (ACDSTA) was proposed, using an
opposition-based learning strategy to initialize and accelerate the convergence of the
algorithm, and an adaptive recovery strategy to improve its convergence performance.
A chaotic perturbation strategy can improve the ability of the algorithm to jump out of
local optima. An experimental comparison with three unconstrained integer optimization
problems showed that ACDSTA can effectively solve such problems, and verified its
effectiveness, superiority, and applicability; An improved time delay identification method
was proposed to solve the problem that the data are not preprocessed and are randomly
selected in the time-correlation analysis method. The method was applied to the time
delay identification of a rare earth extraction process. The superiority and effectiveness of
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the proposed improved time delay identification method were verified by comparing the
time-correlation analysis method and the data without the identification method under
the same Nd component content. To sum up, the proposed time delay can provide a
reference for modeling the rare earth extraction process and has guiding significance for
the improvement of the online detection accuracy of component content.
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Abstract: Generalization has always been a keyword in deep learning. Pretrained models and
domain adaptation technology have received widespread attention in solving the problem of general-
ization. They are all focused on finding features in data to improve the generalization ability and to
prevent overfitting. Although they have achieved good results in various tasks, those models are
unstable when classifying a sentence whose label is positive but still contains negative phrases. In
this article, we analyzed the attention heat map of the benchmarks and found that previous models
pay more attention to the phrase rather than to the semantic information of the whole sentence.
Moreover, we proposed a method to scatter the attention away from opposite sentiment words to
avoid a one-sided judgment. We designed a two-stream network and stacked the gradient reversal
layer and feature projection layer within the auxiliary network. The gradient reversal layer can
reverse the gradient of features in the training stage so that the parameters are optimized following
the reversed gradient in the backpropagation stage. We utilized an auxiliary network to extract the
backward features and then fed them into the main network to merge them with normal features
extracted by the main network. We applied this method to the three baselines of TextCNN, BERT, and
RoBERTa using sentiment analysis and sarcasm detection datasets. The results show that our method
can improve the sentiment analysis datasets by 0.5% and the sarcasm detection datasets by 2.1%.

Keywords: deep learning; text classification; two-stream networks; feature fusion; sentiment
classification; sarcasm detection

1. Introduction

Text classification is an essential and vital branch of the natural language process (NLP).
It has received widespread attention from many scholars who utilize neural networks
to extract high-quality semantic features from inputs such as sentences and documents.
The most classic model among the neural network models is the convolutional neural
network [1]. This model can extract highly representative semantic features for classification.
Although the CNN-based model can effectively capture local- and fixed-position features,
its accuracy still needs to be improved. The most recent model is BERT, proposed by
Kenton et al. [2]. BERT and RoBERTa [3] use pretrained technology on large datasets to
capture the universal information to improve the generalization ability.

However, even if these algorithms could achieve a state-of-the-art performance, there
would still be room for improvement. From the perspective of features, these algorithms
make mistakes in specific sentences. For example, when the trained RoBERTa judges the
sentence, a “charming and funny (but ultimately silly) movie”, RoBERTa classifies it as
a negative comment. However, it is a positive comment. We analyzed the attention heat
map and can assume that RoBERTa pays more attention to the phrase “but ultimately silly”
rather than “charming and funny”, which is the reason for the mistake. The heat map of
RoBERTa’s analysis of this sentence is shown in Figure 6.

To address this point, our study follows the research ideas and processes presented in
this paper to allow models to be able to scatter the attention of opposite sentiment words
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given to core sentiment words. In this paper, we utilize a two-stream network structure
to further study the relative differences between the backward features of the auxiliary
network and normal features of the main network to improve the representation ability
of feature vectors. For example, we first extract backward features through an auxiliary
network and then use a feature projection layer to obtain the extra vector, which has the
same direction as the normal feature. After that, to leverage the balance between normal
feature vectors and extra vectors, we study a method to aggregate normal features and
extra vectors that are projected after the projection layer. We assume that such a design has
the potential to analyze more information about the context through end-to-end training.

Inspired by the feature purification network (FP-Net) [4], we propose a method called
the feature augmentation network (FA-Net). Separately, F-Net refers to the main network,
and A-Net refers to the auxiliary network. The A-Net uses the gradient reversal layer [5] to
extract the backward features that contain backward contextual information. Meanwhile,
the F-Net is a normal network such as a CNN or BERT. This means the major work carried
out by the F-Net is meant to extract normal feature vectors. Before feeding the normal
vector into the classifier, we calculate an extra vector through feature projection that is in
the same direction as the normal vectors. After that, we concatenate normal vectors and
extra vectors together, creating a new feature vector. Finally, the model feeds a new vector
into the classifier. This study makes three main contributions:

• The parameters of our model are acceptable. Even in the BERT-based model, our
model only has one or two additional encoder layers.

• Our algorithm is efficiently utilized at different benchmarks, such as with the CNN and
BERT, and it is not conflicted with other operations that improve
generalization capabilities.

• We analyze the influence of the auxiliary network on the attention score of the main
network, expressing the efficiency of the auxiliary network through the attention
heat map.

To better explain the proposed methods, we introduce relevant research on text clas-
sification and feature fusion and briefly describe their practices in Section 2. In Section 3,
we describe the six open-source datasets and three open-source models that are used
as the experiment materials. We also focus on introducing our model’s structure in
Section 3. Later, we list our experimental data in Section 4. To show the effectiveness
of our method, we implement it on sentiment analysis and sarcasm detection datasets. We
list the average results under five seeds and illustrate the stability of the model through
deviation. We also analyze our experimental results and discuss the projection type, the
number of subnetworks, and the type of subnetworks. We also prove that our idea is
consistent with the hypothesis from the perspective of the attention heat map. In Section 5,
we explain our conclusions and future prospects.

2. Related Works

The well-known RNN model used for text classification is long short-term memory
(LSTM) [6,7]. LSTM uses the forget gate to choose whether to retain the previous infor-
mation or not. Thus, LSTM is good at processing long-term-dependent input. However,
compared to CNNs, LSTM does not run fast, causing some scholars to turn their attention
to the CNN models, which can operate fast and parallel to the training stage.

The TextCNN [1] sets fixed filter sizes that work on embedded vectors to capture
context information. Then, the maxpooling focus is used on salience features. To obtain
more information on these features, Wang et al. [8] proposed a method that uses a concen-
tration mechanism to pick out the key features for short text classification. However, the
problem with TextCNN is that it is hard to obtain the long-term information because of the
n-gram mechanism of convolution filters, which can only operate on several consecutive
words simultaneously. Therefore, Lai et al. [9] combined the advantages of the TextCNN
and RNN and designed the TextRCNN algorithm. They utilized the Bi-RNN to build the
left and right contexts, then concatenated those vectors with embedding vectors to feed

100



Sensors 2023, 23, 1287

them into one neural layer and generate the latent semantic vector and finally extracted the
feature through max pooling, as is performed via the TextCNN. After the TextCNN, many
advent approaches related to neural networks were proposed, such as, e.g., the DCNN [10],
HAN [11]. The DCNN uses dynamic k-max pooling to extract long-distance features that
were separated dynamically. The HAN uses a multilayer recurrent neural network and an
attention mechanism to extract long-sentence semantic features.

Although some people are still studying the RNN and CNN model structures for
text classification, the naive attention [12] mechanism was proposed. After this, many
variants of attention mechanisms appeared, such as local attention, global attention, and
soft attention. The most effective attention mechanism is self-attention. As proposed by
Vaswani et al. [13], this model effectively reduces the calculation cost by parallel computing
the attention score of each word in the text or document. Furthermore, based on transformer
and attention mechanisms, some scholars utilized other fields’ technologies to improve the
model’s performance. BERT combines pretrained technology, transformer encoders, and
the training of a vast corpus to extract more comprehensive feature vectors and achieve an
SOTA performance for a wide range of tasks. Based on BERT, some scholars proposed more
effective models, such as RoBERTa. This method changed static masking to the dynamic
masking of sentences and removed next-sentence prediction (NSP); thus, its main difference
with BERT is in the pretraining stage. Indeed, this way improves the performance of BERT.

Due to the highly expressive ability of BERT’s encoder, many scholars take the features
extracted by the encoder as their research focus. Qin et al. [4] proposed a feature projection
layer to eliminate the redundant information of features and improve the quality of features.
G Niu et al. [14] proposed a new Encoder1–Encoder2 structure, where Encoder1 is a
global information extractor and Encoder2 is a local information extractor. The global
information vectors are merged with the local information vectors for a higher performance.
Ying et al. [15] proposed an unsupervised saliency detection approach, which utilizes an
elastic-net-based hypergraph model to discover the group structure relationships of salient
regional points. They also use a saliency map to obtain high-level semantic features. Then,
they fused the low-level deep and high-level semantic features into a similarity matrix.
Wang et al. [16] proposed a novel structure comprising three modules. One of the modules
is responsible for multiscale feature alignment fusion. The other modules are focused on
different scale channels and the adaptive weighted fusion of spatial locations, as well as
the multiscale fusion of global and local features. Long et al. [17] proposed a method for
mining the relationships between labeled and unlabeled data. They used the co-occurrence
of words in all documents to build a neighbor table and use multidimensional scaling
(MDS) to extract the feature representation of the adjacency table. Then, they integrated the
new graph-based representation and the document–term representation as the new hybrid
augmented feature representation. Huang et al. [18] added other cheap modules, called
Ghost Modules, to capture more semantic information and then fused them with normal
features extracted by the base model. They studied the 2D convolutional operation and
1D convolutional operation of the Ghost Modules. Additionally, they also analyzed which
position was better when inserting their Ghost Modules within the transformer encoder.

3. Materials and Methods

3.1. Methods

In this paper, we mainly studied the deep learning approach to improve the quality of
feature vectors. Our method has a built-in feature projection layer and gradient reversal
layer in the auxiliary network. For the projection layer, in our implementation, we de-
composed the backward features in two directions and chose the one that has the same
direction as the normal feature, keeping in line with our assumption. Another direction is
not suitable for our method because the effectiveness is not apparent. The gradient reversal
layer is vital to help the model scatter the attention score of a phrase whose semantic
meaning is opposite to that of the sentence. Because the gradient reversal layer can reverse
the gradient of backward features, a normal feature fused with the extra feature generated

101



Sensors 2023, 23, 1287

by the projection layer can contain the reversed gradient information to force the model to
focus on core words other than the contradictory words. We conducted our experiments
under the different types and sizes of the subnetwork to show the different results. For
example, we cut down the number of filter sizes in the CNN model to find an appropriate
and time-effective extractor for the auxiliary network. Additionally, we did not use the
convolution layer to extract extra features except in the CNN models. In contrast, we
utilized the transformer encoder to extract additional features, as it can generate more
explainable features than the convolution layer. The overview of the structure of our FA-Net
is described in Figure 1.

Extractor

… …

Figure 1. The architecture of FA-Net. The right structure shows the detail of the projection layer. The
left one displays the whole network as part of the right boxed figure. Each component is the same
except for the extractor of F-Net and A-Net. Note that the “Embedding” concludes with the blue box,
but it is not the embedding layer. Rather, it is an abstract layer. The outputs of “Embedding” may be
produced by the embedding layer or by one of the transformer encoder layers.

As shown in Figure 1, our network consists of two networks. The F-Net attentively
extracts the normal features vf by utilizing the extractor Ef with perturbation from the
A-Net. On the other side, the A-Net is focused on extracting backward features va through
the gradient reversal layer. In our implementations, the type of Ea is the same as that of
Ef , which means the layer type of the A-Net follows that of the F-Net. If the F-Net utilizes
the convolutional layer to extract the features, the A-Net does the same. The other exciting
settings are the size and inputs of Ea. The size of extractor Ea is smaller than the size of Ef .
The input of Ea is the cloned output from one of the encoders of Ef . After feeding the cloned
feature vector into the A-Net, the output of the A-Net is entered into the projection layer
with the output of the F-Net. The final feature vector is obtained through the projection
layer and fed into the classification layer to generate the output of the whole network.

In the backpropagation stage, we initialized two optimizers. The optimizer of the F-
Net is responsible for updating the F-Net’s parameters and the parameter of the embedding
layer, and the optimizer of the A-Net is accountable for updating the A-Net’s parameters.
To explain the algorithms directly, we list the algorithm procedure in Algorithm 1.
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Algorithm 1: Feature Augmentation Network

input :Dataset D = {(xi, yi)
N
i=1}, and Xi is the embedding outputs of xi

1 Initialize the paramaters θ of the model;
2 for each iteration b = 1, 2, . . . , M do
3 Sample one batch of data from D;
4 Use BERT tokenizer to tokenize the batched data;
5 F-Net part:
6 Generate all hidden states Vf via Ef ;
7 if model is BERT-based, then clone one of the hidden states v from Vf ;
8 else clone the embedding outputs Xi as v;
9 C-Net part:

10 Feed v to Ea to genrate the hidden state va by using Equation (6);
11 va go through GRL by using Equations (7)–(9);
12 Projection part:
13 Generate v f by using Equation (10);
14 Concatenate vf and v f and then feed into Equation (13);
15 Update parameters:
16 Backpropagation of the gradient according to loss L;
17 Update the parameters θ f of the F-Net;
18 Update the parameters θa of the A-Net;
19 end

Although our network consists of two networks, both networks share one loss function
L. The advantage of this is that the amount of time consumed by the model is reduced.
The loss function of the whole network is as follows:

L = L f = La (1)

We introduced the proposed method by following the structure of the FA-TextCNN as
an example. The FA-TextCNN is a model that applies our method to the TextCNN. Each
part is as follows:

F-Net Module: For the FA-TextCNN, a dataset D = {(xi, yi) | i ∈ 1, . . . , N} is given,
where xi is a sentence or document with the corpus length L (after padding or cutting), N is
the size of the training data, and yi is the label of xi. Here, xi feeds into the embedding layer
with a fixed embedding size e to generate the embedded output Xi ∈ R

L×e. Whereafter,
Xi feeds into the feature extractor Ef with convolutional filters and n-gram to generate
features v f as follows:

cj
i = f (W · Xi[j : j + n − 1, :] + b) (2)

ci = [c0
i , c1

i , . . . , cL−n
i ] (3)

where j ∈ 0, . . . , L − n and W ∈ R
n×e is the weight of the convolution filter, and n is the

n-gram size of each convolutional filter. Moreover, f is the active function, similar to ReLU.
The outcome of feature fc under the n-gram and a filter is as follows:

fc = [c0, c1, c2, . . . , cL−n] (4)

After this, we used the maxpooling operation over the feature map and took a max-
imum value m f = max{ fc} as the most characteristic feature under the one filter. In
our experiments, we initialized q filters, and each filter initialized m kinds of parameters.
Therefore, a filter can generate one of the most characteristic values of a parameter. Finally,
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we concatenated those characteristic values. Obviously, the vf ∈ R
q·m is extracted by Ef

as follows:

vf = CNNf (Xi) (5)

A-Net module: This module is our designed network. The output of the embedding
layer Xi is cloned, and then Xi is fed into Ea, which is similar to Ef . Because the Ea is also
a convolution filter that can set the n-gram and kinds of parameters, it can generate the
feature va of Xi under a specific convolution filter:

va = CNNa(Xi) (6)

Upon Ea, we innovatively stacked the GRL on the extractors of the A-Net and used
the projection layer to eliminate the harmful semantic information of backward features va.
The procedure of the gradient reversal layer is as follows:

GRLλ(x) = x̃ (7)

∂GRL
∂x

= −λI (8)

where λ is a hyperparameter of the gradient reversal layer, and x̃ is a new feature vector
passed through the gradient reversal layer. We noted that the classification of our whole
model is mainly completed through the F-Net. Therefore, to reduce the influence of the
A-Net at the beginning of training, we gradually increased the λ as follows:

λ =
2

1 + exp(−γ · p)
− 1 (9)

where γ was set to 10 in all experiments, and p represents the iteration ratio of training
from 0 to 1.

When ready, vf and va were both fed into the projection layer to generate v f and va:

v f = Proj(va, vf ) (10)

va = Proj(vf , va) (11)

where v f is the projected feature suited for us, and va is the tested feature that we con-
catenated with the normal feature, as is explained in the Discussion section of this paper.
Additionally, Proj is a projection function that projects a vector to another:

Proj(vx, vy) =
vx · vy

|vy|2 · vy (12)

After the projection layer, we concatenated two features, vf and v f , as a new vector
v∗

f , then fed v∗
f into the classifier. Finally, we utilized the Softmax function to achieve the

classification and used the CrossEntropy function as our Loss function:

v∗
f = concat(vf , v f ) (13)

Yf = So f tmax(v∗
f · Wf + b f ) (14)

Loss f = CrossEntropy(Ytruth, Yf ) (15)

where Wf ∈ R
q·m⊕qa ·ma×C, qa is the number of filters of Ea, ma is the kind of initialized filter

for each filter, and b f ∈ R
C, C is the number of labels. Ytruth is the marked label, and Yf
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is the label predicted by the F-Net. The entire model that is used in the experiments on
the FA-TextCNN is shown in Figure 2. Furthermore, we used a two-dimensional vector
projection process to more intuitively express what the feature projection layer does in
Figure 3.

Figure 2. The total structure of the FA-TextCNN. The purple line is the extractor of the auxiliary
network that utilizes a gradient reversal layer. As shown in the figure, we concatenated the features
after maxpooling and fed the features together to form a fully connected layer.

Figure 3. Two-dimensional progress of projection function. va is the feature vector extracted by
A-Net, and vf is the feature vector extracted by F-Net. v f is the new feature vector that vf projected
to va, and va is the new feature vector that va projected to vf .

Keep in mind that we implemented our method not only on CNN-based, but also on
BERT-based models. To express our idea more clearly, we also drew a figure of the FA-Net
being used on the BERT-based model, as shown in Figure 4. In the BERT-based model, some
details do not align with the TextCNN. We weighed the time consumption and accuracy of
the FA-Net by referred to the analysis of Sun et al. [19]. Consequently, we identified the
high-level encoder from the base BERT as the encoder of Ea because its layers’ output had
a good classification ability. We noticed that the gradient of the A-Net is climbed up and
then went back to the F-Net, influencing the parameters of the F-Net further. We decided to
feed different kinds of the output of extractor Ef to extractor Ea to study the different types
of projection operations. Therefore, we chose different n-gram sizes in the FA-TextCNN
model and different encoder layers in the FA-BERT and FA-RoBERTa models. One reason
we tried different inputs of Ea is that there are two projection types. For each type, we
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tried the same input to verify which is better. Another reason is that the input of Ea is
cloned from the F-Net. Naturally, the A-Net gradient can go back to the F-Net. The higher
the number of encoder outputs picked up by Ea, the more the encoders of the F-Net are
influenced by the gradient of the A-Net.

On the one hand, we want to feed high-quality feature vectors to Ea. On the other
hand, we want the gradient of the A-Net to affect the F-Net as little as possible. Thus,
experiments on different inputs of Ea are necessary.

…
…

…

Figure 4. The figure shows the entire structure of the FA-Net + BERT. We implemented it based on
our assumptions; thus, there are inputs for Ea in the auxiliary network. In this figure, A-Net can
extract different features according to different inputs of A-Net. For example, when the A-Net obtains
the output of Encoder7, the backward features are extracted by Encoder8 rather than Encoder12.
Additionally, the projection layer only works on the CLS token of two features. The encoder in dark
green is the best encoder of Ea that we tested in FA-Net + RoBERTa models.

3.2. Materials

To verify the effectiveness of our algorithm, we experimented with it by using six
corpora, including a multilabel corpus and a binary-label corpora. The summarization of
each corpus is shown in Table 1.

MR (https://www.cs.cornell.edu/people/pabo/movie-review-data/(accessed on 17
January 2023)): This corpus contains data on a document level, sentence level, sentiment
scale, and subjectivity level. In our algorithm, we chose a sentence-level dataset to conduct
the experiment on. It contains 4796 positive samples and 4796 negative samples.

SST2 (https://nlp.stanford.edu/sentiment/(accessed on 17 January 2023)): This cor-
pus contains 67350 positive and negative samples in the training dataset and 1821 samples
in the testing dataset [20]. To conduct the experiment faster, we determined the difference
between the benchmarks and our algorithm. We cut it down to 6920 training samples and
1821 testing samples.

SemEval-2018 task 3 (https://github.com/Cyvhee/SemEval2018-Task3(accessed on
17 January 2023)): This task is named “Irony detection in English tweets.” [21] The task is
part of the 12th workshop on semantic evaluation. It contains two labels: non-irony and
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irony. There are 1916 non-irony and 1901 irony samples in the downloaded training dataset
and 472 non-irony and 310 irony samples in the downloaded test dataset.

Sem-2017 task 4 (https://github.com/cbaziotis/datastories-semeval2017-task4
(accessed on 17 January 2023)): This task is the subtask of SemEval-2017 [22]. Task 4
contains five tasks. This research only needs three tasks: A, C, and E. Task 4A contains
1188 negative, 2724 neutral, and 4088 positive samples. The label of task 4CE is the five-
point scale for sets of tweets and topics. It contains 4159 1point, 2237 0point, 901 -1point,
585 2point, and 118 -2point sets.

Waimai-10k (https://gitee.com/sprite0153/ChineseNlpCorpus/tree/master/datasets
(accessed on 17 January 2023)): This is a Chinese corpus. The data come from user reviews
of a particular food delivery platform. It is a binary-label database containing 3612 positive
examples and 7176 negative examples.

Table 1. The summarization of each corpus.

Corpus Language Labels Samples of Training Data Samples of Test Data

MR English 2 7460 2132
SST2 English 2 6920 1820
SemEval-2018 task 3 English 2 3817 782
Sem-2017 task 4A English 3 6000 2000
Sem-2017 task 4CE English 5 6000 2000
Waimai-10k Chinese 2 8390 2398

Note that some of those corpora have not separated data into training datasets. There-
fore, we split the data into 80% training and 20% testing datasets if the original data was
not split. We kept the split ratio if the original data had been split.

3.3. Experimental Benchmarks

To expressively verify the effectiveness of our model, we conducted experiments with
three benchmarks to obtain the discrepant results. As BERT achieved state-of-the-art results
for productive tasks, we utilized the vocabulary table of BERT to tokenize the original
sentence at each benchmark to decrease the preprocessing time of the corpus.

TextCNN: As the extractor, we utilized the most representative model, CNN-rand,
which is a TextCNN [1]. It uses a set of filters to capture the semantic feature maps and pool
them. Then, it concatenates the features of different filter sizes to make the classification.

BERT: We utilized a pretrained BERT-based model, which includes 12 layers and
756 hidden sizes, to fine-tune the parameters of our datasets.

RoBERTa: The RoBERTa model also has huge pretrained models. Like BERT, we
fine-tuned our corpus in the pretrained RoBERTa-based model.

Although we implemented three benchmarks, there is no difference in the settings
between our algorithm and benchmarks, such that the batch size and convolution filters
or other settings were not changed between the benchmarks and our FA-Nets model.
Moreover, as we know, the initial seed greatly influences the model. We further considered
the influence of seeds on the model, and thus, we calculated the average result under
five seeds.

3.4. Experimental Settings

We fixed the embedding size to be 128-dimensional for each experiment, except for
when using BERT and RoBERTa because the pretrained models cannot be changed. The
setting details at each benchmark of our experiments are as follows:

FA-Net of TextCNN: The filter sizes are 3, and the n-grams are set to be (3, 4, and 5).
The parameter of L2-norm is 0.001. The parameter of Dropout [23] is 0.5. In the A-Net, we
empirically fixed the length of the filter sizes to 1 and set n-gram to be 4.

FA-Net of RoBERTa: Because our experiments contain four corpora, including English
and Chinese datasets, we not only used the English pretrained model, which is called
roberta-base (https://huggingface.co/roberta-base(accessed on 17 January 2023)), but
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we also chose the Chinese pretrained model, which is called hfl/chinese-roberta-wwm-
ext (https://huggingface.co/hfl/chinese-roberta-wwm-ext(accessed on 17 January 2023)).
However, we utilized the cardiffnlp/twitter-roberta-base-sentiment (https://huggingface.
co/cardiffnlp/twitter-roberta-base-sentiment(accessed on 17 January 2023)) pretrained
model for the sarcasm detection datasets.

FA-Net of BERT: Keeping it the same as RoBERTa, we utilized bert-base-uncased
(https://huggingface.co/bert-base-uncased(accessed on 17 January 2023)) and bert-base-
chinese (https://huggingface.co/bert-base-chinese(accessed on 17 January 2023)) pre-
trained models to conduct our experiments.

In the training stage, we fixed some hyperparameters corresponding to datasets at
all benchmarks, such as batch size and the length of samples. The length of samples in
all experiments was fixed to be 32 in waimai_10k, 64 in SST2, 64 in MR, and 256 in R8. In
addition, the batch size was set to 32. For the other parameters in the BERT-based models,
such as attention dropout, dropout, and weight decay, we kept the default setting that is
applied by Hugging Face.

Because we utilized the different optimizers for the backpropagation stage and set
different learning rates, except for the CNN-based models, the optimizer of the F-Net is
Adam [24] with β1 = 0.9,β2 = 0.999. However, in the A-Net, the optimizer is the SGD
optimizer where moment = 0.9. The difference between the CNN-based and BERT-based
models and our FA-Nets have two optimizers and networks. Thus, the setting of the
learning rate differs between models. Therefore, we set the learning rate to 0.001 in both
optimizers in the FA-TextCNN models. However, in the FA-BERT-based models, we tried
three kinds of learning rates (1e-5, 2e-5, and 3e-5) for the F-Net’s optimizer and set the
learning rates to 0.001 for the optimizer of the A-Net.

4. Results and Discussion

4.1. Results

The evaluation indicator of the multicategory dataset is F1-score, and the evaluation
indicator of the binary classification dataset is accuracy because all the datasets are classifi-
cation corpora. The total parameters of the models are shown in Table 2 and the experiment
results are shown in Table 3.

Table 2. Comparison of total parameters between base models and our models: +1En means the
auxiliary network has one transformer encoder, and +2En means two transformer encoders exist in
the auxiliary network.

TextCNN FA-Net + TextCNN

#param 40M 41M

RoBERTa FA-Net + RoBERTa

#param 125M 134M(+1En) 141M(+2En)

BERT FA-Net + BERT

#param 109M 119M(+1En) 126M(+2En)

The models that start with “FA-” mean we added our auxiliary network to the original
models. Additionally, we carried out different kinds of experiments to analyze the influ-
ences of different extractor sizes of the A-Net. The columns represent different datasets,
and indices represent different algorithms.
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Table 3. The contrast between benchmarks and our models is shown in this table. The results of
BERT-based models are conducted under the five seeds, including benchmarks and FA-Nets. Task 3
means SemEval-2018 task 3, task 4A means Sem-2017 task 4A, and task 4CE means Sem-2017 task
4CE. In the TextCNN model, n_gram=n means the filter is set to n when initializing the A-Net’s
convolution layer. In the BERT and RoBERTa models, s means the sth F-Net’s encoder is copied as
the first encoder at A-Net, and e means the eth F-Net’s encoder is copied as the last encoder at A-Net.
The input of A-Net is the output of the (s − 1)th encoder of F-Net. Furthermore, the “OGRL” means
that we removed the GRL in the A-Net. The Avg is the average result from the sentiment analysis
and sarcasm detection datasets. The best results in our implementation are marked with bold font.

Model SST2 MR waimai_10k Avg

TextCNN [1] 82.17 (±0.48) 76.68 (±0.27) 90.10 (±0.20) 82.98
BERT [2] 91.59 (±0.23) 86.38 (±0.22) 91.27 (±0.27) 89.74
RoBERTa [3] 94.43 (±0.31) 88.66 (±0.28) 88.73 (±0.34) 90.61

FA-TextCNN (n_gram = 3) 81.86 (±0.88) 76.68 (±0.56) 90.14 (±0.37) 82.89
FA-TextCNN (n_gram = 4) 82.67 (±0.37) 77.28 (±0.51) 90.48 (±0.26) 83.47
FA-TextCNN (n_gram = 5) 82.56 (±0.62) 76.99 (±0.42) 90.32 (±0.21) 83.29

FA-BERT (s = 12, e = 12) 91.93 (±0.29) 86.91 (±0.45) 91.63 (±0.30) 90.16
FA-BERT (s = 11, e = 12) 91.79 (±0.35) 86.91 (±0.24) 91.39 (±0.23) 90.03
FA-BERT (s = 8, e = 8) 91.85 (±0.30) 87.14 (±0.22) 91.69 (±0.20) 90.23
FA-BERT (s = 7, e = 8) 91.81 (±0.41) 86.88 (±0.21) 91.39 (±0.20) 90.03
FA-BERT (s = 5, e = 5) 91.97 (±0.22) 87.21 (±0.24) 91.60 (±0.16) 90.26
FA-BERT (s = 4, e = 5) 91.59 (±0.34) 86.82 (±0.33) 91.18 (±0.50) 89.98

FA-RoBERTa (s = 12, e = 12) 95.05 (±0.39) 89.11 (±0.46) 89.36 (±0.24) 91.17
FA-RoBERTa (s = 11, e = 12) 94.61 (±0.40) 88.91 (±0.37) 89.20 (±0.24) 90.91
FA-RoBERTa (s = 8, e = 8) 95.11 (±0.32) 88.96 (±0.24) 89.25 (±0.17) 91.11
FA-RoBERTa (s = 7, e = 8) 94.62 (±0.15) 88.97 (±0.50) 89.23 (±0.24) 90.94
FA-RoBERTa (s = 5, e = 5) 95.03 (±0.34) 88.93 (±0.27) 89.35 (±0.29) 91.10
FA-RoBERTa (s = 4, e = 5) 94.82 (±0.14) 88.97 (±0.62) 89.34 (±0.09) 91.04

Model task 3 task 4A task 4CE Avg

TextCNN 70.56 (±0.73) 45.04 (±1.07) 27.09 (±0.44) 47.56
BERT 71.17 (±1.58) 60.02 (±0.73) 39.99 (±0.90) 57.06
RoBERTa 72.70 (±0.71) 64.53 (±0.46) 43.50 (±1.62) 60.97

FA-TextCNN (n_gram = 4) 71.62 (±0.87) 46.39 (±0.73) 27.85 (±0.89) 48.62
FA-TextCNN (n_gram = 4, OGRL) 71.32 (±1.19) 44.83 (±1.48) 26.07 (±1.45) 47.40

FA-BERT (s = 5, e = 5) 72.42 (±1.06) 60.95 (±0.52) 41.62 (±0.65) 58.33
FA-BERT (s = 5, e = 5, OGRL) 71.48 (±0.79) 60.69 (±0.36) 41.03 (±0.56) 57.73

FA-RoBERTa (s = 12, e = 12) 73.45 (±1.08) 65.52 (±0.27) 45.67 (±1.52) 61.55
FA-RoBERTa (s = 12, e = 12, OGRL) 72.16 (±0.93) 65.10 (±0.55) 44.44 (±1.24) 60.57

Following the different results in Table 3 for each line, we made some observations
as follows:

In the sentiment analysis datasets, the accuracy of the TextCNN in three of the corpora
is 82.17%, 76.68%, and 90.10%. However, the accuracy can become higher, reaching 82.67%,
77.28%, and 90.48%, and the average accuracy under those corpora received a 0.5% boost
when the model added our auxiliary network. This shows that our auxiliary network can
boost the original models by adding acceptable parameters in the TextCNN. The same
results occurred in BERT and RoBERTa. The average accuracy of BERT and RoBERTa can
also receive a 0.5% boost due to our auxiliary network. The accuracy can receive a 0.8%
boost for MR and SST2 when our auxiliary network is added to BERT and RoBERTa.

We utilized the best hyperparameters from the experiments on the sentiment analysis
datasets to implement our methods on the sarcasm detection datasets. The effectiveness of
our proposed method is higher than that of the sentiment analysis. Compared with the
TextCNN, the FA-TextCNN models have an average improvement of 1% for three datasets.
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Compared with BERT, FA-BERT has an average improvement of 1.3% in the SemEval-2018
task 3, 0.9% in the Sem-2017 task 4A, and 1.6% in the Sem-2017 task 4CE. Compared with
RoBERTa, FA-RoBERTa has an average improvement of 0.8% in the SemEval-2018 task
3, 1% in the Sem-2017 task 4A, and 2.1% in the Sem-2017 task 4CE. Even if we removed
the GRL, our proposed algorithms still cause an improvement, but the magnitude of the
improvement is lower than in the models that are stacked with the GRL. The difference
that boosts the effectiveness between the sentiment analysis and sarcasm detection datasets
is caused by the proposed method, since its core idea is to scatter the semantic information
of contradictory words to other words in a sentence. Additionally, the sarcasm detection
datasets have many of the sentences that contain contradictory words. Therefore, the
boosted effectiveness of our proposed method on the sarcasm detection datasets is higher
than on the sentiment analysis datasets. As seen in Table 3, the results show that even
in different settings, our algorithm still can improve the benchmarks’ performance. In
the CNN-based model, our FA-TextCNN is more stable than the TextCNN when the A-
Net chooses a filter that fixed the n-gram = 4 as an extractor. However, compared to
the other settings, the algorithms are not stable. Our algorithms are worse than CNN
benchmarks when the n-gram = 3. We assumed that unstable conditions are due to the
dropout because the corresponding deviation of the CNN benchmark is close to 0.5% in the
SST2 and MR datasets. This means that the original CNN model is unstable, as it is simply
uninterpretable. Therefore, when we fused the projected features that were extracted from
normal features, the property further influences the stability of our FA-TextCNN models.

The results echo our previous assumption that semantic information can still be
exploited in the backward features at high-level layers in BERT-based and RoBERTa-based
models. After conducting the different experiments, we also studied the influence of the
FA-Net on the attention heat map, which is explained in the Discussion.

4.2. Discussion

We studied the influence of the number of encoders and the projection types on the FA-
Net. As the CNN is poor at extracting high-quality features, fusing the backward features
directly through Equation (10) can hurt the performance of the CNN model. Thus, this
discussion omits the CNN models. Both further experiments are focused on the BERT-based
and RoBERTa-based models. Equation (10) projects va to vf . In other words, the result
of Equation (10) acquires the subfeature of vf . From this point, we can discuss another
projection type, which projects vf to va, to further study which projection type is better for
our idea.

Projection type: Figure 5 shows the experiments that change the projection type to
Equation (11). According to Table 3, the best results appear in different types of the A-Net.
In the FA-Net + BERT model, the most effective focuses on the encoder in the middle, but
in FA-Net + RoBERTa, the most effective is the encoder at the top. Thus, we implemented
more experiments by using Equation (11) for SST2 with different encoders.

As seen in Figure 5, there is improvement when the first encoder of the A-Net is
between four and six, but the improvements are minor for Equation (10). Additionally, the
accuracy becomes lower when the A-Net’s first encoder is copied from the top of the F-Net.
This means that Equation (11) is too unstable to conflict with our idea. We assumed that
the gradient of va can influence several encoders of the F-Net when x is larger than nine
and then further influence the model’s performance even if we fuse a part of va.
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Figure 5. In this figure, we concatenate vf with va to implement our FA-Nets. Both models are
implemented in the SST2 dataset. Chart a is the BERT-based model, and chart b is the RoBERTa-based
model. All results shown in this figure are averaged from the five seeds. The blue line is labeled
by s = x, e = x, which means the first encoder and the last encoder in A-Net are copied from the
xth encoder in F-Net. Furthermore, the orange line means the last encoder of A-Net is fixed to 11,
but the first encoder is changed with x. Moreover, the dotted green line results from corresponding
benchmark models.

However, if we feed the outputs of the three to nine layers to the A-Net, our network’s
accuracy is also competitive. We discovered that the influence is lower when feeding
low-level outputs to the A-Net because the gradient of va only affects a few layers of the
low-level encoders. The influence becomes higher as the A-Net obtains the high-level
outputs. Because of the gradient of va, the feedback to the F-Net is early. According to the
projection type analysis and discussion, we empirically fused a part of vf to concatenate
more semantic information rather than fuse part of va in order to achieve our ideas. We
assumed that the normal vector vf is augmented by concatenating with v f , as it contains
the essential abstract information relative to high-gradient features. Concatenating with v f
also can avoid the A-Net feedback that reverses the gradient of va to the F-Net.

The number of encoders of the A-Net: The BERT and RoBERTa models are perplex-
ing; thus, the BERT-based model needs to consider how many encoders should be copied
to the A-Net. According to Table 3, the best results occurred when the A-Net had one
encoder. Furthermore, we can obtain average results for MR, SST2, and waimai_10k, as
shown in Table 3. The average results of the multi-encoder that exist in the A-Net are lower
than using a single encoder in the A-Net. This shows that the gradient reversal layer with
a multi-encoder can learn a higher gradient feature than a single encoder. Therefore, a
multi-encoder is more unsuitable than the single encoder in these corpora.

The attention heat map of an example sentence in FA-RoBERTa: We tested the sam-
ple we mentioned previously and drew an attention heat map. Compared to Figure 6, in
Figure 7, although attention is paid to the phrase “ultimately silly”, it does not focus on
just this phrase anymore. FA-RoBERTa focuses on the core phrase, “charming and funny”.
Then, FA-RoBERTa makes the right classification. This proves that our idea could scatter the
attention score of contradictory words to other words to reduce the destructive influence of
contradictory words. As long as the model spreads the attention score to other words, the
semantic information of other words can fuse with the normal features after concatenating.
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Thus, the classifier can capture more information about other words rather than focusing
on the contradictory words.

Figure 6. The attention heat map of phrase, “charming and funny ( but ultimately silly ) movie.”, in
the RoBERTa model.

Figure 7. The attention heat map of phrase, “charming and funny ( but ultimately silly ) movie.”, in
our FA-RoBERTa model.

5. Conclusions

In this paper, we proposed a concise two-stream network that combines the extracted
feature vectors to absorb more semantic information, allowing a sentence that contains
special phrases which are opposite to the semantic information of the whole sentence
to be classified correctly. In addition, we utilized the feature projection layer, gradient
reversal layer, and vector concatenate to achieve this goal. Based on the original model, we
considered the size of the parameters and the accuracy of the model, and we developed
a proper model to avoid huge parameters and low accuracy. To prove the effectiveness
of our algorithm, we conducted contrast experiments on sentiment analysis and sarcasm
detection datasets. Ultimately, the results show that our algorithms are effective for those
benchmarks. After implementing extra experiments, we further studied the influence of
projection type and the number of encoders of the A-Net. We determined the general
hyperparameters for three benchmarks in several datasets.

The current algorithm focuses on text classification. In the future, we will examine
other NLP tasks using the short- and long-length sentence corpus or document corpus, and
we will try to study the impact of data granularity in meta-learning.
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Abstract: Video delivered over IP networks in real-time applications, which utilize RTP protocol
over unreliable UDP such as videotelephony or live-streaming, is often prone to degradation caused
by multiple sources. The most significant is the combined effect of video compression and its
transmission over the communication channel. This paper analyzes the adverse impact of packet
loss on video quality encoded with various combinations of compression parameters and resolutions.
For the purposes of the research, a dataset containing 11,200 full HD and ultra HD video sequences
encoded to H.264 and H.265 formats at five bit rates was compiled with a simulated packet loss rate
(PLR) ranging from 0 to 1%. Objective assessment was conducted by using peak signal to noise ratio
(PSNR) and Structural Similarity Index (SSIM) metrics, whereas the well-known absolute category
rating (ACR) was used for subjective evaluation. Analysis of the results confirmed the presumption
that video quality decreases along with the rise of packet loss rate, regardless of compression
parameters. The experiments further led to a finding that the quality of sequences affected by PLR
declines with increasing bit rate. Additionally, the paper includes recommendations of compression
parameters for use under various network conditions.

Keywords: H.264/AVC; H.265/HEVC; QoE; QoS; packet loss rate; video quality

1. Introduction

A high standard of living, education, and more opportunities, along with people’s
demands for such better conditions, has been constantly increasing over the last decades.
Naturally, this applies to expectations in all areas of life, including entertainment and tech-
nology. Much like the rest of the world, Internet service providers, as well as broadcasting
companies, want to bring their customers the best possible experiences. This individual
user impression, also referred to as quality of experience (QoE) is highly dependent on
quality of service (QoS) parameters. In the field of video transmission, these further de-
pend on factors such as latency, jitter, or packet loss rate (PLR). However, although such
factors are easily measurable, QoE cannot be quantified so effortlessly. Nowadays, one of
the most popular network services is live video streaming, which is growing on a huge
scale [1,2]. However, the video delivered over an IP network in real-time applications, is
often exposed to various types of quality degradation. One of the reasons is that this type
of application operates on RTP over unreliable UDP. The major sources of impairments are
video compression and transmission over the noisy communication channel. Of the latter,
the factor which affects video quality the most is undoubtedly PLR. It is due to consider
that even a small percentage of lost packets can cause a massive decline in perceived video
quality. This is proven in the following sections of the paper.

This paper is focused primarily on evaluating the influence of PLR on the quality of
H.264/AVC and H.265/HEVC-encoded full HD and ultra HD video sequences. The differ-
ent combinations of the resolution and compression parameters were used. Objective and
subjective evaluation methods, namely peak signal-to-noise ratio (PSNR), Structural Simi-
larity Index (SSIM), and absolute category rating (ACR) were employed for video-quality
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quantification. Additionally, the principle of the subjective ACR method enabled further
research into the combined effect of PLR and compression parameters on perceived video
quality. As a result, this paper also suggests the most suitable combination of resolution,
bit rate, and codec for use under different conditions.

The paper is organized as follows. Section 3 illustrates the dataset compilation proce-
dure, and briefly describes the source sequences and the process of video encoding and
packet loss simulation. Section 4 deals with the acquisition and analysis of the results of
objective video quality assessment. Analogously, Section 5 covers subjective video-quality
evaluation. In addition, the analysis of the subjective results is extended by the calculation
of the correlation with the objective assessment results. Moreover, further examination
of the combined impact of PLR and compression on subjective video quality is described.
Section 6 concludes the paper.

2. State of the Art

There are several research papers that deal with QoS and QoE evaluation, especially
the performance assessment of various compression standards or the effect which has the
transmission over noisy communication channel on the video quality. Coding structures,
syntax, various tools, and settings relevant to coding effectivity were described in that
paper. Human perception of compression, spatial and temporal information was examined
in [3]. The authors have compiled a large-scale database of video sequences whose quality
was subjectively evaluated. The coding efficiency of HEVC standard was compared with
earlier codecs in [4]. The authors in [5] examine the effects of network impairment on
HEVC video streaming. The impact of packet loss on the video quality and the main
factors observed to be most perceived by the end-users were evaluated. In [6], a detailed,
quantitative analysis of the video-quality degradation in a homogeneous HEVC video
transcoder together with the analysis of the origin of these impairments and the influence
of quantization step alignment on transcoding were presented. Differences between video
transcoding and direct compression were described as well. The authors have also found the
dependence between the quality degradation caused by transcoding and bit rate changes
of the transcoded data stream.

A parametric planning model combining characteristics of the channel and the video is
introduced in [7]. The video distortion due to the packet loss can be estimated by this model.
Authors in [8] presented the first empirical study of the impact of loss-related errors on TV
viewing engagement. They compared different platforms and delivery technologies. Video
sequences and information about quality of delivery obtained from the service provider
were used in the experiments. The length of the sequences, content, and connection type
were compared. In [9], 16 types of metrics for the quality evaluation were compared. Packet
loss was simulated in the video coding, and losses were subsequently concealed by using
various error-concealment techniques. The purpose was to show that the subjective video
quality cannot be predicted only from the visual quality of a frame, when some concealed
error occurs. A new objective measure XLR (piXel Loss Rate) indicator was proposed in [10].
It evaluates the packet loss rate in video streaming. This method achieved comparable
results with full-reference metrics and a very high correlation with MOS. Authors in [11]
provided an overview of packet losses in wi-fi networks, mainly multimedia and real-time
applications. A method for estimation of packet delivery ratio, which depends on the
length of the packet, where longer packets are more likely to be damaged, is described
in [12]. The loss of a compressed video packet results in an estimate of the expected mean
square error distortion. In [13], the authors examined whether the packet loss model and
primarily length of series have an impact on the accuracy of the error estimation.

The authors of [14] claimed that the highly textured video content is difficult to
compress, as it is essential to achieve the compromise between bit rate and perceived video
quality. Based on this, they introduced a synthetic video texture dataset that was generated
by using a computer-generated imagery environment. It was named BVI-SynTex video
dataset and was conformed from 196 video sequences clustered in three different texture

116



Sensors 2023, 23, 2744

types. It includes five-second-long FHD video scenes with a frame rate of 60 fps, and 8
bits depth.

In [15] a method for the optimal classification of the packets was proposed. They got
different priority assigned when the transmission conditions became poor. The network
transmits the segments with the greatest contribution toward the quality of perception
if limited network conditions occur. The results showed that the proposed method can
achieve a higher MOS compared to nonselective packet drop.

The purpose of this paper is not to point out the difference between QoS and QoE.
These concepts, their correlation, and the derived mapping function were described in our
previous paper [16]. The differences between the concepts of QoE and QoS are described
in the Table 1. PLR is one of the basic QoS parameters, and the purpose of this paper
is to show how this purely technical parameter can affect the perception of QoE. Thus,
the main output is the mapping function of one of the QoS parameters to the metrics which
represent the QoE. The selected relevant works were compared with our paper. HD video
sequences based on motion in pictures were analyzed in the paper [17]. All sequences were
encoded into H.264 and H.265 compression standards. The video quality was objectively
measured by PSNR and SSIM metrics and subjectively assessed by using DMOS value.
Compressed video files were streamed by an emulated 5G network. This network has a
specific type of PLR based on different characteristics of radio channels compared with a
wired metallic network. Two types of dynamic sequences (low motion and high motion)
were compared. The authors did not use various sequences from the aspect of contrast.
Paper [18] is focused on streamed videos based on TCP segments via a 5G network. Our
paper analyzes video transmission over the metallic network with services based on RTP
protocol and UDP segments. Authors in the paper [18] used more network parameters in
their experiments, like bandwidth and delay. These parameters are especially critical for
wireless networks, except for ISDN and low-speed xDSL networks. In paper [19], a QoE
smart algorithm based on using a machine learning model is proposed. The model is based
on the wireless network. It takes into account the GOP size, and technical parameters of
endpoint devices (CPU, RAM, and screen size). In this manuscript, QoS parameters were
fixed—280Mbps of throughput, 3 ms of two-ways packet latency, and 0.001% for packet
loss and jitter. The authors describe a comparison between the traditional and adaptation
approaches. Results using the proposed algorithm improved the quality. The transmission
of videos via the network with various parameters of PLR was compared in our paper.
The difference from our paper is that the parameters of the network are constant in the
paper [19]. The mentioned parameters are changing dynamically and randomly in a real
5G radio network.

Table 1. The differences between the concepts of QoE and QoS.

Distinguishing

Factors
QoS QoE

Scope Typically, telecom services
Broader domain,

(not necessarily network-based)

Focus Performance aspects of physical systems Users’ assessment of system performance

Method
Technology oriented, empirical,

or simulation measurements

Multi-disciplinary and

multi-methodological approach

3. Dataset Compilation

Selection of Source Sequences

The basic requirements for reference sequences intended for further processing are
uncompressed format, high bit depth, resolution and frame rate, suitable aspect ratio,
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and sufficient diversity in terms of scene content. Meeting all these standards, eight high-
quality video sequences were selected from the Shanghai Jiao Tang University dataset [20].
Common parameters of these reference sequences are presented in Table 2. Original
sequences vary in temporal (TI) and spatial perceptual information (SI) as shown in Figure 1,
colors, contrast, and other features.
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Figure 1. SI-TI diagram of reference sequences.

Table 2. Common parameters of reference sequences.

Resolution Bit Depth
Aspect

Ratio

Chroma

Subsampling

Framerate

[fps]

Length

[s]

3840 × 2160 Ultra HD 10 bits per channel 16:9 4:4:4 30 10

Spatial perceptual information (SI) indicates the amount of detail in the video frames.
The equation for calculating SI, based on the Sobel filter, is defined as

SI = maxtime[stdspace[Sobel(Fn)]], (1)

where Sobel(Fn) stands for the video frame at time n filtered by using the Sobel filter,
stdspace is the standard deviation over the pixels of the previously filtered frame, and
maxtime represents the maximum spatial information value of the entire video sequence.
Temporal perceptual information (TI) expresses the degree of temporal activity, i.e., the
change of the corresponding pixels values in consecutive frames of the video sequence.
This change is called the motion difference feature Mn(i, j) and is defined as a function
of time,

Mn(i, j) = Fn(i, j)− Fn−1(i, j), (2)

where i, j are the pixel coordinates in the adjacent frames n and n − 1. The TI is then
computed as

TI = maxtime[stdspace[Mn(i, j)]], (3)

where maxtime is the maximum standard deviation stdspace of the Mn(i, j) over time.
Both SI and TI are calculated for the luminance component of the frames only. Higher

TI indicates more motion in the scene, whereas higher SI is generated by frames with
more edges and disparity in luminance [21]. Previews of the employed sequences are
displayed in Figure 2, followed by a brief description of the scene content and the scenario
of each video.
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Figure 2. Previews of used sequences: Bund Nightscape, Campfire Party, Construction Field, Foun-
tains (top row from the left), Marathon, Runners, Tall Buildings and Wood (bottom row from left).

The Bund Nightscape is a time-lapse video sequence capturing cars driving through a
night city near a river. The video was shot from a high angle with a static camera. The only
sources of movement are passing cars, people in the streets, and flags hoisted on the roofs
of buildings. The Campfire Party is a nighttime video sequence, picturing a group of people
posing for a photograph by a campfire. The camera is almost still, except for the slight
zoom in the end of the sequence. Most of the motion is generated by the blazing flames in
the foreground. The Construction Field is a relatively static video sequence depicting an
excavator digging a foundation pit on a construction site. Apart from this, the only other
movement is caused by several people walking in the background. Fountains is a video
sequence showing a large fountain with several jets situated in a small square between
trees and buildings in the background. The video was recorded with a still camera; hence
only the water gushing from the fountain adds dynamism to the scene. Marathon is a
video sequence shot from a bird’s eye view by an almost motionless camera. The scene
depicts many people dressed in colorful raincoats competing in a race on a wet asphalt road
during heavy rain. Runners is a video sequence capturing dozens of people in numbered
jerseys racing on a road lined with trees. Even though the scene is filmed with a static
camera, its considerable dynamism is added to by the fast movement of the runners and
the wind in the leaves of the trees. Tall Buildings is a video sequence, recorded from a
bird’s eye perspective, that captures the tallest Shanghai skyscrapers. The camera pans
steadily, revealing a view of the driving cars in the distance, which are the only moving
objects in the video. Wood is a video sequence recorded in bright daylight, picturing a
sunlit forest. The camera moves with a fairly swift, panning motion. It is the most complex
sequence, considering the amount of detail and motion in the video.

Video Encoding and Packet Loss Simulation

First, all eight reference video sequences were subjected to chroma subsampling from
the original YUV 4:4:4 to YUV 4:2:0 format. It is followed by a change in a bit of depth
from 10 to 8 bits per channel. Afterward, these modified sequences were encoded by
using two conventional standards, H.264 and H.265 at full HD and ultra HD resolutions.
The bit rate ranged from 1 to 15 Mbps, employing the well-known FFmpeg software [22].
A description of codecs settings is possible to find in the Table 3. The used settings of
both compression standards were the same. The target bit rate of 1 Mbps for the videos
coded by H.264 could cause some artifacts which may not meet users’ expectations, but we
used these extreme values due to codec quality comparison—it is well known that the
highest codec efficiency is in low bit rates, especially in newer codecs, as, for instance,
H.265/HEVC. The frame rate remained set at 30 fps, resulting in the fixed group of pictures
(GOP) length of 15 frames. The GOP size setting was derived from the frame rate as is
standard for video intended for transmission through a noisy communication channel
when an unreliable protocol is used for data transfer. The GOP length actually defines the
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interval between two consecutive keyframes—intracoded (I) or predicted (P). Considering
this fact, it seems logical that the loss of image information for more than half a second
(half the frame rate value) could be unacceptable for real-time applications such as video
telephony or live streaming. The number of bidirectional predicted (B) frames was set to 3,
as is recommended [23] for H.264 and H.265 codecs. The structure of employed FFmpeg
commands was organized as follows from the example

ffmpeg -i Marathon_1920x1080_30fps_420_8bit_YUV.yuv -vcodec libx264 -x264-params
keyint=15:min-keyint=15:bframes=3:b-adapt=1:bitrate=1M:vbv-maxrate=1M:vbv-bufsize=1M
Marathon_1920x1080_30fps_420_8bit_H264_1M.ts.

Table 3. Description of codecs settings.

Command Example Command Explanation

ffmpeg run ffmpeg

-i Marathon_1920x1080_30fps_420_8bit_YUV.yuv set the input file (name and container/uncompressed mode)

-vcodec libx264 set the codec

-x264-paramas set the detailed H.264/AVC codec parameters

keyint=15 set the GOP length

min-keyint=15 set the minimum GOP length

bframes=3 set the number of B frames

b-adapt=1 disable the adaptivity of the B frames (default mode)

bitrate=1M set the target bitrate

vbv-maxrate=1M set the maxmum bitrate (by variable bitrate mode)

vbv-bufsize=1M set the maximum buffer size

Marathon_1920x1080_30fps_420_8bit_H264_1M.ts set the output file (name and container)

Subsequently, a local area network consisting of a streaming server and a streaming
client was assembled to serve as a transmission channel for the previously encoded se-
quences. To simulate a lossy network connection, Clumsy [24] software was installed on the
receiving computer, which assumed the role of the streaming client. By employing this tool,
a certain percentage of UDP packets from every compressed video sequence was artificially
intercepted. To approximate the actual operation of IP networks, clustered packet losses
were generated pseudorandomly during video transmission. Both the broadcast server
and the client were represented by standard computers—laptops with gigabit LAN ports
with the Windows operating system installed. The interconnection of both devices was
point-to-point type by using a cat6 metallic network cable. To minimize the occurrence
of errors, the Wi-Fi adapters were disabled on both computers and the Windows firewall
was also disabled. As for the stream itself, the compressed data was encapsulated in a TS
container. The reason for using TS is that it is still currently the most used container for
multimedia stream distribution. It is not only in Ethernet networks, but also for distribution
in DVB-T/DVB-T2 systems. The transport stream allows multiplexing of streams (PES and
PS) that do not necessarily share a common time base for transmission in a noisy environ-
ment. Thus, its biggest advantage is robustness to transmission errors. The image data
was transmitted as UDP segments by using the RTP transport protocol. RTP was chosen
based on the nature of the data. The real-time data and UDP segments are usually used
for transmission in broadcast networking, because there is no possibility of retransmitting
failed packets. It is not like a video-on-demand service where, in contrast, TCP segments
are used. The resulting packet loss rate (PLR) ranged from 0 to 1%. A block diagram
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illustrating the combined process of video encoding and packet loss simulation is shown
in Figure 3.

Figure 3. Process of video encoding and packet loss simulation.

Applying all possible combinations of compression parameters and PLR listed in
Table 4, 1120 processed video sequences were created. To ensure higher statistical accuracy
of the quality-assessment results, each video sequence was transmitted ten times over the
assembled network, increasing the total number of test sequences to 11,200.

Table 4. Variable parameters of test sequences.

Parameter Value

Codec H.264 AVC, H.265 HEVC

Resolution 1920 × 1080 Full HD, 3840 × 2160 Ultra HD

Bitrate [Mbps] 1, 3, 5, 10, 15

Packet Loss Rate [%] 0, 0.1, 0.2, 0.3, 0.5, 0.75, 0.1

4. Objective Quality Evaluation

Objective quality measurement of the prepared video sequences was performed by
using the MSU Video Quality Measurement Tool [25]. Two well-known objective methods,
PSNR [26] and SSIM [27], were used for the evaluation; however, only the results of the
SSIM metrics are presented in the paper. These showed a slightly higher correlation with
the results of the subsequent subjective evaluation. The SSIM is a full-reference metric
which focuses on measuring distortions in the structure of the image arising from changes in
brightness, contrast, blurring of the image and so forth. This objective measure is grounded
on the premise, that the human visual system is better suited to detect structural changes in
the image than to identify specific errors. This can also explain the higher correlation of the
SSIM quality ratings with the results of subjective quality assessment. The core principle
of the SSIM consists of dividing the frames of two video sequences into areas of several
pixels (depending on the size of the sliding window), in which the three components of the
signal—brightness (l), contrast (c), and structure (s)—are sequentially compared. These
components can be calculated by using the following formulas,

l(x, y) = (2μx μy + c1)/(μ2
x + μ2

y + c1) (4)

c(x, y) = (2σx σy + c2)/(σ2
x + σ2

y + c2), (5)

s(x, y) = (σxy + c3)/(σx σy + c3), (6)

where μx and μy denote the average values of the two nonnegative signals x and y, σx
and σy are their standard deviations and σxy expresses the covariance of these signals.
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The variables c1, c2 and c3, defined by the following formulas, are included to stabilize the
results if the denominator is close to zero,

c1 = (K1 L)2, (7)

c2 = (K2 L)2, (8)

c3 = c2/2, (9)

where L denotes the dynamic range of pixel values, and K1 and K2 are low value constants.
The resulting SSIM value is determined by the weighted product of the brightness,

contrast, and structure components as

SSIM(x, y) = [l(x, y)]α[l(x, y)]β[l(x, y)]γ. (10)

By setting the weights α, β and γ to 1, the final calculation can be simplified to

SSIM(x, y) =
(2μxμy + c1)(2σxy + c2)

(μ2
x + μ2

y + c1)(σ
2
x + σ2

y + c2)
. (11)

The results obtained by using the SSIM metrics fall within the interval [0, 1], where
1 expresses the best quality, which can be achieved only if all the compared frames are
identical. It is a symmetric method, which means that the order of the reference and
degraded video sequence is insignificant. Given that the SSIM is a full-reference metrics, it
would seem logical to choose an uncompressed video sequence unimpaired by transmission
over the IP network as a reference. The aim of our research was to investigate the effect
of PLR on quality of video in different resolutions with various compression parameters.
It was not directly about the combination of PLR and effect of compression. This is a
reason why the corresponding sequence with identical bit rate undegraded by network
transmission was always chosen as the reference sequence for the metrics. In this way,
a total of, 9600 objective measurements were performed by using the SSIM method.

Analysis of the Results

In view of the fact that the purpose of this particular research is not examining the
impact of the scene content on video quality, graphs contained in the paper present only
the average quality ratings. It is the same over all types of sequences, with differing content
for each codec and resolution evaluated. Furthermore, it should be noted that the results of
the evaluation of each sequence that was streamed 10 times were also averaged. Figure 4
outlines the development of measured video quality affected by the gradual increase in
PLR, which is plotted on the x-axes of the graphs. The y-axes represent the measure of
video quality evaluated by the SSIM metrics.

Because the video sequences unaffected by PLR encoded to both H.264 and H.265 in
full HD and ultra HD, each bit rate of interest was used as a reference for the objective
metrics. It is understandable that the quality of every sequence with 0% PLR was rated
with an SSIM value of 1. Another common feature of Figure 4 is the tendency to objectively
measure video quality at all bit rates to decline with the increasing PLR, as was anticipated.
A full-reference objective metric such as SSIM always evaluates a video that lacks more
information as of lower quality. An interesting discovery is that increasing PLR had a
greater negative effect on the quality of full HD sequences than those in ultra HD resolution.
Moreover, videos encoded to H.265 were rated worse on average than H.264-encoded
sequences. The last and most unexpected finding is a faster decrease in the quality of
sequences with a higher bit rate, which is clearly observable with all combinations of
codec and resolution used. This fact, although counterintuitive because the quality of the
compressed sequences with 0% PLR grows with the increasing bitrate, may have a logical
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explanation. For illustration, file sizes of the H.265 ultra HD Marathon video sequence at all
examined bit rates are presented in Table 5. It is self-explanatory that by applying the same
PLR, more bytes of data will be lost from larger files. Although the loss probability remains
unchanged, it will most likely not affect the same part of the compressed sequences. It also
will not affect the same number of parts of the video compressed at different bitrates, which
is more important. This is due to the fact that the average size of the captured UDP packets
is equal for each streamed sequence, which means that at a higher bit rate, the number
of lost packets must also be larger. Therefore, most individual losses occur when video
at 15 Mbps is transmitted. As the research in [28] proves, video quality degrades more
significantly when several individual packets are lost than in a case when loss of the same
number of consecutive packets occurs, which can be attributed to the temporal propagation
of the errors. Regarding our investigation, it follows that the higher the bit rate used,
the more individual or clustered packet losses will occur. Although at higher bit rates the
losses are likely to affect a smaller portion of the frames, they may continue to propagate in
time and space, causing more substantial video quality degradation.
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Figure 4. Development of objectively measured video quality with increasing PLR.

Table 5. File sizes of the H.265 UHD Marathon video sequence at 1–15 Mbps.

Test Sequence Name File Size of the Test Sequence (in Bytes)

Marathon_UHD_30fps_420_8bit_H265_1M 1,436,508

Marathon_UHD_30fps_420_8bit_H265_3M 4,052,716

Marathon_UHD_30fps_420_8bit_H265_5M 6,784,544

Marathon_UHD_30fps_420_8bit_H265_10M 13,445,008

Marathon_UHD_30fps_420_8bit_H265_15M 20,205,864

5. Subjective Quality Evaluation

A subjective video-quality assessment was conducted to verify the findings that
emerged from the analysis of the objective quality evaluation results. In addition to
determining the strength of the correlation between subjective and objective measurement
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methods, the second reason for performing subjective tests was to monitor the combined
impact of bit rate and PLR on respondents’ views of video quality. To ensure sufficient
diversity of visual content while limiting the time requirements of test sessions, the four
most diverse video sequences were selected for subjective quality assessment according
to the SI-TI diagram, namely Campfire Party, Construction Field, Tall Buildings, and
Wood. Considering that each compressed video was streamed and objectively evaluated
10 times, the sequence that achieved the median SSIM value was always chosen for the
subjective tests. Bearing in mind all possible combinations of the given resolution, codec,
bit rate, and packet loss rate, 560 test sequences were thus selected. The popular absolute
category rating (ACR) was adopted for subjective quality assessment of the prepared
video sequences. This single-stimulus method was chosen on the grounds that the test
conditions are analogous to those under which a regular user watches multimedia content.
The course of ACR assessment, described in ITU recommendation [21] is faster and less
complicated compared to other subjective evaluation methods. In addition, the results of
the assessment are reproducible quite accurately even by different groups of respondents,
as proven in [29]. The test presentation comprised degraded video sequences lasting
approximately 10 seconds, alternating with a medium gray color displayed on the screen
during the evaluation period of five seconds. Respondents were instructed to rate the video
quality according to the following scale divided into five levels:

• 5—Excellent
• 4—Good
• 3—Fair
• 2—Poor
• 1—Bad.

A total of 36 laymen with no visual impairment participated in the experiment,
of whom 14 were women and 22 were men. The age bracket of respondents ranged
from 16 to 62 years, and the average age was approximately 30 years. After the completion
of the experiment, the elimination of outliers was necessary. For this purpose, a Pearson
linear correlation coefficient (PLCC) was calculated between the evaluation results of all
video sequences from one respondent and the average rating of each sequence, following
the equation

PLCC =
∑N

i=1(Xi − X̄)(Yi − Ȳ)√
∑N

i=1(Xi − X̄)
2
√

∑N
i=1(Yi − Ȳ)2

, (12)

where N is a number of evaluated sequences, Xi, Yi are individual indexed ratings and
X̄, Ȳ are the arithmetic means of all ratings. The threshold value of PLCC for removing a
respondent’s results from further processing was set at 0.75. The correlation was examined
separately on four sets of video sequences, assorted according to resolution and codec used.
The number of detected outliers for each set ranged from 1 to 3 out of all 36 respondents,
leaving a sufficient number of results for subsequent statistical analysis.

5.1. Analysis of the Results

The first step in processing the obtained subjective data was the calculation of the mean
opinion score (MOS) of each evaluated video sequence. Statistical analysis of the first half of
the evaluation results revealed that it is quite sufficient to inquire about the users’ opinion
on the quality of video with a maximum PLR of 0.5% because after exceeding this value,
the subjective quality was rated as poor at the utmost on the ACR scale. Between 0.5% and
1% PLR, the perceived quality further decreased on average by 0.28 and by a maximum
of 0.45 MOS points. On that account, and for greater clarity, graphs included in this
section show the development of subjectively perceived video quality with packet loss
rates ranging from 0 to 0.5%.
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5.2. Correlation with the Objective Evaluation Results

In order to calculate and investigate the correlation between subjective and objective
evaluation results, the MOS values were shifted in a way such that the highest score of
the given sequence was always 5 (Figure 5), and thus the video unaffected by PLR was
considered as a hidden reference. According to [30] the Pearson linear correlation coefficient
was once more used to calculate the correlation.
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Figure 5. Development of subjectively perceived video quality with increasing PLR. MOS values
were shifted in order to regard each video sequence unaffected by PLR as a reference.

Tables 6 and 7 show the correlation between the results of subjective and objective
quality assessment. The graphical analysis indicated that the main difference between these
results is in the steepness of the decrease in video quality at different bit rates between 0 and
0.1% PLR. Therefore, the correlation of subjectively and objectively measured quality of
only those video sequences that were affected by PLR is illustrated in Table 7. By removing
sequences impaired solely by compression from the equation, the correlation of the results
increased significantly. Nevertheless, it is apparent from Figure 5 and Tables 6 and 7 that
the correlation between subjective and objective assessment results is strong for all combi-
nations of compression parameters and resolutions, with the lowest value of correlation
coefficient of 0.83, calculated for H.265 ultra HD sequences at 15 Mbps. The observable
differences are due to the fact that, unlike the algorithm, a person cannot separate the
influence of PLR from the impact of bit rate on the visual quality of the evaluated video
sequence. For this reason, a more detailed analysis of the combined effect of PLR and bit
rate on the subjectively perceived video quality is presented in the following section.
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Table 6. Correlation between the results of subjective and objective video quality evaluation.

PLCC—Lossless Video Sequences Included

1 Mbps 3 Mbps 5 Mbps 10 Mbps 15 Mbps

FHD—H.264 0.99 0.97 0.86 0.89 0.84

FHD—H.265 0.97 0.95 0.88 0.84 0.84

UHD—H.264 0.92 1.00 0.94 0.97 0.93

UHD—H.265 0.98 0.97 0.87 0.88 0.83

Table 7. Correlation between the results of subjective and objective video quality evaluation after
removing lossless sequences.

PLCC—Lossless Video Sequences Excluded

1 Mbps 3 Mbps 5 Mbps 10 Mbps 15 Mbps

FHD—H.264 0.99 0.96 0.97 0.95 0.96

FHD—H.265 0.97 0.92 0.98 0.95 0.98

UHD—H.264 0.88 1.00 0.98 0.99 0.98

UHD—H.265 0.99 0.98 0.96 0.94 0.93

5.3. Combined Impact of PLR and Compression on Subjective Video Quality

Although this paper focuses mainly on the impact of PLR, the subjective method
used made it possible to further examine the mixed impact of PLR and compression on
subjectively perceived video quality. To illustrate this combined effect, it was sufficient to
leave the MOS values unchanged in the graphical representation of the results. This can be
seen in Figure 6, which shows the overall picture of the development of perceived video
quality affected by alteration of the compression parameters and the gradual increase in
PLR. Each graph displays the average MOS values over all four types of sequences with
different content. On the x-axes, PLR within the narrowed limits 0–0.5% is plotted, and the
y-axes represent the measure of video quality on the five-level MOS scale.

A common aspect of Figure 6a–d is the inclination of perceived video quality at all
bit rates to decline with the increasing PLR in correlation with the SSIM ratings. Another
anticipated outcome is the increase of the MOS values of video sequences unaffected by
packet loss as the bit rate rises. This trend is distinctly observable in the order of the
individual curves representing the different bit rates at 0% PLR. However, it is apparent
from the graphs that this arrangement changes substantially even if only 0.1% of packets
are lost during video transmission. In fact, it follows that the subjective quality of video
sequences affected by PLR also decreases with a steeper slope when a higher bit rate is
transmitted. This was predicted from the found high correlation between subjective and
objective evaluation results and can be seen in better clarity in Figure 5. Figure 6a,b reveal
that the results of subjective quality evaluation of full HD sequences are highly consistent,
regardless of the codec used. The main common characteristic of the assessment results of
all videos at this resolution is the overall MOS distribution of the individual bit rates. It is
worth noting that starting at 0.3% PLR, the quality ratings are exactly in the reverse order
to the ratings of sequences unimpaired by packet loss.
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Figure 6. Development of subjectively perceived video quality with increasing PLR.

The essential distinction between the evaluation results of H.264 and H.265-encoded
videos is the significantly more pronounced gap between the rating of lower bit rates (1
and 3 Mbps) compared to videos encoded at higher bit rates (5, 10, and 15 Mbps), which
is evident on H.265 full HD sequences. This phenomenon is most eloquent when the
simulated PLR reaches values from 0.1 to 0.2%. Another difference is a steeper decline in
H.265 video quality, observable primarily at 10 and 15 Mbps. Unlike full HD videos, ratings
of H.264-encoded ultra HD sequences diverged significantly from those at H.265 format.
The only common aspects of Figure 6c,d are those that are universal for all four charts.
As can be seen in Figure 6c, the average MOS of H.264 sequences shows that respondents
considered 10 Mbps videos to retain the highest quality, when 0.1% packets were discarded
during transmission. At higher PLR, 5 Mbps video sequences achieved the best subjective
score. Although 1 Mbps sequences were rated higher than expected in the majority of
the cases (as shown in Figure 6a,b,d), the quality of each H.264 ultra HD video at this bit
rate was considered poor or bad, regardless of the PLR. It is therefore clear that in this
particular case, the effect of compression on video quality was more intrusive than the
loss of visual information. There is a straightforward explanation for this phenomenon,
supported by Figure 7. The quality of H.264 ultra HD sequences at low bit rates is worse
than the quality of the corresponding Full HD videos because four times the amount of
information is discarded during compression due to the higher resolution. This effect is
less pronounced when employing the H.265 codec, as HEVC compression is approximately
40% more efficient than older AVC [31].

Figure 6d indicates that the subjective MOS of H.265 videos affected to any extent by
packet loss was unquestionably the highest when using a 3 Mbps bitrate.
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Figure 7. Preview of 1 Mbps Wood sequence in all examined compression formats and resolutions.

5.4. Recommended Compression Parameters Under Various Network Conditions

If a certain packet loss rate in an error-prone network is anticipated, it may be conve-
nient to get a better overview of how subjective quality changes as the bit rate increases
or when other compression parameters are altered. For this reason, another four graphs
were generated (Figure 8), with bit rate plotted on the x-axes. Each individual color curve
represents a specific PLR. It is evident from these charts that subjective MOS values rise
only until a certain value of bit rate is reached, and typically only at low PLR.

Based on the subjective data analysis, it is viable to determine the most suitable
combination of resolution, bit rate, and codec for use under different conditions. If the
video content is transmitted over a reliable network, the only variable is the adverse effect
of compression. In such a case, deploying the higher bit rate below a certain threshold will
most certainly increase the perceived video quality. However, after exceeding this limit,
respondents may be unable to distinguish between the quality of two video sequences at
consecutive data rates, which is why the differences in ratings are narrowing with increasing
bit rate. The highest average MOS of 4.833 was achieved by H.264 ultra HD sequences
at 15 Mbps. Video sequences at both resolutions and codecs were considered better than
good (4 on the ACR scale) at 5, 10, and 15Mbps. By using the H.265 coding format, even
3 Mbps videos surpassed this value. Our research shows that if the assumed PLR in the
network is less than 0.1%, it is best to encode the video to H.265 at full HD resolution at
3 Mbps. The average perceived quality of such sequences reached the MOS value of 3.733.
The advantage is that the transmission of video with these specifications requires almost the
narrowest bandwidth, and is therefore also the fastest and most economical. Although the
average MOS of 1 Mbps videos with the same parameters is only slightly lower with a value
of 3.642, employing this bitrate is not advisable due to the substantial disparity between
ratings of sequences with different content, which we observed during the experiments.
For ultra HD video, the highest average MOS of 3.492 was reached by H.264 sequences at
10 Mbps, closely followed by MOS 3.402 of videos at 5 Mbps. If the connection is extremely
unreliable with a possible PLR of 0.2% or more, we recommend using an H.264 coding
format, ultra HD resolution and 5 Mbps data rate, as the development of video quality
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with such parameters is the most constant, starting at MOS 3.136 and ending at 2.646 when
packet loss reaches 0.5%. For full HD video, the H.265 codec at 1 Mbps seems to be the most
advantageous, as the MOS starts at 3.317, although it drops sharply afterward to 1.958 at
0.5% PLR. For greater clarity, Table 8 lists the recommended bit rates for use with different
combinations of compression parameters and expected PLR, based on subjective MOS.
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Figure 8. Development of subjectively perceived video quality with increasing bit rate.

Table 8. Bit rate values at which subjective video quality is highest.

Expected PLR [%] 0 0.1 0.2 0.3 0.5

Recommended Bitrate

Based on MOS [Mbps]

Full HD
H.264 15 3 3 1 1

H.265 15 3 1 1 1

Ultra HD
H.264 15 10 5 5 5

H.265 15 3 3 3 3

6. Conclusions and Further Discussion

The aim of this paper was to analyze the impact of PLR on quality of video in full
HD and ultra HD resolution encoded to H.264 and H.265 format at a bit rate ranging from
1 to 15 Mbps. First, a dataset of 11,200 test video sequences with eight different types of
content combining all the abovementioned parameters and simulated PLR in range of 0
to 1% was compiled. Section 3 described the selection of sequences and their encoding.
Subsequently, objective video quality evaluation was conducted by employing PSNR and
SSIM metrics. Subjective quality assessment of 560 selected video sequences was performed
by 36 laymen, using the popular ACR method. Evaluation of the video and analysis of
the results were described in Section 4 by objective evaluation methods and in Section 5
by subjective evaluation methods. A high correlation was found between the results of
evaluation methods; however, the subjective MOS revealed more about the mixed effect of
PLR and compression.
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Based on the analysis of the results, several conclusions were drawn. As was expected,
the video quality declined along with the increasing PLR, irrespective of resolution, codec,
or bitrate used. In case of video unaffected by packet loss, both measured and perceived
quality improved with rising bit rate. However, this did not apply to video sequences
impaired by PLR. In fact, it appears that in the presence of PLR, video quality decreases
with a steeper slope when a higher data rate is transmitted. This is caused by the fact
that use of a higher bit rate leads to a larger file size of the video sequence to be streamed
over the error-prone network, thus splitting the image information into more UDP packets.
At the same PLR, more of these packets are discarded during transmission which results in
more individual or clustered losses that can propagate in time and space, causing further
video quality degradation. It stemmed from the further analysis of subjective MOS that
even 0.1% loss generally has more prominent negative effect on perceived video quality
than H.264 or H.265 compression artifacts, which means that in most cases, increasing the
bit rate over a given threshold value results in greater video-quality degradation. Based on
this observation, the paper also includes a recommendation of compression parameters for
use when various levels of PLR are expected. Packet losses may generate errors in different
types of data. It depends on which part of the packet is affected by the loss. If the header of
the packet is affected, which is the worst case, it is not possible to decode the whole packet.
However, our effort was not to analyze in detail which part of the packet is influenced by
the loss because in real traffic it is not able to control which part of the packet is affected by
the loss. Our effort was to take an average in the loss rate, which we achieved by multiple
transmission sequences.
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Abstract: Currently, three-dimensional convolutional neural networks (3DCNNs) are a popular
approach in the field of human activity recognition. However, due to the variety of methods used
for human activity recognition, we propose a new deep-learning model in this paper. The main
objective of our work is to optimize the traditional 3DCNN and propose a new model that combines
3DCNN with Convolutional Long Short-Term Memory (ConvLSTM) layers. Our experimental results,
which were obtained using the LoDVP Abnormal Activities dataset, UCF50 dataset, and MOD20
dataset, demonstrate the superiority of the 3DCNN + ConvLSTM combination for recognizing human
activities. Furthermore, our proposed model is well-suited for real-time human activity recognition
applications and can be further enhanced by incorporating additional sensor data. To provide a
comprehensive comparison of our proposed 3DCNN + ConvLSTM architecture, we compared our
experimental results on these datasets. We achieved a precision of 89.12% when using the LoDVP
Abnormal Activities dataset. Meanwhile, the precision we obtained using the modified UCF50
dataset (UCF50mini) and MOD20 dataset was 83.89% and 87.76%, respectively. Overall, our work
demonstrates that the combination of 3DCNN and ConvLSTM layers can improve the accuracy of
human activity recognition tasks, and our proposed model shows promise for real-time applications.

Keywords: deep learning; 3DCNN; ConvLSTM; human activity recognition

1. Introduction

Presently, there is an increased emphasis on safety, and video capture and storage
devices are constantly evolving to meet this demand. However, these devices need to
be equipped with a system capable of accurately classifying various abnormal incidents
and reducing human error. By increasing the effectiveness of surveillance systems, we
could not only reduce crime and prevent various incidents but also provide first aid as
soon as possible. Currently, video classification research in the field of computer vision
has become a popular yet challenging topic. In addition to static information, videos also
contain time information. Therefore, it is necessary to take into account the previous and
subsequent frames to accurately recognize and classify incidents. This makes incident
recognition from video more challenging than image recognition. In recent years, 3DCNN
(3D Convolutional Network) and ConvLSTM (Convolutional Long Short-Term Memory)
networks have emerged as popular techniques for video classification. These models are
capable of capturing both spatial and temporal features, enabling them to accurately classify
videos with high accuracy. Overall, with the continued development and improvement of
video classification techniques, we can create more effective surveillance systems that can
enhance safety and security in various settings.

In [1], the authors employ a combination of ConvLSTM and Conv3D layers for the
task of human activity recognition. In [2], the authors use 3DCNN networks for Facial
Micro-Expression recognition. Gesture recognition is covered in [3], where the classic
3DCNN network and the 3D Resnet network are used. In [4], the authors propose several
approaches for the classification of abnormalities in video, including a deep hierarchical
architecture that extracts generic video descriptors using 3DCNN and BICLSTM layers.
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As part of this work, they also use a combination of 3DCNN, ConvLSTM, and Conv2D
layers. In [5], the authors develop a non-contact method of assessing respiratory rate in
sub-optimal light using video recordings, combining Euler scaling and a 3DCNN network
to eliminate the need for Region of Interest (ROI). In [6], the authors develop a framework
that takes pose-based skeleton joint sequences as input, followed by an LSTM network
to learn the temporal evolution of the poses. The obtained results are compared with
two fine-tuned deep neural networks, ConvLSTM and 3DCNN, and the Histogram of
the Optical Flow (HOF) descriptor achieves the best results when used with the MLP
classifier. This approach is applied by the authors in the diagnosis of Autism Spectrum
Disorder (ASD) using video recordings, which is also covered in [7]. In [7], the authors
use popular neural networks, 3DCNN and ConvLSTM, to detect diseases from video.
In [8], the authors propose a hierarchical LSTM Convolutional Neural Network for the
classification of farmers’ behavior in agriculture. Finally, gesture recognition is also dealt
with in [9], where the authors use two types of neural networks, 3DCNN and ConvLSTM
network [10–13].

In our previous work, we also focused on the classification and recognition of video
incidents. In [14,15], we proposed 3DCNN and ConvLSTM neural network approaches,
respectively. For the recognition of abnormal incidents, we created the LoDVP Abnormal
Activities database [14]. We trained and tested the proposed ConvLSTM network on this
database, achieving an accuracy of 96.19%. The proposed 3DCNN neural network was
trained and tested on the UCF YouTube action, UCF50, and UCF101 databases, achieving ac-
curacy values of 87.4%, 80.6%, and 78.5%, respectively. It is worth noting that the proposed
ConvLSTM network in [14] was specifically designed for our LoDVP Abnormal Activities
database, which may have contributed to its high accuracy. Meanwhile, the proposed
3DCNN network in [15] was tested on several well-known databases, which demonstrated
its generalizability to different video recognition tasks.

Based on the results we have obtained thus far, as well as the current state of the field,
we have decided to focus on combining ConvLSTM and 3DCNN networks. Specifically, we
aim to leverage both ConvLSTM layers and Conv3D layers in our approach. By doing so,
we hope to achieve better performance in video recognition tasks, as both types of layers
have shown promise in previous work. We believe that this approach has the potential to
yield improved accuracy and generalizability in video recognition tasks.

2. Materials and Methods

In our research, we are investigating a combination of 3DCNN and ConvLSTM net-
works for video classification. ConvLSTM networks use their temporal memory to capture
spatiotemporal patterns in videos, while 3DCNN networks leverage the third dimension
for classification. Both networks are widely used for video and image classification in
various fields including industry and medicine.

2.1. 3DCNN Architecture

The 3DCNN neural network can analyze and identifying different moving 2D objects
in images and 3D images, such as in medical imaging. In 3DCNN, the 3D convolution
operation is applied to the dataset in three directions (x, y, z) using a three-dimensional
filter as is shown in Figure 1. The values in the layer within the three-dimensional filter
must be set to be non-negative. The equation below defines the value for each position in
the 3D convolution map of features in the layer:

vxyz
ij = tanh〈bij + ∑

m

Pi−1

∑
p=0

Qi−1

∑
q=0

Ri−1

∑
r=0

wpqr
ijmv〈x+p〉〈y+q〉〈z+r〉

〈i−1〉m , (1)

where wpqr
ijm expresses the value of the kernel attached to the convolutional feature map in

the previous layer, Ri expresses the size of the 3D kernel [15].
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Figure 1. Comparison of the mathematical operation of 2D convolution and 3D convolution [16].

The 3D convolution is created by stacking adjacent layers around the center of the cube,
and the convolution maps are interconnected, which captures motion information. How-
ever, the convolutional kernel can only extract one type of feature. Generally, 3DCNN is
similar to Conv2D (2D Convolutional Neural Network). Combining multiple convolutional
layers can improve the results of 3DCNN, similar to 2D convolution. When constructing a
3DCNN, it is crucial to set the number of layers, the number of filters in each layer, and the
filter size properly. If pooling is used in the neural network design, the pooling size must
have three dimensions to accommodate the 3D data. The output shape from the 3DCNN
network is a 3D volume space [16–18].

2.2. ConvLSTM Architecture

The ConvLSTM neural network was developed by combining a Convolutional Neu-
ral Network (CNN) and a Long Short-Term Memory (LSTM) network. The ConvLSTM
network is similar to an LSTM network in that it is a memory network, but it performs con-
volution operations on the transitions between layers. The internal design of a ConvLSTM
network is illustrated in Figure 2 [19].

Figure 2. Inner structure of ConvLSTM [19].

The ConvLSTM neural network is commonly used for time-dependent image and
video recognition, as it is equipped to capture spatial and temporal correlations. ConvLSTM
implements a convolutional operation on the transitions between states and inputs. If we
view states as hidden representations of moving objects, a ConvLSTM with a larger transi-
tion kernel can capture faster motions, while a network with a smaller kernel can capture
slower motions. The key equations of ConvLSTM are derived from LSTM equations by
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convolutional coupling, as shown below, where “∗” denotes the convolution operator and
“◦” denotes the Hadamard product:

it = σ(Wxi ∗ Xt + Whi ∗ Ht−1 + Wci ◦ Ct−1 + bi), (2)

ft = σ(Wx f ∗ Xt + Wh f ∗ Ht−1 + Wc f ◦ Ct−1 + b f ), (3)

Ct = ft ◦ Ct−1 + it ◦ tanh(Wxc ∗ Xt + Whc ∗ Ht−1 + b f ), (4)

ot = σ(Wxo ∗ Xt + Who ∗ Ht + Wco ◦ Ct−1 + bo), (5)

Ht = ot ◦ tanh(Ct), (6)

where cell inputs are labeled Xt and cell states are labeled Ct, hidden states are labeled Ht;
the gates are it, ft, ot and σ is a sigmoidal function. We denote the convolution kernels in
the equation W− [19].

2.3. Proposed 3DCNN + ConvLSTM Architecture

Our proposed neural network architecture combines Conv3D layers with a ConvLSTM
network layer and a Conv2D layer. The architecture, referred to as 3DCNN + ConvLSTM,
contains multiple Conv3D layers followed by a single ConvLSTM layer and a single
Conv2D layer. The design of the architecture is depicted in Figure 3. This proposed
architecture comprises the following layers:

• Conv3D layers: These layers extract spatiotemporal features from the input video
data. The number of Conv3D layers can be adjusted based on the complexity of the
task. These layers incorporate a three-dimensional filter, which performs convolution
by moving in three directions (x, y, z).

• MaxPooling3D layer is a mathematical operation for 3D data (reduction of 3D data).
• ConvLSTM layer: This layer processes the extracted features from the Conv3D layers

and captures the temporal dependencies between the frames.
• Conv2D layer is layer, which applies convolution on 2D data. This layer performs the

final classification based on the output of the previous layers.
• A flatten layer converts the output matrix to the vector.

The proposed architecture combines the strengths of both Conv3D and ConvLSTM
networks. This architecture consists of multiple 3D convolutional layers, a single ConvL-
STM layer, and a single 2D convolutional layer, as well as batch normalization, a flattened
layer, and a dense layer. The 3D convolutional part of the architecture was adopted from a
previous study [15], while the ConvLSTM part was based on another previous research [14].
The hyperparameters of the 3D convolutional layers and MaxPooling, such as the number
of filters and kernel size, are determined by mathematical constraints, with the output of
the Conv3D layer being constrained to non-negative integer values. The flowchart of the
proposed architecture is illustrated in Figure 4.

The proposed 3DCNN + ConvLSTM architecture in this work consists of six 3D
convolution layers, four MaxPooling3D layers, and one ConvLSTM layer followed by a
single Conv2D layer. The input to the network has dimensions of 100 × 100 × 3 (width,
height, and number of channels). The first 3D convolution layer uses 64 filters with a kernel
size of 3 × 3 × 3. Following each of these 3D convolution layers are MaxPooling3D layers
of size 2 × 2 × 2 with a stride of 2. The next two 3D convolution layers have 128 filters of
size 3 × 3 × 3, and after these two layers, there is a MaxPooling3D layer of size 2 × 2 × 2.
The last two 3D convolution layers have 256 and 512 filters of size 3 × 3 × 3, respectively,
and are used in the 3D convolution part of the network. The entire 3DCNN network has a
batch normalization layer after every MaxPooling3D layer to improve the training process.
The ConvLSTM network includes one ConvLSTM layer with a size of 3 × 3 and 64 filters.
After the ConvLSTM layer, there is a batch normalization layer and a Conv2D layer with
16 filters of size 2 × 2. The output of the Conv2D layer is then passed through a flattened
layer that turns a matrix into a vector, and the final dense layer has only one neuron that
directly predicts the class of the input. The used optimization algorithm was “Adamax”
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and the learning rate was set to 0.001. A detailed description of the layers of the proposed
3DCNN + ConvLSTM architecture is shown in Figure 5.

Figure 3. Proposed 3DCNN + ConvLSTM architecture.

Figure 4. The flowchart of the proposed architecture.
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Figure 5. Description of the layers our proposed architecture.

The values in Table 1 show the total number of parameters, as well as the number of
trainable and non-trainable parameters.

Table 1. The overall number of parameters of our suggested architecture.

Parameters of the Proposed Architecture Number of Parameters

Total parameters 2,326,914
Trainable parameters 2,325,250

Non-Trainable parameters 1664

Deep-learning systems are built using Python libraries, such as Keras and TensorFlow,
and the experimental results were obtained using the Nvidia CUDA libraries. The input
data consisted of images with dimensions of 100 × 100 and 3 channels. For each database,
70% of the data were used for training, 20% for testing, and 10% were reserved for validation
(in a 70:20:10 split).

3. Description of the Datasets

In this section, the used datasets will be described. The all experimental results on the
LoDVP Abnormal Activities dataset, UCF50 dataset, and MOD20 dataset were obtained.

3.1. UCF50 Dataset

UCF50 dataset consisted of 50 action categories. The dataset included realistic videos
from YouTube. The dataset had large variations in camera motion, cluttered backgrounds,
illumination conditions, etc.

Videos in the same group may share some common features, such as the same person,
similar background, similar viewpoint, etc. The UCF50 dataset can be seen in Figure 6.
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The UCF50 dataset consisted of 50 categories. The dataset consists of categories such
as Baseball Pitch, Basketball Shooting, Bench Press, Biking, Billiards Shot, Breaststroke,
Clean and Jerk, Diving, Drumming, Fencing, Golf Swing, Playing Guitar, High Jump,
Horse Race, Horse Riding, Hula Hoop, Javelin Throw, Juggling Balls, Jump Rope, Jumping
Jack, Kayaking, Lunges, Military Parade, Mixing Batter, Nun chucks, Playing Piano, Pizza
Tossing, Pole Vault, Pommel Horse, Pull Ups, Punch, Push Ups, Rock Climbing Indoor,
Rope Climbing, Rowing, Salsa Spins, Skate Boarding, Skiing, Skijet, Soccer Juggling, Swing,
Playing Tabla, TaiChi, Tennis Swing, Trampoline Jumping, Playing Violin, Volleyball
Spiking, Walking with a Dog, and Yo Yo [20].

Figure 6. Example of the UCF50 dataset [20].

We cut the dataset used into 10 layers and used both datasets in training the network
to compare the results. We called the reduced dataset UCF50mini. Both datasets (reduced
and total) were divided into three sets (training, test and validation set).

3.2. LoDVP Abnormal Activities Dataset

The LoDVP Abnormal Activity dataset comprises 1069 videos. The incidents in the
videos are created by non-professional actors. The videos in the database are created
believably. Incidents are reported in the parking lot, in the university campus and in
the forest. The scenes were recorded from different angles. The dataset is divided into
11 classes, and each class contains about 100 videos. The length of the video depends on the
incident and lasts from 1 s to 30 s. Similar videos belonging to the same class may exhibit
common traits, such as a recurring individual, perspective of the camera, and a comparable
setting [14].

The LoDVP Abnormal Activity dataset consists of the following classes, which can
be seen in Figure 7. For our work, this dataset was also divided into a training test and a
validation set in the same ratio as UCF50mini. The division was in the ratio of 70:20:10.

3.3. MOD20 Dataset

The MOD20 dataset consists of 2324 videos, of which six videos were created by a
quadrotor UAV and 2318 videos were downloaded from YouTube. All clips are 1:1 aspect
ratio. Videos were sampled below 29.97 fps. The videos in the dataset are recorded from
both fixed and moving cameras. The videos show realistic scenarios in 20 selected classes
(see Figure 8). The dataset consists of classes such as backpacking, cliff jumping, cutting
wood, cycling, dancing, fighting, figure-skating, fire-fighting, chainsawing trees, jet skiing,
kayaking, motorbiking, football-catching, rock-climbing, running, skateboarding, skiing,
standup-padding, surfing, and windsurfing [21].
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Figure 7. LoDVP Abnormal Activities dataset: (a) Begging (b) Drunkenness (c) Fight (d) Harass-
ment (e) Hijack (f) Knife hazard (g) Normal videos (h) Pollution (i) Property damage (j) Robbery
(k) Terrorism [14].

Figure 8. The example of the MOD20 dataset [21].

4. Experimental Results

This section describes the experimental results achieved on the LoDVP Abnormal Ac-
tivities dataset, UCF50 dataset, and MOD20 dataset, which demonstrate the superiority of
the 3DCNN + ConvLSTM combination in recognizing human activities. To provide a more
comprehensive comparison of the proposed architecture, we compared the experimental
results achieved on these datasets. In our work, we divided this dataset into a training,
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testing, and validation set in the same ratio as the UCF50 mini and LoDVP Abnormal
Activities datasets, with a data distribution of 70:20:10.

Results

All of the tested datasets, including LoDVP Abnormal Activities, UCF50, and UCF50
mini, were divided into three main parts: training set, testing set, and validation set.
In this study, the first step was to classify the LoDVP Abnormal Activities dataset into
11 classes, which included Begging, Drunkenness, Fight, Harassment, Hijack, Knife Hazard,
Normal Videos, Pollution, Property Damage, Robbery, and Terrorism. The data underwent
preprocessing, which involved resizing each video to 100 × 100 size with 70 frames.
The accuracy and loss functions during training are displayed in Figure 9.

Figure 9. Accuracy during training process on the dataset (LoDVP Abnormal Activities).

In the early epochs, we observe a gradual increase in accuracy, and the highest accuracy
achieved during training is 92.5%. At the same time, there is a decrease in the loss function,
which is directly proportional to the increase in accuracy during the training process.
The accuracy and loss function have a directly proportional relationship, and the lowest
achieved loss function value during the training process was 0.2106.

To provide a comparison, we also monitored the accuracy and loss function achieved
on the UCF50mini dataset during the training process. The UCF50mini dataset includes
10 classes: Baseball Pitch, Basketball Shooting, Bench Press, Biking, Billiards Shot, Breast-
stroke, Clean and Jerk, Diving, Drumming, and Fencing. The data were preprocessed in
the same way as in the previous case, with a size of 100 × 100 and 70 frames. The accuracy
and loss function can be seen in Figure 10, which displays an increase in accuracy and
a decrease in loss function similar to the previous case. The highest accuracy attained
was 0.9668, and the lowest loss function value during training was achieved by the neural
network architecture with a value of 0.1042.

We also monitored the training process for comparison with the MOD20 dataset
and focused on accuracy and loss function (see Figure 11). The MOD20 dataset consists
of 20 classes (with backpacking, cliff jumping, cutting wood, cycling, dancing, fighting,
figure-skating, fire-fighting, chainsawing trees, jet skiing, kayaking, motorbiking, football-
catching, rock-climbing, running, skateboarding, skiing, standup-padding, surfing, and
windsurfing). The data were preprocessed in the same way as in the previous cases, with a
size of 100 × 100 and 70 frames. Figure 11 shows a linear increase in accuracy and a decrease
in loss function, as observed previously. The highest accuracy value achieved was 0.8630,
while the smallest value of the loss function was 0.4223. However, compared to the other
datasets, we achieved the worst results during the training process on this dataset.
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Figure 10. Accuracy during training process on the dataset (UCF50mini).

Figure 11. Accuracy during training process on the dataset (MOD20).

To make a clearer comparison, we created Table 2, which shows the training and
testing results of our proposed model on all three datasets, namely LoDVP Abnormal
Activities, UCF50, and UCF50mini. The table presents the values of training loss and
training accuracy achieved during the training process, as well as the test loss and test
accuracy obtained on a separate set of data. We computed the test results by evaluating the
trained model on the test set, which was not used for training or validation. The Table 2
provides a comprehensive comparison of the performance of our proposed model on all
three datasets, allowing us to evaluate its generalization ability and robustness to different
activity categories.

Table 2. The accuracy and loss function of the model over 50 epochs, during both training and
testing phases.

Evaluation Metrics MOD20 UCF50mini LoDVP Abnormal Activities

Train loss 0.4223 0.2106 0.1042
Train accuracy 86.30% 92.50% 96.68%

Test loss 0.5614 0.3568 0.3982
Test accuracy 78.21% 87.78% 83.12%

In both cases, we evaluated the confusion matrix for the LoDVP Abnormal Activities
and UCF50mini datasets. The first confusion matrix is shown in Table 3, which expresses
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the results of the neural network architecture tests on the LoDVP Abnormal Activities
dataset. All classes were divided into the following categories: 1. Begging, 2. Drunkenness,
3. Fight, 4. Harassment, 5. Hijack, 6. Knife hazard, 7. Normal videos, 8. Pollution,
9. Property damage, 10. Robbery, 11. Terrorism. The confusion matrix shows how the
tested videos were correctly and incorrectly classified into the given categories. For most
classes, the proposed architecture did not have a classification problem. However, for the
third class (Fight), we observe an increased error rate, where four videos were misclassified
into the first class (Begging) and six videos into the second class (Drunkenness). These
errors may have occurred due to the similarity of the videos. For example, sometimes a
small fight can be confused with begging, and begging can turn into a fight. The similarity
between a fight and drunkenness is also quite high, as drunk people can push each other
violently, which can lead to a fight.

Table 3. The example of the confusion matrix for LoDVP Abnormal Activities.

Targeted/ 1 2 3 4 5 6 7 8 9 10 11
Predicted

1 16 0 0 0 0 0 0 0 0 0 0
2 0 14 2 0 0 0 0 0 0 0 0
3 4 6 18 0 0 0 0 0 0 0 0
4 0 0 0 16 0 0 4 0 0 0 0
5 0 0 0 0 20 0 0 0 0 0 0
6 0 2 0 0 0 8 0 0 0 0 0
7 0 0 0 2 0 0 18 2 0 0 0
8 0 0 0 6 0 0 2 12 0 0 0
9 0 0 0 0 0 0 0 0 26 0 0

10 2 0 0 0 0 0 0 0 0 4 0
11 0 0 0 0 0 0 0 0 0 0 14

Furthermore, we created a confusion matrix to display the results of testing the pro-
posed neural network architecture on the UCF50mini dataset (see Table 4). The classes in
the confusion matrix are divided into the following categories: 1. Baseball Pitch, 2. Bas-
ketball Shooting, 3. Bench Press, 4. Biking, 5. Billiards Shot, 6. Breaststroke, 7. Clean and
Jerk, 8. Diving, 9. Drumming, 10. Fencing. The confusion matrix shows the increased
accuracy during classification within the testing process. Upon observing the confusion
matrix, we can assess that the biggest problem in the classification occurred in category
two Basketball Shooting, where four videos were incorrectly classified into category four
Biking. The neural network architecture also had a problem classifying class seven Clean
and Jerk, where it misclassified one video into class three Bench Press and two videos into
the Biking class.

Similarly, we evaluated the confusion matrix for the UCF50mini dataset, which is
shown in Table 4. The dataset consists of ten classes, and the confusion matrix shows how
the tested videos were correctly and incorrectly classified into these classes. The proposed
architecture performed well for most classes, with only a few misclassifications. However,
the model had difficulty distinguishing between two classes, namely Billiards Shot and
Drumming. Some videos were misclassified as Billiards Shot when they should have been
Drumming, and vice versa. This could be due to the similarity in the movements of the
two activities, such as hand-eye coordination and rhythmic movements.
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Table 4. The example of the confusion matrix for UCF50mini.

Targeted/ 1 2 3 4 5 6 7 8 9 10
Predicted

1 14 0 0 1 0 0 0 0 0 0
2 0 11 0 4 0 0 0 0 0 0
3 0 0 5 0 0 0 0 0 1 0
4 1 1 0 13 0 0 0 1 0 1
5 0 0 0 0 15 0 0 0 0 0
6 0 0 0 0 0 8 0 0 0 0
7 0 0 1 2 0 0 9 0 0 0
8 0 0 0 0 1 0 0 12 0 0
9 0 0 1 0 0 0 0 0 17 0

10 0 0 0 0 0 0 1 0 1 11

We also created a confusion matrix to display the results of testing the neural network
architecture on the MOD20 dataset (see Table 5). In the confusion matrix, the classes are
assigned numbers as follows: 1. tourism, 2. cliff jumping, 3. chopping wood, 4. cycling,
5. dancing, 6. fighting, 7. figure-skating, 8. Fire-fighting, 9. motorized saw-trees, 10. jet
ski, 11. kayak, 12. motorcycle, 13. FOOTBALL-catching, 14. rock-climbing, 15. running,
16. skateboarding, 17. skiing, 18. stand-up paddling, 19. surfing, and 20. windsurfing.
The confusion matrix enables us to monitor the accuracy of classification within the testing
process. By observing the confusion matrix, we can evaluate that there is not one class
with the biggest problem with classification, but the problems within the classification
are evenly distributed. The biggest mistakes made in placing a video into a class were
two videos. However, we can state that the best results were achieved by categories 13
(FOOTBALL-catching), 18 (stand-up paddling), and 20 (windsurfing), where the neural
network architecture had no problem with classification. The unproblematic classification
of the mentioned classes may be due to the clarity of the activity occurring in the video.

Table 5. The example of the confusion matrix for MOD20.

Targeted/ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Predicted

1 9 0 0 1 0 0 0 0 0 2 0 0 0 1 2 0 0 0 0 1
2 0 9 0 2 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
3 1 0 10 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0
4 0 0 0 7 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0
5 2 0 0 0 6 0 2 0 0 1 0 0 0 2 0 0 0 0 0 1
6 1 0 0 2 0 6 0 0 0 0 0 1 0 0 0 0 1 0 0 0
7 0 0 0 0 0 0 14 0 0 0 0 0 1 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 0 2 0 0
9 0 0 0 1 0 2 0 0 7 0 0 0 0 0 1 0 0 0 0 1
10 1 0 1 0 0 0 0 0 1 9 0 0 0 1 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 11 0 0 0 0 1 0 1 0 0
12 0 0 0 0 0 0 0 0 0 0 0 12 2 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0
14 1 0 0 0 0 0 0 0 0 0 0 0 1 9 0 0 0 0 1 0
15 1 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 11 0 0 0 0
17 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 0 0
19 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 12 0
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11
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In general, we have evaluated the results of our tests in several tables. First, we
assessed the resulting values of metrics such as F1 score, Precision, and Recall across
all three datasets (see Table 6). We can observe that the best results using the proposed
architecture were achieved on the UCF50mini dataset. However, the metric results were
roughly similar across all three datasets.

Table 6. The evaluation criterion of the proposed neural network architectures using different datasets.

Evaluation Metrics MOD20 UCF50mini LoDVP Abnormal Activities

Precision (P) 83.89% 87.76% 89.12%
Recall (R) 81.09% 88.63% 87.69%

F1 score (F1) 81.57% 87.84% 89.32%

Moreover, we compared the performance of our proposed architecture with other
available architectures. We applied the architectures to the given datasets and compared
their accuracy values. In Table 7, we can observe the resulting accuracy value after testing
on the LoDVP Abnormal Activities dataset. We tested ConvLSTM architectures published
in the article [21] and 3D Resnet networks such as 3D Resnet50, 3D Resnet101, and 3D
Resnet152 [22] on the same dataset. From these results, we can see that our proposed
architecture, which combines 3DCNN with ConvLSTM, has the third-best value. Therefore,
we can evaluate that our architecture can classify various abnormal incidents such as
harassment, fight, etc. very well compared to other architectures. However, compared to
classical ConvLSTM, it did not achieve the best results.

Table 7. Accuracy comparison of the proposed architecture with various neural network architectures
using the LoDVP dataset for detecting abnormal activities.

Video Recognition Architectures Accuracy [%]

Proposed architecture 93.41
ConvLSTM [21] 92.38
3D Resnet50 [22] 36.19

3D Resnet101 [22] 61.90
3D Resnet152 [22] 90.48

In Table 8, we can observe the accuracy results of the same neural network architectures
as in the previous case, i.e., ConvLSTM and 3D Resnet50, 101, 152, tested on the UCF50mini
dataset. In this case, our proposed architecture achieved significantly better results than
the other architectures after the testing process. Our 3DCNN + ConvLSTM architecture
achieved an accuracy of 87.7%.

Table 8. Accuracy comparison of the proposed architecture with various neural network architectures
using the UCF50mini dataset.

Video Recognition Architectures Accuracy [%]

Proposed architecture 87.78
ConvLSTM [21] 80.38
3D Resnet50 [22] 71.53

3D Resnet101 [22] 75.91
3D Resnet152 [22] 83.39

Furthermore, we trained and tested the MOD20 dataset with our proposed architecture
and compared the results with the Kernelized Rank-Based Pooling (KRBP) and Feature
Subspace-Based Kernelized Rank Pooling (KRP-FS) approaches used by the authors [21].
The best results were achieved using the 3DCNN + ConvLSTM architecture, with an
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accuracy of 78.21%. The accuracy results of our proposed neural network architecture and
the aforementioned approaches are shown in Table 9.

Table 9. Accuracy comparison of the proposed architecture with various neural network architectures
using the MOD20 dataset.

Video Recognition Architectures Accuracy [%]

Proposed architecture 78.21
BKRP [21] 66.55

KRP-FS [21] 74.00

Based on the results obtained on the three datasets (LoDVP Abnormal Activities,
UCF50mini, and MOD20), we can conclude that combining 3DCNN and ConvLSTM layers
can lead to a neural network architecture whose results are comparable to or better than
other available approaches. In terms of experimental results, we compared the performance
of our proposed architecture on the LoDVP Abnormal Activities and UCF50mini datasets
with architectures such as ConvLSTM and 3D Resnet50,101,152. In addition, we compared
the accuracy values obtained on the MOD20 dataset with the BKRP and KRP-FS approaches.
Our proposed architecture achieved an accuracy of 89.41% on the LoDVP Abnormal
Activity dataset, 87.78% on the UCF50mini dataset, and 78.21% on the MOD20 dataset.

5. Conclusions and Future Work

This paper proposes a mixed-architecture neural network for classifying human activ-
ities from videos. The architecture combines a 3DCNN network layer and a ConvLSTM
layer. We trained and tested our network on three databases: UCF50mini (where we
selected the first 10 classes), MOD20, and LoDVP Abnormal Activity. To ensure fair com-
parison between the datasets, we reduced the UCF50 database to match the number of
classes in the other two datasets. For UCF50mini, we performed classification on 10 classes:
Baseball pitch, Basketball shooting, Bench press, Cycling, Billiard shooting, Breaststroke,
Pure movement, Diving, Drumming, and Fencing. For LoDVP Abnormal Activities, we
classified 11 classes: begging, drunkenness, fighting, harassment, kidnapping, knife dan-
ger, common videos, pollution, property damage, robbery, and terrorism. MOD20 is the
largest dataset with 20 classes: tourism, cliff jumping, logging, cycling, dancing, fight-
ing, figure-skating, fire-fighting, chainsawing trees, water skiing, kayaking, motorcycle,
football-catching, climbing, running, skateboarding, skiing, standup-paddling, surfing,
and windsurfing. The input videos in all datasets were cropped to 100 × 100 × 3 RGB,
and we used 70 frames as input for the neural network architecture.

The results showed that the combined 3DCNN + ConvLSTM neural network was
effective in classifying video data containing various human activities. The training on the
UCF50mini dataset resulted in a decrease in the loss function to 0.2106 and an increase in
accuracy to 92.50%. For the LoDVP Abnormal Activities dataset, the loss function decreased
to 0.1042 and accuracy increased to 96.68% during training. On the MOD20 dataset, the loss
function during training was 0.4223 and accuracy increased to 86.30%. When comparing
the results on the datasets during testing, the combined architecture coped well with the
problem of temporal continuity between images. The confusion matrix across all three
datasets showed that the classification process was successful, with minimal errors in the
average of each class. The overall accuracy of the UCF50 mini dataset test was 87.78%,
with precision of 87.76% and recall of 88.63%. The F1 score was 87.84%. For the LoDVP
Abnormal Activity dataset, the overall accuracy was 93.41%, with precision of 89.12%, recall
of 87.69%, and F1 score of 89.32%. On the MOD20 dataset, the overall accuracy was 78.21%,
with precision of 83.89%, recall of 81.09%, and F1 score of 81.57%. The results showed that
the 3DCNN + ConvLSTM neural network is capable of classifying video data containing
various human activities, with high accuracy and minimal errors in the average of each
class. The proposed architecture achieved good results when compared to other existing
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networks designed for video-based human behavior classification. Overall, the results
demonstrate the success in creating a neural network architecture combining 3DCNN and
ConvLSTM layers for classifying human behavior in videos.

However, we aim to continue our work and improve the classification results of human
activities captured in videos. Accurate classification of human behavior by neural networks
can significantly enhance their practical applications. To provide a more comprehensive
evaluation of our network’s performance, we compared it to other available neural network
architectures, such as 3D ResNet 50,101,152, ConvLSTM, KRBP, and KRP-FS approaches,
using three different datasets. Our contribution focuses primarily on recognizing and
classifying non-standard human behavior in public spaces, which has a significant impact
on the scientific community. The proposed 3DCNN + ConvLSTM architecture has wide-
ranging applications in fields such as security and medicine and is comparable to existing
networks designed for video-based human behavior classification. However, monitoring
and detecting unusual behavior in public places such as city parks and squares is still a
challenging task, and our proposed combination of 3DCNN and ConvLSTM has some
limitations, including:

• Limited interpretability: 3DCNN with ConvLSTM is a deep-learning architecture,
and like most deep-learning models, it is not transparent in how it makes predictions
(understanding how the model arrives at a particular decision can be challenging).

• Limited availability of training data: The training of 3DCNN with ConvLSTM requires
a large amount of high-quality data to produce good results. This can be a significant
limitation in many applications where such data are not readily available.

• Difficulty in tuning hyperparameters: 3DCNN with ConvLSTM involves several
hyperparameters that need to be tuned correctly to achieve optimal performance.
Tuning these hyperparameters can be time-consuming and requires a significant
amount of expertise and experimentation.

• Sensitivity to noise and missing data: The combination of 3DCNN and ConvLSTM
relies on the temporal coherence of data for accurate predictions. Therefore, the model
can be sensitive to noise and missing data in the input, which can significantly affect
the model’s performance.

In summary, the proposed combination of 3DCNN with ConvLSTM is a powerful
deep-learning architecture with several limitations, which can impact its scalability, in-
terpretability, data requirements, hyperparameter tuning, and sensitivity to noise and
missing data.

In the future work, we plan to explore the incorporation of additional sensor data,
such as depth cameras and inertial measurement units, to enhance the performance of the
proposed model. We also plan to investigate the use of transfer learning techniques to adapt
the model to different domains and environments. Furthermore, we aim to investigate the
use of the proposed model for other related tasks such as anomaly detection. Finally, we
will also investigate the possibility of deploying the model on edge devices for real-time
monitoring. We believe that incorporating additional sensor data could further improve the
performance of our model and we look forward to exploring this direction in future work.
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Abbreviations

ConvLSTM Convolutional Long Short-Term Memory
3DCNN 3D Convolutional Network
KRP-FS Feature Subspace-Based Kernelized Rank Pooling
BKRP Kernelized Rank-Based Pooling
BILSTM Bidirectional Long Short-Term Memory
Conv2D 2D Convolutional Neural Network
Conv3D 3D Convolutional Neural Network
ROI Region of Interest
MLP Multilayer perceptron
HOF Histogram of oriented gradients
ASD Autism Spectrum Disorder
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Abstract: In this paper, a report on the development of an Internet of Things (IoT)-based connected
university system is presented. There have been multiple smart solutions developed at the university
over recent years. However, the user base of these systems is limited. The IoT-based connected
university system allows for integration of multiple subsystems without the need to implement all
of them in the same environment, thus enabling end-users to access multiple solutions through a
single common interface. The implementation is based on microservice architecture, with the focus
mainly on system robustness, scalability, and universality. In the system design, four subsystems
are currently implemented, i.e., the subsystem for indoor navigation, the subsystem for parking
assistants, the subsystem for smart classrooms or offices, and the subsystem for news aggregation
from university life. The principles of all implemented subsystems, as well as the implementation
of the system as a web interface and a mobile application, are presented in the paper. Moreover,
the implementation of the indoor navigation subsystem that uses signals from Bluetooth beacons
is described in detail. The paper also presents results proving the concept of the Bluetooth-based
indoor navigation, taking into account different placements of nodes. The tests were performed in a
real-world environment to evaluate the feasibility of the navigation module that utilizes deterministic
fingerprinting algorithms to estimate the positions of users’ devices.

Keywords: IoT; smart systems; indoor navigation; mobile application

1. Introduction and Motivation

In recent years, Internet of Things (IoT) technology has experienced a global boom. It
is currently used in various industrial applications as well as in the daily lives of ordinary
people. The fast and efficient development and deployment of IoT applications are enabled
by miniaturizing and reducing hardware costs and the existence of various software-
oriented services.

In recent years, several independent intelligent systems were developed at the Uni-
versity of Zilina. These systems were either used independently with a limited number of
users or were not used at all and have fallen into oblivion. The main motivation for the
development of an IoT-based connected university system was to create a versatile and
robust system built on microservices so that it will be possible to implement individual
solutions as sub-systems within that system.

Taking into account that the individual services may not have anything in common and
may be built in completely different architectures and programming languages, the decision
was made to build the proposed system using a microservice architecture. In this architec-
ture, the individual microservices can be created in various programming languages, since
each service operates in its own container with its own environment variables. Moreover,
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the advantage of the microservice architecture is that the possible malfunction of a single ser-
vice does not affect the other services. The proposed system is open for the implementation
of novel sub-systems in the future, due to the use of the microservices architecture.

The individual services implemented within the system are intended to assist or
facilitate the normal daily routine within the university. As part of the system design,
four sub-systems were proposed, while each service will provide benefits for users at the
university in a different way. For example, the news aggregation subsystem is designed
to cause it to be easier to bring together news from different sources of university life
and display it in one place. This subsystem also retrieves current and historical weather
information from around the university. Moreover, the subsystem for assisted parking
is intended to speed up finding a free parking space, saving time but also saving the
environment. On top of that, the smart classroom subsystem is to assist students and staff
in following the principles of proper chair seating and, in this way, help to prevent health
problems. Furthermore, the indoor navigation subsystem is useful for junior students and
helps them navigate the university campus and find the right classroom.

The principles within each subsystem are based on previously published works and
thus do not provide novel approaches. However, the main contribution of this paper
is the design and implementation of a robust IoT-based connected university system,
which connects the different subsystems and causes them to be accessible through a single
common interface, i.e., web interface or mobile application. The system, therefore, enables
the creation of novel services for a user taking into account data from multiple subsystems.

The remainder of the paper is organized as follows, Section 2 provides a review of the
related work on IoT system development, Section 3 describes the proposed system design
and architecture, Section 4 presents the subsystems and their implementation, Section 5
describes the system implementation from the web interface and mobile application point
of view, Section 6 presents the proof of concept of implemented BLE localization, and
Section 7 concludes the paper.

2. Related Work

The development of IoT systems and applications is currently of interest to many
research groups. IoT systems and applications are widely used in multiple areas. In general,
IoT systems and applications collect information from sensors and use the captured data to
optimize processes or create insights into the data that can be useful.

A smart air quality monitoring IoT-based infrastructure for industrial environments
was presented in [1]. The authors presented a complete air quality monitoring infrastruc-
ture based on the IoT paradigm that is fully integrable with current industrial systems.
The monitoring infrastructure includes highly precise compact devices to facilitate the
real-time monitoring of particulate matter concentrations and polluting gases in the air.
The Big Data collected by this system are processed using machine learning techniques to
predict whether safety levels might be surpassed.

Anumala et al. [2] described an IoT-based air quality monitoring system to contin-
uously observe the air quality inside a room. The system collects information about the
temperature, humidity, dust, and gas level. All the data are stored in the database and
also displayed in real time on the LCD in the room. When the measured values exceed
threshold values, a warning message is sent to the house owner’s mobile device using the
Global System for Mobile communication (GSM) module.

A long-range outdoor air quality monitoring system based on the LoRaWAN was
proposed in [3]. The system consists of multiple sensors (NO2, SO2, CO2, CO, PM2.5,
temperature, and humidity), an Arduino microcontroller, a LoRa shield, a LoRaWAN
gateway, and The Thing Network (TTN) IoT platform. The IoT nodes are powered by a
rechargeable battery with a photovoltaic solar panel. The measured data are stored in the
cloud and system users can easily access them on the web-based dashboard. The authors
validated the collected data against the high-technology Aeroqual air quality monitoring
devices and proved that their system can reliably monitor various air quality indicators.
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The monitoring system applied to an aeroponic greenhouse based on an IoT architec-
ture was presented in [4]. The system provides information on the status of the climatic
variables and the appearance of the crop in addition to managing the irrigation timing and
the frequency of the visual inspections using an Android application called Aeroponics
Monitor. The authors use the Thingspeak cloud for data analysis and Firebase servers for
data storage.

The challenges in agriculture were addressed in [5]. The proposed IoT-based system
was developed for monitoring environmental parameters such as soil moisture, temper-
ature, and humidity. The AgriWealth farming system utilizing the IoT sensors and the
Android application that helps farmers control and manage the farm was proposed in [6].
The machine learning model is used to predict suitable crops in accordance with varying
weather parameters.

Another flexible IoT agriculture system for irrigation control based on Software Ser-
vices was described in [7]. The presented paper adopts a software-centric perspective to
model and design IoT systems in a flexible manner and provided a simple and novel view
of the design of IoT systems in agriculture from the software perspective.

Ahmed et al. [8] designed and implemented a flexible IoT-based platform for the re-
mote monitoring of agriculture farms of different scales, enabling continuous data collection
from various IoT devices. IoT nodes are based on the LoRaWAN technology. The authors
undertook an experimental validation and showed that the platform can be used to ob-
tain valuable analytics of real-time monitoring that enable decisions and actions such as,
for example, controlling the irrigation system or generating alarms.

Security is an important aspect of all information systems, especially in
IoT. Vashishtha et al. [9] presented security and detection mechanisms in IoT-based cloud
computing using a hybrid approach. They combine RSA and RC4 algorithms for the
generation of the key to obtain the superior security method. Security vulnerabilities
continue to exist, and security incidents continue to increase. Kim and Yoo [10] classified
and analyzed the most common security vulnerabilities for IoT devices and identified
the essential vulnerabilities of IoT devices that should be considered for security when
producing IoT devices.

IoT technology is also used in smart homes. Vishwakarma et al. [11] proposed a
smart energy-efficient home automation system that can remotely access and control
home equipment. The solution is based on NodeMCU, Adafruit sensors, and the Arduino
platform. The design and implementation of a Cloud-IoT-Based Home Energy Management
System were presented in [12]. The developed system allows for collecting and storing
energy consumption data from appliances and the main load of the home. Two scenarios
were designed and an implemented AWS cloud was used to store all the collected data.

Wu et al. [13] proposed a wearable sensor network system for health applications.
The proposed network incorporates multiple wearable sensors to monitor the environ-
mental and physiological parameters of individuals. Based on the sensor specification,
the implemented sensors communicate using the LoRa network or Bluetooth. The system
includes a warning mechanism that is triggered when a harmful environment is detected.
Onasanya and Elshakankiri [14] described a Smart integrated IoT healthcare system for
cancer care. They proposed the implementation of an IoT-enabled medical system for the
enhanced treatment, diagnosis, detection, and monitoring of cancer patients based on can-
cer care services. They also created business analytics for insights creation, decision-making,
data transmission, and reporting.

The authors in [15] described an IoT-connected e-textile wearable for neonatal med-
ical monitoring called NeoWear. The proposed chest belt wearable should monitor the
respiration rate and detect apnea events in babies. The NeoWear is a wearable system
consisting of a sensor belt, a wearable embedded system, and an edge computing device.
The IoT device is connected to the edge computing device and sends the data over the MQ
Telemetry Transport (MQTT) protocol. Their findings show an average error of 0.89 BrPM
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in respiration rate measurement and 97% accuracy in apnea detection on the programmable
baby mannequin.

Other important fields, where IoT systems are widely used are smart cities and smart
transportation. Zhu et al. [16] presented a vision as well as work on the integration of
artificial intelligence and the intelligent transportation system (ITS) to create an enhanced
intelligence of IoT-enabled ITS. A design of an IoT-based smart city model on Raspberry
Pi was proposed in [17]. Kumar et al. created an urban IoT system utilizing Raspberry
Pi to help smart cities solve domestic difficulties. One of the major smart cities issues is
energy optimization.

The authors in [18] proposed a model that can be used to optimize energy consumption
in smart homes and smart cities alike. They equipped all smart city electric appliances with
the sensors, such as street lighting, building and street billboards, smart homes, and smart
parking. The suggested model was evaluated using mathematical modeling and the
findings indicated that the proposed model may assist in improving energy usage in smart
cities. Smart cities also include people who can use their mobile devices to participate in
sensing various environmental variables. This is called crowd-sensing.

The authors in [19] proposed privacy-preserving hybrid sensing for smart cities. They
explored an integrated paradigm called “hybrid sensing” that harnesses both IoT-sensing
and crowd-sensing in a complementary manner. The authors presented their hybrid sensing
on the smart system parking, by which users can inquire and find the available parking
spaces in outdoor parking lots. IoT solutions are widely implemented as parking sensing
systems that deploy robust outdoor vehicle localization and recognition methodology.

In the [20], the authors proposed a new low-cost sensor system allowing for real-time
parking occupancy monitoring along with parking payment without the requirement of
any user/driver interaction. A two-stage hybrid approach to help drivers find a parking
space was presented in [21]. The proposed solution should decrease the time and energy
consumed in finding the parking lot. The first stage focuses on car parks with at least
one free parking space located near the target address. The most suitable parking space
is searched for and presented in the second stage. The authors also proposed a dynamic
cloud-based parking lot reservation system.

A smart parking solution based on the integration of NB-IoT radio communication
technology and the core IoT platform was proposed by authors in [22]. Their solution
for smart parking benefits from the usage of narrow-band Internet of Things (NB-IoT)
technology. The authors created a mobile application for the real-time checking of parking
lot availability. A parking space can be reserved via a smartphone application, which will
help drivers to find and reserve spots, park their vehicles, and pay.

Sobeslav and Horacek [23] presented A Smart Parking System Based on a Mini PC
Platform and Mobile Application for Parking Space Detection. The solution relies on an
MPU–9250 magnetometer sensor connected to an Arduino mini microprocessor to detect
the vehicle in the parking lot. To send data to the Raspberry Pi server, the IQRF, which is
a wireless mesh technology in sub-GHz ISM radio bands, was used. It is possible for a user
to create parking place reservations via the mobile application and then the application
navigates the user to the reserved spot. The problem with this solution is that it needs a lot
of IoT nodes to cover larger parking lots. The camera-based solution is more widespread
since it is much easier to implement.

The solutions proposed in [24] and ref. [25] describe the real-time parking lot occu-
pancy detection systems based on a visual sensor network. In both papers, a camera-based
solution is used and the achieved results proved that this type of system is suitable for
parking occupancy detection.

Indoor localization and navigation is still a hot research topic and an active field of
development for many researchers. The most accurate indoor positioning systems are
based on UWB technology [26]. A comprehensive survey for indoor positioning systems
for IoT-based applications was presented in [27]. Their final finding was that the Global
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Positioning System (GPS) and the indoor positioning system (IPS) can act as complements
to offer a comprehensive location-based service for both indoor and outdoor environments.

Schroeer [28] presented a real-time UWB multi-channel indoor positioning system for
industrial scenarios. The author uses four transceivers instead of one to increase the system
robustness for each base station. The root mean square error has been reduced by 0.1 m in
comparison with the single-channel indoor positioning system. However, it is necessary
to install a based station and equip users or objects with the active tag in order to use the
UWB technology for positioning and indoor navigation.

Another option is to use smartphones and their sensors for localization and navigation.
Bluetooth localization technology, its principles, applications, and future trends are sum-
marized by the authors in [29]. They reviewed the applications and existing commercial
solutions, revealing the possible directions for the industrialization of Bluetooth localiza-
tion. The Bluetooth Low Energy (BLE)-based indoor localization systems are limited to
using only three advertisement channels. The work presented in [30] analyzed the impact
of channel diversity on the accuracy of BLE-based indoor localization. The experiments con-
ducted in a 100 m2 office area show that using signal strength measurements in 40 channels
improves the average localization accuracy by approximately 50%.

The challenges related to indoor positioning using Wi-Fi signals were summarized in
our previous work [31,32]. An improved Wi-Fi location fingerprint positioning algorithm
for robot indoor positioning and navigation was described in [33]. In order to eliminate
the location fingerprints that degrade the localization accuracy, Ye and Peng integrated
an improved adaptive K-value WKNN algorithm at the end of the localization algorithm.
The experimental results show that the probability of the improved algorithm’s positioning
error within 0.4 m is 49%, which is a 35% improvement over the conventional algorithm.
A smartphone-based indoor navigation system was presented in [34]. They present enhanc-
ing the particle filter by utilizing a map constraint and k-means clustering and integrating
Bluetooth low energy along with pedestrian dead reckoning for positioning. For the overall
performance of PFMK, a mean error of <1.5 m in the test environments was achieved.

3. IoT-Based Connected University System Design

The IoT-based connected university system is a huge IoT system that allows users to
access various services provided at the campus of the University of Zilina. The system
includes multiple different subsystems implemented as micro-services while providing
the end-users information from the system via a single common user interface (mobile
application and web). The proposed subsystems are as follows:

• Subsystem for news aggregation;
• Subsystem for smart assistant parking;
• Subsystem for smart classroom or office;
• Subsystem for indoor navigation.

The design of the system is focused on the robustness, scalability, and universality.
The proposed design is open, so it is possible to implement new services in the future.
The principle of the system design is illustrated in Figure 1.
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Figure 1. The principle of the system design of the IoT-based connected university.

The main unit of the proposed IoT-based connected university system is a server
placed on the premises. The users communicate with the server exclusively through HTTPS
requests to ensure communication security. Overall, the system provides two levels of
users—non-authorized users and authorized users. Some of the services implemented in the
system are considered to be free services, which are accessible also to non-authorized users
and are available on the home page of the system. However, some subsystems, including
indoor navigation and smart classroom subsystems, are only available to authorized users.
The system architecture design is based on microservices. Microservices, also known
as microservice architecture, is an architectural style that structures an application as
a collection of services. The advantage of microservices is that individual services can
be independently deployed, are highly maintainable, scalable, and robust, and can be
organized around business capabilities. The microservice architecture implemented in the
system is shown in Figure 2.

Figure 2. Microservice architecture.
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The microservice architecture also includes Application Programming Interface (API)
gateway and management/orchestration tools. The API gateway represents an entry
point for the clients and decouples the clients from the services. In the proposed solution,
the Nginx server is used as an API gateway. The Nginx server is responsible for routing
the incoming request to the particular service based on the request URL, as can be seen in
Figure 3.

Figure 3. URL-based request routing flow diagram.

The services can also communicate with each other. For this purpose, internal APIs
are specified, and the Nginx server is responsible for routing the internal API between the
services within the virtual network. Management/orchestration tools are responsible for
placing services on nodes, identifying failures, re-balancing services across nodes, and so
forth. In the proposed system, Docker and Docker-compose are used for microservices
management. The whole system is designed to be ready and compatible for deployment
into off-the-shelf technologies, such as Kubernetes. Moreover, it is also possible to use
Docker in the swarm mode to boost the scalability of microservices.

4. Subsystems Specification

Currently, there are four subsystems designed in the IoT-based connected university
system. This section is dedicated to subsystem specification.

4.1. News Aggregator

The news aggregator subsystem is a free service, it collects information from multiple
sources and provides a single interface to display all of them. The main advantage of this
subsystem is that students can find all information in one place. The News aggregator
collects the news feeds from multiple university web pages. Many of these are created by a
Content Management System (CMS) such as WordPress. The WordPress-based web page
provides predefined XML files as an RSS news feed that are easily accessible. However,
some of the pages are currently built using a special Joomla CMS plugin and do not
provide a news feed. Therefore, it is necessary to parse the page content and search for
news. The subsystem also gathers information from the university canteen as well as the
university library. In this subsystem, the weather information from local weather stations
at the university is also gathered. The source of the weather information is our previously
developed system [35] for collecting meteorological data from numerous small weather
stations. The users can see weather information from various locations as well as the
historical data. The design of the proposed subsystem is shown in Figure 4.
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Figure 4. Proposed design of subsystem for news aggregator.

4.2. Smart Assistant Parking

The subsystem for smart assistant parking is one of the free services implemented
in the IoT-based connected university system. The goal is to provide information about
parking occupancy and navigate the user to the nearest free parking spot. There are two
ways how to evaluate parking occupancy, i.e., camera- and sensor-based solutions. In the
proposed design, the camera system deployed on the university campus is used to collect
information about parking occupancy. The concept of the proposed subsystem is presented
in Figure 5. The parking detection is based on a convolutional classifier with a residual
architecture [36] that achieved an average accuracy of 98.42% on the PKLot database.

Figure 5. Proposed subsystem for smart assistant parking.

The application automatically detects that the user has approached the parking area
and sends a request to find the free parking place with the current position of the user.
Since the university campus covers a wide area, the user is allowed to set their preferred
parking place area (e.g., based on the building they are going to). The server redirects the
request to the subsystem for the smart parking assistant to receive the current parking lot
occupancy. Based on the request and parking occupancy data, the subsystem creates a
parking place reservation and sends it in a response message to the client. On the client
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side, the application receives data and navigates the user to the reserved parking place.
The user is allowed to accept or decline the reservation. On the subsystem side, the parking
occupancy information is updated on a regular basis.

4.3. Smart Classroom or Office

The primary motivation for smart classroom subsystems is to help users who pay
attention to their health and proper sitting posture during work or classroom lectures.
Moreover, the system is able to estimate the occupancy of offices and lecture rooms based
on information from smart chairs. Both students and lecturers spend many hours seated on
chairs or stools. Therefore, adopting the correct sitting position is essential for maintaining
good posture and a healthy back and spine. There are multiple ways how to monitor the
seating posture of individuals. An overview of systems on sitting posture monitoring can
be found in [37]. Basically, there are three main approaches used to obtain data about
sitting posture:

• Computer image processing;
• Wearable clothing with sensors;
• Measuring the load distribution on some form of substrate.

As part of previous work, a smart system for sitting posture detection was developed.
The system is based on force sensors implemented in a chair [38]. The basic concept of the
proposed system is illustrated in Figure 6.

Figure 6. Proposed subsystem for smart classroom.

In each smart chair, six flexible force sensors FSR402 are implemented. Two sensors are
placed in the backrest and four in the bottom seat. A NodeMCU board collects data about
changes in the resistance of individual sensors and sends these data to the server using the
MQTT protocol. There can be a variable number of chairs in one classroom. On the server
side, the system uses the Node-RED application for the evaluation and processing of the
data. The user can access information about sitting posture correctness as well as detailed
information using the mobile application.

Based on data from the experiments, an algorithm for the evaluation of correct sitting
posture was proposed. The algorithm has minimal computation power requirements.
The data collected during the testing phase were divided into three groups based on the
correctness of the sitting posture. During the evaluation of the results, threshold values
were defined for each of the three groups. The typical routine for the individuals in the
smart classroom should be as follows:
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• The individual chooses a free chair in the classroom;
• Using a mobile application, authorized users scan the QR code of their chair;
• The application provides information about the sitting posture to the user as regular

updates.

The design of the smart system for sitting posture detection is easy to implement as
a subsystem in the IOT-based connected university system. Therefore, authorized users
have access to the data from smart chairs and can keep track of the correctness of their
sitting postures.

4.4. Indoor Navigation System Design

Bluetooth beacons will be deployed in the buildings of the University of Zilina to col-
lect environmental data. Moreover, the signals from these beacons will be used for the
implementation of the navigation subsystem. Since BLE beacons will be implemented
in the indoor environment with harsh signal propagation conditions, the implemented
localization microservice relies on fingerprint positioning.

The main advantage of fingerprinting localization is that there is no need for distance
estimation using a signal propagation model. The fingerprinting localization is based on a
comparison of measured data with a radio map database. Since the database was collected
in the same environment, fingerprinting localization seems to be immune to multipath
signal propagation. However, the drawback of fingerprinting localization is related to the
time complexity of radio map measurements.

Since position estimation is implemented in the application created for mobile devices,
simple deterministic localization algorithms have to be used. These algorithms are based
on an assumption that the received signal strength (RSS) from multiple tags depends on
the position of the mobile device. Therefore, the position of the mobile device can be
estimated by selecting points with the lowest Euclidean distance between the RSS samples
collected during localization and the RSS samples stored in the radio map. More details on
algorithms tested during the initial trial will be provided in Section 5.

The primary goal of the indoor navigation subsystem is to provide position estimates
based on available Bluetooth signals and deploy an indoor navigation system to help the
students with orientation inside the university campus. This is a crucial service especially
for new students, as they often find it difficult to navigate through the tangle of corridors
and arrive in time for lectures or laboratory exercises.

Therefore, the use of the mobile application with data from this subsystem can help
students with finding the right route to the desired lecture room. The subsystem is im-
plemented as an independent service in the mobile application. The application requires
permission to use a Bluetooth device on the smartphone in order to be able to obtain the
position estimates.

To implement indoor navigation in a complex building on a university campus, we
decided to split buildings into sub-regions, in order to reduce computational complexity
related to position estimation. The example of the one-floor splitting is shown in Figure 7.
The particular sub-regions are highlighted in different colors.
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Figure 7. The example of floor divided into the sub-regions.

The positioning is performed within these small sub-regions using the fingerprinting
method. When the application service on the mobile device for localization is activated,
the application estimates an approximate position on the campus. This process is explained
in Figure 8.

Figure 8. Subsystem for indoor navigation initial localization.

As a first step, the application will scan for signals from the BLE beacons. The data
about BLE beacons in the area are sent in the request to the server for the approximate
position in the term of sub-region. The server estimates the sub-region based on the signals
from the surrounding beacons. The server response contains information about the sub-
region and its radio map. The application then uses a positioning algorithm for accurate
localization within the sub-region.

Once the position of the mobile device is estimated, the user can search for the desti-
nation room by choosing a room label from the list. The actual list of rooms is provided by
the server. Once the room is selected, the application sends the request to find the route
to the server. The server response contains data about the navigation route. The mobile
application receives the response and initializes the navigation within a single sub-region.
Once the user moves, the application periodically updates the position.

When the user approaches a neighboring sub-region, the application sends a request to
the server to download data from the next sub-region for localization and navigation. This
is repeated until the user reaches the destination sub-region, where they will be pointed to
the desired office. The navigation process is depicted in Figure 9.
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Figure 9. The process of indoor navigation in the mobile application.

5. System Implementation

In this section, the implementation of the microservices of the IoT-based connected uni-
versity system will be described in detail. To develop the proposed system, the Docker plat-
form was used. Docker is a platform that allows developers to easily create, deploy, and run
applications in containers. Containers represent lightweight, portable, and self-sufficient
executable packages that include everything needed to run an application, including the
code, runtime, system tools, libraries, and settings.

In the proposed architecture, multiple containers are used. The Docker Compose tool
was utilized to handle the containers, networks, and services required for the proposed
solution. This tool enables the specification and execution of multi-container Docker ap-
plications. It offers a convenient way to manage the entire process of a multi-container
application, from development to production. Therefore, it is easy to run the same ap-
plication in different environments. It is an excellent resource for development, testing,
and deployment. This tool is using the docker-compose.yml file for the system setup. Used
docker-compose.yml file contains the following services:

• Nginx—entry point to the system;
• MongoApi—serves as storage for the API service;
• API—backend for setting and authentication usage;
• Web—holds React web application;
• Aggregator—implementing logic for news aggregator subsystem;
• MongoAggregator—serves as storage for the aggregator service;
• Localization—implementing logic for indoor navigation subsystem;
• MongoLocalization—serves as storage for the localization service;
• Mongo-express—for development purposes only.

The system starts with the single command “docker-compose up” or “docker-compose
up-d” to run the system in the background. During the first run, a single administration
account is created with a default username and password, which should be changed after
the initial login. The administrator has to set up other services to ensure they work properly.
After the initialization process, the IoT-based connected university system is ready to
be deployed.

5.1. Web-Based User Interface

All communication from the Internet is routed via port 3050. The communication then
passes through the Nginx server. In the Nginx server, URL base routing is implemented,
see Figure 3. The User Interface (UI) was implemented using React—a JavaScript library
with the utilization of Material UI (MUI) components. The home page of the IoT-based
connected university system for the non-authorized user is shown in Figure 10.
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Figure 10. The IoT system for connected university home page for the non−authorized user.

The non-authorized user can only access free services, such as feeds from news
aggregators. The user can manage the displayed services. For the non-authorized user, all
settings are stored in the browser’s local storage. Detailed information for each item can be
displayed by clicking on it. The detailed news feed is shown in Figure 11 and a detailed
view of the meteorological data is shown in Figure 12.

Figure 11. Detailed information for item−type news from aggregator service.

Figure 12. Detailed view of meteorological data.
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The system also provides an administration section, where the system administrator
can manage all the services, users, and notices. The view on the administration sections
with settings of the individual services is shown in Figure 13.

Figure 13. System administration section.

As can be seen from the figure, the administrator is able to set different flags for each
service, such as an active flag, default flag, homepage flag, or public flag. Each service has
a custom identification assigned, in order to identify the service in the system architecture.
The name of the service is displayed as the service name on the user’s home screen. Some of
the services may not be visible in a web application. An example of such a service is indoor
navigation since the native mobile application is required to collect the data required for
the proper function of the service.

5.2. Mobile Application

A mobile Connected UNIZA application was developed in order to improve the user
experience and provide services with added value. The application was developed using
the React Native framework. React Native is a JavaScript framework for building mobile
applications using React. It allows developers to build mobile apps for iOS and Android
platforms using a single codebase, leveraging the power of React and its component-based
architecture. React Native uses native components rather than web components as building
blocks and allows developers to access the device’s native APIs, such as the camera, GPS,
and more. The framework is open-source and actively maintained by Facebook and
the community.

The screens of the developed application are shown in Figure 14. The application is
available only for authenticated users. The first screen after the application startup is a
login screen, as can be seen in Figure 14a. The user must fill in the credentials in order to
login into the application. The users are also able to create an account using the register
screen. The home screen for the authorized user is shown in Figure 14d. By default, all
services with the “homepage” flag are shown for the user who is logged in for the first time.
Then, the user can alter which services will be displayed in the feeds. The authorized users
are allowed to change and save the layout of the feed for the next login. The user interface
of the application is implemented in two languages, Slovak and English. Users can change
the language and password in the settings screen, see Figure 14b. The navigation between
the screens is implemented via a drawer navigator, shown in Figure 14c. An example of an
indoor navigation screen is shown in Figure 14e. The user can choose the destination room
number and the application will navigate the user toward the desired destination.
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Figure 14. The mobile application of the connected university system, (a) Login screen. (b) Settings
screen for authorized users. (c) Navigation drawer. (d) Connected university home screen showing
news feeds from the aggregator subsystem. (e) Indoor navigation screen.

6. Proof of Concept for Indoor Localization

In order to evaluate the feasibility of BLE-based localization for indoor navigation
purposes, the preliminary tests were performed at a typical corridor in one of the buildings
at the University of Zilina. The corridor has dimensions of 2 × 69 m. The reference points
used for radio map measurements were placed in a grid with a spacing of 1 m, resulting
in a radio map with measurements recorded at 134 points. The corridor was covered by
five BLE beacons. The Holyiot nRF51822 Bluetooth 4.0 beacon BLE module was used.
For testing purposes, the position was estimated at 21 positions. The positions of reference
as well as the testing points were estimated using a laser distance measurement tool.

The tests were performed in two scenarios, and the positions of the BLE beacons in
these scenarios are presented by red dots in Figure 15, together with a view of the corridor.
In both scenarios, the BLE beacons were attached to the ceiling, so the signal should not be
obstructed by other users present in the area.

Figure 15. Placement of BLE beacons in testing scenarios.

For testing purposes, the positioning was performed using NN, KNN, and WKNN
algorithms. In all these algorithms, the position estimate x is provided by:

x =
∑M

i=1 ωi pi

∑M
j=1 ωj

, (1)

where pi is the position of the i-th reference point in the radio map, while ωi and ωj are
weights assigned to the i-th and j-th reference points and M is the number of reference
points in the radio map. The weights are calculated as the inverse value of the Euclidean
distance between RSS measurements from the mobile device and radio map.

The Nearest Neighbour (NN) algorithm takes into account only the reference point
with the highest weight, i.e., the smallest Euclidean distance between RSS samples. The k-
Nearest Neighbour (KNN) algorithm uses the k-highest weights and sets them to 1, while
the other weights are set to 0. Therefore, KNN estimates the position as the center of gravity
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of the selected reference points. Similarly, the Weighted k-Nearest Neighbor (WKNN) con-
siders the k reference points with the highest weights; however, the weights are considered
in the final estimate, i.e., the estimate is calculated as the weighted average of the selected
reference points.

In the first step, the impact of a number of the reference points k in both KNN and
WKNN algorithms was evaluated for both scenarios. The achieved results are shown in
Figure 16.

Figure 16. Localization Impact of a number of the refernece points on accuracy of KNN and WKNN
algorithms.

From the figure, it is clear that, for scenario 2, the best accuracy was achieved when the
number of reference points used for position estimation k = 3. On the other hand, in scenario
1, the best results were achieved with k = 9. However, it is important to note that the impact
of a number of reference points used for position estimation in both scenarios is relatively
small. Moreover, the results achieved in scenario 1 were in all cases significantly worse
than in scenario 2. The difference in the mean error between the scenarios was between
0.7 and 1.4 m. That means the placement of BLE nodes in scenario 2 helped to improve
the accuracy by 21–37% compared to scenario 1. Based on these results, the number of
reference points considered in the KNN and WKNN algorithms was set as k = 3 for further
investigation. Moreover, it was already proven that the number of reference points k = 3
provides reasonably good results using data from Wi-Fi networks [39].

The results achieved during the testing of the localization concept in scenarios 1 and 2
are shown in Figure 17 and Figure 18, respectively. In the figures, the median is shown as a
line inside the box, the 5% confidence interval is represented by the shaded area, the lower
and upper quartiles define the edge of the box, the minimum and maximum values that
are not outliers are presented by whiskers, and circles represent the outliers in the data.

From the achieved results, it can be seen that the localization errors achieved in the
second scenario were significantly smaller, although there were some outliers. This might
be caused by the fact that the BLE nodes in the second scenario are distributed more evenly
across the area, therefore providing stronger signals from multiple sources.

It can also be concluded that the NN algorithm achieved the lowest performance,
i.e., the highest localization error, in both cases. This is due to the fact that part of the
test points, used for the evaluation of the positioning algorithms, were placed at different
positions as reference points in the radio map.

The best results were achieved using the KNN localization algorithm; in the second
test scenario, therefore, this configuration will be considered in the further development
and evaluation of the system. Based on these preliminary results, it can be concluded that
BLE-based positioning has the potential to provide the accuracy that should be sufficient
for navigation in corridors along the university campus.
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Figure 17. Localization errors achieved in scenario 1.

Figure 18. Localization errors achieved in scenario 2.

7. Conclusions and Future Work

The paper presented the design and implementation of a functional IoT-based con-
nected university system—a robust and massive IoT system for integrating various services
as subsystems. In the pilot design, we proposed four subsystems, i.e., the subsystem for
indoor navigation, the subsystem for parking assistance, the subsystem for smart class-
rooms or offices, and the subsystem for news aggregation from the university. In the initial
system implementation, the basic system functionality, the subsystem for news aggregation,
and the subsystem for indoor navigation were developed. The subsystems are implemented
using the microservice architecture and, thus, are reliable, scalable, highly maintainable,
and independently deployable. The system design is open to implementing new services
in the future.

In this paper, the implementation of the system was described in detail. Moreover,
the performance of the BLE localization microsystem was tested to prove the proposed sys-
tem design. Based on the achieved results, it can be concluded that the positioning system
can achieve reasonable localization accuracy with the correct placement of the BLE beacons
and the system can provide position estimates with an accuracy of 2 m. In this paper,
different placements of BLE beacons and their impacts on the accuracy of the positioning
algorithms were investigated. From the results, it can be concluded that the positions
of the BLE beacons have a significant impact on the achieved accuracy. The localization
error was decreased by 31% by a change in the BLE node placement. Therefore, it can be
concluded that, with the correct placement of BLE beacons, the implemented positioning
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solution is suitable for navigation in university buildings using low-cost beacons and
off-the-shelf smartphones.

In the future, the system will be tested by a limited number of users to evaluate its
functionality in realistic daily use. The sensors with BLE communication modules will be
implemented in university buildings to gather environmental data and support positioning
services in all corridors. The system will also be extended with novel services based on the
analysis of data from connected sensors.
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Abbreviations

The following abbreviations are used in this manuscript:

IoT Internet of Things.
AWS Amazon Web Services.
MQTT MQ Telemetry Transport.
GPS Global Positioning System.
UWB Ultra-Wide Band.
BLE Bluetooth Low Energy.
HTTPS Hypertext Transfer Protocol Secure.
API Application Programming Interface.
URL Uniform Resource Identifier.
CMS Content Management System.
RSS Received Signal Strength.
UI User Interface.
MUI Material User Interface.
NN Nearest Neighbors.
KNN K-Nearest Neighbors.
WKNN Weighted k-Nearest Neighbor.
DOAJ Directory of Open Access Journals.
TLA Three Letter Acronym.
LD Linear Dichroism.
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Abstract: This paper compares the usability of various Apple MacBook Pro laptops were tested for
basic machine learning research applications, including text-based, vision-based, and tabular data.
Four tests/benchmarks were conducted using four different MacBook Pro models—M1, M1 Pro, M2,
and M2 Pro. A script written in Swift was used to train and evaluate four machine learning models
using the Create ML framework, and the process was repeated three times. The script also measured
performance metrics, including time results. The results were presented in tables, allowing for a
comparison of the performance of each device and the impact of their hardware architectures.

Keywords: machine learning; deep learning; neural processing unit; neural processing cores; NPU
benchmark; processor architectures; Apple M1; Apple M2; CoreML; neural engine

1. Introduction

In the current age, artificial intelligence algorithms are becoming more and more
omnipresent, not only in robotic applications, but also in a wide range of application
areas [1–3]. From ads and video recommendations [4–6], through text auto completion [7,8],
to algorithms capable of producing award-winning art [9,10], an increasing number of
people are using deep learning (DL) models in their work [11–14]. The production cycle
of a deep learning model is time consuming and preferably requires understanding of
complex concepts such as deep neural networks, neural network topology, training, and
validation [15–17], as well as the application field, e.g., computer vision or natural language
processing. Having that knowledge, training a production-capable model requires a lot
of data [15,18,19] (or, alternatively, the use of transfer learning [18–20], which requires the
knowledge of where to find such a model, and which one to use). Moreover, it is essential
to have proficiency in using DL frameworks such as TensorFlow [21] or PyTorch [22].
Learning to create a good model [23] requires an investment of a considerable amount of
time (preferably introduced at an early stage of education [24]) and knowledge of the basics
of model preparation.

The authors have noticed that the process of learning and experimenting with machine
learning for many researchers, students, or professionals is often preceded or accompanied
by a difficult question—which hardware platform to choose [25–28]. This multi-factor opti-
mization always includes an economical aspect [12,29], but the computational capabilities
are not inessential [30,31]. Proper evaluation of the ‘money-to-value’ assessment is actively
hindered by a ‘marketing fog’ [32,33], which tries to make the choice emotion-based instead
of being based on any measurable factors.

Choosing a purposeful notebook for both everyday work and DL-oriented research is
difficult. The general rule-of-thumb (better CPU, more RAM memory, modest graphics card)
might still be a valid intuition-based choice; however, the evolution of CPUs brought a new
player to the game: ARM-based (ARM—Advanced RISC Machine) ‘Apple M1’ chip (and its
newer versions) [34–37], equipped with specialized GPU cores and NPU (Neural Processing
Unit) cores. The presence of NPU cores sounds especially promising; however, not much
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evidence of the actual computational benefits is available. For this reason, the authors have
decided to design and conduct a series of typical DL-related models/tasks, based upon
readily available datasets, to evaluate and compare the new processors.

In this article, the authors verify the validity of Apple’s Deep Learning framework
for some of the common DL challenges— image classification and regression using the
Animals dataset (available on Kaggle’s webpage [38], consisting of over 29,000 images),
image classification using a custom-made mini-dataset of 24 photos, a tabular dataset (the
Kaggle’s Payment Fraud Detection Dataset [39]), and text-based use case—the Kaggle’s
Steam Reviews [40] dataset.

1.1. Motivation

Deep learning researchers and enthusiasts worldwide are keen to obtain knowledge
concerning new hardware that is affordable and could potentially speed up their experi-
mentation with models. The marketing language is often not specific enough to explain the
performance of the product. While, for most people, Neural Processing Unit performance
is not the most important aspect of the laptop, for those who intend to work on deep
learning, it could be a deciding matter. Moreover, the knowledge of the performance of
particular hardware models at specific price points could be beneficial in terms of deciding
whether to buy the more expensive chip or not. Having clear information about current
hardware capabilities, especially the newest ones, may be of great interest for researchers,
who have to decide on their next project, its budget, and its scope. Although it is feasible
to carry out basic ML experiments on contemporary computers, the authors aim to delve
into and juxtapose the “ML usability” of the aforementioned hardware platforms. In this
context, “usability” is comprehended and examined as a quantitative assessment derived
from employing systematic research methodologies for time-based evaluation of specific
hardware platforms in preliminary machine learning experiments. The primary criterion
under scrutiny is the computation time; nonetheless, it is advisable for the reader to expand
the benefits of reading this paper by also taking into consideration the current prices of
respective models.

This study is intended to deliver reliable information and arguments to scientists and
enthusiasts who are interested in purchasing a new notebook equipped with hardware
capable of accelerating neural network computations.

1.2. Scope and Limitations

The intended readership of this study comprises scientists and practitioners of deep
learning who are considering purchasing an Apple laptop for their research, rather than
investing in specialized High-Performance Computing (HPC) or Workstation equipment.
Apple’s processors with a Neural Processing Unit (NPU) are marketed as ones that are
indeed capable of accelerating model computations. Therefore, it is reasonable to compare
only laptops that are equipped with Apple’s NPU.

Authors of this study compared Apple’s M-chip CPU family, including M1, M1 Pro,
M2, and M2 Pro (details regarding exact hardware specifications are included in Section 2.4).
Research was conducted using the same operating system (latest available to date, which
was macOS Ventura 13.2) to introduce as little potential interference as possible. Addi-
tionally, Section 3.2 presents an alternative comparison–three different macOS versions
whilst using the same hardware. All tests were designed to be used with the same code,
environment, framework, and libraries (see Section 2.4) for all processors tested.

The comparison was performed using the Create ML framework [41] developed by
Apple, designed and implemented with full compatibility and maximum efficiency of the
CPU/hardware. Comparison of other DL frameworks may also be interesting, but, since it
is strongly dependent on the availability of hardware support for the Apple M1/M2 chip
as well as a proper implementation of the CPU extensions within a particular framework,
a fair comparison is not yet possible.
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While it would be interesting to measure the performance differences using statistical
analysis, this work focuses primarily on the processing time of the datasets, as well as
training and evaluation time of models created by Create ML.

1.3. Performance Measurements

The performance measurements were conducted with the usage of specialized soft-
ware that stress-tested the hardware’s computational capabilities. The authors utilized
common deep learning problems such as computer vision (classification) and regression,
while using popular real-world datasets to test the viability of Apple’s chips in the tasks
presented in Section 2.3. The proper analyses, as well as the correct interpretation of results,
are key after collecting enough measurements on a particular hardware platform. The
results wre converted and visualized in an easy-to-read and understandable form.

2. Materials and Methods

To ensure the repeatability and the ease of implementation of the models and datasets
used within the research, the authors opted for the most native choices for the macOS-
based platforms, which were readily available with fairly low entry threshold. The analyses
and comparisons were implemented using the Swift programming language [42], Xcode
Integrated Development Environment (IDE) [43], Xcode Playground (part of the Xcode
IDE, introduced in 2014 [44], especially useful for rapid prototyping), and Create ML [41]
(merged into a unified Apple ecosystem for creating, managing, and using machine learning
models, with full support of the available hardware acceleration [45], as well as the ability
to deploy the models onto mobile platforms).

Swift is a high-level programming language developed by Apple, released in 2014
as a replacement for Objective-C. It is commonly used as the first-choice language for
applications built for Apple platforms [42].

Xcode is an integrated development environment (IDE) designed by Apple for devel-
oping software for macOS, iOS, iPadOS, watchOS, and tvOS . It includes a suite of tools for
developing software, and also provides access to a wide range of Software Development
Kits (SDKs) and Application Programming Interfaces (APIs) that are required for building
applications for Apple’s platforms [43].

Xcode Playground is an interactive programming environment that allows developers
to experiment with Swift code in an interactive way. It provides a lightweight environ-
ment for writing and running Swift code with live code execution. Xcode Playground is
integrated within the Xcode IDE [44].

Create ML [41] is a framework and a collection of components and tools intended for
easy preparation of machine learning models as well as their easy integration into custom
applications. It features a GUI-based application for creating and training a model, which
can be later distributed and used on other devices, including mobile applications. Create
ML implements the Core ML framework to be able to benefit from the hardware it targets.

Core ML is Apple’s machine learning framework [45], designed specifically to benefit
from the hardware acceleration capabilities of processors used in Apple devices. The Core
ML framework is said to enable optimization of on-device performance by also using
the GPU, NPU (named Neural Engine), and optimization of memory usage and power
consumption [45].

2.1. Model Creation

The measurements were conducted using the ‘Benchmarker.playground’ script, avail-
able (open-source) in [46]. For a detailed insight into how the experiment was carried out,
please refer to [37]. Within the ‘Benchmarker.playground’ script, each model was created
by the use of custom functions written in the Swift programming language. The appro-
priate datasets were passed as arguments, and the trained models were returned. Finally,
the models were tested using custom testing functions. The execution time of each stage
and function was measured, which allowed the comparison of devices on which the script
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was running to be made. All the results were logged into the console output. The process
of training and evaluation of all models was repeated three times.

2.2. Model Export as .mlmodel

Models created with the use of Create ML, (whether implemented in the Playground
sandbox or in an actual application), can be easily exported as a file [47]. This is carried out
using Apple’s Core ML framework file format—an ‘*.mlmodel’ file [48].

The .mlmodel file contains the prediction methods of a machine learning model,
including all of its configuration data and metadata [49]. These parameters were previously
extracted from its training environment and then processed to be optimized for Apple
device performance [50].

The ‘.mlmodel’ file includes the following sections [51]:

1. Metadata—Defines the model’s metadata;
2. Interface—Defines the input and output features;
3. Architecture—Encodes the model’s architecture;
4. Parameters—Stores all values extracted during the model training.

To correctly interpret the input data and produce valid output predictions, features
need to be defined and specified in the .mlmodel [51,52]. This includes “Metadata”, such
as the author, license, and model version, stored in the form of a dictionary [51,53,54].
The “Model description” information such as the names, data types, and shapes of the
features are saved in the “Interface” module [51,52,54].

In the next step, the architecture of the model needs to be defined [51]. This involves the
definition of the model’s structure, including the number and type of layers, the activation
functions, and other operations [50,51].

Then, the model parameters are defined [55]. These are values of variables and
coefficients, including weights and biases of each layer [51,55,56].

The model metadata, interface, architecture, and parameters are encoded into a data
structure called ‘protobuf message definitions’ [51,54,55]. The Protocol Buffer syntax allows
encoding and decoding information about the Core ML model in any language that sup-
ports the Protocol Buffer serialization technology, (including Python, C++, C#, or Java) [54,55].
‘Model.proto’ is the essential file of the Core ML Model protobuff message definitions [57]. It
describes the structure of the model, the type of inputs and outputs it can have, and meta-
data [54,57]. The file also includes the ‘specification version’, which determines the versions
of Core ML format specification and functionalities that it can provide [54,55,57,58]. Each
version of the target device’s operating system has its own way of implementing the model,
so it is crucial to also include these in the model specification [58].

All of the Model’s protobuff message definitions are encoded into binary format, which
can be deployed on Apple platforms and encoded while loading the model [51,55].

2.3. Datasets Used

The authors used four distinct datasets for their study. These datasets were used for
different purposes: two for image classification, one for tabular classification, and one for
tabular regression. Of these, one dataset was created by the authors, and the rest were
obtained from the Kaggle [59] website.

2.3.1. The Animals Dataset

The Animals dataset [38] was downloaded from Kaggle.com [59]. It contains
29,071 images divided into a training subset and testing subset. It is published under
a Creative Commons license. Images are in different shapes, have three colour channels,
and animals often are only partially visible in the picture (e.g., only the head of an ostrich),
while in other cases, the whole body is portrayed. To set the image size for the network
properly, it is essential to know what objects are in the images. One picture could be pre-
senting a large animal (e.g., an elephant), but from a large distance so that it appearz small,
while another could be a picture of a shrimp, but taken from a close distance and zoomed in.
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Knowing that the depicted objects may vary in size, and the classes can be similar enough
that differentiating between them requires a certain level of detail, it becomes justified to
increase the input size of the neural network. Hence, it is important to take a good look at
the data.

The training set consists of 22,566 images divided into 80 classes, making the problem
a multiclass classification. The distribution of data in the training subset is presented in
Figure 1. The testing set is made of 6505 images. Figure 2 portrays a random sample of
20 pictures of different classes from the Animals dataset.

Figure 1. (a)—The distribution of data of the first 40 classes, (b)—the distribution of the remaining
40 classes.
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Figure 2. A sample of 20 random images from the Animals dataset [38] subset.

2.3.2. The Payment Fraud Detection Dataset

The Online Payments Fraud Detection Dataset was published on Kaggle under Creative
Commons Attribution-NonCommercial-ShareAlike 4.0 International license. The dataset
consists of 5,080,807 entries in a “.csv” file, which translates into 493.5 MB. The data are
divided into two classes (fraud or non-fraud), making it a binary classification problem.
Every entry has nine features, as explained on the Kaggle’s dataset webpage [39].

2.3.3. The Steam Reviews Dataset

The Steam Reviews Dataset 2021, obtained from Kaggle, represents the most recent
dataset used in this study. It comprises approximately 21 million user reviews pertaining
to approximately 300 games on the Steam platform. The dataset is available under the
GNU GPL 2 license. To prepare the dataset for utilization in “Create ML”, the authors
conducted a data cleaning process using the Python language, along with the “Pandas”
library. The cleaning procedure involved removing specific columns such as “comment
text”, “author”, “creation date”, and others. The resulting cleaned dataset was saved as
“SteamReviewsCleaned.csv”, resulting in a reduction in size from 3 GB to 2.15 GB. This
dataset was utilized for a tabular regression problem within the context of this study.

2.3.4. The ClassifierData Dataset

This very small custom dataset was created by one of the authors. It was composed of
four classes: “IPhone”, “MacBook”, “Apple Watch”, and “AirPods”. Every class contained
25 photos—19 in the training subset and 6 in the test subset. Every image was taken from
different angles as well as in varyied lighting. Some pictures were taken of objects held
in hand, while others were taken while lying on the floor, table, or carpet. Similarly to
the Animals dataset, Figure 3 presents a random sample of images from all four classes.
The data distribution of both training and test subsets is visualized in Figure 4. The subset
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was structured in a Create ML-compliant format [47], i.e., as image files placed inside the
class-related folders. All images were sampled using a mobile device, photographing the
target in various angles and light conditions.

Figure 3. A random sample of 20 images from the ClassifierData training subset.

Figure 4. Distribution of data in training (left) and testing (right) subsets of the ClassifierData dataset.

2.4. Framework and Hardware Used in the Trials

The study was conducted on four notebooks, each one running the macOS Ventura
operating system version 13.2 [60], with the Xcode Integrated Development Environment,
version 14.2 [61].
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The primary objective of the research was to investigate the usability of modern
laptops equipped with ARM-based M1/M2-series CPUs in popular machine learning
tasks. Since the manufacturer of M1- and M2-equipped laptops declares that the presence
of the NPU cores in the CPUs makes them useful and interesting in machine learning
applications, and since there are many researchers willing to buy a suitable portable
platform for everyday work, the authors have decided that it may be worthwhile and
interesting to put the eligibility of the NPU-equipped CPUs in DL tasks to a test.

All examined machines were ARM-based Apple MacBook Pro notebooks.
The first tested computer was the 2020 M1 MacBook Pro. The model started Apple’s

transition from Intel to ARM architecture [34]. It was equipped with the first version of the
Apple M1 chip. The CPU included four high-performance and four energy-efficient cores.
The chip was also equipped with an eight-core GPU. The first version of Neural Engine—a
16-core neural processing unit (NPU) —was also included in this chip [34]. The device had
8 GB of RAM. It is referred to as ‘M1’ in this work.

Another device from the M1-series was the MacBook Pro 2021. It included the strength-
ened version of the M1 Pro chip, which also included an eight-core CPU, but the allocation
of the cores differed: six were high-performance and two were energy-saving.

The M2 series processor is an upgraded version of the previous M1 processor, boasting
a speed increase of about 40%. It features eight cores, which are designed to be four
performance cores and four efficiency cores [35]. Additionally, the processor includes
10 GPU cores and 16 Neural Engine cores. The M2-equipped laptop used in the research
had 16 GB of RAM.

The fourth laptop used for the research was a MacBook Pro equipped with an Apple
M2 Pro processor and 16 GB of RAM. This processor was composed of 10 cores, with 6 of
them being performance cores and 4 being efficiency cores [36]. The processor also included
16 GPU cores and 16 Neural Engine cores.

3. Results

The most important result presented within this paper is the comparison of the com-
putational performance of the M1 and M2 processors in ML tasks, presented in Section 3.1
and discussed in Sections 4 and 5. The comparison is made based on the performance
(processing time) of ML models included within the ‘Benchmarker.playground’ project.

Section 3.2 includes an additional, also interesting, analysis of a possible impact of the
versions of macOS and Xcode on the ML tasks’ processing time.

3.1. Measurement of the Impact of the Processor Model on the Model Creation Time

During the research, three measurements of model training and testing time were
performed. The computer was consistently connected to a power source throughout the
script execution to ensure uninterrupted performance and avoid any potential limitations
caused by energy-saving features. This allowed us to benchmark the efficiency of M-series
processors in machine learning tasks using Apple’s ecosystem.

3.1.1. Running the Benchmark

The measurements were performed on four computers. The ‘Benchmarker.playground’
file was copied to the hard drive of each machine. Then, the file was opened in the Xcode
environment and executed. During the tests, each computer was left without any additional
tasks. When the running of the script had finished, the console output was saved to a
‘.txt’ file.

A screenshot of the ‘M1 Pro.txt’ file with the console output log from the ‘Benchmarker’
playground executed on the M1 Pro Mac is presented in Figure 5.
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Figure 5. A part of the benchmark report of the ‘M1 Pro’ computer.

3.1.2. The Results of the Benchmark

The results of the benchmark performed on the ClassifierData dataset were similar in
terms of overall time, except for the M1 Pro, which was over two times slower than the
other processors. Each training took, on average, a different number of iterations (epochs);
the means spanned from 11 to 14.667. The M1 achieved the best average result by a slight
margin, outperforming the second-fastest (which was the M2 Pro) by 383 ms. The third
average result was achieved by M2, which lost about 70 ms to the Pro variant. The worst
performance on the ClassifierData dataset was the M1 Pro; despite taking the second-lowest
average number of iterations (11.333), it scored by far the worst time of 8.622. Every model
trained on each chip achieved 100% for both training and validation accuracy. This test was
the quickest one due to the small size of the dataset.

Table 1 shows the time and accuracy results of the model training and testing process,
performed on the ‘ClassifierData’ dataset using Create ML.

Table 1. Average results for the processor-related test performed using the ‘ClassifierData’ dataset.

M1 M1 Pro M2 M2 Pro

Training data—analysis time (s) 2.543 7.083 3.157 2.987
Validation data—analysis time (s) 0.346 0.912 0.366 0.402
Model training—total time (s) 0.213 0.214 0.261 0.256
Model training—number of iterations 11 11.333 14.667 12.333
Training Accuracy 100% 100% 100% 100%
Validation Accuracy 100% 100% 100% 100%
Total model creation time (s) 3.689 8.622 4.145 4.072

Evaluation data—analysis time (s) 0.824 2.203 0.876 0.949
Evaluation Accuracy 97.22% 98.6% 98.6% 95.8%
Total model evaluation time (s) 1.047 2.421 1.022 1.147

The multiclass classification test was performed by utilizing the Animals dataset of
over 29,000 images, split into training and testing subsets. The results of the benchmark are
presented in Table 2. The quickest of all tested processors while training the model on the
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Animals dataset was M2 Pro. It took the M2 Pro 169.7 s to complete the test. The second-
fastest processor, (M2), took 186.689 s to train the model, which is 9% slower than the
Pro variant; however, the evaluation time was basically the same, at 40.796 for the Pro
and 40.796 for the basic M2. The M1 Pro finished the training process in 193.219 s, which
earned it third place. This result is 12% slower than the M2 Pro. The evaluation time was
approximately 5 s slower than both M2 and M2 Pro. The slowest one, M1, achieved a result
of 236.285 s. It was 28% slower than the fastest processor; simultaneously, it was the only
one that completed the training in over 200 s on average. The evaluation also took the
longest, exceeding 47 s. All processors achieved similar training and validation accuracy,
of about 88% and 86.5%, respectively.

Table 2. Average results for the processor-related test performed using the ‘Animals’ dataset.

M1 M1 Pro M2 M2 Pro

Training data—analysis time (s) 132.333 132.333 116.667 116.333
Validation data—analysis time (s) 7.240 7.043 6.087 6.133
Model training—total time (s) 79.364 39.442 49.746 33.356
Training Accuracy 88.26% 88.24% 88.11% 88.13%
Validation Accuracy 85.98% 86.64% 86.13% 86.52%
Total model creation time (s) 236.285 193.219 186.689 169.777

Evaluation data—analysis time (s) 41.050 40.393 36.033 36.050
Evaluation Accuracy 84.87% 84.84% 84.91% 84.87%
Total model evaluation time (s) 47.284 45.415 40.768 40.796

Upon examining the results of the benchmark conducted on the PaymentFraud dataset
displayed in Table 3, it is apparent that the accuracy levels for all tested cases were compa-
rable, with minor disparities emerging during the data analysis phase. During this stage,
the M2 Pro processor exhibited the quickest performance, taking only 1.924 s, while the
slowest was the M1 at 2.310 s. The M2 processor, on the other hand, completed the data
analysis in 2.01 s, and the M1 Pro required 2.161 s.

The most notable differences in processing time were found during the overall model
building phase. The M2 processor was the speediest in this regard, finishing the model
building task in 102.109 s. The M1 processor took 13% longer, completing the same
assignment in 117.546 s, while the Pro version of the M1 took 146.641 s, which was 43%
slower than the M2 processor. Interestingly, in this case, the M2 Pro processor proved to be
the slowest, taking 151.659 s to complete the task, which was 48% slower than the M2’s
base version.

Table 3. Average results for the processor-related test performed using the ‘PaymentFraud’ dataset.

M1 M1 Pro M2 M2 Pro

Data processing time (s) 2.310 2.161 2.010 1.924
Training accuracy 99.96% 99.96% 99.96% 99.96%
Validation accuracy 99.96% 99.95% 99.97% 99.96%
Total model creation time (s) 117.546 146.641 102.109 151.659

Evaluation accuracy 99.96% 99.96% 99.96% 99.95%
Total model evaluation time (s) 1.280 1.279 1.139 1.107

Table 4 displays the benchmark outcomes for the SteamReviewCleaned dataset. No-
ticeably, the table does not present the maximum error and root-mean-square error findings
for the training, validation, and test data. These results are excluded due to their consistency
across all cases, as was shown in our preceding publication [37].

The M2 Pro processor boasted the swiftest processing time, taking only 7.981 s to
complete the task, while the M1 Pro and M2 processors processed the data in nearly the

178



Sensors 2023, 23, 5424

same amount of time, clocking in at 8.143 s and 8.255 s, respectively. Meanwhile, the M1
proved to be the slowest, taking 9.276 s.

During the model building phase, the M2 Pro processor was once again the fastest,
completing the task in only 12.545 s. The M2 processor followed closely, requiring 13.395 s
to build the model. The M1 Pro took 14.713 s to finish the task, while the M1 took 15.545 s.
With the exception of the M1, which took 2.023 s, all processors required less than 1.75 s
to evaluate the model. The M2 Pro processor was once again the quickest in this task,
taking only 1.596 s, while the M1 Pro and M2 processors achieved similar times of 1.736
and 1.665 s, respectively.

Table 4. Average results for the processor-related test performed using the ‘SteamReviewsCle-
aned’ dataset.

M1 M1 Pro M2 M2 Pro

Data processing time (s) 9.276 8.143 8.255 7.891
Total model creation time (s) 15.545 14.713 13.395 12.545

Total model evaluation time (s) 2.023 1.736 1.665 1.596

Table 5 displays the execution times of a script on various tested platforms. The Mac-
Book with an M2 processor completed the entire script in the fastest time, taking 1088.989 s,
with an average of 362.996 s per iteration. All iterations took a similar amount of time,
with the fastest iteration completed in 359.398 s and the slowest in 364.796 s. The MacBook
with an M2 Pro processor took 9% longer to execute the script, taking 1186.557 s, with an
average of 395.519 s per iteration, and the slowest iteration took 397.401 s. The MacBook
with an M1 Pro processor took 1281.761 s, with an average of 427.254 s per iteration, which
was 18% longer than the M2 MacBook. The MacBook with M1 took the longest time, taking
1314.943 s, with an average of 438.314 s per iteration. This took 21% longer than the fastest
tested MacBook. The fastest iteration took 436.706 s, and the slowest iteration took 439.858 s
on the slowest MacBook tested.

Table 5. Average iteration times of the ‘Benchmarker_Playground.playground’ program.

M1 M1 Pro M2 M2 Pro

Average iteration time (s) 438.314 427.254 362.996 395.519
Fastest iteration (s) 436.706 423.018 359.398 394.179
Slowest iteration (s) 439.858 431.328 364.796 397.401
Total measurement time (s) 1314.943 1281.761 1088.989 1186.557

3.2. Measurement of the Impact of the macOS Version on the Model Creation Time

An evaluation of the influence of the macOS wersion on the script execution time was
carried out on the MacBook Pro referenced as ‘M1 Pro’. The measurement was performed
on three various versions of macOS and Xcode IDE:

• macOS Monterey 12.4 and Xcode 13.4 ;
• macOS Ventura 13.0.1 and Xcode 14.2;
• macOS Ventura 13.2 and Xcode 14.2.

The computer was not used during each execution of the script. The device remained
connected to the power source at all times to prevent any limitations due to energy-
saving features.

Table 6 displays the benchmark results for various versions of systems and Xcode for
the ClassifierData dataset. The Macbook with macOS 12.4 and Xcode 13.4 installed achieved
the fastest training dataset, finishing the task in 6.957 s. A very similar time was recorded
on a Macbook with macOS 13.2 and installed Xcode 14.2, at 7.083 s. The slowest was macOS
13.0.1, taking 7.573 s to complete the task. However, when analyzing the validation set,
macOS 13.2 Macbook was the fastest, taking merely 0.912 s. The other platforms analyzed
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the validation set at a similar time, with macOS 12.4 and 13.0.1 completing the task in 0.921
and 0.922 s, respectively. The macOS 13.2 performed the fastest training, with the entire
training taking 0.214 s, attaining completion after 11.3 iterations. The training took 0.217 s
on a Macbook with macOS 12.4 after 12 iterations. The longest training, lasting 0.263 s, was
on macOS 13.0.1, ending after 14 iterations. In all cases, the model achieved 100% accuracy
on the training and validation sets. Overall, the entire process of analyzing the sets and
building the model was the fastest on a Macbook with macOS 12.4, taking 8.571 s. A few
milliseconds longer, the task was completed on a Macbook with macOS 13.2 in 8.662 s.
The Macbook with macOS 13.0.1 took the longest at 9.175 s. The test set was analyzed the
fastest on a Macbook with macOS 12.4, completing the task in 1.993 s. On a Macbook with
macOS 13.0.1, the task was completed in 2.093 s. This task took the longest on a Macbook
with macOS 13.2, requiring 2.203 s. The evaluation of the entire model on the test set was
the fastest on a Macbook with macOS 12.4, taking 2.138 s, and the previously prepared
model on this version achieved 95.83% accuracy. The same accuracy was achieved by the
model prepared for macOS 13.0.1, but it took 2.309 s. The best accuracy was achieved on
macOS 13.2, at 98.61%, but evaluating the model on the test set required 2.421 s.

Table 6. Average results for the OS-related test performed using the ‘ClassifierData’ dataset.

macOS 12.4
Xcode 13.4

macOS 13.0.1
Xcode 14.2

macOS 13.2
Xcode 14.2

Training data—analysis time (s) 6.957 7.573 7.083
Validation data—analysis time (s) 0.921 0.922 0.912
Model training—total time (s) 0.217 0.263 0.214
Model training—number of iterations 12 14.7 11.3
Training Accuracy 100% 100% 100%
Validation Accuracy 100% 100% 100%
Total model creation time (s) 8.571 9.175 8.622

Evaluation data—analysis time (s) 1.933 2.093 2.203
Evaluation Accuracy 95.83% 95.83% 98.61%
Total model evaluation time (s) 2.138 2.309 2.421

Table 7 presents the development times of the model for the Animals set using differ-
ent versions of macOS and Xcode. The analysis of the training set took the longest time on
macOS 12.4, i.e., 137.667 s. The Macbook with macOS 13.2 analyzed the set for 132.333 s,
while macOS 13.0.1 achieved the best result by completing the task in 130.667 s. The val-
idation set was analyzed for 7.16 s on macOS 12.4 and 7.043 s on macOS 13.2, while the
shortest time of 6.937 s was achieved on macOS 13.0.1. The model was trained for 40.424 s
on a MacBook with macOS 12.4, achieving an accuracy of 87.91% for the training set and
86.12% for the validation set. The entire modeling process took 198.985 s. On macOS 13.0.1,
the model was trained for 39.709 s, achieving an accuracy of 87.97% for the training set and
86.95% for the validation set. The entire modelling process took 191.641 s. For macOS 13.2,
it took 193.219 s to build the entire model, with 39.442 s dedicated to training. In this case,
the model achieved an accuracy of 88.24% for the training set and 86.64% for the validation
set. The shortest time to evaluate the model on the test set was on a MacBook with ma-
cOS 13.2, taking 45.415 s, with an achieved accuracy of 84.84%. The model was evaluated
on the test set in 46.095 s on macOS 13.0.1, with an accuracy of 84.87%. On a MacBook
with macOS 12.4, the model was evaluated for the longest time of 46.590 s, achieving an
accuracy of 84.94% for the test set.
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Table 7. Average results for the OS-related test performed using the ‘Animals’ dataset.

macOS 12.4
Xcode 13.4

macOS 13.0.1
Xcode 14.2

macOS 13.2
Xcode 14.2

Training data—analysis time (s) 137.667 130.667 132.333
Validation data—analysis time (s) 7.160 6.937 7.043
Model training—total time (s) 40.424 39.709 39.442
Training Accuracy 87.91% 87.97% 88.24%
Validation Accuracy 86.12% 86.95% 86.64%
Total model creation time (s) 198.985 191.641 193.219

Evaluation data—analysis time (s) 41.977 40.887 40.393
Evaluation Accuracy 84.94% 84.87% 84.84%
Total model evaluation time (s) 46.590 46.095 45.415

Table 8 presents the results acquired for the PaymentFraud dataset. Each system
analyzed the training set for a similar amount of time. The macOS 13.0.1 with Xcode 14.2
installed analyzed the fastest set in 2.153 s, and the slowest analysis was on macOS 13.2 with
the same Xcode version in 2.161 s. The analysis on macOS 12.4 took 2.158 s. The accuracy
of the test set was 99.96% on each tested system, with only minor differences. The highest
accuracy of 99.99% was achieved on macOS 13.0.1, and the lowest accuracy of 99.95% was
achieved on macOS 13.2. The model trained on macOS 12.4 achieved an accuracy of 99.97%
for the same validation set. The fastest model was built on macOS 12.4 in 143.456 s, while
the slowest model building process was on macOS 13.2 in 146.641 s. It took 144.639 s to
build the entire model on macOS 13.0.1. The accuracy measurement for the test set took
1.298 s on macOS 12.4 and 1.292 s on macOS 13.0.1. The fastest accuracy measurement of
the model was on macOS 13.2 in 1.279 s.

Table 8. Average results for the OS-related test performed using the ‘PaymentFraud’ dataset.

macOS 12.4
Xcode 13.4

macOS 13.0.1
Xcode 14.2

macOS 13.2
Xcode 14.2

Data processing time (s) 2.158 2.153 2.161
Training accuracy 99.96% 99.96% 99.96%
Validation accuracy 99.97% 99.99% 99.95%
Total model creation time (s) 143.456 144.639 146.641

Evaluation accuracy 99.96% 99.96% 99.96%
Total model evaluation time (s) 1.298 1.292 1.279

The training times for the SteamReviewsCleaned dataset on various versions of Mac-
book Pro with M1 Pro processor are displayed in Table 9. The quickest model was trained
on macOS 13.2 equipped with Xcode 14.2, which took 14.713 s, with 8.143 s spent on
analyzing the dataset. The longest training time was documented on macOS 13.0.1, where
the whole process took 15.006 s, and dataset analysis took 8.356 s. The model evaluation
process on different systems had similar timings, with macOS 13.0.1 having the longest
evaluation time of 1.834 s and macOS 12.4 having the shortest evaluation time of 1.732 s.
In the case of macOS 13.2, the evaluation process took 1.736 s.

Table 9. Average results for the OS-related test performed using the ‘SteamReviewsCleaned’ data-set.

macOS 12.4
Xcode 13.4

macOS 13.0.1
Xcode 14.2

macOS 13.2
Xcode 14.2

Data processing time (s) 8.347 8.356 8.143
Total model creation time (s) 14.924 15.006 14.713

Total model evaluation time (s) 1.732 1.834 1.736
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Table 10 provides a summary of the benchmark results for different versions of macOS.
The quickest benchmark was completed in 1276.076 s on a MacBook running macOS 13.0.1
with Xcode 14.2 installed. On average, each iteration took 425.359 s. The fastest iteration
was completed in 421.602 s, while the slowest iteration took 432.384 s. The benchmark took
the longest time to complete on a MacBook running macOS 12.4 with Xcode 13.4 installed,
taking 1293.449 s to finish, with one iteration taking 431.150 s. In this case, the slowest
iteration took 436.282 s, while the quickest iteration was completed in 431.150 s. On macOS
13.2, the benchmark took 1281.761 s to complete, with an average of 427.254 s needed for
each iteration.

Table 10. Cumulative results of all OS-related tests performed.

macOS 12.4
Xcode 13.4

macOS 13.0.1
Xcode 14.2

macOS 13.2
Xcode 14.2

Average iteration time (s) 431.150 425.359 427.254
Fastest iteration (s) 428.403 421.602 423.018
Slowest iteration (s) 436.282 432.384 431.328
Total measurement time (s) 1293.449 1276.076 1281.761

4. Discussion

The gathered results present the comparative computational performances of the
Apple laptops equipped with four different M-family processors, including the most recent
M2 Pro chip. All of the tested hardware (including the previous M1 generation) is perfectly
capable of performing ML tasks that do not require processing millions of images or
hundreds of gigabytes (or more) of data. Each and every dataset has been successfully
analyzed and processed. Every created model had similar efficacy; regardless of the chip it
was trained on, the results were satisfactory.

Three of the used datasets are available to the public; as well, the hardware and
software specifications provided in this research ensure that the reproducibility and compa-
rability of the results is possible for other researchers.

The chips were tested for machine learning applications with the use of Apple’s Create
ML. A rather surprising average result is the overall performance of the M2 Pro variant.
It was outperformed by the base variant by approximately 9%; however, this was mainly
due to poor performance of the more expensive variant on the PaymentFraud dataset. This
result may affect someone’s decision as to whether it is beneficial to increase their budget
to buy the Pro chip or save money and buy the cheaper standard M2. The M1 Pro also
had the same difficulties with the same dataset that its newer counterpart had, achieving a
much worse time than the base version of the chip.

The research also included an evaluation of the script execution time on various
macOS versions. The tasks were performed on the same MacBook Pro laptop, with different
versions of the operating system and development environment.

The obtained results showed, that the version of the macOS has an impact on the script
execution times. For the ‘ClassifierData’, almost all times were longer after updating the
operating system from the previous ‘major version’ (macOS 12.4) to the next new ‘major
version’ (macOS 13.0.1). However, the installation of a system update with bug fixes and
improvements (macOS 13.2) decreased the execution time to a value which was comparable
with the results from the previous ‘major version’.

In case of the ‘Animals’ dataset, the data analysis time also changed with the version
of the operating system, with macOS 13.0.1 being the fastest. The model training time
was comparable in each test, which suggests that system updates have no impact on the
training process.

The tests performed on tabular datasets (‘PaymentFraud’ and ‘SteamReviewsCleaned’)
showed no remarkable difference between the execution time of the training and evaluation
process. This shows that differences are visible only when working with image datasets.
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5. Conclusions

Upon conducting an in-depth analysis of the collected results, our study revealed
significant findings that may provide insights into the performance of distinct chips when
employed for training and testing models using Create ML.

The results presented in the paper demonstrate that the M2 chip may exhibit superior
performance compared to the M2 Pro (as shown in Table 5), implying that the M2 chip may
be a favorable choice for tasks demanding efficient model creation.

While it is difficult to provide a definitive recommendation for future processors
or operating systems due to their evolving nature, in this study, the authors proposed a
methodology for evaluating the effectiveness of specific hardware architectures, which can
be investigated by the researchers themselves, using the proposed [46] benchmark.

The observations also reveal that the ‘Pro’ series of respective chips (namely, M1 Pro
and M2 Pro) do not meet the anticipated time-related performance efficiency for model
creation using the ‘Payment Fraud’ dataset (see Table 3). Moreover, the processing perfor-
mance of the ‘M1 Pro’ chip proved to be below average for the small ‘ClassifierData’ dataset,
whereas the ‘M1’ chip exhibited surprisingly good performance on the same dataset (see
Table 1). These observations indicate that certain characteristics of datasets can indeed
impact the performance of specific chip models. The research provided evidence that the
expected superiority of the ‘Pro’ variant should be challenged for model training, even
when using Apple’s own ‘Create ML.’

Lastly, the experimental comparative research resulted in the formulation of addi-
tional insights of minor significance: it was confirmed that the multiclass classification
performance results were consistent with the CPU-generation-related expectations, and
that the operating system version had an impact on the processing time, particularly in the
case of image datasets.

The results presented within this study bring theoretical and managerial implications
that extend beyond the immediate scope of hardware platform performance evaluation.
The insights gained from comparing respective processors and their performance in ma-
chine learning tasks using Create ML shed light on the complexities and nuances of
hardware-platform-specific characteristics. From a theoretical standpoint, these findings
help to understand the impact of particular hardware choices on the efficiency and effec-
tiveness of ML computation time. By examining the performance (and its variations across
various chips), researchers can refine their theoretical models and develop more nuanced
frameworks for leveraging the benefits of hardware acceleration for typical Machine Learn-
ing applications. On a managerial level, the research findings have substantial value for
decision-makers who are considering hardware platforms for machine learning researchers
and initiatives. The performance disparities observed among the tested chips help to
highlight the benefits and importance of careful evaluation of the hardware requirements,
based on the specific needs and characteristics of current machine learning projects.

Future Work

The research conducted in this study opens avenues for further exploration in the
realm of multi-platform analysis (the comparison of Apple platforms against other, non-
Apple, platforms). While this research focused on the performance evaluation of hardware
platforms utilizing primarily Create ML, future studies could extend the analysis to encom-
pass a broader range of machine learning frameworks, especially the most popular ones—
TensorFlow and PyTorch. By conducting experiments using TensorFlow and PyTorch across
different hardware platforms and operating systems, a more comprehensive understanding
of the performance variations and platform compatibility can be obtained. Additionally, in-
vestigating the impact of different frameworks on the efficiency and effectiveness of model
creation would contribute valuable insights to the field. Such multi-platform approaches
will provide a more comprehensive assessment of the hardware-platform-specific charac-
teristics and guide researchers and practitioners in making informed decisions regarding
the choice of frameworks and hardware configurations for their machine learning tasks.
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Abstract: A robust and scientifically grounded teaching evaluation system holds significant im-
portance in modern education, serving as a crucial metric that reflects the quality of classroom
instruction. However, current methodologies within smart classroom environments have distinct
limitations. These include accommodating a substantial student population, grappling with object
detection challenges due to obstructions, and encountering accuracy issues in recognition stemming
from varying observation angles. To address these limitations, this paper proposes an innovative
data augmentation approach designed to detect distinct student behaviors by leveraging focused
behavioral attributes. The primary objective is to alleviate the pedagogical workload. The process
begins with assembling a concise dataset tailored for discerning student learning behaviors, followed
by the application of data augmentation techniques to significantly expand its size. Additionally, the
architectural prowess of the Extended-efficient Layer Aggregation Networks (E-ELAN) is harnessed
to effectively extract a diverse array of learning behavior features. Of particular note is the integration
of the Channel-wise Attention Module (CBAM) focal mechanism into the feature detection network.
This integration plays a pivotal role, enhancing the network’s ability to detect key cues relevant to
student learning behaviors and thereby heightening feature identification precision. The culmina-
tion of this methodological journey involves the classification of the extracted features through a
dual-pronged conduit: the Feature Pyramid Network (FPN) and the Path Aggregation Network
(PAN). Empirical evidence vividly demonstrates the potency of the proposed methodology, yielding
a mean average precision (mAP) of 96.7%. This achievement surpasses comparable methodologies
by a substantial margin of at least 11.9%, conclusively highlighting the method’s superior recognition
capabilities. This research has an important impact on the field of teaching evaluation system, which
helps to reduce the burden of educators on the one hand, and makes teaching evaluation more
objective and accurate on the other hand.

Keywords: teaching evaluation system; student learning behavior; data augmentation; smart classrooms

1. Introduction

The rapid advancements in computer technologies, such as artificial intelligence, big
data, and cloud computing, have led to the pervasive integration of smart classrooms in
learning and teaching [1–3]. To bolster the development of these smart classrooms, the es-
tablishment of a robust and multifaceted teaching evaluation system is imperative [4,5],
with a primary focus on comprehensive teaching evaluations. Among the array of evalua-
tion tools, the recognition of student learning behaviors emerges as a particularly potent
method for assessing teaching approaches [6,7]. By scrutinizing and identifying student
learning behaviors, educators gain valuable insights into their students’ progress and
learning efficacy, enabling them to fine-tune teaching strategies and methods accordingly.
This ultimately cultivates a more conducive learning environment [8].
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In traditional classroom settings, educators and teaching personnel primarily rely on
direct observation of students’ learning behaviors to comprehend their ongoing learning
trajectory [9–11]. Additionally, indirect evaluation methods, including grade records,
homework completion, and class attendance tracking, are harnessed to gauge students’
learning journey. With the integration of multimedia teaching in classrooms, sensor-
based technologies have emerged, enabling the nuanced recognition of students’ learning
behaviors. For instance, Mohammed et al. [12] harnessed the Internet of Things (IoT) to
devise an automated classroom behavior classification system. This system assesses class
effectiveness through result recognition, furnishing administrators with insightful data
to enhance overall classroom performance. In the field of psychology, researchers have
explored the benefits of MOOC learning for students with dependent speech cognitive
style and dependent image cognitive style based on students’ brain waves, so as to provide
targeted guidance for students’ learning styles. However, traditional direct observation
methods rely too much on the subjectivity of the observer and are time-consuming, while
sensor technology and brainwave observation rely on expensive equipment and are difficult
to popularize [13].

With the maturity of computer vision technology, it has become a trend to apply it to
the intelligent classroom environment as an auxiliary tool for teaching evaluation. These
technologies are characterized by continuous monitoring, objective evaluation and real-time
interaction. Wang [14] proposed a deep residual network that leverages residual structures
to identify students’ engagement levels during class. This technological innovation serves
as a pivotal cornerstone for the development of intelligent classrooms. It is worth noting
that researchers in the field of education and teaching have recognized that factors such as
different lighting conditions, different viewing angles, and the quality of image acquisition
equipment in dense teaching environments pose challenges for the accurate identification
of student learning behaviors [15–17]. Therefore, in addition to improving lighting facilities
and optimizing the layout of camera equipment, the researchers are also working to develop
and optimize more universal detection algorithms to address these challenges.

Our research question can be summarized as follows: how to accurately detect and rec-
ognize students’ learning behaviors in complex smart classrooms (including a large number
of students, occlusions, and different observation angles)? Building upon the foundation
of previous research, this paper adopts the YOLOv7 framework as the principal network
architecture, thereby achieving swift recognition while preserving accuracy. Moreover, we
seamlessly integrate the attention recognition mechanism of CBAM to heighten recognition
precision within complex background scenarios. Concretely, we employ the proposed algo-
rithm to detect seven distinctive learning behaviors typically exhibited by elementary school
students, encompassing actions like writing, reading, raising hands, and participating in
discussions. We undertake a comprehensive performance comparison against state-of-the-
art (SOTA) learning behavior recognition frameworks. This paper makes several significant
contributions that advance the field of student learning behavior recognition:

• In response to the absence of specialized datasets for student learning behavior recogni-
tion in the field of education, this study introduces the Student Learning Behavior (SLB)
dataset. This dataset is meticulously annotated to include comprehensive information
about classroom learning behaviors among primary and secondary school students.
Researchers and practitioners can access this valuable resource on GitHub through
the following link: https://github.com/houhou34/Teaching-evaluation-dataset (ac-
cessed on 6 March 2023). The availability of this dataset addresses a critical gap
in the domain, facilitating the development and evaluation of learning behavior
recognition models.

• This paper proposes a novel learning behavior recognition method that builds upon
the YOLOv7 architecture. This method has been designed to accurately detect multiple
students’ learning behaviors. Furthermore, we conduct an in-depth investigation into
the impact of incorporating the attention detection mechanism into our proposed
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method. This integration of the attention mechanism is shown to significantly enhance
the recognition performance of our model.

• Our developed student learning behavior recognition network demonstrates a no-
table improvement over state-of-the-art (SOTA) methods. Specifically, it achieves an
enhanced mean average precision (mAP) by 11.9%. Our model exhibits remarkable
advantages in detecting students, even in scenarios with significant occlusion. It excels
in identifying common classroom behaviors such as students turning their heads,
raising their hands, and looking up. These achievements underscore the effectiveness
of our proposed approach in real-world classroom environments.

• We tackle the challenge posed by limited training samples by employing two crucial
techniques: data augmentation and transfer learning. These methods allow us to
maximize the utility of the available data, enhancing the robustness and generalization
capacity of our model.

The ensuing sections of this paper are structured as follows: Section 2 offers an in-
depth review of pertinent research in student classroom behavior recognition and the YOLO
algorithm. In Section 3, we provide a problem definition of this research and summarize
the notations that appear in this paper. Section 4 elucidates the procedural approach and
network framework adopted for detecting and identifying student behaviors. In Section 5,
we present a detailed comparison and conduct ablation experiments to rigorously assess
the efficacy of our proposed methodology. Lastly, Section 6 encapsulates our conclusions
and outlines potential avenues for future research exploration.

2. Related Work

In this section, we will take a closer look at student learning behavior and current
methods for detecting student behavior in the classroom, as well as provide an overview of
the YOLO object recognition model. In addition, the application of attention mechanisms
in computer vision is explored.

2.1. Student Learning Behavior

The manifestations, characteristics, and phenomena apparent in students’ learning
behaviors have been extensively studied in the fields of educational research and educa-
tional psychology [18]. Typically, these characteristics and phenomena are interrelated
with various aspects of students’ cognitive, affective, and social interactions. The impact
of students’ learning behaviors on their academic performance and learning experiences
is significant. Learning analytics is a rapidly developing academic field that evaluates
the status of students from various perspectives. In classroom instruction, attendance
is vital, as it serves as the initial step towards participation in classroom activities and
academic seminars [19]. Furthermore, attention plays a crucial role in gauging a student’s
dedication to learning. Students must maintain a high level of focus to comprehend and
absorb course content effectively. Effective attention and focus contribute significantly
to academic performance. Collaboration with peers further underscores the pivotal role
of cooperative learning proficiency when working in teams [20,21]. Cultivating positive
study behaviors and habits facilitates meeting academic challenges, enhancing academic
performance, and improving lifelong learning outcomes. Learning behaviors and habits are
instrumental in the success of learners. Therefore, educators must foster these behaviors
during the teaching and learning process to assist students in achieving better academic
outcomes and preparing for future careers.

2.2. Student Learning Behavior Recognition Based on Deep Learning

Student behavior within the classroom significantly impacts the quality of educa-
tion [7]. Active participation, attentive listening, note-taking, and adherence to classroom
rules all contribute to effective teaching and a conducive learning environment [22,23].
To address the significance of student behaviors, researchers have harnessed deep learn-
ing techniques to construct frameworks for detecting and recognizing these behaviors.
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An enhanced Faster R-CNN model for student behavior recognition was proposed by
Zheng et al. [24], which incorporated a novel scale-aware recognition head and a fresh
feature fusion strategy for detecting low-resolution behaviors. Lv et al. [25] integrated the
ResNet and FPN modules into the SSD model, addressing the challenge of recognizing
small targets at the back of the classroom and significantly boosting image recognition
efficiency. Mindoro et al. [26] introduced a method to predict student behavior based on
facial expressions and real-time behavior recognition, implementing it with the YOLOv3
network. Tang et al. [27] employed a weighted bidirectional feature pyramid network
(BIFPN) along with YOLOv5’s feature pyramid structure, effectively transforming the
target recognition issue into a fine-grained representation challenge. Furthermore, they
enhanced the non-maximal value suppression algorithm to improve the differentiation of
highly occluded objects. Yang et al. [28] developed an analytical system for assessing stu-
dents’ learning status, harnessing the YOLOv5 network and the CBAM attention module to
extract robust features from student behavior. Mo et al. [29] proposed a multitask learning
method to identify students’ classroom behaviors, which used MTHN module to extract
intermediate heat maps and combined key points and object locations to simulate students’
behaviors. It is noteworthy that researchers in education and teaching face the challenge
of detecting behaviors within densely populated classrooms, calling for a comprehensive
solution to tackle missed and erroneous recognitions due to occlusion and observation
angles during classroom behavior recognition.

In addition to computer vision-based techniques for identifying student classroom
behaviors, Zhao et al. [30] leveraged deep learning and developed models grounded in
Deep Belief Networks (DBNs) to assess teaching speech standards. Lu et al. [31] applied
feature data mining methods to detect learning behaviors in online English classrooms.
In Table 1, comparisons of deep learning-based student learning behavior recognition
methods in terms of methods, implementation techniques, and results are shown.

Table 1. Comparison of student learning behavior recognition methods based on deep learning.

Method Technique Performance

Faster R-CNN [24]

1. Proposal of an improved Faster R-CNN model;
2. Introduction of a scale-aware detection head
to handle scale variations;
3. Feature fusion strategy to detect low-resolution
behaviors;
4. Use of Online Hard Example Mining (OHEM) to
address class imbalances.

Experimental results on real corpus show that the
performance of the proposed method is improved
compared with the baseline method.

SSD [25]

1. Data enhancement techniques were applied to
expand the dataset;
2. The improved model showed better feature
extraction ability and small target recognition
accuracy compared to the native SSD model.

The improved SSD model achieves high recognition
accuracy and provides technical support for intelligent
management and teaching in universities.

YOLOv3 [26] The researchers used the YOLOv3 algorithm
for face recognition and prediction of student behavior.

The proposed method offers a reasonable pace of
identification and positive outcomes for measuring
student interest based on observable actions in the classroom.

YOLOv5 [27]

1. Proposal of a classroom behavior detection
algorithm using an improved YOLOv5 model;
2. Combination of feature pyramid structure
and weighted bidirectional feature pyramid network;
3. Addition of spatial and channel convolutional
attention mechanism;
4. Improvement of non-maximum suppression using
distance-based intersection ratio.

The average precision of the algorithm on the self-built
dataset is 89.8%, and the recall rate is 90.4%.

2.3. Target Detection Based on YOLO

This subsection provides an extensive overview of the YOLO networks’ evolution,
highlighting their multifarious applications in student learning behavior detection.
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The You Only Look Once (YOLO) algorithm, introduced by Redmon et al. [32], repre-
sents a single-stage target detection approach. It reimagines target detection as a regression
task, negating the need for candidate region extraction inherent in traditional two-stage
target detection algorithms. The YOLO algorithm simultaneously ascertains target cate-
gories and regresses their positions using a singular network. Progressing iterations have
yielded enhanced YOLO algorithm performance. YOLOv2 [33] introduced anchor boxes
and batch normalization techniques to amplify detection accuracy. YOLOv3 [34] integrated
the Darknet-53 architecture and Feature Pyramid Network (FPN) to elevate target detection
efficacy. YOLOv4 [35] streamlined the target detection model by refining the training
threshold. YOLOv5 [36] unveiled five distinct models of varying sizes, attaining perfor-
mance amelioration through channel scaling and model size adjustments. Subsequently,
YOLOv6 and YOLOv7 emerged. YOLOv6 embraced the RepVGG architecture, augmenting
GPU device adaptability and engineering adaptations [37]. YOLOv7 incorporated module
re-referencing and dynamic tag assignment strategies, bolstering both speed and accuracy,
effectively outpacing existing target detectors in the 5 FPS to 160 FPS range [38].

Researchers have harnessed the YOLO family of algorithms across diverse applications
within the realm of student behavior detection. Chen et al. [39] introduced an enhanced
YOLOv4 behavior detection algorithm infused with Repulsion loss functions, thus amplify-
ing detection capabilities for varying behaviors in the classroom. Mindoro et al. [26] utilized
the YOLOv3 algorithm to decipher students’ facial expressions and predict their behaviors.
Wei and Ding [40] harnessed the OpenPose algorithm to extract global features of the
human body and joint angle information, effectively distinguishing head-up from head to
down states. Additionally, they employed the YOLO algorithm to discern hand-related
information, determining whether a student was using a cellphone.

2.4. Attention Mechanism in Computer Vision

The attention mechanism, often referred to as selective attention, constitutes a cogni-
tive ability observed in both humans and animals [41]. This ability enables the selective
focusing on specific information while effectively ignoring irrelevant data when encoun-
tering intricate stimuli [42]. Such a mechanism serves to enhance cognitive efficiency
and accuracy, thereby facilitating more streamlined information processing. The study of
attention mechanisms finds application across a diverse array of fields, spanning cognitive
psychology, neuroscience, and computer science. In the domain of clinical neuroscience, at-
tention mechanisms are explored for their potential in diagnosing and addressing attention-
related disorders, such as ADHD [43]. Within the realm of speech recognition, attention
mechanisms find employment in critical tasks such as speech recognition and synthesis.
Moreover, attention mechanisms have garnered substantial acceptance and utilization in
recommendation systems, computer vision, and speech recognition, leading to tangible
enhancements in model performance. In recommendation systems, these mechanisms
prove invaluable in deciphering user interests and preferences, subsequently refining the
accuracy of recommendations. Within the scope of computer vision, attention mechanisms
are strategically deployed for tasks encompassing image classification, target recognition,
and image generation, culminating in augmented model performance by virtue of their
capacity to concentrate on pertinent image regions [44].

Specifically within the realm of computer vision, attention mechanisms can be broadly
categorized into three distinctive types: channel attention mechanisms, spatial attention
mechanisms, and region attention mechanisms. Channel attention mechanisms allocate
distinct weights to individual channels within the feature map, thus amplifying recogni-
tion precision and efficiency. A salient illustration of channel attention mechanisms is the
Squeeze-and-Excitation module as seen in SENet, which autonomously discerns the signifi-
cance of each channel in the feature map, invariably heightening recognition accuracy [45].
Spatial attention mechanisms, on the other hand, endow diverse spatial locations within
the feature map with varying weights, optimizing recognition precision and efficiency.
The Spatial Attention module, a prime example of a spatial attention mechanism within
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CBAM, effectively captures the significance of each spatial location in the feature map,
resulting in an elevated level of recognition accuracy [46]. Region attention mechanisms
further contribute by assigning distinct weights to discrete regions within an image, thereby
enhancing recognition accuracy and efficiency. Notably, RoI Pooling as implemented in
Faster R-CNN exemplifies a region attention mechanism, effectuating the extraction of
feature maps of fixed dimensions through pooling operations applied to regions of inter-
est [47]. These various attention mechanisms collectively bolster performance and precision
across a spectrum of computer vision tasks.

Overall, the integration of attention mechanisms across diverse domains, including
the realm of computer vision, holds substantial potential for elevating model performance
and refining the concentration on pertinent information. By harnessing the capabilities of
attention mechanisms, researchers have made substantial strides in areas such as student
behavior recognition, target recognition, and related tasks. These developments pave the
way for further exploration and refinement of attention-based models within the dynamic
landscape of computer vision.

Summary: YOLO networks have attained widespread utilization and notable ad-
vancements in the arena of student learning behavior recognition. They have demonstrated
remarkable efficacy in capturing localized visual features, such as body pose and facial
expressions, that are integral for behavior recognition. Nonetheless, YOLO networks might
encounter challenges in effectively modeling intricate relationships existing between di-
verse body parts and in comprehensively capturing overarching contextual information.
Hence, attention mechanisms emerge as a prospective avenue to enhance the capabilities
of student learning behavior recognition systems. These mechanisms possess the inherent
capacity to apprehend global dependencies and contextual nuances. By adeptly modeling
relationships between distinct body parts and judiciously considering the holistic context
of students’ classroom behaviors, we stand poised to amplify both the accuracy and the
resilience of behavior recognition models.

3. Preliminaries

This section aims to elucidate the task of identifying student learning behaviors and
the behavior recognition framework adopted in this study. To facilitate understanding,
Table 2 presents crucial symbols alongside their corresponding interpretations.

Table 2. Symbols and notations.

Number Notation Description

1 (x, y, w, h, o) The position coordinates and background of the marker box
2 MLP Multi-Layer Perceptron Calculator
3 Wx MLP layer x parameters
4 F Feature Map
5 ⊗ Pixel-level multiplication
6 Mc(F) Channel Attention maps
7 Ms(F) Spatial Attention Maps
8 f 7×7 7 × 7 convolution

3.1. Problem Definition

The central challenge tackled pertains to the detection and recognition of student
learning behaviors within classroom settings. Figure 1 provides an overview of the student
classroom learning behavior testing system’s workflow adopted in this research. The red
and blue arrows symbolize the training and testing processes, correspondingly. The system
starts with continuous video frame input from a classroom camera. It unfolds through
three principal stages: the collection of student classroom learning behavior data, feature
extraction, and behavior detection and recognition.
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Figure 1. Process of student learning behavior recognition.

3.2. Definitions

Definition 1. (Data collection of student learning behavior): Continuous video frames are captured
by classroom cameras.

Definition 2. (Feature extraction of student learning behavior): The feature vectors corresponding
to diverse student learning behaviors are extracted via deep neural network. These feature vectors
are subsequently employed as inputs for the feature detection network during both the training and
testing phases of the proposed network.

Definition 3. (Detection of student learning behavior characteristics): The proposed network
amalgamates the CBAM attention mechanism with the YOLOv7 feature detection network to
construct a model geared towards detecting and recognizing student classroom learning behaviors.

4. Methods

This section provides details of the framework for analyzing student learning behavior.
The task of detecting and recognizing student behavior within an smart classroom teaching
environment is complex due to challenges such as diverse illumination sources, lighting
variations, background interference, occlusion, and image noise. The You Only Look Once
(YOLO) algorithm, known for its real-time performance, global sensing capability, multi-
target recognition, and end-to-end training, has gained prominence in target recognition.
Leveraging its versatility, this study presents a learning behavior recognition framework
centered around YOLOv7.

4.1. Network Design of Student Behavior Recognition Task

The network structure adopted for this research is divided into four main components:
Input, Backbone, Head, and Output. The input image is resized to 640 × 640 pixels and
enters the backbone network. The head network generates three tiers of feature maps
with varying dimensions. The RepConv module’s recognition output yields both the
target object’s position and category information. The location information is typically
represented as bounding box coordinates [33], where (tx, ty) denote the center coordinates,
and (tw, th) represent the bounding box’s width and height. The category information is
deduced using a multi-category classifier, obtaining confidence levels. This indicates the
presence of the target object within the bounding box and provides a measure of accuracy.
The method employs three anchor frames, resulting in 36 outputs per layer, computed as
(7 + 5)× 3. These outputs are then concatenated with the feature map size to produce the
final output. Figure 2 visually outlines the network structure, with blue boxes signifying
enhancements made.
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Figure 2. Student learning behavior recognition framework.

The backbone network, as depicted in Figure 2, incorporates the Conv module for
input image normalization and nonlinear transformation. The MaxPool (MP) module
and the E-ELAN module work together to learn image features with varying perceptual
fields. The outcomes from three distinct E-ELANs are combined into the YOLOv7 feature
detection network. The integration of the E-ELAN module enhances YOLOv7’s learning
capabilities, parameter utilization, and computational efficiency. To cater to targets of
different scales, the head network augments feature map output from the backbone network
using the Spatial Pyramid Pooling Combined with Spatial Context Prediction (SPPCSPC)
module [38]. Furthermore, the E-ELAN module is employed to further heighten the
network’s computational efficiency.

This paper introduces the Convolutional Block Attention Module (CBAM) attention
mechanism to underscore critical information concerning students’ learning behaviors.
CBAM effectively captures contextual features and bolsters the network’s feature detection
capabilities. Figure 2 illustrates the network architecture integrating the CBAM attention
mechanism. The network’s prediction results, post the RepConv module, comprise the
multi-scale output from the head network.

4.2. Extended-Efficient Layer Aggregation Networks Module

This model introduces the Extended-efficient layer aggregation networks (E-ELAN)
module, elevating network learning potential through the Expand, Shuffle, Merge Car-
dinality Network (EALN) approach. The E-ELAN module modifies both the backbone
network and the head network’s structure [38]. Group convolution is employed to expand
the feature base count, and features from different groups are fused using shuffling and
merging cardinality operations. This strategy improves parameter utilization, computa-
tional efficiency, and features learned from various feature maps. Figure 3 illustrates the
architecture of the E-ELAN module.
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Figure 3. E-ELAN module’s architectural depiction.

4.3. Convolutional Block Attention Module

The Convolutional Block Attention Module (CBAM) is an attention mechanism com-
monly employed in convolutional neural networks to enhance model performance in
tasks such as recognition and classification, as shown in Algorithm 1. Its primary func-
tion is to adapt the input feature map by selectively highlighting crucial features through
attention tuning across both channel and spatial dimensions. By doing so, the CBAM
mechanism effectively improves the network’s ability to understand and model complex
images. The structure of the CBAM module is visually represented in Figure 4.

Channel
Attention
Module

Input Feature Refined Feature
Spatial

Attention
Module

Figure 4. Schematic representation of the CBAM module.

The CBAM module is composed of two distinct sub-modules: the Channel Attention
Module (CAM) and the Spatial Attention Module (SAM). The CAM’s role is to perform
spatially informative aggregation on the feature map, utilizing global max pooling and
global average pooling techniques. Subsequently, the resulting feature maps undergo a two-
layer Multi-Layer Perceptron (MLP) neural network. The output features are then element-
wise summed and passed through a sigmoid activation function, ultimately producing the
final channel attention feature.
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Algorithm 1 Algorithm for CBAM attention mechanism

Input: Network intermediate volume characteristics map
Output: Attention maps

1: CAM performs a spatially informative aggregation operation on the feature map:

Mc(F) = σ(MLP(AvgPool(F)) + (MLP(MaxPool(F)))

= σ
(

W1

(
W0

(
Fc

avg

))
+ W1(W0(F

c
max))

)
2: The channel attention map is multiplied at the pixel level with the original image:

F′ =Mc(F)⊗ F,

3: SAM performs feature focus and dimensionality reduction operations on feature maps:

Ms(F) = σ
(

f 7×7([AvgPool(F′); Max Pool(F′)])
)

= σ
(

f 7×7
([

Fs
avg; Fs

max

]))
4: Spatial Attention Maps are multiplied by the original map at the pixel level:

F′′ = Ms(F
′)⊗ F′

5: Output CBAM processed feature maps.

SAM, on the other hand, operates on the feature map obtained from the CAM. It
undertakes global max pooling and global average pooling along the channel dimension
to yield two distinct feature maps. These feature maps are used to calculate the spatial
attention feature using a sigmoid activation function. Finally, the spatial attention feature is
element-wise multiplied with the initial feature map to generate the ultimate feature output.

The combined utilization of these modules, namely E-ELAN and CBAM, significantly
contributes to the enhancement of object recognition models by bolstering the network’s
learning capacity and selectively highlighting important features. CBAM attention mecha-
nism can enhance CNN’s attention to important student behavior features, focus attention
on features related to student behavior, and resist redundant information in the data. In ad-
dition, the CBAM attention mechanism can reduce unnecessary computational burden,
filter out irrelevant feature information.

4.4. Data Augmentation

The efficacy of deep learning in the realm of computer vision hinges on access to
extensive, meticulously annotated datasets [48]. However, constructing a high-quality
dataset for target recognition introduces a host of challenges:

(1) Labeling complexity: Target recognition mandates the precise identification and
classification of each object, rendering the annotation process more time-intensive. Ensuring
accuracy and consistency necessitates skilled annotators. Moreover, complexities like
occlusion, rotation, and pose variations further compound the labeling process.

(2) Dataset imbalance: Target recognition datasets often exhibit significant disparities
in the number of samples across different categories, leading to suboptimal recognition for
certain categories. It is crucial to achieve a balanced distribution of samples to alleviate
category imbalance during dataset creation.

(3) Dataset diversity: The target recognition dataset must encompass a wide spectrum
of characteristics—varied target objects, scenes, lighting conditions, poses, and viewpoints—
to bolster generalization capabilities. Yet, curating such diverse datasets entails substantial
investments of time and labor.

196



Sensors 2023, 23, 8190

(4) Dataset size: Successful target recognition models typically demand a substantial
volume of training data for optimal performance. However, constructing a sufficiently large
dataset poses challenges due to the heightened complexity and time required for annotation.

(5) Dataset quality: Producing a high-quality target recognition dataset mandates an-
notators with professional acumen to ensure precision and uniformity. Moreover, datasets
may inadvertently contain errors or noise, necessitating thorough screening and cleaning
to preserve data quality.

To address these challenges, this paper turns to data augmentation, an essential
technique to bolster the training of deep learning models using limited effective training
data. Data augmentation diversifies the dataset, mitigates overfitting, and enhances the
model’s capacity for generalization. In this study, data augmentation is performed on the
self-built Student Learning Behavior (SLB) dataset through a series of techniques.

4.4.1. Random Rotation Enhancement

To enhance the variability of the SLB dataset and mitigate the risk of overfitting, ran-
dom rotation enhancement is introduced. This technique introduces diversity by applying
random rotations to images. Figure 5 visually illustrates this process, depicting the original
image, a 15° clockwise rotation, and a 15° counterclockwise rotation. Algorithm 2 provides
the underlying principle behind random rotation enhancement.

Algorithm 2 Image random rotation enhancement algorithm

Input: image max_angle
Output: enhanced_image

1: function RANDOM_ROTATION(image, max_angle)
2: height, width = image.shape
3: Randomly generate the rotation angle. Randomly generated rotation angle θ can be

represented by the random number function rand:

θ = rand × 2 × max− angle − max− angle

4: Calculate the center of rotation. Assume that the coordinates of the center of rotation
are (x_center, y_center).

center_x =
width

2
, center_y =

height
2

5: Define the rotation matrix.

rotation_matrix =

⎡⎣cos(θ) − sin(θ) (1 − cos(θ)) · center_x + sin(θ) · cente
sin(θ) cos(θ) − sin(θ) · center_x + (1 − cos(θ)) · cent

0 0 1

⎤⎦
6: Performs image rotation. The position of each pixel after rotation is (x′,y′).

(x′, y′) =
{

x′ = (x − center_x) · cos(θ)− (y − center_y) · sin(θ) + center_x
y′ = (x − center_x) · sin(θ) + (y − center_y) · cos(θ) + center_y

7: return rotated_image
8: end function
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Figure 5. Illustration of random rotation enhancement.

4.4.2. Grayscale Enhancement

In the context of smart classroom environments, certain image details and features
often pose challenges for human observation and automated recognition, particularly when
influenced by low light conditions or shadows. Enhancing the grayscale level of an image
serves to accentuate these intricate aspects, thereby bolstering the differentiation of features
within the image. Moreover, grayscale enhancement transcends the realm of object color
and encompasses other crucial cues like shape and edges.

Within this paper, we employ grayscale enhancement to the Single-Label Behavior
(SLB) dataset. The technique involves extending the grayscale dynamic range of the
original image to a predefined interval, facilitated through a linear relationship equation.
The equation reads as follows, where f (x, y) and g(x, y) denote the grayscale values of
pixels at positions (x, y) before and after enhancement. The parameters a and b stand for
the minimum and maximum values of grayscale levels in the original image, while c and d
pertain to the minimum and maximum values in the enhanced image:

g(x, y) =

⎧⎪⎪⎨⎪⎪⎩
c, [0, a)
d − c
b − a

× f (x, y) + c, [a, b]

d, (b, 255]

(1)

This study embraces a grayscale transformation employing k = 25% on the SLB
dataset. An exemplar of the grayscale enhancement process is portrayed in Figure 6.

Figure 6. Illustration of grayscale enhancement.
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4.4.3. Noise Enhancement

Within real classroom scenarios, images often encounter inevitable disturbances and
noise, encompassing phenomena like lighting variations, image blurring, and image dis-
tortion. To bolster the model’s aptitude for discerning robust features and enhancing its
resilience against disturbances and noise, this paper introduces noise to the images through
a noise enhancement algorithm grounded in the mean filter approach.

Figure 7 offers a visual demonstration of this transformation. In this context, the mean
filter operates by replacing the value of the central pixel with the average of the pixel
values within a window centered on the pixel. Typically, the size of the filter’s window
corresponds to an odd number, determining its dimensions. The specifics of the image
noise enhancement algorithm, utilizing mean filtering, are elucidated in Algorithm 3:

Algorithm 3 Image noise enhancement algorithm based on mean filtering

Input: image kernel_size
Output: enhanced_image

1: function ENHANCE_NOISE_WITH_AVERAGE_FILTER(image, kernel_size)
2: height, width = image.shape
3: Creates a blank image of the same size as the original image.
4: Gets the height and width of the image.
5: Performs noise enhancement on the image.
6: for y = 0 to height − 1 do
7: for x = 0 to width − 1 do
8: Calculate the boundary coordinates of the filter. Assume that the coordinates

of the computational boundary are (x, y).

(x.y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
top = max(y − N/2�, 0)
bottom = min(y + N/2�, height − 1)
left = max(x − N/2�, 0)
right = min(x + N/2�, width − 1)

9: The average value is calculated for the pixels within the filter.

sum−value =
bottom

∑
i=top

right

∑
j=left

image(x + i − N/2�, y + j − N/2�)

10: The average value is used as the enhanced pixel value.

average =
sum_value

N × N

11: end for
12: end for
13: return enhanced_image
14: end function

Figure 7. Noise enhancement example.

199



Sensors 2023, 23, 8190

In this study, the SLB dataset is enriched through the noise enhancement algorithm
based on mean filtering, thereby simulating an array of disturbances and noise scenarios.

5. Experimental Results and Analysis

Building upon the aforementioned framework for learning behavior recognition, we
conducted empirical research using real smart classroom data.

5.1. Dataset for Experiments

In the realm of computer vision, a plethora of datasets have emerged to cater to diverse
visual tasks. Examples include the MNIST dataset for digit recognition, the KITTI dataset
for autonomous driving research, and the ADE20K dataset for scene understanding. These
datasets have furnished researchers and developers with extensive image samples and
annotated information, thereby enabling comprehensive investigations and algorithmic
advancements tailored to specific vision tasks. At the intersection of computer vision
technology and pedagogy lies the significant challenge of detecting and recognizing diverse
learning behaviors exhibited by students.

In response to this challenge, we have crafted a dataset called Student Learning Be-
havior (SLB) to facilitate researchers and educators in comprehending students’ behavioral
patterns and learning states. This dataset is constructed from classroom videos acquired
from NPS, and comprises 600 high-resolution RGB color images, with one image extracted
every 150 frames. Each image boasts dimensions of 2048 × 1152 pixels. The vott [49] open-
source software was employed for annotating learning behaviors and bounding boxes of
students in each image. The dataset encompasses seven categories of student classroom
learning behaviors: write, read, lookup, turn_head, raise_hand, stand, and discuss. Fur-
thermore, the dataset covers four smart classroom scenarios, each boasting distinct layouts.
Within each scenario, approximately 30 individual students are present, culminating in
around 120 distinct student objects. An illustrative instance of each behavior type is de-
picted in Figure 8. The dataset is divided into three segments: 420 images for training,
120 images for validation, and 60 images for testing. The distribution of different labels,
conforming to the VOC2012 dataset format [38], is provided in Table 3.

write read lookup raise_hand

discussstandturn_head

Figure 8. Example images from the SLB dataset.
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Table 3. Details of the SLB dataset.

Number Classes Num of Labels Train Val Test

1 write 1025 452 491 82
2 read 1075 810 139 126
3 lookup 5725 3620 1656 449
4 turn_head 1025 748 117 160
5 raise_hand 725 561 82 82
6 stand 94 50 30 14
7 discuss 242 172 50 20

5.2. Evaluation Metrics

To evaluate the effectiveness of the proposed approach, this study employs the PAS-
CAL VOC metric [27]. This metric assesses the accuracy of object identification based on
four key parameters: true positive (TP), true negative (TN), false positive (FP), and false
negative (FN). TP signifies correct positive predictions, where both the predicted and true
values are positive samples. TN denotes correct negative predictions, where both the pre-
dicted and true values are negative samples. FP represents incorrect positive predictions,
where the predicted value is positive but the true value is negative. FN indicates incorrect
negative predictions, where the predicted value is negative but the true value is positive.
Precision and Recall are calculated based on these parameters.

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

Furthermore, the concepts of Average Precision (AP) and mean Average Precision
(mAP) are introduced to jointly evaluate Precision and Recall. AP serves as a metric
to assess the performance of detecting individual targets within specific categories. It
quantifies the model’s accuracy by calculating the area under the precision-recall curve,
as defined in Equation (4). AP values range from 0 to 1, with higher values indicating
superior model performance. In contrast, mAP represents the mean Average Precision for
detecting multiple targets across various categories. In multi-category target recognition
tasks, an AP value can be computed for each category. These AP values are then averaged
to derive mAP, as shown in Equation (5) [27].

In addition, this study uses Frames Per Second (FPS) to evaluate the real-time per-
formance and efficiency of the model [27]. Its calculation method is given in Equation (6),
where inference time refers to the time from the preprocessed image input model to the
model output result, and NMS is the post-processing time.

APi =
∫ 1

0
P(r)dr (4)

mAP =
1
n

n

∑
i
(APi) (5)

FPS = 1/in f erencetime + NMS (6)

5.3. Baselines

In order to comprehensively evaluate the efficacy of our proposed method, we con-
ducted a comparative analysis against several established models within the domain of
student learning behavior recognition systems. Furthermore, we included YOLOv6, a re-
cent addition to the YOLO family, as well as the lightweight YOLOv7-Tiny model from
YOLOv7, for comparative purposes.
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SSD [25]: This method employs the ResNet network for feature extraction and inte-
grates the Region Proposal Network (RPN) for generating bounding boxes. Subsequently,
a k-means algorithm is employed for post-processing and filtering.

Faster R-CNN [24]: Faster R-CNN, a classic two-stage target detection approach, is
widely applied for various behavior detection tasks. It leverages Region Proposal Network
(RPN) networks to streamline model computation and enhance detection efficiency.

YOLOv3 [26]: YOLOv3-SPP employs a feature extraction network to capture features,
followed by the utilization of the Spatial Pyramid Pooling (SPP) module for multi-scale
feature extraction. The detection network is then utilized for behavior classification and
positional regression to derive final behavior detection outcomes.

YOLOv5 [27]: The YOLOv5 model adapts anchor frames during computation. It
employs k-means clustering to determine n anchors and employs a genetic algorithm to
randomize anchor width and height (wh). An anchor fitness approach is employed for
evaluating obtained fitness.

YOLOv6 [50]: YOLOv6 introduces varied backbone networks based on model scale
and employs distinct activation functions for different scenarios to balance between field
deployment and model accuracy. The model training incorporates the ATSS label assign-
ment strategy during the initial stages. In sum, YOLOv6 is particularly well-suited as a
behavior detection method for industrial applications.

YOLOv7-Tiny [38]: YOLOv7-Tiny, a lightweight network introduced by the YOLOv7
system, features fewer layers and parameters, making it more compatible with GPU devices
in specific deployment contexts. Consequently, YOLOv7-Tiny holds promise for application
in industrial environments.

5.4. Training

The experiments were executed using an Intel(R) Xeon(R) Platinum 8358P CPU boast-
ing 24 GB of RAM, alongside an NVIDIA Tesla 3090 GPU. The software stack utilized
PyTorch 1.8.1, Python 3.8, and CUDA 11.1.

For the training phase, we employed the pre-training weights (yolov7.pt) provided
by YOLOv7. The stochastic gradient descent (SGD) [51] algorithm was adopted as the
optimizer for updating and refining the network model weights. To mitigate model
oscillations due to a high initial learning rate, a warm-up strategy was incorporated during
training. Within this warm-up phase, the model’s learning rate was gradually increased to
reach 0.01. Following the warm-up, the network’s learning rate was dynamically adjusted
using the cosine annealing algorithm. Specific experimental parameters were set as follows:
batch size of 12, learning rate of 0.01, and weight update factor of 0.0005.

The progress of the detector’s loss was tracked during training, as depicted in Figure 9.
Notably, the training and validation losses for the student learning behavior detector
converged satisfactorily after 75 rounds.

The observed training progress conclusively establishes that the learned model suc-
cessfully avoids both overfitting and underfitting, attesting to its optimal suitability for
subsequent experiments.

5.5. Comparison with YOLOv7 on Individual Learning Behavior Recognition

We conducted empirical research from two perspectives: a comparison with the baseline
YOLOv7 in single-class learning behavior recognition and a comparison with six benchmark
methods in overall learning behavior recognition. For the sake of convenience in describing, we
have named our method the Student Learning Behavior Recognition Framework (SLBRF).

The results of the single-class comparison between our proposed method and the
baseline models on the SLB test dataset are provided in Table 4. These results clearly
illustrate the superior single-class average precisions (APs) achieved by our proposed
method in comparison to the benchmark models. Notably, our method surpasses the
YOLOv7 network model on the SLB dataset, showcasing its effectiveness in the domain of
student learning behavior recognition.
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Figure 9. Training and validation losses for students’ learning behavior recognition.

Furthermore, Figure 10 displays the heat map generated using the GradCAM [52]
visualization model on the original SLB test set images, highlighting key behavioral fea-
tures. The prominent orange areas in the heat map indicate the successful localization of
relevant image features by the student behavior recognition network. This visualization
solidifies the efficacy of our proposed method in accurately identifying and highlighting
learned behaviors.

Figure 10. Heat map generated by the GradCAM visualization model on SLB test dataset.
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These compelling results underscore the superiority of our proposed method in de-
tecting student learning behaviors, substantiating its efficacy and potential applications in
educational contexts.

Table 4. Single-class AP results on the test set. The bold means the best performance.

Classes YOLOv7 (%) Proposed Method (%)

write 87.2 98.7
read 71.3 93.0

lookup 94.4 98.6
turn_head 84.7 96.4
raise_hand 95.0 99.1

stand 78.2 93.0
discuss 96.6 98.1

Total 84.8 96.7

5.6. Comparison with Six Baseline Methods

To further substantiate the performance of our proposed method, a comparison is
conducted with YOLOv7-Tiny, the SSD lightweight network, and other prominent classical
networks. The comparison experiments employ the same dataset and data configuration,
with the results summarized in Table 5.

Table 5. Comparison of performance and speed of different networks. The bold means the best
performance. The underline means the second best performance.

Methods mAP@0.5 (%) AP50 (%)
FPS (f/s)

2080Ti 11G*1 3090 24G*1 12v 8255C (CPU)

SSD 65.7 43.0 10.5 18.0 0.1
Faster R-CNN 68.9 49.6 30.6 54.6 0.1
YOLOv3-SPP 63.1 43.0 80.6 95.2 3.9

YOLOv5 76.9 54.9 97.9 92.5 1.8
YOLOv6 77.7 52.9 62.8 89.1 4.7

YOLOv7-Tiny 54.3 34.8 86.2 81.3 12.8
SLBRF(Our Method) 96.7 75.8 80 84.8 2.7

As evident in Table 5, our proposed method consistently outperforms YOLOv7-Tiny,
SSD, YOLOv3-SPP, Faster R-CNN, YOLOv5, and YOLOv6, with a noteworthy minimum
improvement of 19% in terms of mAP. These results unequivocally establish the superiority
of our proposed method over other mainstream networks. In addition to this, in order to
analyze the time cost, inference is performed on RTX 2080TI (11G), 3090 (24G) and 12v
8255 cpu. The results show that our method achieves a good balance between precision
and speed.

5.7. Ablation Experiments

Ablation experiments play a pivotal role in dissecting the impact of network structure
modifications on performance. In this section, we present and analyze the outcomes of four
essential experiments: YOLOv7, SLBRF with Data Enhancement (SLBRF_DE), SLBRF with
the CBAM attention mechanism (SLBRF_CB), and SLBRF with both Data Enhancement and
CBAM (SLBRF_DE_CB). The visual training process of these methods on the SLB dataset is
depicted in Figure 11, with corresponding training results summarized in Table 6.

In Figure 12, we provide a visual comparison between the proposed method in this
paper and the baseline YOLOv7 network’s recognition results in different scenarios. Specif-
ically, the left figure in Figure 12 illustrates the recognition outcomes of the proposed
method, while the right figure presents the recognition results of the YOLOv7 baseline.
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Table 6. Performance comparison of different models on the SLB dataset. The bold means the
best performance.

Model mAP@0.5 (%) mAP@0.5:0.95 (%) Params (104) FLOPs (G) Weight (M)

YOLOv7 84.8 62.7 3722.3 105.2 71.4
SLBRF_CB 85.5 - 3721.2 105.2 71.4
SLBRF_DE 95.5 73.6 3722.7 105.2 71.4
SLBRF_DE_CB(ours) 96.7 75.9 3721.2 105.0 71.4
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Figure 11. Experimental results of each model on the SLB dataset.

5.7.1. The Effectiveness of CBAM

The integration of the CBAM attention mechanism exhibited a tangible enhancement
in the performance of the student classroom learning behavior recognition network. It led
to a 0.7% increase in mAP on the SLB dataset, while concurrently maintaining the number
of parameters and FLOPs at the baseline network level. This observation underlines
the constructive influence of the CBAM module on enhancing the accuracy of student
classroom learning behavior recognition.

5.7.2. The Effectiveness of Data Enhancement

Data augmentation, a crucial technique for mitigating small dataset limitations, not
only expanded the dataset to boost the model’s generalization capacity but also increased its
adaptability to diverse input data, thereby reinforcing the model’s robustness. The results
presented in Table 6 clearly demonstrate an improvement of up to 10.7% in the network’s
mAP on the SLB dataset, all without introducing additional computational overhead,
as indicated by the steady parameters count and FLOPs.
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Figure 12. Results of student learning behavior recognition.

5.7.3. The Effectiveness of the Model Ensemble

The ultimate recognition outcomes of the integrated model, as presented in Table 4,
substantiate its superiority over the baseline model for each category. Improved Average
Precision (AP) values were observed across all categories, attesting to the model’s excep-
tional overall recognition performance. Moreover, Figure 12 provides visual evidence of
diverse behaviors within different scenarios. A stark enhancement in recognition accuracy
over the baseline model is evident in Figure 12d, where the head-turn behavior, denoted
by the black box, is correctly detected, rectifying the previous erroneous outcomes and
markedly improving accuracy.
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Lastly, the visual representation in Figure 12 provides vivid confirmation of the pro-
posed method’s efficacy in boosting recognition accuracy, especially in challenging scenar-
ios where the YOLOv7 model may encounter difficulties. These findings provide further
validation of the proposed method’s superior performance and its capability to accurately
detect targets across a variety of real-world scenarios.

5.7.4. The Effectiveness of Attention Mechanism in Learning Behavior Recognition

Given the proven widespread efficacy and performance of attention mechanisms in
target recognition, this study extended its exploration to include other attention mechanism
modules within the YOLOv7 network. As demonstrated in Table 7, the inclusion of the
CBAM module notably amplified the recognition accuracy of the network compared to
alternative attention mechanism modules, including CA, SE, and SimAM modules. This
outcome emphasizes the CBAM module’s potential in boosting recognition performance.

Table 7. Comparison of networks using different attention mechanism modules.

Model mAP (%) Precision (%) Recall (%) FLOPs (G) Params (104) Weight (M)

YOLOv7 84.8 86.24 77.8 105.2 3722.3 71.4
SLBRF_SE 84.2 ↓ 83.4 78.4 105.2 3723.5 113
SLBRF_CA 82.0 ↓ 82.81 77.83 105.0 3716.7 71.3

SLBRF_SimAM 84.6 ↓ 81.7 84.8 105.0 3721.0 71.3
SLBRF_CBAM(ours) 85.5 ↑ 79.73 88.02 105.0 3721.2 71.4

In Table 7, a comprehensive comparison is presented between networks utilizing different
attention mechanism modules. The metrics evaluated include mAP, precision, recall, FLOPs,
parameters (Params), and model weight size. The results demonstrate the following:

• YOLOv7 achieves an mAP of 84.8%, with a precision of 86.24% and a recall of 77.8%.
It has 105.2 billion FLOPs, 3722.3 × 104 parameters, and a model weight size of
71.4 million;

• Incorporating the SE module in YOLOv7 leads to a slight decrease in mAP (84.2%),
precision (83.4%), and recall (78.4%), while maintaining the same FLOPs and increasing
the parameters to 3723.5×104 and model weight size to 113 million;

• Utilizing the CA module in YOLOv7 results in a further decrease in mAP (82.0%), pre-
cision (82.81%), and recall (77.83%). The FLOPs remain the same, while the parameters
decrease to 3716.7×104 and the model weight size remains at 71.3 million;

• Applying the SimAM module in YOLOv7 leads to a slight improvement in mAP
(84.6%), but precision (81.7%) and recall (84.8%) show mixed changes. The FLOPs and
parameters remain consistent, and the model weight size remains at 71.3 million;

• Incorporating the CBAM module (proposed in this paper) in YOLOv7 results in the
highest mAP of 85.5% (an increase from the baseline). The precision is 79.73%, and the
recall reaches 88.02%. The FLOPs and parameters remain consistent with YOLOv7,
while the model weight size remains at 71.4 million.

In summary, the inclusion of the CBAM attention mechanism in YOLOv7 proves to be
the most effective in terms of improving recognition accuracy, surpassing other attention
mechanism modules such as SE, CA, and SimAM. It achieves the highest mAP, precision,
and recall while maintaining a comparable number of parameters, FLOPs, and model
weight size. These findings highlight the superiority of the proposed method in this paper
in terms of attention mechanisms for target recognition.

6. Conclusions

In this study, we have presented an effective student learning behavior detector based
on the YOLOv7 network, enabling accurate recognition of classroom learning behaviors.
We have addressed the challenge of limited data samples through the strategic application
of transfer learning and data augmentation techniques. Additionally, by integrating the
CBAM attention mechanism into the YOLOv7 feature detection network, we have amplified
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its ability to extract vital information about students’ learning behaviors, thereby enhancing
feature recognition accuracy in classroom settings. The experimental results substantiate
the superiority of our approach over YOLOv7-Tiny, SSD lightweight networks, and other
prominent classical networks in the context of student learning behavior recognition. We
have achieved noteworthy advancements in the precise identification and categorization of
various learning behaviors exhibited by students in the classroom.

However, it is essential to acknowledge the limitations of our study. Notably, the dataset
employed in our experiments includes behaviors that should have been more rigorously
defined and labeled. This limitation may have introduced some ambiguity and noise during
both training and evaluation. Moreover, we recognize that the current network model we
have proposed, while powerful, is relatively large, which may present performance chal-
lenges when deployed on embedded devices with limited GPU resources. To overcome this
limitation, we acknowledge the necessity of developing lightweight yet high-performing
models tailored for real-time recognition in resource-constrained settings. Our upcoming
research efforts will be directed towards substantial improvements in these areas.

In future studies, we are committed to addressing this issue by refining the dataset
and providing more precise behavior definitions, ensuring higher-quality training data.
Additionally, due to objective factors such as data acquisition equipment and acquisition
angles, the dataset we constructed is not sufficiently large, resulting in lower data resolution.
Therefore, we intend to expand a high-quality dataset for future research. In order to
enhance users’ personal privacy and data security, we plan to introduce federated learning
in future model deployments. This initiative will ensure the adequate protection of students’
personal data. Simultaneously, we will further optimize the model by moving the data
acquisition and processing phases to the client side, avoiding the transfer of students’
image data to the server side, thereby reducing the potential risk of data transmission.
This approach not only helps protect users’ personal privacy, but also reduces the need for
server-side data storage, improving the overall system security.

Introducing computer vision technology into modern education evaluation system
can provide many useful tools and methods for education and teaching staff to improve
the quality, efficiency, and fairness of education evaluation. At the same time, our results
show that the use of visual techniques has great potential for classroom analysis.
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Abbreviations

The following abbreviations are used in this manuscript:

FPN Feature Pyramid Network
PAN Path Aggregation Network
IoT Internet of Things
SOTA State-of-the-Art
CNNs Convolutional Neural Networks
CBAM Convolutional Block Attention Module
CAM Channel Attention Module
SAM Spatial Attention Module
SSD Single Shot MultiBox Detector
DBN Deep Belief Network
YOLO You Only Look Once
ViT Vision Transformer
DETR Detection Transformer
W-MSA Windowed Multihead Self-Attention
SW-MSA Sliding-Window Multihead Self-Attention
MLP Multilayer Perceptron
LN Layer Normalization
CARAFE Content-Aware Reassembly of Features
mAP Mean Average Precision
RPN Region Proposal Network
CBL Convolutional Block Layer
PAN Path Aggregation Network
ELAN Efficient Local Attention Network
CAT Category-aware Transformation
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Abstract: Online surface inspection systems have gradually found applications in industrial settings.
However, the manual effort required to sift through a vast amount of data to identify defect images
remains costly. This study delves into a self-supervised binary classification algorithm for addressing
the task of defect image classification within ductile cast iron pipe (DCIP) images. Leveraging
the CutPaste-Mix data augmentation strategy, we combine defect-free data with enhanced data to
input into a deep convolutional neural network. Through Gaussian Density Estimation, we compute
anomaly scores to achieve the classification of abnormal regions. Our approach has been implemented
in real-world scenarios, involving equipment installation, data collection, and experimentation. The
results demonstrate the robust performance of our method, in both the DCIP image dataset and
practical field application, achieving an impressive 99.5 AUC (Area Under Curve). This presents a cost-
effective means of providing data support for subsequent DCIP surface inspection model training.

Keywords: ductile cast iron pipe; defect classification; self-supervised; CutPaste-Mix

1. Introduction

Defect detection plays a crucial role in industrial production as the timely identifi-
cation of surface defects is essential for enhancing production quality [1]. A ductile cast
iron pipe [2] is a type of pipeline material that can withstand higher pressure and loads
and has a longer lifespan and lower maintenance costs. During the production process of
Ductile Cast Iron Pipes (DCIPs), various defects [3,4] such as cracks, heavy skin, and pore
voids can inevitably arise, impacting product quality and safety. Employing effective defect
detection techniques for DCIPs is pivotal in ensuring product longevity and quality. With
the advancement of machine vision [5,6] and deep learning [7–9], there has been growing
interest among numerous research teams in developing online surface defect detection
methods [10–12]. These systems primarily utilize methods based on two-dimensional
feature information. They involve capturing two-dimensional images of the target sur-
face using cameras, analyzing defect information within these images, and subsequently
conducting defect classification and detection.

Making an excellent online surface detection system involves many steps. With a
sufficient amount of data, existing detection models [13,14] have the potential to reach
the state-of-the-art (SOTA) level in particular scenarios. Usually, the accuracy of these
methods is positively correlated with the number of defect samples. Thanks to the mature
casting process of DCIPs, the production often results in a high yield rate. However, the
occurrence of defects is unpredictable both in time and space, making the collection of
defect samples a challenging task. We made a simple estimate of the amount of defect data
in a production line. Unfortunately, the number of defect images is less than 0.2% of the
total collected images. The cost and inefficiency of manually filtering these samples are
clearly prohibitive. The production scenario mentioned above poses significant challenges
to the collection of defect data. Therefore, our research focuses on efficiently filtering
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negative samples [15] rather than on proposing a new detection model. This distinction is
crucial for understanding the significance of our study.

Constructing an efficient way of collecting defect images is a key factor in the im-
plementation of surface detection. Essentially, the task is defined as anomaly classifica-
tion, a prerequisite task that supports surface detection. Due to the limited availability
of anomaly data, constructing effective anomaly classification models is often achieved
through semi-supervised or self-supervised methods. Given the unknown distribution
of anomaly regions, training is typically conducted solely on defect-free samples. Thus,
the creation of a meaningful pre-training task becomes crucial. Deep One-class [16] has
demonstrated an effective end-to-end training model, which is a parameterized deep neural
network-based one-class classifier. Notably, its superiority lies in its deeper network archi-
tecture, outperforming shallower classification models such as one-class support vector
machines or autoencoders [17], as demonstrated through comparative experiments with
deep neural networks. In self-supervised feature learning methods, techniques like geomet-
ric transformations [18] and contrastive learning [19] have shown success in successfully
discriminating normal and defective images.

In this work, we approximately define defect regions as a particular case of image
anomalies, wherein a binary classification model should focus on all regions divergent
from the normal surface. We adopt a two-stage framework [20], wherein we initially
create anomaly regions on normal DCIP surface images through the construction of a self-
supervised learning pre-training task. Specifically, we propose a strategy called CutPaste-
Mix. This is an improved method based on CutPaste [21], creating abnormal regions by
cutting patches from images. CutPaste-Mix includes three strategies, as follows: 1. Not
reattaching the patch to the image, thus preserving the incomplete area; 2. Enlarging the
patch by a certain factor and then randomly pasting it back onto the image; 3. Randomly
rotating the patch and subsequently pasting it back into a random position within the image.
Our intention is to introduce irregularities approximating defects in images. Moreover,
we utilize ResNet-18 for feature learning on both types of images and employ defect-
free feature vectors to compute a Gaussian Density Estimator (GDE) [22,23]. The GDE is
leveraged to compute abnormal scores for each image, thereby achieving the classification
of anomalous images.

We deployed our equipment on-site and collected actual DCIP images, creating a
dataset. We tested our proposed method on the DCIP dataset and compared it with
other models. Remarkably, without utilizing any defective data for training, our method
achieved an impressive 99.5 AUC (Area Under Curve) [24]. Additionally, we conducted
ablation experiments demonstrating the efficacy of the three methods contained within
CutPaste-Mix when used individually and in combination. The outcomes demonstrated
the effectiveness of the self-supervised classification model based on CutPaste-Mix in
anomaly classification. The model we propose proves valuable for dataset creation and
holds promise for practical engineering deployment.

2. Methods

2.1. Definition of Self-Supervised Binary Classifier

A self-supervised binary classifier [25] is a machine learning model designed to learn
meaningful representations from unlabeled data by formulating a binary classification
task within the data itself. The core idea behind self-supervised binary classification is to
create surrogate positive and negative samples from the input data and train the model
to differentiate between them. This allows the model to learn useful features from the
data without the need for explicit human labeling. Common techniques used to generate
positive and negative samples include data augmentation, transformations, or utilizing
context information from the same data instance.

In the context of image data, techniques such as data augmentation can be employed
to train a self-supervised binary classifier. In this approach, parts of an image are cut
and pasted to create positive and negative pairs. The model is then trained to distinguish
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between the original images and the manipulated ones. This encourages the model to
learn relevant features for the given classification task. Mathematically, let x represent an
input image, x+ represent a positive sample (e.g., an image with a manipulated patch),
and x− represent a negative sample (e.g., the original image or a different image). The
self-supervised binary classification loss function can be formulated as follows:

L
(
x, x+, x−

)
= −log

(
exp( f (x) · f (x+))

exp( f (x) · f (x+)) + exp( f (x) · f (x−))

)
where L(x, x+, x−) represents the loss for a triplet of samples: the input image x, positive
sample x+, and negative sample x−. f (x) represents the feature embedding of sample x.
The formula calculates the binary classification loss using logistic loss (cross-entropy) for
positive (x and x+) and negative (x and x−) pairs.

In summary, a self-supervised binary classifier needs to enable the model to learn
informative features from unlabeled data by creating its own binary classification task.
This approach taps into the inherent structure of the data to generate supervision signals,
making it a powerful technique for learning meaningful representations without the need
for extensive manual labeling.

2.2. Self-Supervised Learning with CutPaste-Mix

A well-crafted pretext task [26,27] is a cornerstone for achieving successful self-
supervised learning. The essence of such a task lies in setting up a specific objective
within unlabeled data, enabling the model to glean meaningful representations from it.
This task is meticulously designed to generate supervision signals intrinsically from the
data itself, thus obviating the need for manual annotations. By tackling this pretext task,
the model becomes adept at unraveling the inherent structures and patterns latent within
the data in an unsupervised manner. Consequently, it provides a more robust foundation
for initializing subsequent supervised learning tasks or refining feature representations.
Commonly encountered pretext tasks in the realm of self-supervised learning encompass
predicting image rotation angles, completing missing segments, colorizing images, and
capturing contextual relationships within images. These tasks harness the intrinsic infor-
mation embedded within the data to generate supervision signals, thereby prompting the
model to assimilate valuable features and elevate its capacity for generalization.

Due to the requirement of training the model exclusively on defect-free data while
also formulating an effective pretext task, the utilization of data augmentation techniques
to generate images with anomalous regions emerges as the most suitable strategy. This
methodology ensures the model’s robust acquisition of distinctive features. While tech-
niques such as rotation, translation, and contrastive learning methods enhance accuracy in
single-classification tasks and augment the model’s generalization and resilience against
interference, they prove to be less effective when directly applied to images of Ductile Cast
Iron Pipes (DCIPs), which are characterized by their high resolution and small defective
areas. In essence, augmentation strategies like rotation and translation entail fundamental
geometric transformations that are applied uniformly across the entire image. While these
strategies are adept at capturing objective and conceptual features (often referred to as
semantic features) within images, they fall short in addressing the learning of continuous
local features within images. Within the context of DCIP images, defects manifest as irreg-
ular and disjointed anomalous regions. Consequently, it becomes imperative to design a
strategy that effectively emulates these distinct abnormal regions. In summary, the optimal
approach necessitates an augmentation strategy that mimics the irregular and discontinu-
ous nature of DCIP defects, rather than relying solely on generic geometric transformations.
This approach will significantly enhance the model’s ability to effectively capture localized
anomalies, thereby refining its capability to discern subtle yet crucial features.

We present a self-supervised methodology called CutPaste-Mix, a data augmentation
strategy. CutPaste-Mix constitutes a comprehensive augmentation technique encompassing
three specific variants: Erase, Enlarge, and Rotate. Although the task may seem straight-
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forward to implement through conventional programming, it is gratifying to note that it
indeed empowers deep neural networks to glean distinctive features from normal regions.
Fundamentally, CutPaste-Mix involves the random cropping of a patch from a defect-free
image and its subsequent overlay onto the original image to simulate an anomalous region.

CutPaste-Mix. A patch is randomly cropped from an image of the dataset; then, one
or more of the following three strategies (Erase, Enlarge, or Rotate) are randomly used.
This process creates anomalous regions on a normal surface, and the processed images
serve as positive samples only for training the backbone of the classification network. We
also set a consistent random seed to ensure the reproducibility of random processes.

1. Erase. Analogous to the Cutout technique, this strategy directly excises a portion
from the image, discarding the patch area. Given that DCIP images are grayscale,
the residual area’s color adheres to the original grayscale values, with the mean of
the original pixels serving as a substitute color. However, this approach engenders
appreciable information loss in images and can be harmonized with other methods.

2. Enlarge. Commencing with the random cropping of a rectangular region, this method
subsequently enlarges and reattaches it to a random location on the original image.
We confine the cropped region’s dimensions to not exceed 20% of the image area,
while the enlargement factor remains within the image’s boundaries. This approach
often yields significant abnormal regions while mitigating the substantial information
loss entailed by erase.

3. Rotate. Analogous to Enlarge, this approach involves initial patch cropping, followed
by rotation by a random angle before reintegration into the original image. This tactic
imposes minimal information loss while concurrently generating abnormal regions.

We chose ResNet-18 as the backbone of the classifier. As shown in Figure 1, the input
images serve as negative samples for the training set. Simultaneously, all the output images
generated through CutPaste-Mix are positive samples for the training set. It is important to
note that the training of the network backbone requires both positive and negative samples.
However, when fitting the parameters of the Gaussian density estimator, we exclusively
used negative samples. To test whether a new image has anomalies or not, ResNet-18
first computes the feature vector. Then, the Gaussian density estimator calculates the final
anomaly score for this feature vector to achieve the classification goal.

Figure 1. CutPaste-Mix includes three augmentation methods (Erase, Enlarge, Rotate) for creating
abnormal regions on a normal surface. The binary classification network consists of ResNet-18
(backbone) and a parametric Gaussian density evaluator. “Normal Surface” refers to a surface that is
within the expected or acceptable condition, and “Abnormal Surface” is the opposite.
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This paper introduces the training loss function for the proposed supervised represen-
tation learning, as follows:

LCPM = Ex∈χ{CE(g(x), 0) + CE(g(CP(x), 1))

where χ represents the defect-free dataset, LCPM(·) stands for the loss function of the
CutPaste-Mix, and g(·) is the singular classifier composed of a deep neural network. CE(·, ·)
denotes the cross-entropy loss. During the implementation of the code, all the data aug-
mentation strategies mentioned in CutPaste-Mix are completed before inputting the sample
x into the singular classifier g(·).
2.3. Deep Residual Learning with ResNet-18

We recognize that there are many outstanding Convolutional Neural Networks (CNNs)
available for us to choose from as the backbone of our classification model. These CNNs
exhibit exceptional feature extraction capabilities. In the production pipeline of DCIPs,
the speed of data collection is high. For our proposed classification model to achieve
rapid classification on the production line, it must have a lower number of layers and
lower computational complexity. Therefore, we excluded models like Inception [28] and
Xception [29] due to their higher computational complexity. Traditional backbone networks
like VGG [30] and AlexNet [31] sometimes suffer from the vanishing gradient problem
because of less effective gradient propagation strategies. We found that ResNet-18′s [32]
network complexity and residual strategy align well with our requirements, which is why
we chose it as the backbone for constructing the classification model.

Deep Residual Learning, commonly referred to as ResNet, has emerged as a significant
advancement in the realm of deep neural networks. One prominent architecture within the
ResNet family is ResNet-18 [32,33], which exhibits remarkable capabilities in overcoming
the challenges posed by training extremely deep networks. ResNet-18 utilizes skip con-
nections, also known as residual connections, to enable the effective training of very deep
networks by mitigating the vanishing gradient problem.

The core innovation of ResNet-18 lies in its residual blocks, where the input to a layer
is added to the output of a subsequent layer, allowing for the preservation of features across
different layers. Figure 2 showcases the architecture of a residual block. The whole network
architecture is composed of several stacked residual blocks, each consisting of multiple
convolutional layers, batch normalization, and ReLU activation functions. This enables the
network to learn complex hierarchical features while still maintaining a manageable overall
network depth. Mathematically, this residual connection can be represented as follows:

xl+1 = xl + F(xl , Wl)

where xl represents the input to the l-th layer, xl+1 is the output of the l+1-th layer, F(xl , Wl)
is the residual mapping, and Wl denotes the weights of the l-th layer.

The ResNet-18 architecture serves as the foundational convolutional backbone in this
investigation. Notably, an appended global average pooling layer precedes the terminal
fully connected layer within the convolutional hierarchy. The resultant feature representa-
tion extracted from this pooling operation serves as the direct input to the ensuing fully
connected stratum, which is seamlessly linked to a multilayer perceptron. To facilitate the
accommodation of diverse image dimensions and sustain training efficiency invariant to
input image size variations, a global average pooling layer is seamlessly integrated prior
to the ultimate fully connected stratum of the ResNet-18 framework. Noteworthy is the
scenario when images of dimensions 256 × 256 × 3 are channeled into the model, thereby
engendering an 8 × 8 × 512 nodal feature map. Notably, the terminal fully connected
layer of ResNet-18 encompasses 1000 nodes, necessitating the propagation of 32,768 × 1000
weights, thereby demanding substantial memory resources. The strategic inclusion of the
global average pooling layer streamlines the transition from the feature map to the ultimate
classification outcome, thereby manifesting substantial empirical efficacy. Concomitantly,
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this architectural augmentation yields a streamlined parameter space, thus fortifying model
resilience and affording a pronounced mitigation of the proclivities toward overfitting.

Figure 2. In a residual structure, the input features undergo initial processing through a sequence
of convolutional layers and activation functions. These processed features are combined with the
output through a skip connection, achieved by element-wise addition.

2.4. Computing Anomaly Score for Classification

The realm of binary classifiers offers a diverse array of methodologies for computing
anomaly scores. The proposed approach involves the direct computation of anomaly scores
based on the features extracted by the convolutional backbone. This is executed through
techniques like kernel density estimation [34] or Gaussian density estimation [23]. Over
the course of the past several decades, both kernel density estimation and Gaussian density
estimation methods have undergone thorough investigation and widespread application.
While these methods may exhibit certain limitations in specific contexts, such as parameter
selection and computational intricacy, they stand as robust mechanisms for estimating
probability density functions. These approaches offer invaluable tools and insights for
tasks such as anomaly region classification. In our study, we harness the Gaussian density
estimation technique to calculate anomaly scores for anomalies present in DCIPs, thereby
facilitating an effective method for classifying surface defects in railway tracks.

Kernel Density Estimation offers several advantages, including the absence of prior
assumptions about data distribution and the avoidance of the necessity for pre-estimation
of parameters. We construct a simple parametric Gaussian density estimator, the basic
principle of which is expressed mathematically as follows:

log pgde (x) ∝
{
−1

2
( f (x)− μ)�Σ−1( f (x)− μ)

}
where μ and Σ represent the Gaussian parameters learned from defect-free negative samples.

3. Experiments

3.1. Description of DCIPs

The experiment focuses on inspecting T-type centrifugal ductile cast iron pipes (DCIPs),
as illustrated in Figure 3. These specific pipes play crucial roles in municipal, industrial,
and mining water supply and drainage systems, as well as contributing to rural water
supply networks. Their significance extends to enhancing both urban and rural water
supply conditions and augmenting regional sources of rural drinking water. Hence, it
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becomes imperative to ensure the quality and performance of cast pipes through thorough
and dependable testing before they are dispatched from the factory.

Figure 3. The T-type centrifugal DCIP.

The practical application scenarios vary, giving rise to diverse prerequisites concerning
DCIP models, sizes, and various parameters. The specifications of the T-type centrifugal
ductile cast iron pipes intended for assessment on the production line are elucidated in
Table 1. The dimensions of DCIPs on the production line exhibit variations, encompassing
a range from DN350 to DN1000 mm, with a maximum nominal diameter deviation of
650 mm. Given the cylindrical nature of the DCIP, rotational motion is indispensable for
effectively detecting the circumferential surface. Moreover, these cast pipes extend up to
a length of 6 m, necessitating the deployment of 6 cameras to cover the entire span, even
though a single camera can encompass a physical field of view of 1 m.

Table 1. The specifications of the T-type centrifugal DCIPs.

DN/mm D/mm P/mm Lu/m

350 448 110 6
400 500 110 6
450 540 120 6
500 604 120 6
600 713 120 6
700 824 150 6
800 943 160 6
900 1052 175 6

1000 1158 185 6

3.2. Experiment Setup

To address the challenge posed by variations in the nominal diameters of Ductile
Cast Iron Pipes (DCIPs), we introduce an automated lifting adjustment system predicated
on Programmable Logic Controllers (PLCs) and servo motor technologies. This system
operates by discerning the specific diameter of the targeted DCIP for inspection and subse-
quently orchestrating the repositioning of the vision system to an optimized focal length
for precise image acquisition. This real-time dynamic adjustment ensures the preserva-
tion of high-fidelity image capture, which in turn serves as a foundational cornerstone
for subsequent algorithmic processing. As delineated in Figure 4, the multistep defect
detection procedure for DCIPs within the production environment involves the following
pivotal phases:

Step 1: Upon the DCIP’s spatial alignment with the designated detection position,
the automated lifting and adjustment system conducts a precise dimensional assessment
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of the DCIP, subsequently dictating the precise positioning of the imaging module for
optimal acquisition.

Step 2: Following the precise alignment of the imaging module with the designated
acquisition position, a rotational mechanism is actuated to induce the DCIP’s rotation. This
rotational mechanism maintains a consistent angular velocity despite varying linear speeds
resultant from inherent DCIP size discrepancies. The synchronization of the rotational
velocity with the light source system and camera acquisition is accomplished through
encoder feedback, enabling real-time modulation of the light source’s luminance duration
and the camera’s exposure time. Each imaging module seamlessly transfers acquired image
data to a centralized server.

Figure 5a,b provides an illustrative depiction of the prototype system’s configuration
seamlessly integrated within the production line, emanating from the foundational pro-
totype framework aforementioned. The illumination infrastructure within this context is
meticulously orchestrated by two distinct lighting controllers, both intricately interfaced
with a computational unit. Employing high-resolution BASLER Mono CMOS line scan
cameras (Ahrensburg, Germany) boasting 4096 pixels, accompanied by ZEISS Planar T*
1.4/50 mm lenses, the image capture process is orchestrated. These cameras are intricately
synchronized with the LED lighting infrastructure through a Field-Programmable Gate
Array (FPGA) control board, ensuring temporal harmony. The captured DCIP images are
promptly relayed to the computational unit for further comprehensive processing. The
computational infrastructure boasts a 64-bit Windows 10 operating system, a 2.4 GHz
central processing unit, and a substantial 32 GB of Random Access Memory (RAM).

Figure 4. The prototype system of capture DCIP data.

3.3. Description of Image in Dataset

The imaging assessment apparatus deployed at the production site was employed
for image testing on each machined DCIP. The system utilized a line scan camera with a
resolution of 4096 pixels. By configuring the image acquisition parameters through the
Pylon software, 4096 rows of data were simultaneously captured, resulting in a DCIP image
with dimensions of 4096 × 2048 pixels. An exemplar image of the DCIP sample acquired
on the production line is depicted in Figure 6.
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Figure 5. The experimental prototype system at the production site. (a) Local scene; (b) global scene.

Figure 6. Sample images of DCIP (uncut).

There are six common types of surface defects found on DCIP: crazing, cracks, heavy
skin, iron bean, mold powder, and pores. The visual characteristics of these defects are pre-
sented in Figure 7. After segmenting the captured 4096 × 2048-pixel images into consecutive
512 × 512-pixel sections and applying subsequent filtering, the obtained surface images
devoid of any anomalies are shown in Figure 8. The captured images with dimensions of
4096 × 2048 pixels were segmented into consecutive images of size 512 × 512 pixels.

Figure 7. Images of DCIP with real surface defects, (a–f) in turn expressed as crazing, crack, heavy
skin, iron bean, mold powder, pore.
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Figure 8. Normal defect-free surface of DCIP.

3.4. Training and Testing Process of Classifier

Training Details: Our experiments were conducted on an NVIDIA RTX 3090. The in-
put images were of size 512 × 512 pixels. The model typically converges with 150 iterations.
We also utilized a list-type hyperparameter, [‘erase’, ‘enlarge’, ‘rotate’], to control the in-
volvement of the three strategies in CutPaste-Mix. The optimizer used was SGD (Stochastic
Gradient Descent) with a learning rate of 0.03, a momentum parameter of 0.9, and a weight
decay parameter set to 3 × 10−5.

Dataset Preparation: Utilizing the aforementioned acquisition equipment, images of
DCIPs were collected. Around 2000 defect-free images were meticulously selected to serve
as the negative samples for the training set. These images were subsequently cropped
into a 512 × 512-pixel format, as illustrated in Figure 8. The dataset was then subjected
to CutPaste-Mix to generate images containing anomalous regions, thereby constituting
the positive samples for the training set. Within the employed training dataset, an equal
number of positive and negative samples were maintained.

The training steps of combining a pre-trained deep convolutional network with Gaus-
sian density estimation to create a binary classifier can be represented as follows:

Computation of Feature Vectors: Employing a pre-trained ResNet-18, the training
dataset undergoes feature extraction. Each datum is fed through the initial layers of the
convolutional neural network, thus obtaining the image’s feature representation. These
representations can be conceived as high-dimensional feature vectors of the images.

Computing the parameters of GDE: The mean and covariance matrix of the Gaussian
density estimator are computed using defect-free DCIP data. For each positive and negative
sample, we aim to set an appropriate threshold to distinguish between them. Thus, we
use the testing set to iteratively adjust suitable thresholds. This threshold is continuously
optimized as new defect data are gathered in subsequent iterations.

New Samples classification: The images are first passed through the pre-trained
convolutional neural network to obtain the feature representation of new samples. Next,
these feature representations are input into the Gaussian Density Estimator (GDE) model to
calculate the likelihood probabilities of the sample belonging to the positive and negative
classes. Finally, the class with the higher probability is chosen as the prediction result.
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Accuracy evaluation: We used 200 real samples with defects as the testing set, all
of which were collected using the device proposed in this paper. The AUC (Area Under
Curve) is the evaluation metric used to test the performance of our classifier and other
models. The classifier calculates the True Positive Rate (TPR) and False Positive Rate (FPR)
using various thresholds on the test dataset and plots these values to create the ROC curve.
The ROC curve typically has TPR on the y-axis and FPR on the x-axis. Finally, the area
under ROC curve, denoted as AUC (Area Under the Curve), is calculated to evaluate the
classifier’s performance.

3.5. Main Results

Table 2 showcases the performance of the novel self-supervised classification approach
introduced in this study. Through 10 distinct experiments employing diverse random seeds,
we present the averaged AUC accompanied by its standard error across the testing set. We
not only evaluated the overall performance of CutPaste-Mix but also separately evaluated
the three augmentation strategies it includes: Erase, Enlarge, and Rotate. Additionally, we
conducted comparative assessments with three alternative techniques: Deep One-Class
(DOCC) [16], Uninformed-Student [35], and Patch-SVDD [36].

Table 2. The ablation experiments evaluated the performance of CutPaste-Mix and its sub-methods
separately on the DCIP dataset. To reduce randomness, each experimental group was tested
10 times using different random seeds. We report the AUC and standard deviation for each
experimental group.

Erase Enlarge Rotate AUC

* 84.3 ± 2.3
* 95.8 ± 1.1

* 92.5 ± 1.8
* * 88.6 ± 0.5
* * 97.2 ± 0.7

* * 98.9 ± 0.2
* * 94.8 ± 1.5
* * * 99.4 ± 0.1

We refer to the three strategies included in CutPaste-Mix as Enlarge, Erase, and
Rotate just for clarity. Enlarge excelled as a standalone data augmentation technique,
even surpassing Rotate, achieving an impressive 95.8 AUC. The performance was poorest
while only using Erase, with 84.3 AUC. When combining two data augmentation methods,
Enlarge and Rotate together achieved an even higher 98.9 AUC. Furthermore, the results
of CutPaste-Mix reached a remarkable 99.4 AUC. We also compared the top-performing
CutPaste-Mix approach with other models, and it consistently yielded the best results, as
demonstrated in Table 3.

Table 3. The performance of various anomaly detection models on the DCIP dataset evaluated using
the AUC metric, serving as a comparative experiment against the CutPaste-Mix.

DOCC [16] U-Student [35] P-SVDD [36] CutPaste-Mix (Best)

83.4 92.8 95.6 99.5

We applied our most effective classifier to the field-collected dataset using the acquisi-
tion equipment. The results were gathered from 10,000 consecutive screening operations.
Our proposed self-supervised classifier ultimately identified 43 images as anomalous. Fol-
lowing on-site comparisons, we validated the presence of 20 genuine defect images, as
illustrated in Figure 9. However, it is important to note that the DCIP’s surface is inevitably
subject to disturbances like water stains and oil smudges, as depicted in Figure 10. These
noise interferences also contribute to the anomalous regions. While it may not be feasi-
ble to entirely distinguish whether the detected anomalous regions represent defects or
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noise, our approach substantially reduced the time required for manual defect screening.
Moreover, its on-site applicability offers significant convenience for subsequent model
optimization endeavors.

Figure 9. The true positives in the model’s classification results encompass defect types such as iron
bean, crack, crazing, and pore.

Figure 10. The false positives in the model’s classification results are primarily caused by oil stains,
water marks, and iron oxide patches on the surface of the DCIPs. Although these anomalies are not
defects, they still represent abnormal areas distinct from the normal surface.

4. Conclusions

The aforementioned experimental results confirm the feasibility and superiority of the
self-supervised classification algorithm based on CutPaste-Mix on the DCIP dataset. The
use of data augmentation to generate abnormal regions in images effectively yields positive
samples for classifier training. The ResNet-18 backbone network efficiently captures image
features and computes feature vectors. The Gaussian Density Estimation (GDE) is utilized
to compute anomaly scores for the extracted features, thus achieving anomaly classification.
Our experimental outcomes demonstrate the advantages of this approach compared to
other methods. Through ablation experiments, we discussed the results of using different
augmentation strategies individually and in combination. For each method, we conducted
10 trials and calculated the average AUC and standard deviation to showcase the superiority
of CutPaste-Mix.
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This study also has a limitation. In the classification results, we encountered non-
defective surface images, such as water stains or oil stains. This suggests that the proposed
classification model struggles to distinguish between genuine defects and noise interference,
both of which fall into the category of anomalies. The reason for this challenge may be that
both genuine defects and noise interference have a large Euclidean distance from normal
surfaces in the feature space, but their feature similarity is high. Therefore, we believe that
distinguishing between noise interference and real defects could be a valuable direction for
future research.
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Abstract: Selecting training samples is crucial in remote sensing image classification. In this paper, we
selected three images—Sentinel-2, GF-1, and Landsat 8—and employed three methods for selecting
training samples: grouping selection, entropy-based selection, and direct selection. We then used
the selected training samples to train three supervised classification models—random forest (RF),
support-vector machine (SVM), and k-nearest neighbor (KNN)—and evaluated the classification
results of the three images. According to the experimental results, the three classification models
performed similarly. Compared with the entropy-based method, the grouping selection method
achieved higher classification accuracy using fewer samples. In addition, the grouping selection
method outperformed the direct selection method with the same number of samples. Therefore,
the grouping selection method performed the best. When using the grouping selection method, the
image classification accuracy increased with the increase in the number of samples within a certain
sample size range.

Keywords: remote sensing classification; sample selection method; classification model; sample size

1. Introduction

Multispectral remote sensing images contain a large amount of ground object infor-
mation, which is encoded in various bands of the image. Ground object information can
be quickly extracted from multiple bands. Different ground objects have different spectral
characteristics, and similar ground objects have the same or similar spectral characteristics
under the same conditions. The same ground object exhibits different radiation energy in
different bands, resulting in differences between images obtained from different bands.
With the rapid development of remote sensing technology, the information that we obtain
from images is becoming increasingly rich and, correspondingly, image information extrac-
tion technology is constantly improving. In the field of remote sensing, image classification
has always been the focus of research for professionals, who are committed to researching
advanced classification methods to improve the accuracy of remote sensing image classifica-
tion. As a fundamental image processing method, remote sensing image classification is the
basis for environmental and socioeconomic applications. It has been widely used in various
fields, such as environmental protection, land change monitoring, agricultural planning,
water resource analysis, natural disaster detection, biodiversity monitoring, etc. [1].

Remote sensing image classification is a complex process, in which every step is
crucial, from the selection of data sources and the design of sample selection schemes to
the selection of classification methods and the evaluation of classifier performance. The
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complexity of the landscape in the study area, the scale of the study area, and economic
conditions are also important factors that influence the selection of remote sensing data,
the design of classification algorithms, and the quality of classification results [2]. However,
many previous studies have focused specifically on advanced classification methods and
improving the accuracy of remote sensing image classification [3–7] but paid little attention
to the research on the selection methods for training samples in classification algorithms.

The structure of this paper is as follows: In this study, the background and motivation
of the research are first introduced, outlining the objective of achieving better classification
results in remote sensing imagery by selecting appropriate sample selection methods. The
paper provides an overview of the current research status in this area. Subsequently, the
study elaborates on the three sample selection methods employed. The data and models
used in this research, including Sentinel-2, GF-1, and Landsat 8 remote sensing data, as well
as SVM [8], RF [9], and KNN [10] classification models, are then introduced. The design and
execution processes of the experiments, encompassing sample selection, model training,
and the utilization of remote sensing imagery, are described. In the section presenting
the experimental results, a comprehensive analysis and comparison of the classification
accuracy achieved through different sample selection methods is presented. Additionally,
this study explores the influence of varying sample sizes on classification accuracy under the
optimal sample selection method. Finally, the Conclusions and Outlook section summarizes
the main findings and contributions of this study, offering recommendations for future
research directions.

2. Related Works

Samples in remote sensing image classification are mainly used as training data
for classification models and as test data to evaluate the accuracy of map products. In
supervised classification of multispectral remote sensing images, common classification
methods include SVM, RF, and KNN. Training samples are required to train the classifier,
and the method of selecting the samples determines the quality of the training samples and
has a significant impact on remote sensing image classification and accuracy evaluation.
With the development of remote sensing technology, the amount of information contained
in remote sensing data is increasing. Many researchers have also begun to pay attention to
the impact of samples on classification results. Koreen et al. conducted a study analyzing
the effects of input data features on the RF classification algorithm. Their results showed
that the RF classification algorithm was highly sensitive to the training dataset, and the
selection strategy of specific input variables (i.e., image channels) and training data used in
classification had a significant impact on the overall accuracy of image classification [11].
Zhen et al. delineated reference polygons to obtain training and validation data and
studied the effects of four selection schemes on the classification accuracy and accuracy
estimates obtained from validation data in object-based classification research [12]. J.
Corcoran et al. selected training samples using three methods—namely, selecting points
interpreted from the field and photographs, fixed windows around points, and image
objects intersecting with points—and studied the effects of point- and polygon-based
training data on the accuracy of wetland RF classification [13]. Shahriar et al. studied the
effects of classifier selection, reference sample size, reference class distribution, and scene
heterogeneity on the accuracy of pixel classification. They found that SVM and KNN have
a significant advantage in accuracy for edge pixels, and that the class distribution in the
training dataset has an impact on the accuracy calculation [14]. Ming et al. investigated the
impact of training samples and classifiers on Landsat 8 image classification and found that
SVM had the highest classification accuracy. The accuracy of the classifier increased with
the increase in the training sample size, providing guidance for the selection of training
samples and classifiers [15]. Li et al. researched the effect of sample size on remote sensing
classification [16–18]. Christopher et al. evaluated four sample selection methods (simple
random, proportionate stratified random, disproportionate stratified random, and judicious
sampling) and three cross-validation adjustment methods (k-fold, leave-one-out, and the
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Monte Carlo method) for regional-scale machine learning classification. They trained
supervised machine learning algorithms using the selected samples to generate land cover
maps of large geographic areas [4]. Additionally, Jin et al. studied the effects of four training
sample selection schemes on urban and non-urban binary classification in the Denver
metropolitan area of Colorado, including two stratification schemes (spatial and class-
specific) and two sample allocation options (proportional area and equal allocation) [19].
Lv et al. proposed a grouping-based sample selection method that applies histogram
analysis to select more distinctive samples [20].

These studies indicate that sample selection significantly influences the outcomes
of remote sensing image classification. Researchers have explored various factors, such
as input data features, strategies for selecting training datasets, acquisition of reference
polygons for training and validation data, training data based on points and polygons,
classifier selection, reference sample size, reference class distribution, scene heterogeneity,
sample size, and sampling and cross-validation adjustment strategies. They have found
that these factors have a notable impact on the overall accuracy of image classification.
Additionally, researchers have proposed specific sample selection methods. In particular,
researchers have employed various sample selection methods, including random sampling,
stratified random sampling, disproportionate stratified random sampling, and judicious
sampling. They have also investigated different cross-validation adjustment methods,
such as k-fold, leave-one-out, and the Monte Carlo method. The choice of these methods
produces varying effects in different scenarios. For instance, in the context of regional-
scale machine learning classification, selecting appropriate sample selection methods and
cross-validation adjustment methods can generate land cover maps for large geographic
areas. Furthermore, researchers have focused on classifier selection and observed distinct
advantages for specific classifiers such as SVM and KNN in certain situations. These studies
provide valuable guidance for remote sensing image classification, enabling researchers
to more accurately select samples and classifiers, thereby enhancing the accuracy and
reliability of remote sensing image classification.

3. Materials and Methods

The process of identifying features in remote sensing images essentially involves
transforming the identification problem into sample classification. The quality and repre-
sentativeness of training samples directly impact the classification results of remote sensing
image classifiers. Therefore, it is crucial to quickly and effectively select representative
training samples. In this paper, we consider each pixel in the remote sensing images as
a sample. Each pixel is composed of multiple bands, and these band data contain abundant
information. We chose to use the band data of each pixel as sample data. We chose the
grouping method and the “entropy”-based selection method for sample selection. Using
Sentinel-2, GF-1, and Landsat 8 remote sensing images, as well as SVM, RF, and KNN
classification models, we further analyzed the influence of these selection methods on the
classification accuracy of remote sensing images.

3.1. Image Data

This experiment primarily utilized three remote sensing images: Sentinel-2, Landsat 8,
and GF-1. Table 1 provides specific details about these images, all of which underwent
preprocessing steps such as radiometric calibration and atmospheric correction.

Table 1. Characteristics of the three remote sensing images.

Satellite Key Features

Sentinel-2 High-resolution multispectral imaging satellite equipped with 13 bands. Primarily used for monitoring
terrestrial environments and providing information on vegetation, soil, and coastal conditions.

Landsat 8 Equipped with the Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS). The OLI has 9 bands
with a resolution of 30 m. It is widely used in fields such as global change, agriculture, and water quality.

GF-1 Equipped with high-resolution and multispectral cameras. It can cover large areas with high spatial and
temporal resolution.
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3.2. Classification Models

SVM, RF, and KNN are widely used land cover classification models in the field of
remote sensing. These models exhibit excellent performance and versatility when it comes
to handling remote sensing data and addressing land cover classification tasks. They are
chosen for land cover classification because of their ability to effectively process various
types of remote sensing data, including multispectral, hyperspectral, and remote sensing
imagery, and to provide accurate classification results across different land cover scenarios.
These models play a crucial role in geographic information systems (GISs), environmental
monitoring, land-use planning, resource management, disaster monitoring, and more,
offering robust support for decision-making and spatial analysis. Therefore, selecting these
models for remote sensing land cover classification is a logical choice, given their proven
excellence and broad application prospects in this field.

SVM is a supervised learning algorithm used to find the optimal hyperplane for
separating the feature space. It uses support vectors to determine the position of the
hyperplane, which are the training samples closest to it. SVM transforms the feature space
into a higher-dimensional space using kernel functions, enabling linearly inseparable data
to become linearly separable in the new space. There are many types of kernels, and in this
experiment, the radial basis function (RBF) kernel [21], commonly used in remote sensing,
was used as a baseline for evaluating the performance of new SVM kernels.

RF is a machine learning classifier that leverages multiple decision trees for ensemble
learning and improves accuracy by aggregating their classification results. Each decision
tree acts as a classifier, and the final classification result is determined by the voting of all
classifiers.

KNN is a lazy supervised learning classification algorithm that determines the class of
a new sample by finding the k most similar samples. The value of k in the KNN algorithm
affects the complexity of the decision boundary, with smaller k leading to complex decision
boundaries and larger k improving the model’s generalization ability.

3.3. Sample Selection Method

We conducted experiments using the group-based sampling method [20]. The group-
based sampling method evaluates the feature distribution of each category by analyzing
the histogram of the number of samples in each category, and then it selects training
samples from different groups in the histogram. This method considers the heterogeneity
of categories and is capable of selecting training samples with more prominent features
while excluding mislabeled sample points. Additionally, a method based on “entropy”
for selecting training samples was proposed. Through experimental analysis, the optimal
sample selection method was determined, enabling supervised classification with a small
number of representative samples, thus improving the classification efficiency and accuracy.
The following is a detailed introduction to the sample selection methods used:

3.3.1. Group-Based Selection Method

Based on the existing method [20], considering that different land features in the image
have varying areas and spectral ranges, we developed a specific calculation method to
increase the number of groups. The number of groups for each land feature was calculated
based on its spectral range and the number of sample labels. In addition, a variable P was
introduced to control the number of selected samples. Below are the specific methods for
selecting grouped samples.

Firstly, the remote sensing image to be classified needs to be labeled to select the initial
samples. As different features have different proportions in the image, a proportional
stratified random sampling method is adopted to ensure the representativeness of the
training samples. This means that every pixel in the image has the chance to be selected,
and the number of samples selected is determined based on the percentage of each feature’s
area in the image to ensure that the number of samples for each feature corresponds to its
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proportion in the image. At the same time, the number of labeled feature blocks should
also match the proportion of each feature in the image.

After obtaining the labeled sample data, a feature distribution map for each feature
class is generated based on the gray value of each pixel. The gray value of each pixel is
calculated as gray = 0.299 × red + 0.587 × green + 0.114 × blue. Red, green, and blue
represent the red, green, and blue bands used in the image, respectively, and the calculation
of the gray value equalizes the values of the bands and facilitates data processing.

Binsk=
2
√
(bandmax − bandmin) ∗mk

M
(1)

where Binsk represents the number of groups of the kth land cover type, bandmax represents
the maximum band value in the labeled sample of the kth land cover type, bandmin repre-
sents the minimum band value in the labeled sample of the kth land cover type, mk repre-
sents the number of labeled samples of the kth land cover type, and M represents the total
number of labeled samples of all land cover types. Using Formula (1), each land cover type
can be divided into different numbers of groups according to its proportion in the image.
Different groups represent different spectral ranges, and these spectral ranges correspond
to different variation patterns within the same category. By selecting different numbers of
samples from each group, it is possible to consider and capture the internal heterogeneity
within the category, thus covering the intraclass heterogeneity.

Next, calculate the number of labeled samples within each group and determine the
number of samples selected from each group using the following formula:

Cbi = P∗N2
bi

/TK (2)

where Cbi represents the number of samples obtained for the ith grouping, Nbi represents
the ratio of the total number of selected samples to the total number of labeled samples,
Tk represents the total number of pixels in the ith grouping, and bi represents the total
number of pixels of the kth land cover type. Samples of pixels are selected for each group in
each land cover type in turn. From this formula, it can be seen that the higher the frequency
of bi, the more labeled samples are selected from this group. When bi approaches 0, no
samples are selected from this group. The samples within this range may be mislabeled
compared to most of the samples of this land cover type. Therefore, they are not suitable as
characteristic training samples.

Figure 1 shows the characteristic distribution map of the forestland. According to
Formula (1), each column represents a group in the histogram. According to Formula (1),
the labeled pixels of forestland are divided into eight groups. We need to select a certain
number of representative samples from these groups. Formula (2) is used to calculate the
number of samples that should be selected for each group. From the histogram, it can be
observed that the number of pixels in groups 6–8 is very small, indicating a small N in
Formula (2). Therefore, the calculated C approaches 0, which means that no sample points
are selected from this interval. This is because pixels within this range may be mislabeled
compared to most forestland sample points.

The method of group-based selection takes into account the differences in land features
and spectral distributions in remote sensing images. It enables the more accurate selection
of representative training samples and ensures that the sample quantity matches the
proportion of land categories in the image [20]. This helps to improve the performance and
accuracy of classification models.
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Figure 1. Distribution of woodland features.

3.3.2. The Selection Method Based on “Entropy”

In information theory and probability statistics, information entropy is a measure
of the uncertainty of a random variable, and it also represents the expected value of
information. It is commonly used as a quantifying indicator of information content and
serves as a criterion for optimizing system equations or selecting parameters. As the
information entropy increases, the number of unstable factors and the level of uncertainty
within an object also increase. The magnitude of the information reflects the extent to which
uncertainty events are reduced, while the magnitude of information entropy reflects the
degree of uncertainty associated with the events.

Drawing upon the definition of information entropy, we propose a sample selection
method based on “entropy”. This method employs the “entropy” value to assess whether
a sample should be selected. A higher entropy value signifies greater uncertainty and
a more significant impact on the overall result, indicating that the sample contains more
information. Consequently, we can choose samples with higher entropy values from
a multitude of samples as training samples, as they possess more information and are
suitable for training purposes. Assuming that the total area of the remote sensing sample
to be classified is S and the total number of marked pixels is T, each pixel is calculated
according to the following formula:

P(s) = −∑n
k=1 p(xk)log2 p(xk) (3)

where n represents the number of bands, xk is the value of pixel x in the kth band, and
p(xk) is the probability of x appearing in the kth band. Based on the total number of training
samples required, the sample size of each type of land cover is calculated using stratified
sampling. The proportion of stratified sampling is the percentage of the area of each type
of land cover in the total image area. Samples with higher P(x) values for each type of land
cover are selected as training samples, and the higher the P(x) value, the more information
it contains.

3.3.3. Direct Sampling Method

In the direct sampling method, we randomly select a portion of samples from the
remote sensing image and directly choose a specific number of samples as training samples
through the relevant procedure. When compared to the group-based sampling method,
we must ensure that the number of samples selected for each category is the same as the
number of samples selected in the group-based sampling method.

4. Experiments

Three types of remote sensing data—namely, Sentinel-2, GF-1, and Landsat 8—were
selected. The remote sensing images were chosen from the red, green, and blue bands.
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Figure 2 displays both the original images and the classified images of these three datasets.
Then, three supervised classification models were chosen, including RF, KNN, and SVM.
Sample selection was carried out using the grouping-based sampling method, entropy-
based sampling method, and direct sampling method. These three classification models
were used to train and classify three images, and the results were compared and analyzed
using a test set.

Figure 2. Original images of (a) Sentinel-2, (b) GF-1, and (c) Landsat 8. Classification images for
(d) Sentinel-2, (e) GF-1, and (f) Landsat 8.

4.1. Experimental Steps
4.1.1. Selecting Training Samples

In this experiment, we selected three types of remote sensing data, including Sentinel-2,
GF-1, and Landsat 8, as shown in Figure 2. We calculated the land area ratio for each image
and collected samples using a stratified sampling method.

Taking Sentinel-2 as an example, the total area of the image was 500,000 square
kilometers, of which forests accounted for 50%, grassland accounted for 18%, swamps
accounted for 22%, saline–alkali land accounted for 6%, and water bodies accounted for 4%.
In Table 2, A, B, C, D, and E represent different land cover categories. We labeled a total of
154,172 sample pixels in the image, including 78,225 forest pixels, 26,844 grassland pixels,
33,643 swamp pixels, 8962 saline–alkali land pixels, and 6498 water body pixels. Table 2
shows the number of pixels of each type of land selected for each image. It can be seen from
the table that the number of pixels of each type maintains the area ratio of each land type.

Table 2. Number of total samples for three images.

Image Name Object A Object B Object C Object D Object E Total Sample Size

Sentinel-2 78,225 26,844 33,643 8962 6498 154,172
Landsat 8 118,247 93,162 93,053 24,295 / 328,757

GF-1 249,954 11,202 / / / 261,156

We took the sample sizes presented in Table 1 and divided them into groups for selec-
tion using the “entropy” method or directly selecting three methods for screening. When
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using the grouping method, objects within each region are divided into different groups.
The method of selecting samples through grouping helps to identify more representative
samples and reduce the overall sample size. The size of the sample can be controlled by
adjusting the p-value. When the p-value was set to 0.5, we selected representative samples
from each group and, finally, determined the number of samples for each category, as
shown in Table 3. The number of forest samples decreased from 78,225 to 116, grassland
from 26,844 to 76, marshland from 33,643 to 150, saline–alkali land from 8962 to 44, and
water bodies from 6498 to 23. A total of 409 samples were selected as training samples for
model training. It can be seen that the number of samples used was significantly reduced,
and that a small number of training samples can reduce the training time of the model.
When selecting training samples using the “entropy” method, we calculated the “entropy”
value of each pixel and selected a certain number of samples with smaller “entropy” values
from each type of object based on the proportion of object area. We trained these training
samples using three different models and applied the trained models to the test set to
determine their classification accuracy.

Table 3. Numbers of training samples for the three images.

Image Name Object A Object B Object C Object D Object E Total Sample Size

Sentinel-2 116 76 150 44 23 409
Landsat 8 364 192 193 89 / 828

GF-1 203 50 / / / 253

4.1.2. Selecting Model Parameters

Many supervised classification models require the selection of appropriate parameters
to optimize their performance on specific objectives or datasets. Selecting classifier parame-
ters is a crucial step in the classification process. The optimal parameters cannot be directly
determined and require tuning through cross-validation methods. In this experiment,
K-fold cross-validation was employed for parameter tuning, with K set to 5. Additionally,
the kappa coefficient was used to assess the model parameters. The kappa coefficient is
a statistical metric used to assess the performance of classification models, particularly
suited for evaluating the accuracy of classification tasks, and is not influenced by class
imbalance issues. It considers the consistency between the predicted results of the classifica-
tion model and the actual observed results by quantifying the model’s performance through
comparing correct classifications with random classifications [22]. Table 4 presents the
parameter ranges for each classifier, while Table 5 displays the optimal parameters selected
through fivefold cross-validation and the model evaluation criterion (kappa coefficient).

Table 4. The range of model parameter selection.

Classifier Parameter Tested Parameter Ranges

SVM(RBF)
C 0.25, 0.50, 1, 2, 4, 8, 16, 32, 64, 128

gamma 0.001, 0.01, 0.1, 1, 10, 100

RF
num.trees 10, 50, 100, 200

mtry 1, 3, 5, 7, 9
KNN K 1, 3, 5, 7, 9

We needed to analyze the classification accuracy achievable for each image using the
three sample selection methods, evaluate the best sample selection method, and evaluate
the influence of sample size under this sample selection method by controlling the number
of samples with different labeled sample ratios (i.e., p-values) in the total samples.
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Table 5. The optimal parameters of the model under different conditions.

Classification
Model

Optimal Parameters Under Different Sample Selection Methods

Sample selection
methods Direct sampling method Group-based selection method The selection method based on

“entropy”
Image name GF-1 Landsat 8 Sentinel-2 GF-1 Landsat 8 Sentinel-2 GF-1 Landsat 8 Sentinel-2

SVM(RBF)
C 8 2 16 8 2 128 0.25 1 0.25

gamma 0.01 0.001 0.001 0.01 0.001 0.001 0.001 0.001 0.001
Kappa

coefficient 0.7 0.8 0.85 0.76 0.7 0.913 0.6 0.7 0.73

RF
num.trees 200 50 100 100 200 100 10 10 10

mtry 3 1 3 1 3 1 1 1 1
Kappa

coefficient 0.90 0.83 0.89 0.95 0.94 0.89 0.91 0.86 0.8

KNN K 3 3 3 5 9 7 1 1 1

4.2. Analysis of Experimental Results

From Table 6, it can be observed that the different sample selection methods, including
direct sampling, entropy-based sampling, and grouping selection, significantly influenced
the classification results across different remote sensing images (GF-1, Landsat 8, and
Sentinel-2).

Table 6. The accuracy of the three classification methods.

Sample Selection Methods Image Name Classification Model Accuracy (%)

Direct sampling method

GF-1
SVM 86
RF 88

KNN 89

Landsat 8
SVM 31
RF 57

KNN 70

Sentinel-2
SVM 87
RF 86

KNN 88

Group-based selection method

GF-1
SVM 95
RF 93

KNN 95

Landsat 8
SVM 81
RF 94

KNN 93

Sentinel-2
SVM 90
RF 93

KNN 90

The selection method based on “entropy”

GF-1
SVM 69
RF 88

KNN 81

Landsat 8
SVM 79
RF 91

KNN 91

Sentinel-2
SVM 81
RF 67

KNN 78

Firstly, using the direct sampling method, the classification accuracy for GF-1 ranged
from 86% to 89%, while for Landsat 8 it ranged from 31% to 70% and for Sentinel-2 it
ranged from 86% to 88%. This method lacks clear selection criteria or strategies. Due to the
randomness of the sample selection process and the uncertainty factors, such as different
land features and sizes in different images, the classification performance on these three
types of images was not satisfactory.

Under the entropy-based sampling method, the classification accuracy for GF-1 ranged
from 69% to 88%, while for Landsat 8 it ranged from 79% to 91% and for Sentinel-2 it ranged
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from 67% to 81%. Compared to direct sampling, the entropy-based method improved the
classification accuracy in some cases, but its performance was unstable across different
images and models. It did not adapt well to all images and models.

However, the grouping selection method outperformed the others across all remote
sensing images and classification models. In GF-1 images, the SVM and KNN classifiers
achieved a classification accuracy of 95% using the grouping selection method—significantly
higher than the direct sampling and entropy-based methods. In Landsat 8 images, the RF
classifier achieved the highest classification accuracy of 94% using the grouping selection
method. Similarly, in Sentinel-2 images, the grouping selection method also demonstrated
significant improvement, with the SVM classifier’s accuracy reaching over 90%.

The success of the grouping selection method lies in its ability to ensure sample
representativeness, thereby enhancing the performance of classification models. It allows
the models to adapt better to different images, increasing the accuracy of remote sensing
image classification. In contrast, direct sampling and entropy-based methods may lead to
non-representative samples, affecting the models’ generalizability and accuracy.

In summary, the grouping selection method exhibits significant advantages in sample
selection. It not only enhances the performance of classification models but also increases
their generalizability. These models can be applied to different images, achieving high
classification accuracy.

Next, let us explore the influence of sample size under the grouping selection method
by controlling the number of samples with different labeled sample ratios (p-values) and
investigate the impact of different sample sizes on the classification accuracy when using
the grouping selection method.

For example, Sentinel-2 images were selected to test different p-values; nine sets of
different numbers of labeled samples were selected, and the samples were used as training
samples for three models of KNN, random forest, and SVM classifiers to examine the effects
of different sample sizes on the classification accuracy. Table 7 shows the classification
accuracies when different p-values are taken. From the experimental results in the table, it
can be seen that the larger the p-value, the higher the classification accuracy. A classification
accuracy of 90% can be achieved by all three classification models when the p-value is
0.005. The classification accuracy of the RF classifier is improved by 6.1%, that of the KNN
classifier is improved by 17.9%, and that of the SVM classifier is improved by 11.8% when
the p-value is increased from 0.001 to 0.1 and the number of selected labeled samples is
increased from 78 to 8311. All of the classification accuracies can reach more than 93%.
Therefore, the larger the value of p is in the range of 0.001 to 0.1, the larger the number of
selected landmark samples and the higher the classification accuracy.

Table 7. The classification accuracy at different p-values.

The Value of p RF Classification Accuracy (%) KNN Classification Accuracy (%) SVM Classification Accuracy (%)

0.001 87.3 76 82
0.003 92.7 89.1 88.4
0.005 93 91.4 90.8
0.007 92.2 90.2 90.6
0.01 92.3 90.4 91.2
0.03 93.2 92.6 92.7
0.05 93.1 93.4 93
0.07 93.3 93.6 93.6
0.1 93.4 93.9 93.8

5. Conclusions and Outlook

This paper used three methods for selecting training samples: grouping-based sam-
pling, entropy-based sampling, and direct sampling. The KNN, SVM, and RF algorithms
were used as classification models. Grouping-based sampling has significant advantages in
improving classification accuracy and stability for different image classifications. Addition-
ally, it requires only a small amount of training data, improving the classification efficiency.
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When using the grouping-based sampling method, the classification accuracy improves
as the sample size increases within a certain range. This has practical implications for the
classification and identification of land features in remote sensing images. The research
findings clearly indicate that incorporating a grouping strategy during the sample selec-
tion stage significantly enhances the performance of classification models. This provides
effective support for sample selection methods in future remote sensing image processing
and analysis.

However, this study also faces certain limitations that need to be considered. Firstly,
the experimental results might have been influenced by the choice of datasets and the
configuration of the model parameters. In this experiment, we primarily utilized three
types of remote sensing images—Sentinel-2, GF-2, and Landsat 8—employing common
classification models such as SVM, RF, and KNN. These choices will have had a certain
impact on the research outcomes. Secondly, different remote sensing images may exhibit
variations in land cover types and differences in land cover distribution and features, po-
tentially affecting the model’s performance. Therefore, it is necessary to further investigate
the potential impact of image characteristics on classification results.

In addition, this study only considered three sample selection methods and three
classification models. Future research could explore the integration of additional methods
and incorporate a broader range of classification models, such as the BP neural network
model, to further enhance classification performance. Furthermore, given the crucial
role of the spatial distribution characteristics of training samples in determining the final
classification accuracy, future studies should comprehensively investigate this aspect to
further improve the accuracy of remote sensing image classification.
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